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Abstract

Wireless sensor networks (WSNs) have advanced rapidly in recent years and the volume

of raw data received at an endpoint can be huge. We believe that the use of local know-

ledge, acquired from sources such as the surrounding environment, users and previ-

ously sensed data, can improve the efficiency of a WSN and automate the classification

of sensed data. We define local knowledge as knowledge about an area that has been

gained through experience or experimentation. With this in mind, we have developed a

three-tiered architecture for WSNs that uses differing knowledge-processing capabilit-

ies at each tier, called the Knowledge-based Hierarchical Architecture for Sensing (K-

HAS). A novel aligning ontology has been created to support K-HAS, joining widely

used, domain-specific ontologies from the sensing and observation domains. We have

shown that, as knowledge-processing capabilities are pushed further out into the net-

work, the profit - defined as the value of sensed data - is increased; where the profit is

defined as the value of the sensed data received by the end user.

Collaborating with Cardiff University School of Biosciences, we have deployed a vari-

ation of K-HAS in the Malaysian rainforest to capture images of endangered wildlife,

as well as to automate the collection and classification of these images. Technolo-

gical limitations prevented a complete implementation of K-HAS and an amalgama-

tion of tiers was made to create the Local knowledge Ontology-based Remote-sensing

Informatics System (LORIS). A two week deployment in Malaysia suggested that the

architecture was viable and that, even using local knowledge at the endpoint of a WSN,

improved the efficiency of the network. A simulation was implemented to model K-
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HAS and this indicated that the network became more efficient as knowledge was

pushed further out towards the edge, by allowing nodes to prioritise sensed data based

on inferences about its content.
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Chapter 1

Introduction

A wireless sensor network (WSN) consists of a collection of nodes with sensing and,

typically, wireless communication capabilities. These sensing nodes can be complex

and powerful devices with the ability to sense multiple phenomena simultaneously

[77, 81, 114], or they can be simple motes with limited processing power [63, 76, 106].

A node has one or more sensors attached to it, with a wireless radio that is used to

transmit the sensed data to an endpoint, where an endpoint is the base station of the

network. Most WSNs use a single base station, providing a single endpoint, but there

are networks with multiple endpoints; either used for different types of sensed data or

to ensure that the load of the network is spread out.

Upon deployment, these nodes use their wireless capabilities to form communication

links with their neighbours, where a neighbour is any node that is within transmission

range. The way that nodes discover, and communicate with their neighbours is defined

by their routing protocol. Routing protocols vary based on the purpose of the WSN,

the requirements of data transmission as well as the characteristics of the nodes. Com-

munication between nodes is expensive and drains the available power faster than any

other action that a node performs [92]. For example, if a WSN is deployed in a build-

ing with constant power availability, then the routing protocol would not need to be

modified to ensure nodes sleep to conserve battery or disable their radios for a period

of time. However, not every WSN has unlimited resources at their disposal and these

protocols, as well as the underlying structure of the network, are used to ensure the

network is able to perform well for as long as possible.
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Each WSN is different and each will have different constraints, a WSN that monitors

traffic along a busy road may experience memory limitations, whereas a WSN that is

deployed in the middle of a desert may experience power issues. Typically, however,

all WSNs do the same thing: sense one or more characteristics of their environment

and forward that data on to a specified endpoint; sometimes called the base station.

1.1 Motivation

Throughout this thesis, we focus on a scenario motivated by our collaboration with

Cardiff University School of Biosciences, who run a research centre in the Malaysian

rainforest, in Sabah, known as Danau Girang Field Centre (DGFC) [2]. Located on the

banks of the Kinabatangan river, DGFC is shown in Figure 1.1 and has been running for

more than six years and holds Masters, PhD and Undergraduate students from around

the world, studying the ecology and biodiversity of the unique region.

The rainforest surrounding the Kinabatangan river is unique because the area was heav-

ily logged until the late 1970s and the river now serves as a corridor, between large

palm oil plantations, connecting two separate rainforest lots. The area is now second-

ary rainforest (rainforest that has grown since being destroyed) and is experiencing a

large variety of wildlife using the area as a habitat, or as a path. Some of this wildlife

is unique to this area of the world and DGFC has had sightings of animals that have

not been seen in many years [17].

There is a variety of research projects currently underway in the field centre, looking

into fish population, crocodile attacks, hornbill habitats or the movement patterns of

small mammals. One project that has been running almost since DGFC opened, is the

corridor monitoring programme, a programme that consists of dozens of wildlife cam-

eras deployed in various areas around DGFC and a set of images are taken whenever

an animal triggers a break in their infrared (IR) sensor.

The Kinabatangan is a protected wildlife reserve, with thick and humid forest, making
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Figure 1.1: Map of Danau Girang in relation to Sabah Malaysia

it very difficult to walk through and even more difficult for hardware to survive the

conditions. Cameras are placed along the river and up to 1km into the forest, capturing

images when triggered and saving them onto SD cards. These SD cards are collected

and stored at the field centre, where the images are manually collated and processed.

The cameras are designed to have a battery life of three months but, due to the humidity,

a battery life of three weeks is more realistic. In 2010, twenty cameras were deployed

and half of them were inspected every two weeks, on a rotating basis. In that time,

each camera can record more than a thousand pictures and the dynamic nature of the

rainforest, such as the sun through leaves, falling trees and reflections in the water can

cause the camera to trigger when an animal has not walked past. The events are known

as false triggers, and they can make up to 70% of the images on an SD card and each

of these must be manually processed.

Each trigger of the camera results in a set of three images being captured, this number

has been chosen by the researchers at DGFC after some experimentation. Three images
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allows for more than one image of slow-moving animals to be captured and, typically,

allows for the middle image in the sequence to capture the body of fast-moving anim-

als; with the first and last capturing the head and rear respectively.

We have used this scenario to test our hypothesis and implement a WSN that automates

the collection, transmission, processing and storage of images, using local knowledge

to classify the data and prioritise the flow of information through the network, making

more efficient use of the limited power and bandwidth available.

1.2 Research Contributions

Here we outline the main research contributions explained in this thesis. We believe

that two main contributions have been made and our experimental results serve to sup-

port these contributions. Our primary contribution is that we propose a novel tiered

network architecture where each subsequent tier possesses increased knowledge-

processing ability, K-HAS, that utilises the local knowledge of its surrounding envir-

onment, users and previously sensed data to process observations within the network

and prioritise the data according to the inferred classification.

Knowledge is pushed out to the edge of the network to allow the nodes that capture

observations to prioritise the data based on its content. The knowledge processing

capabilities increase with each tier as the data moves toward the centre of the network,

allowing more detailed inferences to be made and data to be given a higher priority.

This smart utilisation of bandwidth allows data to be delivered in an order that is more

useful than chronological, delivering the most valuable observations first and using

human feedback to learn how important these observations were.

In addition, K-HAS uses a feedback loop to dynamically update the knowledge base

on every node throughout the deployment so it is able to react to changes within the

data recorded, and the network, in near real-time.
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Experimental results from the Malaysian rainforest showed that current long-range

wireless sensor technology is not yet at the point where nodes could be deployed in

a harsh environment and left without human intervention for months at a time. A

modified K-HAS system LORIS (Local knowledge Remote-sensing Ontology-based

Informatics System) combined tiers that use knowledge-processing at the centre of the

network, with commercially available, wireless cameras. This showed that knowledge-

processing automates the handling of sensed data when it is received and can be used

to infer patterns for future observations. LORIS was designed because we could not

find robust, open sensing nodes that can send data over long distances and handle high

humidity and extreme temperatures. Because of this, we used off-the-shelf (OTS) wire-

less cameras that ran a closed system, while providing some access through proprietary

software. We then combined two of K-HAS’ tiers so that processing only took place

at the base station, matching a more traditional WSN topology; while still making use

of local knowledge gained from previously sensed data.

We model the ideal implementation of K-HAS in a simulation environment, along with

variations on the knowledge processing capbilities of each node, We use these simula-

tions to show that local and global knowledge can prioritise sensed data effectively and

that this prioritisation increases the efficiency of the network by delivering data based

on its importance, rather than chronologically.

Our second contribution is an ontology that combines, and extends, ontologies used

in multiple domains to create an extension ontology for WSNs and ecological ob-

servations. To formally define the structure of K-HAS and the data standard used,

we developed an ontology that combined existing ontologies for sensor networks and

ecological observations. This ontology can be used as a whole or in parts for WSNs

that use some, or all, of K-HAS’ architecture. On top of this, we extended these on-

tologies by adding specific terms relevant to the different node types and users within

the K-HAS architecture.

We apply this ontology to our proposed architecture, and simulations, in order to define
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a data standard for sensed data sent within the network, as well as terms to use in ob-

servations as well as identify the roles of both humans and sensors within the network.

1.3 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 provides background on

wireless sensor networks and the use of knowledge-based technologies in that context.

Chapter 3 explains technical decisions we made and the findings when running exper-

iments in the Malaysian rainforest. Chapter 4 introduces the K-HAS architecture we

have proposed and explains the purpose of each tier. Chapter 5 details the ontology we

have proposed to support K-HAS and shows how current ontologies do not sufficiently

cover all of the concepts involved with a scientific observation. Chapter 6 details our

implementation in the Malaysian Rainforest and the changes we had to make in order

for it to be feasible. Chapter 7 describes how we modelled K-HAS, and other scen-

arios, in a simulation environment. The results are then explained and we explain how

different scenarios are suited to WSNs, in a multitude of environments, with different

requirements. Chapter 8 then concludes this thesis and summarises our contributions

and findings, as well as highlighting work that could be undertaken to take this project

further.
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Chapter 2

Background

Using knowledge in a WSN is related to existing research into sensor networks that

utilise context-awareness in order to improve their effectiveness or adapt their sampling

rate. An example of a context-aware sensor is an accelerometer attached to a node that

is able to determine what the readings of the accelerometer indicate. For example, a

smart phone with an accelerometer may use context-awareness to determine if the user

is running, walking or going upstairs. Some of these actions may be more import-

ant than others and, thus, they can be prioritised. However, researching context-aware

WSNs alone would limit our knowledge of WSNs in general and affect decisions we

make when designing our own architecture. There is research that is valuable for all

types of sensor network, such as: hardware design, routing protocol, tranmission me-

dium choice or middleware used.

This chapter is split into the following sections. Section 2.1 outlines the issues sur-

rounding WSN design and deployment. Section 2.2 details relevant existing routing

protocols for sensor networks that are used for a number of different purposes, from

extending network lifetime by scheduling sleep patterns to storing sensed data on nodes

and responding to queries. Section 2.3 highlights commonly-used sensor middleware.

Section 2.4 shows some examples of existing WSNs that are related to our motivating

scenario and Section 2.5 summarises the results of our research.
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2.1 Wireless Sensor Network Issues

WSNs have been used in a number of domains, for a range of different purposes, from

habitat monitoring [107] to military purposes [86] and healthcare [85]. While these

applications are different, the technology behind each is similar. Each requires the

use of nodes with sensors attached and each node requires a power source and storage

devices.

According to [15], there are at least eight factors that affect the design of sensor net-

works, but we focus on a subset that are the most relevant to our research problem.

Those we have given less consideration to are: production costs, scalability and to-

pology. While these are important, productions costs are not a concern for us in the

research stage and scalability has been considered when studying existing networks.

We have considered the following points in greater detail:

2.1.1 Fault Tolerance

WSNs typically contain a large number of nodes and any node can fail for various

reasons, from a lack of power, filling its storage capacity, to factors in the environment

causing the hardware to fail. While the hardware architecture of sensor nodes is typic-

ally similar, the variation between each deployment means that the device itself must

be adapted to its environment. For example, [73] used a custom protective casing for

their nodes so that they were able to survive being in the open while ensuring that the

transmission range was not affected.

2.1.2 Hardware Constraints

A sensor node typically consists of: a platform that contains the memory and pro-

cessing power, a sensor (or sensors) and a transceiver that uses a wireless standard,

such as Wi-Fi or Zigbee. Cost and size are the most significant considerations when
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designing a WSN. According to [58], the expectation of a sensor node is a matchbox-

sized form factor. However, ten years ago, there was much research focussed on smart

dust [62]. Smart dust is small, inexpensive, disposable nodes that can transmit until

their power reserve is depleted, [16] highlights that it is a requirement for the nodes

to cost less than USD10. In [32], a decade on from the first WSN papers, smart dust

has not been realised and the focus has instead been on larger, more powerful nodes

that have reduced in cost and grown in power. The Gartner Hype Cycle for 2013 [43]

showed that smart dust is still in early innovation stages and may not be fully com-

mercialised for another ten years. To counter this, research has been focussed on using

software solutions to maximise the battery life in these more powerful, more expensive

nodes, accompanied by the use of renewable energy sources.

2.1.3 Energy Constraints

Commonly, sensor nodes do not have access to a constant power supply and must run

on a battery that is, generally, a similar size to the node. Larger batteries must usually

be contained in a separate enclosure to the node and this makes nodes less compact

and their deployment more difficult. This means that the nodes must be as efficient as

possible, knowing when to transmit data and when to sleep. The lifetime of a sensor

network is highly dependent on the battery life of each node and, unlike other mobile

devices, they cannot typically be recharged [15]. Much work has been done on power

efficient routing protocols, as well as the control of which attached devices are active

[57, 100, 101].

The limited resources on the nodes mean that the sensing devices, and transceivers,

attached must consume as little power as possible. Some routing protocols implement

turning off wireless radios and scheduling a wakeup across the network [122], but the

cost of turning off a device can waste just as much energy as leaving it on and sampling

at a lower rate, if not more [38].
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The use of energy in a node is dependent on how active the sensor(s) are, how much it

transmits and receives, the transmission medium used as well as the environment it is

in.

2.1.4 Transmission Medium

Widely used, general purpose transmission media, such as Wi-Fi, are viable solutions

in WSNs when a high data rate is required and power is readily available. However,

research has shown that Wi-Fi is extremely power-hungry and [65] shows that Wi-Fi

consumes almost 9 times more energy, while transmitting, than other standards, such

as Zigbee. Bluetooth is a more power-efficient standard that is becoming increasingly

popular for sensing devices that are part of the ‘Quantified Self’ movement [105],

with wearable devices that report measurements, such as heart rate, steps taken and

calories burned. With the advent of the new low-power Bluetooh 4.0 , also known as

Bluetooth Low Energy (BLE), this standard is supposed to allow months of continuous

use on a coin-cell battery [45]. However, the theoretical max range is 100m and, using

the same frequency, as Wi-Fi (2.4GHz) means that it is as susceptible to path loss

and reduced transfer rates. [127] shows that a 2.4GHz Wi-Fi antenna is capable of

transmitting up to 350m, while a considerably lower frequency of 41MHz was able to

achieve links of 10km. The use of 2.4GHz frequencies in wet conditions have been

shown to reduce the performance by up to 28% [75], while humidity in the air can

reduce the performance by up to 78% [41]. New low-power, low-frequency standards

have emerged in recent years and allow for a considerably longer range and increased

battery life, at the cost of transmission speeds. Digimesh is an example of this and,

while it can achieve 250kb/s using 2.4GHz, it has much slower speeds of 125kbps

when using the 900MHz spectrum. However, it does offer a range of, up to, 64Km

[20].
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2.1.5 Environment

The environment that a node is deployed in can have a great impact on almost all as-

pects of a WSN, such as range or the operational lifetime of the node itself. Harsh

environments that are not easily accessible make it difficult to place nodes and protec-

ted environments may limit where nodes can be placed. In [76], nodes were deployed

within glaciers and had to survive extreme temperatures, lasting without human inter-

vention, for months at a time. [69] attached collars to Zebras that had to withstand

high speed movement, impact, dust and high temperatures. The deployment of any

node requires extensive research as to the environment that it will be deployed in and

adjustments must be made to ensure it is able to survive for extended periods without

continued maintenance. Section 2.1.4 also shows that environment does not simply

affect the hardware, but humidity can reduce the transmission range significantly, as

well as moisture collecting on wireless antenna can reduce the range for days at a time.

Limited range in a WSN can be addressed by using intermediate nodes - nodes tasked

with forwarding data from other sensing nodes that would otherwise be out of range -

between disconnected sensing nodes. While they do not need to sense the environment

directly, they can be vital in ensuring data from all areas of the network are delivered. In

the case of [69], a car was used to drive near to zebras that had not passed close enough

to the base station in order to transmit their data. The car acted as the intermediate node

by collecting data from the zebra’s collar and relaying it back to the base station. In a

normal WSN, this has the downside of requiring more nodes, which increases the cost

and the chance of a node failing, but it can connect clusters in a geographical region

that would otherwise be unable to send sensed data, or they can provide multiple routes

through the network to help preserve battery life.
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2.2 Routing Protocols

Routing protocols specify how nodes in a WSN are organised, as well as how they

transmit data throughout the network. In [14], the more popular routing protocols

are surveyed and split into three of the main identified categories: data-centric, hier-

archical and location-based. We use the aforementioned categories, as well as flat, to

highlight some of the key protocols that are relevant to our work. Flat routing proto-

cols are for WSNs that involve many nodes deployed over a large area, all sending data

to a single endpoint. Data-centric is a protocol that focusses on sensed-data, where

nodes advertise their contents and query other nodes to fulfill requests made by a user.

Location-based protocols use the physical region that nodes are deployed in to request

and send data. Hierarchical protocols are for heterogeneous networks that perform

more than one task. For example, a network spread of over hundreds of miles could be

split into individual networks, or it could follow a hierachical structure where clusters

of nodes send data to an gateway node (also known as a cluster head); a node that may

not directly sense the environment but acts as an endpoint for a group of nodes [14].

The data then hops across other nodes in order to reach a final endpoint. The protocols

have the task of ensuring that a network is performing at its best, providing the best

lifetime and ensuring reliable and consistent delivery of data. This must reduce flood-

ing, where nodes send every message to every link, aside from themselves, effectively

flooding the network with unnecessary messages, and find a way to deliver data to the

endpoint using the most efficient path possible.

2.2.1 Flat

Initially, this was the most common structure for a WSN, dozens of nodes spread out

over a geographical area, with one or more neighbours, sending observations to a single

endpoint.



2.2 Routing Protocols 13

MCFA

The Minimum Cost Forwarding Algorithm (MCFA) is a flat routing protocol that

works by assigning costs to each node, based on how many hops they are from the

endpoint [124].

Each node has a path-estimate of the cost of transmission from itself to the base station.

The base station sends out a broadcast message and it is received by all nodes in range.

The message contains a cost from the base station (initially zero) while every node has

their cost set to infinity. The cost is stored at the node, incremented and sent on to all

nodes in range. If the received cost is less than the current cost stored on the node, then

the cost (and the neighbour) is updated and passed on.

Each message has a cost associated with it, which is based on the hops it has completed

so far. A node that receives the message forwards it only if it’s cost matches the sum of

the source node’s cost (contained within the message) and the message’s current cost.

This ensures that all messages are sent through the minimum cost path, without storing

explicit path information on each node.

This approach allows for dynamic reconfiguration of the network, as well as a reduced

overhead due to not having to maintain a global routing table on each node. The

assumption with MCFA, however, is that the direction of routing is always towards

a fixed endpoint.

2.2.2 Data-centric

Data-centric routing protocols are not like traditional WSNs where nodes are given

addresses; they use a method that involves the advertising, or querying, of the data that

has been sensed and those with the relevant data can respond to the request.
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SPIN

Sensor Protocols for Information via Negotiation (SPIN) is one of the first data-centric

protocols and attempts to address the issue of flooding the network whenever new data

is sensed by addressing the data through metadata [56]. SPIN works on three messages

passed between nodes:

1. ADV - A message sent by a node when it has sensed new data, advertising what

it has recorded.

2. REQ - Sent by nodes that received an ADV to request the data.

3. DATA - Message containing the sensed data.

When a node has sensed data, it sends an ADV message to all nodes within range. If

any of those nodes are interested in the data, then they respond with a REQ message,

at which point the DATA message is sent to nodes that responded.

SPIN eliminates the need for a global view of the network topology, as nodes only

need to know their single hop neighbours. However, SPIN does not guarantee equal

diffusion of data throughout the network as a node may be interested in the data sensed

at the other edge of the network, with only nodes that are not interested in between.

This would mean that those nodes would not request the data or pass it on.

SPIN-IT

An extension to SPIN, SPIN-IT uses a slightly different approach to receiving data

and was developed solely for the transfer of images [120], using metadata to fulfill

requests.

Nodes use the existing message structure of SPIN, but REQ messages are used as quer-

ies, sent to all nodes in transmission range. The receiving nodes keep these requests

and generate a new REQ message, thus allowing nodes to store temporal paths. When a
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REQ reaches a node that has the desired data, it responds with a ROUTE-REPLY mes-

sage. This message is used because images are large and resource-constrained WSNs

would have a much shorter lifetime if a lot of unnecessary transmissions were made.

The ROUTE-REPLY is used in case multiple nodes, in range of the requesting node,

have the data it has requested and it can then choose the optimal route. As each node

keeps a history of REQ messages, these can be used to trace the requested data back

through the network, to the originating node, without the overhead of maintaining a

global routing table.

COUGAR

A slightly different data-centric approach is the proposed COUGAR protocol, viewing

the network as a distributed database. Cougar is similar to SPIN because it does not

forward data as soon as it is sensed, instead COUGAR uses a query language that

abstracts the underlying network structure and uses received queries to generate a plan

that utilises in-network processing to provide an answer based on the sensed data stored

on all deployed nodes [123].

For example, in a building monitoring network, a user could query a base station for

offices that are unoccupied. The base station then sends that query to all nodes in range

and it is then dispersed throughout the network. Nodes that have data that can satisfy

the query send back their results and these are combined as they move back through

the network to the base station. The user then receives that data, along with the nodes

that have provided it.

Within the network, a leader is selected and this node is used to aggregate the data

from nodes that were able to fulfil all, or some, of the query. At risk of failure, each

query should result in a leader being dynamically selected and it must have sufficient

resources to be able to satisfy the request. This protocol was only proposed, and much

of the technical detail has yet to be completed, but the concept of treating the network

as a distributed database is a novel idea and this is one of the first protocols to suggest
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the use of a query language that could be used by people without specific technical

knowledge, which, in this case, is technical knowledge of query languages and how

the routing protocol works.

2.2.3 Hierarchical

Hierarchical networks are WSNs that contain nodes of different classes; nodes at the

edge of the network are typically clustered into groups and served by a gateway node.

This gateway could be in charge of aggregating the data, processing the data, or simply

forwarding it to an endpoint. Clusters of nodes allow the network to be spread out over

a wider geographical area and gateway nodes can use a different transmission method

to provide long distance links to the base station. Gateway nodes serving a cluster of

nodes means that the network can scale easily as well, simply by adding a new cluster

to the network.

TEEN

The Threshold sensitive Energy Efficient sensor Network (TEEN) protocol is designed

for reactive sensor networks, networks that require instant reactions to changes sensed

in their environment [74]. TEEN recognises that transmission is the most power hungry

action for a node so each node is coded with a hard and soft threshold. The hard

threshold is a value that makes nodes transmit the reading to their cluster head. Simil-

arly, the soft threshold is a small change in the value of the sensed attribute that causes

further transmissions.

During the initialisation of the network, the base station sends information about the

thresholds and sensing attributes to all cluster heads in the network; the cluster heads

then forward this on to all nodes in their cluster. When a node senses data over the hard

threshold, it transmits to the cluster and only transmits again when new sensed values
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are greater than the hard threshold and the difference between the current sensed value

and the previous is greater than the soft threshold [74].

Clusters are assigned for a period of time and then new clusters are selected by the base

station, at which point new attributes and thresholds are broadcast to all nodes. This

kind of protocol allows the network to be dynamic after deployment and allows user

input based on the data that has been sensed in the previous cluster times.

For example, a network could be tasked with sensing humidity in a rainforest but the

thresholds have been set such that nodes are transmitting readings that are not of in-

terest. A user can change these thresholds and they will be pushed out to the nodes

at the time that the next clusters are chosen, without any need to visit the node or

configure them individually.

2.2.4 Location-based

Instead of using the physical addresses of nodes, or the data they store, location-based

protocols are based on the region that nodes are deployed in. Location-based routing

relies on the fact that each node is aware of its own location and is also aware of the

destination’s location.

Span

Span is a protocol where nodes are selected as coordinators based on their positions.

A node can decide to be a coordinator based on the amount of energy it has and the

number of neighbouring nodes it would benefit if they were able to use it as a bridge

[26].

An example of this would be node B placed between node A and C. C and A are

unable to communicate directly so, when node B wakes up, it decides whether it should

become a coordinator. It knows that it has sufficient energy levels and it can provide
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connectivity for a previously disconnected area of the network, so it chooses to become

a coordinator, staying awake and routing sensed data to other coordinators, which form

the backbone of the network.

Results showed that using Span, in a system that transmits using 802.11, provides an

network lifetime increase of more than a factor of 2 over networks that just use the

802.11 protocol.

GEAR

The Geographic Energy-Aware Routing protocol (GEAR) is similar to SPAN in that

it makes routing choices based on both energy-awareness and location. Each node

maintains an estimated cost and a learning cost of forwarding a packet through its

neighbours. The estimated cost is calculated using the distance to the packet destina-

tion and the energy remaining on the node whereas the learning cost is the estimated

cost that takes holes in the network into consideration [125].

GEAR is designed to perform in two phases: forwarding a packet towards a region and

disseminating a packet within a region. When sending a packet towards a destination,

GEAR either sends a packet on to the node in range that is closest to the destination or,

if such a node does not exist, then a hole is identified. If a hole is identified then the

node that minimises a cost is selected.

To disseminate a packet within a geographic area, GEAR uses algorithms based on the

density of the network. Recursive geographic forwarding is typically used but this can

result in an endless loop if the density of the network means that the region is unable

to contact the destination. In that case, restrictive flooding is used.
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2.2.5 Conclusion

Routing protocols can define the topology of a network, how data is sent and have an

impact on the network lifetime by determining when nodes should sleep, when they

should transmit sensed data and when (or if) they should request updates on the net-

work topology. Researching these types of routing protocol allows us to determine the

situations in which each category would be used and whether they fit our requirements.

The routing protocol must be considered when developing a network architecture, so

we have researched the four main categories and the more commonly-used protocols

within those categories. If we chose a flat network structure, then MCFA would be

the better choice but our architecture changes significantly if we choose to use a data-

centric protocol.

Using this background knowledge, we can select a protocol that fits with our needs, or

combine useful aspects of many. Data-centric protocols are useful for battery conserva-

tion and networks that do not require real-time reports. Location-centric is useful as it

does not require specific node addressing but location-aware nodes are more expensive

and power-hungry. Hierarchical, however, allows for in-network data-aggregation or

processing but requires the use of a heterogenous network with a more rigid topology

of nodes split into clusters.

With the knowledge of the requirements of a WSN architecture, we can pick the routing

protocol that best suits these, or combine traits from multiple protocols in order to

develop a hybrid protocol that fits our requirements exactly.

2.3 Sensor Middleware

Acting as a bridge between the hardware and the user, sensor middleware is software

that abstracts the underlying network from the user and provides a means of accessing

sensed data and administrating how the network performs [53]. These middlewares
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must not be specific to a single network and provide support for as many different

sensor nodes as possible. In [126], a middleware is said to provide standardised ser-

vices to many applications and perform operations that make effective use of limited

system resources.

In [116], a middleware should include four major components: programming abstrac-

tion, system services, runtime support and Quality of Service (QoS) mechanisms. In

this section, we will discuss the challenges surrounding middlewares for WSNs and

highlight some existing middleware that are particularly relevant to our research prob-

lem and motivating scenario.

2.3.1 Issues

WSNs present a range of new challenges to existing middleware, due to their resource

constraints, deployment environments and more. However, there has been research into

the key issues that must be addressed in order for middleware to be considered suitable.

While there have been a number of surveys into these challenges [53, 94, 126], we will

detail those that we believe to be most relevant to our work. Some of those that, while

considered, have not been a primary issue are: dynamic network organisation, security

and application knowledge.

Energy Constraints

It is rare that nodes in a WSN would have a constant power source, unlimited memory

and a casing that can survive a harsh environment without decaying. In order to ensure

that the lifetime of nodes is maximised, middleware needs to offer a power scheduling

system that makes efficient use of the hardware on the node, generally disabling the

radio after a set interval has elapsed, or use a combination of lower power sensors to

provide sensed data of a similar quality [55].
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Ideally, a middleware will be able to coordinate nodes through wireless communica-

tion, making efficient use of transmissions and dynamically modifying sleep schedules

based on the power remaining.

Heterogeneity

Not every node in a network will have the same capabilities, manufacturer or hard-

ware. WSN middleware needs to provide a standard interface to the applications that

are making use of it, whilst at the same time accommodating differences arising from

hardware coming from different manufacturers and perhaps having significantly differ-

ent capabilities. Some middleware have been built for a specific set of hardware [109],

however this homogeneity can provide an increase in the performance and efficiency

of the network by only supporting a limited number of devices.

Real-world Integration

WSNs are often tasked with recording phenomena that are time-crucial, so a sensor

middleware should provide a real-time interface to the data that it has sensed [12].

Ideally this data would be available outside of the network, though the use of an API.

Quality of Service

This issue is perhaps the most complex as QoS could apply to almost all aspects of

the networks, such as efficiently using bandwidth, 100% uptime for nodes, guaranteed

packet delivery or access to data stores. Some of these requirements are managed by

the implementation of the routiong protocol, the middleware should be able to monitor

deployed nodes and report on their current status, as well as identify failures.



2.3 Sensor Middleware 22

2.3.2 Existing Middleware

In this section, we identify existing middleware, explain how they address the issues

highlighted in Section 2.3.1 and highlight how they relate to our research. While there

are a lot of existing middleware, our research did not show any that used information

abouts its environment or knowledge from previously sensed data to process data that

is currently being sensed. We did, however, find some middleware solutions that utilise

context and rules to administrate the network.

GSN

The Global Sensor Networks middleware (GSN) has been developed to manage het-

erogeneous sensor networks and be suitable for those without any technical knowledge

[12].

GSN provides hardware abstraction through the use of virtual sensors, a data stream

that abstracts implementation details from the actual sensed data. A virtual sensor can

be comprised of many streams and it can even consist of many virtual sensors.

Virtual sensors are described using XML, with tags that consist of metadata for the

sensor, the structure of the incoming data stream, SQL queries for processing the in-

coming data and querying times. What makes GSN stand out is that virtual sensors

do not have to be sensors deployed within your network, or even sensors at all, some

examples of GSN show virtual sensors being added that read in data from the weather

websites. This also means that the underlying structure of the network is irrelevant to

GSN, as well as the physical locations of the nodes. Unlike some middlewares that

have an expectation of how data will be routed, GSN is decoupled from the routing

protocol, allowing them to act independently.

GSN is completely open source and the Java code can be modified to suit a specific

deployment.
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Figure 2.1: GSN Architecture [12]

Figure 2.1 outlines the architecture of GSN, showing that the virtual sensors are stored

on a central node and their inputs are managed and stored. GSN also comes bundled

with a web interface to show all active sensors and their most recent recordings, as well

as the implementation of web services to access the data outside of the interface.

Data from virtual sensors pass through the virtual sensor manager to the storage layer.

Once the data has been stored, the query manager is invoked and queries are loaded

from the repository and executed by the manager. The results of the queries are then

handled by the notification manager and also made available to the web interface. No-
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tifications can be extended to support many different forms of communication, such as

SMS, email or web services.

Virtual sensors do not natively support all hardware, although new virtual sensors can

be described using XML, and there may be a need to implement an entirely new virtual

sensor. In this case, technical knowledge is required, and new sensors can be imple-

mented through use of the Java programming language. This provides more control

over the use of XML and allows users to specify how sensed data is stored in a data-

base, use external libraries to receive proprietary data, specify processing workflows

before the data is stored or implement new notification methods for the users of the

network.

To show the simplicity of a basic virtual sensor, [11] describes a temperature sensor

that we reproduce here in Listing 2.1. The file is human-readable and does not require

specialist knowledge when compared with programming languages, with tags that have

self-explanatory names. In this example, the output structure shows that only a temper-

ature reading is received and that the data should be stored permanently. The stream

source specifies the content of the stream and the query details the standard query that

should be used to extract data from GSN.

1 <life-cycle pool-size="10" />
2 <output-structure>
3 <field name="TEMPERATURE" type="integer"/>
4 </output-structure>
5 <storage permanent-storage="true" size="10s" />
6 <input-stream name="dummy" rate="100" >
7 <stream-source alias="src1" sampling-rate="1" storage-size="1h">
8 <address wrapper="remote"> <predicate key="type" val="temperature" /> <

predicate key="location" val="bc143" /> </address>
9 <query>select avg(temperature) from WRAPPER</query>

10 </stream-source>
11 <query>select * from src1</query>
12 </input-stream>

Listing 2.1: Example Virtual Sensor

The modularity and flexibility of GSN makes it different to existing middleware as it

has not been designed for any specific hardware and modules of the middleware can

be replaced, such as the database.



2.3 Sensor Middleware 25

FACTS

One such example is the FACTS middleware, an approach that uses a fact repository

to coordinate nodes. Rules can then be implemented to process sensed data and fired

when certain conditions are met [110]. More traditional sensor middleware controls

the network and manage sensed data but this rule based approach allows for more

flexibility, where rules can control the transmissions and process the data upon receipt.

Figure 2.2: FACTS Architecture [110]

Figure 2.2 shows the FACTS architecture, with the middleware holding the rule-sets

and a distributed fact repository. Data within the network is stored as facts, provid-

ing a standard data format throughout the network and hardware abstraction. When

new facts are received, usually because of new sensing data, the rule engine checks to

determine whether any rules should be fired. The rule-set definition language (RDL)

is used here and each rule-set contains a group of relevant rules. Each rule is given

a priority so that, if more than one rule is triggered by a fact, then the higher priority

rules are fired first.

Listing 2.2 shows a FACTS rule, written in Haskell, that determines which geographic

areas are covered by nodes. The name of each rule has no prefix, statements are pre-

fixed with ‘->’ and conditions are prefixed with ‘<-’. The sendRange rule runs after a

timer expires and removes that timer. Lines 4 to 12 set a rangeFact fact that contains

the range it expects to be able to cover. The rest of the rule sends the fact to all nodes

within range and sets a new fact to show that it has sent its range information.
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The (xyMinCovered) is a simplified rule that, upon receipt of range information from

neighbouring nodes, checks whether the range of the neighbouring node overlaps with

its own range and the final determineCoverage rule then stores that coverage inform-

ation in a fact as knowledge of whether or not it is the only node to cover a particular

geographic region. This can then be used to inform future routing and sleeping de-

cisions.

1 sendRange
2 <- Exists Timer.expiredSlot
3 -> Retract Timer.expiredSlot
4 -> Define "rangeFact"
5 -> Set ("rangeFact" "xMin")
6 (posXSlot - System.txRadiusSlot)
7 -> Set ("rangeFact" "xMax")
8 (posXSlot + System.txRadiusSlot)
9 -> Set ("rangeFact" "yMin")

10 (posYSlot - System.txRadiusSlot)
11 -> Set ("rangeFact" "yMax")
12 (posYSlot + System.txRadiusSlot)
13 -> Send 0 System.txPowerSlot
14 ("rangeFact" [(("rangeFact" "owner")
15 == nodeIDSlot)])
16 -> Define "rangeSendFact"
17
18 xyMinCovered
19 <- Exists "rangeSendFact"
20 <- Eval ((posXSlot - System.txRadiusSlot)
21 < ("rangeFact" "xMin"))
22 <- Eval ((posYSlot - System.txRadiusSlot)
23 < ("rangeFact" "yMin"))
24 -> Define "xyMinCoveredFact"
25
26 determineCoverage
27 <- Exists xyMinCoveredFact"
28 -> Define "coveredFact

Listing 2.2: Coverage Algorithm in FACTS Rules

While FACTS itself does not utilise any local knowledge, the repository is used as a

source for all previously sensed data and would be an excellent source of knowledge

to assist with the classification of future readings. Also, the ability to add new rule-

sets, without technical knowledge of the hardware of each node means that users of

the network have the ability to add knowledge in the form of less technical, high-level

rules.

ITA Sensor Fabric

The ITA Sensor Fabric is a collaboration project between IBM, the US Army and the

UK Ministry of Defence. Sensor Fabric, or Fabric, is a two-way messaging bus and set
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of middleware services connecting network assets to each other and users [121].

The core difference between the Fabric middleware and others is that not every node

is sensing all of the time, sensor nodes are tasked when there is a requirement and

they stop as soon as that task has been fulfilled. Similar to sinks in a traditional WSN,

Fabric utilises Fabric nodes, which run the following three pieces of software:

1. Message Broker - Provides the communication infrastructure.

2. Fabric Registry - Holds information about the current deployment, such as all

nodes deployed, all assets, routing information and tasks. Deployed in the form

of a database.

3. Fabric Manager - The main service on the node to track the status of connected

sensors, establish communication channels, provide a container for processing,

plug-ins and to extends the capabilities of the Fabric.

Fabric runs on a Publish/Subscribe model, a sensing requirement is sent to a messaging

broker as a subscription and this is distributed through all Fabric nodes and, thus, all

sensor nodes. Sensor nodes then publish their data and the relevant data is sent to all

applications that have subscribed to the data.

The plugin structure of Fabric makes it stand out from existing middlewares, allowing

its functionality to be extended through web interfaces.

Because Fabric has been developed for military purposes that cross countries, policy

enforcement has been implemented to restrict access to the granularity of sensed data

but these access levels do not simply apply to a military context. Using our motivat-

ing scenario, researchers and professors should see animal images whereas the Sabah

Wildlife Department should see images of hunters and people in the forest.
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Sensor Web Enablement

The Open Geospatial Consortiums’s (OGC) Sensor Web Enablement (SWE) is a set of

standards to allow developers to make sensors and sensed data repositories accessible

via the Internet [96]. While this is not a middleware, these standards can work with

existing middleware in order to publish their sensed data to the Internet. The SWE

framework consists of:

• Observations & Measurements (O&M) - General models and XML encodings

for observations and measurements.

• Sensor Model Language (SensorML) - Standard models and XML schema for

describing the process within sensor systems.

• PUCK - Defines a protocol to retrieve a SensorML description and other inform-

ation from a device, enabling automatic sensor installation, configuration and

operation.

• Sensor Observation Service (SOS) - Open interface for a web service to obtain

observations and sensor descriptions for one or more sensors.

• Sensor Planning Service (SPS) - An open interface for a web service that a user

can determine the feasibility of collecting data from one or more sensors and

submit collection requests.

These components can be integrated into existing middleware, clients and sensors and

not all need to be used, some middleware, such as MufFIN [113], have just used SOS

and O&M but 52North have developed an open source implementations of all com-

ponents of SWE [24].
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Internet of Things

In [44], the Internet of Things (IoT) is described as the “concept of pervasive things...

which, through unique addressing schemes, are able to interact with each other and

cooperate with their neighbours to achieve common goals.” The number of devices

that are part of the IoT grows daily, from thermostats and smoke detectors [8] to activ-

ity monitors [4]. Some of these devices have their data siloed away and it is only

accessible through a web interface or a mobile app, but most have an Application Pro-

gramming Interface (API) that allows the raw data to be access and queried. Because

of this, sites like If This Then That (IFTTT) [6] have been created to link together vari-

ous services and use simple if statements to act on changes in the data. IFTTT uses

recipes that follow the rule of: IF Service1 changes THEN perform action on Service2. For

example, IF I take a picture using my phone THEN upload it to Twitter or IF a new item

appears on my RSS feed THEN add it to my reading list. While, IFTTT is not a tradi-

tional middleware, it does monitor user’s connected services, some of which may be

sensors around the home or attached to their person.

A more traditional middleware for the IoT is Xively, a cloud platform that allows

devices to upload their sensor readings to an endpoint and view readings from others

[10]. Feeds can be public or private and Xively can be used with almost any Internet-

enabled devices, such as webcams, temperature sensors or alarms. Other sites, such

as Dweet.io [3] and Open Sen.se [9], have also been in operation for a few years that

provide a similar service to Xively. Open Sen.se combines the recipes of IFTTT with

the storage of Xively to create a middleware that supports actions being performed

when certain sensed data is received. For example, a temperature sensor could trigger

an alert on Open Sen.se that would alert a user via e-mail, or through social media.

This combination of devices with online services and applications allows a middle-

ware to do more than simply store data, it can execute rules over the data, provide

visualisations and create links between devices separated by hundreds, or thousands,

of miles.
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2.4 Biodiversity and Environmental Monitoring Sensor

Networks

In this section we will cover existing WSNs that are related to our motivating scenario

or, more specifically, biodiversity focussed WSNs that have been deployed to monitor

wildlife and/or the environment. WSNs for habitat, and wildlife, monitoring are espe-

cially important because these are areas that often need to be untouched by humans.

Areas with high human disturbance can influence the abundance of species and some

habitats, i.e. underground burrows, may be impossible to monitor without destruction.

One of the most well known WSNs to monitor habitat is the network deployed on Great

Duck Island, an island off the coast of Maine, USA. A hierarchical network of 32 nodes

was deployed to monitor a bird, known as the leach’s storm petrel [73]. This network

used a clustering approach for groups of nodes to send data to a gateway node, which

would then route it back to the base station. The base station, located a few kilometres

away on the island, has internet access and uploads the data to allow users to browse

and process the data.

A multihop approach was used here as they found that, for sufficient coverage, single

hop connectivity would not cover all of the island. Acrylic enclosures were developed

to ensure the nodes were weatherproofed for the conditions of the island, while main-

taining the functionality of each sensor and not impeding transmission range. While

the nodes, their casing and their sensors have been designed specifically for the de-

ployment on Great Duck Island, the success of the network, running for 123 days in

the early stages of WSN research [108], shows that this approach can be used else-

where with similar effects; allowing hard to monitor and/or inaccessible areas to be

continuously monitored.

On a smaller scale, INternet-Sensor InteGration for HabitaT monitoring (INSIGHT) is

a single-hop WSN that allows remote access for data and reconfiguring of nodes [34].

Using off the shelf hardware, their findings show that their nodes could survive for 160
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days on a single battery, supporting their claim that a single hop network allows for a

longer network lifetime.

The key feature of this network is the ability for humans to remotely set reporting

thresholds for sensor nodes. This means a user can prolong the lifetime of nodes by

limiting the threshold they report on, as well as the fact that these thresholds are a way

for users to add knowledge, albeit primitive, into a network.

While there is research on cameras used to monitor animals [63, 13], these networks

are generally cameras deployed with their memory cards manually retrieved and pro-

cessed. In recent years, however, the use of wireless technologies and image-based

WSNs has increased, [42] uses wireless cameras to monitor the movement of animals

between roads. Using commercial hardware and controlled sleep scheduling, this solu-

tion employs the use of nodes to detect movement and wake up more power-hungry

camera nodes. While the nodes are wireless, the distance of the network from civil-

isation means that the data does still need to be collected manually and uploaded to a

computer.

Due to the advent of smartphones and tablets, as well as the improvements in 3G

technology, projects taking advantage of more modern technologies have grown in

popularity. Using 3G enabled cameras, [129] have deployed a number of devices in

locations all over the world, such as: Kenya, Indonesia and the USA. The images

captured are transmitted to a server and a website allows the general public to not

only see the images in near real-time, but to classify the images as well. This crowd-

sourcing of collective knowledge lets people, that may not have domain knowledge,

vote on an image and those votes are used to make classification easier.

Over the past fifteen years, WSNs have grown from a concept to a real solution for

monitoring the habitats, movements and eating habits of wildlife all over the world.

Whether it is using GPS collars to monitor the movement of cattle [47], monitoring

animal habitats on a remote island or using cameras to capture the animals themselves,

the popularity of these networks has grown considerably and advances in technology
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have allowed these networks to be deployed in places that humans cannot access with

ease.

There are a number of situations where we may want to record data in an environ-

ment that is not safe for humans, such as a volcano [118], or that may be difficult for

electronics to survive. In these cases, special considerations must be made during the

design and deployment of the WSN, in order to ensure maximum network lifetime with

reliable readings.

GLACSWEB

Glacsweb is a sensor network to monitor the rate at which glaciers are melting [76].

Deployed in Norway, specially designed sensors have been drilled into glaciers to mon-

itor pressure, temperature, orientation and strain. Due to the high pressure and expos-

ure to moisture, a polyester casing was used so that, once bonded, the node inside

would be protected from its environment, but also preventing it from being recover-

able.

Reventador

Volcano Reventador is in northern Ecuador and a WSN has been deployed on there to

monitor eruptions. Similar to Glacsweb, weatherproof enclosures were used to prevent

ash and moisture from breaking the sensors and long-range external antenna moun-

ted to a pole was used to achieve communications over large distances when wireless

communications have proven to be difficult [118].

Rainforest

There have been many studies on how the rainforest affects the range and quality of

wireless links [41, 117, 93]. In [41], the humidity was shown to reduce 802.11 range
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by up to 78% and [117] explains that periods of rainfall reduce the link quality up to

100% in some cases, resulting in the loss of a hop and this could prevent data from

reaching the endpoint.

These examples highlight some of the difficulties of deploying WSNs in harsh envir-

onments. Environments vary from freezing glaciers to humid rainforests to dry deserts

with extreme temperature variation and the sensors cannot disturb their surroundings,

be too conspicuous or require regular human attention that would disturb the area and

affect the wildlife.

2.5 Conclusion

In this chapter we have explored the components that make a WSN, as well as some

existing deployments that are relevant to our motivating scenario. Sensor middleware

have come a long way in the past decade and increased capabilities for sensor nodes

have allowed for more intense processing to be carried out before any data is seen by a

human. Context is now used on sensor nodes to infer the activity they are undertaking

or even to determine when it should wake to sample.

Local knowledge is not a new concept and it has been used for many years to extract

information from indigenous people and in industry to adapt their processes to a local

area, such as farming. However, we believe that our work is the first to apply local

knowledge in the context of WSNs. Context-aware sensor networks have gone some

way to support our hypothesis that some knowledge can increase the functionality of a

network and enhance the quality of the sensed data, but we believe that the addition of

local and global knowledge will only increase this functionality further.

The two primary components of a WSN that could be injected with local knowledge

is the middleware and the routing protocol, each providing different benefits. Exist-

ing work has shown that the use of context-awareness in sensor middleware allows

them to make dynamic, global changes to the network (Section 2.3), such as power



2.5 Conclusion 34

management, whereas routing protocols affect the data that is sampled and sent to the

endpoint(s) of the network, such as adaptive thresholds.

One issue in proving this hypothesis is the deployment of a network that utilises local

knowledge. The deployment environment of our motivating scenario is not only in-

terdisciplinary, it is in a region that is humid, dynamic and dense. Existing research

has shown that the deployment of a WSN in these conditions means that range will be

greatly reduced [41] and changes in humidity can prevent communication altogether,

as well as moisture affecting the hardware itself. To deploy a network, hardware must

be adapted and the right medium must be chosen in order to maximise link quality and

minimise dropped connections.

In Chapter 3, we describe how we used this research, along with our own findings, to

choose suitable hardware for our network. As well as this, we used the results from

previous rainforest range tests in the literature, to design experiments that would aid us

in choosing, and verifying, our choice of transmission medium.
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Chapter 3

Exploratory Experiments in a

Rainforest Environment

In this chapter, we explain our motivating scenario in more detail, explore the sensor

hardware and software that we researched and outline the results of experiments we

undertook in the Malaysian rainforest. As highlighted in Section 1.1, we have been

working with Cardiff University School of Biosciences to design and deploy a WSN

that utilises local and global knowledge, using an area of rainforest in Malaysia owned

by the Sabah Wildlife Department, called Danau Girang.

The structure of this chapter is as follows. Section 3.1 explains what we aimed to de-

ploy in Danau Girang and what our considerations were. Section 3.2 introduces sensor

hardware that is in use today and details the choices we made. Section 3.3 details

the transmission medium choices we tried and also shows the results of experiments

performed in both the UK and Malaysia. Section 3.4 explains some of the software ap-

plications we developed in order to process sensed data on the nodes. Finally, Section

3.5 summarises our findings and explains the choices we made for the sensor nodes we

used in Danau Girang Field Centre (DGFC).
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3.1 Danau Girang Field Centre

Based in Sabah, Malaysia, Danau Girang Field Centre is located in Lot 6 of the Lower

Kinabatangan Wildlife Sanctuary (LKWS), surrounded by secondary rainforest that

had been logged up until the 1970s. Experiencing a wet season from October to Feb-

ruary and a dry season from March to September, the LKWS can receive more than

500mm of rainfall during the rainy season, dropping to lows of around 150mm during

the dry seasons [115], and up to 100% humidity all year round.

Figure 3.1: The Main Buidling at DGFC

Danau Girang is in a unique location, situated in a rainforest corridor (shown earlier in

Figure 1.1 in Section 1.1) that joins two areas of rainforest together, with the corridor

surrounded by palm oil on each side. Because of this, animals use the corridor to move

between the rainforest regions and some use it to enter the palm oil plantation for new

feeding grounds. This gives the DGFC insight into the movement patterns of these
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animals in the corridor as well as in the rainforest itself, with a wide variety of species

that are not commonly seen in other tropical regions of the world. Due to the remote

nature of the centre, power is provided by a set of diesel generators which, typically,

provide power from 10 am to 1 pm and 5pm to 11pm daily. Wireless Internet access

is provided by satellite with speeds approximating 56kbps, although the upload speeds

are considerably faster than downloads.

The corridor monitoring programme is a scheme that has been in place for more than

five years, using wildlife cameras to track the movement of animals through the rain-

forest corridor and to capture species that are rare or unique to South-East Asia, such

as the Bornean clouded leopard. Currently, Reconyx Hyperfire HC500 (Figure 3.2)

cameras are being used [1]. These are standalone cameras that capture a user-defined

number of images which are saved to an SD card. A trigger is caused by an infrared

(IR) motion sensor when an object causes the IR beam to break.

Figure 3.2: Reconyx HC500 Camera

Images must be manually collected every two weeks from the cameras and the batteries
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are changed at that point as well, although a typical charge should last three months.

In the field, the batteries last a matter of weeks shortly after the cameras are deployed,

this is most likely because, although the cameras are equipped with watertight casing,

they are still exposed to moisture when the case is opened every two weeks and 100%

humidity seems to have an impact as well. Silica gel is used to prevent moisture in-

side the camera. We believe that humidity also reduces the battery life, as the charge

drops from three months to around three weeks within the first few months of usage.

However, the lack of constant power availability could also affect the charge of the bat-

teries. Because power is not available all day, the batteries are charged for a period of

a few hours at a time. Not only does this reduce the number of charge cycles that these

batteries can experience but it also means that they are never fully charged within one

time period of power availability. Solar recharging is being researched to counteract

this. Each camera is secured to a tree and, when placed in higher risk locations, such

as known elephant paths, have protective cases as well.

In 2010, twenty cameras were deployed for six month periods and then relocated based

on the needs of the projects at that time. Currently, there are now ninety cameras with

a view to expand and dozens of projects within the field centre use the images gathered

from these cameras. Initially, it was the job of visiting research students to collect the

images but, since the number of deployed cameras has grown, full-time staff have been

taken on to maintain them.

Images that have been collected are stored on an external hard drive in the field centre

and a spreadsheet is updated with information about each image, such as date, time,

camera, filename and location. Research students and, later, staff, manually inspected

each image and added their species classification to the spreadsheet. Because so many

images came through the field centre each week, this was a long process and it was not

uncommon for it to be a few weeks before the images were classified. Research stu-

dents in charge of the cameras were usually on projects lasting 6 months so, until staff

members were recently employed, their methods of cataloguing were quite different.
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Sometimes, each student created a different spreadsheet for their time at DGFC and

ignored the classification of images that did not contain the animal their project was

focussed on. While this has improved now, staff members are tasked with combining

these spreadsheets from the past few years and classifying all the images that have been

left empty.

With image processing, we can automate the classification process. Using common

tools and widely accepted methods, such as OpenCV [21] and object detection libraries

[82], we can use previously classified images as templates. This allows us to determine

if a new image contains an object of interest and extract templates of that object to

match to new images and classify them to the species level, once a human has classified

the original template. Humans can then check the classification and provide feedback

on its validity. This removes the wait of weeks for a classification and automates the

cataloguing, classification and storing of the images, when received at the field centre.

This method should also allow us to alert researchers when our system believes an

image of particular interest, such as a rare animal, has been taken. Without humans

to classify images down to the species level, we can still use image processing to

determine if an image is interesting or empty.

Our belief is that we can use the Lower Kinabtangan wildlife sanctuary (LKWS), and

the locations of the existing cameras, to deploy a WSN that uses local knowledge

gained from the researchers at DGFC to automate the collection of images, improve

the battery life by not exposing the internals of the camera to the elements so often

and, most important, prioritise the flow of data through the network by in-network

processing.

Three annual visits, in 2011, 2012 and 2013, each lasting three weeks, have been made

to DGFC to test out hardware, software and wireless choices, in an effort to optimise

the network. These visits have also been used to extract local knowledge from the area

and researchers, by semi-structured interviews and watching them work.
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3.2 Hardware

Before any visits were made to DGFC, meetings with staff members of the field centre

were held in order to gain a better understanding of the environment and the project.

This is where we were alerted to the humidity of the region and the fact that the failure

rate of the Reconyx cameras has been as high as 30%.

Reconyx cameras have no external interface support and the only way to access the

images is through the removable SD card. Because of this, there is no way of at-

taching external sensor hardware to the existing cameras. In-network processing is an

important requirement for our WSN and this did limit our choices to nodes that are

computationally capable, e.g. the Pandaboard [7], than more common sensors, e.g. the

IMote 2 [81].

In this section, we detail our research into suitable sensor hardware that met the fol-

lowing requirements:

1. Able to perform processing of images and metadata

2. Common interface availability (Serial, USB)

3. Wireless enabled

4. Battery-powered

5. Expandable memory

It should be noted that there are many devices out there that met the above criteria but

we selected devices that had a large development community. At the time of writing,

there are now many more, but this research was carried out in 2010, when the mar-

ket for low-cost, high-power, small form factor single board computers (SBCs) was

starting to grow. While we did research on many more devices, the three listed below
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are the devices we physically trialled and tested. This section also details the modi-

fications we made to any devices we tested in order to ensure they would survive in a

humid environment.

(a) Pandaboard

(b) IGEP v2

(c) Waspmote

Figure 3.3: Sensor Node Hardware
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3.2.1 Pandaboard

Texas Instruments supported the development of a reference Single Board Computer

(SBC) that had specifications similar to that of a modern smartphone (Figure 3.3a)

and was capable of running desktop Linux, known as the Pandaboard [7]. A dual

core 1GhZ ARM processor with 1GB of RAM, support for external storage, expan-

sion ports, USB, Wi-Fi and Bluetooth in a board the size of two credit cards can be a

powerful addition to a data heavy WSN, especially one that deals with images.

There is no mention of Pandaboards in the literature being used in WSNs but the low

power of the system and advanced capabilities make it suitable for processing and

transmitting data simultaneously.

3.2.2 IGEP v2

The IGEP v2 (Figure 3.3b) is another ARM based SBC that uses a 1GhZ single core

processor with 512MB RAM and similar connectivity features to the Pandaboard, but

around half the size. This does result in a reduced power draw and the device is still

capable of running desktop Linux.

Due to the smaller size, and easier commercial availability, the IGEP has been used

as a sensor node to record, process and send readings from multiple devices, such

as air temperature, GPS and oxygen saturation as part of environmental monitoring

[97]. In their research, they found that the IGEP achieved 9.1 hours of uptime using a

4000mAH battery, a capacity used in many modern smartphones.

3.2.3 Waspmote

The Waspmote (Figure 3.3c) is a general purpose sensing board that is designed to

allow plug-and-play connectivity for multiple sensor modules. The node can be pro-

grammed with C++, using the Standard Development Kit (SDK) developed by the
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manufacturer and uploaded via USB. The processing power is not comparable to the

more powerful SBCs, but the 600mAh battery is reported to last three months and the

size is much smaller [68].

One of the primary benefits of the Waspmote is that they are commercially available

with an actively maintained programming environment.

3.2.4 Discussion

The capabilities of each of these boards vary greatly from running a subset of C on

an embedded OS to running full desktop Linux. Each visit we made to Danai Girang

allowed us to test these devices and determine their eligibility for nodes that would

survive in the Malaysian rainforest and discover usable radio range data, which we

discuss in the next section.

The trade-off with these devices is that the Waspmote nodes, with limiting processing

capabilities, is reported to yield a battery life of 6 months. Our tests yielded approxim-

ately 3 months, with minimal sleep scheduling, so this number does seem reasonable.

However, the IGEP and Pandaboards are able to run any software that has been com-

piled for an ARM processor and do so within an unrestricted operating system. While

this does allow them the flexibility to process data with the same power as a five year

old desktop computer, our battery life tests drained the board within 6 hours when us-

ing 4 D cell batteries. We managed to increase this number by loading a power-efficient

modification of the Arch Linux distro, removing any support for displays or running

of a GUI, disabling unused ports and disabling the radios for as much of the uptime as

possible. With these changes, we were able to achieve approximately three weeks of

running with sleep periods.

Most SBCs, while having a reduced battery life, contain common I/O ports, such as:

USB, VGA, Ethernet and Serial. This extensibility enables us to add additional wire-

less capabilities. For example, sensor nodes may require the use of a long range wire-
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less medium for inter-node communication but the endpoint of a network uses Wi-Fi

to allow users to connect to it and upload sensed data to the Internet; this can be done

by adding a long-range wireless radio to an I/O port and providing software support.

3.3 Transmission Media

In this section, we explain the experiments we carried out to test the performance of

different transmission media in the UK as well as the Malaysian rainforest. While

range is the most important feature, a data rate that can handle hundreds of large read-

ings in a day is a requirement, as wildlife cameras can generate ten images each time

they are triggered and a high definition image can be up to 1MB in size. Our motivat-

ing scenario is focussed on the transmission of sets of 3 images (each around 800KB)

for every trigger, where a sensor can trigger hundreds of times in a day.

3.3.1 Wi-Fi

Wi-Fi was already available on our initial test platforms and the high data rate made it

suitable for sending a large volume of images in a short period. We knew that current

cameras deployed in DGFC were up to 1km apart and we did not expect to cover that

range completely, but we did expect to achieve that coverage by using intermediate

nodes.

Research, outlined in Section 2.1.4, showed that the rainforest could reduce the range

by up to 78% and the ideal maximum range of 2.4GhZ Wi-Fi is 100m [36].

We tested Wi-Fi range using two IGEP boards. We selected IGEP boards because they

could be powered by 4 D Cell batteries and run a lightweight Linux operating system

that allowed us to access information at the network layer, while still running higher

level applications. The IGEP nodes we used did not have any additional hardware and

the nodes were tested without the use of an external antenna. A Java application was
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written to periodically scan for available networks and store those results in a text file.

One IGEP board was set as the base station and attached to a tree, at the same height

it would be if it was attached to a camera, and another was walked to specified points

around the base station at defined locations. These locations were chosen to include

as many distances as possible and as many different forms of obstacle between the

searching node and the base station, such as: line of sight (LOS), medium vegetation

or thick trees.

This experiment was run in a wooded area in the UK and in the rainforest at DGFC.

The specified maximum range of 802.11g is 120m. When considering attenuation

and obstacles we were expecting the signal to be reduced by up to 50% in the UK.

However, we found that we received a maximum range of 30m, with LOS. Figure 3.4

shows the results we experienced, while testing in the UK, some of the drops in signal

can be attributed to dense foliage and readings that were not LOS, but a maximum

range of 31m, with an SNR of 29.5 dBm, is less than we expected, as the UK does not

experience high humidity often.

The graph shows a drop at 22m: this was due to unusually dense foliage that restricted

the LOS between the base station and the receiving node. With five runs of this test

we observed the same results. The primary aim of this experiment was to show the

viability of Wi-Fi and to ensure our application functioned as intended, which it did.

Further experiments could have been run to remove the anomaly but the results of the

experiments in Danau Girang were the focus.

Despite the poor range from the tests in the UK, it was consistent with other studies re-

porting signal degradation of up to 78% in areas with dense foliage. We visited Danau

Girang in 2011 to gather the requirements of the network and ensure the hardware is

able to survive the humidity. Range experiments were run in the rainforest to see if a

more humid environment impacts range any further, Figure 3.4 shows this.

Figure 3.4 shows that the maximum distance to receive a signal is approximately the

same in Malaysia as it is in the UK. There are more signal drops but this seems to
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Figure 3.4: Signal-to-Noise Ratio for Wi-Fi

be due to denser foliage blocking the line of sight. However, it does suggest that the

humid environment of the rainforest does not have a significant impact on the received

signal. It is clear that the denser rainforest does impact the signal-to-noise ratio in

a much shorter distance from the base station but a link is still made, allowing for a

successful transmission of data.

Poor Wi-Fi performance led us to research alternative methods to increase the range

without impacting the environment the network is to be deployed in. We considered

using intermediate nodes, not attached to cameras, to account for the lack of range but,

because some cameras can be up to 1km apart, we would need more than 30 nodes to

create a connection between two locations.

We also researched wireless technologies that are more common in sensor networks.

This does mean that the data rate is not as high as Wi-Fi and error correction in packet

streams is not always as robust, but it is more suited to sensor networks, using less

power and providing longer range.

Finally, we considered using the researchers or animals at Danau Girang, as ‘data

mules’, creating temporary links between nodes while they are in the forest. How-

ever, the trip to Danau Girang yielded the information that researchers generally do not

cover those distances in the forest and data delivery would be sporadic.
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3.3.2 DigiMesh

Due to the poor range results of Wi-Fi, we created a second prototype of the network,

using DigiMesh. DigiMesh is a proprietary wireless protocol, based on the 802.15.4

standard and designed for devices with limited power. Using the same frequency as Wi-

Fi, DigiMesh has been reported to provide 7km of range, with a data rate of 250kbps.

In our prototype implementation, we are using Waspmote sensor boards [68], a general

purpose node that is capable of transmitting through various communication mediums.

Our Waspmotes are provided with DigiMesh modules and a 2GB SD card to store

sensed data.

When testing the range of the Waspmotes, we followed a similar method to that which

is outlined in Section 3.3.1. One board is in a fixed location and running a C++ ap-

plication to poll for nodes in the network. Once a node is found it sends a message to

the node every 10 seconds. The second board is set to scan the network and receive

packets as soon as a base node is found; this node is then moved to different locations.

The receiving node prints out variables related to the received packet, such as: Re-

ceived Signal Strength Indicator (RSSI), source MAC address and packet ID. However,

not all packets are received so the RSSI can display 0 if there are errors in reading or if

packet collision occurs. We found this to affect the results and have just used the two

nodes to identify the maximum distance they can be apart, while maintaining a stable

connection.

Initial experiments were run in a moderately vegetated area in the UK which yielded

497m of range. Limitations with buildings preventing us from testing any further but

the signal strength still proved to be strong.

The initial results for the range tests were positive and DigiMesh does seem to be a

viable solution to account for the lack of range when using Wi-Fi. As the frequency is

the same as 802.11g, thus licensing it for worldwide use, we expected similar results

in Danau Girang.
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Experiments were run in 2 areas of the rainforest around Danau Girang and the results

yielded were not the same as we experienced in the UK; the thick vegetation had a

significant impact on the range, reducing it by almost 50%.

In more open areas of the rainforest, we achieved 199m on average, more dense regions

of the forest reduced this to 102m on average. While these results are not as high as

we achieved in the UK, they are still suitable to use DigiMesh in the deployment of

a WSN. The low range could be because we were using low-gain antennas and little

configuration had been made on the DigiMesh radio.

3.3.3 Adapting and Optimising for Harsh Environments

All of the hardware that we used for experiments had their components exposed, as

shown in Figure 3.3 and would have become compromised if moisture came in contact

with them. To protect them from this, we used waterproof cases with a protective

foam inside, known as Pelican cases, to keep the nodes watertight, but still allowing

airflow to displace the heat generated, shown in Figure 3.5. External antenna can be fed

through the lip of the case, using thin cable, ensuring that the range of the transmissions

is not affected by the case.
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Figure 3.5: Pelican Waterproof Case

After experiencing poor range results, we considered running antennae up through the

trees to the canopy so there would have been no foliage to block signals and the hu-

midity would have been lower. However, this was not possible because of conservation

issues and the fact that animals could easily damage the antenna wire.

Typically, WSNs in urban areas can use mains power and more remote networks utilise

solar, or other renewable energy sources. In an area of dense foliage and high canopy

cover, solar power is not a viable energy source. While DigiMesh has a lower trans-

mission rate than Wi-Fi, its power requirements are lower, which maximises network

lifetime for WSNs that do not have access to constant power or a renewable energy

source.
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3.4 Software

In this section, we explain the image processing software we developed for the real

time processing of images within the network, as well as the retrospective processing

of images that have been taken during previous deployments.

3.4.1 Triton

Triton is a C++ program that makes use of the Open Computer Vision (OpenCV) lib-

rary [21] for performing popular image processing functions [50]. Triton takes in a set

of images, combines them and builds a Gaussian background model [128], a common

background subtraction method commonly available in many computer vision pack-

ages. Using this model, the foreground is extracted from the image and this is scanned

for objects. If an object is found, it is extracted to a new image and saved as a black

and white template. This minimises the memory each template takes up but can still

be used to assist with future classifications. An object identified from a set of images

means that the set is then marked as interesting, i.e. it is believed to contain some-

thing. If no object is extracted, it is marked as empty. The template extracted can the

be classified by a human and, in the case of our motivating scenario, those classified

templates can be used with newly sensed images to determine a match and allow for

classifications down to the species level.

Primarily, we developed this tool to detect the large number of empty images captured

around Danau Girang, due to trees falling, movement of the Sun, fast animals or dirt on

the lens. However, Triton proved to be quite effective when finding images of interest

and it was modified to be used with our sensors. In this section, we explain how Triton

was tested and compared with human observations. To ensure a valid comparison, we

also compared both results to a random classifier.

During a typical three month deployment along the Kinabatangan River more than

40,000 images can be taken. A large proportion of these images can be classed as
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false triggers; occurring when a camera is triggered by the motion detector but there

is no object of interest. These can be caused by changes in the light, falling trees or

animals moving too fast to remain in the shot in the delay between the motion detector

triggering and the camera capturing an image.

We organised the images collected by the original camera that captured them and separ-

ating them into sets of three, because that is the number of images that the cameras were

configured to take at each trigger. From this, we built a Gaussian background model

[128] for each set and used the resulting model to detect objects in the foreground,

classifying the detected foreground as the Region Of Interest (ROI), and extracting it.

Figure 3.6 shows a sequence of images taken by a Reconyx HC500 camera. The dy-

namic background and light levels make it very difficult to extract an object of interest.

A background model is built from these images, which contains everything that is be-

lieved to be in the background. In this case, it should be the ground, the trees and the

visible sky. The background is then subtracted from the image, leaving the foreground,

and ROIs, larger than a user-defined threshold, are identified. The largest ROI is then

extracted from the image and saved separately, shown in Figured 3.7.

From our visit to Danau Girang in 2011, we collected images from two different three

month deployments, with the same cameras placed in different sites around Danau

Girang for each deployment, giving us just over 70,000 images to test our approach.

The images are sorted by the camera location and the date of collection. We process

every 3 images as one set, building a background model of all three images.

We manually processed all of the images initially, marking images that are empty as

false triggers. We then processed the images, using our application, and a resulting

processed image is created from every set of 3 images. If nothing is detected in a set

then no image is created and that set is logged as empty.

There are four classifications that can be made with images sets:

True positive: An ROI is extracted that contains the animal in the set.



3.4 Software 52

(a) Image 1 of 3 (b) Image 2 of 3

(c) Image 3 of 3

Figure 3.6: Sequence of 3 Images Captured on a Reconyx Trigger

False positive: An ROI is extracted that contains nothing of interest.

True negative: A camera is triggered with nothing of interest in the image and no ROI

is extracted.

False negative: An image containing an animal has no ROI extracted.

The processed images are then compared with our manual findings. The accuracy of

our application is calculated by the following equations:

Accuracytp = (Extp/Actp) ∗ 100 (3.1)

Accuracytn = (Extn/Actn) ∗ 100 (3.2)

Where Extp is the number of true positive sets extracted, Actn is the actual number of
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Figure 3.7: Resulting Processed Image from Original Set of 3

true positive sets, Extn is the number of true negatives extracted and Actn is the actual

number of true negative sets.

Table 3.1 shows experiments run on images from a randomly selected camera deployed

in Danau Girang, testing on 300 sets of 3 images. These images were manually pro-

cessed and classified as interesting or empty, of the 300, 94 sets were identified as

interesting. Using Triton, 77 of those interesting sets (true positives) were extracted,

with another 17 false positives extracted. 201 true negatives were correctly identified

and a further 5 were identified as false negatives. As Triton processed these sets, we

tested the time it took to complete a set of images on a Pandaboard and we found the

mean time to be 43 seconds.

Out of the 94 interesting sets, 77 were identified correctly, giving an accuracy of 82%

for finding true positives (using Equation 3.1). Furthermore, of 206 empty sets, 201

were found, which gives a 98% accuracy at correctly identifying true negatives, using

Equation 3.2.
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True Positive True Negative False Positive False Negative Total Image Sets
77 201 5 17 300

Table 3.1: Classification Results

These preliminary results show that our method is effective at detecting images of

interest (True Positives) and it appears that misclassification (False Positives) primarily

came from black and white images taken at night, images where minimal movement

of the animal has caused a trigger and images where an animal has caused a trigger but

it has been too fast moving to be in the second two images.

After a longer deployment, we would be able to build up a more substantial background

model to account for some of the animals being less dynamic in images and we expect

this to decrease our error rate thus reducing the number of false negatives, although

this is something that is yet to be implemented.

The results of Triton were compared to a random classifier, implemented in Python,

that ran through a directory of images and generated a random number for each file. If

the generated number was less than 0.25, then it was marked as true positive, between

0.25 and 0.49 marked it as false positive, between 0.5 and 0.74 was a true negative and

between 0.75 and 1 was a false negative. Table 3.2 shows the outcome, with 72 true

positives extracted, resulting in an accuracy of 80% (using Equation 3.1). 73.3 true

negatives from a total of 206 were found, giving an accuracy of 36% (using Equation

3.2). Although this set does not compare to the number of images collected in a six

month deployment, human classification is a time consuming process and to have 900

classifications is complex. Although these could be crowdsourced, the reliability be-

comes questionable, in part due to the specialist nature of the images. This does show

that our approach is quite close to the accuracy of a human when finding images of

interest, but is able to do so in a fraction of the time, processing hundreds of images

every minute.

Triton, coupled with a set of human eyes at the heart of the network, should be an

effective approach for prioritising images through the network, even when a classifica-
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True Positive True Negative False Positive False Negative Total Image Sets
72 73.3 78.3 75.3 300

Table 3.2: Random Classifier Results

tion cannot be made through the use of local knowledge. More importantly, in an area

where the environment is as dynamic as the Malaysian rainforest, 98% accuracy for

detecting true negative images can be crucial, if only for saving network bandwidth.

Future Work

Triton is currently capable of processing a set of images and extracting the largest ob-

ject of interest, if one is detected. The primary benefit of this is that it requires no

training initially and works, with fairly good accuracy, from the time of deployment.

However, it is possible that functionality could be extended by storing the extracted

images and associating them with the actual content, i.e. animal name, future extracted

images can then be matched to the templates, within a threshold, to assist with classific-

ations within the network. Currently, the templates are extracted, stored and associated

with their contents once classified by a human, but Triton does not use these. If Triton

detected an interesting image, it could be envisaged that it could then search a folder

of templates and use OpenCV to compare the images and provide a cursory species

classification based on the closest match.

Extracted images are stored in black and white and are only a few kilobytes in size, this

will be useful as we expect that a large number of templates would be required in order

to accurately identify an object of interest. For example, in our motivating scenario, an

animal could be any distance from the camera, its legs could be in different positions or

its angle it faces towards the camera could be different, giving many possible images.

This process could be optimised by only matching regions between extracted images,

such as the head or body, but this would require further experimentation.
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3.5 Conclusion

In this chapter, we have shown the current hardware choices available for more com-

putationally capable sensors and detailed our experimental results on how rainforest

environments impact wireless transmissions. Although wireless technologies such as

Wi-Fi provide a high data rate, their range is limited and not suitable for sparsely loc-

ated nodes covering a large area; especially in a humid environment. Commercial Wi-

Fi solutions are becoming more widespread in open, public places, such as: shopping

malls, airports and universities, but these places allow for multiple routers, constant

power supply and a greater range as routers are placed as high as possible to maxim-

ise coverage. Newer wireless technologies, designed for long-range communication in

sensor networks, are becoming increasingly more viable and, while they do have lower

data rates and less robust protocols, they are more suitable for a resource constrained

WSN that requires minimal power draw when transmitting. Using general-purpose

hardware also means that there is no protection against water, humidity and animal or

human intervention. We adapted existing waterproof cases to suit our needs and pre-

liminary short term deployments showed that they are able to prevent moisture from

entering the case. We have also developed an image processing application, Triton,

that attempts to extract an object from a set of images that it believes to be the subject.

Image sets that do not have any subject are classed as empty and should have no object

extracted while those with a subject are interesting and should have an object extracted.

Testing Triton on existing images at DGFC yielded 98% accuracy for detecting empty

image sets and an 82% accuracy for finding interesting sets. A key feature of Triton is

that it is not calibrated for a particular background or environment, so these results are

especially promising.
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Chapter 4

Wireless Sensor Network Architecture

Design

In this chapter, we explain our proposed network architecture that uses local and global

knowledge to make informed routing decisions and to classify sensed data within the

network. Our approach, K-HAS, uses a three-tiered, hierarchical approach with each

subsequent tier providing increased knowledge processing capabilities.

We aim to show that sensors capable of processing knowledge will provide a more

efficient network and be able to prioritise the delivery of interesting sensed data. We

also believe that human input is a valuable way for such a network to learn about clas-

sifications it has made correctly, and incorrectly, and use that knowledge to inform

future classifications. To prove this, we have developed an architecture that uses dif-

ferent levels of knowledge processing throughout the network, the Knowledge-based

Hierarchical Architecture for Sensing (K-HAS).

The rest of this chapter is structured as follows. Section 4.2 outlines the main aims

of K-HAS and what it is capable of that typical sensor networks are not. Section

4.3 details the software and data standard choices we made for our implementation

of K-HAS. Section 4.4 provides a sample walk-through of K-HAS, relating to our

motivating scenario and Section 4.5 concludes the chapter.



4.1 The Local Knowledge Problem 58

Figure 4.1: Overview of the K-HAS Architecture

4.1 The Local Knowledge Problem

While large in size, it is typical that a WSN would use low cost nodes with limited

power, memory and computational capabilities; causing them to lack the ability to be

aware of their surroundings or the data that they are sensing [15]. This means that,

unless fixed by a routing protocol or a technician, data is delivered on a chronological

basis and is then filtered at the base station, usually manually. Some WSNs store all of

the data on the node and users of the network use a ‘pull’ model to query for data from

nodes [99], but this requires some technical knowledge and, although it does increase

the battery life of the nodes, it is a manual process again.

The environment that a WSN is deployed in is often a rich source of data to be sensed

(such as inside a bird’s nest to sense temperature, humidity and movement), which

often contains patterns that can be used to improve the performance of the network. For

example, if a node knows that it is has only been triggering between the hours of 6pm
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and 5am for the past few weeks, it can then learn to enter a deep sleep outside of those

hours or use that time to transmit data it has been storing while it assumes it will be

inactive, based on previous days. Alternatively, this knowledge can be used to prioritise

data throughout the network so that the most important data is received first, instead of

the most recent. An example of this could be two camera nodes deployed facing the

entry and exit of a building, tasked with looking for intruders between 5pm and 8am.

If the camera facing the exit is triggered at 5:01pm and the camera on the entrance is

triggered at 5:05pm, then the knowledge that the security guard leaves through the exit

between 5:00pm and 5:08 pm will allow the entrance camera to prioritise its capture as

more important, as it is an irregular occurrence.

This knowledge can be categorised as either local or global. Local knowledge is the

knowledge of an area that has been gained through experience or experimentation [61]

For example, a native to the Amazon may know that three of the locations in which

the nodes are to be deployed are flooded for two weeks of the year, rendering their

readings useless for that time period and increasing their risk of failure. This is local

knowledge, as it cannot be gained without experiencing the flooding in that area, or

measuring local water levels.

While we believe that we are the first to use the concept of local knowledge within the

wireless sensor network domain, the terms have been around for many years. In 1999,

a book that referred to local knowledge as indigenous knowledge defined local know-

ledge as ‘systematic information that remains in the informal sector, usually unwritten

and preserved in oral traditions rather than text’ [102].

Over the past twenty years, local knowledge has been used in various contexts, from

researching lending and the credit market [104] to extracting local knowledge from

natives to improve farming techniques [35]. This research, as well as work that will be

covered later, showed us that there are two kinds of knowledge: global and local.

It was from agriculture research that we were able to refine our definition of local know-

ledge, [61] defines local knowledge as ‘knowledge that farmers have derived locally
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through experience and experimentation’. They also say that indigenous knowledge is

different in that it is culturally specific. From this definition, as well as our work with

our motivating scenario, we were able to generalise the definition and expand upon it.

We now define local knowledge as knowledge of an area, held by a domain expert,

that has been gained through experience or experimentation. The weather of a region

is global knowledge because it can be found through a variety of media, whereas the

saturation levels of the soil in a field would be local knowledge as it would require

experimentation to gain that knowledge.

Using this definition, we believe that utilising local knowledge within a sensor net-

work can inform routing decisions to make better use of the bandwidth in resource-

constrained WSNs by sending data that the node believes to be important first,

rather than chronologically. Patterns in the data, and knowledge of the environment

surrounding a node, can allow a node to infer what data may be valuable, automate

the processing of adding context to the sensed data, learn from previously sensed data

and utilise knowledge of ongoing projects within the network to determine what data

is thought to be of a higher priority.

To show this, we have developed a network architecture for WSNs that utilises know-

ledge from the data it senses, as well as its deployed environment. It is called the

Knowledge-based Hierarchical Architecture for Sensing (K-HAS) and this thesis will

show how K-HAS addresses the problem of delivering the most important data first

and improving the overall efficiency of the network.

4.2 K-HAS

K-HAS has been designed as an architecture for WSNs that addresses the above prob-

lem by using knowledge to classify sensed data and adapt to changes in the structure of

the network. By pushing knowledge bases out to the edge of the network, all nodes in
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the network have some awareness of the data they are sensing, as well as how import-

ant it is, based on the current projects that the network is involved in. This is achieved

by using rules with different levels of granularity based on the knowledge processing

capabilities of that tier. Figure 4.1 shows a high level overview of K-HAS, showing

the flow of data from each tier.

4.2.1 Data Collection

The data collection (DC) tier is very similar to sensor nodes commonly used in a WSN,

using hardware that has similar, limited processing power and storage to nodes such as:

the I-Mote and Waspmote. These DC nodes are deployed at the edge of the network

and tasked with sensing their environment, pre-processing the sensed data and using

each other to relay data to the next tier.

DC nodes are capable of performing processing on data, such as the time it was re-

corded and its size, but their limited knowledge processing capabilities allow them to

have an increased battery life and reduced size, making them suitable for a variety of

deployments as they can be integrated easily with existing devices (i.e. cameras) and

be easily disguised, or hidden.

Knowledge Base

Reduced knowledge processing capabilities and low memory restrict the knowledge

that these nodes can hold and they are limited to a static knowledge base that is en-

coded at the time of deployment. DC nodes run an operating system designed for

embedded devices, the size of the operating system is minimal when compared to an

operating system used on modern desktop computers and provides much more limited

functionality, such as sleep scheduling, basic file system access and the capabilities to

run a variation of popular languages.
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For example, TinyOS [66] is an operating system designed for sensor nodes and uses

a dialect of the C language, called nesC, that is optimised for the memory constraints

of most sensor nodes. The operating system exposes components that allow basic

commands, such as reading from the sensor interface or sending a message. Commands

are executed as a request to perform some action and events signal the completion of

that action. Intensive tasks, such as data processing, can be scheduled to run at a later

time, ensuring that the low-power node remains responsive and preventing any calls

from blocking other events.

The Waspmote nodes, explained in Section 3.2.3, do not run any operating system and

any event handling, networking or memory management is performed solely by the

single file application that is uploaded to the node through the boot-loader. Performing

intensive tasks, such as local data processing, can drain the battery of the node, cause it

to fill the available memory or even cause the node to go down. DC nodes do not have

the safeguards in place that most operating systems and applications do, operational

code must be lightweight, responsive and ensure that events do not run for longer than

intended.

Some nodes within this class do not have the capability to process text files within the

file system and, therefore, must have the knowledge added to their operational code.

DC nodes only perform simple operations on the properties and content of the data that

they sense, such as the time it was recorded, the location and its size. For more complex

data, such as images and video, DC nodes do not possess the computational power

required to process them and instead use the metadata associated. Unlike modern rule

engines, these static rules do not use forward chaining and the outcome of one rule

does not cause the rules to be fired again. Listing 4.1 shows an example of some of the

rules in the knowledge base and highlights that the core structure of this file is simply

a list of if statements that can be executed one after the other. Forward chaining is

not used here because processing times need to be kept to a minimum and a chain of

rules being fired could easily overwhelm the node. If any rules are fired that suggest
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the observation may be interesting, it is prioritised through the network and potential

classifications are encoded within the observation before it is sent on.
1 if month of observation is JUNE AND time of observation is between 17:00 and

19:00 and active otter project is TRUE
2 add classification to observation(‘Potential Otter sighting’)
3 prioritise observation as interesting
4 if temperature is 37 AND time of observation is between 01:00 and 05:00 and

active leopard project is TRUE
5 add classification to observation(‘Potential Leopard sighting’)
6 prioritise observation as interesting

Listing 4.1: Pseudocode DC Node Rules

When the data is recorded by the DC node, the knowledge base is fired and inferences

are made about the contents of the data. Each DC node has a static knowledge base

loaded onto it before it is deployed, which is based on the local knowledge of the area

that it is to be deployed in. For example, a node deployed on the bank of a river would

have a different knowledge base to a node deployed in the fields of a plantation.

Once a trigger has been processed, the data is packaged and then sent on to the Data

Processing (DP) node.

4.2.2 Data Processing

DP nodes act as cluster heads of the network, serving a subset of all deployed DC

nodes. When data is sensed, it is forwarded through all DC nodes to the DP node that

is tasked with serving the originating DC node. These nodes have more knowledge-

processing capabilities than a DC node and do not perform any direct sensing.

Due to the greater capabilities, DP nodes have a much shorter battery life than DC

nodes and a network typically consists of fewer DP nodes. These capabilities, such as

increased memory and higher processing power, allow DP nodes to run a rule manage-

ment system (such as Drools [89]), that would not be possible on nodes that run on

an OS for embedded systems, that is able to handle more complex rules and process

more than just files, they can perform the same tasks as most modern computers, such

as: image processing, audio processing or reading metadata from files that requires

extra libraries. When a DP node receives data, it processes everything associated, this
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includes metadata, the data itself and the inferences made by the DC node. If the DC

node has inferred that the data is of a higher priority, then this data is processed first.

This is done by prioritising the data at two stages: once it has been received and when

it is about to be sent.

In our current design, DP nodes use two different radios, a Zigbee radio to allow long

range communication from DC nodes and a Wi-Fi radio that provides short range com-

munication that allows for higher data rates.

Knowledge Base

In our motivating scenario the network is image-based, this means that the DP node

would perform image processing, as well as processing the image metadata. The

increased knowledge processing capabilities allow DP nodes to run rules dynamic-

ally, learning from the sensed data and providing classifications that change based on

changes in the environment. For example, if a DP node has not seen an elephant before,

and it is not aware of the object in the image, then it will await a human classification.

The node will then record the time period that it receives elephant pictures, i.e. June

to July, and become more alert the following year. Similarly, the node will know not

to look for pictures of nocturnal animals during the day. This local knowledge al-

lows processing power to be saved and, thus, time; this ensures that the processing of

sensed data is optimised as much as possible in order to reduce the time it spends in

the network.

As previously mentioned, however, species level classification has not yet been im-

plemented so DP nodes currently use image processing to determine if an image is

interesting or empty and relies on human classifications at the endpoint to store the

species.

The rule engine used should allow for rules to be dynamically inserted into the rule

base, so that rules can be updated through network communication.
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Upon receiving sensed data from a DC node, the rule base is fired on the meta data of

each file received. If the rules determine that the data is of interest or, in the best case

scenario, provides a classification, then the data is packaged and sent on to the Data

Aggregation (DA) node.

4.2.3 Data Aggregation

Placed at the root of the network, these are nodes with the same knowledge-processing

capabilities as DP nodes (although they typically have greater memory, processing

power and a continuous power source) and would be accessible by users of the network.

When DA nodes receive sensed data, it is unpacked and stored with a link to the node

that the data originated from. Compared with a standard WSN, these nodes can be

compared with a base station, or endpoint.

Any information added by the DP node is parsed and classifications are extracted. If a

classification is found, it is stored and the DA node checks for any active projects that

contain the classification. If a match is found then all users involved in the project are

informed via their preferred method of communication. Using the motivating scenario

as an example, the people involved with projects could be researchers and professors

and they may be looking for images of leopards, requesting to be informed via Twitter.

All sensed data received, regardless of whether it has been classified, is accessible

through a web interface hosted by each DA node. The interface shows all of the sensed

data from each deployment, along with the associated classification. More importantly,

it allows users to classify the data using a voting system. Users have roles which give

them different privileges within the system. Normal users are able to vote and the

majority vote is seen to be the current classification. While this is not a necessary

feature of a DA node, it does allow the network to utilise the knowledge of human

experts to inform future classifications.

However, privileged users are able to confirm a classification and prevent any further
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votes. Once a classification has been confirmed, it is then sent back to the DP node it

originated from. If the classification made by a user is different to the one inferred by

the node, then it updates its knowledge base and acknowledges receipt.

This section of K-HAS is yet to be implemented but we believe that this system will

be vital in the early stages of deployment as it will be used to build up a knowledge

base. The more user classifications there are, the more accurate the network will be in

the future. After a few months of classifications, K-HAS would then be able to use the

knowledge base to make more informed classifications, requiring fewer classification-

s/confirmations from users. The exception to this is sensed data that cannot be matched

to the knowledge base.

Data aggregation nodes should not be hampered by limited battery life that deployed

nodes would experience as we expect them to be placed in a base station with power

availability and access to the Internet. Therefore, DA nodes would typically be desktop

computers with a constant power supply.

Knowledge Base

DA nodes do not typically experience the resource constraints that DC and DP nodes

must compensate for. Because of this, they hold a global knowledge that contains a

history of all observations made by all nodes, as well as the location and deployment

times of all nodes in the network. When nodes are deployed, this is updated, by users,

to show the location of the node and when it was placed.

Every classification sent from DP nodes is stored in a database and contains all in-

formation about an observation: date, time, originating node, route taken within the

network, location, sensed data, classification of sensed data. They also hold informa-

tion for all projects running, for example: a project to track elephant movements within

the forest. When sensed data that could be related to the project is received, such as an

image with an elephant classification, users associated with that project are informed
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through email, or other means.

While DC do not store any of the observations they capture, and DP nodes only store

part of the observation that can be used in future classifications, DA nodes store the

complete observation made by every DC node, as well as any extra knowledge that is

added by users upon receiving the sensed data. What is stored by the the DP node is

dependent on the deployed purpose of the network. For example, in our motivating

scenario, we store: the processed image, the classification, the node it originated from

and the date and time it was captured.

As well as this, the functionality of DA nodes can be extended to provide administrative

operations on the network, such as the recording of node locations, time of deployment

and viewing all active nodes. This allows the DA node to monitor active nodes and alert

users if a node has not sent any data in a while. The longer a K-HAS network runs,

the more knowledge a DA node gains, both from users that classify observations and

from changes in the sensed data. This knowledge is then relayed back to DP nodes,

updating their knowledge bases as to what classifications were correct and which need

updating for future observations.

Feedback Loop

The feedback loop is a protocol within K-HAS, that uses human input, and other

sources, to update DP nodes. When a DP node classifies sensed data, it stores some of

that to assist with future classifications. What is stored depends on the type of sensed

data. For example, images would mean that the DP node would store the resulting

processed image, its classification and information about the time it was taken, the

camera that took it and the location. When that is sent to the DA node, a human would

then look at the image and mark the classification as correct, or modify it if it was not.

Once that classification has been finalised, the DA node sends either a confirmation or

a modification to the DP node that sent it, updating its knowledge base. This protocol

seeks to reduce the number of incorrect classifications the longer the network is de-
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ployed and allows the nodes to be dynamic and ‘learn’ throughout the lifetime of the

network. It also allows nodes to adapt quickly to new data, if a DP node is unable to

classify an image of an animal it does not yet have template images for, the knowledge

of a human expert can provide those templates and the feedback loop will deliver that

knowledge.

In the current design of K-HAS, the feedback loop has only been tested in a devel-

opment environment and has not been fully implemented, we believe that the actual

implementation of the feedback loop will allow the network to adapt dynamically to

changes during its deployment.

4.2.4 Sequence Diagram

In figure 4.2, we have outlined the interactions that take place between nodes when

an observation has been captured. Some parts of the architecture have not been fully

implemented and those are highlighted throughout this chapter. This diagram provides

a visual representation of how the tiers of K-HAS interact as well as how K-HAS

prioritises sensed data and how K-HAS could utilise knowledge of professionals to

improve the accuracy of its classifications.
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Figure 4.2: Sequence Diagram for K-HAS upon Capture of an Observation
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4.3 Technological Components

In this section, we describe the technologies used in our designs of K-HAS and how

they integrate in order to use local knowledge based on their respective knowledge

processing capabilities. The majority of components, both hardware and software, used

in K-HAS are used so they are applicable for any WSN, but some choices have been

made to remain in line with our motivating scenario and, thus, are more specifically

suited for the capture of scientific observations.

4.3.1 Data Standard

To pass sensed data through the network, we first had to choose a standard format that

would allow us to encode the sensed data, as well as enrich it with inferences made

through processing. Darwin Core (DwC) is a body of standards with predefined terms

that allows for the sharing of biodiversity occurrence information through the means

of XML and CSV data files [119].

The Global Biodiversity Information Facility (GBIF)[5] indexes more than 500 mil-

lion Darwin Core records published by organisations all over the web, allowing data-

sets that were previously siloed from the public to be accessed by both human and

machine. The primary purpose of Darwin Core is to create a common language for

sharing biodiversity data that is complementary to and reuses metadata standards from

other domains wherever possible [119].

DwC Archives follow a star file structure, where a record can contain many occur-

rences, which is the recording of a species in nature or in a dataset. In an occurrence,

there is an event, a recording of a species in space and time, enriched with other terms

such as identification and location. DwC is the standard set of terms that can be used,

while a Darwin Core Archive (DwC-A) provides the structure for data recorded using

these terms. The core files in a DwC-A are:
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1. EML.xml

2. Meta.xml

3. Data files

While DwC does not have the extensions available to OBOE, an extensible base onto-

logy designed for ecological observations that is explained in detail in section 5.1.1, it

is extremely concise for recording observations within the biological diversity domain

and aims to be a standard reference for sharing these observations.

The record shown in figure 4.3 represents a DwC-A that conforms to the star schema.

The ecological metadata language (EML) document contains all of the details about the

project, such as who is involved, the institution code, contact details and the project(s)

related to the observation. Listing 4.2 shows a fragment of the EML file and a complete

DwC archive can be found in Appendix A.

1 <alternateIdentifier>e71fda1c-dcb9-4eae-81a9-183114978e44</alternateIdentifier
>

2 <title>Images from Danau Girang during the PTY Project 2011-12</title>
3 <creator>
4 <individualName>
5 <givenName>Christopher</givenName>
6 <surName>Gwilliams</surName>
7 </individualName>
8 <organizationName>Cardiff University</organizationName>
9 <positionName>PhD</positionName>

10 <address>
11 <city>Cardiff</city>
12 <administrativeArea>Cardiff</administrativeArea>
13 <postalCode>CF24 3AA</postalCode>
14 <country>Wales</country>
15 </address>
16 <phone>(+44)2920 123456</phone>
17 <electronicMailAddress>C.Gwilliams@cs.cf.ac.uk</electronicMailAddress>
18 <onlineUrl>christopher-gwilliams.com</onlineUrl>
19 </creator>
20 <pubDate>2012-07-26</pubDate>

Listing 4.2: Darwin Core Ecological Metadata File Fragment

The descriptor file is an XML document that contains the column headers in the at-

tached files and the mappings of those headers to DwC terms, an example file is shown

in Listing 4.3. This file shows that this is an archive containing the sighting of an

individual, and that the sighting has been split into two files. The largest benefit of

Darwin Core is its modularity. Extension files can be added to enrich the data for each
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Figure 4.3: A Darwin Core Star Archive [119]

occurrence. In this example the extension file is named as images.csv and contains

image-based evidence to support the observation.

1 <?xml version="1.0" encoding=’utf-8’?>
2 <archive xmlns="http://rs.tdwg.org/dwc/text/" metadata="eml.xml">
3 <core encoding="UTF-8" linesTerminatedBy="\n" fieldsTerminatedBy=","

fieldsEnclosedBy=’’ ignoreHeaderLines="1" rowType="http://rs.tdwg.org/
dwc/terms/Occurrence">

4 <files>
5 <location>set.csv</location>
6 </files>
7 <id index="0"/>
8 <field index="0" term="http://rs.tdwg.org/dwc/terms/eventID"/>
9 <field index="1" term="http://rs.tdwg.org/dwc/terms/basisOfRecord"/>

10 <field index="2" term="http://rs.tdwg.org/dwc/terms/recordedBy"/>
11 <field index="3" term="http://rs.tdwg.org/dwc/terms/eventDate"/>
12 <field index="4" term="http://rs.tdwg.org/dwc/terms/locationID"/>
13 <field index="5" term="http://rs.tdwg.org/dwc/terms/scientificName"/>
14 <field index="6" term="http://rs.tdwg.org/dwc/terms/identifiedBy"/>
15 <field index="7" term="http://rs.tdwg.org/dwc/terms/dateIdentified"/>
16 </core>
17 <extension encoding="UTF-8" linesTerminatedBy="\n" fieldsTerminatedBy=","

fieldsEnclosedBy=’’ ignoreHeaderLines="1" rowType="http://rs.gbif.org/
terms/1.0/Image">

18 <files>
19 <location>images.csv</location>
20 </files>
21 <coreid index="0"/>
22 <field index="1" term="http://purl.org/dc/terms/identifier"/>
23 </extension>
24 </archive>

Listing 4.3: Darwin Core Descriptor File

Listing 4.4 shows the comma-separated central file (Basis of Resource) containing the
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core details of the observation, i.e. the animal observed, and the column headings map

to the descriptor file. Other linked files are typically linked by the unique ID of the

observation, containing information that extends the observation and provides further

context.

1 eventID, basisOfRecord, recordedBy, eventDate, locationID, scientificName,
identifiedBy, dateIdentified

2 ’1’, ’MovingImage’, ’1’, ’2012-07-26 14:21’, ’1’, ’Neofelis Nebulosa’, ’
Camera3’, ’2012-07-26 15:06’

Listing 4.4: Darwin Core Occurrence Data

All of these files are then archived and sent as a ZIP folder throughout the network. If

the sensed data is media based, then the media is included as well. Software libraries

to process DwC archives are included on both DP and DA nodes.

Darwin Core is suited to K-HAS because its use in ecological observations matches

our motivating scenario and the archive can be easily created by a DC node, as it does

not require any heavy processing and all of the files are commonly used formats.

EXIF

EXIF (Exchangeable Image Format) tags are written to images at the time of capture.

Examples of these tags can be time, date or camera serial number. The capabilities

of the camera do affect how detailed the EXIF is, for example, a camera with GPS

capabilities will enrich the image with the location.

Wildlife cameras have more functionality than common digital cameras, with details

like moon phase, temperature and/or GPS location. Some devices even include the

saturation, brightness and hue of each image. These capabilities allow EXIF to be very

detailed and can be used to find patterns in pictures that, when accompanied by local

knowledge, assist with the classification of whether sensed data contains anything of

interest. Figure 4.4 shows a snippet of the EXIF tags extracted from a Reconyx camera.
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Figure 4.4: EXIF Tags from an Reconyx Camera
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4.3.2 Middleware

The knowledge-processing capabilities of DA and DP nodes are the same and this is

part of what makes K-HAS different from most other WSNs; both types of node run the

sensor middleware, but each for different purposes. DA nodes use the middleware for

administrating the network, receiving and archiving sensed data and allowing users

to provide detailed classifications. DP nodes use it for the receiving, sending and

controlling the flow of processing of sensed data before it is passed on.

Existing suitable middlewares have been detailed in Section 2.3.2 and our requirements

for K-HAS were partially determined by the expertise of the users in our motivating

scenario. Below is a list of our three core requirements:

Portability Heterogeneous WSNs utilise nodes with different architectures and cap-

abilities, if middleware is to be used on the nodes it must be able to run on these

varied devices.

Usability Users of K-HAS should not be expected to have knowledge of computer

science or the underlying architecture, this network should be usable by almost

anyone. The same must be said for the middleware as well.

Extensibility A closed-source middleware can be used, but it must then support all

sensor nodes and data types, as well as receive regular updates. Open-source, or

extensible, middleware can be used to add support for newer nodes.

GSN is a Java-based open-source middleware. New generic sensors can be added

through XML files, while more complex sensors can be added through custom Java

classes. GSN is covered in more detail in Section 2.3.2. Because GSN can run on

any architecture that supports the Java Virtual Machine (JVM), it meets our portability

requirements and the web interface to provide administrative functionality makes it

usable by those without any domain knowledge. Finally, the ability to add new sensors
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through XML means that it can be extended by almost any user of the network with

very little guidance.

4.3.3 Knowledge Capture

GSN is packaged with a web interface that allows users to see all nodes deployed and

view the latest sensed data received. The web interface is targeted towards users with

domain expertise and has limited functionality focussed towards sensor administration.

However, it does make GSN accessible by more than one computer, as well as a variety

of different architectures. For example, the admin webpage could be accessed on the

machine that runs GSN, or from a tablet computer connected to the same network. We

used the same approach to develop a web-based tool that provides access to all sensed

data, as well as a simple interface for performing tasks, such as uploading new rules or

updating the location of nodes.

All sensed data is read from a MySQL database and users can view the metadata from

each observation, such as location, date, time and temperature, as well as the data it-

self. From this, users are able to classify the data based on their role. Shown in the

ontology in Chapter 5, K-HAS uses roles to control active projects and classifications;

there are administrators and researchers. Researchers are involved in projects and re-

ceive notifications when relevant data has been received. They have access to the web

interface and can vote on species classifications for sensed data. Administrators lead

projects and can create/complete them, but they also have the ability to finalise classi-

fications. K-HAS follows a knowledge hierarchy (Figure 4.5), with administrators at

the top and DC nodes at the bottom. While there are more DC nodes in the network,

their knowledge bases are more limited and classifications are trusted less than clas-

sifications made by DP nodes. Although there are fewer DP nodes, their knowledge

bases are more detailed. Researchers and admins do not share a level on the know-

ledge hierarchy because we assume that administrators would be more experienced

domain experts. For example, researchers could be students at Danau Girang, whereas
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an admin would be a professor with more experience. When an administrator makes

a classification, all prior classifications are ignored and the feedback loop protocol is

used to update nodes.

DC Nodes

DP and DA Nodes

Researchers

Admins

Figure 4.5: Knowledge Hierarchy for K-HAS

Figure 4.6 shows an observation where users can vote on the contents. An adminis-

trator can then confirm that classification and prevent further votes from being cast.

This type of moderation means that it does not have to be specialists voting on sensed

data that cannot be classified by DP nodes.

Viewing data for new observations is useful for gaining classifications and alerting

members of a project, but viewing older sensed data allows patterns to be identified in

order to create new rules. Figure 4.7 shows a map of all deployed nodes in the area

surrounding the field centre in our motivating scenario. When users select a node, a

table is populated with all of the classified observations that it has captured; this can

then be used to extract patterns from the data and create rules. For example, the three

observations of the Malay civet are only seen late at night, if further observations also

showed this, then we could create a rule defining the active hours of the Malay civet

and, potentially, list days that it is likely to pass. These rules can then be written and

uploaded to the knowledge base.



4.3 Technological Components 78

Figure 4.6: Web Interface for Observations

Figure 4.7: Web Interface for Classified Sensed Data

4.3.4 Knowledge Base

The Drools rule engine is a Java-based engine that uses forward chaining inference

for the processing of rules [89], which means that rules are used to make meaningful
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inferences about data. Unlike DC nodes, which have limited knowledge processing

capabilities, Drools is able to chain rules together and a rule that may not have been

triggered at the start of processing may be triggered later if another inference is made.

For example, a rule that is specifically for small mammals may not be triggered until

an inference has been made that the image may contain small mammals based on the

time and location of the observation.

Drools is able to dynamically update its knowledge base, adding rules and firing them

on observations that have already been loaded, as well as newer ones. This allows DP

nodes to adapt to new rules and local knowledge whilst they are deployed. The use

of drl files use a mixture of Drools and Java syntax to define rules, allowing them to

modify, or create, Java objects. For example, a rule could be triggered on the receipt

of sensed data and create a DwC object from the received data, process it and perform

checks on the result that would trigger different rules based on that result. This is one

of the main reasons we chose Drools, as it can work with GSN and DwC Java objects,

as well as the ability to run on any architecture that supports Java. In order to add rules

to the Drools system, knowledge of the Drools syntax and, ideally, Java is required.

The functionality of Drools is extensive and the engine is very powerful, however, it

does require specialist knowledge to use and manipulate rules. Using a custom de-

veloped Drools web interface , detailed in Section 4.3.3, we created a simplified inter-

face that uses a custom REST API for Drools, allowing users to create sessions, add

rules, load data and fire rules, returning the output to the interface. Users can view, and

load, existing drl files, shown in Figure 4.8. I

Once a file has been selected, users can view the rules and use the controls on the

webpage to perform common operations. The Load Darwin Core button loads all DwC

archives that are stored in the MySQL database into the current Drools session and the

Fire button runs all loaded rules on the loaded data. If any of the rules trigger, then the

output is presented to the user in the same page, allowing them to act on the results. For

example, the location of observations could provide a narrowed down list of potential
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Figure 4.8: Web Interface for Drools Operations

classifications, allowing an administrator to remove votes that do not match the list.

Users can write new rules based on patterns gleaned from observations received during

a K-HAS deployment, which can be found using the web interface and querying the

database. These patterns can be encoded as rules into a drl file and uploaded to have

an immediate effect on the active knowledge base in the network.

Currently, these implementations have been developed for our motivational scenario,

but much of these tools are general enough to be repurposed in order to apply to a

variety of different WSNs. The Drools API can be used for any kind of sensed data

and the web interface would require minor changes to be extensible.

4.3.5 Routing Protocol

The routing protocol we have selected for K-HAS is not fixed for every deployment

but, from our research, we modified the commonly used Mininum Cost Forwarding
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Algorithm (MCFA), outlined in Section 2.2.1, as it allows for changes in the topology

of the network and does not require every node to have a global view of the network.

On deployment of all nodes, a DA node sends out a packet containing the number zero,

representing the number of hops to the DA node. Nodes in range receive the packet,

store it along with the identifier of the originating node and then send it once it has

been incremented by one. The next nodes receive that packet and do the same until the

edge of the network is reached. If a node has a number stored that is higher than the

one it receives then it is replaced and sent on until the nodes at the edge of the network

are reached.

When a node wants to send data, it queries neighbouring nodes and sends to the node

with the lowest hop count to the root. We modified this to run in accordance with

our tiered architecture as we expect the topology to remain the same for much of the

deployment.

In MCFA, nodes do not store path information and messages are broadcast to all nodes

when they are sensed.

Firstly, our protocol runs in two modes: configuration and running. During the config-

uration mode, we use MCFA. Whereas MCFA does not store path information, we use

the method described above to store both the hop count and the nearest neighbour. This

process is carried out until all nodes of the network have a hop count (and neighbour)

and a final pass is made by all nodes to find, and store, their neighbour with the lowest

count. The main difference is that, unlike MCFA, not all nodes process all packets. If

a packet originates from a DA node, then it is only stored by DP nodes but DP node

packets are stored by both DC and DP nodes. DC nodes store it and send all data

through their nearest DP node and DP nodes store other DP neighbours to delegate

processing to, should a situation arise where they have too much data to process and

cause a bottleneck. Configuration mode can then be run at a set interval throughout

the deployment of the network, or initiated manually. Figure 4.9 shows how DC nodes

process routing discovery packets from other nodes.
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Figure 4.9: Activity Diagram for DC Nodes during the Discovery Phase

Whilst in running mode, nodes do not query for the neighbour with the lowest hop

count, or broadcast the sensed data to all nodes in range, they send to the node stored

as their nearest neighbour. If that fails, then a query is sent out to find other available

nodes in range and then sent to the one with the lowest hop count. If the nearest

neighbour node is unavailable for more then three attempts, then it broadcasts a request

to run the configuration mode again.

4.4 Walkthrough

In this section we will explain the steps involved in the capture, and processing, of an

observation when using the K-HAS architecture. Each tier is responsible for perform-

ing different actions upon the observation to ensure it is received by the DA node with

an inference as to what it may contain.

Not all of the features described in this section have been implemented within K-HAS

and some features have only been tested on a small set of observations. The image
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classification down to species level is a concept that we have not implemented but

our proposed future work on template matching is a commonly used practice within

image processing [67]. The feedback loop, described in Section 4.2.3, has also not

been implemented.

4.4.1 Scenario

This walk-through will use our motivating scenario and the type of sensed data will be

images of animals in the Malaysian rainforest. In this example, we have a collection of

wildlife cameras, with nodes attached to them, deployed in the forest. Projects for the

rare clouded leopard and sun bear are currently active at Danau Girang. The clouded

leopard is a nocturnal carnivore that uses existing paths and hill trails to travel through

the rainforest and the sun bear is the smallest bear in the world and sightings are rare.

It is also nocturnal and claw marks can be seen on trees that they have climbed. All of

this information has been encoded onto the DP nodes and DC nodes know that images

taken at night will be of a higher priority, as well as to prioritise further images at night

from DC nodes that are deployed on ridges or existing trails.

In order to explain the K-HAS architecture, we need to show the planned topology for

the network in Danau Girang, which is based on the positions of the cameras in 2010.

Figure 4.10 shows a section of the proposed topology around the field centre, with the

rest of the network spreading out along the river on both sides. The triangle icon shows

the location of the DA node (at the field centre), with DP nodes (square icons) placed

near the DA node because of the poor range of Wi-Fi (Section 3.3.1). Circle icons

represent the DC nodes and they link to the nodes with the fewest hops to a DA node,

as long as that route includes a DP node.
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Figure 4.10: Section of Proposed Topology for K-HAS in Danau Girang

4.4.2 Data Collection

A DC node is deployed along a ridge in the rainforest and consists of a wildlife camera

with a wireless node attached. At 0200, the infra-red sensor detects movement and

the camera triggers a set of 3 images to be captured. The DC node creates the DwC

archive for the observation. Terms that describe the observation, such as time, date,

species identified and location, is added to the meta.xml file and links to CSV files that

contain the data for each term. Any field that can be completed, such as time, location

and date, is added to the set.csv file. A separate CSV file is created that holds the

filename of each image that was taken. The image is shown in Figure 4.11.

The DC node runs its rules on the metadata of the images and infers that the image may

contain a clouded leopard, this is because the image was taken in the early hours of the

morning and the camera is deployed on a ridge. DC nodes run simple, non-chaining

rules based on the file metadata and details about the node, such as location, but these

rules are fixed from the time of deployment and are not updated until the network is

redeployed. When bandwidth is restricted, DC nodes use a queue to prioritise both

their own observations and those received from other nodes. Observations marked as

interesting are moved to the front of the queue and any others are sent afterwards.

The inference is included in the archive and is compressed. The node then sends it
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Figure 4.11: Clouded leopard Image Capture

Figure 4.12: Processed Image of clouded leopard

through every DC node between the originating node and the DP node assigned. To

achieve the long range communications in the forest, Digimesh is used; the low transfer

rate does mean that an archive can take several minutes to send but it allows for a range

of up to 1km.
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4.4.3 Data Processing

The DP node receives the observation and it is unzipped and processed by the Darwin

Core library. If the data has been preprocessed by a DC node and marked as inter-

esting, then the processing is prioritised, otherwise it is added to the queue. In this

case, the DC node believes the observation is interesting and may contain a clouded

leopard, so it would be processed before other observations that may be queued and

not marked as interesting. The images are read from the filenames provided in the CSV

and processed using two methods. The EXIF tags in the image are extracted and the

images themselves are processed using the Open Computer Vision (OpenCV) library.

A unique feature of the DP node is that it uses two radios to allow links to both DA and

DC nodes. DC nodes send archives using Digimesh, to achieve long range communic-

ation, and DA nodes use Wi-Fi, to provide a faster transfer rate than Digimesh and a

more standard method that allows other devices to connect, such as mobile phones or

laptops.

In this example, the knowledge base on the DP node is aware that clouded leopards and

sun bears are nocturnal, but clouded leopards have previously only been seen when the

temperature is between 30 to 35◦C and only when the moon is not full. However, data

on sun bear is not as complete and the knowledge base only shows that the bear is

nocturnal and can be seen at any time of night in any area of the rainforest. The DP

node uses EXIF tags from the images and identifies that the moon phase is not full and

that the temperature is 32◦C, from this it determines that the image could contain either

animal and it cannot make a final conclusion.

Image Processing

Our Triton program, described in Section 3.4.1 is run on the set of three images. These

images are converted to black and white and combined to build a background model

for the complete set. The detected background is then removed and the final image is
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then searched for objects, where objects in the foreground will be shown with white

pixels. The largest object is then found in the image and extracted to create a template,

shown in Figure 4.12.

Processed images of previously sensed images are stored on the DP node and asso-

ciated with the confirmed classification, confirmed by a human or a node. Although

the memory available on a DP node is typically around 32GB, this could easily fill

in a matter of months if 3 full HD images were stored for every observation. Storing

a single black and white template that contains a portion of the image is much more

efficient and can still easily be associated with the classification made. The extracted

image is then compared with the existing images, using the knowledge base to prioritise

templates for comparison. In this example, nocturnal animals are prioritised and espe-

cially nocturnal animals with active projects associated. If the DP node has received

an observation from the same DC node recently, then it will check for a classification

on that and check for a match there first.

As explained in Section 3.4.1, species classification has not been implemented in K-

HAS and templates are currently only associated with human classifications but this

walkthrough describes how the process would be carried out if classification were to

be implemented. These findings are written into the set.csv file of the DwC archive

(Listing 4.4), using the identifier of the DP node as the ‘person’ that identified the

image and the scientific name for the clouded leopard as the species identified in the

image. The archive is then zipped and sent on to the DA node, sending observations

of interest first and delaying observations that have been found to contain nothing of

interest.

This observation is the first trigger from the DC node in the past few hours, so there are

no recent classifications. However, processing of the metadata showed that the image

was taken at night, so the DP node would use its knowledge base to match the images

to templates of nocturnal animals first. Triton could then find a match to an existing

template of a clouded leopard and completes its classification.
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Classification

The metadata processing of the image shows that it could be any nocturnal animal that

is known to come out when the moon is not full and the temperature is 32◦C. This is

not a complete classification but the image processing has found a match.

4.4.4 Data Aggregation

Upon receiving a DwC archive, it is unarchived and processed by Darwin Core lib-

raries, called by the middleware running on the node. The resulting archive is then

inserted into a database and the files themselves are stored in a directory that maps to

the DC node that captured the original observation. At the field centre, three users of

the system have subscribed to updates for observations of clouded leopards.

As the archive is processed by the library, the species is extracted and this triggers

a rule to notify the subscribers. The rule then queries the database and finds their

preferred method of communication. In this case, one is a lecturer and wants to be

emailed while the two remaining are students and want to be notified via Twitter. An

email is generated that contains the time, location and content of the observation, with

the images attached, and sent on to the lecturer. The students are sent a short tweet

that tells them a clouded leopard has been spotted and a link to the middle image in the

sequence is provided; the middle image is used because local knowledge has shown

that it is the most likely to contain the full subject in the image. In order to maintain

privacy, a ‘direct message’ can be sent on Twitter so this message is not public.

The middleware on the node supports a web interface to allow users to perform ad-

ministrative functions on the network, such as deploy a new node, on top of this there

is a custom made website that shows all observations for every DC node. This allows

users to log on and classify the images. In this case, the lecturer receives the email

notification, reviews the attached images and clicks on the link to access the website

to inform the DP node that the classification was correct. Due to the administrator
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position the lecturer has on the system, he is able to stop any users voting on the image

and to simply confirm the classification.

When a user classifies the observation, they see that a clouded leopard has been spotted

in the same area on the same day for the past 5 weeks and they create a rule (in Drools

syntax) to automatically classify images from this camera that have a similar time

(within an hour) and have an object extracted from them by the image processing. The

user can then upload the rules through the same web interface and it will instantly

become active on the system. In the current implementation, rules can only be added

by humans and the Drools API we have implemented then updates the rule base. The

web interface allows users to study patterns in existing sensed data and perform queries

on the database, from this they can identify rules and upload them.

If there was no classification, then users would be able to vote on the contents and use

the classification with the highest vote, or the classification made by an administrator.

Once a classification has been made, it is stored in the database and written to the

archive. This triggers the DA node to send that classification on to the DP node that

sent the original archive. In this case, the DA node informed the DP node that it

has been confirmed as a clouded leopard and the DP node then stores the extracted

image in the directory of clouded leopard templates, to assist with future classifications.

This updated template causes the rule base of the DP node to be updated so similar

data processed in the future would be correctly identified. The longer the network

is deployed, the more knowledge DP nodes could gain and the more accurate their

classifications can be. For example, a change in season could cause a new, previously

unknown animal to migrate to the rainforest. With human assistance, the animal can

be identified and determined whether it is of interest. This knowledge can then be

stored and sent on to DP nodes to prioritise and classify correctly the next time that

it is captured. The feedback loop protocol is currently only a design and has been

minimally implemented as a proof of concept, we believe it can improve the accuracy

of classification in a WSN whilst ndoes are still deployed but it would require testing
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in the future.

4.5 Conclusion

In this chapter we have explained the architecture we have developed to allow know-

ledge to be encoded and utilised within a wireless sensor network. Using tiers of nodes,

with varying levels of knowledge-processing capabilities, we can process observations

within the network and deliver data that has, where possible, already been classified.

Working as more of a subscribe-push method, users do not have to check a DA node

for new data, instead it is sent to them if it has been found to be part of a project they

are subscribed to. If not, then the data is accessible to all users of the network through

a web interface.

Using GSN as the application middleware allows sensors to be added, modified and

maintained by those without technical knowledge and ensure future interoperability.

However, it is not a standardised approach and using an architecture that implements

the standard OGC SWE [96] would allow for interoperability through the use of stand-

ards not just for sensor networks but the Web as well.

One of the key features of K-HAS is that it is not a static deployment. The know-

ledge that the network holds at the time of deployment will rarely be the same as

the knowledge held after a few months. Humans enrich the existing knowledge base

and the nodes are able to make inferences about the data they are sensing, improving

their classifications the longer they are deployed. When developing this architecture,

GSN was the most robust architecture of those that we researched and tested, the sup-

port for many databases, administrative interface, native support for many widely used

sensors meant that it was a better choice than a middleware that adopted the OGC SWE

standards, especially as we were not interacting with SWE systems in our motivating

scenario. However, while GSN is stable and mature, its large codebase does mean that

there are dated features, such as using SOAP instead of REST and an unintuitive web
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interface that does not utilise web sockets. A middleware with similar automation on

receipt of sensor data could be used instead of GSN that did follow the standards set

out by the OGC. We believe that this should require few changes to the core K-HAS

architecture as it currently stands.

In Chapter 6, we explain how we implemented a variation of K-HAS in our motivating

scenario and Chapter 7 shows our evaluation of the K-HAS architecture, but Chapter 5

will first outline the development of an ontology to support the architecture described

here.
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Chapter 5

An Ontology for Knowledge-Based

Wireless Sensor Networks

In this chapter, we explain the ontology we have proposed to formally define the com-

ponents within K-HAS, the structure of the sensed data, the users involved with the

network, as well as the format of the sensed data that is passed through the network.

This ontology is for those wanting to deploy a WSN that uses knowledge to classify

the ecological observations recorded, or even to select parts of the ontology that meet

their requirements and implement those. Terms have been used to map to widely-used

ontologies in the domains of ecological observation, sensors and people. However,

our proposed architecture (Chapter 4) defines new terms that do not exist in current

ontologies, thus we extend the alignment of these existing ontologies to create an on-

tology that encompasses the ontologies as well as defining new terms to match our

architecture.

5.1 Background

K-HAS was developed in order to provide a generic architecture for wireless sensor

networks to utilise the local knowledge contained within their environment to pro-

cess sensed data and, therefore, make more efficient use of the network bandwidth by

prioritising sensed data that is deemed to be more valuable. We have defined local
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knowledge as knowledge of an area that has been gained through experience, or exper-

imentation.

Before we were able to implement K-HAS, we needed a high-level model that defined

relationships between each tier of the architecture, as well as the data standard used

to transport sensed data from DC nodes to an endpoint. Developing an ontology for

K-HAS means that we can do this, as well as provide a computer-readable model for

all of the classes and components used by K-HAS.

Making it computer readable has allowed us to reuse classes in the development of

software for each tier. For example, we were able to develop a common Darwin Core

java library that is used in this ontology and in our GSN middleware to unzip and

process received archives.

During the development of the K-HAS ontology, we researched existing ontologies that

were commonly used in the domains that K-HAS covered. These included scientific

observations and sensor hardware.

Looking into these existing ontologies, we found that there had been many surveys on

representing sensors in the semantic web: [30], [59], outlines the existing work. These

surveys clearly highlighted that these ontologies had been split into two branches;

observation-centric and sensor-centric.

Observation-centric ontologies, such as OBOE [72] and O&M [96], focus on the data

that is sensed, and its content; whereas sensor-centric ontologies, such as SensorML[96],

detail the components that make up a sensor and the operations they perform to turn

sensed data into an output.

K-HAS has been developed to be used with any sensors and is not specific to wildlife

cameras, therefore we also looked into sensor-based ontologies that concentrate on the

hardware and the individual capabilities of each device within the network.



5.1 Background 94

Figure 5.1: The Core of an OBOE Observation [71]

5.1.1 Observation-Centric Ontologies

OBOE

The Extensible Observation Ontology (known in reverse as OBOE) is a popular suite

of ontologies used to represent scientific observations [72]. Initially starting as base

ontology for ecological observations, it has now grown into a suite of extensions that

make it suited for chemistry, bioinformatics, anatomy and others. OBOE is represented

by OWL-DL [79] and allows the characteristics of a generic scientific observation to

be linked to domain specific characteristics.

OBOE focuses on the concept of an observation, which is made up of an entity, a meas-

urement and a characteristic [71]. An example of an observation could be a researcher

observing an animal (the entity) and recording the gender (the measurement) as male

(the characteristic). A single observation could then consist of multiple observations

within it, such as gender, location, species and the number of species observed.

Figure 5.1 shows the basic structure of a core OBOE observation, outlining the five key

classes that are linked by seven properties. While this is the core structure of OBOE,

domain specific extensions have been implemented by utilising ‘extension points’ that

are part of OBOE’s core. OBOE follows the O&M Standard (below) very closely,

providing extensions to the core classes that allows more information about each to be
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encoded, adding context and enhancing the value of an observation.

The primary benefits of OBOE are that it is generic enough to cover almost all types

of scientific observation and domain extensions allow for more specific details to be

stored.

O&M

The Open Geospatial Consortium (OGC) Observations and Measurements Standard

aims to provide a framework suitable for recording any observation made by a sensor,

regardless of the domain [96].

A key feature of O&M is that observation and measurement are not just classes. They

also denote an action. An observation is an action that causes a result, yielding a value

and a measurement is a set of operations that provide some result(s).

O&M provides a conceptual model, as well as XML encoding for observations and

measurements. The listing 5.1 shows an observation of a vehicle in a given time and

place. Similar to the encoding of a measurement with the standard and protocol used

in OBOE, O&M provides support for the recording of the procedure used to gain the

measurement for the observation.

1 <?xml version="1.0" encoding="windows-1250"?>
2 <om:GeometryObservation gml:id="geom1610"
3 xmlns:om="http://www.opengis.net/om/1.0"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:xlink="http://www.w3.org/1999/xlink"
6 xmlns:gml="http://www.opengis.net/gml"
7 xsi:schemaLocation="..Specialization_override.xsd">
8 <om:samplingTime>
9 <gml:TimeInstant>

10 <gml:timePosition>2009-09-16T17:22:25.00</gml:timePosition>
11 </gml:TimeInstant>
12 </om:samplingTime>
13 <om:procedure xlink:href="urn:ogc:object:procedure:ifgi:GPS"/>
14 <om:observedProperty xlink:href="urn:ogc:def:phenomenon:OGC:Shape"/>
15 <om:featureOfInterest xlink:href="urn:ogc:object:feature:vehicle"/>
16 <om:result>
17 <gml:Point srsName="urn:ogc:crs:epsg:4326">
18 <gml:pos>40.7833 -73.9667</gml:pos>
19 </gml:Point>
20 </om:result>
21 </om:GeometryObservation>

Listing 5.1: An Observation of a Vehicle encoded in O&M
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The listing shows that an observation centres around a feature of interest that can be

a physical object and the measurement is the detection of the vehicle at the recorded

location. Figure 5.2 shows a basic diagram of the ontology. While the event of a feature

is linked, it is clear that the main focus is on the observation and the measurement

associated with it.

Figure 5.2: The OGC O&M Ontology [88]

The structure of an observation within O&M is focussed on the action and the result,

this makes it suited for sensor networks across many domains that perform a wide

range of observations. Because the users of the O&M standard are spread across many

domains, each with their own terms and definitions, the creation of an ontology for the

standard aimed to remain as generic as other observation-centric ontologies.

Darwin Core SW

In order to represent DwC occurrences, covered in Section 4.3.1, in an ontological

format, work has been done to represent Darwin Core terms, as an ontology, in OWL.

Darwin-Semantic Web (Darwin-SW) [19] is the project that aims to do this and many

of the core terms associated with an occurrence have already been formalised and Fig-

ure 5.3 shows the entity relationship model of these terms.
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Figure 5.3: Darwin-SW Entity-Relationship Model [19]

While Darwin-SW does not represent all of the classes within the DwC namespace,

it contains the core classes required to record an occurrence, to a more-detailed level

than OBOE. The downside of this is that the specificity of the terms limits DwC to

ecological observations, making it far less generic than OBOE and other alternatives.

There are positive aspects that, for those that need to record ecological observations,

DwC allows for a greater level of detail and can be mapped to OBOE with ease.

Listing 5.2 shows a fragment of a DwC occurrence of a living specimen which, in

this case, is a tree [18]. Darwin-SW, and Darwin Core, terms are used to describe

the identification of the tree, such as the by whom it was identified, the date and the

taxon. The full source can be seen in Appendix B and includes links to existing related

occurrences, other images of the individual and relationships to other resources.
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1 <dsw:hasIdentification>
2 <rdf:Description rdf:about="http://bioimages.vanderbilt.edu/vanderbilt

/12-126#2002-04-10baskauf">
3 <dcterms:description>Determination of Ginkgo biloba L. sensu Flora of

North America (1993) for the individual http://bioimages.
vanderbilt.edu/vanderbilt/12-126</dcterms:description>

4 <rdf:type rdf:resource="http://rs.tdwg.org/dwc/terms/Identification" /
>

5
6 <!-- In lieu of stable external identifiers for taxon concepts, Im

defining some onsite -->
7 <dsw:toTaxon rdf:resource="http://bioimages.vanderbilt.edu/

taxonConcepts#183269-fna1993" />
8
9 <dwc:identifiedBy>Steven J. Baskauf</dwc:identifiedBy>

10 <dsw:idBy rdf:resource="http://bioimages.vanderbilt.edu/contact/
baskauf" />

11 <dwc:dateIdentified>2002-04-10</dwc:dateIdentified>
12
13 <!-- Relationship of the identification to other resources -->
14 <dsw:idBasedOn rdf:resource="http://bioimages.vanderbilt.edu/baskauf

/10554"/>
15 </rdf:Description>
16 </dsw:hasIdentification>

Listing 5.2: Darwin-SW Representation of an Identification

5.1.2 Sensor-Centric Ontologies

Sensor-centric ontologies are more focussed on the structure of the sensor, the network

and the sensing processes involved.

SensorML

The Sensor Markup Language (SensorML) Standard has been developed by the OGC,

and complements the O&M Standard, to enable the discovery and tasking of internet-

connected sensors [96].

SensorML provides an XML schema for describing a sensor, its capabilities and the

processes available. At the core, SensorML comprises of:

1. Component - A physical process that transforms information from one form to

another.

2. System - Model of a group of components.

3. Process Model - Atomic processing block used within a Process Chain.
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4. Process Chain - Composite block of Process Models.

5. Process Method - Definition of the behaviour of a Process Model.

6. Detector - Atomic part of a Measurement System.

7. System - Array of components, relates a Process Chain to the real world.

8. Measurement System - Specific type of System, mainly consisting of sampling

devices and detectors.

9. Sensor - Specific type of System that represents a complete Sensor.

These definitions outline the core concepts of SensorML, a system that performs one

(or more) process(es) and is comprised of a group of components [98]. A SensorML

document allow for a general, formal specification of a sensor and its capabilities. The

document describes a component, outlining what data it reads in and the output once

it has been processed. Several of these components can the be used to create a system

and the primary goal of SensorML is to describe the process of how an observation

came to be, focussing on the technical features of the node.

5.1.3 Combined Sensor and Observation Ontologies

In this section, we review ontologies that represent the hardware of the sensors within

a network, as well as the observations they record. This allows them to model the

sensing capabilities of each sensor, the measurements they capture and the data they

record.

SSN

The Semantic Sensor Network (SSN) Ontology is the most fitting ontology for our

requirements, as it covers systems processes and observations. Developed by the W3C
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after an extensive review of existing ontologies [31], the SSN ontology is designed to

allow focus on a variety of perspectives, such as the sensor within the network or the

data that has been observed.

Figure 5.4: SSN Ontology

Figure 5.4 shows the model for the SSN ontology, displaying the relationships that con-

nect each class, as well as their associated properties. It also highlights the modular

approach that has been taken, separating the system from the process and the observa-

tion.

The observation pattern of SSN is centred around ‘Stimuli-Sensor-Observation’, which

can be simply described by an event causing a sensor to trigger and create an encom-

passing observation to store details about the event, as well as the device that recorded

the event. While SSN is focussed on sensors, capturing the measurement capabilities

of each sensing device that makes up a system and specifics on its lifespan, the de-

velopment of the ontology arose from the review of sensor-centric ontologies as well,

recording data about observations in a structure very similar to O&M.
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SUMO Extension

The Suggested Upper Merged Ontology (SUMO) is a general purpose ontology [83]

that provides general-purpose terms and is intended to be extended for domain specific

ontologies. In [37], SUMO has been extended to link sensor hardware and sensor data

ontologies in order to assist with searching and evaluating distributed and heterogen-

ous sensor networks. The work combines the Sensor Hierarchy Ontology (SHO), the

Sensor Data Ontology (SDO) and the ability to ‘plug in’ extension ontologies.

The SHO describes the hardware of a sensor node, as well as its accuracy, transmission

medium and data processing capabilities. The SDO, however, describes the sensing

properties of a device beyond the hardware and the context of the sensor can be en-

riched with information about spatial and/or temporal observations. Similar to GSN

(Section 2.3.2), SUMO uses the notion of virtual sensors where a group of sensors can

be described together to provide abstract measurements. In [37], the example of a hu-

midity sensor, temperature sensor and wind speed sensor being collectively described

as weather sensors. The SHO ontology is another extension of SUMO, from [37],

that represents the hardware of a WSN, including the node itself, data transmission

units, data processing units and individual sensors. The data model describes a sensor

with metadata describing features such as measurement type, transmission range and

physical properties.

5.1.4 Findings

There are many ontologies that are suited for sensor-based scientific observations and

ontologies that allow for the description of sensor hardware cover the hardware cap-

abilities of sensors as a whole and sensor systems comprised of multiple sensors in

great detail. SSN and SUMO were the closest that we found for this, but SSN was still

very hardware focused and went into greater detail of the hardware capabilities of each

measuring devices than we needed.
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While the SHO and SDO extensions of SUMO are classed as both an observation-

centric and sensor-centric ontologies, they are separate ontologies that model both

sensor hardware and sensed data and, while the development of these ontologies did

follow a similar approach to the one described in this chapter (combining ontologies),

the core concepts of SHO and SDO are more focussed on retrieval of sensed data

through queries constructed using both hardware details and properties of the sensed

data. However, an important feature is the Extension Plugin Ontologies (EPO), support

for domain specific plugins to integrate with SUMO and integrate with the SHO and

SDO and this would also be a useful feature for K-HAS.

5.2 Method

We found that SSN, SensorML and Darwin Core satisfied many the hardware and

much of the sensed data subsections of K-HAS completely. We have used these exist-

ing ontologies to develop an aligning ontology that connects ontologies across multiple

domains to support our proposal of K-HAS, extending the concepts in existing ontolo-

gies with K-HAS specific concepts.

The SSN ontology is a modular ontology created by combining concepts from existing,

commonly used ontologies and allows for domain specific concepts to be imported.

Some of the main uses cases for the SSN ontology are provenance and data discov-

ery, which are also key within K-HAS. However, the tiered structure of K-HAS did

not map directly to SSN and it proved difficult to represent the flow of knowledge

through a network, as humans can also perform similar operations on observations and

the observations are enriched as they pass through the network. SSN describes the

measurement capability, operating range and hardware specifics of a sensor but, while

SSN does also model the process that a sensor may undertake to create an output,

K-HAS sees sensors as nodes with computational power; not only able to sense their

environment but perform classifications utilising on their knowledge bases. We found
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it difficult to model the processing power of each sensor without modifying both the

Skeleton and Process modules of the ontology. Also, while SSN does contain Obser-

vationValue and FeatureOfInterest, shown in Figure 5.4, the Darwin Core standard that

we adopted was more detailed with scientific observations. Using the Data module of

SSN, we could have extended it with the Darwin Core ontology but K-HAS overlaps

ObservationValue and FeatureOfInterest to become more focussed on the classification

than the observation itself.

However, while we did not use the ontology directly, many of the concepts can be

mapped directly (shown later in Table 5.4) and it would be possible to use import mod-

ules from SSN and extend them with the concepts specific to K-HAS, SSN does not

describe domain concepts (such as time or location) as this is expected to be handled

by imports from more specific ontologies. K-HAS allows humans to act as sensors,

which would require slight modifications to SSN, as well as extending with the ability

to provide more detailed classifications for observations.

Before we began development, we researched existing methods that have been used to

develop current ontologies. From this, we found three well-documented methodolo-

gies; the methodology used to develop the Toronto Virtual Enterprise (TOVE) ontolgy,

the Methontology and the methodology used to develop the Enterprise Model ontology.

The methodology by Uschold and King [112], used to develop the Enterprise ontology,

is a four step method that was most suited to the processes we expected to follow. The

steps are not covered in great detail in the original paper but, research since provides

greater detail for each step.

5.2.1 Identify Purpose

The aim of this step is to identify why the ontology is being built and what requirements

it is supposed to fulfil. This includes considerations, such as the audience, the intended

purpose and the specificity of the ontology.
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Other methodologies have used more structured methods to informally identify the

requirements of the ontology. Gruninger and Fox [46] propose competency questions;

these are questions that are used to identify the problems that the developed ontology is

developed to solve. These questions can act as a benchmark, showing that an ontology

is sufficient if it can solve the questions raised here.

5.2.2 Build the Ontology

Building the ontology can be broken down further into 3 smaller steps: capture, code

and integrate existing ontologies.

Capture

The capture stage involves defining the concepts and terms that the ontology will

model, as well as how they map to the real world. This can be done in one of three

ways:

1. Top Down - Starting with the core concepts, create the more specialised classes

until you have identified all subclasses.

2. Bottom Up - This process begins with the more specialised classes and grouping

them into the more general classes towards the top of the hierarchy.

3. Middle Out - A combination of the two, this process involves specialising, and

generalising, the classes identified in the middle layer of the hierarchy.

As for the capture of the knowledge used to identify the classes needed, this is an

area that has been documented, but primarily provides recommendations. [39] sug-

gests interviews with domain experts, iteratively brainstorming with a group actively

involved in the development of the ontology. This stage has often been referred to as

the knowledge-acquisition stage.
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Code

This step involves coding the terms identified in the previous step into a formal lan-

guage, such as the Web Ontology Language (OWL) [79].

Integrate Existing Ontologies

This step can be carried out at the same time as the step above, so that the ontology is

developed with existing ontologies in mind. This also allows overlap to be identified,

and incorporated, early. Being aware of commonly-used ontologies within the domain,

before development begins, is a more logical approach and does avoid the need to

create new terms for existing concepts.

Existing ontologies can be integrated by importing them and linking the existing terms

to the terms identified in the ontology that is being developed. However, there is also

the method of developing the ontology completely, so that it is consistent without the

need to rely on existing ontologies and creating ‘sameAs’ relationships between the

terms identified and only the required terms in the existing ontologies.

In [60], it is recommended that, when importing external ontologies, the whole onto-

logy is not used. Rather, one should aim to extract only the required fragments from

the external ontology that are relevant to the concepts in the developed ontology.

5.2.3 Evaluation

For the evaluation, Uschold and King adopt the definition of [40]: ‘to make a technical

judgement of the ontologies, their associated software environment, and documenta-

tion with respect to a frame of reference... The frame of reference may be requirements

specifications, competency questions, and/or the real world’.

There are some well documented methods for evaluating ontologies in the literature,
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[111] proposes using the competency questions, used in the first step, to ensure that

they can all be fully answered by the finished ontology.

5.2.4 Documentation

Although this step is listed at the end of the development cycle, it seems more fitting

to document all major aspects of the ontology as it is being developed. Documentation

of the ontology should include: any assumptions, all concepts introduced, all ontolo-

gies that have been incorporated (by whatever means) and any primitives used for the

definitions of concepts.

5.3 Results

This section details our results when using the Uschold and King methodology, accom-

panied by more recent research for particular steps, to develop the K-HAS ontology.

5.3.1 Identify Purpose

The need to create the K-HAS ontology was partly due to the reasons outlined by

Gruninger and Fox [46], we had identified a problem as we were developing a sensing

architecture that utilised local knowledge: how could we formally represent the flow

of knowledge and sensed data throughout a wireless sensor network?

To determine the scope that K-HAS should cover, we identified a set of competency

questions that represent what we expect K-HAS to cover within the domain. In order

to present this, we used an approach similar to that of [27], which can be seen in Table

5.1.

These questions allow us to identify the core concepts that the ontology needs to rep-

resent, as well as serving as a tool to evaluate the completed ontology.
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Competency Questions
Find all Occurrences of an Individual
Find all Occurrences of an Individual at a Location
Find all Occurrences within a specified Date and Time
range
Find all Sensors that have recorded an Occurrence of an
Individual
Find all Locations of an Individual
Find the storage location of a Project
Find all Projects containing an Individual
Find all People involved in a Project
Find all the Evidence that supports an Occurrence
Find all the Types of evidence that supports an Occurrence

Table 5.1: Competency Questions

5.3.2 Build the Ontology - Capture

This part of the development cycle is the identification of the concepts and their imple-

mentation. The first step is capture the knowledge that will be used to identify the core

concepts within the ontology.

To capture the knowledge for the ontology, we used a combinatorial approach of those

outlined in the literature. We interviewed domain experts, as well as overseeing a basic

implementation of a system, and we iteratively brainstormed the concepts throughout

the development cycle.

Over the course of eighteen months, which involved 2 field visits and several brain-

storming meetings, we identified the core concepts that the ontology would need to

contain, as well as the properties that would link them. From this, it would seem that

we followed the Top-Down approach, but the first visit with domain experts also al-

lowed us to identify some of the more specialist classes early on in the development

cycle. Thus, it seems that in practice we followed a more Middle-Out approach.

Table 5.2 outlines the core concepts we have identified for K-HAS to be complete, as

well as the definitions we have used for the architecture. When integrating existing

ontologies, the definitions of similar terms would need to match with our definitions or
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we would not deem them the same as the K-HAS concepts.

Concept Subclass
Of

Definition

Occurrence -
Identification - A text-based recording of the

content of an Occurrence
Evidence - Media to support the Identi-

fication, such as a photo or re-
cording.

Location - The location of the Occur-
rence.

Date - The date of the Occurrence.
Time - The time of the Occurrence.
Project - Project(s) that can contain

many Occurrences
Node - A device with sensing capab-

ilities.
Data Collection (DC) Node Node Node with limited

knowledge-processing
capabilities charged with
sensing a feature (or features)
of its environment.

Data Processing (DP) Node Node Node with knowledge-
processing capabilities
charged with serving a subset
of DC Nodes and processing
their sensed data.

Data Aggregation (DA) Node Node Node with knowledge-
processing capabilities that
stores all knowledge and
sensed data for the whole
network.

Person -
Administrator Person Person in charge of a project

(or projects).
Worker Person Person involved with a pro-

ject.

Table 5.2: K-HAS Concepts

Mapping these concepts, a diagram of the base K-HAS ontology is shown in Figure

5.5. The next step is to create the ontology and map the concepts identified to existing
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ontologies within the same domain space(s).

Figure 5.5: K-HAS Base Ontology

5.3.3 Build the Ontology - Code

Once the concepts had been identified (and agreed upon), the ontology must be coded.

We used Protege 4.2.2 [84] and implemented K-HAS in the Web Ontology Language

(OWL), creating a core file that could be expanded; should we need to import existing

ontologies.

5.3.4 Build the Ontology - Integrate Existing Ontologies

Our proposal for K-HAS is focused on scientific observations. Because of this, the

focal point of our existing ontology research is on ontologies that are centred around

scientific observations. This allows us to create a more generic ontology that is still

able to capture all of the semantic details associated with a wildlife observation.

As explained in Section 5.1, our research of existing ontologies covered two categories:

observation-centric and sensor-centric. We identified ontologies, within multiple do-

mains, that satisfied many of our requirements for K-HAS, but not all. Using the core
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concepts outlined in Section 5.3.2, we created a minimal ontology and used the results

of our research to map K-HAS concepts to those that had already been identified.

During this process we found that we had determined concepts that mapped to exist-

ing ontologies, but may not share identical structures, or even the same name. For

example, the OBOE ontology describes the concept of an occurrence, which is very

similar to our occurrence and the occurrence in the Darwin Core-SW ontology. When

we found these mappings, we used sameAs relationship to form a link that allows data

stored according to these existing ontologies to map directly to K-HAS. However, the

structure of an OBOE observation is, as outlined in Section 5.1.1, more generic for

all types of scientific observation and depicts the observation of an entity, containing

a measurement of a particular characteristic. Whereas the structure of a Darwin Core

observation is more limited to scientific observations of taxa which allows it to have

more predefined terms, such as location, species name and the evidence for the recor-

ded individual. Because of this, it was difficult to create a structure that encapsulated

both OBOE and Darwin Core due to the generality of an OBOE observation compared

to the more specific structure of DwC.

Research showed that Darwin Core maps to K-HAS’ requirements more completely,

as well as the fact that there has been work to represent Darwin Core Observations in

OBOE [103], K-HAS occurrences map directly to Darwin Core and elements that are

similar to OBOE have been linked by the sameAs relationship. This does mean that full

OBOE observations cannot map directly, but K-HAS, and Darwin Core, occurrences

can be converted, if necessary. However, using the terms in our ontology we can create

a subset of an observation that does not include all of the terms defined in OBOE but

can still map to all three ontologies.

For the sensor hardware of K-HAS, we found that the SensorML ontology maps dir-

ectly to our concepts and we also realised that we did not need to recreate concepts that

may already exist in popular ontologies outside of the domain spaces we researched.

For example, the Friend of a Friend (FOAF) ontology [23] is an ontology designed to
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create machine-readable pages that describe people, so it is more logical that K-HAS

reuses existing terms from popular ontologies to allow pre-existing data to be mapped

with ease.

5.3.5 Extend the Ontology

Whilst researching widely-used ontologies, we became aware that some classes iden-

tified for K-HAS were not satisfied by what is currently available, these are prefixed

with khas and shown in Figure 5.6. The final step for creating the ontology was to

add these concepts to the linked ontologies, we call these extension concepts, concepts

unique to K-HAS which do not exist in any other ontology. These terms were linked

to the unique layered architecture of K-HAS and we defined them within a new K-

HAS namespace, changing our ontology from an alignment of existing ontologies to

an extension of these.

The final ontology is shown in Figure 5.6 (with the complete code in Appendix C) and

shows how each concept maps to existing ontologies. The figure shows that there were

only five extension concepts unique to K-HAS that can be subclassed from the person

concept in the FOAF ontology and node in the SensorML ontology.
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Figure 5.6: K-HAS Ontology
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5.4 Evaluation

Uschold and King’s ontology development method does not explain how to evaluate

the created ontology and much of the literature describes a number of methods that can

be employed, [22] outlines a number of different evaluation techniques and separates

them into categories. These categories are listed below:

1. Comparing the ontology to a ‘golden standard’.

2. Using the ontology in an application and evaluating the results.

3. Comparing the ontology with a collection of documents from the domain to be

covered.

4. Manual evaluation by humans to test if the ontology meets a set of predefined

criteria.

The last category mentioned is similar to the method in Section 5.2.3 that uses the

competency questions to determine the effectiveness of the ontology. Because there

is no agreed method,we have evaluated K-HAS by testing it in the application it was

developed in (Protege), mapping it to existing documents within the intended domain

and ensuring that it can satisfy all of the competency questions we outlined in Table

5.1.

5.4.1 Using the Ontology in an Application

We developed the K-HAS ontology in Protege, a Java based ontology editor, that also

provides the functionality to reason over the ontology and check for inconsistencies.

Using the Hermit reasoner that is built into Protege, the ontology was determined to be

logically consistent.
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To confirm the validation provided by Protege, we also used a web-based ontology

validation tool, called the OntOlogy Pitfall Scanner (OOPS), that scans an ontology

for common errors, such as defining incorrect inverse relationships or using recursive

definitions, that can occur during the development phase [87]. The results of this tool

showed that no pitfalls had been detected.

We have a customised build of K-HAS running that receives data from a variety of

sources and stores it in a MySQL database that allows users to classify through a web

site. The schema of the database maps to our ontology, scientific observations are

received, unzipped and stored in the relevant fields in the database. Using real sensed

data, we have successfully stored over two hundred occurrences and mapped existing

DwC occurrence to K-HAS.

5.4.2 Competency Questions

In Table 5.1 we have identified some basic competency questions that we expected K-

HAS to be able to satisfy with the concepts we had identified, Table 5.3 shows how the

original questions are satisfied by K-HAS. We have mapped the terms we originally

used to the terms used in K-HAS (and the linked ontologies) and shown the concepts

involved with each question, as well as the relationships linking them.
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Competency Questions Concepts Relationships
Find all Occurrences of an
Individual

Occurrence; Individual Occurrence occur-
renceOf Individual

Find all Occurrences of an
Individual at a Location

Occurrence, Token,
Individual, Location,
Identification

Occurrence hasEvid-
ence Token

Token isBasisForID
Identification
Identification identifies
Individual

Find all Occurrence within
a specified Date and Time
range

Occurrence; Event;
Date; Time

Occurrence atEvent
Event

Event hasTime Time
Event hasDate Date

Find all Data-Collection
Nodes that have recorded an
Occurrence of an Individual

DCNode; Individual;
Occurrence

Occurrence recordedBy
DCNode

Occurrence occur-
renceOf Individual

Find all Locations of an In-
dividual

Occurrence; Individual;
Event; Location

Occurrence occur-
renceOf Individual
Occurrence hasEvent
Event
Event locatedAt Loca-
tion

Find the storage location of a
Project

Project, Data Aggrega-
tion Node

Project storedBy
DataAggregationNode

Find all Projects containing
an Individual

Individual, Project; Oc-
currence

Individual occurredIn
Occurrence
Occurrence heldIn Pro-
ject

Find all Persons involved in a
Project

Person; Administrator;
Worker; Project

Administrator hasPro-
ject Project
Worker hasProject Pro-
ject

Find all the Evidence that
supports an Occurrence

Occurrence; Token Occurrence hasEvid-
ence Evidence

Find all the Types of evidence
that supports an Occurrence

Occurrence; Token;
Type

Occurrence hasEvid-
ence Token
Token isOfType Type

Table 5.3: Competency Questions
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The table shows that all of the competency questions outlined in Section 5.3.1 have

been satisfied by the final ontology and each concept used maps quite easily with little

to no change.

5.4.3 Comparing the Ontology with a Collection of Documents

Within the domain of scientific observations, Darwin Core is a popular choice for ob-

servations of wildlife and plants, it was because of this that we chose to use many of

the pre-existing concepts from Darwin Core in K-HAS.

In the data driven approach suggested by [28], a corpus of documents, related to the

domain that the ontology covers, and the keyword content is matched with the terms

used in the ontology. Because Darwin Core observations are structured into archives

of files, explained in Section 5.1.1, we evaluated the K-HAS ontology by combining

the approach of comparing a corpus of documents related to the domain with human

evaluation of ensuring an ontology met a set of requirements to create a method that

ensured existing scientific sensed observations could be mapped to K-HAS with little

to no modification.

As explained in Section 4.3.1, an archive of Darwin Core files consists of a minimum

of 3 files: a metadata file that contains information about the creator of the archive

and the project it relates to (eml.xml), a metadata file that describes all of the files

that contain the occurrence and the fields within them (meta.xml) and a csv file that

contains the data relating to the occurrence itself. Within the archive, the core files that

need to be mapped to K-HAS are the meta.xml and eml.xml files as this allows us to

store what and who.

We used files from a DwC archive made available online to extract the terms associated

with an occurrence and we mapped these terms to K-HAS concepts, the results can be

seen in Table 5.4. This table also shows how K-HAS terms could also be mapped to

the SSN ontology.
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Darwin Core Term K-HAS Concept SSN Term
occurrenceID Occurrence Observation
basisOfRecord Basis of Record -
recordedBy Person/Node Observed By
associatedMedia Token Observation Value
eventDate Event Date -
eventTime Event Time -
locationId Location Region
scientificName Individual Feature of Interest
identifiedBy Person -
dateIdentified Identification -

Table 5.4: Evaluation of K-HAS against Darwin Core Occurrence Terms

Each term within a Darwin Core observation maps to K-HAS with only a few changes

to the terms, while the definitions do not change. As K-HAS is an alignment ontology,

there are extra concepts that do not map to Darwin Core, but can encapsulate each

occurrence. For example, a project in K-HAS can contain many occurrences. As

previously mentioned, [103] shows how a DwC archive can be represented in OBOE,

which means that it would not be too complex to map an OBOE observation in K-HAS.

5.5 Conclusion

In this chapter we have presented an ontology for the K-HAS architecture and de-

scribed our methodology for development, as well as showing that existing ontologies

are not complete enough to cover our requirements for K-HAS. The K-HAS ontology

we present is an alignment of ontologies that are spread across multiple domains and

provides a complete solution for a sensor network that deals with scientific observa-

tions. We have also extended this alignment to include concepts that model the unique

features of K-HAS, but this ontology should be suitable for any sensor network that

deals with observations.

While the main benefits of this ontology is that it provides a high-level overview of our

network architecture and allows those that want to implement K-HAS to re-use all, or



5.5 Conclusion 118

some, parts of the ontology, it is also used in the network itself to allow sensed data

to be mapped to data stores, define how classifications should be made and determine

if certain users have permissions to edit an observation. Using the ontology, we can

ensure that all nodes use the same data standard and use a pre-defined user model that

can be easily implemented in variations of K-HAS. On top of this, the competency

questions, outlined in Table 5.3 also form the basis of queries that can be carried out

on sensed data, nodes, users and projects within K-HAS, linking them all through a

common model.

Our evaluation has shown that the ontology is logically consistent and that existing

scientific observations, in other formats, can be mapped across to K-HAS with few

changes. The competency questions we identified during the design phase of the on-

tology can all be satisfied by the resulting ontology and our K-HAS network currently

stores data with a schema that follows the design of this ontology.

In the future, work could be done to make the Darwin Core terms more modular and

users will then be able to ‘plug in’ their occurrence structure of choice. Currently, this

ontology has been developed with the scientific observations of our motivating scenario

in mind. The K-HAS, FOAF and SensorML modules can all be reused in almost any

WSN but not all networks will be tasked with recording individuals. In these cases,

DwC (and some K-HAS) terms would need to be replaced with terms suited to the task

of the network, such as flood monitoring.

The tiered architecture of K-HAS means that observations are classified at each step,

with DC nodes applying their limited knowledge at the time of capture, DP nodes pro-

cessing the data in-depth and applying knowledge from previously sensed data and

humans either confirming or modifying these classifications. Currently, this only up-

dates the observation as it passes through the network but, using this ontology, we

would like to implement a provenance model that supports the classification of an ob-

servation at each stage of the network and edits made by humans once it has reached

a DA node. In [80], provenance is defined as referring to “the sources of information,
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such as entities and processes, involved in producing or delivering an artifact” and the

W3C Open Provenance Model (OPM) [80] has been developed to “support a digital

representation of provenance of any “thing”, whether produced by computer systems

or not.” In future versions of this ontology, and our architecture, we would like to im-

plement this model to support a complete history of edits made to an observation and

show a detailed flow of knowledge as it passes through the network.
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Chapter 6

Deployment in the Field

In this chapter, we detail the design and deployment of a modified K-HAS in the

Malaysian rainforest. We also highlight the issues we experienced deploying the ar-

chitecture in a humid, dense rainforest for use by those without domain knowledge of

WSNs.

Experiments carried out in the rainforest had already shown that the range of wireless

communications could be reduced by up to 80% and we expected that the lifetime of

nodes in such conditions would be affected, based on experiments explained in Section

3.3.

Yearly visits were made to the Danau Girang Field Centre (DGFC) to test different

nodes, gather knowledge and trial iterations of K-HAS. The first visit showed us just

how much the rainforest affected communications, but also allowed us to gather know-

ledge from researchers and cameras that had previously been deployed. Subsequent

visits were then used to test our own nodes and software, based on the knowledge we

had gained from the first visit, explained in Section 3.3. We developed K-HAS with

a view to deploying it in Malaysia, however, it soon became clear that our design was

beyond what was currently available, as well as the time constraints.

Developing a camera with both wireless and processing capabilities, as well as being

waterproof, proved to a be an extremely difficult task, while wireless wildlife cameras

were already commercially available with range much higher than what our experi-

ments had yielded. This could be because of their test environments being places such
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as American forest with less dense foliage, lower canopies and much lower humidity

and using wireless technologies that are not licensed for worldwide use. For our own

node designs, we attempted to use various node types connected to a camera, such as

the Raspberry Pi and Waspmote nodes; both yielded problems with mounting an SD

card that was readable by both camera and node. At the time, we were unable to create

a camera combined with a node that could be left untouched for months at a time in a

rainforest.

However, we still needed to implement a network to evaluate our approach, thus we

developed a modification to the K-HAS that utilised the latest commercially available

hardware to provide an architecture that provides similar capabilities. Because these

changes were made due to issues with deployment in Danau Girang, we chose to name

it LORIS, after a famous animal in Malaysia. A Slow Loris is a small, nocturnal prim-

ate commonly found in South and South-east Asia but in our context it is an acronym

that stands for Local-knowledge Ontology-based Remote-sensing Informatics System.

LORIS has been developed specifically for the Malaysian rainforest, our motivating

scenario and, as such, much of the hardware and software has been implemented to

reflect this.

The rest of this chapter is structured as follows. Section 6.1 highlights the changes

we had to make from K-HAS and explains the hardware used at each tier. Section 6.2

explains how we planned and deployed the network. Section 6.3 details the results from

the deployment in Malaysia and Section 6.5 concludes the chapter with a summary of

our results.

6.1 Deployment Architecture

The aim of LORIS was to keep as much of the architecture of K-HAS as possible and

reuse the ontology without the need for modification; serving as a form of validation.

In order to do this, we identified the tiers of the network that could be deployed in the
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rainforest, given the hardware and wireless constraints, and the areas that needed to be

addressed. Regular power and cheap computers with good knowledge-processing cap-

abilities meant that DA nodes were simple to deploy and, with the growth of powerful

microcomputers like the Raspberry Pi, DP nodes were also in abundance. However,

finding a reliable camera that could integrate with a node capable of processing obser-

vations that was also reliable enough to withstand the humid rainforest proved to be

difficult.

6.1.1 Data Collection

Experiments were run yearly in Malaysia to test the performance of variations of hard-

ware. As covered in Section 3.3.1, the first year involved testing the range of Wi-Fi

with an IGEP board. The limited range of 30m meant that, despite the high trans-

fer rate, it was not possible. Wi-Fi was not designed for use in resource-constrained

sensors, so the power consumption of the radio meant that it limited the lifetime of the

node.

The following year, we used the Digimesh protocol, explained in Section 3.3.2, which

provided a longer range and was developed for use in sensor networks. While the

range was suitable for the rainforest, it was not as much as we had anticipated. The

other difficulty proved in mounting an SD card on two devices at the same time, the

existing wildlife cameras and our Waspmote nodes, without causing corruption from

read/write clashes.

From these experiments, we began to look into commercial alternatives that combined

both the node and the camera. The most usable solution we found was the Raspberry

Pi coupled with a camera attachment [114], but it was not ready for use in the Malay-

sian rainforest or to be used for an extended unsupervised period. Existing wildlife

manufacturers were then looked into and we found that wireless cameras had been

manufactured, but they had no local processing capabilities and had not been used
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much in research. Reconyx had created a cellular camera that, in Malaysia, could send

images via SMS [95], but cellular coverage on the rainforest floor is not common and

the cost of the camera was high. Based on these findings, we used Buckeye X7R cam-

eras [25], shown in figure 6.1. Using the same Digimesh protocol as the Waspmote,

they had a tested range of 1 mile and their casing had been developed to withstand

harsh environments. The 1 mile range was tested in a more open woodland in the US

but the higher quality components used, as well as their modifiable antenna supported

our theory that we would achieve better range with their cameras.

Figure 6.1: Buckeye X7R and Battery Pack

We expected to achieve around 800m of range and these proved to be suitable DC node

replacements, despite the fact that we had to forgo local processing or the storage of

any local knowledge.
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6.1.2 Data Processing and Aggregation

Because our DC nodes were wildlife cameras that did not have any knowledge pro-

cessing capabilities, and because our DC node sites were near enough to the field

centre, we combined the DP and DA nodes into one desktop stored at DGFC, that

contained both a Digimesh radio and an Internet connection. The benefit of using

commercial grade hardware was the software that accompanied it; remote manage-

ment and configuration software allowed users to modify the settings on each camera,

as well as handling the retrieval of images from every node deployed. EXIF tags writ-

ten to images could be modified, as well as how many images were captured for each

observation. The software had been created to be used by those without any specialist

knowledge and was easily used by researchers in the field centre.

Each observation was saved into a directory that matched the ID of the camera it ori-

ginated from and this meant that the existing software used in K-HAS could be used

without modification. Sensor middleware, such as GSN, is running on the same ma-

chine and virtual sensors listen for changes in each directory; where each virtual sensor

represents a deployed camera.

When new observations are detected, Drools runs on the images to start metadata

and EXIF processing. Some rules had already been extracted from the processing of

120,000 images collected from our yearly visits to DGFC; other rules had to be added

by users of the WSN. When an observation had been processed, rules were run once

again to determine if a match could be made to existing projects and, if so, who should

be notified.

The web interface for classifying and viewing all observations was accessible by those

within DGFC, as well as uploading rule files and new locations. Using this interface

proved to be easier for those without a WSN background and the GSN interface had

a steeper learning curve. Figure 6.2 shows the basic metadata of an observation, out-

lining where it was captured and when; as well as the images themselves.
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Figure 6.2: LORIS Web Interface

6.2 Deployment

In June of 2013, a three week visit was made to Danau Gurang, with three Buck-

eye cameras and the software required to deploy LORIS. The network was first tested

within the field centre and one of the Buckeye cameras had been broken during trans-

port, giving us only two cameras. Due to the protected nature of the forest, we were

unable to nail any cables to trees to use the high gain antenna and it was not possible

to use the cables without first securing them, because animals tampering with cameras

was a common occurrence.

For the initial week of the deployment, we wanted to test the robustness of the network

before focussing on the data. This meant placing the cameras in locations where they

would be triggered often and in an area where they would be affected by rainfall and

humidity. Figure 6.3 shows the locations of the cameras during both of the weeks that it

was deployed. Buckeye 1 was deployed for the first week along the main path leading

to the field centre from the river, this experienced the most traffic due to the number of
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researchers present at the time.

The cameras were initially configured to send a single image for each trigger, as op-

posed to the three that is used by the current Reconyx cameras at DGFC, because we

wanted to test range and data rate for a single transmission. This was fine for images of

humans but we found that triggers caused by animals could miss and have no content.

We therefore changed the number of images to two so that network traffic was still

minimised, especially as images could only be sent when power was available at the

field centre.

Figure 6.3: Camera Locations Around Danau Girang

6.2.1 Direct Connection

For six days, we tested two Buckeye cameras that were near enough to the field centre

to maintain an active connection to the base station. This meant that no hopping was

involved and cameras were not reliant on each other to transmit images. Buckeye 1 was

placed on a main path that guaranteed human foot traffic and Buckeye 3 was placed on

a trail in the forest that, while experiencing minimal foot traffic, was expected to yield

small mammals and birds.

For the duration of the six days, the cameras did not report a drop in battery levels and
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a total of 1076 images were sent. Buckeye 1 was in a more open environment, despite

being further away, and average speeds of 4KB/s were achieved.

Transmissions from Buckeye 3 were significantly hampered by the dense forest that

it was surrounded by, as well as the fact that a low-gain antenna was used. We also

speculate that the field centre itself acted as a barrier to the signal, as the base station

was located on the opposite end. Because of this, we experienced an average speed

of 1.2KB/s, taking around three minutes to receive an image. This is consistent with

experiments conducted in previous years where dense, humid forest has led to a de-

creased range of, up to, 78%. Lower frequencies do experience a longer range, but the

data rate is significantly impacted.

6.2.2 1-Hop Network

For a further five days, Buckeye 1 was moved further into the forest and Buckeye 3

was set up as a routing camera that forwarded images onto the base station, 63 images

were taken during this period.

The location of the moved camera is also shown in Figure 6.3. As was expected, the

traffic of the network reduced significantly when the cameras were moved from the

main path, with almost all 63 pictures being of animals. Due to animals moving a lot

faster than humans, the number of pictures taken per trigger was increased to two, this

would ensure network traffic was not overwhelming while increasing the chance of

capturing the subject.

Surprisingly, the speed of transmission from Buckeye 1 was faster than Buckeye 3,

despite being routed through it, with an average speeds of 1.8KB/s.
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6.3 Results

Deploying a network for two weeks is not a robust experiment and does not show that

LORIS can withstand months of running without human intervention. However, it

does serve as a proof of concept that, using commercial hardware, a modified K-HAS

network can be implemented and utilise the knowledge of its environment.

The pictures of humans from the first six days are not of use for the current motivating

scenario, focussed on animals in the rainforest corridor, but one could see this network

also being tasked to warn the authorities of hunters in restricted areas of the rainforest.

However, the images we have of animals, while few are animals of interest due to the

proximity of the cameras to humans, were processed and used to create templates for

future observations.

Figure 6.4: First Image of Lizard by Buckeye 3

More interestingly, we were able to infer further rules from the short deployment that
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helped us to narrow down the choice of animals to match to based on the time of day

and location. For example, Figure 6.4 shows a lizard crossing the path of Buckeye 3 in

the middle of the day and Figure 6.5 shows the lizard walking past in early afternoon

on a different day. This allows us to encode a window of time in which the lizard is

more likely to appear onto the static knowledge base of DC nodes or, in the case of

LORIS, onto the DA/DP node. Images an hour later were captured by the camera,

showing the lizard walking in the opposite direction. While this was not every day, and

the deployment time was too short to establish a pattern, it does help us to infer that a

lizard passing by in early afternoon is likely to walk the same path approximately an

hour later.

Figure 6.5: Second Image of Lizard by Buckeye 3



6.4 Rules 130

6.4 Rules

This section explains the rules used in LORIS and K-HAS in more detail, to highlight

how classifications are made as well as how nodes in the network are monitored. Any

examples made here relate to our motivating scenario. The rules on each node are a vi-

tal way of encoding local knowledge and a practical use to show how local knowledge,

from users or previously sensed data, can be used classify newly sensed data.

As highlighted in Section 4.3.4, K-HAS uses the Drools rule engine, a Java based rule

management system that uses forward chaining based inference. Forward chaining

starts with some data, in our case a set of images, and uses inference rules to extract

more data. We use this method to make meaningful inferences from properties of the

sensed data. For example, an image taken at 8pm could be run through Drools and an

inference rule will tell the system to start by looking for nocturnal animals.

6.4.1 Data Processing and Data Aggregation

The increased knowledge-processing capabilities allow DP nodes to run a complete

implementation of Drools, this means that forward chaining can be used and the know-

ledge base is dynamic, i.e. it can be updated whilst the network is deployed.

Rules are written in drl files that are loaded into a knowledge session. Sessions, as

well as the firing of rules, are handled by the Java code. The benefit of using Drools

with a Java based middleware, such as GSN, allows the simple integration of the two

technologies, allowing a sensor class in GSN to insert an archive into the session and

run the rules. When sensed data is received from a DC node, it is unarchived and

Drools is run on the DwC files describing the original observation, the metadata, the

originating DC node and the knowledge base of the DP node.

Listing 6.1 shows a psuedocode example of some more simple rules that could be

contained within the knowledge base, a full listing is in Appendix D. In a rules file,
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existing local knowledge is used with the properties of a new observation to infer the

contents and then update the DwC archive, or return suggestions as to what the contents

may be. For example, the sample rule uses the location ID of the camera to check if

it is near a plantation and uses local knowledge of the area and global knowledge of

the time to infer that the image may contain a sun bear or Malay civet, based on the

knowledge that they have been known to forage in the plantation at night when there are

no humans. This rule maps to the terms defined in the ontology (Chapter 5) where the

individual is a sun bear or a Malay civet, the evidence is an image and the occurrence

is the DwC archive created by the triggering of a DC node.

1 rule "Plantation night"
2 when New_Sensed_Data
3 if location of node is Plantation and time of day is night
4 write to file set.CSV
5 dateIdentified = \today
6 identifiedBy = node ID
7 Print "Likely a sun bear or Malay civet"

Listing 6.1: Pseudocode of a Drools Rules File

These rules are very simple and only scrape the surface of the local knowledge that can

be utilised, as well as how DwC archives can be effectively used to carry the data of

these inferences, but it does show that Drools is a powerful rule engine and that these

rules can be extended further to make full use of the knowledge base.

DA nodes use the same rule engine as DP nodes but rules are used for the post-

processing of Darwin Core archives. For example, when a classified archive is received

from a DP node, Drools is run to check if the classification matches an existing project.

If it does, then it searches for those that are subscribed to the project and notifies them

via their selected medium. Drools can also be used to monitor the nodes deployed in

the network and check their status. Rules are run to check for archives from DC nodes

and, if a node has not sent an archive in a set number of days, then administrators are

informed that it may have run out of battery.

More importantly, rules are vital for the exchange of knowledge between nodes in the

network. If a user classifies an observation on a DA node, then rules are fired that
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identify the DP node that sent it and update the knowledge base, on the original DP, so

that the image template it uses in future classification matches the one identified by the

user.

6.4.2 Existing Data

Throughout our visits to Danau Girang, we collected local knowledge through field

work and interviews with the researchers based at Danau Girang. As well as this, we

collected species classifications made by the researchers for images that had been taken

during camera deployment. Using these data, we have extracted patterns in animal

movements in order to create some basic rules for the DC and DP nodes. In this

section, we will describe the data we have and the methods used to extract rules.

Semi Structured Interviews

On our final visit to Danau Girang, we designed a set of 14 semi structured interview

questions that we asked to ten researchers based at the field centre, with the majority

working on different projects. We used these questions to gain insight into common

trends between projects and patterns recorded about the animal subjects. A subset of

the questions have been listed below:

• What species are you looking at?

• Do you have specific sites that you look into?

• What specifics do you know about the target species?

• Do others use your research? If so, how?

These questions have been designed to be as open as possible to allow the interviewees

to provide as much detail as they wish, or even transition to a different topic. The
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interviews were recorded and later transcribed to text. We then used a software pack-

age called Dedoose [33], which is an online tool that assists with performing manual

qualitative analysis on text based documents. Uploading our documents to the service

allowed us to manually review the responses to each question and highlight, or ‘tag’,

excerpts of interest and link to other excerpts that had either been mentioned by an-

other interviewee; or were related to other comments. Each excerpt was tagged with

the subject it was discussing, for example, a comment on the accessibility of an area

of the forest during certain times of the year were tagged as local knowledge. The ex-

cerpts were combined and exported into a CSV file that detailed who the interviewee

was, the content of the excerpt and the tag. Appendix E shows a complete interview

transcript with a researcher about the clouded leopard and Appendix F provides an ex-

tract of the same interview, once it has been annotated within Dedoose. The extract

included shows an example of questions that were spawned from asking about specific

sites and exploring further based on the answers given and show highlighted texts that

have been tagged and coloured, by Dedoose, based on the tag. The extract can be seen

in Appendix E from lines 22 to 35.

These face to face sessions gave us insight into patterns and observations that research-

ers had learnt during their months, or years, at Danau Girang; something we would

have otherwise been unable to learn in our short periods at the field centre. An example

of this is learning that the clouded leopard is not nocturnal around Danau Girang, while

it is in the rest of the world. It is common knowledge that clouded leopards are noc-

turnal animals but they have been seen at all hours of the day around DG. Researchers

believe that this could be due to the fact that the rainforest is secondary, growing back

after heavy logging 40 years ago, or human impact from palm oil plantations that bor-

der the edges of the rainforest or the availability of prey. Whilst the local knowledge

that clouded leopards can be seen throughout the day cannot be directly encoded as

a rule, it does mean that the animal can be removed from rules that may filter out

nocturnal animals as possible classifications for images captured during the day.
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While we were not able to construct a full set of rules from these findings, the results

have provided support for patterns extracted from existing data that has been classified

by researchers, which we discuss further in the next section.

Existing Data

When images are manually collected at Danau Girang, researchers process each image

set and they have recently been recording the classifications. However, these classi-

fications are only being recorded for currently ongoing projects and other images are

ignored. During one of our visits, we collected a CSV file of 2650 confirmed spe-

cies classifications made by researchers. The data had not been cleaned and multiple

users had used different names for the same species, we cleaned the data manually and

matched it with the images in our database. We then used the classifications for each

species to determine any patterns by analysing the details recorded for each observa-

tion, which are listed below:

• Time

• Date

• Location

• Temperature

• Moonphase

• Classification

SQL queries provided these details for each species and we recorded patterns that

could be identified. For example, if a Samba Deer was only spotted between the hours

of 7pm and 4am then we could write a rule that the species is nocturnal. More detailed

rules can be created if there are patterns across multiple details. A species that is only

spotted in two of the twenty sites between the hours of 7pm and 4am means that nodes
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with local knowledge can make accurate classifications without the need for image

processing. However, these rules are based on large amounts of data collected from an

active, or previous, deployment. DC nodes in their early deployment stages would not

have the data to make such detailed rules.

Stored procedures were created to join the results from multiple tables and manually

explore patterns in the data for the individual species. However, many species either did

not have enough observations or the observations they did have had so much variation

that there was no discernible pattern. If this work were taken further then we would

like to have our entire dataset classified by professionals and Danau Girang is currently

undergoing this process for all images taken since the camera trapping project began.
1 if TIME > 1500 and TEMP <= 26:
2 if TIME < 0000:
3 if MOONPHASE <= 2:
4 CLASSIFICATION = GOAT (25\% chance)
5 if MOONPHASE > 2:
6 if DATE in JAN:
7 CLASSIFICATION = HUNTER (2.6\% chance)

Listing 6.2: Example Rule created from Existing Data

Using the Weka package [54], we initially constructed a J48 decision tree (an open

source Java implementation of the C4.5 algorithm [90]) but found that the accuracy

was only 27% and the rules extracted from the model related to individual times that

had only seen a single observation. From this, we then used a decision table [64]

within Weka that created a model yielding an accuracy of 53%. We used the resulting

model to extract a collection of 281 rules that could be run on a DC node. Figure 6.2

shows a rule that was created from the output. This rule checks the time of capture for

the observation, the temperature and the moonphase; which has been converted into a

numeric value. If the temperature is fewer than 26 degrees and the time is between 3pm

and midnight, then there is a 25% chance of the species classification being a goat. The

if-statements are executed in order and the classification that matches the properties of

the observation, and has the highest percentage chance, is forwarded to a DP node.

With Weka, we experienced the same problem as with SQL, we only had 2700 classi-

fications made by people with domain knowledge, so any models generated from Weka
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were limited not just to those species in those classifications, but to those species with

a sufficient number of observations. Of those 2700 classifications, there were only 45

different species and some had fewer than 10 sightings. For example, the set we used

primarily contains goats and the resulting model provided 84% accuracy when given

an observation of a goat. However, the Malay badger had very few sightings in the set

and the model only yielded 17% accuracy. With future work, we would like to add new

classifications to this model and test it extensively with new, unclassified data, as well

as add more variables on top of moonphase, temperature, date and time but ensuring

they are variables that would be available to data collection nodes.

Because the features used to generate the rules are available in every observation, and

do not require any external information, DC nodes are able to process the series of

if-statements quickly. This method of knowledge-processing comes at the cost of ac-

curacy, when compared to using existing data, image processing and/or a dynamic

knowledge base, but the speed and simplicity of these rules mean that they can be used

by almost any node, regardless of computational capability.

6.5 Conclusion

K-HAS was developed, with the motivating scenario in mind, as an ideal, general-

purpose network architecture that is able to utilise the knowledge of its environment.

However, experiments to support the design and deployment of such a network within

the timeframe of this PhD showed that the current technology was not ready to support

a network that would run without human intervention for extended periods. LORIS is

our more specialised, cut down approach that can be implemented using commercial

hardware that is readily available, as well as software that we have open-sourced.

Our deployment in Malaysia has shown that local knowledge can assist with classific-

ations and can be gained from even a few images collected within the first few days

of deployment. Ideally, we would like to leave this network running for an extended
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period to infer rules from the sensed data and test the reliability of the network in harsh

conditions. From both the visit and the deployment, we have offered evidence for the

existence of local knowledge and provided a method that can be used to extract it from

field experts.

The rules extracted from the interviews and classified data we collected while deploy-

ing LORIS can be used as a static knowledge base for DC nodes in the K-HAS archi-

tecture, or as the basic starting knowledge base for the DA node in LORIS. As more

classifications are made to new sensed data, this same process can be used to create

new rules for previously unrecorded classifications, as well as refine existing rules.

The testing of these rules have been drawn from a small set of existing data collected

from Danau Girang, although we believe the results are promising enough to show that,

in principle, local knowledge could be used to make accurate classifications on sensed

data and a larger dataset could generate more specific, more accurate rules in order to

do so.

LORIS has shown that local knowledge can be used to enrich sensed data, and automate

classification, when it has been received at the field centre, but we maintain that K-

HAS’ aim of pushing local knowledge right out to the edge of the network makes a

network more effective and allows for a more timely delivery of important sensed data.

The main drawback of LORIS is that it relies on the chronological delivery mechanism

used by the commercial cameras, whereas K-HAS can improve this mechanism by

sending the data that it infers to be of a higher importance, rather than what was simply

captured first.
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Chapter 7

Simulation Experiments and

Evaluation of the Architecture

In this chapter, we present the results of simulation experiments developed to evaluate

and explore choices offered by our K-HAS architecture. Using nodes with knowledge

processing capabilities to deliver interesting data quicker than a standard WSN, we

have developed a simulation for our proposed architecture, K-HAS, as well as vari-

ations on the knowledge processing capabilities of the nodes at each tier.

The simulations were developed to determine whether K-HAS is the best mix of data

processing and data collection nodes that splits between minimal knowledge processing

to prioritise from the edge and high knowledge processing towards the centre to provide

more accurate prioritisation, thus minimising the transmission time of interesting data.

This was done by using a network structure, that matched our motivating scenario, and

changing the knowledge processing capabilities on each node at every tier; ranging

from no knowledge on every node to the maximum knowledge processing capabilities

across the network. We aim to show that the more knowledge processing capabilities

that are pushed out towards the edge of the network, the more effective the network be-

comes at prioritising data that it believes to be interesting and delaying what it believes

to be empty.

This chapter is structured as follows. Section 7.1 describes the tool used to develop

the network. Section 7.2 outlines the scenarios used in our experiments and Section
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7.3 describes the parameters used to configure each run and what was observed. Fi-

nally, Section 7.4 explains the results from multiple runs and Section 7.5 concludes our

findings and highlights areas that require further experimentation.

7.1 Simulation Environment

Using RePast Simphony [29], an agent-based network simulation tool developed in

Java, we created a network to emulate K-HAS. RePast is an agent-based modelling

system that allows for agents to be created and placed on a grid. Ticks denote a period

of time and simulations can run for a fixed number of ticks, or until stopped. Ticks can

also be used to schedule events, such as searching for neighbours, by calling methods

that last for a set number of ticks, or begin at a particular tick. For example, a camera

sensor node may be tasked with taking a picture every three hundred seconds. When

the simulation reaches three hundred ticks (or six hundred, nine hundred, twelve hun-

dred and so on), a scheduled event is run to simulate the camera’s capture of an image

and transmitting it to an endpoint.

RePast was chosen because we did not require the low level network configuration

provided by other tools, such as NS2 [78] or the MultiAgent Simulation Environment

(MASON) [70], but we did need to modify and record the behaviour between nodes

as they capture and process sensed data. RePast’s event scheduling allows for nodes

to be modelled as agents and the dynamic configuration allowed us to modify the sim-

ulations during run time. The aim of these simulations was to visualise how different

knowledge processing capabilities can affect the prioritisation and transmission time

of observations, as well as the accuracy of their classifications. RePast allowed us to

utilise existing Java code we were using in our K-HAS middleware and develop a base

simulation that could be configured easily with XML files.

Simulations are shown in a GUI that allows the network to be visualised and con-

figured, with results exported to other applications, such as MATLAB and R.
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7.2 Simulation Scenarios

While the aim of these simulations was to show the effectiveness of K-HAS over the

current solution, we also wanted to determine if it was the best tradeoff between factors.

We believe that the solution to reduce transmission time of interesting images and re-

duce the number of undelivered observations would be to attach nodes with high know-

ledge processing capabilities to all cameras in the network, however we experienced

shorter battery life with more powerful nodes and that could mean that replacements

would be made as often as the current manual solution, detailed in Section 3.1.

Throughout this chapter, we will be referring to nodes tasked with different purposes

as the three definitions listed here. K-HAS is a tiered network architecture, with a

hierarchy similar to that which is described in Section 2.2.3, below we have described

the nodes at each tier :

• Sensing Node (SN): A node that has been tasked with capturing sensed data and

forwarding from other sensing nodes to a processing node.

• Processing Node (PN): A node that acts as the cluster head for sensing nodes;

it is tasked with receiving sensed data from sensing nodes, processing it and

forwarding to the central node.

• Central Node (CN): A node with similar functionality to a typical base station,

tasked with storing all sensed data and providing an interface to users.

At the processing and sensing tier, the degree of knowledge processing capabilities can

range from the levels outlined below:

• No Knowledge (NK): The node possesses no knowledge processing capabilities.

• Minimal knowledge (MK): The node possesses basic knowledge processing cap-

abilities and contains a static rule base (Section 4.2.1).
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• High Knowledge (HK): The node possesses high knowledge processing capab-

ilities and is able to process data, metadata and use a dynamic rule base (Section

4.2.2).

The scenarios we have tested show various combinations of knowledge within the net-

work, as well as the combination of knowledge processing at the centre, as a baseline.

We can list all the scenarios in a triple that highlights the knowledge level at each tier.

The leftmost descriptor is the knowledge level for sensing nodes, the middle describes

processing nodes and the rightmost is the knowledge level for the central node. The list

below describes each scenario and are ordered to highlight the progression of pushing

knowledge from the central point of the network out to the edge:

• NK-NK-MK: Sensing and processing nodes have no knowledge processing cap-

abilities with minimal processing capabilities on the central node.

• NK-NK-HK: Sensing and processing nodes have no knowledge processing cap-

abilities with high processing capabilities on the central node.

• NK-MK-NK: Sensing nodes possess no knowledge processing and processing

nodes have minimal knowledge.

• MK-NK-NK: Sensing nodes possess minimal knowledge processing capabilit-

ies.

• MK-HK-NK (K-HAS): Sensing nodes have minimal knowledge and processing

nodes possess high knowledge. This scenario matches the K-HAS architecture

we proposed in Chapter 4

• HK-NK-NK: Sensing nodes have high processing capabilities.

The higher knowledge processing capabilities of HK nodes allow them to classify ob-

servations with a greater accuracy, but their battery life is much shorter than MK nodes
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due to their increased power needs (Section 3.2). In contrast, MK nodes can run for a

longer period without requiring battery replacement. MK nodes, however, are unable

to classify observations to the same level as HK nodes. While HK nodes can classify

an observation as interesting or empty, MK nodes can only assume an observation is

interesting using the image’s metadata as they lack the capabilities to reliably determ-

ine whether an observation is empty or not. The scenarios we have implemented cover

combinations of HK, MK and NK, in a twenty five node network. We use twenty five

nodes because DGFC had between twenty and twenty two active cameras during our

first and second visits and we knew that the first implementation of the network would

require a single endpoint. From this, we chose to use four processing nodes so that

each could handle an equal number of sensing nodes, if they were all within range, and

a single central node. Our experiments in Danau Girang were restricted to a smaller

number of nodes, due to cost, but we expected to deploy a sensing node onto all of the

active cameras. The hierarchical nature of the network is shown in Figure 7.1, with

green nodes representing sensing nodes, yellow nodes representing processing nodes

and the red node representing the central node. Blue arrows depict slower Zigbee links

between sensing and processing nodes and the yellow arrows represent faster Wi-Fi

links between processing and central nodes.

Before implementing, we designed the agents required based on the nodes described

in the ontology we proposed in Chapter 5. Using that, we created a hierarchy of nodes

inheriting common properties from a node object. As previously mentioned, we had

metrics on range and transmission times from previous experiments and the deploy-

ment of LORIS. We used these to create properties for each transmission medium that

could be used by each node object. Table 7.1 shows how the K-HAS terms, introduced

in Chapter 4, and LORIS terms, detailed in Chapter 6, map to the node types described

above. The nodes used in our simulations map directly to the ontology.

Using a Java library we developed for DwC archives during the implementation of

LORIS (Section 6.1), we were able to implement DwC archives as the data standard in
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Figure 7.1: Simulation Example in RePast Simulator

Network Type Original Term Maps To
K-HAS DC Node Sensing Node + MK

DP Node Processing node + HK
DA Node Central Node + HK

LORIS Buckeye Sensing Node + NK
DA and DP Routing/Central Node + HK

Table 7.1: Mapping of K-HAS to Simulation Terminology

our simulations, this allowed us to model the prioritisation of sensed data, as well as

the classification of observations, in the same way that a K-HAS deployment would.
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7.3 Network Setup

7.3.1 Parameters

The parameters used in these simulations were either gained through experiments per-

formed at Danau Girang, gleaned from the data or extracted from technical specific-

ations. Repast allows these parameters to be set in a configuration file and can be

manipulated once loaded into the simulation. An example of this file can be seen in

Appendix H. The table below outlines the parameters we have used and some that

require further explanation are covered in this section.
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Parameter Description Value(s) Constant? Observed?

SN Count The number of sensing nodes in the network 20 Yes No
PN Count The number of processing nodes in the network 4 Yes No
CN Count The number of central nodes in the network 1 Yes No
Height The height of the available space 1200 Yes No
Width The width of the available space 1200 Yes No
Capture Chance The chance of an observation being captured each second

in normal circumstances
0.000857703189 Yes No

Interesting Chance The chance of an observation containing an item of interest 0.207 Yes No
Transmission Rate The transmission rate of sensing nodes in the network Ideal or Variable Yes No
SN Transmission
Rate/kbps (Zigbee)

When Transmission Rate is set to ideal, this is set as the
maximum. Variable sets this randomly between 20 and the
maximum

20-250 No No

SN Transmission
Range/metres (Zigbee)

The transmission range of Zigbee 30 Yes No

PN Transmission
Rate/kbps (Wi-Fi)

Always set as the maximum due to the proximity to the
central node (kbps)

54000 Yes No

PN Transmission
Range/metres (Wi-Fi)

The transmission range of Wi-Fi (metres) 200 Yes No

Bandwidth Determines the available bandwidth in the network, if ‘sat-
urated’ then the chance of capture is increased ten fold

Normal or Satur-
ated

Yes No

HK Processing
Time/secs

Time to process an observation with high knowledge pro-
cessing capabilities (Central Node or Processing/Sensing
Node)

30 (CN) or 43
(PN/SN)

Yes No

MK Processing
Time/secs

Time to process an observation with minimal knowledge
processing capabilities

5 Yes No

Observation Size/KB Size of the generated observation, the combination of 3 ran-
domly generated image sizes

1362-2598 No No

Transmission
Time/secs

The time an image takes to pass through the network, from
point of capture to being received by the central node

- No Yes

Table 7.2: Parameters Used to Configure Repast Simulations
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Transmission Rate

Each scenario, listed in Section 7.2, can be run with either a variable or ideal transmis-

sion rate. This means that the transmission rate of a sensing node can be fixed at the

maximum rate at the start of each run or a randomly generated number (between 20

and the maximum) is set at the start of each run. The maximum value was taken from

the Zigbee technical specifications.

Bandwidth, Capture Chance and Interesting Chance

As with transmission rate, each scenario can be run with the bandwidth under normal

or saturated load. When the bandwidth is normal, the chance of capture is the value

shown in Table 7.3.1, but saturated increases that chance ten fold. A random number

is generated on the sensing node every second and compared with the capture chance,

generating an observation if the value is less than the chance.

Using the existing data collected from Danau Girang, we calculated how often a camera

triggers in a six month deployment, as well as how often the observation contained

interesting content.

To calculate the count of interesting images, we processed every directory of images to

extract the largest object in the foreground, using our Triton program. Once processed,

we iterated through every directory, counted the total number of images and the total

number of extracted images; an extracted image is a black and white image containing

the largest object that has been found in the observation and are only created when the

processing believes that the observation is interesting. This gave us a 20.7% chance of

an image being interesting, across every camera.

The chance of a camera being triggered each second was calculated by the total number

of observations (13,399) divided by the number of seconds in six months (15,552,000).

This gives a chance of 0.000861561 of a camera trigger in any given second.
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Transmission Range

From our experiments at Danau Girang, see Section 3.3, we tested the range of Wi-Fi

and Zigbee in a humid rainforest, using those values we set the transmission range as

the maximum that we achieved during our experiments.

Observation Size

Using the observations we extracted from Danau Girang, we listed the size of all

120,000 files and extracted the minimum and maximum size from the set, when an

observation is generated in RePast, it consists of three images and each image is a

randomly generated size between the maximum and minimum bounds outlined in the

table.

Processing Times

While the processing times are fixed, central nodes can perform higher knowledge

processing slightly faster and they are able to process up to 4 observations at once,

whereas processing and sensing nodes can only process one at a time.

Run Count and Duration

Each scenario is configured to run for a period of three months, this is solely due to

time constraints due the run time of each simulation. Tests showed that three months

was a long enough period to model a saturated network and the capture chance is kept

at the six month chance because the network would be deployed for six month periods

and these runs serve to show a snippet of their deployment, rather than cover the whole

period.

Twenty five runs were completed of each scenario, as well as for the possible combina-

tions of transmission rate and bandwidth. For example, a network simulating NK-NK-
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NK would have 25 runs for ideal transmission rate and normal saturation, 25 for ideal

transmission rate and saturated bandwidth and so on.

7.3.2 Routing Protocol

The routing protocol used needs to be dynamic in order to adapt to nodes being added

and removed during deployment, while minimising traffic in a resource constrained

network. In our approach, we use a modification of the Minimum Cost Forwarding

Algorithm (MCFA), described in Section 4.3.5. A cost is assigned to each node, based

on how far they are from the central node, with neighbouring nodes choosing to connect

to the node with the lowest cost. However, in normal implementations of MCFA, all

nodes are of the same type and simply need to connect to a central node. This modified

MCFA is used in all scenarios.

In our K-HAS architecture, sensing nodes cannot connect directly to a central node

because processing would not take place. Because of this, we used the same routing

method across all scenarios. Our implementation of MCFA works with a discovery

phase and a transmission phase. The discovery phase is a scheduled event, taking

place at the start of deployment but it can be run throughout deployment to react to

nodes being added or removed.

Discovery

Discovery begins at each central node, scanning nodes in range for processing nodes

and sending a broadcast packet, with a cost of 0, to inform them that they are within

range of a central node. Links between Central and processing nodes use W-Fi in all

of our scenarios. Once received, processing nodes increment the count and forward

the packet to any processing nodes within range of them, where we use the range of

Zigbee. We found that this method overloaded the processing nodes and all sensing
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nodes within range would connect to the first processing node they receive the broad-

cast from. We then implemented a method, called load balancing [48], which uses the

sensing nodes connected to a processing node to calculate whether it should offload

new nodes to a neighbouring processing node.

The maximum connections a processing node can have is determined by the total num-

ber of sensing nodes in the network divided by the total number of processing nodes,

which is held in the knowledge base of the central node. Once a processing node has

the maximum number of connections allowed, it starts to offload to a neighbouring

processing node that is also in range of the sensing node requesting a connection. If

there are no neighbouring nodes then the processing node exceeds the maximum num-

ber of connections allowed, to save sensing nodes being left with nowhere to send their

data.

If the sensing node that receives the broadcast does not have an existing route to a

central node, or the cost of the current route is higher than the received route, it adds an

edge to the processing node, increments the count and forwards it to all nodes in range.

This process continues until the broadcast reaches the edge of the network. Nodes do

not have global knowledge of the route to the central node, only of their neighbour

with the lowest cost. This can be seen in Figure 4.9 in Section 4.3.5.

This phase can be repeated throughout the course of the deployment, simply by schedul-

ing it as an event to occur every n ticks. However, the simulation currently only uses

the discovery phase at the beginning of the deployment.

A sensing node will always be at least 2 hops as all observations must go through a

processing node. However, as seen in Figure 7.1, there could be more hops depending

on the node’s position within the network. All hops between sensing and processing

nodes use the slower Zigbee transmission medium, to allow for a longer range, while

the final link between the processing and central node uses a faster Wi-Fi connection.
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Transmission

Once the discovery phase has been completed, providing nodes are within range of the

central node, the transmission phase begins where only DwC archives are then sent

across the network. Observations are captured based on the mode of the simulation

and sent to the lowest cost neighbour.

In order to manage transmissions, nodes have a SendState object that contains the next

archive to send, the time it will take to send it and whether it is currently sending. This

is used to determine what operations to perform. Once an archive has been sent, it is

deleted from the SendState and the sending flag is set to false. A new archive is then

added and sent when the opportunity arises.

When a processing node receives the archive, it begins processing. processing nodes

use the SendState as well, but they only add an archive once it has been processed and

they then select the oldest archive that has been classified as interesting, providing an

archive is not already waiting to be sent. The archive stores information about the route

it takes, recording every hop, as well as the time it took from capture to central node.

Scheduled sending events run every thousand ticks, which is configurable, to check the

sending state of the node and send any archives in the SendState. The node then waits

for the number of ticks that it will take in order to transmit the archive.

Once the simulation is completed, either manually or through a defined number of

ticks, the archives in each node are iterated over and written to a CSV file, with details

such as the path it took, total transmission time and time of capture.

7.3.3 Observation Transmission

When a node has no knowledge, it simply sends the observation that was first added to

its queue. With MK, it finds the first interesting observation and sends that, if one is

not in the queue then an observation marked as unknown. HK performs much the same
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as MK except it instead looks for empty observation if an interesting cannot be found.

If a node has any form of knowledge processing power, it will not send an observation

unless it has first been processed. Nodes can only send an observation one at a time

and must also wait for the receiving node to be free.

An observation is marked as delivered once it has been received by the central node,

if there is only processing at the central node, then it is only marked as delivered once

the central node has processed it.

7.3.4 Processing

Repast has built in functionality that allows for methods to be scheduled to start at a

certain tick and repeat at set intervals. The way a scheduled method works is that it is

run at the time specified and further scheduled methods can be prevented from running

until it has completed. Much of the node’s functionality is handled in this way. A

processing method is set to run every 10 ticks (seconds) to replicate the functionality

of checking a file system for new observations. The earliest (unprocessed) observation

is found and a processing method is scheduled, depending on the knowledge level of

the node. The function for DA nodes is the same, except they are able to process 4

observations simultaneously. This is shown in listing 7.1 and listing 7.2 shows how

classifications are made.

Observations are passed to the processing methods and those methods run for the spe-

cified durations. High knowledge processing nodes are able to determine an empty

observation with 97% accuracy and detect an object of interest with 82% accuracy. A

random number is generated and compared with these values, to determine how the ob-

servation is classified. Once the observation has been classified, the node marks itself

as not processing to allow a new observation to be classified.
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1 kL = getKnowledgeLevel()
2 if(kL == NoKnowledge OR isProcessing) {
3 return
4 }else{
5 obs = getEarliestObservation()
6 if(obs.identification IS NULL OR (obs.identification NOT NULL AND obs.

identifiedBy.getKnowledgeLevel() < kL)) {
7 if (kL == MinimalKnowledge) {
8 schedule method for minimal processing to run as soon as possible for 5

ticks
9 setProcessing(true)

10 }else if(kL == HighKnowledge) {
11 schedule method for high processing to run as soon as possible for 43

ticks
12 setProcessing(true)
13 }
14 }
15 }

Listing 7.1: Processing Function for DA and DP Nodes

1 void highKnowledge(obs) {
2 rand = generateRandomNumber()
3 interestingAccuracy = 0.82
4 emptyAccuracy = 0.97
5 if(obs.actualContent = "INTERESTING") {
6 if R < interestingAccuracy
7 obs.id = "INTERESTING"
8 else
9 obs.id = "UNKNOWN"

10 }else{
11 if R < emptyAccuracy
12 obs.id = "EMPTY"
13 else
14 obs.id = "UNKNOWN"
15 }
16 if(this == centralNode)
17 obs.processingTime += 30
18 else
19 obs.processingTime += 43
20 setProcessing(false)
21 }
22 void lowKnowledge(obs) {
23 rand = generateRandomNumber()
24 interestingAccuracy = 0.1
25 if(obs.actualContent = "INTERESTING") {
26 if R < interestingAccuracy
27 obs.id = "INTERESTING"
28 else
29 obs.id = "UNKNOWN"
30 }else{
31 obs.id = "UNKNOWN"
32 }
33 obs.processingTime += 5
34 setProcessing(false)
35 }

Listing 7.2: Processing Functions for Nodes
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7.4 Results

In this section, we show plots for each scenario and the variations on bandwidth and

transmission rate. The resulting CSV files from each run were processed with the

R programming language [91] and summary statistics were output to find the mean

transmission time for all observations, interesting and empty, as well as those that

were delivered to the end point during the runtime of the simulation.

Table 7.4 shows the mean number of observations delivered for all runs of each scen-

ario and their variations. We can see that almost all observations are delivered when

the network is not saturated and the transmission rate is ideal, despite Zigbee’s low

transmission rate. An observation is marked as undelivered if it has not yet reached the

central node or, in the case of central processing scenarios, until it has been received

and processed by the central node. As knowledge is pushed out into the network, the

processing time becomes more of a factor (as processing nodes cannot process multiple

observations at once) on top of the transmission time and we can see that this reduces

the number of received observations. MK-HK-NK is the lowest here and we believe

that is because it is the only scenario that processes an observation twice (with MK and

then HK), but we discuss this in greater detail as we analyse the results further. As we

discussed previously, processing on the central node means that an observation is only

marked as delivered when it has been processed. However, the short processing times

(when compared to long transmission times) and the fact that a DA node can process

up to four observations in parallel means that this is not really a bottleneck.
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Mode Bandwidth Transmission Rate All Delivered Undelivered % Delivered

NK-NK-MK normal ideal 44408 44255 153 99.7
NK-NK-MK normal variable 44539 35131 9407 79
NK-NK-MK saturated ideal 444714 129224 315490 29
NK-NK-MK saturated variable 444569 66454 378115 15
NK-NK-HK normal ideal 44481 44478 3 100
NK-NK-HK normal variable 44512 32804 11708 74
NK-NK-HK saturated ideal 444899 134552 310347 30
NK-NK-HK saturated variable 444760 57105 387655 13
NK-MK-NK normal ideal 44501 40614 3887 91
NK-MK-NK normal variable 44429 27981 16448 63
NK-MK-NK saturated ideal 444858 106656 338202 24
NK-NK-NK saturated variable 444649 50643 394006 11
MK-NK-NK normal ideal 44484 44206 278 99
MK-NK-NK normal variable 44533 26307 18226 59
MK-NK-NK saturated ideal 444594 92904 351690 21
MK-NK-NK saturated variable 444989 51225 393764 12
MK-HK-NK normal ideal 44513 40927 3586 92
MK-HK-NK normal variable 44455 23638 20817 53
MK-HK-NK saturated ideal 443211 79864 363347 18
MK-NK-NK saturated variable 444397 46454 397943 10
HK-NK-NK normal ideal 44423 43378 1045 98
HK-NK-NK normal variable 44437 29295 15142 66
HK-NK-NK saturated ideal 445257 97790 347467 22
HK-NK-NK saturated variable 444817 46061 398756 10

Table 7.3: All Observations Captured and Delivered
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7.4.1 Normal Network

When the network is not saturated and Zigbee is able to transmit observations at its

maximum transmission rate, we can see that the transmission time varies largely across

all scenarios (Figure 7.2a). This plot is shown with error bars outlining the mean with

a 95% confidence interval, this was done because the standard deviation showed such

variation that the error bars ranged from a few hundred seconds to tens of thousands for

each scenario. NK-NK-MK shows the lowest transmission time for all observations

but it is only able to accurately identify 10% of interesting observations and cannot

identify empty observations. NK-NK-HK is not visible in the figure because it has such

a low mean transmission time (206 seconds), this appears to be an anomaly that is not

apparent in other scenarios, but is consistent across all runs of normal bandwidth and

ideal transmission rates. MK-HK-NK is higher than even MK-MK-MK because of its

increased processing time, although MK-HK-NK is able to more accurately determine

truly interesting observations. Whilst HK-NK-NK has a high mean transmission time

for all observations, it is clear that the ability of this scenario to accurately prioritise

from the edge significantly reduces the transmission time for interesting observations.

Figure 7.3a shows that all scenarios delivered the majority of the observations cap-

tured. MK-HK-NK delivered around 90% but this is likely due to the processing time

discussed previously. The reduced number for NK-MK-NK was unexpected but we

believe it is because the DP nodes become a bottleneck for processing as they can

only process a single observation at a time. processing nodes are only able to process a

single observation at a time and, when they are the only nodes with processing capabil-

ities, the four nodes take on all observations from every sensing node. In this scenario,

it could be better to pass on some of the processing to the central node since the link

between them is a much faster Wi-Fi link, effectively making it NK-MK-MK. Because

the network was not saturated, the delivered observations are consistent with the con-

figuration parameters outlined in Table 7.3.1. When the transmission rate varies, we

see a greater decrease in the number of delivered observations, show in Figure 7.3b.
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With the exception of HK-NK-NK, as knowledge processing capabilities are pushed

out into the network, the fewer observations are delivered. This is consistent with Fig-

ure 7.2b as the transmission times also increase. HK-NK-NK is able to accurately

prioritise from the edge, and every sensing node has processing capabilities, so it does

fit that the mean transmission time would be reduced with this scenario, also allowing

more observations to be delivered.

With a variable transmission rate, nodes could transmit anywhere from 20kbps to the

maximum 250kbps that Zigbee provides, Figure 7.3b shows how this affects the num-

ber of delivered observations, reducing the number of delivered observations as know-

ledge is pushed out. MK-HK-NK delivers the fewest, most likely because observations

are processed by both sensing and processing nodes. HK-NK-NK, on the other hand,

deviates from the trend and delivers a much higher proportion, this is again most likely

due to the fact that, even though higher knowledge processing takes longer, the capabil-

ities are on all sensing nodes so there is less chance of a bottleneck situation occurring.

Figures 7.4a and 7.4b both show the same split of interesting vs empty observations

because almost all observations captured for each scenario are delivered when the net-

work is not saturated, so the percentage split is equivalent to the chances of an inter-

esting observation captured shown in Table 7.3.1.
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(a) Ideal Transmission Rate

(b) Variable Transmission Rate

Figure 7.2: Mean Transmission Times for Delivered Observations for a Normal
Network.
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(a) Ideal Transmission Rate (b) Variable Transmission Rate

Figure 7.3: Delivered vs Undelivered Observations for a Normal Network

(a) Ideal Transmission Rate (b) Variable Transmission Rate

Figure 7.4: Interesting vs Empty Delivered Observations for a Normal Network

7.4.2 Saturated Network

The transmission time for both ideal and variable transmission rates is greatly increased

when the network is saturated and we expected these scenarios to show how push-
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ing knowledge further into the network provides more interesting observations faster,

prioritising when the network is aware that it cannot deliver every observation it has

captured.

Despite variable transmission rates, Figures 7.5a and 7.5b show a similar trend. Scen-

arios of central processing gave consistently high transmission times for all observa-

tions, as is NK-MK-NK because nodes cannot prioritise data from the edge. HK-NK-

NK is much faster when delivering interesting observations, which would also reduce

the mean transmission time for all observations but we did not expect to see a reduc-

tion in the time taken for empty observations when compared with other scenarios.

This is most likely because the processing time of HK-NK-NK means that fewer ob-

servations are delivered in each run (Figure 7.6a) but could also be because of empty

observations misclassified as interesting being prioritised through the network as it is

the only scenario that can mark an observation as empty from the edge. However, the

higher accuracy of HK-NK-NK should mean that fewer misclassifications are made.

As we expected, Figure 7.6b shows that, when the transmission rate is variable, fewer

observations are delivered as they take longer to transmit.

Figures 7.7a and 7.7b show the number of interesting observations compared to the

number of empty delivered when the network is saturated. Both show that, as know-

ledge is pushed further out into the network, the percentage of interesting observations

delivered to the central node increases when there is not enough bandwidth available

to deliver every observation captured.
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(a) Ideal Transmission Rate

(b) Variable Transmission Rate

Figure 7.5: Mean Transmission Times for Delivered Observations for a Saturated
Network.
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(a) Ideal Transmission Rate (b) Variable Transmission Rate

Figure 7.6: Delivered vs Undelivered Observations for a Normal Network
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(a) Ideal Transmission Rate

(b) Variable Transmission Rate

Figure 7.7: Interesting vs Empty Delivered Observations for a Normal Network

7.5 Conclusion

The general trend that is clear from all the figures is that pushing knowledge further

out into the network increases the mean transmission time of all observations, when

compared to central, but it does reduce the mean transmission time of the delivery of
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interesting observations, especially when the network is saturated.

These simulations first show that saturating the network simply by increasing the

chance of capture ten fold can have a huge impact on the transmission time of obser-

vations and really tests how each scenario prioritises data within the network. While

processing each observation can take time depending on whether the node possesses

minimal or high knowledge processing capabilities, it does not seem to be the bottle-

neck here. With nodes only having a single radio, sending in parallel is not possible and

waiting for a neighbouring node to be available can delay an observation massively.

Pushing knowledge further out into the network does reduce the time taken for an

interesting observation to reach the central node. When the network is saturated, it is

clear to see how the prioritisation can impact what data is delivered and that higher

knowledge processing capabilities allows for interesting data to be delivered faster and

with a higher priority. The downside to MK-HK-NK is that this processing needs to

occur twice: once at the data collection node and again on the data processing node

and it seems that this adds a delay to observations. However, in many situations, it

may not be possible to put high knowledge processing nodes throughout the network

as they are more expensive.

The figures for both scenarios show that each scenario has benefits that depend on

the purpose of the deployed sensor network. If a network was deployed for quick

delivery of all sensed data to the DA node then central processing is the best scenario

to choose. However, saturation will slow delivery and there is no prioritisation of data.

If you wanted quick delivery of the most interesting data first then this depends on the

accuracy you require. Using MK-NK-NK will give you quick delivery of interesting

data, but the accuracy will be low and much of the data received could be incorrectly

classified. Deploying MK-HK-NK does slow the delivery of data, due to the processing

on both levels, but the network is able to use higher knowledge processing capabilities

to improve the accuracy of classifications, as well as determine whether an observation

is empty or not through the DP nodes. HK-NK-NK is the best option here as it allows
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for high accuracy and prioritisation from the edge of the network.
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Chapter 8

Conclusion and Future Work

In this thesis, we aimed to show that utilising the local knowledge of an environment

in a WSN improves the efficiency of the network by giving it the ability to prioritise

sensed data based on the results of in-network processing. We believe that pushing

knowledge out farther towards the edges of the network improves the overall per-

formance. To show this, we have developed a three-tier WSN architecture that uses

knowledge-processing capabilities to process sensed data as it is forwarded through the

network. Most current WSN implementations deliver data chronologically, or store it

on the node to be retrieved by queries. We believe that this knowledge can be used to

infer how valuable sensed data is and prioritise that through the network, delivering the

most interesting data first. However, resources are still limited in WSNs and our ar-

chitecture had to utilise these resources effectively, such as battery life and bandwidth.

Using Data Collection (DC) nodes at the edge of the network, they capture obser-

vations and use their limited knowledge-processing capabilities to enrich the sensed

data before sending it on. Data Processing (DP) nodes use more powerful knowledge-

processing features to attempt to classify observations and prioritise the sending of

them to Data Aggregation (DA) nodes. DA node make the data available to users and

use their classifications, and input, to dynamically update its knowledge base.

We used a collaboration with a research centre in Malaysia with the aim to implement

K-HAS in the Malaysian rainforest, in an area that had experienced logging and con-

tained a diverse range of rare wildlife. Using K-HAS, we wanted to deploy a network

that would prioritise images of rare wildlife and only send images of common wildlife
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when bandwidth was available. Over the course of 3 visits, we gathered knowledge

from the area, researchers and locals to build a knowledge base and create rules that

could be used to classify data. We also collected images taken from their current,

manual solution to infer patterns and use existing classifications for new sensed data.

Current sensing technology means that K-HAS is not ready to be implemented as the

architecture dictates. DC nodes are not yet readily available, and this is especially

true for image capturing sensor nodes. Because of this, we modified the architecture

to use commercial hardware with fewer capabilities that would allow us to actually

deploy a sensor network in the Malaysian rainforest that does use local knowledge.

We call this architecture LORIS, Local-knowledge Ontology-based Remote-Sensing

Informatics System, and this solution combines the DA and DP node to hold all of the

knowledge-processing capabilities.

LORIS has shown that even using local knowledge at the base station of a WSN means

that sensed data is processed and organised within minutes of being received. This

method also means that users are alerted to data that they have subscribed automatic-

ally.

Our simulations of K-HAS show that the bandwidth in a WSN is used more effectively

when knowledge is pushed out towards the edge of the network, allowing nodes to

perform knowledge-processing to make inferences about the contents of the data and

prioritise, or delay, its delivery appropriately. We have no reason to think that this

would not work in practice.

8.1 Summary of Contributions

In this section, we summarise the contributions detailed in this thesis, focussing on our

deployment in Malaysia, the tiered architecture designed for general use and the align-

ment ontology created to formalise the architecture of K-HAS and the data standard

that it uses.
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8.1.1 K-HAS

In Chapter 4, we present a novel tiered architecture, K-HAS, for WSNs that uses local

knowledge. We explored existing networks, those related to our motivating scenario

in Malaysia and also those that use knowledge or context-awareness, and routing pro-

tocols that use the sensed data to determine how it is routed. We explain the purpose

of each tier in the network and show how sensed data is enriched and routed as it

progresses through the network. Using Darwin Core as a data standard, each node

communicates in a common format and metadata is packaged with data in archives

that can be read by any node in the network. We also show how rules can be used to

infer the content of sensed data and the ability to run rule engines in the network allows

sensed data to be prioritised based on its value; not just the time it was captured.

8.1.2 Ontology

In Chapter 5 we explain the aligning ontology created to formally represent the K-HAS

architecture and the data standard used. We show how, while there are existing onto-

logies that join observation-centric and sensor-centric ontologies, K-HAS allows for

the representation of knowledge exchange in the network and show nodes performing

tasks similar to humans. We also show how the ontology is extensible and does not

need to be specific to K-HAS; it can be used with any WSN that deals with scientific

observations.

8.1.3 LORIS

In Chapter 6, we present the Local-knowledge Ontology-based Remote-Sensing In-

formatics System (LORIS), a system developed for our motivating scenario when we

discovered that current sensing technology means that K-HAS is not ready to be imple-

mented in its current form. DC nodes are not a type of sensor that is readily available,
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and this is especially true for image capturing sensor nodes. Because of this, we mod-

ified the architecture to use commercial hardware with fewer capabilities that would

allow us to deploy a sensor network in the Malaysian rainforest that does use local

knowledge. This solution combines the DA and DP node to hold all of the knowledge-

processing capabilities and then uses commercially available sensors to replace DC

nodes.

This architecture is easier to implement but does not provide in-network processing,

although it automates the delivery of sensed data and uses the increased knowledge-

processing capabilities of modern PCs to process sensed data on arrival and inform

users. We show how our deployment of LORIS was successful and highlighted how

sensed data was delivered within minutes of being captured in some cases, and pro-

cessed shortly after.

8.1.4 Simulations

In Chapter 7, we explain the implementation and results of our simulations to model an

ideal deployment of K-HAS. We model every variable of the network on existing data

collected from our motivating scenario and show that the delivery of interesting obser-

vations can be effectively halved from almost 120 hours (for central and no processing)

down to 64 hours for HK-HK-NK or 80 hours for K-HAS (see Figure 7.5a). We also

outline how the network is able to prioritise data that it believes to be interesting, using

a priority queue mechanism that delays data it believes to be empty.

8.2 Future Work

The focus of this thesis is to show that local knowledge can improve the timeliness of

interesting data by making inferences based on previously sensed data and knowledge

of the environment. We have shown, using simulations, that this can be done with
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our tiered approach. However, another aim was to deploy such an architecture for

our collaborators. We have explained that current technology means that this is not

feasible, but sensing, and microcomputer technology has moved forward significantly

since the beginning of this PhD and it would be possible with a longer time period.

Our deployment in Malaysia was limited due to time constraints and we would haved

liked to leave a functional deployment active in Danau Girang for a six month period.

With more time, we could create custom DC nodes using webcams and micro-computers,

like the Raspberry Pi, encased in a watertight enclosure; allowing us to use higher

levels of knowledge-processing at the edge of the network. A deployment of this

length would also allow nodes to act on sensed data classified by users and update

their knowledge base, responding to changes in the network dynamically.

K-HAS uses a combination of open source projects and some software created during

the course of this work, but it does require specialist knowledge to be deployed. We

would like to create an installation candidate that would be usable by those without

any expertise that could provide basic information on the purpose of the network and

the installation of all necessary packages would be automated.

On top of this, our software’s user interfaces have been tested by researchers at Danau

Girang but we have no metrics on the usability of the software. Testing the software

on users to determine how they would score the different areas of the software, such as

usability, response time and learning curve, would help us to improve the software and

ensure that it can be used by those without any technical knowledge of K-HAS or its

underlying architecture.

Experiments have shown us that the range of wireless transmissions is often hard to

predict and can be heavily influenced by weather and obstacles. If sensors were placed

at the edge of range for a neighbouring sensor, then it is not guaranteed that trans-

missions could be made every time. We believe that using humans as an intermediate

hop could be an interesting research opportunity. Using a mobile app to transfer data

between nodes as they are within walking range could speed up data transfers and their
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knowledge could be used to prioritise data without the need to process it.

If a human views a recent observation when they are in range of a node, they could

make an instant assessment on whether it is interesting or not. If they mark it as such,

then it could be passed through the network with a higher priority and reach a DA node

within a short period as it would not require processing, updating knowledge bases for

future, similar observations as it is forwarded.

One important goal is to create a deployment of K-HAS for a different purpose than

our motivating scenario in Malaysia. There is a need in Malaysia to track hunters in the

forest and alert authorities, this would not require any change in how K-HAS is cur-

rently implemented but would show how it can dynamically adapt based to changes in

its sensing requirements. We would also like to test K-HAS in a situation where power

is no longer a limiting factor, but delivery time of sensed data would be. A building

security network would be one such example, deploying K-HAS across a number of

floors and processing video feeds to alert users within seconds about suspicious activ-

ity.

However, using K-HAS for a WSN that, for example, uses text based sensed data to

monitor the temperature and lava level of a volcano is a completely different imple-

mentation, but the local knowledge could be used to prevent an emergency and predict

eruptions. A deployment such as this would show that the benefit of using local know-

ledge in a WSN is not limited to our motivating scenario, but is versatile enough to

benefit almost any network.

Using heterogeneous sensor nodes within a K-HAS network would also show how

local knowledge can be used in different streams, as well as how they can be combined

to make more detailed inferences. Using motion sensors with microphones could be

used to determine what person/animal is near the sensor and this information can then

be used to infer patterns as fallback sources when an image based classification cannot

be made.
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Our simulations in Chapter 7 show how K-HAS can use local knowledge, but it is by no

means a complete implementation. We need to implement a more modular simulation

that allows K-HAS to be applied to any form of WSN. We would like to simulate

individual knowledge bases on every node and experiment with networks that contain

multiple central nodes to visualise the flow of sensed data through the network and see

if there is an effect, positive or negative, on the speed of interesting sensed data. A

more immediate goal is to test K-HAS when all of the network uses a communication

medium with lower range but a higher transfer rate, such as Wi-Fi, to determine how

much Zigbee slows the delivery of sensed data when compared with processing.

We would also like to experiment with different ratios of knowledge processing capab-

ilities on nodes to determine if there is an ideal ratio that maximises the flow of sensed

data, delivering interesting data first and quickly but also delivering data that has been

classified as not interesting within a shorter time period that would allow humans to

act on the data if it had been misclassified.
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Appendix A

Example Darwin Core Archive

1 <?xml version=’1.0’ encoding=’utf-8’?>
2 <eml:eml xmlns:eml="eml://ecoinformatics.org/eml-2.1.1"
3 xmlns:md="eml://ecoinformatics.org/methods-2.1.1"
4 xmlns:proj="eml://ecoinformatics.org/project-2.1.1"
5 xmlns:d="eml://ecoinformatics.org/dataset-2.1.1"
6 xmlns:res="eml://ecoinformatics.org/resource-2.1.1"
7 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
8 xmlns:dc="http://purl.org/dc/terms/"
9 packageId="e71fda1c-dcb9-4eae-81a9-183114978e44/eml-1.xml" system="GBIF-

IPT" scope="system">
10 <dataset>
11 <alternateIdentifier>e71fda1c-dcb9-4eae-81a9-183114978e44</

alternateIdentifier>
12 <title>Images from Danau Girang during the PTY Project 2011-12</title>
13 <creator>
14 <individualName>
15 <givenName>Christopher</givenName>
16 <surName>Gwilliams</surName>
17 </individualName>
18 <organizationName>Cardiff University</organizationName>
19 <positionName>PhD</positionName>
20 <address>
21 <city>Cardiff</city>
22 <administrativeArea>Cardiff</administrativeArea>
23 <postalCode>CF24 3AA</postalCode>
24 <country>Wales</country>
25 </address>
26 <phone></phone>
27 <electronicMailAddress>C.Gwilliams@cs.cf.ac.uk</

electronicMailAddress>
28 <onlineUrl>christopher-gwilliams.com</onlineUrl>
29 </creator>
30 <pubDate>2012-07-26</pubDate>
31 <language>en</language>
32 <abstract>
33 <para></para>
34 </abstract>
35 <keywordSet>
36 <keyword>Danau Girang</keyword>
37 <keyword>Darwin Core</keyword>
38 </keywordSet>
39 <intellectualRights>
40 <para></para>
41 </intellectualRights>
42 <coverage>
43 <geographicCoverage>
44 <geographicDescription></geographicDescription>
45 <boundingCoordinates>
46 <westBoundingCoordinate>-180</westBoundingCoordinate>
47 <eastBoundingCoordinate>180</eastBoundingCoordinate>
48 <northBoundingCoordinate>90</northBoundingCoordinate>
49 <southBoundingCoordinate>-90</southBoundingCoordinate>
50 </boundingCoordinates>
51 </geographicCoverage>
52 <taxonomicCoverage>
53 <generalTaxonomicCoverage></generalTaxonomicCoverage>
54 <taxonomicClassification>
55 <taxonRankName></taxonRankName>
56 <taxonRankValue></taxonRankValue>
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57 <commonName></commonName>
58 </taxonomicClassification>
59
60 </taxonomicCoverage>
61 </coverage>
62 <contact>
63 <individualName>
64 <surName>Gwilliams</surName>
65 </individualName>
66 <electronicMailAddress>c.gwilliams@cs.cf.ac.uk</

electronicMailAddress>
67 </contact>
68 <methods>
69 </methods>
70 <project>
71 <title>Using Local and Global Knowledge in Wireless Sensor

Networks</title>
72 </project>
73 </dataset>
74 <additionalMetadata>
75 </additionalMetadata>
76 </eml:eml>

Listing A.1: EML File

1 <?xml version="1.0" encoding=’utf-8’?>
2 <archive xmlns="http://rs.tdwg.org/dwc/text/" metadata="eml.xml">
3 <core encoding="UTF-8" linesTerminatedBy="\n" fieldsTerminatedBy=","

fieldsEnclosedBy=’’ ignoreHeaderLines="1" rowType="http://rs.tdwg.org/
dwc/terms/Occurrence">

4 <files>
5 <location>set.csv</location>
6 </files>
7 <id index="0"/>
8 <field index="0" term="http://rs.tdwg.org/dwc/terms/eventID"/>
9 <field index="1" term="http://rs.tdwg.org/dwc/terms/basisOfRecord"/>

10 <field index="2" term="http://rs.tdwg.org/dwc/terms/recordedBy"/>
11 <field index="3" term="http://rs.tdwg.org/dwc/terms/eventDate"/>
12 <field index="4" term="http://rs.tdwg.org/dwc/terms/locationID"/>
13 <field index="5" term="http://rs.tdwg.org/dwc/terms/scientificName"/>
14 <field index="6" term="http://rs.tdwg.org/dwc/terms/identifiedBy"/>
15 <field index="7" term="http://rs.tdwg.org/dwc/terms/dateIdentified"/>
16 </core>
17 <extension encoding="UTF-8" linesTerminatedBy="\n" fieldsTerminatedBy=","

fieldsEnclosedBy=’’ ignoreHeaderLines="1" rowType="http://rs.gbif.org/
terms/1.0/Image">

18 <files>
19 <location>images.csv</location>
20 </files>
21 <coreid index="0"/>
22 <field index="1" term="http://purl.org/dc/terms/identifier"/>
23 </extension>
24 </archive>

Listing A.2: Metadata File

1 eventID, basisOfRecord, recordedBy, eventDate, locationID, scientificName,
identifiedBy, dateIdentified

2 ’1’, ’MovingImage’, ’1’, ’2012-07-26 14:21’, ’1’, ’Neofelis Nebulosa’, ’
Camera3’, ’2012-07-26 15:06’

Listing A.3: Example Set File (set.csv)

1 eventID, identifier
2 ’1’, ’/Users/encima/Dropbox/Projects/PhD/Java/GSN_DGFC/webapp/IMG_0082.JPG’
3 ’1’, ’/Users/encima/Dropbox/Projects/PhD/Java/GSN_DGFC/webapp/IMG_0083.JPG’
4 ’1’, ’/Users/encima/Dropbox/Projects/PhD/Java/GSN_DGFC/webapp/IMG_0084.JPG’

Listing A.4: File Describing Image Locations (images.csv)
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Appendix B

Darwin-SW Occurrence Example

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
4 xmlns:dcterms="http://purl.org/dc/terms/"
5 xmlns:dwc="http://rs.tdwg.org/dwc/terms/"
6 xmlns:dsw="http://purl.org/dsw/"
7 xmlns:mrtg="http://rs.tdwg.org/mrtg/trunk/RDF/mrtg.n3#"
8 xmlns:xmp="http://ns.adobe.com/xap/1.0/"
9 xmlns:foaf="http://xmlns.com/foaf/0.1/"

10 >
11
12 <rdf:Description rdf:about="http://bioimages.vanderbilt.edu/vanderbilt

/12-126">
13 <rdf:type rdf:resource="http://purl.org/dsw/IndividualOrganism" />
14 <rdf:type rdf:resource="http://purl.org/dsw/LivingSpecimen" />
15 <mrtg:metadataLanguage>en</mrtg:metadataLanguage>
16
17 <!--Basic information about the individual organism-->
18 <dcterms:identifier>http://bioimages.vanderbilt.edu/vanderbilt/12-126<

/dcterms:identifier>
19 <dcterms:description>Field individual of Ginkgo biloba L. with GUID:

http://bioimages.vanderbilt.edu/vanderbilt/12-126</
dcterms:description>

20 <dsw:individualOrganismRemarks>This tree was miraculously spared from
destruction in the building of the 21st Ave. crosswalk.</
dsw:individualOrganismRemarks>

21
22 <!-- Properties that the tree has by virtue of its LivingSpecimen type

-->
23 <dwc:collectionID rdf:resource="http://biocol.org/urn:lsid:biocol.

org:col:35259" />
24 <dwc:collectionCode>vanderbilt</dwc:collectionCode>
25 <dwc:catalogNumber>12-126</dwc:catalogNumber>
26
27 <!-- Relationships of the individual to other resources. -->
28 <foaf:isPrimaryTopicOf rdf:resource="http://bioimages.vanderbilt.edu/

vanderbilt/12-126.rdf" />
29 <foaf:isPrimaryTopicOf rdf:resource="http://bioimages.vanderbilt.edu/

vanderbilt/12-126.htm" />
30
31
32 <!-- Images that are derived from the individual -->
33 <foaf:depiction rdf:resource="http://bioimages.vanderbilt.edu/baskauf

/10502"/>
34 <foaf:depiction rdf:resource="http://bioimages.vanderbilt.edu/baskauf

/10557"/>
35 <foaf:depiction rdf:resource="http://bioimages.vanderbilt.edu/baskauf

/10556"/>
36 <foaf:depiction rdf:resource="http://bioimages.vanderbilt.edu/baskauf

/10554"/>
37
38 <!-- Documented occurrences of the individual -->
39 <dsw:hasOccurrence rdf:resource="http://bioimages.vanderbilt.edu/

baskauf/10502#occ" />
40 <dsw:hasOccurrence rdf:resource="http://bioimages.vanderbilt.edu/

baskauf/10557#occ" />
41 <dsw:hasOccurrence rdf:resource="http://bioimages.vanderbilt.edu/

baskauf/10556#occ" />



192

42 <dsw:hasOccurrence rdf:resource="http://bioimages.vanderbilt.edu/
baskauf/10554#occ" />

43
44 <!-- Identifications applied to the individual-->
45 <dsw:hasIdentification>
46 <rdf:Description rdf:about="http://bioimages.vanderbilt.edu/

vanderbilt/12-126#2002-04-10baskauf">
47 <dcterms:description>Determination of Ginkgo biloba L. sensu

Flora of North America (1993) for the individual http://
bioimages.vanderbilt.edu/vanderbilt/12-126</
dcterms:description>

48 <rdf:type rdf:resource="http://rs.tdwg.org/dwc/terms/
Identification" />

49
50 <!-- In lieu of stable external identifiers for taxon concepts

, Im defining some onsite -->
51 <dsw:toTaxon rdf:resource="http://bioimages.vanderbilt.edu/

taxonConcepts#183269-fna1993" />
52
53 <dwc:identifiedBy>Steven J. Baskauf</dwc:identifiedBy>
54 <dsw:idBy rdf:resource="http://bioimages.vanderbilt.edu/

contact/baskauf" />
55 <dwc:dateIdentified>2002-04-10</dwc:dateIdentified>
56
57 <!-- Relationship of the identification to other resources -->
58 <dsw:idBasedOn rdf:resource="http://bioimages.vanderbilt.edu/baskauf

/10554"/>
59 </rdf:Description>
60 </dsw:hasIdentification>
61 </rdf:Description>
62
63 <!--
64 Information about the metadata document itself
65 -->
66 <rdf:Description rdf:about="http://bioimages.vanderbilt.edu/vanderbilt

/12-126.rdf">
67 <dcterms:type rdf:resource ="http://xmlns.com/foaf/0.1/Document" />
68 <dcterms:identifier>http://bioimages.vanderbilt.edu/vanderbilt/12-126.

rdf</dcterms:identifier>
69 <dcterms:description>RDF formatted description of the living organism

http://bioimages.vanderbilt.edu/vanderbilt/12-126</
dcterms:description>

70 <dcterms:creator>Bioimages http://bioimages.vanderbilt.edu/</
dcterms:creator>

71 <foaf:maker rdf:resource="http://biocol.org/urn:lsid:biocol.
org:col:35115" />

72 <dcterms:language>en</dcterms:language>
73 <dcterms:modified>2010-11-08T11:13:49</dcterms:modified>
74 <xmp:MetadataDate>2010-11-08T11:13:49</xmp:MetadataDate>
75 <dcterms:references rdf:resource="http://bioimages.vanderbilt.edu/

vanderbilt/12-126"/>
76 <foaf:primaryTopic rdf:resource="http://bioimages.vanderbilt.edu/

vanderbilt/12-126"/>
77 </rdf:Description>
78
79 </rdf:RDF>

Listing B.1: Darwin-SW Representation of a Living Specimen
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Appendix C

K-HAS Ontology

1 <?xml version="1.0"?>
2
3
4 <!DOCTYPE Ontology [
5 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >
6 <!ENTITY xml "http://www.w3.org/XML/1998/namespace" >
7 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >
8 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
9 ]>

10
11
12 <Ontology xmlns="http://www.w3.org/2002/07/owl#"
13 xml:base="http://www.semanticweb.org/encima/ontologies/2013/4/alignment"
14 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
15 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
16 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
17 xmlns:xml="http://www.w3.org/XML/1998/namespace"
18 ontologyIRI="http://www.semanticweb.org/encima/ontologies/2013/4/

alignment">
19 <Prefix name="" IRI="http://www.w3.org/2002/07/owl#"/>
20 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
21 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/>
22 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>
23 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>
24 <Import>http://purl.oclc.org/NET/ssnx/ssn</Import>
25 <Import>http://purl.org/dsw/</Import>
26 <Import>http://ecoinformatics.org/oboe/oboe.1.0/oboe.owl</Import>
27 <Import>http://www.semanticweb.org/encima/ontologies/2013/4/k_has</Import>
28 <Declaration>
29 <Class IRI="http://rs.tdwg.org/dwc/terms/DecimalLatitude"/>
30 </Declaration>
31 <Declaration>
32 <Class IRI="http://rs.tdwg.org/dwc/terms/DecimalLongitude"/>
33 </Declaration>
34 <Declaration>
35 <Class IRI="http://rs.tdwg.org/dwc/terms/LocationRemarks"/>
36 </Declaration>
37 <Declaration>
38 <ObjectProperty IRI="#hasLat"/>
39 </Declaration>
40 <Declaration>
41 <ObjectProperty IRI="#hasLng"/>
42 </Declaration>
43 <Declaration>
44 <ObjectProperty IRI="#hasRemark"/>
45 </Declaration>
46 <EquivalentClasses>
47 <Class IRI="http://ecoinformatics.org/oboe/oboe.1.0/oboe-core.owl#

ObservationCollection"/>
48 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Project"/>
49 </EquivalentClasses>
50 <EquivalentClasses>
51 <Class IRI="http://purl.oclc.org/NET/ssnx/ssn#FeatureOfInterest"/>
52 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Identification"/>
53 </EquivalentClasses>
54 <EquivalentClasses>
55 <Class IRI="http://purl.oclc.org/NET/ssnx/ssn#Observation"/>
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56 <Class IRI="http://rs.tdwg.org/dwc/terms/Occurrence"/>
57 </EquivalentClasses>
58 <EquivalentClasses>
59 <Class IRI="http://purl.oclc.org/NET/ssnx/ssn#Sensor"/>
60 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Node"/>
61 </EquivalentClasses>
62 <EquivalentClasses>
63 <Class IRI="http://purl.org/dc/terms/Location"/>
64 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Location"/>
65 </EquivalentClasses>
66 <EquivalentClasses>
67 <Class IRI="http://purl.org/dsw/Token"/>
68 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Token"/>
69 </EquivalentClasses>
70 <EquivalentClasses>
71 <Class IRI="http://rs.tdwg.org/dwc/terms/Event"/>
72 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Event"/>
73 </EquivalentClasses>
74 <EquivalentClasses>
75 <Class IRI="http://rs.tdwg.org/dwc/terms/Identification"/>
76 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Identification"/>
77 </EquivalentClasses>
78 <EquivalentClasses>
79 <Class IRI="http://rs.tdwg.org/dwc/terms/Occurrence"/>
80 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Occurrence"/>
81 </EquivalentClasses>
82 <EquivalentClasses>
83 <Class IRI="http://www.loa-cnr.it/ontologies/DUL.owl#Agent"/>
84 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Agent"/>
85 </EquivalentClasses>
86 <EquivalentClasses>
87 <Class IRI="http://www.loa-cnr.it/ontologies/DUL.owl#Event"/>
88 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Event"/>
89 </EquivalentClasses>
90 <EquivalentClasses>
91 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Agent"/>
92 <Class IRI="http://xmlns.com/foaf/0.1/Agent"/>
93 </EquivalentClasses>
94 <SubClassOf>
95 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Location"/>
96 <ObjectSomeValuesFrom>
97 <ObjectProperty IRI="#hasRemark"/>
98 <Class IRI="http://rs.tdwg.org/dwc/terms/LocationRemarks"/>
99 </ObjectSomeValuesFrom>

100 </SubClassOf>
101 <SubClassOf>
102 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Location"/>
103 <ObjectAllValuesFrom>
104 <ObjectProperty IRI="#hasLat"/>
105 <Class IRI="http://rs.tdwg.org/dwc/terms/DecimalLatitude"/>
106 </ObjectAllValuesFrom>
107 </SubClassOf>
108 <SubClassOf>
109 <Class IRI="http://www.semanticweb.org/encima/ontologies/2013/4/k_has#

Location"/>
110 <ObjectAllValuesFrom>
111 <ObjectProperty IRI="#hasLng"/>
112 <Class IRI="http://rs.tdwg.org/dwc/terms/DecimalLongitude"/>
113 </ObjectAllValuesFrom>
114 </SubClassOf>
115 <AnnotationAssertion>
116 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>
117 <IRI>http://rs.tdwg.org/dwc/terms/DecimalLatitude</IRI>
118 <Literal datatypeIRI="&rdf;PlainLiteral">dwc</Literal>
119 </AnnotationAssertion>
120 <AnnotationAssertion>
121 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>
122 <IRI>http://rs.tdwg.org/dwc/terms/DecimalLongitude</IRI>
123 <Literal datatypeIRI="&rdf;PlainLiteral">dwc
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124 </Literal>
125 </AnnotationAssertion>
126 <AnnotationAssertion>
127 <AnnotationProperty abbreviatedIRI="rdfs:comment"/>
128 <IRI>http://rs.tdwg.org/dwc/terms/LocationRemarks</IRI>
129 <Literal datatypeIRI="&rdf;PlainLiteral">dwc</Literal>
130 </AnnotationAssertion>
131 </Ontology>
132
133
134
135 <!-- Generated by the OWL API (version 3.4.2) http://owlapi.sourceforge.net --

>

Listing C.1: K-HAS Ontology Source Code
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Appendix D

Example Drools Rules Used in LORIS

1 rule "Otter River"
2 when
3 $dwc:DarwinCore()
4 DarwinCore(DBTools.getLocationDescription($dwc.getOcc().getLocationID())

contains "River")
5 eval(TimeTools.checkTimePeriod($dwc.getOcc().getEventTime()) == "Afternoon

")
6 then
7 System.out.println("Otter");
8 int id = $dwc.getOcc().getEventID();
9 Date d = new Date();

10 Identification ident = new Identification(id, 1, d, 1);
11 $dwc.setId(ident);
12 System.out.println($dwc.getId());
13 end
14
15 rule "Plantation Night"
16 when
17 $dwc:DarwinCore()
18 DarwinCore(DBTools.getLocationDescription($dwc.getOcc().getLocationID())

contains "Plantation")
19 eval(TimeTools.checkTimePeriod($dwc.getOcc().getEventTime()) == "Night")
20 then
21 System.out.println("Sun Bear or Civet");
22 end
23
24 rule "Clouded Leopard Ridgeline"
25 when
26 $dwc:DarwinCore()
27 DarwinCore(DBTools.getLocationDescription($dwc.getOcc().getLocationID())

contains "Ridge Line")
28 eval(TimeTools.checkTimePeriod($dwc.getOcc().getEventTime()) == "Night")
29 then
30 System.out.println("Clouded Leopard - Most likely male");
31 end
32
33 rule "Location Description"
34 when
35 $dwc:DarwinCore()
36 eval($dwc.getOcc().getLocationID()==1)
37 then
38 System.out.println("Occurence in site 1, animals here are: Clouded Leopard

, Malay Civets and Small Mammals");
39 end

Listing D.1: Example Drools File
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Appendix E

Interview Transcript: Gill Bolongon

1 Interviewer: Chris Gwilliams
2 Interviewee: Roshan
3
4 Interviewer: Can you state your name please?
5 Interviewee: My name is Roshan Guharajan
6 Interviewer: The species you are looking at is?
7 Interviewee: Sun bear.
8 Interviewer: What is your project title?
9 Interviewee: Sun bear (Helarctos malayanus) ecology within a fragmented

landscape: a case study from the lower kinabatangan wildlife riparian (
land between river) ecosystem.

10 Interviewer: What kind of collection or analysis do you do? Trapping, physical
samples etc.

11 Interviewee: So, initially camera traps, now we are going into trapping. Once
that is done: tracking, scat collection and feeding sign surveys.

12 Interviewer: Scat is faeces?
13 Interviewee: Yes, sorry, faeces.
14 Interviewer: What made you move on from cameras to physcial trapping?
15 Interviewee: The cameras were more of a preliminary investigation into what

areas they were frequenting.
16 Interviewer: How did you choose the sites for the cameras?
17 Interviewee: They were already placed by DG.
18 Interviewer: So, you used the existing network.
19 Interviewee: Yes, the existing camera locations.
20 Interviewer: So, you used the existing locations, looked for pictures of Sun

Bears and placed your physical traps where those pictures were taken?
21 Interviewee: Yes. Close to. We also used cameras facing the traps to monitor

what animals are coming to the trap.
22 Interviewer: So, the specific sites you look into have been chosen by the

cameras?
23 Interviewee: Yes.
24 Interviewer: Have you looked into any sites that weren’t selected by the

cameras?
25 Interviewee: Yes we have, in lot 6, we have two sites where (after finding a

lot of secondary signs), we placed two traps.
26 Interviewer: Are secondary signs things like marking on a tree?
27 Interviewee: Predominantly claw marks.
28 Interviewer: So, a primary sign would be the bear itself?
29 Interviewee: Yes, seeing it.
30 Interviewer: What times do you work on your project? Whether that is trapping

or looking for signs.
31 Interviewee: Particularly in the morning, or just before lunch. If we check

traps, we check them twice a day. So, once in the morning and once in the
late afternoon.

32 Interviewer: Why do you have to check twice a day?
33 Interviewee: At this point, we have trap monitors that are basically VHF

frequency and emit when the door closes, but there are no elevation points
high enough around here to pick up the signals from all of our sites. So,
we have to physically be at the trap to see if it is closed or not.

34 Interviewer: Is that if you only check once a day then the bear has less
chance of surviving?

35 Interviewee: Actually, once a day is more desirable because it means less
human disturbance. But, because of the logistics here, we have to check
twice; unless we can find a high enough point.

36 Interviewer: So, would you say your project is time critical then? If you
catch a bear, you need to get to it as soon as?

37 Interviewee: Yes, that would be ideal.
38 Interviewer: Is there anyway you could put some antennae higher in the trees?
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39 Interviewee: There could be, yes. We tried going up the tower, but we could
not get any signal. Especially in Batangan, as we have one trap there.

40 Interviewer: Is it that the forest is too thick?
41 Interviewee: It may be that, or the canopy, and just the distance as well.
42 Interviewer: How far away are they?
43 Interviewee: Batangan, by river, is at least 11km.
44 Interviewer: Is there a reason you choose the morning?
45 Interviewee: The bears seem to be nocturnal, so best to check in the morning.
46 Interviewer: Are there any conditions you have learnt, or from other research,

that are optimum? Like: weather conditions, the temperature or the moon
phase. Are there any times that you know, on, say, a particularly bright
night, so more likely to find a Sun Bear. Or if it is particularly humid.

47 Interviewee: To be honest, I am not sure. I know periods of low food
availability, but that is more of a seasonal thing.

48 Interviewer: So they would be more enticed to go into your trap?
49 Interviewee: Yep, more readily available food.
50 Interviewer: Do you do anything different is the weather is suitable/not

suitable?
51 Interviewee: We try and go earlier if it is raining, especially at the end of

the year when it is the monsoon.
52 Interviewer: Does the height of the river seem to affect them at all?
53 Interviewee: I don’t know but from last year to this year, we have not had as

many pictuees on camera traps as usual. There are a few locations, like bi
weekly, or monthly, they would pass by the camera. During the rain, they
have, kind of, slowed down. I don’t know if that is affecting them; maybe
they move slower or the flooding made them go further inland.

54 Interviewer: So, flooding may affect them?
55 Interviewee: Yep, definitely.
56 Interviewer: Are they fairly permanent in their sites then? Like, if you

captured a bear with a camera trap, would you say they stay in that area?
Or, do they kind of move around?

57 Interviewee: I don’t know, I know they have pretty large home ranges.
58 Interviewer: How large, do you know?
59 Interviewee: A study using radio telemetry found a mimimum of 15 square

kiometeres. We think that is a minimum, so probably double that, 30 to 40.
60 Interviewer: So, if I said to you, list off the specifics that you know about

your species, i.e. certain times it does not come out, locations it may
avoid, certain animals it may avoid, or maybe certain temperatures it does
not come out at.

61 Interviewee: The bears here seem to be more nocturnal, it might be because, if
they do encroach into plantations, night time is the time to do it. This
is just speculation, but day time is very hard with human disturbance.

62 Interviewer: They do go into plantation then?
63 Interviewee: There have been reports from plantation workers seeing bears on

plantation land.
64 Interviewer: So, because there are fewer humans?
65 Interviewee: Fewer humans, and it is a lot cooler during the night.
66 Interviewer: Are there any areas that, if you saw a Sun Bear, it would be out

of place? Or is that this is all forest, so this is all suitable for them?
67 Interviewee: The latter, I think.
68 Interviewer: There is not really anywhere they would not go?
69 Interviewee: Yep.
70 Interviewer: Do they have any predators?
71 Interviewee: There was a study in Indonesia that found that large pythons do

prey on small bears. But, I think the biggest danger comes from other
bears, like big males killing younger ones and fighting.

72 Interviewer: I guess pythons and things are less common.
73 Interviewee: Yes, extremely rare.
74 Interviewer: How long is the duration of your project?
75 Interviewee: I started last september (2012) and I am projected to finish in

May 2015.
76 Interviewer: Essentially a 3 year project?
77 Interviewee: Yes.
78 Interviewer: That is all within DG?
79 Interviewee: Not exactly, there are about 18 months outside of DG.
80 Interviewer: Using research from DG?
81 Interviewee: Yes, using all research from DG.
82 Interviewer: OK, have/will/do others user your research? Currently, or in the

future? Any active collaborations?
83 Interviewee: I think we definitely will collaborate with the Sabah Wildlife

Department in printing some action plans, recommendations. As far as
collaborations, there may be collaborations with some local universities.
For genetics.

84 Interviewer: You would share your samples with them?
85 Interviewee: Yes. Scat samples and blood samples.
86 Interviewer: Would you expect anything in return?
87 Interviewee: Probably just use of their labs.
88 Interviewer: OK, so we have discussed how time critical your project is. Is

there a reason that you want to get the bear out as quick as possible?
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89 Interviewee: The animal use protocol is keep the animal in the trap for as
little time as possible.

90 Interviewer: So, just less disturbance for the animal? What do you do one you
have the animal?

91 Interviewee: Yes. Once we have the animal, we proceed to immobilise it.
92 Interviewer: Is that darting?
93 Interviewee: It is with a jab stick, just like a pole with a syringe on the

end. It should go down within 5-10 minutes, possibly longer. After that,
the most important thing is the collaring. Then some physical measurements
, samples, blood, tissue, parasites, fecal and then we let the bear
recover and release it when it is fully able to walk.

94 Interviewer: Your collars are GPS collars, are they?
95 Interviewee: GPS through the Iridium network.
96 Interviewer: Is that the service that you log on to access the data?
97 Interviewee: Yes.
98 Interviewer: Are they the same network used by the crocodile project?
99 Interviewee: Yes, the same.

100 Interviewer: Final question, what pther knowledge (if any) have you used in
your project. For example, in this project, you have used the existing
cameras and the pictures from there, have you used anything else to help?
Or someone else’s research outside of the field centre to help with your
understanding of the bears or even your site choosings?

101 Interviewee: Another student here, Grace, has been doing secondary sign
surveys, and I have been talking to her about moving traps around based on
where she has found fresh Sun Bear sign.

102 Interviewer: So, the two sites that you found, where you selected the
secondary signs, were they found by Grace?

103 Interviewee: She was not doing her project at the time. While we were hanging
baits on trees, in random places, we came across this area where we saw
fresh signs.

104 Interviewer: Have you moved any of your traps to her locations?
105 Interviewee: Not at the moment, we are still deciding.
106 Interviewer: Do you think you may do in the future?
107 Interviewee: We may do.
108 Interviewer: And has she used any of your research, do you know?
109 Interviewee: At the moment, no she has not.
110 Interviewer: Does she also use the pictures from within DG?
111 Interviewee: Not for research.
112 Interviewer: Ok, thanks, that is everything.

Listing E.1: Sample Intrview Transcript
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Appendix F

Qualitative Analysis Extract
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Appendix G
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Class Diagram for Repast Simulation
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Appendix H

Repast Parameters File Example

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <parameters>
3 <parameter name="randomSeed" displayName="Default Random Seed" type="int"

defaultValue="__NULL__" />
4
5 <parameter name="sensingNodeCount" displayName="Number of sensing Nodes"

type="int" defaultValue="20" isReadOnly="false" converter="repast.
simphony.parameter.StringConverterFactory$IntConverter" />

6
7 <parameter name="routingNodeCount" displayName="Number of routing Nodes"

type="int" defaultValue="4" isReadOnly="false" converter="repast.
simphony.parameter.StringConverterFactory$IntConverter" />

8
9 <parameter name="centralNodeCount" displayName="Number of central Nodes"

type="int" defaultValue="1" isReadOnly="false" converter="repast.
simphony.parameter.StringConverterFactory$IntConverter" />

10
11 <parameter name="sensingKnowledge" displayName="Knowledge for sensing nodes"

type="java.lang.String" defaultValue="MK" isReadOnly="false" converter=
"repast.simphony.parameter.StringConverterFactory$StringStringConverter"
/>

12
13 <parameter name="routingKnowledge" displayName="Knowledge for routing nodes"

type="java.lang.String" defaultValue="MK" isReadOnly="false" converter=
"repast.simphony.parameter.StringConverterFactory$StringStringConverter"
/>

14
15 <parameter name="centralKnowledge" displayName="Knowledge for central nodes"

type="java.lang.String" defaultValue="NK" isReadOnly="false" converter=
"repast.simphony.parameter.StringConverterFactory$StringStringConverter"
/>

16
17 <parameter name="captureChance" displayName="chance of image capture" type="

double" defaultValue="0.000857703189" isReadOnly="false" converter="
repast.simphony.parameter.StringConverterFactory$DoubleConverter"/>

18
19 <parameter name="interestingChance" displayName="chance of interesting

capture" type="double" defaultValue="0.207" isReadOnly="false" converter
="repast.simphony.parameter.StringConverterFactory$DoubleConverter"/>

20
21 <parameter name="transRate" displayName="Transmission rate (variable or

ideal)" type="java.lang.String" defaultValue="variable" isReadOnly="
false" converter="repast.simphony.parameter.StringConverterFactory$
StringStringConverter" />

22
23 <parameter name="bandwidth" displayName="Chance of image capture (normal or

saturated)" type="java.lang.String" defaultValue="normal" isReadOnly="
false" converter="repast.simphony.parameter.StringConverterFactory$
StringStringConverter" />

24
25 <parameter name="hkProcessingTime" displayName="time to process archive"

type="int" defaultValue="43" isReadOnly="false" converter="repast.
simphony.parameter.StringConverterFactory$IntConverter"/>

26
27 <parameter name="mkProcessingTime" displayName="time to process archive"

type="int" defaultValue="5" isReadOnly="false" converter="repast.
simphony.parameter.StringConverterFactory$IntConverter"/>

28
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29 <parameter name="tickStop" displayName="Stop at Tick (-1 for No)" type="int"
defaultValue="15552000" isReadOnly="false" converter="repast.simphony.
parameter.StringConverterFactory$IntConverter"/>

30
31 <parameter name="height" displayName="Height" type="int" defaultValue="1200"

isReadOnly="false" converter="repast.simphony.parameter.
StringConverterFactory$IntConverter" />

32
33 <parameter name="width" displayName="Height" type="int" defaultValue="1200"

isReadOnly="false" converter="repast.simphony.parameter.
StringConverterFactory$IntConverter" />

34 </parameters>

Listing H.1: Example params.xml file for a Repast simulation
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