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Abstract 

The aim of this thesis is to assess the spatial and temporal recurrence of mass-transport 

deposits (MTDs) within salt withdrawal basins to unravel the complex interaction 

between mass-wasting processes and salt halokinesis. A high-quality 3D seismic dataset 

from the mid-continental slope of Espírito Santo Basin, SE Brazil, was used to assess 

the provenance of mass-transport deposits and their potentials as structural markers for 

seafloor perturbation and fault activity.  

 

A new proposition from this work includes scale-independent classification of mass-

transport deposits into homogeneous and heterogeneous types. Heterogeneous MTDs 

are composed of seismic facies corresponding to slides, slumps and debrites. 

Homogeneous MTDs comprise consolidated debrites considered in this work as 

comprising barriers to fluid flow. In addition, MTD composed of rafted blocks 

displayed a disproportionate relationship between their shape, transporting distance and 

degree of remobilization. 

 

Drag zones denote sections of MTDs that are uplifted during salt diapir rise. These drag 

zones are extended and shortened along their long and short axis respectively. Ramps 

flanking salt diapirs are formed by either complete or partial erosion of paleo-seafloors 

and pre-existing fault scarps. In this thesis, it is shown that the risk of remobilized 

sediments is highest within drag zones.  

 

The erosive nature of mass-wasting processes is justified by the decoupling history of 

faults eroded by MTDs. An innovative method to assess fault decoupling history on 

continental margin is the use of cumulative throw character. MTD-decoupled faults are 
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characterised by shorter propagation rate and cumulative throw and are potentially 

sealing compared to their non-decoupled counterparts. 

 

The information from this study is crucial information for successful hydrocarbon 

exploration and risk assessment in deep-water environments. The methodologies and 

results from this thesis are applicable to continental margins worldwide. 
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1. Rationale 

Mass-wasting is ubiquitous on continental slopes, where the combined action of local 

tectonics, sediment input and gravitational instability can generate complex structures 

(Urgeles et al., 1997; Goldfinger et al., 2000; Mienert et al., 2003; Hunerbach and 

Masson, 2004; Hjelstuen et al., 2007; Tailing et al., 2007). In nature, a continental slope 

fails when downslope directed shear stress exceeds the shear strength of seafloor 

sediment (Varnes, 1978). Following seafloor failure, mass-wasting processes are 

triggered and involve the transport of sediments over a detachment surface called the 

basal shear surface. Once failure is initiated, materials continue to move downslope at 

different speeds and volumes over the basal shear surface, until shear strength 

overcomes shear stress and material inertia (Richardson et al., 2011). The sedimentary 

deposits generated during mass-wasting events are called mass-transport deposits 

(MTDs) or complexes (MTC) when they are the product of multiple failure events. 

 

The term ‘‘mass-transport complex’’ has been used to describe all kinds of gravity-

induced or downslope deposits, except for turbidites (Norem et al., 1990; Masson et al., 

1997, 1998; Gee et al., 1999; Sohn, 2000; Wach et al., 2003; Martinez et al., 2005). 

Mass-transport complexes were firstly considered to develop during sea-level falls 

towards lowstand periods, when sediment transported onto the shelf edge is at its 

maximum and water overburden weight is being reduced over shelf regions (Masson et 

al., 1997; Posamentier and Kolla, 2003). Resulting MTDs usually occupy areas on the 

slope and on the basin floor, accumulating near the toe of slope. The volume of MTDs 

can thus vary enormously, ranging from a few meters in thickness and a few hundred 

square meters in area, to more than 200 m (660 ft.) in thickness and tens of thousands of 

square kilometres in area (Hampton et al., 1996; Posamentier and Martinsen, 2011). As 

a result of these differences in thickness and area distribution, MTDs commonly 
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develop initial bathymetry which later influences sedimentation in deep-water settings, 

in both carbonate and siliciclastic settings (Shanmugam, 2000; Marr et al., 2001; 

Posamentier and Kolla, 2003; Jackson and Johnson, 2009).  

 

Mass-transport deposits are usually composed of muddy sediments, although in some 

cases, sands can be also present. Log responses tend to show an increase in resistivity, 

compressional velocity, density, and low-porosity when compared to confining strata 

(Weimer, 1990; Shipp et al., 2004). Geotechnical measurements indicate an increase in 

shear strength, particularly towards their base, with a corresponding decrease in void 

ratio and water content (Piper et al., 1997; Shipp et al., 2004). All these characteristics 

suggest that MTDs may be considerably more consolidated shortly after deposition than 

other deepwater deposits (Moscardelli et al., 2006). 

 

Classifying MTDs is a difficult task due to their significant variability. A good 

classification scheme will provide information on the lithology of the source area and 

invariably, the provenance. Previous classification schemes described these deposits 

based on their transport mechanism, their sedimentary composition and recognizable 

seismic features. Well referenced classification methods include those of Dott (1963), 

Nardin et al., (1979) and Moscardelli and Woods (2007). These schemes classified 

MTDs into slides, slumps, debris flows and sometimes turbidites (See Figures 1.2 to 

1.5).  

 

Moscardelli and Woods (2007) used aspect ratios to classify MTDs as slope-attached, 

shelf attached and shelf-detached offshore Trinidad and Tobago. Their study 

highlighted the importance of source areas relative location on the continental slope as a 
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major classification criterion. A similar technique was adopted by Twichell et al., 

(2009) to classify Quaternary submarine landslides on the US Atlantic continental 

margin. In addition to these latter publications, the provenance of MTDs was previously 

determined from seismic profiles by analysing the orientation and geometry of 

kinematic indicators, or by correlating sub-surface data with geomorphological 

information from outcrop analogues (Boe et al., 2000; Bull et al., 2009; Frey Martinez 

et al., 2005a; Frey-Martínez et al., 2006a; Gee et al., 2005; Haflidason et al., 2004; 

Laberg and Vorren, 2000; Laberg et al., 2000; Lastras et al., 2006; Lucente and Pini, 

2003; Schnellmann et al., 2005; Strachan, 2002a, 2002b; Wilson et al., 2004). 

 

A practical result of published data is that there is still the need to study MTDs on 

seismic data and provide information on the lithologies of their source areas. Other 

important parameters to investigate are the sediment processes involved in mass-

wasting and their relationship to the degree of homogeneity of the material being 

transported, and the erosion/abrasion of the transporting medium below MTDs.  Seismic 

descriptions of MTDs include the recognition of an upper surface that is usually 

hummocky, rugose or ridged located above discontinuous, chaotic to moderately 

deformed low-high amplitude reflections (Sangree and Widmier, 1977; Posamentier and 

Kolla, 2003; Richardson et al., 2011). In these deposits, a basal shear surface separates 

chaotic and disrupted strata within MTDs from the much more continuous facies of 

non-MTD deposits (Hampton et al., 1996; Winker and Booth, 2000; Beauboeuf and 

Friedman, 2000; Armentrout, 2003; Piper and Behrens, 2003; Frey-Martínez et al., 

2006; Bull et al., 2009; Frey Martinez, 2010). In essence, there are still few well 

documented reports on the seismic facies of MTDs using seismic attributes such as 

continuity, amplitude, lap geometries, and frequency of reflections. 
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Statistical analyses are invaluable tools for the study of submarine MTDs. For instance, 

Gamboa et al., (2011) used descriptive statistics to document the distribution of failed 

blocks along salt ridges in southeast Brazil with a view to understanding their capability 

as conduit for vertical fluid flow. Other work include Alves and Cartwright (2009), 

Alves (2010) and Gamboa et al., (2010). From these works I found that the distribution 

and recurrence of MTDs is often controlled by a) halokinesis and the geometry of the 

associated salt structures, b) major tectonic episodes that cause localised uplift, faulting 

and ultimately can lead to the exhumation of near-seafloor sediment.  In the particular 

case of salt-rich continental slopes, halokinetic movements can alter slope gradient and 

trigger local mass-wasting events on the seafloor (e.g. Gee et al., 2006; Alves, 2010).  

As a consequence, mass-transport deposits are often thin at the crest of active diapirs 

and thicker on their flanks (Rowan et al., 1998; Tripsanas et al., 2004). Published data 

highlights the fact that it is imperative to recognise what products of mass-wasting in 

salt-rich continental margins are distinctly different from those of margins with no salt. 

 

Mass-transport deposits found around salt diapirs are often regarded as the product of 

erosion of adjacent diapir crests. In addition, the gliding surfaces of the MTDs in such 

environments are marked by distinctive kinematic indicators. On the basal shear 

surfaces, ramps are found close to the diapir crest. Furthermore, rugged topographies or 

irregularities on these basal shear surfaces are related to faults propagating from the 

crest of salt diapirs (e.g. Alves et al., 2009; Davison et al., 2000; Richardson et al., 

2011). These faults presumably influence failure on the glide surfaces. Fault scarps 

often are cannibalized, eroded and draped by younger MTDs as shown in Chapter 6 of 

this thesis. 
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In this thesis, the spatial and temporal recurrence of MTDs in salt-rich continental 

margins such as the Espírito Santo will be used to test the following research 

hypotheses (Figure 1.1).  

 

 Mass-transport deposits are often found around salt structures. If sedimentation 

is totally controlled by gravity, with little influence of tectonics, it will be 

possible to establish the history of mass-wasting and provide information on the 

provenance of MTDs. If MTDs are sourced close to a salt structure, the deposits 

will taper away from the salt structure. If they are sourced from regions distant 

from salt structures, the thickness of the MTDs will increase towards the source 

area. Consequently, the provenance of MTDs in salt-rich continental margins 

can be assessed by systematically recording thickness variations. Salt-controlled 

basins will show distinctly different geometries in MTDs from non-salt rich 

basins. It is therefore possible to use specific MTDs from salt-rich continental 

margins to establish a new classification scheme for this type of deposits. 

 

 Mass-transport deposits in salt-rich basins record the growth of adjacent salt 

structures and, subsequently, the palaeo-strain conditions near the seafloor. If 

MTDs are affected by the growth of salt structures they should appear deformed 

closest to the region of salt piercing. If not, the MTDs will not show any 

evidence of deformation. In the case of a clear salt-MTD relationship, palaeo-

strain conditions will be measured by the dimension of 'drag zones' within the 

interpreted MTDs.  

 

 The translation of MTDs over any surface is generally erosive. If MTDs are 

deposited after salt growth, the crestal and synclinal faults emerging from the 
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salt structures will have their scarps eroded and cannibalized. If not, the MTDs 

will be faulted during the upward propagation of the crestal faults. The 

interaction between MTDs, salt and faults can therefore be assessed using 

displacement analyses. Moreover, the deposition of the MTDs in these 

conditions can influence fluid flow properties of adjacent faults. 

 

The research hypotheses, if tested, are important for the successful exploration of 

hydrocarbon in salt-rich deepwater continental margins, on which the vast majority of 

oil plays are located in areas prone to slope instability (Hjelstuen et al., 2007; Tailing et 

al., 2007).  

 

 

1.1 Aims of the PhD 

 

This work investigates the interaction between MTDs and tectonics on a salt-rich 

passive continental margin. Using a high-quality 3D seismic data from the Espírito 

Santo Basin, the thesis presents novel techniques useful for ongoing exploration in new 

frontiers on salt-rich continental margins. The aims of this work are: 

 

1. To document spatial and temporal recurrence of MTDs on the continental slope 

offshore Espírito Santo Basin. 

2. To propose a new method to estimate the provenance of MTDs on salt rich-

continental margins using 3D seismic data. In this aim are included: 

(a) The assessment of the seismic heterogeneity of MTDs on a salt-rich 

continental slope;  
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(b) The quantification of the degree of disaggregation experienced by MTDs in 

relation to their transporting distances; and  

(c) A more complete understanding of how interactions between MTDs and 

growing salt diapirs can provide information on the provenance areas of such 

strata. 

 

3.  To investigate how the morphology of MTDs relates to diapir growth and near-

seafloor strain, presenting new data on: 

a) The extent to which perturbation imposed by growing diapirs is reflected on 

the seafloor; 

b) The analysis of whether basal ramps and flats affect the geometry of mass-

transport deposits ; 

c) The proposition of new methods to assess the effect of ramps and flats on the 

type of sediments deposited on and around growing salt diapirs. 

 

4.  To characterise the effect of mass-transport deposits on vertical fault 

propagation and their importance as stratigraphic markers of fault activity. Three main 

questions will be addressed: 

 

a) Can mass-transport deposits impose lithological controls on the propagation 

of faults on continental margins? 

b) Can mass-transport deposits be used as stratigraphic markers to assess fault 

propagation histories on structurally decoupled and non-decoupled fault 

families? 
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c) What methods can be used to distinguish different fault families in terms of 

their propagation histories? 

 

 

In the next section, a detail background is given on the processes, types and significance 

of MTDs. This is followed by an organised and generalised literature review on vertical 

salt flow. In order to provide hints into the results Chapters, the last sections in Chapter 

1 provide key data on the expected interaction between mass-wasting processes and 

halokinesis. 
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Figure 1.1: a) Map of the southeast Brazilian margin showing the location of the Santos, Campos and Espírito Santo basins in relation to main 

fault zones b) Bathymetry map of Espírito Santo basins and environments and c) Tectonic outline of Brasilian continental margin (Modified after 

Ojeda, 1982) 
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1.2 Mass-transport deposits 

Mass-transport deposits (MTDs) comprise sediment packages emplaced during a single 

event of slope failure.  In turn, the term mass-transport complex is used where multiple 

slope failures have coalesced into a larger unit or package (Gamberi et al., 2011; 

Hampton et al., 1996; Masson et al., 2006a; Mulder and Cochonant, 1996; Posamentier 

and Walker, 2006; Varnes, 1978). Mass-transport deposits are ubiquitous features on 

submarine slopes, and in all geological settings, including rift and transform margins, 

convergent and passive continental margins (Urgeles et al., 1997; Goldfinger et al., 

2000; Laberg et al., 2000; McAdoo et al., 2000; Hunerbach and Masson, 2004). They 

occur at all water depths, especially in areas where soft sediment predominate (Morgan 

et al., 2009). Large MTDs usually cover tenths to hundreds of kilometres, they are 

formed by shelf break or mid‐slope failure, in contrast to smaller scale MTDs formed by 

collapse of canyon walls or elevated gradients on the flanks of salt diapirs (Hampton et 

al., 1996; Masson et al., 2006a; Posamentier and Walker, 2006).  

 

1.2.1 Importance of mass-wasting processes 

 

 Mass-wasting processes are fundamental processes in shaping and infilling 

sedimentary basins (Frey Martinez et al., 2005a; Gee and Gawthorpe, 2006; Gee 

et al., 1999; Masson et al., 1998; Norem et al., 1990; Richardson et al., 2011). 

They transport significant amount of sediment to offshore areas, comprising 

10% to 27% of continental slope strata (Hühnerbach et al., 2004; Mienert et al., 

2003; Hjelstuen et al., 2007; Tailing et al., 2007). As a result, the distribution of 

these transported masses is crucial to hydrocarbon reservoir assessment in deep-

water domains. 
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 Mass-wasting processes can be related to climate-change events when they are 

formed via gas hydrate dissociation (Richardson et al., 2007) or can be 

associated with eustatic events (Rothwell et al., 1998). They can also cause 

tsunamigenic waves as a result of disruption of the sea water column (Hampton 

et al., 1996; Nisbet and Piper, 1998; Locat and Lee, 2002; Maslin et al., 2004; 

Fryer et al., 2004). The understanding of the inter-relationship between slope 

failure and gas hydrate stability is crucial in the global understanding of climate 

change and ocean margin systems. Examples of geohazards associated with 

mass-wasting processes are provided below: 

o 2002- The Stromboli Island volcanic activity and associated submarine landslide 

and tsunami caused harm to housing and infrastructures but with no fatalities (Tinti 

et al., 2005). 

o 1998- Submarine landslide off Papua-New Guinea that caused a tsunami resulting 

in loss of 2200 deaths (Tappin et al., 2001). 

o 1996- Submarine landslide in Finneidfjord, Norway caused destruction of a 

highway and three residential houses in which four persons were killed (Longva et 

al., 2003).  

 The quest for hydrocarbons has recently moved into deepwater areas where 

MTDs occur. The triggering of small- and large-scale slope-instabilities has the 

potential to jeopardize installations and other anthropogenic structures on the 

seafloor. Furthermore, shallow MTDs are common drilling hazards due to their 

complex internal structure and inherent potential to contain local gas pockets 

(Barley, 1999; Weimer and Shipp, 2004; Butler and Turner, 2010; Mosher et al., 

2010). For example: 

o The cost of damage to offshore pipelines is ~$400 million per year (Mosher et al., 

2010). 
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o On December 26, 2006, a submarine landslide in the Luzon Strait caused failure of 

undersea cables, halting the entire internet network between Taiwan, Hong Kong, 

and China and affecting communications between Thailand, Malaysia, Vietnam, 

South Korea and Singapore for 12 hours (Hsu et al. 2009). This caused a severe 

economic impact on the daily GDP of Taiwan, Hong Kong and China which was 

approximately $7.56 billion/day (courtesy: http://www.igcp585.org/significance 

visited 23/01/2014). 

o Twelve submarine transatlantic cables were broken by the 1929 Grand Bank 

earthquake and associated submarine landslide (Piper et al., 1999) 

 

1.2.2 The physics of mass-wasting 

Mass-wasting occurs over a basal shear surface and can result in little-deformed to 

intensely folded, faulted and brecciated masses that have translated downslope from the 

original site of deposition (Bull et al., 2009; Posamentier and Martinsen, 2011). Once 

initiated, the shear surface will propagate upslope from its nucleation point leading to a 

scoop-shaped, concave-downslope slide scar, often with an irregular outline (Martinsen, 

1994).  

 

The stability of a slope is governed by the Coulomb criterion, enhanced by external and 

internal forces acting on the slope for long or short term periods. The Coulomb theory 

states that shear stress applied to the slope must exceed the shear strength to generate 

failure. The shear stress, however, is dependent on the coefficient of static friction, 

normal stress and coefficient of cohesion (Eq. 1.1). External stimuli for slope failure are 

regarded as “triggering mechanisms” (Sultan et al., 2004). Long-term stability factors 

include the steepness of a slope and the strength/cohesion of the lithologies involved, 

controlled by erosion, tectonics, substrate, and anthropogenic factors (Erismann and 

Abele, 2001; Glade et al., 2005; Jakob and Hungr, 2005). Short-term factors include 

physical loading and seismic shaking.  

http://www.igcp585.org/significance%20visited%2023/01/2014
http://www.igcp585.org/significance%20visited%2023/01/2014
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Most submarine slopes are inherently unstable but require external, often transient 

effects to trigger mass-wasting. Elevated pore pressures, related to processes such as 

earthquake shaking or rapid sedimentation appear to be critical factors in most 

submarine landslides. Such pore pressures support part or all the weight of the overlying 

sediment, thus lowering the frictional resistance to mass-wasting (see Mohr-Coulomb 

Eq. 1.1). When concentrated in specific geological layers, they create weak layers, 

which fail in a characteristic bedding plane parallel style (Dykstra, 2006). 

 

The factor of safety, FS, represents mathematically the equilibrium conditions between 

the factors favouring slope failure and those preventing it. In Figure 1.2 it is shown how 

external and internal factors drive slope instability while gravitational forces resist slope 

failure. When FS > 1 slope is thought to be stable; the slope is unstable when FS < 1, 

and the condition of the slope is relatively unpredictable when FS = 1. Partly 

contradicting the Coulomb theory, Hühnerbach et al., (2004) documented that the 

occurrence of submarine landslides is not greatly influenced by slope gradients, except 

at the shallowest gradients where relatively few landslides occur. The authors stated that 

the largest landslides on the continental slope occur on the lowest slopes, often as low 

as 1°. In addition, the greatest number of landslide headwalls occurs on the mid-slope, 

with a peak at 1000 to 1300m water depth, rather than at the shelf edge or on the upper 

slope as might be expected (Huhnerbach et al., 2004). 

T = (δn − μ) tan ∅ + C ---------------------------------------- Eq 1.1 

 

N.B: T = resistance (shear strength), δn = normal stress, μ = hydrostatic stress Ø = 

angle of shearing resistance or internal friction, C = cohesion of sediments intercept 

(Terzaghi, 1962). 
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Figure 1.2: The factor of safety FS reflects the equilibrium conditions between pre-conditioning factors and triggering mechanisms. The 

factors favouring stability of the slope are highlighted in blue where factors triggering failure are shown in red. The slope fails when the FS 

is < 1 (Modified after Camerlenghi, 2013). N.B: F in the figure refers to FS in the caption. 
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1.2.3 Triggering mechanisms for mass-transport deposits 

The common triggering mechanisms for mass-wasting are presented below with historic 

examples from the literature. In this section, landslides are used as a generic term for all 

kind of mass-transport deposits. 

1.2.3.1 Presence of weak geological units 

Evidence from sea floor technology and mapping techniques such as swath bathymetric 

mapping and 3D seismic data suggests weak geological units as a factor contributing to 

submarine mass-wasting at all scales (Bryn et al., 2005; Kvalstad et al., 2005). Weak 

geological layers may include degraded soft clays, loose and saturated granular silts and 

sands, and quick clays (Pestena et al., 2000). For example:- 

 Geotechnical assessment of the Storegga slide revealed that it was triggered by a 

combination of one or more weak layers (contourites) deposited during 

interglacial periods (Locat et al 2003; Kvalstad et al., 2005; Masson et al., 

2006).  

 The 1979 tsunamigenic landslide along the Ligurian continental margin in the 

Western Mediterranean is associated with the presence of weakened clay-rich 

deposits (Steggmann et al., 2011). 

 

1.2.3.2 High Sedimentation rate/ underconsolidation 

Rapid deposition associated with high-sedimentation rates can result in 

underconsolidation of buried layers of clay-rich sediment, in which upward hydraulic 

gradients can reduce the internal shear strength of the sediment and lead to slope 

instability (Aksu and Hiscott, 1989; Prior and Coleman, 1982; Hiscott and Aksu, 1994; 

Laberg and Vorren, 2000). Thus, high sedimentation rates and undercompaction can 

often lead to overpressuring of weak geological layers such as mudstones (e.g. Kvalstad 
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et al., 2005).  Environments where sediments are quickly deposited such as fjords, river 

deltas, fan systems and open continental slopes are characterised by unconsolidated 

sediment (Masson et al., 2006). For example:- 

 The 1975 Kitimat Arm slide northwest of Douglas Channel in Canada is an 

example of fjords where slope failure was associated with unconsolidated 

sediments (Conway et al., 2012). 

 Following Hurricane Camile (1969), the submarine landslide of the Mississippi 

Delta was found to have been triggered by overpressuring associated with high 

sedimentation rates (Locat and Lee, 2002). 

 

1.2.3.3 Earthquakes 

A great part of submarine landslides are triggered by earthquakes (Lewis, 1971; Dingle, 

1977; Keefer, 1994; Hampton et al., 1996; Imbo et al., 2003). Earthquakes can provide 

significant environmental stresses and promotes elevated pore water pressures, leading 

to seafloor failure. Similarly, storm wave loading, hurricanes and typhoons can lead to 

submarine landslides in shallow regions.  

 Earthquakes triggered the Grand Banks landslide of 1929, where a 

20 km
3
 submarine landslide was initiated after a magnitude 7.2 earthquake 

(Nisbet and Piper, 1998; Masson et al., 2006).  

 The 1607 Bristol flooding, which was recorded on plaques in a number of 

churches at Kingston Seymour in Somerset and in Monmouthshire at Goldcliff, 

St. Brides, Redwick and Peterstone, was caused by a submarine landslide 

triggered by an earthquake with epicentre on the Irish coast 

(http://www.burnham-on-sea.com/1607-flood.shtml visited January 24, 2014) 

 

http://www.burnham-on-sea.com/1607-flood.shtml%20visited%20January%2024
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1.2.3.4 Gas hydrates 

The dissociation of gas hydrates on continental slopes due to changes in sea level or 

increase in bottom water temperature can produce large amounts of free gas within 

sediment layers (Bouriak et al., 2000; Sultan et al., 2004). This increase of free gas 

within the sediment column will decrease the bulk shear strength of the slope material 

and can potentially lead to slope failure (Mienert et al., 1998).  

 

 Gas hydrate dissociation at water depths of 1000 to 1300 m caused slides off the 

east coast of the United States and the Storegga slide off the east coast of 

Norway (Locat and Lee, 2002; Hunerbach and Masson, 2004) 

  

1.2.3.5 Groundwater seepage 

Groundwater seepage and elevated pore water pressure can cause submarine landslides. 

Elevated pore water pressure causes reduced frictional resistance to sliding and can 

result from normal depositional processes, or can be coupled with other causes such as 

earthquakes, gas hydrate dissociation and glacial loading.  

 Nice international airport submarine landslide of 1979 is a good example of the 

effect of hydrogeology on slope instability. The spatial and temporal variations 

in the Var aquifer was driven by precipitation and melt water fluxes hence 

weakening the associated clay-rich deposits (Steggmann et al., 2011) 

 

1.2.3.6 Oversteepening  

Slopes are stable as long as the angle of internal friction () is greater than the slope 

angle (α) (Hampton et al., 1996). Oversteepening is caused by scouring due to oceanic 

currents and can result in the triggering of submarine landslides. In salt rich-continental 
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margins, elevated slope gradient are produced during active diapirism (e.g. Fiduk et al., 

2004). Other factors that can initiate slope failure from geotechnical point of view 

included storm-wave loading, low tides, glacial loading and volcanic island processes 

(Table 1.1).  

 

 

 

Table 1.1: Historically documented submarine landslides and their predicted triggering 

mechanisms (Modified after Masson et al., 2006). 

Historically documented Examples References 

Earthquakes Grand Banks (Fine et al., 2005) 

Hurricanes or cyclic loading Mississippi delta (Prior and Coleman, 1982)  

Loading or oversteepening of 

slopes 
Nice, Canary islands 

(Assier-Rzadkiewicz et al., 

2000)   

Underconsolidation 

(overpressure) 
Mississippi delta (Prior and Coleman, 1982) 

Rainfall (where landslides have 

a subaerial extension) 
Norway, Hawaii (Longva et al., 2003)  

Slope parallel weak layers in 

bedded sequences 

East coast US, 

Storegga, west Africa 

(O'Leary, 1991; Haflidason et 

al., 2003; Bryn et al., 2005)  

Suggested (but less well documented) 

Gas hydrate dissociation 
East coast US, 

Storegga 
(Sultan et al., 2003)  

Sea-level change Madeira Abyssal Plain (Weaver and Kuijpers, 1983)  

Volcanic activity Hawaii, Canaries (Moore et al., 1989)  

Salt diapirism 
Espirito Santos, 

Trinidad and Tobago 

Moscardelli and Woods, 

2007, Gamboa et al., 2011 
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1.2.4 Classifying mass-transport deposits 

This section appraised the published classification schemes for MTDs in order to 

highlight the gap in research and find a common scheme to characterise this type of 

deposits. A simple, scale-consistent and common classification scheme that focuses on 

descriptive and morphological factors is necessary for all MTDs (Posamentier and 

Martinsen, 2011). Previous classification schemes were based on mass-wasting 

processes per se, and on the deposits and rheology of the transporting medium. For 

example mass-wasting processes causing MTDs were defined by Masson et al., 2006b 

as: 

 Slides, which involve movement of coherent mass of sediment bounded by 

distinct failure planes;  

 Debris flows involve laminar, cohesive flow of clasts in a fine-grained matrix; 

 Debris avalanche presents the rapid flow of cohesionless rock fragments with 

energy dissipation by grain contact;  

 Turbidity current includes gravity flows in which sediment grains are 

maintained in suspension by fluid turbulence. 

 

In the next few pages, other classification scheme including those of ISSMGE 

(International Society for Soil Mechanics and Geotechnical Engineering) are shown and 

briefly discussed in Figure 1.2 to Figure 1.8.   

 

Mass-wasting processes form a continuum, with moderate degrees of deformation 

recorded initially and the last deposits reflecting high degrees of remobilization. The 

majority of published classification schemes are scale-dependent or only applicable to 

sub-aerial landslides. For example, sediment creep occurs as an extremely slow process 

file:///D:/downloads/Cardiff/PhD_Chapters/others/Ch1_new.docx%23_ENREF_60
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on the order of a few mm to cm/yr. and is essentially a sub-seismic event, i.e. below the 

resolution of industry seismic data (Posamentier and Martinsen, 2011). For any 

classification scheme to be universal, it should be applicable at all scales and 

depositional environments. A straightforward option is to classify MTDs using their 

lithological character as it is readily observable both in outcrops and seismic profiles. 

The processes leading to these deposits, however, can only be analysed through 

laboratory simulations and models. Description and geotechnical details of MTDs are, 

in turn, obtained from buried in situ deposits. Due to the difficulty of integrating 

laboratory and in situ information at distinct scales, seismic data are often used to 

abridge distinct datasets providing reliable information on the processes forming MTDs 

 

1.2.5 Geomorphological classification of mass-transport deposits  

Submarine landslides, slumps and debris flow can co-occur during the same slope 

instability event and result in characteristic seafloor morphologies (Figure 1.9). The 

geometry and internal deformation of MTDs is a consequence of the mechanisms of 

failure and the morphology of the slope over which translation occurs (Strachan, 2002; 

Lucente and Pini, 2003). Thus, the morphological characteristics of MTDs is commonly 

expressed by different geological structures or features that record information related 

to the type and direction of transport at the time of emplacement. These features are 

generally referred to as kinematic indicators; they are geological structures that can 

unravel the history of mass-wasting from initiation, dynamic evolution and to cessation 

of slope failures (Bull et al., 2009) 
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Figure 1.3: Schematic diagram for downslope mass-movements on continental margins. The classification and the type of deposits in the 

figure are based on the flow mechanisms and the kind of deposits produced after each failure event. The process is a continuum when 

materials transits from slumps near upper slope area into debris flow on the mid-continental slope - Process and deposit-based classification 

(Modified after Mienert et al., 1998). N.B BSR is Bottom Simulating Reflector indicating the presence of gas hydrate on seismic section.
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Figure 1.4: Classification of submarine mass-movements. This classification is solely 

based on the kinematics and the kind of mass-movements - Process-based classification 

(modified after ISSMGE Technical Committee on Landslides, TC-11) 

 

 

 

 

Figure 1.5: Key flow types in the classification are highlighted in the figure (Mulder and 

Cochonant, 1996). Slides, debris flows and turbidity currents are the main gravity-

driven processes by which marine sediments are transported down slope. All have 

related hazards. Debris avalanches, although relatively rare in the submarine realm, are 

highlighted due to their specific hazard threat - Process and deposit-based classification 

(Masson et al., 2006c). 
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Figure 1.6: Classification of mass-transport deposits on continental margins. The classification includes the process, depth and 

geomorphology of the surfaces over which sliding takes place - Process and deposit-based classification (Modified after Piper et al., 1999)
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Figure 1.7: Nemec’s (1991) classification of slope deformational processes and other 

processes. Some of these processes produce mass-transport deposits. The classification 

considers the rheology of the material being transported during mass-wasting - Process, 

deposit and rheology-based classification (Modified after Nemec (1991), Nemec and 

Martisen, 1994). 

 

Figure 1.8: The CDE method distinguishes MTD from hemipelagites using their 

lithological heterogeneity and degree of disaggregation, the presence of structural 

fabrics such as faults, and their acoustic properties - Deposit-based classification 

(Adapted from Alves et al., 2014). 
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MTDs can be organized into structural domains reflecting characteristic kinematics and 

strain (Lewis, 1971; Bull et al., 2009). These structural domains include an ‘extensional 

domain’ located at the head of the failure containing predominantly extensional strain 

and a volume reduction relative to the stable slope, a ‘translational domain’ in the mid-

slope containing relatively undeformed strata, and a ‘compressive domain’ at the toe of 

the failure reflecting contractional strain and a height increase with respect to the stable 

slope (Figure 1.9). However, this classification comprises an oversimplification of the 

structural division of MTDs often observed in nature. In larger complexes of coalesced 

deposits, the tripartite scheme is broken down into multiple domains (Martinsen, 1994; 

Gardner et al., 1999).  

 

The focus of this study is not entirely on kinematic indicators. Of importance to this 

study are ramps and flats and the mode of frontal emplacement of MTDs. These 

geomorphic features are briefly discussed in the following section. A succinct 

description of other kinematic indicators is provided in Appendix IV. 

 

1.2.5.1 Ramp and flats  

A ramp is defined as comprising a segment of the basal shear surface that cuts 

discordantly across bedding, whereas the ‘flat’ sections are bedding-parallel segments 

of the basal shear surface. The ramps, therefore, connect ‘flat’ segments of the basal 

shear surface at different stratigraphic levels (Trincardi and Argnani, 1990). Lucente 

and Pini (2003) suggested the ramp and flat geometry to be similar to shallow level 

deformation in accretionary wedges, and Gawthorpe and Clemmey (1985) assigned the 

terms ‘contractional’ if the basal shear surface cuts up section and ‘extensional’ if it cuts 

down.  Gawthorpe and Clemmey (1985) and Trincardi and Argnani (1990) reported that 
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most ramps trend perpendicular to the main flow or movement direction. In turn, slots 

are kinds of ramps that run parallel to the transport direction of MTDs (O'Leary, 1986; 

Bull et al., 2009). 

 

1.2.5.2 Toe domain/Accumulation Zone 

The toe domain represents the downslope region of the MTD, including the downslope 

termination point, or ‘toe’ of the deposit. Toe domains often have an overall convex-

downslope morphology (Prior and Coleman, 1984; Frey Martinez et al., 2005), and the 

main kinematic indicators observed in these regions are pressure ridges and thrust-and-

fold systems. Frey Martinez et al. (2006) subdivided the toe domain into those which 

are ‘frontally confined’, in which the translated mass is buttressed downslope against 

undisturbed strata; and ‘frontally emergent’ occurring when the translated mass is able 

to ramp up the basal shear surface and move freely across the seafloor (Figure 1.10).  

 

Frontally-confined MTDs are characterized by developing large-scale thrust-and-fold 

systems (Huvenne et al., 2002; Frey-Martínez et al., 2006; Gafeira et al., 2007), while 

the frontally-emergent typically exhibit pressure ridges (Prior et al., 1984). There is 

overlap between these two extremes, with some frontally emergent MTDs developing 

impressive fold and thrust systems when the translating material becomes buttressed 

against a seafloor obstacle (Lewis, 1971; Moscardelli et al., 2006). 
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Figure 1.9: Geomorphologic division of a mass-transport deposit and the likely occurrence of kinematic indicators relative to its various 

domains. (1) Headwall scarp, (2) Extensional ridges and blocks, (3) Lateral margins, (4) Basal shear surface ramps and flats, (5) Basal 

shear surface grooves, (6) Basal shear surface striations, (7) Remnant blocks, (8) Translated blocks, (9) Outrunner blocks, (10) Folds, (11) 

Longitudinal shears/first order flow fabric, (12) Second order flow fabric, (13) Pressure ridges, (14) Fold and thrust systems (from Prior 

and Coleman, 1984). 
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Figure 1.10: Classification of mass-transport deposits according to their frontal emplacement. (a) Frontally-emergent MTD, in which 

material ramps out the basal shear surface onto the seabed and is free to travel considerable distances over the undeformed slope position 

and, (b) Frontally-confined MTD where the leading edge of the landslide is buttressed against a frontal ramp (Modified after Frey-Martínez 

et al., 2006). 



30 | P a g e  
 

1.3 Mechanics of salt flow 

Salt tectonics is defined as deformation involving flow of salt (Jackson and Talbot, 

1991; Hudec and Jackson, 2007). Differential loading is the dominant force driving salt 

flow while ability of salt to flow could be impeded by both the strength of the 

overburden and boundary friction within the salt layer (Hudec & Jackson, 2007). In 

practice, salt flows when the driving forces are sufficient to overcome resisting forces. 

Salt can remain static in the subsurface for tens or even hundreds of millions of years if 

driving forces are too weak, subject only to groundwater dissolution, diagenesis, and 

metamorphism (Hudec & Jackson, 2007).  

 

1.3.1 Differential loading  

The depth of salt burial, geometry of the salt body, geologic setting, and thermal 

conditions of the salt determine whether the salt flow is driven by one of gravitational 

loading, displacement loading, and thermal loading (Hudec and Jackson, 2007). 

Gravitational loading is produced by the combined effect of the weight of rocks 

overlying the salt and the gravitational body forces within the salt (Figure 1.11).  

 

Regional shortening or extension can cause the flanks of a salt body to move (Figure 

1.10a). Displacement loading results from the forced displacement of one boundary of a 

rock body relative to another (e.g. Suppe, 1985), and it is common where basins having 

pre-existing salt structures are deformed because the weak salt structures typically focus 

regional strain. Thermal loading on the other hand can result from volume changes 

caused by changes in temperature. Hot salt expands and becomes buoyant, producing 

intra-salt convection, which is enhanced by increases in thermal gradient or decreases in 

thermal diffusivity and kinematic viscosity. 
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1.3.2. Boundary friction within the salt layer and strength of the overburden 

Sedimentary rocks typically increase in both shear strength and frictional strength with 

depth of burial and confining pressure (Hudec and Jackson, 2007). Thick sedimentary 

roofs are, therefore, generally more difficult to deform than thin roofs (Figure 1.12). 

Roofs more than several hundred meters thick are unlikely to be deformed by salt of 

modest structural relief without assistance from either regional extension or shortening 

(Hudec and Jackson, 2007). 

 

The viscosity of salt makes the periphery of most salt bodies to be marked by a zone of 

restricted flow as the salt is sheared past non flowing country rocks (Figure 1.12). This 

zone produces a drag along the top and bottom surfaces of the salt layer which impedes 

the flow of the salt within a buried layer.  

 

1.3.3 Vertical salt flow 

Vertical salt movement (Halokinesis) can take place through three (3) stages (Figure 

1.13 and Figure 1.14): 

(a) Reactive Stage producing salt mounds and pillows. In this setting, the development 

of the salt is controlled by regional thin-skinned shortening, differential loading and by 

residual highs located between rising salt diapirs (Vendeville and Jackson, 1992a; 

Vendeville and Jackson, 1992b). The overburden is extended through normal faulting 

(Hudec and Jackson, 2007). Normal faulting of the overburden allows the underlying 

salt to rise reactively even in the absence of density inversion. The grabens and their 

underlying reactive diapirs are raised above the regional datum while the adjacent 

overburden blocks subside and are flexed synformally (Vendeville and Jackson, 1992b). 
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(ii) The Active Stage comprises the period during which the salt flows upward and 

arrives at the surface or sea floor (Hudec and Jackson, 2007). This is possible because 

the stresses driving the subsidence of the depocenter flanks are related to gradients in 

the loading imposed by the overburden and to the density contrast between the salt and 

the overburden (Vendeville & Jackson, 1992b). Conversely, the strength of the 

overburden rocks is related to their dip. This implies that gentle flanks can readily 

subside and deform while steeper flanks are stronger and can rarely deform. Thin-

skinned extension after grounding of the depocenter can cause subsidence of diapirs 

(Vendeville & Jackson, 1992b). Extension greatly lowers stresses within the salt body; 

therefore, depocenters that have inverted turtle structures to form secondary 

depositional sinks may have initially had gentle flanks or had been subjected to late 

extension (Hudec and Jackson, 2007). In extension, active diapirism is driven by 

buoyancy while displacement loading is the controlling factor for active diapirism in 

contraction. 

(iii) The Passive Stage creates apparent diapirism. The salt does not deform the 

sediments of the overburden. Salt flows upward as sedimentation progresses on the 

condition that the salt dome is connected with the mother layer (Hudec and Jackson, 

2007; Vendeville & Jackson, 1992a,b). However, diapirs located in tectonically 

quiescence areas simply stop rising after source layer depletion and remain dormant. 

Diapirs subject to one or more pulses of late tectonic shortening are episodically 

rejuvenated. Because rock salt is uncompressible and much weaker than the adjacent 

overburden rocks, thin-skinned shortening is accommodated by squeezing of the 

diapirs, which, therefore, continue to rise and deform their roofs (Vendeville and 

Nilsen, 1995). 
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1.2.4 Structural style in salt-rich passive continental margins  

Deformation on passive continental margins is chiefly driven by gravity over a 

décollement surfaces, either evaporites or shales (Fort et al., 2004; Rowan et al., 2012). 

Evaporites are considered as a viscous material with very low strength. Consequently, 

evaporites start to deform very soon after its deposition generating symmetric 

detachment folds, shortened salt diapirs and inflated and thickened salt massifs and 

nappes (Fort et al., 2004; Rowan et al., 2012). The upper slope of salt-rich continental 

margins is commonly dominated by extensional processes, where salt pillows, mounds 

and rollers are attached to large listric faults e.g. (Gulf of Mexico, Persian Gulf, North 

Sea, Lower Congo Basin, Campos Basin, and Pricaspian Basin; Fort et al., 2004; Hudec 

and Jackson, 2007; Rowan et al., 2012).  The salt structures grow into diapir and salt 

walls in the mid-continental slope, essentially a transition between extensional upper-

slope and contractional lower-slope domains. The toe region is characterised by 

contractional structures. These compressive zones are dominated by salt ridges, thrusts, 

allochthonous salt sheets and canopies (Demercian et al., 1993; Brun and Fort, 2004;).  

 

The relatively large accommodation space created for sediments during salt flow 

provides stratigraphers with high-resolution datasets to investigate the relationship 

between tectonism and sea-level change in controlling facies distributions (Beauboeuf 

and Friedman, 2000; Prather, 2000). The salt/sediment interaction has a strong impact 

on all four components of petroleum systems. Reservoir presence is determined by 

reconstructing minibasins geometry and its relationship with the surrounding salt and 

faults. Sediment fairways must be mapped for deepwater fans and turbidites, and areas 

of sediment entrapment vs. bypass must be determined (Roy and Martinsen, 2008). 
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Figure 1.11: Factors promoting salt flow includes gravitational loading, displacement 

loading and thermal loading (Modified after Hudec & Jackson, 2007). 
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Figure 1.12: Factors resisting salt flow include the strength of the overburden and 

boundary friction within the salt layer. Salt deformation is accomplished if the roof is 

thin and weak but becomes progressively more difficult as roof thickness increases. 

Secondly, salt is strongly sheared near the edges of salt bodies during flow, a 

phenomenon causing resistance to deformation. If a salt layer becomes too thin, salt 

flow is restricted (Modified after Hudec & Jackson, 2007). 
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Figure 1.13: Vertical vs. lateral salt flow. Salt flows laterally because the pressure 

produced by the salt against the sediments is not balanced by the pressure produced by 

the sediments against the salt. In this case, salt has a propensity to flow upward, because 

the confining pressure in the sediments is always higher than the confining pressure 

above the salt. Vertical salt flow does not necessarily progress through all of these 

stages. The maturity of a given structure depends on availability of salt, total amount of 

extension, and relative rates of extension and sedimentation. Modified after Vendeville 

and Jackson (1992a) and Hudec and Jackson (2006) 
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Figure 1.14: Serial sections depicting structures formed during reactive and passive stages of salt development. Modified after Vendeville 

and Jackson (1992a) and Hudec and Jackson (2006). 
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1.4 Fault geometry and techniques for displacement analyses 

A fault comprises a surface or narrow zone with visible shear displacement (Fossen, 

2010). In contrast to shear fracture, fault is used to describe composite structures with 

offsets in the order of a meter or more. Faults are categorised on the basis of the overall 

sense of slip, either as dip-slip or strike-slip faults (Twiss and Moore, 2007; Fossen, 

2010). Dip-slip faults include normal, reverse and thrust faults while strike-slip faults 

are described as dextral or sinistral depending on their sense of lateral movement (Twiss 

and Moore, 2007). As the petroleum industry is chiefly interested in subsurface faults 

that could trap hydrocarbon, 3D seismic data offers the best dataset to identify and map 

faults in the subsurface. Discontinuous reflectors indicate fault locations, and the dip 

separation is estimated by correlating seismic reflectors across the faults (Badley, 1985; 

Brown, 2004; Schultz and Fossen, 2008). However, sub-seismic faults are often 

unresolved in a seismic volume. Increasingly, the industries have found alternative to 

model the behaviour of these from similar outcrop exposures e.g. (Jackson et al., 2006; 

Rotevatn and Fossen, 2011) 

 

In order to test the third hypothesis provided in the rationale, a succinct description of 

displacement analyses used for characterising faults is provided in section 1.4.1. In 

addition, a list and definition of fault terminologies used in the thesis are provided in 

Appendix VIII. 

 

1.4.1 Fault displacement profiles 

 

Displacement distributions along normal faults usually show maximum displacements 

(dmax) at the centre of the fault plane, gradually decreasing towards the tips (Barnett et 

al., 1987). Displacement profiles may vary from mesa-type, cone-type to hybrid profiles 
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comprising both C- and M-types (Figure 1.15; after Muraoka and Kamata, 1983; Kim 

and Sanderson, 2005). The position of dmax for C-type profiles corresponds to the 

nucleation point where fault propagation was initiated (Mansfield and Cartwright, 

1996). Importantly, variations on the M-type profiles have been attributed to resistance 

at the tip of the propagating fault by a mechanically competent rock (Muraoka and 

Kamata, 2003). Hybrid displacement and distance plots hint at fault linkage and 

segmentation (Baudon and Cartwright, 2008; Walsh and Watterson, 1989). Elliptical 

fault displacement profiles are consistent with the propagation of blind faults (Baudon 

and Cartwright, 2008). In addition, blind faults are characterised on seismic profile by 

(1) plunging upper-tip line and throw contours geometry, (2) presence of upper-tip 

propagation folds, and (3) absence of stratigraphic evidence for the fault intersecting a 

free surface, i.e. seafloor (Baudon and Cartwright, 2008). 
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Figure 1.15: Displacement distribution on an elliptical fault surface with a length L and 

height H. Displacement is highest at the centre and zero at the tips. The fault intersects 

the upper surface of the block along line A–B. Displacement (d)–distance (x) plot for 

faults of the C- and M-types along line A–B. Modified after Muraoka and Kamata 

(1983) and Kim and Sanderson (2005) 
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1.5 Mass-transport deposits and salt structures: Expected geometries 

and impacts on MTD recurrence 

 

Overburden strata over growing salt structures are generally thinned or completely 

removed by erosion, which result in the accumulation of the eroded strata in peripheral 

salt minibasins (Giles and Lawton, 2002). Deformation related to halokinesis is 

expressed not only as faulting of the overburden but also as regional folding and 

localized subsidence, followed by the gravitational collapse of flanking strata to salt 

structures (Davison et al., 2000; Tripsanas et al., 2004). The eroded strata eventually is 

described as MTDs and based on their internal cohesion are classified as “slides,” 

“slumps” and “debris flows” ( Nemec, 1990; Masson et al., 2006a).  

 

Submarine slides are composed of coherent strata with minor internal deformation. The 

presence of slump deposits in a mass-transport deposit implies larger travel distances 

and internal deformation than with slides (Gamboa et al., 2011). Debris flows are 

characterized by presenting highly disaggregated strata and no preservation of internal 

strata within a cohesive matrix (Masson et al., 2006b). Large blocks of remnant or 

rafted strata can be ubiquitous within the debris flow deposits, either close to the MTD 

source areas or transported to toe regions of submarine landslides through gravitational 

processes such as hydroplaning  (Ilstad et al., 2004; Minisini et al., 2007; Urgeles et al., 

2007; Deptuck et al., 2007; Dunlap et al., 2010). 

 

Individual blocks are named as “remnant” if left in situ, or “rafted” if substantially 

translated during slope failure. Remnant and rafted blocks have a wide range of sizes, 

from meters to hundreds of meters, but this tends to decrease with larger travel distances 

(Canals et al., 2004; Davison, 2004; Gee and Gawthorpe, 2006; Bull et al., 2009;). 
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Rafted blocks have been comprehensively identified in the vicinities of salt structures, 

either derived from local slope instabilities (Davison et al., 2000; Tripsanas et al., 2004) 

or distant (upslope) landslides (Dunlap et al., 2010). However, no data has yet been 

presented on the effect of salt diapirs neither on slope stability, nor on the relative 

distribution of remnant /rafted blocks over salt structures. Remnant blocks are 

considered as being in situ elements from the pre-failure strata that were not removed 

by erosion. Such blocks show vertical stratigraphic continuity with underlying non-

MTD strata, with the absence of any gliding surface, similar to the features described by 

Moscardelli et al. (2006) and Alves (2010). 
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Figure 1.16: Fault geometry around a salt diapir. Radial and concentric faults are shown 

conspicuously in map or plan view (Modified after Stewart, 2006). 
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Figure 1.17: The rate of basement fault displacement is governed by the displacement 

ratio (Dr). D (basement fault displacement), T (viscous layer thickness), Dr = T, /D (a) 

Tv < D, Dr < 1. Basement fault 'hard' linked to cover in a continuous brittle strand. (b) 

T, > D, Dr > 1. Basement fault 'soft' linked to cover fault via ductile detachment in the 

salt, resulting in an extensional ramp-flat geometry (Modified after Koyi et al., 1993). 
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1.6. Fault systems and mass-transport deposits around active diapirs 

Fault propagation close to salt diapirs can be thought of as occurring in two modes, (1) 

as fault propagation directly related to diapirism, whereby the influence of basement 

fault is neglected (Figure 1.16) and , (2) as fault propagation beneath the salt structure, 

which affect the salt and its overburden cover (Figure 1.17). In the first instance, 

overburden layers are extended and deformed during diapir growth (Davison, 2004; 

Stewart, 2006). Faults produced by extension of the overburden rocks include radial, 

crestal, collapsed crestal graben and concentric normal faults (Alsop, 1996; Rowan, 

1999; Stewart, 2006).  Extensional faults parallel to the salt structure are formed during 

reactive diapirism (Hudec and Jackson, 2007; Vendeville and Jackson, 1992b). Radial 

faults are formed normal to the orientation of salt diapirs (Stewart, 2006). During active 

diapirism, parallel faults are formed displaying concentric pattern in map view (Stewart, 

2006). Generically, these faults are called crestal faults, displaying varied geometries 

and arrangements. The propagation of these faults is reliant on the dimension and 

behaviour of the salt body and is independent of the basement tectonics. In addition, 

synclinal faults are formed in salt withdrawal basins adjacent to salt anticlines e.g.   

(Alves et al., 2009). 

 

In basement-linked fault propagation, a single fault strand does not always pass directly 

from the basement to cover. The cover and basement faults are kinematically linked and 

could be considered to represent a single fault surface, composed of brittle and ductile 

portions (Figure 1.17). The magnitude, direction, and rate of basement fault 

displacement is governed by the displacement ratio, Dr (Koyi et al., 1993). Dr is the 

ratio of the thickness of the viscous layer, Tv divided by the basement fault 

displacement D (Figure 1.17).  
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The following models are suggested to explain the possible impact of mass-wasting on 

geological structures formed adjacently to active salt diapirs.  

 

1. Erosion, cannibalisation and draping of faults scarps/scouring of palaeo 

channels:  The erosive nature of the basal shear surface is often expressed as erosional 

truncations, scours, striations, and grooves on seismic profiles and attribute maps (cf.  

Gee et al., 2005, 2006; Bull et al 2009). This implies that fault scarps present on the 

margin of active diapirs will be eroded by moving MTDs. The eroded materials are 

transported and deposited elsewhere in the basin (cannibalized) or possibly incorporated 

into the resulting deposits (cf. Alves et al, 2009, Richardson et al 2011). In a similar 

manner, palaeo seafloors are sometimes eroded or scoured by newer MTDs. This often 

results in the evacuation of the headwall region of older MTDs by younger ones. This 

mechanism has been used to explain some cases of MTDs lacking discernable headwall 

scarps (cf.  Bull et al 2009). 

 

2. Preferred rotation of radial and crestal faults in the direction of slumping: It is 

often possible to associate the stages of slumping to development of crestal and radial 

faults on the tip of the growing diapirs. Continued rotation of previously formed faults 

closest to MTDs was recorded in Central Graben, North Sea (Davinson et al, 2000a). 

The location of the faults may be in the direction of the rotation of the eroding strata off 

the salt tip. 

 

3. Blanketing/decoupling of previously formed synclinal faults: - As slumping 

occurs at the tip of growing salt diapirs, MTDs derived from these latter structures will 

be deposited closest to the flanks of the diapir or transported farther away into adjacent 
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withdrawal basins. The new MTDs can blanket earlier formed faults, most especially 

synclinal faults formed in salt withdrawal basins adjacent to growing salt structures (cf.  

Alves et al 2009). 

 

4. Strain absorbers: MTDs can serve as strain absorbers, partitioning or balancing the 

deformation beneath and above. MTDs are sometimes faulted as a result of renewed 

faulting underneath them. Common fault types include normal, reverse and strike slip 

faults with relatively small throws (Richardson, 2011). The movement of salt of an 

active diapir may cause inversion of the previously formed faults in and around the 

MTD. MTDs crossed by these kind of faults have implications for vertical fluid flow in 

sedimentary basins (Gamboa et al., 2010). 

 

5. Strain Markers:  Mass-wasting sometimes occurs on a deformed palaeo-seafloor, 

with the deformation resulting from extension, compression or both. Since the mass-

wasted material is translated over the palaeo-seafloor, the deformation history of this 

same surface can be preserved within the MTDs. This characteristic is most prominent 

in salt-rich continental margins where diapirs have compressed the seafloor producing 

elliptical structures in map view. The translated mass-transport deposit could be 

reflected, deflected, ponded or constricted by the pre-existing salt structure. 

 

Post-MTD diapirism implies that the perturbation imposed by rising diapirs will be 

preserved in a MTD. The strata closest to the diapirs experience the highest strain 

relative to the rest of the MTDs. The highest strained region can be mapped with 

confidence using thickness map and other attributes maps. 
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1.7 Structure or layout of the thesis 

The thesis is divided into seven Chapters and seven Appendices.  The Introduction 

written in Chapter 1 highlights the rationale for the PhD, an extensive review of 

literature on MTDs, salt tectonics and a brief overview of fault behaviours on a salt 

rich-continental margin. In Chapter 2 is presented a general overview of the geologic 

setting of the Espírito Santo Basin with its known petroleum systems. Chapter 3 

includes the methods used for the research, and description of seismic interpretation 

techniques. A concise explanation of the descriptive statistical methods and graphs used 

in Chapter 4 is also presented in Chapter 3. Chapters 4, 5 and 6 comprise the main 

results Chapters of the thesis. A new method for assessing the source areas of MTDs on 

salt-rich margins was introduced and investigated in Chapter 4. The importance of 

MTDs as strata useful to unravel palaeo-strain conditions, and the physics of material 

translated within the MTD is shown in Chapter 5. Chapter 6 introduced and investigated 

the relevance of MTDs to the structural decoupling of adjacent fault families.  

Conclusion and discussions of the major findings in this work are provided in Chapter 

7. The appendices include a brief summary of the processing algorithm, additional 

seismic profiles, data analysed in Chapters 4 to 6 and atlases of MTDs and kinematic 

indicators for MTDs. 

 

Important contributions to knowledge from this research are: 

 The proposition of a novel method for assessing provenance of mass-transport 

deposit in salt-rich margins. 

 The demonstration of how valid is the application of statistics to seismic 

interpretation. 
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 The assessment of MTDs importance for different stages of diapirism, and 

associated overburden faulting. 

 An explanation of the enigma around ramps and flats bordering diapirs. 

 The demonstration of the importance of MTD as indicators of fault duration and 

activity. 
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Chapter 2 

Geologic Setting of the Espírito Santo Basin 
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2. Location of the study area 

The Espírito Santo Basin is located on a passive margin that evolved during the Late 

Mesozoic breakup of Gondwana (Figure 1.1). The basin is located on the southeast 

continental margin of Brazil, and covers an area of ~18, 000 km
2

 onshore and ~200, 000 

km
2

 on its submarine domain (Mohriak, 2003). The Espírito Santo is separated from the 

Mucuri and Cumuruxatiba Basins by the Abrolhos Plateau, a volcanic plateau 

originating in the Palaeogene (Mohriak, 2005). To the south, the basin gradually 

extends into the Campos Basin ( Ojeda, 1982; Chang et al., 1992; Fiduk et al., 2004). 

 

2.1. Tectonic framework and stratigraphic evolution 

As most sedimentary basins in the South Atlantic, the tectonic evolution of the Espírito 

Santo Basin is divided into four stages, which resulted in five depositional 

Megasequences (Fiduk et al., 2004; Figure 2.1 and 2.3). A first pre-rift stage of Late 

Jurassic to Berriasian age was followed by the syn-rift stage (Berriasian to Late Aptian). 

The transitional stage spans the late Aptian to Early Albian, and the drift stage starting 

in the Early Albian up to the Holocene (Ojeda, 1982; Gibbs et al., 2003; Figure 2.2 and 

Figure 2.3). The stratigraphic column of the Espírito Santo basin comprises pre-rift 

packages deposited prior to the rift/breakup of the Western Godwana. This phase 

coincided with the onset of crustal uplift and development of peripheral rift basins 

(Ojeda, 1982; Chang et al., 1992; Mohriak, 2003).   

Syn-rift tectonics is characterized by intense tectonic activity and formation of rift 

basins associated with the divergent movement of the South American and African 

plates (Franca et al., 2007). Rift-related packages are divided into Syn-rift I and II 

(Fiduk et al., 2004). Syn‐rift sedimentation therefore is dominated by deposition of 

lacustrine materials in fault‐controlled depressions, and carbonates over adjacent 
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structural highs. Syn-rift megasequences include the Cricaré and Marirícu Formation, 

which are composed of fluvial sandstones and syn-tectonic conglomerates intercalated 

with magmatic extrusives (Ojeda, 1982; Chang et al., 1992; Mohriak 2003; Fiduk et al., 

2004). 

 

Deposition during the transitional phase from syn-rift to the marine drift phase 

coincided with a period of tectonic quiescence and cessation of basement fault activity 

(Figure 2.3; Ojeda, 1982). During the transitional phase there was significant erosion of 

the crest of rotated rift blocks, and topographic smoothing occurred on the margin 

(Mohriak 2003; França et al., 2007). In parallel, the transitional phase is marked by 

deposition of thick sequences of anhydrite and halite resulting from extreme 

evaporation in an arid climate (Demercian et al., 1993; Mohriak, 2003; Franca et al., 

2007).  Two evaporitic cycles were recorded on the Eastern Brazilian margin during the 

transition from rift to drift stages; the Paripueira and Ibura evaporites (Ojeda, 1982).  

The early Aptian Paripueira evaporites are continuous with their West African 

correlatives. The late Aptian Ibura evaporites are marginal deposits restricted to the 

Brazilian margin (Ojeda, 1982). 

 

Evaporites in the Espírito Santo Basin were later deformed by a combination of 

differential sediment loading, gravity spreading and downslope gravity gliding 

(Demercian et al., 1993; Fiduk et al., 2004). As a result of such a complex halokinesis, 

six salt fairways were developed offshore (Fiduk et al., 2004). Included in these 

fairways are composite structures such as salt rollers, vertical salt diapirs, allochthonous 

salt canopies, shallow canopies coalescing from the combination of two different 

tongues, deep salt canopies, and thrusted salt nappes (Fiduk et al., 2004). The area of 
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interest to this study lies in the region of the vertical salt diapirs (Figure 2.1). Some of 

these diapirs ceased their movement in Cretaceous times, while others are still growing 

and exposing their crests on the seafloor (Fiduk et al., 2004).  

 

Cenozoic successions in the Espírito Santo Basin are composed of aggrading strata 

deposited during transgressive and highstand episodes (Mohriak et al., 1995). The lower 

transgressive succession, the São Mateus Formation, comprises shallow-water Albian 

strata intercalated with coarse sandstones. Coincidentally, the carbonate platforms of the 

Regência Formation were deposited in a distal slope position during the earlier 

transgressive episodes (Figure 2.3).  Late Albian deepening of the basin resulted in the 

deposition of dark mudstones, turbiditic sandstones and carbonate breccias which were 

overlain by mudstones of the Urucutuca Formation (Fiduk et al., 2004; França et al 

2007).  

 

Prograding strata marking regressive episodes and periods of submarine canyon incision 

are observed in seven specific stratigraphic intervals (Fiduk et al., 2004; Moreira and 

Carminatti, 2004). As a result, thick carbonate and clastic sequences were accumulated 

on the continental shelf during the late Cenozoic, with important volumes of strata 

prograding to the region where the study area is located (Figure 2.1). In this same 

region, late marine regressive Megasequences are associated with reactivation of 

ancient rift structures and emplacement of Abrolhos Plateau, a volcanic high emplaced 

from Eocene-Oligocene times (Demercian et al., 1993; Cobbold et al., 2001; Franca et 

al., 2007). A resulting unit, the Abrolhos Formation (Eocene-Oligocene) resulted from 

the erosion of this new magmatic plateau. Neogene deposition is dominated by 

mudstones and turbidites of the upper Urucutuca Formation, sandstones of the Rio Doce 



54 | P a g e  
 

Formation and bioclastic calcarenites from the Caravelas Formation (França et al., 

2007; Figure 2.2) 

 

During the drift stage, there was a continued spreading of the South American and 

African plates with eastward tilting, increased thermal subsidence and sediment loading 

affecting the deeper part of the Espírito Santo Basin (Mohriak, 2003). Uplift and erosion 

of the Abrolhos Plateau during the late drift stage culminated in the deposition of mixed 

siliciclastic and volcaniclastic material by turbiditic flows along submarine channel 

systems, fans and mass-wasting (Bruhn and Walker, 1997; Mohriak, 2003; Franca et al., 

2007; Gamboa et al., 2010). In such a setting, mass-wasting events in the interpreted 

seismic volume result from regional tectonic movements (Mohriak et al., 1995; Duarte 

and Viana, 2007), and slope instability events related to prolonged halokinesis and 

diapir growth (Fiduk et al., 2004).  

 

In summary, the post-Jurassic stratigraphy of the Espírito Santo Basin can be divided 

into the Nativo, Barra Nova and the Espírito Santo Groups (França et al 2007; Figure 

2.2). The Nativo Group sits unconformably over the Precambrian basement and is 

Neocomian to Cenomanian in age. The upper Mucuri Member of the Mariricu 

Formation is composed of alluvial, fluvial and lacustrine sandstones with interbeds of 

organic-rich shales (Figure 2.2). The Albian Barra Nova Group consists of sandstone 

deposited in fan delta systems, as well as carbonate platform sediments. The carbonates 

are known as the Regência Member and the sandstones are part of the São 

Mateus Member (Fiduk et al., 2004; França et al., 2007).  
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The Espírito Santo Group is diachronous and was deposited from the Upper Cretaceous 

to the Quaternary (Turonian to Pliocene).  The group comprises three distinct 

lithostratigraphic members; Urucutuca, Caravelas and Rio Doce (Bruhn and walker, 

1993; Fiduk et al., 2004; França et al., 2007). The Urucutuca Formation is composed of 

shale and calcareous shale intercalated with turbidites sands at its base.  Lithologically 

the unit grade into sandy turbidites, marls and turbidites composed of volcaniclastic 

materials at its upper part. The Rio Doce Formation and Caravelas member are 

composed of sandstones and turbidite sands with marls respectively (Franca et al., 2007; 

Alves 2012). 
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Figure 2.1: Relative location of the study area on the continental slope of Espírito Santo. Modified after Fiduk et al. (2004) and Gamboa et 

al. (2010, 2011). Inset: Tectonic outline of Brazilian continental margin (Modified after Ojeda, 1983). 
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Figure 2.2: Stratigraphic column of the Espírito Santo basin, showing major megasequences and distinctive regional unconformity surfaces 

(Modified from Alves et al., 2009 and França et al., 2007). Also shown is the velocity information for depth conversion as obtained from 

DSDP Site 515 (Barker et al., 1983). 
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Figure 2.3: Paleogeography and plate reconstruction of the Espírito Santo Basin during the opening of the South Atlantic, from Aptian to 

Holocene. The syn-rift stage is dominated by continental environments, followed by the deposition of thick masses of evaporates. The drift 

phase is characterised by shallow-‐water carbonate platforms and open marine sedimentation. The relative location of the Espírito Santo 

Basin is highlighted by the red box (Modified from Ojeda, 1982 and Chang et al., 1992). 
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2.1.2 Structural setting of the Espírito Santo Basin 

The structural framework of the East Brazilian Rift System (EBRIS) is reflected in the 

Espírito Santo Basin. This framework includes: a) antithetic tilted step-fault blocks, b) 

synthetic un-tilted step-fault blocks, c) structural inversion axes, d) hinges with 

compensated grabens, e) homoclinal structures, f) growth fault with rollovers, g) shale 

or salt diapirs, and h) igneous structures (Ojeda, 1982). These structures reflect 

continental extension and rifting associated with the opening of the Southern Atlantic 

Ocean (Ojeda, 1982; Chang et al., 1992; Mohriak 2003; Fiduk et al., 2004). 

 

Specifically, the Espírito Santo Basin comprises a series of horsts, grabens, and 

halokinetic faults. The study area lies in the region of vertical salt diapirs on the mid-

continental slope (Figure 2.1). Post-salt potential reservoir units were structural 

compartmentalized by halokinesis through Cenozoic times. This resulted in the 

development of three main phases of fault growth, which included normal and reverse 

faulting of overburden strata on salt crests linking adjacent diapirs (Alves, 2012; Tiago 

M. Alves et al., 2009; Baudon and Cartwright, 2008b).   

 

1. In early Palaeocene to late Eocene, halokinesis triggered the growth of closely 

spaced sets of extensional faults on the crests of rising salt anticlines. These 

faults propagated through the Late Cretaceous and Eocene strata and were 

mostly truncated by the mid-Eocene unconformity. 

 

2. These fault sets were eroded during the deposition of thick mass-transport 

complexes (MTCs) and submarine channels in late Eocene to Oligocene times 

during a period of tectonic quiescence. 
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3. Reactivation of older faults sets by vertical propagation and dip linkages in late 

Cenozoic was dependent on movements of Aptian rafts and cessation of tectonic 

tilting of the slope (Alves, 2012). Faulting of Late Eocene to Holocene strata is 

less expressive, reactivated faults have poor or no expression on the modern 

seafloor (Baudon and Cartwright, 2008; Alves et al., 2009). 

 

Fault reactivation in the study area is therefore related to regional-scale reactivation that 

affected the Southeast Brazilian margin. Structural inversion on the EBRIS was 

influenced by plate-wide horizontal compression associated with the Andean orogeny 

(Cobbold et al., 2010). Early Cretaceous and older structures on the obliquely rifted 

margin of south eastern Brazil were reactivated during the Late Cretaceous and 

Cenozoic as a result of far-field stresses and hotspot activity. Reactivation occurred in 

right-lateral mode during three main phases (Late Cretaceous, Eocene, and Neogene), 

which correlate with changing conditions of convergence at the Andean margin of 

South America (Cobbold et al., 2001,2010). 
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2.2 Cenozoic breakup of Africa and Southern America and 

palaeogeography of the Espírito Santo Basin. 

 

The Gondwana super-continent comprised South America, Africa, Australia and India 

(Figure 2.4). They were grouped around Antarctica as a central core, with a number of 

smaller continental fragments. By the early Cretaceous, some 130 million years ago, 

Gondwana had begun to break up (Chang et al., 1992). The first split divided the 

continent into two sections, a western half, made up of Africa and South America, and 

an eastern half with Antarctica, India and Australia. Later in the Cretaceous period, 

some 120 million years ago, the next of the fragments, India, broke away and began its 

northward journey through the Indian Ocean (Chang et al., 1992). 

 

The western Gondwana breakup started in the Late Jurassic in the southern extreme of 

the South Atlantic (Argentina/Namibia-South Africa) and advanced towards the Eastern 

Brazilian/Western African continental margins by Early Cretaceous (Chang et al., 1992; 

Mohriak et al. 2008).  Rifting started in the south, and propagated toward the north. 

Consequently, emerging basins on either side of the continents are characterized by 

similar tectono-sedimentary evolutions; for example, the magma-rich Argentina–

Namibia margins, the moderately magmatic Santos-Campos-Espírito Santo-Angola 

margins, and the magma-poor Bahia-Sergipe-Gabon margins (Figure 2.3). However, 

these basins can differ from very wide rifted basins with a thick layer of Aptian salt, and 

to very narrow basins with no evaporite deposition (Davison, 2007). 

 

The south Atlantic rift system created two very different margins in Brazil; the north 

and East Brazilian rift systems (NBRIS and EBRIS). The North Brazilian Equatorial 

margin evolved in response to strike-slip motion between Brazil and Africa, producing 
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complex shear-dominated basins. The EBRIS evolved into a passive margin, as 

consequence of orthogonal crustal extension (Chang et al., 1992). The EBRIS consists 

of rifted continental margins which include Pelotas, Santos, Campos, Espírito Santo, 

Mucuri, Cumuruxatiba, Jequitinhonha, Camamu/Almada, Jacuipe, Reconcavo, Tucano, 

Jatoba and Sergipe-Alagoas basins (Chang et al., 1992). 

 

2.3 Deformational styles in the case study area 

The study area represents a classical example of gravity-controlled passive margins. 

The Espírito Santo Basin consists of extensional margin near the continental shelf, with 

progression into a translational area between the shelf and the slope (characterised by 

vertical salt diapirs) and a contractional part in deepwater regions (around the lower 

slope). Salt (evaporites) is often considered as a viscous material having a very low 

strength, and formed the décollement layer for the gravity-controlled systems observed 

in the study area. Salt starts to deform very soon after its deposition. It leads to 

symmetric detachment folds, shortened salt diapirs and/or inflated and thickened salt 

massifs and nappes (Rowan et al., 2004; Brun and Fort, 2011).  

 

2.4 Petroleum system of the study area 

Onshore exploration in the Espírito Santo Basin was initiated during the early 1960s, 

while offshore operations began in 1968 (Vieira et al., 2007). Present day oil production 

in the Espírito Santo Basin is about 20,000 barrels per day (Vieira et al., 2007). The 

principal production comes from turbiditic reservoirs enclosed in thick Tertiary and 

Upper Cretaceous marine slope deposits, near the bottom of Cretaceous submarine 

canyons (França et al., 2007). 
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Figure 2.4: Source rock characterization for the Espírito Santo Basin (After Mello and 

Maxwell, 1990). 
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Figure 2.5: Figure highlighting the main trapping mechanisms in rift units, which are 

linked to the presence of horsts and grabens (Modified after ANP/COPPE, 2008). 

 

Figure 2.6: Trapping mechanisms in the Espírito Santo Basin also include four-way 

closures in rollover anticlines located on the flank of salt diapirs (Modified after 

ANP/COPPE, 2008). 
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Figure 2.7: Other traps include stratigraphic pinchouts and salt canopies (Modified after 

ANP/COPPE, 2008). 

 

Figure 2.8: Palaeogeomorphic traps are common in drift units and are associated with 

the incision of submarine canyons and channels (Modified after Carvalho et al., 1989). 
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2.4.1 Source rocks 

The main source rocks in the Espírito Santo Basin comprise the Cenomanian/Turonian 

deep marine shales of the Urucutuca Formation, shallow to deep marine marls of the 

Albian Regencia Formation (Post–rift I), Fluvio-marine shales of Aptian Mariricu 

Formation/Mucuri Member (Transitional), and Lacustrine shales of the 

Barremian/Aptian Cricaré Formation/Sernambi member (Syn-rift) (Mello and Maxwell, 

1990). Fine-grained lacustrine sediments consist of fine sand, silts and dark shales in 

syn-rift depocentres (Ojeda 1982; Chang et al., 1992; Fiduk et al., 2004). The extreme 

anoxic conditions in the depocentres allowed the right quality and abundance of organic 

matter in extensive shale units (Mello et al., 1994; Mohriak 2004).   

 

The Barremian/Aptian Cricaré Formation is characterized by presenting Type I kerogen 

with average TOC of >5% (Figure 2.4) (Ferreira et al., 2009; Schenk, 2000a). The 

Urucutuca Formation is dominated by Type III kerogen while the Regência and 

Marirícu Formations have TOC of 0.5 – 2.0%, respectively, and a predominance of 

Type II kerogen (Mello and Maxwell, 1990; Coward et al., 1999; Schenk 2000a). 

 

2.4.2 Reservoir rocks 

Reservoir rocks mainly comprise turbidites of the Urucutuca Formation. Hydrocarbons 

are associated with upper Cretaceous and tertiary turbidites sandstones of the Fazenda 

Cedro palaeo-canyon. The Regência Platform is located in the southern part of the basin 

where the main producing reservoirs are Albian sandstones and carbonates. Reservoir 

rocks located north of the Espírito Santo Basin are sandstones of the São Mateus 

platform. Potential oil bearing sediments also include Cretaceous continental deposits 

located in rift valleys and transitional shallow-marine 
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strata   stratigraphically trapped below an Aptian evaporite seal.  The main reservoir 

units in the Espírito Santo Basin can be grouped as: 

 Cretaceous/Palaeogene (Turbidites-Urucutuca Formation) 

 Albian (-Regencia Formation) 

 Aptian (Mariricu Formation/Mucuri Member) 

 Valanginian/Barremian (Cricare Formation/ Jaguare member) 

 

2.4.3 Traps and seals 

Trapping mechanisms in the Espírito Santo Basin include pre-salt horsts and graben, 

three-way closures (Figure 2.5), and traps related to rollovers on the flank of salt diapirs 

are common in drift successions (Figure 2.6).  Paleogeomorphic traps are commonly 

associated with the erosion of drift phase sediments by channels and canyon (Figure 

2.8). These kinds of traps are common in drift stage carbonate platforms. Other types of 

traps include stratigraphic pinchouts and complex traps created by allochthonous salt 

structures such canopies and tongues (Figure 2.7). Cretaceous shales of the Urutuca 

Formation are the major sealing units for post-salt rocks.  Others include Albian 

calcilutites and marls of the Regência Formation, and salts and shales of the Itaúnas and 

Mucuri Members, respectively. 

 

2.5 Seismic stratigraphy of the study area 

In Chapters 4 and 5, nine horizons were interpreted in order to constrain the geometry 

of the mass-transport deposits around five salt diapirs. Similarly in Chapter 6, five 

megasequences and 6 horizons corresponding to the tops and bases of the three MTDs 

were interpreted. Velocity information for depth conversion was obtained from the 
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Barker et al., 1983. The correlation panel is presented in Figure 2.9 while the attributes 

of the horizons are briefly discussed in Tables 2.1, 2.4, section 6.2 and 6.3, respectively. 

 

 

 

Figure 2.9: Correlation panel for the interpreted seismic horizons. Horizons 1 to 4 

reflect regional unconformity surfaces identified by França et al., (2007). The 

stratigraphic column is modified from Alves et al., (2009) and França et al., (2007). The 

velocity information for depth conversion was obtained from DSDP well of Barker et 

al., 1983. 
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Table 2.1: Seismic character and features hroizons used to constrain the geometry of MTDs interpreted  in Chapters 4 and 5. 

Horizon Seismic Unit Age 

(Fiduk et al 2004) 

(Mohriak 2003, 2005) 

Seismic character 

1 H0 Eocene Continuous, high amplitude  

2 H1 Eocene Continuous, high amplitude. 

3 H2 Late Eocene Very discontinuous, rugged, low to moderate amplitude  

4 H3 Late Eocene Very discontinuous moderate high amplitude, often stair-cased 

5 H4 Oligocene Continuous, high amplitude 

6 H5 Miocene Continuous, irregular, high amplitude 

7 H6 Miocene Continuous, high to moderate amplitude  

8 H7 Miocene Continuous, high to moderate amplitude 
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Table 2.2: Seismic character of hoizons interpreted  in Chapters 6 

Horizon Seismic Unit Age 

(Fiduk et al 2004) 

(Mohriak 2003, 2005) 

Seismic character 

1 H1 Late Santonian High-amplitude, discontinuous reflection 

2 H1b Campanian to Santonian High-amplitude, discontinuous and faulted layer beneath horizon 

H2 

3 H2 Maastrichtian High amplitude, discontinuous reflection and densely faulted  

4 H3 Early Eocene High amplitude, moderately faulted reflection 

5 H4 Miocene High amplitude reflection 
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Chapter 3 

Materials and Methods 
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3. Basic concepts on seismic reflection method 

Seismic reflection surveying has greatly improved our understanding of subsurface 

geology and associated hydrocarbon, mineral, and energy resources (Cartwright and 

Huuse, 2005). The current state of sophistication of the technique results from the huge 

investment from the hydrocarbon industry, coupled with the development of advanced 

electronics and computing technology (Kearey et al., 2002; Cartwright and Huuse, 

2005). Seismic data allow geoscientists to map subsurface geological structures and 

stratigraphic features (Sheriff, 2002). However, the technique involves acquisition, 

processing and interpretation common with other geophysical methods. A review of 

techniques of seismic surveying is provided below and methods used in this research are 

outlined. 

 

3.1 Seismic data acquisition 

Seismic waves are created by a controlled source and propagate through the subsurface 

(Kearey et al., 2002). Some waves will return to the surface after refraction or reflection 

at geological boundaries at the subsurface. Instruments distributed along the surface 

detect the ground motion caused by these returning waves and hence measure the arrival 

times of the waves at different ranges from the source (Figure 3.1). Arrival times may 

be converted to depth values providing information on the subsurface geological 

interfaces (Kearey et al., 2002). Body waves generated at seismic source include 

compressional (P-primary wave) and shear waves (S-waves). Body waves propagate 

through the interval volume of an elastic solid, P-waves travel in the direction of wave 

travel while shear waves propagate by a pure shear strain in a direction perpendicular to 

the direction of wave travel (Sheriff and Geldart, 1995; Kearey et al., 2002; Bacon et 

al., 2007). 
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Seismic sources include dynamite, vibroseis, mini-sosie (or wacker), shotguns, 

electrical sparkers, boomers, weight drops and hammers, air guns and water guns 

(Figure 3.2; Kramer et al., 1968).  The choice of seismic source is dependent on the 

environment in which the survey is done (land or offshore), the desire to obtain the 

sufficient energy across the broadest possible frequency, the necessity to obtain a 

repeatable source waveform, and environmental issues.  The main goal of any survey is 

to reduce the noise ratio compared to the signal produced from the geological interfaces 

(Sheriff and Geldart, 1995; Kearey et al., 2002). In marine reflection seismic surveys 

the energy source is typically an array of air guns (a single gun in the case of a vertical 

seismic profile) with receivers in various combinations towed by a vessel at the sea 

surface (Figure 3.1). Marine seismic reflection surveys are mostly concerned with P-

wave reflections, as fluids do not transmit S-waves (Sheriff and Geldart, 1995; Kearey 

et al., 2002; Bacon et al., 2007). 

 

Fundamental to the seismic reflection method is the property of a layer termed acoustic 

impedance (𝑍), which can be defined as:  

 

𝑍 = 𝜌𝑉 ------------------------------------------------------- (Eq. 3.1) 

 

Where 𝜌 is the density of the rock or sediment and 𝑉 is the velocity of a P-wave through 

the rock or sediment. Contrasts in acoustic impedance determines the reflection 

coefficient at normal incidence (Sheriff and Geldart, 1995; Kearey et al., 2002). The 

velocity of a P-wave through an isotropic, homogenous solid is controlled by the elastic 

constants and density of the material (Sheriff and Geldart, 1995). Rocks and sediments 

are rarely isotropic or homogenous, and as such the velocity of wave will vary 
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depending on composition, porosity, and fluid content, which may all vary in the three-

dimensions (Sheriff and Geldart, 1995; Kearey et al., 2002; Bacon et al., 2007). 

 

3.1.1 3D seismic survey 

 

Seismic surveys are achieved through the design of appropriate line geometry for source 

and geophone locations. The general practice is to lay out geophones and source set in a 

rectangular grid, called dip lines and strike lines (2D) or inlines and crosslines (3D) 

(Stone, 1994). A dip line follows (at least approximately) the line of steepest descent 

down the structure; it minimizes the problem of reflections originating out of the plane 

of section. A strike line follows (at least approximately) a contour line on the structure 

(Stone, 1994). Initial knowledge of the structure could be derived from surface geology, 

or regional geology, or satellite imagery, or previous geophysical surveys such as 

gravity and magnetics (Weimer and Davis, 1996; Vermeer, 2000). For example, if the 

structural trend of the prospect area trends northwest-southeast, the dip lines will be in 

NE-SW and while strike lines NW-SE. A simple rectangular grid will suffice for simple 

structures such as anticlines, faults and simple stratigraphic sequences. For complex 

structures such as salt dome or a patch reef, an additional number of radial lines will be 

required to map the flanks of the structure. Planning the survey layout may include 

planning for both surface and sub-surface factors potentially affecting the seismic 

processing algorithm, particularly structural local dips and local topography (Stone, 

1994). 

The layout of 3-D lines involves a greater volume of work that 2-D seismic although 

their principles are the same. Most surveys are planned using workstations. These allow 

the planner to superimpose the survey on a topographic map so that operational 
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problems can be integrated into the planning process. Marine streamer 3-Ds and oblong 

land 3-Ds have longer offsets in a defined azimuth (Weimer and Davis, 1996; Vermeer, 

2000). The choice of this azimuth will depend on the structure and processing methods 

to be applied. If the long offsets are parallel to dip, then the NMO correction will vary 

according to dip, and may be difficult to achieve accurately. This problem is mitigated 

by the use of DMO or pre-stack depth migration. If the long offsets are parallel to strike, 

then there will be no variation in stacking velocity as a function of dip and the 

processing becomes simpler (Weimer and Davis, 1996; Vermeer, 2000). However, this 

method may require closer CMP spacing in the cross-line direction, which may be 

expensive to achieve (Vermeer, 2000). In addition, the acquisition parameters can 

sometimes be designed to obliterate certain kind of multiples before the data is 

processed. These will be discussed further in the next section. 

 

3.1.2 Seismic Processing 

 

The main goal of seismic processing is to obtain the most precise representation of the 

subsurface information inferred from the seismic. It is central to the seismic prospecting 

technique, hence, the reason why it is ambiguous and extremely time consuming. The 

goal of seismic processing is to produce higher signal-to-noise ratios (SNR) than raw 

seismic data. A typical processing flowchart and algorithm is provided in Figure 3.3 and 

Appendix I. The readers can refer to Seismic processing technique of Sheriff and 

Geldart (1995) and Yilmaz (2001) for further details. 

 

3.1.3 Seismic interpretation 

The main approaches to seismic interpretation include structural and stratigraphic 

analyses (Kearey et al., 2002; Bacon et al., 2007) (Figure 3.4 and Figure 3.5). The 
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former reflect studies of reflector geometry on the basis of reflection times with the sole 

goal of searching for structural traps containing hydrocarbons. On the contrary, 

stratigraphic interpretations involve the analysis of reflector sequence as the seismic 

expression of lithologically-distinct depositional sequences (Kearey et al., 2002; Bacon 

et al., 2007). In seismic stratigraphy, reflectors are considered to define 

chronostratigraphical units (e.g. unconformities) and genetically related sedimentary 

sequences composed of onlap, toplap, downlap and truncations distinguishing overlying 

and underlying sequences (Emery et al., 1996; Vail et al., 1977). Two dimensional (2-

D) seismic data provide a cross-section beneath the Earth’s surface unlike 3-D data, 

which images the subsurface geology as a volume in x, y, z direction. Seismic profiles 

are usually displayed with vertical (z) axis in two way travel time [TWTT (s/ms)] or 

depth (m) and horizontal (x, y) axis in metres (m) or kilometres (km). Two-way travel 

time (TWTT) can be converted to depth using appropriate P-wave velocities (cf. Brown, 

2005a). A generalised interpretation workflow is shown in Figure 3.6. 

 

3.2 Dataset utilised in this study 

The data set in this research consist of a high-quality seismic volume covering ~1310 

km
2
 in water depths ranging from 100 m to 1800 m (Figure 3.7 and Figure 3.8). The data 

set was acquired using a dual air gun array and six, 5700 m long streamers. Bin spacing 

for this zero-phased migrated volume was 12.5 × 12.5 m at a vertical sampling rate of 2 

ms. Data processing integrated resampling, spherical divergence corrections, and zero-

phase conversions, which were undertaken before stacking 3-D prestack time migration 

using the Stolt algorithm, and one-pass 3-D migration. Further details on the processing 

algorithm are provided in Appendix I. 
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Figure 3.1: The principles and techniques of seismic reflection survey in offshore area 

(Modified from http://www.epa.gov/esd/cmb/GeophysicsWebsite). 
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Figure 3.2: Examples of seismic acquisition sources (a.) Vibroseis in a set 

(http://www.cflhd.gov) (b.) Weight dropping and sledge hammer 

(http://mettechnology.com)  (c.) geophones (http://iseis.com) (d.) weight dropping 

(http://geophysics.curtin.edu.au (e.) Air gun used for marine survey 

(http://upload.wikimedia.org/wikipedia/commons/1/1d/Airgun-array_hg.png). 
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Figure 3.3: Flow chart for conventional seismic processing (Yilmaz, 2001). 
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Figure 3.4: Examples of structural and stratigraphic seismic interpretation. The seismic section shows post-kinematic sediments that are 

deposited above a complex thrust-fold system of the Nankai trough (Modified after Alves et al., 2013). 
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Figure 3.5: Another example of complex seismic interpretation involving both structural and stratigraphic mapping of a basin. The seismic 

section was interpreted from a section of the dataset used for this thesis.  
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Figure 3.6: A simplified seismic interpretation workflow for Petrel and Geoframe.  
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3.2.1 Phase of the seismic data 

A fundamental question prior to any seismic interpretation should include:  What is the 

defined polarity of the data? Is it zero-phase or a minimum-phase wavelet? Is there a 

phase shift in the data, because phase often varies both laterally and vertically across a 

dataset? Seismic amplitude can be maximum, minimum and zero-phase (Figure 3.9), 

with the latter type being ubiquitous in present-day seismic interpretation practices 

(Brown, 2004). The zero‐phase data implies that the wavelet is symmetrical and the 

majority of energy is coincident with its peak, which has a great advantage on seismic 

stratigraphic interpretations as the centre of the wavelet is coincident with the 

geological interface causing the reflections. Thus, an interpreter with a zero-phase data 

will pick the horizons or surfaces through the central part of the reflection.  

 

3.2.2 SEG Convention/ Picking Parameters 

 

When picking the horizons, the Society of Exploration Geophysicists (SEG) convention 

was adopted for a reflection that is associated with an increase in acoustic impedance. 

The normal SEG polarity is positive and displayed as a peak (Figure 3.10). If the signal 

arises from a decrease in acoustic impedance, the polarity is negative and is shown as a 

trough (Sheriff and Geldart, 1995; Kearey et al., 2002).  

 

The normal SEG convention is otherwise referred to in this thesis as American 

convention in contrast to trough-peak polarity of the European convention. The seismic 

volume for this research is displayed in normal polarity with an increase in acoustic 

impedance with depth shown as a peak (Figure 3.9). The peaks were displayed as black 

while the troughs shown as red reflectors, white reflections are the zero-crossings.  
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The polarity of a reflected wave is dependent on the reflection coefficient (RC). 

Acoustic impedance is the product of velocity (V) and rock density (ρ) (Brown, 2004; 

Kearey et al., 2002). The reflection coefficient can be obtained from equation 3.1.  

 

Reflection coefficient =

Amplitude reflected/Amplitude incident =  V2ρ1-V1ρ1

V2ρ2+V1ρ1
 

Where V1ρ1 is the acoustic impedance of layer 1 

and V2ρ2 is the acoustic impedance of layer 2  ------------------------------------ (Eq. 3.2) 

 

 

If the acoustic impedance of layer 2 > layer 1, the resulting reflection will be positive. A 

negative reflection is obtained where the acoustic impedance of layer 2 < layer 1. 

 

3.3 Horizon Mapping  

In the absence of a well data, a seismic tie could not be done and interpretation was done 

using traditional methods of seismic facies analysis. The facies parameters used in 

mapping the horizons include strong amplitude, continuity, and frequency variation 

(Mitchum et al., 1977). Interpreted horizons defined seismic packages by identifying 

zones of high/low frequencies and strong, medium or low amplitude reflection. Seismic 

packages can be defined as a sedimentary unit which is different from adjacent units in 

its seismic character. Continuity describes the lateral persistence of a reflection (Badley, 

1985). It can comprise a good lithology indicator if zones of continuous and 

discontinuous reflections are taken as different lithological units (Figure 3.11).  
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An abrupt increase in seismic amplitude can indicate the presence of hydrocarbons, 

although such anomalies can also result from processing problems, geometric or velocity 

focusing or changes in lithology. Amplitude anomalies that indicate the presence of 

hydrocarbons can result from sudden changes in acoustic impedance, such as when gas 

sand underlies shale, and in that case, the term is used synonymously with hydrocarbon 

indicator. Where amplitudes can be differentiated, the qualifying terms of high, medium 

and low were used in this thesis. Most of the horizons interpreted were high amplitude 

reflections. Low amplitude zones are associated with fault planes and evaporites (Figure 

3.12). 

 

3.3.1 Seed gridding and mis-ties 

The greatest advantage of 3-D seismic data over 2-D data is that visualization and 

interpretation of geologic features can be undertaken in the x, y and z directions (Kearey 

et al., 2002; Sheriff and Geldart, 1995). A seed grid technique was used to obtain an 

overview of the geometry of the reflectors. This included the picking of horizons of 

interest through a number of widely-spaced crosslines and inline at regular intervals. 

Horizon interpretations done at a 10 inlines or crosslines spacing implies a picking 

interval of 125m in this survey. Seed gridding is necessary to ensure that the 

interpretation loop is accurately tied (Figure 3.14).  

 

Inline and cross lines not picked within the interpretation loop were amplitude 

interpolated or tracked using Automatic Seismic Area Picker (ASAP) prior to generating 

time/isochron and attribute maps. Mis-ties were corrected by re-picking along the 

problem area with the aid of the seed grid (e.g. Figure 3.15). 
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3.3.2 Seismic frequency and resolution 

Frequency or spacing describes the number of reflectors per unit time (Figure 3.13). It is 

a good sedimentary facies discriminator. As vertical changes in reflector spacing can be 

used as a guide to locating boundaries between depositional sequences, restraints must 

be used when using this parameter as an interpretation criterion (Badley, 1985).  

 

Interval velocity = distance or depth (m) / OWTT (s) ---------------------- (Eq. 3.3) 

 

The resolution of a seismic volume can defined as the minimum separation between two 

features. Resolution varies both vertically and laterally, the vertical seismic resolution is 

defined as the minimum separation between two interfaces such that we can identify 

two interfaces rather than one (Sheriff and Geldart, 1995). In turn, horizontal resolution 

is how far two features involving a single interface must be separated to show as 

separate features. The best resolution can be obtained at ¼ of λ and the minimum 

resolution at 1/30 of λ (Sheriff and Geldart, 1995; Badley, 1985). The seismic velocity 

(v) is the product of frequency (f) and wavelength (λ), such that:  

 

v= f x λ ------------------------------------------------------- (Eq. 3.4) 

 

The vertical resolution of the dataset with a dominant frequency of 40 Hz is ~15.6 m 

and 19.375 m assuming velocity of 3100 m/s and 2100 m/s for deeper and shallow 

horizons (Barker et al., 1983; Fiduk et al., 2004).  The dominant frequency is the 

frequency of the highest amplitude which is obtained from the processing algorithm. 

For a migrated data, horizontal resolution is equal to the bin size and is ~12.5 m for the 

interpreted volume. 
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Figure 3.7: Seismic cube through the study area. Also shown in the figure are examples 

of an inline, crossline, and time slice. The interpreted seismic cube covers ~1310 km
2
 in 

Espírito Santo Basin, SE Brazil. 
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Figure 3.8: Example of 3D seismic visualisation techniques used in this work. The 

seismic volume interpreted in this study covers water depths of 100 to 1800m offshore 

the Espírito Santo Basin. The seismic cubes in the figure show how the water depth 

varies along slope. 
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Figure 3.9: Maximum, minimum and zero-phased seismic amplitude. Polarity or phase 

of seismic amplitude. The American convention displays an increase in acoustic 

impedance with depth as a peak (Modified from Sheriff and Geldart, 1995). 
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Figure 3.10: The seismic volume for the study is displayed in normal SEG convention. 
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Figure 3.11: Examples of continuous and discontinuous reflectors from the seismic 

volume. Modified after Badley (1985). 
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Figure 3.12: Seismic example of low amplitude associated with fault planes and 

evaporites. Moderate seismic amplitudes are associated with carbonate rocks. The 

magnitude of the amplitude is dependent on the AGC (Amplitude Gain Control) used 

for the interpretation. 
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Figure 3.13: Frequency is a good lithological discriminator. In this instance very high 

frequency reflectors are associated with siliciclastic rock while carbonates can be 

defined as very low frequency packages. The frequency is defined as the number of 

reflectors by unit time (Modified after Badley, 1985). 
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Figure 3.14:  Seed gridding used for 3D seismic interpretation in the case study area. 

The fine gridding in this thesis included the interpretation of data at intervals of 10 

inline or crosslines (i.e. done at intervals of ~125 m). 
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3.3.3 Mapping of mass-transport deposits 

 

The boundaries of MTDs are imaged as distinctive tops and basal shear surfaces 

contrasting with the relative continuous strata above and below. The upper surface of a 

MTD is usually a rugged or ridged surface located above chaotic to moderately 

deformed reflections of variable amplitude (Richardson et al., 2011), while the basal 

shear surface separates disrupted strata within the MTD  from the much more 

continuous deposits underneath (Frey Martinez et al., 2005b; Frey-Martínez et al., 

2006b). Seismic expressions of the top and basal surfaces of some MTDs are shown in 

Figure 3.16 and Figure 3.17.  

 

Nevertheless, the internal character of the mass-transport deposit is variable on seismic, 

depending on their interior architecture derived from their source materials. Based on 

the preservation of some or all of their original stratigraphy, mass-wasting deposits are 

classified as slides, slumps and debris flow deposits (Masson et al., 2006b), the latter 

being an entirely homogeneous, chaotic, disaggregated material with no original 

stratigraphy preserved (Figure 3.16).   
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Figure 3.15: Mis-ties during seismic interpretation were identified after the seeded grid 

was amplitude interpolated or ASAPed. 
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Figure 3.16: Seismic reflection of the top reflection in a MTD and corresponding 

internal character of this same deposit. The top of a mass-transport deposit is shown as 

rugged and hummocky reflection. From Richardson et al., (2011). 
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Figure 3.17: Seismic expression of the basal shear surface of a mass-transport deposit. 

Also shown are examples of slides, slumps and debrites. N.B: BSS is the basal shear 

surface along which material was translated along slope. Slope failure occurs when 

downslope-directed shear stress exceed the shear strength of seafloor sediment 

(Richardson et al., (2011) and Varnes (1978)). 
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3.3.4 Fault mapping and modelling 

 

Faults were mapped at a very fine grid of 1 to 5 inline/crossline spacing equivalent to 

12.5 m to 62.5 m. After picking the faults, fault models were created in petrel in which 

most of the faults were quality-controlled and converted into fault surfaces. The fault 

model was populated with horizons, zones and arbitrary sedimentary layers to observe 

the effect of the fault offset on horizons. The very subtle faults were picked using 

attribute maps, mainly dip, amplitude and coherence maps. Automatic fault extraction 

was used to pick the polygonal faults in the study area (Figure 3.26). 

 

Specifically in Chapter 6, fault planes were manually mapped in Latest Cretaceous-

Holocene strata showing three main MTDs (Figures 6.3b and 6.4b). In densely faulted 

regions, we used ant tracking algorithms to extract fault patches (Randen, 2000). Faults 

automatically extracted by this method were manually checked to ensure that the 

automatic fault picks were valid. In order to achieve an effective automatic fault 

extraction, the volume was divided into four zones comprising both MTD and non-

MTD areas (Figure 6.1). Two thousand two-hundred and eighty-two (2282) faults were 

automatically extracted and analysed in this work. 

 

Fault propagation histories were analysed using throw-depth (t-z) techniques (Walsh 

and Watterson, 1989; Peacock and Sanderson, 1991; Dawers and Anders, 1995; 

Cartwright and Mansfield, 1998; Mouslopoulou et al., 2007; Baudon and Cartwright, 

2008). In detail, throw values were estimated on faults using seismic profiles orthogonal 

to fault strikes at the inflection points closest to the hanging wall and footwall cut-offs 

(Mansfield and Cartwright, 1996). Throw values were contoured for twenty four (24) 

representative faults to further elucidate the styles of fault growth, linkage styles and 
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reactivation in the study area. Errors in throw estimate were dependent on the vertical 

sampling rate of 2 ms. Hence, the correlation of synchronous strata across hangingwall 

and footwall section was completed with a high degree of confidence. The sampling 

interval, rather than the vertical stratigraphic resolution, determines accuracy when 

matching two correlative seismic reflection peaks or troughs (Baudon and Cartwright, 

2008a).  

 

Throw values were contoured for representative fault families and presented as maps to 

further elucidate fault growth, linkages and reactivation (e.g. Figure 3.18 and Figure 

3.19). Contour values are consistently sampled as strike-projections of the fault seen 

from the footwall side (Figure 3.19).  

 

Fault decoupling geometries were further analysed by estimating the propagation rate 

for faults and the relative age of sediments they cut through (see techniques of Childs et 

al, 2003 for estimating fault propagation rate).  The ages of mapped horizons were 

estimated from well data and regional sections of Barker et al. (1983), Fiduk et al. 

(2004) and França et al. (2007). Half-lengths of faults were measured from the point of 

maximum displacement on the mapped fault trace to the fault tip-point. In parallel, the 

ratio of half-lengths to the time-interval between mapped horizons was also measured. 

Sedimentation rate is defined in this work as the mean thickness of the interval from 

both hangingwall and footwall section divided by the time interval between mapped 

horizons.  

 

Pitfalls when calculating both rates derive from accurate estimation of tip-line locations, 

time interval over which propagation rates were calculated, seismic resolution and 
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differing seismic interval velocities. The effect of sediment compaction due to burial 

was not considered; the rate used is the thickness of compacted sediment per unit time. 

While this may lead to a substantial underestimation of the absolute rate of deposition, it 

may not influence the fault analysis because (a) this depends on the relative rate not the 

absolute rate, and (b) all the faults are buried to about the same depth, and therefore the 

sediments they cut have undergone approximately the same amount of compaction. 

 

Detailed styles of fault interaction and specific fault families were interpreted using 

isopach maps (Figure 6.5). These maps were used to recognise variations in the 

geometry of the interpreted MTDs, regions affected by extension, and growth packages 

related to syn-sedimentary faulting. Graphical descriptions of fault families were also 

completed using rose diagrams in Figure 6.1. 
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Figure 3.18: Fault planes are expressed as truncations or terminations of seismic 

reflections on profiles. Also shown in this figure is the technique used for estimating 

throw from hanging-wall and footwall cut-offs. The dip displacement is the square root 

of the sum of the square of the throw and heave. 

 

 

 

 



103 | P a g e  
 

 

 

Figure 3.19: Throw contours providing hints on fault growth, linkage and reactivation. 

The point of nucleation for the fault is the position of maximum displacement (dmax), 

fault propagates from dmax with displacement reaching zero at the tips (Barnett et al., 

1987; Walsh and Watterson, 1989). The figure shows the displacement profiles of three 

faults reactivated by dip linkage into a single fault (Baudon and Cartwright, 2008). 
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3.4 Seismic attribute analysis 

3.4.1 Amplitude 

This attribute displays the amplitude value at any point along an interpreted seismic 

horizon (Randen et al., 2000; Brown, 2004). The amplitude of a seismic reflection is 

weakened along structural lineaments such as faults. It is thus possible to map fault 

traces along an interpreted seismic reflection by analysing seismic amplitude data. 

Minor structures are difficult to identify on amplitude maps, and is therefore appropriate 

to always use amplitude data in conjunction with dip maps (See Figure 3.21). Amplitude 

data may be further computed as maximum, minimum, average amplitudes, number of 

zero crossing, maximum magnitude, etc.  

 

3.4.2 RMS amplitude 

 

Root-mean square (RMS) amplitude maps were generated in this work to highlight the 

presence of high-amplitude strata and associated structural fabrics. RMS amplitude 

maps calculate average amplitude values by squaring individual data samples over a 

defined time window, boosting any high amplitude in the mapped interval (Brown, 

2004).  RMS attribute maps can emphasise structural fabric because seismic wavelets 

are diminished across basal ramps/faults as a result of the destructive interference of 

seismic energy (Fairbairn and Ward, 1984) and the incomplete reflection of energy from 

the Fresnel Zones on both sides of the ramps (Townsend et al., 1998). 

 

In this thesis, RMS amplitude maps helped the identification of heterogeneous MTDs, 

basal ramps and flats, as well as any drag zones around growing salt diapirs. On RMS 

amplitude maps, near-seafloor uplift is shown as elliptical features around the salt 

diapirs, marked by differences in amplitude and character from strata away from these 



105 | P a g e  
 

elliptic zones. In addition, these same regions are characterised by ramps of variable 

dimensions (Figure 3.20). 

 

3.4.3 Dip Maps 

Time-derived dip maps across remnant or rafted blocks show marked changes in dip 

when compared with disaggregated strata, provided the vertical resolution is high 

enough to resolve dip offsets (Yilmaz, 1987). Time-structure maps were used to 

describe the morphological division of individual MTDs into their headwall, 

translational and toe domains. Changes in dip associated with basal shear surfaces were 

underlined using time-dip maps (Figure 3.21). The latter maps highlight changes in dip 

of an interpreted seismic reflection. Since ramps offset near-seafloor strata, a continuous 

interpretation across the ramps will result in a change in dip of the interpreted horizon, 

provided the vertical resolution is high enough to resolve the offset (Yilmaz, 1987). 

How abrupt the change in dip across a ramp is, depends on the bin size of the seismic 

volume as well as its lateral resolution (Yilmaz, 1987). 
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Figure 3.20: RMS amplitude maps are useful to identify structural fabrics such as 

ramps, faults within a pre-established depth window. It is also a good lithology 

discriminator especially when it is necessary to characterise heterogeneous deposits. In 

this work, RMS amplitude maps were used to elucidate segments of the palaeo seafloor 

that were pierced and uplifted during the rise of salt diapirs. 
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Figure 3.21: Dip maps are useful to identify changes in slope gradient. Dip maps are 

very sensitive to acoustic noise in the seismic volume and should be used in 

combination with other attributes, such as coherence and amplitude, when mapping 

subtle structures. 
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3.4.4 Coherence or variance data 

This is a cube of coherence coefficients generated from the input 3D seismic data 

volume. It is a measure of the waveform similarity i.e. how a trace is similar to its 

neighbour. High coherence areas are typically shown as white to light grey and may 

indicate slow rates of deposition. Low or non-coherence areas are shown as dark grey or 

black (Figure 3.22 to Figure 3.24). Similar traces are mapped as high coherence 

coefficients while discontinuities have low coefficients (Bahorich and Farmer, 1995; 

Brown, 2003). Sharp discontinuities may result from fracturing, faulting, diagenesis, 

erosion, fluvial systems, or changes in the rate of deposition (Bahorich and Farmer, 

1995; Brown, 2003).  

 

Coherence provides an accurate first estimation of subtle changes in a waveform of a 

seismic trace over an entire cube. It is a useful reconnaissance mapping tool because it 

gives an unbiased view of the features in the seismic volume without any prior 

interpretation. In addition to faults, channels and beaches, it has been successfully 

utilized in the visualisation of mud volcanoes, salt intrusions, MTDs and polygonal 

faults (Chopra and Marfurt, 2005) (Figure 3.22 to Figure 3.24). 

 

For this study, coherence was used to map polygonal fault systems, fractures at reservoir 

level and evaporites. Coherence maps at the base of MTDs were also used to validate the 

position of ramps observed on time-dip maps (Figures 5.5 to 5.8). 
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Figure 3.22: Coherence maps highlighting the presence of polygonal faults. Similar 

traces are mapped as high coherence coefficients, while discontinuities have low 

coefficients. From Brown (2003) and Bahorich and Farmer (1995). 

 

Figure 3.23: Coherence data used in  lithology identification. Gray/white colour 

represent slow rate of deposition common in carbonates and shales. 
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Figure 3.24: Coherence map for lithology identification. Mass-transport deposits are 

characterised by a relatively chaotic combination of low and high coherence 

coefficients.. 

 

Figure 3.25: Structural smoothing as a key attribute for fault enhancement prior to 

automatic fault extraction. 
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3.4.5 Structural Smoothing 

 

Structural smoothing algorithms calculate changes in local dip by smoothing the input 

signal to increase the continuity of the seismic reflector (Randen, 2000). Structural 

smoothing attributes are useful for pre-conditioning the seismic for automatic fault 

extraction (see Kadlec et al., 2010; Basir et al., 2013; Figure 3.25). 

 

3.4.6 Ant tracking 

 

The ant tracking attribute uses an analogy of ants’ colony depending on pheromones to 

find the shortest path between their nest and their food source, the pheromones is a 

chemical substance that attracts other ants (Cox and Seitz, 2007).  The shortest path will 

be marked with more pheromones than the longest path and so the next ant is more 

likely to choose the shortest route, and so on (Figure 3.26). The idea is to distribute a 

large number of these electronic "ants" in a seismic volume; and let each ant move 

along what appears to be a fault surface while emitting "pheromone." Ants deployed 

along a fault should be able to trace the fault surface in three dimensions before being 

terminated (Kadlec et al., 2010; Basir et al., 2013;). The automatic fault extraction 

algorithm is shown as a flowchart in Figure 3.26. 
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Figure 3.26: The Ant Tracking and automatic fault extraction workflow. The Ant Tracking algorithm involves the flattening of seismic 

volumes and data pre-conditioning for automatic fault extraction. 
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3.5 Erosion parameters  

 

Grain-size analyses have wide applications in the characterization of depositional 

processes (Evans, 1939; Greenwood, 1978; Bryant, 1982; McLaren and Bowles, 1985) 

and sedimentary facies (Bigarella et al., 1969; Tucker and Wacher, 1980; Ponçano, 

1986; Guedes et al., 2011). Significantly, grain-size techniques have also been used to 

estimate the provenance of sub-aerial landslides, particularly when of the analysis of 

poorly sorted debris-flow deposits with clasts reaching several 10’s of metres in size, 

typical of landslide dams (Casagli et al., 2003; Dunning, 2006; Zhang et al., 2011). In 

this work, we present a variation of these techniques to investigate the provenance of 

MTDs as these present, in the study area, increasing degrees of disaggregation with 

transporting distances.  

 

The orthogonal axes of eighty two (82) blocks were identified in computed attribute 

maps and measured at regular intervals (Figure 4.9). A-and b-axes were measured on 

individual seismic sections, time slices, isochron and attribute maps, while the height of 

blocks was plotted as the c-axis (Figure 3.27). Parameters tested for each block include 

their flatness and elongation ratios (Luttig, 1962), the Maximum Projection Sphericity 

index (MPSI, Sneed and Folk, (1958)), and the Oblate Prolate Index (OPI; Dobkins and 

Folk, 1970). 

 

Flatness ratio is the ratio of the c-axis (thickness) to a-axis (length), while elongation 

ratio is the fraction of  b-axis (width) to the a-axis (length)  (Lin and Miller, 2005) 

(Figure 3.28). The MPSI is used to estimate the sphericity of a particle, a property 

related to its hydraulic behaviour (Dobkins and Folk, 1970). The new technique 

presented in this thesis relies only on the dimension of the orthogonal axes, which are 
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independent of each other. The need to correctly elucidate the structure of the blocks 

prompted the use of both the Sneed and Folk (1958) and Zingg (1934) diagrams. These 

ratios were plotted on Sneed and Folk (1958) triplots and Zingg (1934) charts with the 

aim of correlating blocks’ transporting distance with their shapes. 

 

As far as the interpreted MTDs are concerned, the Folk and Sneed tri-plot is simpler, 

flexible and applicable to all kind of clast analysis (Hockey, 1970) while the Zingg 

(1934) diagram is better suited to discriminate between certain types of sedimentary 

deposits (Howard, 1992). 

 

3.6 Statistical analyses 

 

Computed statistical parameters include the mean, standard deviation, correlation 

coefficients (r), and coefficient of determination (R
2
) as defined in Fieller et al. (1957) 

and Kendall and Stuart (1973). The mean represents the average thickness of blocks. 

Standard deviation shows the spread of the blocks. Correlation coefficients are a 

measure of the linear relationship between two variables. The coefficient of 

determination (R
2
) measures the strength of the coefficient of correlation (Fieller et al., 

1957).  

 

3.6.1 Statistical analyses  in Chapter 4 

 

In this Chapter were analysed thickness variations of MTDs accumulated around salt 

diapirs with a view to investigate their proximity to source areas, and infer the 

relationship between the timings of halokinesis and MTDs spatial distributions. 

Thickness data were collected every 625 m. The data obtained were used to compute 
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box and scatter plots of MTD thickness vs. diapir diameters and relative distances from 

diapir centres (Figures 4.21). Correlation coefficients are a measure of the linear 

relationship between blocks and salt diapir geometries. Correlation coefficients range 

from negative (-0.6) to positive (0.6) in the box plots computed for the study area.  

 

In blocky MTDs, the orientations and dimensions of blocks were recorded along the 

flanks of interpreted diapirs. Data for individual blocks were collected in a N-S 

direction every 63 m. The diameters of salt diapirs were measured on time-structure 

maps of key horizons (cf. Figure 4.10 for a detailed description of the statistical 

parameters used in this study). 

 

3.6.2 Statistical analyses  in Chapter 5 

In order to understand the mode of formation of basal ramps and how they relate to 

observed promontories, the thickness of interpreted MTDs was estimated within 

individual depressions, or coves as named in this work, created by ramps and 

promontories (Figures 5.15 and 5.16). In addition, the lengths of distinct ramps, the 

widths of coves and of adjacent promontories were measured as a way to estimate the 

erosion power of the investigated MTDs. Correlation coefficients between the width of 

coves and the maximum thickness of MTDs were calculated for the study area. The 

transporting distance of MTDs along slope, and the diameters of associated salt diapirs 

were also correlated. 
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Figure 3.27: The a- and b-axis of the blocks were measured on TWTT and attribute 

maps while the c-axis was taken the height or thickness of the blocks. 

 

Figure 3.28: Elongation and Flatness ratios from Lin and Miller (2005). 
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3.7 Graphical analysis 

 

 Histograms: A histogram is used to plot the underlying frequency distribution 

(shape) of a set of continuous data that has been divided into classes, called bins  

(Stengel et al., 2008). The histogram is a useful plot for showing the dominance of a part 

class interval in a set of continuous data (cf. Figure 3.29). 

 

 Box plot: A box plot, otherwise known as five-number summary, consists of the 

median, the quartiles, and the smallest and greatest values in the data distribution (Lem 

et al., 2013). The box plot is a simple way of presenting descriptive statistics of huge 

volume of data (cf. Figure 3.30). 

 

 Scatter plot: This is a graph for plotting bivariate data as points on a two-

dimensional Cartesian plane. Scatter plots are used to analyse the association of two 

variables (Heo et al., 2008; Johnson and Bhattacharyya, 2010). This is a graphical 

inferential statistics method to test the degree of correlation between two variables as 

direct or inverse association (cf. Figure 3.31). 

 

  Rose Diagram: Rose diagrams are circular frequency histograms that are used to 

plot directional (azimuthal) data e.g. strikes of beds, wind direction, or ocean current 

directions (Robson, 1994). In structural geology, rose diagrams are very useful for 

unravelling the tectonic history of deformed rocks and regions. The dominant frequency 

class is indicating the principal strain direction for the deformed rocks (cf. Figure 3.32).  
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Figure 3.29: Annotated histogram highlighting the key parameters used in the statistical 

analyses presented in this work. 

 

 

 

Figure 3.30: Box-Plot organised as a five-summary figure, a very powerful descriptive 

statistical tool used in this study. 
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Figure 3.31: Scatter plot and its relevant for establishing association for bivariate data. 

 

Figure 3.32: Annotated rose diagram highlighting salient parameter considered in this 

work. 
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Abstract  

Provenance studies of Mass-Transport Deposits (MTDs) frequently rely on the analysis 

of kinematic indicators. In this work, we use seismic facies analyses, measurements of 

preserved blocks, and correlations between MTDs thickness and salt diapir geometry to 

introduce a new method to estimate the provenance of MTDs on 3D seismic data. The 

method, applied to a high-quality 3D seismic volume from the Espírito Santo Basin (SE 

Brazil), provides information on the location of source areas of MTDs, their bulk 

composition, and their directions of transport. Whenever blocks of strata are found, their 

orthogonal axes are measured to estimate parameters such as Maximum Projection 

Sphericity Index (MPSI), Oblate Prolate Index (OPI), and ratio of short and 

intermediate axes (ds/di). These parameters are used to quantify the relative degrees of 

remobilization and transport of MTDs. Statistical data of importance include the 

variation of MTDs thickness with the diameter and distance from the centre of growing 

salt diapirs. In addition, the presence of cubic or equant blocks with c/a > 0.4 and c/b > 

0.65 ratios are typical of proximal areas in MTDs, reflecting small transporting 

distances. Our work is important because it shows that distinct correlation coefficients 

exist between the thickness of MTDs and diameter of salt diapirs. Positive coefficients 

of correlation between diapir diameter and MTD thickness characterise active diapirism 

during the deposition of MTDs. This quantification allows the interpreters to distinguish 

MTDs sourced from local diapirs from MTDs sourced from more distal regions on the 

continental slope. Thus, the new method used in this research provides an alternative 

technique to kinematic indicators for determining the provenance of mass transport 

deposits on continental margins. 
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4.1. Introduction 

Mass-wasting events are primary processes both shaping and filling sedimentary basins 

(Masson et al., 1998; Norem et al., 1990; Gee et al., 2005; Gee and Gawthorpe, 2006; 

Gee et al., 2008; Richardson et al., 2011). Mass-transport deposits (MTDs) comprise 

10%-27% of continental slope strata (Hunerbach and Masson, 2004; Mienert et al., 

2003; Hjelstuen et al., 2007b; Tailing et al., 2007). They occur on both passive and 

active margin settings ( Urgeles et al., 1997; Goldfinger et al., 2000) and at all latitudes, 

from glacial to equatorial regions (Laberg and Vorren, 2000; Laberg et al., 2000; 

McAdoo et al., 2000; Alves, 2010b; Alves and Lourenço, 2010; Hunerbach and 

Masson, 2004). However, the provenance of MTDs can seldom be interpreted in 3D 

seismic volumes of limited extent, particularly if their headwall regions are not imaged 

e.g. (Frey Martinez et al., 2005; Moscardelli et al., 2006). In these situations, the 

provenance of MTDs is often inferred using kinematic indicators, or correlating sub-

surface data with geomorphological information from outcrop analogues (Boe et al., 

2000; Laberg and Vorren, 2000; Laberg et al., 2000; Strachan, 2002a, b; Lucente and 

Pini, 2003; Haflidason et al., 2004; Wilson et al., 2004; Frey Martinez et al., 2005; Gee 

et al., 2005; Schnellmann et al., 2005; Frey-Martínez et al., 2006; Lastras et al., 2006; 

Bull et al., 2009). Kinematic indicators, however, might be elusive in some MTDs or 

can represent local instability events, particularly in regions recording intense seafloor 

deformation. Outcrop analogues can be used to tackle some of these limitations but they 

are, in turn, of limited extent, poorly exposed or often not preserving the original MTD 

morphology due to subsequent surface erosion (Callot et al., 2008; Alves and Lourenço, 

2010). 

 

In the specific case of salt-rich continental margins, halokinetic movements can 

substantially modify slope gradient and trigger complex mass-wasting events. MTDs 
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are often thinner at the crest of active diapirs and thicker on their flanks (Rowan et al., 

1998; Davison et al., 2000b; Tripsanas et al., 2004). In parallel, the geometry of blocks 

provides useful data to assess the hydrodynamic behaviour and transport directions of 

mass-wasting deposits sourced from active salt structures (Canals et al., 2000; 

Moscardelli et al., 2006; Vizcaino et al., 2006; Alves and Cartwright, 2009; Alves, 

2010a; Alves, 2010b; Gamboa et al., 2010; Gamboa et al., 2011). Knowing this, the 

aims of this Chapter include: (a) examine the seismic heterogeneity of MTDs on a salt-

rich continental slope; (b) quantify the degree and styles of disaggregation of MTDs in 

relation to their transporting distances; and (c) understand how interactions between 

blocks of strata and growing salt diapirs can provide information on the provenance of 

MTDs. 

 

This Chapter starts by presenting the internal character of interpreted MTDs. It then 

assesses their transport history by quantifying the geometry of remnant and rafted 

blocks. We use basic concepts on particle size analysis e.g. (Sneed and Folk, 1958; 

Luttig, 1962; Dobkins and Folk, 1970) and statistical data to characterise the 

provenance of interpreted MTDs. In the discussion, we use the new methods in this 

paper to conclude on the main directions of sediment transport, the proximity of source 

areas of MTDs, timing of diapirism, and the styles of basal erosion and internal 

deformation in MTDs. Our approach grants the new methods importance and 

applicability, as similar blocky MTDs to those in this chapter have been found on 

continental margins around the world (Masson et al., 2002; Posamentier and Kolla, 

2003; Lastras et al., 2005; Callot et al., 2008; Armitage et al., 2009; Armitage and 

Jackson, 2010). 
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Figure 4.1: Two-way travel-time (TWTT) thickness map of Eocene (Horizon H0) to 

Holocene (seafloor) strata highlighting the position of three of the five salt diapirs 

referred to in this work. Also shown is the location of seismic lines in this chapter 
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4.2 Results 

4.2.1 Internal character of MTDs 1-4 

The top and basal surfaces of four (4) MTDs were mapped as nine (9) separate 

horizons, numbered H0-H8 (Figures 4.2 to 4.6). The upper surface of a MTD is usually 

a rugged or ridged surface located above chaotic to moderately deformed reflections of 

variable amplitude (Richardson et al., 2011), while the basal shear surface separates 

disrupted strata within the MTDs from the much more continuous deposits underneath 

the MTDs (Frey-Martínez et al., 2006; Frey Martinez, 2010). The main characteristics 

of the interpreted MTDs are summarised as follows: 

 

4.2.1.1 MTD 1 

MTD 1 is the oldest in the study area (Figures 4.2 to 4.6). It is located around diapirs D4 

and D5 (Figure 4.1). Its upper and lower surfaces consist of continuous, high-amplitude 

reflections (H1 and H0, respectively). The headwall of MTD 1 is located northwest of 

diapir D5, with the MTD striking at approximately N43
0
W. The basal surface (H0) is 

characterised by striations, grooves and ramps (Figure 4.8). Striations are oriented NW-

SE, which is the inferred direction of transport of MTD 1 (Figure 4.8). MTD 1 is Early 

Palaeogene in age (Mohriak, 2003, Fiduk et al., 2004; Mohriak, 2005) and runs ~38 km 

downslope with a width of ~37 km over an area of ~749 km
2
. 

 

4.2.1.2. MTD 2 

This MTD is of probable Eocene age (Mohriak, 2003, Fiduk et al., 2004; Mohriak, 

2005), and is limited by diapirs D1, D2 and D3 (Figure 4.8). It is ~53 km in length and 

~25 km in width (Figure 4.8). Its upper limit is marked by a discontinuous, ridged, low 
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amplitude reflection (H3) that pinches out underneath the H4 horizon towards the west. 

The base of MTD 2 is a low-amplitude horizon characterised by ramps and 

promontories on its eastern margin (Figure 4.3 and 4.4). The headwall region of MTD 2 

is not preserved, likely a consequence of quick burial and erosion on a seafloor 

deformed by halokinetic movements. 

 

4.2.1.3. MTD 3 

The Late Eocene MTD 3 ( Fiduk et al., 2004; Mohriak 2003, 2005; Alves, 2012), has a 

discontinuous basal surface (H4) that is highly erosive (Figure 4.8). Its upper surface is 

also bounded by a discontinuous reflection of moderate amplitude (H5). The basal 

surface shows features such as erosive scours and ramps, particularly towards the 

western margin of MTD 3. The MTD is ~48 km long and ~28 km wide, with a surface 

of area of ~851 km
2
. Its headwall region is inferred to be located NW of diapir D4 

(Figures 4.5 and 4.9). 

 

4.2.1.4. MTD 4 

MTD 4 is the shallowest of the MTDs in the study area (Figure 4.6). It comprises 

relatively continuous, high-amplitude internal reflections. MTD 4 is likely composed of 

Miocene marine sand (Mohriak, 2003, Fiduk et al., 2004; Mohriak, 2005) and it has 

area coverage of ~326 km
2
. Downslope, MTD 4 is ~30 km long and ~14 km wide. Its 

headwall is located between diapirs D2 and D3 (Figure 4.6) and shows closely-spaced 

extensional faults (Figure 4.7). At its basal shear surface are observed grooves, 

striations, and ramps (Figure 4.8). Its headwall is characterised by moderate amplitude 

to transparent reflections, their amplitude increasing towards the toe region where 

deformation is observed in the form of small-scale thrust faults in rafted blocks (Figure 

4.7). The estimated strike of MTD 4 is approximately N47
0
W (Figure 4.8). 
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Figure 4.2: The boundaries of MTD 1 are restricted to the region around diapirs D4 and 

D5, and its headwall region is inferred to be NW of D5 in an area characterized by 

polygonal faulting.. 
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Figure 4.3: MTD 2 is Late Eocene in age. In contrast to the other MTDs in this chapter, 

its headwall region is not imaged in the interpreted seismic volume. See figure 4.8 for 

location. 
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Figure 4.4: The basal shear surface of MTD 2 is characterized by ramps surrounded by 

protrusions, which are generically named as 'promontories' by Bull et al. (2009). 
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Figure 4.5: MTD 3 is located on the flanks of diapirs D4 and D5. Its headwall region is 

located NW of D4. 
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Figure 4.6: MTD 4 is Miocene in age and is the youngest mass-transport deposit 

mapped in the study area. See figure 4.8 for location. 
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Figure 4.7: The upper region of MTD 4 is characterized by extensional structures, and 

its toe region is frontally emergent. See figure 4.8 for location. 
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Figure 4.8: Attribute maps illustrating the internal character of MTDs 1 to 4 in the study area. RMS amplitude maps were computed for all 

MTD intervals. Debrites are shown with hot colours (red) while interpreted hemipelagic materials are orange-coloured, particularly in 

MTD 2. Green colours at the marginal areas of MTDs relate to high amplitude strata deposited as the MTD thins out. Coherence time slices 

were computed for the four MTDs. Grey colours represent areas of hemipelagic sediment and debrites. Rafted blocks are shown as dark 

patches with chaotic character, i.e. low coherence. Highlighted on the coherence maps are areas with different block geometries. 
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Figure 4.9a: RMS amplitude map of MTD 3 depicting the geometry of rafted blocks. 
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Figure 4.10b: Time dip map highlighting changes in gradient on the flanks of imaged blocks. The blocks were categorised into those at 

distance (distal), intermediate and proximal to the inferred headwall region 
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Figure 4.11c: Individual blocks stand out as topographic highs amidst the lower relief debris in which they are translated 
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Figure 4.12d: Approximate positions of some of the blocks in Figure 4.10. 
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4.3 Additional statistical analyses 

In the study area, we analysed thickness variations of MTDs accumulated around salt 

diapirs with a view to investigate their proximity to source areas, and infer the 

relationship between the timings of halokinesis and MTDs spatial distribution. 

Thickness data were collected every 625 m. The data obtained were used to compute 

box and scatter plots of MTD thickness vs. diapir diameters and relative distances from 

diapir centres (Figures 4.20 and 4.21). 

 

4.4. Heterogeneity of strata in MTDs 

In order to test the degree of heterogeneity of strata in the interpreted MTDs, their 

internal character was analysed on RMS amplitude, coherence maps and time-dip maps 

(Figure 4.8). Four seismic facies and depositional end-members were identified: 

coherent or unrotated blocks (CUBs), or blocks in Dott (1963) and Moscardelli et al. 

(2006); Deformed blocks/slides (DBS), or moderately deformed blocks in Gamboa et al. 

(2010, 2011); rafted blocks (RB) comprising highly deformed blocks that were 

transported through large distances; and debrites (DB), or debris flow deposits in 

Posamentier and Kolla (2003). Coherent or unrotated blocks (CUBs) are shown as high-

amplitude strata within low-amplitude debrites and hemipelagites (Figure 4.8). 

Deformed blocks/ slides (DBS) have planar reflections in the centre and rotated edges. 

On coherence maps, CUBs and DBSs show high coherence values, high relief, and are 

embedded in low-coherency strata. 

 

Planar, non-chaotic topography is observed in areas where the MTDs pinch-out (Figure 

4.8). Rafted blocks of strata (RBs) display internal architectures resembling deposits 

transported and expanded. In addition, rafted blocks have rotated edges and are 
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characterised by high-amplitude reflections on their tops (Figure 4.11f). Strata in CUBs 

and DBSs are well preserved cf. (Glade et al., 2005), while rafted blocks still maintain 

some evidence of the initial stratigraphy but with some added structural complexity. 

Debrites (DB) are characterised by very chaotic to contorted reflections on seismic 

profiles (Figures 4.11b to f). 
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Figure 4.13: Summary of the parameters used in our statistical analysis. The thickness 

of the MTD comprises the difference between the lower and upper limit of the MTD 

shown as ‘t’. ‘dm’ is the diameter of the salt diapir; ‘C’ is the inferred centre of the salt 

diapir. Data was collected along inlines and crosslines at 625 m intervals (every 50 

lines) for MTDs and at 63 m intervals (every 5 lines) for blocks. 
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Figure 4.14: Internal geometry of rafted blocks as observed in MTD 3 and MTD 4. a) 

Block 1 (MTD 4) is a rafted block located on the western flank of diapir D3 (V.E = ~3). 

b) Highly deformed, faulted block in MTD 3. c) Coherent to internally undeformed-

faulted block. d) Rotated to slightly deformed block. e) The biggest block mapped in the 

study, it is highly faulted (V.E = ~2). f) Rafted blocks 8 to 11. The imaged blocks are 

located on the western margin of diapir D5, with their size decreasing towards the diapir 

(V.E = ~1.5). 
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Figure 4.15: Folk and Sneed’s tri-plot for eighty-two (82) blocks preserved in MTD 3. 

All the blocks plot outside the field of compact platy and compact elongate blocks. The 

Excel template used to populate the tri-plot was designed by Graham and Midgley  

(2000) and made available for academic use. 

 

Figure 4.16: Average thickness of the blocks is ~200 m 
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Figure 4.17: Flatness ratio is nearly normally distributed, with an average of ~0.2. 

 

 

Figure 4.18: Elongation ratio is nearly normally distributed with mean of 0.6 
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Figure 4.19: Area covered by the blocks in MTD 3. The mean coverage area of the 

observed blocks is ~ 0.8 km
2
. 

 

Figure 4.20: Average volume of blocks, shown in the order of ~ 0.2 km
3
. 
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The larger blocks observed in the study area occur in MTD 3 and include rafted (Figure 

4.11a), coherent (Figure 4.11c), slightly deformed (Figure 4.11d), coherent and faulted 

(Figure 4.11c), rafted and faulted, and highly deformed blocks (Figure 4.11b). The 

larger blocks comprise CUBs and DBSs but these are restricted to the NW margin of 

diapir D5. 

 

Rafted blocks (RBs) are predominantly observed at the southern and eastern boundary 

of diapir D5. Geometrically, block height ranges from 90.94 m to 407.14 m, with an 

average thickness of 199.68 m (Figure 4.13). The average area and volume of the blocks 

are respectively 0.802 km
2
 (Figure 4.14) and 0.196 km3 (Figure 4.15). Estimated block 

shape parameter shows that blocks in MTD 3 have an average MPSI and OPI value of 

0.398 and 0.991 (Table 4.1). The elongation and flatness ratios of the blocks follow a 

normal distribution with means of 0.599 and 0.200 respectively. A MPSI value of up to 

0.666 and an OPI greater than -1.15 shows that the blocks are poorly sorted (Dobkins 

and Folk, 1970; Ogala et al., 2010). 

 

The orthogonal axes of interpreted blocks were plotted on the Sneed and Folk (1958) 

tri-plot shown in Figure 4.12. The majority of the blocks are very bladed (62.20%), with 

very platy (13.41%) and very elongate blocks (12.2%) being less frequent in the study 

area. Elongated blocks are distributed distally in MTD 3, close to diapir D5 (Figures 4.9 

and 4.18). On the modified Zingg (1934) and Le Roux (2004) chart (Figures 4.18), 

92.7% of blocks plotted in the field of bladed or triaxial shapes. Equant blocks only 

occur in proximal areas, while the intermediate and distal zones of MTD 3 show a 

cluster of bladed and bladed/triaxial blocks, some of them of small dimensions. 

Importantly, there is a cluster of bladed/ellipsoid blocks in intermediate and distal areas 
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of MTD 3, while blocks with ratios c/a > 0.4 and c/b > 0.65 only occur in proximal 

areas, together with smaller blocks. 
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Table 4.1: Descriptive statistics and geometries of blocks in MTD 3 

S/N Parameter Mean Minimum Maximum Range Std dev Median 

1 a(long) 1178.41 377.90 3660.00 3282.10 660.63 1007.35 

2 c(short) 199.68 90.94 407.14 316.20 70.48 190.12 

3 b(inter) 663.04 187.60 2150.00 1962.40 331.58 587.80 

4 F.R(c/a) 0.200 0.059 0.569 0.509 0.092 0.181 

5 E.R(b/c) 0.599 0.242 0.908 0.666 0.142 0.609 

6 c/b 0.337 0.127 0.925 0.798 0.141 0.297 

7 MPSI 0.398 0.223 0.731 0.508 0.109 0.376 

8 OPI 0.991 0.243 3.835 3.593 0.601 0.825 

9 Coeff Flat 19.994 5.927 56.877 50.950 9.165 18.112 

10 Thickness (km) 0.200 0.091 0.407 0.316 0.070 0.190 

11 Area(km
2
) 0.802 0.073 6.380 6.307 0.951 0.482 

12 Volume(km
3
) 0.196 0.009 2.492 2.483 0.334 0.091 

 

N.B: The axes of the blocks were measured in metres
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4.6. Statistical analyses of MTDs around salt diapirs 

4.6.1. Diapir diameter vs. MTD thickness 

4.6.1.1. MTD 1 vs. diapirs D4 and D5 

Using the 50th percentile lines as reference in the multiple box plots in Figure 10, plots 

of MTD 1 thickness vs. the diameter of diapir D4 show that there is positive correlation 

(-0.2<ρ<0.866) between the two variables along the western and eastern flanks of D4 

(Figure 4.20, Table 4.2). Here, the coefficient of determination (R
2
) is as high as 79%. 

Predominantly negative correlations (-0.632 < ρ < -0.119) were recorded north and 

south of diapir D4, where the coefficient of determination is less than 20% (Figure 

4.20). Positive correlation coefficients were recorded on the eastern and western flanks 

of diapir D5 for MTD 1, where 0.748 < ρ < 0.005. The value for R
2
 is here less than 

50%, except on the eastern flank of the diapir where it reaches value of 56%; this value 

accounting for a 56% variation of the MTD thickness with the diapir width. 

 

4.6.1.2. MTD 2 vs. diapirs D1, D2 and D3 

A regression analysis for MTD 2 and diapir D1 was only made for the eastern and 

southern flank of the salt structure owing to the fact that the MTD thins out in the other 

two directions (Figures 4.20 and 4.21). A moderate to low negative correlation of -0.564 

< ρ < -0.072 was estimated along the eastern flank of D1. The low R
2
 value of <20% 

suggests a weak relationship between MTD thickness and diapir diameter. On the 

southern flank of D1 there is a tendency for a positive correlation between the two 

variables, but maximum and minimum values are scattered on the box plots (Figure 

4.20). R
2 

values for positive correlations reach as much as 79%. 

 

The thickness of MTD 2 shows a more positive correlation with diameter on the 

western flank of diapir D2 than on the southern and eastern flanks (Figure 4.21). The 
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coefficient of correlation varies from poor to moderate with a R
2
 value of <25%. 

Negative coefficients of correlation were recorded to the south and east of D2 (Figure 

4.20). The thickness of MTD 2 varies inversely with the diameter of diapir D3, except 

for its southern flank (Figure 4.21). Correlation coefficients approach -0.536 < ρ < 

0.0001 (Figure 4.20). R
2
 values show that where there is a positive correlation on the 

southern flank of D3, but changes in its diameter influence the thickness of MTD 2 by 

an amount not more than 35%. In contrast, negative correlations show a robust 

coefficient of determination of 72%, particularly for the northern flank of D3 (Table 2). 

 

4.6.1.3. MTD 3 vs. diapir D4 and D5 

 

The thickness of MTD 3 varies negatively with changes in the diameter of diapir D4 

(Figure 4.21). Conversely, coefficients of correlation are positive and in the order of 0.6 

< ρ < 0.001 for the eastern flank of D4. R
2
 is <30% for positive correlations, and up to 

62% for negative correlations, especially on the southern flank of D4 (Figures 4.20 and 

4.21). 

 

Also for MTD 3, positive values are recorded to the east, south and north of D5, with 

negative correlations estimated only on its western flank. Positive correlations range 

from 0.793 to the north to 0.001 to the south. R
2
 values for the positive correlations 

suggest that changes in the thickness of MTD 3 can be explained by about 63% of the 

changes in the diameter of D5. The negative or inverse correlation has very low R
2 

values approaching <25%. 
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Table 4.2: Frequency of coefficient of correlation between MTD thickness and 

increasing (1) Diapir diameter and (2) Distance from diapir centre. 

S/N Diapir Direction Negative Positive 

    Strong Moderate Poor Strong Moderate Poor 

    <(-0.6) (-0.6)-(-0.4) >(-0.4) >0.6 0.6-0.4 <0.4 

    Diapir  diam Dist  diam Dist   diam Dist  diam Dist   diam Dist  Diam Dist  

MTD 1 D4 W  12  5 1 1 5  1  1   

    E 1    1  4 13 1 3 1 2 

    N 1 11 2  2    1  2   

    S   1 4 5 6   1  1 1 

  D5 W  11  5 3   1 1  4   

    E  6  6 1 3 3  3  2 2 

    N   1  3   8 2 5 2   

    S  11  2 3      5   

MTD 2 D3 W     1 6 4 9         3   

    E 1  3 1  2   2 6 2 6 

    N 3  4  1 2  7  4  3 

    S     3   16 1  4   

  D1 E  1 4 3 3 1  1  3 1 2 

    S 3 4   2  3  1     

  D2 W  5  1 2 2  4 1 6 5 8 

    E     5 2  17  4 3   

    S 2 1 1 2 3 4  4  6 2 1 

MTD 3 D5 W         6     2   6 2 6 

    E    1 2 1 1 12 2 2 3 1 

    N  4  5 4 1 1    3 3 

    S        3  9 8 1 

  D4 W 2 1 2 6 1 10     3 1 

    E  7  10 3 1   2  3   

    N  6 2 6 3    1  2   

    S 1    5   7  1 2 4 

MTD 4 D3 W 2   1   4     14     1   

    E 3  1  3 2    6 1 6 

    N  6 1 3 2   1  3 3   

    S     2   4     13 2 1     
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Figure 4.21: Modified Zingg’s (1934) diagram for the hydrodynamic classification of 

particle shapes. The sections in red are the traditional Zingg’s division of the chart, 

while the black section is modified from Le Roux (2004). The majority of the blocks are 

plotted in the field of Bladed/Triaxial (Zingg’s) and Ellipsoids (Roux). The four main 

classes of grain shape are shown as block diagrams representing the ratios of the long, 

intermediate and short diameters of any particle (Zingg, 1934). 
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4.6.1.4. MTD 4 vs. diapir D3 

The thickness of MTD 4 varies inversely with the diameter on diapir D3 (Figure 4.21). 

Coefficients of correlation approach -0.044< ρ < -0.790, with R
2
 between 20.5% and 

62.35%. 

 

4.7. Thickness of MTD vs. distance from diapir centre 

 

Positive correlations are mainly observed at the northern flanks of diapirs, while the 

remaining flanks show a complex interplay between MTD deposition and diapir growth. 

The predominance of positive correlations on northern flanks relate to significant 

sediment transport from the upper slope region, to the northwest, with the diapirs 

forming effective topographic barriers. Two types of correlations should be highlighted 

for MTD1 and diapirs D4 and D5 and for MTD 4 and diapir 3 (Figure 4.21). The former 

shows a marked negative correlation between MTD thickness and distance to D4 and 

D5 on three of their flanks (Figure 4.21). The latter shows a predominant positive 

correlation (Figure 4.21). 

 

There is a negative correlation between the thickness of MTD 1 and distance from D4 

on its north, south and eastern flanks (Figure 4.21). The coefficients of correlation vary 

from poor to strong (0.020 to -0.877), with R
2
 reaching as high as 88% closest to D4. 

For diapir D5, negative correlation coefficients are observed on the southern, western 

and eastern flanks of the structure (Figure 4.21). On its northern flank, the coefficient of 

correlation is positive, and ranges from 0.783 to 0.463. Also on this latter flank, the 

highest R
2
 value (61.2%) was recorded close to the diapir centre (Figure 4.21). For 

MTD 4 and diapir D3, the thickness of the MTD significantly increases away from its 

western and southern flanks (Figure 4.21). The coefficients of correlation vary here 
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from 0.978 to 0.899, with a R
2
 of 0.96 to 0.87. East of the diapir, the relationship is poor 

to moderate, with only a moderate negative correlation estimated (Figure 4.21). 

 

4.8. Discussion 

 

4.8.1. MTD provenance as a primary control on its internal architecture 

 

Classifications of MTDs are usually based on the recognition of their internal 

architecture  (Masson et al., 2006a). Slides are generally coherent, with little or no 

deformation. Slumps comprise essentially cohesive, but deformed, strata. Debris flow 

deposits exhibit the highest level of internal deformation with materials almost entirely 

disaggregated (Piper et al., 1999). The degree of cohesion is variable within each class, 

and is largely dependent on the grain-size, degree of compaction and relative amount of 

fluid accumulated in the sediments (Mulder and Cochonant, 1996). Thus, materials that 

are buried as coherent and slightly deformed MTDs reflect less deformation, and are 

probably closer to their source area than debris flows. This relationship between MTD 

architecture and transporting distances is the basis for provenance studies in MTDs 

deposited in the most varied tectonic settings (Gee et al., 2005; Gee and Gawthorpe, 

2006; Gamberi et al., 2011). 

 

In the study area, individual blocks of strata are recognised as high-amplitude features 

embedded in chaotic to contorted reflections, and reflect the presence of debris flow 

deposits (Lastras et al., 2005; De Blasio and Elverhøi, 2010). However, the diverse 

range of orientations of blocks in MTD 3 and 4 is also a characteristic of debris flow 

(Nichols, 2009). Diverse block orientations were described in “blocky-debris flow 

deposits” i.e. a deposit resulting from hyper-concentrated debris flow transporting out-
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sized coherent and internally deformed blocks arranged in isolated slump folds, which 

possibly represent the link between slumps and debris-flow deposits (Mutti et al., 2006; 

Ogata et al., 2010). In such a setting, an important conclusion from this study is that the 

size of blocks in MTD 3 increases towards the source area, as expected, but that their 

shape does not change proportionally to their transporting distance. As blocks were 

transported downslope, they were abraded, with the larger oblong blocks disaggregating 

into smaller, rounder blocks, see also (Erismann and Abele, 2001). However, only 

equant blocks with ratios c/a > 0.40 and c/b > 0.65 correlate with smaller transporting 

distances, as these represent blocks kept in proximal areas with little or no disruption. 

MTD 3 can therefore be classified as ‘blocky-debris flow deposit’, an essentially 

heterogeneous MTD composed of a mixture of different MTD facies (slide, debrites, 

slump and any form beyond seismic resolution). This implies short travel distances, and 

moderate to no internal deformation. In contrast, homogeneous MTDs that are 

characterised by debrites in Figure 4.8 indicate longer travel distances, and intense 

deformation. Highly homogeneous MTDs comprise deposits of identical seismic and 

depositional facies, suggestively of uniform permeability and predictable fluid flow 

patterns. 
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Figure 4.22: Rose diagram showing the orientation of long axes of the blocks. The 

elongation direction ranges from NW-SE to NE-SW with the mean aligned WNW-

ENE. 
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Figure 4.23: Box plot for the frequency of the correlation coefficients between diapir 

diameter and the thickness of MTDs. High correlations coefficients were recorded in 

few instances (MTD2 and diapir D3, southern flank) while inverse correlations were 

recorded elsewhere (e.g. MTD4 and diapir D3, east and west flanks). NB: ‘ρ’ is the 

coefficient of correlation; zero values are shown as dashed lines. 
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Figure 4.24: Plot of MTD thickness vs. distance from the diapir centre. Positive 

correlations are recorded between MTD 4 and diapir D3, and MTD 2 and diapir D3, 

whereas negative correlations exist between MTD1 and diapir D4 on its southern and 

western flank. Increasing thickness towards the diapir centres suggest small transporting 

distances and a relative proximity to source areas. NB: m = slope from y = mx + c. 

 

 

 

 

 

 



158 | P a g e  
 

4.8.2. Halokinesis and MTD provenance 

Positive correlations between the thickness of MTDs and the diameter of diapirs 

indicate that salt structures controlled the deposition of MTDs. It also indicates that salt 

structures were actively deforming the seafloor during the transport of MTDs. Negative 

correlation coefficients between MTDs and the diameter of diapirs suggest that as the 

thickness of MTDs increased, the diameter of diapirs decreased (Figure 4.21). This 

implies tectonic quiescence of growing salt structures or that their growth preceded the 

deposition of MTDs, with no major influence of seafloor relief at the time of deposition. 

Places where both negative and positive correlations are recorded on different flanks 

indicate synchronous deposition and halokinesis. 

 

These inferences are further supported by the geometry and nature of the studied MTDs. 

For MTD 1, strata above diapir D5 are thin and faulted, which is typical of overburden 

layers deformed by halokinesis (cf. Davison et al., 2000; Tripsanas et al., 2004). On the 

flanks where positive correlations are established between MTD thickness and diapir 

diameter, MTD 1 shows onlapping reflections onto the flank of D5, a character 

indicating deposition on top of a seafloor-deforming salt structure (Figure 4.2). In 

contrast MTD 4, showing a negative correlation between its thickness and the distance 

to the diapir D3, is significantly thick and relatively undeformed on the crest of this 

same structure (Figure 4.6). In addition, strata deposited on the crest of D3 maintain the 

reflection characteristics of those on the flanks of the structure (Figure 4.6). 

 

The variation in thickness of MTDs with distance from the diapir axis can give hints on 

the proximity of the source area. MTD thickness tends to decrease away from the source 

in response to erosion and abrasion during downslope movement of material (Alves et 

al., 2009). The thickness is randomly distributed around diapirs when deposition pre-
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dates diapirism, and thins on the diapir crests when the MTD is deposited over the 

diapir crest (Figure 4.2). In contrast, when MTDs are sourced from strata at the crest of 

diapirs, and only moderately transported, the larger thickness is recorded closer to 

growing salt structures, and there is a negative correlation between the thickness and 

distance from the diapir centre (Figure 4.21). The exception to this rule is MTD 4, with 

a headwall region that is located between two diapirs, D2 and D3. Strata in MTD 4 

retrogressively failed in a NW-SE direction. Consequently, the thickness of MTD4 is 

relatively small on its headwall region due to the generation, during failure, of 

accommodation space on the seafloor (Kvalstad et al., 2001; Lucente and Pini, 2003; 

Dykstra, 2005). This process is reflected by negative correlation coefficients between 

diapir distance and the thickness of MTD 4 (Figure 4.21, Table 4.2), and leads to the 

grouping of MTDs in two main types in relation to their provenance: 1) diapir sourced, 

and 2) distally sourced (Figure 4.22).  

 

The correlation coefficients used to infer the dependence of the thickness of the MTD 

on halokinesis do not take into account the role of other geological factors, such as 

faults and the position and amount of accommodation space on the slope, as major 

controls on MTD thickness variations. However, the absence of through-going syn-

depositional faults above and below the interpreted MTDs suggests that the influence of 

faults is minimal in the studied stratigraphic interval. If such faults exist, they were 

draped and cannibalized during the mass-wasting process (Davison et al., 2000; Alves 

et al., 2009; Richardson et al., 2011). 
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4.9 Implications of provenance studies to hydrocarbon exploitation and 

exploration 

 

What are the geological implications of determining the provenance of the sediment? In 

this paper, MTD facies types have been classified as slumps, slides and debris flows. 

Debris flows have very low amplitude and as such are thought to be mud-prone. They 

comprise relatively poor reservoir units though some have very good porosity (Jennette 

et al., 2000; Posamentier and Kolla, 2003). The other facies types (coherent, deformed 

blocks/slides and rafted blocks) have preserved the original stratigraphy to some degree 

and show high amplitude strata, potentially an indication of sand prone reservoir targets. 

 

Blocks 100-400m thick have strong implications when drilling. It is important to 

understand how these blocks are oriented and distributed in order to plan well 

trajectories, especially when they are not hydrocarbon targets. The deformation suffered 

by the blocks may influence the sealing property of the host MTD. In situations where 

the blocks are highly deformed and faulted, they can act as conduits (Figure 4.11b and 

e) for vertical migration or seepage of hydrocarbon from lower stratigraphic units to 

those above. In this case, they may influence the development of gas chimneys and 

pockmarks on some seafloor (Gay et al., 2007; Gamboa et al., 2011). 

 

In terms of reflection characteristics, most of the blocks are of very-high amplitude, 

suggesting the presence of bright spots and/or sand (Posamentier and Kolla, 2003). 

Thus the geometry of the blocks, especially where they are hosted in debris flow 

deposits, may imply the presence of hydrocarbon pockets with seal provided by the 

adjacent debris flows. This hydrocarbon system is quite unconventional in the real 
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sense, but with a maximum volume reaching 2.492 km
3
, such areas hold promise for 

research and commercial exploration. 

 

4.10 Conclusions 

 

The detailed analysis in this work provided information on the position of source areas, 

modes of transport and spatial distribution of MTDs in relation to growing salt diapirs. 

The techniques used, when combined with the analysis of kinematic indicators, can 

provide complete and objective information on the source area of MTDs especially in 

salt rich continental margins. This new knowledge is vital to well planning and 

hydrocarbon exploration on such margins. Thus, in this study it is concluded that: 

 

1. The geometry of MTDs, and of blocks included in them, provides data on the mode 

of transport, distance from source area and styles of deformation of failed strata. 

Homogeneous MTDs start as slide or slumps and end up as debrites or debris flow 

deposits due to prolonged transport and intense deformation. Heterogeneous MTD 

recorded less material disaggregation during transport. 

 

2. The geometry of rafted blocks in MTDs provides estimates on the degree of transport 

and internal deformation experienced during failure. The shapes of the blocks hold 

invaluable information about their provenance. The size of the blocks decreases with 

increasing distance and from the source area.  

 

Away from the source area, their shape approaches bladed and ellipsoids geometry with 

slight variations in the dimension of their orthogonal axes. Tall blocks with ratios c/a > 

0.40 and c/b > 0.65 only occur in the proximal area of MTD 3. 
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3. Block geometry also provides information on the depositional processes leading to 

their accumulation. With MPSI and OPI of >0.666 and >-1.15, respectively, the blocks 

show poor degrees of sorting. This implies a lack of common preferred orientation of 

the blocks, which is typical of debris flow deposits.  

 

4. Positive correlation coefficients between diapir diameter and the thickness of MTDs 

suggest active diapirism during their deposition. Where negative correlations exist, salt 

diapirs were not developed when of the deposition of the MTDs, or MTDs were not 

transported across the diapir crest. MTDs accumulated without any salt influence of 

growing diapirs have negative coefficients of correlation between their thickness and 

the diameter of associated diapirs; 

 

5. The thickness of MTDs decreases away from source area. Increases in the thickness 

of the MTD close to the diapir axis suggest seafloor failure on their flanks, in parallel, 

small transporting distances.  
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Figure 4.25: Distribution of the different MTDs adjacently to the five salt diapirs interpreted in this study. b) Summary of the main 

depositional controls interpreted for MTDs 1-4, highlighting the presence of blocks and debrites in their interior, and the effect of diapirs in 

their distribution. 
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Chapter 5 

Ramps and flats of mass-transport deposits 

(MTDs) as markers of seafloor strain on the 

flanks of rising diapirs (Espírito Santo Basin, SE 

Brazil). 
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Abstract  

 

Ramps and flats reflect variations in the morphology of basal shear surfaces in mass-

transport deposits (MTDs), which are often mapped without considering their potential 

as strain markers. In this work ramps and flats are mapped on the margins of salt 

diapirs, using a high-quality 3D seismic volume from SE Brazil (Espírito Santo) to 

investigate how the morphology of MTDs relates to diapir growth and near-seafloor 

strain. In parallel, aspect ratios of MTDs are used to estimate their source areas and 

possible causal mechanisms. Our results show diapir-related MTDs to have 

length/width ratios ≤3, in a region where sediment failure was triggered by faulting and 

seafloor tilting due to halokinesis. Sections of MTDs that were triggered and later 

uplifted on the flanks of growing diapirs are termed ‘drag zones’. Ramps within these 

drag zones are shown as local changes in gradient at the basal shear surfaces, and are 

linked to promontories and older fault scarps. The results in this paper are important 

because they show that drag zones are elongated in a NW–SE direction, parallel to the 

dominant trend of basal ramps and promontories. Basal ramps and promontories in 

these drag zones constitute markers for seafloor strain around growing salt diapirs, with 

variations in the internal character of MTDs occurring across these same ramps and 

promontories. As a result, a spectrum of seismic and depositional facies can occur in 

specific quadrants of drag zones. In the study area are identified debrites (DBs), slightly 

deformed blocks (SDBs), coherent or unrotated blocks (CUBs), and rafted blocks 

(RBs). 
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5. Introduction 

Mass-wasting is ubiquitous on continental slopes, where the combined action of local 

tectonics, sediment input and gravitational instability can generate complex structures 

(Norem et al., 1990; Masson et al., 1998; Goldfinger et al., 2000; Laberg and Vorren, 

2000; McAdoo et al., 2000; Hunerbach and Masson, 2004; Hjelstuen et al., 2007a). 

Following seafloor failure, which occurs when downslope-directed shear stress exceed 

the shear strength of seafloor sediment (Varnes, 1978; Richardson et al., 2011), mass-

wasting processes involve the transport of sediment over a basal shear surface (Lucente 

and Pini, 2003) or gliding plane (Gee et al., 2005). Once failure is initiated, sediment 

will move at different velocities and volumes over the basal shear surface until the 

inertia of failed material is balanced once again by glide plane shear strength 

(Richardson et al., 2011). 

 

Kinematic indicators such as scours (Nissen et al., 1999; Posamentier and Kolla, 2003; 

Weimer and Shipp, 2004), grooves and striations (Gee et al., 2005; Gee and Gawthorpe, 

2006), cat claws (Moscardelli et al., 2006), monkey fingers (Mc Gilvery and Cook, 

2003), ramps and flats (Gawthorpe and Clemmey, 1985; Trincardi and Argnani, 1990; 

Lucente and Pini, 2003) are examples of features on basal shear surfaces that reflect the 

nature and physics of mass-wasted strata. Basal ramps form segments of a shear surface 

that are discordant with underlying bedding planes, while flats comprise the bedding-

parallel portion of the surface. Ramps and flats generally run perpendicular to the flow 

movement direction (Trincardi and Argnani, 1990) and are seldom parallel to the flow 

direction (O'Leary, 1986, 2002; Bull et al., 2009). As the failed strata move across 

ramps, significant deformation in the sediment is observed at the shear surface (Ramsay 

and Huber, 1987), usually in the form of slump folds and complex compressional 

features (Rupke, 1967; Frey Martinez et al., 2005; Alves and Lourenço, 2010) 
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In addition to basal shear surface deformation, circular and elliptical features interpreted 

on seismic volumes provide evidence of local (palaeo) stresses associated with 

compression, extension, or both. They are usually associated with near-seafloor folding 

(Edwards et al., 2005), salt diapirs (Stewart, 2006), mud volcanoes (Medialdea et al., 

2000; Milkov, 2000; Dimitrov, 2002), igneous/volcanic plumes (Garfunkel and Ben-

Avraham, 1996), extension/polygonal faulting or sandstone intrusions (Shoulders et al., 

2007). Salt diapirs, mud volcanoes and folds are generally associated with 

compressional stresses with minimum stress oriented in a vertical direction (Stewart, 

2006). Such a stress distribution is recorded in the form of complex deformation around 

growing diapirs, which translates at the seafloor as slope instability features, or mass-

transport deposits (MTDs). Significantly, some MTDs present ramps and flats in basal 

shear surfaces that relate to local stress fields and directions of transport during mass-

wasting events (Brami et al., 2000; Lamarche et al., 2008).  

 

This Chapter presents a quantitative analysis of ramps and flats at the base of multiple 

MTDs from SE Brazil (Figure 2.1). The aim of this Chapter is to relate the morphology 

of ramps and flats, and the relative recurrence of MTDs above them, to the growth of 

adjacent salt diapirs (Figure 5.1). In addition to significant seismic facies variations 

across basal ramps, this Chapter shows that the recurrence of MTDs varies across 

specific areas of elliptical ‘drag zones’ around growing diapirs. In addition, source areas 

of MTDs can also be recognised by analysing their length/width aspect ratios. In detail, 

this Chapter aims to: 

 

(a) Document the extent to which stress perturbations imposed by growing diapirs are 

reflected on the seafloor;  
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(b) Analyse how basal ramps and flats affect the internal character of MTDs; 

(c) Propose new methods to assess the effect of ramps and flats on the type of sediments 

deposited on and around growing salt diapirs. 

 

In this Chapter attribute and isochron maps are used to define ramps and flats around 

the salt diapirs. In addition, we quantify thickness variations within individual ramps 

and flats and relate them with modes of transport of MTDs. This latter section is 

followed by a discussion on: a) how to recognise source areas of MTDs around growing 

salt structures, b) how ‘drag zones’ can be used to establish the relative timing of 

halokinesis, and c) the significance of the ramp and flats of MTDs as seafloor strain 

markers. 

 

The term ‘drag zone’ is used to denote sections of MTDs that are uplifted during salt 

diapir rise (see also Stewart, 2006). Drag zones are elliptical to circular in map view and 

reflect the regions of the seafloor that suffered the most strain during the diapir growth 

(Davison et al., 2000b; Stewart, 2006). Drag zones in the study area were mapped using 

a combination of TWTT thickness and seismic attribute maps. 
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Figure 5.1: Distribution of the different MTDs adjacently to the five salt diapirs, D1 to 

D5, interpreted in this study. 
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Figure 5.2: Interpreted MTDs in the study area. Ramps are highlighted in separate insets. The positions of the imaged MTDs relative to the 

continental slope are shown in Figure 5.1. 
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Figure 5.3: MTDs in the study area range in age from Early Eocene to Miocene and were predominantly transported in a NW–SE direction. 
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Table 5.2: Seismic character of the tops and bases of Mass-transport deposits interpreted in this Chapter. 

 

MTD Seismic 

Unit 

Age 

(Fiduk et al 2004, 

Mohriak 

2003,2005) 

Associated Salt 

diapirs 

Headwall Region Basal Shear features 

1 H0 and H1 Eocene D4 and D5 NW of diapir D5. Striations, grooves, ramps. 

2 H2 and H3 Late Eocene D1, D2 and D3 Headwall region not 

observed, interpreted 

as buried east of diapir 

D3. 

Frontally confined by ramps, 

promontories east of the MTD. 

Condensed section in between 

promontories and basal ramps. 

3 H4 and H5 Oligocene- 

Miocene 

D1, D4 and D5 NW of diapir D5. Ramps west of diapir D5. 

4 H6 and H7 Miocene D2 and D3 NE of diapir D2. Minor topographic barriers, 

scarps, grooves and striations 

striking NW-SE. 
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5.1. Ramps and flats in interpreted MTD intervals 

 

The top and basal surfaces of four MTDs were mapped as nine surfaces named H0 to 

H8 in Figures 5.2 and 5.3. The mapped surfaces range in age from Eocene to Miocene. 

On seismic profiles, basal shear surfaces separate chaotic and disrupted strata within 

MTDs from the much more continuous facies of non-MTD deposits (Hampton et al., 

1996; Frey-Martínez et al., 2006; Frey Martinez, 2010; Bull et al., 2009).  

 

The internal character and geometry of the MTDs interpreted in this study is 

summarised in Tables 5.1 and 5.2. The description of the trend and nature of ramps was 

based on time-dip, coherence and RMS amplitude maps of the basal shear surfaces 

shown in Figures 5.5 to 5.8 and 5.18. In this work, ramps are considered to include 

structures on the basal shear surface over which significant amount of sediment was 

transported across different stratigraphic levels (Trincardi and Argnani, 1990; 

Gawthorpe and Clemmey, 1985; Strachan, 2002a; Lucente and Pini, 2003; Frey 

Martinez et al., 2005; Bull et al., 2009). Scarps related to sub-surface faulting at the 

base of the MTD were categorised as fault-controlled ramps (cf. Richardson et al., 

2011). Faults forming scarps are radial and crestal faults emerging from the salt diapirs 

(Figures 5.9, 5.10, 5.12 and 5.13). Other structures that contributed to changes in 

gradient on the basal shear surface included erosional scours, and minor topographic 

highs related to doming or salt diapirism (Figure 5.6).  

 

In total, twenty-eight basal ramps were identified in the study area (Figure 5.14). 

Approximately, 43% of the ramps occur at the base of MTD 1, while 29%, 21% and 7% 

were identified on MTDs 2, 3 and 4 (Figures  5.5 to 5.8). Promontory-related ramps 

were confined to MTD 2 while fault-controlled ramps were characteristic of the other 
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MTDs. Along the slope, ramps range in length from ~3 km to ~39 km, with an average 

length of ~10 km. 

 

5.1.1 MTD 1 (Early Eocene) 

Ramps at the base of MTD1 have a low angle of dip (<5°) on time-dip maps. They 

separate areas of chaotic and fine-textured topography from undeformed, very high 

amplitude, continuous reflections (Figure 5.5).  Ramps largely show a NW–SE 

orientation (N72°W to N28°W), parallel to the slope gradient. Geometrically, the length 

of ramps in MTD 1 ranges from ~5 km (R7) to ~28 km (R1). To the NW of MTD 1, two 

ramps formed a relay zone by the intersection of a NW-trending (N72°W) ramp, R1 and 

south trending ramp, R5 (Figure 5.5). Flat areas with no basal ramps were characterised 

by chaotic topography, which suggested that the basal surface was erosive at this part 

and that materials transported above it mainly comprise debrites (Posamentier, 2003; 

Posamentier and Kolla, 2003; Gee and Gawthorpe, 2006;). 

 

5.1.2. MTD 2 (Late Eocene) 

Topographic features resembling promontories sensu. Bull et al. (2009) are associated 

with depressions, or coves, created by antithetic ramps on the basal shear surface of 

MTD 2 (Figures 5.6, and 5.9). Promontories are peninsula-like protrusions on time-

structure maps. At the base of MTD 2, they are restricted to the edges of diapir D3 and 

to the southern flank of D2 (Figure 5.6). These promontories comprise undeformed 

strata, and have an average height of ~46 ms TWTT, for an area coverage of ~24 km
2
 

for PR1, ~17 km
2 
for PR2, ~13 km

2
 for PR3, and ~7 km

2
 for PR4 (Figure 5.6). 
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Promontories at the base of MTD 2 are characterised by chaotic and rugged topography 

on the time-dip and coherence maps, implying that the basal shear surface was erosive 

and possibly associated with the deposition of debrites above (Figure 5.6). 
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Figure 5.4: Thickness maps of MTDs and marginal strata to diapirs D1 to D4. a) MTD 1 

has maximum thickness of ~200 ms TWTT. b) MTD 2 has its maximum thickness 

recorded in coves bounded by ramps and promontories.  c) Thickness map of Zone 21 at 

the base of MTD 2. d) MTD 3 shows a decrease in thickness towards the North. A 

maximum thickness of ~200 ms is recorded SSW of MTD 3 in a region with 

megablocks.  e) The area around D3 shows a thin MTD 4. The thickest part of MTD 4 

onlaps onto the diapir. f) The headwall region of MTD 4 shows a very low thickness. 

N.B: Areas highlighted with dash lines are ‘drag’ zones inferred on the RMS amplitude 

maps, thickness maps are in TWTT (ms). 
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Figure 5.5: Dip and coherence maps elucidating the characteristic features of basal shear surface of the MTDs in the study area.  Ramps below 

MTD 1 are shorter along their strike than most of the other ramps compared with Figure 5.4. N.B: R- Ramp 
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Figure 5.6: Ramps on the basal shear surface of MTD 2 present stair-case geometry where antithetic ramps created depression between 

promontories. N.B: R- Ramp, ES- Erosional scour 
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Figure 5.7: Ramps on the basal shear surface of MTD 3 are not related to the salt diapirs. They are interpreted away from the drag zones. 
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Figure 5.8: Shorter ramps on the southern margin of D3 form scarps on the palaeo seafloor. R - Ramp, Pr - Promontory, ES - Erosional scours, F- 

fault.
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5.1.3. MTD 3 (Oligocene–Miocene) 

Ramps on the basal shear surface of MTD 3 separate areas of nearly flat topography from 

regions with rugged basal shear surfaces (Figure 5.7). Time-derived dip and coherence 

maps at the base of MTD 3 show rugged topography towards the western flank of D5. This 

area is dominated by large rafted blocks (Figure 5.11). Most of the observed ramps are 

NW–SE trending (N72°W to N44°W) and anastomosed in the SE part of Figure 5.7. The 

point of intersection of the ramps corresponds to the position of scours into the underlying 

lithological unit. A striking sub-elliptical feature on the most distal margin of D4 forms a 

promontory flanked by a cove (Figure 5.7). Despite its shape, it differs from those 

described in MTD 2, as it is enclosed by debrites. 

 

5.1.4. MTD 4 (Miocene) 

Basal ramps in MTD 4 shows very low angles of dip (<5°) and are located on the NW and 

SE flanks of D3 (Figures 5.8 and 5.12). On the SE flank of D3, rafted blocks with heights 

up to 82 ms TWTT (~254.2 m) are found at the point of intersection of the basal ramps. 

The headwall scarp of MTD 4 is shown as subtle topographic highs on the palaeoslope 

(Figure 5.4f). Furthermore, striations and erosional scours on the SE part of the MTD trend 

NW–SE (N46°W) direction. This supports the assumption that the transport direction of 

MTD 4 was NW–SE (N54°W). 

 

5.2. Drag zones around salt diapirs 

For the six (6) drag zones interpreted in the study area, axial ratios of long/short axes (AR) 

and the orientations of the long axes (Φ) were determined from the computed time-dip and 

RMS amplitude maps (Figure 5.18). The aim was to map variations in the internal 

character of MTDs in four pre-defined quadrants in each drag zone. In the study area, 

seismic variations are prominent across basal ramps within the identified drag zones 
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(Figure 5.18). The following nomenclature was used to convey the different MTD facies 

located in each quadrant of the drag zones: 

 

a) Debrites (DBs), also debris flow deposits sensu. Posamentier and Kolla (2003). 

Debrites are characterised by very chaotic, disrupted and contorted reflection on 

seismic profiles. They are shown as very low amplitude strata on RMS maps 

(Figure 5.19). 

 

b) Coherent/unrotated blocks (CUBs) sensu. (Dott, 1963; Moscardelli et al., 2006). 

Coherent blocks usually have preserved internal geometries with parallel 

reflections. They are characterised by high amplitude features on RMS maps and 

are expressed distinctly from their surrounding low amplitude sediments (Figure 

5.20). 

 

c) Slightly deformed blocks/slides (SDBs), also moderately deformed blocks sensu. 

(Gamboa et al., 2010; Gamboa et al., 2011). Moderately deformed blocks have 

planar reflections in the centre and rotated edges. They are often faulted. They are 

indistinct on the RMS map except when associated with low amplitude debrites 

(Figure 5.19). 

 

d) Rafted blocks (RBs) (cf. Gamboa et al., 2011). Rafted blocks comprise blocks of 

strata that display internal architecture resembling materials that have been 

transported and dilated. They have rotated edges and are characterised by high 

amplitude reflections at their top and base (Figure 5.21). 
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Figure 5.9: Type I ramps are flanked by promontories, and they are restricted to the base 

of MTD 2. 
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Figure 5.10: Seismic profile through Type II ramps at the base of MTD 4. R—

represents the position of basal ramps. 

 

 

 

 

 

 

 



185 | P a g e  
 

 

 

Table 5.3: Aspect ratio and geometry of MTDs in this Chapter. 

MTD 

Max 

length 

Max 

breadth 

Aspect 

ratio 

Max. 

Thickness(ms) 

(TWTT) 

Area 

(sq.km) 

Volume 

(km
3
) 

MTD 1 38 38 1.00 110 778.8 90.0 

MTD 2 52 25 2.08 140 602.4 88.5 

MTD 3 48 28 1.71 175 851.1 156.4 

MTD 4 30 14 2.14 75 325.8 25.7 

 

 

 

 

Table 5.4: Statistical parameters measured on inferred drag zones at the crest of the salt 

diapirs 

S/N Ellipse MTD Long(x) Short(z) x/z Phi ()   

1 Z41 4 8.72 5.82 1.50 54.1   

2 Z31 3 12.36 7.71 1.60 57.1   

3 Z32 3 7.60 4.33 1.76 51.2   

4 Z21 2 12.35 6.22 1.98 46.9   

5 Z22 2 7.88 6.44 1.22 54.1   

6 Z11 1 11.54 5.54 2.08 26.7   
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5.2.1. MTD 1 — fault-controlled debrites 

The drag zone mapped at the depth of MTD 1 was located around D4 (Figure 5.18a). Its 

boundary is marked by differences in RMS amplitude values on the northern flank of 

D5, and by basal ramps on the other flanks (Figure 5.5). Distinct shadow zones and 

scars represent changes in the composition of the MTD (Figure 5.18a). Their axial ratio 

was computed as ~2.08, with short and long axes of ~12 km and ~6 km respectively. 

This zone had the highest estimated Aspect Ratio value in the study area, with a long-

axis direction of ~N27°W (Table 5.3). MTD facies in the drag zone included debrites 

(DBs), and coherent/unrotated blocks (CUBs) in the first quadrant, DBs in the second, 

and slightly deformed blocks/slides (SDBs) in the third and fourth quadrants 

respectively (Figure 5.18a). 

 

5.2.2. MTD 2 — promontory-bounded debrites 

The first zone on MTD 2 is mainly located around diapir D1 (Figure 5.18b). Basal 

ramps are ubiquitous features in the western part of zone 21 (Figure 5.6). The axial ratio 

of the zone approaches 1.98, with long and short axes of ~12 km and ~6 km. The first 

quadrant contains CUBs and DBs while the remaining quadrants are entirely covered by 

DBs. The second drag zone affecting MTD 2 is observed on the margin of diapir D3, 

The basal shear surface is here marked by ramps on both its western and eastern flanks 

(Figures 5.6 and 5.18b). A shadow zone on its western end highlights a transition from 

high to low amplitude strata N54°W (Figure 5.18). The estimated axial ratio of Zone 22 

is ~1.22. DBs were deposited in the first and fourth quadrant while SDBs were found in 

the third and second quadrants. 
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5.2.3. MTD 3 — Blocky mass-transport deposit 

The two drag zones identified in MTD 3 were located in areas of low to high amplitude 

reflections across NW–SE (N57°W and N51°W) trending ramps (Figure 5.18c). Zone 31 

was located on the north western margin of the MTD. The estimated axial ratio of this 

zone was ~1.60. Its western and eastern margins are marked by very prominent ramps 

(Figure 5.7). To the north and south of 31 the ramps interconnect and are subtly revealed 

on the RMS amplitude window (Figures 5.7 and 5.18c). MTD facies included DBs in 

the second and third quadrants, CUBs and DBs in the first and moderately high-

amplitude SDBs in the last quadrant (Figure 5.18c). Zone 32 was located south of the 

first zone; it had an estimated axial ratio of ~1.76, with long and short axes of ~8 km 

and ~4 km. Rotated/rafted blocks (RBs) were the main MTD types in the fourth 

quadrant while other quadrants comprise of a mixture of CUBs, SDBs and DBs (Figure 

5.18c). 
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Figure 5.11: Seismic profile showing examples of ‘drag zones’ and rafted blocks in MTD 3. Drag zones represent the uplifted section of 

the MTD during diapir growth. In addition are shown faults that controlled slope gradient at the base of MTD 1. 
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Figure 5.12: Fault controlled ramp (Type II) at the base of MTD 4. Also shown are high amplitude reflections associated promontories at 

the basal shear surface of MTD 2. 
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Figure 5.13: Type II ramps at the base of MTDs 1 and 3. 
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Figure 5.14: Dimensions of ramps measured on dip maps.  Length of the twenty-eight 

ramps used in this chapter. 
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Figure 5.15: Scatter plots highlighting statistical analyses of the variations in the width 

of the depocenter and promontories in MTD 2. 
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Figure 5.16: Statistical analyses of the variations in width of promontories with 

diameter of diapir and increasing distance towards toe regions. 
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Figure 5.17: Rose diagram for the orientation of the two types of ramps discussed in the 

text. Type I are promontory-related ramps while Type II are fault-controlled ramps. 
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5.2.4. MTD 4 — Low-angle scarped MTD 

Zone 41 is inferred around diapir D3. This diapir displayed features previously 

identified in older MTDs. Zone 41 is delimited by a ramp to the west, a shadow zone 

and several subtle ramps to the east. The long and short axes were ~9 km and ~6 km 

respectively, with an axial ratio of ~1.50. The first and fourth quadrants of the zone 

were dominated by CUBs and RBs while the third and second quadrants show DBs and 

SDBs (Figure 5.18d). 

 

In summary, ramps within the drag zones frequently relate to the deposition of blocky 

MTDs, while those beyond the drag zones mostly favoured the deposition of debrites 

(Figure 5.23b). Geometrically, three kinds of axial ratio are common in the drag zones; 

these are <1.50, 1.50–2.00, and >2.00. The principal long and short axis ranges from 

~12 km to ~5 km, and ~3 km to ~8 km; estimated standard deviation for these 

parameters are ~0.28, ~2.57, and ~1.39 respectively. The calculated harmonic and 

vector mean for the axial ratio and phi () are 1.63 and ~47°. Overall, the long axes of 

the predicted zones are oriented in a NW–SE (~N27°W to N57°W) direction while the 

short axes are NE–SW-trending (~N63°E to N33°E), respectively coinciding with the 

direction of the maximum extension and contraction of the zones. 

 

5.3. Reassessing diagnostic features of slope- and shelf-detached MTDs 

The dimension of MTDs can be used to estimate their source area and sediment run-out 

distances (Hunerbach and Masson, 2004). It also provides important hints on the 

volume of sediment remobilised during slope instability events. Based on this 

assumption, aspect ratios were previously used to classify MTDs as ‘slope-detached’ 

and ‘attached’ offshore Trinidad and Tobago (Moscardelli and Wood, 2007), and in the 
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analysis of Quaternary submarine landslides on the US Atlantic margin (Twichell et al., 

2009). Slope- and shelf-attached MTDs are of regional scale, covering thousands of 

kilometres in area and are generally sourced from extra-basinal systems such as shelf-

edge deltas and upper-slope regions (Moscardelli and Wood, 2007). In contrast, 

detached MTDs are relatively small and confined to the margins of minibasins or 

bathymetric highs. Irrespective of the volume of remobilised strata, slope detached 

MTDs have specific aspect ratios of < 4 (Moscardelli and Wood, 2007; Twichell et al., 

2009). Slope-attached MTDs usually have longer run out distances and invariably high 

length/ width ratios relative to those detached from the slope or shelf. 

 

The methods in Moscardelli and Wood (2007) and Twichell et al. (2009) are valid when 

classifying MTDs on continental margins where the headwall scarp is imperceptible or, 

as in the case of the study area, salt structures are prominent and well-developed 

(Figures 5.4 and 5.23). However, this work highlights the existence of quadrants on the 

margins of rising diapirs in which the MTDs' lithology and internal characters 

significantly vary. In addition, these same quadrants are shown to comprise the regions 

on the slope recording the higher recurrence of MTDs (Figure 5.23b). This is a 

significant piece of new information that will be discussed in detail in the following 

sections. 

 

In this study, all the MTDs have length/width ratios of <3 with the headwall scarp and 

toe regions prominently-imaged. The lack of headwall scarps in MTD 2 may imply 

quick burial, evacuation and later infilling of the headwall region by subsequent and 

younger MTDs, or a distal source for the failed material. This latter interpretation is 

favoured by the homogeneous nature of MTD 2. This MTD started out as 
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heterogeneous combination of different facies (slides, slumps and debris flow deposits) 

and, consequent to its long travel distance, ended up as homogeneous debrites (Figure 

5.23). 

 

The reactivation of previously-formed radial faults and the growth of newer faults 

within salt withdrawal basins triggered the deposition of MTD 3 during the Miocene–

Oligocene. Rafted blocks up to 400 m in height are prominent near the inferred 

headwall region (Figure 5.19). Some of these blocks can be markedly faulted, with their 

size decreasing towards the toe region. The lack of an obviously-extended headwall 

region implies that materials could have failed homogeneously on the flanks of diapirs 

(Dykstra, 2005). In contrast, the youngest MTD 4 was formed in the Miocene by 

continued halokinesis and faulting. The headwall region of MTD 4 lies between D2 and 

D3 (Figures 5.4f and 5.8). The post Miocene reactivation of D2 led to an elevated slope 

gradient and the subsequent collapse of sediments on the south-eastern margin of the 

diapir. 

 

The four interpreted MTDs are thus characteristic slope-detached MTDs presumably 

resulting from instability generated by increasing slope angles on the flanks of growing 

salt diapirs. Sliding on the plane of failure was promoted by near-seafloor faulting and 

salt diapirism. They are also found within, or restricted to, salt withdrawal basins 

formed on the flanks of rising diapirs. They were generated close to the present-day salt 

diapirs and as such can be described as locally-sourced MTDs. 
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Figure 5.18: Drag zones inferred from RMS amplitude maps computed between the tops 

and bases of the MTDs. Areas of high amplitude separate the MTDs into bands of 

alternating high and low amplitude. Quadrants are labelled clockwise. Coherent 

unrotated blocks and debrites were recognised as near cubic and triangular features on 

RMS amplitude maps, while the other facies types were indistinctly separated on the 

maps, except in places where they were shown as low-amplitude features. 
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5.4. Discussion 

5.4.1. Significance of basal ramps of MTDs on the flanks of rising diapirs 

In the study area, basal ramps include a) low angle, <5° features around promontories 

(Type I) and b) fault-controlled scarps created by the reactivation of radial faults and 

faulting of salt withdrawal basins (Type II) (Figure 5.9). Type I ramps are only found at 

the basal shear surface of MTD 2 while Type II ramps predominate at the base of the 

other MTDs. In situations where adjacent ramps were antithetic, they formed 

promontories and adjacent coves were subsequently filled by debris flow deposits 

(Figure 5.12). Both kinds of ramps influenced the distribution of the MTDs in distinct 

drag zones (Figure 5.18). The origin of the two kinds of ramps described in this study 

can be linked to erosion of the mechanical incompetent layers at the basal shear surface 

(Figure 5.22b and c). Regions of enhanced erosion are marked on seismic profiles as 

small-scale coves flanked by undeformed promontories, which comprise the uneroded 

remnants and mechanical competent parts of seafloor around MTDs.  

 

A key observation in this work is that ramps and promontories have their long axes 

oriented parallel to the direction of transport of the interpreted MTDs (Figures 5.5 to 

5.8). Complete erosion of the palaeo-seafloor may cause the section of the ramp that is 

normal to the mass flow direction to be indiscernible on seismic profiles. In the study 

area, there is a strong inverse correlation between the widths of the promontories/flats 

and that of adjacent coves, with correlation coefficients ranging from 0.65 to 0.953 

(Figure 5.15). These relationships suggest that erosion affected the seafloor in an 

uneven way and account for the evolution of the ramps and flats in the study area 

(Figures 5.4b and 5.6).  
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Thus, the promontory-related ramps in this study are not similar to extensional or 

compressional structures in Gawthorpe and Clemmey (1985). Instead, Type I ramps fit 

into the description of ramps by Trincardi and Argnani (1990); Lucente and Pini (2003); 

Frey-Martinez et al. (2005); and Bull et al. (2009). Seismic coherence maps show that 

Type I ramps are not discontinuities in the seismic volume in contrast to their Type II 

counterparts (Figure 5.7 and 5.8). Type I ramps are thought to be sidewalls of basal 

excavation areas on the basal shear surface through which sediments were transferred 

during the movement of MTDs. Plots of variations in the diameter of D3 versus the 

width of adjacent coves demonstrate that coves increase in width in the regions where 

the diameter of the diapir D3 is larger (Figure 5.16). In such a setting, salt diapirs 

preferentially grew adjacently to the observed promontories.  

 

A possible explanation for the presence of Type II ramps is that they were created by 

the action of multiple beds cut by pre-existing fault scarps (Figure 5.22c). Type II ramps 

are, however, preferentially oriented in the direction of transport of the interpreted 

MTDs. Consequently, we interpret these ramps to pre-date or occur synchronously with 

the deposition of MTDs 1 to 4 (Figure 5.22a). In addition, the orientation of the fault 

controlled ramps was directly controlled by halokinesis. Salt mounds, diapirs and 

associated crestal and radial faults propagated to the south east in areas of lower head 

gradient cf. (Hudec and Jackson, 2007), thus the predominance of Type II ramps 

striking NW–SE (~N40°W) beneath MTDs 1, 3 and 4 (Figure 5.17). 

 

5.4.2. Drag zones as indicators of seafloor strain 

The seafloor and adjacent stratigraphic units draping growing salt diapirs are usually 

compressed or extended during diapir rise (Vendeville and Jackson, 1992a; Vendeville 
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and Jackson, 1992b; Davison et al., 2000a; Davison, 2004). The sub-circular shape of 

most diapirs indicates that the highest strain is located in their central, dome-shaped 

crest, and progressively distributed along the adjacent flanks of growing salt structures 

(Bouhallier et al., 1995).  

 

This Chapter shows that halokinesis and diapir growth created drag zones around the 

studied diapirs. These zones are elliptical on thickness maps and RMS amplitude 

windows. On the TWTT thickness maps, they were often shown as areas of significant 

thickness variations when compared to their surroundings (Figure 5.4). Drag zones are 

therefore considered to mark the area of maximum strain endured by the palaeo-seafloor 

during the diapir growth. On the RMS amplitude map, they are materialised as 

coherently distributed zones of uplift/drag characterised by changes amplitude (Figure 

5.18). In addition, subtle low amplitude linear features, or scars, observed around some 

of the diapirs on RMS amplitude maps correspond to the position of basal ramps 

(Figure 5.18). 

 

Quantifying these drag zones provided insight into the distribution of strain within the 

MTD during halokinesis. Where present, ramps also influenced the geometry and type 

of the final drag zone. In this paper is shown a spectrum of MTD facies in drag zones 

with developed ramps. As drag zones represent the maximum strained section of MTD 

deposited during salt diapir rise, their analysis can be used to understand if MTDs were 

deposited before or during salt diapir movement.  

 

The relative lack of flow structures such as deflected, reflected or imbricated MTD 

layers around the diapirs suggest mass flows that are not buttressed against a structural 
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or topographic barrier (see Figure 5.22a). In addition, the diapirs are found in the 

translational domain of MTDs which may indicate no significant alteration of the stress 

regime during the diapir growth. Also, piercement of the MTD connotes deformation of 

the overburden, especially during the active stage of diapirism. In contrast to the latter 

settings, basal ramps sub-parallel to drag zones' long axes indicates the accommodation 

of local strain on the flanks of diapirs when of the deposition of MTDs. This is an 

important finding, as it shows that this type of ramps and promontories can be used as a 

proxy to understand the timing of salt diapirism, and the amounts of strain experienced 

in the drag zones at the time of seafloor failure. 
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Figure 5.19: Slightly deformed blocks (SDBs) comprise moderately deformed blocks with planar reflections in the centre and rotated 

edges. 
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Figure 5.20: Coherent to undeformed blocks (CUBs) have preserved internal geometries with parallel reflections. 
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Figure 5.21: Rafted blocks (RBs) comprise blocks of strata that display internal architecture resembling materials that have been 

transported and dilated, while debrites (DBs) are characterised by very chaotic, disrupted and contorted reflections on seismic data. 
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Figure 5.22: Diagram depicting: a) the possible interplay of MTDs with growing salt 

diapirs and their modes of formation of b) Type I ramps, c) Type II ramps. N.B: (+) 

represent the mechanical competent section of the palaeo seafloor while (−) denote the 

less competent part. 
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5.5. Conclusions 

This Chapter shows that ramps at the base of MTDs could be oriented parallel to the 

flow direction. These ramps include those attached to promontories, and fault-controlled 

ramps that either predated or occurred synchronously with the deposition of MTDs. 

Ramps with promontories formed by the erosion of the least competent part of the basal 

shear surface. When there is complete erosion of the incompetent layer, they are 

manifested as structures normal to the direction of mass flow and parallel during partial 

erosion. Furthermore, the action of multiple beds and incomplete erosion of underlying 

fault scarps was linked with the formation of fault-controlled ramps. 

 

The salt diapir rise and subsequent strain histories of the mass transport deposits are 

preserved in drag zones within the MTD on the crest of the diapirs. Distinct MTD facies 

were preferentially deposited in different quadrants of drag zones. The estimated axial 

ratios of drag zones were estimated to be b1.5, 1.5–2.0, and 2.00; with the long axes 

mainly oriented in NW–SE direction. Additionally, the location of drag zones and MTD 

facies was influenced by the position of basal ramps. The orientation () of the long 

axes and axial ratios of the drag zone were important parameters for investigating the 

strain history of the palaeo seafloor and the MTDs. 

 

These zones are strain markers, which could only be analysed by estimation of their 

aspect ratios. Drag zones, though elliptical in map view, cannot be considered as strain 

ellipses, as the pre-requisite for hypothetical representation of the zone as initially 

circular objects cannot be adequately justified from seismic. If it were possible to 

identify the elliptical drag zone in attribute data from near-horizontal section through 

the seismic volume, there would be no way to characterise the intermediate axis 

sufficiently to carry out a strain analysis. 
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In this Chapter we identified three statistical parameters (angle of dip, length along 

strike, orientation) defining the geometry of basal ramps, and two types of ramps. Type 

I is promontory-related and Type II is fault-controlled. Promontories are linked with 

very high-amplitude reflections, characteristic of bright spots. This implies that 

promontories in MTD 1 and MTD 2 can comprise potential exploration targets, similar 

to features described as ‘Erosional Shadow Remnants’ by Moscardelli et al. (2006). In 

addition, the drag zones mapped in this work are sites of recurring mass wasting events, 

and such areas should be avoided when planning well trajectories, especially when these 

zones are in front of salt diapirs. If located on the proximal part of the diapirs, they can 

act as a structural barrier to remobilised MTDs. 
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Figure 5.23: a) Relationship and geometry of MTDs on the Espírito Santo continental slope. b) Block diagram showing some of the 

terminologies and concepts described in the text. Shown in the figure are examples of Type I and Type II ramps, Heterogeneous and 

Homogeneous MTDs, and drag zones (not to scale). N.B:The arrow point in the direction of the upper slope 
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Abstract 

This work uses high-quality 3D seismic data to assess the importance of mass-transport 

deposits (MTDs) as markers of fault propagation. We mapped three distinct MTDs and 

several fault families on the continental slope of the Espírito Santo Basin, SE Brazil. 

Fault mapping was based on seismic attributes such as seismic coherence and structural 

smoothing, and was further completed using ant tracking algorithms. Genetically related 

fault families were analysed in terms of their throw-depth (t-z) and throw-distance (t-x) 

gradient curves. A key result in this paper is that vertical fault propagation can be 

hindered by MTDs, as demonstrated for Eocene to Early Miocene faults in parts of the 

study area. Throw-depth variations in faults affected by MTDs are associated with: a) 

lithologic controls resulting from the presence of MTDs, b) local fault segmentation and 

c) reactivation by dip linkage. Based on their orientation and degree of interaction with 

MTDs, interpreted faults can be classified as decoupled and non-decoupled. 

Importantly, faults decoupled by MTDs have quasi-elliptical t-x profiles and show 

smaller cumulative throw values and fault propagation rates when compared to their 

non-decoupled counterparts. Recurrent MTDs can therefore be used as markers to 

estimate structural decoupling between distinct fault families.  
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6.1 Introduction 

The contribution of mass-wasting processes to the geometry and architecture of 

sedimentary basins has been widely discussed in the literature (e.g. Hunerbach et al., 

2004; Hjelstuen et al., 2007; Tailing et al., 2007). In particular, mass-transport deposits 

(MTDs) are important components of petroleum systems on continental margins 

(Gamboa et al., 2011; Ogiesoba and Hammes, 2012). They may comprise mud prone 

successions, homogeneous debris flows with good seal properties, or reservoir intervals 

composed of siliciclastic or volcaniclastic strata (Jennette et al., 2000; Haughton et al., 

2003; Posamentier and Kolla, 2003; Welbon et al., 2007; Dykstra et al., 2011; Meckel et 

al., 2011; Ogiesoba and Hammes, 2012). As shown in this work, MTDs can also be 

used as structural markers. In fact, erosional truncation of pre-existing fault scarps 

during mass-wasting events can help in constraining the timing of fault growth and 

movement in sedimentary basins (see also Alves et al., 2009; Gamboa et al., 2010; 

Omosanya and Alves 2014).   

 

The history of fault growth is commonly assessed through the collection of fault 

displacement data (Peacock and Sanderson, 1991; Cartwright and Mansfield, 1998; 

Mansfield and Cartwright, 2001; Stewart, 2001; Morley, 2002; Peacock, 2002; Baudon 

and Cartwright, 2008a, b; Zhang et al., 2011; Tvedt al., 2004). Throw-depth (t-z) and 

throw-distance (t-x) plots offer information on the nucleation, propagation, 

segmentation and linkage of individual faults, providing at the same time important data 

for fault seal prediction (Stewart, 2001; Koledoye et al., 2003; Faulkner et al., 2010). In 

addition, throw and displacement gradient plots have systematically been used to assess 

the role of lithology and tectonic reactivation on the growth of faults (Cartwright et al., 

1998; Baudon and Cartwright, 2008a), as discrepancies on throw/displacement 
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gradients commonly result from mechanical heterogeneities, fault linkage or fault 

segmentation (Baudon and Cartwright, 2008b). 

 

This Chapter aims to characterise the effect of MTDs on vertical fault propagation by 

providing a detailed history of fault families on the mid-continental slope of the Espírito 

Santo Basin, SE Brazil (Figure 6.2). We apply throw-depth (t-z) plots in an area of 

recurrent MTDs to investigate the history of fault growth. Cumulative throw plots are 

introduced to distinguish fault families and assess their propagation history. Faults 

identified in the study area include those found in regions where the MTDs are mapped 

and faults where no MTDs are observed. In essence, this paper aims to address the 

following questions: 

 

a) Can MTDs impose lithological controls on the propagation of faults on continental 

margins? 

b) Can MTDs be used as stratigraphic markers to assess fault propagation histories on 

structurally decoupled and non-decoupled fault families? 

c) What methods can be used to distinguish different fault families in terms of their 

propagation histories? 

 

To simplify the analysis in this Chapter, interpreted faults have been classified into 

Types A to D (see Figure 6.1 for further information).  Faults types A and B are located 

in non-MTD regions, while Types C and D comprise faults mapped within the MTD 

interval. In addition, we defined decoupled faults as those faults whose tips are confined 

to the basal shear surfaces of the interpreted MTDs (Type D). Non-decoupled faults 

include Type A, B and C faults (Figure 6.2).  
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Figure 6.1: Classification of faults discussed in the text. Decoupled faults include those faults decoupled by MTD 1 to 3 while types A to C 

are non-decoupled faults 
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Figure 6.2: Coherence map at -3400 ms showing the major fault families described in this chapter. Zones 2 and 4 in the figure correspond 

to the approximate position of the MTDs. Dominant orientation of faults in non-MTD areas is NE-SW, a direction contrasting with the 

predominant NNW-SSE strike for faults in MTD areas. N.B: The average perpendicular distance between fault is the mean of a, b and c. 

Fault length was measured along strike for 24 faults. 
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6.2 3D Seismic Interpretation 

Five megasequences bounded by regional unconformities (França et al., 2007) were 

interpreted in the study area (Figure 2.9; 6.3 to 6.6). In addition, six horizons 

corresponding to the top and bases of the MTDs were also interpreted (Figure 2.9; 6.3 to 

6.6). The stratigraphic description of the different units and MTDs is provided in the 

following section. 

 

6.2.1 Stratigraphic units 

 

6.2.1.1 Unit 1 (Late Santonian to Campanian) 

 

Unit 1 comprises a mixture of sandy turbidites and shales, changing into marls towards 

the distal part of the continental slope (França et al., 2007). The base of Unit 1 is 

marked by horizon H1, which correlates with a late Santonian unconformity (Table 2.2, 

Figure 2.9; 6.3 to 6.6). Horizon H1 separates low amplitude units capping Albian rafts 

and younger salt structures from high amplitude strata above (Table 2.2, Figure 2.9; 6.3 

to 6.6).. Horizon H1 represents the base of the Urucutuca Formation, and shows 

evidence for the different phases of faulting identified in this work (Table 2.2, Figure 

2.9; 6.3 to 6.6). On a regional scale, H1 is associated with the incision of a late 

Santonian to Maastrichtian channel system (Golfinho Field; Vieira et al., 2007). 

Additionally, a secondary horizon H1b was interpreted beneath horizon H2. Horizon H2 

corresponds to a late Maastrichtian regional unconformity capping the low amplitude 

Unit 1 (Table 2.2, Figure 2.9; 6.3 to 6.6). 

 

6.2.1.2 Unit 2 (Palaeocene to Early Eocene) 
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The lower boundary of Unit 2 is marked by an unconformity of Maastrichtian age, 

horizon H2 (Table 2.2, Figure 2.9; 6.3 to 6.6). The top of Unit 2 is horizon H3, which 

comprises an early Eocene regional unconformity (Table 2.2, Figure 2.9; 6.3 to 6.6). 

Unit 2 is composed of prograding sandstones and shales, which are ubiquitous on the 

SE Brazilian margin (França et al., 2007; Fiduk et al., 2004). 

 

6.2.1.3 Unit 3 (Eocene to Early Miocene) 

The lower and upper boundaries of Unit 3 comprise unconformities of early Eocene and 

Miocene age, respectively (Table 2.2, Figure 2.9; 6.3 to 6.6). The uppermost horizon 

(H4) truncates almost all of the closely spaced faults mapped in Units 1, 2 and 3. The 

H4 horizon represents the upper part of the Urucutuca Formation (França et al., 2007). 

Unit 3 comprises sandstones (Rio Doce Formation), Calcarenites (Caravelas member), 

turbidite channel/levee deposits and marls of the Urucutuca Formation (França et al., 

2007; Alves et al., 2009). Unit 3 comprises alternating regressive and transgressive 

strata (Moreira and Carminatti, 2004). At the distal part of the study area, the unit 

presents a succession of MTDs and incising channel deposits (Table 2.2, Figure 2.9; 6.3 

to 6.6). 

 

6.3 MTDs in this chapter 

The three MTDs interpreted in this chapter are found in Unit 3 (Early Eocene to Late 

Eocene; (Table 6.1, Figure 6.3 to 6.6). The base of MTD 1 is a discontinuous, moderate 

amplitude reflection presenting fault-controlled ramps and erosional scours (Figure 6.3 

to 6.6). The upper and lower boundaries of MTD 2 coincide with high amplitude 

reflections. Its top, in particular, is rugged and hummocky displaying characteristic 

features of a MTD (cf. Posamentier and Kolla, 2003; Richardson et al 2007). MTD 3 is 
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a heterogeneous deposit rich in megablocks (Figure 6.3 to 6.6). The highest block in the 

study area is ~72 m tall, but blocks up to ~ 400 m in height occur to the NW (Omosanya 

and Alves, 2013). The upper boundary of MTD 3 is ridged, and of moderate amplitude 

reflection Figure 6.3 to 6.6). The seismic-stratigraphic and geometric characters of the 

three MTD are highlighted in Table 6.1. 
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Figure 6.3: Seismic profile showing Type A and Type B faults, these faults are located in the non-MTD area. Roller faults are examples of 

Type A which detach onto top salt and raft horizons. Types A and B faults are restricted to the western section of the seismic volume in 

area without MTDs. V.E = 3 

 



220 | P a g e  
 

 

Figure 6.4: Seismic profile showing Type D faults include MTD 1, 2, and 3 decoupled faults. The highest number of faults is decoupled by 

MTD 2. Type C faults include those faults vertically propagating into the MTDs. V.E = 3. 
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6.4 Interpreted fault families 

In this Chapter, decoupling refers to the classical definition of lateral and vertical 

deformation partitioning, e.g. Grocott et al., 2004. We mean that a body of sediments 

(in this case a MTD) absorbs and prevents the upward propagation of a fault. As far as 

the fault propagation is concerned, the sediments above the MTD are decoupled from 

the sediments below. The characteristic of both decoupled and non-decoupled faults are 

discussed as follows. 

 

6.4.1 Non-decoupled faults (Types A, B and C) 

In the study area, Type A faults comprise listric faults detached onto salt anticlines and 

rafts. Examples of Type A include roller and crestal faults (Figure 6.2 and 6.6). Along 

strike, the faults have average length of ~5 km (Figure 6.2). Type A faults are truncated 

by the Early Miocene unconformity, horizon H4 (Figure 6.4). Type B faults are 

polygonally shaped in map view and referred here as polygonal faults. The tips of Type 

B faults are eroded by the H4 horizon in most places (Figure 6.3 to 6.6). On seismic 

data, Type B faults have an average length and spacing of ~4 km and ~2 km 

respectively 

 

Polygonal faults are laterally extensive arrays of extensional faults formed in fine-

grained sediments with small throw and lateral extension. They show close spacing, 

high fault density, and variable strikes within polygonal planform geometry (Sun et al., 

2010; Cartwright, 2011; Ding et al., 2013) (Figures 6.1, 6.3a and 6.4a). On the isopach 

maps, the effect of Type B faults is apparently restricted to Miocene strata away from 

the region of the interpreted MTDs (Figure 6.16 and 6.17). Nonetheless, Type B faults 

are the most segmented, dominant and linked fault systems in the interpreted seismic 
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volume (Figure 6.2).  The principal orientation among Type B faults is NNW-SSE and 

NE-SW, contrasting with NNW-SSE of Type A faults (Figure 6.2).  

 

Type C faults offset the base of MTDs 1 and 2 but do not propagate beyond the 

youngest MTD 3. These Late Eocene faults are accompanied by thickness variations in 

the Eocene, after which thin sediments were deposited across uplifted footwall blocks or 

eroded away.  Type C faults have an average length of ~2 km and a maximum 

perpendicular spacing of ~1 km. The dominant orientations of these faults are NW-SE 

and NE-SW (Figure 6.2).  

 

6.4.2 Decoupled faults (Type D) 

Type D faults are MTD-decoupled faults found at the base MTD 1 and 2 (Figures 6.3b 

and 6.4b). The Type D faults offset the deeper horizons H1 to H3 and do not intersect or 

extend up to the early Miocene unconformity (horizon H4). These faults have average 

length of ~1 km and are the shortest fault types in the study area. Associated fault 

geometries include small-scale graben and horst structures limited to the base of MTD 1 

(Figures 6.3b and 6.4b). The majority of the faults show evidence for partial 

reactivation, evidenced by multiple stratigraphic levels with reverse drag on hanging-

wall and footwall sections (Figure 6.4 and 6.5). The dominant orientation of the MTD-

decoupled faults is E-W in contrast to NNE-SSW, NW-SE and NE-SW recorded in 

other faults types (Figure 6.1). In addition, Type D faults are relatively unlinked and 

have their lower tips detached onto the H1 horizon (Figures 6.4b and 6.7d).  

 

In the next section, we employ the analysis of throw gradient (t-z) and contoured throw 

(t-x) maps (cf. Mansfield and Cartwright, 1991; Baudon and Cartwright, 2008a, b) to 



223 | P a g e  
 

ascertain the growth history of the interpreted fault families. Based on their orientation 

(Figure 6.1), representative faults were chosen for each of the categories described in 

sections 6.4.1 and 6.4.2.  



224 | P a g e  
 

 

Figure 6.5: Seismic volume highlighting major fault types in the study area such as Types A to D faults. Type A faults are the only fault 

types extending below the Late Santonian unconformity. V.E = 3 
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Figure 6.6: Seismic volume highlighting examples of MTD decoupled faults and their associated geometry. Reverse drag recorded in some 

of the faults beneath MTD 1 suggests that fault reactivation is not limited to non-MTDs areas. V.E = 3 
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6.5 Character of decoupled and non-decoupled faults 

6.5.1 Throw-depth (t-z) and throw-distance (t-x) plots 

Type A faults have steep t-z gradient with a maximum throw of ~90 m (e.g. fault A1), 

but a consistent negative gradient was recorded on the H2 horizon for all Type A faults 

(Figure 6.7). This gradient change is attributed to lithological changes rather than fault 

segmentation. Gradient plots for Type A faults show hybrid C-type and quasi-elliptical 

profiles of Muraoka and Kamata (1983), Barnett et al. (1987) and Walsh and Watterson 

(1989) (Figure 6.7 to Figure 6.9). Towards the surface, throw values decrease towards 

zero at the tip point, with a minimum of ~5 m where the tip of Type A faults was eroded 

by the H4 unconformity (Figure 6.10). Deeper in the succession, throw maxima are 

recorded close to nucleation sites with no shift in the position of maximum 

displacement (dmax).  

 

The displacement gradient for Type B faults includes C-types and hybrid C-types 

(Figure 6.7). Negative gradients were recorded in horizon H2 for B2 and B6, and in 

horizon H1b for B22 (Figure 6.7). Such an inconsistency in gradient across different 

stratigraphic levels is attributed to fault segmentation and dip linkages (Walsh and 

Watterson, 1989; Baudon and Cartwright, 2008). In fact, some of the Type B faults 

show evidence for reactivation and interaction with other faults. Observed negative 

deflections of the t-z gradient in some of the Type B faults are related to reverse drag at 

horizon H1 (Figure 6.1). 

 

The lack of near-zero throw values towards the surface confirms erosion of the fault tips 

by H4 (Figure 6.7 and Figure 6.8). In addition, the position of dmax for Type B faults is 

located at intermediate stratigraphic levels (Figure 6.8 and Figure 6.9). Along strike, the 

dmax anomaly is sub-horizontal and apparently associated to dip linkage. Observed 
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anomalies in dmax values represent local decreases in throw confined to discrete parts of 

the fault planes, a character implying that the linking faults are highly elliptical (cf. 

Cartwright and Mansfield, 1996).  

 

Type C faults are characterised by negative gradients at H1b and H1, which are 

apparently related to lithology changes (Figure 6.8 and Figure 6.9). In addition, the 

relative shift in position of dmax suggests upward propagation of Type C faults rather 

than blind propagation. The positioning of dmax at the H3 horizon implies nucleation of 

the fault at shallow depths and possible reactivation by dip linkage (Figure 6.8 and 

Figure 6.9). This character is similar to that observed for Type B faults. 

 

Throw gradients for Type D faults include C- and M-types (Muraoka and Kamata, 

1983). Strikingly, abrupt changes in throw on the flanks of the M-type profiles are 

recorded at the base of MTD 2 and in horizon H3 (Figure 6.7). This character is 

consistent with the prediction of a brittle barrier for the flanks of the M-type gradients 

(Muraoka and Kamata, 1983). When anomalies in throw gradients are conflicting over 

different horizons, there is a hint for fault reactivation rather than lithological controls 

for Type D faults (Baudon and Cartwright, 2008a, 2008b). Nevertheless, throw plots for 

Type D faults are fairly diagnostic; throw contours are elliptical and quasi elliptical in 

planform view with no apparent shift in the position of dmax with depth (Figure 6.7). 

Maximum throw values include ~37 m and ~45 m for D2, D4, and D5 respectively 

(Figure 6.7). In particular, gradient and throw contours of the D4 signify reactivation by 

dip linkage and restriction of upward fault propagation by MTD 2.  
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Figure 6.7: Throw gradient for representative faults in the study area. The profiles 

include C-types, Hybrid C-types and M-types of Muraoka and Kamata (1983). Negative 

gradient at the H2 and H1b horizons are attributed to lithological control and 

reactivation by dip linkage. The position of dmax varies depending on the fault family. 

N.B: Average throws are plotted as broken lines. 
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Figure 6.8: Throw contour maps for non-decoupled A5, B6 and C65. The throw contours for these faults are non-elliptical and 

characterised by multiple patches of dmax. The lack of zero throw near the surface provides further evidence for the erosional truncation of 

the upper tips of faults by the H4 unconformity. 
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Figure 6.9: Decoupled faults D2, D4 and D5 are characterised by upper tip decrease in throw and elliptical to quasi-elliptical displacement 

profiles. The decoupled faults have their upper tip truncated by the mass-transport deposits. 
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6.5.2 Cumulative throw plots  

The results so far show that Type C faults are included in the non-decoupled faults 

while Type D faults are decoupled by MTDs. In this work, decoupled faults are 

classified further into three types, i.e. faults decoupled by MTD 1, 2 and 3, respectively 

(Figure 6.1) An important result of our analysis is that plots of cumulative throw (m) 

with age (Ma) show non-decoupled faults to have higher cumulative throws than 

decoupled faults (Figure 6.14). These faults offset older (Urucutuca Fm.) and younger 

sequences (Rio Doce Fm.). The gradient of the decoupled faults is stepped and bridged 

contrasting with the smooth gradients of non-decoupled faults (Figure 6.14) 

 

6.5.3 Fault propagation rate vs. sedimentation rate 

We applied propagation and sedimentation rate to further examine the history of the 

studied fault types (Figure 6.15 and Table 6.2).  Both decoupled and non-decoupled 

faults show decreasing propagation rate with elapsed time (Figure 6.15 and Table 6.2).  

Most faults in the study area show highest propagation rate during their early growth 

stage (Figure 6.15 and Table 6.2).  A reverse trend to this latter suggests that the faults 

were derived at depth and subsequently reactivated (cf. Childs et al., 2003). Average 

fault propagation rate is 184 m/Ma, 120 m/Ma, 141m/Ma and 32 m/Ma for Types A to 

D, respectively (Table 6.2). Hence, decoupled faults have shorter propagation rate than 

non-decoupled faults. For example, D2 and D5 are decoupled at the base of MTD 2. 

These faults have propagation rates of 47 m/Ma and 12 m/Ma, contrasting with the 

value of 38 m/Ma for D4 which is decoupled by MTD 1 (Figure 6.15 and Table 6.2).   

 

The half-lengths of decoupled faults correlate positively with elapsed time. In addition, 

decoupled faults have smaller half-lengths relative to their non-decoupled counterparts 
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(Figure 6.15 and Table 6.2).  Highest lengths for the decoupled faults were recorded 

during their late growth stage. In contrast, non-decoupled faults display low correlation 

between their half lengths and elapsed time (Figure 6.15 and Table 6.2).   

 

Finally, there is no correlation between fault propagation rates and sedimentation rates, 

as some of the faults with high vertical propagation rates occur within intervals of low 

sedimentation (Table 6.2). For example, C65 has the highest propagation rate in the 

study area yet occurs in the interval with the lowest sedimentation rate (~ 9 m/Ma; 

Figure 6.15). The only exceptions are the larger Type A (listric) faults, which are 

characterised by high propagation rates within intervals reflecting relatively high 

sedimentation rates (Table 6.2). 

 

6.6. Discussion 

 

6.6.1 Reconstructing the history of faulting in the Espírito Santo Basin 

 

A reconstructed history for faulting in the study area is shown in (Figure 6.21). Based 

on the T/Z plots in (Figure 6.7 to 6.9), we favour the first of episode of faulting to have 

occurred in Palaeocene to Early Eocene times, during which Types A, B, and D faults 

were generated (Stages 1 to 2 in Figure 6.21). Type B faults initially formed isolated 

fault segments. MTDs in the study area were triggered after a period of tectonic 

quiescence in Oligocene times (Stages 3 and 4 in Figure 6.21). If seafloor failure 

occurred after the initial phases of faulting, original fault scarps were eroded and 

cannibalized during the mass-wasting events. An alternative interpretation is that MTDs 

were translated prior to any faulting within the basin. However, the population of faults 

within the interpreted MTDs contradicts an idea of post-faulting deposition. Instead, 



233 | P a g e  
 

larger numbers of faults are buried beneath MTD 1 and 2 (Figure 6.3 to 6.6). This latter 

interpretation is further corroborated by the isopach data in (Figure 6.16 and 6.17), 

which reveal significant variations in sediment thickness from Late Santonian to 

Miocene in non-MTD regions. The observed thickness variations prove that post-

Eocene faulting was not significantly active in the region where MTDs were deposited 

(Figure 6.16). In addition, the presence of erosional scours at the basal shear surfaces of 

MTDs shows that they were erosive and truncated of some of the imaged fault scarps 

(Figure 6.10 to 6.13). The amount and location of sediments cannibalized from the fault 

scarps, however, cannot be adequately quantified on the interpreted seismic volume.  

 

Post-MTD deposition marked the commencement of tectonic tilting of the slope (Stage 

5 in Figure 6.21). The second phase of faulting occurred in the late Oligocene during 

which additional sets of Type B faults were formed in association with overburden 

compression due to raft remobilization at depth (Alves, 2012). The Oligocene also 

coincided with the formation of Type C faults at the tips and distal sections of the 

MTDs. Type C faults were formed during late-stage extension and reactivation of salt 

withdrawal basins. These faults are limited to distal part of the MTDs, where they are 

relatively thin and possibly comprising hemipelagic material (Figure 6.21)). Continued 

tilting of the slope and movement of rafts at depth resulted in accumulation of 

displacement on Type B faults which were subsequently reactivated along dip. This 

process ceased in late Oligocene to Early Miocene times (Stages 9 to 11 in Figure 6.21). 
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Figure 6.10: Seismic profiles showing growth packages associated with Type A faults. The growth strata are restricted to the base of the 

late Santonian unconformity. These packages generally show fanning geometries by thickening into fault A1. V.E = 3 
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Figure 6.11: Seismic profiles showing reactivation at the base of B2 and associated propagation fold on its upper tip.  Some of the 

hangingwall sections of the H1 horizon are uplifted relative to the strata immediately above. V.E = 3 
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Figure 6.12: Seismic profiles showing faulting at the base MTD 1 by C65, also shown is a fault scarp created at the top of the MTD. 

Propagation folding at the upper tip of faults is a valid criterion to distinguish faults characterised by syn-sedimentary activity from faults 

showing blind propagation of the tips. V.E = 3 
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Figure 6.13: Seismic profiles showing evidence for post-MTD reactivation. The uplifted section of MTD 2 beneath the C65 fault is 

attributed to reactivation of D1 and D2 rather than fault propagation folding. V.E = 3. 



238 | P a g e  
 

 

 

 

Table 6.1: Geometry of the interpreted MTDs in this Chapter 

MTD MTD 1 MTD 2 MTD 3 

Mean Length (km) 12 17 12 

Mean width (km) 7 14 14 

Thickness (m) 184 263 95 

Volume of remobilized sediments (km
3
) 15 61 15 

MTD Facies Homogeneous Heterogeneous Heterogeneous 

 

 

Table 6.2: Fault propagation and sedimentation rate for faults and the intervals they 

intersected. 

S/N Fault 

Half  

Length 

 (m) 

Time  

Elapse 

 (Ma) 

Thickness 

 (m) 

Propagation  

rate 

 (m/Ma) 

Sedimentation 

 rate 

 (m/Ma) 

1 A1 4028 46 589 126 23 

2 A3 3293 33 327 178 21 

3 A5 4380 33 329 237 21 

4 B2 2722 39 411 83 12 

5 B22 2126 22 304 201 14 

6 B6 2183 37 411 76 12 

7 C1 576 33 187 21 8 

8 C14 1240 30 229 47 9 

9 C65 9967 30 237 386 9 

10 D2 1518 34 296 47 10 

11 D4 435 16 156 38 12 

12 D5 369 34 289 12 10 
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Figure 6.14: Cumulative throw vs. age for decoupled and non-decoupled faults. Type C 

faults vertically propagated through the MTDs. Steps on the plot for decoupled faults 

can be correlated with three episodes of reactivation. 
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Figure 6.15: a) Plot of fault propagation rate and elapsed time. Most of the faults shows 

highest propagation rates during their early growth stage b) the decoupled faults are 

shown in dashed lines. These faults show a positive correlation between their half 

lengths and elapsed time. The average thickness was estimated from isopach maps, 

whereas the ages of the different horizons was constrained based on stratigraphic data in 

Alves et al. (2009) and França et al. (2007). 
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Figure 6.16: Isopach maps for the principal units interpreted in this work a) Non-MTD region where the effect of post-Eocene faulting is 

shown as uplifted and subsided blocks on the sides of fault scarps. The NE-SW trending fault scarps marked as dotted line correspond to 

the limit of the basal raft b) The MTD region is not affected by post-Eocene faulting. 
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Figure 6.17: The isopach maps provide further evidence for decoupled faults at the base of the MTDs. Dominant faults in MTD regions are 

N-S, E-W and NNW-SSE oriented. In the MTD region, structural compartments are formed by the intersection of NNW-SSE and E-W 

faults at the base of MTD 1 
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The similar orientations of faults observed away from MTD areas imply that Types A, 

B and C faults are genetically different from faults observed in MTD areas (Type D; 

Figure 6.2). Furthermore, the discrepancies noted on throw gradients, and the fault-drag 

geometries of hanging-wall reflections, indicate an Early Miocene reactivation episode 

for Type A and B faults (Figure 6.8 and Figure 6.9). Based on these interpretations, we 

propose two episodes of fault reactivation for the study area, Eocene and early Miocene 

(See also Baudon and Cartwright, 2008 and Alves 2012 for reactivation of faults in 

other parts of the Espírito Santo Basin). Most of the interpreted faults were reactivated 

through dip linkage as noted in Figure 6.7 to Figure 6.9. Faults reactivated through dip 

linkage are initially isolated fault sets that coalesced into a single coherent structure by 

accumulating displacement over time (cf. Mansfield and Cartwright, 1996). The inverse 

relationships between the propagation rate, elapsed time and half lengths for some of 

these faults also show that they inherit their length at depth from pre-existing faults (cf. 

Childs et al., 2003). This condition specifically favours the propagation of Type B 

faults. 

 

6.6.2 MTDs as lithological barriers to fault propagation 

Decoupled faults in the study area have diagnostic cumulative throw character that can 

be distinguished from their non-decoupled counterparts using contour of 

displacements/throws. For decoupled faults with C-type profiles, if the locus of 

nucleation coincides with the region of maximum displacement, then the faults are 

classic examples of faults with radial propagation of their tips (cf. Walsh and Watterson, 

1987; Barnett et al., 1987; Walsh and Watterson, 1987; Nicol et al., 1996). Faults 

formed through radial propagation have displacement contours characterised by 

plunging upper-tip region, propagation folds at their upper-tip and absence of syn-
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kinematic strata (Watterson, 1986; Baudon and Cartwright, 2008a). Decoupled faults in 

the study area displayed all these criteria, while non-decoupled faults record both blind 

and syn-sedimentary fault activity (Figure 6.7 to Figure 6.8). Only Type A faults show 

evidence for syn-sedimentary faulting in the Late Cretaceous-Early Cenozoic time 

period (Figure 6.10). However, younger stratigraphic units display polycyclic fault 

activity (e.g. Cartwright et al., 1998), which include the reactivation and segmentation 

of individual fault strands as implied by the hybrid nature of their gradient profiles 

(Figure 6.7).  

 

Based on the interpreted data, MTDs in the study area are considered as strong 

lithological barriers to the growth of Type D faults. The evidence in this paper suggests 

that Type D faults were decoupled in the Palaeocene and reactivated during the Eocene 

and Miocene. Significantly, steps on the plots of cumulative throw vs. age can be 

correlated with the two main episodes of reactivation interpreted in this work (Figure 

6.14). This signifies that decoupled faults with M-type gradients illustrate the presence 

of lithological barriers at their upper regions (Muraoka and Kamata, 1983). MTDs acted 

as strain absorber inhibiting the upward propagation of Type D faults during the Eocene 

tectonic phases. The subsequent reactivation of the decoupled faults is implied by the 

presence of monoclines at top MTD units (Figure 6. and Figure 6.; cf. Tvedt et al., 2013 

for characteristics of decoupling) 

 

The use of throw profiles to characterise fault propagation history requires significant 

assumptions to be made as faults can transit between blind and syn-sedimentary activity 

(Childs et al., 1993; Nicol et al., 1996; Meyer et al., 2002). The point of maximum 

displacement can also migrate away from nucleation site of the fault due to interaction 
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with other faults or presence of mechanical barriers (e.g. Peacock, 1991; Cowie, 1998; 

Schultz, 2000). Neglecting these pitfalls, fault length and propagation rates are 

presented here as diagnostic data to recognise decoupled faults. In the study area, Type 

D faults have shorter propagation rate and half length character compared to their non-

decoupled counterparts. Hence, the rate at which faults propagate in the study area is 

proportionate with their decoupling history. For all the faults, fault propagation and 

sedimentation rate are pointers to the history of fault growth and the origin of the fault 

lengths (Childs et al., 2009).  

 

If post-Eocene faulting was not significantly active in regions of MTDs, was it due 

entirely to the presence of MTDs or other factors? We have shown that the upward 

propagation of Type D faults was inhibited by the presence of MTDs. This is not a 

coincidence as the highest percentage of faults was decoupled by MTD 2 (Figure 6.118 

to Figure 6.2 and Table 6.1). In addition, ~35% of the faults within the basin were 

decoupled by the MTDs (Figure 6.18 to Figure 6.20). Therefore, there is a positive 

correlation between the size of the MTDs (i.e. amount of sediment mobilized) and the 

number of faults decoupled. We suggest, however, that the population and distribution 

of faults in the study area are also favoured by the boundary and stress conditions in 

MTD and non-MTD regions. Regions with MTDs have a lower surface slope compared 

to the updip section of non-MTD regions. Relative high slope gradients on the margins 

of salt withdrawal basins likely enhanced the capability of the MTD tips as strain 

absorbers and invariably, the population of fault families. Thus, a significant amount of 

faults are recorded in updip non-MTD regions likely as a consequence of the stress field 

being different from the downdip MTD domain. 
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Figure 6.18: Schematic map showing the position of decoupled versus non-decoupled 

faults at depth of -3300 ms. At this depth, the highest numbers of fault were decoupled 

by MTD 2. N.B: Fault patches were extracted and interpreted from coherence slices 

using the ant tracking algorithm. 
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Figure 6.19: Schematic map showing the position of decoupled versus non-decoupled 

faults at depth of -3400 ms. N.B: Fault patches were extracted and interpreted from 

coherence slices using the ant tracking algorithm. 
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Figure 6.20: Schematic map showing the position of decoupled versus non-decoupled 

faults at depth of -3500 ms. The number of non-decoupled faults extracted was higher 

than their decoupled counterparts. N.B:  Fault patches were extracted and interpreted 

from coherence slices using the ant tracking algorithm. 
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6.7 Conclusions 

 

The importance of MTDs at modifying the infill and structural setting of a salt 

withdrawal basin has been proved in this study. MTDs are potential seal rocks that are 

often compartmentalised by faults. The major conclusions from this study include: 

1. The first episode of faulting in the salt withdrawal basin is related to 

deformation of overburden strata by rising salt anticlines. 

2. This latter event resulted in the development of synclinal faults. For the deepest 

part of the withdrawal basins, the scarps of first generation faults were eroded 

and cannibalised by two major mass-wasting events. 

3. MTDs acted as lithological barriers to the growth of Type D faults, restricting 

their vertical propagation during early Eocene and Miocene tectonic 

reactivation. Discrepancies on throw-depth and throw-distance gradients, and 

the elliptical to quasi-elliptical nature of throw contours, indicate an important 

lithological control on the vertical propagation of Type D faults.  

4. For Type A and B faults, reactivation is dominated by dip linkage. Early syn-

sedimentary/growth packages for Type A faults are narrowed to the Palaeogene 

and Late Cretaceous. 

5. Type D faults are decoupled by MTD 1, 2 and 3. MTD decoupled faults evolved 

through radial propagation of their tips and are marked by lower cumulative 

throw compared to non-decoupled faults.  

6. Faults decoupled by MTDs are characterised by presenting concentric tip-zones, 

low wavelength upper-tip propagation folds, and by an absence of growth strata. 

In contrast, growth strata are common with Type A faults. Other non-decoupled 

faults are characterised by sub-vertical throw contour patterns and higher 

wavelengths folds at their upper-tip.  
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7. There is a positive correlation between the size of MTDs, the number of faults 

decoupled, and the decoupling history of these same faults. 

 

In summary, discrepancies on throw-depth gradient and shapes of throw contours 

clearly hint at important effects of tectonic reactivation and lithological changes on the 

growth of faults in the study area. Dip linkage and upward propagation of faults into 

post-Oligocene deposits followed fault reactivation, and are potentially factors 

compromising MTD seal competence, both in the study area and on many other 

continental margins where multi-phased faulting is recorded. Importantly, this work 

shows that cumulative throw plots can be used to characterise decoupled from non-

decoupled faults, and MTDs can be used as structural markers for blind fault 

propagation.   
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Figure 6.31: Schematic diagram summarising fault propagation and depositional histories of MTDs in the study area. 1) First episode of 

faulting (Palaeocene to Early Eocene), 2) Erosion of fault scarps (Early to Late Eocene), 3) Period of tectonic quiescence (Late Eocene to 

Oligocene), 4) Synchronous deposition of MTDs, 5) Possible commencement of tectonic tilting, 6) Second phase of faulting (Late 

Oligocene), 7) Growth of raft in response to depleting salt structures, 8) Development of Type B faults, 9) Continued slope tilting, 10) 

Reactivation of Type A and B faults through dip linkage (Late Oligocene- Early Miocene), 11) Cessation of tectonic tilting and raft 

tectonics at depth, and 12) Erosion of fault scarps by the Mid Miocene unconformity. N.B: X = Exaggeration. 
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7.1 Discussion 

 

7.1.1: Relationship between MTD internal character and source area 

 

i.) MTD geometry as pointers to transporting distance and source area 

The source areas of the MTDs used in the thesis were further reassessed using their 

morphometric parameters in compliance with the schemes of Moscardelli and Wood 

(2007) and Twitchell et al. (2009). All the seven (7) MTDs interpreted in Chapters 4 to 

6 have length/width ratio of <3, indicating they are shelf- and slope- detached MTDs. 

Triggering mechanisms for slope-detached MTDs are linked to elevated slope gradients 

or instability associated with palaeobathymetric highs on the seafloor e.g. the flanks of 

salt structures, mud-volcano ridges, and in submarine channel margins (Moscardelli and 

Woods, 2007). Hence, slope-detached MTDs are usually intrabasinal, topographically 

constrained and generally smaller than their slope-attached counterparts (Figure 7.2 and 

Figure 7.3, Moscardelli and Woods, 2007).  

 

Geometrically, slope-detached MTDs have short length/width ratios (L/W) and run-out 

distances from their source areas (Figure 7.3).  The morphometric character of the 

Storegga landslides and several other landslides from the US continental margins are 

presented in Figure 7.1. Parameters of subaerial, submarine landslides and other mass-

wasted deposits can provide information on the source area and the general 

characteristics of the failure event. The relationship between these parameters is not a 

simple linear rule. For example, run-out distances have both vertical and horizontal 

components, the horizontal run-out distance is governed by volume (v), height (h), 

ground acceleration and the slope angle (Φ) (Changwei et al., 2013). There is an 

exponential relationship between the run-out distance and log of v, h and acceleration, 

and a negative exponential relationship between L and tan Φ. In parallel, there is 
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positive correlation between the volume of sediments remobilised and the run-out 

distance (Budetta and De Riso, 2004). As a result, the dimension of slope-detached 

MTDs can provide useful hints on the amount of sediment remobilized and run-out 

distances expected.  

 

ii.) Are statistical and thickness data adequate to assess the stages of 

diapirism? 

 

In Chapter 4, descriptive statistics were used to establish the timing of diapirism by 

comparing the thickness of MTDs with the diameter of associated diapirs. However, a 

major concern in the Chapter was whether statistical data are adequate to provide this 

piece of information.  Salt flow is enhanced by differential loading which comes from 

gravity, displacement and thermal controls. The case study area presents an exceptional 

margin where gravity controls entirely the dynamics of sediments (Demercian et al., 

1993; Mohriak et al., 1995; Fiduk et al., 2004). In addition, the shapes of the salt diapirs 

in the area provide further insights to the role of tectonics and sedimentation in their 

formation.  The diapirs are either columnar or upward narrowing in cross section.  

 

Columnar diapirs form when the rate of salt supply is equal to the rate of sediment 

accumulation and extension while upward-narrowing diapirs are formed when the rate 

of salt supply is less than the rate of sedimentation and extension ( Koyi, 1998; Hudec 

and Jackson, 2007). Extension connotes piercing of the overburden layer by the upward 

rising diapirs, which is necessary to mechanically weaken the roof, thin the roof, create 

differential loading and space for diapirs to fill in (Vendeville and Jackson, 1992b; 

Hudec and Jackson, 2007;). Hence, the diapir shape provided additional clue into the 

high sedimentation rate driven by gravity in the study area. 
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Neglecting displacement and thermal loading the diapirs in the study area are solely 

gravity-driven, responding essentially to high sedimentation rate and increasing slope 

subsidence (tectonically and thermally driven). Thickness variations of sediments prior, 

during or after diapirism can effectively be tied to gravity loading. To elucidate the 

relationship between the effects [sedimentation (mass-transport deposits)] and causes 

[diapirism (gravity-driven)] a regression analysis was developed. Where inverse 

relationship were established the sediments displayed characteristic overburden pierced 

by salt (Davison et al., 2000a; Stewart, 2006). Positive correlations are noted where 

some MTDs show onlapping reflections onto the flank of D5, a character indicating 

deposition on top of a seafloor-deforming structure. 
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Figure 7.1: Morphometric character of the Storegga landslides and several lobes and 

landslides from the US continental margin (data derived from Haflidason et al., 2005 

and Mc Adoo et al., 2000). 

 

 

 

 

 

 



257 | P a g e  
 

 

 

 

 

 

 

 

Figure 7.2: Triggering mechanisms (a) and processes (b) associated with the 

development of mass-transport complexes as defined by Moscardelli and Wood, 2007. 

Slope- and shelf-attached mass-transport complexes are produced by catastrophic 

collapse of the upper slope area and dumping of sediments by shelf-edge deltas into the 

deep marine basin. Slope- and shelf- attached mass-transport complexes have aspect 

ratio of >4 (Adapted from Moscardelli and Wood, 2007). 
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Figure 7.3: Slope- and shelf-detached mass-transport complexes are triggered by c) 

gravity instability and collapse of the flank of a mud volcano ridge, (d) oversteepening 

of one of the margins of a deep-water withdrawal basin, and (e) collapse on the margins 

of levee channel complex. Slope- and shelf-detached mass-transport complexes are 

characterised by L/W ratio < 4 (Adapted from Moscardelli and Wood, 2007). 

 

 

 



259 | P a g e  
 

ii) Frontal versus lateral ramps as kinematic indicators 

The terms ‘frontal’ and ‘lateral’ ramps have been used to describe the geometry of 

hanging-wall strata of thrust-related folds (Pohn and Coleman Jr, 1991; Scott Wilkerson 

et al., 2002; Aridhi et al., 2011). In structural geology, a frontal ramp is oriented normal 

to the direction of transport of the faulted sequence (Figure 7.4). In contrast, lateral and 

oblique ramps are oriented parallel and obliquely to the direction of transport of the 

hanging wall section of the thrust fault (Scott Wilkerson et al., 1991; Scott Wilkerson et 

al., 2002). These structures are produced in compressional domains where rocks are 

contracted (Figure 7.4, Scott Wilkerson et al., 2002; Scott Wilkerson et al., 1991). The 

use of ramp and flats is not limited to thrust faults, but reactivated normal faults with 

ramps and flats are poorly documented (e.g. Axen, 1993; Hayman and Kidd, 2002). 

 

Ramps are used to describe the mode of frontal emplacement of MTDs (Frey-Martínez 

et al., 2006). Frontally-confined MTDs undergo a restricted downslope translation and 

do not overrun the undeformed downslope strata (Figure 1.10 and Figure 7.5). The 

compressional toe regions of frontally confined MTDs are usually buttressed by ramps 

separating their fill from the foreland (Frey-Martínez et al., 2006). There is no 

bathymetric expression compared to their total thickening and relative modest 

downslope transfer of sediment. Consequently, ramps of frontally-confined MTD are 

linked to contractional and extensional structures characteristic of shallow deformation 

in accretionary wedges (Lucente and Pini, 2003). Current theories show that ramp 

explicitly described structures formed through different mechanisms e.g. erosion for 

MTD and compressional tectonics for faults (Scott Wilkerson et al., 2002; Lucente and 

Pini, 2003; Bull et al., 2009; Aridhi et al., 2011). Furthermore, the role of lithological 

control at forming ramps at the basal shear surface of MTDs was emphasized using both 
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seismic interpretation and statistics techniques (Bull et al., 2009; Omosanya and Alves, 

2013).   

 

This thesis shows that ramps can form at the base of MTDs, not only in frontal regions 

of confinement. Erosion is the dominant controlling factor on the formation of ramps at 

the base of MTDs. The erosional pattern observed depends on the direction of mass 

flow, flow regime, mechanical strength of the substrate, and the erosive power of the 

transporting medium (Omosanya and Alves, 2013). For example, the ramps discussed in 

Chapter 5 are essentially oriented in the NW-SE direction coincident with the direction 

of mass flow observed in the study area of the Espírito Santo Basin (Omosanya and 

Alves, 2013). The ramps were created as sections of the palaeo-seafloor were eroded.  

 

Ramps associated with MTDs previously described as structure perpendicular to the 

mass flow direction could have been misinterpreted or are simply frontal ramps (Figure 

7.6). For example, the general practise in seismic interpretation is to interpret seismic 

profiles along inlines and crosslines which most often are not the strike orientation of 

the structures. Any dip interpreted along such line would be apparent. Thus, to 

adequately understand the orientation of the ramp relative to the direction of mass flow 

entails a broad understanding of the direction of mass flow. From this work, it is 

apparent that ramps and flats are unreliable kinematic indicators and can be oriented 

differently to the direction of mass flow/transport (See Figure 7.6 for details). 

 

iii) Coves as sediment repositories and record of cannibalised sediments 

In Chapter 6, basal ramps are flanked by coves formed during the translation of the 

MTDs (Figure 5.9).  As the ramps are thought of as the sidewalls of excavation zones, 
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they could provide hints on the amount of sediments cannibalised during mass-wasting 

events. The volume of cannibalised sediments can be estimated from A.t
I
 while the 

overall sediment budget is A.t, with A being total area of the coves. The parameter  t
I
 is 

the difference of the base of the coves to the original datum for basal shear surface and t 

is total thickness of the MTD (See Figure 7.7 for further details). This formula is crucial 

for estimating sediment budgets i.e. those reworked or incorporated into the mass-

wasting process. Mass-transport deposits with coves are cannibalised and homogeneous 

on seismic profiles. The sediments retained in the coves enhance the stiffness of the 

overburden unit, salt diapirs pierced through the adjacent promontories which are less 

stiff providing further example of overburden layer resisting salt growth (See Figure 7.7 

and Figure 1.12).  

 

 

7.1.2: Drag zones as strain markers around salt diapirs 

 

In Chapter 5, MTDs were shown to form reliable strain markers, i.e. providing a record 

of palaeo-seafloor perturbation during salt diapirism (Omosanya and Alves, 2013). 

Compression and extension of the seafloor during salt diapirism were previously 

documented (Vendeville and Jackson, 1992a,b; Davison et al., 2000a; Davison et al., 

2000b; Davison, 2004; Stewart, 2006). However, the results from this study give 

important hints about the amount of extension and contraction of the section of the 

seafloor pierced by the through-going diapirs and invariably on the strain ratio, Rs. The 

big scientific question in Chapter 5 is if the elliptical drag zones can be analysed using 

common strain analysis techniques. 

 

Strain analysis focuses on the characterization of the change in shape of geological 

markers  (Ramsay and Huber, 1987). Strain markers used in structural analysis include 
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fossils of trilobites, ammonites, belemnite, sea urchin, fishes, ooids, spherulite, pebbles 

of conglomerates, brecciated masses found in sedimentary rocks, and deformed crystals 

of garnet and quartz found in metamorphic rocks (Beach, 1979; Lisle, 1979; 

Hildebrand-Mittlefehldt and Oertel, 1980; Borradaile, 1984; De Paor, 1986; ; Wu and 

Groshong Jr, 1991; Sullivan and Beane, 2010). A starting assumption in strain analyses 

is that the strained objects were initially circular and record no change in area upon 

deformation (Wellman, 1962; Ramsay and Huber, 1987). For homogeneous strain, the 

deformed body is characterised by no strain gradient and is uniformly strained. In 

contrast, heterogeneous strain involves variations in shape and intensity of deformation 

from one location to another and hence, involve significant strain gradients (Ramsay 

and Huber, 1987). As strain involves, only changes in shape, volume, position and 

shape of a body in response to applied stress are accounted as deformation. In this 

context, the strain history of a body can be analysed using variety of techniques such as 

Breddin’s, Centre-to-Centre, Fry’s, Rf/Ф, Wellman’s, Flinn’s (Flinn, 1956; Wellman, 

1962; Dunnet, 1969; Ramsay and Huber, 1987). These techniques work with the 

starting assumption that homogeneous strain transforms an imaginary sphere into an 

ellipsoid with three orthogonal x-, y-, and z- axes (Ramsay and Huber, 1987). 

 

The caveat for using the drag zones in this study as strain markers relate to limited 

information on: a) initial the geometry of the seafloor i.e. if the initial seafloor was 

circular or planar around the salt diapirs prior to halokinesis; b) incorrect estimates of 

the third dimension of the elliptical drag zones, c) causative factors or mechanisms for 

deforming the seafloor i.e. is deformation brittle, ductile or viscous? d) the time-length 

and styles of deformation i.e. if the deformation is continuous, homogeneous or 

heterogeneous? This thesis defends that seafloor morphology is constantly modified by 
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external forces such erosion and tectonism, and thus a uniformly flat and planar seafloor 

is non-realistic (Ren et al., 1996; Beaman and Harris, 2003; Cattaneo et al., 2004; Dupré 

et al., 2007; Savini et al., 2009; Dandapath et al., 2012; Watt et al., 2012). 

 

Posing this, the section of the seafloor studied in Chapter 5, and perturbed during diapir 

growth, could never have been circular or planar. From figure 5.11, the thickness of the 

drag zone is not constant especially on the flank of the diapir where thickness is highest 

relative to the crest. In addition, some of the sediments eroded at the diapir crest were 

slumped on the flanks of the diapir (See Figures 1.15, 5.9 and Figure 7.8). Therefore, 

the thickness/third dimension of the drag zone cannot be adequately accounted for. The 

velocity used for depth conversion can also greatly influence the true thickness of the 

zone, as inconsistency in depth conversion can arise from different factors (Japsen, 

1994; Li and Richwalski, 1996; Rimando and Manuel, 1997; Goncharov and Nelson, 

2012;). This renders any estimate of the third dimension of the drag zone as speculative 

and indefinite. 

 

Salt rheology is viscous and non-Newtonian and depending on the mechanism driving 

the salt flow, a plethora of structures can result (Vendeville and Jackson, 1992a, b;  

Hudec and Jackson, 2007). Although strain produced by the salt flow is mostly 

continuous, it may involve discontinuous strain when crestal fractures and faults at the 

diapir crest deform the seafloor (Bishop, 1996; Davison et al., 2000b; Hudec and 

Jackson, 2009). Neglecting the possibility of the latter, the MTDs in Chapter 5 record 

continuous strain which is heterogeneous in nature.  
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Figure 7.4: (a) In thrust tectonics, ramp and flats are formed by contraction of the 

hanging wall section of fault. The bedding parallel section of the thrust fault is called a 

“flat” while “ramps” are discordant to bedding (b) Frontal ramps are oriented normal to 

the direction of transport, lateral ramps are parallel while oblique ramps are oblique to 

the overall transport direction. Modified after Twiss Moore (1992) and McClay (1992). 
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Figure 7.5: (a) Seismic section showing examples of basal ramps from the Møre slide 

and inlets from the Storegga slide. The ramps are steep and discordant to bedding. 

Arrow indicates translation direction (Bull et al., 2009) (b) Mode of frontal 

emplacement of MTD. Frontally confined MTC are buttressed again a frontal ramp 

contrasting frontally-emergent MTC that are characterised by free translation at their 

leading edge (Frey-Martinez, et al. 2006). 
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Figure 7.6: Model for explaining the unreliability of ramps and flats as kinematic indicators. The relationship between the direction of mass 

flow and orientation of ramps is dependent on a) the seismic mapping technique, b) the mode of erosion of the palaeo seafloor, and c) the 

perception and skills of the seismic interpreter. 
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Figure 7.7: Coves provide hints on the amount of sediment cannibalised during the mass-wasting event. The ramps are thought of as walls 

of excavation zones during sediment transport. The amount of cannibalised sediment is A.t
I
 while A.t is overall the sediment budget. 
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The centre-to-centre, Fry’s, Breddin’s and Wellman’s method of strain analysis require 

a quite large assemblage of strain markers to be measured in a body before strain 

analysis can be done. However, the number of drag zones or markers in this study is 

less than ten (10), coupled with their disparate occurrence at different stratigraphic 

levels (Figure 7.8). The Rf/Ф and Flinn technique can find sparse and cautious use for 

the drag zones especially when using data from their short –axes. Undoubtedly, the drag 

zones in the study provided information on the final strain condition, Rs. and evidence 

for the magnitude and degree of extension and contraction endured by the seafloor 

during diapir growth, but there are no means to quantify the original condition of the 

seafloor prior to diapirism. Nevertheless, the information provided by this strain marker 

is crucial to MTD recurrence studies and drilling design in offshore areas. The drag 

zones are marker of the maximum strain endured by the palaeo seafloor during active 

diapirism. Readers are referred to Appendix III for further note on the Rf/Ф technique 

of strain analysis 
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Figure 7.8: The drag zones estimated in Chapter 5 are located at different stratigraphic 

levels and may not meet the pre-required sample size for strain analysis. Most strain 

analysis techniques are applied to markers on two dimensional surfaces. 
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7.1.3 Mass-transport deposits as lithological barriers to fault propagation 

Faults decoupled by the MTDs analysed in Chapter 6 are a classical illustration of blind 

faults fulfilling the criteria of structures characterised by radial propagation as suggested 

by Baudon and Cartwright (2008b). Furthermore, their displacement-depth characters 

are in accord with typical Barnett plots. The data in this thesis, however, shows that t-z 

plots from both restricted and unrestricted faults can have M-type profiles (Figure 6.6). 

This contrasts the hypothesis of Muraoka and Kamata (1983) where only restricted 

faults are characterised by mesa profiles. Interestingly, these observations concur with 

the work of Baudon and Cartwright (2008b) in the Levant Basin where unrestricted 

faults have mesa-profiles. Since C-type faults are connected to homogeneous 

incompetent materials and M-types to very rigid/competent units making their flanking 

section to have very steep slopes, the strata at the tip of M-type faults are considered as 

a strain absorber (Muraoka and Kamata, 1983). An important question is whether the 

MTDs are genuine barriers to the fault propagation or if external controls such as slope 

tilting highlighted earlier are impeding the propagation of the faults. The t-z plots for 

the decoupled faults in Chapter 6 are C-types and hybrid C types (Figure 6.6). Based on 

the observation of Muraoka and Kamata (1983), the interpreted MTDs are presumably 

incompetent/non rigid rock, contrasting with the interpretation of homogeneous MTDs 

suggested in Chapter 5.  If indeed MTDs are consolidated after deposition, then the t-z 

plots for the Type D faults should typically be M-type profiles (Piper et al., 1997; Shipp 

et al., 2004; Moscardelli et al., 2006). Instead M-type profiles are found within Type A 

non-decoupled faults (Figure 6.8). Again, this scenario addresses the importance of 

MTDs to understand the evolutionary history of faults. In the absence of well and core 

data rendering impossible to analyse the mechanical properties, log response and 

geotechnical behaviours of slope strata, MTDs can give important hints about the 

rheological conditions (and timings) of faulting on sedimentary basins. 
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7.1.4: Hydrocarbon implications of MTDs vs. salt structures interactions 

 

Mass-transport deposits are characterised by compositional and structural heterogeneity 

which may compromise their capability as hydrocarbon reservoirs (e.g. Weimer and 

Shipp, 2004; Dykstra et al., 2011). In Chapter 4, it is shown that MTDs can be classified 

further as homogeneous and heterogeneous, potentially an indication of the amount of 

clastic materials acquired during the mass-wasting process. MTDs containing 

hydrocarbons would require adequate porosity and permeability to conduct fluid which 

could be derived from their structural and lithological heterogeneity. Blocky MTDs and 

other clastic-rich MTDs were described by Haughton et al. (2003), Taylor et al. (2003), 

Welbon et al. (2007). 

 

Lithological variability in MTDs is dependent on the provenance or staging area 

especially the protolith from which the MTDs were derived. Outer shelf and upper 

slope‐derived MTDs in tectonic unstable margin are particularly prone to clastic 

material in their upper slope section while mid-slope-derived MTDs are generally mud-

prone (Haughton et al., 2003; Posamentier and Martinsen, 2011). In addition, collapse 

and erosion of channel-levee complexes can provide significant amount of sand in 

MTDs. Structural compartmentalization of MTDs can come from architecture and 

complex interaction of faults and fractures. Hence, rather than the cliché of low 

poroperm mud-dominated sealing units (Weimer, 1990; Posamentier, 2004), the 

potential of MTDs as hydrocarbon reservoir has been further established in the past 

decade (Clayton et al., 1998; Bruso, et al., 2004 Ogiesoba and Hammes, 2012, etc.)  
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Figure 7.9: Example of a blocky debris flow deposit from the Specchio Unit in Northern 

Apennines. Blocks ranges in size from few meters to mm in optical sections. This is an 

example of heterogeneous mass-transport deposit in outcrop and thin section. At a 

seismic scale, this deposit would appear homogeneous as the blocks and their associated 

matrix would be sub-seismic (Adapted from Ogata, 2010). 
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Figure 7.10: Example of a blocky debris flow deposit from the Tabernas Basin, Spain. 

The composition of rafted blocks varies from ferruginised sandstone to carbonate. The 

size and shape of the blocks do not reveal diagnostic pattern with increasing distance 

from source area which was inferred west of the study area. This is an outcrop example 

of a heterogeneous MTD. N.B: Picture was taken during the IAS summer School in 

Almeria, 2012 
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Figure 7.11: Another example of a blocky debris flow deposit from the Tabernas basin, 

Spain. The matrix is composed of smaller blocks and sandy debrites. This is an outcrop 

example of heterogeneous mass-transport deposit. N.B Picture was taken during the IAS 

summer School in Almeria, 2012. N.B: HEB – Hybrid Event Bed 
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The blocky debris flow deposits described in Chapter 4 are deposits that benefited from 

huge input of volcaniclastic and siliciclastic sediments during the uplift and erosion of 

the SE Brazil margin (Fiduk et al., 2004; França et al., 2007). Evidence from seismic 

profiles implies that the mud-prone matrix can provide a seal to the less disaggregated 

blocks. However, recent development of mud/shale dominated oil fields show that the 

matrix itself can provide unconventional means of hydrocarbon e.g. (Mohaghegh, 

2013). The problem with mud-dominated reservoirs is connected to low porosity and 

permeability.  For example, shale can possess high porosities but lack vertical 

permeability. The phyllosilicate structure of the dominant shale minerals means the 

crystals are stacked vertically and could only connect pores through horizontal 

pathways. To improve horizontal connectivity of pores, shale reservoirs are 

hydraulically fractured using a technique called 'fracking' (Mohaghegh, 2013), hence 

making unconventional and low poroperm reservoirs future exploration targets 

(Kinnaman, 2011). In this context, MTDs with porosity above certain threshold can 

contain important hydrocarbon reservoirs e.g. Ubit, Asabo, and Enang fields from 

offshore Nigeria (Clayton et al., 1998; Bruso et al., 2004) and Oligocene Frio Formation 

of South Texas (Ogiesoba and Hammes, 2012). In these localities, large-scale blocks or 

coarse-grained material were slumped, translated, and eroded on continental slopes and 

later covered by deep-water shales (Moscardelli and Wood, 2007). 

 

Evidence from dip maps and some attributes in Chapter 4 shows that the degree of 

coarseness of the dip map topographies is derived from mixture of different materials. 

At vertical and horizontal resolutions of >10m, the debris flow deposits may bear clastic 

materials which are not seismically resolvable. Homogeneous debris flow deposits in 

outcrop can be heterogeneous at micro-scale. Blocks of strata controlling the 
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heterogeneity of the MTDs can vary in size from hundreds of meters to mm in size 

(Figure 7.9 to Figure 7.12). To further understand the lithological homogeneity of the 

debrites will involve multidisciplinary studies incorporating both core and formation 

evaluation.   

 

In terms of fluid flow property of the blocks in this study, the debrites represents 

cohesive materials that are impermeable with the highest potential to retard fluid flow. 

CUB and DBS are heterogeneous and more permeable units likely composed of 

volcaniclastic and siliciclastic materials, hence are conduits for fluid flow especially 

when they are faulted. Rafted blocks on the other hand can acts as leaky reservoirs 

prompting the seepage of fluid from higher stratigraphic levels into younger sediments 

and the sea floor. The rafted blocks can display fascinating internal structures or 

lithological connectivity (Figure 7.13). In this context, MTDs can acts as barriers or 

baffles, and conduits for fluid flow in the subsurface (Readers are referred to Appendix 

V for the Atlas of MTD reservoir and outcrops). 
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Figure 7.12: Some of the blocks discussed in Chapter 4. The size of blocks is 

proportionate with distance along slope in contrast to their shape. 
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Figure 7.13: Except for debrites, the other kinds of block have a preferred sense of their initial stratigraphy. Structural heterogeneity 

increases from coherent undeformed block, slightly deformed blocks/slides to rafted blocks. CUB and DBS are likely conduits for fluid 

flow especially when they are faulted. Rafted blocks can act as leaky reservoirs. 
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i) Sealing potential of faults decoupled by MTDs 

The ability of MTDs to serve as seal rocks has been highlighted in varied research work 

(e.g. Weimer, 1990; Posamentier, 2004). In addition, the importance of structural 

compartmentalisation in MTDs to their seal potential was discussed in Chapter 6. There 

are three principal components to fault seal behaviour: a) lithological juxtaposition 

across a fault, b) deformation product within and adjacent to the fault, and c) stress state 

on discontinuities within the fault zone (Smith 1980; Yielding et al, 2010). Fault seal 

prediction starts with a knowledge of juxtaposition character of rock on either side of a 

fault. Juxtaposition of permeable (e.g. sandstone) against non-permeable rocks (shale) is 

most likely to seal a fault than combination of rock types with similar permeability and 

porosity character (Morris et al, 2012).  

 

Since juxtaposition is the prima facie of fault seal analysis, a thorough understanding of 

the fault rock sequence starts with adequate mapping of throw separation across any 

faults of interest.  Allan juxtaposition diagrams comprise a two-dimensional graphical 

technique for assessing the sealing potential of juxtaposed sequences across a fault 

(Allan, 1989). Throw values of > 20m are usually postulated as an empirical threshold 

between sealing and non-sealing faults (Beach et al., 1997). This however is limited to 

juxtaposed sequence of permeable and non-permeable rocks (Allan, 1989;Yielding et 

al., 1997; Freeman et al., 1998). Allan diagrams are subsequently populated with fluid-

flow characteristics of the fault at every point on its surface (Morris et al., 2012).  The 

geometry of fault damage zones, relative amounts of clay smear, the composition of the 

juxtaposed sequence and the slip tendency control the overall potential of sealing faults 

(Yielding et al., 1997; Freeman et al., 1998). Shale gouge ratio (SGR) is commonly 

used to assess the clay or shale content of the fault zone. Thus, it is not necessary for 
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both juxtaposition and deformation process seals to be developed in order for a fault to 

be sealing (Jones and Hillis, 2003). In addition, fault and fractures with high slip 

tendencies (ratio of resolved sheared to normal stress on a surface) are more likely to be 

transmissive than those with low slip tendency (Fox and Bowman, 2010; Morris et al., 

2012). 

 

MTD 1 in Chapter 6 comprises essentially homogeneous, low-amplitude strata on 

seismic profiles, a character implying that the MTD 1 is composed of mud-rich 

sediment, potentially a good seal interval. Prospective reservoir rocks beneath the 

MTDs are presumably shielded by 17 km long, 14 km wide and ~ 90 km
3
 of MTD 

materials. For the studied Type C faults, throw maxima for faults offsetting the Base 

MTD 1 are > 30m, which exceeds the threshold for fault sealing by juxtaposition of 

lithology (Beach et al., 1997). In addition, MTD 1 occurs at a relatively shallow depth, 

where faults are generally sealing in comparison to deeply buried faults (e.g. Beach et 

al., 1997; Knipe, 1997; Knipe et al., 1998). In places where minimum throws were 

recorded for MTD 1 Type C faults, similar trends were noted for MTD 2. However, the 

tips of these faults were terminated into MTD 2. Areas characterised by reverse drag 

and throw < 10m are potential seal bypass for upward migration of hydrocarbon (cf. 

Cartwright et al., 2007). 

 

The majority of the faults in this study showed evidence for partial reactivation, 

evidenced by multiple stratigraphic levels with reverse drag on hanging-wall and 

footwall sections (Figure 6.7b). Throw at these points are relatively smaller compared to 

sections with normal fault drags, where maximum throw were recorded. Reactivated 

faults are typical baffles to hydrocarbon entrapment (Wiprut and Zoback, 2000). Hence, 
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the MTDs with reactivated decoupled faults are most likely leaky barriers to fluid flow. 

Of importance is the timing of hydrocarbon charge into the potential reservoirs. Was it 

prior deposition of MTDs, sealing of faults by MTDs or after reactivation of the faults 

beneath the MTDs?  

 

Are MTDs therefore able to provide barriers to the upward migration of the fluid from 

the reservoirs? Can the MTDs reliably and consistently prevent lateral and downward 

migration of fluid? The dimension of the MTDs in the study area implies the sideward 

extent of the seal cover to be adequate. However, leakage of fluid can be connected to 

non-sealing faults in proximal areas of the MTDs. Type D faults are essentially E-W 

trending faults intersecting with NW-SE faults (Figure 6.18). This implies three-

dimensional (3D) closure of faults at greater levels and apparent retardation of fluid 

from the reservoir beneath the MTDs. For these reasons, we postulate the MTDs to 

provide an adequate seal for deeper reservoirs on all fronts. In contrast, lateral migration 

of fluid is independent of juxtaposed sequences across a fault.  

 

In summary, the seal competence of the MTDs is presumably derived from their 

geometry and interconnection of decoupled E-W and NW-SE faults. Thus fault-

bounded compartments with throw of >30m are potential barriers to vertical fluid flow. 

The fluid retardation across the fault is also dependent on the shale gouge ratio, amount 

of clay smear and the overall character of the damage zones. 
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Figure 7.14: Summary of the main findings and results from the technical chapters of the thesis.
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7.2 Summary of technical Chapters 

 

A schematic summary of the Chapters is given in  

Figure 7.14. The conclusions from the technical Chapters are presented below. As a 

summary, Chapter 4 is concerned with the complex interaction of salt tectonics and 

sedimentation, and how the interaction can reveal information about the provenance or 

staging area of mass-transport deposits. The interrelationship of mass-transport deposits 

and salt diapirs can result in a plethora of seismic and depositional facies. A new 

seismic facies characterisation scheme was proposed for individual MTDs investigated 

in this thesis. These pieces of information provided additional kinematic information to 

understand the mode of translation of MTDs. 

 

Furthermore, as a follow up to Chapter 4 where a new provenance technique for MTDs 

was introduced, an attempt was made to pinpoint the distinct character of some of the 

kinematic indicators found within the MTDs in Chapter 5, especially ramps and 

promontories. For the first time, the dimension of basal ramps of MTDs was quantified. 

In addition, the deformation history of seafloor perturbed by salt growth was examined. 

It was established that MTDs can serve as strain markers. 

 

Since Chapters 4 and 5 focused on the effect of salt diapirs on MTDs, it was pertinent to 

examine how the deposition of the MTDs affected the salt and especially structures 

associated with the rise of salt diapirs. In other words, Chapter 6 investigated the 

capacity of MTD deposited within withdrawal basins to serve as barrier to the 

propagation of faults. This is necessary for successful appraisal of any petroleum system 

within these same withdrawal basins. 
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7.3 Conclusions  

The main conclusions from the thesis are provided below:- 

Chapter 4 

 MTDs can display varied seismic facies and character. Hence, MTD can be 

divided into heterogeneous and homogenous types.  

 

 Coherent undeformed blocks, rafted blocks, slightly deformed blocks and 

debrites are correlated to submarine slides, slumps and debris flow deposits at 

seismic scales. 

 

 Debris flow deposits containing out-sided coherent or highly rafted blocks are 

further described as blocky-debris flow deposits in agreement with previous 

work. These deposits can be correlated to fossil Oligocene-Miocene deposits and 

olistostromes found in outcrops around the world. 

 

 The degree of disaggregation during mass-wasting may increase with 

transporting distance. The size of blocks mapped within blocky debris flow 

deposits decreases with transporting and distance along slope. Their shapes are 

disproportionate with distance therefore the shape of blocks is a limited tool to 

assess the provenance of MTDs. 

 

 On margins controlled by gravity gliding and spreading, correlations between 

the thickness of MTDs and the diameter and distance to salt axis can be used as 

provenance tool. 

 The thickness of MTDs can exhibit three possible correlations with salt diapir 

diameter: a) a positive correlation for MTDs affected by salt movement, b) a 
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negative correlation for MTDs not associated with the growth of salt diapirs, and 

c) both negative and positive correlation for MTD deposited synchronously with 

salt diapir rise. 

 

 The thickness of MTD increases towards the staging area and away from salt 

diapir where they were not sourced. Strong positive correlation between 

thickness of MTD and distance along any axis of the salt diapir indicates area of 

high sediment input during salt rise. 

 

Chapter 5 

 Ramps are structures formed at the basal shear surface of MTDs through erosion 

of a) the incompetent section of palaeo seafloor and b) pre-existing fault scarps.  

 

 Ramps and flats are unreliable kinematic indicators. In this work, the ramps and 

flats are product of differential erosion and are essentially oriented parallel to the 

translation direction of the MTDs. Ramps can be oriented normal, parallel or 

obliquely to the direction of transport of a mass-transport deposit. This idea 

contradicts existing global opinion that ramps are oriented normal to 

transporting direction. 

 

 Mass-transport deposits associated with elevated gradient and slope collapse on 

the flank of salt diapirs have aspect ratio of < 3. They are typical shelf- and 

slope-detached deposits. 

 

 In addition, such MTDs can provide information on the degree of perturbation 

induced on palaeo-seafloor during diapir rise. 
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 The sections of the sea floor perturbed and dragged during the diapir rise are 

regarded as 'drag zones'. 

 

 Drag zones within MTDs are distinct strain markers. The amount of extension 

and contraction in the drag zones is revealed by their aspect ratio. 

 

 This piece of information is important consideration during drilling activities 

especially in margins prone to recurrent mass-wasting and continuous gravity 

deformation like the Espírito Santo Basin. 

 

Chapter 6 

 Mass-transport deposits found within withdrawal basin can act as structural 

marker for fault propagation and reactivation. 

 

 Homogeneous MTDs are presumably stiffer than their heterogeneous 

counterparts and have higher tendency to restrict fault growth. 

 

 Faults whose upward propagation is restricted by MTDs are regarded as 

decoupled faults. 

 

 Cumulative throw is a criterion for recognising decoupled faults as these 

generally present lower cumulative throw values compared to their 

unrestricted/non- decoupled equivalents. 

 

 Faults decoupled by MTDs do not have distinct propagation rate from their non-

decoupled counterparts. 
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 In the study area, sedimentation rate had no observable effect on the propagation 

rate of both decoupled and non-decoupled faults. 

 

 Seal competence in salt withdrawal basin in this study area increases with 

structural compartments and in zones where MTDs are found.  

 

 In addition, we show that throw plots are insufficient to characterise evolution 

history of faults. 

 

7.4 Data Limitations 

Three dimensional (3D) seismic interpretations can provide information on 

paleogeographic setting, stratigraphic and system context, architecture and 

morphological expression of MTDs (Posamentier and Martinsen, 2011). This study has 

benefitted from a high resolution seismic dataset with a Nyquist Frequency of 250 Hz. 

The studied MTDs and structures are buried at shallow depths of < 3500m and have 

high integrity of their original depositional structures preserved. This contrasts to older 

MTDs that have lost sense of their diagnostic features to increasing compaction, hence, 

comparable to confining bedded strata (cf. Ogiesoba and Hammes, 2012).  The MTDs 

and structures in this study are resolved at vertical and horizontal scales of < 20m.  

 

Notwithstanding the powerful attributes and visualisation techniques used in the study, 

the uncertainties in this work are associated with the caveat of seismic processing and 

interpretation. The main limitation of this work is the absence of well data to tie seismic 

and constrain the geology. As it is often the case, the wells are often extrapolated over 

distances from the seismic. Well ties and correlation are useful ground-truthing 

exercises. However, not all beasts are equal. In the absence of the well, the seismic was 
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correlated to regional stratigraphic columns and DSDP well. This was done with a high 

level of confidence especially in Chapter 6, where the age of the different horizons was 

constrained using regional unconformities.   

 

The observations made in this work are limited to the available datasets and a section of 

the Espírito Santo basin. Additional datasets from the basin and others elsewhere, would 

enable a reasonable comparative study to be done. High resolution outcrop can offer 

additional piece of information at macro scales. To understand the processes and 

products associated with mass-wasting requires an integration of both outcrop-scale and 

seismic-scale observations. Nonetheless, this work has given a solid argument for 

further investigations in other sedimentary basins around the world. 
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Figure 7.15: Example of potentially diapir-sourced mass-transport deposits from the lower slope of the Espírito Santo basin. Some of the 

salt diapirs are actively deforming the seafloor. The seismic characters of the MTDs are similar to those of the salt structures. From Chapter 

4, the thickness of the mass-transport deposits should correlate positively with diameter of the salt diapir. 
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Figure 7.16: Examples of rafted blocks from the Cerro Bola province in Argentina. The red circles represent the relative size of the blocks. 

These blocks do not show a recognisable pattern with increasing distance along slope. Also shown in the dashed polygon is a recent 

subaerial landslide (Courtesy google earth, downloaded February, 10, 2014) 
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Figure 7.17: Examples of rafted blocks from the Tres Paso Formation in Sierra Contreras. The MTDs are composed of sandstone clast 

several 10s of meters in diameter buried within poorly-sorted, contorted silty shale beds (Adapted from Armitage et al., 2009 and 

Fildanietal, 2009). 
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Figure 7.18: Example of a basal ramp of a mass-transport deposit from the Tabernas basin, Spain. The ramp is discordant to bedding and is 

thought to evolve through erosion of the top HEB unit. Based on the orientation of the thrust faults at the toe region of the MTD, the 

direction of transport was inferred south of the study area. N.B Picture was taken during the IAS summer School in Almeria, 2012. 
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Figure 7.19: Another view to the ramp shown in Figure 7.14a. N.B: Picture was taken during the IAS summer School in Almeria, 2012. 



295 | P a g e  
 

 

Figure 7.20: Example of rafted blocks displaying irregular size and shape with increasing distance from salt diapir in upper-mid continental 

slope of Espírito Santos basin. 
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7.5. Suggestion for future studies 

Quite a number of assertions have been made in this thesis on the provenance, nature 

and interaction of MTDs with salt structures on the mid-slope of the Espírito Santo 

Basin. Nevertheless, there are still some open questions. Areas for future work that will 

provide extra understanding on some of the models and assertions from this work are 

described below: 

 

a) Classification of locally- and distally-sourced MTDs - An integrated study of 

MTDs sourced directly from salt diapir crests is imminent from this work. In 

Chapter 4, three conditions of correlation coefficient were proposed to assess the 

timing of salt growth and sedimentation.  The BES-200 data shows diapirs with 

their crest exposed at the sea floor (Figure 7.15). Some of the associated MTDs 

have similar seismic facies character relative to the salt and at first glance are 

imagined to be sourced from the diapir crest (Figure 7.15). This scenario 

presents an opportunity to further investigate the reliability of the regression 

analysis at providing information and links between active/passive diapirism and 

sedimentation. The physics of MTDs directly sourced from diapir crest is still 

sparsely investigated.  

 

b) Statistical reassessments of the degree of remobilisation and internal 

reconfiguration of rafted blocks - The rafted blocks interpreted in Chapter 4 

displayed increasing size with distance and transport along slope. However, this 

work asserted that the shape of the blocks is not commensurate with transport 

distance. Hence, the shape of rafted blocks is a non-diagnostic provenance tool. 

However, the blocks shown in Figure 7.20 which are from a section of the 
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Espírito Santo Basin do not show any definite pattern with transporting distance 

providing some impetus to investigate the suitability of size as a criterion to 

assess the stages of evolution of MTDs.  In order to unravel this enigma, 

additional statistical analyses would be required. For example, correlating the 

morphometry of the blocks with distance and increasing diameter of salt 

structures.  Future work should also incorporate observations at both seismic and 

outcrop scale.  Quite a number of outcrops exist in Chile, Argentina, Crete, 

Norway, Italy and Spain (See Figure 7.16 and Figure 7.17). The overall 

objective is to establish a model where block size and shape decreases with 

remobilization. In addition, a seismic study to evaluate, isolate and automatically 

quantify the volume of the rafted blocks can be developed. This workflow may 

include some volume rendering and RGB blending techniques. The economic 

aspect of the study will include an evaluation of the fluid-flow properties of 

faulted blocks as either conduit or baffles to hydrocarbon. 

 

c) Strain analysis of ramps and flat at outcrop scales – The mode of formation 

suggested for the ramps in this study requires additional observation from 

complementary seismic and outcrop data. Example of high resolution outcrop 

data includes ramps preserved at the base of some MTDs in the Tabernas Basin, 

Spain (Figure 7.18 and Figure 7.19). Mapping outcrop exposures will provide an 

opportunity to understand the behaviour of ramps at outcrop scales, 

differentiating them from tectonic ramps, and also to elucidate their character as 

strain markers. The findings from the study can be integrated and upscale into 

our model for ramps and flats. 
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d) Character of restricted and non-restricted faults: This work shows that there are 

conflicting opinions on the throw and displacement character of restricted and 

M-type faults. Though it is difficult to observe the true dimensionality of faults 

at outcrop, the potential of MTDs as barrier to fault propagation can be 

numerically modelled or stimulated in the laboratory. To achieve this, new 

research will require abundant datasets that should include well, seismic, 

geotechnical, outcrop and high resolution petrophysical data. 

 

e) Reservoir potential of blocky debris flow deposits - Blocky-debris flow deposits 

result from hyper-concentrated debris flow conveying out-sized blocks, possibly 

representing the link between slumps and debris-flow deposits (Mutti et al., 

2006). The aim of this future research theme is to study exposed blocky debris 

flows in the Northern Apennines and Tabernas Basin, understanding the 

lithological and structural variability within individual blocks, their spatial 

recurrence, and facies types. In turn, use the outcrop model to examine seismic-

facies end members interpreted in blocky debris flow deposits in the Espírito 

Santo Basin, SE Brazil.  

 

The outcrops in the Northern Apennine (Specchio Unit) and Tabernas Basin are 

classic examples of Oligocene-Miocene blocky debris flow deposits and offer 

unique exposures to understand the textural and structural complexities of these 

deposits and others elsewhere in the world. In order to achieve the set objectives, 

a geological mapping of lithofacies and faults in individual blocks should be 

undertaken. Lithological descriptions include records of the degree of sorting 

and matrix heterogeneity. In addition, thin sections of selected lithofacies must 

be attained to understand the micro-scale textural architecture. Structural 
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characterization of the faults will include throw pattern and displacement 

profiles with a view to understand their sealing capacity. This study is important 

to characterise blocky debris flow deposits as hydrocarbon reservoirs. On 

seismic profiles, debris flows have very low amplitude and such are thought to 

be mud-prone. In contrast, some of the blocks have preserved the original 

stratigraphy in some degree and show high-amplitude strata, potentially an 

indication of sand-prone reservoir targets sourced from siliciclastic material. 

 

f) Characterising enigmatic high-amplitude anomalies in the Espírito Santo Basin - 

In the study area, high-amplitude anomalies are sandwiched within graben 

structures beneath the three MTDs in Chapter 6. These anomalies may imply the 

presence of a complete trapping and sealing system for hydrocarbons if they are 

DHI’s.  The anomalies are flat and discordant with structural reflectors and 

therefore imagined as flat spots. The caveat is that anomalies seen as flat spots 

can arise from other sources such as Opal-A to Opal-CT diagenetic boundaries, 

volcanic sills, or ocean bottom multiples. A detailed analysis of the high-

amplitude anomalies discovered in the study area is given in a manuscript 

submitted to “SEG/AAPG Interpretation” journal. Further work is intended to be 

done on this subject. The aim of this work will include characterising several 

high-amplitude anomalies found within the datasets and proposing a workflow 

for visualising and extracting them. The main justification for relating the DHIs 

in this work to hydrocarbon contacts is their apparent restraint by faults forming 

the graben structures, their random distribution at differing stratigraphic levels 

and brightness which is suggestive of increasing amplitude with offset. N.B: 

Submitted manuscript to “Interpretation” an AAPG and SEG journal 
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Appendix I: Chapter 3 

Seismic acquisition and processing parameters of 

BES‐100 survey 
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Acquisition parameters 

Vessel: CGG Harmattan 

Source: Airgun Dual 

Shotpoint Interval: 25 m flip‐flop 

CMP xline: 25 metres 

Group spacing: 12.5 m 

Streamers: 6 x 5700 m 

Record length: 8.0 sec 

Sample interval: 2ms 

Nominal fold: 56 

 

Processing Sequence 

Reformat from SEGD 

Navigation/seismic merge 

Resample from 2 ms to 4 ms with anti‐alias filter 

Spherical divergence correction 

“SPARN” – signal preserving attenuation of random noise and swell noise 

Zero phase conversion using modelled far field signature 

Q phase only compensation (referenced to water bottom) 

FX shotpoint interpolation and radon multiple attenuation 

3D Kirchhoff Bin centring DMO 

3D V(c) pre‐stack time migration using Stolt algorithm 

0.5 Km grid Final velocity analysis 

Full offset stack 

Post stack demigration 
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Crossline FX trace interpolation 

Zhimming Li steep dip one pass 3D time migration 

 

#Final Product 

Raw stack in SEGY format 

Raw migration in SEGY format 

Final stacking velocities in VelTape format 

Final migration velocities in VelTape format 

Migrated bin centre positions in UKOOA P1/90 format 

Final report 
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Appendix II: Chapters 4 to 6 

Additional seismic lines and figures 
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AII. 1: The salt diapirs used for this study are columnar and upward narrowing in cross section. Columnar salt diapirs are formed when the 

rate of salt supply is equal to the  rate of sedimentation while upward narrowing develops when sedimentation rate is greater than the rate 

of salt supply (Koyi, 1993).  
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AII.2: The mass-transport deposits in this study have aspect ratio of less than 3. They 

are characteristic shelf- and slope-detached MTDs and are formed as a result of elevated 

slope gradients on the flanks of the salt diapirs. N.B: Color bar shows the depth of 

occurrence of each of the MTDs. 
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AII.3: Some of the rafted blocks analysed in Chapter 4. The isochron map is the top of MTD 3 interpreted in Chapters 4 and 5. 
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AII. 4: Coherence slices through some of the blocks shown in Figure AIII-3. The edges 

of the rafted blocks are marked by high coherence coefficient that is discordant with the 

expression of the background MTD body. 
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AII. 5: Coherence slices through some of the blocks shown in Figure AIII-3 
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AII. 6: Expression of some of the fault shown in figure 6.2. Radial faults are limited to 

the crest of the salt diapirs. In map view, polygonally-shaped faults linked up to form 

geometrical pattern. The areas where the MTDs of Chapter 6 are located is 

characterized by a complex mixture of low and high coherence coefficients. 
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AII. 7: Seismic profile highlighting major fault families in Chapter 6. Shown in the figure are roller faults soling out at top salt level. Also 

observed are polygonal faults formed by buckling of overburden layers during salt diapir growth. The remaining fault families are 

associated with MTDs. N.B: MTD- Mass-transport deposits, PF- Polygonal fault, RF- Roller Fault and CrF- Counter regional fault 
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AII. 8: Detail of MTD 1 of Chapter 6 in which evidence for erosion and cannibalisation of pre-existing fault scarps is observed. Erosional 

scours are relatively large and clearly truncate the tips of faults buried under the MTD.  
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AII. 9: Seismic section showing crestal and radial faults to growing salt diapirs. These faults deviate from normal disposition and include 

some steeply dipping faults  which are interpreted as strike-slipe faults.  
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AII. 10: Reverse drag recorded in some of the faults beneath MTD 2 of Chapter 6 suggests that fault reactivation is not limited to non-

MTDs areas. 
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AII. 11: TWTT thickness maps for the principal units interpreted in Chapter 6. Evidence 

for post-Eocene faulting is manifested as thickness variations recorded in non-MTD 

areas. The NE-SW trending fault scarps south of the salt diapir correspond to the limit 

of the basal raft shown in Figure 6.18. N.B: Zones 1 and 2 are non-MTD areas. 
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Appendix III: Chapter 5 

Ramps and flats as marker of strain on the flanks 

of rising diapirs (an attempt to do strain analysis 

from seismic) 
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1.1 The Rf- Phi Method 

Strain analysis in geology is carried out using any of the following technique; Breddins, 

Fry’s, center to center, and Rf- Φ Technique. Strain markers deform by being 

transformed from initially circular materials to elliptical features that can be mapped in 

outcrops. Assumptions during strain analysis include (a) that deformation is 

homogeneous as it is often very difficult to analyse heterogeneous deformation, and (b) 

that area is conserved during deformation. 

 

The Rf- Φ technique of strain analysis reconstructs the strain history of initially elliptical 

objects by finding the strain ellipse that produced the final ellipticity in the strain 

marker. When an initial ellipse with ellipticity Ri is homogeneously deformed, the 

resultant form is also elliptical with a final ellipticity of Rf. The Rf is a product of the Ri 

(initial ellipticity) and Rs (a strain ellipse). The shape of the final ellipse Rf is a function 

of four factors; the initial shape (form and orientation of the ellipse) and the form and 

orientation of the strain ellipse. 

 

For a surface containing a number of constantly shaped initial ellipse with Ri of 2.0 (Fig 

1a), oriented at different angle phi to an initial marker direction x (Φ = 90
0
, 75

0
, 60

0
, 

45
0
, 30

0
, 15

0
, 0

0
). The graph shows a plot of constant Ri against Φ for a range of values 

of Φ. When a homogeneous strain with strain ellipse ratio Rs = 1.5 is imposed on the 

ellipses, their form and orientation changes (fig 1b). The shapes of the initially constant 

ellipses are changed depending on their orientations with respect to those of the axes of 

the strain ellipse, and the orientations of the axes of the new ellipses (Φ
1
) also change 

(except with those with initial orientations Φ=90
0
, 0

0
), the long axes of the combined 

ellipses come to lie closer to the direction of the long axis of the strain ellipse. The 
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initial ellipse which had its long axis parallel to the maximum elongation of the strain 

ellipse (Φ=0
0
) takes on a new form which is more elliptical than that of the strain 

ellipse, whereas the ellipse which had its long axis parallel to the minimum elongation 

of the strain (Φ=90
0
) becomes less elliptical than the strain ellipse. The ellipticities of 

the other ellipse lies within this range but most of them have ellipticities higher than that 

of the strain ellipse. The arithmetic mean value of the ellipticities will be greater than 

the true ellipticity of the strain ellipse. 

 

Imposing a homogeneous strain of twice the Rs value in Fig 1b on the same ellipses in 

Fig.1a will result in a strain ellipse shape greater than the ellipticity of the initial 

elliptical form. The range of the orientation of the particle ellipse long axes is much 

more restricted. The fluctuation, F is the range of orientation of the long axes. At the 

initial stage, the F is 180
0
 which is also the same value when the tectonic strain ellipse 

had a lower ellipticity than the original elliptical object. As deformation becomes 

stronger than the initial elliptical form of the objects, the fluctuation decreases to less 

than 90
0
 and the Rf/ Φ

I
 become closed. 

 

1.1.1 The Rf- Φ Algorithm. 

 The long, short and intermediate axes of the ellipses were designated as X, Z 

and Y respectively. Here, the Z axis was measured 45
0
 from the X axis 

intersecting both the X and Z axes at the origin. 

 The strain ellipses were inferred from the location of the basal ramps on the dip 

maps 

 The ellipses obtained in step 2 were overlain on those inferred from the RMS 

amplitude map in order to pick the final ellipses 
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 The axes of the inferred ellipses were measured 

 The Rf was estimated from the ratio of XZ, XY, and YZ. 

 The ISYM was performed to assure that the data is consistent with the original 

assumption than no previous fabric was present on the sea floor. 

 The harmonic and vector mean of the Rf and Φ value were determined and were 

plotted as lines on the Rf Vs Φ. 

 When graphed as lines, the two means produce four quadrants with the plot. 

 The ISYM was calculated from ISYM = 1-(|nA-nB| + |nC-nD|)/N 

 nA denotes the number of strain markers in quadrant A etc and N = the number 

of markers 

 ISYM value of 0.5, 0.5 and 0.75 were estimated for XZ, XY and YZ respectively. 

 High ISYM suggest the data are symmetrical, while low values suggest that the 

data are markedly asymmetric and hence the assumption of no preferred initial 

orientation of the strain markers is incorrect (Lisle, 1985, Chew 2003). If a 

previous fabric were present, the final Rs value would be a measure of the strain 

on that fabric, and not of the original sea floor. 

 The samples fit the original assumption, so the plots were overlain with Rs value 

plots as provided by Lisle (1985). 

 The appropriate Rs value was selected from the overlay that shows the best fit. 

 From this plot the strain ellipse ratio Rs, original axis ratios (Ri), and orientations 

(θ) for the ellipses was determined. 

 The average Rs value is shown for the all the ellipses 
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AIII. 1: The Rf/  technique of strain analysis. The effect of deformation on a series of 

elliptical objects with initial orientation of  and ellipticity Ri. After deformation 

(ellipticity Rs of strain ellipse) the original marker ellipses change shape (ellipticity, Rf) 

and orientation (
I
). F is the fluctuation which is the range of orientation of the long 

axes (Modified after Ramsay & Huber, 1983) 
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AIII. 2: “ln Rf Vs ” chart for the ellipses in the study area. The elliptical drag zone 

have  Rs value of 1.56 and when view in 3D dimension on seismic, the ellipsoid have 

Rs of 1.21 and 1.33 for the XY and YZ axes, respectively. 
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1.1 Coherence map at the base of the MTDs 

The coherence seismic attribute is a measure of the waveform similarity i.e. how a trace 

is similar to its neighbour. Similar traces were mapped with high coherence coefficients 

while discontinuities have low coefficients and when combined with dip maps, the two 

attribute provided an unbiased interpretation of the basal shear features. 

 

AIII. 3: Coherence map highlighting the characteristic features of the basal shear 

surface of MTDs in Chapters 4 and 5. (a) Ramps on MTD 1 are shorter along strike than 

most of the other ramps (b) The ramps at the base of MTD 2 are characterised by stair 

case geometry produced when antithetic ramps created coves between promontories. (c) 
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The larger ramps on the basal shear surface of MTD 3 are unrelated to the salt diapirs 

(d) Shorter ramps on the southern margin of diapir, D3 are form scarps in the palaeo sea 

floor. To the west of the D3, the ramps form a relay zone. 
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1.2 RMS Map and distribution of the MTD facies within the drag zones 

 

 

AIII. 4: Strain ellipses inferred from the RMS Amplitude maps between the tops and 

bases of the MTDs (a) Ramps dissected the MTD into zones of high and low amplitude 

reflection, a NW-SE ramp produced this distinct boundary especially at the centre of the 
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map. Scarps observed on the map are related to ramps on the basal shear surface. 

Moderately high amplitude up north of diapir, D5 reflects the presence of undeformed 

blocks in the MTD (b) Low amplitudes are recorded to the west of D2 and D3 in a NW-

SE trend. The areas of high amplitude separated the MTD into bands of alternating 

highs and lows especially on the eastern part of the unit. High amplitude in the vicinity 

of D3 coincided with zones of promontories identified on the dip map, ramps truncates 

this reflections. (c) MTD 3 shows is charcaterised by very low amplitude from north to 

south on the RMS amplitude map. This zone is separated by a NW-SE ramp (d) MTD 4 

is characterised by very high amplitude from NW to SE, and low amplitude on the 

WSW margin. Blocks are prominent features on the SE margin of D2. The density and 

size of the blocks decrease toward the NW margin of D3. 
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AIII. 5: MTD facies interpreted within drag zone 41. 
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AIII. 6: MTD facies interpreted within drag zone 32. 
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AIII. 7: MTD facies interpreted within drag zone 31. 
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AIII. 8: MTD facies interpreted within drag zone 21. 
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AIII. 9: MTD facies interpreted within drag zone 22. 
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AIII. 5: MTD facies interpreted within drag zone 11. 
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Appendix IV: Review of kinematic indicators of 

MTDS 
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Extensional domain or depletion Zone 

 The headwall scarp defines the upslope margins of mass-transport deposits, 

where the basal shear surface ramps up to cut stratigraphically higher, younger 

strata and intersect the surface (Bull et al., 2009; Frey Martinez et al., 2005). 

 Headwall scarps are characterised by an arcuate geometry in plan-view. 

 They are often fragmented and sinuous which help to distinguish them from 

tectonic normal faults (Lastras et al., 2006;Lastras et al., 2004; Imbo et al., 2003; 

Boe et al., 2000).  

 Headwall scarps forms in the same way as extensional faults. The headwall 

propagates along-strike perpendicular to the direction of the minimum 

compressive stress σ3; (Anderson, 1936), which will generally be oriented 

parallel to the slope due to the effect of gravity acting on the sediment mass.  

 

Translational domain 

 Sigmoidal scarps run parallel to the direction of mass flow 

 Grooves and striation are oriented parallel to the direction of mass flows (Bull et 

al., 2006 Gee et al., 2005). 

  

Lateral margins 

 Lateral margins are the dip-parallel side boundaries of a mass-transport deposit; 

they form parallel to the gross flow direction, and offer a primary constraint on 

the gross general transport direction (Bull et al., 2009). 

 Lateral margins are associated with strike-slip movement, although 

transpressional or transtensional deformations may occur if the MTC scar 

file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_12
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_27
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_52
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_53
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_42
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_9
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_3
file://iipt-studio.ivt.ntnu.no/kamaldoo$/Cardiff/PhD_Chapters/Drafts/Final%20draft/Review%20of%20kinematic%20indicators.docx%23_ENREF_12
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widens or narrows (Frey Martinez et al., 2005; Martinsen and Bakken, 1990; 

Martinsen, 1994).  

 

Basal shear surface 

 The basal shear surface is often continuous and concordant with bedding, but 

may be affected by faults, bedding plane or material variations (Varnes, 1978).  

 A ramp is defined as a segment of the basal shear surface that cuts discordantly 

across bedding, whereas the ‘flat’ sections are bedding-parallel segments of the 

basal shear surface.  

 The ramps, therefore, connect ‘flat’ segments of the basal shear surface at 

differing stratigraphic levels (Trincardi and Argnani, 1990). 

 Slots are kinds of ramps that run parallel to the flow direction (Bull et al., 2009; 

O'Leary, 1986). 

 

Toe domain/Accumulation Zone 

 Pressure ridges are defined here as positive, parallel to sub-parallel, linear to 

arcuate ridges orientated perpendicular to flow direction (Boe et al., 2000; 

Masson et al., 1993; Moscardelli et al., 2006; Posamentier and Kolla, 2003).  

 Pressure ridges are commonly observed in both submarine and subaerial mass-

transport deposits, and are usually confined to the toe domain.  

 They can, however, occur elsewhere due to localised topographical variations in 

the basal shear surface, or obstacles to flow (Masson et al., 1993).  

 Pressure ridges are best viewed on top-MTD surface maps.  

 Pressure ridges have been associated with debris flow deposits (Posamentier and 

Kolla, 2003), and occur where Mass-transport deposits  are free to spread-out in 
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an unconfined manner to form convex-downslope, lobe like morphologies 

‘frontally emergent’, after (Frey-Martínez et al., 2006; Lucente and Pini, 2003; 

Prior and Coleman, 1984).  
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Appendix V: Chapter 7, Atlas of MTD outcrops 

and reservoir rocks 
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Appendix VI to VII: Statistical data for Chapters 

4 and 6 (on attached CD) 
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Appendix VIII: Fault terminology as used in this 

thesis 
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Hanging wall: The rock mass above a fault, i.e. the downthrown side of a normal fault 

(Peacock et al., 2000).  

 

Footwall:  The rock mass that is below a lode or fault i.e. the upthrown side of a normal 

fault (Peacock et al., 2000). 

 

Displacement: The relative movement between two originally adjacent points on the 

surface of a fault. The displacement can be curved, so need not be a direct line between 

two originally adjacent points (Peacock et al., 2000).  

 

Throw: The vertical component of the dip-separation of a normal or reverse fault, 

measured in a vertical cross-section perpendicular to the strike of a fault (Peacock et al., 

2000). The throw is equivalent to the vertical component of the displacement only for a 

pure dip-slip fault (Peacock et al., 2000).  

 

Fault zones: Represent the zone of disturbed rocks between faulted blocks. A fault zone 

can include fault segments with a wide range of orientations, and these can be both 

synthetic and antithetic to the overall displacement of the zone (Peacock et al., 2000). 

 

Stratigraphic separation: The apparent displacement of a planar marker (e.g. bed) 

across a fault, measured in any indicated direction (Peacock et al., 2000).  

 

Fault linkage: The process by which, two originally separate faults become connected 

(Pollard and Aydin, 1984).  
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Growth fault: Defines faults that are active during sedimentation and apparently cut the 

earth surface.  A growth fault is characterised by (a) an increase in displacement down 

the dip of the fault; and by (b) thicker sediments in the hanging wall near the fault than 

in the footwall or in the hanging wall away from the fault (Peacock et al., 2000).  

 

Normal drag:  Folding adjacent to a fault such that a marker is convex towards the slip 

direction, usually caused by resistance to slip (Biddle and Christie-Blick, 1985).  

 

Fault reactivation: used for overturning or reversal of strata (Peacock, 2002), which 

involves renewed displacement along a previously passive or inactive fault.   Inversion 

is now commonly used for the reactivation of a dip-slip fault such that there is a 

reversal of the sense of throw (Buchanan and Buchanan, 1995; Sibson, 1985).  Reverse-

reactivation of a normal positive inversion involves the reverse-reactivation of a normal 

fault or a contraction of a region that previously witnessed extension. Alternatively, 

negative inversion is the normal reactivation of a reverse fault or the extension of a 

region that previously underwent contraction (Needham, 1989).  

 

Faults may be reactivated either by upward propagation (Richard and Krantz, 1991) or 

through dip linkage (Mansfield and Cartwright, 1996; Baudon and Cartwright, 2008).  

The fault propagation by dip linkage has wider implications for reactivation in fault 

systems where strong mechanical layer anisotropy favours localization of new faults in 

different mechanical ‘tiers'. In contrast, reactivation by upward propagation implies that 

faults were generated at depth and subsequently grow upward from pre-existing 

structures.  
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Both modes of reactivation are recognised by typical stepped profiles with a major 

break in throw gradients. Subtle differences over the throw distribution provide insights 

into the recognition of the mode referred to above (Baudon and Cartwright, 2008). 

Upward propagation is characterized by profiles exhibiting a regular decrease in throw 

values and gradients up to the upper tip point, whereas reactivation by dip linkage can 

be identified by throw maxima in the upper part of the fault plane separated from the 

pre-existing parts by throw minima. Further growth of the two hard-linked segments 

after reactivation might attenuate the throw variations and obscure the differentiation of 

these two types of reactivation. The probability of reactivation is directly related to the 

orientation of the fault planes relative to the principal stresses and their ability to 

accommodate the imposed strains (Richard and Krantz, 1991; White et al., 1986), as 

well as differences in friction coefficients and cohesion in the fault planes and gouges 

(Sibson, 1985). 
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312, 317, 319 

slope-detached xxviii, 185, 187, 244, 

276, 338 

slumping 46 

slumps iii, 3, 19, 20, 41, 93, 96, 146, 

152, 153, 187, 275, 288, 312 

smoothing xvii, 53, 108, 109, 201 
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transitional 52, 53, 64 

transporting iii, 4, 18, 48, 111, 112, 113, 
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