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ERK signaling mediates CaSR-promoted axon growth
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h i g h l i g h t s

• We have investigated how CaSR activation enhances sympathetic axon growth.
• CaSR activation promotes phosphorylation of ERK1 and ERK2.
• Inhibition of ERK1/ERK2 phosphorylation blocks CaSR-promoted axon growth.
• CaSR-promoted axon growth requires a discrete region of the cytoplasmic domain.
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a b s t r a c t

The extracellular calcium-sensing receptor (CaSR) is a G-protein coupled receptor that monitors the
systemic extracellular free ionized calcium level ([Ca2+]o) in organs involved in systemic [Ca2+]o homeo-
stasis. CaSR is widely expressed in the nervous system and its activation promotes axon and dendrite
growth during development, but the mechanism by which it does this is not known. Here we show that
enhanced axon growth and branching from cultured embryonic sympathetic neurons by activation of
the endogenous CaSR depends on the presence of nerve growth factor (NGF). Our observation that acti-
vation of overexpressed CaSR promotes axon growth in NGF-free medium has enabled us to investigate
CaSR downstream signaling contributing to axon growth in the absence of NGF signaling. We show that
activation of overexpressed CaSR leads to activation of ERK1 and ERK2, and pharmacological inhibition of
CaSR-dependent ERK1/ERK2 activation prevents CaSR-dependent axon growth. Analysis of axon growth
from cultured neurons expressing deletion mutants of the CaSR cytoplasmic tail revealed that the region
between alanine 877 and glycine 907 is required for promoting axon growth that is distinct from the
high-affinity filamin-A binding site that has previously been implicated in ERK1/ERK2 activation.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The CaSR plays a crucial role in monitoring and maintaining
[Ca2+]o within very narrow physiological limits and is conspicu-
ously expressed in the tissues and organs involved in systemic
calcium homeostasis [1]. The CaSR is also widely expressed in the
peripheral and central nervous system, where it has been impli-
cated in a diversity of functions [2]. These include regulating axon
and dendrite growth [3], the migration and/or maintenance of
hypothalamic GnRH neurons [4] and the regulation of neuronal
excitability and synaptic transmission [5,6].
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The molecular mechanisms by which CaSR exerts its effects on
neurons are poorly understood. The CaSR is a member of the C
family of G-protein coupled receptors that associates with three
main heterotrimeric G protein complexes, Gq/11, Gi/o and G12/13, and
thereby modulates the activity of a wide variety of downstream sig-
naling networks, including PLC-mediated Ca2+ mobilization, cAMP,
Rho kinase and the MAP kinases ERK1/2, p38 and JNK [7]. The
aim of this study was to ascertain how CaSR activation influences
axon growth and branching using the well-characterized, exper-
imentally tractable sympathetic neurons of the mouse superior
cervical ganglion (SCG) [8]. Previous work has shown that expres-
sion of the CaSR peaks in these neurons in the immediate perinatal
period and that activating the CaSR during this stage of devel-
opment enhances NGF-promoted axon growth, and that this is
important for the establishment of the appropriate level of sym-
pathetic innervation in vivo [3]. Our demonstration that activation
of overexpressed CaSR enhances axon growth in the absence of NGF
has enabled us to investigate how the CaSR influences axon growth
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without the complication of concomitant NGF signaling. We show
that CaSR-promoted ERK activation contributes to CaSR-promoted
axon growth and identify the region of the CaSR C-terminal domain
required for axon growth.

2. Materials and methods

2.1. Neuron cultures

Dissociated cultures of SCG neurons from CD-1 mice were
grown on poly-ornithine/laminin coated 35 mm tissue culture
dishes (Greiner) in Hams F14 medium [9] with 0.25% Albumax I
(Invitrogen). Survival was estimated as described [9]. The neurite
arbors of non-transfected neurons were labelled with calcein-AM
(1:1000, Invitrogen). Neurons transfected with plasmids encoding
full-length CaSR or CaSR mutants were co-transfected with a YFP
plasmid. Fast-Sholl analysis was carried out on imaged neurons
[10].

2.2. Plasmids

The pFLCaSR plasmid was generated by cloning the open read-
ing frame of human CaSR into pcDNA3.1. The pG907stopCaSR and
pA877stopCaSR plasmids were generated by site directed muta-
genesis. Transfection was carried out using the Neon Transfection
system (Invitrogen).

2.3. Immunocytochemistry

Cultures were fixed in ice-cold methanol for 10 min, washed in
PBS, blocked and permeabilized with 5% BSA with 0.02% Triton-
X100 in PBS. The cells were incubated with primary antibody in 1%
BSA at 4 ◦C for 18 h. The primary antibodies were: anti-�III tubu-
lin (Promega, 1:1000), anti-CaSR to the CaSR N-terminal sequence
(Imgenex, 1:1000), anti-phospho ERK1/2 and anti-total ERK1/2
(Cell Signaling Technology, 1:100). After washing, the cells were
incubated with appropriate secondary antibodies conjugated to
either Alexa-488 or Alexa-546 (Invitrogen), 1:600 for 90 min. Stain-
ing intensity was quantified using pixel intensity using the Volocity
software (PerkinElmer).

3. Results

3.1. CaSR-promoted neurite growth is NGF-dependent

Previous work has shown that activating the CaSR in cul-
tured SCG neurons with elevated levels of [Ca2+]o enhances
NGF-promoted axon growth in the immediate perinatal period [3].
To ascertain whether or not CaSR activation is able to enhance neu-
rite growth independently of NGF, we compared neurite growth
from E18 SCG neurons cultured with and without NGF in media
containing 2.3 mM (maximally-activating) and 0.7 mM (minimally-
activating) levels of [Ca2+]o [3]. Because E18 SCG neurons are
dependent on NGF for survival, we added a broad-spectrum caspase
inhibitor (Boc-D-FMK) to the medium to prevent apoptosis.

In accordance with published observations [3], the neurite
arbors of NGF-supplemented neurons grown in medium contain-
ing 2.3 mM [Ca2+]o were much larger and more branched than
those of neurons grown with 0.7 mM [Ca2+]o. There were highly
significant differences in neurite length (Fig. 1A) and branch point
number (Fig. 1B), and the Sholl profiles displayed clear differences
in NGF-supplemented cultures (Fig. 1C). In contrast, the size and
complexity of the neurite arbors of neurons grown without NGF
were not significantly different in media containing 0.7 mM and
2.3 mM [Ca2+]o (Figs. 1A–C). These findings suggest that activation

of the endogenous CaSR is insufficient to enhance the low level of
neurite growth that occurs in the absence of NGF, but enhances the
magnitude of NGF-promoted neurite growth.

3.2. Over-expression of CaSR promotes neurite growth in the
absence of NGF

The requirement for NGF in CaSR-promoted neurite growth
complicates investigation of the signaling pathways downstream
of CaSR that mediate this effect. Because enhancement of neurite
growth by CaSR activation is only observed in SCG neurons at the
developmental peak of CaSR expression [3], we tested whether
overexpression of CaSR would enhance neurite growth in the
absence of NGF. Robust high-level CaSR expression was achieved by
transfecting neurons with a pcDNA3.1 vector containing full-length
CaSR (pFLCaSR). Quantification of CaSR immunofluorescence con-
firmed increased CaSR expression in neurons transfected with
pFLCaSR (Fig. 2A).

In the absence of NGF, the neurite arbors of E18 SCG neurons
transfected with pFLCaSR were significantly larger than those of
control transfected neurons in medium containing 2.3 mM [Ca2+]o

(Fig. 2B, and C). There was no significant difference in neurite
arbor size between pFLCaSR transfected and control transfected
neurons in medium containing 0.7 mM [Ca2+]o. All cultures were
supplemented with Boc-D-FMK to prevent neuronal death in the
absence of NGF. These findings suggest that overexpression of CaSR
enhances neurite growth in NGF-free medium containing activat-
ing levels of [Ca2+]o.

Given the above results, we explored the possibility that up-
regulation of CaSR expression contributes to enhanced neurite
growth from non-transfected neurons grown with NGF and acti-
vating levels of [Ca2+]o. We cultured E18 SCG neurons with and
without NGF in media containing either 0.7 or 2.3 mM [Ca2+]o and
estimated the relative levels of CaSR immunofluorescence after
24 h. All cultures received Boc-D-FMK to prevent apoptosis. There
was no significant difference in CaSR immunofluorescence in neu-
rons cultured with either 0.7 or 2.3 mM [Ca2+]o in the absence of
NGF (Fig. 2D). However, in the presence of NGF, the level of CaSR
immunofluorescence was over two-fold higher in neurons cultured
in medium containing 2.3 mM [Ca2+]o than in neurons cultured
in medium containing 0.7 mM [Ca2+]o (Fig. 2D). Images of CaSR-
labelled neurons cultured with NGF in medium containing either
0.7 mM or 2.3 mM [Ca2+]o are illustrated in Fig. 2E. This suggests
that CaSR expression is upregulated in medium containing NGF and
activating levels of [Ca2+]o and that this in turn contributes to the
enhanced neurite growth observed from late fetal neurons cultured
under these conditions.

3.3. ERK1/ERK2 activation by CaSR over-expression contributes
to neurite growth

To elucidate the molecular mechanism underlying the enhance-
ment of neurite growth from SCG neurons by activated CaSR, we
explored a common link in intracellular signaling between CaSR
signaling and neurite growth. ERK1 and ERK2 are activated by the
CaSR in parathyroid cells, fibroblasts and kidney cell lines [11–15]
and NGF-promoted ERK1/ERK2 activation in PC12 cells and SCG
neurons contributes to the neurite growth response [16–20].

To investigate whether ERK1/ERK2 signaling contributes to
CaSR-promoted neurite growth from E18 SCG neurons, we used
immunofluorescence to estimate the relative levels of phospho-
ERK1/ERK2 in neurons. Phospho-ERK1/ERK2 immunofluorescence
was clearly elevated in NGF-supplemented neurons grown in
2.3 mM [Ca2+]o medium compared with NGF-supplemented neu-
rons grown in 0.7 mM [Ca2+]o medium and neurons grown in
NGF-free medium containing either 0.7 mM or 2.3 mM [Ca2+]o
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Fig. 1. CaSR-promoted neurite growth is NGF-dependent.
Neurite length (A), branch point number (B) and Sholl profiles (C) of E18 SCG neurite arbors after 24 h with and without 10 ng/ml NGF in media containing either 0.7 mM or
2.3 mM [Ca2+]o. All cultures received 50 �M Boc-D-FMK. Mean ± sem of data from 231 to 263 neurons per condition. ***P < 0.001, two-tailed, unpaired t-test.

(Fig. 3A). There were no differences in total ERK1/ERK2 immunoflu-
orescence in neurons grown under these different conditions (not
shown). This suggests that ERK1/ERK2 signaling is elevated in neu-
rons grown with NGF and activating levels of [Ca2+]o.

We subsequently examined whether CaSR overexpression can
activate ERK1/ERK2 in E18 SCG neurons grown in NGF-free
medium. The level of phospho-ERK1/ ERK2 immunofluorescence
was clearly elevated in neurons overexpressing CaSR compared
with control transfected neurons (Fig. 3B). Phospho-ERK1/ERK2
immunofluorescence in neurons transfected with pFLCaSR after
24 h in medium containing 2.3 mM [Ca2+]o without NGF revealed
a significant elevation compared with control-transfected neurons
(Fig. 3C), whereas immunofluorescence for total ERK1/ERK1 was
not significantly different (Fig. 3D).

To test whether ERK1/ERK2 activation contributes to the
enhanced neurite growth brought about by CaSR over-expression,
we examined whether U0126, a selective MEK1/MEK2 inhibitor
that interferes with activation of ERK1/ERK2 by MEK1/MEK2
[21], could prevent the increase in CaSR-promoted neurite
growth. In these experiments, we plated pFLCaSR-transfected and
control-transfected SCG neurons in NGF-free medium containing
Boc-D-FMK and either U0126 or its inactive analog U0124. Quan-
tifying neurite arbor size and complexity 24 h later revealed that
U0126, but not U0124, completely prevented enhanced neurite
growth accompanying CaSR overexpression (Fig. 3E and F). Nei-
ther U0126 nor U0124 affected neuronal survival in these cultures
(not shown). This suggests that MEK/ERK signaling contributes to
CaSR-promoted neurite growth.

3.4. A discrete region of the CaSR cytoplasmic tail is required for
enhanced neurite growth

Because many of the signaling functions of the CaSR are depen-
dent on the C-terminal cytoplasmic domain [22,23], we transfected
E18 SCG neurons with plasmids that express C-terminal trun-
cation mutants and quantified neurite growth after 24 h culture
in NGF-free medium containing 2.3 mM [Ca2+]o. The G907stop
CaSR mutant lacks the high-affinity binding site for filamin-A [15]
and a PKC phosphorylation site. The A877stop CaSR mutant lacks
additional PKC phosphorylation sites, a PKA phosphorylation site,
arginine rich motifs and a low-affinity binding site for filamin-A
[15,23].

Sholl analysis showed that the neurite arbors of E18 SCG
neurons transfected with the pG907stopCaSR expression plas-
mid were of similar size to those of neurons transfected
with pFLCaSR, whereas the neurite arbors of control-transfected
neurons were very much smaller (Fig. 4A). There were no
significant differences in neurite length and branch point num-
ber between pG907stopCaSR-transfected and pFLCaSR-transfected
neurons (P = 0.9, ANOVA, data not shown), whereas control-
transfected neurons were significantly shorter and less branched
(P < 0.0001, Kruskal–Wallis test, data not shown). In contrast, the
neurite arbors of pA877stopCaSR-transfected neurons were no
larger than those of control-transfected neurons (Fig. 4B), and there
were no significant differences in neurite length and branch point
number between these groups (P = 0.8, ANOVA). This suggests that
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Fig. 2. Over-expression of CaSR promotes neurite growth in the absence of NGF.
(A) Quantification of CaSR immunofluorescence in E18 SCG neurons 24 h after transfection with either pFLCaSR or pcDNA3.1, mean ± sem (****P < 0.0001, unpaired t-test
with Welch’s correction, n = 24 cells per condition). Total length (B) and branch point number (C) of the neurite arbors of E18 SCG neurons transfected with either pcDNA3.1
or pFLCaSR and cultured without NGF for 24 h in medium containing 2.3 mM [Ca2+]o. All cultures received 50 �M Boc-D-FMK. Mean ± sem of data from 592 to 620 neurons
per condition. ***P < 0.001, two-tailed, unpaired t-test. (D) Quantification of CaSR immunofluorescence in non-transfected SCG neurons cultured for 24 h with and without
10 ng/ml NGF in media containing either 0.7 mM or 2.3 mM [Ca2+]o. ***P < 0.001, ANOVA with Bonferroni’s post-hoc test (n = 24 per condition). (E) Representative images of
SCG neurons double labelled for CaSR and �III-tubulin after 24 h in media containing 10 ng/ml NGF with either 0.7 mM or 2.3 mM [Ca2+]o. Scale bar = 20 �m.

a region between residues alanine 877 and glycine 907 is required
for CaSR-enhanced neurite growth.

4. Discussion

Previous work has shown that the CaSR regulates neurite growth
and tissue innervation in the developing sympathetic nervous sys-
tem [3]. In the current study, we have investigated how CaSR
activation enhances neurite growth from SCG neurons. Our obser-
vation that activating levels of [Ca2+]o enhance axon growth and
branching from cultured SCG neurons overexpressing the CaSR in
the absence of NGF has enabled us to investigate how CaSR signal-
ing affects neurite growth without the confounding effect of NGF
signaling.

We focused on a common link in intracellular signaling between
CaSR signaling and the regulation of neurite growth. Several stud-
ies have shown that CaSR activation in a variety of cell types,

including parathyroid cells, fibroblasts and kidney cell lines, leads
to phosphorylation and activation of ERK1 and ERK2 [11–15] and
ERK1/ERK2 activation in neurons and neural cell lines by NGF con-
tributes to the neurite growth response [16–20].

Two observations suggest that ERK1/ERK2 activation is a key
step by which CaSR activation enhances neurite growth. First,
activating but not minimally-activating levels of [Ca2+]o promote
phosphorylation of ERK1 and ERK2 in SCG neurons overexpressing
the CaSR. Second, pharmacological inhibition of the kinases that lie
upstream of ERK1 and ERK2, MEK1 and MEK2, prevents activating
levels of [Ca2+]o enhancing axon growth. While these observations
do not rule out the possibility that other signaling pathways acti-
vated by the CaSR may contribute to its influence on neurite growth,
these findings suggest that ERK1/ERK2 activation is a necessary step
in the neurite growth-promoting effects of the CaSR.

To determine the region of the CaSR required for enhancing neu-
rite growth, we overexpressed CaSR deletion mutants to ascertain
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Fig. 3. ERK1/ERK2 activation by CaSR contributes to neurite growth.
(A) Images of non-transfected E18 SCG neurons double labelled for phospho-ERK1/ ERK2 and �III-tubulin after 24 h with and without 10 ng/ml NGF in media containing either
0.7 mM or 2.3 mM [Ca2+]o. (B) Images of double labelled E18 SCG neurons after 24 h incubation in NGF-free medium containing 2.3 mM [Ca2+]o after transfection with either
pcDNA3.1 or pFLCaSR. Scale bar = 20 �m. (C and D) Quantification of phospho-ERK1/ERK2 immunofluorescence (C) and total ERK1/ERK2 immunofluorescence (D) in E18 SCG
neurons cultured for 24 h in NGF-free medium containing 2.3 mM [Ca2+]o plus 50 �M Boc-D-FMK transfected with either pFLCaSR or an pcDNA3.1. Mean ± sem of data from
40 neurons per condition. ***P < 0.001, unpaired t-test with Welch’s correction. Total length (E) and branch point number (F) of E18 SCG neurons cultured without NGF for
24 h in media containing 2.3 mM [Ca2+]o plus 50 �M Boc-D-FMK and either 10 �M U0124 or 10 �M U0126 after transfection with either pFLCaSR or pcDNA3.1. Mean ± sem
of data from 214 to 249 neurons per condition. ****P < 0.0001, ANOVA with Bonferroni’s post-hoc test.
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Fig. 4. A discrete region of the CaSR cytoplasmic tail is required for enhanced neurite growth.
(A) Sholl plots of E18 SCG neurite arbors after 24 h in NGF-free medium containing 2.3 mM [Ca2+]o plus 50 �M Boc-D-FMK after transfection with either pcDNA3.1, pFLCaSR
or pG907stopCaSR (data from 223 to 259 neurons per condition). (B) Neurons transfected with either pcDNA3.1, pFLCaSR or pA877stopCaSR (data from 182 to 210 neurons
per condition).

the minimum length of the CaSR intracellular domain required for
enhancing neurite growth in the presence of activating levels of
[Ca2+]o. Because activation of ERK1/ERK2 by the CaSR depends on
direct interaction of the CaSR carboxyl terminus with the cytoskele-
tal scaffold protein filamin A [13,15,24], we used deletion mutants
that lack one or both binding sites for filamin A. Overexpression
of the G907stop mutant, which lacks the high-affinity filamin-A
binding site [15], was just as effective as overexpressed full-length
CaSR in promoting neurite growth in medium containing activating
levels of [Ca2+]o, indicating that the high-affinity filamin A binding
site is not required for CaSR-promoted neurite growth. It is possible
that this partially truncated mutant may enhance neurite growth
by a mechanism that differs from that of full-length CaSR. A recent
study in HEK-293 cells has also shown that the high-affinity filamin
A binding site is also dispensable for ERK1/ERK2 activation by the
CaSR [15]. Overexpression of the A877stop CaSR mutant failed to
enhance neurite growth with activating levels of [Ca2+]o, suggest-
ing that the region between residues alanine 877 and glycine 907
is required for CaSR-enhanced neurite growth. This region not only
possesses a low-affinity filamin A binding site [15], but also con-
tains PKC phosphorylation sites [25–28] and residues necessary for
PI-PLC activation [29]. These findings are consistent with the pos-
sibility that the low-affinity filamin A binding site is important,
but raise the possibility that other sites within this short stretch
of the C-terminal domain contribute to CaSR-promoted neurite
growth. Further molecular dissection of this region will be required
to address this possibility.
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