

Cardiff Working Papers in Accounting and Finance

Rhydian Lewis, Ben Paechter and Barry McCollum

Post Enrolment based Course Timetabling: A Description of
the Problem Model used for Track Two of the Second

International Timetabling Competition

A2007/3

CARDIFF BUSINESS SCHOOL
WORKING PAPER SERIES

This working paper is produced for discussion purpose only. These working papers are expected to be published in
due course, in revised form, and should not be quoted or cited without the author’s written permission.

ISSN: 1750-6638

July 2007

Cardiff Business School

Cardiff University
Colum Drive

Cardiff CF10 3EU
United Kingdom

t: +44 (0)29 2087 4000
f: +44 (0)29 2087 4419

www.cardiff.ac.uk/carbs

- 1 -

Post Enrolment based Course Timetabling: A

Description of the Problem Model used for Track Two of

the Second International Timetabling Competition

Rhydian Lewis1 Ben Paechter2 Barry McCollum3

1Cardiff Business School, Prifysgol Caerdydd/Cardiff University,

Cardiff, Wales, CF10 3EU.

Email: lewisr9@cf.ac.uk
2Centre for Emergent Computing, Napier University,

Edinburgh, Scotland, EH10 5DT.

Email: b.paechter@napier.ac.uk
3SARC Building, School of Electronics, Electrical Engineering and Computer

Science, Queens University,

Belfast, Northern Ireland.

Email: b.mccollum@qub.ac.uk

Abstract:

In this paper we give a detailed description of the problem model used in track-two of
the second International Timetabling Competition, 2007-2008
(www.cs.qub.ac.uk/itc2007/). This model is an extension of that used in the first
timetabling competition, and we discuss the rationales behind these extensions. We
also describe in detail the criteria that are used for judging solution quality and discuss
other issues that are related to this. Finally we go over some of the strengths and
limitations of the model. This paper can be regarded as the official documentation for
track-two of the timetabling competition.

- 2 -

1 Introduction

The timetabling of events (such as lectures, tutor ials, and seminars) at universities in

order to meet the demands of its users is often a difficult problem to solve effectively. As well

as wanting a timetable that can actually be used by the institution, users will also want a

timetable that is “nice” to use and which doesn’t overburden the people who will have to base

their days’ activities around it. Timetabling is also a very idiosyncratic problem that can vary

between different countries, different universities, and even different departments. From a

computer-science perspective, it is therefore a problem that is quite difficult to study in a

general way.

The Second International Timetabling Competition (www.cs.qub.ac.uk/itc2007/) has

been organised to allow researchers from various fields to compare and contrast timetabling

algorithms using a common set of benchmark instances in an accurate and fair way. The

competition has been split into three tracks, each of which deals with a different type of

university timetabling problem; namely exam timetabling, post enrolment-based course

timetabling, and curriculum-based timetabling. The main rules of the competition, which are

universal to all three tracks, are described in detail on the competition website.

The timetabling problem-version that is described in this document is the Post

Enrolment-based Course Timetabling Problem used in track-two of the competition. This

particular model is intended to simulate the real-world situation where students are given a

choice of lectures that they wish to attend, and the timetable is then constructed according to

these choices (that is, the timetable is to be constructed after students have selected which

lectures they wish to attend). Our intention in this document is to describe this problem in

- 3 -

detail, to outline the judging criteria and other related rules that are used with this model, and

to discuss its general merits and limitations.

The Post Enrolment-based Course Timetabling Problem model is based on the model that

was used in the first international timetabling competition

(http://www.idsia.ch/Files/ttcomp2002/), which was run in 2003 in conjunction with PATAT

and the Metaheuristics Network. It should be noted that the problem model used in the first

competition has been given various names in the literature including the “Class Timetabling

Problem”, the “Event Timetabling Problem”, the “Class assignment Problem”, and the

“University Course Timetabling Problem”. Readers who are interested in researching some of

the work conducted with the problem model used in the first competition are directed to the

work of Lewis (2006, 2007), Kostuch (2005), Chiarandini et al. (2003), Socha et al. (2002),

and Rossi-Doria et al. (2002). Various pieces of useful information can also be found on the

original competition’s webpage.

2 Problem Background

In the original timetabling competition, a problem model was used in which a number of

“events” had to be scheduled into rooms and “timeslots” in accordance with a number of

constraints. These constraints can be divided into two classes: the hard constraints and the soft

constraints. The former are mandatory in their satisfaction and reflect constraints that need to

be satisfied in order for the timetable to be useable; the latter are those that are to be satisfied

only if possible and are intended to make a timetable “nice” for the people who were supposed

to use it.

- 4 -

One important feature of the original competition model was the way in which the

quality of the entrants’ solutions was measured. It was decided by the competition organisers

beforehand that timetables would only be judged by calculating the number of soft constraint

violations within the proposed solution. In fact, algorithms were only eligible to enter the

competition if feasible timetables could be produced within the time limit. One reason for this

was to avoid the problem of deciding how to compare two solutions with different numbers of

broken hard constraints and different numbers of broken soft constraints. Consequently, the

problem instances that were used in this competition were specially constructed so that the

hard constraints in each case were generally quite easy to satisfy.

One effect of this judging criterion was that the majority of ideas generated in the first

competition were to do with the satisfaction of the soft constraints. That is, many of the

algorithms that were entered would operate by quickly satisfying the hard constraints of a

particular problem instance and would then devote the majority of their time-and-effort in

attempting to satisfy the so ft constraints of the problem (while not re-violating any of the hard

constraints in the process). Some of these algorithms were very effective and added valuable

knowledge to the field. However, in many real-world timetabling situations, satisfying the hard

constraints of a given problem may not always be so easy. Therefore, in the second

competition, we have chosen to use problems where this task is not so straightforward.

As mentioned, the problem model that is used in Track 2 of the Second Internationa l

Timetabling Competition is an extension of the problem model used in the first competition.

However, in this case, extra constraints have also been added to the model to move further in

the direction of real-world timetabling. This has been achieved by adding two extra hard

constraint types, which we will now outline.

- 5 -

3 Problem Description

The Post Enrolment-based timetabling model used in track-two of the Second

International Timetabling Competition can be defined as follows. To begin with, each problem

consists of the following information (note that the exact layout of this information in each

problem instance file is given on the competition website at www.cs.qub.ac.uk/itc2007/):

• A set of n events that are to be scheduled into 45 timeslots (5 days of 9 hours each);

• A set of r rooms, each which has a specific seating capacity, in which the events

take place;

• A set of f room-features that are satisfied by rooms and which are required by

events.

• A set of s students who attend various different combinatio ns of events;

• A set of available timeslots for each of the n events (i.e. not all events will be

available in all timeslots);

• A set of precedence requirements that state that certain events should occur before

certain others.

The aim is to try and insert each of the n events into the timetable (that is, assign each of

the n events to one of the r rooms and one of the 45 timeslots) while obeying the following five

hard constraints:

1) No student should be required to attend more than one event at the same time;

- 6 -

2) In each case the room should be big enough for all the attending students and

should satisfy all of the features required by the event;

3) Only one event is put into each room in any timeslot;

4) Events should only be assigned to timeslots that are pre-defined as “available” for

those events;

5) Where specified, events should be scheduled to occur in the correct order in the

week.

Note that hard constraints 1), 2), and 3) above are exactly the same as the hard

constraints that were used in the first competition. Constraints 4) and 5), meanwhile, are new

additions to the model.

Since it is now unrealistic to expect all algorithms to satisfy all of the hard constraints

within the given time limit, we had to address the problem of how to deal with infeasible

timetables. Our solution was to say that that solutions submitted still had to be free of hard

constraint violations, but that this could be achieved by leaving some events out of the

timetable or “unplaced”. We will return to this topic in Section 4 below.

At this point it is useful for us to define some terminology:

• A valid timetable is one in which there are no occurrences of any hard constraint

violations, but some of the events have been left to one side unplaced.

• A feasible timetable is one in which there are no occurrences of any hard constraint

violations, and all of the events are present in the timetable.

For clarity, these concepts are illustrated in fig. 1.

- 7 -

ev_1ev_9

ev_4ev_5ev_8ev_2

ev_6ev_3

ev_0ev_1

ev_1ev_9

ev_4ev_5ev_8ev_2

ev_6ev_3

ev_0ev_1

Rooms
{1,…,r}

Timeslots {1,…,45}

ev_1ev_9

ev_4ev_2

ev_6ev_3

ev_0ev_1

ev_1ev_9

ev_4ev_2

ev_6ev_3

ev_0ev_1

Unplaced events = {ev_5, ev_8}

Imagine in this case that events 5 and 8 (ev_5,
ev_8) are causing a violation of some hard
constraint. In this case this timetable is invalid.

In this case, events 5 and 8 have been
removed from the timetable. The
timetable is incomplete, but it is valid

(a) (b)
1 2 3 4 5 6 7 … 44 45

Fig. 1: Example of an invalid and valid timetable according to the competition criteria

In addition, to the five hard constraints that are given above, in this problem model we

are also interested in satisfying a number of soft constraints. These are as follows:

1) Students should not be scheduled to attend an event in the last timeslot of a day

(that is, timeslots 9, 18, 27, 36, or 45);

2) Students should not have to attend three (or more) events in successive timeslots

occurring in the same day;

3) Students should not be required to attend only one event in a particular day.

Note that these three soft constraints are the same as those used in the first competition.

Solutions to an instance of this problem are to be written to a file in a very simple text

format that is described on the competition web-page. The competition organisers have made

available a program that checks these solution files against the given problem file and outputs a

- 8 -

summary of the constraint violations etc. The source code for this program (written in C++) is

also available on the competition website.

4 Solution Evaluation

In this section we will now describe the rules that are used in this competition track for

measuring a timetabling solution’s quality.

To start with, all submitted solutions must be valid – otherwise they are disqualified from

the competition. Recall, however, that it is permissible for some of the events to be left

unplaced. If this is the case we can use these unplaced events in order to calculate a Distance to

Feasibility measure. This is calculated by identifying the number of students that are required

to attend each of the unplaced events and then simply adding these values together. Thus if, for

example, a solution has three events that are unplaced, and the number of students attending

each of these is 12, 8, and 5, then the Distance to Feasibility is simply (12 + 8 + 5) = 25. Note

that a feasible timetable, by definition, has a Distance to Feasibility of zero.

Having measured the Distance to Feasibility, the number of soft constraint violations is

then considered. This is calculated in the following way (which is identical to the method used

in the first competition):

• Count the number of occurrences of a student having just one class on a day (count

2 if a student has two days with only one class, etc.).

• Count the number of occurrences of a student having more than two classes

consecutively (3 consecutively scores 1, 4 consecutively scores 2, 5 consecutively

- 9 -

scores 3, etc). Classes at the end of the day followed by classes at the beginning of

the next day do not count as consecutive.

• Count the number of occurrences of a student having a class in the last timeslot of

the day.

The Soft Cost of the timetable is simply the total of these three values.

From the above descriptions we can see that a valid timetable's quality is therefore

reflected by a pair of values: (1) the Distance to Feasibility, and (2) the Soft Cost. In order to

directly compare two solutions (and judge which one is best), we then use the following

sequential procedure:

First, we examine the solutions’ Distances to Feasibility. The solution with the lowest

value for this is then deemed the winner. However, if the two solutions are equal in this

respect, we then look at the number of soft constraint violations contained in each of the

solutions. The winner is then judged to be the one that has the lowest Soft Cost.

4.1 Comparing Timetables: Some Practical Issues

In the paragraphs above, we have explained the method that is used for calculating a

valid timetable’s Distance to Feasibility, and the scheme that is used for comparing the quality

of two different solutions. We have chosen this particular method as this is the sort of thing

that might be done in real-world timetabling. There are other methods that we could have

chosen for doing this, each which will have advantages and disadvantages. What is important

is that we have a fair method of comparing the solutions that have been produced by different

timetabling algorithms – a method that can be understood by competitors in advance.

- 10 -

We are aware that many algorithms in the literature do not follow the strategy of leaving

events unplaced. For example, some algorithms will insert all of the events into the timetable

and then set about trying to eliminate as many of the hard constraint violations as possible. (In

such algorithms a typical “Distance to Feasibility” measure will be some value that reflects the

total number of hard constraint violations in the timetable. See, for example, the work of

Schaerf et al. (1999).) This type of method may be preferable in some practical situations since

it will allow the possibility of scheduling some events despite the fact that they are breaking

some hard constraints. (In this case, such an approach effectively makes the hard constraints a

type of soft constraint).

If entrants choose to implement an algorithm that follows this kind of strategy, then they

will also need to implement a simple procedure, possibly to be used at the end of the run,

which removes certain events from the timetable in order to eliminate any hard constraint

violations that might be occurring. In our experience, such procedures are easy to implement in

practice. Our choice of evaluation method does not reflect any view of the relative merits of the

different algorithm varieties.

Finally, it is worth reiterating that, according to this measure, it is not the number of

unplaced events that are important for this measure, rather it is the number of students within

these unplaced events. Again, this reflects what we believe to be a real-world situation, where

we are trying to satisfy as many people’s needs as possible within the timetable.

- 11 -

5 Model Limitations

In the previous sections we have noted that the new timetabling model has a number of

added features that are intended to move this problem towards those that we might expect to

encounter in the real world (e.g. McCollum, 2007). However, in order to maintain a degree of

generality in these studies, and also to avoid overwhelming the competition entrants with a

huge set of constraints, we have also avoided imposing a number of real world features on this

problem. However, for completeness, and also to make the reader aware of other

characteristics that we might expect to encounter in real world timetabling, in this section we

will now identify some of these.

The first types of constraint that we may wish to consider are those that are concerned

with the relative positioning of events within the timetable. We have already addressed this

aspect of timetabling to a certain degree with the imposition of the precedence constraints (i.e.

constraint 5) in Section 3. However, there are, of course, also a number of other constraints of

this type that could be encountered in practice. The following three examples are typical but

not exhaustive:

• Inter-site travel times: in some practical cases, a university might be split across a

number of campuses, and students and staff may require some commuting-time in

order to travel from one site to another. Thus, if two events i and j have common

students, but need to take place in different sites, then the constraint “if event i is

scheduled to occur in timeslot x, then event j cannot occur in timeslot x + 1 if this

timeslot is on the same day” might be specified. Other related constraints might

give a penalty to changing rooms or corridors unnecessarily.

- 12 -

• Providing a Lunch-break: many universities will also want to ensure that all staff

and students have the opportunity to eat lunch. Thus constraints such as the

following might be imposed: “if a student is attending an event in a 12:00pm

timeslot, then he-or-she must not be required to attend and event in a 1:00pm

timeslot on the same day, and vice-versa”.

• Relative Timing of Events: universities may also wish to impose other types of

constraint on their timetabling problem such as “events i and j must be assigned to

the same/different timeslots”, “events i and j must take place on the different days”,

“there must be at a least one day gap between events i and j”, and so on.

In real-world timetabling there are often extra issues concerning rooms. For example:

• Events without Rooms: in certain cases some events may not actually require a

room, because they may take place outdoors, involve trips to off-site locations, and

so on.

• Room availability: In some cases, certain rooms might not be available in certain

timeslots. This could be caused by, say, the room being used by another faculty, or

because the key-holder of the room might not be present at certain times during the

week.

• Room Hierarchies: in many institutions, a large room may have a number of

movable partitions within it, so that the room can be effectively broken up into a

number of smaller classrooms. This means that in one timeslot, the resource might

be used to house a very large event, while in the next timeslot a number of smaller

events might all be scheduled into this same resource.

- 13 -

• Filling Rooms: In some cases, the university may have a policy where small events

are discouraged from being put into overly large lecture theatres etc.

As well as all of these features, there are also an abundance of different constraints

relating to the usability and “friendliness” of a timetable. Such constraints, usually expressed as

soft constraints can include:

• Free days: in some institutions, it may be considered desirable to allow students

and/or staff to have one day a week free from lectures in order to allow time for

research etc.;

• Lecturer Preferences: There may also be a number of individual requirements

from lecturers about the allocation of their teaching hours. Some lecturers, for

example, may prefer to do all of their teaching in a single day; others may prefer to

have their hours equally distributed throughout the week.

Finally, another timetabling feature that has not currently been considered is the

occurrence of variable length events – this could range from allowing double or triple length

events to, for example, allowing events to start and finish at ten minute intervals.

Note that, for the reasons stated earlier, all of the problem features and constraints

discussed in this section have been deliberately left out of the problem model used in the

current timetabling competition. However, some of these could be introduced in future

versions of the competition if it were deemed appropriate to do so.

- 14 -

References

Chiarandini, M., Socha, K., Birattari, M., and Rossi-Doria, O. (2003) “An Effective

Hybrid Approach for the University Course Timetabling Problem”, Technical Report AIDA-

2003-05, FG Intellektik, FB Informatik, TU, Darmstadt, Germany.

Lewis, R. (2006) “Metaheuristics for University Course Timetabling”. Doctoral Thesis,

Napier University, Edinburgh, Scotland. (Available at http://www.cardiff.ac.uk/carbs/

quant/rhyd/rhyd.html)

Lewis, R. (2007) “A Survey of Metaheuristic-based techniques for University

Timetabling Problems” OR Spectrum, DOI 10.1007/s00291-007-0097-0 (Available at

http://www.cardiff.ac.uk/carbs/ quant/rhyd/rhyd.html)

Kostuch, P. (2005) “The University Course Timetabling Problem with a 3-Phase

Approach”, in E. Burke M. Trick, (eds.) the Practice and Theory of Automated Timetabling

(PATAT) V, Lecture Notes in Computer Science vol. 3616, Springer Verlag: Berlin, pp 109 –

125.

McCollum, B. “A Perspective on Bridging the Gap in University Timetabling”, PATAT

'06, Proceedings of the 6th International Conference on the Practice and Theory of Automated

Timetabling, Brno, August 2006. (Accepted for post conference Springer Lecture Notes in

Computer Science Volume)

Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Knowles, J., Manfrin, M.,

Mastrolilli, M., Paquete, L., Paechter, B., and Stützle, T. (2002) “A Comparison of the

Performance of Different Metaheuristics on the Timetabling Problem”, in E. Burke, and P. De

- 15 -

Causmaecker (eds.) the Practice and Theory of Automated Timetabling (PATAT) IV, Lecture

Notes in Computer Science vol. 2740, Springer Verlag: Berlin, pp 329 – 351.

Schaerf, A. (1999) “Local Search Techniques for Large High-School Timetabling

Problems”, IEEE Transactions on Systems Man. and Cybernetics Part A, 29(4), pp 368 – 377.

Socha, K., Knowles, J., and Samples, M. (2002) “A MAX-MIN Ant System for the

University Course Timetabling Problem”, In M. Dorigo, G. Di Caro, and M. Samples (eds.),

Proceedings of Ants 2002 - Third International Workshop on Ant Algorithms (Ants’ 2002),

Lecture Notes in Computer Science vol. 2463, Springer Verlag: Berlin, pp 1 – 13.

