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Abstract 

 Silver is a clinically important, broad spectrum antibacterial, whose use extends 

back over several millennia. Its potent antibacterial activity, range of susceptible 

microorganisms, and lack of developed resistances, elevate silver as an exciting weapon 

in the fight against hospital acquired infections and so-called ‘superbugs’. The active, 

ionic form is efficacious at very low concentrations, thus controlling release rates offers 

potential durable, non-specific, antibacterial medical devices. This thesis examines a 

number of inorganic systems as potential slow-release, antibacterial silver 

nanocomposites for incorporation into polyurethane foam wound dressings.  

 A range of silver core-silica shell nanocomposites were synthesised with tuneable 

dimensions, with porosity introduced into the silica shells, via base-etching or 

surfactant-templating producing disordered or ordered architectures respectively. An 

alternative system based on mesoporous SBA-15 silica was also investigated, which 

was employed as a scaffold for subsequent multilayer titania functionalisation, onto 

which mixed silver/silver carbonate nanoparticles were subsequently deposited. 

 Detailed characterisation allowed fundamental structural-function relationships for 

silver dissolution kinetics and their associated impact upon antibacterial activity 

towards Gram-positive and Gram-negative bacteria including methicillin-resistant 

Staphylococcus aureus. Silver ion release rates are inversely proportional to silver 

crystallite size, with further governance via shell thickness and mesoporosity 

achievable in core shell systems. The intrinsic antibacterial activity of titania coated 

SBA-15 further enhances performance, independent of silver, whilst support macropore 

introduction increases silver particle dispersion. Antibacterial prowess of all materials 

demonstrates a strong activity correlation with dissolution kinetics, evidencing up to 

seven-fold logarithmic reductions in the bacterial concentrations within four hours. 

Materials were potent for > 24 hours, with the reverse micelle core-shell formulation 

showing continuous activity over a 14 day period. Comparative benchmarking indicates 

mesoporous silver core-silica shell architectures as promising candidates due to 

antibacterial longevity, manufacturing simplicity and cost, with their hydrophilic nature 

and small dimensions rendering them amenable to incorporation into compatible 

polyurethane foams. 
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1. Introduction 

1.1.  Hospital acquired infections 

Hospital acquired infections (HAIs), or alternately healthcare associated infections, 

is a term given to illnesses which arise in a patient as a direct result of a hospital stay. 

The spread of drug-resistant bacteria is a growing threat, attributed to around 150000 

deaths per year in Europe,
1
 an estimated 100000 per year in the USA and at any one 

time, over 1.4 million worldwide people are suffering from a hospital acquired 

infection.
1
 With a large variety of drug-resistant bacteria, such as methicillin-resistant 

Staphylococcus Aureus (MRSA) and multi-drug-resistant tuberculosis (MDR-TB), a 

broad spectrum antibiotic is an ideal candidate for use in the fight against hospital 

acquired infections.  

Approximately one third of all HAIs are preventable
2
 and while in recent times 

standards in cleanliness in hospitals has significantly reduced the number of HAIs per 

year, the number of patients suffering from these infections remains as large as 6% of 

all administered patients in England.
3
 As of December 2013, rates of infection of 

MRSA, MSSA (methicillin-susceptible Staphylococcus aureus) and Escherichia coli 

remain stable across English hospitals for the past 2 years and only Clostridium difficile 

rates have diminished.
4
 The overall rate in HAI’s has reduced due to guidelines 

developed on evidence from various hospitals, beginning in 2001.
5
 These encourage 

standard principles for preventing HAI’s, which include hospital environmental 

hygiene, hand hygiene, the use of personal protective equipment, and the safe use and 

disposal of sharps; preventing infections associated with the use of short-term 

indwelling urethral catheters; and preventing infections associated with central venous 

catheters.
6
 

 

1.1.1. History of antibiotic resistance in bacterium 

The penicillin family of compounds (Figure 1.1) was famously discovered by Sir 

Alexander Fleming in 1928 when he demonstrated that the fungi Penicillum rubens 

could be used to produce a substance which exhibited antibacterial effects.
7
 Along with 
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its younger derivatives, it is classified as a β-lactam antibiotic, named after the β-lactam 

ring in its structure.  

 

Figure 1.1: General structure of penicillin family of compounds. 

 

The β-lactam group of broad-spectrum antibiotics (Figure 1.2) include penicillins, 

cephalosporins and related compounds. As a group, these drugs are active against many 

gram-positive, gram-negative and anaerobic organisms. These antibiotics exert their 

effect by interfering with the structural crosslinking of peptidoglycans in bacterial cell 

walls through binding of the β-lactam ring with the enzyme DD-transpeptidase.
8
 

 

Figure 1.2: β-lactam ring, the active site in β-lactam antibiotics. 

 

The spread of MRSA was initially not seen as a realistic threat, with the common 

view being that the particular strain was not as pathogenic as an abundant strain which 

was prevalent at the time, that of MSSA.
9
 Opinion was that the replacement of MSSA 

with MRSA was also as inevitable as the initial spread of MSSA.
10

 MRSA is now 

known to have a higher morbidity and mortality rate than MSSA (approximately 

double) making MRSA is one of the most significant antibiotic-resistant hospital 

acquired pathogen to have developed
11

 and combined with its ability to evolve further 

makes it a real threat.
12

 It is also worth noting that MRSA is not merely a replacement 

for MSSA, but an additional burden of staphylococcal infections.
13

 Worse still, new 

strains are beginning to emerge into the community which are spreading widely and are 

more virulent than hospital acquired MRSA.
14
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1.1.2. Treatment and prevention 

Hospital staff have been aware of the dangers of HAIs since the 1960s, following a 

staphylococcal pandemic, which began a search for greater control and prevention of 

harmful pathogenic infections in the intensive care environment.
15

 The pandemic was 

caused by penicillin resistant microorganisms, and although quelled with the 

introduction of methicillin, began an age of developing techniques to prevent such 

infections, and this lead to the hospitals taking responsibility for the prevention of 

HAIs.
16

 

It was not only staphylococcal strains which were causing widespread infections in 

hospitals, Gram negative bacteria such as Escherichia, Klebsiella, Proteus and 

Pseudomonas which possess very limited pathogenic abilities in a healthy host, were 

found to be thriving in hospital environments in the 1960s. With increased resistance to 

antibiotics and disinfectants, plus their ability to survive and multiply rapidly in 

inhospitable environments, they rapidly became very problematic organisms for the 

healthcare industry and patient wellbeing.
17

 

In 1987, the first International Conference of the Hospital Infection Society was 

held, in which the opening address noted that not only are pathogens continuing to 

develop new resistances to more and more antibiotics and disinfectants, but that also, 

with medical progress advancing to tackle more complex problems, the barriers to 

infection are reducing. This is an important note, as it highlights the need to tackle the 

problem from two fronts; the need to develop new materials to kill harmful 

microorganisms, plus the need to develop practical techniques, to protect susceptible 

infection sites from possibly harmful pathogens. Nowadays, many professional bodies 

have strict guidelines to strive towards protecting patients from infections, such as the 

Royal College of Nursing, which includes activities such as strenuous hand sanitising 

and isolation of patients suspected of infection.  
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1.2.  Microbiology 

 

1.2.1. Bacterial cell structure 

A typical bacterium is pictured in Figure 1.3, including its cell components.  

 

Figure 1.3: Schematic of a bacterium. 

 

 Surrounding the cell, is the cell wall, which can be split into two distinct types, to 

be covered in an upcoming section. The cell wall serves to protect the cell from 

external and internal osmotic forces, to maintain the shape of the cell and regulate the 

penetration and escape of macromolecules into and out of the cell.
18

 The capsule 

encases the wall, and is responsible for the prevention of desiccation of the cell and the 

release of harmful toxins and bacterial viruses for the purpose of infecting nearby 

organisms.
19

 On the outside of that, lie the pili/fimbriae, which are the components of 

the cell responsible for adhesion onto surfaces and the formation of biofilms, as well as 

allowing DNA transfer in certain strains of bacteria (e.g. Escherichia coli) during the 

process of bacterial conjugation.
20

 Flagella are responsible for cell transport function.
21

 

Within this outer layer, the cell membrane separates the cell interior with the wall, and 

is responsible for the permeation of ions and molecules in and out of the cell.
22

 The 

internal section of the cell is comprised of the DNA chromosome, which contains the 
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genetic material of the bacteria,
23

 ribosomes, which are responsible for protein 

synthesis,
24

 whilst the cytoplasm is the collective term for these internal sub structures 

(known as organelles) and the cytosol (gel-like substance) which encases the 

organelles, is comprised of water, salts and organic material and accounts for 

approximately 70% of the cytoplasm.
25

  

 

1.2.2. Bacterial classification 

Bacteria are classified according to many factors and organisms are grouped 

together based on similarities, such as cell structure, cell metabolism or on differences 

in cell components. They are typically between 0.5 - 5μm in length and can take a 

variety of forms. Common morphologies for bacteria to take include spheres (cocci), 

rods (bacilli), spirals (spirella) and comma-shapes (vibrio). Further to this, the grouping 

of the bacteria can be described by a variety of prefixes, including diplo (groups of 

two), strepto (chains) and staphylo (grape-like clusters). Further to this, there are two 

more important groups in which to divide bacteria; Gram-positive and Gram-negative 

bacteria. 

 

1.2.3. Gram positive and Gram negative 

In 1884, Hans Christian Gram was developing a method to stain bacteria to make 

them more visible whilst examining lung tissue from patients who had died from 

pneumonia.
26

 During this process he actually developed a method to differentiate 

between the Klebsiella pneumonia and Streptococcus pneumonia bacteria present, a 

method which is still in use today. The method he discovered was to become known as 

the Gram-stain and involves staining a slide of bacteria with purple crystal violet 

solution, removing the excess and adding iodine (which fixes the crystal violet to the 

cell), adding alcohol or acetone and counterstaining with safranin. 

Crystal violet dissociates into CV
+
 and Cl

- 
in aqueous solutions and these ions 

penetrate the cell walls of both Gram-positive and Gram-negative bacteria. The CV
+
 

ion reacts with negatively charged components of the cell wall and the addition of 

iodine forms CV-I complexes and subsequently fixes the purple colour to the cell. A 

Gram-negative cell will lose its outer lipopolysaccharide membrane during an acetone 
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or alcohol wash, removing the colour from the cell revealing a thin peptidoglycan layer, 

which can be stained pink by the counter stain. This leaves the purple stain remains in 

the Gram-positive bacteria and a pink stain in the Gram-negative, allowing for 

differentiation (Figure 1.4). 

 

 

Figure 1.4: Gram staining of a mixture of Gram positive and Gram-negative bacteria.
27

 

 

The difference in the cell wall structures are shown in Figure 1.5. 

 

 

 

Figure 1.5:  Cell wall structures of Gram-positive and Gram-negative bacteria.
28
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Gram-positive bacteria have a thick cell wall made of peptidoglycan, linear chains 

of N-acetyl glucosamine (NAG) and N-acetyl muramic acid (NAM) which makes up at 

least 40% of the mass of the cell wall and is responsible for the shape of the bacterium. 

These are accompanied by one or more non-peptidoglycan polymers, such as teichoic 

acids or teichuronic acids.
18

 These thick cell walls (20-50 nm) stain purple during the 

Gram-stain test, whilst the Gram-negative bacteria have a thin peptidoglycan layer 

(around 10% of the cell wall), which stains pink. The other features of the Gram-

negative cell wall are the protein and lipid based outer membrane and the periplasmic 

space between it and the cell wall. 

In this work, the bacteria were chosen as representatives for Gram-positive and 

Gram-negative strains, both of which are commonly attributed to HAIs. Pseudomonas 

aeruginosa is a Gram-negative, aerobic bacterium with a semi-spherical, semi-rod-like 

which resides commonly in soil, skin flora and water. It is commonly found on medical 

equipment such as catheters, due to its tendency towards moist environments, which 

can result in the spread of HAIs. Staphylococcus aureus is a spherical, facultatively 

anaerobic Gram-positive bacterium which is commonly found on the skin and nasal 

passages. 

 

1.3.  Silver as an antimicrobial 

 

1.3.1. History of silver as an antibacterial agent 

Silver is a well-known broad spectrum antibiotic, effective against Gram-positive 

(e.g. MRSA, B.Subtilis) and Gram-negative bacteria (e.g. E. Coli, P.Aeruginosa).
29

 

Silver has been known to exhibit antibacterial properties for a very long time, 

dating back to the ancient Greeks and Phoenicians,
30

 who used silver pots to keep water 

fresh thanks to its broad antibacterial activity. Silver is used the world over, in Central 

America, it is painted onto village water filters, in Japan, it is applied to washing 

machines, deodorant and toilet seats amongst others, elsewhere, wound care products 

such as SilverIon (Argentum Products), Actisorb Silver (Johnson and Johnson), 
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Acticoat (Smith and Nephew) and Tegaderm (3M) and many more.
31

 The history of 

silver as a medical application dates back to the 18
th

 century, at which time it was used 

to treat ulcers, later in 1880, a paper was published on treating newborns with silver 

nitrate to prevent blindness caused by infections of Gonorrhoea in mothers.
30

 After the 

discovery of penicillin in the 1940s, the use of silver as an antimicrobial diminished, 

however it made a comeback in the 1960’s as 0.5% silver nitrate solution was used to 

treat burns.
32, 33

 In 1968, Charles Fox combined silver nitrate with a sulphonamide 

antibiotic, to create a more broad spectrum antibiotic, the result was silver sulfadiazine 

and was the standard for burns treatment for a long time.
34-36

 It has also been combined 

with polyurethane dressings in the past, creating an effective combination.
37

 Silver 

sulfadiazine is now not recommended after a Cochrane review found it to increase 

healing times.
38

 As well as many wound dressings and wound management systems 

incorporating some level of silver, it is also being incorporated into other systems 

susceptible to bactericidal attack, for example, catheters.
31

 Silver also has the ability to 

kill virus’s such as Herpes simplex 1 and the HIV virus.
39

 Alongside this broad 

spectrum antimicrobial activity, silver is known to have a remarkably low toxicity to 

human cells.
40

 

 

1.3.2. Silver nanoparticles as antimicrobial agents 

Silver nanoparticles exhibit a high degree of cytotoxicity towards a broad range of 

microorganisms, and as such, are of particular interest in the field of antimicrobial 

research.
41-50

 An advantage of silver in the form of nanoparticles is the slow release rate 

of ionic, biologically active silver species, which can be used to develop a material with 

a long lifetime of action against bacteria.
51, 52

  

Silver nanoparticle formation is commonly achieved using chemical methods, 

thermal treatments and photolytic processes. Using a chemical method, Ag 

nanoparticles can be produced using a combination of a reducing agent and silver 

precursor in the presence of a stabilising agent or surfactant. Reducing protocols range 

from strong treatments with reagents such as sodium borohydride
53-57

 and hydrazine
58-60

 

to milder, organic reducing agents, such as glucose,
61

 ethylene glycol
62

 and 

formaldehyde.
47, 63, 64

 Stablizers and capping agents such as polyvinyl pyrollidone, 
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polyvinyl acetone and gelatin can be used to prevent the silver nanoparticles from 

agglomerating into large crystallites during synthesis.
65

 

Using thermal treatments, silver nanoparticles can be prepared in a similar manner 

to many other metal nanoparticles, although this usually results in more monodispersity 

amongst prepared nanocomposites.
66

 There has been suggestion that tuning of the pore 

size in the ordered oxide structure can be utilised to control resultant silver particle 

size.
67

 Surface modifiers have also been used to further retard the size growth of 

resultant particles, by using amine groups as a stronger tether to the oxide surface, 

silver particles of greater monodispersity and smaller size range have been prepared (~ 

2.5 nm).
68

 

 

1.3.3. Mechanism of action 

The mechanism of action of silver as an antimicrobial agent is the subject of some 

debate, and is thought to be a complex and broad one, with popular opinion weighted 

towards silver(I) ions being the active species.
69

 The mechanism attributed to this 

action is denoted the oligodynamic effect, discovered in 1893 by Swiss botanist Karl 

Willhelm von Nägeli
70

 and is described as the toxic effect of metal ions on living cells, 

algae, molds, spores, fungi, viruses, prokaryotic and eukaryotic microorganisms, even 

in relatively low concentrations. This effect is common in many metal ions, including 

mercury, copper, silver, gold and iron, to varying degrees.  

The oligodynamic effect describes the ability of these metals to exhibit 

bacteriostatic or bacteriocidal activity, silver is thought to do this in its ionic form by 

interacting with the thiol groups of certain vital enzymes and inactivating them.
53

 Silver 

ions have also been suggested to disrupt the ability of DNA to replicate, leading again 

to cell death. Further studies have reported the build-up of silver-sulfur, electron rich 

granules within the membrane and cell wall, resulting in structural changes.
71

 

The motivation for continued current research interests into silver nanoparticles as 

antimicrobial agents mirrors that for nanoparticles in general, with their small size 

altering their physical properties, allowing for new and unique materials. Much of the 

success of silver nanoparticles in this field has been attributed to electronic effects, 

which are the result of the changes in the local electronic structure of the surfaces of the 



1. Introduction 

 

22 

 

smaller-sized particles. It is suggested that these effects contribute to the enhancement 

of the reactivity of the silver-nanoparticle surfaces, leading to improved dissolution 

kinetics and release of antimicrobial Ag
+
 species.

72
 Silver nanoparticles exhibit 

antimicrobial activity by releasing soluble ionic silver species into solution, effectively 

acting as drug delivery systems.
73

 Complimentary to this, however, silver nanoparticles 

can produce reactive oxygen species, which exhibit additional antimicrobial effects, 

dependent on the nanoparticle diameter, and hence total available surface area.
74

 This 

occurs via the oxidative dissolution process from which silver ions are released by 

silver nanoparticles into solution outlined in figure 1.6, hence both ROS generation and 

Ag ion dissolution are surface area dependent. 

 

Figure 1.6: Oxidative release of silver ions from nanocrystalline silver particles.
75

 

 

 

1.3.4. Silver in the wound care industry 

Silver has been used in wound care products for some time now, with companies 

including Smith and Nephew and Johnson and Johnson producing silver containing 

products. Nanocrystalline materials have been of growing interest in this field, due to 

an intrinsic ability to overcome the limitations of existing silver based antimicrobial 

additives, such as silver nitrate and silver sulfadiazine, in fast silver dissolution rates 

resulting in fast inactivation of the active species, as well as the formation of a pseudo-

eschar (a build-up of dead tissue).
54, 76, 77

 Silver in its nanocrystalline form has been 

found to be not only an effective antimicrobial treatment, but also to decrease healing 

time and decrease inflammation.
78

 

The form of silver differs between products, in Smith and Nephews Acticoat 7, the 

silver is in a high loading nanocrystalline form, whereas in Reliamed’s Silver Alginate 

dressings, it is in an ionic form and lower loading (silver alginate, Figure 1.67).  
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Figure 1.7: Metal alginate structure, cations are shared between layers of polymer. 

 

The weight percentage of silver in these products varies from 0.5% in the ionic 

silver containing materials to 10% in the nanoparticulate based materials, as shown in 

Figure 1.8. 

 

Figure 1.8: Silver contents of selected commercial products.
79

 

 

Alongside the incredibly broad range of organisms targeted by the antimicrobial 

activity of silver, there is the added advantage that silver is a powerful agent, even at 

sub ppm concentrations.
80

 It is for this reason that nanoparticular silver offers an 

advantage over silver based compounds, such as silver nitrate, as a slower, controlled 

release of silver species into solution can offer a solution to the fast dissolution kinetics 

offered by these materials.
43
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Figure 1.10: Silver release rates from selected commercial products.
79

 

 

Control over dissolution of the silver species is vital in the production of silver 

wound care systems. As silver is active at very low levels, it is important to regulate the 

release of the ionic species to low levels, as prolonged exposure to large quantities of 

silver can result in damage to healthy human cells and cause argyria and hepatotoxicity 

in patients.
81

 Although silver is to be found in the average human diet (27-80 μg per 

day), it is important to limit exposure due to these complications and, it is for this 

reason that the guidelines for safe drinking water are 50 ppb of Ag, as complications 

have been recorded in patients with blood-silver levels of 5 ppm.
82

 Although severe 

cases of silver toxicity result from continued exposure to high levels of silver, this is 

due reason to take care to limit the silver release as much as possible. 

 

1.3.5. Polyurethane foam wound dressings 

 Incorporating synthesised nanomaterials within existing wound care products is the 

end goal of this thesis. In collaboration with our industrial partners polymer health 
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technology (PHT), it is hoped that a suitable antimicrobial additive can be developed 

for use within existing products within PHT.  

 The products in question are polyurethane foam based wound care devices, which 

exhibit excellent absorption properties and provide a suitable environment for the 

healing process to occur. 

 Polyurethane is a long chain polymer formed from diisocyanate and polyol 

monomers, involving carbamate linkages between hydrocarbon chains (figure 1.11).
83

 

 

Figure 1.11: Polyurethane formation.
83

 

 

 Compatibility with these hydrophilic foams must be taken into consideration, as 

with the foam production procedure. 

1.4. Nanocomposites 

 

1.4.1. Definition of the nanoscale 

The term ‘nano’ is becoming widely used as a prefix for many new and exciting 

research areas. There are, however, formal definitions for materials possessing one or 

more dimension in the sub-micron range. The accepted definitions for ‘nanomaterials’ 

involve materials with one or more dimension in the sub 100 nm range, including 

structures, agglomerates and aggregates.
84

 The dimensions are merely arbitrary values, 

and do not necessarily dictate the appearance of the special properties which make 
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nanomaterials so appealing, as these may develop above or below the 100 nm 

boundary. 

 

1.4.2. Silver nanoparticles 

As well as finding use as antimicrobial agents, silver nanoparticles have been the 

subject of much research since the dawn of the age of nanotechnology, partly due to 

their large surface plasmon resonance band (a feature it shares with nanoparticles of its 

fellow noble metal, gold) which lends itself well to fields such as biological sensing 

and nanoscale photonics.
85

  

Whilst not as active or popular as gold nanoparticulate catalysts, silver has found 

itself useful in a variety of select, mainly oxidative, reactions, such as CO oxidation,
86, 

87
 oxidation of organic compounds,

88-90
 reduction

55, 91, 92
 and dehydrogenations

93
 as well 

as possessing capabilities for photocatalysis.
94-96

 

As a result of finding many applications for silver nanoparticles, control over its 

size and morphology has been the subject of much research.
97-102

 Using a variety of 

surfactants, protecting groups or capping agents the size and shape of silver 

nanoparticles can be controlled to give a selection of morphologies, including cubes, 

spheres, rods and dendrites.
100, 103, 104

 The control over shape allows for different 

dominant facets of silver, which affect the antimicrobial efficacy of the resultant 

particles. Particles with a high number of facets with a large atom density, such as the 

(111) facet, which is in existence in a high degree within triangular particles, more so 

than spherical or rod shaped particles, exert a greater antimicrobial force.
98

 

Size control is also of particular interest in this field, with methodologies 

developed to govern the dimensions of the produced silver crystallites with the purpose 

of controlling optical properties in the fields of photonics,
105

 catalytic activity
55

 and of 

course, antimicrobial activity.
106

 Methodologies including laser ablation, photochemical 

and chemical treatments have been employed to control the dimensions of silver 

nanoparticles between a large range of sizes, in the presence of organic stabilising 

molecules.
107-109

 These methods often produce materials of a relatively polydisperse 

size distribution when compared with advances in the use of reverse micelle 
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microreactor methodologies for producing very small (< 10 nm) monodisperse 

nanoparticles of a tuneable diameter within water-in-oil microemulsions.
110, 111

 

 

1.4.3. Core-shell architectures 

The coating of metal nanoparticles with a protective coating has been proven a 

useful and interesting development in recent times, finding applications in fields 

including bioimaging,
112

 surface-enhanced raman spectroscopy,
113

 and catalysis. One-

pot or multi step methods of coating metal nanoparticles with inorganic layers have 

been developed which include, inorganic oxides such as silica,
114-117

 titania
118, 119

 and 

zirconia,
120

  polymeric coatings
121

 or encapsulation with biomolecules such as DNA.
122

 

 

Figure 1.12: Example of a core-shell system, Au@SiO2 nanocomposites.
123

 

 

Metal nanoparticles exhibit interesting and novel electronic characteristics, 

attributed to surface plasmon resonance effects, control over the metal surface and high 

surface areas. The benefit of the inorganic shells is to vastly improve stability and 

prevent agglomeration of the metal nanoparticles to a more energetically favourable 

configuration. A high degree of control over dimensions and properties have been 

found for these composite materials, with protocols to govern eventual silica shell 

thickness and regulate core metal particle diameter,
124-127

 as well as affect the 

density/porosity of the encasing material, or produce a so-called ‘rattle-type’ core shell 

material, in which the metal particles exist within a central void inside the inorganic 

shell.
128-130

 

 



1. Introduction 

 

28 

 

1.5. Porous structures 

 

1.5.1. Micro, meso and macroporosity 

Micropores, mesopores and macropores all describe different size ranges of pores 

within materials. The official IUPAC definitions for the three types of pore is as 

follows:
131, 132

 

 Micropore: A pore with a diameter not exceeding 2.0 nm 

 Mesopore: A pore with a diameter above 2.0 nm, but not exceeding 50 nm 

 Macropore: A pore with a diameter above 50 nm 

 

1.5.2. Mesoporous silicas 

Introducing structured mesoporosity into silicas began a wave of research into the 

area, and was made famous by the Mobil corporation, who developed molecular sieves 

by the name of ‘Mobil composition of matter’
133

 and along with newer variants, such as 

SBA-15 and KIT-6, mesoporous silicas have found a strong foundation in applications 

such as catalyst support.
86, 88, 134-137

 

Soft-templating is an incredibly useful tool for developing mesoporous materials as 

surfactant micelle arrangements can be controlled to a highly sophisticated degree to 

give a range of mesostructural materials, including hexagonally arranged, straight, 

discrete pores,
133

 pore arrangements of a cubic, interconnected nature
138

 or 

bicontinuous, enantiomeric arrangements, such as those found in KIT-6 and MCM-48 

(figure 1.9).
139 
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Figure 1.13: Electron micrographs of (a) MCM-41, (b) KIT-6 and (c) SBA-16 mesostructured 

silicas.
140-142

 

 These mesostructured materials bear significant advantages in fields such as 

catalysis, carbon capture and drug delivery.
143

 Owing to high surface areas, 

monodisperse and easily accessible pores and the ability to easily functionalise the 

silica surfaces, they have become a common staple in the synthesis of inorganic 

structural materials. Added tuneability of material structure can be imparted in the form 

of variations in pore sizes. This has been achieved through various means, such as 

through temperature control,
144

 the use of auxillary organics,
133

 control over the 

concentration of ionic species within the reaction
145

 or through systematic variation of 

surfactant chain lengths.
146

 

The advantages of the utilisation of mesostructural silicas for antimicrobial 

applications include high stability, malleability and the fact that they are biologically 

inert.
147

 Using well reported syntheses of surfactant-micelle template methods, 

followed by hydrolysis and condensation of an alkoxy silicate, well ordered mesopores 

of a narrow size distribution can be created within the silica matrix.
138

 

 

1.5.3. Macroporous/hierarchically porous silicas 

In addition to an ordered pore structure or narrow size distribution in the mesopore 

size range, many attempts to introduce macropores into these systems have been made, 

using large templates such as polystyrene beads,
135, 148, 149

 polymer emulsions,
150-152

 

silica spheres
153

 and even ice crystals.
154

 

Macroporous and hierarchically porous materials have proven useful as adsorbents, 

separation materials and catalyst supports, due to enhanced mass transfer abilities,
154

 as 

well as some unique optical properties which have found them use in photocatalytic 

devices.
155
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Advantages in macroporous materials stem from an increase to accessibility and 

mass transport, for example, hierarchically porous materials have been shown to 

improve reaction rates for acid and acid-base catalysts in biodiesel synthesis, by virtue 

of greater accessibility of active surface sites.
135, 156

 Furthermore, improvements in 

dispersity of impregnated metal nanoparticles can be observed in these hierarchically 

porous materials.
157

 

 

Figure 1.14: Hierarchically porous inorganic support structure.
158

 

 

1.5.4. Silver doped mesoporous silica 

The combination of silver and mesoporous silica has been studied extensively, due 

to the fact silica is such a robust and versatile support. This has come in many forms, 

the previously mentioned SBA-15 based materials being but one.
136, 159

 Other common 

ordered mesostructured silicas have been developed as supports for catalytic and 

photocatalytic applications,
68, 160-162

 however, these ordered mesoporous silicas are not 

frequently used supports for silver nanoparticles in antimicrobial applications. 

Other mesostructured forms of silica, used in combination with silver include the 

popular mesostructured nanospheres, which have been developed as base supports, with 

silver nanoparticles decorating the external surface and pore channel matrix
163, 164

 or as 

core-shell architectures in which preformed, or one-pot silver nanoparticles are coated 

with a mesoporous silica matrix, often of unordered pores of random orientations.
45, 165, 

166
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1.5.5. Titania 

Titania is well known to have photoactive properties, and has found much use as a 

photocatalyst.
167-170

 However, in 1985, it was discovered that titania, irradiated with UV 

light, could also act as a photoactive antimicrobial agent.
171

 Titania in the form of 

Anatase has a band gap of 3.2 eV and irradiation with electromagnetic radiation of 

greater energy than this promotes an electron from the valence band into the conduction 

band, leaving a free electron in the conduction band and a hole in the valence band 

which can then participate in oxidation and reduction processes either within the 

material itself, or with adsorbates at the surface of the material.
172

 

Bacteria at the surface of titania based materials have been found to suffer 

oxidation of the Coenzyme A (CoA,, Figure 1.9) species photo-electrochemically, 

which inhibits the respiration of the cells, causing cell death. 

 

Figure 1.15: Coenzyme A, responsible for the oxidation of acetyl groups for energy production. 

 

One of the common problems with titania based photocatalysts, is the 

recombination of electron hole and electron, although it is reported that this 

recombination can be avoided using a silver metal nanoparticle doping technique, 

which allows the excited electrons to ‘jump’ from the titania to the silver particles, thus 

stabilising the electron-hole formation.
173

 

Although it has also been reported that there is a possibility that this stabilisation 

can depress silver ion release with the excited electrons reducing free silver ions back 

to silver metal,
174

 there is a hope that these combination materials could lead to a highly 

active dual-functioning antimicrobial agent. The materials may require a short UV 

irradiation period prior to use, although titania is known to interact with approximately 
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3% of the solar spectrum, which it is hoped, could enhance the antimicrobial activity of 

silver-titania nanocomposites.
175

 

 

1.6. Thesis aims 

Silver has been known to be an effective antimicrobial agent for centuries, and yet 

is still a popular choice for wound management and antibacterial applications, thanks to 

its broad spectrum activity against a wide range of Gram positive and negative 

organisms, as well as yeasts, viruses and fungi. Whilst there have been studies 

suggesting alternative methods of action for the antimicrobial activity of silver 

nanoparticles, it is popular opinion that Ag
+
 is the active species, and hence it is 

imperative that the nanocomposites developed release silver ions into the wound 

environment.
69

 

Control over the silver release rate will be crucial to determining the lifetime of 

these materials as an antimicrobial agent, as release which is too fast may provide an 

effective antibiotic, but a material which does not last very long. Longer lifetimes for 

these materials would result in longer lifetimes for wound dressings and hence fewer 

dressing changes for chronic victims, thus reducing possible exposure to harmful 

pathogens. The silver release rate must also be high enough so as to exhibit 

antimicrobial activity, and so comparative studies of Ag
+ 

species dissolution and 

biological testing will be of high importance to attempt to optimise the performance of 

the developed materials. 

It is for this reason that the core shell materials were the first material to be studies, 

with many parameters to control, such as silver nanoparticle size, silica shell size, 

porosity or pore size and possible further coatings, it was hypothesised that materials 

could be developed with very sensitive control over silver release and activity. 

Mesoporous silicas also gave a promising platform to work from, with the possibility of 

adding specific coatings to the biologically inert silica, plus introducing a hierarchically 

porous structure, allowed for more control over the support for the silver nanoparticles, 

rather than the silver itself. The development of a material with the malleability of silica 

and added biocompatibility or even antimicrobial activity, in combination with silver 
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nanoparticles, was thought to be an interesting and promising avenue. The added 

antimicrobial functionality of titania surface grafting alongside the study into the effects 

of macroporosity on these systems, will hopefully lead to the development of a highly 

effective antimicrobial agent with a dual mode of action. 
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2.1. Preparation of core-shell silver@silica materials 

 

2.1.1. Parent core-shell materials 

Silver/silica, core-shell nanocomposites were prepared using a modified preparation 

outlined by Adair et al.
1
 In this procedure a microemulsion solution was prepared from 

cyclohexane (Sigma Aldrich ≥ 99%), Igepal co-520 (Sigma Aldrich) and deionised 

water in a 250 ml round bottomed flask with vigorous stirring (750 rpm) at room 

temperature and covered in foil under flowing N2. Silver nitrate solution (0.1M, Sigma 

Aldrich) was added and the system left to equilibrate for 20 minutes. Hydrazine (Sigma 

Aldrich 50-60% vol) was added to reduce the silver. After 5 minutes stirring, 

ammonium hydroxide (Sigma Aldrich 35%) was added, followed by tetraethyl 

orthosilicate (Sigma Aldrich 98%). The solution was left stirring at 750 rpm for 24 

hours under flowing nitrogen (1 ml/min). 

The microemulsion was diluted with ethanol (Fisher 98%) at a 1:1 ratio of 

ethanol:cyclohexane, and centrifuged at 6000 rpm for 8 minutes to separate the solid 

particulate. The solution was decanted, leaving the product, which was redispersed in a 

50:50 vol % mixture of water:ethanol by sonication. The resulting sol was again 

separated by centrifugation before being washed by a water/ethanol mixture twice more 

and obtained as a solid powder. 

 

2.1.2. Surface protected etching 

The procedure for introducing porosity into the materials was a modified procedure 

by Zhang et al.
2, 3

 The isolated material from 2.1.1 was dispersed in a 50:50 mixture of 

ethanol and water (0.5g/L) and PVP K10 added at a 3:1 ratio by mass 

(PVP:Nanocomposite) and heated to 100
o
C with stirring (750 rpm). After an hour, the 

solution was centrifuged at 8000 rpm for 15 minutes and the solid removed. The 

isolated solid material was dispersed in 0.01M sodium hydroxide (25 g/L) with 

vigorous stirring. One third of the solution was removed after 30, 60 and 120 minutes 
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before centrifugation at 8000 rpm for 5 minutes and the resultant solid washed with 

water 3 times. 

 

2.2. Preparation of mesoporous core-shell silver@silica 

materials 

 

2.2.1. Mesoporous core-shell silver@silica materials 

The Ag@SiO2-CTAB materials were prepared using a modified method developed 

by Han L. et al.
4
 A solution of 0.2 %wt cetyltrimethylammonium bromide (CTAB, 

Sigma Aldrich, ≥99%) in water was made, sodium hydroxide (Sigma Aldrich, ≥98%),) 

and hydrazine hydrate (50-60 %vol, Sigma Aldrich) added at molar ratio of 1:2.5:15 

CTAB:NaOH:Hydrazine.  This was heated to 80 
o
C under vigorous stirring (900 rpm) 

for 30 minutes under flowing nitrogen (1 ml/min). Silver nitrate (Sigma Aldrich, 0.1 M) 

was added instantaneously (1:2.75 molar ratio silver nitrate to CTAB) quickly 

accompanied by a noticeable colour change in the solution, from a colourless, cloudy 

solution, to a dark red – orange, clear solution. After five minutes stirring (900 rpm), 

tetraethyl orthosilicate (Sigma Aldrich, 98%) was added in one go at a molar ratio of 

20:1 TEOS:silver nitrate. The solution was left refluxing at 80
o
C under nitrogen (1 

ml/min) for 2 hours, before cooling. Addition of ethanol promoted the sedimentation of 

the silver-silica nanocomposite materials, allowing for quick filtration and separation of 

the particles. The material was washed twice with ethanol/ammonium carbonate 

mixture (6 g/L) and once with water water, before being allowed to dry in air at 100
o
C. 

Following this, a pestle and mortar was used to grind the material into a fine powder, 

before a final ethanol washing and drying step was performed. The material was then 

treated thermally using a muffle furnace to calcine the material at 350 
o
C in air for 5 

hours, with a ramp rate of 1 
o
C/min. 
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2.2.2. Pore swelling using organic additives 

Materials with an increased pore diameter were synthesised using a mesitylene 

organic swelling agent to increase the diameter of the CTAB micelles, around which 

the silica condenses, forming pores
5
. Materials were synthesised using the method in 

2.2.1, with the addition of mesitylene (Sigma Aldrich, 99%) to the 

CTAB/water/hydrazine/NaOH mixture at a molar ratio of 1.75 to 7:1 

mesitylene:CTAB. 

 

2.3. Preparation of SBA-15 based nanocomposites 

 

2.3.1. Pure SBA-15 preparation 

The preparation of SBA-15 was achieved using a modified method from Zhao et al.
6
 

A 2.6 wt% solution of Pluronic P123 triblock copolymer (poly(ethylene glycol)-

poly(propylene glycol)-poly(ethylene glycol) (Sigma Aldrich),  in 1.6 M HCl solution 

was stirred (500 rpm) at 35 
o
C. Tetraethyl orthosilicate (Sigma Aldrich, 98%) was then 

added to the mixture, at a molar ratio of 60:1[TEOS]:[P-123]. The mixture was aged at 

80 
o
C for 24 hours without stirring in a sealed container in an oven. The resultant solid 

material was filtered, then washed with ethanol before drying in air at 100
 o

C overnight. 

Removal of the P123 framework was performed by calcination at 500 
o
C in a muffle 

furnace for 6 hours with a ramp rate of 1 
o
C/min. 

 

2.3.2. Polystyrene bead synthesis 

Polystyrene bead templates were synthesised using a method developed by 

Vaudreuil et al
7
, in which styrene, divinyl benzene (co-monomer, Sigma Aldrich, 80%) 

and potassium persulphate (initiator, Sigma Aldrich, >99%) were the reagents. The 

reaction was performed on a large scale in a 2 litre jacketed Radleys’ reactor ready 

system at 90 
o
C. Deionised water (1.5 L) was introduced to the reactor, along with a 
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Leibig condenser, thermocouple and a nitrogen line at 1.5 bar pressure. The reactor was 

stirred at 300 rpm overnight to outgas the solution. Styrene (140 ml, Sigma Aldrich, 

>99%) and divinylbenzene (27 ml) were washed with NaOH (0.1 M) three times in 

separate separating funnels and added to the reaction vessel. Potassium persulfate 

(Sigma Aldrich, 0.35 g) was dissolved in deionized water (20 ml) at 80 
o
C. After 30 

minutes of stirring (300 rpm) in the reactor at 90 
o
C, the potassium persulfate solution 

was added. After stirring for 3 hours, the solid particles were recovered as a 

concentrated solution and stored in a freezer overnight, then the product was allowed to 

warm before being filtered, washed with ethanol and the beads dried at 80 
o
C overnight.  

 

 2.3.3. Macroporous SBA-15 

To introduce the macroporosity into the mesoporous silicas, polystyrene beads were 

added to the SBA synthesis (2.3.1) at a weight ratio of 5.3:1 [PS beads]:[TEOS]
7
. The 

polystyrene beads were introduced into the 2.6 %wt solution of P123 in 1.6 M HCl, 

before heating to 35
 o

C with stirring at 500 rpm. The resultant solid material was 

filtered, then washed with ethanol before drying in air at 100
 o

C overnight. Removal of 

the P123 framework was performed by calcination at 500 
o
C in a muffle furnace for 6 

hours with a ramp rate of 1 
o
C/min. 

 

2.3.4. Titania-grafting 

The grafting of titania onto the surface of the prepared silica materials was done 

using a modified procedure by Landau et al
8
 in which triethylamine is used to activate 

the surface silanols on the silica and allow the reaction to proceed at lower 

temperatures. To ensure a uniform coating of TiO2, the reaction must be performed 

under completely dry conditions, due to the facile hydrolysis of the titania precursor, 

which will readily form large titania particles in the presence of water. The synthetic 

procedure involves mixing titanium isopropoxide (Sigma Aldrich,) in anhydrous 

toluene (Aldrich, water content <0.002%), adding triethylamine (Sigma Aldrich, >99%) 

and MM-SBA-15 or SBA-15 material whilst stirring at 85 ºC for 6 h under nitrogen 

flow. The concentration of titanium isopropoxide was 145 g/L, the molar ratio between 
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titanium isopropoxide and SBA-15 was fixed at 3.5 and the triethylamine:SBA-15 

weight ratio at 1.5 on a scale of 5 g of SBA-15/MM-SBA-15. After the reaction, the 

solid was separated by filtration, washed with toluene (300 ml) and inserted in a 0.5 

wt.% water-ethanol solution (500 ml) under stirring for 24 hours. The resultant solid 

was washed with ethanol, dried in air in an oven at 90 
o
C for 24 hours, then calcined for 

1 hour at 250
o
C, 1 hour 400ºC and finally for 4 h at 500ºC all at 1 

o
C/min.  

 

2.3.5. Silver nanoparticle deposition 

Silver nanoparticles were deposited onto the porous supports using a wet 

impregnation technique. This involves stirring the support with a metal salt solution of 

correct concentration to achieve the desired loading, drying, and then calcining to 

decompose the precursor to promote sintering and metal particle growth. In a typical 

synthesis, 1 gram of support was weighed out into a 50 ml round bottomed flask with 

stirring and a minimum amount of water was added to produce a slurry. An appropriate 

amount of silver nitrate was added to produce a material of the required weight 

percentage and the slurry left stirring overnight, before being dried at 100 
o
C for 24 

hours. The material was then calcined in air at 500 
o
C for 3 hours with a ramp rate of 1 

o
Cmin

-1
. 

2.4. Dissolution studies 

Silver species dissolution experiments are performed in deionized water. 10 mg of 

sample was weighed out and dispersed in 50 ml of deionised water with stirring (500 

rpm) at 35 oC with 5 ml samples removed and filtered at set time intervals before silver 

ion concentrations are measured using ICP-MS. The plots are then normalised to initial 

silver concentration to measure total dissolved silver as a percentage of total silver. 
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2.5. Microbiological assays 

In order to determine the antimicrobial activity of the material developed, two 

widely recognised techniques were employed. The zone of inhibition test is a simple 

determination of if a material exhibits any activity at all, and is a semi-quantitative 

method of strength of activity. The logarithmic reduction method is a quantitative 

method of determining the amount of bacteria killed over a certain time frame.  

 

2.5.1. Zone of Inhibition 

Zone of inhibition testing is a standard, semi-quantitative method of determining 

antibacterial activity. Agar plates are inoculated with a known number of bacteria (~10
8
 

colony forming units (cfu)/ml) and test materials are loaded onto the plate before the 

plates are incubated to encourage bacterial growth. During the incubation period, the 

antimicrobial agents will diffuse through the agar and inhibit bacterial growth, which is 

visualised by a clear area surrounding the material indicating inhibited bacteria. These 

areas can be measured and compared against other materials on this same plate. The 

size of the zones not only depends on the strength of the material as an antimicrobial 

agent, but also on the number of bacteria on the plate and the diffusion of the agent 

through the agar, hence zones should be compared only on the same plate. 

The tests were performed against Staphylococcus aureas ATCC 6538, 

Escherichea Coli ATCC 15224, MRSA ATCC 33591 and Pseudomonus aeruginosa 

ATCC 15442 as these bacteria represent common problematic organisms in hospital 

environments and give representation to both Gram-positive and Gram-negative 

bacteria. 

The organisms were harvested from overnight cultures grown at 37 
o
C on 

nutrient agar. The harvested organisms were added to simulated body fluid (SBF, 

Table 2.1) and diluted to give a bacterial inoculum containing approximately 10
7
 

cfu/ml by use of a spectrophotometer and a calibration curve, with concentrations 

determined accurately using serial dilution and colony counting. The bacterial 

concentration is confirmed using a viable counts method, which involves serial dilution 

of the broth down to 10
2
 cfu/ml and subsequent plating of the 3 solutions of lowest 
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concentration. These plates are incubated at 37 
o
C for 24 hours then the number of 

bacteria counted, by taking into account the dilution factors, the number of bacteria in 

the mother broth can be determined. 

Agar plates are made up using a nutrient broth and agar powder, which is 

autoclaved at 120 
o
C. Samples are prepared for the experiment by dispersing 10 mg of 

solid in 1 ml of SBF (Table 2.1). Bacterial cultures are grown overnight and diluted to 

~10
8
 cfu and spread over the agar surface using sterile spreaders before 5.5 mm wells 

are bored into the agar using a sterilised cutter. Following this, 50 μl of the dispersed 

sample is pipetted into the hole using a Gilson pipette and the plates are incubated at 37 

o
C for 24 hours. This is repeated in triplicate. 

Ion Simulated Body Fluid Blood Plasma 

Na
+ 142 142 

K
+ 5 5 

Mg
2+ 1.5 1.5 

Ca
2+ 2.5 2.5 

Cl
- 148.8 103 

HCO3
- 4.2 27 

HPO4
2- 1 1 

SO4
2- 0.5 0.5 

Table 2.1: Ion concentrations mM in SBF solution.
9
 

 

The plates are removed after the 24 hour incubation period and photographed 

alongside a rule. The zone size is then analysed using ImageJ software and normalised 

against silver content. Silver nitrate standards are used on all plates in order to 

determine semi-consistency between plates. Figure 2.1 shows the clear zones caused 

by the bacterial inhibition. The arrows indicate the area which is measured, discounting 

the central well. 
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Figure 2.1: Example of zone of inhibition. 

 

2.5.2. Minimum inhibitory concentration 

Determination of a minimum inhibitory concentration was important in the 

quantitative analysis of the bactericidal activity of the materials, as suitable 

concentrations of materials were required to allow for bacterial growth. 

The premise behind these tests was to measure the antimicrobial activity of the 

materials at different concentrations, to determine a breakpoint at which the activity 

was no longer seen. This involved serial dilution of a solution of the materials in SBF, 

followed by plating and incubation. A control was used to determine the point at which 

bacterial growth was similar in the sample containing potential antimicrobial agents to 

that without. 

 Staphylococcus aureas ATCC 6538 and Pseudomonus aeruginosa ATCC 15442 

were all harvested as described in section 2.7.1. The test organism was prepared to 

solutions containing ~10
8
 cfu/ml. Sample materials were prepared to a concentration of 

10 mg/ml in bacterial inoculum before serial dilution was performed to give resultant 

solutions of 5 mg/ml, 1 mg/ml, 0.1 mg/ml, 0.5mg/ml and 0.01 mg/ml. These solutions 

were incubated at 37 
o
C for 4 hours, before being spread onto agar plates were 

incubated at 37 
o
C for 24 hours. The plates were removed and the colonies counted 

manually to determine a quantitative effectiveness as a function of concentration and 

determine a lower limit for antimicrobial activity. 
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2.5.3. Validity of neutralisation 

In order to perform the logarithmic reduction experiments, a neutralising agent was 

required to avoid any continued antimicrobial activity affecting the results. The role of 

the neutraliser was to ensure that the antimicrobial species was rendered incapable of 

killing additional bacteria, effectively allowing for a snapshot of the percentage of 

bacteria killed at that moment in time. The test involves plating out bacteria in solution 

with neutraliser, neutraliser and sample, and a buffer solution, to ensure that not only 

does the neutraliser prevent antimicrobial activity, but also that it does not exhibit any 

of its own. If the bacterial growth on all plates is similar, the neutraliser can be 

considered effective. 

Staphylococcus aureas ATCC 6538, Pseudomonus aeruginosa ATCC 15442 and 

Escherichia coli NCTC 10418 were all harvested by the same method as in section 

2.7.1. The test organism was diluted to a resultant ~1000 cfu/ml of bacteria. Sulphur 

and chloride based salts were chosen as agents, due to the ability of sulphate and 

chlorides to bind strongly with silver and render it inactive.  

 A solution of tween 20 (1%), sodium dodecyl sulphate (0.4%) and sodium chloride 

(0.85%) was used. To determine the agent was effective in neutralising any remaining 

silver ions, 10mg of sample material was added to 1ml of neutralising agent in a sterile 

Eppendorf tube (10mg/ml) and serially diluted in SBF to 1mg/ml and 0.1mg/ml. 100μl 

of the solutions of test material, plus the neutraliser with no test material and only SBF 

as controls, were added to an agar plate, along with 100μl of the 1000cfu solution of 

harvested organism, which were then thoroughly spread to mix the two solutions. All 

the plates were incubated at 37
o
C and counted after 3 days.  

 

2.5.4. Logarithmic reduction 

Staphylococcus aureas ATCC 6538, Pseudomonus aeruginosa ATCC 15442 and 

Escherichia coli NCTC 10418 were all harvested in the same method as described in 

section 2.7.1. The principle behind the logarithmic reduction experiment was to add a 

known number of microorganisms to a material and then count the number of bacteria 

to survive at set timepoints. The log10 number of bacteria to survive was subtracted 
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from the number of bacteria in the initial broth to give a quantitative representation of 

the ability of the material to kill microorganisms. 

Quantitative antimicrobial activity was determined using a logarithmic reduction 

method. In this experiment, 5 mg of sample material was weighed into an Eppendorf 

tube and the target organism (harvested as in 2.7.1), added in nutrient broth at a 

concentration of 10
7
 cfu, 1 ml of which was then added to the sample. 100 μl samples 

of the subsequent broth was removed at times of 0, 5, 30, 60, 120 and 240 minutes and 

added to 1 ml of neutralising agent. This solution was diluted using SBF to give 

concentrations of 10
-2

, 10
-4

 and 10
-6 

cfu with the 10
-2

 and 10
-4

 specimen plated onto agar 

and incubated at 37 
o
C for 24 hours. The experiments were all run with positive and 

negative controls of silver nitrate and the pure organism. Once the growth period was 

complete, the colonies remaining were counted and dilution factors accounted for and 

the results normalised to colony count. The bacterial count at time t = 0 min is used to 

determine the logarithmic reduction of bacteria. 

One log10 reduction is a 90% decrease in the number of microorganisms. The 

minimum target for the materials is a three log10 reduction (99.9%) in the number of 

bacteria, as this is the industry standard for a material to be classified as antimicrobial. 

If the log10 reduction in numbers of viable bacteria is approximately zero, this indicates 

the material is bacteriostatic or not active at all, depending on the growth of the control 

organisms. A negative log10 value indicates that the organisms are growing in the 

presence of the material.  

The experiments were performed in triplicate and the results geometrically averaged 

in an effort to ensure minimal error during sample dilution. 

2.6. Bulk characterisation 

A range of techniques were used to characterise the composition and functional 

groups present on the synthesised materials which will be summarised below. 
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2.6.1. Energy dispersive x-ray absorption spectroscopy 

Energy dispersive x-ray absorbance spectroscopy (EDAX) is a bulk elemental 

analytical technique which involves the examination of emitted x-rays following 

stimulated emission by an x-ray or high energy electron source.  

EDAX was performed using Carl Zeiss Evo-40 SEM operating at 10 kV, fit 

with an Oxford Instruments INCA EDX.  Samples were mounted on aluminium stubs 

using adhesive carbon tape. 5 regions were scanned across the samples and the average 

elemental compositions taken from these 5 scans. 

X-rays which interact with atoms in their ground state can cause emission of 

core electrons, leaving behind an electron ‘hole’, which can be filled by an electron in a 

higher orbital. The difference in energy between the two orbitals is released in the form 

of x-rays which can be recorded by an x-ray detector and the element determined based 

on the energy. 

 

Figure 2.2: EDAX. 

 

These energies are characteristic of elements, allowing for distinction between 

different elements and bulk quantitative elemental analysis of the sample, in a non-

destructive technique. 
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2.6.2. Inductively coupled plasma mass spectroscopy 

ICP-MS was employed to study the dissolution of Ag-nanocomposites as it provided 

high sensitivity to low levels of silver released from the materials and thus enabled 

more accurate analysis of silver release rate compared to other possible techniques (e.g. 

Ion selective electrodes). 

ICP-MS was performed using a Varian Vista MPX ICP-MS system. Samples 

were referenced to a calibration made from a silver nitrate standard (Sigma Aldrich, 

1000 ppm) made up to give concentrations of 10, 50, 100, 500 and 1000 ppb. 

 

Figure 2.3: ICP schematic. 

 

ICP-MS involves detecting ions within the sample chamber which are distinguished 

by their mass-to-charge ratio (m/z value, figure 2.3). The ions are created using an 

argon plasma source, which is heated to around 8000 
o
C to produce an environment 

conducive to ion production. The samples, in aqueous solution, are passed through a 

nebuliser, allowing the sample to enter the plasma torch as an aerosol which is then 

passed into the analyser as a gaseous, ionized sample, using argon as a carrier gas. The 

ions are focused using electrostatic lenses into the analyser which then uses a 

quadrupole mass filter to differentiate the ions present. 

 

2.6.3. Infrared Spectroscopy 

Infrared spectroscopy was used to probe the organic moieties encompassed within 

the nanocomposite architectures. 

The analysis of solids by infrared spectroscopy is typically undertaken by using 

self-supporting wafers of KBr-diluted samples in transmission mode, Diffuse 
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Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), or Attenuated total 

reflectance (ATIR). In this thesis ATIR was employed as it allowed analysis on small 

sample sizes using a single bounce diamond anvil ATR accessory fitted to a Thermo-

Fisher Nicolet IS50 FT-IR spectrometer.  ATR is a sampling method which allows IR 

analysis of a liquid or solid sample by measuring absorption of infrared radiation at the 

surface of a crystal, commonly comprised of diamond, zinc selenide and germanium.  

Infrared spectroscopy measures the absorption of infrared radiation by 

excitation of vibrational modes of chemical bonds in molecules, the frequency () of 

which is characteristic of the bond strength (k) and reduced mass of functional groups 

(µ) according to Hooke’s law (Equation 2.1).  

  
 

  
√
 

 
 

Equation 2.1: Hooke’s law. 

The resulting absorptions give rise to characteristic finger print spectra of the 

target molecule, allowing for functional groups to be assigned and identified. 

The vibrational modes must satisfy a selection rule in order for it to absorb 

infrared radiation, in which the stretch or bend must be associated with a change in 

dipole moment. Stronger (more intense) absorptions are the result of larger changes to 

the dipole moment.
10

 Detail reviews on the application of IR spectroscopy in the 

characterisation of materials can be found in the following references.
11-13

 

The ATR sampling method utilises total internal reflection to create an 

evanescent wave, which probes between 0.5 and 2 microns into the sample, before 

exiting the crystal and being collected by the detector to produce the spectra (Figure 

2.4). 
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Figure 2.4: ATR crystal schematic. 

 

2.6.4. Nitrogen porosimetry 

Porosimetry analysis is used to determine textural physical characteristics of 

materials such as surface area, pore volumes and pore diameter.  

Porosity and surface area were measured using a Quantachrome NOVA 4200e 

instrument by N2 adsorption using NovaWin v11.0 analysis software. Samples were 

degassed under vacuum at 120 
o
C for at least 2 hours prior to analysis. 

Adsorption/desorption isotherms were recorded at -196 °C.  BET surface areas were 

calculated over the relative pressure range 0.05-0.2 where a linear relationship was 

observed.  Microporosity was assessed using the t-plot method, over the relative 

pressure of 0.2-0.5 which displayed a linear correlation. Mesopore diameters were 

calculated applying the BJH method to the desorption branch. 

Adsorption, at constant temperature and pressure, decreases the entropy of a system, 

thus enthalpy of adsorption must be negative (exothermic)
14

 if they are to occur (Gibbs 

free energy).
15

  Collisions between gas molecules and the surface of the sample can be 

either elastic (i.e. no interaction), or inelastic. Energy loss from the adsorbate to the 

adsorbent, during inelastic collisions, make this an exothermic process. If this energy 

transfer process is substantial enough, spontaneous desorption can be avoided and, 

provided that no more energy loss occurs through the formation of chemical bonds, this 

adsorption is classed as physisorption. N2 adsorption only occurs at temperatures below 
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the adsorbate boiling point
15

, due to the small enthalpy of adsorption. The enthalpy of 

vaporisation (condensation) from adsorbate-adsorbate interactions is very close in value 

to the enthalpy of adsorption, which permits multilayer adsorption.
16

 

N2 adsorption and multilayer formation, at liquid nitrogen temperature, results from 

induced temporary dipoles, arising from variations in electron density, known as 

London forces.
15

 Nitrogen adsorption porosimetry involves dosing N2 incrementally 

and recording the amount adsorbed at a known pressure and constant temperature. By 

plotting the amount of adsorbate against the partial pressure of the system, an isotherm 

can be constructed, which can provide information regarding the material structure and 

properties. Figure 2.5 shows six IUPAC isotherm classifications. 

 

Figure 2.5 : Isotherm and hysteresis types.
17

 

 

Type I represents a microporous material, type II is indicative of a non-porous or 

macroporous material, type III is the result of stronger adsorbate-adsorbate interactions 

than adsorbate-adsorbent, type IV and V exhibit a hysteresis loop, which is the result of 

capillary condensation within mesoporous materials and type VI exhibits a stepwise 

profile from consecutive adsorbate layers forming, due to a highly uniform surface.
18

 

Hysteresis loops can also translate information regarding the mesopore environment. 

Hystereses occur due to differences in the adsorption and desorption processes. 

Adsorption occurs via a capillary condensation mechanism, from the pore walls 

inwards, whereas desorption occurs at the liquid surface, at the pore opening. 

Evaporation occurs at a lower pressure relative to condensation due to the stronger 
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interactions involved in this mechanism, which produces the hysteresis.
16

 The 

hysteresis shape is dictated by the pore shapes, H1 is from uniform pore sizes, whereas 

H2 occurs from non-uniform pores with ink-bottle type structures. H3 and H4 are the 

result of slit type pores.
18

 

The Brunauer, Emmett and Teller (BET) isotherm for physisorption of gases onto 

solids by intermolecular forces can be used to calculate the surface area of the 

adsorbate. The BET isotherm is an extension of the Langmuir isotherm, which 

describes monolayer molecular adsorption and can be used to calculate surface areas 

based on certain assumptions; gas molecules adsorb are distributed onto a solid in 

infinite layers, no interactions occur between the layers and that each layer can be 

expressed by the Langmuir theory. The resultant equation forms a y = mx + c format, as 

shown in equation 2.2. 

 

 

 
 
  

  
   

   
 
 

  
 

 

   
 

Equation 2.2: BET equation. 

    
 

                    
 

   
        

         
   

P = pressure; P0 = saturation pressure; V = volume adsorbed; Vm = monolayer volume; 

C = multilayer adsorption parameter 

 

Surface areas are calculated from equation 2.3 Using the monolayer volume, 

and assume N2 molecules close pack and occupy 0.162 nm
2
.
18

 

    
     

  
 

Equation 2.3: Surface area via BET analysis. 
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For analysis of pore size, the Barrett-Joyner-Halenda adsorption model is 

employed, up to P/P0 = 0.95. This method involves the area of the isotherm above the 

pressures involved in the BET analysis as it models the formation of multilayers and 

parallel capillary condensation within the pore structure of the material. Capillary 

condensation is described by the Kelvin equation, which describes the relationship 

between pore radius and the pressure required to fill said pore radius (Equation 2.4). 

 

  
 

  
  

     
    

 

Equation 2.4: The Kelvin equation. 

 

 

2.6.5. Powder X-ray diffraction 

Powder XRD was employed to study the crystal structures of synthesised materials, 

to confirm the identity of prepared nanoparticles and measure the volume averaged 

crystallite size. 

XRD patterns were recorded on either a Panalytical X’pertPro diffractometer 

fitted with an X’celerator detector, or a Bruker D8 Advance diffractometer fitted with a 

LynxEye high-speed strip detector, both using Cu Kα (1.54Ǻ) sources with a nickel 

filter, calibrated against either Si (Panalytical) or SiO2 (Bruker) standards. Low angle 

patterns were recorded over a range of 2θ = 0.3-8° (step size 0.01°, scan speed 0.014 ° 

s
-1
) and wide angle patterns over a range of 2θ = 25-75° (step size 0.02°, scan speed 

0.020 ° s
-1

).   

X-rays were discovered in 1895, by Wilhelm Roentgen
19

, then in 1912, 

experiments undertaken by Max vin Laue determined the wave characteristics of X-

rays from studies on a single crystal
20

 which lead to the field of X-ray crystallography. 

In 1919, A.W Hull published his work on the interaction of x-rays with 

crystalline substances, which involved probing the arrangement of the materials in 

question, rather than the electronic configuration of the atoms involved. 

Monochromatic x-rays were fired through a powdered sample, and the diffraction 
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pattern recorded on photographic film over the period of an hour.
21

  The diffraction 

pattern was noted to correspond to different planes in the material, and that different 

structures with different planes would produce different patterns, with chemically 

similar structures forming similar patterns. 

Powder X-ray diffraction is incredibly useful for materials and catalysis studies, 

due to the fact it eliminates the need for a single crystal sample. Instead, a small sample 

of the material, ground into a fine powder, can be studied, allowing for the likes of 

nanocomposites, hierarchically porous inorganic structures and metal nanoparticles to 

be studied with ease.  

X-rays striking a polycrystalline sample give rise to a cone of diffraction, from 

the countless array of orientations/planes. The X-ray detector moves around a set angle, 

covering the set of 2θ values which are of interest (Figure 2.6). 

 

 

Figure 2.6: Schematic of a powder X-ray diffractometer. 

 

X-ray diffraction patterns result from the constructive and destructive 

interference of monochromatic X-rays upon scattering within a crystal lattice. The 

atoms in a crystalline material are arranged in a regular motif, resulting in planes of 

atoms which will scatter the incoming X-rays by different amounts depending on the 
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plane spacing. The angle at which the peaks appear in the spectra is related to the d-

spacing of the plane of the target material’s crystal lattice. This relationship is described 

by Bragg’s law (Equation 2.5) developed by William H. Bragg and William L. Bragg 

in 1913, and can be used to determine the lattice dimensions and the crystal structure of 

the material.  

nλ = 2dsinθ 

Equation 2.5: Bragg’s law. 

 

The intensities and occurrences of different peaks are directly related to the unit 

cell arrangement of the crystal structure or ordered pores . There are seven crystal 

classes that can be used to describe the structure of crystalline materials which are 

combined with the basic lattice types (cubic, face-centred cubic, base-centred cubic and 

body-centred cubic) to form one of 14 unique ‘Bravais Lattices’.
22

 

In order to determine the lattice spacing of the material in question, a 

relationship between the Bragg angle obtained from the XRD spectra and the distance 

between atoms must be derived. Shown in Figure 2.7 is a representation of two X-rays 

interacting with a lattice plane. 

 

Figure 2.7: Schematic of x-ray interaction with a crystal lattice. 
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The first X-ray reflects off the outer atomic layer, the angle of reflection equal 

to the angle of incidence. The second X-ray is parallel to the first and reflects off of the 

second atomic plane. It must travel a further distance of 2a from the first, the angle of 

incidence and reflection are, of course, equal to that of the first X-ray. If the distance of 

2a is equal to an integer number of wavelengths (λ), then the X-rays will be in phase 

after this interaction, leading to constructive interference. If the distance is not an 

integer of the wavelength, this will cause destructive interference. Using this 

knowledge, it can be said that for constructive interference to occur, the condition 

which must be met it; 

 

nλ = 2a 

Equation 2.6: Constructive interference. 

 

Combining this with basic trigonometric relationships, it can be determined that 

the distance between planes, d, is equal to; 

 

d = a / sin θ 

Equation 2.7: Constructive interference. 

 

This equation can be rewritten as, 

 

2a = 2d sin θ 

Equation 2.8: Constructive interference. 

 

And combined with equation 2.6 to give Bragg’s Law (equation 2.5) 

Using the miller indices of the planes studied, a relation can be observed 

between the hkl values and the d-spacing; 

   
 

√          
 

Equation 2.9 
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This can then be combined with Bragg’s law (equation 2.5), to give a modified 

version of the Bragg law, encompassing the miller indices (equation 2.10);
22

 

 
 

  
    

     

          
 

Equation 2.10 

 

Bragg’s law describes the incoming radiation and the result of the interaction 

between it and the crystal lattice (as shown in Figure 2.7). As radiation of wavelength λ 

scatters from a lattice with a lattice parameter d it will return a peak in the spectra 

(constructive interference) of θ (reported as 2θ in practise). Since the wavelength is a 

constant, depending on the X-ray source, rotating the detector will pick up diffracted 

radiation of different Bragg angles which correspond to individual planes, allowing the 

full crystal structure to be determined.
23, 24

 

Determination of crystallite size is another very useful result of powder X-ray 

diffraction studies by use of the Scherrer equation (Equation 2.11), developed in 1918 

by Paul Scherrer.
25

 To observe sharp maxima, crystallites must be of a large enough 

size as to ensure that slightly away from the 2θ maxima, destructive interference 

occurs. The diffracted waves are only slightly out-of-phase between successive planes, 

meaning that many planes are needed to completely remove waves either side, but close 

to, the 2θ maxima. When the crystallites involved are small (in the nanoscale region), 

the number of planes, and hence degree of destructive interference, is insufficient to 

completely remove these waves, resulting in a broadening of the diffraction peak. The 

Scherrer equation relates this peak breadth to particle size. 

 

  
  

     
 

Equation 2.11: The Scherrer equation for particle size analysis by X-ray diffraction, where λ is the wavelength 

of the monochromatic X-ray beam used for analysis, K is the shape factor, equal to 0.89 for spherical particles, 

L is the crystallite diameter, B is the FWHM of the observed peak and θ is the Bragg angle.
26
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2.6.6. Transmission electron microscopy 

Transmission electron microscopy (TEM) analysis was employed to observe the 

morphology of the synthesised materials, as well as assess particle and composite 

dimensions through localised direct imaging of samples. 

High resolution TEM (HRTEM) analysis was performed using either a JEOL-2100 

LaB6 TEM fitted with a Gatan 0.2Å camera, or a Phillips CM12 transmission electron 

microscope operating at 100kV, and images recorded by a SIS MegaView III digital 

camera. The data was analysed using ImageJ software and Microsoft Excel. 

Limitations on the resolution of optical microscopes arise from the wavelengths of 

visible light (~ 380-750 nm). This is overcome through the use of electrons to image 

materials on the nanoscale, due to the much shorter wavelength (~12.3 pm at 10 kV 

decreasing to 2.5 pm at 200 kV), enhancing microscope resolution to an atomic level 

under high resolution TEM/STEM conditions.
27

  Using an electron beam and 

condensing lenses, a probe can be focused onto a material sample (figure 2.8), the 

interaction (or non-interaction) of which produces a 2d, black and white image, the 

contrast of which is dependant upon a number of variables, including thickness, atomic 

mass and density.
27

  Electrons are scattered by atomic nuclei (more so by heavier 

nuclei), allowing determination between different phases within composite materials. 
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Figure 2.8: Schematic of a TEM. 

 

2.7. Surface characterisation 

 

2.7.1. X-ray photoemission spectroscopy 

XPS is a powerful technique for the analysis of surface composition and oxidation 

state of materials.  
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XPS measurements in this thesis were collected using a Kratos AXIS HSi 

instrument, equipped with a charge neutraliser and using a monochromated Al Kα 

(1486.6 eV) X-ray source. High resolution spectra were recorded using a pass energy of 

40 eV with data analysed and fit using CasaXPS Version 2.3.15. All spectra were 

charged corrected to the adventitious carbon at 284.7 eV with elemental sensitivity 

factors applied to quantify sample composition. Errors were estimated by varying a 

Shirley background across reasonable limits. 

XPS or as is it also known electron spectroscopy for chemical analysis (ESCA), 

is a technique used in materials analysis used to probe the elemental composition of 

surfaces. In addition to elemental analysis, XPS also provides information about 

oxidation states, chemical environments and coating thicknesses among others. XPS is 

based on the principles of the photoelectric effect, a famous theorem developed by 

Albert Einstein, the origins of which can be traced further back to Heinrich Hertz, who 

first discovered the effect during a study of ‘The effect of ultraviolet light on an 

electrical discharge’.
28

 Hertz noticed that in the presence of UV light, sparks are 

generated more easily by electrodes, this was explained by Einstein in 1905 as the 

photoelectric effect, and would earn him the Nobel prize. 

When X-rays are fired at the material core-level electrons are ejected, which are 

known as photoelectrons, which are released with different kinetic energies depending 

on various factors, such as the x-ray energy, element involved, it’s orbital and the 

coordination/oxidation state of the element according to the following energy diagram 

(figure 2.9). 
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Figure 2.9: Graphical representation of photoelectron ejection. 

 

The kinetic energies of released photoelectrons can be measured and the binding 

energies calculated using equation 2.12.  

EKin = hv –EB – φ 

Equation 2.12: Relationship between kinetic energy of released electrons (EKin), the energy of the incoming X-

rays (hv), the binding energy of the photoelectrons (EB) and the work function of the spectrometer (φ). 

 

The calculated binding energies can be referenced to a database of standards 

from the National Institute of Standards and Technology (NIST) photoelectron 

spectroscopy database to determine chemical identity and garner information regarding 

chemical environment.
29

 

High resolution XPS spectra also show fine structure from spin orbit coupling, 

which arises from the magnetic moment from the spin (s) of the electron which can take 

value ±½, coupling with the angular momentum of the orbital (l) from which it 

originates. The combination of these two terms gives rise to the total angular 

momentum (j), according to equation 2.13, with electrons in orbitals with l > 0 giving 

rise to doublets in XPS spectra due to this coupling effect.  

 

j = l + s 

Equation 2.13: Total angular momentum. 

 

The integrated areas of the two spin orbit split doublets should be in a fixed 

ratio depending on the degeneracy of the orbital in which the electrons lie. This is 

easily calculated using the values for the total orbital angular momentum, for example, 

if observing photoemission from a 2p orbital, for which the orbital angular momentum, 

l, is 1, j would be calculated to be either 
3
/2 or 

1
/2.. When the atoms in question are light, 

it is appropriate to use the Russell-Saunders coupling approximation, which works with 

low spin-orbital couplings as it assumes that the coupling is only effective when all the 

orbital momenta are operating cooperatively. In such a case all of the electron spins 

couple to give a total of S and all of the orbital angular momenta couple to give L 



2. Experimental 

 

68 

 

allowing the total angular orbital momentum, J, to be calculated using the Clebsch-

Gordan series. The multiplicity dictates the ratio of the areas under the peaks for the 2 

peaks (
3
/2 and 

1
/2 in the case of p-orbitals), which is calculated using equation 2.14; 

 

Multiplicity = 2j + 1 

Equation 2.14: Multiplicity 

 

For a p-orbital, this returns multiplicities of 4 and 2, which would indicate ratios 

of the 2p3/2 and 2p1/2 component areas of 2:1. The magnitude of the spin orbit coupling 

will also determine the size of the splitting, which can be measured experimentally and 

compared to the NIST database. In some cases, this can be further complicated by 

multiplet splitting, which can be caused by emission of a photoelectron from the core of 

an atom which has spin itself (unpaired valence electrons) the final states of which can 

involve coupling between the unpaired valence electrons and unpaired core electrons. 

Multiplet splitting is most commonly seen in the spectra of first row transition metal 

elements, from titanium to copper.  

Other features of XPS spectra include Auger lines (arising from outer shell 

electrons ‘falling’ back into the holes in the core shells left by photoelectron emission 

and result in peaks of energies independent of exciting energy), satellites (peaks arising 

from other x-ray components, i.e. Kα2 or Kθ), ghost peaks (peaks arising from 

contaminated x-ray sources, though these are rarely seen), shake-up lines (failure of an 

ion to return to the ground-state following photoemission, mainly an issue with 

paramagnetic compounds) and energy loss lines (interaction of photoelectron with 

electrons in the surface region of the sample, which causes metallic species peaks to 

become asymmetric). 

XPS must be done in UHV conditions (typically <10
-9

 bar) as the mean free 

path of the electrons is not high, such strong attenuation is also the reason why XPS is 

so surface sensitive. This surface sensitivity can be taken advantage of in calculating 

coating thicknesses
30

 or quantifying dispersion. 

By utilising the principles of the photoelectric effect, mainly that altering the 

energy of the incoming radiation affects the kinetic energy of the released 
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photoelectrons, shell or coating thicknesses can be determined. Knowledge of the mean 

free path of the photoelectrons is required for this calculation. Using a dual anode (non-

monochromated) X-ray source, which is commonly found in X-ray photoelectron 

spectrometers), or two monochromated sources of different photon energies (i.e. a 

silver source and an aluminium source), the analytical depth of XPS can be varied. The 

escape depth of the photoelectron is dependent on its kinetic energy, varying according 

to the Universal escape depth curve. By varying the photon energy, the depth from 

which photoelectrons emergy without undergoing inelastic collisions will be altered. If 

the escape depth is increased then electrons from deeper layers can be probed, allowing 

for example material underneath a coating, or inside a shell to be analysed. The mean 

free path of photoelectrons of many common materials can be calculated from the 

Universal escape depth curve.
31

 

Using this knowledge, the energies of any incoming radiation and equation 

2.15, final radiation intensity can be calculated; 

 

I = Io e
-α χ

 

Equation 2.15: Attenuation. 

 

Which in this case is written as, 

 

I = Io e
-d l P

f
 cos θ

 

Equation 2.16: Attenuation. 

 

Where d is the shell thickness in nanometres, I is the atomic percentage 

measured experimentally, Io is the atomic percentage before attenuation, θ is the 

detection angle (assumed to be zero) and Pf is the inelastic mean free path (IMFP, 

reported in nanometres). It is experimentally possible to measure the atomic percentage, 

and the values for the IMFP are freely available, leaving the initial atomic percentage 

values and the shell thickness. Rearranging the equations and solving the simultaneous 

allows d to be calculated, first by taking logs of both sides gives equation 2.17. 
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ln(I) = ln(Ioe
-d l P cos θ

) 

Equation 2.17: log attentuation 

 

Expanding out, 

 

ln(I) = ln(Io) - d l P cos θ 

Equation 2.18: Attenuation. 

 

And rearranging, allowing for θ = 0
o
, 

 

ln(Io) = ln(I) + d / P 

Equation 2.19: Attenuation. 

 

With ln(Io) as the subject, writing out the equations with the two sets of data in 

mind results in (subscript denotes type of X-ray source); 

ln(Io) = ln(IMg) + d / PMg 

ln(Io) = ln(IAl) + d / PAl 

Equation 2.20: Simultaneous equations to determine shell thickness. 

 

Combining these and solving for d, gives an equation 2.22 for calculation of 

shell thickness, 

 

ln(IAl) + d / PAl  = ln(IMg) + d / PMg 

ln(IAl/IMg) = d(1/PMg - 1/PAl) 

Equation 2.21 
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d = ln(IAl/IMg) (1/PMg - 1/PAl) 

Equation 2.22: Determination of shell thickness by XPS. 
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3.1. Introduction 

Silver-silica core-shell materials were synthesised using a modified procedure by Adair 

et al
1
 as described in Chapter 2.1. Reverse micelles containing a silver nitrate precursor in 

an aqueous phase were formed by dispersing an Igepal co-520 polyoxyethylene nonyl 

phenyl ether surfactant in an organic cyclohexane phase based on the work by Osseo-

Asare et al.
2
 This methodology has been used to incorporate a variety of metal and metal 

oxide nanoparticulate cores into silica sphere composite architectures, including 

Palladium,
3
 metallic iron,

4
 magnetite

5
 and gold.

6
 Silver residing within the reverse 

micelles was subsequently reduced via hydrazine, prior to the addition of ammonium 

hydroxide as a base catalyst to initiate condensation of an inorganic silica shell from a 

tetraethyl orthosilicate (TEOS) precursor. These materials were then screened via a range 

of microbiological assays including the Zone of Inhibition (ZOI) method, the Minimum 

Inhibitory Concentration (MIC) method, and the Logarithmic Reduction method against 

Staphylococcus aureus and Pseudomonas aeruginosa as representative Gram-positive and 

Gram-negative microorganisms. 

 

3.2. Results and discussion: Silver core size variation 

A series of nanocomposites were first synthesised as a function of water 

concentration by varying the water:surfactant molar ratio (Wo) with a view to 

producing different core dimensions and thereby assessing the impact of silver core 

diameter upon antibacterial activity (while maintaining a fixed silica shell thickness). In 

order to confirm the successful synthesis of the desired core-shell morphology, and 

determine the silver core size, a variety of bulk and surface sensitive characterisation 

techniques were employed. 

 

3.2.1. Transmission electron microscopy (TEM) 

Direct visualisation of the silver-silica nanocomposites was achieved through high 

resolution bright-field TEM, enabling accurate measurement of each structural 

component. Figure 3.1 shows representative micrographs of the silver-silica 
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nanocomposites as a function on core size. All materials comprised approximately 

spherical nanoparticles possessing the desired core-shell morphologies, wherein a 

darker (denser, high atomic number) shell is apparent associated with a silver 

containing phase, fully-encapsulated within a lighter (low density) phase indicative of a 

silica matrix. Particle size distributions and the normal/cumulative distribution for each 

nanocomposite are shown in Figure 3.2 and Figure 3.3, based upon analysis of >50 

particles in every case.  

 

Figure 3.1: Representative bright-field HRTEM images of silver-silica nanocomposites as a function of 

Wo molar ratio (a) 2, (b) 4, (c) 6, (d) 8, (e) 10. Inset highlights well-defined phase boundary between the 

silver core and silica shell. 
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Figure 3.2: Silver core size distributions, normal and cumulative distributions for silver-silica core-shell 

nanocomposities determined by TEM for Wo ratios of a) 2, b) 4, c) 6, d) 8 and e) 10. 
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Figure 3.3: Total nanocomposite size distributions, normal and cumulative distributions for silver-silica 

core-shell nanocomposities determined by TEM for Wo ratios of a) 2, b) 4, c) 6, d) 8 and e) 10. 
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  The total nanoparticle and silver core diameters determined by TEM are shown in 

Figure 3.4. The total diameter of the silver-silica nanocomposites was approximately 

23 nm, independent of Wo, while the silver core diameter increased systematically from 

3.4 ±0.8 nm to 7.4 ± 1 nm with increasing water content, confirming successful tuning 

of the core independent of the nanocomposite dimensions. This equates to a decrease in 

silica shell thickness from ~10 to 8 nm across the series. This consistency in total 

particle diameter has been noted previously for similar systems.
7
 It has been suggested 

that the growth kinetics of silica within microemulsions increases as total water content 

decreases,
8
 which could be due to an effective internal increase in pH, caused by 

tethering of a larger percentage of H2O molecules to internal hydrophilic groups, 

leading to a lower particle size for system containing larger water content, which could 

offset the slight increase caused by core size expansions. 

 

Figure 3.4: Silver-silica core-shell nanocomposite particle dimensions as a function of Wo, determined by TEM. 
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+
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the timeframe of intermicellular exchange processes (4h and milliseconds respectively), 

the reaction proceeds in a pseudocontinuous phase, with surfactant molecules acting as 

protecting agents to prevent flocculation.
10

 This results in diffusion-controlled silver 

nanoparticle growth, which is also influenced by factors including the silver precursor 

concentration within micelles, choice of solvent, and ionic concentration of the water-

in-oil micro droplets (figure 3.5). 

 

 

 

Figure 3.5: Reaction mechanism for the synthesis of silver-silica core-shell nanocomposite materials. 

 

The Ag4
2+

 clusters are formed by reaction with hydrazine, the proposed reaction 

scheme for which is outlined in figure 3.6.
11
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Figure 3.6: Reaction mechanism for the reduction of silver ions to silver clusters. 

 

It is with this mechanism in mind that the increasing size of the water droplets 

increases the size of the resulting silver nanoparticle cores, whilst the total diameter 

remains at a constant value. The silica shell forms via a heterogeneous nucleation and 

growth process and the layer thickness is altered by controlled variation of other 

parameters.
1
  

In addition to the desired single core architecture, a variety of alternative structures 

were also identified in which a silver core was absent, or a silica shell encapsulated 

multiple silver cores, as shown in Figure 3.7.  

 

Figure 3.7: Representative bright-field HRTEM images of silver-silica nanocomposites lacking, or 

possessing multiple, silver cores. 
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The frequency of these different architectures was quantified by TEM, which is 

represented in Figure 3.8. 

 

  

Figure 3.8: Frequency distribution of silver cores within silver-silica core-shell nanocomposites as a function of 

water:surfactant molar ratio (silver core diameter).  

 

The proportion of empty silica nanoparticles increased monotonically with 
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exhibited the opposite trend. In all cases, >85 % of silica nanoparticles contained a 

single silver core as desired. The presence of empty silica nanospheres likely reflects 

the formation of a smaller number of larger silver aggregates distributed throughout the 

water-in-oil microemulsions, resulting in individual micelles devoid of silver species 

prior to hydrolysis-condensation of the TEOS precursor. 
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32°.
12-14

 These diffractograms equate to an FCC metallic silver lattice parameter of 2.36 

± 0.05 Å and do not shift to any measureable degree.
15

 No reflections were observed for 

any crystalline silica phase, with a single, strong and broad peak at 20° indicative of 

amorphous silica. Variations in intensity and signal-to-noise ratios can be explained by 

differing Ag loadings. 

 

Figure 3.9: Powder XRD patterns of silver-silica core-shell nanocomposites. Ag
0
 FCC peaks are labelled with 

an asterisk. 
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water:surfactant molar ratio, in good quantitative agreement with the TEM analysis in 

Figure 3.4. 

 

Figure 3.10: Correspondence between silver core diameter of silver-silica core-shell nanocomposites 

determined by local (TEM) and averaging (XRD) methods.  

 

3.2.3. Elemental analysis 

The bulk and surface compositions of the nanocomposite series were evaluated by 

ICP-AES/EDX and XPS respectively and the results summarised in Table 3.1 below. 

For each sample the surface silver concentration was significantly lower than the 

analogous bulk content, consistent with a buried silver core beneath a silica shell which 

attenuates the signal detectable by the surface sensitive XPS technique. The 

surface:bulk ratio increased with core size, also consistent with the  decrease in silica 

shell thickness observed by TEM.  

Ag core size 
Surface Ag  

wt. % 
Bulk Ag  
wt. %  

Surface:Bulk 

3.4 0.32 2 0.16 

4.2 0.22 0.74 0.30 

4.7 0.24 0.83 0.29 

5.5 0.5 1.55 0.32 

7.4 0.61 0.94 0.65 

Table 3.1: Elemental analysis of silver-silica core-shell nanocomposites. 
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The variation in bulk Ag loading with core size may reflect slight differences in the 

total amount of TEOS which hydrolysed and condensed to form silica shells during 

synthesis. Small differences in the final silica yields from TEOS condensation will 

result in perceivably larger differences in silver yields and therefore final weight 

percentages. Due to these small differences, the surface to bulk ratio is therefore a more 

interesting value. This appears to increase in conjunction with silver core size, which is 

in agreement with the notion that the cores are getting larger, whilst overall diameter 

remains unchanged. Further to this, although hydrazine is well known to be an effective 

reductant in this system, ammonium hydroxide can etch silver metal out from the 

nanoparticulate core, reducing the amount of zero valent silver.
16

 A combination of 

these could lead to the differences is silver content (1.2% Ag ± 0.8%). 

The XPS signal is attenuated by the silica shell and, using equation 3.1, this can 

lead to information regarding the silica shell. IMFP was calculated using the method by 

Seah and Dench.
17

 

 

  
      

  
        

Equation 3.1: XPS signal attenuation. 

I = detected intensity, I0 = initial intensity, d = thickness, l = inelastic mean free path (IMFP), cos θ 

= analyser acceptance angle (assumed to equal for instrument setup)

 

Figure 3.11 : Silica shell thickness from TEM analysis, and calculated from XPS data using equation 

3.1. 
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Figure 3.11 shows the calculated silica thickness using this relationship and assuming 

that I/I0 = (surface Ag atom%)/(bulk Ag atom%). The values reported are lower that 

calculated using average particle dimensions form TEM analysis. This could suggest 

that the silica network is slightly porous, considering that the IMFP is affected by the 

density of the surrounding media, so if the silica network is not as dense as the value 

used to obtain IMFP figures (using the method from Dench and Seah, determined based 

on parameters including density and atomic mass),
17

 this will result in a less attenuated 

silver signal, and silica shells which appear smaller than they are. 

By using x-ray sources with different energies (unmonochromated Mg and Al 

sources), simultaneous equations can be employed to remove the I0 component of the 

relationship and rely solely on recorded surface Ag atom% values to calculate values 

for silica shell thickness. The equations are explained in full in section 2.7.1. The 

calculated shell thicknesses are displayed in figure 3. 

 

Figure 3.12: Silica shell thicknesses determined by XPS analysis and equation 2.22. 

 

A negative trend can be witnessed in the shell size with respect to silver core size. 

This is in agreement with the results from the monochromated spectra and supports the 
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errors were determined by calculating the shell thickness with ±0.005 atom% for each 

anode. 

 

3.2.5. X-ray photoelectron spectroscopy 

XPS was used to provide additional information regarding the phases of silver 

detectable in the sample. Figure 3.13 shows background-subtracted Ag 3d spectra, 

clearly showing the 3d3/2 and 3d5/2 peaks (doublet separation = 6 eV).
18

 All spectra were 

energy referenced to their adventitious C 1s peak at 284.7 eV. The black lines represent 

the raw data, as collected by the instrument, the red lines represent the envelope fitting 

of the sum of all component curves and the purple lines represent the individual Ag 3d 

components.  

The peaks were fit using CASA and the FWHM and peak positions locked to 

identical values for each sample. The binding energy was compared with values from 

NIST XPS database and were consistent with values reported for silver metal.
18

  

The silver species which appears is of only one oxidation state, with no evident 

shoulders which would give evidence for an oxide layer, from this, it is reasonable to 

suggest that the silver exists in only one phase. Combining these spectra with the 

powder XRD patterns in Figure 3.9 would lead to the conclusion that the single phase 

of silver in these composites is that of metallic silver, Ag
0
. 
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Figure 3.13: Ag 3d XPS stack plot of Ag@SiO2 core shell nanocomposites. 

 

The silicon regions were investigated, to confirm the identity of the silicon species 

was in-fact, silicon dioxide. Figure 3.14 displays a stack plot of the silicon 2p regions, 

with binding energies consistent with values obtained from the NIST database. A 

binding energy of 103.4 eV suggests the presence of SiO2, according to the database, 

significantly higher than the majority of other silicon species. There is no energy shift 

observed throughout the series, confirming the silica species remains unaffected by the 

increasing core size. The doublet separation of the 2p 3/2 and 1/2 peaks was set to 0.6 

eV, which was taken from the NIST XPS database, and the peak ratios were set to 2:1. 
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Figure 3.14: Si 2p XPS stack plot of Ag@SiO2 core shell nanocomposites. 

 

The oxygen 1s regions studied by XPS analysis (Figure 3.15) displayed a single, 

broad peak at 532.2 eV, which can be attributed to the Si-O-Si species.
19
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Figure 3.15: O 1s stack plot of Ag@SiO2 core shell nanocomposites. 

 

3.2.4. Porosimetry 

The textural properties of the nanocomposites were studied by nitrogen 

porosimetry. Figure 3.16 shows the N2 adsorption isotherms for the composite 

materials, with a y-axis offset to aid visualisation. The isotherms vary very little, 

exhibiting a type IV characteristic complete with a hysteresis loop, indicative of 

capillary condensation. It is unlikely that this is due to mesoporosity however, 
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considering the size of the composites. Instead, this feature is likely a result of 

interparticulate spacings between the composite spheres. 

 

Figure 3.16: Nitrogen porosimetry isotherms for silver-silica core-shell nanocomposites, offset on the y-axis for 

display purposes.  

 

The BET method was employed to determine the specific surface areas of these 

materials for 0.15 < P/Po < 0.35 shown in Figure 3.17 as a function of the 

water:surfactant molar ratio. 
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Figure 3.17: BET surface areas for silver-silica core-shell nanocomposites as a function of water:surfactant 

molar ratio. 

 

The recorded surface areas are slightly higher than the calculated value for these 

materials (94 m
2
 g

-1
), which could indicate the materials have some microporous 

character, which is indeed confirmed by analysis of the t-plot treatments, which suggest 

a small contribution in surface area from microporosity. The increase in surface area 

could also be attributed to the presence of the empty silica particles which are smaller 

in size, and would lead to an increase in surface area. 

Using the BJH method, applied to all relative pressures on the desorption branch of 

the recorded isotherm, the porosity of the material could be studied, Figure 3.18 shows 

these profiles. 
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Figure 3.18: Barrett-Joyner-Halenda profiles for composite materials. 

 

The BJH plots indicate a slight increase in gas adsorbed in the region of 7-10 nm, 

which is too large to be considered intrinsic mesopores as this is larger than the silver 

core diameter which would inevitably lead to removal of the silver cores through these 

large voids. Instead, this increase in adsorbed gas can be attributed to the 

interparticulate spacings between composite materials, with the similar profiles 

suggesting a similar environment between samples. 

 

3.2.5. Summary of properties of variable core size nanocomposites 

Silver-silica core shell architectures with controllable silver core sizes have been 

developed using a microemulsion reactor based synthesis, utilising water-in-oil droplets 

to create silver nanoparticles, the size of which can be adjusted through regulation of 

the water content in the system, and subsequent coating with silica through hydrolysis 

and condensation of tetraethyl orthosilicate. 

TEM analysis indicates a clear core-shell architecture, and was used to determine 

the increase of silver nanoparticle diameter with water content as well as monitor the 

silica shell size of the nanocomposites. XRD and XPS studies indicated the silver was 

present as Ag
0
, having been reduced by hydrazine in situ.  
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3.3. Results and discussion: Variation of silica shell 

thickness 

Control over the silica shell thickness was seen as a pathway to controlling silver 

dissolution and antibacterial activity. The target was to adjust the shell thickness by 

controlling synthetic parameters without affecting the size of the silver core within. 

This would lead to silver-silica composites of differing size and silver content which 

was designed to lead to slower silver species release from the larger silica shells, due to 

a larger silica network slowing down the release progress of the silver ions into 

solution.  

A range of characterisation techniques was used to determine the physical and 

chemical properties of the nanocomposites, using a combination of surface and bulk 

techniques to probe the differences in the silica shell during etching treatment and 

characterise the state of the silver core. 

 

3.3.1. Transmission electron microscopy 

TEM was once again used to examine the structural architecture and 

monodispersity of the synthesised composites, with representative bright field TEM 

images exhibited in figure 3.19. 
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Figure 3.19: Representative bright-field HRTEM images of silver-silica nanocomposites as a function of Wo = 

6 and [water]:[TEOS] molar ratio (a) 130, (b) 100, (c) 75, (d) 40. 

 

Consistent core-shell architectures can be seen in the bright field TEM images, 

confirming that the increase in size has no bearing on the observed particle 

morphology. The images were analysed using ImageJ software and the particle sizes 

measured and compiled in figure 3.20. 
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Figure 3.20: Silver-silica nanocomposite dimensions as a function of water to TEOS ratio. 

 

A linear trend can be seen in the plot of total particle diameter versus ratio of water 

to TEOS. The silver core size remains constant throughout the series, indicating the 

increase of silica shell size as the concentration of silica precursor increases in the 

synthesis. The measured pH of the reactant solution is kept at a constant of pH = 11, 

with [NH4OH]:[TEOS] kept at a constant ratio, so as to ensure the rate of hydrolysis 

does not change, which would also affect the size of the resultant silica coatings.
1
 The 

ratios of the other reagents are also kept at constant values, to ensure the size of the 

reverse micelle micro reactors is not altered, as this will alter the size of the silver 

cores, as shown in section 3.2. 
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Figure 3.22 : Silver core size distributions, normal and cumulative distributions for silver-silica core-shell 

nanocomposities determined by TEM for Wo = 6 and [water]:[TEOS] ratios of a) 130, b) 100, c) 75 and d) 40. 
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Figure 3.21 : Total size distributions, normal and cumulative distributions for silver-silica core-shell 

nanocomposities determined by TEM for [water]:[TEOS] ratios of a) 130, b) 100, c) 75 and d) 40. 

 

As the concentration of silica precursor is increased, and with it, silica shell size, 

the probability of silica particles forming containing no silver cores increases. This 

ranges from close to zero for the smaller particles, to above 10% of all silica particles 

which contain no silver for the largest materials (Figure 3.23). 
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Figure 3.23: Percentage of composite materials containing no silver cores as a function of total composite 

diameter, as determined by TEM. 

 

No nancomposites with multiple cores were observed in the electron micrographs. 

This is consistent with the previous series, as with a Wo ratio of 6, no multiple cored 

materials were witnessed. 

 

3.3.2. Powder X-ray diffraction 

Powder x-ray diffraction experiments were performed to identify the silver phase 

and determine crystallite size of the silver cores. The diffraction patterns are shown in 

Figure 3.24. 
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Figure 3.24: Powder XRD diffraction patterns for silver-silica core shell nanocomposite materials with variable 

shell thicknesses. Ag
0
 FCC peaks are labelled with an asterisk. 

 

The powder XRD diffraction patterns for these materials show the characteristic 

peaks for silver metal (Ag
0
), as in the previous series of this type of material, indicating 

that as before, the silver is completely reduced to silver metal in situ. 

Particle sizes of the silver cores are also obtained using the Scherrer equation and 

full width half maxima of the main silver 111 peak (as this was the only peak 

measureable in all samples). The values for this are shown in table 3.2. 
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Table 3.2: Silver core diameters obtained from the Scherrer equation and powder XRD data for silver-silica 

core shell nanocomposites with variable shell thicknesses. 

 

The mean particle sizes from the powder XRD diffraction patterns show a 

consistency in silver core size which agrees with the results from the TEM analysis. 

This indicates that altering the silica shell size by increasing the concentration of silica 

precursor has no bearing on the silver nanoparticulate core size. 

The intensity of the silver peaks relative to the amorphous silica signal decreases 

with increasing silica shell size, which is due to the decrease in bulk Ag content. 

 

3.3.3. Elemental analysis 

The silver loadings of the synthesised Ag@SiO2 nanocomposites was determined 

by ICP and XPS analysis. 

Total Diameter / 

nm 

Bulk Ag 

wt. % 

Surface Ag 

wt. % 

Surface:Bulk Ag 

ratio 

20 3.45 1.13 0.33 

24 2.14 0.56 0.26 

26 1.76 0.40 0.23 

31 1.24 0.12 0.10 

Table3.3: Surface and bulk silver weight loadings, determined by XPS and ICP respectively. 

 

The surface to bulk ratios decreased as silica shell size increased, which is 

consistent with the idea that the silver photoelectrons are attenuated throughout the 

silica shells. The shell thicknesses were calculated using equation 3.1 and plot with the 

thicknesses determined by TEM analysis (figure 3.25). 

Total Diameter / nm Ag core size (XRD) / nm

20 4.6

24 4.4

26 5.5

31 4.9
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Figure 3.25: Silica shell thicnkesses determined by TEM and XPS analysis. 

 

The shell thicknesses determined by XPS analysis are, again, smaller than those 

measured by TEM analysis and by the same margin as in the previous section, which 

would suggest that if the density of the silica shells has decreased due to porosity, it is 

by the same margin. 

 

3.3.4. X-ray Photoelectron Spectroscopy 

XPS spectroscopy was again used to determine the speciation of the silver metal 

cores in the nanocomposites. To confirm they were identical to the previous materials 

in section 3.2. Figure 3.26 shows the silver regions recorded by XPS. There is no 

change in silver position either along the series, or in comparison with the previous 

materials, with the Ag 5/2 peak centred at 367.5 eV. There is also a noticeable 

difference in peak area as the size of the silica shell increases, due to greater attenuation 

of released silver photoelectrons by the silica shell. 
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Figure 3.26: Silver regions from XPS analysis of materials with varying total diameters. 

 

The attenuated silver regions can be used to estimate shell thickness and look for 

differences in shell size by using two sources of different energies and studying the 

different amounts of attenuation of photoelectrons excited of sources of different 

energies and hence possessing differing kinetic energies. 

The differences in atomic percentages calculated from the XPS peak areas can be 

used in equation 2.22. 
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Calculated Thickness by 

XPS / nm 

Thickness from TEM / 

nm 

11.8 13.5 

10.8 11 

9.7 10 

7.7 8 

Table 3.4: Silica shell thicknesses calculated by XPS. 

 

This method assumes that the silver cores are, on average, central in the composite 

materials, which becomes less true for larger shells which, combined with the smaller 

silver regions, could lead to a greater error in the calculation. There is good agreement 

between the TEM and XPS analysis that the shells do indeed increase in thickness 

along the series. 

The silicon 2p regions were investigated, with a set doublet separation of 0.6 eV 

and peak area ratios of 2:1. These are shown in figure 3.27. 
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Figure 3.27: Si 2p XPS stack plot from Ag@SiO2 nanocomposites of different total sizes. 

 

The silicon regions are again consistent with silicon dioxide (Si
4+

), with a binding 

energy at 103.4 eV (Figure 3.27), whilst the oxygen regions retain their position at 

532.3 eV (Figure 3.28). The constant position of the silicon and oxygen peaks confirms 

a consistent silica species with increasing shell size. 
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Figure 3.28: O 1s XPS stack plot from Ag@SiO2 nanocomposites of different total sizes. 
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3.3.5. Porosimetry 

Nitrogen porosimetry indicated a decreasing surface area with increasing particle 

size, following an expected trend due to the inverse relationship between diameter and 

specific surface area (figure 3.29). 

 

 

Figure 3.29: Nitrogen porosimetry isotherms for nanocomposite materials of varying total diameter. 

 

The isotherms display a type IV characteristic, indicative of mesoporous materials, 

as with the previously synthesised materials, however, this is attributed to 

interparticulate voids causing capillary condensation, as opposed to intrinsic 
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mesoporosity, as the BJH profile (figure 3.30) suggest pores which would be too large 

for the materials as they exist, and would be evident in TEM images. 

 

Figure 3.30: BJH profiles for Ag@SiO2 nanocomposite with variable total diameters.  

 

The nanocomposites appear to exhibit no porosity in the mesopore regime, save for 

that which has been attributed to interparticulate spacings. There is, in fact a slight 

increase in adsorption below 2nm, as seen in the previous materials, attributed to 

microporosity caused by removal of organic surfactant 

The specific surface areas were assessed via the BET equation, applied to the 

isotherms between P/P0 = 0.05 and 0.2, where the plot was linear. The surface areas are 

in line with what was expected, and the increase in surface area was attributed to pores 

below 2 nm, and confirmed by t-plot analysis.  

Total size 
/ nm 

BET surface area / 
m2 g-1 

Expected surface area 
/ m2 g-1 

Microporous surface 
area / m2 g-1 

20 141 ± 14 113 21 

24 113 ± 11 94 17 

26 108 ± 11 87 11 

31 80 ± 8 73 8 

Table 3.5: Specific surface areas from BET analysis of nanocomposite materials of varying total diameter. 
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3.3.6. Summary of properties of variable shell size nanocomposites  

Silica shells with an increasing thickness were coated onto the silver cores 

prepared by reverse micelle microemulsion as a function of overall tetraethyl 

orthosilicate concentration. This was confirmed, mainly, by TEM analysis, which 

reported an increase from 20 nm to 31 nm across the synthesised series. As a 

complement to TEM analysis, XPS analysis indicated a decrease in silver signal as a 

function of surface to bulk silver as the thickness increased, suggestive of greater 

attenuation of the emitted silver photoelectrons. 

 

3.4. Results and discussion: Etching of silica shell 

Tuning the properties of the shell was considered a possible mechanism for 

controlling silver ion release and antibacterial effectiveness. Expanding on the porosity 

of the silica shell was theorised to increase the ease of release of silver ions due to a 

more exposed silver surface, able to discharge a greater number of silver ions. To 

accomplish this, a thermal and base etching treatment route was utilised.  

Thermal treatment of the composite materials was achieved using the method 

described in section 2.1.2 and involved heating the materials to 100
o
C in the presence 

of PVP K10 for one hour with vigorous stirring.
20

 Following this, a base etching 

treatment was performed to enhance the porosity of the silica shells, in which the 

materials were dispersed in 0.01M sodium hydroxide solution with stirring. Aliquots of 

the solution were removed at set time intervals and the product isolated by 

centrifugation. 
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Figure 3.31: Schematic illustration of thermal treatment and base etching procedure. 

 

The dissolution process in water of silica is due to the breaking of Si-O-Si network 

structures and the formation of monosilicic acid (Si(OH)4)
21

 The use of PVP in these 

systems was intended to aid in the stabilisation of these structures and help prevent 

agglomeration of the composites, as well as protect the surface from base attack during 

the second phase of etching.  

Sodium hydroxide is a powerful base, and will readily attack and dissolve silica 

networks.
22, 23

 It is for this reason a surface protectant was required and PVP was 

chosen due to its ability to form strong hydrogen bonds between the surface hydroxyl 

groups on the silica and the carbonyl groups of the PVP.
24, 25

  

A variety of bulk and surface techniques were employed to analyse the materials 

and study the effect of the etching treatment on the properties of the silver-silica 

composite materials. 

 

3.4.1. Transmission electron microscopy 

The effect of thermal and base etching on the structural integrity and morphology 

of the parent nanocomposites material was investigated by TEM analysis. This method 
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allowed observation of possible changes to the nanocomposites dimensions during the 

post-synthetic treatment procedure. Representative images of the parent and processed 

materials are evidenced in figure 3.32. 

 

Figure 3.32: Representative bright-field HRTEM images of silver-silica nanocomposites as a function of post-

synthetic treatment (a) parent material, (b) heat-treated, (c) 30 minute base etching, (d) 60 minute base etching, 

(e) 120 minute base etching. 

 

As with previous materials, the clear boundary between silver core and silica shell 

can be witnessed easily, allowing for facile identification of the core-shell architecture. 

In all cases, the materials appear to retain the original structure. A summary of the 

measured particle sizes is displayed in figure 3.33 From the size analysis, it can be seen 

that the effect of the base treatment has no impact on the average dimensions of either 

the silver core or the silica shell. 
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Figure 3.33: Particle dimensions of the two components of the core-shell nanostructure, determined by TEM 

analysis. 

 

The particle sizing histograms for silver core size and silica shell size are presented 

in figure 3.34 and figure 3.35 respectively. 
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Figure 3.34: Silver core size distributions, normal and cumulative distributions for silver-silica core-shell 

nanocomposities determined by TEM for post-synthetic treatments of a) parent material, b) heat-treated, c) 30 

minute base etching, d) 60 minute base etching and e) 120 minute base etching. 
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Figure 3.35: Silica shell size distributions, normal and cumulative distributions for silver-silica core-shell 

nanocomposities determined by TEM for post-synthetic treatments of a) parent material, b) heat-treated, c) 30 

minute base etching, d) 60 minute base etching and e) 120 minute base etching.  
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The silver cores are, on average, unaffected by the etching treatment, with the size 

remaining at around a constant 5 nm and within error. After longer treatment periods, 

however, some silver cores appear to have been removed from their silica shell. This is 

evident by the appearance of a light halo in the centre of the silica shell in the TEM. 

The number of cores which are removed from the composite materials increases as the 

length of etching treatment increases. As the silver cores which remain encapsulated 

inside the silica shells do not decrease in diameter on average, it is likely that the silver 

cores are removed as a whole, i.e. a pore appears which is large enough to cause 

migration of the silver core to outside of the composite material and is allowed to form 

an agglomerate elsewhere. 

 

Figure 3.36: Percentage of composite materials to have ‘lost’ a silver core during the etching treatment, as a 

function of etching time 

 

Figure 3.36 indicates the percentage of composite particles to have had a silver 

core removed during the base etching treatment, as a function of etching time. The 

‘zero’ minute etching material has undergone the thermal treatment, which is the reason 

for the loss of some cores, as the composite materials which have not undergone any 

kind of treatments do not exhibit any hollow shells in TEM analysis. 

Following the longer etching treatments, some silver agglomerations can be seen in 

the TEM as the silver cores removed by sodium hydroxide treatment are unstable at 

0

2

4

6

8

10

12

14

16

0 30 60 120

P
e

rc
e
n

ta
g
e

 o
f 

c
o

m
p

o
s
it
e

s
 w

it
h

 
re

m
o

v
e

d
 s

ilv
e

r 
c
o

re
s
 

Etching Time / min 



3. Silver-silica core-shell nanocomposites: Reverse micelle synthesis 

115 

 

such small sizes, and seek to form lower energy, more stable agglomerations of larger 

silver particles. 

 

3.4.2. Powder x-ray diffraction 

The XRD diffraction patterns (figure 3.37) show that the silver is in the metallic 

state in the untreated material once again, and remaining unchanged in both size and 

oxidation state throughout the duration of the treatment. 

 

Figure 3.37: Powder XRD diffraction patterns for etched Ag@SiO2 nanocomposite materials. (*) indicated Ag
0
 

FCC reflections. 
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Particle sizing using the Scherrer equation (Table 3.6) indicates the consistency in 

silver core size during the etching procedure. This complies with the particle sizing 

from TEM analysis, confirming that the silver cores are largely unaffected by the 

treatment. Particle sizing was performed using by fitting curves using CASA software 

to the raw data and obtaining values to FWHM. 

 Material Ag Core Diameter (XRD) / nm 

Parent 4.7 ± 0.2 

Heat Treated 5 ± 0.2 

30m base etch 4.6 ± 0.2 

60m base etch 4.8 ± 0.2 

120m base etch 4.9 ± 0.2 

Table 3.6: Silver core particle sizes from Scherrer equation. 

 

3.4.3. Elemental analysis 

The silver bulk loading was determined using ICP-MS, following HF digestion of 

the material samples. Tese values were compared with the values for surface Ag, 

determined by XPS analysis. These are tabulated in table 3.7. 

Sample 
Bulk Ag wt. 

% 

Surface Ag wt. 

% 

Surface:Bulk Ag 

ratio 

Parent 2.05 1.24 0.60 

Heat Treated 1.83 0.88 0.48 

30 min etch 1.89 1.39 0.74 

60 min etch 1.84 1.42 0.77 

120 min etch 1.78 1.67 0.94 

Table 3.7: Bulk and surface Ag wt. % values for etched Ag@SiO2 nanocomposites. 

 

The silver loading is seen to decrease post thermal treatment, which is consistent 

with the adsorbing of PVP onto the surface of the silica shells, lowering the overall 

silver percentage. After this decrease from the silver content in the parent material, 

there is no further significant decrease in silver content. This could suggest that silica 

which is removed during the etching treatment is either not in a significant enough 

amount to affect the silver loading to any large extent, or, that the silica species which 
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is removed is simply moved to a different form and not removed from the solution 

during the centrifugation and washing step. The increase in surface to bulk Ag wt. % is 

represented graphically in figure 3.38. 

 

Figure 3.38: Ratio of surface (determined by XPS) to bulk (determined by ICP-AES) silver content as a 

function of etching time. 

 

Figure 3.39 represents the increase in surface silver to silver bulk in the composite 

materials during the etching process. This increase is unaffected by any potential 

decreases in silica content and is a pure comparison between surface available silver, 

and absolute silver content. The ratio shows a dramatic increase during the etching 

procedure, which lends support to the idea that the silica shells are becoming more 

porous. 

Some evidence of amorphous silica can be seen in the TEM images for the etched 

materials, which could support this theory. Post etching, small regions of amorphous, 

non-structured material appears in the surrounding areas, which are not present in the 

parent material (figure 3.39). 
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Figure 3.39: Bright field TEM images of (a) parent Ag@SiO2 material and (b) 120 minute etched 

nanocomposites material, highlighting a particularly heavy region of ‘excess amorphous silica’. 

 

The increase in surface:bulk ratio of detectable silver in the etched materials, 

despite the consistent overall bulk loading, is a promising indicator that the silica shells 

are indeed being etched. It has been observed by TEM that the particle sizes remain 

unchanged throughout the prodecure, however the surface available silver increases, 

which is suggestive of a less dense silica network surrounding the metallic silver cores, 

imparting a lower degree of attenuation upon the released silver photoelectrons. 

 

3.4.4. X-ray photoelectron spectroscopy 

XPS was used to quantify the silver present in the etched materials, and to look at 

how that value changed over the etching period. Figure 3.40 represents the increase of 

the silver signal detected by XPS, relative to the silica signal. 
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Figure 3.40: Surface silver to silica ratios in the nanocomposites as a function of etching time. 

 

The reasons behind this increase could include the removal of silver cores and 

formation of agglomerate particles, increasing the amount of silver at the surface of the 

particles, however these large particles would also suffer from reduced penetration 

depth due to the high density of silver metal decreasing the mean free path of released 

photoelectrons, thus a large increase in the silver region is unlikely. A second reason 

behind this increase could be due to the removal of silicate species by the base etching 

treatment. Finally, as figure 3.41 exhibits, the particle dimensions are unaffected by the 

etching process, so the increase in silver availability at the surface of these composites 

could suggest less attenuation of the photoelectrons through the silica shell, due to a 

lower density throughout the shell due to the presence of pores. 

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0 30 60 90 120

A
g
:S

i 

Etching Time / m 



3. Silver-silica core-shell nanocomposites: Reverse micelle synthesis 

120 

 

 

Figure 3.41: Ag 3d XPS stack plot of etched Ag@SiO2 nanocomposites. 

 

The binding energy of the silver regions was consistent with previous materials, 

recording a peak for Ag 3d 5/2 at 367.9 eV suggesting the presence of silver metal, 

with no visible shoulders indicative of the presence of additional oxidation states. 

The nitrogen regions were studied using XPS to measure changes in PVP content 

adsorbed onto the surface of these composites during the base etching treatment 

(Figure 3.42). 
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Figure 3.42: Surface nitrogen content as a function of etching time. 

 

A steady decrease in nitrogen amount can be seen by XPS analysis, a resultant 

peak from adsorbed PVP, which proposes that some PVP suffers removal during the 

base etching treatment. 
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Figure 3.439: N 1s XPS stack plot of etched Ag@SiO2 nanocomposites 

 

It can be seen from the XPS data that some PVP is removed from the surface of 

these materials during the base etching treatment. It is also possible that as pores are 

opened up in the silica, the PVP molecules are desorbing and readsorbing inside the 

pores of the structures, which would decrease their visibility in the XPS. 

The N 1s peaks in figure 3.43 appear at 399.9 eV, higher than the recorded value for 

PVP (399 eV). This could be due to interactions between polymeric nitrogen and 

surface silanols.
26
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Figure 3.44: C 1s XPS stack plot of etched Ag@SiO2 nanocomposites. 

 

The carbon regions identified by XPS analysis are exhibited in figure 3.44. There 

is a strong increase in carbon signal, post PVP adsorption, with the carbon region 

associated with the PVP molecules appearing at 283.6 eV. 
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Figure 3.45: Si 2p XPS stack plot of etched Ag@SiO2 nanocomposites. 

 

Figure 3.45 displays the recorded silicon regions, which corroborate with previous 

studies, recording a maxima at a binding energy of 103.4 eV. The doublet separation 

was set at 0.6 eV, with peak areas set to a 2:1 ratio for the 2p 3/2 and 1/2 components, 

according to values obtained from the NIST database.
27
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Figure 3.46: O 1s XPS stack plot of etched Ag@SiO2 nanocomposites. 

 

Figure 3.46 shows the oxygen regions, recorded by XPS measurements. The 

oxygen region is seen to remain constant throughout the post-synthetic treatment. No 

contribution from the oxygen in PVP can be seen, this is likely due to the relative 

insignificance of this moiety with regards to the oxygen signal from the silica. 
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3.4.5. Porosimetry 

Following the etching procedure, the samples are analysed using nitrogen 

adsorption porosimetry, to determine any change to the surface areas of the etched 

materials. The recorded isotherms are presented in figure 3.31. 

 

Figure 3.47: Nitrogen adsorption isotherms for etched Ag@SiO2 nanocomposite materials. 

 

Using the BET equation, the surface areas were determined and an increase was 

noted which correlated with the increase in etching time (Figure 3.48). 
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Figure 3.48: Increase in Ag@SiO2 nanocomposite surface area during etching treatment. 

. 

To look in more detail at the porous nature of these materials, a Barret-Joyner-

Halenda method was applied to the adsorption data. This allows for a representation of 

pore size and pore size distribution of the prepared materials (Figure 3.49). 

 

Figure 3.49: Barrett-Joyner-Halenda profiles from etched Ag@SiO2 nanocomposite materials. 

 

From the BJH plot, it is evident that the pores etched into these materials cover a 

wide range of sizes. The large increase in adsorbed gas at around 10nm and above is 

likely due to interparticle spacings, rather than intraparticle voids.  
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It would appear that the pores do not appear in large numbers until 2 hours in the 

presence of sodium hydroxide, which is consistent with the recorded increase in surface 

area and isotherms. After 1 hour, there is an increase in pore volume for pores between 

5-10 nm, which would account for the increase in surface area for this material. After 

30 minutes of etching, the surface area increases, although there is actually a slight 

increase in recorded pore sizes (attributed to interparticle spacings), which could be due 

to removal of some surface PVP before the particles have a chance to develop any 

pores. 

Incidentally, the microporous surface area of all materials, with the exception of 

the parent material (17 m
2
/g), is zero, according to the t-plot method. This could be 

attributed to blocking of the pore openings by PVP molecules adsorbed onto the 

surface. 

 

3.4.6. Attenuated total reflectance Fourier transform spectroscopy 

ATR FT-IR was used to identify the adsorption of polyvinylpyrrolidone onto the 

surface of the silver-silica nanocomposites and has the advantage of being more 

specific to PVP molecules than analysis of the nitrogen regions with XPS. 

Polyvinylpyrrolidone exhibits a characteristic fingerprint in the FT-IR spectra which is 

clearly evident upon the adsorption of PVP to the particle surface during the heat 

treatment stage of the etching (Figure 3.50). There is a strong absorption at 1630 cm
-1

 

which can be easily used to identify adsorbed PVP onto the silica surface, as it is free 

from any interfering absorptions form other moieties. 
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Figure 3.50: FT-IR spectra of adsorbed PVP to composites, before and during etching treatment. 

 

The peak areas of these spectra can be calculated to form a quantitative analysis of 

the amount of PVP adsorbed onto the surface which can be used to compare between 

samples (Figure 3.51). 

 

Figure 3.51: Peak areas of PVP adsorption of etched materials. 

 

These areas can also be normalised to the area for the heat/PVP treated composite 

material, allowing for a quantitative plot representing PVP removed from the materials 
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during the base etching treatment. Figure 3.52 plots the removal of PVP with etching 

time. 

 

Figure 3.52: Loss of adsorbed PVP as a function of etching time. 

 

This data is consistent with the XPS spectra for nitrogen regions in section 3.4.4. 

As the PVP materials are exposed to longer periods in the presence of nitrogen, some 

PVP is removed, although this amounts to a total of 20% at the maximum etching time, 

so the vast majority of PVP remains adsorbed onto the surface of the composites. 

 

3.4.7. Summary of properties of etched nanocomposites 

To further functionalise the Ag@SiO2 nanocomposite materials, a combination 

treatment was employed, comprising of a thermal treatment, simultaneously adsorbing 

polyvinyl pyrollidone molecules onto the surface of the silica shells, to act as a 

protecting agent for the second stage of post synthetic treatment. The second stage 

involved a dilute base etching methodology to further interact with the silica species 

and expand the pores present in the sample. 

The resultant materials retained the core-shell architecture with which they were 

created, and absolute particle dimensions were uncompromised throughout the 

treatment. This was confirmed by TEM analysis, which also saw that some silver cores 

were, in-fact, removed from the shells during base etching. The silver detectable at the 
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surface of the materials increased with etching time, whilst the bulk Ag amount 

remained steady, which has been attributed to a decrease in silica shell density as a 

result of the etching. This effect was also monitored by nitrogen porosimetry, which 

resulted in an increase in overall surface area of the materials, as well as an increase in 

volume adsorbed in the region of 1-10 nm, which is within the targeted range for pore 

introduction. 

 

3.5. Performance Assays 

In order to determine the suitability of these materials as antibacterial agents, and 

to study how changes to the silver core size affect the activity of these materials, 

performance assays were undertaken, as described in Chapter 2. 

 

3.5.1. Silver dissolution 

As the active species thought to be responsible for the antibacterial activity of 

silver is Ag
+
, the release of silver ions into solutions was monitored, in order to 

correlate activity with silver ion release rates. The dissolution was monitored using 

ICP-MS to study the concentration of solutions taken from a stock at set time points as 

described in section 2.4. These concentrations were then normalised to bulk silver 

content, so as to determine a release as a function of total silver percentage released. 

Silver is known to dissolve into aqueous media via an oxidative process by which 

solid silver, in the form of nanoparticles, undergoes a redox reaction in the presence of 

dissolved oxygen and hydrogen species in water, to release silver ions into solution 

(figure 3.53). It is for this reason that the reaction is highly dependent on pH.
28

 

 

Figure 3.53: Oxidative dissolution of silver into aqueous media.
29
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The target dissolution profile for the synthesised materials was a slow release of 

ionic silver from the bulk particulate form. Silver compounds which have been utilised 

within the fields of antibacterials and medicine include silver nitrate, which was used to 

treat burn victims
30

 and eye infections in children.
31

 The problem with silver nitrate for 

these applications, is the fast release profile, which is unsuitable for sustained release 

and long term appications. Silver sulfadiazine has a much slower release profile, and 

has been in use for many years, however recent reviews have brought into question the 

benefits of this compound on wound healing.
32

 

 

Figure 3.54: AgNO3 dissolution profile determined using a Ag
+
/SO4

2-
 ion-

selective electrode. 

 

The release profile for silver ions from nitrate is essentially instantaneous 

dissolution into aqueous media (figure 3.54). Such kinetics are wholly inappropriate 

for the purposes of this work, and dissolution profiles with more in character with more 

insoluble silver salts, such as AgO and Ag2CO3 are required. A range of silver 

containing compounds were studied to observe the difference between quick (AgNO3), 

medium (silver acetylacetonoate) and slow (AgO/Ag2CO3) release profiles (figure 

3.55). 
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Figure 3.55: Silver ion dissolution profiles from a range of silver containing 

compounds. 

 

The ideal dissolution range is in the slow region, allowing for the materials to 

release silver of a long period of time, preferably with rates similar to those observed 

for AgO/Ag2CO3. 

Due to the limitations of ionic salts which can be passed through the ICP-MS 

system, the measurements were performed in a solution of 0.5M sodium nitrate, rather 

than a complex solution of simulated body fluid, which contains anions, such as 

sulphates and chlorides, which can damage the instrument. 
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Figure 3.56: Dissolution profiles for silver-silica core-shell nanocomposite materials, normalised to Ag content. 

 

Figure 3.56 plots the dissolution of silver ions into a solution of sodium nitrate as 

a percentage of the total silver available in the system over a 24 hour period. Whilst 

there does not appear to be much difference between the larger silver cores, the smaller 

cores release Ag ions at a faster rate than their larger counterparts. This could be 

attributed to lower surface areas for the larger cores resulting in lower dissolution rates, 

as there is less surface contact with aqueous fluid solution, whilst the smaller cores with 

larger specific metal surface areas have greater contact areas, and hence opportunities 

for silver ions to be released into solution.  
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Figure 3.57: Dissolution of silver ions from nanocomposite materials with variable shells, normalised to Ag 

content. 

 

Figure 3.57 shows how the silver release rate is affected by increasing silica shell 

sizes over a 24 hour period. The larger shelled materials exhibit the slowest release 

profile, which could be attributed to a larger silica network surrounding the silver cores 

slowing the transport of dissolved silver moieties into free solution through interactions 

with surface hydroxyls. 

With such a slow dissolution rate, such materials could be an ideal candidate for 

sustained release materials, as a very small amount of the total silver is released over a 

24 hour period. Provided the materials can display antibacterial activity at such release 

concentrations, then this increase in shell size could be an intriguing method to 

increasing the lifetime of these antibacterial additives. 

Figure 3.58 displays the dissolution profiles for the etched nanocomposite 

materials. 
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Figure 3.58: Dissolution of silver ions from etched nanocomposite materials, normalised to Ag content. 

 

The heat treatment of the composite materials appears to expedite the delivery of 

silver ions into aqueous media over a 24 hour period. The subsequent base etching 

treatment, however, reduces the amount of free silver species released, despite the 

apparent increase in porosity of the silica shells. The reason for this decrease could be 

ascribed to blocking of silver surface sites by either redeposited silicate species or PVP 

molecules decelerating silver ion release.  

The composites exhibit attractive dissolution rates for the outlined applications, 

releasing slowly into aqueous media, with total dissolutions after 24 hours at around 

10% of silver content, it is probable that these materials would have far improved 

lifetimes to silver compounds. 
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3.5.2. Microbiological assays 

To study the effectiveness of the prepared materials as antibacterials, a variety of 

antibacterial assays were performed as described in section 2.5. Inhibition, minimum 

bactericidal concentration and time kill assays were collected for all samples and silver 

standards to determine antibacterial activity as a function of silver core size. 

 

3.5.2.1. Zone of inhibition 

Zone of inhibition testing was performed, allowing for a quick determination of the 

presence of antibacterial activity and a semi-quantitative analysis of bactericidal 

strength. The zone of inhibition test involves spreading a bacterial inoculum onto an 

agar plate, boring holes into the agar, inserting the material to be testing into the 

resulting wells and incubating. After 24 hours at 37
o
C, the wells will have a clear zone 

around them where bacteria have not been allowed to grow. This zone can be measured 

and used as an indicator of antibacterial activity and comparative strength, although this 

test is heavily limited by diffusion through the agar itself. The zones are reported in 

millimetres and normalised to total silver content. These zone of inhibition tests give a 

good indicator of the presence of antibacterial activity, but do not give information 

about kill rates, which is an important factor in the antibacterial industry. 

 

Figure 3.59: Zones of inhibition for silver-silica core shell nanocomposite materials with variable silver core 

sizes against Staphylococcus aureus. 

 

Figure 3.59 is a composite picture of the zones of inhibition obtained from the 

nanocomposite materials against Staphylococcus aureus, along with a positive control 

(silver oxide) and a negative control (silica nanoparticles, made using the same method 

as the nanocomposites, which do not contain any silver). The clear areas visible around 

the wells are the inhibited bacterial regions which are a representative measure of 
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antibacterial efficacy, assuming diffusion rates are constant between samples. The 

zones of inhibition against Pseudomonas aeruginosa are presented in figure 3.60. 

 

Figure 3.60: Zones of inhibition for silver-silica core shell nanocomposite materials with variable silver core 

sizes against Pseudomonas aeruginosa 

 

The materials were tested in triplicate and averaged, all on the same plate along 

with a control to ensure consistency in measurements. The zones were measured using 

image J software, which was calibrated using a steel rule. 

 Along with the silver containing species, a pure silica sphere material was 

prepared and tested for antibacterial activity to ensure that the zones were created by 

the evolved silver species alone. This material created no zones of action around the 

wells, which suggests that any zone recorded from the composite materials is due to 

silver ion release (Figure 3.61). 

 

Figure 3.61: Zones of inhibition for pure silica spheres versus Staphylococcus aureus and Pseudomonas 

aeruginosa. 

 

There is no real trend noted in the zone size of the materials, normalised to silver 

content, against S.aureus, MRSA, E.Coli or P. aeruginosa with respect to the size of 

the silver core size. This is likely due to the difference in silver ion release being small 

enough that the limiting factor is diffusion through the agar, resulting in very similar 

sized zones, and hence the observed antibacterial efficacy of these materials remaining 

largely similar (Figure 3.62). 
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Figure 3.62: ZoI plots for silver silica core shell materials with variable core sizes normalised to Ag content. 

 

It is important to remember when looking at the normalised plots, that the ZoI 

analysis is not a fully quantitative measurement, merely a tool for determining the 

presence of antibacterial activity, for a test material.  
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Figure 3.63: ZoI plots for etched silver silica core shell materials normalised to Ag content. 

 

Figure 3.63 displays the recorded inhibited zone sizes for the etched materials 

normalised to overall silver content, displaying antibacterial activity against all strains 

tested. There is little difference in the normalised plots, as the materials have similar 

silver contents and the differences in silver release rates are likely too small to affect 

the zone size in any measurable way. The results do, however, indicate the release of 

silver and confirm the antibacterial activity of the composite materials against a broad 

range of bacteria types. Furthermore, the silver composite materials are as active 

against MRSA in most cases as they are against non-methicillin resistant S.aureus. 
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Figure 3.64: ZoI plots for silver silica core shell materials with varying silica shell sizes normalised to Ag 

content. 

 

The materials of varying silica shell sizes exhibited the largest differences in 

recorded zones (figure 3.64), with the larger shells appearing more effective than the 

smaller shells. This is despite larger absolute recorded values for zones created by 

smaller shells (and hence higher wt% of Ag), similarly, if the zones are limited in size 

by factors outside of total silver release, then upon normalisation to Ag content, the 

lower weight % materials appear more effective.  

 

3.5.2.2. Minimum bactericidal concentrations 

In order to ensure that the concentration of materials tested by the logarithmic 

reduction method was sufficient to eliminate bacterial cultures, a minimum bactericidal 

concentration experiment was performed. This allowed to work with concentrations 

which would give a sensible and measurable kill rate.  
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The minimum bactericidal concentration for these materials was studied using the 

methodology described in section 2.5.2. This testing involved preparing solutions 

containing the target organism at a known concentration, along with the test material at 

a variety of concentrations to determine a break point, below which the material was 

not considered antibacterial. These solutions were incubated with agitation at 37
o
C for 

24 hours, before being plated out and the bacterial colonies counted. 

The solutions were made using a serial dilution technique and the materials were 

dispersed into a solution of microorganisms in the following concentrations; 10, 1, 0.1, 

0.01, 0.001, 0.0001 mg/ml. The materials were allowed to exhibit their antibacterial 

effects over a 24 hour time frame, at which point a sample of the solution was taken 

and spread onto an agar plate before being incubated at 37
o
C prior to counting the 

viable organisms. 

The material tested was a representative sample from the series, with a core size of 

4.7 nm and shell size of 24 nm. Following the testing and incubation period, it was 

observed that the composite was effective at concentrations above 0.01 mg/ml, at which 

point the material failed to reduce the viable count of bacteria by a factor of 1000, the 

industry standard. 

Considering accuracy of weight measurements and time scales, a concentration of 

10 mg/ml was chosen for further testing. 

 

Figure 3.65: Bacterial colonies for the lowest concentration of material against S.aureus following a 24 hour 

assay. 
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Although there was visible growth witnessed for the lowest concentrations of 

materials tested, the logarithmic reduction of these colonies was still at 4.2, which is 

above the kill requirement for a material to be considered antibacterial. 

 

3.5.2.3. Validity of neutralisation 

In order to asses quantitatively the antibacterial activity of these materials as a 

function of time and correlate this to silver core size, a logarithmic reduction assay was 

required. This is a commonly used technique, involving adding a known number of 

microorganisms to the target material and determining the number of bacteria which are 

exterminated by plating out serial dilutions of the test solution at set time intervals. Due 

to the low concentrations of colonies required for counting purposes, serial dilution is 

required which can lead to possible inaccuracies during the process. It is for this reason 

that the samples are tested at least three times, for each time point. 

Prior to performing a quantitative logarithmic reduction assay on these materials, a 

neutraliser was required which was able to render the silver materials incapable of 

killing the target organisms, allowing for a snapshot of antibacterial activity at the 

desired time points. For this, a solution of STS was tested as described in section 2.5.3.  

STS is a solution of 1% Tween20, 0.85% sodium chloride and 0.4% sodium 

thioglycolate. Sodium thioglycolate is known to neutralise silver due to the high 

affinity of silver for thiol moieties.
33, 34

 The mechanism behind the antibacterial activity 

of silver is known to be connected with the interaction with thiol groups; silver ions and 

thiol groups in enzymes and proteins are a large part of the inactivation of said enzymes 

and proteins, leading to cell death. 

The STS agent was effective in neutralising the antibacterial effects of the silver-

silica materials, following 24 hours of contact, plus an incubation period, against both 

P.aeruginosa and S.aureus. The solution was therefore considered a viable option for 

the logarithmic reduction experiments. 
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3.5.2.4. Logarithmic reduction 

Logarithmic reduction experiments allowed for a more quantitative representation 

of the synthesised materials. The materials were agitated in a solution of simulated 

body fluid and the target organism and samples taken out at set intervals in order to 

determine the viable count of living organisms at that point and obtain the reduction of 

bacteria as a function of time. Figure 3.66 and figure 3.67 show the logarithmic 

reduction in the viable count of Staphylococcus aureus and Pseudomonas aeruginosa 

respectively against silver-silica materials of varying silver core size, a silver carbonate 

standard and a control. 

  

Figure 3.66: Logarithmic reduction of Staphylococcus aureus ATCC 6538 as a function of time in the presence 

of silver-silica core shell materials with variable silver core sizes, normalised to total silver content present. 

 

Against the Gram positive representative organism, Staphylococcus aureus, the 

materials were highly effective, with no bacteria remaining after a 4 hour time period. 

The raw rate of bacterial mortality was quite similar for these materials and the silver 

carbonate standard, although when normalised to total silver content, the composite 
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materials outshine the silver carbonate, as they are more effective per unit mass of 

silver.  

 

 

Figure 3.67: Logarithmic reduction of Pseudomonas aeruginosa ATCC 15442 as a function of time in the 

presence of silver-silica core shell materials with variable silver core sizes, normalised to silver content. 

 

There is a trend, consistent with the silver ion dissolution data, which indicates that 

the kill rate is faster for the smaller cores, this can be attributed to the active phase 

being silver (I) species in solution, hence the smaller cores possessing faster dissolution 

kinetics allows for faster bacteria mortality rates.  

The materials are display faster action against S.aureus compared to P.aeruginosa, 

which can be attributed to the lower permeability of the cell wall and membrane of this 

species,
35

 which has shown to render this strain (ATCC 15442) more resistant than the 

Staphylococcus aureus ATCC 6538 strain to silver toxicity.
36
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Figure 3.68: Logarithmic reduction of Staphylococcus aureus ATCC 6538 as a function of time in the presence 

of silver-silica core shell materials with variable total diameters, normalised to silver content. 

 

Figure 3.58 shows the antibacterial efficacy of materials with varying diameters 

against S.aureus, indicating that as silica shell size increases, the rate at which the 

bacteria reduce is diminished, which is consistent with the dissolution profiles observed 

for these materials.  
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Figure 3.69: Logarithmic reduction of Pseudomonas aeruginosa as a function of time in the presence of silver-

silica core shell materials with variable total diameters, normalised to total silver content. 

 

The smaller shells consistently exhibit favourable kill rates against both bacterial 

strains, swifter than the materials with larger surrounding silica matrices. This may 

indicate that the smaller materials would be more effective swift action materials, 

killing bacteria quickly, whilst the larger shelled materials would be useful longer 

action materials, delivering a steady release of silver to produce a slower but longer 

lasting antibacterial effect. 

The etched materials were studied for antibacterial efficacy via the same method. 
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Figure 3.70: Logarithmic reduction of Staphylococcus aureus ATCC 6538 as a function of time in the presence 

of etched silver-silica core shell materials, normalised to total silver content. 
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Figure 3.71: Logarithmic reduction of Pseudomonas aeruginosa as a function of time in the presence of etched 

silver-silica core shell materials, normalised to total silver content. 

 

Against S.aureus, the materials have reduced the bacterial colony count over a 

threefold reduction after 2 hours in contact, with the heat treated material acting fastest, 

followed by the untreated material, which mirrors the trend observed in the silver ion 

dissolution study. The nanocomposites are again met with greater resistance from the 

P.aeruginosa, taking 24 hours to record a three-fold log reduction. The heat treated 

material exhibited superior antibacterial activity compared to the other samples, 

marginally better than the silver carbonate standard per unit mass of silver.  

That the etched materials are outperformed by their unetched equivalents is no 

doubt disappointing, although the improved performance of the heat treated material 

suggests that perhaps tuning this heat treatment would be a good alternative to base 

etching to provide a route to increased antibacterial performance. 
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3.5. Conclusions 

Silver based antibacterial additives are coming to the forefront of technology with 

the rise of resistant strains of bacteria and the advent of nanotechnology allowing for 

fine control over material properties. The applications to have been developed include 

dental care,
37

 catheter coatings,
38

 antibacterial textile materials,
39

 in wound and burn 

care
40

 and water treatment.
41

 Silver based materials are already in use in the wound 

management industry, with materials such as Acticoat
TM

 and Actisorb® using 

nanocrystalline and silver polymer based technologies,
42, 43

 whilst silver sulphadiazene 

has been a common treatment for burns since the middle of the last century.
44

 

The fine control over the physical properties and characteristics of nanodevices 

allows for, in theory, antibacterial agents with high degree of control over their eventual 

potency and lifetime.
45

 The core-shell architecture lends not only a stabilising effect to 

the silver nanoparticles, of the equivalent to an inorganic support, but also a barrier to 

silver dissolution which slows the release of active species and thus increases the 

lifetime. 

In this work it has been demonstrated that the physical dimensions of core shell 

architectures, developed using a reverse micelle microreactor emulsion synthesis, can 

be highly tuned to suit the purpose. The silver core size increases linearly with the 

water concentration inside the reverse micelles and subsequent increase in micelle 

diameter, whilst retaining a high degree of monodispersity resulting in a series of silver 

particles of increasing size. Whilst there is no great difference in overall performance of 

these materials, the smaller cores do indeed release silver species into solution faster 

than their larger counterparts, leading to slightly improved kill rates. All things 

considered, it may infact be more advantageous from an antibacterial additive point of 

view to use larger silver cores, within this size range, for these applications, as the kill 

rates against S.aureus and P.aeruginosa are sufficiently high that the retarded silver 

release could lend itself to composite materials with a longer shelf life, whilst 

maintaining the same high degree of antibacterial efficacy. 

Silica shell sizes are a secondary parameter which can be tuned to affect 

performance, with increased concentrations of silica precursor tending towards 

increased shell dimensions. With larger shell sizes comes diminished silver release and 

hence activity, although the kill rate remains at a reasonably high value with a 3-fold 
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reduction in bacterial count after 2-4 hours of contact with the materials. The slow 

release profiles of larger shelled materials would suggest longer potential lifetimes for 

these materials, whilst remaining active at a fast enough rate to be considered effective 

bactericidal agents.  

Enhancement of the silver dissolution via a surface protected etching route yielded 

unexpected results, as whilst the characterisation of the materials suggested materials of 

increased porosity, the release rate of silver suffered negatively upon base etching 

treatment. A possible explanation for this has been provided, in that stabilisation of the 

silver surface by free PVP molecules could be hindering the release of silver species 

into solution, as a greater number can access the silver core with increased porosity. 

Further to this, some removal and agglomeration of silver cores into larger particles 

could lead to supressed silver release and activity. A milder, high temperature 

treatment, however, did infact demonstrate superior silver release. 

Potential longevity of these antibacterials was assessed through consecutive 

logarithmic reduction experiments, performed daily for 14 days by virtue of removal of 

bacterial solution after a 24 hour period, filtration and washing of composite materials 

and resuspension in a a fresh solution of 10
7
 cfu of the target organism (S.aureus). 

Materials tested included 3.4 nm and 7.4 nm silver cored composites, and 31 nm silica 

shelled materials. All composites exhibited no decrease in activity over a 14 day period 

(figure 3.72), indicating stability and long lasting activity. The smaller composites 

actually outlasted expected lifetime based upon silver dissolution profiles. This is 

possibly due to formation and redeposition of silver chloride species, which are 

themselves antimicrobially active. 
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Figure 3.72: Antimicrobial lifetime assays. 

 

Overall, the composites exhibited excellent antibacterial properties and swift action 

against the test organisms, both S.aureus and P.aeruginosa and tuning them to release 

as slow as possible, whilst retaining their antibacterial ability, has great potential as a 

bactericidal material with an extended lifetime of action. Ultimately, however, whilst 

these materials provide excellent properties, the cost and scalability of the synthesis, as 

well as high levels of waste chemicals, renders their use in industrial or commercial 

applications less desirable. Nonetheless, they provide a valuable template, highlighting 

the advantages of core-shell materials and how the properties can affect performance, 

with small silver particles with smaller, heat treated shells preferential for fast acting 

materials, and larger core and shells more suited for longer, sustained release. 
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4.1. Introduction 

 

In Chapter 3, it was observed that silver-silica core-shell materials afforded potent 

antimicrobial performance, and exhibited high stability in aqueous solution. The 

expected lifetime of these materials, based on silver dissolution studies, increased for 

larger silver nanoparticles due to lower total silver % release over a 24 hour period 

(Chapter 3.5.1), whilst effects on antimicrobial efficacy were relatively small, 

compared to the possible advantages in an increased timeframe of continuous action.  

In this chapter, a micellular organic templating methodology was developed with a 

view to introducing intrinsic mesopores into the inorganic shell of silver-silica core-

shell nanocomposites, with a view to synthesising larger diameter silver nanoparticles 

accompanied by increased routes for silver dissolution via a highly porous shell. 

 

4.2. Results and discussion 

Mesoporous silver-silica core-shell nanocomposites (MP-Ag@SiO2) were prepared 

and characterised by a range of experimental techniques, including thermogravimetric 

analysis, FT-IR, TEM, XPS, XRD and porosimetry, in order to identify the silver 

species present and properties of the silica shell. 

 

4.2.1. Synthesis of silver-silica core-shell nanocomposites 

The synthesis of nanocomposites was adapted from a method by Zhao et al as 

described in Chapter 2.2,
1
 involving the dissolution of CTAB in water to form 

micelles, followed by sodium hydroxide addition in the presence of a hydrazine 

reductant, heated to 80 
o
C under vigorous stirring (900 rpm). Following a 30 min 

equilibration period, AgNO3 was added and the solution aged for 5 min prior to 

addition of the TEOS silica precursor as illustrated in Figure 4.1. 
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Figure 4.1: Schematic representation of mesoporous silver-silica core-shell nanocomposites formation.  

 

Sodium hydroxide fulfils a double purpose, acting as a base catalyst for the 

hydrolysis and condensation of TEOS to form silica, while also preventing the 

formation of H2N-NH3
+
 species through equilibration of  hydrazine in water; displacing 

the equilibrium to maintain a high level of molecular hydrazine in solution, increasing 

the silver reduction rate.
2
  

CTAB present at a concentration of 5.5 x 10
-3 

M (i.e. above the critical micelle 

concentration of 9 x 10
-4

)
3
 self-assembles with hydrolysed silicate oligomers to form 

silicate micelles comprising S
+
/I

-
 components (S = surfactant, I = inorganic oligomer). 

The packing and condensation of these promotes agglomeration of the self-assembled 

micelles and subsequent removal of the organic template through calcination results in 

a mesoporous silicate. 

The combination of silicate oligomers in the Gouy-Chapman region (region of 

diffuse, solvated ions surrounding micelles) is weaker in aqueous sodium hydroxide 

than in ammonium hydroxide, resulting in shorter self-assembled structures and 
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promoting the growth of spherical particles, compared with the longer rod-like micelles 

preferred by ammonium hydroxide base catalysed materials.
4
 

Hydrazine was chosen as a reducing agent as it has been employed extensively in 

the literature for the formation of metallic silver nanoparticles. The proposed 

mechanism for hydrazine reduction of Ag
+
 to stable Ag4

2+
 clusters is outlined in Figure 

4.2.
2
 The resulting cationic silver clusters agglomerate and undergo further reduction to 

Ag
0
 nanoparticles. 

 

 

Figure 4.2: Reaction mechanism for the reduction of silver ions to silver clusters.
2
 

 

Powder X-ray diffraction was utilised to determine the nature of the silver species 

present. The desired silver nanoparticles were Ag
0
, and silver nanoparticles were 

produced and compared with those formed using alternate reducing agents in order to 

produce silver metal nanoparticles and prevent the formation of stable silver bromide 

species, formed from interactions between silver nitrate and the bromide counterions in 

CTAB. 
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Figure 4.3: Powder XRD patterns from MP-Ag@SiO2 nanocomposites using (a) aniline, (b) formaldehyde, (c) 

hydrazine as a reducing agent (6.54 % Ag). ( ) indicates Ag
0
 FCC structure, ( ) indicates AgBr FCC structure. 

 

Figure 4.3 shows the powder XRD patterns for these composite materials using 

three different reducing agents, all of which have been reported to reduce silver ions to 

silver metal nanoparticles.
1, 5, 6

 The aniline and formaldehyde were unable to prevent 

the formation of silver bromide within the nanoparticles, with the aniline producing 

solely large (60 nm) silver bromide particles and the formaldehyde leading to a mixture 

of large particles of AgBr (54 nm) and small crystallites of silver metal (10 nm), whilst 

when in the presence of hydrazine, the silver was fully reduced, forming zero valent 

silver metal particles of 20 nm in diameter. The AgBr peaks were identified as 2θ = 

26.6 (111), 30.9 (200), 44.31 (220), 55 (222), 64.35 (400), 73.17 (420).
7
 The Ag

0
 FCC 

pattern was identified as 2θ = 38.1 (111), 44.15 (200), 64.3 (220) and 77.2 (311).
8
 As 

the goal was to produce silver metal nanoparticles, hydrazine was chosen as the 

reducing agent for the synthesis.  

Following confirmation of the silver species and formation of silver metal 

nanoparticles, TEM analysis was used to confirm the core-shell nanoarchitecture. 
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Figure 4.4 shows a representative example of the initial nanocomposites formation 

post-synthesis. There are clearly defined phase boundaries between the silver metal 

cores and mesoporous silica shells. 

 

Figure 4.4: Representative bright field TEM image of synthesised MP-Ag@SiO2 nanoarchitectures. 

 

Removal of the organic template was required in order to introduce the 

mesoporous network into the silica framework, and for this a thermal treatment was 

used. The decomposition temperature of CTAB is 237-243 °C, which was confirmed by 

TGA analysis (figure 4.5). 
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Figure 4.5: Thermogravimetric analysis of cetyltriammonium bromide. 

 

A calcination temperature of 400
 
°C was used to remove the organic template. 

During calcination however, silver bromide species were formed, as evidenced in 

Figure 4.6, which shows powder XRD patterns from calcined and uncalcined 

nanocomposites, before removal of residual bromide species.  

 

Figure 4.6: Powder XRD patterns for (a) calcined and (b) uncalcined 6.54% Ag MP-Ag@SiO2 nanocomposites, 

prior to bromide removal. ( ) indicates Ag
0
 FCC structure, ( ) indicates AgBr FCC structure.  
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Silver bromide species of 53 nm are evident in the XRD patterns alongside silver 

metal particles of 10 nm, indicating their formation during the thermal treatment. To 

remove these bromides, the materials were washed three times in ethanol and 

ammonium carbonate, before being washed in water. The powder XRD patterns for the 

calcined and uncalcined nanocomposites after removal of the bromide species are 

shown in figure 4.7. These show that after the bromide species are removed, the 

materials can be calcined in air and retain the silver metal identity. Particle sizing from 

the Scherrer equation reports negligible particle growth, reporting silver crystallites of 

18.5, 18.9 and 19.6 nm respectively for the parent, washed and calcined materials 

respectively. 

 

Figure 4.7: Powder XRD patterns for calcined ammonium carbonate/ethanol washed and parent MP-Ag@SiO2 

nanocomposites. ( ) indicates Ag
0
 FCC structure.  

 

Confirmation of the removal of bromide species was also obtained using XPS analysis, 

which indicated the disappearance of the Br 3d moiety post-washing (Figure 4.7). 

30 40 50 60 70 80

In
te

n
s
it
y
 

2θ 

Parent 

Washed 

Calcined 



4. Mesoporous silver-silica core-shell nanocomposites 

 

163 

 

 

Figure 4.8: Br 3d XPS stack plot of (a) calcined, (b), washed and (c) parent 6.54% Ag MP-Ag@SiO2 

nanocomposites.  

 

The N 1s regions were studied for evidence of remaining cetyl triammonium 

species. Figure 4.9 shows the N 1s regions for CTAB, the washed and unwashed 

samples. This indicates that whilst the bromide is removed by ethanol/ammonium 

carbonate washing, that the CTAB may well remain in the pores of the nanocomposites. 

 

Figure 4.9: N 1s stack plot of (a) calcined, (b) washed and (c) parent 6.54% Ag MP-Ag@SiO2 nanocomposites. 

 

The presence of remaining organic residuals not removed during the washing 

procedure was studied using ATR FT-IR, between 4000 cm
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region a strong signal is observed for cetyl moieties. Figure 4.10 shows the infrared 

spectrum in this range and confirms that the organic material is not removed from the 

pores during the washing treatment. The calcined sample exhibited no stretches in the 

expected region, which is evidence of removal of the organic template.  

 

Figure 4.10: ATR FT-IR spectra of CTAB, washed, unwashed and calcined 6.54 wt. % MP-Ag@SiO2 

nanocomposites.  

 

This was also observed by thermogravimetric analysis, which is shown in figure 

4.11. CTAB decomposes at 237-243
 
°C, and there is a large decrease in mass in this 

range for the uncalcined materials, which can be attributed to the decomposition and 

removal of this material. 
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Figure 4.11: Thermogravimetric analysis of (I) total mass % loss, (II) % mass loss over the temperature range 

of CTAB decomposition for 6.54 wt. % Ag (a) calcined MP-Ag@SiO2, (b) uncalcined, washed MP-Ag@SiO2, 

(c) uncalcined, unwashed MP-Ag@SiO2 and (d) CTAB.  

 

By looking at the regions between 170 and 400 °C, it can be estimated how much 

CTAB is removed by the calcination and washing treatments. The raw material loses 

18% of its mass over this region, so assuming this is all through the removal of CTAB, 

this can be considered the starting %mass of CTAB and decreases in organic content 

calculated by measuring the mass loss in this region. 

Post washing, the CTAB content drops from 18% to 12.7%, a roughly 30% 

decrease. This indicates that washing the materials to remove the bromide species does 

also remove some of the alkyl chains from the pore networks. After calcination, the % 

mass loss in this region is effectively zero, as it should be after heat treatment at 400 °C 

for 5 hours. 

Nitrogen porosimetry was employed to study the resulting pore network. Figure 

4.12 shows the isotherms for the calcined and uncalcined samples. The calcined 

material exhibits a type IV isotherm with a capillary condensation step at around 0.4-

0.6 P/P0. The uncalcined and unwashed parent materials possess a much lower surface 

area of 600 m
2
/g and 512 m

2
/g respectively compared to 860 m

2
/g, which is consistent 

with the removal of organic template. 
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Figure 4.12: N2 adsorption isotherms for (a) calcined and (b) ethanol/ammonium carbonate washed and (c) 

parent 6.54 wt % Ag MP-Ag@SiO2 nanocomposites.  

 

The pore size within these materials was studied by applying the BJH method to 

this isotherm, and resulted in an average pore size of 2.5 nm. Figure 4.13 shows the 

BJH plot, whilst inset is the BET plot, which recorded and specific surface area of 700 

cm
3
/g. Micropore analysis via the t-plot method recorded a micropore volume of 0 

cm
3
/g for all materials. 
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Figure 4.13: BJH profile of calcined and uncalcined 6.54 wt. % Ag MP-Ag@SiO2 nanostructured materials. 

Inset displays BET plot.  

 

Post calcination the material reports a clear and monodisperse pore size 

distribution at 2.5 nm in diameter, which is consistent with similar materials using a 

CTAB templating agent.
9
 The BJH plot for the material after ethanol/ammonium 

carbonate washing indicates some template removal is occurring, with porous regions 

beginning to appear in the identical region to the calcined material, as well as smaller 

pores, indicating partial removal of some template. 

 

4.2.2. Silver loading 

With a methodology for producing silver nanoparticles encased in mesoporous 

silica shells in place, the total silver loading was investigated, in order to determine 

how silver content affected parameters such as particle size, antimicrobial efficacy and 

expected lifetime of the composite structures. 

The total silver loading of these materials was adjusted by varying silver nitrate 

concentration during the synthetic procedure in the reaction mixture from 2 μM to 6 

μM. The materials were processed as described previously in this chapter, to remove 

the organic template and produce silver metal nanoparticles encased in mesoporous 

silica shells. The bulk and surface loadings of the materials, determined by XPS and 

EDX, are listed in table 4.1. 

Bulk Ag wt. % Surface Ag wt. % Surface:Bulk 

3.38 0.45 0.13 

6.54 0.85 0.13 

9.5 1.15 0.12 
Table 4.1: Bulk and surface Ag content for MP-Ag@SiO2 nanocomposites. 

 

 The recorded values for silver surface to bulk silver implies a great deal of 

attenuation, and in this regard, porosity of the silica shell can be implied due to a lower 

degree of attenuation than expected. Surface to bulk ratios, based on calculations using 

particle diameters determined by TEM analysis, are expected to be of the order of 0.02. 

These higher than expected recorded values, would imply a lower silica density, which 

would decrease the observed photoelectron attenuation. 
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4.2.2.1. Transmission electron microscopy 

TEM analysis was employed to confirm that the structural integrity of the 

nanocomposites materials was not compromised by increasing or decreasing silver 

loadings, and to evaluate any subsequent changes to the particle size as a result of this 

variation. Figure 4.13 shows an electron micrograph image of the synthesised materials. 

There is clear contrast between the dark silver cores and lighter silica shells which, 

furthermore, exhibit apparent intrinsic porosity. 

 

Figure 4.14: Representative bright-field HRTEM images of MP-Ag@SiO2 nanocomposites at silver loadings of 

(a) 3.38%, (b) 6.54% and (c) 9.5%.  

 

The average particle size of these nanostructures was unaffected by silver loading 

content, remaining constant across the series. Figure 4.15 shows the particle size 

distributions for each loading of silver and the total diameter of the nanocomposites 

materials, which also remained largely unaffected by increasing silver content. 
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Figure 4.15: Summary of particle dimensions for different silver loadings in MP-Ag@SiO2 

nanocomposites. 

 

 The absolute size histograms for the silver cores are displayed in figure 4.16 and 

total composite diameter in figure 4.17. 
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Figure 4.16: Silver core size distributions, normal and cumulative distributions for MP-Ag@SiO2 

nanocomposites at silver loadings of a) 3.38%, b) 6.54%, c) 9.5%.  
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Figure 4.17: Total particle size distributions, normal and cumulative distributions for MP-Ag@SiO2 

nanocomposites at silver loadings of a) 3.38%, b) 6.54%, c) 9.5%.  

 

Whilst silver nanoparticle diameter was not affected by the increase in silver 

loading, the number of silver species per silica particle was determined by loading. For 

the composites of lowest loading, the percentage of silver nanoparticles per silica 

mesoporous particle was 25%, whereas this increased to nearly 100% for the highest 

loading. Figure 4.18 represents the increase in number of silver particles per silica 

particle. 
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Figure 4.18: Number of silver nanoparticulate cores per mesoporous silica particle.  

 

4.2.2.2. Powder X-ray Diffraction 

The nature of the silver core was evaluated through powder XRD (Figure 4.19), to 

fingerprint crystalline phases present and their crystallite dimensions. All the 

nanocomposites only exhibited reflections characteristic of FCC metallic silver at 38.1° 

(111), 44.3° (200), 66° (220) and 77° (311), denoted by an asterisk in the figure (*). 

These diffractograms equate to an FCC metallic silver lattice parameter of 4.1, which is 

in line with the literature value.
10

 No reflections were observed for any crystalline silica 

phase, with a single, strong and broad peak at 20° indicative of amorphous silica. The 

intensities of the silver peaks increase with silver loading due to the greater number of 

crystalline planes for samples of higher loading. 
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Figure 4.19: Powder XRD patterns of MP-Ag@SiO2 nanocomposites for (a) 9.5%, (b) 6.54% and (c) 3.38% Ag 

Wt. %. 

 

The silver FCC peaks were analysed using the Scherrer method to obtain average 

particle sizes for the silver cores using CASA software to fit peaks to the raw data and 

obtain values for the FWHM. The average particle sizes are displayed in figure 4.20, 

along with the values obtained by TEM analysis for comparison. Errors were 

determined using the standard deviation of the dual particle dimensions for TEM 

analysis, and the standard deviation of the calculated particle sizes for the four Ag
0
 

FCC peak FWHM values for XRD analysis. 
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Figure 4.20: Average silver particle sizes for MP-Ag@SiO2 nanocomposites determined by TEM and XRD 

analysis. 

 

Low  angle XRD was employed, to assess the pore structure, and determine order 

and arrangement. These are displayed in figure 4.21. 

 

Figure 4.21: Low angle XRD patterns of MP-Ag@SiO2 nanocomposites for different loadings of silver. 

 

Recorded low angle patterns are consistent with similar materials, which have been 

reported to exhibit a hexagonally arranged pore structure, with the space group P6mm.
9
 

The visible peak is attributed to the 100 facet, whilst the expected 110 and 200 peaks at 

2θ = 3.5 and 4 respectively are not well resolved in the diffraction pattern, and are not 
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visible, possibly due to a shorter range ordering of the mesopores caused by the central 

silver metal core. There is a slight increase in 2θ value as the loading decreases, 

signifying a decrease in pore spacing. This can be explained by the effect that 

increasing the concentration of ionic species has on micelle size, due to interactions 

between the free electrolytes and ionic head groups.
11

 The peak is also the most well 

resolved in the lowest silver wt. % sample, presumably due to the greater number of 

empty silica particles and hence, larger regions of longer range order within the pore 

structures. Using the measured 2θ value from the XRD pattern, pore spacing can be 

calculated using the Bragg equation (equation 2.5) and the relationship between d-

spacing and pore spacing (denoted a in Figure 4.22).  

 

Figure 4.22: Inter-pore distances in hexagonally structured mesoporous silica. 

 

Using Pythagoras theorem, it can be known that; 

    
 

 
       

Equation 4.1: Pythagoras theorem. 

 

The square of a is equal to the square of a half a plus the square of the d-spacing, 

calculated by XRD. Re-arranging this equation results in: 

   
 

√ 
  

Equation 4.2: Pore spacing. 

 

 The calculated pore spacings are shown in table 4.2. 

Ag wt. % 2θ / ° d-spacing / nm Pore spacing / nm 

3.38 1.7 5.3 6.11 
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6.54 1.67 5.38 6.22 

9.5 1.63 5.52 6.37 

Table 4.2: Pore spacings for MP-Ag@SiO2. 

 

 There is a minor increase in pore spacing with silver loading, potentially arising 

from an increasing concentration of free nitrate counterions, which are known to 

perturb CTAB micelle size to a small degree at high temperatures.
12

 Addition and 

regulation of ionic salts into CTAB micelle-containing solutions causes a decrease in 

charge density of the micelle surface, leading to destabilisation and micelle swelling.
13

 

 

4.2.2.3. X-ray Photoelectron Spectroscopy 

XPS was used to probe the detectable oxidation states of materials. Figure 4.23 

shows background-subtracted Ag 3d spectra, clearly showing the 3d3/2 and 3d5/2 peaks 

(doublet separation = 6 eV).
14

 All spectra were energy referenced to their adventitious 

C 1s peak at 284.7 eV. The black lines represent the raw data, as collected by the 

instrument, the red lines represent the envelope fitting of the sum of all component 

curves and the purple lines represent the individual Ag 3d components.  
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Figure 4.23: Ag 3d XPS stack plot of MP-Ag@SiO2 nanocomposites.  

 

The silver is identified to exist in a singular oxidation state, with a binding energy 

that suggests it is in the zero valent silver metal form , which corroborates with the 

powder XRD results.  

The silicon regions were studied, to identify the silicon species as silicon dioxide. 

Figure 4.24 displays a stack plot of the silicon 2p regions, with binding energies 

consistent with values obtained from the NIST database. A binding energy of 103.4 

suggests the presence of SiO2, according to the database, significantly higher than the 

majority of other silicon species. There is no energy shift observed throughout the 

series, confirming the silica species remains unaffected by the increasing silver loading. 
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The doublet separation of the 2p3/2 and 2p1/2 peaks was set to 0.6 eV, which was taken 

from the NIST XPS database, and the peak ratios were set to 2:1. 

 

Figure 4.24: Si 2p XPS stack plot of MP-Ag@SiO2 nanocomposites.  

 

Analysis of the oxygen 1s regions (figure 4.25) confirmed the presence of a single 

species of oxygen which remained unaffected by increasing silver loading. The position 

of the peak was at a constant 532.2 eV throughout the series, which can be attributed to 

the Si-O-Si species.
15
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Figure 4.25: O 1s XPS stack plot of MP-Ag@SiO2 nanocomposites. 

 

Analysis of the nitrogen 1s and bromine 3d regions confirmed the absence of any 

remaining species resulting from the CTAB template, confirming its removal, as seen 

in Chapter 4.2.1. A summary of the elemental analysis by XPS is presented in table 

4.3. 

Bulk Ag wt. 
% 

Surface Ag wt. 
% 

Surface:Bulk 
(Ag) 

Si wt. % O wt. % N wt. % Br wt. % 

3.38 0.45 0.13 50.29 49.26 0 0 

6.54 0.85 0.13 50.23 48.92 0 0 

9.5 1.15 0.12 49.96 48.89 0 0 

Table 4.3: Elemental compositions of MP-Ag@SiO2 by XPS analysis. 
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 The surface to bulk silver ratio is unaffected by the increase in silver loading, 

which corroborates the idea that silver core size and silica matrix thickness are 

unperturbed by increasing silver loadings. 

 

4.2.2.4. Porosimetry 

The porosity of the synthesised nanocomposites was investigated by N2 

porosimetry, the isotherms of which are exhibited in figure 4.26.  

 

Figure 4.26: N2 adsorption isotherms for MP-Ag@SiO2 nanocomposites. 

 

A clear type IV isotherm shape was observed, complete with hysteresis loop 

typical of mesoporous materials. The recorded surface areas were very high, solely due 

to the intrinsic mesoporosity, as t-plot analysis of the isotherm suggested there was no 

microporosity in the materlals. Full pore analysis is displayed in table 4.3, with 

microporosity information gained by t-plot analysis and mesopore information from 

BJH analysis of the isotherm. 
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Ag loading 
(wt. %) 

Surface Area 
(cm2/g) 

Mesopore 
Volume (cm3/g) 

Pore 
Diameter / 

nm 

Micropore Volume 
(cm3/g) 

3.38 710 ± 70 0.39 2.8 ± 0.15 0 

6.54 770 ± 75 0.44 2.8 ± 0.15 0 

9.5 660 ± 65 0.38 2.8 ± 0.15 0 

Table 4.3: Structural properties of MP-Ag@SiO2 nanocomposites. 

 

The BJH profiles for the synthesised materials (figure 4.27) indicated 

monodisperse pores of 2.8 ± 0.15 nm.  

 

Figure 4.27: BJH profiles for (a) 3.38%, (b) 6.54% and (c) 9.5% Ag in MP-Ag@SiO2 nanocomposites. 

 

Coupling mean pore size with pore spacing from low angle XRD allows for 

calculation of mean silica wall thickness (table 4.4). As the pore diameters are found to 

be constant, within error, the silica wall thicknesses calculated are seen to alter. It is, 

however, given the hypothesised nature behind pore spacing increases, likely that the 

pore sizes are incrementally larger as weight loading increases, but below a detectable 

increase with the methodology implemented. 
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Ag wt. 
% 

Pore spacing / 
nm 

Pore diameter / 
nm 

Silica wall thickness / 
nm 

3.38 6.11 2.8 ± 0.15 3.31 ± 0.15 

6.54 6.22 2.8 ± 0.15 3.42 ± 0.15 

9.5 6.37 2.8 ± 0.15 3.57 ± 0.15 

Table 4.4 Pore dimensions for MP-Ag@SiO2 

 

4.2.2.5. Summary of silver loading variation in MP-Ag@SiO2 

nanocomposites 

Silver nanoparticles encased in a mesoporous shell were prepared using an organic 

micelle templating methodology, in which hydrazine was used to reduce the ionic silver 

nitrate salt reagent to silver metal nanoparticles via the mechanism outlined in Chapter 

4.2. The silica condensed around the surfactant micelles via hydrolysis and 

condensation of tetraethyl orthosilicate.  

The organic template was removed from the material using a thermal treatment 

method, following a removal of the bromide counterions associated with the organic 

template by washing with a mixture of ethanol and ammonium carbonate, to prevent 

the formation of silver bromide during the thermal treatment procedure. The removal of 

bromide ions was followed by XPS, whilst organic molecule content was observed 

using infrared spectroscopy. The bromide was successfully removed before the 

calcination and heating to 350 
O
C removed the surfactant to leave monodisperse pores 

within the silica framework, which was confirmed via infrared spectroscopy and 

nitrogen porosimetry. 

XPS and XRD analysis identified the silver species and zero valent silver metal, 

signifying that the silver was completely reduced during the chemical reduction 

treatment via hydrazine. 
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4.2.3. Pore size 

Utilising an intrinsic mesoporous structure as a coating for silver nanocomposites 

allows for stabilisation of the silver nanoparticles, whilst maintaining a fully accessible 

site for silver ion dissolution and antimicrobial activity. 

Mesoporous silicas have been the subject of much interest and research into the 

tuning of pore sizes for use in multiple fields. This has been achieved through 

utilisation of organic additives to swell templating micelles, adjustments in synthetic 

parameters such as temperature or through the use of templating surfactants of differing 

chain lengths and cosurfactants.
16-19

  

It is thought that variations in pore size could lead to more exposed silver surfaces, 

and hence an increase in ionic silver release rates. The nanocomposites prepared in this 

section are a combination of larger silver nanoparticulate cores (which should have, in 

principle, slower dissolution speeds than the small, monodisperse particles prepared in 

chapter 3) with a more exposed surface area as a result of increased porosity. It was 

hoped that the inclusion of a porogen, such as mesitylene, could increase the diameter 

of mesopores relative to that of conventionally prepared silica shell as for ordered 

MCM-41
20

 and hence result in nanoarchitectures with good release rates and long 

lifetimes (due to the greater pool of available silver), while maintaining the high 

structural integrity associated with core-shell nanomaterials. 

 Determined bulk and surface silver loadings, from EDX and XPS analysis 

are displayed in table 4.5. The elemental analysis confirmed addition of mesitylene 

bore no effect upon silver loading. 

[Mesitylene] / mM Bulk Ag wt. % Surface Ag wt. % Surface:Bulk 

0 6.54 0.85 0.13 

8.5 6.48 0.8 0.12 

17 6.57 0.84 0.13 

Table 4.5: Bulk and surface Ag content for MP-Ag@SiO2 nanocomposites. 
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4.2.3.1. Transmission electron microscopy 

TEM analysis was utilised to confirm that the integrity of the mesoporous core-

shell architecture was not compromised during the pore expansion procedure. Figure 

4.28 displays representative bright field TEM images of the nanocomposites 

synthesised. 

 

Figure 4.28: Representative bright field TEM images of (a) 

 

The particles display the characteristic dark silver core, surrounded by a light grey 

halo, with noticeable mesoporous percolating through the silica shells. The porosity is 

evident across all three samples, although a fully ordered region of mesopores, as seen 

in mesoporous silicas such as MCM-type structures
21

 or SBA-type materials,
22

 

although these materials, being smaller and spherical in morphology, would likely not 

have many regions of long range order, which can be imaged using electron 

microscopy. 

The particle dimensions were recorded using imageJ software and the mean and 

standard deviation calculated and plot in figure 4.29. 
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Figure 4.29: Particle dimensions for MP-Ag@SiO2 determined by TEM analysis. 

 

The silver core size and total composite diameter remain unaffected by the 

inclusion of mesitylene in the reaction, with the silver core size measured at 13.1 ± 2.3 

nm and the total particle diameter at 49 ± 3 nm. The dispersities are relatively large, as 

with the previous series of materials, and the full composite dimensions histograms are 

displayed in figure 4.30 and figure 4.31 for the silver cores and silica shells 

respectively, along with the normal and cumulative size distributions based on mean 

and standard deviation from the measured particles (>50 in each case). 
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Figure 4.30: Silver core size distributions, normal and cumulative distributions for MP-Ag@SiO2 

nanocomposites synthesised with (a) 0 mM mesitylene, (b) 8.5 mM mesitylene and (c) 17 mM 

mesitylene.  

 

As can be seen in the particle size distribution plots, there is a wide range of 

particle sizes for the silver cores, fitting with previously observed results. The 

dispersity, however, appears to be unaffected by the introduction of mesitylene to the 

reaction and, barring one or two outliers, the particle size histograms appear invariable. 
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Figure 4.31: Silica shell size distributions, normal and cumulative distributions for MP-Ag@SiO2 

nanocomposites synthesised with (a) 0 mM mesitylene, (b) 8.5 mM mesitylene and (c) 17 mM 

mesitylene.  

 

The total diameters of the silver-silica nanocomposites also appear unperturbed by 

the organic additive during synthesis. This is fitting with expectations, as the overall 

particle diameters for silicas in these kinds of systems are affected by the growth 

kinetics and, hence, condensation rates and reaction times.
1
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4.2.3.2. Powder X-ray diffraction 

Powder XRD was used to analyse changes to the silver crystallites as a result of 

mesitylene addition to swell the pores. Figure 4.32 shows the diffraction patterns for 

these samples, indicating that there was no change to the silver speciation during the 

pore expansion. 

 

Figure 4.32: XRD patterns for (a) 0 mM, (b) 8.5 mM and (c) 17 mM of mesitylene in synthesis of MP-

Ag@SiO2 nanocomposites. 

 

The XRD patterns indicate the silver retains the speciation of Ag
0
 with an FCC 

structure, with the 111 reflections appearing at 38.08 ± 0.1 
o
, a lattice parameter of 2.45 

± 0.05 Å, which indicates the formation of metallic silver. From the 4 reflections 

exhibited in the XRD patterns, silver particle size was determined using the Scherrer 

equation (figure 4.33). 
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Figure 4.33: Average silver particle sizes for MP-Ag@SiO2 nanocomposites with addition of 

mesitylene, determined by TEM and XRD analysis. 

 

 The particle sizes determined from TEM and XRD analysis are relatively 

consistent within error, however XRD particle sizing suggests a slightly larger average 

particle size than that measured from TEM analysis. A potential cause for this 

discrepancy could be regions of agglomerates increasing average crystallite size, which 

are not observed within localised electron micrography analysis. 

 XRD analysis of these materials was performed at low angles to characterise the 

quasi-ordered mespore structure (figure 4.34). 
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Figure 4.34: Low angle XRD patterns for MP-Ag@SiO2 nanocomposites prepared using differing 

concentrations of auxillary organics. 

 

 As with the previous materials, calculation of pore spacing can be performed using 

the 2θ value from the (100) peak in the low angle XRD patterns. These are tabulated in 

table 4.6. In this table, a clear increase in pore spacing is observed, rising with 

mesitylene concentration, due to incorporation of the hydrophobic additive within the 

CTAB micelles, and subsequent micelle swelling. 

[Mesitylene] / 
mM 

2θ / ° 
d-spacing / 

nm 
Pore spacing / 

nm 

0 1.67 5.38 6.21 

0.6 1.46 6.16 7.11 

1.2 1.35 6.66 7.69 

Table 4.6:Pore spacings for MP-Ag@SiO2 with mesitylene addition. 

 

4.2.3.3. X-ray photoelectron spectroscopy 

Analysis of the silver oxidation state and surface silver content was achieved 

through XPS analysis (figure 4.35). All spectra were calibrated to adventitious carbon 

at 284.7 eV and the data analysed using CASA software. 
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Figure 4.35: Ag 3d XPS stack plot of MP-Ag@SiO2 nanocomposites synthesised with additional 

mesitylene (concentrations listed are that of mesitylene in synthesis). 

 

The Ag 3d regions were fit using a doublet separation of 6 eV and peak area ratios 

of 3:2 for the 
5
/2:

3
/2

23
 Ag 3d components and a hybrid peak shape of Gaussian-Lorentz 

and Doniach-Sunjic was employed to account for the asymmetry of metal XPS spectra. 

A singular silver species was observed at 368 eV, with no evident shoulders or 

secondary components. No peak shift can be observed as concentration of mesitylene 

increases, which lends support to the theory that the silver cores themselves are 

unaffected by the micelle swelling process. 
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Figure 4.36: Si 2p XPS stack plot of MP-Ag@SiO2 nanocomposites synthesised with additional 

mesitylene. 

 

Si 2p regions were fit using a doublet of Si 2p3/2 and 2p1/2 with a doublet separation 

of 0.6 eV. Si 2p3/2 peaks record a position of 103.3 eV, which is correct for SiO2 

species (figure 4.36). 
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Figure 4.37: O 1s XPS stack plot of MP-Ag@SiO2 nanocomposites synthesised with additional 

mesitylene. 

 

Study of the O 1s regions reports no change to the oxygen species (figure 4.37), 

which exists at the binding energy of 532.3 eV, indicative of SiO2. Overall elemental 

compositions determined by XPS analysis are tabulated in table 4.7. 

[Mesitylene] 
/ mM 

Bulk Ag 
wt. % 

Surface Ag 
wt. % 

Surface:Bulk 
Si wt. 

% 
O wt. 

% 
N wt. 

% 
Br wt. 

% 

0 6.54 0.85 0.13 50.23 48.92 0 0 

8.5 6.54 0.8 0.12 48 52.2 0 0 

17 6.54 0.84 0.13 49.71 49.45 0 0 

Table 4.7: Elemental compositions of MP-Ag@SiO2 with mesitylene addition by XPS analysis. 
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 The silver loadings and available surface silver display a steady, constant trend 

with the addition of mesitylene. 

 

4.2.3.4. Porosimetry 

Expansion of the pores was determined by performing nitrogen porosimetry to 

probe the external, exposed surface of the synthesised materials and confirm the 

influence of organic swelling agent on the product materials. 

The recorded isotherms (Figure 4.38) exhibit a type IV characteristic with a 

mesostructural material. There is a large volume increase at high partial pressure, which 

can usually be attributed to the presence of macropores in a type II isotherm, however 

consultation of the electron micrographs confirms that at no point does the material 

display any sort of intrinsic macroporous structure, and the presence of this feature is 

likely the result of interparticular voids, resulting in capillary condensation in the 10-90 

nm regime, as determined by BJH analysis. 
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Figure 4.38: Nitrogen adsorption isotherms for (a) 0 mM, (b) 8.5 mM and (c) 17 mM of mesitylene in 

synthesis of MP-Ag@SiO2 nanocomposites. 

 

 Analysis of the structural properties of the prepared materials determined through 

porosimetry analysis are tabulated in table 4.8. The materials display typically high 

surface areas associated with these mesostructural nanocomposites, as witnessed 

previously although no trend is evident for increasing or decreasing total surface area 

nor mesopore volume. The pore diameter from BJH analysis 

[Mesitylene] 
/ mM 

Surface Area 
(cm2/g) 

Mesopore Volume 
(cm3/g) 

Pore 
Diameter / 

nm 

Micropore Volume 
(cm3/g) 

0 768 ± 75 0.386 2.49 ± 0.15 0 

8.5 868 ± 85 0.444 3.11 ± 0.18 0 

17 695 ± 70 0.376 3.88 ± 0.24 0 

Table 4.8: Structural properties of MP-Ag@SiO2 nanocomposites with addition of mesitylene. 
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 Applying the BJH method to these isotherms allows for analysis of the average 

pore size of these materials, a summary of which is presented in figure 4.38. It can be 

seen from this figure that the average pore diameter of the synthesised materials 

increases linearly with concentration of mesitylene over the range studied. 

 

Figure 4.39: Pore size (as determined by BJH analysis) increase with mesitylene concentration. 

 

 Subtraction of average pore diameter measured from BJH analysis from pore 

spacing, determined from low angle XRD patterns, allows for average silica wall 

thickness to be calculated (table 4.9). 

[Mesitylene] / 
mM 

Pore spacing / 
nm 

Pore diameter / 
nm 

Silica wall thickness / 
nm 

0 6.21 2.49 3.72 

0.6 7.11 3.11 4 

1.2 7.69 3.88 3.81 

Table 4.9: Pore dimensions for MP-Ag@SiO2 with addition of mesitylene. 

 

 Further analysis of the BJH profiles (figure 4.40(I)) indicates that, whilst the mean 

pore size does increase with time, larger pores suffer from more polydisperse 

distributions, which could explain the noted discrepancies in silica wall thickness 

determined from low angle XRD pore spacings. Geometric means and standard 

deviations for pore diameters were calculated and plotted as normal and cumulative 
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distributions, which are displayed in figure 4.40(II) and further display evidence of 

increasing pore size. 

 

Figure 4.40: (I) BJH profiles and (II) normal and cumulative pore size distributions for (a) 0 mM, (b) 8.5 

mM and (c) 17 mM of mesitylene in synthesis of MP-Ag@SiO2 nanocomposites. 

 

4.2.3.5. Summary of pore diameter variation in MP-Ag@SiO2 

nanocomposites 

Silver metal nanoparticles encased in a mesoporous silica shell were synthesised 

and the pore size in the silica shell was tuned between 2.5 ± 0.15 nm and 3.9 ± 0.24 nm 

by using an organic substance, in the form of mesitylene to swell the micelles during 

formation. This variation in pore size was monitored by nitrogen adsorption 

porosimetry, using the BJH methodology applied to the desorption branch of the 

isotherm. The swelling of the micelles caused an increase in the mean pore size, 

however also increase the polydispersity, resulting in a larger range of pores sizes. The 

pore structure was also studied by low angle XRD analysis, which reported a small, 

broad peak, suggesting a low degree of order, which shifted to lower angles as pore size 

increased. 

The silver metal core was found to remain unchanged as pore size was altered. 

This was studied by XPS and XRD analysis, as well as verifying the core-shell 

architecture by TEM analysis. The mean silver core size and silica shell size was 

unchanged by the addition of the auxiliary organics, and the silver core was determined 
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to consist of zero valent silver metal, with an FCC structure and lattice spacing 

consistent with silver metal, having been completely reduced by hydrazine. 

 

4.2.4. Performance assays 

To determine the suitability of the prepared materials for use as antimicrobial 

agents, they were screened, to determine the ionic silver release rates and bacterial 

mortality rates. The correlation between silver ion release rates and bacterial efficacy 

can then be observed, and assessments made regarding the optimal nanocomposites 

properties, in terms of loadings and pore size. 

 

4.2.4.1. Silver dissolution 

As the active species thought to be responsible for the antimicrobial activity of 

silver is Ag
+
, the release of silver ions into solutions was monitored, in order to 

correlate activity with silver ion release rates. The dissolution was monitored using 

ICP-MS to study the concentration of solutions taken from a stock at set time points as 

described in Chapter 2.4. These concentrations were then normalised to bulk silver 

content, so as to determine a release as a function of total silver percentage released. 

The target dissolution profiles for the synthesised materials was a slow steady 

release of ionic silver from the bulk particulate form, similar to that observed by silver 

carbonate and silver oxide, two fairly insoluble silver compounds. Silver carbonate is 

used as a standard by which to measure the performance of the materials synthesised in 

this section.  

The dissolution profiles of the prepared MP-Ag@SiO2 nanocomposite materials 

with varying silver loadings is reported in figure 4.41. 
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Figure 4.41: Dissolution profiles for MP-Ag@SiO2 nanocomposites with varying silver loadings. 

 

Upon normalisation to bulk silver content, the MP-Ag@SiO2 nanocomposites 

exhibit a slight dependence towards bulk silver content upon the silver ion release rates. 

The silver nanoparticles exist in the same form in all three examples, with consistent 

particle sizes and silica shell environments. This would suggest that there is a trend for 

silver nanoparticles to release more slowly when in solutions of higher concentration. 

This has been reported in previous literature, which suggests that higher concentrations 

of silver nanoparticles exhibit reduced silver ion release rates due to the existing 

equilibrium between solid nanoparticulate and free ionic silver, which can exit solution 

via agglomeration or by rejoining existing nanoparticles.
24

 These materials exhibit an 

extremely slow release rate, which, when considering the relatively large reserve pool 

of bulk silver, suggests they are excellent potential long-term antimicrobial agents. 
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Figure 4.42: Dissolution profiles for MP-Ag@SiO2 nanocomposites with varying silver pore sizes from 

mesitylene addition.  

 

 Figure 4.42 displays the silver ion release profiles for MP-Ag@SiO2 

nanocomposites with enlarged pore sizes. There is a noticeable increase in silver ion 

release percentage upon increase of mesopore diameter. It is likely a result of an 

increase in available silver surface area, caused by a more open silica shell network. 

Silver dissolution rates from bulk nanoparticles have been reported to increase in 

correlation to available surface area before, due to the oxidative release process in 

silver metal to silver ion process which occurs at the surface of silver nanoparticles 

(figure 4.43).
25

 

 

Figure 4.43: Silver ion release process in aqueous media. 
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 This increase in silver ion release could possibly be combined with larger pools of 

bulk silver, attained through increase of silver weight loading, to produce a material 

with optimal silver release and an increased lifetime. 

 

4.2.4.2. Microbiological assays 

Testing for antimicrobial activity began with zone of inhibition tests, which is a 

standard test for determining antimicrobial activity, involving the test material being 

placed into a well bored into an agar plate loaded with microorganisms. Following this, 

time based kill rates were reported by logarithmic reduction method, alongside 

minimum bactericidal concentration tests and validity of neutralisation tests, which are 

performed to ensure the neutralising agent employed in the logarithmic reduction and 

MBC tests sufficiently retards the bactericidal action of the released silver. 

 

4.2.4.2.1. Zone of Inhibition tests 

Zone of inhibition testing was performed, allowing for a quick determination of the 

presence of antimicrobial activity and a semi-quantitative analysis of bactericidal 

strength. The zone of inhibition test involves spreading a bacterial inoculum onto an 

agar plate, boring holes into the agar, inserting the material to be tested into the 

resulting wells and incubating. After 24 hours at 37
o
C, the wells will have a clear zone 

around them where bacteria have not been allowed to grow. This zone can be measured 

and used as an indicator of antimicrobial activity and comparative strength, although 

this test is heavily limited by diffusion through the agar itself. The zones are reported in 

millimetres and normalised to total silver content. These zone of inhibition tests give a 

good indicator of the presence of antibacterial activity, but do not give information 

about kill rates, which is an important factor in the antimicrobial industry. 
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Figure 4.44: Zones of inhibition for MP-Ag@SiO2 nanocomposite materials for (a) different loadings 

and (b) different pore sizes against Staphylococcus aureus and Pseudomonas aeruginosa normalised to 

bulk silver content. 

 

 The zone of inhibition experiments reveal clear antimicrobial activity of the 

nanocomposites materials (figure 4.44). There appears to be a slight dependence on 

bulk silver loading on zone size, and hence antimicrobial strength. This is, however, 

likely a result of limiting factors resulting from silver ion diffusion rates throughout the 

agar media, giving the appearance of a higher activity per unit mass of silver. These 

experiments are not a fully quantitative display of antimicrobial activity, which is better 

observed through the use of logarithmic reduction methods employed in a later section. 

That these materials display a clear zone of inhibition is the first step in determining 

antimicrobial efficacy, which evidences the suitability for further investigation. 

 

4.2.4.2.1. Minimum bactericidal concentration 

The minimum bactericidal concentration was determined by serial dilution of a 

solution of 1 mg/ml of MP-Ag@SiO2 in simulated body fluid solution and dosed with a 

known concentration of the target organism (10
7
) cultures. The samples were agitated at 

37
o
C for 24 hours, before the a sample of the solution was removed, neutralised, diluted 

and plated onto an agar dish and incubated at 37
o
C overnight, in order to count the 

number of viable colony forming units which remained. 
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Figure 4.45 displays bacterial kill counts for concentrations of nanocomposites of 

1, 0.1, 0.01, 0.001 and 0.0001 mg/ml. 

 

Figure 4.45: Logarithmic reductions of MP-Ag@SiO2 nanocomposite (6.54% Ag) against 

Staphylococcus aureus. 

 

 The results of the MBC testing were that the nanocomposites material reduced the 

number of bacteria by a factor of at least 5 for concentrations of nanocomposites of 1, 

0.1 and 0.01 mg/ml. At a concentration of 0.001 mg/ml, the logarithmic reduction was 

very slightly below a factor of 3, which is the requirement to be considered an 

antimicrobial, and it can therefore be proposed that the minimum bactericidal 

concentration for these materials is somewhere between 0.001 and 0.01 mg/ml.  

 

4.2.4.2.2. Logarithmic reduction 

Logarithmic reduction was performed in order to determine the killing potential of 

these materials as a function of time, and determine the length of time required in order 

to complete a log-3 reduction in the viable count of the target organism. 

Into 1 ml of a known concentration of the target organism in simulated body fluid 

was dispersed 10 mg of the MP-Ag@SiO2 nanocomposite materials, prior to agitation 

at 37
o
C. At intervals of 30, 60, 120, 240 minutes and 24 hours, samples were taken and 

neutralised to stop further inhibition by the silver species. The neutralised samples were 
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diluted and plated onto agar dishes and incubated at 37
o
C overnight, to allow cultures to 

grow. The number of viable colonies was counted and the decrease in bacterial colony 

forming units calculated and plot as a logarithmic function against time. 

Figure 4.46 displays the logarithmic reduction profiles for the MP-Ag@SiO2 

nanocomposites with a series of silver loadings. 

 

Figure 4.46: Logarithmic reduction profiles for MP-Ag@SiO2 nanocomposites normalised to Ag 

weight loadings against Staphylococcus aureus. 

 

 It is evident from the normalised logarithmic reductions vs. Staphylococcus aureus 

that the weight loadings of the MP-Ag@SiO2 materials bear some significance over the 

end result, in the form of a more effective antimicrobial material at lower 

concentrations, when normalised to silver content. This can be related to silver ion 

release, as seen in the previous section, which displayed a slight increase in effective 

silver release upon decreasing silver content. The materials exhibit a 3-fold log 

reduction for all three materials following the two hour mark, however, which would 

suggest that the advantage of improved performance is insignificant when balanced 

against the potential increase in activity lifetime attained through increased bulk 

loading. 

 A control material was prepared and studied in the form of mesoporous silica 

shells with no added silver (BET surface area 850 m
2
/g). That this species report 

antimicrobial activity is attributed to surface generation of reactive oxygen species 
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(ROS) by the surface silica.
26

 Reactive oxygen species can cause oxidative damage to 

DNA
27

 and arises from surface silicate radicals forming hydroxide, superoxide, singlet 

oxygen and peroxide radicals in aqueous solution (figure 4.47).
28

 The contribution 

from ROS generation within these tests is small, however it is widely reported that 

these species may have detrimental effects to human health, as they can be very 

damaging to human cells through DNA oxidation and membrane and enzyme attack, 

and reduction of ROS generation, if required, can be achieved using surface 

modifications, such as PVP adsorption, to block surface silica sites.
28

 

 

Figure 4.47: Generation of hydroxide radicals by surface silicate species. 

 

The activity against the two microorganisms as a function of mean pore size was 

determined via the same method. The profile of which is displayed in figure 4.48. 

 

Figure 4.48: Logarithmic reduction profiles for MP-Ag@SiO2 nanocomposites with different pore 

sizes normalised to Ag weight loadings against Staphylococcus aureus. 
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The larger pore sized materials display an improved activity in the 120 minute 

mark, once again, supporting the dissolution profiles in corroborating silver ion release 

with antimicrobial efficacy. There is an almost 10-fold increase in viable cell count 

upon increase of pore diameters to 3.88 nm, which is a considerable improvement. 

After 4 hours in contact with the solution of simulated body fluid and Staphylococcus 

aureus, a complete reduction of 10
7
 viable cells is recorded, which represents the 

maximum possible reduction. This point remains constant when normalised to silver 

content of course, due to consistent silver loadings. 

 

4.3. Conclusions 

The materials synthesised in this chapter have been shown to be entirely silver 

metal nanoparticles of roughly 15-20 nm, encased within a silica shell. In order to 

prevent the formation of silver bromide species, a strong reducing agent in hydrazine 

was required, as the synthesis using alternate reducing agents such as aniline and 

formaldehyde could not prevent the formation of this species, despite literature 

suggesting this is the case.
1
 Silver loading bears no effect on the resultant silver particle 

diameter, the silica shell diameter or the morphology of the produced materials, 

although the percentage of ‘filled’ silica shells (i.e., those present containing a silver 

core) increased with loading. 

The structural templating agent, cetyl trimethylammonium bromide, was 

successfully removed by a combination of ethanol and ammonium carbonate washings, 

and subsequent thermal treatment. This was studied and confirmed by a combination of 

thermogravimetric analysis, nitrogen porosimetry, infrared spectroscopy and x-ray 

photoelectron spectroscopy. The procedure of removal of the organic templating agent 

was confirmed to not alter the structure or speciation of the silver core nanoparticles by 

a combination of XRD and XPS. Removal of the bromide counterions prior to heat 

treatment prevented the formation of silver bromide species, resulting in uniform silver 

metal cores.  

The pore size distributions of the resultant silver-silica nanocomposites materials 

were found to be tuneable through the addition of mesitylene to act as a swelling agent 
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within the micelle region of the reaction solution. Nitrogen porosimetry provided 

confirmation of this increase in pore size, accompanied, however, by an increase in the 

overall polydispersity of the pore size distribution. The addition of mesitylene as a 

swelling agent bore no effect on the produced silver nanoparticle species, in either 

resulting dimensions, or the metal speciation. Additionally, the overall size of the 

nanocomposites was not affected to a significant degree by the inclusion of the 

auxiliary organic moieties within the synthetic procedure, confirming that the only 

structural or chemical change to the produced materials was the dimensions of the 

porous network. 

The dissolution profiles for these materials indicated that the release of silver 

occurs very slowly, attributed to the relatively small surface areas for these particles in 

comparison to the previous chapter. The mesoporous silica shell allows for free 

transmission of the silver ions and soluble silver compounds into the surrounding 

media,  and so whilst the normalised rates indicate that the material release a very small 

fraction of the bulk silver into solution, the recorded level of ‘free’ silver reaches 

approximately 2.5 ppm after 24 hours, roughly 5 times that of the core-shell materials 

prepared via the method in chapter 3. This increase in silver release efficiency, 

combined with a more cost effective synthetic procedure, outline these materials as 

antimicrobial additives with an extremely large potential. 

When determining antimicrobial activity, the materials were subjected to zone of 

inhibition tests, which confirmed the antimicrobial nature of the composite particles, 

before a more quantitative method was involved. Performing a minimum bactericidal 

concentration test on the prepared composites indicated that they exhibited a high 

degree of antimicrobial activity in concentrations as low as 0.01-0.001 mg/ml, which 

amounts to approximate silver contents in the region of 1-0.03 μg/ml. It is highly likely 

that the extremely low concentrations reported in the MBC tests are a result of not only 

silver ion release, but high areas of exposed silver surface and silica surface area, 

leading to generation of reactive oxygen species, which in turn can cause cell 

degradation and death.
26

 The logarithmic reduction experiments, performed as a 

function of time represented a similar trend to that observed by the dissolution 

experiments, suggesting that any antimicrobial effects as a result of surface generated 

ROS is consistent across the series, and differences in the time kill rates arise from the 

silver ionic species release rates. 
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These materials exhibit as great deal of potential as antimicrobial agents, as high 

surface areas and tuneable pore sizes are ideal for additional functionalization, either to 

further control silver release rates, retard ROS generation or to incorporate additional 

antimicrobial functionality (surface modification/coatings, secondary antimicrobials). 

The larger silver core particles, along with the large silver loadings possible, allow for a 

great pool of silver, which is released at a slow and steady rate, suggesting that the 

lifetime of the particles may well extend those of the current commercial dressings 

available on the market. 
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5.1 Introduction 

Chapters 3 and 4 have shown the strong antibacterial function exhibited by silver 

nanocomposites devices. Ag potency is linked with dispersion, which has been shown 

in previous studies by Buckley et al.
1, 2

 Utilisation of chemical reduction methods 

involving reverse micelles and surfactant stabilisers have been shown to provide silver 

nanoparticles of small size and low polydispersity. Another method to increase Ag 

dispersity is through the use of porous support materials. Mesoporous silicas, whilst 

biologically inert
3
 can be used to impart this high degree of dispersity of silver 

nanoparticles. Furthermore, implementing a surface coating which can itself impart 

antibacterial functionality may lead to an effective dual-acting material.  

Mesoporous silicas are a well understood and versatile material, for which 

advances in control over their pore structure and surface properties
4
 have made them an 

ideal choice as supports for metal nanoparticles for a variety of applications, including 

catalytic materials,
5-7

 vessels for photocatalytic processes
8-10

 and drug delivery 

systems.
11-13

 Further to this, the added ability of surface functionalization lends them 

even more numerous and exciting applications such as carbon capture,
14

 drug delivery 

systems
15

 and acid catalysis.
16

 

Wet impregnation of porous supports with silver nitrate is a facile process for the 

deposition of silver nanoparticles which readily form upon thermal decomposition of 

the salt precursor occurs at 444 
o
C. Unlike many other transition metals this approach  

forms silver metal particles directly due to the low decomposition temperatures of 

silver oxide and carbonate salts. The fact this method does not rely on sophisticated 

chemical systems may render it more attractive for mass production in wound 

dressings, with loading used to control particle size and associated dissolution and 

antibacterial action. 

Mesoporous titania supported silver has proven a useful combination in the 

generation of photocatalytically activated antibacterial additives and coatings,
17, 18

 

attributed to the synergistic effect of silver nanoparticles stabilising electron core-hole 

species generated from photo-excitation of electrons across the bandgap of the 

semiconducting TiO2 support.
19

 It is this effect, plus the intrinsic antibacterial nature of 
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the silver ion releasing particles which suggests potential in these nano-composite 

materials.  

Silver and titania nanocomposites have been shown to promote bacterial cell death 

previously, however studies into these material have been limited to either thin film 

growth methods,
20, 21

 which are unsuitable for these applications, materials with low 

surface areas
22

 or complicated synthetic routes
23

. Titania has been shown to exhibit 

antibacterial activity in a similar manner to its photocatalytic activity. As a 

semiconductor, it can excite electrons across the band gap from the valence band into 

the conduction band, which leaves a free electron in the conduction band and electron-

hole in the valence band. This system can cause oxidation of Coenzyme-A, inhibiting 

cell respiration and causing cell death.
24

 

It is hypothesised that combining a high surface area support material in the form 

of mesoporous SBA-15 with a surface coating of titania will allow for a high surface 

area support which can provide silver nanoparticles of high dispersity, important due to 

the effect of increased antibacterial performance as a function of silver particle size. 

Furthermore, such composites may provide a secondary antibacterial functionality, 

resulting in a more potent, dual functioning material. Introducing macroporosity into 

the support material is thought to overcome potential issues regarding diffusion. A 

hierarchical support increases the accessibility of the mesopore network, which is 

hoped to further increase dispersity and external surface area, increasing the proportion 

of titania available for processes responsible for antibacterial activity. 

 

5.2. Results and discussion 

The synthesis of mesoporous and hierarchical macro-mesoporous SBA-15, along 

with the TiO2 grafted analogues and subsequent preparation of silver loaded materials 

is described in section 2.3. This chapter will discuss the characterisation and 

performance assessments including dissolution rates and antibacterial assaying of these 

materials. 
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5.2.1. Synthesis and characterisation 

The successful synthesis of SBA-15 based support materials, nature of grafted of 

titania films and nature of deposited silver nanoparticles was characterised by a range 

of analytical techniques including transmission electron microscopy analysis, to 

determine material morphology and pore arrangement, x-ray diffraction to detect the 

presence of ordered pore structures and quantify pore-spacing as well as determine bulk 

crystalline phases. X-ray photoelectron spectroscopy was employed to study surface 

elemental composition and determine present oxidation states. Nitrogen adsorption 

porosimetry was used to probe the material textural properties and analyse pore 

structures. 

 

5.2.1.1. SBA-15 

SBA-15 is a mesostructured, ordered silica material which has found many 

applications in fields such as catalysis
25-28

, drug delivery,
15, 29

, ion-exchange
30

 and CO2 

capture
31

 owing to its high surface area and mesopores of monodisperse diameter. The 

synthesis of this material is widely known and understood
32-34

 and the properties readily 

controlled by adjustments of synthetic parameters,
4
 rendering it a useful and popular 

support material. 

SBA-15 is prepared using the non-ionic triblock polymer Pluronic 123 

(HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H in water (2.6 wt. %, cmc = 0.03 

wt. % at room temperature)
35

 and HCl, which, upon addition of alkoxy silicate 

precursor, forms cationic hydrolysed silicate oligomers which associate with the PEO 

chains via hydrogen bonding and electrostatic interactions (Figure 5.1).
36

 

 

Figure 5.1: Hydrolysis and association to PEO chains of alkoxy silicate species. 
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Following this hydrolysis and association, the spherical P123 micelles become 

more rod-like with increasing silicate network condensation, before flocculation and 

precipitation occurs, forming hexagonally packed aggregates of self-assembled silicate 

micelles.
32

 Removal of the organic template by calcination in air (500 ºC for 6 hours), 

introduces hexagonally arranged mesopores with p6mm symmetry, as well as 

microporosity within the pore-walls, due to removal of PEO chains, around which 

silicate species condense (Figure 5.2).
33, 34

 

 

Figure 5.2: Schematic of SBA-15 formation. 

 

To confirm the hexagonal arrangement of the ordered mesopores, low angle XRD 

was employed. At angles in the region of 2θ = 1º, the diffraction patterns from ordered 

mesostructures can be observed, allowing for determination of the arrangements of the 

pores and measurement of the d-spacing between channels (Figure 5.3). 
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Figure 5.3: Low angle XRD pattern of parent SBA-15. 

 

The peaks at 0.95º, 1.65º and 1.9º correspond to the 100, 111 and 200 planes in the 

hexagonally symmetrical structure, which has a space group of p6mm. The peak at 100 

is used to determine the d-spacing, calculated at 9.24 nm, using Bragg’s law (equation 

2.5).  

Using equation 4.2, the d-spacing value can be used to calculate the distance 

between the centres of the pores. A d-spacing of 9.24 nm gives an inter-pore distance of 

10.67 nm. 

This structure was further confirmed by transmission electron microscopy, which 

allows for direct observation of the hexagonal framework and long range order of the 

pore channels (Figure 5.4).  
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Figure 5.4: TEM images of synthesised SBA-15. 

 

To confirm the high surface area of these materials and determine mesopore size, 

isotherms were obtained using nitrogen porosimetry (Figure 5.5). 

 

Figure 5.5: Nitrogen adsorption isotherm of synthesised SBA-15. 

 

The adsorption isotherm exhibits a type IV profile with a H1 type hysteresis loop, 

which are characteristic of mesoporous materials. This feature is the result of the 

capillary condensation mechanism of filling and emptying pores in the mesopore 

region.
37

 The material exhibited a typically high surface area associated with SBA-15, 

measured at 830 m
2
/g by BET analysis. 
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Characterisation of the mesopore size range can be achieved applying the BJH 

method to the adsorption isotherm (Figure 5.6), as described in section 2.6.4. 

 

Figure 5.6: BJH profile of synthesised SBA-15. 

The BJH profile reports a pore diameter of 6.2 nm, which is consistent with 

previously reported dimensions for SBA-15 aged at this temperature.
26

 A full summary 

of the properties of the prepared SBA-15 is presented in table 5.1. 

Material 
Surface 

Area / m
2
 

g
-1

 

Micropore 
Surface Area / m

2
 

g
-1

 

Pore 
Diameter / 

nm 

Pore Spacing 
(XRD) / nm 

Pore Spacing 
(TEM) / nm 

Wall 
Thickness 

/ nm 

SBA-15 830 292 6.2 10.67 10.4 4.3 ± 0.1 

Table 5.1: Summary of properties of synthesised SBA-15. 

 

5.2.1.2. Silver loaded SBA-15 

Silver was introduced to these materials using the incipient wetness methodology 

outlined in section 2.3.5, covering a range of weight loadings from 0.5% to 10% 

nominal loading. 

Four different loadings of silver on SBA-15 were prepared and the bulk silver 

content was measured using EDAX analysis, while the silver surface loadings were 

measured by XPS. This was compared with the surface silver loadings, shown in Table 

5.2. 
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Table 5.2: Bulk and surface silver wt% values, determined by EDAX and XPS. 

 

The bulk analysis reported lower value than the nominal loadings, suggesting that 

much of the silver was being lost during the impregnation procedure. Some silver is 

lost due to silver mirroring of the reaction vessel, which could be the reason behind the 

lower recorded bulk loadings, exacerbated at higher loadings.  

The surface-to-bulk loadings are displayed in figure 5.7. The surface loading is 

higher for the lower total loadings, which is potentially suggestive of smaller silver 

particles covering the surface, which will be more visible by the surface sensitive XPS 

analysis, due to signal attenuation of silver photoelectrons throughout larger 

nanoparticles.  

 

Figure 5.7: Ag surface:bulk wt. % 

 

The surface silver content determined by XPS is observed to be lower than the 

bulk for the higher loadings suggesting that the majority is contained inside the pores of 

the SBA-15 material, and hence cannot be observed by XPS analysis. Alternatively, 

large agglomerates on the surface of the SBA-15 material would give rise to lower 
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silver signals, and a combination of these two effects could reduce the recorded surface 

silver loadings. 

TEM analyses were employed to obtain an accurate measure of silver particle size 

and thus dispersion. Figure 5.8 shows an example of silver particles supported on the 

SBA-15 support, with an inset exhibiting the lattice fringes of the observed 

nanoparticles, which was measured to be 2.4 Å; consistent with the fcc Ag  (111) facet. 

 

 

Figure 5.8: Bright field TEM image of Ag- SBA-15 for (a) 0.3% Ag, (b) 3.7% Ag and (c) HR image of 

Ag nanoparticle (3.5% Ag). 

 

The bright field TEM images were analysed using ImageJ software to obtain a 

particle size distribution for the silver loaded materials. The compiled distribution 

histograms and associated statistical distributions are shown in figure 5.9. The 



5. Titania Grafted Mesoporous Silica Materials 

 

220 

 

monodispersity of these materials is fairly low, with silver particle sizes ranging from 

very small (5 nm), to larger agglomerates on the surface of the materials. 

 

Figure 5.9: Silver nanoparticle size distributions, normal and cumulative statistical distributions for (a) 

0.3%, (b) 0.95%, (c) 2.4% and (d) 3.5% Ag on SBA-15, based on counts of >100 particles in all cases. 

 

These particle size distributions are summarised in figure 5.10, which reports a 

minor increase in average particle size, as loading increases, but with increasing 

dispersities along the series. 
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Figure 5.10: Summary of silver nanoparticle size distributions from TEM data for Ag-SBA-15. Error 

bars from standard deviation of all particle diameters. 

 

 

X-ray diffraction was used to determine that the support structure maintained its 

hexagonally structured pore system, determine bulk silver phase and determine average 

particle size. 

 

Figure 5.11: Low angle XRD patterns for Ag-SBA-15. 
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Figure 5.11 displays the low angle XRD patterns for the silver loaded materials, 

confirming that no structural changes occur during the silver doping process and the 

p6mm hexagonal symmetry is retained, as well as the inter-pore spacing. The d-

spacings are calculated using the Bragg law, and from this, the pore spacings are 

calculated, using equation 4.2. The calculated pore spacings are displayed in figure 

5.12, and it is clear that these are unchanged from ~10.7 nm as silver loading is 

increased, as silver loading bears no effect on the pore architecture. 

 

 

 

Figure 5.12: Calculated pore spacings from low angle XRD analysis for Ag-SBA-15. 

 

The silver loaded mesoporous silica materials were also studied by wide angle 

powder XRD, to determine silver phases present in the synthesised composites.  
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Figure 5.13: Wide angle XRD patterns of silver loaded SBA-15. (*) indicate FCC Ag
0
 reflections. 

 

Figure 5.13 shows the XRD patterns over the range 30 to 80
o
, which shows 4 

peaks at 38.1, 44.2, 64.5 and 77.2º, which are consistent with metallic Ag.
38

 No 

reflections were observable for other silver species such as AgO, Ag2O or carbonates 

(refer to chapter 3, section 3.2.1).
39, 40

 Using the Scherrer equation (equation 2.11), an 

average particle size can be obtained from the 111 and 200 peaks, which is displayed in 

figure 5.14. The average particle size reported is larger from XRD analysis than that 

from TEM, although the trend followed is consistent. This could be due to TEM size 

analysis being a more localised technique, in which areas of large silver nanoparticles 

may be missed, affecting the calculated average particle size.  
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Figure 5.14: Particle sizes determined by XRD and TEM analysis. 

 

Nitrogen porosimetry was performed on these materials to reveal the the effect of 

silver loading on effective surface areas and pore dimensions, for which adsorption 

isotherms are displayed in Figure 5.15. 

From the isotherms, it can be seen that the type IV character and hysteresis loop 

associated with mesoporous structures is retained, further evidence that the underlying 

silica structure is unaffected by the silver loading process. 
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Figure 5.15: Nitrogen adsorption isotherms for silver loaded SBA-15 for (a) 3.5%, (b) 2.4%, (c) 0.95%, (d) 

0.3% and (e) 0% Ag loadings. 

 

Looking at the specific surface areas (Figure 5.16), however, there is a clear 

decrease in surface area with silver loading. This could be due to pore blocking by 

silver nanoparticles reducing the available silica surface, both in the meso- and micro-

pore regions. Micropore surface area was calculated using the t-plot method, whilst 

mesopore surface area was calculated via the BJH method. 
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Figure 5.16: Specific surface areas and micropore surface areas from BET, BJH and t-plot analysis of silver 

loaded SBA-15. 

 

 There is a marked decrease in micropore surface area among the silver loaded 

SBA-15 materials, which appears to have the greatest impact upon total surface area 

decrease. This suggests that the impregnated silver exists in part within the micropores 

of the silica support, which has been evidenced in literature regarding metal particle 

formation within micropore networks.
41, 42

 

 

Figure 5.17: BJH profiles for (a) 3.5%, (b) 2.4%, (c) 0.95%, (d) 0.3% Ag and (e) parent SBA-15. 
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Figure 5.17 reports the BJH profiles created through analysis of the nitrogen 

adsorption isotherms, which confirms the mean mesopore diameters do not change as a 

result of silver loading.  

XPS was employed to probe the silver species on the surface of the SBA-15 and 

determine any change in oxidation state as a function of Ag loading, the loadings of 

which are displayed in table 5.3.  

Sample Ag% Si% O% C% 

Parent 0 40.69 56.26 3.05 

0.3% Ag 0.45 41.17 56.79 1.59 

0.95% Ag 0.56 40.57 57.13 1.74 

2.4% Ag 1.32 40.56 56.66 1.46 

3.5% Ag 2.45 39.76 56.5 1.29 

Table 5.3 

 

Figure 5.18 displays the Ag 3d region of the 4 metal loadings, which shows the 

characteristic 3d5/2 and 3d3/2 doublets, having peak area ratios of 3:2 and a doublet 

separation of 6 eV.
43

  

The Ag 3d regions indicate the presence of a single silver species, with a binding 

energy of 368.2 eV, and a doublet separation of 6 eV, consistent with that of silver (0) 

metal.
44
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Figure 5.18: Ag 3d XPS stack plot of Ag-SBA-15. Black lines – raw data, red – Ag
0
, blue – Ag2O, green 

– envelope fit. Scaled to aid presentation.  

 

The Si 2p regions shown in (figure 5.19) were fit with 2 peaks for the 2p3/2 and 

2p1/2 contributions, and a doublet separation of 0.6 eV.
43
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Figure 5.19: Si 2p XPS stack plot of Ag-SBA-15. 

 

The silica supports remains unperturbed by the addition of silver species to the 

material, which is evident in the 2p regions studied by XPS. The position at 103.3 eV 

confirms the silica species is SiO2. There is no evidence in these spectra for additional 

silicon species. 
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Figure 5.20: O 1s XPS stack plot of Ag-SBA-15. 

 

Figure 5.20 displays the O 1s regions of Ag-SBA-15 which exhibits a singular 

peak at 533.3 eV, consistent with the binding energy of oxygen species in silica 

frameworks. No additional oxygen species are evident within the XPS spectra. 
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5.2.1.3. Titania grafted SBA-15 

The grafting procedure of titania onto mesostructured silica was performed using a 

modified procedure by Landau et al and is described in section 2.3.4.
45

 This involved 

using a titanium (IV) alkoxyl precursor under anhydrous conditions to hydrolyse and 

condense with surface silanol species, activated by the addition of a tertiary amine base 

(triethylamine). The hydrolysis/condensation step is an SN2 reaction involving surface 

hydroxyls and the titanium (IV) metal centre, during which a molecule of alcohol is 

removed (figure 5.21). 

 

Figure 5.21: Hydrolysis/condensation of titanium alkoxide precursor with silanol 

species. 

 

Confirmation of incorporation of titania upon the silica was obtained via bulk 

elemental analysis in the form of EDX, the results of which are summarised in table 

5.4. 

 

Ti wt. 
% 

Si wt. 
% 

O wt. 
% 

Bulk 8.3 39.2 53.5 

Surface 11.65 35.7 52.65 

Table 5.4: Elemental composition of titania grafted SBA-15 (3 cycles) from EDX analysis. 

 

To ensure that more than a monolayer of titania was formed, the grafting procedure 

was performed three times, producing a layer of titania. The phase was, however, not 

identifiable by powder XRD, due to the ultrathin nature being undetectable (Figure 

5.22). 
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Figure 5.22: Wide angle XRD patterns from titania grafted SBA-15 (3 cycles). 

 

Low angle XRD patterns (figure 5.23) of the grafted materials were taken to 

ensure that multiple heat treatments of the materials had no detrimental effect on the 

hexagonal pore structure of the base silica. The pore spacing also remained at ~10.7 

nm. 

 

Figure 5.23: Low angle XRD patterns from titania grafted SBA-15 (3 cycles) and parent SBA-15. 

 

Nitrogen porosimetry was used to determine any changes in pore diameter as a 

direct result of titania grafting. Supposing that thin layers of titania are indeed grafted 
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onto the surface of the silica, one would expect the pore size to incrementally diminish 

with subsequent layers of titania. 

 

Figure 5.24: Nitroen adsoption isotherms for (a) parent SBA-15, (b) one graft cycle of titanium 

dioxide, (c) 2 grafts cycles and (d) 3 graft cycles. 
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Figure 5.25: BJH pore size distributions from titania grafted silica. 

 

The pore size distributions shown in figure 5.25 indicate a decreasing pore size 

with consecutive graftings, which supports the idea that the titania is being applied as 

an even coating on the surface of the silica. The average pore size decrease is calculated 

as a fraction of a monolayer of titania and reported in table 5.5, assuming a monolayer 

thickness of 0.355 nm.
46

 Small contributions below the average pore size indicate the 

titania coverage is not entirely uniform. 

Graft 
Cycle 

Cumulative Pore Diameter Decrease / nm Number of Titania Monolayers 

1 0.4 1.1 

2 0.7 1.9 

3 0.85 2.3 

Table 5.5: Pore size decrease and subsequent number of monolayers calculated per graft cycle. 

 

 The pore diameter decrease for graft cycles 1 and 2 suggest that the material is 

almost uniformly coated with 1 monolayer of titania, however the BJH analysis for the 

3
rd

 cycle of grafting suggests that there is only partial monolayer coverage. After 3 

cycles of grafting, there is a calculated average of 2.3 monolayers of titania.  

 Effects on surface area, micropore and mesopore surface area are displayed in 

figure 5.26.  
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Figure 5.26: Total, mesopore and micropore surface areas of titania grafted SBA-15. 

 

A decreasing trend can be clearly observed in the porosimetry analysis, which is 

consistent with the idea of pore shrinkage due to an increase in the thickness of titania 

grafted onto the surface of the SBA-15. The microporous surface area is seen to 

decrease to the greatest degree after the first cycle, and decrease by smaller amounts 

during subsequent treatments, however, the titania layers appear to retain some 

microporous character throughout the grafting procedure. The overall surface area loss 

arises from a combination of the filling of micropores, as well as pore shrinkage due to 

additional titania layers. 

XPS analysis was used to probe the ultrathin titania layers to determine 

information regarding the titania oxidation state and coverage (figure 5.27). A 

summary of the elemental composition is presented in table 5.6 which reports a greatly 

increase titania composition, indicative of a surface species.  

Ti wt. % Si wt. % O wt. % 

11.65 35.7 52.65 

Table 5.6: Surface elemental composition of titania grafted SBA-15 (3 cycles) 
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Figure 5.27: Ti 2p XPS analysis for titania grafted SBA-15 (3 cycles). 

 

The Ti 2p region was fit using line shapes obtained from a commercial anatase 

material (P25, Degussa), which recorded a Ti 2p3/2 peak position of 458.8 eV, 

consistent with literature values.
47

 A shift to higher binding energies is associated with 

the formation of Ti-O-Si bonds, resulting in the two sets of peaks exhibited in the Ti 2p 

spectra
48

 caused by a decrease in the positive charge of the titania species within the Ti-

O-Si formation compared to that of anatase.
49

 The Ti 2p1/2 peak exhibits a different 

FWHM to that of the 2p3/2 peak due to the Coster-Kronig effect, the broadening of 2p1/2 

peaks due to LMM decay processes.
50

 

The oxygen 1s region (figure 5.28) displayed an asymmetry which was accounted 

for by fitting the spectra with peaks for bulk silicon dioxide at 533.1 eV and for 

titanium dioxide at 530 eV, with the line shapes and positions taken from analysis of 

the parent SBA-15 and P25 commercial anatase. A third feature was fit between the 

two peaks from SiO2 and TiO2, which is thought to be the bridging oxygens, Ti-O-Si.
49
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Figure 5.28: O 1s XPS analysis for titania grafted SBA-15. 

 

 The Si 2p region was analysed (figure 5.29), and fit with a Si 2p doublet (2p3/2 = 

103.6 eV, doublet separation = 0.6 eV). Additionally, a secondary silicon phase was fit 

at a higher binding energy, attributed to Si-O-Ti species. This secondary species at a 

lower binding energy is resultant from electronic alterations to the silicon environment 

within the bridging layer.
51
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Figure 5.29: Si 2p XPS analysis for titania grafted SBA-15 (top) and parent SBA-15 (bottom). 

 

To study the grafted titania layer, TEM analysis was used in order to look for the 

possible undesirable existence of large agglomerates of titania, rather than thin grafted 

layers. 

 

Figure 5.30: TEM image of titania grafted SBA-15. 

 

99101103105107109

S
i 
2

p
 I
n

te
n

s
it
y
 

Binding Energy / eV 



5. Titania Grafted Mesoporous Silica Materials 

 

239 

 

No large titania particles were observed in the TEM analysis, suggesting titania 

observed via elemental analysis is the result of thin, grafted layers, supporting the 

absence of diffraction patterns from XRD analysis. Clear regions of hexagonally 

arranged pore structures were observed, as well as channels consistent with ordered 

mesoporous structure. A summary of the material properties is presented in table 5.7. 

Material 
Surface 

Area / m
2
 

g
-1

 

Micropore 
Surface Area / m

2
 

g
-1

 

Pore 
Diameter 

/ nm 

Pore Spacing 
(XRD) / nm 

Pore Spacing 
(TEM) / nm 

Wall 
Thickness 

/ nm 

Ti-SBA-
15 

634 172 5.35 10.8 10.3 5.4 ± 0.1 

Table 5.7: Summary of properties of synthesised Ti-SBA-15. 

 

5.2.1.4. Silver loaded titania grafted SBA-15 

Silver was introduced to SBA-15 with 3 grafting cycles of titania using the 

incipient wetness methodology as with pure SBA-15, covering a range of weight 

loadings from 0.5% to 10% nominal loading. The silver content was measured in both 

the surface and bulk, by XPS and EDAX respectively, and is shown in table 5.8. 

Nominal Ag Loading / wt. 
% 

Bulk Ag Loading / wt. 
% 

Surface Ag Loading / wt. 
% 

0.5 0.3 0.74 

1 0.9 1.11 

5 2.3 2.39 

10 3.7 3.82 
Table 5.8: Ag surface and bulk content in silver loaded, titania-grafted SBA-15. 

 

The weight loadings for silver determined by EDAX analysis are lower than the 

nominal loadings, and are consistently lower when compared with the silver loaded 

SBA-15 samples produced in the previous section. This, again, is attributed to silver 

mirroring of reaction vessels during the synthetic procedure. 
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Figure 5.31: Ag surface wt. % vs bulk wt. %, recorded by XPS and EDAX 

respectively. 

 

 The surface to bulk profile displayed in figure 5.31 exhibits a trend suggestive of 

increasing particle size. The surface to bulk ratio increases as bulk loading decreases, as 

the smaller particles are more visible by XPS analysis. Large silver particles will report 

lower surface loadings due to increased attenuation of silver photoelectrons throughout 

the large silver particles. 
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Figure 5.32:Bright field TEM image of Ag-Ti-SBA-15 for (a) 0.3%,  (b) 3.7% Ag and HR image 

of Ag nanoparticle (3.7% Ag). 

 

 Bright field TEM images of the silver particles deposited onto the inorganic 

support materials are exhibited in figure 5.32, in which a contrast between the darker 

silver nanoparticles and the lighter titania-grafted SBA is evident. Figure 5.32 (c) 

shows a HRTEM image of one of the silver nanoparticles, including observed lattice 

fringes, which were measured to be 0.24 nm, which was identified as the silver metal 

(111) facet.
52

 

  There is a slight increasing trend in particle size and dispersity seen across 

the series, as with the Ag-SBA-15 series, which supports the trend witnessed in the 

silver surface to bulk ratios determined. Full size histogram distributions are presented 

in figure 5.33. 
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Figure 5.33: Silver nanoparticle size distributions, normal and cumulative distributions for Ag-Ti-SBA15 

materials determined by bright field TEM for bulk silver loadings of a) 0.3%, b) 0.9%, c) 2.3% and d) 3.7%. 

 

 Within the size distributions, it can be seen that the size distributions become more 

diverse as silver loadings increase, with a greater number of large agglomerates 

appearing for the samples of a higher loading. A summary of these histograms is 

provided in figure 5.34. 
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Figure 5.34: Summary of silver nanoparticle size distributions from TEM data for Ag-Ti-SBA-

15, based on counts of >100 particles in all cases. 

 

 Low angle XRD was employed to determine no detrimental effects were observed 

to the hexagonal pore structure and pore spacings of the silver impregnated materials 

(figure 5.35). All materials recorded a characteristic low angle XRD pattern associated 

with a hexagonally arranged ordered mesoporous structure of space group p6mm. 

 

Figure 5.35: Low angle XRD patterns for Ag-Ti-SBA-15.  
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 The silver speciation was studied by wide angle XRD analysis, to identify the 

dominant silver phases composing the produced nanoparticles and the recorded 

diffraction patterns are displayed in figure 5.36. 

 

Figure 5.36: Wide angle powder XRD patterns for Ag-Ti-SBA-15. (*) indicate Ag
0
 FCC reflections (  ) 

indicate Ag2CO3 reflections. 

 

 Wide angle XRD analysis of the silver loaded titania grafted SBA-15 materials 

(figure 5.36) indicated the silver was present mostly as silver metal, with a (111) 

reflection appearing at 38.15 ± 0.05
o
, corresponding to a d-spacing of 2.35 Å, which is 

consistent with literature values for silver metal.
52

 Additionally, in the 0.3 % material, a 

very small reflection can be seen at 32.5
o
, which suggests the presence of silver 

carbonate species.
40

 That this peak is very small indicates that the silver carbonate 
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reported is of very small crystallite size (< 2-3 nm) and/or at loadings too low to resolve 

using this instrumentation. The sizes of the silver crystallites were determined vie the 

Scherrer equation and compared with those obtained by TEM analysis (figure 5.37). 

 

Figure 5.37: Silver particle sizes, as determined by XRD and TEM for Ag-Ti-SBA-15. 

 

 Discrepancies in the reported sizes between TEM and XRD analysis increase with 

silver loading. This is likely due to the differences between the local TEM analysis and 

bulk XRD analysis, with XRD able to volume average a larger area of material, and 

hence will detect areas of larger crystallites which may have not been observed by 

electron microscopy. There is, however, a trend of increasing overall particle size, with 

larger loadings accumulating an increased number of large agglomerates of silver on 

the external inorganic surface, which in turn inflates the average particle size of the 

materials. The materials do not display a high degree of monodispersity, with particle 

sizes spanning large ranges, similar to that observed in the pure SBA-15 materials. This 

is hoped to produce a system with a range of dissolution rates to lead to a silver ion 

delivery system with quick, yet sustained silver release. 

Nitrogen adsorption porosimetry was employed to determine the effect of silver 

loading on the pore network on the titania grafted SBA-15. 
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Figure 5.38: Nitrogen adsorption isotherms for (a) 3.7%, (b) 2.3%, (c) 0.9%, (d) 0.3% and (e) 0% 

Ag-Ti-SBA-15. 

 

The isotherms in figure 5.38 exhibit the typical type IV shape associated with 

hexagonally mesostructured SBA-15 type materials, including the H1 type hysteresis 

loop indicative of the monodisperse pore structure. As the silver loading increases, this 

shape becomes more perturbed, suggesting that the loaded silver is residing in large 

amounts within the pore network. 

Looking at the recorded surface areas obtained by applying the BET equation to the 

recorded isotherms, as well as the micropore surface areas from t-plot analysis, a trend 

of decreasing total surface area can be witnessed (figure 5.39). The micropore surface 
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area suffers a slight initial decrease upon loading (0.25 wt. % Ag), which would suggest 

the micropore regions are becoming filled with silver to a small degree. This initial 

remains constant throughout the remaining loadings, which could indicate that while 

some silver is initially deposited into the micropores, further silver particles form in the 

majority either within the mesopores or on the external surface. 

 

Figure 5.39: Total, mesopore and micropore surface areas of Ag-Ti-SBA-15. 

 

The mesopore volume exhibits a decreasing trend with silver loading, which 

supports the idea that further loading past the initial filling of mesopores, silver 

particles form within the pores in the meso-sized region. 

The effect of the silver deposited within the mesopore network can be detected by 

looking at the BJH profiles of the loaded materials. Figure 5.40 displays the compiled 

BJH profiles of Ag-Ti-SBA-15.  
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Figure 5.40: BJH profiles for (a) 3.7%, (b) 2.3%, (c) 0.9%, (d) 0.3% and (e) 0% Ag-Ti-SBA-15. 

 

 Pore size distributions from BJH analysis indicate a shift to lower pore diameters, 

with pores appearing below the mean pore diameter determined for the parent material. 

This would suggest the presence of some silver particle within the pore network, 

potentially indicative of nanoparticles encompassed within the mesopore network.  

The Ag 3d regions were investigated by XPS analysis and are exhibited in figure 5.41. 

The Ag 3d5/2 and Ag 3d 3/2 peaks are clearly visible and set to peak ratios of 3:2, with a 

doublet separation of 6 eV, with all spectra calibrated to adventitious carbon at 284.7 

eV. As with the previous series, there are two regions visible in the recorded spectra. 

These are attributed to to silver metal (red lines) at 368.1 eV and silver carbonate (blue 

lines) at 369.7 eV. 
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Figure 5.41: Ag 3d XPS stack plot for Ag-Ti-SBA-15. 

 

The total percentage of silver carbonate attributed species is found to decrease as 

silver loading increases (figure 5.42). With a decreasing proportion of silver carbonate 

as weight loading and average particle size increases (and hence surface area 

decreases), the carbonate species has been assigned as a surface species. Small 

carbonate surface coverage would also explain the lack of distinct carbonate peaks 

exhibited within the XRD diffractograms. 
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Figure 5.42:Surface carbonate and total surface silver loadings vs bulk Ag wt. % for Ag-Ti-SBA-15. 

 

This decrease in carbonate composition is likely due to it being a surface species 

that forms when the surface of Ag is oxidised. Titania supports have been shown to 

exhibit improved promotion of the formation of oxidised species on metal nanoparticle 

surface compared to silica supports due to enhanced acidity.
53

  Ag oxides are known to 

be slightly basic and will adsorb CO2 from the atmosphere to form a carbonate.
54, 55

  

Thus, as Ag loading and particle size increases, the proportion of surface carbonate will 

decrease as the contribution from the underlying metal increases. This assignment 

supports the observation of XRD diffractograms, in a small, broad peak corresponding 

to silver carbonate was observed. 

C 1s regions are shown in figure 5.43, which indicate a growing species at 288 eV 

with decreasing silver content. This is consistent with a silver carbonate species, 

supporting the assignment of the secondary silver species.
56
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Figure 5.43: C 1s XPS stack plot of Ag-Ti-SBA-15. 

 

. The titanium 2p regions (figure 5.44) were analysed, in order to determine any 

changes to the titanium species. The 2p3/2 and 2p1/2 peaks were fit with peak area ratios 

of 2:1 and a doublet separation of 5.7 eV. There is no visible change within any of the 

recorded titanium regions, suggesting the chemical environment of the surface titania 

remains unperturbed by the introduction of silver species. 
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Figure 5.44: Ti 2p XPS stack plot for Ag-Ti-SBA-15. 

 

 The titanium to silicon ratios were recorded for the loaded samples, to 

ensure no sintering of surface titanium species was observed (table 5.9). The surface 

titanium to silicon ratio was not found to vary to any significant degree. 

 

 

 

455460465470

T
i 
2

p
 X

P
 I
n

te
n

s
it
y
 

Binding Energy / eV 

3.7% Ag 

2.3% Ag 

0.9% Ag 

0.3% Ag 

Parent Ti-SBA-15 



5. Titania Grafted Mesoporous Silica Materials 

 

253 

 

Bulk Ag wt. % Ti:Si (XPS) 

0 0.32 

0.3 0.35 

0.9 0.37 

2.3 0.29 

3.7 0.29 

Table 5.9: Ti:Si ratios from XPS analysis. 

 

5.2.1.5. Macroporous titania grafted SBA-15 

Macropores were introduced to the synthesised SBA-15 materials using a 

polystyrene bead templating synthesis in an attempt to increase the available external 

titania surface area able to interact with bacteria and inhibit cell growth or promote cell 

death. Additionally, macropores improve mass transport within the support structure, 

aiding diffusion. 

The polystyrene beads were prepared as described in section 2.3.2 and introduced 

to the synthesis of SBA-15 prior to grafting to introduce macroporosity as described in 

section 2.3.3, a schematic of which is presented in figure 5.45. 

 

Figure 5.45: Schematic of macroporous SBA-15 synthesis. 
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Low angle XRD analysis confirmed the presence of an ordered pore arrangement 

with hexagonal symmetry and p6mm space group (Figure 5.46). 

 

Figure 5.46: Low angle XRD pattern for macroporous SBA-15 and titania grafted SBA-15 (3 cycles). 

 

The grafting of titania onto the surface of the macroporous SBA-15 was achieved 

using the same method as in section 5.2.1.3. The pore arrangement was observed by 

low angle XRD analysis to ensure the grafting procedure did not affect the hexagonal 

arrangement of the grafted material. 

To try and identify the phase of the prepared titania grafted layer on the 

hierarchically porous structure, wide angle XRD was run on the parent material and 

grafted material (3 cycles) and is displayed in figure 5.47. There were no visible 

reflections identified from titania phases within the XRD analysis, which is suggestive 

of an ultrathin layer coverage.   
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Figure 5.47: Wide angle XRD patterns from macroporous titania grafted SBA-15. 

 

 To observe the growth of a layer of titania upon the surface of the silica, nitrogen 

adsorption porosimetry was performed on the samples. Figure 5.48 Shows the recorded 

isotherms. 
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Figure 5.48: Nitrogen adsorption porosimetry on Ti-grafted meso/macro SBA-15. 

  

 The isotherms retain a type IV shape, characteristic of mesoporous materials, 

including a H1 hysteresis loop which is associated with the presence of ordered, 

monodisperse pore networks, with an increasing adsorption at high partial pressure, 

suggesting the presence of macropores. The BJH method was applied to these 

isotherms to observe the pore size distribution (figure 5.49). 
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Figure 5.49: BJH pore size distributions for Ti-grafted meso/macro SBA-15. 

 

 The pore size distributions indicate that the prepared materials do not have an 

entirely monodisperse pore network, with a small amount of pores existing at a lower 

diameter to those of the average, possibly due to contraction of the P123 micelles near 

to the polystyrene bead regions. The grafting of titania appears to reduce the overall 

pore size, initially by an insignificant margin, contrary to that observed in the 

mesoporous material, possibly due to condensation occurring mainly within the large 

macroporous voids, and subsequently, the second and third grafting cycles reduce the 

pore diameter to an eventual 2 monolayers of titania (table 5.10).
46

 

Graft cycle 
Cumulative Pore Diameter 

Decrease / nm 
Cumulative Number of Monolayers 

1 0.02 0.06 

2 0.3 0.85 

3 0.7 1.98 

Table 5.10: Pore size decrease and subsequent number of monolayers calculated per graft cycle. 

 

 The surface area and microporous surface area was recorded, and was found to 

decrease in a similar manner to that observed for the non-macroporous material (figure 

5.50). 
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Figure 5.50: Total, mesopore and micropore surface areas of titania grafted macroporous SBA-15. 

 

The Ti 2p region (figure 5.51) was fit using line shapes obtained from a 

commercial anatase material (P25, Degussa), which recorded a Ti 2p3/2 peak position of 

458.8 eV, consistent with reported data for anatase Ti
4+

.
47

 A secondary peak of higher 

binding energy was fit, representing the formation of Ti-O-Si bonds, resulting in the 

two sets of peaks exhibited in the Ti 2p spectra
48

 caused by a decrease in the positive 

charge of the titania species within the Ti-O-Si formation compared to that of anatase.
49

 

 

Figure 5.51: Ti 2p region from XPS analysis of macroporous titania grafted SBA-15 and a commercial titania 

(P-25 – anatase). 
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Analysis of the oxygen 1s regions (figure 5.52) confirmed the presence of three 

oxygen species, at 532.3 eV, oxygen was detected in the form of silicon dioxide, whilst 

a secondary peak appeared at 530 eV, which corresponds to titanium dioxide and 

finally, the bridging oxygens at 531.9 eV.
49

 

 
Figure 5.52: O 1s region from XPS analysis of macroporous titania grafted SBA-15. 

 

 The XPS spectra from of the silicon regions (figure 5.53) reported a peak shift 

from 103.3 eV, corresponding to silicon dioxide, for the parent MM-SBA-15. The peak 

was fit with two sets of Si 2p doublets with a doublet separation of 0.6 eV, one 

corresponding to Si-O-Si, and a second, with a 2p3/2 peak at 104 eV, corresponding to 

Si-O-Ti. 
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Figure 5.53: Si 2p region from XPS analysis of titania grafted MM-SBA-15 and parent MM-SBA-15. 

 

Following removal of the polystyrene and surfactant template by calcination, the 

material was studied using TEM, to confirm the presence of macropores and observe 

the pore channels of SBA-15 (Figure 5.54). 

 

 

Figure 5.54: TEM image of macroporous SBA-15, before titania grafting (left) and after titania grafting (right). 

 

 Following titania grafting, there was no observable evidence of large particle 
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material properties of the synthesised MM-Ti-SBA-15 material supports is presented in 

table 5.10. 

Material 
Surface 

Area / m
2
 

g
-1

 

Micropore 
Surface Area / 

m
2
 g

-1
 

Pore 
Diameter 

/ nm 

Pore Spacing 
(XRD) / nm 

Pore Spacing 
(TEM) / nm 

Wall 
Thickness 

/ nm 

MM-Ti-
SBA-15 

380 36 4.5 12.9 12.1 8.4 ± 0.1 

Table 5.10: Summary of properties of synthesised MM-Ti-SBA-15. 

 

 

5.2.1.6. Silver loaded macroporous titania grafted SBA-15 

Following the successful grafting of a layer of titania onto the surface of the 

hierarchically porous structure, the sample was loaded with silver nanoparticles, by the 

wet impregnation method used in previous sections. The prepared material was 

analysed by TEM, to determine particle sizes and morphologies. Bright field TEM 

images are displayed in figure 5.55, whereby the silver nanoparticles can be clearly 

defined from the titania/silica support due to the large differences in contrast. 
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Figure 5.55:Bright field TEM image of Ag-Ti-SBA-15 for (a) 0.28%,  (b) 3.65% Ag and HR image of 

Ag nanoparticle (3.64% Ag). 

 

A clear difference in the approximate average particle sizes can be observed in the 

electron micrographs. The lowest loading of silver (0.28 wt. %) displays very small, 

spherical nanoparticles, which seem to exist within the pore network of the material, 

whereas a number of large agglomerates can be witnessed in the electron micrograph of 

the highest loading (3.64 wt. %). This is reflected upon viewing of the recorded size 

distribution histograms, which indicate that whilst most particles in all samples tend 

towards the small regime, and contained within the pore structure of the materials, but 

that as loading increases, the number of large agglomerates, external to the pore 

network appear. 
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The third TEM image is a HRTEM picture of a silver nanoparticle from the 3.64 

wt. % sample, in which the lattice spacing of the silver can be witnessed. This was 

measured to be 0.24 nm, which would indicate the 111 plane of silver metal.
52

 

There is a small increase in the average particle size across the series, along with 

an increase in the dispersion, as evidenced by the error bars, taken from standard 

deviation of the counted particle sizes. This is further evidenced by the particle size 

distribution histograms, shown in figure 5.56, in which it is clear that increasing the 

loading forms large agglomerates, in greater numbers, along with small silver 

nanoparticles, formed within the mesopore structure. 

  

  

Figure 5.56: Silver nanoparticle size distributions, normal and cumulative distributions for AgTiSBA15 

materials determined by bright field TEM for bulk silver loadings of a) 0.28%, b) 0.75%, c) 1.19% and d) 

3.65%. 
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A summary of the particle sizes, which were measured using ImageJ software, is 

displayed in figure 5.57. 

 

Figure 5.57: Summary of silver nanoparticle size distributions from TEM data for MM-Ag-Ti-SBA-15, 

based on counts of >100 particles in all cases. 

 

Nitrogen porosimetry was employed to study the internal pore structures, and 

assess the effect of loading silver nanoparticles onto the prepared supports. The 

isotherms are displayed in figure 5.58. 
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Figure 5.58: Nitrogen adsorption isotherms for Ag-MM-Ti-SBA-15. 

 

The isotherms exhibit a type IV characteristic, which is indicative of a mesoporous 

material, with a H1 type hysteresis loop which is the result of monodisperse mesopore 

networks within the material. The isotherms were not altered by a particularly large 

amount by silver impregnation, although upon analysis of the surface areas utilising the 

BET equation and the micropore surface area using the t-plot method, it is evident that 

the silver nanoparticles are, in-fact, blocking a large proportion of micropores and 

mesopores upon impregnation. The micropore surface areas do not change by a large 

factor for the different silver loadings, whilst the total surface areas and mesopore 

surface areas decrease steadily as loading increases (figure 5.59). 
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Figure 5.59: Total, meso and micrpore surface areas for Ag-MM-Ti-SBA-15. 

 

This trend in surface area changes could be due to micropores being blocked or 

filled immediately, upon introduction of silver, however, as seen in the TEM analysis, 

the main result of further loading with silver is that the number of larger silver 

agglomerates increases, which would tend to have more of an effect on the mesopore 

regime, rather than the micropores.  

The BJH method was applied, in order to study the pore size distributions and 

observe how the average pore diameter was affected by the introduction of silver to the 

pore network (figure 5.60). 
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Figure 5.60:BJH pore size distributions for Ag-MM-Ti-SBA-15. 

 

The pore size distribution of the loaded materials indicates pore filling by small 

nanoparticles. There is a shift to a lower average size, as well as a more polydisperse 

distribution of sizes. At the highest silver loading, further features appear in the BJH 

profile, in the form of some reported pores in the region of 1-2 nanometers, which 

could be due to the presence of an increased number of larger silver particles, which are 

almost completely filling the pores, leading to the reporting of very small pores. 

Powder XRD was used to study the effect of the silver loading upon the pore 

network, as well as analyse the crystalline phase of the impregnated silver 

nanoparticles. The recorded low angle XRD patterns are displayed in figure 5.61. 

1 2 3 4 5 6 7 8 9 10

d
V

(l
o

g
 d

) 

Pore Diameter / nm 

0%

0.28 wt. %

0.75 wt. %

1.19 wt. %

3.65 wt. %



5. Titania Grafted Mesoporous Silica Materials 

 

268 

 

 

Figure 5.61: Low angle XRD patterns for Ag-MM-Ti-SBA-15. 

 

It can be seen from the low angle XRD diffractograms, that the prepared materials 

all exhibit the characteristic patterns for a hexagonally arranged pore network with 

symmetry of P6mm. It can be concluded that the loading of silver bears no effect on the 

pore network of the prepared materials. The pore spacings can be calculated from these 

patterns, using equation 4.2. The results of these calculations are displayed in figure 

5.62. 

 

Figure 5.62: pore-spacings calculated form low angle XRD patterns for Ag-MM-Ti-SBA-15. 
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The pore spacings remain constant across the series, further confirmation of the 

negligible effect of silver loading on the base support structure. 

Wide angle XRD was employed in an attempt to determine the phase of the 

prepared materials. The recorded patterns are exhibited in figure 5.63. 

 

Figure 5.63: Wide angle powder XRD patterns for MM-Ag-Ti-SBA-15. 

 

The powder XRD patterns indicate once again the presence of silver metal, with 

peaks corresponding to an Ag
0
 FCC metal structure. Metal particle sizes were 

determined via the Scherrer equation and compared to those determined by TEM 

analysis. The lower loadings, combined with what were ultimately determined to be 
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lower average particle sizes compared with the non-macroporous materials resulted in 

very weak diffractions for the lowest 2 samples and, accordingly, FHWM which are 

difficult or impossible to measure. For the materials with a higher weight percentage of 

silver, and a greater degree of large silver agglomerates, the XRD patterns record clear, 

strong reflections existing in a manner suggestive of a majority composition of silver 

metal. No silver phases were detected for 0.28% MM-Ag-Ti-SBA-15 and hence 

particle size could not be determined (figure 5.64). 

 

Figure 5.64:Silver particle sizes, as determined by XRD and TEM for MM-Ag-Ti-SBA-15. 

 

Further characterisation of the silver species was achieved using XPS. The silver 

3d species were observed to possess the characteristic 3d5/2 and 3d3/2 peaks and were fit 

with peak ratios or 3:2 and a doublet separation of 6 eV. All spectra were calibrated to 

adventitious carbon at 284.7 eV. A stack plot of the Ag 3d regions is displayed in 

figure 5.65. 
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Figure 5.65: Ag 3d XPS stack plot for MM-Ag-Ti-SBA-15. 

 

The XPS spectra from the prepared silver nanoparticles reported clear evidence of 

a dual oxidation state, as with the previous materials. The Ag 3d5/2 peak at 368.1 eV 

was again fit as the silver metal species (red lines), whilst the small shoulders at 370 eV 

were fit as silver carbonate species (blue lines). The composition of the two species is 

displayed in figure 5.66. 
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Figure 5.66: Surface carbonate and total surface silver loadings vs bulk Ag wt. % for MM-Ag-Ti-SBA-

15. 

 

The total percentage of carbonate species decreases as silver loading increases. 

This is suggestive of a surface carbonate species, likely existing as a small layer 

encasing the silver nanoparticles. Upon an average increasing of particle size, due to the 

presence of large agglomerates as loading increases, the majority of silver observed is 

that of bulk silver metal, and the carbonate species becomes less pronounced. If the 

carbonate is a surface species, this data could be explained as a decrease in the total 

amount of surface silver, with an increase in silver bulk species. Supporting the idea of 

a surface species of carbonate, is the increased surface carbonate content, compared to 

the less disperse silver particles within non-macroporous Ag-Ti-SBA-15. 

The Ti 2p regions were studied, with the 2p3/2 and 2p1/2 peaks fit at area ratios of 

2:1 and a doublet separation of 5.7 eV (figure 5.67). 
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Figure 5.67: Ti 2p XPS stack plot for MM-Ag-Ti-SBA-15. 

 

There is no appreciable change in the titania species upon silver loading, the Ti 2p 

regions exhibiting both Ti-O-Ti and Ti-O-Si species as witnessed in the parent material. 

The titania:silicon ratio was not found to change to any significant degree (table 5.11). 
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Bulk Ag wt. % Ti:Si (XPS) 

0 0.26 

0.28 0.29 

0.75 0.26 

1.15 0.25 

3.64 0.23 

Table 5.11: Ti:Si surface ratios. 

  

A full summary of the three series is presented in table 5.12. In this table, it is 

evident that in all cases, average particle size, determined from TEM analysis, increases 

with bulk silver loading, as does the polydispersity of particle diameters. All materials 

display high surface areas, which decrease across all series with bulk silver loading, as 

pores are blocked by silver particles. In the case of the titania based materials, 

formation of a surface carbonate species is evident, with the total % of silver in the 

form of carbonate increasing with decreasing average silver particle diameter, 

indicative of a surface species. 

Material 
Surface Area 

/ m
2
 g

-1
 

Surface 
Ag wt. % 

% Ag 
Carbonate 

Mean Ag Diameter 
(TEM) / nm 

Standard Deviation of Ag 
Particle Size / nm 

SBA-15 830 - - - - 

0.3% Ag 492 0.45 0.00 14.58 5.79 

0.95% Ag 501 0.56 0.00 18.09 7.71 

2.4% Ag 395 1.32 0.00 18.62 8.01 

3.5% Ag 377 2.45 0.00 20.79 10.14 

Ti-SBA-15 634 - - - - 

0.3% Ag 593 0.74 2.86 14.08 4.32 

0.9% Ag 577 1.11 1.80 18.91 7.50 

2.3% Ag 500 2.39 0.85 19.27 8.86 

3.7% Ag 493 3.82 0.55 21.36 9.19 

MM-Ti-SBA-15 380 - - - - 

0.28% Ag 373 0.44 23.90 7.48 3.60 

0.75% Ag 349 0.64 11.81 10.32 6.48 

1.15% Ag 311 1.18 5.18 12.07 8.60 

3.64% Ag 305 3.40 1.77 13.19 9.33 

Table 5.12: Summary of material properties for all series. 
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5.2.2. Performance assays 

The microbiological performance of the prepared materials was examined by 

studied the silver ion release rates, via the methodology in Chapter 2.4, and correlating 

them to antibacterial activities, as determined by the methods outlined in Chapter 2.5. 

 

5.2.2.1. Silver dissolution 

The dissolution of silver ions into solution from the bulk material was investigated 

in order to study the delivery rates of the active species as a function of time. The 

materials were all compared to a slow releasing silver compound, silver carbonate, 

which exhibits dissolution kinetics favourable towards the slow release of active silver 

species. 

The silver release rates were determined using ICP-MS to study the concentration 

of silver ions in filtered solutions taken at set time intervals from vessels containing the 

target sample and an aqueous buffer solution of 0.5 M NaNO3. ICP-MS allowed for 

detection of the incredibly low silver concentrations within the resultant mixture, which 

were in the sub-ppm range (1-1000 ppb). Due to the limitations of allowed ionic species 

within the ICP-MS, the experiments could not be run in a simulated bodily fluid 

solution such as that which was used for antibacterial testing. 
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Figure 5.68: Silver ion dissolution rates from Ag-SBA-15, normalised to silver content. 

 

 Figure 5.68 displays the silver release profile for the Ag-SBA-15 series of 

composite materials. Evident from these plots is the fact that the dissolution rates for 

these materials appear to be incredibly slow, with an initial release reaching a critical 

concentration of dissolved Ag
+
 ions at near to the 4 hour mark of the experiments, after 

which the silver ion release is significantly retarded. It has been observed in previous 

studies that this an equilibrium point is reached after around 6 hours of dissolution, 

prior to a slowed release rate of dissolved silver ions, at which point free silver ions can 

feither form aggregates, or rejoin existing nanoparticles.
57

 This suggess that an initial 

spike in silver release is followed by a subsequent steady release of silver into solution, 
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which could result in a material which fulfills both a fast acting and long lasting 

antibacterial function.
57

  

 Overall silver percentage released increases as the silver loading decreases, which 

indicates that the rate of initial release in fact increases as silver loading, and hence 

average particle size, decreases. This can be assigned as a surface area effect, as the 

total metal surface area per unit mass increases, silver release rate increases.
58

 

 

Figure 5.69: Silver ion dissolution rates from Ag-Ti-SBA-15, normalised to silver content. 

 

 The dissolution profiles for Ag-Ti-SBA-15 materials are presented in figure 5.69. 

Being that the particle size distributions for the silver loaded, titania grafted 
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onto conventional SBA-15 materials, it is expected, and is observed, that the 

dissolution kinetics are not significantly different. As exhibited by the the silver ion 

release profiles of the mesoporous silica materials, the overall decrease in solid 

particulate silver increases in magnitude as loading and average particle size decreases. 

 

Figure 5.70: Silver ion dissolution rates from MM-Ag-Ti-SBA-15, normalised to silver content. 

 

 Figure 5.70 displays the silver ion release profiles for hierarchically porous, titania 

grafted SBA-15 loaded with silver nanoparticles. A similar trend to that of the previous 

materials is observed, with an initially faster release rate, followed by an approach of an 

equilibrium point and subsequent rate decrease. These materials, however, exhibit an 

increase in overall mass percentage decrease, implying that the initial release of silver 
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is faster than that of the reported dissolution profiles for the mesoporous materials. This 

can be ascribed to an overall decrease in average silver particle size, as reported via 

TEM and XRD analysis of the as synthesised materials. 

 In order to compensate for alterations in silver particle sizes, the profiles were 

normalised to total metal surface area, calculated from average particle sizes. These are 

displayed in figure 5.71. 
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Figure 5.71 Silver ion dissolution profiles for (a) Ag-SBA-15, (b) Ag-Ti-SBA-15 and 

(c) MM-Ag-Ti-SBA-15 normalised to total metal surface area. 
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 It is observed within the dissolution profiles, normalised to total metal surface area, 

that the dissolution rates increase for smaller particles. It has been observed previously 

that particle size can affect silver dissolution kinetics, and that smaller particles are 

more effective at silver release due to increased surface area per unit mass and these 

dissolution profiles concur with that. 

 Support effects upon silver dissolution are primarily relating with the introduction 

of macropores. These open structures allowed for an increase in silver dispersity, which 

increased the silver ion release rates as observed above. There was no significant 

difference between the dissolution of silver from SBA-15 or Ti-SBA-15 materials, 

suggesting carbonate species bear little effect upon release rates. 

 

5.2.2.2. Antibacterial assays 

The antibacterial activity of the prepared materials was studied utilising the 

profiling methodologies outlined in section 2.5. Zones of inhibition, minimum 

bactericidal concentration and logarithmic reduction experiments were performed to 

characterise the antibacterial potential of each type of material. 

 

5.2.2.2.1. Zone of inhibition 

 Zone of inhibition experiments (figures 5.71 & 5.72) were performed as a semi-

quantitative method for probing antibacterial efficacy. The zone of inhibition test 

involves spreading a bacterial inoculum onto an agar plate, boring holes into the agar, 

inserting the material, dispersed in simulated body fluid, into the resulting wells and 

incubating. After 24 hours at 37
o
C, the wells will have a clear zone around them where 

bacteria have not been allowed to grow. This zone can be measured and used as an 

indicator of antibacterial activity and comparative strength, although this test is heavily 

limited by diffusion through the agar itself. The zones are reported in millimetres and 

normalised to total silver content. 
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Figure 5.72: Zones of inhibition for (a) Ag-SBA-15, (b) Ag-Ti-SBA-15 and (c) MM-Ag-Ti-SBA-15 

against Staphylococcus aureus.ATCC 6538 
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Figure 5.73: Zones of inhibition for (a) Ag-SBA-15, (b) Ag-Ti-SBA-15 and (c) MM-Ag-Ti-SBA-15 

against Pseudomonas aeruginosa ATCC 15442 

 

The visible rings around the central wells represent the zone in which bacterial 

growth has been inhibited, which is measured using ImageJ software, calibrated to a 

ruler. The summary of the measure zones, normalised to bulk silver content, is shown 

in figure 5.74. 

 

Figure 5.74: ZoI plots for Ag-SBA-15, normalised to bulk Ag content 

 

That the lowest loading material appears to have the greatest activity of the series 

can be attributed to the limiting effect of silver ion diffuson through the agar, resulting 

in diminished results for the higher loaded samples. 
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A similar trend is witnessed for the Ag-Ti-SBA-15 materials, as evidenced in 

figure 5.75; 

 

Figure 5.75: ZoI plot for Ag-Ti-SBA-15, normalised to bulk Ag content 

 

 That the lowest loadings exhibit this level of antibacterial efficacy is not only 

indicative of the antibacterial potency of silver ions, but also the effective delivery from 

the nanocomposites.  
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Figure 5.76: ZoI plot for Ag-MM-Ti-SBA-15, normalised to bulk Ag content. 

 

 The results from the hierarchically porous material follow a similar general trend, 

although the lowest loading material was found to exhibit slightly lower than expected 

zone sizes. The semi-quantitative nature of these zone of inhibition tests, however, 

lessens the significance of the results when compared with the logarithmic reduction 

results later on. A summary of these zones, normalised to total silver content is 

summarised in figure 5.77. 

  

Figure 5.77: Zones of inhibition against (a) S.aureus and (b) P.aeruginosa. 
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 From these plots, the hierarchically porous materials appear to exhibit a slight 

performance increase against both organisms at lower loadings, with the exception of 

0.28 % MM-Ag-Ti-SBA-15, which appears to be less effective per unit mass than the 

mesoporous materials. This could be due to the relatively small zones exhibited by 

these loadings, in which small errors may have a greater effect on the final calculated 

zone. 

 

5.2.2.2.2. Minimum bactericidal concentration 

 Study of the lower limits of antibacterial activity was performed to determine 

suitable concentration ranges to study during the logarithmic reduction experiments 

which would allow for a reasonable time period to study.  

This was performed as described in section 2.5.2 and involved preparing solutions 

containing the target organism at a known concentration, along with the test material at 

a variety of concentrations to determine a break point, below which the material was 

not considered antibacterial. These solutions were incubated with agitation at 37
o
C for 

24 hours, before being plated out and the bacterial colonies counted. 

The solutions were made using a serial dilution technique and the materials were 

dispersed into a solution of microorganisms in the following concentrations; 1, 0.1, 

0.01, 0.001 and 0.0001 mg/ml. The materials were in contact with the microorganisms 

over a 24 hour time frame, at which point a sample of the solution was taken and spread 

onto an agar plate before being incubated at 37
o
C prior to counting the viable 

organisms. 
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Figure 5.78 Logarithmic reductions for 0.3% Ag-SBA-15 at a range of concentrations after 24 

hours. 

 

The material studied was 0.3% Ag-SBA-15 (figure 5.78), so as to provide a lower 

limit for MBC of the SBA-15 based materials. At concentrations of 0.001 and below, 

the material falls below the 3-fold log reduction threshold which is the standard 

requirement for a sample to be considered an antibacterially active material. 

 

5.2.2.2.3. Validity of neutralisation 

In order to quantify the antibacterial activity of these materials as a function of 

time and correlate this to silver loading, a logarithmic reduction assay was required. 

This is a commonly used technique, involving adding a known number of 

microorganisms to the target material and determining the number of bacteria which are 

exterminated by plating out serial dilutions of the test solution at set time intervals. Due 

to the low concentrations of colonies required for counting purposes, serial dilution is 

required which can lead to possible inaccuracies during the process. It is for this reason 

that the samples are tested at least three times, for each time point. 

Prior to performing a quantitative logarithmic reduction assay on these materials, a 

neutraliser was required which was able to render the silver materials incapable of 

killing the target organisms, allowing for a snapshot of antibacterial activity at the 
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desired time points. For this, a solution of STS was examined as described in section 

2.5.2.3.  

STS is a solution of 1% Tween20, 0.85% sodium chloride and 0.4% sodium 

thioglycolate. Sodium thioglycolate is known to neutralise silver due to the high 

affinity of silver for thiol moieties.
59, 60

 The mechanism behind the antibacterial activity 

of silver is known to be connected with the interaction with thiol groups; silver ions and 

thiol groups in enzymes and proteins are a large part of the inactivation of said enzymes 

and proteins, leading to cell death. 

The STS agent was effective in neutralising the antibacterial effects of the silver-

silica materials, following 24 hours of contact, plus an incubation period, against both 

P.aeruginosa and S.aureus. The solution was therefore considered a viable option for 

the logarithmic reduction experiments. 

 

5.2.2.2.4. Logarithmic reduction 

Logarithmic reduction experiments allowed for a more quantitative representation 

of the synthesised materials and was performed as described in section 2.5.4. 10 mg of 

the each of the materials were agitated in a 1 ml solution of simulated body fluid and 

the target organism at 37
o
C and samples removed at set intervals in order to determine 

the viable count of living organisms at that point and obtain the reduction of bacteria as 

a function of time. 

Figure 5.79 displays the logarithmic reduction of viable cell count of S.aureus in 

the presence of silver loaded SBA-15 materials. 
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Figure 5.79: Logarithmic reduction of Staphylococcus aureus ATCC 6538 as a function of time in 

the presence of Ag-SBA-15, normalised to total silver content present. 

 

 There is an increasing antibacterial function with decreasing silver loading, when 

normalised to bulk silver content, which is consistent with the observed trends from 

silver ion dissolution profiles. This is an expected trend when considering that the silver 

ions are attributed with antibacterial functionality. The materials display a 3-fold log 

reduction in viable cell count within 2 hours of contact with the target organism, and all 

materials recorded a complete reduction in bacterial cells within 4 hours.  
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Figure 5.80: Logarithmic reduction of Staphylococcus aureus ATCC 6538 as a function of time in 

the presence of Ag-Ti-SBA-15, normalised to total silver content present. 

 

 Upon study of the logarithmic reductions for the silver loaded mesoporous titania 

grafted species (figure 5.80), we can observe a similar trend to that witnessed with the 

previous series. In this sample, however, there is a slight increase in the logarithmic 

reduction after 2 hours. Consideration of the silver dissolution profiles similarities, and 

the normalisation to bulk silver content, suggests the possibility of an enhanced 

antibacterial activity from the titania species. Titania has been shown to exhibit an 

antibacterial force of its own accord, due to the formation of core-hole species when 

excited by radiation of wavelengths of around 385 nm (UVA, band gap energy, Eg ≈ 

3.2 eV) and below, meaning that the material can be activated somewhat in the 

presence of natural light.
61

 This appearance of photochemically active species can 

perform oxidation reactions with cell components, such as coenzyme A, or produce 

reactive oxygen species which in themselves, can cause cell damage though redox 

reactions with prokaryotic and eukaryotic cells.
18, 61
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Figure 5.81: Logarithmic reduction of Staphylococcus aureus ATCC 6538 as a function of time in 

the presence of MM-Ag-Ti-SBA-15, normalised to total silver content present. 

 

 In figure 5.81, the logarithmic reduction function of silver loaded, titania coated, 

hierarchically porous silica based nanocomposites materials are presented. Further from 

the previous two profiles, it is evident that the identical trend is followed, with regards 

to increasing silver ion release resulting in an increase in cell morbidity. In the post 2 

hour mark, interestingly, the log reduction of viable cell count displays an approximate 

10-fold increase over the pure silica based materials. The possibility of an increasing 

silver release function resulting in an increase in antibacterial efficacy of this 

magnitude is present, however there also exists a prospect that this increase is also the 

result of the surface titania layer, with a more open and accessible structure, resulting 

from the introduction of macropores into the material, is enhancing the recorded 

bacterial morbidity function. 

 The viable count of the target organism reached a 3-fold reduction after 2 hours for 

all samples. For this reason, this data point was plot, normalised to total surface area of 

silver, calculated from average particle diameters determined by TEM analysis and 

mass of silver in the sample (figure 5.82). 
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Figure 5.82: Logarithmic reductions after 120 minutes, normalised to total surface area. 

 

 It was decided to attempt to determine bactericidal effects arising from inorganic 

support species, and subsequent ROS generation or photocatalysed redox reactions, and 

distinguish them from the primary mode of action, silver ion release. In order to assess 

this, 10 mg of the three supports, with and without silver, were introduced to 1 ml 

solutions of Staphylococcus aureus in simulated body fluid solution, incubated for 2 

hours at 37
o
C, and the viable cell count recorded and logarithmic reduction determined 

(figure 5.83). As an additional point of interest, these materials were studied in the 

presence, and absence, of natural light.  
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Figure 5.83: Logarithimic reduction of Staphylococcus aureus 

 

 It is observed in the recorded reduction functions for these materials, that there is 

indeed a small contribution towards antibacterial efficacy from the support materials 

developed. MM-Ti-SBA-15 exhibited more than a 10-fold decrease in viable cell count, 

when exposed to visible light, whilst the mesoporous material recorded slightly under a 

10-fold reduction. These comparisons alone highlight the effect of the open 

macroporous structure and the advantageous nature of the subsequent nanostructured 

support. When compared with the pure SBA-15 material, the increase in antibacterial 

function indicates the secondary antibacterial function awarded to the grafted material 

by titania layer coverage. This trend can additionally be observed within the silver 

loaded species, wherein an increase in total logarithmic reduction, normalised to silver 

content, displays a similar increase in efficacy to those recorded by support materials 

alone. 

 A secondary point of interest within the results of these experiments, lies within 

the decrease in antibacterial function exhibited in the absence of a source of light. Upon 
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removal of electromagnetic radiation, the reduction in cell count is diminished, 

suggesting that the antibacterial strength follows suit. That there is witnessed a 

reduction in viable cells even in the absence of light could be attributed to a base 

formation of reactive oxygen species which, although enhanced by prhotocatalytic 

means in the presence of light, exists across all series as an intrinsic property of these 

materials in solution.
62

 Additionally, oxide based support materials on the nanoscale 

have been found to exhibit cellular toxicity as a result of interference with, and damage 

of, cell membranes as a function of size and independent from ROS generation, 

suggesting materials in this size regime can disrupt cells and cause cell death.
63

 

 

5.3. Conclusions 

 Mesoporous silica based materials were synthesised using an organic framework 

templating mechanism which is widely known and used within many materials 

chemistry associated fields. Further modification to these oxide supports was 

introduced in the form of macroporosity, enhancing the external surface area, and a 

grafted layer of titanium dioxide, believed to be in the form of anatase, introduced via 

sequential anhydrous grafting procedures. The produced layer of titania was found to be 

roughly 2.5 nm in thickness from nitrogen adsorption studies. 

Silver particles were found to be deposited onto oxide based supports via a thermal 

treatment process with poor monodispersity, forming particulate silver over a large size 

range. The form of the silver was mainly silver metal, although contributions from 

silver carbonate, attributed to surface silver carbonate formation, were observed. 

Introduction of silver into the macroporous system allowed for a greater degree of 

monodispersity over the silver nanoparticle size regime, with a greater percentage of 

silver particles observed within the mesopore framework by electron micrography. 

Larger agglomerates of silver particles were observed as bulk loading increased, 

introducing a greater range of particle sizes and altering the dissolution kinetics. 

To assess the suitability of these materials for application within the desired field, 

the materials were subjugated to a series of performance tests. The first of these was to 

study the silver ion release kinetics, and correlate them with determined particle 
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characteristics. The materials were observed to exhibit favourable silver release rates 

for lower bulk silver loadings, initially attributed to slight decreases in overall silver 

particle diameter. Upon normalisation of the dissolution profiles to calculated total 

surface areas, it became clear that these release kinetics were indeed affected by 

particle dispersion, as predicted. Silver carbonate species did not increase dissolution 

rates to any significant degree. 

The materials antibacterial efficacy was determined via a series of microbiological 

assays, including zone of inhibition testing, which reported clear inhibition for all 

samples monitored, with a zone size dependant on silver loading. Minimum bactericidal 

concentration, determined for the least active material, reported that the material will 

exhibit antibacterial action beyond a 3-fold log reduction at concentration beginning 

between 0.01 and 0.001 mg/ml. Further quantitative analysis of the antibacterial action 

as a function of time indicated a silver loading dependant efficiency, favourable 

towards lower loadings, and hence smaller particles, as suggested by the results of the 

silver ion dissolution experiments. Further to this, effects outside and beyond the 

actions associated with silver ion release were studied, in order to determine 

advantageous performances from the synthesised support materials. From these studies, 

it was determined that the macroporous materials, with a surface grafted layer of titania, 

exhibited favourable antibacterial efficacy when compared to pure silica SBA-15 and 

titania enhanced mesoporous SBA-15, due to improved silver particle dispersities and 

hence silver ion release rates. The macroporous materials were also the most potent 

antibacterial agents in the absence of silver particles, recording over a ten-fold decrease 

in viable cell count in the presence of light.  

 

5.4 References  

1. J. J. Buckley, A. F. Lee, L. Olivi and K. Wilson, Journal of Materials Chemistry, 

2010, 20, 8056-8063. 

2. J. J. Buckley, P. L. Gai, A. F. Lee, L. Olivi and K. Wilson, Chemical 

Communications, 2008, 4013-4015. 

3. C. Kneuer, M. Sameti, E. G. Haltner, T. Schiestel, H. Schirra, H. Schmidt and C.-

M. Lehr, International journal of pharmaceutics, 2000, 196, 257-261. 



5. Titania Grafted Mesoporous Silica Materials 

 

296 

 

4. A. Galarneau, H. Cambon, F. Di Renzo and F. Fajula, Langmuir : the ACS journal 

of surfaces and colloids, 2001, 17, 8328-8335. 

5. C. P. Vinod, K. Wilson and A. F. Lee, Journal of Chemical Technology and 

Biotechnology, 2011, 86, 161-171. 

6. J. Dhainaut, J.-P. Dacquin, A. F. Lee and K. Wilson, Green Chemistry, 2010, 12, 

296-303. 

7. K. N. Rao, A. Sridhar, A. F. Lee, S. J. Tavener, N. A. Young and K. Wilson, 

Green Chemistry, 2006, 8, 790-797. 

8. A. M. Busuioc, V. Meynen, E. Beyers, P. Cool, N. Bilba and E. F. Vansant, 

Catalysis Communications, 2007, 8, 527-530. 

9. W. Wang and M. Song, Microporous and Mesoporous Materials, 2006, 96, 255-

261. 

10. W. Wang and M. Song, Materials Research Bulletin, 2006, 41, 436-447. 

11. X. Chen, X. Cheng, A. H. Soeriyadi, S. M. Sagnella, X. Lu, J. A. Scott, S. B. 

Lowe, M. Kavallaris and J. J. Gooding, Biomaterials Science, 2014, 2, 121-130. 

12. I. I. Slowing, J. L. Vivero-Escoto, C.-W. Wu and V. S.-Y. Lin, Advanced drug 

delivery reviews, 2008, 60, 1278-1288. 

13. I. I. Slowing, B. G. Trewyn, S. Giri and V. Y. Lin, Advanced Functional Materials, 

2007, 17, 1225-1236. 

14. J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye and Y. Shi, Microporous and Mesoporous 

Materials, 2008, 116, 394-399. 

15. S.-W. Song, K. Hidajat and S. Kawi, Langmuir : the ACS journal of surfaces and 

colloids, 2005, 21, 9568-9575. 

16. J. Dhainaut, J.-P. Dacquin, A. F. Lee and K. Wilson, Green Chemistry, 2010, 12, 

296-303. 

17. J. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D. J. Pochan and S. I. Shah, Small, 

2007, 3, 799-803. 

18. K. Page, R. G. Palgrave, I. P. Parkin, M. Wilson, S. L. P. Savin and A. V. 

Chadwick, Journal of Materials Chemistry, 2007, 17, 95-104. 

19. X. You, F. Chen, J. Zhang and M. Anpo, Catal Lett, 2005, 102, 247-250. 

20. C. W. Dunnill, K. Page, Z. A. Aiken, S. Noimark, G. Hyett, A. Kafizas, J. Pratten, 

M. Wilson and I. P. Parkin, Journal of Photochemistry and Photobiology A: 

Chemistry, 2011, 220, 113-123. 

21. L. A. Brook, P. Evans, H. A. Foster, M. E. Pemble, A. Steele, D. W. Sheel and H. 

M. Yates, Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 

53-63. 

22. T. Bala, G. Armstrong, F. Laffir and R. Thornton, Journal of Colloid and Interface 

Science, 2011, 356, 395-403. 

23. L. Zhao, H. Wang, K. Huo, L. Cui, W. Zhang, H. Ni, Y. Zhang, Z. Wu and P. K. 

Chu, Biomaterials, 2011, 32, 5706-5716. 



5. Titania Grafted Mesoporous Silica Materials 

 

297 

 

24. T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, FEMS Microbiology 

Letters, 1985, 29, 211-214. 

25. C. M. A. Parlett, D. W. Bruce, N. S. Hondow, M. A. Newton, A. F. Lee and K. 

Wilson, ChemCatChem, 2013, 5, 939-950. 

26. C. M. A. Parlett, D. W. Bruce, N. S. Hondow, A. F. Lee and K. Wilson, ACS 

Catalysis, 2011, 1, 636-640. 

27. D. Tian, G. Yong, Y. Dai, X. Yan and S. Liu, Catal Lett, 2009, 130, 211-216. 

28. M. Boutros, J.-M. Trichard and P. Da Costa, Applied Catalysis B: Environmental, 

2009, 91, 640-648. 

29. A. Doadrio, E. Sousa, J. Doadrio, J. Pérez Pariente, I. Izquierdo-Barba and M. 

Vallet-Regı, Journal of Controlled Release, 2004, 97, 125-132. 

30. Z. Luan, M. Hartmann, D. Zhao, W. Zhou and L. Kevan, Chemistry of materials, 

1999, 11, 1621-1627. 

31. M. B. Yue, Y. Chun, Y. Cao, X. Dong and J. H. Zhu, Advanced Functional 

Materials, 2006, 16, 1717-1722. 

32. S. Ruthstein, V. Frydman and D. Goldfarb, The Journal of Physical Chemistry B, 

2004, 108, 9016-9022. 

33. S. Ruthstein, V. Frydman, S. Kababya, M. Landau and D. Goldfarb, The Journal of 

Physical Chemistry B, 2003, 107, 1739-1748. 

34. M. Impéror-Clerc, P. Davidson and A. Davidson, Journal of the American 

Chemical Society, 2000, 122, 11925-11933. 

35. P. Petrov, J. Yuan, K. Yoncheva, A. H. E. Müller and C. B. Tsvetanov, The 

Journal of Physical Chemistry B, 2008, 112, 8879-8883. 

36. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, Journal of the 

American Chemical Society, 1998, 120, 6024-6036. 

37. J. Rouquerol, F. Rouquerol and K. S. Sing, Adsorption by powders and porous 

solids, Academic press, 1998. 

38. H. W. Lu, S. H. Liu, X. L. Wang, X. F. Qian, J. Yin and Z. K. Zhu, Materials 

Chemistry and Physics, 2003, 81, 104-107. 

39. G. I. Waterhouse, G. A. Bowmaker and J. B. Metson, Physical Chemistry 

Chemical Physics, 2001, 3, 3838-3845. 

40. G. Dai, J. Yu and G. Liu, The Journal of Physical Chemistry C, 2012, 116, 15519-

15524. 

41. C.-M. Yang, H.-A. Lin, B. Zibrowius, B. Spliethoff, F. Schüth, S.-C. Liou, M.-W. 

Chu and C.-H. Chen, Chemistry of materials, 2007, 19, 3205-3211. 

42. C. Parlett, D. W. Bruce, N. S. Hondow, M. A. Newton, A. F. Lee and K. Wilson, 

ChemCatChem, 2013, 5, 939-950. 

43. X. Nist, 1997. 

44. A. M. Ferraria, A. P. Carapeto and A. M. Botelho do Rego, Vacuum, 2012, 86, 

1988-1991. 



5. Titania Grafted Mesoporous Silica Materials 

 

298 

 

45. M. V. Landau, E. Dafa, M. L. Kaliya, T. Sen and M. Herskowitz, Microporous and 

Mesoporous Materials, 2001, 49, 65-81. 

46. X.-C. Guo and P. Dong, Langmuir : the ACS journal of surfaces and colloids, 

1999, 15, 5535-5540. 

47. I. Georgiadou, N. Spanos, C. Papadopoulou, H. Matralis, C. Kordulis and A. 

Lycourghiotis, Colloids and Surfaces A: Physicochemical and Engineering 

Aspects, 1995, 98, 155-165. 

48. R. Castillo, B. Koch, P. Ruiz and B. Delmon, Journal of Materials Chemistry, 

1994, 4, 903-906. 

49. G. Lassaletta, A. Fernandez, J. P. Espinos and A. R. Gonzalez-Elipe, The Journal 

of Physical Chemistry, 1995, 99, 1484-1490. 

50. R. Nyholm, N. Martensson, A. Lebugle and U. Axelsson, Journal of Physics F: 

Metal Physics, 1981, 11, 1727. 

51. C. M. A. Parlett, L. J. Durndell, A. Machado, G. Cibin, D. W. Bruce, N. S. 

Hondow, K. Wilson and A. F. Lee, Catalysis Today, 2014, 229, 46-55. 

52. A. Kirkland, D. Jefferson, D. Duff, P. Edwards, I. Gameson, B. Johnson and D. 

Smith, Proceedings of the Royal Society of London. Series A: Mathematical and 

Physical Sciences, 1993, 440, 589-609. 

53. A. Venezia, F. Liotta, G. Pantaleo, A. Beck, A. Horvath, O. Geszti, A. Kocsonya 

and L. Guczi, Applied Catalysis A: General, 2006, 310, 114-121. 

54. C. Xu, Y. Liu, B. Huang, H. Li, X. Qin, X. Zhang and Y. Dai, Applied Surface 

Science, 2011, 257, 8732-8736. 

55. T. L. Slager, B. J. Lindgren, A. J. Mallmann and R. G. Greenler, The Journal of 

Physical Chemistry, 1972, 76, 940-943. 

56. J. S. Hammond, S. W. Gaarenstroom and N. Winograd, Analytical Chemistry, 

1975, 47, 2193-2199. 

57. Y.-J. Lee, J. Kim, J. Oh, S. Bae, S. Lee, I. S. Hong and S.-H. Kim, Environmental 

Toxicology and Chemistry, 2012, 31, 155-159. 

58. W. Zhang, Y. Yao, N. Sullivan and Y. Chen, Environmental Science & 

Technology, 2011, 45, 4422-4428. 

59. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr and A. D. Russell, Letters in Applied 

Microbiology, 1997, 25, 279-283. 

60. J. R. Furr, A. D. Russell, T. D. Turner and A. Andrews, Journal of Hospital 

Infection, 1994, 27, 201-208. 

61. H. A. Foster, I. B. Ditta, S. Varghese and A. Steele, Applied microbiology and 

biotechnology, 2011, 90, 1847-1868. 

62. V. Brezov , S. Gab ov , D. Dvoranov  and A. Staško, Journal of Photochemistry 

and Photobiology B: Biology, 2005, 79, 121-134. 

63. K. Yu, C. Grabinski, A. Schrand, R. Murdock, W. Wang, B. Gu, J. Schlager and S. 

Hussain, J Nanopart Res, 2009, 11, 15-24. 



6. Conclusions and Future Work 

299 

 

 

 

 

 

 

Chapter 6: Conclusions and 

Future Work 

 

  



6. Conclusions and Future Work 

300 

 

6. Conclusions and Future Work 

 

6.1. Conclusions 

 Silver remains a widely used and key material in the fight against hospital acquired 

infections such as MRSA. While improvements in hygiene standards and prevention of 

patient cross contamination have led to a decrease in the number of reported HAIs in 

the UK, global infection rates are high, morbidity rates from HAIs increasing, and 

conventional antibiotic treatments are proving increasingly ineffective. New 

presentation formats of silver-containing functional materials with lower silver content 

(and hence reduced patient concern and environmental impact) yet superior bactericidal 

action, and easier clinical application, therefore remain in great demand.  

 Silver has been used as an antibacterial agent for centuries and has regained the 

interest of the scientific and medical communities recently due to the rise of these so-

called ‘superbugs’. The use of silver carries the benefits of low toxicity at low 

concentrations, as well as the intrinsic ability to exhibit broad spectrum antimicrobial 

activity, with no bacterial resistance yet reported. Silver has therefore found use in 

many commercial wound dressings, and a protocol for controlling silver release to 

minimal levels and regulating this to a degree so as to extend activity lifetimes. 

 Silver-silica core shell devices, synthesised via a reverse micelle microreactor 

process, have shown admirable properties for these applications, possessing a wide 

array of tuneable properties in the form of monodisperse silver nanoparticle of 

adjustable diameter, adjustable silica shell thicknesses and the ability to enhance the 

intrinsic porosity within the silica matrix. From the nanocomposites materials, a slow 

and steady release of silver ions is released, through an oxidative dissolution process 

from the surface of silver nanoparticle cores, which suggest potential material lifetimes 

of the order of months. The composites exhibit a high degree of antimicrobial activity 

against two strains of bacteria, representing Gram-positive and Gram-negative 

organisms, in the form of Staphylococcus aureus and Pseudomonas aeruginosa. There 

appears to be some slight effect upon silver release rates with decreasing silver core 

size, likely due to higher silver surface areas being prevalent within smaller silver cored 

materials and this trend is reflected within the antimicrobial results. Furthermore, larger 
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silica shells retard silver release, slowing kill rates, attributed to inhibited diffusion 

through larger silica shells. Core-shell nanocomposites with the largest shells exhibited 

the slowest rate of silver release, but still achieved the industry target minimum of a 

three-fold log reduction (99.9 %) in viable bacterial cell count between 2 and 4 hours of 

contact time with target organisms. This suggests that the lifetime of these slow 

releasing silver ion delivery systems can indeed be increased through control over 

composite dimensions, with larger silica shells retarding silver release and conversely 

increasing operational lifetime, and yet maintain a high degree of antimicrobial activity. 

A combination of thermal followed by base etching protocol using a PVP 

protecting agent designed to open intrinsic pores and enhance silver release rates and 

bacterial kill rates was unsuccessful in augmenting the antimicrobial efficacy or silver 

release rate from core-shell nanocomposites as hoped. Thermal treatment in the 

presence of PVP led to silver release rates improving alongside associated antibacterial 

performance, although base etching led to falling release rates and antibacterial 

performance, despite higher surface areas and increased surface silver visibility by XPS 

suggesting a decrease in silica network density. 

 Core-shell devices designed with intrinsic mesopores through the use of an organic 

template were also prepared. Silver metal nanoparticles were observed following a 

chemical reduction via hydrazine, which inhibited the formation of silver bromide. 

Aniline and formaldehyde were also explored as safer reductants, but both were unable 

to suppress silver bromide formation. Increasing the bulk silver loading had no effect 

upon the resultant size of silver nanoparticles, which were consistently around 15 nm, 

and hence enhanced release rates and antimicrobial activity solely reflected the silver 

content not morphology. A mesitylene porogen was utilised to enhance silver release 

and antibacterial function through increasing the diameter of mesopores within the 

silica shell. The resultant pore size, determined from porosimetry, increased linearly 

with mesitylene concentration up to 17 mM, affording an average pore diameter of 3.9 

nm. Release rates and associated antimicrobial function of silver nanoparticle cores 

within these enlarged pore structures improved with pore diameter, indicative of 

accelerated silver ion diffusion as a consequence of a higher surface area of accessible 

silver.  

Considering the two critical variables of silver loading and mesopore diameter, 

suggests that high silver loadings and attendant large mesopores should afford a 
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nanocomposite with a long lifetime (due to a large silver reservoir) and faster silver 

release rates due to increased exposure of surface silver. Stable core-shell composite 

structures with silver loading approaching 10 wt. %, were developed, which may offer 

significant advantages in terms of production costs compared with commercial 

antimicrobial additives. It is estimated that for a standard 40m batch of polyurethane 

foam wound dressing, the cost of materials for manufacture of these mesoporous core 

shell materials is roughly £150. Commercial products such as Reliameds silver alginate 

dressing and Smith and Nephews Acticoat range cost between an estimated £750 and 

£2400 for an equivalent amount of dressing, which would suggest these materials have 

market potential. Further to this, a much lower loading of silver can be afforded, due to 

retarded silver delivery, reducing leached silver ion concentration (as much as ~400 

ppm after 10 days for Acticoat 7) into wound environments without compromising 

additive lifetime. 

 Dual-functional antimicrobials in the form of meso- and hierarchical silica-titania 

nanocomposites supports, loaded with silver nanoparticles through a wet impregnation 

method were prepared and the material properties assessed. These materials were 

compared to one another and it was concluded that macroporous, titania grafted 

mesoporous silica not only facilitates the production of smaller metal nanoparticles, 

which themselves exhibited superior silver release rates and antimicrobial 

functionalities, but also possess an inherent improvement in antimicrobial activity in 

the absence of loaded silver nanoparticles due to titania surface reactions, including 

ROS generation. 

 The nature of the produced silver particles was found to be strongly affected by the 

support material, with mesoporous silica structures favouring silver metal 

nanoparticles, while the more acidic titania supports promoted carbonate formation 

upon the surface of the silver nanoparticles, determined by XPS analysis. Hierarchically 

porous, titania grafted SBA-15 was observed to promote the formation of silver 

nanoparticles of the highest dispersity, forming the majority of particles below 10 nm 

for all materials, with an increasing number of agglomerates appearing in higher 

loadings. These materials were seen to exhibit the highest carbonate content, consistent 

with the assignment of carbonate as a surface species. This surface carbonate species 

was ultimately not found to affect silver ion release rates in any way, with metal and 

carbonate structures leaching silver ions at near identical rates. Average particle size of 
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the impregnated nanoparticles, however, was a major factor in silver release rates, with 

release kinetics of smaller particles observed to be vastly improved when compared 

with larger silver particles. This trend was also observed within the antibacterial 

studies, with smaller particles exhibiting higher effective antimicrobial kill rates.  

 

6.2. Future Work 

 Incorporation of these materials into wound dressings, to ensure compatibility with 

polyurethane foam dressing production process and assess material functionality within 

commercial foams would be a vital process going forwards. Initial tests performed with 

an experimental set-up simulating foam production suggested the incorporation of all 

materials bore no significant detrimental effect on foam stability, which is positive 

going forwards that these materials can be included within the polymer foam network 

without damaging the excellent properties of the dressings which make them so 

attractive as wound care management systems.  

With mesoporous core-shell devices possessing the greatest potential, considering 

ease of manufacture, lifetime, ability and cost, more research into these materials would 

be of great interest. Investigation of further tuning of material properties, such as 

eventual average silver core size could lend further control to silver release rates and 

minimise loaded silver content/material content within eventual commercial products. 

Additional functionality, in the form of adjusting the inorganic surrounding matrix of 

the shell is of great interest. It was seen in Chapter 5, that titanium dioxide surfaces 

enhance the antimicrobial activity of the produced materials, hence applying a surface 

layer of titania, or incorporating titanium dioxide into the shell or even replacing the 

entire shell with TiO2 would make for an interesting materials and applications study 

for their use in the field of antimicrobials. Calcium phosphate based inorganic 

materials, such as hydroxyapatite, or Bioglass-type silica composites, also raise an 

interesting option for pursuit, with these mineral-incorporated silicas being more 

biocompatible and having been shown to aid wound healing rates. 

 


