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Abstract

Lubrication theory is used to model the dynamics of a vesicle as it adheres to a rigid horizontal substrate. Travelling-wave solutions

are obtained and used to estimate the spreading of the vesicle along the substrate. The results are compared with boundary-integral

simulations, and good agreement is demonstrated in cases where the vesicle’s shape is already close to its equilibrium shape. In

the more general case, there is a transient motion that is not described by scalings obtained using lubrication theory.
c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under the responsibility of the organizing committee of DYNACAPS 2014 (Dynamics of Capsules, Vesicles and Cells

in Flow).

Keywords: adhesion, lubrication flow, boundary-integral simulations

1. Introduction

Particulate suspensions are commonplace in industrial and biological situations, and microscale interactions be-

tween suspended particles can affect macroscopic properties of the flow. Recent experiments have measured the

interaction forces between two vesicles as they adhere and as they are subsequently pulled apart1, and other experi-

ments have measured the temporal variation in the contact area of an adhered vesicle as it is pulled off of a substrate2.

In both situations, it is thought that hydrodynamic effects play an important role both during adhesion and during sep-

aration. Recent theoretical work has analysed the equilibrium configurations of a pair of vesicles in the regime where

the adhesive interaction is strong enough to dilate the membrane3, in which case the membrane’s bending stiffness is

not dynamically important. Here, we analyse the process by which a vesicle adheres to a rigid substrate, in the regime

where the adhesive interaction is not strong enough to dilate the vesicle’s membrane appreciably. In this regime, the

membrane may be modelled as inextensible, with its tension varying spatially in response to tractions exerted on it

by the surrounding fluid, and the dynamics are governed by a balance between adhesion and the membrane’s bending

stiffness.

The equilibrium shapes of a vesicle that is adhered to a substrate have been analysed by modelling the adhesive

interaction as a contact potential4, but a drawback of using such a model to describe dynamic processes is that any

motion of the contact line would give rise to a non-integrable singularity in the viscous stresses there, known as
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the ‘contact-line singularity’5. We therefore analyse the case where the adhesive interaction is finite-ranged, so that

in equilibrium there is a thin wetting layer of fluid beneath the vesicle. The effect of such a wetting layer on the

equilibrium shapes of such vesicles has been analysed6, and here we analyse the dynamic behaviour as the vesicle

spreads along the substrate. Our approach is similar to an earlier analysis of cell adhesion7, but here we include the

effects of the membrane’s bending stiffness. We begin in Sec. 2 by formulating the problem, and briefly summarise a

recent analysis of vesicles in equilibrium in the presence of finite-ranged adhesive forces. This work motivates the use

in Sec. 3 of lubrication theory to describe the spreading of a vesicle as it adheres to a substrate, and the predictions

of this model are compared against estimates obtained using a boundary-integral technique. The results and possible

avenues for further work are discussed in Sec.4.

2. Formulation of problem

Throughout the following we denote dimensional quantities using asterisks and dimensionless quantities using

undecorated variables. We focus on a two-dimensional vesicle, and model it as a closed, inextensible and impermeable

bilipid membrane of perimeter P∗ and bending stiffness κ∗. We nondimensionalise lengths with P∗, energies with

κ∗ and pressures with the corresponding scale κ∗/P∗3. We nondimensionalise times using the timescale given by

T ∗ = μ∗P∗3/κ∗, where μ∗ is the dynamic viscosity of the fluid outside the vesicle, and velocities with the corresponding

scale κ∗/μ∗P∗2. We assume that there is an adhesive interaction between the membrane and the substrate that is long-

range attractive, short-range repulsive, and that depends only on the distance y of the membrane above the substrate.

We represent this interaction phenomenologically using the potential (expressed in dimensionless variables)

W(y) = W0

⎡⎢⎢⎢⎢⎢⎣
(
δA

y

)4

− 2

(
δA

y

)2
⎤⎥⎥⎥⎥⎥⎦ , (1)

where W0 represents the strength of the adhesive interaction and is given by W∗0 P∗2/κ∗, where W∗0 is the energy of

adhesion per unit membrane area, and δA represents the preferred distance between the membrane and the substrate

(in the absence of any force other than the adhesive interaction) and is given by δ∗A/P
∗. The potential (1) has been

constructed so that it is minimised at y = δA and so that its value there is given by W = −W0. Although the quantitative

results of our analysis depend on the specific form (1) used for W(y), we anticipate that the qualitative results will

hold for any potential that is short-range repulsive and long-range attractive.

The membrane exerts a traction on the surrounding fluid, which causes there to be a difference between the viscous

stresses on either side of the membrane that is given by8

σ · n|out − σ · n|in = −
(

d2H
ds2
+

1

2
H3 −WH − n · ∇W − γH

)
n− dγ

ds
t, (2)

where s is the arclength measured anticlockwise along the membrane, n is the outward normal to the membrane and t
is the tangent to the membrane in the direction of increasing arclength (see Fig. 1). The curvature H of the membrane
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Fig. 1. Schematic diagram showing the geometry of the problem, and the separation of a vesicle’s membrane into outer, adhered and transition

regions (see text).
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is defined by dt/ds = −Hn. We note that here, in contrast to a fluid–fluid interface, γ is not an intrinsic property of

the interface but instead varies spatially as necessary to enforce the constraint that the membrane’s length be locally

conserved. It must therefore be solved for as part of the problem. The form of the adhesive contributions to (2) are

derived using the variational derivative of the adhesive energy,
∫

W ds, with respect to the position of the surface

(so that tangential displacements would produce no energy change). From (2), it follows that defining the adhesive

stresses in this way means that γ must be spatially constant in order for the vesicle to be in equilibrium.

2.1. Equilibrium shapes

The equilibrium shape of a vesicle that is adhered to a substrate has previously been analysed6 in the regime

where 0 < δA � 1, and we briefly summarise the results here before analysing the dynamics. In the limiting case

that δA = 0, the adhesive potential represents a contact potential, and the membrane has two distinct regions; a flat

‘adhered region’ that is in contact with the substrate, and an ‘outer’ region where the adhesive potential is zero. It can

be shown4 that minimisation of the membrane’s free energy with respect to the position of the contact point implies

that in equilibrium, the membrane meets the substrate with a contact angle of π and curvature given by Hc = (2W0)1/2.

If, instead, 0 < δA � 1 then the adhered region instead lies at an O(δA) distance above the substrate, and there

is a ‘transition’ region which matches smoothly between the adhered and outer regions and which regularises the

apparent discontinuity in curvature between these regions. The membrane’s height in the transition region is given

by y = O(δA), whereas the curvature must approach the value H = (2W0)1/2 towards the outer region. Because the

membrane has a small inclination near the substrate, we make the leading-order approximation that H = d2h/dx2

which implies that the horizontal lengthscale of the transition region is given by

δX = (2W0)−1/4δ1/2A . (3)

Hence, regardless of the strength of the adhesive interaction, δA � δX for sufficiently small δA, which motivates the

use of lubrication theory9 to analyse the spreading of a vesicle in the regime where δA � 1.

3. Lubrication model

It is convenient from now on to use rescaled variables (denoted by tildes) to describe the motion of the underside

of the vesicle, and we rescale coordinates using x = δX x̃ and y = δAỹ, pressures using p = (2W0/δA)p̃ ≡ (δA/δ
4
X)p̃,

horizontal velocity components using u = (2W0)5/4δ1/2A ũ and times using t = (2W0)−3/2 t̃. On the substrate, we

prescribe the condition that the fluid velocity is zero. On the membrane, we prescribe no slip between the membrane

and the fluid. Because the membrane is locally inextensible and is assumed to have small slope, the horizontal velocity

component of the membrane is approximately constant. (A rigorous but more cumbersome argument may be made

by considering the tangential stress balance at the membrane10 which demonstrates that both γ and the membrane’s

horizontal velocity are constant at leading order.) If we make the further assumption that the adhered part of the

membrane does not move relative to the substrate, then the horizontal velocity components of both the membrane and

the neighbouring fluid are zero. It can then be shown that the evolution of the membrane’s height is given by

∂̃h
∂̃t
=
∂

∂x̃

⎡⎢⎢⎢⎢⎣ h̃3

12

∂p̃
∂x̃

⎤⎥⎥⎥⎥⎦ . (4)

Because the aspect ratio of the thin film is small, the pressure beneath the membrane is independent of ỹ at leading

order, and is given by the difference between the normal viscous stress components on either side of the membrane. We

use the small-slope approximations H̃ ≈ d2h̃/dx̃2 and d/ds̃ ≈ d/dx̃, together with (2), to conclude that the (rescaled)

pressure beneath the membrane is given at leading order by

p̃ =
∂4h̃
∂x̃4
− 2

h̃5
+

2

h̃3
. (5)



36   Maurice J. Blount et al.  /  Procedia IUTAM   16  ( 2015 )  33 – 40 

3.1. Travelling-wave solutions

We seek travelling-wave solutions to (4) and (5) of the form h̃(x̃, t̃) = h̃(̃η), where η̃ = x̃− Ũt̃. Such solutions satisfy

the sixth-order equation⎛⎜⎜⎜⎜⎝ h̃3

12
p̃′

⎞⎟⎟⎟⎟⎠′ + Ũh̃′ = 0, where p̃ = h̃′′′′ − 2

h̃5
+

2

h̃3
, (6)

where primes denote differentiation with respect to η̃ and the travelling wave speed Ũ is an unknown parameter. Be-

cause we have assumed that the adhesive potential is independent of the position x̃ along the substrate, (6) is unchanged

by translations in η̃. Hence, only six matching conditions are needed to determine the shape of the membrane up to

translations. We assume that the adhered region lies to the left of the transition region, and has constant membrane

height given by h̃∞, in which case (6) may be integrated to obtain

h̃3

12
p̃′ + Ũ (̃h − h̃∞) = 0. (7)

We linearise about the membrane’s height in the adhered region by posing the solution h̃ = h̃∞ + (̂heση̃ + c.c.), where

ĥ is a small, complex-valued amplitude and where c.c. denotes the complex conjugate. Substitution of this solution

into (6) implies that σ must satisfy

σ5 +

[
10

h̃6∞
− 6

h̃4∞

]
σ +

12Ũ

h̃3∞
= 0. (8)

Any modes which do not decay as η̃ → −∞ must be suppressed which, because the adhered region is assumed to lie

to the left of the transition region, means that all modes for which σ has negative real part must be suppressed. In

the case of an advancing wave with Ũ > 0, there are three roots of (8) with negative real part, and three matching

conditions are thus required to suppress the corresponding modes. (In the case of a receding wave with Ũ < 0, there

are only two roots of (8) with negative real part. Two matching conditions would be prescribed to suppress these,

and a third matching condition would prescribe the value of h̃∞ in the adhered region.) The other two roots form a

conjugate pair, and a superposition of the corresponding modes may therefore be expressed in the form

h̃ − h̃∞ = Ãeσr η̃ cos(σiη̃ + φ̃), (9)

where Ã is a real-valued constant which we set to a small value, σr and σi are, respectively, the real and imaginary

parts of σ, and φ̃ is a phase shift which represents the relative contribution of the conjugate mode. We use (9) to

prescribe the values of h̃ and its first four derivatives at η̃ = 0, and then adjust the values of h̃∞, φ̃ and Ũ in order to

satisfy matching conditions towards the outer region which we now describe. We treat the outer region as quasi-static,

with a prescribed membrane curvature H̃c, which requires h̃′′′ = O(δX) and h̃′′′′ = O(δ2X) as η̃→ ∞. In our numerical

solution, we approximate these matching conditions by enforcing the conditions

h̃′′ = H̃c, h̃′′′ = 0 and h̃′′′′ = 0 at h̃ = h̃out 
 1, (10)

and we use the values Ã = 10−7 and h̃out = 2 × 103. The results are insensitive to the precise value of Ã. Although we

are matching towards a height profile of the form h̃ ∼ 1
2
H̃cη̃

2 + Bη̃ +C, if H̃c is small then the quadratic nature of this

profile is only apparent for large values of η̃, and so large values of h̃out are needed to fully resolve Ũ. We find that

for h̃out = 5 × 103, the dependence of Ũ on H̃c has converged (to within the width of the line) for values of H̃c greater

than around 5 × 10−2.

3.2. Estimation of spreading

Fig. 2(a) shows the dependence of the travelling wave speed Ũ on the rescaled curvature H̃c. We note that the

case where H̃c = 1 and Ũ = 0 corresponds to Hc = (2W0)1/2 in the unscaled variables, which is the equilibrium

curvature4 that the membrane in the outer region would have as it approaches the substrate in the limiting case that
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Fig. 2. (a) The dependence of the travelling wave speed Ũ of the transition region on the curvature H̃c of the membrane far from the substrate. The

values of Ũ for H̃c � 5 × 10−2 have not fully converged for the computational domain used to solve (7). (b) The dependence of the (unscaled)

curvature Hc of the membrane on the adhered length Lad of the membrane, for specific areas A = 0.85 (solid) and 0.65 (dashed).

ΔL = O(δX)
δA = 16× 10−3

δA = 8× 10−3

Estimate

δA = 4× 10−3

ba

0.14

0.15

0.16

0.17

21.510.50

δX
˜t

0.5 1 1.5 20

0.156

0.14

0.148

0.152

0.144L
ad
−
Δ
L

L
ad

δX
˜t

Fig. 3. Comparison of the lubrication model with boundary-integral simulations during the spreading phase. Parameter values used are W0 = 1200

and A = 0.85. (a) The adhered half-length Lad estimated using (12) (solid), and obtained directly from the boundary-integral simulations for various

values of δA (Dotted: 16×10−3. Dashed: 8×10−3, Chain-dashed: 4×10−3). (b) The same plot as (a), except that the estimate from (12) are offset in

time by an amount that is determined by a visual fit, and the estimates from the boundary-integral simulations are offset by the O(δX) contribution

to Lad of the transition region in equilibrium.

δA = 0. Fig. 2(b) shows the dependence of Hc on the adhered half-length Lad (measured from the centre of the adhered

region to the contact point) of the membrane in contact with the substrate, computed using a contact-potential model4.

Two different values of the specific area A are used, where A is defined to be 4πA∗/P∗2 and represents the area of the

vesicle, scaled by the area the vesicle would have if it were circular and had the same perimeter.

The spreading behaviour of the vesicle may be estimated by assuming that the outer region evolves quasi-statically.

If Hc differs from the equilibrium value (2W0)1/2 then the vesicle will either spread out, which would increase Hc, or

retract, which would decrease Hc. The spreading rate is given in scaled variables by Ũ[H̃c]. As the vesicle spreads,

its adhered half-length Lad increases, thereby increasing Hc and, in turn, decreasing the travelling wave speed U until

it reaches zero and the contact curvature attains its equilibrium value of (2W0)1/2. The rate of change of Lad may

therefore be estimated by solving the implicit equation

dLad

dt
= W5/4

0
δ1/2A Ũ[H̃c(Lad)], where H̃c =

Hc(Lad)

(2W0)1/2
, (11)

where Ũ[H̃c] and Hc(Lad) are plotted in Fig. 2 and must be computed numerically.
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W0 = 10, A = 0.85, and δA = 2.5 × 10−2 (solid), 5 × 10−2 (dotted) and 10 × 10−2 (dashed). (b–e) The vesicle’s shape (b,c) and tension distribution

(d,e) at two times during the attachment of a vesicle to a substrate.

3.3. Comparison with boundary-integral simulations

Integration of (11) yields

Lad =

∫
W5/4

0
δ1/2A Ũ[H̃c(Lad)] dt ≡

∫
Ũ[H̃c(Lad)] d(δXt̃), (12)

which gives an implicit equation for Lad in terms of δXt̃. Fig. 3(a) shows the solution of this equation for a vesicle

with specific area given by A = 0.85, and with the amplitude of the adhesive potential given by W0 = 1200. The

initial value of Lad is 0.142, which corresponds to the equilibrium adhered length the vesicle would have in the case

that W0 = 300 and in the limiting case of a contact potential with δA = 0.

To verify the accuracy of our estimate, we also computed the evolution of the membrane’s shape x(s, t) by solving

the boundary-integral equation

dx
dt
=

∫
G(x − y) · {σ · n|out − σ · n|in} (y) dsy. (13)

In (13), the integral kernel G is the Blake–Oseen tensor11, which includes ‘image’ singularities to represent the pres-

ence of the rigid substrate in the present problem, and the stress discontinuity across the membrane is given explicitly

by (2). For simplicity, we have assumed that the fluid viscosities are equal inside and outside the vesicle, thereby omit-

ting the double-layer term that would otherwise be present. (The viscosity of fluid inside the vesicle is unlikely to play

a significant role because the dynamics are dominated by the thin-film flow beneath the vesicle.) The computational

solution of (13) uses a similar implementation to that used recently to compute the behaviour of a two-dimensional

suspension of vesicles12. The procedure involves discretising the membrane using equally spaced points along its

arclength, and evaluating the nearly singular integrals that arise using a hybrid Gauss-trapezoidal quadrature rule13.

The adhered length is estimated from the boundary-integral calculations using Lad = (2W0)−1
∫

W ds, and is shown

in Fig. 3(a). The simulations are performed using δA = 4 × 10−3, 8 × 10−3 and 16 × 10−3. In each case, the specific

area and adhesive energy used are A = 0.85 and W0 = 1200, respectively, and each simulation is initialised with

the equilibrium shape that the vesicle would have if W = 300. As described in Sec. 2.1, these equilibrium solutions

include transition regions, which at leading order6 give a contribution to Lad of ΔL = 1.745δX . This correction

should be added to the estimate (12) to allow a direct comparison between each boundary-integral simulation and the

corresponding estimate using (12). However, for ease of presentation, Fig. 3(b) instead shows plots where ΔL has been

subtracted from the computed values of Lad. Fig. 3(a) shows that there is also a discrepancy between the dependence

of the adhered length on time. This may be attributed to a transient motion during which the travelling-wave behaviour

(assumed by the estimate 12) has not been attained. In Fig. 3(b) this estimate has, therefore, been translated in time

by an amount that is obtained using a visual fit. There is a good collapse of the data towards this estimate, which

indicates that (12) does indeed give a good description of the spreading of the vesicle along the substrate.

In general, the process by which a vesicle adheres to a substrate is analogous to that of a viscous droplet7, and

begins with a transient behaviour where the vesicle first drifts towards the substrate owing to the long-range attraction
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of the adhesive interaction, before being strongly deformed by gradients in the adhesive potential as it approaches the

substrate. To assess the applicability of the lubrication model to this part of the motion, boundary-integral simulations

were initialised with a vesicle whose shape was that of an isolated vesicle in equilibrium, located so that its minimum

distance from the substrate was at y = δA. Fig. 4(a) shows the variation of the contact-line speed, estimated using

Uad = dLa/dt, with rescaled time δXt̃. Although there seems to be a collapse for very short times, it is clear that a

lubrication model does not adequately describe the evolution of the membrane throughout the motion.

4. Discussion

A lubrication approximation has been used to model the motion of a vesicle as it attaches to a horizontal substrate,

and travelling-wave solutions have been found. A comparison with boundary-integral simulations suggests that these

solutions may only be applied to situations where the vesicle is near equilibrium. We therefore expect that the results

obtained here may be used to estimate the spreading of a vesicle at late stages in the adhesion process. A simple ex-

tension to our work lies in computing receding travelling-wave solutions in addition to advancing ones. We anticipate

that such solutions represent the retraction of the vesicle’s contact area during detachment processes. The detachment

of a vesicle from a substrate has been studied experimentally2, and it was found that for deflated vesicles, the thickness

of the film beneath the vesicle remains constant as the contact radius decreases. This reported behaviour supports our

modelling of the adhesive process as being dominated by the edges of the contact region. It should be noted that

these observations relate only to ‘deflated’ vesicles, for which the membrane’s bending stiffness plays a significant

role. In regimes where the vesicle is ‘tensed’, such as when the adhesive interaction is very strong3, the membrane’s

bending stiffness is unimportant and the dynamics are governed instead by the membrane’s tension. In this regime,

the thickness of the entire film increases at approximately the same rate whereas the contact radius remains constant.

One other application of our results lies in the forced translation of a vesicle along a substrate by a shear flow, or by a

gradient in the adhesive strength8. If the film thickness beneath the vesicle is small, then we anticipate that the vesicle

will undergo a rolling motion in which the membrane on the underside remains at rest with the dynamics dominated

by an advancing contact region at the front of the vesicle and a receding contact region at the rear. An understanding

both of vesicle detachment and of vesicle translation would require an analysis of receding travelling-wave solutions

and of the effects of an external flow, both of which represent extensions to the results presented here.

The estimates we have obtained using travelling-wave solutions work well in cases where the vesicle’s shape is

already close to its equilibrium shape, but in general the flow beneath the vesicle is not well described by lubrication

theory. We attribute this to the assumptions made in Sec. 3.1 that the adhered region is at rest and that the membrane

there is horizontal. In general, this is not the case, because the lubrication pressure that drives fluid out from beneath

the vesicle also has the effect of deforming the underside of the vesicle. This causes a dimple of fluid to be trapped,

in an analogous way to the observed behaviour of viscous droplets14,15, which precludes the formation of an adhered

region. Dimple formation in the context of the adhesion of vesicles has been observed experimentally16.

Fig. 4(b–e) shows the membrane shape and tension at early and late times during a boundary-integral simulation of

vesicle adhesion, and shows that there is significant variation in the tension along the underside of the vesicle. The role

of the membrane’s tension is to enforce local inextensibility and, because a small-slope approximation automatically

implies length conservation at leading order, we conclude that significant gradients in the membrane tension would

imply that the small-slope approximation used in Sec. 3.1 is not valid. However, the simulations also demonstrate

that the tension in the outer region is constant, which supports our use of a quasi-static approximation to describe this

region.

The flow beneath a viscous droplet that sediments under gravity towards a rigid substrate has been analysed using a

modified lubrication theory15. In that problem, fluid is trapped beneath the droplet to form finite-amplitude ‘dimples’,

and a model was developed that incorporates finite-amplitude expressions for the curvature of the interface. This

model was justified by the dynamics being controlled by thin ‘neck’ regions where the slope is small, and by the

dimples, where the slope is significant, behaving quasi-statically. It is feasible that a similar approach could be used

to describe to the flow beneath adhering vesicles, though the implementation would be complicated by the membrane

tension not being known in advance. The development of a modified lubrication model theory to describe the fluid

flow underneath a vesicle is ongoing.
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One important aspect that has not been considered here is the influence of thermal fluctuations. In contrast to

the strongly-adhered regime considered recently by other workers3, the adhesive interactions analysed here are not

sufficiently large to place the vesicle in a ‘tensed’ regime in which thermal fluctuations are suppressed. A topic for

future investigation is the extent to which fluctuations of the membrane might affect the process by which a vesicle

adheres to a substrate, and how these fluctuations might be described using a mean-field theory.

The analysis performed here has been applied to the relatively simple process of an isolated vesicle adhering to a

stationary substrate. A lubrication model has been used to analyse the motion of a fluid droplet near a rigid wall in a

variety of situations including the rolling of a droplet down a slope17 and the motion of a droplet through a tube18, and

an interesting extension of these works would be to adapt them to describe vesicles or capsules. In either case, the

development of the model is complicated by the coupling between the viscous traction exerted on the interface and its

stretching or contraction.
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