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Abstract. Proper generalized decompositions (PGDs) are a family of methods for efficiently
solving high-dimensional PDEs, which seek to find a low-rank approximation to the solution of
the PDE a priori. Convergence of PGD algorithms can only be proven for problems which are
continuous, symmetric, and strongly coercive. In the particular case of problems which are only
weakly coercive we have the additional issue that weak coercivity estimates are not guaranteed to
be inherited by the low-rank PGD approximation. This can cause stability issues when employing a
Galerkin PGD approximation of weakly coercive problems. In this paper we propose the use of PGD
algorithms based on least-squares formulations which always lead to symmetric and strongly coercive
problems and hence provide stable and provably convergent algorithms. Taking the Stokes problem
as a prototypical example of a weakly coercive problem, we develop and compare rigorous least-
squares PGD algorithms based on continuous least-squares estimates for two different reformulations
of the problem. We show that these least-squares PGDs provide a much stabler algorithm than an
equivalent Galerkin PGDs, and we provide proofs of convergence of the algorithms.
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1. Introduction. The systems of partial differential equations (PDEs) arising
from many models in science and engineering are defined in high-dimensional spaces.
Examples include the kinetic theory description of polymer dynamics, option pric-
ing in financial mathematics, and quantum chemistry. The numerical solution of
these systems represents a tremendous computational challenge since they exhibit the
so-called curse of dimensionality when standard methods of discretization are used.
This issue arises since many algorithms do not scale well with increasing dimensions,
typically requiring computational effort (time or memory) that is exponential in the
number of dimensions. Therefore, new algorithms are required to circumvent the
curse of dimensionality to make the problems tractable.

One possibility lies in the use of sparse grids [12]. However, Achdou and Pironneau
[1] argue that the use of sparse grids is restricted to models that possess moderate
dimensionality. An alternative approach uses low-rank tensor methods to search for
an approximation of the solution in a low-dimensional subset of the solution space.
Classical low-rank subsets include canonical tensors and Tucker tensors and their
variants [25].

Proper generalized decompositions (PGDs) are a relatively new family of methods
which were introduced by Ammar et al. [4] for the efficient approximation of the
solution to PDEs defined in high-dimensional spaces. The main concept underpinning
all PGD algorithms is the approximation of the solution, u, to a d-dimensional PDE
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by the separated representation

(1.1) uJ(x1, . . . , xd) =

J∑
j=1

F1,j(x1) · · ·Fd,j(xd),

where J is known as the rank of the PGD approximation. We say that

(1.2) u(x1, . . . , xd) =

∞∑
j=1

F1,j(x1) · · ·Fd,j(xd)

if and only if
lim
J→∞

‖u− uJ‖ = 0.

The importance of this separated representation in the numerical analysis of high-
dimensional problems was first noted by Beylkin and Mohlenkamp [7]. In the case
of the PGD the use of such an approximation can drastically reduce the number
of unknowns required to solve high-dimensional PDEs. Indeed, given an N -node
discretization, the number of unknowns in a standard mesh-based approximation of
the solution to a d-dimensional PDE is Nd, whereas for the PGD there are N ×J × d
unknowns. In other words, the complexity of a mesh-based approximation scales
exponentially with increasing dimension, while the PGD scales linearly, clearly a vast
improvement. Indeed, Ammar et al. [4] have used the PGD to accurately approximate
the solution of a 100-dimensional Poisson equation, a truly phenomenal feat.

There are many variant algorithms based on the PGD (see Nouy [28]), but in
this paper we consider only the simplest PGD algorithm: the progressive PGD, for
which convergence is not guaranteed. In this algorithm the “best” (not necessarily
optimal) rank-one separated representation of the true solution to the given PDE,
F1,j(x1) · · ·Fd,j(xd), is found iteratively for each j = 1, . . . , J . These rank-one sep-
arated representations are known as the PGD modes. At the beginning of each it-
eration, previously calculated PGD modes are simply moved to the right-hand side
(RHS) of the equation before the next PGD mode is calculated. For Galerkin PGDs
the best PGD mode is simply the one which satisfies Galerkin orthogonality with an
appropriate choice of test function. This leads to a nonlinear system of equations
which can be solved using an alternating directions fixed point linearization. We di-
rect the interested reader to an in-depth description of a Galerkin progressive PGD
algorithm for d = 3 by Chinesta et al. [18].

Le Bris, Lelièvre, and Maday [26] have recently associated progressive PGDs
with greedy algorithms, the likes of which have been studied by Temlyakov [31]. The
best choice of PGD mode for these greedy algorithms is the one which minimizes a
certain functional whose minimizer is equivalent to the weak solution of the PDE.
For variational problems which are continuous, symmetric, and strongly coercive this
arises naturally as the minimization of an energy functional. The major advantage of
considering PGD as a greedy algorithm is that it allows one to prove convergence of
such algorithms. Unfortunately, this means that, for variational problems which are
neither continuous and symmetric nor strongly coercive, no equivalent minimization
principle exists, and hence it is not possible to prove convergence of the algorithm.
Furthermore, stability conditions for problems which are only weakly coercive, such
as the Ladyzhenskaya–Babuska–Brezzi (LBB) condition in the Stokes problem, are
no longer guaranteed to hold in the PGD framework. It is for this reason that, in
this paper, we investigate PGD algorithms based on least-squares formulations rather
than those based on the more commonly used Galerkin PGD.
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The main idea behind least-squares methods is the minimization of the residual
of a differential operator in a carefully selected norm. This provides one with an
“artificial” energy functional. Provided that certain coercivity estimates hold on
the chosen norms, this can be used to prove convergence of an associated greedy
algorithm. Billaud-Friess, Nouy, and Zahm [8] proposed an algorithm for generating
low-rank approximations of solutions of weakly coercive problems based on a minimal
residual method. The residual norm is constructed so that the resulting low-rank
approximations are optimal with respect to particular norms. Convergence of the
algorithm is proved under some conditions on the parameters of the algorithm. The
normal equations resulting from the minimal residual approach are elliptic for many
problems. The approach adopted in the present paper uses ADN (Agmon–Douglis–
Nirenberg) theory [2, 3] to construct least-squares formulations that are homogeneous
elliptic. The main advantage of this approach is that the ADN theory identifies least-
squares reformulations of the problem that are practical in the sense of Bochev and
Gunzberger [9], i.e., those which avoid the computation of dual norms. This approach
generates symmetric and strongly coercive problems and hence leads to provably
convergent algorithms. The strong coercivity of the least-squares formulation has the
added benefit that it bypasses the stability conditions associated with weakly coercive
problems. This is similar to the notion of the minimal residual PGD (e.g., [16, 28]).
However, we use the terminology “least-squares PGD” to highlight the fact that we
construct PGD algorithms based on rigorously defined least-squares principles. In
this paper we focus on weakly coercive problems, taking the Stokes problem as a
prototypical example. In particular, we highlight the advantages and disadvantages
of this approach and investigate how the choice of least-squares formulation affects
the convergence behavior of the algorithms.

This paper is structured as follows. In section 2 we briefly describe the PGD in
the context of a pure greedy algorithm. In section 3 we show how stability conditions
in weakly coercive problems are not guaranteed to be satisfied in the Galerkin PGD
and provide some results for the Stokes problem. Section 4 provides a brief description
of least-squares methods for an abstract problem, the ADN theory is summarized in
section 5, and two proofs of convergence for least-squares PGDs are provided for this
abstract problem in section 6. In section 7 we develop least-squares PGD algorithms
for the Stokes problem and provide numerical results. Finally, in section 8, some
conclusions are provided as well as some areas for future work.

2. The pure greedy algorithm. Consider the following variational problem:
Find u ∈ X such that

(2.1) A(u, v) = L(v) ∀v ∈ X
for some suitable tensor product Hilbert space X , linear form L(·), and continuous,
symmetric, and strongly coercive bilinear form A(·, ·); i.e.,

|A(u, v)| ≤ α‖u‖X‖v‖X ,(2.2)

A(u, v) = A(v, u),(2.3)

A(u, u) ≥ β‖u‖2X ,(2.4)

for all u, v ∈ X for some constants α, β > 0. Under these assumptions the variational
problem (2.1) is equivalent to the following minimization problem: Find u ∈ X such
that

(2.5) u = argmin
v∈X

(
1

2
A(v, v)− L(v)

)
.
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The pure greedy algorithm (see, e.g., Temlyakov [31]) can then be defined using this
minimization problem in the following way.

Algorithm 1. Pure greedy algorithm.

Require: (L(·), ε)
1: n = 0
2: while |L(·)| ≥ ε do
3: n← n+ 1

4: u = arg min
v∈S1

(
1

2
A(v, v)− L(v)

)
5: L(·)← L(·)−A(u, ·)
6: end while

In this algorithm S1 is known as the dictionary, and it denotes the set of all
rank-one tensors in the tensor product Hilbert space X :

S1 =

{
u ∈ X : min

J∈N

‖u− uJ‖X = 1

}
.

This pure greedy algorithm was first proven to converge in the context of a Galerkin
formulation of the Poisson problem by Le Bris, Lelièvre, and Maday [26]. In this case if
the variational problem (2.1) corresponds to the Galerkin formulation of the problem,
then the minimization problem (and hence the pure greedy algorithm) can only be
defined if the assumptions on the bilinear form (2.2)–(2.4) hold. For least-squares
formulations of the problems, however, these assumptions are automatically satisfied,
and hence a provably convergent pure greedy algorithm can always be defined, as will
be shown in section 4.

In practice, progressive Galerkin PGD algorithms are performed by finding, at
each iteration, the rank-one tensor which satisfies Galerkin orthogonality, and hence
PGD algorithms can be defined for problems where assumptions (2.2)–(2.4) do not
hold. However, the convergence behavior of these algorithms is not known since we
cannot associate it with any greedy algorithm. In the case when the assumptions do
hold, this is equivalent to solving the Euler–Lagrange equations associated with the
minimization problem (2.5). Unfortunately, the set S1 over which we minimize is not
a linear space, and hence solving the Euler–Lagrange equations is only a necessary
condition for solving the minimization problem (2.5). The minimization problem itself
is far too expensive to solve directly, and in this sense the progressive PGD can be
viewed as a practical implementation of the pure greedy algorithm.

A further consideration relevant to the practical implementation of PGD algo-
rithms is that the solution of the Euler–Lagrange equations associated with the min-
imization problem (2.5) leads to a nonlinear system. This system can be linearized
by simply using an alternating directions fixed point algorithm (ADFPA), which was
demonstrated to be particularly robust by Ammar et al. [4]. This linearization in-
volves solving problems associated with each coordinate direction iteratively until
some predefined convergence criterion is satisfied.

In the next section we highlight the further issue of numerical stability in pro-
gressive Galerkin PGD algorithms for the situation when the bilinear form a(·, ·) is
assumed to be only weakly coercive.
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3. Galerkin PGD for weakly coercive problems. Consider a continuous,
weakly coercive problem: Find u ∈ X such that

(3.1) A(u, v) = L(v) ∀v ∈ Y
for suitable Hilbert spaces X and Y with a bilinear form that satisfies continuity:

(3.2) |A(u, v)| ≤ α‖u‖X‖v‖Y
for some constant α > 0. We further assume that the bilinear form satisfies the
following weak coercivity estimates:

(3.3) inf
v∈Y

sup
u∈X

A(u, v)

‖u‖X‖v‖Y ≥ β, inf
u∈X

sup
v∈Y

A(u, v)

‖u‖X‖v‖Y ≥ γ

for some constants β, γ > 0. In the case when A(·, ·) is symmetric, these two estimates
are equivalent.

The coercivity estimates (3.3), together with continuity (3.2), are sufficient condi-
tions for well-posedness of weakly coercive problems due to the Babuška–Lax–Milgram
theorem [6]. Unlike strong coercivity estimates such as (2.4), weak coercivity estimates
are not always guaranteed to be preserved on discrete subspaces Xh ⊂ X , Y h ⊂ Y .
This can lead to instabilities caused by spurious oscillations (see Brezzi and Fortin [11]
in the particular case of saddle-point problems). However, in the case of a PGD ap-
proximation, it is not at all clear whether the weak coercivity estimates are preserved
for the discrete problem or, indeed, how one can choose a suitable dictionary in order
to ensure that they are.

To describe this issue further, and to provide some numerical experiments, we
consider a particular weakly coercive problem: the Stokes problem. In this case the
bilinear form A(·, ·) is defined by

A({u, p}, {u∗, p∗}) := a(u,u∗) + b(u, p∗) + b(u∗, p), L({u∗, p∗}) := l(u∗)

for all {u, p}, {u∗, p∗} ∈ (H1
0 (Ω))

d ×L2(Ω), where d = 2, 3 is the spatial dimension of
the problem, and the bilinear forms a(·, ·), b(·, ·) and linear form l(·) are given by

a(u,u∗) =
∫
Ω

∇u : ∇u∗ dΩ, b(u∗, p) = −
∫
Ω

p(∇ · u∗)dΩ,

l(u∗) =
∫
Ω

f · u∗ dΩ

for some given source term f , where u denotes the velocity and p denotes the pressure.
The weak Galerkin formulation of the Stokes problem is: Find {u, p} ∈ (H1

0 (Ω))
d ×

L2(Ω) such that

a(u,u∗) + b(u∗, p) = l(u∗),(3.4)

b(u, p∗) = 0(3.5)

for all {u∗, p∗} ∈ (H1
0 (Ω))

d × L2(Ω). The weak coercivity estimates (3.3) can be
expressed in terms of these constituent bilinear forms.

The important estimate for the Stokes problem is the inf-sup condition. Its dis-
crete analogue is given by

(3.6) inf
ph∈Qh

sup
uh∈V h

b(uh, ph)

‖uh‖V h‖ph‖Qh

≥ βh
b
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for some constant βh
b > 0, where V h ⊂ (H1

0 (Ω))
d, Qh ⊂ L2(Ω) are some chosen

discretization spaces. The discrete estimate (3.6) is known as the LBB condition and
does not hold for all choices of V h and Qh [11]. However, it is possible to select
discrete spaces which satisfy the LBB condition, e.g., the PN −PN−2 spectral element
method of Maday, Patera, and Rønquist [27]. However, in the PGD, we no longer
seek solutions in linear subspaces V h and Qh but instead in the nonlinear manifold
of rank-one tensors. To this end, we require an additional assumption in the form of
the weak estimate:

(3.7) inf
p∈Sp

1

sup
u∈Su

1

b(u, p)

‖u‖H1‖p‖L2

≥ β∗
b

for some constant β∗
b > 0, where Su1 ⊂ (H1

0 (Ω))
d and Sp1 ⊂ L2(Ω) are the subsets of

rank-one tensors in velocity and pressure, respectively. Unfortunately, it is not clear
whether the sets Su1 and Sp1 can be chosen so that (3.7) is satisfied. Furthermore, in
practice, we seek a solution in a discrete subset of Sp1 ×Su1 which adds further uncer-
tainty in the satisfaction of the discrete analogue of the LBB-like stability condition
(3.7). This raises the question of stability of Galerkin PGD algorithms for the Stokes
problem and, more generally, for weakly coercive problems.

We now provide a numerical example in which a progressive Galerkin PGD al-
gorithm is applied to the Stokes problem. The discretization is based on a spectral
element method [27] in which the discretization space for the pressure involves poly-
nomial basis functions two degrees lower than that of the velocity. This scheme has
been employed in an attempt to ensure the LBB-like stability of the algorithm. A de-
tailed description of how spectral element methods, as well as the PN −PN−2 scheme,
are incorporated into PGD algorithms can be found in the thesis of Croft [19].

Consider the Stokes problem (3.4)–(3.5) defined on the square domain Ω =
[−1, 1]2 with homogeneous Dirichlet boundary conditions on the velocity, u = 0 on
∂Ω, and

(3.8) f(x, y) =

(
πy cos(πxy) + 4π2 sin(2πy)(2 cos(2πx) − 1)
πx cos(πxy) − 4π2 sin(2πx)(2 cos(2πy)− 1)

)
.

This problem has the following exact solution:

u =

(− sin(2πy)(cos(2πx)− 1)
sin(2πx)(cos(2πy)− 1)

)
, p = sin(πxy).

Note that both velocity components possess a natural rank-one separated represen-
tation, whereas the pressure possesses an infinite-rank separated representation. A
unique pressure is obtained by imposing a zero mean pressure constraint,∫

Ω

p dΩ = 0,

in a postprocessing step.
The L2-norm of the error in the computed PGD approximation is plotted in

Figure 1 against the rank of the separated representation. The rank-one separated
representation of the velocity has been successfully captured by this algorithm despite
the velocity’s being coupled with an infinite-rank pressure solution. The error in the
pressure is found to decrease rapidly until it reaches a level comparable with the
discretization error. Note that the pressure approximation does not converge to a
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Fig. 1. Convergence in increasing rank.

level of accuracy comparable to that of the velocity, since the pressure approximation
space comprises polynomial basis functions which are two degrees lower. Overall this
convergence behavior seems very promising.

Although the progressive Galerkin PGD algorithm for the Stokes problem appears
to perform reasonably well, appearances can be deceptive. The results in Figure 1
were generated using a discrete approximation with N = 15 on a single element,
so essentially this is a high-order spectral method rather than a spectral element
method. This choice of discretization was one of very few that yielded a converged
approximation. For most choices of the discretization parameters the ADFPA failed
to converge. This is a significant issue since there is no indication a priori which
choices of discretization parameters will yield a convergent algorithm. This would be
a serious disadvantage for more complex fully three-dimensional problems where we
cannot rely on trial and error in order to produce a converged solution. It also does
not rule out the possibility that for certain problems there may not be any choice of
discretization parameter which yields a convergent algorithm.

In order to try and minimize the possibility of these issues being caused by ill-
conditioning of the linear systems propagating error throughout the ADFPA, a mini-
mal residual (MINRES) iterative solver with a standard block preconditioner for the
Stokes problem (see, e.g., Elman, Silvester, and Wathen [22]) was employed. This
technique has been shown to be particularly effective for the solution of the Stokes
problem. However, it did not lead to any improvement in the behavior of the PGD
algorithm. Instead, we speculate that the convergence problem relates to a lack of
LBB-like stability whereby these choices of discretization fail to satisfy the discrete
analogue of the rank-one tensor inf-sup condition (3.7). Overall, the evidence suggests
that the progressive Galerkin PGD algorithm for the Stokes problem is an unreliable
and inefficient algorithm.

Clearly an alternative approach is needed for the efficient PGD approximation of
weakly coercive problems. Consideration is now given to least-squares methods, since
they are able to supply a strongly coercive setting for all elliptic problems.
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4. Abstract least-squares formulation. Consider the following abstract bound-
ary value problem:

Lu = f in Ω,(4.1)

Ru = g on Γ = ∂Ω,(4.2)

where L is a linear elliptic partial differential operator, R is a trace operator, and f
and g are given functions. Furthermore, it is assumed that L is a first-order differential
operator since any higher-order problem can be recast in terms of equivalent systems of
first-order differential equations. In least-squares methods, first-order reformulations
of the problem are required in order to obtain a practical approach (see, e.g., Cai et
al. [13]). This is because the required differentiability can no longer be reduced by
one order using Green’s first integral identity, as in the case of Galerkin methods.

If the boundary value problem (4.1)–(4.2) is well-posed and there exists a homeo-
morphism {L,R} : X → Y × Z, where X = X(Ω), Y = Y (Ω), and Z = Z(Γ) are
some underlying Hilbert spaces with norms ‖ · ‖X , ‖ · ‖Y , and ‖ · ‖Z, respectively, then
there exist constants C1, C2 > 0 such that

(4.3) C1‖u‖X ≤ ‖Lu‖Y + ‖Ru‖Z ≤ C2‖u‖X ∀u ∈ X.

Let ũ denote the unique solution of (4.1)–(4.2); then using the inequality (4.3), we
can write

(4.4) C1‖u− ũ‖X ≤ ‖Lu− f‖Y + ‖Ru− g‖Z ≤ C2‖u− ũ‖X ∀u ∈ X.

This norm equivalence between the error in the the X-norm and the residual in the
differential equation in the Y × Z-norm is termed the coercivity estimate (or a priori
estimate) and is the key ingredient in the analysis of least-squares methods. This is
due to the fact that (4.4) implies that if there exists a sequence of functions un ∈ X
such that ‖Lun − f‖Y → 0 and ‖Run − g‖Z → 0 as n → ∞, then ‖un − ũ‖X → 0
as n → ∞, and vice versa. This means that the sequence un converges to the true
solution in the X-norm. Therefore, minimization of the convex functional

(4.5) J (u) = ‖Lu− f‖2Y + ‖Ru− g‖2Z ∀u ∈ X

yields the unique solution ũ to the boundary value problem (4.1)–(4.2). The functional
J is known as the quadratic least-squares functional. A pure greedy algorithm for
any least-squares formulated problem is defined by replacing line 4 of Algorithm 1 by
the minimization

(4.6) u = arg min
v∈S1

J (v).

In practice, it is the Euler–Lagrange equations associated with this minimization that
are solved when implementing PGD algorithms: Find u ∈ X such that

lim
ε→0

d

dε
J (u+ εv) = 0 ∀v ∈ X.

The numerical results presented in this paper are generated using this approach. This
leads to the following variational formulation: Find u ∈ X such that

(4.7) A(u, v) = L(v) ∀v ∈ X,
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where

A(u, v) = 〈Lu,Lv〉Y + 〈Ru,Rv〉Z , L(v) = 〈f,Lv〉Y + 〈g,Rv〉Z ,
and 〈·, ·〉Y and 〈·, ·〉Z denote the Y and Z inner products, respectively. Note that
since A(·, ·) was derived from the minimization of a continuous problem, it automat-
ically satisfies assumptions (2.2)–(2.4). Further note that the minimization (2.5) is
equivalent, but not identical, to the least-squares minimization (4.6).

5. ADN theory. The theory of Agmon, Douglis, and Nirenberg was developed
in a series of two papers [2, 3]. Its importance in relation to least-squares methods was
first highlighted by Aziz, Kellogg, and Stephens [5], and the elements of ADN theory
relevant to this paper are summarized here. It is a particularly powerful tool since it
reduces the verification of continuous estimates to the verification of some algebraic
constraints. One can then use this to obtain the lower bound in the coercivity estimate
(4.3), whereas the upper bound follows from the continuity of the operators L and
R. The main ingredient in the proof of convergence of least-squares PGD algorithms
is the strong coercivity of the functional J . In this paper we show for the first time
that the coercivity condition is related to ADN theory.

The approach based on ADN theory presented in this paper has the same objective
as the approach based on proper Riesz maps used by Billaud-Friess, Nouy, and Zahm
[8], in that they both seek appropriate choices of spaces Y and Z so that (4.3) holds
ideally with C1 = C2 = 1. The approach of [8] replaces the minimization of an ideal
choice of residual norm by an approximate minimization problem, which is then solved
using a perturbation of the ideal gradient-type algorithm. However, the approach
described in this paper, in which ADN theory not only provides the appropriate
residual norms but also allows one to identify an underlying first-order system that is
strongly coercive and which avoids computation of dual norms, is novel and represents
an important distinction between the two approaches.

Consider the abstract boundary value problem (4.1)–(4.2), where L = Li,j(D),
i, j = 1, . . . , n; R = Rl,j(D), l = 1, . . . ,m, j = 1, . . . , n; n is the number of dependent
variables; m is the number of boundary conditions; D = (∂/∂x1, . . . , ∂/∂xd)

T ; and
d is the number of independent variables (the dimension). The usual definition of
ellipticity is that det(Lpi,j(ξ)) �= 0 for all real-valued ξ �= 0, where the principal part
Lp of L is

Lp ≡ Lpi,j(D) =

{ Li,j(D) if deg(Li,j(ξ)) = max
k,l

deg(Lk,l(ξ)),
0 otherwise,

where deg(Li,j(ξ)) is the degree of the polynomial Li,j(ξ). The idea of ellipticity is
extended to the more general idea of ADN ellipticity by introducing two sets of integer
indices: the set {si}, si ≤ 0, assigned to the n equations, and the set {tj}, tj ≥ 0,
assigned to the n dependent variables. These indices are chosen in such a way that
for each i, j = 1, . . . , n, deg(Li,j(ξ)) ≤ si + tj . The principal part Lp is then defined
to be

Lp ≡ Lpi,j(D) =

{ Li,j(D) if deg(Li,j(ξ)) = si + tj ,
0 otherwise.

The principal partRp can be defined analogously by introducing the set of indices {rl},
rl ≤ 0, assigned to the m boundary conditions such that deg(Rl,j(ξ)) ≤ rl + tj . Note
that the choice of indices is not in general unique, and hence problems can possess
more than one principal part. We are now in a position to present the following
definition of ADN ellipticity.
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Definition 5.1. The linear differential operator L is called ADN elliptic if there
exist integer sets {si} and {tj} such that the following hold:
(i) deg(Li,j(ξ)) ≤ si + tj,
(ii) Li,j(ξ) ≡ 0 if si + tj < 0,
(iii) det(Lpi,j(ξ)) �= 0 for all real-valued ξ �= 0.
Furthermore, L is ADN elliptic of order 2m if deg(det(Lpi,j(ξ))) = 2m, and uniformly
ADN elliptic of order 2m if there exists a constant ce > 0 such that

c−1
e |ξ|2m ≤ | det(Lpi,j(ξ))| ≤ ce|ξ|2m,

where m is the number of prescribed boundary conditions.

The following supplementary condition must be satisfied by L.
Definition 5.2 (supplementary condition). Let L be ADN elliptic of order 2m;

then the operator L is said to satisfy the supplementary condition if for all pairs
of linearly independent real-valued vectors ξ and ξ′ the polynomial in τ given by
det(Lpi,j(ξ + τξ′)) has exactly m roots with positive imaginary part.

Remark 5.1. The supplementary condition is automatically satisfied when d > 2
and only needs to be verified for d = 2 [3].

Let τ+k (ξ), k = 1, . . . ,m, denote the m positive roots of det(Lpi,j(ξ + τξ′)) whose
existence is ensured by the supplementary condition, and define M+(ξ, τ) to be the
polynomial in τ for a given ξ:

M+(ξ, τ) =

m∏
k=1

(
τ − τ+k (ξ)

)
.

Note that for a problem to be well-posed the operators L and R cannot be chosen
independently but in such a way that their principal parts Lp and Rp “complement”
one another. Accordingly, Agmon, Douglis, and Nirenberg [3] introduced a so-called
complementing condition, as given next.

Definition 5.3 (complementing condition). For any point P ∈ Γ, let n be the
outward unit normal vector to Γ at P . For any real-valued ξ �= 0 tangent to Γ at P
consider the matrix with the entries

(5.1)
n∑

j=1

Rp
l,j(ξ + τn)L′j,k(ξ + τn),

which are polynomials in τ and where L′ denotes the adjoint matrix of Lp. The
operators L and R are said to satisfy the complementing condition if the rows of the
matrix defined by (5.1) are linearly independent modulo M+(ξ, τ). In other words,

m∑
l=1

cl

n∑
j=1

Rp
l,jL′j,k ≡ 0 (mod M+) ∀k = 1, . . . , n

if and only if cl = 0 for all l = 1, . . . ,m.

The key theorem for least-squares methods in the ADN theory [3] applied to (4.1)–
(4.2) provides the required a priori estimates and associated functional spaces. In the
following, ‖ · ‖i and ‖ · ‖i,Γ are norms on the spaces Hi(Ω) and Hi(Γ), respectively,
and 〈·, ·〉i and 〈·, ·〉i,Γ are their equivalent inner products.
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Theorem 5.4. Let L be a uniformly ADN elliptic operator of order 2m which
satisfies the supplementary condition and, together with the trace operator R, satisfies
the complementing condition. Then assume that for some q ≥ 0, u ∈∏n

j=1H
q+tj (Ω),

f ∈∏n
i=1H

q−si(Ω), and g ∈∏m
l=1H

q−rl−1/2(Γ). Then there exists a constant C > 0
such that

(5.2)
n∑

j=1

‖uj‖q+tj ≤ C
(

n∑
i=1

‖fi‖q−si +
m∑
l=1

‖gl‖q−rl−1/2,Γ +
n∑

j=1

‖uj‖0
)
,

where u = (u1, . . . , un)
T , f = (f1, . . . , fn)

T , and g = (g1, . . . , gm)T . Moreover, if
the problem (4.1)–(4.2) has a unique solution, then the term on the RHS of (5.2)
involving the L2-norm can be omitted.

It can be ensured that the problem always has a unique solution (and hence that
the L2-norm term can be omitted) by including additional constraints (e.g., the zero
mean pressure constraint in the Stokes problem). Indeed, if there are k additional
constraints 	(u) = c, where 	 : X → R

k, then the quadratic least-squares functional
(4.5) can be modified in the following way:

(5.3) J (u) = ‖Lu− f‖2Y + ‖Ru− g‖2Z + |	(u)− c|2 ∀u ∈ X.
It follows that the Euler–Lagrange equations associated with the minimization of (5.3)
are: Find u ∈ X such that

A(u, v) = L(v) ∀v ∈ X,
where

A(u, v) = 〈Lu,Lv〉Y + 〈Ru,Rv〉Z + 	(u) · 	(v),
L(v) = 〈f,Lv〉Y + 〈g,Rv〉Z + c · 	(v).

Note that the ADN theory can be extended to cover inclusion of constraints by as-
suming that there exists a homeomorphism {L,R, 	} : X → Y × Z × R

k.
Equipped with the knowledge that a unique solution can always be found, it

follows that Theorem 5.4 has provided us with the lower bound in the a priori es-
timate (4.3). To see this we let X =

∏n
j=1H

q+tj (Ω), Y =
∏n

i=1H
q−si(Ω), and

Z =
∏m

l=1H
q−rl−1/2(Γ) with corresponding norms ‖ · ‖X =

∑n
j=1 ‖ · ‖q+tj , ‖ · ‖Y =∑n

i=1 ‖ · ‖q−si , and ‖ · ‖Z =
∑m

l=1 ‖ · ‖q−rl−1/2,Γ. The inequality (5.2) then reduces to

‖u‖X ≤ C(‖f‖Y + ‖g‖Z) = C(‖Lu‖Y + ‖Ru‖Z).
The upper bound of the a priori estimate (4.3) follows directly from the continuity of
the operator {L,R}, and combining this with the above lower bound, we obtain the
required a priori estimate and, in particular, the appropriate choices of the Hilbert
spaces X , Y , and Z.

There are several issues that need to be addressed when employing least-squares
methods. These include the requirement to reformulate the problem as a first-order
system and the imposition of boundary conditions. Imposing boundary conditions
weakly (as in (4.7)) requires the evaluation of the trace norm ‖ · ‖Z , which cannot be
computed easily using finite/spectral element methods and which can lead to poorly
conditioned systems [29]. To avoid this issue, only strongly imposed Dirichlet bound-
ary conditions are considered in this paper. Finally, the most practical setting for

D
ow

nl
oa

de
d 

08
/0

3/
17

 to
 1

31
.2

51
.1

46
.5

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LEAST-SQUARES PROPER GENERALIZED DECOMPOSITIONS A1377

a least-squares method is when Y is a Cartesian product of L2 spaces so that only
first-order derivatives appear in the system (4.7). Systems which satisfy this property
are known as homogeneous elliptic. It is often possible to reformulate problems in
terms of an equivalent first-order system that is homogeneous elliptic. Homogeneous
ellipticity of the system was observed to be a key factor to constructing efficient least-
squares PGD algorithms in the thesis of Croft [19] in the case of the Poisson and
Stokes problems. Nonhomogeneous elliptic systems can be handled using weighted
L2-norms [10].

6. Convergence of least-squares PGD algorithms. In this section we pro-
vide two distinct proofs of convergence of pure greedy algorithms based on a least-
squares formulation of the abstract problem presented in section 4. We shall consider
a proof based on minimization of energies by Cancès, Ehrlacher, and Lelièvre [15]
and comment on the proof based on a functional Eckart–Young theorem by Falcó and
Nouy [23]. The convergence results presented here apply to the algorithm based on
the minimization formulation rather than the version based on the iterative solution
of the Euler–Lagrange equations.

6.1. Energy minimization. As we previously stated, the pure greedy algo-
rithm for a least-squares formulated problem involves the minimization of the quadratic
least-squares functional:

(6.1) J (u) = ‖Lu− f‖2Y .
Cancès, Ehrlacher, and Lelièvre [15] provided a proof of convergence of a pure

greedy algorithm for the minimization of a general functional J (u) which satisfies the
following two assumptions:

1. J is strongly convex for ‖ · ‖X ; i.e., there exists a constant α > 0 such that
for t ∈ [0, 1]

J (tu + (1− t)v) ≤ tJ (u) + (1− t)J (v)− α

2
t(1 − t)‖u− v‖2X ∀u, v ∈ X.

We then say that J is α-convex [24].
2. J is differentiable and its Fréchet derivative is Lipschitz continuous; i.e., there

exists a constant L ≥ 0 such that

‖J ′(u)− J ′(v)‖X ≤ L‖u− v‖X ∀u, v ∈ X,
where J ′ denotes the Fréchet derivative of J .

To prove that least-squares formulated pure greedy algorithms converge we need
to verify these assumptions for the general quadratic least-squares functional (6.1).

Lemma 6.1. The least-squares functional J defined by (6.1) is strongly convex,
and its Fréchet derivative is Lipschitz continuous.

Proof. The key ingredient to proving that these two assumptions hold for the
least-squares functional is the coercivity relation arising from the ADN theory,

(6.2) C1‖u‖X ≤ ‖Lu‖Y ≤ C2‖u‖X ∀u ∈ X.
In other words, it is the continuity and strong coercivity of the least-squares formula-
tion which is key to proving convergence of an associated greedy algorithm. Indeed,
since we know that

‖u− v‖2X ≤
1

C2
1

‖L(u− v)‖2Y =
1

C2
1

‖Lu− Lv‖2Y ,
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then proving strong convexity amounts to proving that for t ∈ [0, 1]

(6.3) J (tu+(1− t)v) ≤ tJ (u)+ (1− t)J (v)− α

2C2
1

t(1− t)‖Lu−Lv‖2Y ∀u, v ∈ X.

Indeed, if we consider the LHS of (6.3), we see

J (tu+ (1 − t)v) = ‖tLu+ (1− t)Lv − f‖2Y
= t2‖Lu‖2Y + (1− t)2‖Lv‖2Y + ‖f‖2Y − 2t〈Lu, f〉Y
− 2(1− t)〈Lv, f〉Y + 2t(1− t)〈Lu,Lv〉Y

= t(‖Lu‖2Y − 2〈Lu, f〉Y + ‖f‖2Y )
+ (1 − t)(‖Lv‖2Y − 2〈Lv, f〉Y + ‖f‖2Y )
− t(1− t)(‖Lu‖2Y − 2〈Lu,Lv〉Y + ‖Lv‖2Y )

= t‖Lu− f‖2Y + (1− t)‖Lv − f‖2Y − t(1− t)‖Lu− Lv‖2Y ,

which is the RHS of (6.3) with α = 2C1
2 . Hence J is 2C2

1 -convex.
For the second part of the proof we use

〈J ′(u), w〉X = 〈Lw,Lu − f〉Y ∀w ∈ X.

For all u, v, w ∈ X we have

|〈J ′(u)− J ′(v), w〉X | = |〈J ′(u), w〉X − 〈J ′(v), w〉X |
= |〈Lw,Lu − f〉Y − 〈Lw,Lv − f〉Y |
= |〈Lw,Lu − Lv〉Y |,

and by the Cauchy–Schwarz equation we have that

|〈Lw,Lu − Lv〉Y | ≤ ‖Lw‖Y ‖Lu− Lv‖Y
≤ C2

2‖w‖X‖u− v‖X ,

using the coercivity relation (6.2). Hence we have

|〈J ′(u)− J ′(v), w〉X | ≤ C2
2‖w‖X‖u− v‖X ∀u, v, w ∈ X.

In particular, taking w = J ′(u)− J ′(v) yields

‖J ′(u)− J ′(v)‖X ≤ C2
2‖u− v‖X .

Therefore J ′ is Lipschitz continuous.

Remark 6.1. Note that the above proof can be extended trivially to include the
least-squares functional with weakly imposed boundary conditions,

J (u) = ‖Lu− f‖2Y + ‖Ru− g‖2Z.

There are two additional conditions that must also be satisfied in order for the
proof of convergence given in [15] to hold. If we let Σ denote the set of all rank-one
tensors, then the following conditions must be satisfied:

1. Span(Σ) is a dense subset of X for ‖ · ‖X .
2. Σ is weakly closed in (X, ‖ · ‖X).
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The ADN theory supplies us with a functional space X that is simply a Sobolev
space depending on the set of indices defining the principal part of the differential
operator L. As a result these two conditions will hold for a least-squares formulated
problem. Indeed, a proof of this for the simple case of H1 spaces can be found in the
paper by Cancès, Ehrlacher, and Lelièvre [15] in the context of a high-dimensional
Poisson equation.

The four conditions are therefore satisfied by a least-squares formulated problem.
This means that the convergence of the pure greedy algorithm associated with any
least-squares PGD algorithm is guaranteed since it is covered by the general proof
provided by Cancès, Ehrlacher, and Lelièvre [15].

6.2. Functional Eckart–Young approach. A proof of convergence for least-
squares PGD algorithms was also given by Falcó and Nouy [23] based on their general-
ized Eckart–Young theorem approach. This approach is more abstract but provides an
analogy with the classic result of Eckart and Young [21] for the error in the truncated
proper orthogonal decomposition.

Since ‖u‖2L = ‖Lu‖2Y , norm equivalence between ‖ · ‖L and ‖ · ‖X follows directly
from the coercivity estimate (4.3). Hence under the assumption that Σ is weakly closed
in (X, ‖·‖X) we have that it is also weakly closed in (X, ‖·‖L), since equivalent norms
induce the same weak topology. For a given z ∈ X we define an associated rank-one
projector ΠL(z) (see [23] for a definition of this projector) with which we can define
the optimal progressive rank-J separated representation of the solution u = L−1f by

uJ =

J∑
j=1

u(j), u(j) ∈ ΠL(u − uj−1).

The generalized Eckart–Young theorem in [23] then ensures that this sequence con-
verges as J → ∞. The additional assumption that Span(Σ) is a dense subset of X
for ‖ · ‖X ensures that it converges to the solution u = L−1f .

7. Least-squares PGD algorithms for the Stokes problem. We now con-
sider a prototypical example of a weakly coercive problem: the Stokes problem. Let
Ω be a bounded connected domain in R

2 with boundary Γ. The Stokes problem in
its classical form is given by

−∇2u+∇p = f in Ω,(7.1)

∇ · u = 0 in Ω,(7.2)

u = g on Γ,(7.3)

where u is the velocity, p is the pressure, and f is the body force. The inhomogeneous
Dirichlet data g must satisfy ∫

Γ

g · n ds = 0,

where n is the unit outward normal to Γ. There are several possible equivalent
first-order systems for the Stokes problem, and a wide selection of these have been
documented in the thesis of Proot [29]. In this paper we consider two of these re-
formulations, both a nonhomogeneous elliptic (section 7.1) and homogeneous elliptic
(section 7.2) reformulation.

7.1. VVP system. To derive the velocity-vorticity-pressure (VVP) formulation
of the Stokes problem we first define the vorticity in two dimensions by ω = ∇× u.
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Then, using the identity∇⊥(∇×u) = −∇2u+∇(∇·u) together with incompressibility
∇ ·u = 0, we can write −∇2u = ∇⊥(∇×u) = ∇⊥ω. Hence the VVP system is given
by

∇⊥ω +∇p = f in Ω,(7.4)

ω −∇× u = 0 in Ω,(7.5)

∇ · u = 0 in Ω.(7.6)

u = g on Γ.(7.7)

The following coercivity estimate for this formulation can be derived from ADN
theory (see Bochev and Gunzburger [10], for example):

(7.8) ‖u‖q+2+‖ω‖q+1+‖p‖q+1 ≤ Cq

(‖∇⊥ω+∇p‖q+‖ω−∇×u‖q+1+‖∇·u‖q+1

)
for some constant Cq > 0, q ∈ N, where we have employed the notation that ‖ · ‖q
defines the norm on the Sobolev space Hq(Ω). This can, in fact, be extended to all
q ∈ R (see Bochev and Gunzburger [9]). Hence we can choose q = −1 to overcome
practical implementation issues related to the differentiability requirements of the
relevant function spaces. This yields the following coercivity estimate:

(7.9) ‖u‖1 + ‖ω‖0 + ‖p‖0 ≤ C−1

(‖∇⊥ω +∇p‖−1 + ‖ω −∇× u‖0 + ‖∇ · u‖0
)
.

Note that the coercivity estimates (7.8)–(7.9) rely on the assumption that there exists
a unique solution. Since the pressure can only be evaluated up to a constant, we
need to include an additional constraint in the quadratic least-squares functionals to
ensure uniqueness. For the Stokes problem we use the zero mean pressure constraint
	(p) =

∫
Ω
p dΩ = 0. The H−1-norm in (7.9) is problematic to work with; in practice it

is replaced with a weighted L2-norm. In this paper we consider two such weightings.
First, we take the simplest case in which the H−1-norm is replaced by an unweighted
L2-norm. Second, we replace the H−1-norm by a mesh parameter–scaled L2-norm.
This leads to the following two quadratic least-squares functionals for the VVP system:

J1(u, ω, p) =‖∇⊥ω +∇p− f‖20 + ‖ω −∇× u‖20 + ‖∇ · u‖20 + μ|	(p)|2,(7.10)

J2(u, ω, p) =h2‖∇⊥ω +∇p− f‖20 + ‖ω −∇× u‖20 + ‖∇ · u‖20 + μ|	(p)|2,(7.11)

where h denotes the mesh-width and μ > 0 is an adjustable constant. The discrete
analogue of the coercivity estimate (7.9) related to the minimization of J1 can be
shown to depend on the mesh-width h (see [10], for example), and hence the validity
of the estimate as h → 0 is questionable. On the other hand, for J2, the discrete
estimate is independent of h, and hence, in theory, it should provide a more robust
least-squares algorithm.

In the case of least-squares PGDs we are interested in the convergence of these
algorithms as the rank, J , of the PGD approximation is increased rather than in the
refinement of the mesh. Ideally we would like to provide a weighted norm based on the
rank of the approximation. Unfortunately, due to the nonlinear nature of the PGD
approximation, it is unclear how to derive such a weighting and furthermore how the
discrete estimates will depend on rank. This can lead to undesirable convergence
rates in the rank for nonhomogeneous elliptic systems, as was observed in the thesis
of Croft [19].

We now derive the Euler–Lagrange equations associated with the minimization
of the functionals (7.10)–(7.11): Find υ = (u, ω, p) ∈ H1

g(Ω) × L2(Ω) × L2(Ω) such
that
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Ak(υ,υ
∗) = Lk(υ

∗) ∀υ∗ = (u∗, ω∗, p∗) ∈ (H1
0 (Ω))

2 × L2(Ω)× L2(Ω)

for k = 1, 2, where

A1(υ,υ
∗) = 〈∇⊥ω +∇p,∇⊥ω∗ +∇p∗〉0 + 〈ω −∇× u, ω∗ −∇× u∗〉0

+ 〈∇ · u,∇ · u∗〉0 + μ	(p)	(p∗),

A2(υ,υ
∗) = h2〈∇⊥ω +∇p,∇⊥ω∗ +∇p∗〉0 + 〈ω −∇× u, ω∗ −∇× u∗〉0

+ 〈∇ · u,∇ · u∗〉0 + μ	(p)	(p∗),

L1(υ
∗) = 〈f ,∇⊥ω∗ +∇p∗〉0, L2(υ

∗) = h2〈f ,∇⊥ω∗ +∇p∗〉0,

and H1
g(Ω) = {v : vi ∈ H1(Ω), i = 1, 2,v = g on Γ}.

7.2. Extended VGVP system. We now consider the velocity gradient–velocity
pressure (VGVP) formulation of the Stokes problem. Define the velocity gradient by

V = (∇u)T =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
V1 V2
V3 V4

)
.

If we then define the divergence of a tensor to be the divergence of its rows, we obtain
the identity ∇ · V = ∇2u. Hence we can rewrite the Stokes problem (7.1)–(7.3) as
the following first-order VGVP system:

−∇ ·V +∇p = f in Ω,(7.12)

∇ · u = 0 in Ω,(7.13)

V − (∇u)T = 0 in Ω,(7.14)

u = g on Γ.(7.15)

Unfortunately, it has been shown by Cai, Manteuffel, and McCormick [14] that this
does not lead to a homogeneous elliptic system. However, we can include additional
redundant equations to provide us with a problem which is homogeneous elliptic.
Indeed, this leads to the following extended VGVP (XVGVP) system:

−∇ ·V +∇p = f in Ω,(7.16)

∇ · u = 0 in Ω,(7.17)

V − (∇u)T = 0 in Ω,(7.18)

∇(TrV) = 0 in Ω,(7.19)

∇×V = 0 in Ω,(7.20)

u = 0 on Γ,(7.21)

n×V = 0 on Γ.(7.22)

The additional boundary condition holds since from (7.18) we have that n×V = n×
(∇u)T = 0, since the boundary condition on u implies that its tangential derivatives
vanish on the boundary. Note that for simplicity we have considered homogeneous
velocity Dirichlet boundary conditions (7.21). For the nonhomogeneous case, u = g on
Γ, the additional boundary condition (7.22) should be replaced by n×V = n×(∇g)T .

The first redundant equation, (7.19), is satisfied since TrV = V1+V4 = ∇·u = 0.
The second redundant equation, (7.20), is satisfied since if we define the curl of a
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tensor to be the curl of its rows, then we have

∇×V =

(
∂2u
∂x∂y − ∂2u

∂y∂x
∂2v
∂x∂y − ∂2u

∂y∂x

)
= 0.

This system has been proven to be homogeneous elliptic in an ad hoc manner by Cai
et al. [14], but it can also be verified using ADN theory (see Croft [19]), showing that
the XVGVP system satisfies the supplementary and complementing conditions.

This yields the following estimate:

‖u‖1 + ‖p‖1 + ‖V‖1 ≤ C
(‖ − ∇ ·V +∇p‖0 + ‖∇ · u‖0 + ‖V − (∇u)T ‖0
+ ‖∇(TrV)‖0 + ‖∇×V‖0

)
(7.23)

for some constant C > 0. This leads to the following quadratic least-squares func-
tional:

J3(u, p,V) =‖ − ∇ ·V+∇p− f‖20 + ‖∇ · u‖20 + ‖V − (∇u)T ‖20(7.24)

+ ‖∇(TrV)‖20 + ‖∇×V‖20 + μ|	(p)|2.
We are then able to derive the Euler–Lagrange equations associated with the mini-
mization of (7.24): Find υ = (u, p,V) ∈ H1

0(Ω)×H1(Ω)×H1
×(Ω) such that

A3(υ,υ
∗) = L3(υ

∗) ∀υ∗ = (u∗, p∗,V∗) ∈ H1
0(Ω)×H1(Ω)×H1

×(Ω),

where
H1

×(Ω) = {V ∈ H1(Ω) | n×V = 0 on Γ}
and where

A3(υ,υ
∗) = 〈−∇ ·V +∇p,−∇ ·V∗ +∇p∗〉0 + 〈 V − (∇u)T ,V∗ − (∇u∗)T 〉0

+ 〈∇ · u,∇ · u∗〉0 + 〈∇(TrV),∇(TrV∗)〉0 + 〈∇ ×V,∇×V∗〉0
+ μ	(p)	(p∗)

and
L3(υ

∗) = 〈f ,−∇ ·V∗ +∇p∗〉0.
We have included the zero mean pressure constraint 	(p) =

∫
Ω
p dΩ = 0 to ensure

uniqueness of the solution and where, as before, μ > 0 is an adjustable constant.

7.3. Numerical results. To test and compare these least-squares PGD algo-
rithms we revisit the problem introduced in section 3 defined on the square domain
Ω = [−1, 1]2 with the source term, f , given by (3.8).

Figure 2 shows convergence in the rank for the velocity and pressure for all three
least-squares PGD algorithms for the Stokes problem. We have only compared the
convergence of the approximation of these dependent variables, since they are the only
variables common to both the VVP and VGVP formulations. It is clear from this
that the algorithm based on the homogeneous elliptic XVGVP formulation displays
the superior rate of convergence.

Unfortunately, none of the algorithms captured the natural rank-one separated
form of the true solution to the velocity. This is particularly disappointing when
we note that the Galerkin PGD algorithm for the same problem was able to do so.
However, there is no guarantee that PGD algorithms will always achieve this.
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(a) Velocity. (b) Pressure.

Fig. 2. Convergence in the rank for least-squares PGD algorithms.

Fig. 3. CPU time for the least-squares PGD algorithms.

In Figure 3, we plot the CPU times for each of the three algorithms. The XVGVP
algorithm is only slightly slower than the VVP algorithms, despite the fact that the
XVGVP algorithm involves the solution of linear systems almost twice the size of
those in the VVP algorithms. Certainly this slight increase in computational cost is
insignificant when we consider how much faster the XVGVP algorithm converges in
terms of the rank. Furthermore, we notice that the majority of the CPU expense
comes from single PGD iterations taking a significantly longer time to run than other
iterations (e.g., the third iteration in the XVGVP algorithm) the reason for this is that
the linearization step of the PGD (i.e., the ADFPA) takes a long time to converge.
This could be remedied by introducing a more sophisticated adaptive linearization or
by limiting the number of iterations in the linearization.

Note that the discretization used in Figures 2 and 3 was a spectral element method
using degree 8 polynomial basis functions over three elements in each coordinate di-
rection. We further note that all three of these algorithms yielded reasonably accurate
approximations for all choices of discretization parameters. To demonstrate this we
have plotted the convergence rates for a variety of discretization parameters for the
the XVGVP algorithm in Figure 4.
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(a) Velocity (one element). (b) Pressure (one element).

(c) Velocity (three elements). (d) Pressure (three elements).

Fig. 4. Convergence in the rank for XVGVP algorithm.

In Figure 4 we present the convergence behavior of the PGD algorithm as the
underlying approximation is refined in terms of polynomial order (N) for K = 1 and
K = 3, where K is the number of spectral elements in each coordinate direction.
From this we can see that, other than the very coarse discretization with N = 4 and
N = 8 for K = 1, we obtain good rates of convergence which improve with further
refinement of the discretization space, as we would expect. We also observe the level
of convergence plateauing for coarser discretizations, which is due to the convergence
in increasing rank J being limited by the discretization error. This coincides with
observations of the behavior of spectral elements in the PGD in the thesis of Croft [19],
and we direct the interested reader there for more information. Similar results can
also be obtained for the VVP algorithms.

In the case of the two-dimensional Stokes problem we compare the performance
of the least-squares PGD with a standard spectral element solver. The standard
spectral element method employs a sparse direct solver, whereas the least-squares
PGD method uses an ADFPA. In Figure 5 the ratio of CPU times for the standard
and least-squares PGD spectral element solvers is plotted for different discretizations
for K = 3. It can be clearly seen for small values of N that the standard solver is more
efficient. However, as N is increased beyond 20, the least-squares PGD solver becomes
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Fig. 5. Influence of the ratio of CPU times for the standard and least-squares PGD solvers on N .

increasingly more efficient compared with the standard spectral element solver.
The final example considered is the regularized lid-driven cavity problem [30].

This problem does not possess an analytical solution, and so the velocity components
and pressure cannot be written in terms of a separated expansion. The Stokes problem
is solved in the domain [−0.5, 0.5]2 with u = 0 on all sides of the boundary except
along the top boundary where

u = (F(x; δ), 0)T ,

with

F(x; δ) =
⎧⎨
⎩

1
2 (1 + cos[πδ (x + 1

2 (1− 2δ))]) if x ∈ [−0.5,−0.5+ δ],
1 if x ∈ [−0.5 + δ, 0.5− δ],
1
2 (1 + cos[πδ (x + 1

2 (1− 2δ))]) if x ∈ [0.5− δ,−0.5].

Although the velocity is continuous along the boundary, there are steep gradients
near the top corners of the cavity. The XVGVP least-squares algorithm is used to solve
the problem with a spectral element discretization characterized by K = 4, N = 8,
and regularization parameter δ = 0.05. In two dimensions, the stream function is
defined by

u =

(
∂ψ

∂y
,−∂ψ

∂x

)
.

Since the problem does not possess an analytical solution, the convergence of the
least-squares PGD algorithm is demonstrated by tabulating the model error using the
approximation for J = 40 as the benchmark. The L2-norm of ψJ − ψ40 is tabulated
in Table 1 as a function of the number of PGD modes, J . This example demonstrates
the convergence of the least-squares PGD algorithm for a problem whose solution
possesses steep gradients.

We conclude this section with a few remarks concerning mass conservation of
least-squares algorithms. Mass conservation is a constraint in Galerkin methods,
whereas in least-squares methods the continuity equation contributes one term in a
quadratic functional which is minimized. Although mass is not conserved strongly,
Proot [29] has shown that when spectral element methods are used to discretize the
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Table 1

Convergence of the L2-norm of the model error ‖ψJ − ψ40‖2 with number of PGD modes, J.

J ‖ψJ − ψ40‖2
10 0.0613
15 0.0248
20 0.0108
25 0.0067
30 0.0059
35 0.0030

least-squares formulation, it is satisfied weakly as N → ∞. They also argue that a
number of attempts to improve mass conservation for least-squares methods intro-
duce additional problems. For example, in the weighted least-squares method [20] an
improvement in mass conservation comes at the expense of momentum conservation
and the overall quality of the solution. The constrained least-squares method [17] sac-
rifices the positive definiteness of the formulation by employing Lagrange multipliers
to enforce mass conservation, and requires an additional compatibility condition to
guarantee a unique solution.

8. Conclusions and further work. The crucial observation from this work
is that least-squares PGD algorithms are robust in terms of their performance with
respect to the choice of the discretization parameters. This was contrary to our
experience of the performance of the Galerkin PGD algorithm, where a significant
amount of trial and error was undertaken in order to obtain converged results, an
issue associated with the lack of LBB-like stability in a Galerkin formulation of the
Stokes problem originating from the weak coercivity of the problem. In this sense the
least-squares PGD algorithms are significantly more reliable. Furthermore, in sections
4 and 5, we provided theoretical results that guarantee the convergence of greedy
algorithms based on least-squares formulated problems. The theoretical underpinning
of this approach is a significant advantage for using least-squares methods for these
types of problems, as there are no corresponding convergence results for the Galerkin
formulation of the same problem. For these reasons we strongly advocate using least-
squares PGD algorithms for solving weakly coercive problems, particularly for those
which are defined in high-dimensional spaces, since this is where the maximum benefits
of PGD will be realized.

However, least-squares PGD algorithms are not without pitfalls. Indeed, we ob-
served rather disappointing rates of convergence and CPU times for all three algo-
rithms, an observation that was also made by Nouy [28] when employing minimal
residual PGDs for convection-diffusion equations. The use of a more a sophisticated
linearization could lead to improvements in the rate of convergence. Some improve-
ment in convergence rates might also be obtained if one were able to derive weighted
norms based on the rank of the approximation. Recent work of Billaud-Friess, Nouy,
and Zahm [8] on highly efficient minimal residual PGD algorithms might also be ap-
plied and extended to weakly coercive problems such as the Stokes problem, which
could lead to significantly improved rates of convergence.

There are a number of possible future directions for this work in addition to the
improvements to efficiency that we have already mentioned. One could investigate
the performance of least-squares algorithms for different weakly coercive problems
as well as nonsymmetric problems. It also remains to prove the convergence of the
particular implementation of the PGD algorithm used here. The idealized pure greedy
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algorithm does not take into consideration the fact that we solve the Euler–Lagrange
equations for the problem, or the particular linearization and discretization that are
used. While the nonlinearity of the PGD approximation makes this a very daunting
task, it would be extremely illuminating to understand how all these elements of PGD
algorithms are combined. Furthermore, results on expected convergence rates do not
presently exist; the availability of such results would not only provide a great deal of
insight into how these algorithms work but also lead to practical developments such as
extremely accurate error estimators, which could be used as global stopping criteria
or used to design efficient adaptive strategies.

Acknowledgment. The authors would like to thank Dr. Ross Kynch for assis-
tance with some of the computations.
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[6] I. Babuška, Error bounds for finite element method, Numer. Math., 16 (1971), pp. 322–333.
[7] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions,

Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251, https://doi.org/10.1073/pnas.
112329799.

[8] M. Billaud-Friess, A. Nouy, and O. Zahm, A tensor approximation method based on ideal
minimal residual formulations for the solution of high-dimensional problems, ESAIM-
Math. Model. Numer., 48 (2014), pp. 1777–1806, https://doi.org/10.1051/m2an/2014019.

[9] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for
the Stokes equations, Math. Comput., 63 (1994), pp. 479–506.

[10] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Springer-
Verlag, New York, 2009.

[11] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
York, 1991.

[12] H. J. Bungartz and M. Griebel, Sparse grids, Acta Numer., 13 (2004), pp. 1–123, https://
doi.org/10.1017/S0962492904000182.

[13] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least
squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31
(1994), pp. 1785–1799, https://doi.org/10.1137/0731091.

[14] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the
Stokes equations, with applications to linear elasticity, SIAM J. Numer. Anal., 34 (1997),
pp. 1727–1741, https://doi.org/10.1137/S003614299527299X.
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[24] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimisation Algorithms
I, Springer-Verlag, Berlin, 1993.

[25] T. G. Kolda, Orthogonal tensor decompositions, SIAM J. Matrix Anal. Appl., 23 (2001),
pp. 243–255, https://doi.org/10.1137/S0895479800368354.
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