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Abstract 

Therapeutic options are currently limited for Neurofibromatosis type 1 (NF1) malignant 

peripheral nerve sheath tumours (MPNSTs). MPNSTs are characteristically aggressive and 

are the major cause of morbidity in NF1 patients. Clinical trials for NF1 with single drug 

agents have so far been ineffective, which may be due to the high level of intra-tumoural 

molecular heterogeneity of MPNSTs. To explore different cell migratory and invasive 

signalling properties within NF1-MPNSTs, and to test multi-drug therapeutic options, we 

utilised four MPNST cell lines with marked differences in the levels of c-MET expression, 

ST8814, S462, S1844.1 and S1507.2. We show that the cellular migration and invasion of 

ST8814 cells, which have amplified signal transduction through HGF/c-MET/STAT3, were 
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highly sensitive to c-MET inhibitors, SU11274 and PF-4217903. In contrast, cell migration 

and invasion of S462 cells was unaffected by c-MET inhibition, which was attributed to lower 

levels of c-MET expression and a reduced c-MET/STAT3 response to HGF stimulation. Of 

importance, migration of all four NF1-MPNST cell lines, ST8814 and S462, S1844.1 and 

S1507.2 were highly sensitive to a panel of JAK2/STAT3 inhibitors, Cucurbitacin-I, 5,15-

diphenylporphyrin (5,15-DPP) and FLLL31. Furthermore, STAT3 knockdown prevented 

wound healing and tumour formation in soft agar within all NF1-MPNST cell lines analysed, 

revealing that STAT3 is necessary for tumourgenesis in multiple NF1-MPNST cell lines with 

varying signalling profiles. This research reveals that STAT3 frequently promotes cell 

migration, invasion, proliferation and tumour formation within the heterogeneous NF1-

MPNST population. This work implies that inhibition of signal transduction through STAT3 

could be a viable therapeutic strategy to treat NF1-MPNSTs. 

1. Introduction 

Neurofibromatosis type 1 (NF1), is an autosomal dominant tumour predisposition syndrome 

affecting approximately 1 in 3500 individuals (Upadhyaya, 2010). The NF1 gene (17q11.2), 

encodes neurofibromin, a 2818 amino acid protein, which is highly expressed in the brain 

and central nervous system. NF1 is clinically characterised by hyperpigmentary 

abnormalities of the skin (café-au-lait macules and inguinal/axillary freckling), iris 

hamartomas (Lisch nodules) and the growth of benign peripheral nerve sheath tumours 

(neurofibromas) in the skin (Ferner et al., 2007; Upadhyaya, 2010). Neurofibromin functions 

as a tumour suppressor by acting as a GTPase-activating protein (GAP) towards the small 

G-protein Ras (Arun and Gutmann, 2004; Bennett et al., 2009; Katz et al., 2009; Scheffzek 

et al., 1998). Consequently, inactivating mutations to NF1 lead to increased signal 

transduction through Ras to promote uncontrolled cell growth and tumourigenesis (Klose et 

al., 1998; Thomas et al., 2012). 

 Malignant peripheral nerve sheath tumours (MPNSTs) are the main cause of morbidity 

in NF1 (Bennett et al., 2009; Upadhyaya, 2011; Walker et al., 2006). MPNSTs usually arise 

from pre-existing plexiform neurofibromas, however, MPNSTs are also known to occur 

sporadically (King et al., 2000). MPNSTs represent 10% of all soft tissue sarcomas with 50% 

occurring in association with NF1. The lifetime risk of developing sporadic MPNST is 

0.001%, compared to 5-13% for NF1 patients (Ducatman et al., 1986). NF1-MPNSTs usually 

develop in the second or third decade of life (Ellison et al., 2005). While sporadic MPNSTs 

often occur much later in life. Therapeutic options are currently inadequate for treating NF1-

MPNSTs and associated tumours (Katz et al., 2009). The primary therapeutic procedure is 

complete surgical excision with clear margins, however the local recurrence of NF1-MPNSTs 



 

is high and ranges from 32% to 65% (Porter et al., 2009). The risk factors for development of 

NF1-MPNSTs include the presence of internal plexiform neurofibromas (Tucker et al., 2005),  

high tumour burden (Mautner et al., 2008), microdeletion of NF1 locus (De Raedt et al., 

2003) and prior radiation treatment (Meadows and Silber, 1985). 

 Although multiple receptor tyrosine kinases are known to be amplified in MPNSTs, 

clinical trials that target receptor tyrosine kinases for MPNSTs have been challenging (Korf 

et al., 2012). For instance, a phase II trial employing epithelial growth factor receptor (EGFR) 

inhibitor, erlotinib, was not successful (Albritton et al., 2006). Subsequently, a phase II 

clinical trial was initiated employing the RAF kinase and receptor tyrosine kinase inhibitor, 

Sorafenib, which was also ineffective (Maki et al., 2009). Furthermore, no clear response 

was observed in phase II clinical trials with receptor tyrosine kinase inhibitors, Gleevec 

(Chugh et al., 2009) and Dasatinib (Schuetze et al., 2010). It is probable that the 

heterogeneity of MPNSTs (Mantripragada et al., 2008; Mawrin et al., 2002; Nielsen et al., 

1999; Thomas et al., 2012; Upadhyaya et al., 2006) is an underlying cause for the lack of 

success in these clinical trials. For instance, analysis of NF1, TP53, RB1, PTEN, and 

CDKN2A gene markers linked to MPNST tumour progression for loss of heterozygosity, 

have shown a high level of intra-tumoural molecular heterogeneity (Thomas et al., 2012). In 

view of this, it is unlikely that the use of a single drug agent would sufficiently impact the 

growth, malignancy and survival of all the varied tumour sub-types that constitutes the whole 

MPNST population. A more pragmatic approach may be to utilise a combination of drugs 

that collectively target overlapping and commonly deregulated molecular pathways that drive 

the malignant phenotype of multiple MPNSTs. 

 Much progress has been made in determining the molecular pathophysiology of 

MPNSTs. High-throughput whole genome analysis with microarrays has provided the most 

insight into new therapeutic options by revealing patterns of molecular signatures common in 

MPNSTs that are not present in benign neurofibromas, i.e., copy number variations and 

gene expression changes (Beert et al., 2011; Brekke et al., 2010, 2009; Bridge et al., 2004; 

Chai et al., 2010; Holtkamp et al., 2004; Kresse et al., 2008; Largaespada and Ratner, 2013; 

Lothe et al., 1996; Luscan et al., 2013; Mantripragada et al., 2009, 2008; Miller et al., 2006; 

Mo et al., 2013; Pemov et al., 2010; Rahrmann et al., 2013; Schuetze et al., 2010; Shen et 

al., 2007; Storlazzi et al., 2006; Subramanian et al., 2010; Upadhyaya et al., 2012; Watson 

et al., 2013, 2004). We previously determined that the HGF, c-MET, and PDGFRA genes 

were frequently amplified in MPNSTs (Mantripragada et al., 2008). The proto oncogene c-

MET encodes the C-MET Proto-oncogene product (c-MET)  transmembrane receptor 

tyrosine kinase for its sole ligand, hepatocyte growth factor (HGF, also known as 

hepatopoietin and scatter factor) (Bottaro et al., 1991; Naldini et al., 1991). HGF/c-MET 



 

signalling is known to drive cellular proliferation, anti-apoptotic responses and metastasis 

(Birchmeier et al., 2003). It is known that HGF/c-MET signalling reduces cell-to-cell 

adhesion, heightens cell motility and increases proteolytic activity of matrix 

metalloproteases, which overall promotes tumour cell invasiveness (Krasnoselsky et al., 

1994). 

 To identify potential therapeutic options for treating NF1-MPNSTs with varied cell 

migratory and invasive signalling profiles, we utilised MPNST cell lines with differing levels of 

c-MET expression. In three of the four MPNST cell lines (ST8814, S1844.1 and S1507.2), 

exhibiting elevated expression of c-MET, cell migration was potently blocked upon inhibition 

of c-MET. Importantly, we show that Signal Transducer and Activator of Transcription 3 

(STAT3), which is positioned downstream of multiple receptor tyrosine kinase signalling 

inputs including c-MET, functions as a central driver of cell migration and tumour formation in 

all four MPNST cell lines examined (ST8814, S462, S1844.1 and S1507.2). This work 

indicates that STAT3 could be a viable pharmacological target for treatment of MPNSTs 

alongside other pharmacological targets such as receptor tyrosine kinases.  

2. Material and methods  

2.1. Antibodies  

Antibodies against phosphorylated STAT3 at Tyr705 (# 9145), and Ser727 (#9134), total 

STAT3 (#4904) and total β-actin (13E5, #4970) were purchased from Cell Signalling 

Technology Inc. (Danvers, MA, U.S.A.). Antibodies against phosphorylated c-MET 

(Tyr1234/1235; #05-900) and total c-MET (#sc162) was purchased from Millipore U.K. 

Limited (Watford, U.K.) and Santa Cruz Biotechnology Inc. (Heidelberg, Germany), 

respectively. 

 

2.2. Cell lines and maintenance  

ST8814 MPNST-derived cell lines were purchased from ATCC (distributed by LGC 

Standards, Middlesex, UK). The S462, S1844.1 and S1507.2 MPNST cell lines were a kind 

gift from Prof. Mautner, (University of Hamburg, Germany) and the late Prof. Guha, 

(University of Toronto, Canada), the MDA-MB-231 cell line was provided by Dr. Zaruhi 

Poghosyam (Cardiff University, Cardiff, U.K.). Cell lines were cultured and maintained in 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% (v/v) Fetal Bovine 

Serum (FBS) and 1% (v/v) Penicillin-Streptomycin in a humidified incubator (5% CO2 at 

37oC). All cells were routinely screened for mycoplasma and were uncontaminated 

(MycoAlert Detection Kit from Lonza Biologicals Plc., Slough, U.K.). 



 

2.3. Drug treatments  

PF-04217903 was a kind gift from Pfizer Limited. Cells were pre-treated for 30 min prior to 

HGF stimulation. All experiments were performed in triplicate. Cucurbitacin-I, 5,15-DPP, 

FLLL31, SU11274, rapamycin and all other reagents unless otherwise stated were 

purchased from Sigma-Aldrich Company Ltd. (Dorset, U.K.). IL-6, HGF and PDGF (R&D 

systems Abingdon, U.K.) were used for stimulation.  

2.4. Cell Lysis and Immunoprecipitation 

Cells were lysed using a pP40 lysis buffer ( 50 mM Tris-HCl, 0.5 M NaCl, pH 7.4, 50 mM β-

glycophosphate, 5 mM MgCl2, 10% (v/v) glycerol and 1% (v/v) Nonidet-P40 supplemented 

with a Mini complete mini Protease Inhibitor Cocktail (Roche Diagnostics Ltd., Burgess Hill, 

U.K.). Protein concentrations were assessed with use of Bradford reagent, as instructed 

from the manufacture in accordance with manufacturer protocol (Sigma-Aldrich Company 

Ltd. (Dorset, U.K.). c-MET was immunopreciptated using anti-c-MET antibodies coupled to 

G-Sepharose beads (GE Healthcare Lifesciences, Buckinghamshire, U.K.), and washed 

three times in lysis buffer and resolved by SDS-PAGE. Samples for STAT3 analysis were 

prepared by direct lysis in sample buffer (62.5 mM Tris-HCL, 50 mM DTT, 2% (w/v) SDS, 

10% (v/v) Glycerol and 0.1% (w/v) Bromophenol blue, pH 7.6) and sonicated (Bioruptor from 

Diagenode) for 5 x 40 s cycle pulses. 

2.5. Western Blot  

The NuPage Novex gel system was used for electrophoresis as described in the 

manufacturers protocol (Life Technology, Paisley, UK). Depending on the protein size, 

protein samples were resolved on either 3-8% Tris-acetate or 4-12% Bis-Tris gels. Proteins 

were then transferred to a polyvinylidene fluoride membrane purchased from Millipore U.K. 

Ltd. (Watford, U.K.), blocked in 5% (w/v) dry milk powder in standard Tris-Buffer Saline 

supplemented with 0.1% (v/v) Tween (as recommended by Cell Signalling Technology Inc. 

(Danvers, MA, U.S.A.)) for 4 h. Membranes were incubated at 4 oC overnight in primary 

antibody in 2% (w/v) BSA in TBS-T, then washed twice for 4 min in TBS-T and incubated in 

the appropriate HRP-conjugated secondary antibody (1:10,000 dilution in TBS-T) for a 

minimum of 30 min at room temperature. Membranes were washed four times for 3 min with 

TBS-T and then incubated in Enhanced Chemiluminesence solution (GE Healthcare 

Lifesciences, Buckinghamshire, U.K.) for 1 min. Konica Medical Film was used to visualise 

the signal and the exposed films were developed using a Konica Minolta SRX-101A 

developer. 



 

2.6. Analysis of c-MET mRNA in MPNST 

TRIzol (Life Technology, Paisley, U.K.) was used as described in the manufactures protocol 

for mRNA extraction from benign neurofibromas and MPNSTs obtained from patients. This 

project was approved by the local Ethics committee. Informed consent for sample collection 

was obtained according to protocols approved by this committee. Cell lines were harvested 

in RT-protect buffer (Qiagen, West Sussex, U.K.) and centrifuged at 5,000 rpm for 5 min. 

mRNA was extracted from the pellet using the Qiagen mRNA extraction kit in accordance 

with manufacturer’s protocol. QIA shredders were utilized to homogenize the pellet (Qiagen, 

West Sussex, U.K.). mRNA concentration and purity was assessed by using a nanodrop 

spectrophotometer. Total RNA from each sample (1 μg) was transcribed into complementary 

cDNA using a Quantitect reverse transcription kit (Qiagen, West Sussex, U.K.) in a thermal 

cycler (Applied Biosystems). The sequences of the c-MET primers used were forward 5'-

CCACCACAGTCCCCAGAGT-3' and reverse 5'-AGATCACATGAACACAGGA-3', with an 

amplicon size of 51 base pairs. β-actin with an amplicon size of 104 base pairs (cat no. 

QT01680476) was purchased from Qiagen who retain the right to withhold primer sequence 

information. β-actin was used as a control. Quantitative real-time PCR reactions were 

conducted in 96-well plates using appropriate primer assays and SYBR Green PCR Master 

mix (Qiagen, West Sussex, U.K.). Assays were performed as follows: Initial denaturation 

step (95 °C, 15 min), 40 cycles of denaturation (94 °C, 15 s), annealing step (55 °C, 30 s), 

extension step (72 °C, 40 s). The amplification products were quantified during the extension 

step in the fortieth cycle. The results were then determined using the delta-delta-Ct method, 

and standardized to β-actin control. A dissociation step was performed, which verified that 

only one PCR product was produced with each primer set and shows their specificity. The 

correct size of PCR products was also verified by resolution on 1% (v/v) agarose gels. 

2.7. Wound healing 

Cells were seeded in 60 mm plates and left to reach 100% confluency. Cells were then 

synchronised in 1% (v/v) FBS DMEM for 24 h and “wounded” with a pipette tip. Dead cells 

were removed with PBS wash and then subsequently replaced with DMEM (10% (v/v) FBS). 

Cells were pre-treated for 30 min with either rapamycin, c-MET or STAT3 inhibitors (where 

indicated) before cytokine stimulation. Pictures were taken before treatment and 12-18 h 

after treatment using an inverted AMG EVOS microscope equipped with an Olympus 

camera.  

2.8. Migration and Invasion Assays  



 

Transwell permeable supports with 6.5 mm diameter inserts, 8.0 µm pore size and a 

polycarbonate membrane (Corning, cat no: 3428) were used to perform migration assays. 

Cells were grown in a 75cm2 flask with standard medium (10% (v/v) FBS) until confluent. 

Cells were then harvested using Trypsin-EDTA. Cells were counted using a 

haemocytometer. 1x106 cells were resuspended in DMEM containing 1% (v/v) FBS. These 

cells were then seeded in the upper chamber of the Transwell; the lower chamber was filled 

with 600 l of standard culture medium (10% (v/v) FBS) and 5 mg/ml fibronectin (R&D 

systemsm, Abingdon, U.K.), as an adhesive substrate. Cells were incubated at 37 oC 5% 

CO2 for 24 h. The percentage of adherent cells was then determined by fixing the cells with 

methanol and acetone (1:1) for 20 min at -20°C. Cells were then stained with Crystal Violet 

(5 mg/ml) in ethanol for 10 min, followed by a stringent wash with dH2O until the water ran 

clear. Crystal violet stained cells were eluted with 1% (w/v) SDS and the absorbance was 

read at 550 nm on a Genova MK3 Lifescience Analyser (Jenway Scientific, Straffordshire, 

U.K.). For invasion assays, a similar protocol was employed; however the top chamber of 

the Transwell was filled with 300 µl of BD Matrigel Basement Membrane Matrix (1 mg/ml). 

The Matrigel was incubated at 37 ºC for 4 h to allow it to gel. Cells were then seeded and 

incubated as mentioned in migration assay for 3 days. The number of invaded cells was 

determined by fixation and staining and elution of crystal violet with 1% (w/v) SDS, as 

before. 

2.9. Lentivirus generation and shRNA knockdown of STAT3 

Both STAT3 shRNA (Clone ID: NM_003150.3-458s21c1) and non-target control MISSION 

shRNA (Clone ID: SHCO16) in pLKO.1 vector (Sigma-Aldrich Company Ltd. (Dorset, U.K.)) 

were packaged into lentivirus using HEK293T cells co-transfected (lipofectamine 2000, Life 

Technology, Paisley, U.K.) with pLP1, pLP2, and pLP (VSVG). Confluent MPNST cell lines 

were infected with shRNA containing lentivirus (STAT3 or non-target control) and selected 

over 2 weeks with 5 µg/ml puromycin (Life Technology, Paisley, U.K.). Puromycin selected 

mixed cell populations were then used for cell migration and tumour formation assays. 

2.10. Tumour spheroid assays 

Two-layered soft agar assays were carried out in six-well plates. MPNST cell lines were 

plated in complete DMEM media in 0.35% (v/v) agar at (3 x 10x5) over a 0.6% (v/v) agar 

layer. The agar was then overlaid with complete DMEM media supplemented with 0.1 µM 

puromycin (Life Technology, Paisley, U.K.), and then colonies of MPNSTs were grown for 14 

days at 37 °C in 5% CO2. Media was changed twice a week. Pictures were taken using an 



 

inverted AMG EVOS microscope equipped with an Olympus camera. Volume of tumour 

spheroids was measured using ImageJ software.  

3. Results 

3.1. Gene-expression amplification of c-MET in MPNSTs 

To analyse c-MET expression in MPNSTs, we compared the levels of c-MET mRNA 

between benign neurofibromas and MPNST tissue from NF1 patients (Figure 1A). 

Compared with seven benign controls, eight out of fourteen MPNST tissues had elevated 

levels of c-MET mRNA. We extended this study to a range of MPNST-derived cell lines 

(Figure 1B). Similar to the MPNST tissue, we found variance in the levels of c-MET mRNA. 

In particular, ST8814 cells had 3-fold amplification of c-MET mRNA, when compared to the 

S462, which had a much lower level of c-MET mRNA. The breast cancer cell line, MDA-MB-

231, acts as positive control, with expected high levels of c-MET expression. 

 

3.2. c-MET inhibition potently impairs wound healing of ST8814 cells, while S462 cells 

are unaffected 

Given that we observe significant differences in the expression levels of c-MET within 

various MPNST-derived cell lines; we postulated that they may exhibit differential sensitivity 

to c-MET inhibition. We compared the highest c-MET expressing MPNST cell line, ST8814, 

with that of S462 (which had the lowest level of c-MET expression of the cell lines analysed). 

In both these MPNST derived cell lines, the c-MET inhibitors, SU11274 and PF-4217903, 

were sufficient to block HGF induced c-MET activation, as observed by a reduction in 

Tyr1234/1235 phosphorylation of c-MET (Figure 2A and 2B). Of interest, platelet-derived 

growth factor (PDGF) also potently activated c-MET in both the ST8814 (Figure 2A) and 

S462 cells (Figure 2B), revealing signalling cross talk between the PDGF receptor (PDGF-R) 

and c-MET. Signalling cross talk from receptor tyrosine kinases to c-MET has also been 

proposed in urothelial bladder cancer (Lan et al., 2013; Yeh et al., 2011). Previous work 

indicated that inhibition of c-MET blocked cell migration and invasion of the ST8814 cell line 

(Su et al., 2004; Torres et al., 2011). We show that  HGF induced wound healing in the 

ST8814 cells was significantly reduced after inhibition of c-MET with both the SU11274 and 

PF-4217903 inhibitors (Figure 2C). In contrast to the ST8814 cells, HGF induced cell 

migration of the S462 cell line was completely insensitive to c-MET inhibition during the 12 h 

wound healing assay (Figure 2D). Considering that cellular doubling time is approximately 

24 h for the ST8814 cells and 16 h for the S462 cells (Lopez et al., 2011) (data not shown), 

cell migration during this 12 h period of wound healing is unlikely to be influenced by 

differences in cell proliferation. These results suggest that instead of utilising the migratory 

HGF/c-MET signalling pathway for wound healing, the S462 cell line is more dependent 



 

upon other migratory cell signalling pathways. Similar to the ST8814 cells, wound healing in 

both the S1507.2 and S1844.1 cell lines were potently inhibited with SU11274 and PF-

4217903 drug treatment (Figure 2E). This data reveals that HGF induced cell migration in 

multiple MPNST cell lines can be highly sensitive to inhibition to c-MET. 

3.3. ST8814 and S462 cells have markedly different STAT3 signalling profiles after 

HGF stimulation 

One mechanism by which c-MET drives cell motility is through activation of the JAK2/STAT3 

signalling pathway. STAT3 is considered an oncogene and promotes transcription of genes 

linked to cancer progression including cell migration, invasion, and survival (Kermorgant and 

Parker, 2008). In the ST8814 cells, tyrosine phosphorylation of STAT3 was robustly induced 

after just 30 min of HGF stimulation and was maintained throughout the 3 h time course, 

which was not evident in either of the S462 or S1507.1 cells (Figure 3). It is probable that 

amplification of HGF/c-MET signalling in these ST8814 cells is responsible for such a robust 

and enduring STAT3 signal after HGF stimulation. Conversely, HGF stimulation within the 

S462 and S1507.2 cell lines resulted in a much slower and less pronounced level of STAT3 

activation over the 3 h time course (Figure 3). Cells were also stimulated with interleukin-6 

(IL-6) for 30 min as a positive control for STAT3 activation, illustrating that signalling through 

many receptor tyrosine kinases in MPNSTs can potently activate STAT3. Of interest, IL-6 is 

also known to be elevated in Schwann cells lacking NF1 (Kawachi et al., 2013). 

3.4. Inhibition of STAT3 impairs wound healing in multiple MPNST cell lines 

To examine the involvement of STAT3 in cell migration, we employed three different STAT3 

inhibitors; Cucurbitacin-I, 5,15-diphenylporphyrin (5,15-DPP) and FLLL31. Cucurbitacin-I and 

FLLL31 are derived from curcumin and both selectively bind to and inhibit the tyrosine 

kinase Janus kinase 2 (JAK2), which is immediately upstream of STAT3. 5,15-DPP is a 

selective STAT3- Src homology-2 domain (SH2) antagonist, where 5,15-DPP prevents 

STAT3 SH2 domain-mediated ligand binding, dimerisation and propagation of signal 

transduction. All three inhibitors suppressed HGF-induced tyrosine phosphorylation of 

STAT3 in both the ST8814 (Figure 4A) and S462 cell lines (Figure 4B). Ser727 

phosphorylation of STAT3 in both ST8814 and S462 cell lines was less sensitive to drug 

treatments. Ser727 is considered to be phosphorylated directly by mTORC1 (Yokogami et 

al., 2000). Next we analysed the effects of STAT3 inhibition on cell migration during wound 

healing in the ST8814 (Figure 4C) and S462 cell lines (Figure 4D) as well as the S1844.1 

and S1507.2 cell lines (Figure 4E). 5,15DPP showed no significant effect in inhibiting wound 

healing in 3 of the MPNST cell lines (ST8814, S462 and S1507.2), while FLLL31 blocked 



 

wound healing in all MPNST cell lines tested. Cucurbitacin-I blocked wound healing in the 

ST8814 and S462 cells however it greatly altered the morphology of the S1844.1 and 

S1507.2 cell lines (supplementary Figure S1) causing detachment of these cells. 

Consequently, wound healing assay data was unattainable using cucurbitacin-I with these 

S1507.2 and S1844.1 cell lines. 

3.5. STAT3 inhibition impairs cell migration and invasion in both ST8814 and S462 cell 

lines, while c-MET inhibition is more selective for the ST8814 cell line 

We next carried out migration and invasion assays in both the ST8814 and S462 cell lines 

and analysed the effectiveness of c-MET and STAT3 inhibitors in suppressing both cell 

migration (Figure 5A) and invasion (Figure 5B). In the ST8814 cell line, inhibition of either c-

MET or STAT3 significantly decreased cell migration and invasion. Conversely, cell 

migration and invasion within S462 cells was only significantly suppressed by STAT3 

inhibition. The insensitivity of the S462 cells to c-MET inhibitor is likely due to the lower 

levels of c-MET amplification that we observe in these cells. Both ST8814 and S462 cells 

were markedly sensitive to STAT3 inhibition, revealing that they too are both dependent 

upon STAT3 signalling for their migratory and invasive properties.  

3.6. Within multiple MPNST cell lines, rapamycin has no additive effect at impairing 

wound healing when combined with c-MET inhibitors 

Given that mTORC1 is considered an upstream kinase of STAT3 via Ser727 

phosphorylation (Yokogami et al., 2000), we next examined whether mTORC1 inhibition with 

rapamycin could further impair wound healing in these MPNST cell lines when combined 

with c-MET inhibitors. We observed that treatment with rapamycin had very little additive 

effect on wound healing in any of the MPNST cell lines tested when combined with either 

SU11274 or PF-4217903 (Figure 6). As a single agent, rapamycin had varied effect on cell 

migration within these 4 MPNST cell lines. The ST8814 (70% reduction) and S1844.1 (45% 

reduction) cells were more sensitive, while the S462 and S1507.2 were the least sensitive 

(with no significant change).  

3.7. STAT3 knockdown in multiple MPNST cell lines impair wound healing and tumour 

formation 

Our data highlights that STAT3 is required for optimal cell migration within these 4 MPNST 

cell lines. To confirm the importance of STAT3, we knocked down gene-expression of 

STAT3 in these 4 MPNST cell lines (Figure 7) and examined their capacity to heal a wound 



 

(Figure 7, upper graph). In all these MPNST cell lines, knockdown of STAT3 robustly 

inhibited wound closure by over 50%. Furthermore, STAT3 knockdown impacted the tumour 

spheroid volume in all MPNST cell lines tested in soft agar (Figure 7, lower graph), which 

again further strengthens the involvement in STAT3 in promoting tumourgenesis and 

malignancy in multiple MPNSTs with varied signalling profiles. This rational is  supported by 

earlier studies showing that the STAT3 inhibitors, JSI-124 and FLLL32 delayed tumour 

formation in a MPNST xenograft nude mouse models using the ST8814 cell line (Banerjee et 

al., 2010; Wu et al., 2013).  

Discussion 

Although it is known that somatic NF1 gene inactivation results in aberrant Ras signalling, it 

is evident that activation of Ras alone is not sufficient to induce malignant transformation. In 

this study, we show that both c-MET and STAT3 signalling pathways contribute to 

malignancy in multiple MPNSTs. We reveal that cell migration within multiple MPNST cell 

lines is acutely sensitive to both c-MET and STAT3 inhibition. The transcriptional activity of 

STAT3 is regulated by JAK2-mediated phosphorylation of Tyr705, where JAK2/STAT3 

functions downstream of many different receptor tyrosine kinases. In MPNSTs, there 

appears to be several key receptor tyrosine kinases that activate the JAK2/STAT3 pathway 

(refer to Figure 8), which includes (but is not limited to) c-MET, PDGF receptors (PDGF-R) 

and Interleukin receptors (IL-R). Furthermore, it has been shown that  EGF-R activates 

JAK2/STAT3 and is necessary for MPNST transformation (Wu et al., 2013). Sensitivity to c-

MET inhibitors within the four MPNST cell lines examined in this study (ST8814, S462, 

S1507.2 and S1844.1) appeared to directly correlate with the levels of c-MET expression. 

For instance, there was a greater reduction of cell migration and invasion upon c-MET 

inhibition in MPNST cell lines that displayed a higher level of c-MET expression. Of interest, 

we observed that PDGF stimulation of MPNST cells also led to robust activation of c-MET. 

This finding reveals that MPNST cells have signalling cross-talk between PDGF-R and c-

MET. PDGFR- expression is known to transform Schwann cells lacking NF1 (Badache and 

De Vries, 1998), implying that PDGF-R amplification might be involved in Schwann cell 

hyperplasia. In a more recent study using a panel of 11 MPNST tumours, PDGF-R, PDGF-

R and EGF-R were shown to be over-expressed when compared to benign controls and 

correlates with a higher level of PI3K/Akt/mTORC1 signal transduction (Perrone et al., 2009; 

Wu et al., 2013). It is possible that some of the transforming potential through PDGF-R might 

be via signalling cross-talk towards c-MET.  



 

 Enhanced signalling through interleukin (IL) to STAT3 is also known to be involved in 

tumourigenesis (for review see (Bowman et al., 2000)), however the connection between 

NF1 and IL signalling has not been well studied to date. One piece of evidence implicates IL-

6 to NF1 tumourigenesis, where IL-6 was observed to be elevated in Schwann cells lacking 

NF1 (Lasater et al., 2010). Although further studies will be required, it is possible that 

signalling through IL-R further promotes malignancy in MPNSTs through activation of the 

JAK2/STAT3 pathway. We propose that STAT3 could be an attractive ‘common’ target of 

therapy with regards to treating MPNSTs with heterogeneity in their migratory/invasive 

signalling profiles. Recently, Upadhyaya et al. (2012) used Affymetrix SNP 6.0 Array 

analysis to identify a role for increased gene expression of members of the Rho-GTPase 

pathway in malignancy and metastasis in MPNSTs. It is of interest that signal transduction 

through STAT3 is a critical driver of Rho (Aznar and Lacal, 2001; Aznar et al., 2001; Debidda 

et al., 2005). It was shown that inhibition of mTORC1 with rapamycin suppressed the growth 

of tumours in NF1 mouse models  (Hegedus et al. 2008). It is apparent that many genetic 

alterations found in MPNSTs lead to amplification of signal transduction pathways that 

enhance either JAK2/STAT3 or mTORC1/STAT3 signalling. For instance, Phosphatase and 

tensin homolog (PTEN) loss is known to occur in both MPNSTs and epithelioid sarcomas 

(Keng et al., 2012; Xie et al., 2011) that gives rise to aberrant signalling through 

PI3K/mTORC1 (see Figure 8). 

 There are currently no universal prognostic or predictive biomarkers for MPNSTs in 

terms of their accumulated genetic mutations and their phenotypic expression although 

several recent studies appear to be promising (Beert et al., 2011; Brekke et al., 2010; Chai 

et al., 2010; Kresse et al., 2008; Largaespada and Ratner, 2013; Luscan et al., 2013; 

Mantripragada et al., 2009; Miller et al., 2006; Mo et al., 2013; Pemov et al., 2010; 

Rahrmann et al., 2013; Subramanian et al., 2010; Upadhyaya et al., 2012; Watson et al., 

2013). In a recent elegant study, recurrent homozygous loss of the CDKN2A locus was 

identified in 15/16 atypical neurofibromas supporting that atypical neurofibromas are 

intermediates between benign neurofibroma and MPNST (Beert et al., 2011). This study 

suggests that CDKN2A loss is an early step in the progression of neurofibroma to MPNSTs. 

 Given that we observe c-MET amplification in more than 50% of MPNSTs from NF1 

patients (Figure 1A); our work suggests that c-MET expression could be a valid predictive 

marker of malignancy in NF1 patients. Although evaluation of molecular abnormalities in 

tumours on an individual basis might help design tailor made therapy, there are limitations to 

this approach with regards to therapy with regards to MPNSTs. As a result of intra-tumoural 

molecular heterogeneity in MPNSTs, tumour profiling is difficult to ascertain. Instead, it may 

be more feasible to develop a therapeutic strategy that targets multiple pathways which are 



 

commonly dysregulated in MPNSTs. With notion in mind, it may be a more feasible to inhibit 

multiple receptor tyrosine kinases that converge on JAK2/STAT3 as a broader therapeutic 

strategy to treat NF1 patients. For instance, receptor tyrosine kinase inhibitors are commonly 

used as therapeutic agents for various malignancies (Engelman and Settleman, 2008).  

 In summary, our work indicates that cell signalling through both c-MET and STAT3 are 

common underlying molecular mechanisms involved in MPNST tumourigenesis. Given the 

dependency of c-MET and STAT3 for cell migration in multiple MPNSTs, therapeutic 

strategies that target these pathways could be a viable option for NF1 patients. 
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Figure Legends 

Figure 1 – Gene-expression of c-MET is frequently elevated in MPNSTs. c-MET mRNA 

levels, standardised to β-Actin, was assessed in A) benign versus malignant tumours from 

NF1 patients as well as B) four NF1-MPNST cell lines (ST8814, S462, S1844.1 and 

S1507.2), compared to a positive breast cancer cell line with enhanced levels of c-MET 

mRNA, MDA-MB-231. n = 3. * p < 0.05 when comparing either benign versus malignant 

tumours in A), or MPNST cell lines to S462 in B). 

Figure 2 – c-MET inhibition potently impairs HGF induced wound healing of ST8814 cells, 

while S462 cells are resistant to c-MET inhibition. A-B) Where indicated, starved ST8814 

and S462 cells were pre-treated with 10 nM SU11274 and 7.5 ng/µl PF-4217903 for 30 min 

prior to 30 min stimulation (10 ng/ml PDGF, 20 ng/ml IL-6, and 20 ng/ml HGF). DMSO 



 

vehicle only was used as a control. Total and phosphorylated c-MET (Try1234/1235) was 

analysed. C) ST8814, D) S462, E) S1507.2 and S1844.1 cells were subjected to wound 

healing assays after 20 ng/ml HGF stimulation for 12 h in the presence or absence of 10 nM 

SU11274 and 7.5 ng/µl PF-4217903. n = 3. * p < 0.05 when comparing wound closure of 

treated versus untreated cells. 

Figure 3 – ST8814 and S462 cells have markedly different STAT3 signalling profiles after 

HGF stimulation. A) Starved ST8814, S462 and S1507.2 cells were stimulated with 20 ng/ml 

HGF for the indicated time (0 h, 1 h, 2 h, and 3 h). Total and phosphorylated STAT3 (Tyr 

705) was determined from protein lysates.  

Figure 4 – STAT3 inhibition potently impairs wound healing in multiple MPNST cell lines. A) 

Where indicated, starved A) ST8814 and B) S462 cells were pre-treated with 5 nM 

Cucurbitacin-I, 50 nM 5,15-DPP and 5nM FLLL31 for 30 min prior to 30 min 20 ng/ml HGF 

stimulation. DMSO vehicle only was used as a control. From protein lysates, total and 

phosphorylated STAT3 (Tyr 705 and Ser727), as well as p-rpS6 and β-actin were analysed. 

C) ST8814 and D) S462, were subjected to wound healing assays after 20 ng/ml HGF 

stimulation for 12 h in the presence or absence of 5 nM Cucurbitacin-I, 50 nM 5,15-DPP and 

5 nM FLLL31. E) S1844.1 and S1507.2 cells were subjected to wound healing assays after 

treatment with 50 nM 5,15-DPP and 5 nM FLLL31. Wound healing (%) of the MPNSTs after 

drug treatment compared to untreated is shown as a graph. n = 3. * p < 0.05 when 

comparing wound closure of treated versus untreated cells. 

Figure 5 – Cell migration and  invasion in ST8814 and S462 cells are both highly sensitive to 

STAT3 inhibition. A) Cell migration and B) cell invasion assays were carried out on ST8814 

and S462 cells in the presence or absence of 10 nM SU11274 and 5 nM FLLL31 prior to 20 

ng/ml HGF stimulation , where indicated. DMSO vehicle only was used as a control. n = 3. * 

p < 0.05 when comparing treated versus untreated cells. 

Figure 6 – Rapamycin inhibits wound healing in the ST8814 and S1844.1 cells while S462 

and S1507.2 cells are less sensitive. ST8814, S462, and S1844.1 and S1507.2 cells were 

subjected to wound healing assays after 20 ng/ml HGF stimulation for 12 h in the presence 

or absence of 10 nM SU11274, 7.5 ng/µl PF-4217903 and 50 nM Rapamycin, where 

indicated. DMSO vehicle only was used as a control. n = 3. * p < 0.05 when comparing 

wound closure of treated versus untreated cells. 

Figure 7 – STAT3 knockdown impairs wound healing and tumour formation in soft agar. 

Stable ST8814, S462, S1844.1 and S1507.2 cell lines, expressing either non-target or 



 

STAT3 shRNA, as indicated, were subjected to either cell wound (upper graph) or tumour 

spheroid growth assays (lower graph, n=40/ scale bar represents 250 µm). Confirming 

efficient knockdown, STAT3 protein levels were compared between cell lines by western 

blot, and β-actin serves as a loading control. n = 3. * p < 0.05 when comparing treated 

versus untreated cells. 

Figure 8 – PDGF-R, c-MET, and IL-R signalling converge on STAT3 in MPNST cell lines to 

drive cell metastasis. Inhibitors used in this study include: c-MET inhibitors (SU11274 and 

PF-4217903), STAT3 inhibitors (Cucurbitacin-I, 5,15-DPP and FLLL31) and mTORC1 

inhibitor (Rapamycin). In MPNST cells, there is signalling cross-talk from PDGF-R to c-MET. 

As well as through c-MET activation, IL-R activation leads to signal transduction through 

JAK2/STAT3 (Tyr705 phosphorylation of STAT3). Activation of mTORC1 leads to Ser727 

phosphorylation of STAT3, which is basally high in MPNSTs. 

  



 

Supplementary Figure Legends 

Supplementary Figure 1 – STAT3 inhibitor, Cururbitacin-1, alters cells morphology of 

S1844.1 and S1507.2 MPNST cell lines. Both S1844.1 and S1507.2 cell lines were treated 

with 5 nM Cucurbitacin-I over-night prior to 20 ng/ml HGF stimulation. Bright field images of 

cell lines are shown, which reveals rounding up of both MPNST cell lines with Cucurbitacin-I 

treatment. 
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