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Sharp lower bounds on the fractional matching number

Roger E. Behrend*, Suil O, Douglas B. West!

Abstract

A fractional matching of a graph G is a function f from FE(G) to the interval
[0,1] such that }° cp(, f(e) < 1 for each v € V(G), where I'(v) is the set of edges
incident to v. The fractional matching number of G, written o, (@), is the maximum of
Y ec B(G) f(e) over all fractional matchings f. For G with n vertices, m edges, positive
minimum degree d, and maximum degree D, we prove o/, (G) > max{5,n—2, DLern}.
For the first two bounds, equality holds if and only if each component of G is r-regular
or is bipartite with all vertices in one part having degree r, where r = D for the first
bound and r = d for the second. Equality holds in the third bound if and only if G is
regular or is (d, D)-biregular.

1 Introduction

A matching in a graph is a set of disjoint edges. The matching number of a graph G,
written o/(G), is the maximum size of a matching in G. A perfect matching in G is a
matching in which each vertex has an incident edge; its size must be n/2, where n = |V (G)]
throughout this paper. A fractional matching of G is a function f from E(G) to [0, 1] such
that > cr, f(e) <1 for each v € V(G), where I'(v) denotes the set of edges incident to v.
The fractional matching number of G, written o (G), is the maximum of }° ) f(e) over
all fractional matchings f.

Summing the inequality constraints for all vertices yields 23 s f(€) < n, so always

/
*

o (G) < n/2. Since every matching can be viewed as a fractional matching, o, (G) > o/(G)
for every graph G, but equality need not hold. For example, o/,(G) = n/2 whenever G is k-

regular (set each edge weight to 1/k), but not every k-regular graph has a perfect matching.
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A fractional perfect matching is a fractional matching f such that Eeef f(e) =1 for every
vertex v, which occurs if and only if o/,(G) = n/2.

In our discussion, we exclude isolated vertices, since doing so does not change the frac-
tional matching number and eliminates possible divisions by 0 in the bounds. Hence our
graphs also always have at least two vertices. We prove three lower bounds on «/(G) for
every such graph G, and for each we characterize the graphs achieving equality. For G with
n vertices, m edges, minimum degree d, and maximum degree D, we prove

m m d
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The first bound is trivial, obtained by setting each edge weight to 1/D. Nevertheless,
the three bounds are independent in the sense that none implies another. We illustrate this
with two simple families of graphs: non-star trees and n-vertex wheels with n > 5. The
n-vertex wheel is obtained from the cycle C),_; by adding a vertex adjacent to all vertices on

the cycle.
n—% 5 |
d d+D D
n—11: :
non-star tree BT +1 “== | increasing order
wheel with n > 5 ”*2 = +2 2 | decreasing order

In fact, the third bound is always between the other two. This follows from the fact that it
is a weighted average of the first two:

L@+L( ™) - d
d+DD "d+D d) " d+D"

Thus proving the second bound will also prove the third, since the first is trivial.

When G is regular, d = D = 2m/n, so all three bounds equal /2 and hold with equality.
Equality can also hold when G has non-regular components. For either of the first two
bounds, equality holds precisely when each regular component has degree r and each non-
regular component is bipartite with all vertices of one part having degree r, where r = D
for the first bound and r = d for the second.

Since the third bound is the weighted average of the first two, it holds with equality only
when they both hold with equality. This requires that G is regular or that all components
are (d, D)-biregular, where a graph is (a,b)-biregular if it is bipartite with the vertices of
one part all having degree a and the others all having degree b. Note that for the first two
bounds the condition is applied to each component independently, while for the third bound
it is a global choice for all components at once.

When G is bipartite, it is easy to push weights to integers by alternately increasing and
decreasing weights along paths or cycles of edges with non-integer weights. Thus o/, (G) =
o/(G) when G is bipartite (see Theorem 2.1.3 of [3]). Hence any lower bound on o (G) is



also a lower bound on o/(G) when G is bipartite. Our third bound improves a classical such
lower bound in many cases. It is well known that a bipartite graph G with parts X and Y
and minimum degree d satisfies o/(G) > min{2d, |X|,|Y|}. When D + d < n/2, the lower
bound DLern exceeds 2d and hence is stronger.

In the proof, we use a fractional analogue of the famous Berge-Tutte Formula [1] for the
matching number. For a graph H, let o(H) denote the number of components of H having
an odd number of vertices. Given a graph G and S C V(G), define the deficiency def(S)
by def(S) = o(G — S) — |5, and let def(G) = maxgcy (g) def(S). The Berge-Tutte Formula
is the equality o/(G) = 3(n — def(G)). The special case o/(G) = n/2 reduces to Tutte’s
1-Factor Theorem [4]: a graph G has a perfect matching if and only if o(G — S) < |S] for all
S C V(G). (A 1-factor of G is a subgraph whose edges form a perfect matching.)

For the fractional analogue, let i(H) denote the number of isolated vertices in H. Let
def, (S) = i(G—S5)—|S| and def,(G) = maxgcy () def.(S5). The fractional analogue of Tutte’s
1-Factor Theorem is that G has a fractional perfect matching if and only if (G — S) < |S)|
for all S C V(@) (implicit in Pulleyblank [2]), and the fractional version of the Berge-Tutte
Formula is o/, (G) = (n — def,(G)) (see [3], pages 19-20).

2 Sharp Lower Bounds for o (G)

Although the lower bound m/D is trivial, we give another proof of it by the same frac-
tional Berge-Tutte method as for the bound n — * in order to obtain a short proof of the
characterization of equality. Later we provide another approach to that characterization.
The exclusion of isolated vertices in Theorem 1 is used implicitly at several points in the
proof. It ensures that d and D are both nonzero and that both parts are nonempty when
the graph is bipartite. An independent set is a set of vertices inducing no edges. Let [A, B]

denote the set of edges in G with endpoints in A and B.

Theorem 1. For an n-vertex graph G with m edges, positive minimum degree d, and mazxi-

mum degree D,
m

o (G)zn—" and al(G) =T, (1)
For each bound, equality holds if and only if each component of G is r-regular or is a bipartite

graph with all vertices in one part having degree r, where r is the relevant member of {d, D}.

Proof. The number of vertices, number of edges, and fractional matching number are additive
over components, and the claimed lower bounds become stronger when the minimum degree
increases or the maximum degree decreases. Hence it suffices to prove the claims when G is
connected. We have also observed the bounds and equalities for regular graphs, so we may
assume d < 2m/n < D.



By the fractional Berge-Tutte Formula, o/,(G) = 1 (n — def,(S)) for some S C V(G).
If S = @, then o/, (G) = n/2 and the bounds hold, but not with equality, since G is not
regular. Hence we may assume S # @& and def,(S) > def,(&) = 0. Let @ be the set of
isolated vertices in G — S, so def.(S) = |@Q| —|S| and @ is nonempty. Let R = V(G) —S —Q.

Note that 2m counts each edge twice; we group contributions by vertices. At least d|Q)|
edges are incident to Q). At most D|S| edges are incident to S, including all of [Q, S], and
the remaining edges are incident to R. We thus have

2d|Q| + d|R| < 2m < 2D|S| + D|R]. (2)
Using n = |Q| + |S| + |R| and def,(S) = |Q] — |S]|, we obtain
d(n + def,(S)) < 2m < D(n — def.(5)), (3)

and then o (G) = 5(n — def,(S5) yields

1
2

d(n — o (G)) <m < Do (G), (4)

which are the desired bounds.

When G is not regular, equality in either bound requires equality in the appropriate part
of (2). If 2d|Q| + d|R| counts each edge twice, then only edges of [S, Q)] are incident to S.
Since [@, R] = &, and we have reduced to G being connected, we conclude that R = & and
that S is independent. Now G is bipartite, and every vertex of () has degree d.

Similarly, if every edge contributes exactly twice to 2D|S| 4+ D|R|, then again only edges
of [S, Q] are incident to S (edges from S to R would contribute 3 to the count, and edges
within S would contribute 4). As before, we conclude that R = @ and that S is independent.
Thus G is bipartite, and every vertex of S has degree D.

Finally, let G be connected and bipartite with parts X and Y such that each vertex of
X has degree r. If r = d, then to show equality in &/ (G) > n — m/d we find S such that
def,(S) = 2 —n. Let S =Y, s0 i(G — S) = |X|, and X plays the role of Q above. Since
m = d| X[, we have def(S) = i(G — S) — S| = |X| — (n — |X|) = 2* — n, as desired.

When G is bipartite, o/, (G) is bounded above by the size of the smaller part, since those
vertices group the edges into disjoint sets that receive weight at most 1. Hence when r = D
and the vertices in X all have degree D, we have |Y| > |X| = 5. O

Corollary 2. If G has n vertices, positive minimum degree d, and mazimum degree D, then

d

with equality if and only if G is regular or is (d, D)-biregular.



Proof. We have noted that this inequality is the sum of the inequalities in (1), weighted by
CHLD and d%j. Thus d‘i—"D is between the minimum and the maximum of those two bounds
and equals one of them if and only if it equals both. Furthermore, equality holds in this
bound if and only if there is no better lower bound on «/,(G), so equality requires one of the
other bounds (and hence both of them) to hold with equality. Requiring G to satisfy the

characterizations of equality in those two bounds requires G to be regular or (d, D)-biregular.

Conversely, such a graph G satisfies both of those bounds with equality. O
Finally, we note that the condition for equality in o/ (G) > % can also be obtained

directly by improving the uniform weighting when G is not as described. We may assume
that GG is connected and not regular.

The set T of vertices with non-maximum degree must be independent, because there
is slack at vertices of T" under this edge-weighting. More generally, if two vertices of T are
connected by a trail of odd length, the weights along the trail can be alternately increased and
decreased (by the same amount) to increase the total weight. If G is bipartite, it therefore
cannot have vertices of non-maximum degree in opposite parts, so a bipartite such graph
has degree D at all vertices in one part.

It remains to consider non-bipartite G having an odd cycle C' through vertices of maxi-
mum degree. Let P be a shortest path to C' from a vertex v of T, reaching C' at w. Mark the
edges of a trail following the union of P and C alternately positive and negative, starting
positive at v. On C' the two edges at w have the same sign. Change the weights on P U C
in the indicated direction, by € on P and by €/2 on C. The total weight at each vertex
other than v remains unchanged. Whether P has even length or odd length, the total weight
increases by €/2. Hence o/ (G) cannot equal 75 when (' is connected, non-bipartite, and not

regular.
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