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Abstract

Recently, in this journal, there has been revised attention on estimating the parameters of

the errors in variables, linear structural model. For example, O’Driscoll and Ramirez (2011)

used a geometric approach to give insight into the performance of various slope estimators for

the linear structural model as introduced by the present author. This paper aims to provide a

unified method of moments approach for estimating the parameters in the linear structural model,

concentrating attention on estimators using the higher moments, which to date has received only

little attention in the literature.

Keywords: Linear structural model, errors in variables, regression, method of moments

1 Introduction

Fitting regression models when there is measurement error in the covariate (as well as the dependent

variable) is known as errors in variables regression. Suppose two variables (ξ, η) are linearly related

η = α+ βξ.

In the errors in variables model neither variable can be measured directly. They are latent variables

and the measurements (x, y) that are made differ from the latent (ξ, η) by additional random

components, often called measurement errors. The measurements x and y are assumed to be

related to the true values ξ and η by the equations

x = ξ + δ,

y = η + ε = α+ βξ + ε.
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In this paper these errors, δ and ε, are assumed to be uncorrelated with each other and with the

latent variable ξ. A random sample {(xi, yi), i = 1, . . . , n} of paired measurements is available from

which parameters of the model are estimated.

The errors δi and εi are assumed to have zero means and variances that do not change with the

suffix i. We define E[δi] = E[εi] = 0, V ar[δi] = σ2
δ and V ar[εi] = σ2

ε . We also assume that these

errors are mutually uncorrelated and that the errors δi are uncorrelated with εi. Additionally we

assume that the variables ξi are mutually uncorrelated with the error terms δ and ε.

The errors in variables regression problem is rarely included in statistical texts. There are two texts

devoted entirely to the errors in variables regression problem, Fuller [10] and Cheng and van Ness

[4]. Casella and Berger [3] has an informative section on the topic, Sprent [29] contains chapters on

the problem, as do Kendall and Stuart [22] and Dunn [9]. Draper and Smith [7] on the other hand,

in their book on regression analysis, devoted only 7 out of a total of almost 700 pages to errors in

variables regression. Carroll et al. [2] described errors in variables models for non-linear regression,

and Seber and Wild [27] included a chapter on this topic.

One method of estimation that has been used in errors in variables regression is the method of

moments. Geary [11, 12, 14, 13] wrote a series of papers on the method, but using cumulants rather

than moments in the later papers. Drion [8], in a paper that is infrequently cited, used the method

of moments, and gave some results concerning the variances of the sample moments used in the

estimators that he suggested. More recent work using the moments approach has been written by

Pal [26], van Montfort et al. [31], van Montfort [30] and Cragg [5]. Much of this work centres on a

search for optimal estimators using estimators based on higher moments. Dunn [9] gave formulas for

many of the estimators of the slope that we describe later in this paper using a method of moments

approach.

Recently, in this journal, there has been revised attention on estimating the parameters of the linear

errors in variables model. For example, O’Driscoll and Ramirez [25] used a geometric approach to

give insight into the performance of various slope estimators for the linear model as originally

introduced by the present author. The aim of this present paper is to provide a unified method

of moments framework for estimating the parameters of the linear errors in variables regression

model. Some guidance as to the variances of the estimators is also provided. We describe in detail

estimators of the parameters of the regression model using higher order moments, explaining their

derivation and problems inherent in using them.

The structure of the paper is as follows. Section 2 describes method of moments estimators using

first and second order moments. Section 3 introduces method of moments estimators using higher

order moments, and describes potential problems with these estimators. A simulation study is

included in Section 4, and the paper is concluded in Section 5.
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2 Fitting the line by restricting the parameter space

In some applications it is assumed that the latent values ξi, associated with the measurements xi,

are a sample from a random variable with mean µ and variance σ2. This is known as the structural

model. In the functional model, in contrast, it is assumed that the values ξi (i = 1, . . . , n) are

fixed, although unobservable, quantities. For further discussion as to the differences between the

structural and functional models the reader is referred to Buonaccorsi [1].

When the method of moments approach is taken the distinction between the structural and func-

tional models is not important in the estimation of the parameters of the model. The distinction

needs to be made only if the values ξi themselves are to be estimated, and this problem will not

be discussed in this paper. All that is needed in the method of moments approach are assumptions

about the moments of the random variables δ and ε, and of the latent variable ξ. In this paper the

following assumptions are made about these variables:

E[δ] = E[ε] = 0

E[ξ] = µ

V ar[ξ] = σ2

V ar[δ] = σ2
δ

V ar[ε] = σ2
ε

Cov[δ, ε] = Cov[δ, ξ] = Cov[ξ, ε] = 0.

If all random variables in this model (ξ, δ, ε)are assumed to be independent Gaussian, then this model

is known as the Gaussian structural model, or Gaussian linear structural model. This terminology

will be used throughout this paper. For the functional model, it is usually convenient to replace σ2

with an alternative representation of the variability in the latent values ξi. Notation such as s2ξ has

been used by Gillard [19].

The method of moments equations based on the first and second moments have been stated by many

previous authors, for example Dunn [9], or Gillard and Iles [18], but are repeated here for reference.

Here a tilde is placed over a symbol to denote a method of moments estimator. In these expressions

x̄ and ȳ are the sample means of x and y respectively, sxx and syy are the sample variances and sxy

is the sample covariance.

x̄ = µ̃ (1)

ȳ = α̃+ β̃µ̃ (2)

sxx = σ̃2 + σ̃2
δ (3)

syy = β̃2σ̃2 + σ̃2
ε (4)

sxy = β̃σ̃2 (5)
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One of the main problems in fitting an errors in variables model using the method of moments is

that of identifiability of the parameters. It can be seen from equations (1), (2), (3), (4) and (5)

that a unique solution cannot be found for the parameters since there are five equations, but six

unknown parameters (µ, σ2, α, β, σ2
δ and σ2

ε).

One way to proceed, and the one adopted in this paper, is to assume that there is some prior

knowledge, usually concerning the variances in the model, that enables the parameter space to be

restricted so that unique estimators can be found. To estimate parameters such as σ2
δ and σ2

ε one

would usually need repeated measurements (see for example Fuller [10] for full details). It has also

been suggested that equations derived from third and fourth moments can be found, but Gillard

[19, 15] found that there are limitations in the practical value of these equations, essentially because

the data have to be very skewed or very kurtotic for the estimating equations to be reliable. Some

estimators of the slope β using the first and second moments alone, with various restrictions on the

parameter space, are tabulated below.

Assumption Slope estimator

Case 1 Error variance σ2
δ known β̃1 =

sxy
sxx−σ2

δ

Case 2 Error variance σ2
ε known β̃2 =

syy−σ2
ε

sxy

Case 3 Reliability ratio κ = σ2

σ2+σ2

δ

known β̃3 =
sxy
κsxx

Case 4 Ratio λ = σ2
ε

σ2

δ

known β̃4 =
(syy−λsxx)+

√
(syy−λsxx)2+4λ(sxy)2

2sxy

Case 3 is included as there are methods available to obtain reliability measures such as κ given

above. Common methods to estimate reliability include the use of intraclass correlation via an

internal replication study; some form of internal validation study where the true values (those

not contaminated with measurement error) are observed for a sufficient number of subjects being

studied. Alternatively, reliability estimates from previously published studies may be utilised. A

comprehensive review on the design and analysis of reliability studies is included in Dunn [9].

Once a slope estimator β̃ has been obtained, its value may be substituted into equations (6) to (10)

in order to estimate the remaining parameters that have not been assumed known.

µ̃ = x̄ (6)

α̃ = ȳ − β̃x̄ (7)

σ̃2 =
sxy

β̃
(8)

σ̃2
δ = sxx − σ̃2 (9)

σ̃2
ε = syy − β̃2σ̃2 (10)

In order to ensure that the estimators for the variances are non negative, admissibility conditions
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must be placed on the equations. The straightforward conditions are included below

sxx > σ2
δ

syy > σ2
ε

Other admissibility conditions specific to special cases are described later in this Chapter. Admissi-

bility conditions are discussed in detail by Kendall and Stuart [22], Hood [20], Hood et al. [21] and

Dunn [9]. Practically speaking, if these admissibility conditions are broken, the choice of a linear

structural model must be questioned. More precisely the estimate of the slope must lie between the

slopes of the regression lines of y on x and x on y for variance estimates using equations (8), (9)

and (10) to be non-negative. This point is demonstrated mathematically here.

β̃ and sxy should have the same sign and variances are non-negative. We first deal with the case

where sxy > 0, hence β̃ > 0. From equation (3) the condition σ̃2
δ ≥ 0 ⇒ sxx ≥ σ̃2. From equation

(5) this gives β̃sxx ≥ β̃σ̃2 = sxy and so β̃ ≥ sxy
sxx

. The right hand side is the slope of the simple

linear regression of y on x. From equation (4) the condition σ̃ε
2 ≥ 0 ⇒ syy ≥ β̃2σ̃2 = β̃sxy from

equation (5). Thus β̃ ≤ syy
sxy

. The simple linear regression of x on y gives an estimator for the slope

of the equation to predict x with y as
sxy
syy

. However the slope is usually taken to calculate y with x

and comparison should be made with the reciprocal of this estimator which is
syy
sxy

. Hence the result

that the errors in variables slope estimator is between the slopes of y on x and x on y regression is

shown. If sxy is negative, all inequalities are reversed. In conclusion for negative sxy,

syy

sxy
≤ β̃ ≤ sxy

sxx
,

and for positive sxy,
sxy

sxx
≤ β̃ ≤ syy

sxy
.

All of the above estimating equations (6)-(10) can be written in terms of sample moments and the

slope. Unfortunately there is no single errors in variables slope estimator that can be used in all

situations. In order to use the first and second moment estimating equations alone, and to avoid

the identifiability problem, the practitioner must decide which restriction of the parameter space

is likely to suit the purpose best. Various restrictions and their corresponding slope estimates are

discussed below. With one exception, these estimators have been described previously; most were

given by Kendall and Stuart [22], Hood et al [21] and, in a method of moments context by Dunn

[9].

Complete variance covariance matrices for the estimates of the parameters are provided in Gillard

[15]. These can be used to estimate standard errors or confidence intervals for any of the estimates

(or combinations of them). Examples of computing standard errors and confidence intervals are

included in Gillard [19]. For example, the variances of each of the slope estimators for the Gaussian

linear structural model are included in the following table (for brevity, the notation Σ = σ2
δσ

2
ε +

β2σ2σ2
δ + σ2σ2

ε is used).
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Assumption Slope estimator

Case 1 Error variance σ2
δ known V ar[β̃1] =

Σ+2β2σ4

δ

nσ4

Case 2 Error variance σ2
ε known V ar[β̃2] =

β2Σ+2σ4
ε

nβ2σ4

Case 3 Reliability ratio κ = σ2

σ2+σ2

δ

known V ar[β̃3] =
Σ

nσ4

Case 4 Ratio λ = σ2
ε

σ2

δ

known V ar[β̃4] =
Σ

nσ4

As derived in Gillard [15, 19], it may be shown that for the Gaussian linear structural model

V ar[α̃] = µ2V ar[β̃] +
β2σ2

δ + σ2
ε

n
.

General variance covariance matrices, for when the random variables (ξ, δ, ε) are not Gaussian

distributed are provided in Gillard [15, 19]. Some insight into the derivation of these variances is

given in Appendix A.2. An alternative approach to obtain confidence intervals is via the bootstrap

(for example). Full details are given in Buonaccorsi [1]. Discussion of some of the results provided

in this section are also given by Davidov [6] and McAssey and Hseih [24]. An example of the

application of the formulae included in this section is given by Gillard [16], who investigated the

construction of time dependent reference intervals.

3 Estimates making use of higher order moments

For the purposes of the present work, we assume that higher order moments exist, and are finite.

We introduce the notation:

E[(ξ − µ)3] = µξ,3, E[(ξ − µ)4] = µξ,4, E[δ3] = µδ,3, E[δ4] = µδ,4, E[ε3] = µε,3, E[ε4] = µε,4.

3.1 Estimates using third order moments

The third order moments are written as follows. sxxx = n−1
∑

(xi− x̄)3, sxxy = n−1
∑

(xi− x̄)2(yi−
ȳ), sxyy = n−1

∑

(xi − x̄)(yi − ȳ)2 and syyy = n−1
∑

(yi − ȳ)3.

The four third moment equations take a simple form. Some details on the derivation of these

expressions is given in Appendix A.1. The moment equations may be written:

sxxx = µ̃ξ,3 + µ̃δ,3 (11)

sxxy = β̃µ̃ξ,3 (12)

sxyy = β̃2µ̃ξ,3 (13)

syyy = β̃3µ̃ξ,3 + µ̃ε,3. (14)
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Together with the first and second moment equations (1) to (5) inclusive, there are now nine

equations in nine unknown parameters. The additional parameters introduced here are the third

moments µξ,3, µδ,3 and µε,3. There are therefore unique estimators for all nine parameters. However,

it is unlikely in practice that there is as much interest in these third moments as there is in the first

and second moments, more especially, the slope and intercept of the line. Thus a simpler way of

proceeding is probably of more general value.

The simplest way of making use of these equations is to make a single further assumption, namely

that µξ,3 is non zero. There is a practical requirement associated with this assumption, and this is

that the sample third moments should be significantly different from 0. It is this requirement that

has probably led to the use of third moment estimators receiving relatively little attention in recent

literature. It is not always the case that the observed values of x and y are sufficiently skewed to

allow these equations to be used with any degree of confidence.

Moreover sample sizes needed to identify third order moments with a practically useful degree

of precision are somewhat larger than is the case for first and second order moments. However,

if the assumption can be justified from the data then a straightforward estimator for the slope

parameter is obtained without assuming anything known a priori about the values taken by any of

the parameters. This estimator is obtained by dividing equation (13) by equation (12):

β̃5 =
sxyy

sxxy
.

β̃5 may be substituted into equations (7), (8), (9) and (10) to estimate the intercept α and all

three variances σ2, σ2
δ and σ2

ε . The third order moment µξ,3 can be estimated from equation (12).

Estimators for µδ,3 and µε,3 may be obtained from equations (11) and (14) respectively.

Other simple ways of estimating the slope are obtained if the additional assumptions µδ,3 = µε,3 = 0

are made. These would be appropriate assumptions to make if the distributions of the error terms δ

and ε are symmetric. Note however that this does not imply that the distribution of ξ is symmetric.

The observations have to be skewed to allow the use of estimators based on the third moments.

With these assumptions the slope β could also be estimated by dividing equations (12) by (11), or

by dividing (14) by (13). We do not investigate these estimators further in this report; estimators

that make the fewest assumptions are likely to be of the most practical value.

In order to derive formulas for the asymptotic variances and covariances of all method of moments

estimators derived in this paper, the variances and covariances of sample moments are needed.

Further details on variances and covariances of the estimators are included in the technical paper

by Gillard and Iles [17] and Gillard [19, 15]. In these papers, full variance-covariance matrices are

provided. For brevity, we now give a formula for the variance of the slope estimator β̃5 where it is

assumed that the error terms δ and ε are normally distributed. The expression V ar[β̃5] has been

calculated when δ and ε are assumed not to be normally distributed by Gillard and Iles [17].

V ar[β̃5] =
1

n(µξ,3)2

[

β2µξ,4(σ
2
ε + β2σ2

δ ) +
3σ2

ε

β2
(σ2 + σ2

δ ) + 3σ2
δ (β

2σ2 + σ2
ε)− 6σ2σ2

δσ
2
ε

]

7



Notice that the formula involves the third and fourth moments of ξ, but not higher moments.

To estimate this variance, all three parameters σ2, σ2
δ and σ2

ε have to be estimated using equations

(8), (9) and (10) respectively. The third order moment µξ,3 is estimated using (12). The fourth

order moment can be estimated from one of the equations (16), (17) or (18). The combinations

(σ2
ε+β2σ2

δ ), (σ
2+σ2

δ ) and (β2σ2+σ2
ε) are estimated by (β̃2sxx+syy−2β̃sxy), sxx and syy respectively.

3.2 Estimates making use of fourth order moments

Using the obvious extension of the notation used in this paper, the fourth order moments may be

written sxxxx, sxxxy, sxxyy, sxyyy and syyyy. By using an identical approach to the one adopted

in deriving the third order moment estimating equations, the fourth order moment equations are

derived thus:

sxxxx = µ̃ξ,4 + 6σ̃2σ̃2
δ + µ̃δ,4 (15)

sxxxy = β̃µ̃ξ,4 + 3β̃σ̃2σ̃2
δ (16)

sxxyy = β̃2µ̃ξ,4 + β̃2σ̃2σ̃2
δ + σ̃2σ̃2

ε + σ̃2
δ σ̃

2
ε (17)

sxyyy = β̃3µ̃ξ,4 + 3β̃σ̃2σ̃2
ε (18)

syyyy = β̃4µ̃ξ,4 + 6β̃2σ̃2σ̃2
ε + µ̃ε,4 (19)

Together with the first and second moment equations (1)-(5) these form a set of ten equations,

but there are only nine unknown parameters. The fourth moment equations have introduced three

additional parameters µξ,4, µδ,4 and µε,4, but four new equations. One of the equations is therefore

not needed. The easiest practical way of estimating the parameters is to use equations (16) and

(18), together with equations (3), (4) and (5).

Equation (16) is multiplied by β̃2 and subtracted from (18) to give β̃2sxxxy−sxyyy = 3β̃σ̃2(β̃2σ̃2
δ−σ̃2

ε).

Multiplying (3) by β̃2 and subtracting from (4) gives β̃2sxx − syy = β̃2σ̃2
δ − σ̃2

ε . Thus, making use

also of equation (5), an estimating equation is obtained for the slope parameter β:

β̃6 =

√

sxyyy − 3sxysyy
sxxxy − 3sxysxx

(20)

There may be a practical difficulty associated with the use of equation (20) if the random variable

ξ is normally distributed. In this case the fourth moment is equal to 3 times the square of the

variance. A random variable for which this property does not hold is said to be kurtotic. A scale

invariant measure of kurtosis is given by the following expression γ2 = µ4

σ4 − 3. If the distribution

of ξ has zero measure of kurtosis, the average values of the five sample moments used in equation

8



(20) are as follows:

E[sxyyy] = 3β3σ4 + 3βσ2σ2
ε

E[sxxx] = 3βσ4 + 3βσ2σ2
δ

E[sxx] = σ2 + σ2
δ

E[syy] = β2σ2 + σ2
ε

E[sxy] = βσ2

Then it can be seen that the average value of the numerator in equation (20) is approximately equal

to zero, as is the average value of the denominator. Thus there is an additional assumption that

has to be made for this equation to be reliable as an estimator; µξ,4 must be different from 3σ4. In

practical terms, both the numerator and denominator of (20) must be significantly different from

zero.

If a reliable estimate of the slope β can be obtained from (20), equations (7) to (10) allow the

parameters α, σ2, σ2
δ and σ2

ε to be estimated. µξ,4 can be estimated from (16) and µδ,4 and µε,4

may be estimated from equations (15) and (19) respectively.

Although β̃6 has a closed compact form, its variance is rather cumbersome. Indeed, the variance of

β̃6 depends on the sixth central moments of ξ. Since it is likely to be impractical to estimate this

moment with any sensible degree of accuracy, there will be no discussion of the asymptotic variance

of this estimator. For further details the reader is referred to Gillard [15, 19]. Technical details, and

discussions concerning the properties of β̃6 are included in O’Driscoll and Ramirez [25].

4 Comparison study and example

4.1 Comparison study

The aim of this section is to compare the performance of all slope estimators derived in this paper

for a particular representation of a structural model. Further extensive simulations are provided in

Gillard [19]. Such a comparison will demonstrate the additional variability of using the estimators

of the slope based on higher order moments, namely β̃5 and β̃6. 1000 data sets with a sample

size of 150 were simulated from a linear structural model with ξ following a chi-square distribution

(five degrees of freedom), and normal errors. The remaining parameter settings chosen were α = 0,

β = 1, and σδ = σε = 2. A scatterplot of a typical data set with these parameter settings is included

in Figure 1.

Figure 2 contains histograms of the estimators β̃1, β̃2, β̃3, β̃4, β̃5 and β̃6. The scales have deliber-

ately been chosen to be different for each estimator, to demonstrate the differing variation in each

estimator. All histograms appear to peak approximately around the true value of the slope β = 1.

The histograms for β̃1, β̃2, β̃3 and β̃4 are very similar in appearance. As to be expected, β̃5 and β̃6

9
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Figure 1: A typical scatterplot with ξ following a chi-square distribution (five degrees of freedom),
and normal errors. α = 0, β = 1, and σδ = σε = 2.

perform least favourably. For both of these slope estimators, the peak of the histogram does appear

to approximately lie above the true value of the slope β = 1, but there is much more spread in both

of the histograms. Roughly speaking, the histogram for β̃5 demonstrates that for some samples, the

estimate of the slope is as extreme as 2.5, whilst the histogram for β̃6 demonstrates that the slope

is estimated as 20 for some samples.

Table 1 has the sample means, sample variances and theoretical variances for the slope estimators

β̃1, β̃2, β̃3, β̃4, β̃5, and β̃6 computed for the 1000 simulated data sets: Table 1 confirms the analysis

Slope Estimator Sample Mean Sample Variance Theoretical Variance

β̃1 1.01056 0.00995 0.00853

β̃2 0.99791 0.01000 0.00853

β̃3 0.99492 0.00876 0.00771

β̃4 1.0029 0.00708 0.0064

β̃5 1.0074 0.02922 0.037

β̃6 1.14303 1.07506 0.06982

Table 1: Sample means, sample variances and theoretical variances for the slope estimators β̃1 to
β̃6

of the histograms conducted earlier. All the estimators of the slope have a sample mean close to

the true value of the slope, apart from β̃6 which can be seen to be positively biased. The sample

variance for this estimator can be seen to be around 100 times larger than the sample variance for

β̃1. For a sample size of 150 however, it is to be expected that β̃6, which is a function of fourth order

sample moments will behave more erratically than those estimators based on lower order moments.

β̃5 has performed well, with a relatively small variance, although it is still more than double the

sample variances for the slope estimators based on first and second order sample moments. β̃4 has

the smallest sample variance, followed by β̃3.
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Figure 2: Histograms of different slope estimators for 1000 simulated data sets with a sample size
of 150.
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There is close agreement with the asymptotic theoretical variances and the sample variances in all

cases, apart from β̃5 and β̃6. It seems that sample variation has caused the sample variance of β̃6

to be inflated.

4.2 Example: Alpha Foeto Protein as a Marker for Down’s Syndrome

Down’s syndrome is an example of a genetic disorder, which is estimated to have an incidence of 1 per

800 births (see for example Selikowitz [28] and the references therein). The disorder however is not

only seen in humans, it has been noted in chimpanzees and mice. Down’s syndrome is caused by the

presence (either in whole, or in part) of an extra twenty-first chromosome, and is typically associated

with both physical and cognitive impairments. Examples of the physical impairments include an

almond shape to the eyes, shorter limbs and pure muscle tone, whilst cognitive impairments are

mainly associated with mild to moderate learning difficulties. The probability of conceiving a child

with Down’s syndrome increases with maternal age.

In general, pregnant women may receive a number of prenatal screens. Many of the standard

screens can aid with the diagnosis of whether the unborn child is likely to have Down’s syndrome.

The selection of available screens may be split into examples of invasive and non-invasive screens.

Examples of invasive screening include amniocentesis (a small amount of amniotic fluid is taken

from the amniotic sac surrounding the fetus, and analysed) and chorionic villus sampling (a sample

of placental tissue is obtained, and tested). Both of these procedures however do carry some small

risk of disrupting the fetus, thus causing potential complications.

An example of a non-invasive screening method is the measurement of maternal serum alpha foeto

protein (AFP) levels. It is known that AFP levels are markers for Down’s syndrome, low values

generally being associated with the condition. The level of AFP varies with gestational age, and

with the health status of the foetus (see for example Koduah [23]).

The motivation for the use of errors in variables methodology for the use of AFP is clear. There

is inherent measurement error in the measurement of gestational age and AFP level. Indeed,

Selikowitz [28] has stated that one cause of false positives can be incorrect date of pregnancy. Thus

the measurement of gestational age is crucial, and a model that can take into account the error

inherent in the measurement of gestational age is desirable.

Figure 3 contains a typical scatterplot of the natural logarithm of AFP against gestational age in

days. This particular data set was analysed in detail by Koduah [23]. The usual screening range

for AFP is 15 to 18 weeks, and it is known that the standard deviation for the measurements

of gestational age is approximately 2.1 days if measured in days, or is approximately 3.4 days if

measured in weeks (see references in Koduah [23]). In the notation of the model used in this thesis

then, this suggests that σδ = 2.1. This information concerning the error variance is enough to

compute an errors in variables fit to the scatter of data. The slope estimator β̃1 assumes that the

error variance σ2
δ is known. Table 2 shows values for the estimated slopes and intercepts via x on

y regression, y on x regression, and β̃1. It can be seen that β̃1 does lie in between the values of the
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Figure 3: Measurement of the natural logarithm of AFP against gestational age (in days).

Estimator Estimated Slope Estimated Intercept

x on y 0.27804 -27.54081
y on x 0.01886 1.38256

β̃1 0.02332 0.88557

Table 2: Estimators of the slope and intercept of the data for this example

slope estimated by x on y and y on x regression. This implies that the estimators of the remaining

unknown variance parameters σ2 and σ2
ε are positive. It can be seen that β̃1 does this is close to

1, then it would suggest that the errors in variables estimator of the slope would align closely with

the slope estimated by y on x regression.

The remaining parameters with their estimated values from using the solutions to the equations (1)

to (5) are:

µ̃ = 111.597

σ̃2 = 18.67873

σ̃2
ε = 0.11094

The reliability ratio for the natural logarithm of the AFP measurement is estimated as

β̃1
2
σ̃2

β̃1
2
σ̃2 + σ̃2

ε

= 0.08386

and it is thus noted that σ2
ε is rather large. The range of ln(AFP ) values at any gestational age

is approximately 1.3 but the overall range is only approximately 2.1. The slope in this example

is also very shallow. It is unlikely that measurements of ln(AFP ) will have such a large error
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variance associated with them; there must be considerable natural variation in the ln(AFP ) levels

of pregnant women. The problem of this large variability in ln(AFP ) in fitting an errors in variables

model is avoided by using an estimator of the slope which does not assume anything concerning

the error variance σ2
ε . As knowledge of the variability in the measurement of gestational age was

assumed, the inflated value for σ2
ε has no effect upon the estimation of β using β̃1. Using the higher

order moments as described in Section 3, we obtain β̃6 = 0.0204. The distribution of ln(AFP ) is

too symmetric to allow β̃5 to be reliable. This estimator however, makes no use of the knowledge

of the error variation in gestational age.

5 Conclusion

In this paper we have described how the method of moments may be used to estimate the parameters

in a linear errors in variables regression model. We have described method of moments based

estimators constructed upon assuming certain parameters (or functions thereof) are known. In

order to avoid making such assumptions, we have introduced estimators which appeal to the higher

order moments, and have described potential problems with these estimators. A simulation study

compares these estimators, and confirms that estimators based on the higher moments have larger

variance than those based on smaller order moments.

It is potentially useful to offer some recommendations as to when each of the estimators provided in

this paper may be used, based on the authors experience. If a practitioner has knowledge as to the

value of any of the parameters concerning error variances (such as σ2
δ known, σ2

ε known, κ known

or λ known), then this information has to be utilised, and the appropriate estimator selected from

β̃1 to β̃4 must be used. If no a priori knowledge is available, but the sample third moments are

significantly different from zero, use estimator β̃5. For this estimator to be reliable a sample size of

at least 50 is needed. Otherwise, if the coefficients of kurtosis are significantly different from zero,

use estimator β̃6 . For this estimator to be reliable a sample size of at least 100 is needed.
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A Appendix

A.1 Higher moment equations

The moment equations based on the third and fourth moments are slightly more difficult to derive

than for the first and second order moment equations. For brevity, we introduce the notation

ξ∗i = ξi − ξ̄

δ∗i = δi − δ̄

ε∗i = εi − ε̄.
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One example illustrates the general approach:

E[nsxxy] = E

[

∑

(xi − x̄)2(yi − ȳ)

]

= E

[

∑

{(ξ∗i ) + (δ∗i )}2{β(ξ∗i ) + (ε∗i )}
]

Terms of order n−1 are neglected, so the expectations of all the cross products are zero. Moreover

because of the assumptions that ξ, δ and ε are mutually uncorrelated, to order n−1 terms such as

E[(ξi − ξ̄)] are also zero. Hence E[nsxxy] = nβµξ,3, where µξ,3 = E[(ξ − µ)3].

A.2 Computing variance-covariance matrices

Suppose estimators θ̃ and φ̃ of parameters θ and φ are calculated from two sample moments, u

and v. The formulas in this section can readily be generalised for cases where three or four sample

moments are used in the estimator. Let θ̃ = f(u, v) and φ̃ = g(u, v).

Let ∂f
∂u

= ∂f
∂u

|u=E[u] be the partial derivative evaluated at the expected value of the sample moment

u. Then

V ar[θ̃] ≈
{

∂f

∂u

}2

V ar[u] +

{

∂f

∂v

}2

V ar[v] + 2

{

∂f

∂u

}{

∂f

∂v

}

Cov[u, v]

and

Cov[θ̃, φ̃] =

{

∂f

∂u

}{

∂g

∂u

}

V ar[u]+

{

∂f

∂v

}{

∂g

∂v

}

V ar[v]+

({

∂f

∂u

}{

∂g

∂v

}

+

{

∂f

∂v

}{

∂g

∂u

})

Cov[u, v]

The algebra needed to work out the variances and covariances is quite lengthy. Full details are

included in Gillard [19]. Nevertheless, the resulting formulas are not difficult and estimates of the

parameters needed to estimate these variances and covariances are readily obtained from this paper.
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