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Abstract—A novel multichannel spectral factorization algo-
rithm is illustrated in this paper. This new algorithm is based
on an iterative method for polynomial eigenvalue decomposi-
tion (PEVD) called the second order sequential best rotation
(SBR2) algorithm [1]. By using the SBR2 algorithm, multichannel
spectral factorization problems are simply broken down to a
set of single channel problems which can be solved by means
of existing one dimensional spectral factorization algorithms.
In effect, it transforms the multichannel spectral factorization
problem into one which is much easier to solve. The proposed
algorithm can be used to calculate the approximate spectral factor
of any parahermitian polynomial matrix. Two worked examples
are presented in order to demonstrate its ability to find a valid
spectral factor, and indicate the level of accuracy which can be
achieved.

I. INTRODUCTION

Spectral factorization plays a crucial role in constructing a
casual system which corresponds to a given spectral density
function. The earliest applications are in the solution of control
system and linear estimation problems. In recent years, it has
attracted lots of interest in the areas of digital signal processing
and communications, such as designing minimum phase filters,
quadrature-mirror filter (QMF) bank [2], and calculating the
optimum transmit filter matrices for the precoding, and the
receive filter matrices for the equalization, of multiple-input
and multiple-output (MIMO) communication systems [3]. A
number of algorithms for single channel spectral facotorization
were developed during the past decades, such as the Newton-
Raphson based method proposed by Wilson [4], and the
spectral factorization algorithms published by Janashia and
coauthors [5]–[7]. A paper written by Sayed [8] presents a
survey of spectral factorization methods including the Bauer
method, the Schur algorithm, the Levinson-Durbin algorithm,
and techniques based on the Riccati equation, the Kalman filter
and so on. The paper written by Goodman [9] provides a
useful performance comparison between the Bauer and Wilson
methods. Most of these spectral factorization algorithms, with
the exception of those due to Wilson and Janashia, do not
extend to the multichannel situation. Wilson’s algorithm seems
to provide a viable approach to the multichannel spectral
factorization problem in terms of stability and reliability but
is reputed to run into problems when the number of channels
grows too big.

In this paper we present an entirely different approach to
the multichannel spectral factorization problem. It is based
on an application of the SBR2 algorithm [1] to diagonalise
the cross-spectral density matrix by means of a generalised
similarity transformation which is entirely lossless.

Throughout this paper, polynomial matrices and vectors
are denoted by underscored upper case bold characters and
underscored lower case bold characters respectively. The no-
tation of ∼ upon a polynomial matrix is used to denote
the paraconjugate operation of a polynomial matrix, and the
superscripts ∗, T and H stand for complex conjugate, matrix
transpose and Hermitian transpose operation respectively. Im
represents the m×m identity matrix. Given a m×n polynomial
matrix X(z) with the indeterminate variable z−1, it can be
simply expressed as

X(z) =

T2∑
τ=T1

X(τ)z−τ =


x11(z) x12(z) · · · x1n(z)
x21(z) x22(z) · · · x2n(z)

...
...

. . .
...

xm1(z) xm2(z) · · · xmn(z)

 ,
(1)

where τ ∈ Z, T1 ≤ T2, X(τ) ∈ Cm×n , and xkl(z) is the
polynomial matrix entity which can be expanded as

xkl(z) =

T2∑
τ=T1

xkl(τ)z−τ . (2)

The effective polynomial order of X(z) is given by T2 − T1.

In many signal processing applications involving multiple
sensors, given a data vector x[n], the space-time covari-
ance matrix is represented by R(τ) = E

{
x[n]xH[n− τ ]

}
,

in which E {·} denotes the expectation. After applying z-
transform to it, we get the cross-spectral density (CSD) matrix
R(z) =

∑
τ R(τ)z−τ . Note that the CSD matrix above is

a parahermitian polynomial matrix, which satisfies R̃(z) =
R(z). Here R̃(z) is the paraconjugate of R(z), and it can
be defined as R̃(z) = RH(1/z). i.e. Applying Hermitian
transpose to the polynomial coefficient matrices and time-
reversing all the elements in R(τ).

The paper is organised as follows. The next section in-
troduces the one dimensional spectral factorization problem;
Section III describes the SBR2 algorithm; Section IV outlines
the new multichannel spectral factorization algorithm; Simula-
tion results are presented in Section V and some conclusions
are drawn in Section VI.

II. ONE DIMENSIONAL SPECTRAL FACTORIZATION

The one dimensional spectral factorization problem can be
stated briefly as follows. Given a data sequence g(n), derive
an associated causal sequence h(n) such that

g(n) = h(n)⊗ h∗(−n) , (3)



or equivalently

G(z) = H(z)H∗(1/z) = G+(z)G−(z) , (4)

where ⊗ denotes the convolution operation. Both g(n) and
h(n) represent discrete digital sequences. Note that the se-
quence g(n) constitutes the autocorrelation of h(n), and only
when g(n) is a symmetric sequence which satisfies g(n) =
g∗(−n), can it be factored as in (3). Equation (4) gives the
z-transform of equation (3), and it can be expressed as the
product of an ’outer’ spectral factor G+(z) and an ’inner’
spectral factor G−(z) [5]. Finding the spectral factor of g(n),
corresponds to evaluating all the roots of G(z) expressed
as proper polynomial in z. For example, considering the z-
transform of a finite sequence g(n) of length L we have

G(z) =

L−1∑
n=0

g(n)z−n = g(0)+g(1)z−1+· · ·+g(L−1)z−(L−1),

(5)
which can be written in the form

G(z) =
g(0)zL−1 + g(1)zL−2 + · · ·+ g(L− 1)

zL−1
(6)

which constitutes a proper polynomial as required. The zeros
of this polynomial can be easily evaluated in MATLAB. Note
that to form the minimum phase factor, corresponding to a
stable filter, only the roots inside the unit circle, |z| < 1 and
half of those roots on the unit circle, |z| = 1 can be chosen
[10]. Then the problem remains to find h(n) from the selected
roots. In this paper, the one dimensional spectral factorization
is calculated using the Newton-Raphson method, as adopted
for the spf(·) function provided in the MATLAB polynomial
matrix toolbox from PolyX [11].

III. THE SBR2 ALGORITHM

The second order sequential best rotation (SBR2) algorithm
provides a powerful iterative technique for diagonalising a
parahermitian polynomial matrix, such as the CSD matrix
mentioned above. It can generate optimal transforms for the
problems of designing precoding and equalisation filters for
MIMO communication systems [12], subband coding [13] etc.
Given an m ×m parahermitian polynomial matrix R(z) the
SBR2 algorithm implements a transformation of the form

H(z)R(z)H̃(z) ≈ D(z) , (7)

where D(z) is (ideally) a diagonal polynomial matrix,
and H(z) is a paraunitary matrix so that H(z)H̃(z) =
H̃(z)H(z) = Im.

Equation (7) represents the diagonalization of a para-
hermitian polynomial matrix through pre-multiplication by
a paraunitary polynomial matrix and post-multiplication by
its paraconjugate. This can be considered as a paraunitary
similarity transformation. Each iteration of SBR2 algorithm
applies a single elementary paraunitary matrix, comprising
a simple delay operator and an elementary Jacobi rotation,
and is used to eliminate a pair of dominant off-diagonal
polynomial coefficients. Let P(i)(z) and Q(i)(θ, φ) represent
the elementary delay and rotation matrices respectively, at
the i-th iteration. The elementary paraunitary matrix at this
iteration then takes the form

E(i)(z) = Q(i)(θ, φ)P(i)(z) , (8)

where θ and φ are parameters which define the elementary
rotation. The algorithm continues until all the off-diagonal
energy (L2 norm) has been transferred onto the diagonal of the
coefficient matrix of order zero. Assuming that the algorithm
has converged to sufficient accuracy after N times iterations,
the generated paraunitary polynomial matrix is given by

H(z) = E(N)(z) · · ·E(2)(z)E(1)(z) . (9)

Further details can be found in [1].

IV. MULTICHANNEL SPECTRAL FACTORIZATION

The proposed multichannel spectral factorization starts by
diagonalising the input parahermitian polynomial matrix using
the SBR2 algorithm. This process breaks the multichannel
problem down into a set of distinct single channel problems.
Each polynomial element in the diagonal matrix defines a
one dimensional spectral factorization problem which can be
accurately solved using, for example, Wilson’s algorithm. In
essence, the SBR2 algorithm builds a bridge between multi-
channel and single channel spectral factorization. The resulting
outer (inner) spectral factors of the diagonal matrix are then
used to construct the spectral factor of the input parahermitian
polynomial matirx. As the polynomial orders of H(z) and
D(z) may potentially increase with each iterative paraunitary
transformation in SBR2 algorithm, the computed spectral
factors can accumulate time delays which are unnecessarily
large. However, when the outer and inner spectral factors
are multiplied together, such delays cancel and the resulting
parahermitian polynomial matrix is none the less accurate. This
reflects a fundamental indeterminacy in spectral factorization
whereby if R+(z) is a valid outer spectral factor of R(z)
so also is R+(z)P(z) where P(z) represents any paraunitary
polynomial matrix which preserves the essential properties
associated with an outer spectral factor. This includes simple
examples such as P(z) = zNI, P(z) = Q where Q is a simple
unitary matrix, or the case in which P(z) takes the form of a
diagonal matrix with each entry given by a power of z which
need not be the same for all entries.

Outline of algorithm

After the input parahermitian polynomial matrix R(z) is
diagonalized as shown in equation (7), each entry within D(z)
can be expressed as the product of its outer and inner spectral
factors, and so we may write

D(z) = diag{d1(z), d2(z), · · · , dm(z)} =

diag{d+1 (z), d+2 (z), · · · , d+m(z)}diag{d−1 (z), d−2 (z), · · · , d−m(z)}
= D+(z)D−(z) ,

(10)

where d+i (z) and d−i (z) are the outer and inner spectral factors
of di(z) respectively, i ∈ {1, 2, · · · ,m}. By applying the
inverse decomposition to equation (7), we get

R(z) ≈ H̃(z)D(z)H(z) , (11)

and on substituting (10) into (11), this equation can be rewrit-
ten as

R(z) = R+(z)R−(z) ≈ H̃(z)D+(z)D−(z)H(z) , (12)



where R+(z) and R−(z) denote the final outer and inner
spectral factors of R(z) respectively. Therefore, R+(z) can be
estimated as H̃(z)D+(z), and R−(z) as D−(z)H(z) which
is the paraconjugate of H̃(z)D+(z).

V. SIMULATION RESULTS

In order to demonstrate this method, the 2×2 parahermitian
polynomial matrix example used by Janashia [5] has been
tackled using our algorithm. In this example we have

R1(z) =

[
2z−1 + 6 + 2z 7z−1 + 22 + 11z

11z−1 + 22 + 7z 38z−1 + 84 + 38z

]
. (13)

The SBR2 algorithm was used to diagonalize R1(z) with
a suitable trim function [1] to eliminate any redundant zero
coefficients. The resulting diagonal polynomial matrix D1(z)
is shown by means of the stem plot in Fig. 1, corresponding
to the numerical result

D1(z) =

[
40z−1 + 90 + 40z 0

0 −0.01z−1 + 0.03− 0.01z

]
.

(14)
This confirms that the input R1(z) is almost generically rank
deficient but not quite. Accordingly the inner spectral factor
D−1 (z) obtained by two separate applications of the spf(·)
function is

D−1 (z) =
[

4.9 + 8.1z 0
0 −0.077 + 0.14z

]
. (15)

These results are all quoted to the standard accuracy given
by PolyX. The final inner spectral factor R−1 (z) obtained by
forming the product D−1 (z)H1(z) is given by

R−1 (z) =

[
2.2729z8 + 0.8964z9 7.7568z8 + 4.8817z9

−0.1317z8 + 0.0748z9 0.0402z8 − 0.0163z9

]
.

(16)

The results in (16) only show the coefficient values for z8
and z9 which are dominant. The stem plot in Fig. 2 depicts all
the coefficients from order 0 to order 21. As can be seen, the
spectral factor generated has lots of very small values which
are effectively zero. In theory, if the polynomial matrix goes
from order −t to t, the spectral factor should be either from
order 0 to t or −t to 0. In our case, the polynomial order
of the spectral factor was broadened due to the paraunitary
similarity transformation in SBR2 algorithm. Truncating the
very small coefficients was found to have very little impact
on the accuracy of the reconstituted parahermitian polynomial
matrix (almost identical to R1(z) formed by the product of
these spectral factors).

The accuracy of the proposed algorithm was assessed by
calculating the energy difference between the input paraher-
mitian polynomial matrix and the corresponding polynomial
matrix R′1(z) generated by the product R+

1 (z)R−1 (z). The
energy of a polynomial matrix is defined here as the sum of
the squared Frobenius norm of its coefficient matrices. This
takes the form

‖R(z)‖F
2

=
∑
τ

m∑
k=1

m∑
l=1

|rkl(τ)|2 , (17)

where rkl(τ) denotes the element in the k-th row and l-th
column of the coefficient matrix for z−τ , k, l ∈ {1, 2, · · · ,m}.
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Fig. 1. The diagonalised polynomial matrix for example (13)
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Fig. 2. The inner spectral factor for example (13)

For the example problem in (13), the input energy E1 is given
by

E1 = ‖R1(z)‖F
2 ≈ 11296 , (18)

whereas the energy difference ∆E1 is computed as

∆E1 = ‖R1(z)−R′1(z)‖F
2 ≈ 3.95× 10−5 . (19)

The algorithm has been tested further by means of another,
more realistic example. A 3 × 5 MIMO propagation channel
with fast fading was modelled. The convolutive mixing was
represented by a 5 × 3 polynomial matrix with coefficients
selected randomly from a uniform distribution in the range
(−1, 1). The source signals were represented by independent,
identically distributed sequences for which each sample was
assigned the value ±1 with probability 1/2. Gaussian random
noise was added to the received signals with a signal-to-
noise ratio (SNR) of 2.55 dB in the numerical experiment
reported here. The CSD matrix R2(z) computed from the
received signals is plotted in Fig. 3 with polynomial order of
14. The SBR2 algorithm was applied, leading to the diagonal
matrix D2(z) plotted in Fig. 4. The inner spectral factor
R−2 (z) generated by the product of D−2 (z)H2(z), and suitably
trimmed, is shown in Fig. 5.

The reconstituted parahermitian polynomial matrix given
by R′2(z) = R+

2 (z)R−2 (z) was computed as before. In this
case, the input energy E2 and energy difference ∆E2 took the
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Fig. 3. Cross spectral density matrix for five mixed signals with SNR 2.55
dB.
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Fig. 4. Diagonalized cross spectral density matrix generated using SBR2
algorithm

values

E2 = ‖R2(z)‖F
2 ≈ 730.1825

∆E2 = ‖R2(z)−R′2(z)‖F
2 ≈ 0.1356

(20)

It is clear that the value of the energy difference ∆E2 is
very small compared to the total energy E2 in this convolutive
mixing example. Thus the outer (inner) spectral factors have
been generated to a high degree of accuracy using the novel
method presented in this paper.
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Fig. 5. The inner spectral factor of cross spectral density matrix for five
mixed signals

VI. CONCLUSION

In conclusion, the proposed multichannel spectral fac-
torization algorithm has been shown achieve a high degree
of accuracy in terms of recovering the input parahermitian
polynomial matrix from its outer and inner spectral factors.
The algorithm is seen to offer a significant advantage in that
the multichannel spectral factorization problem is reduced to
a number of independent single channel problems for which
suitable algorithms already exist. However, it must be noted
that the spectral factors generted by this algorithm can accu-
mulate numerous very small or zero coefficients which may be
a nuisance but can be truncated by virtue of the fundamental
indeterminacy associated with spectral factorization.
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