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Abstract 

This research reported in this thesis is based on the synthesis of novel polymers of intrinsic 

microporosity (PIMs) with the aim of fabricating membranes for gas separation applications. 

PIMs are composed of rigid and awkwardly-shaped monomeric segments which lack the 

conformational and rotational freedom needed to pack space efficiently. As a result these 

polymers display high BET surface areas and display excellent gas permeabilities when 

solution-cast into films which can be used as gas separation membranes.  

This thesis describes the synthesis of a range of aromatic diamine, tetraamine, dianhydride, 

and dicarboxylic acid monomers that conform to the PIM design concept, featuring rigid and 

contorted architectures. These monomers were then used to synthesise five classes of 

polymer featuring tertiary amine functionality. Structure-property relationships were 

established between these polymers and BET surface area measurements. Polymers that 

displayed adequate film forming properties were also evaluated by our collaborators at The 

Institute of Membrane Technology for their gas transport parameters.  

Chapter 6 describes the synthesis of a new class of polymer, Tröger's Base PIMs, featuring a 

novel polymerisation reaction using chemistry first reported 127 years ago. One of these 

polymers, DMEA.TB, displays a BET surface area of 1028 m
2
/g which is the highest 

recorded for any soluble polymer to date. DMEA.TB places gas permeation data for 

technologically important gas pairs far over the present Robeson upper bound and has 

unrivalled potential to separate mixtures containing hydrogen. Chapter 7 deals with 

quaternerisation and subsequent ion exchange of selected Tröger's Base polymers. Chapter 8 

discusses the synthesis of three novel polyimides using highly rigid and contorted 

ethanoanthracene monomers containing methyl groups that restrict rotation around polymer 

segments. These polymers display only moderate gas permeation characteristics and possess 

BET surface areas of up to 694 m
2
/g. Chapter 9 describes the synthesis of a new class of 

zwitterionic polysquaraines however, these polymers were shown to be non-porous due to 

strong ionic/hydrogen bonding. Chapter 10 describes the synthesis of polybenzimidazoles 

using the PIM design concept but it was found that extensive hydrogen bonding reduces free 

volume, forming non porous solids. Chapter 11 describes the synthesis of novel 

polypyrrolones with surface areas of up to 284 m
2
/g however, film formation was not 

possible with these materials. Chapter 12 features a brief investigation onto the cross-linking 

of a Tröger's Base membrane using hydrolysed PIM-1 as polyanionic counterion.  
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Chapter 1: Introduction 

 

1.1: Porous Materials 

A porous material is defined as a solid material that contains a void, cavity or interstice
1
 

known as a pore. The structure of a pore can vary greatly depending upon the material or post 

treatment of that material. IUPAC (International Union of Pure and Applied Chemistry) 

defines pores by three parameters; size, shape and accessibility to an external fluid
1
. These 

factors influence the physical and chemical properties of that material and hence potential 

applications. Three classes of porous materials have been defined by IUPAC according to 

their pore size: Microporous (< 2 nm), Mesoporous (2-50 nm) and Macroporous (>50 nm)
1
. 

A sub-classification of pore size is accessibility (i.e. if the pore is open or closed). A closed 

pore (a in Fig 1.1a
1
) is inaccessible to external probes such as fluids and gas molecules. This 

type of pore influences only the macroscopic properties of a material such as bulk density and 

mechanical strength. Open pores (b, c, d, e and f in Fig 1.1a) possess an opening from the 

surface of the material. These type of pores are accessible to external probes, and therefore 

influence microscopic properties such as porosity and surface area. 

 

 

Open pores are further classified by their shape (c and f are cylindrical and b is "ink-bottled 

shaped" in Fig 1.1a, if a pore has only one opening (b and f) or if a pore penetrates the entire 

material (e). Rough surfaces (g) are not considered porous as convention states that 

irregularities must be deeper than they are wide to be defined as pores. 

Fig 1.1a. Schematic Cross-Section of a Porous Solid. 
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1.2: Microporous Materials 

The smaller pore size a material possesses, the greater is the surface area to volume ratio of 

that material. It is for this reason that microporous materials have among the highest surface 

areas of all three classes of porous materials. High surface area materials have become of 

interest for a number of applications such as adsorption
2
, hydrogen storage

3-5
, gas 

purification
4, 6, 7

, liquid purification
8
, heterogeneous catalysis

9-11
, sensors

12
 and ion 

exchange
13

. Microporous materials can be sub-divided into two board classes: ordered 

crystalline materials and disordered amorphous materials.  

Ordered crystalline materials possess a long range order and have well defined pore 

structures which can be important factors for applications such as catalysis. Typical examples 

are zeolites, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). 

Amorphous materials usually possess little or no long-range order and have poorly defined 

pore structures. Typical examples include activated carbons, hyper cross-linked polymers 

(HCPs) and high free-volume polymers such as polymers of intrinsic microporosity (PIMs). 

There are however examples of amorphous materials that can be modified to demonstrate 

long range order such as zeolite templated carbons (ZTCs)
14

. 

Each of these materials possess their own unique properties and applications which will be 

discussed in the following sections. 

1.3: Zeolites 

Zeolites are members of a large family of natural and synthetic microporous crystalline 

aluminosilicates discovered by the Swedish mineralogist Axel Fredrick Cronstedt. He noted 

in 1756 the ability of the mineral stilbite to absorb water and release it as steam upon heating. 

This observation led to the name zeolite, derived from the Greek words ‘zein’ (boiling) and 

‘lithos’ (stone)
15

.  

Zeolites possess highly regular and well defined microporous cage-like framework structures. 

Zeolite frameworks can contain smaller sub-structures known as supercages and sodalite 

cages that form connected channels of roughly (1-20 Å) in diameter through the material.  

Zeolites are most commonly composed of tetrahedral silicate [SiO4]
4-

 and aluminate [AlO4]
5-

 

units connected through bridging oxygen atoms, although other compositions are known
16

. 
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The framework has a net negative charge due to the presence of [AlO4]
5-

 units and this 

enables the sub cage structures to accommodate a wide variety of loosely bound cationic 

species such as Na
+
, K

+
, Ca

2+ 
and Mg

2+
. There are over 170 topologies known

17
 and one 

example is the Faujasite framework (X)3.5[Al7Si17O48]·32(H2O) where X= Na2, Ca or Mg (Fig 

1.3a
9, 17

). 

 

 

 

Since their discovery 250 years ago zeolites have benefited many industries with their 

numerous applications:  

Zeolites have high thermal stability and upon removal of the adsorbed water by heating to 

350-400 °C, zeolites remain highly stable frameworks
10

 with BET surface areas up to and in 

excess of 900 m
2
 g

-1 18, 19
. The high surface areas of zeolites combined with well-defined pore 

structures allows them to act as ‘molecular sieves’ in which external molecules are 

selectively adsorbed based on their size
20

. Guest cations can be readily exchanged for other 

species in solution. This has seen zeolites used in a number of ion exchange applications such 

as the treatment of liquid radioactive waste
13

. These guest cations may be utilised as evenly 

distributed catalytic sites that may be accessed selectively by reactants through the porous 

zeolite structure. For example, acidic zeolites (H
+
 counter ions) are commonly used in the 

petrochemical industry in the catalytic cracking of long chain hydrocarbons
16, 21

. The unique 

structure of a particular catalytic zeolite can be used to allow the shape and size of the pore 

system to exert a steric influence on reactants; a process known as “shape selective 

catalysis”
11

. 

Fig 1.3a. Structure model of a Faujasite showing potential bonding positions of cations (types I, II and III). 

(left), Structure model of a Faujasite showing pore channels (right). 
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1.4: Metal-Organic Frameworks 

Research in the area of coordination chemistry, especially by Yaghi and co-workers
22

, has 

provided a new class of microporous materials known as metal-organic frameworks (MOFs). 

MOF structures consist of a regular network of metal oxide or metal ion units linked together 

via organic molecules to give an ordered three-dimensional microporous structure. The 

organic linker molecules can act as both “spacers” for the metal units and also as “joints” to 

give the resulting MOF architecture flexibility. These structures give rise to an array of 

interconnected pores that can accommodate a number of guest species such as large organic 

molecules and hydrogen
22

. The wide range of potential metal centres and organic linkers 

gives rise to a large synthetic diversity within the field of MOFs (in contrast to zeolites).  

The first MOF to exceed surface areas of the best activated carbons was MOF-177 

[Zn4O(1,3,5-benzenetribenzoate)2] reported in 2004 by Yaghi and co-workers
22

 with an 

estimated BET surface area of over 4500 m
2
 g

-1
. In 2012, a research group from North-

western University reported a MOF structure with the formula [Cu3(1,3,5-tris(4-

ethynylphenyl)butadiynyl-1,3-carboxylate)-benzene)(H2O)3] named NU-110 (Fig 1.4a
23

) 

with a surface area over 7000 m
2
 g

-1
.   

 

MOFs have a number of potential applications including gas purification
24

, hydrogen 

storage
22

, catalysis
25

 and drug delivery
26

. There are however a number of disadvantages 

concerned with MOFs such as their low stability towards heat, moisture and chemical 

environment
27, 28

. Many, but not all, MOFs can collapse when heated resulting in an 

amorphous solid and the loss of porosity. The oxygen-metal coordination bonds in MOFs 

structures often undergo hydrolysis in presence of water and even with exposure to air, 

irreversibly destroying the framework
3, 27

.  

Fig 1.4a. Structure of MOF NU-110  showing  pore volumes (purple), largest of which was measured to be 35 Å. 
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1.5: Covalent Organic Frameworks 

Covalent organic frameworks (COFs) are a family of porous crystalline macromolecules 

constructed solely from light elements (H, B, C, N and O) linked together through strong 

covalent bonds
29

. COFs are synthesised from organic linkers which are functionalised with 

groups that allow the formation of strong covalent bonds between each other (e.g. boronic 

acids (forming boroxines)
2
, boronic acids/catechols (forming dioxaborolanes)

2
, nitriles 

(forming triazines)
30

 and anilines/benzaldehydes (forming imines)
31

. COFs offer low 

densities, high thermal stability (up to 600 °C), long range order , well defined pore structures 

and permanent porosity with surface areas comparable with MOF structures. 

One of the first reported COFs by Yaghi and co-workers in 2005 was COF-5
32

, produced 

from the reaction between benzene-1,4-diboronic acid and hexahydroxytriphenylene. COF-5 

has two dimensional layered structure with a surface area of 1590 m
2 

g
-1

. Using so called 

‘reticular synthesis’
33

 COFs can be expanded into three dimensions through the use of 

tetrahedral shaped linkers. COF-105 (Fig 1.5a
34

) was reported in 2007, prepared from the 

dioxaborolane forming reaction of tetra(4-(dihydroxy)borylphenyl)silane with 2,3,6,7,10,11-

hexahydroxytriphenylene and has a surface area of 6450 m
2
/g 

35
.  

 

 

Due to their analogous structures, application of COFs are similar to those of MOFs such as 

catalysis
36

, hydrogen storage
37

 and filtration
38

. Two dimensional layered COFs generate 

ordered π systems which can possess additional electronic and optical
39, 40

 properties.  

Fig 1.5a. Building blocks (left), Structure model of COF-105 (right). 
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1.6: Activated Carbons 

Wood charcoal was used by the ancient Egyptians to purify water around 1500 BC and later 

by the Greeks and Romans to treat various diseases
15

. Activated carbons are used today in 

enormous quantities in industry for applications such as catalyst supports
41

, adsorbents
42

 and 

filters
15, 43

. Activated carbons are generally believed to exist as an extended network polymer 

consisting of randomly interconnected graphene sheets, although their actual structure is not 

fully understood and is likely to contain random fragments of various known allotropes of 

carbon
44

 (Fig 1.6a
45

). 

 

 

The surface chemistry of activated carbons are also ill-defined
46

 and have the ability to 

absorb a wide range of organic compounds due to the presence of oxygen and nitrogen 

functional groups
47

. The surface area arises from the wide distribution of pore sizes ranging 

from microporous to macroporous
44

. These properties also unfortunately limit the potential of 

activated carbons for size and chemo-selective applications.  

The manufacturing process of activated carbons involves the high temperature carbonisation 

of carbonaceous starting materials such as wood chips and cellulose
48

. Subsequent activation 

via either: gasification (heating in the presence of oxidising gases) or dehydration/oxidation 

of the carbonised material with impregnated chemicals, enlarges the size of the existing pores 

to produce activated carbon. In the 1970’s, researchers at the oil company AMOCO 

developed a process for producing activated carbons with surface areas exceeding 3000 m
2
 g

-l
 

by activating various precursors such as petroleum coke, with potassium hydroxide
15

. 

Fig 1.6a. Various known allotropes of carbon. 
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1.7: Hyper Cross-Linked Polymers 

The first hyper cross-linked polymers (HCPs) were based on cross-linked polystyrene, 

published in 1983 by Davankov
49

. These polymers, known as "Davankov resins", were 

prepared via the post-polymerisation cross-linking of a solvent swollen polystyrene gel. First, 

vinylbenzyl chloride is polymerised in the presence of a small quantity of divinylbenzene 

producing a partially cross-linked co-polymer. The co-polymer is then swollen in a suitable 

solvent such as 1,2-dichloroethane and cross-linked further via a Friedel-Crafts alkylation 

reaction using a Lewis acid, such as iron (III) chloride (Scheme 1.7a)
50

. This reaction 

introduces a number of CH2 bridges between the polymer chains which fixes the polymer in 

its swollen state, forming pores that persist upon solvent removal. 

 

 

By manipulating the reaction conditions of the cross-linking reaction, Ahn and co-workers 

were able to selectively tailor Davankov resins with surface areas ranging from 300-2000 m
2
 

g
-1

 
51

. It was also shown that these polymers exhibit bimodal pore size distributions from the 

original macropores present in the non-cross-linked polymer and micropores formed during 

cross-linking reaction. HCPs have also been prepared by a more direct approach using a 

Friedel-Crafts self-condensation reaction of bis(chloromethyl) aromatic monomers with iron 

(III) chloride to produce materials with surface areas up to 1900 m
2
 g

-1
 
52

.  

Since cross-linking does not occur at every possible site, these polymers contain residual 

chloromethyl groups. Functional groups, such as amines and carboxylic acids, can then be 

transferred into the polymer matrix, replacing residual chlorine atoms by post-synthetic 

modification
53

. A diverse range of HCPs with a wide variety of surface chemistries have 

found extensive use in industry as stationary phases in chromatography
54

 and ion exchange 

resins
55

. The high surface areas of HCPs also show a potential application in hydrogen 

storage
56

. 

Scheme 1.7a. Preparation of poly(vinylbenzyl) chloride partially cross-linked with divinylbenzene via 

radical initiation, and subsequent hyper-cross-linking via intra-molecular Friedel-Crafts alkylation. 
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1.8: Polymers of Intrinsic Microporosity 

Generally, polymers are not thought to be microporous as they tend to have enough 

conformational and rotational freedom to twist and bend into the correct complementary 

shapes to pack efficiently as to maximise attractive intermolecular interactions between 

chains. As seen in the case of HCPs, the bulk structure of a generic linear polymer must be 

modified by post-polymerisation processing to give rise to microporosity. Polymers of 

Intrinsic Microporosity (PIMs) however, are highly rigid polymers typically composed 

wholly of fused ring systems that have highly contorted structures which prevent efficient 

packing of polymer chains. The inefficient packing of polymer chains leads to the polymers 

possessing microporosity and surface area that results solely from the molecular structure of 

the material and not from any post-polymerisation modification. The microporosity is then 

said to be an intrinsic property of these polymers and hence the name. 

This concept has been mathematically illustrated for 2D
57

 and 3D
58

 shapes by S.Torquato, 

F.Stillinger and Y.Jiao in which they describe the random packing efficiency (Φ) of concave 

“superballs” as a function of their deformation parameter (P) (Fig 1.8a
58

).  

 

 

 Fig 1.8a. Various three-dimensional shapes as defined by their deformation parameter (p) (top), and packing 

efficiency (Φ) vs. deformation parameter (p) for concave octahedral (bottom) with inset p = 0.1 octahedra. 
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The authors studied various octahedra with varying degrees of concavity/convexity as 

measured by their deformation parameter where p = 0.5 represents a regular octahedron, p < 

0.5 represents a concave octahedron, reaching the limit of three dimensional cross at p = 0 

and p > 0.5 represents a convex octahedron, reaching a perfect cube at p = 1 and a perfect 

sphere at p = ∞. They show that as the deformation parameter decreases and the sides of an 

octahedron become more concave, the packing efficiency also decreases with an increase in 

free volume and surface area. It was also shown that although convex octahedra reach a 

minimum packing efficiency (Φ) of around 0.75 for a sphere (p = 1), concave octahedra are 

capable of exhibiting much lower packing efficiencies. It follows that concave molecular 

geometries will maximise the void space in a porous material. A classic example of such a 

molecule is triptycene (Fig 1.8b
59

). 

 

 

 

The triptycene molecule is a rigid, shape persistent, fused ring system that possesses concave 

surfaces. When constituent triptycene molecules come together to form a solid, they do so in 

an inefficient manner and form local cavities containing what has been coined as “internal 

molecular free volume” (IMFV)
59, 60

. Organic molecules which possess such properties are 

known as “Organic Molecules of Intrinsic Microporosity” (OMIMs)
61

.  

The OMIM concept can be extended by using a multi-functionalised OMIM (f > 2) as a core 

for dendrimer formation. A suitably functionalised OMIM core can be subjected to stepwise 

addition of subsequent OMIMs to give branched macromolecular structures with a higher 

internal molecular free volume than the sum of its parts (Fig 1.8c). These compounds are 

known as “Dendrimers of Intrinsic Microporosity” (DIMs)
62

.  

Fig 1.8b Triptycene molecule in perspective view (left) and schematic view (right) with dimensions 

calculated from the centroids of the hydrogen atoms at the extremities. 
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Extending the OMIM concept even further, suitably functionalised OMIMs may be used as 

monomers that can be polymerised to form an amorphous solid composed of a large 

proportion of internal molecular free volume. This free volume arises from the concave 

molecular units of the polymer chain itself and also from the secondary structures that form 

from irregular folding and packing of the polymer chains (Fig 1.8d
63

). A polymeric material 

of this type belongs to the family known as Polymers of Intrinsic Microporosity (PIMs).  

 

 

This family of polymers can trap large quantities of interconnected “free volume” at room 

temperature in the glassy state
64

. Unlike “rubbery” polymers (a polymer above its glass 

transition temperature), the thermal motion of the polymer chains in glassy polymers (a 

polymer below its glass transition temperature) is not energetic enough to homogenise the 

structure of the polymer which allows the presence of immobilised, interconnected and 

disconnected “microvoids” to be “frozen in” throughout the polymer. The free volume 

contained in these polymers is however only a transient property. PIMs are considered to be 

in a non-equilibrium state and free volume is lost over time by relaxation of the polymer 

chains into a dense solid. This is known as physical ageing and is observed markedly in thin 

membranes
65, 66

. This process is known be reversed by soaking the material in a solvent such 

as methanol
65

 which swells the polymer back to its non-equilibrium state. When PIMs are 

used to cast membranes, methanol is used to remove casting solvent and adsorbed species 

before permeation tests which has a profound effect on membrane properties. 

Fig 1.8c Schematic diagram of dendrimer formation. 

 

Fig 1.8d Packing model of PIM-1 represented as a sequence of 3.1Å slices 

through a 3D cube illustrating elements of free volume. 
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Three main classes of PIMs have so far emerged based on molecular chain configurations: 

Linear, Ladder and Network PIMs (Fig 1.8e). In the case of most linear and ladder PIMs, 

there is also at least some degree of branching and cross-linking of the polymer chains. 

 

Linear polymers contain only a single bond between each monomer and are usually soluble. 

To create a linear high free volume polymer, the shape of the polymer chain must be 

contorted and rotation around the single bond must be hindered such that the chain remains 

rigid. Examples of high free volume polymers include polyacetylenes
7, 67

, perfluoropolymers 

68, 69
 and polynorbornenes

70
. To create a linear PIM such as a PIM polyimide

71
, monomers 

that also possess rigid and awkward molecular geometries must be incorporated.  

Ladder PIMs contain two bonds between each monomer and hence rotation is prevented. To 

create a microporous ladder PIM, both monomers and linking units must be rigid and at least 

one monomer must either possess an awkward molecular geometry such as triptycenes
72

 or a 

site of contortion such as spirobisindanes
73

. A common method for producing soluble ladder 

PIMs is a double nucleophilic aromatic substitution reaction between an aromatic monomer 

functionalised with two sets of ortho-dihydroxy groups (catechols) and an aromatic monomer 

functionalised with two sets of ortho-difluoro groups (chlorine can also be used
74

). The 

polymerisation forms rigid dibenzodioxane linking units that inhibit twisting or bending 

between monomer segments. Some examples of ladder PIMs are PIM-1
73

 and PIM-7
75

. 

Network PIMs are formed from monomers and linkers that possess the same characteristics 

as ladder PIM monomers except at least one monomer is functionalised with a minimum of 

three sets of reactive groups. This causes the polymer to form an insoluble three dimensional 

porous structure. Some examples of network PIMs are Triptycene
76

 PIMs and 

phthalocyanine
77

 PIMs. 

Fig 1.8e. Different PIM molecular chain configurations: A: Linear, B: Ladder, C : Branched, D: Network. 
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1.8.1: Linear Polymers 

1.8.1.1: Polyacetylenes 

The first glimpse of a polymer with a high free-volume was poly[(1-trimethylsilyl)-1-

propyne] (PTMSP) reported by Masuda
7
 in 1983. This glassy polymer was synthesised by the 

polymerisation of 1-(trimethylsilyl)-1-propyne with a range of niobium (V) and tantalum (V) 

halides (Scheme 1.8.1.1a). Studies by Izumikawa and co-workers found that NbCl5 produced 

a more cis-rich polymer than TaCl5 and hence different properties
78

. 

 

 

The polyacetylene backbone consists of a chain of trimethylsilyl substituted alkene units 

linked together via single carbon-carbon bonds. The alkene sp
2
 bond geometries force the 

polymer backbone into a staggered conformation while the bulky trimethylsilyl groups hinder 

polymer segment rotation around the single carbon-carbon bonds
79

. This rigid contorted 

structure causes the formation of microvoids when chains pack together leading to a BET 

surface area of 550 m
2
 g

-1
 
80, 81

. 

PTMSP membranes exhibit extremely high gas permeabilities, particularly for oxygen, 

carbon dioxide and larger C3+ hydrocarbons
82

. PTSMP was considered the most permeable 

of all known polymers until 2008 when Masuda reported an indan based polyacetylene
67

. 

Membranes formed from PTMSP are more permeable to large hydrocarbon molecules than 

small gas molecules. This anomalous behaviour suggests solubility-controlled permeation; a 

property usually observed in rubbery polymers (see Background Theory, Chapter 2.3). 

Due to its attractive properties, PTMSP was initially considered as a promising material for 

the fabrication of industrial membranes for the separation of hydrocarbon/hydrogen mixtures. 

The polymer however, has a poor chemical resistance to aliphatic and aromatic compounds 

found in the feed streams of interest and also suffers from rapid physical ageing where 

permeability decreases over time
83

. It has been found that cross-linking PTMSP using for 

example, bis aryl azides
79

, can improve the solvent resistance and reduce ageing of the 

polymer. Cross-linking however leads to a reduction in free volume and a compromise is 

made in permeability. 

Scheme 1.8.1.1a. Synthesis of poly[(1-trimethylsilyl)-1-propyne]. 

(PTMSP). 
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1.8.2: PIM Polyimides 

Polyimides are classically synthesised by a cycloimidisation polycondensation reaction 

between bis-carboxylicanhydride and diamine monomers. Polyimides have received 

considerable attention in gas separation membrane applications as a result of high 

selectivities but with many, at the expense of lower permeabilities
84

. Some polyimides show 

higher permeabilities such as the widely available Matrimid®
85 polyimide (Fig 1.8.2a) 

although it suffers somewhat low permeability towards oxygen and carbon dioxide. Blending 

Matrimid with other polymers such as PIM-1 has been found to further improve both 

permeability and selectivity
86

. 

 

Highly permeable polyimides are known to be formed from diamines that place bulky 

functional groups adjacent to the imide linkage that restrict rotation. For example, polyimides 

formed from 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with diamines 

such as 2,3,5,6-tetramethyl-1,4-phenyldiamine (4MPDA)
87

 and 3,3'-dimethylnaphthidine 

(DMN)
88

 (Fig 1.8.2b) are amongst the most permeable of conventional polyimides.  

 

 

PIM-polyimides are formed from rigid aromatic monomers, at least one of which possessing 

a site of contortion. The first examples of PIM polyimides were reported in 2008
71

. Three 

polyimides designated PIM-PI-1, PIM-PI-3 and PIM-PI-8 were prepared from the 

polymerisation of a bis-carboxylicanhydride functionalised spirobisindane monomer with 

three different diamines known for their success in conventional polyimides (Scheme 1.8.2a).  

Fig 1.8.2a. Structure of the polyimide Matrimid®. 

 

 

Fig 1.8.2b Structures of polyimides 6FDA-4MPDA  and 6FDA-DMN. 
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The spirobisindane unit is a very common structure used in PIM synthesis. The directions 

imposed by the spiro-centre (a single tetrahedral carbon centre shared by two rings) contained 

in these units force the geometry of the polymer segments into right angled orientations from 

each other. This site of contortion prevents efficient packing of the polymer chains and 

generates a large quantity of free volume compared to conventional polyimides. 

Although PIM polyimides have only a single bond between monomeric units, rigidity is 

reinforced in PIM-PI-1 and PIM-PI-8 through bulky substituents groups adjacent to the imide 

linking bond, preventing rotation of polymer segments. Even though PIM-PI-3 has more 

flexibility in the chain, the hexafluoroisopropylidene unit provides a site of contortion leading 

to free volume. This enhanced rigidity is reflected in the BET surface areas measured: 480, 

600 and 700 m
2
 g

-1
 for PIM-PI-3, PIM-PI-1 and PIM-PI-8 respectively. Each of these 

polymers were formed at moderate to high molecular weight and displayed excellent film 

forming properties. Membrane permeation experiments revealed permeabilities higher than 

conventional polyimides and selectivities higher than conventional PIMs
89

. Exceptional 

performance was obtained for PIM-PI-8 which demonstrates that when a site of contortion is 

present in both polymer segments and rotational freedom is restricted, higher surface areas 

and membrane permeabilities can be achieved. 

Scheme 1.8.2a. Synthesis of PIM-PI-1, PIM-PI-3 and PIM-PI-8. 
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1.8.3: Ladder Polymers 

1.8.3.1: PIM-1 

PIM-1 is a spiro-polymer derived from the dibenzodioxane forming polymerisation reaction 

between the commercially available 2,3,5,6-tetrafluoroterephthalonitrile and 5,5’,6,6’-

tetrahydroxy-3,3,3’,3’-tetramethyl-1,1’-spirobisindane (Scheme 1.8.3.1a)
73

. 

 

The resulting polymer is obtained as an amorphous fluorescent yellow powder of high 

molecular mass (Mw=140,000 g mol
-1

)
64

. The polymer is soluble in solvents such as 

tetrahydrofuran and chloroform from which it can be precipitated as a powder or cast into a 

robust self-standing film (Fig 1.8.3.1a
90

). The polymer exhibits a high BET surface area of 

860 m
2
 g

-1
 and a micropore distribution in the range of 0.4-0.8 nm

64
 (Fig 1.8.3.1a

64
). This is 

attributed to the awkward structure imposed by the rigid spirobisindane units and a rigid 

backbone comprised entirely of fused five and six membered rings, giving rise to highly 

contorted polymer chains that pack space inefficiently (Fig 1.8.3.1a
90

). 

 

 

 

Initial gas permeation measurements on PIM-1 membranes revealed extremely high 

permeabilities and selectivities for several gas pairs and were only exceeded by high free 

volume polymers such as PTMSP
91

. In 2008, it was demonstrated that permeability may be 

substantially improved by removing the casting solvent and reversing physical ageing with 

Scheme 1.8.3.1a. Synthesis of PIM-1. 

 

 

Fig 1.8.3.1a A PIM-1 membrane cast from THF (left), SEM cross-section image of a PIM-1 thin film membrane 

on a polyacrylonitrile support (middle), of model of a fragment of PIM-1 to illustrate contorted structure (left). 
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methanol treatment
6
. These impressive properties have attracted interest in a number of 

applications such as gas separation
92

, pervaporation
8
 and sensors

12
. 

There have been a number of investigations into tuning the gas transport properties of PIM-1 

membranes by various research groups. In 2009, Guiver and co-workers reported the 

hydrolysis of pendent nitrile groups in a PIM-1 film forming a carboxylated PIM
93

 (Fig 

1.8.3.1b). It was shown that the polymer, with various degrees of hydrolysis with sodium 

hydroxide, has similar thermal and mechanical properties as PIM-1 but shows enhanced 

selectivity for a number of gas pairs (with a corresponding decrease in permeability). 

 

 

A research group at the University of Singapore reported in 2012 that PIM-1 can undergo a 

self-cross-linking reaction under thermal conditions forming triazine rings from pendent 

nitrile groups (Scheme 1.8.3.1b)
94

. 

 

The thermal cross-linking was found to enhance selectivity for a number of gas pairs (with a 

consistent decrease permeability). Most notable was an almost four fold increase in CO2/CH4 

selectivity over the parent PIM-1 membrane. 

Scheme 1.8.3.1b. Synthesis of PIM-1. 

 

 

Fig1.8.3.1b. Structure of carboxylated PIM-1 with varying degrees of hydrolysis. 
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1.8.3.2: PIM-7 

PIM-7 is a soluble ladder polymer derived from the dibenzodioxane forming polymerisation 

reaction between 5,5’,6,6’-tetrahydroxy-3,3,3’,3’-tetramethyl-1,1’-spirobisindane and a tetra-

chloro functionalised spirobisindane bisphenazine monomer
75

 (Scheme 1.8.3.2a).  

 
 

Like PIM-1, this polymer has a rigid and contorted backbone except both monomers contain 

a spiro-centred site of contortion. Replacement of the phthalonitrile units of PIM-1 with the 

phenazine units of PIM-7, does not have a considerable impact on the contorted structure of 

PIM-7 and has a similar but somewhat lower surface area of 680 m
2
 g

-1 95
. The presence of 

phenazine units does however offer the possibility of metal ion coordination. Addition of 

bis(benzonitrile)palladium (II) chloride solution to a yellow PIM-7 solution resulted in an 

immediate precipitation of a red powder which was found to contain over 20 % by mass of 

Pd
2+

 and remained microporous (BET surface are 650 m
2 

g
-1

)
75

. It was inferred that that a 

palladium cross-linked polymer had been formed (Fig 1.8.3.2a). It was found that this 

material was an effective heterogeneous catalyst for Suzuki cross-coupling reactions
64

. It has 

also been shown that a PIM-7 film can be successfully cross-linked with Pd
2+

 ions, 

demonstrating a potential for reactive catalytic PIM membrane applications (Fig 1.8.3.2a)
75

. 

 

Scheme 1.8.3.2a. Synthesis of PIM-7. 

 

 

Fig 1.8.3.2a Structure of palladium cross-linked PIM-7 (left), a PIM-7 film in which the darker portion has 

been treated with (benzonitrile)palladium (II) chloride solution (right). 
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1.8.4: Network Polymers  

1.8.4.1: Triptycene Network PIMs 

The previously described triptycene molecules can be utilised as monomers in the formation 

of insoluble microporous network PIMs. A series of triptycene network polymers were 

reported in 2010 that demonstrate the ability to tune network PIMs for gas adsorption
76

. 

These network PIMs were constructed from catechol functionalised triptycene units with 

varying lengths of alkyl chains attached to the bridgehead position (R) which were 

polymerised with tetrafluoropthalonitrile linking groups at each of its three vertices (Scheme 

1.8.4.1a).  

 

The directions imposed by the three-fold symmetry of the triptycene units form a planar, 

ribbon-like structure that frustrates space efficient packing of the polymer chains. The "face-

to-face" association of these ribbon-like fragments are further disrupted by the bridgehead 

alkyl groups acting as perpendicular struts (Fig 1.8.4.1a)
76

. It was found that short alkyl 

chains (H, Me, Et, Pr) lead to highly porous materials with Trip-Me-PIM giving the highest 

BET surface area of 1760 m
2
g

-1
. Increasing the length of the alkyl chains further caused a 

decrease in surface area due to an increasing proportion of the generated free volume 

becoming occupied by the flexible side chains (Fig 1.8.4.1a). 

 

0

500

1000

1500

2000

0 1 2 3 4 5 6 7 8

B
ET

 s
u

rf
ac

e
 a

re
a 

(m
2 g

-1
) 

Carbon atoms per alkyl chain (R) 

Scheme 1.8.4.1a Synthesis of triptycene network PIMs. R = H, Me, Et, Pr, 
i
Pr, Bu, 

i
Bu, Pent, Oct, Bz. 

 

 

 

Fig 1.8.4.1a.  Planar ribbon structure of Trip-Et-PIM (left), BET surface area Vs bridgehead alkyl chain 

length in triptycene network PIMs (0 = H, 1 = Me, 2 = Et, 3 = Pr  etc.) (right). 
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1.8.4.2: Phthalocyanine Network PIMs 

Phthalocyanines (Pcs) are rigid and thermally stable macrocycles that can bind a wide variety 

of guest cations inside a central cavity. A number of metal Pcs are well-established catalysts 

in applications such as the removal of thiols from gas streams by oxidation to disulfides with 

cobalt-Pcs
96

. While Pcs are known to be effective homogeneous catalysts, heterogeneous 

systems simplify recovery and reduce degradation/deactivation of the catalysts. To be utilised 

as a heterogeneous catalyst, a Pc must be immobilised in a porous solid such as a zeolite
97

 or 

polymer
98

. Previous attempts to form Pc-network polymers resulted in non-porous materials 

due to the strong tendency of Pcs to aggregate resulting from non-covalent interactions
99

. Pc-

network PIMs are formed from a spirobisindane bis(phthalonitrile) precursor which is 

synthesised from the dibenzodioxane forming reaction of 4,5-dichlorophthalonitrile with 

5,5’,6,6’-tetrahydroxy-3,3,3’,3’-tetramethyl-1,1’-spirobisindane. Facilitated by a metal 

template, the bis(phthalonitrile) monomer undergoes a high temperature cyclotetramerisation 

reaction forming a network polymer (Scheme 1.8.4.2a) as a blue or green insoluble powder
77

.  

 

Pc-network PIMs have high BET surface areas ranging from 450-950 m
2 

g
-1

, depending on 

the metal cation. This is attributed to the contorted spirobisindane linking units that prevent 

reorganisation of the Pc units into their preferred π-stacked configurations. Catalytic studies 

of the cobalt Pc-network polymer indeed demonstrated enhanced activity over lower 

molecular mass Pc catalyst analogues for a number of reactions such as the decomposition of 

hydrogen peroxide, the oxidation of cyclohexene and the oxidation of hydroquinone
100

. 

Scheme 1.8.4.2a Synthesis of phthalocyanine network PIMs. 
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Chapter 2: Background Theory 

2.1: Determination of Surface Area 

Surface area determination of a well-defined and regular object such as a piece of paper is a 

simple task that requires no more than measurement with a ruler. If the shape of the object is 

irregular, ill-defined and possesses internal surface area such as a crumpled-up piece of 

paper, the measurement of surface area is no longer such a straight forward task. It becomes 

an even greater challenge when the surface to be measured is in the microscopic scale. There 

are a number of methods for quantifying the surface area of a material (i.e. the total area of 

the material that is accessible to a probe). These include: optical methods
101

 and porosimetry 

using a non-wetting liquid such as mercury
102

. The most widely used technique for estimating 

the surface area of a material is gas adsorption.  

The reversible physisorption of gas onto the irregular internal and external surfaces of a 

material can be exploited to quantify surface area. If the effective cross-sectional area of one 

gas molecule is known and a measured volume of the gas is adsorbed onto the surface of a 

microporous material, sufficient to form a monolayer, the surface area of the material can be 

calculated. To measure the surface area of a material, the sample is placed into a closed 

system of known volume and the adsorbate gas is adsorbed onto the surface of the sample at 

the saturation pressure and temperature of the adsorbate. A popular and convenient gas to use 

as the adsorbate is nitrogen, although in special cases hydrogen, carbon dioxide, argon and 

krypton may be used. To calculate the number of molecules adsorbed to a surface, a number 

of mathematical models have been developed to understand the processes that occur on the 

surface of a sample: 

The free nitrogen gas molecules (A), free surface sites (S) and the adsorbed nitrogen (AS) 

exist in a dynamic equilibrium in the system. The position of this equilibrium depends on the 

relative stabilities of the species, the temperature and pressure of the system. High pressure 

and low temperature are necessary to keep the surface saturated with gas molecules. 

 

The extent of surface coverage can expressed as a fraction i.e. fractional surface coverage (θ). 

m

a

V

V

available  Sites

occupied  Sites
     (2.1a) 
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Where Va = Volume of gas adsorbed and Vm = Volume of gas in one monolayer. The 

fractional coverage of the surface depends on the pressure (P) of the system. Variation of θ 

with pressure at constant volume and temperature is known as an adsorption/desorption 

isotherm. 

The Langmuir adsorption isotherm (developed by Irving Langmuir in 1916
103

) is the simplest 

physically plausible isotherm model which relates the number of molecules adsorbed to a 

surface at constant temperature. The rate of adsorption depends on the pressure (P) and the 

number of empty sites (N(1-θ)) and the rate of desorption depends on the number of occupied 

sites (Nθ). The rate of change of fractional surface coverage is given by: 




NkPNk
dt

d
da  )1(     (2.1b) 

At the point of equilibrium: 0
dt

d
 and hence: 

KP

KP




1
     (2.1c)        Where: 

d

a

k

k
K 

 

This equation is generally presented in the y = mx + c form such that measureable data 

(volume of gas adsorbed, Va and partial pressure, P) can be plotted to allow Vm to be 

calculated by extrapolation of a straight line plot: 

mma VPKVV

1111









     (2.1d)  

 

The Langmuir adsorption isotherm is based on a number of assumptions: 

1.) Adsorption cannot proceed beyond monolayer coverage. 

2.) All surface sites are equivalent and can accommodate, at most, one adsorbed molecule. 

3.) There are no adsorbate-adsorbate interactions. 

4.) An adsorbed molecule is immobile. 

5.) In the gas phase, the adsorbate behaves ideally. 

 The last assumption is usually reasonable but the remaining assumptions are seldom true and 

one would expect this model to be unreliable. However, ignoring surface non-uniformity 

results in an over estimation of average adsorption enthalpy while ignoring adsorbate-

adsorbate interactions results in an under estimation of adsorption enthalpy. These two 
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opposite effects largely cancel out and the Langmuir isotherm generally gives results better 

than would be expected
104

. 

In 1938, Brunauer, Emmett, and Teller
105

 modified Langmuir’s theory to allow for multilayer 

adsorption while retaining the other original assumptions (BET Theory). 

BET theory makes the following assumptions: 

1.) Gas molecules can physically adsorb to a surface in an infinite number of layers. 

2.) There are no interactions between each adsorption layer. 

3.) The Langmuir theory can be applied to each separate layer. 

The resulting BET equation given by Brunauer, Emmett, and Teller is: 

 









 




0

0

1
1

P

Pc
PP

CPV
V m

a

   

    (2.1e)

 

Which can be rearranged into the  y = mx + c form: 

  mma CVP
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
 

    (2.1f) 

Where: Vm = Volume of gas in one monolayer (ml), Va = Volume of gas adsorbed at (ml), P = 

Partial vapour pressure of the adsorbate gas in equilibrium with the surface at 77K (Pa), P0 = 

Saturation pressure of the adsorbate gas (Pa) and C is the BET constant (dimensionless) 

which is approximately given by: 








 


RT

EE
C L1exp     (2.1g) 

E1 is the heat of adsorption for the first layer and EL is the heat of adsorption for second and 

higher layers and is approximately equal to the heat of liquefaction. 

A plot of P/Va(P-P0) against P/P0 has been shown experimentally
105

 to give a linear plot over 

the range 0.05 ≤ P/P0 ≤ 0.35. From this plot, the intercept (i) and the gradient (m) can be used 

to calculate the monolayer volume (Vm) and the BET constant C as follows: 

im
Vm




1

 

    (2.1h) 
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The specific BET surface area (SBET (m
2
g

-1
)) of the sample is then calculated from Vm using 

the following equation: 

STP

Am

BET
MV

NV
S


     (2.1j) 

Where: NA = Avogadro’s constant (6.022 × 10
23

 mol
-1

), VSTP = Molar volume occupied by a 

gas at 273.15 K and 1 atm (22414 ml), M = Mass of sample, σ = Effective cross-sectional 

area of one nitrogen molecule (16.2 Å
2
)
106

. 

The specific BET surface area of the sample is calculated from at least three points in the 

0.05 ≤ P/P0 ≤ 0.35 region. The data points and subsequent calculations such as surface area 

and total pore volume are produced automatically by the BET surface area analyser apparatus 

(Fig 2.1a).  

 

 

Due to the assumptions made in BET theory, there are a number of discrepancies between 

theoretical and experimental isotherms on which a number of papers have been published
107

. 

There is also an error in the measurement of sample mass, depending on the precision of the 

balance and therefore using a larger sample quantity will give a more accurate result. The 

surface areas obtained using this method are not “true” surface areas as adsorption is strongly 

influenced by micropore filling effects
5
 such as capillary action giving higher than “actual” 

surface areas. The size of the gas molecules can also affect results if the molecule is too large 

to access smaller pores and so for example, nitrogen isotherms would not give comparable 

results to hydrogen isotherms. For these reasons, it is prudent to consider a surface area 

obtained by a BET isotherm as an “apparent surface area” and results should be treated with 

caution. BET isotherm experiments are however a convenient and very useful method for 

Fig 2.1a. A Coulter SA300 BET Surface Area Analyser 

analyzer 
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measuring preliminary surface area characteristics and for comparison of the apparent 

microporosity between materials. 

Each class of material (according to their pore size: microporous (< 2 nm), mesoporous (2-50 

nm) and macroporous (>50 nm)) has a different adsorption isotherm profile. Six types of 

adsorption isotherms have been classified by IUPAC
108

 (Fig 2.1b
109

) . 

 

Microporous materials show type I isotherms in which high surface areas allows a large gas 

uptake at low partial pressures, resulting in the isotherm climbing the y-axis until the surface 

becomes largely covered with adsorbate molecules. The plot then passes through an almost 

linear region from 0.05 ≤ P/P0 ≤ 0.35 where the first monolayer is completed. Continuing 

past this region, more layers are built on top of the first layer and the pores fill up with the 

adsorbate until a saturation point is reached at P/P0 =1. 

Mesoporous materials show type IV and V isotherms and macroporous materials show type 

II, III and VI isotherms. The steps in these isotherms correspond to step-wise formation of 

monolayers and the absence of steps indicates multilayer formation. Type IV and V isotherms 

also show a plateau at a partial pressure below the saturation pressure (P0) of the adsorbate 

gas. This can be explained capillary condensation of gas in the pores due to an increased 

number of Van Der Waals interactions between gas molecules inside the confined space of a 

pore. Desorption of a gas from a material can either be completely reversible (types I, II, III 

and VI) or not fully reversible (types IV and V). This results in hysteresis in the desorption 

isotherm which is associated with capillary condensation.  

Fig 2.1b The IUPAC classification of adsorption isotherms.  
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2.2: Membrane Technology 

Membranes formed from PIMs have many potential applications in industry and two 

important examples are pervaporation and gas separation: 

Pervaporation is a separation process where one side of a membrane is in contact with a feed 

liquid and on other side, a vacuum is applied. The permeate vaporises from the feed liquid 

between the two sides of the membrane and the permeate is obtained as a vapour. This 

process has been used to break the water-alcohol azeotrope in the preparation of anhydrous 

alcohol and saves 60% energy over azeotropic distillation
110

.  

Gas separation membranes have become increasingly more important in industry over the last 

30 years since the company Monsanto launched the first commercial polysulfone “Prism
®
” 

hydrogen separating membrane in 1980
4
. Membranes have since been fabricated from a wide 

range of polymers such as polyacetylenes and polycarbonates
111

. Gas separation membranes 

have been widely used in industry to separate naturally occurring gas mixtures such as carbon 

dioxide from shale gas and industrial separation of nitrogen from air. This process involves a 

high pressure feed gas mixture which is forced through a membrane module that is designed 

to selectively retain one component. Gas separation processes operate with a pressure 

difference of up to 20 atm and the membrane material must capable of withstanding such 

pressures. Dip-coating methods are used to prepare asymmetric membranes that consist of a 

thin layer of the active membrane material supported by a durable a porous structure. For 

example GKSS (Geesthacht, Germany) has fabricated thin-film composite membranes 

consisting of a PIM-1 layer (yellow) on a porous polyacrylonitrile (PAN) support (Fig 

2.2a)
92

. 

  

Fig 2.2a. PIM-1/PAN Thin-Film Composite Membrane of 80 cm width. 
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Typical asymmetric membranes are 50 to 200 μm thick with a 0.1 to 1 μm active membrane 

layer. These asymmetric membranes can then be housed in a membrane module suitable for 

the intended application. There are a number of membrane module designs such as hollow 

fibre and plate/frame modules but the most popular design is the spiral wound membrane 

module (Fig 2.2b
112

). 

   

 

A spiral wound membrane module consists of two asymmetric membrane sheets with a feed 

spacer sandwiched in between. This is then placed in between two sheets of a porous 

collection material and rolled around a perforated collection pipe into a spiral. The feed gas is 

passed down the axis of the module and passes in between the two membranes through the 

feed spacers. The gas then diffuses through the membrane material where it is enriched into 

the porous collection material. The permeate spirals down through the collection material to 

the centre of the module into a perforated collection pipe where the permeate is collected. 

The concentrate and permeate may then be passed into another module in series or in a cyclic 

flow of modules connected in parallel for further enrichment. An example of this technology 

is the UOP Separex™ membrane system in Egypt processing over 550 Million cubic feet per 

day of natural gas (Fig 2.2c
113

). 

   

Fig 2.2b. Construction and Function of a Typical Spiral Wound Membrane Module. 

 

Fig 2.2c. UOP Separex™ membrane system in Egypt. Two of five racks shown (left), A single module (right). 
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2.3: Membrane Theory 

2.3.1: Mass Transport Through Membranes 

The most general definition of a membrane is “A phase or a group of phases that lies 

between two different phases which is physically and/or chemically distinctive from both of 

them and which, due to its properties and force field applied, it is able to control mass 

transport between these phases”
114

. The applied “force field” refers to the driving force that 

causes the permeate to flow through the membrane. This driving force may be a difference in 

pressure, temperature, concentration or electric potential across the membrane
115

. The ability 

of membranes to control mass transport of the permeate facilitates separation of mixtures into 

separate components or enrichment of one of these components. Separation membranes are 

usually solid materials that possess both physical and chemical properties which can be 

predicted solely from the chemical structure of the material
115

. These properties determine 

important characteristics of the membrane such as the membrane lifetime, permeability or 

flux, chemical and thermal stability and the interfacial interactions between the membrane 

and permeate, which lead to the selectivity of the membrane.  

For gases, there are a number mechanisms
116

 through which separation of permeate mixtures 

may be facilitated based on pore size (Fig 2.3.1a).  

 

 

 

 

Fig 2.3.1a. Membrane Separation Mechanisms for Gases. 
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For relatively large pore sizes (0.1-10 μm), gases permeate the membrane by convection flow 

and there is no separation of the permeate mixture.  

For pore sizes of 0.002-0.1 μm, Knudsen diffusion occurs. The pores are large enough to 

accommodate both components of the gas mixture however, there is a difference in the mean 

free path for each component in the mixture based on the size of the molecule. This is due to 

larger molecules colliding with the pore walls with a greater frequency than smaller 

molecules. The transport rate for each component is inversely proportional to the square root 

of the molecular weight
116

 (Graham's law of diffusion) and so smaller molecules (higher 

diffusion coefficient) permeate preferentially. 

If the pore size is extremely small (0.0005-0.002 μm), molecular sieving occurs and 

separation is achieved through size exclusion. The surface pore size of the membrane blocks 

molecules over a certain kinetic diameter access to the pore channels and allows only smaller 

molecules to pass through the membrane. Transport through molecular sieve membranes 

involves both diffusion in the gas phase and diffusion of species adsorbed onto the surface of 

the pore walls (surface diffusion
117

). 

For a membrane fabricated from a dense material such as a polymer, a process first proposed 

in 1866
118

 known as solution-diffusion occurs. Separation is first facilitated by the differential 

solubility of components into the membrane surface from the gas phase on the feed side. 

There is then a difference in the rates of diffusion of each component through the dense 

regions of the membrane down a concentration and pressure gradient to the downstream 

surface (Fig 2.3.1b)
119

. There is a subsequent difference in the ability of components to 

evaporate from the membrane surface into the gas phase on the permeate side due to the 

difference in solubility
111

. This type of sorption obeys Henry's law of solubility
114

 where the 

solubility of a gas in the polymer is directly proportional to the partial pressure of the gas. 

 

Fig 2.3.1b. A gas separation membrane with at 

concentration gradient across the membrane thickness L. 
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Unlike rubbery polymers, the structure of glassy polymers such as PIMs are not homogenised 

and contain a distribution of unrelaxed free volume elements. This results in significant 

deviation from Henry's law such as the dependence of the permeability, solubility and 

diffusion coefficients on permeate concentration, pressure and temperature
120

.  

To explain this difference the dual-mode sorption model was proposed in 1976
121

. The dual-

mode sorption model combines both Henry's law and Langmuir sorption models to explain 

the differences seen in experimental results between rubbery and glassy polymers. The model 

postulates that the permeate gas dissolved in the polymer can be divided into two phases, 

each with different diffusive properties in equilibrium (Fig 2.3.1c).  

 

 

In glassy polymers, permeate dissolves in the bulk polymer (Henry's law type sorption) 

where diffusion may take place and there is also immobilised permeate inside a number of 

transient microvoids distributed throughout the polymer (Langmuir type sorption). The 

number of Langmuir sorption sites is then directly related to the free volume of the polymer. 

Diffusion takes place through a "hopping" type mechanism
119

 where penetrant molecules are 

trapped inside free volume elements until they find enough energy to "hop" into the next free 

volume element. The energy barrier to achieve this depends on a number of factors such as 

the size of penetrant molecule, temperature, concentration, polymer rigidity and the degree of 

the interconnectivity of free volume elements. 

 

 

 

Fig 2.3.1c. Dual-Sorption model showing two sorption modes. 

 



Background Theory 

 

 

 

31 
 

2.3.2: Transport Parameters 

The permeability coefficient P is defined as the ratio between the flux J (volume of the 

permeate passing through a unit area of the membrane per unit time) and its concentration 

gradient ΔC over the membrane of thickness l and is measured in "Barrer" (1 Barrer = 10
-10

 

(cm
3
(STP)/cm s cmHg). 

     
l

J
P

C /
     (2.3.2a) 

The solution-diffusion model postulates that the permeability coefficient P of a gas passing 

through a membrane is the product of the solubility coefficient and the diffusion coefficient.  

SDP      (2.3.2b) 

Where the solubility coefficient S is an equilibrium component and is a measure of the 

volume of dissolved gas per unit volume of polymer per unit pressure (cm
3
 cm

-3
 bar

-1
). The 

diffusion or diffusivity coefficient D is a dynamic component and is a measure of the rate 

which the permeate moves through volume of the porous material (10
-12

 m
2 

s
-1

).  

The selectivity or "permselectivity" (α) is a measurement of the potential gas separating 

ability of the membrane. The ideal selectivity of a gas pair is obtained as the ratio of the 

permeability coefficient for each of the two gases. 

y

x

XY
P

P
     (2.3.2c) 

The selectivity of a membrane has a contribution from both the solubility and diffusion 

coefficients and so the selectivity for a gas pair can be decoupled into solubility-selectivity 

and diffusivity-selectivity:

 

y

x

y

x

XY
D

D

S

S
     (2.3.2d) 

It is customary to report the selectivity values for each gas with respect to the permeability of 

nitrogen (α (Px/PN2)), (α (Sx/SN2)) and (α (Dx/DN2)) as it is usually the least permeable of the 

gases. 

The basis for selectivity lies in the chemical and physical properties of the material from 

which the membrane is fabricated and how the material interacts with different gases. For 

example the addition of polar functional groups to a polymer will increase the interactions 
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between the polymer and the permeate via dipole/dipole or induced dipole moments. This in 

turn will change the order in which different gases permeate the membrane preferentially. 

The selectivity of a membrane can give insight into the mechanisms of separation occurring 

by studying order of permeability coefficients for each gas. 

Molecular sieving type materials are more permeable to gas molecules with smaller kinetic 

diameters (dk(Å)) than to larger diameters and so the order of gas permeabilities are typically: 

He (2.6)>H2 (2.89)>CO2 (3.3)>O2 (3.46)>N2 (3.64)>CO (3.76)>CH4 (3.8)
122

. This type of 

membrane is known as "forward selective". For membranes working under the solution-

diffusion mechanism, the orders of gas permeabilities are typically: 
CO2>H2>O2>He>CH4>CO>N2. This type of membrane is known as "reverse selective". The 

reason for this order stems from the relative differences in solubility and diffusion 

coefficients of the gases. For example, below is a plot (Fig 2.3.2a
123

) of the Lennard-Jones 

collision diameter of a number of gases Vs the solubility and diffusion coefficients for a 

natural rubber membrane. 

 

 

In many cases, as the diameter of the penetrant gases increase, the diffusion coefficients 

decrease. As the diameter of the penetrant gas increases, the "condensability" (critical 

temperature increases) of the gas generally increases, along with the solubility coefficient. 

Using the solution-diffusion model (P = SD), a plot below of the Lennard-Jones collision 

diameter Vs the permeability coefficients for the same natural rubber membrane (Fig 

Fig 2.3.2a. Lennard-Jones Diameter of Gases Vs Solubility & Diffusion 

Coefficients for a Natural Rubber Membrane. 
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2.3.2b
123

) shows the relative permeability of the gases in the order 

CO2>H2>O2>CH4>CO>N2. 

 

 

This trend is seen for a wide range of polymers such as polytrimethylsilylpropyne (PTSMP) 

and polydimethylsiloxane (PDMS) most of which contain a minima for nitrogen which is due 

to combined low solubility and diffusivity
124

.  

For high free-volume rubbery polymers, the solubility selectivities tend to be high and are 

more useful for separating larger permeates such as organic vapours
82

. The rigid nature of 

conventional low free-volume glassy polymers decreases the mobility of gases. The diffusion 

selectivities become dominant and are more useful for separating light gases
82

. Conventional 

low free-volume glassy polymers however, lack the permeability required for practical 

applications. It has been found that attempts to modify polymers to improve the permeability 

leads to a commensurate decrease in selectivity and increasing selectivity tends to decrease 

permeability
125

. This inverse relationship between permeability and selectivity is common for 

all polymers. Lloyd Robeson suggested there was an upper limit for this trade off relation in 

1991
126

. Robeson visually demonstrated this by plotting the selectivity Vs permeability 

transport parameters collected from a large number of polymers in double logarithmic plots 

for a number of binary gas pairs (Fig 2.3.2c
127

). Robeson projected a semi-empirical upper 

limit onto the plot above which no values existed; currently known as the "Robeson (1991) 

upper bound". In 1991 this upper bound represented the maximum performance of known 

Fig 2.3.2b. Lennard-Jones Diameter of Gases Vs Permeability Coefficients for 

a Natural Rubber Membrane. 

 

 



Background Theory 

 

 

 

34 
 

membrane materials and any membrane performing to the upper right of this limit was an 

advancement over the present technology. Over the next 17 years there were a number of 

advancements in membrane technology with the appearance of materials such as PIMs. With 

their ultra-high free-volumes, PIMs combine high selectivities with high permeabilities which 

transcend Robeson's 1991 upper bound. 

 

 

Due to these advancements, Robeson revisited the upper-bound in 2008
127

 and updated the 

plot with a new upper limit known as the "Robeson (2008) upper bound". This is still the 

present day upper limit of membrane performance with few membrane materials performing 

over this upper-bound. In addition to reporting transport parameters for a membrane material 

in literature, it is also very common to communicate the performance characteristics 

graphically in a Robeson Plot to characterise a membrane material. Placing the results of 

permeation tests on the Robeson plot allows comparison of performance to other known 

materials. One factor, among many, that determines if a new membrane material will be a 

viable replacement for industrial separation of gas mixtures such as O2/N2, CO2/CH4, H2/CH4 

and He/H2, is that its performance must circumvent the present day Robeson threshold
126

. 

Fig 2.3.2c. Robeson Plot for H2/N2 Showing Present and Prior Upper-Bound. 
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2.4: Measurement of Transport Parameters 

Low pressure single gas permeation experiments were carried out in a fixed volume/pressure 

increase instrument (Fig 2.4a) by ITM CNR (Calabria, Italy), constructed by GKSS 

(Geesthacht, Germany), a schematic of which is shown in (Fig 2.4b)
128

. This apparatus allows 

determination of all three fundamental transport parameters P, S and D. 

 

 

 

The apparatus consists of a membrane cell in which the membrane is placed and a series of 

valves and pressure sensors which serve to pass a range of gases through the membrane while 

monitoring the pressure changes on one side of the sample. The crucial parts of the setup are 

Fig 2.4a. Fixed volume/pressure increase apparatus used at ITM CNR. 

Fig 2.4b. Schematic diagram of fixed volume/pressure increase apparatus used at ITM CNR 
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placed in a thermostatic chamber which allows measurements at a chosen constant 

temperature.  

The measurement of transport parameters is based on the determination of the pressure 

increase rate of the fixed permeate volume upon exposure of the membrane to the pure gas. 

The system is first evacuated using a two stage rotary vacuum pump for 10-20 min to remove 

dissolved gases and vapours from the membrane and rubber seals. The feed volume is then 

filled with the gas under study and closed off. The experiment is then started by a computer 

which simultaneously opens a valve to expose the membrane to the feed volume while 

monitoring the pressure of the fixed permeate volume. The computer will then plot a 

permeate pressure against time curve (Fig 2.4c
128

). If a closed feed volume is used then the 

feed pressure decreases according to the amount of permeating gas. When the feed volume 

and pressure is much larger than that of the permeate, a constant feed pressure can be 

assumed. For a constant feed pressure, the permeate pressure will increase asymptotically to 

the feed pressure (Fig 2.4c left). 

   

 

At the beginning of the experiment, the permeate pressure/time curve passes through two 

distinct regions (Fig 2.4c right). The first region is known as a "transient state" where there is 

a time-lag from the when the membrane is exposed to the feed volume to when the permeate 

pressure starts to increase into a linear region known as the "steady state". A straight line 

tangent can be extrapolated which obeys the following "quasi steady state condition"
129
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Fig 2.4c. Permeate pressure increase curve (left) and time-lag curve with steady state tangent line (right). 
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Where: Pt is the permeate pressure at time t, P0 the starting pressure, (dP/dt)0 the baseline 

gradient (accounts for the starting pressure and the baseline slope and is normally negligible 

in the case of well evacuated defect free samples), Pf the feed pressure, P the permeability 

coefficient, R the universal gas constant (8.3144 JK
-1

mol
-1

), T the absolute temperature 

(298.15 K), A the exposed membrane area (2.14 cm
2
), Vp the permeate volume, Vm the molar 

volume of the permeating gas at standard temperature and pressure (0 °C and 1 atm) and l is 

the membrane thickness. 

Extrapolation of the tangent line to the time axis gives the time-lag (θ) from which the 

diffusion coefficient (D) can be calculated: 

6

2l
D      (2.4b) 

The permeability coefficient (P) can then be calculated from the steady state pressure 

increase rate: 
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The solubility coefficient (S) can then be calculated assuming the validity of the solution-

diffusion transport mechanism: 

D

P
S      (2.4d) 

It is important to note that the permeabilities and selectivities determined by this method are 

not for "real" gas mixtures since only a single gas is tested per experiment. A real gas mixture 

may behave differently, for example, if a polymer has a high affinity for a certain gas, liquid 

or vapour which causes the membrane to swell, the permeability of other penetrants may be 

affected
130

. Other, more advanced methods may be used to determine gas transport 

parameters for mixed gases such as reverse-phase gas chromatography
131

 although single gas 

permeation measurements provide very useful information for preliminary characterisation of 

membrane materials. Until pilot tests using true mixed-gas feed streams containing real 

impurities such as moisture and hydrogen sulfide are successful, the likelihood of commercial 

application remains limited. 
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Chapter 3: Research Aims 

Incorporation of polar functional groups into gas separation membranes has been known to 

dramatically alter mass transport properties
119, 132, 133

. One avenue of research has focused on 

using amine functionality to increase polymer affinity towards CO2 for carbon capture 

applications. 

Recently in 2014, Budd and co-workers
132

 reported reducing the nitrile groups on PIM-1 to 

primary amines. The result was an increase in CO2 affinity which lowers CO2 diffusion and 

permeability, placing data for H2/CO2 over the present Robeson upper bound. Primary amine 

functionality however, often decreases free volume in porous materials due to hydrogen 

bonding. Polymers containing neutral tertiary amine functionality such as thermally 

rearranged polyimides
134, 135

 (TR polymers) eliminate this effect while maintaining high 

selectivity towards CO2. 

The aim of the research reported in this thesis is to synthesise a number of novel soluble 

polymers of intrinsic microporosity containing tertiary amine functionality. These polymers 

can then be cast into films and their membrane gas transport parameters evaluated by our 

collaborators at The Institute of Membrane Technology (ITM) CNR (Calabria, Italy).  

The synthesis of five classes of tertiary amine polymers was attempted, each containing a 

range of different monomeric units (Fig 3a).  

 

 
Fig 3a General structures of the five classes of polymer reported in this thesis. R1 & R2 are 

moieties contained within a range of different monomers used for this research. 
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Chapter 4: Monomer Synthesis 

While a small number of polymers reported in this thesis are synthesised from monomers 

purchased from commercial sources, the majority were formed from monomers that were 

prepared specifically for the project. The synthetic monomers were based on anthracene, 

ethanoanthracene, phenylindane and spirobisindane. The general synthetic strategy for the 

formation of these monomers was first, formation of the hydrocarbon skeleton, followed by 

post-functionalisation of the preformed units. Depending on the type of polymer in question, 

there are a number different functionalities that the monomers described in this thesis 

possess, all of which are aromatic in nature. The target monomers can be separated into four 

groups by functionality: diamines, tetraamines, dianhydrides, and dicarboxylic acids. A 

number of these monomers are also used for more than one class of polymer. 

All reactions were judged to be complete using thin layer chromatography on silica or 

alumina TLC plates. All compounds were fully characterised to confirm structure and purity 

using melting or boiling points, infrared spectroscopy, proton and carbon nuclear magnetic 

resonance, mass spectrometry and where possible X-ray diffraction crystallography. 

4.1: 1,3,3-trimethyl-1-phenylindane  

 

 

The acid-catalysed dimerisation of α-methyl styrene to form 1,3,3-trimethyl-1-phenylindane 

(1) was based on a modified procedure from literature
136

. Reactive styrene monomers are 

known to undergo violent, autocatalytic self-polymerisation reactions at room temperature
137

. 

To inhibit this reaction, manufacturers add up to 0.002% 4-tert-butylcatechol as an initiator 

scavenger which was removed by filtration through basic alumina. The purified α-methyl 

styrene was then reacted with TFA at room temperature over 10 min by which time the 

reaction was complete. The crude product contained a distribution of products so it was 

purified by distillation under reduced pressure to afford pure 1,3,3-trimethyl-1-phenylindane 

(1) in 73% yield as a colourless liquid that crystallised on standing. 

 

Scheme 4.1a Synthesis of 1,3,3-trimethyl-1-phenylindane. 
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4.2: Spirobisindanes 

3,3,3’,3’-tetramethyl-1,1’-spirobisindane 

 

 

The synthesis of 3,3,3’,3’-tetramethyl-1,1’-spirobisindane (3) was based on a procedure from 

literature
138

. First, 4-methyl-3-pentene-2-one is reacted with benzene using aluminium 

trichloride as a catalyst at 0 ºC. The crude tar-like product was distilled under reduced 

pressure to afford pure 4-methyl-4-benzyl-2-pentanone (2) in 78% yield as a colourless 

liquid.  

The self-condensation reaction of 4-methyl-4-benzyl-2-pentanone (2) using zinc chloride to 

form 3,3,3’,3’-tetramethyl-1,1’-spirobisindane (3) occurs in a spectacular fashion. A 

suspension of zinc chloride and 4-methyl-4-benzyl-2-pentanone (2) were heated to exactly 

180 ºC. At this temperature, a rapid effervescent reaction occurred over a period of about 1 

min and two distinct layers separate. It was found that if the reaction mixture was not 

removed from heat immediately following this reaction, more tar-like impurities were 

formed, decreasing the yield and making purification difficult. It was also found that using 4-

methyl-4-benzyl-2-pentanone without purification resulted in a sluggish reaction that 

required higher temperatures and concluded with diminished yield. The clear top layer was 

extracted with hot n-hexane from which it was recrystallised multiple times to give pure 

3,3,3’,3’-tetramethyl-1,1’-spirobisindane (3) in 21% yield as colourless crystals. It should be 

noted that the structure and formula of this product was assigned incorrectly in literature
138

 

although, a subsequent study
139

 confirmed that 3,3,3’,3’-tetramethyl-1,1’-spirobisindane was 

indeed formed from this procedure. 

 

 

 

 

 

 

Scheme 4.2a Synthesis of 3,3,3’,3’-tetramethyl-1,1’-spirobisindane. 
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3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-spirobisindane 

 

 

The synthesis of 3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-spirobisindane (4) was based on a 

literature procedure for the preparation of substituted 3,3,3',3'-tetramethyl-1,1'-

spirobisindanes
140

. The original literature procedure reports a Friedel-Crafts reaction that 

takes place between benzene or toluene and 2-bromopropene using aluminium tribromide as 

a catalyst to yield 6,6’,7,7’-unsubstituted and 7,7’-dimethyl-substituted spirobisindanes. It 

was found that replacing the benzene or toluene used in the original procedure with o-xylene, 

that the 6,6’,7,7’ tetramethyl-substituted spirobisindane can be produced. A reaction time of 

72 h at 60 ºC was required for a complete reaction, yielding a crude dark-red oil. Purification 

of this oil using column chromatography and subsequent recrystallisation of the first eluted 

fraction afforded pure 3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-spirobisindane (4) in 32% yield as 

colourless crystals. The authors of the original procedure recommend using freshly distilled 

2-bromopropene however, it was found that this only marginally improves yields. 

4.3: Ethanoanthracenes 

4.3.1: Ethanoanthracene Compounds Derived from Anthracene 

9,10-dihydro-11,12-cis(trans)dichloro-9,10-ethanoanthracene  

 

 

The synthesis of 9,10-dihydro-11,12-cis(trans)dichloro-9,10-ethanoanthracene (5) was based 

on a modified procedure from literature
141

. The original procedure involved heating cis or 

trans 1,2-dichloroethylene and anthracene in a sealed glass tube under pressure to 200-210 ºC 

for 24h. Opting for a safer procedure, the Diels-Alder reaction was conducted with a cheaper 

1,2-dichloroethylene cis/trans (1:1) mixture and using a microwave reactor, set to vent over 

200 PSI. It was found that the reaction mixture did not easily reach the set temperature of 215 

Scheme 4.2b Synthesis of  3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-spirobisindane. 

 

 

 

 

Scheme 4.3.1a Synthesis of  9,10-dihydro-11,12-cis(trans)dichloro-9,10-ethanoanthracene. 
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ºC, even when setting the microwave to the maximum 300 W fixed power. After trial and 

error it was found that the maximum possible scale of reaction on a power of 300W was 

using 2.00g anthracene and 3.0 ml 1,2-dichloroethylene. The end point of the reaction was 

found to be after 5 h but unreacted anthracene remained in the mixture that was not possible 

to remove using column chromatography. The crude mixture was then reacted with furan-2,5-

dione (maleic anhydride) to convert unreacted anthracene into the more polar Diels-Alder 

adduct. The crude mixture was then subjected to column chromatography and subsequent 

recrystallisation of the first eluted fraction afforded pure 9,10-dihydro-11,12-

cis(trans)dichloro-9,10-ethanoanthracene (5) in 50% yield as colourless crystals. 

 

9,10-dihydro-9,10-ethanoanthracene 

 

 

The route from 9,10-dihydro-11,12-cis(trans)dichloro-9,10-ethanoanthracene (5) to 9,10-

dihydro-9,10-ethanoanthracene (7) was partially based a procedure from literature
141

. The 

first step involved dehalogenation using an excess of sodium metal in refluxing anhydrous 

isopropyl alcohol (IPA). It was found that the starting material demonstrated poor solubility 

in IPA alone and so an equal quantity of anhydrous THF was required to achieve total 

dissolution. The reaction was judged to be complete after the sodium had been consumed and 

after a single recrystallisation afforded pure 9,10-dihydro-9,10-ethenoanthracene 

(dibenzobarrelene) (6) in 71% yield as colourless crystals. From the same literature 

procedure, the second step involved hydrogenation of the bridge alkene using hydrogen gas 

and platinum oxide. This was attempted without the use of a dedicated hydrogenation 

apparatus. Instead, hydrogenation was attempted using a hydrogen filled balloon using 

catalysts such as platinum oxide, palladium on carbon and Raney nickel, however all 

attempts failed to produce a detectable quantity of alkane. Another attempt using the catalytic 

decomposition of hydrazine monohydrate over Raney nickel was however, much more 

successful, producing the pure desired product 9,10-dihydro-9,10-ethanoanthracene (7) 

without need for purification in a quantitative yield as colourless crystals. 

 

Scheme 4.3.1b Synthesis of 9,10-dihydro-9,10-ethanoanthracene. 
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Diels-Alder Adducts of Anthracene with Diethyl Fumarate and N-Methylmaleimide 

 

 

Both Diels-Alder adducts were synthesised based on a procedure from literature
142

. Both 

adducts 9,10-dihydro-9,10-ethanoanthracene-11,12-trans-diethyl ester (8) and N-methyl-

9,10-dihydro-9,10-ethanoanthracene-11,12-cis-dicarboximide (9) were formed by the Diels-

Alder reaction of anthracene with diethyl fumarate and N-methylmaleimide respectively 

using aluminium trichloride as a catalyst. It was found that the diethyl fumarate adduct 

reaction was complete within 6 h and with N-methylmaleimide, 16 h at room temperature. It 

was found that increasing the reaction temperature to increase the rate of both reactions had a 

severe detrimental effect to the purity of the crude products. Both reactions at room 

temperature produced colourless oils and after crystallisation from methanol, afforded 

colourless needle-shaped crystals in 83% and 60% yields of the diethyl fumarate (8) and N-

methylmaleimide (9) adducts respectively. 

 

4.3.2: Ethanoanthracene Compounds Derived from Diols 

 

 

The synthesis of ethanoanthracene compounds from diols was based on a modified procedure 

from literature
143

 (Scheme 4.3.2a). Bromobenzene was first reacted with magnesium turnings 

under reflux to form a Grignard reagent. Once the magnesium turnings had been consumed, 

2,5-hexanedione was added under reflux and after an aqueous work-up, 2,5-diphenylhexane-

Scheme 4.3.1c Synthesis of 9,10-dihydro-9,10-ethanoanthracene-11,12-trans-diethyl ester 

and N-methyl-9,10-dihydro-9,10-ethanoanthracene-11,12-cis-dicarboximide. 

 

 

 

 

Scheme 4.3.2a Synthesis of 9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene. 
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2,5-diol was isolated. The diol was then reacted with aluminium trichloride in a double 

electrophilic aromatic substitution reaction to form 9,10-dimethyl-9,10-dihydro-9,10-

ethanoanthracene. This procedure was used to form a number of aromatic-substituted diols 

and ethanoanthracenes summarised in Table 4.3.2a. 

Table 4.3.2a 
Bromo- 
Reagent 

Diol Derivative % Yield Ethanoanthracene 
Derivative 

% Yield 

 

  

 

65 
 

 

36 

 

  

 

86 
 

 

37 

 

  

 

81 
 

 

0 

 

  

 

95 
 

 

18 

 

 
 

 

 

91  

 

 

1.4 

 

  

 

 

77  

 

 

0 

 

  

 

 

59 
 

 

 

0 
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Synthesis of the diol compounds (10-16) was relatively straightforward, following the general 

Grignard method however, cyclisation of the diols to form ethanoanthracenes was more 

challenging. The original method reported a 59% yield (compound 17) along with 40% of 

isomeric tetrahydrofurans but it was found that yields can vary greatly between batches. An 

effort was made to optimise the procedure using various solvents, Lewis and Brønsted acids 

however, the only modifications that offered an improvement was using toluene instead of 

benzene and a larger scale reaction. One contributing factor to the low yield is the formation 

of a number of unidentified non-polar compounds (no tetrahydrofurans were isolated) that 

possess the same retention factor as the desired product in column chromatography of the 

crude tar-like product. This fraction obtained from column chromatography takes the 

appearance of a light green oil and the yield depends on the ability of the desired product to 

crystallise out from a solution of this oil and a solvent. With these modifications, the highest 

yield achieved was 36% for compound 17 from which a crystal structure was obtained (Fig 

4.3.2a). 

  

 

Compound 18 can be theoretically formed from either diol 11 or 12 however, compound 18 

failed to crystallise when diol 12 was used (possibly due to isomer formation). When diol 11 

was used, compound 18 was isolated in 37% yield from which a crystal structure was 

obtained (Fig 4.3.2b) 

  

Fig 4.3.2a  Crystal structure of  compound 17 (left), side view illustrating dihedral angle (middle) and unit cell (right). 

 

 

 

 

Fig 4.3.2b  Crystal structure of  compound 18 (left), side view illustrating dihedral angle (middle) and unit cell (right). 
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Compound 19 was consistently formed in a lower 18% yield, possibly due to the four methyl 

groups increasing the solubility during recrystallisation. Compound 20 was isolated in an 

extremely poor yield of 1.4% which is again possibly due to methyl groups increasing 

solubility and also isomers that disrupt the crystallisation process. A number of solvents were 

tested in the crystallisation procedure for compound 20 however, only acetonitrile 

successfully produced crystals after one week. 

Cyclisation of diols 15 and 16 failed to produce compounds 21 and 22 respectively, although 

an unexpected compound (23) was isolated from the reaction involving diol 15 that may 

provide insight into the side products that have not yet been identified (Fig 4.3.2c).  

 

 

The formation of a five instead of a six-membered ring may be due to the elimination of an 

alcohol to form an alkene which is then attacked by the benzene ring (Scheme 4.3.2b). The 

second step involves a formal reduction of an alcohol to an alkane. This step is very difficult 

to explain under the reaction conditions used, especially when a second alcohol elimination 

seems to be much more likely. 

 

Fig 4.3.2c Crystal structure of  compound 23 (left) and unit cell (right). 

 

 

 

 

Scheme 4.3.2b  Possible mechanism (partial) for the formation of compound 23. 
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4.4: Carboxylic Acid Compounds 

 

 

The oxidation of aromatic methyl groups to carboxylic acids using potassium permanganate 

was based on a procedure from literature
144

. The corresponding dimethyl or tetramethyl 

compound was reacted with potassium permanganate, using an equal mixture of pyridine and 

deionised water as a solvent system. It was found that approximately 10 equivalents of 

potassium permanganate per methyl group were required to fully oxidise the starting 

material. The pyridine and manganese dioxide were removed and the residue was then 

neutralised with hydrochloric acid to precipitate the carboxylic acid. It was found that yields 

were adversely affected if the pyridine was not completely removed, possibly due to the 

formation of water soluble protonated pyridine/carboxylate salts. This procedure was used to 

form three carboxylic acids summarised in table 4.4a. 

 

Table 4.4a 

Aromatic Methyl Compound Carboxylic Acid Derivative % Yield 

 
 

 

92 

 
 

 

83 

  

 

97 

 

 

Scheme 4.4a Synthesis of carboxylic acid compounds. 

. 
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4.5: Dianhydride Compounds 

 

 

The formation of 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetracarboxyl-9,10-ethanoanthracene 

(27) and 3,3,3’,3’-octamethyl-6,6’,7,7’-tetracarboxyl-1,1’-spirobisindane (28) was achieved 

by refluxing the corresponding tetra-carboxylic acid in acetic anhydride for 12 h. Both 

reactions produced impure crude products that required a number of recrystallisations to 

achieve pure products in 46% and 89% yields for compounds 27 and 28 respectively. It was 

found that removal of the acetic acid formed in the reaction by distillation did not improve 

the purity of the crude products or increase isolated yields. 

4.6: Dinitro Compounds 

 

 

 

The synthesis of all dinitro compounds was based on a procedure from literature
145

 that 

reported a nitration reaction using a metal nitrate and trifluoroacetic anhydride to form the 

nitrating agent trifluoroacetyl nitrate. A number of common nitration methods were tested, 

many of which produced moderate yields and impurities that were difficult to separate. The 

procedure from literature
145

 however, afforded higher product yields with only small 

quantities of impurities that could be easily separated. This method was used to nitrate a 

number of hydrocarbon substrates summarised in table 4.6a and all were obtained as 

regioisomers except compound 34. 

Scheme 4.6a Synthesis of dinitro compounds and  formation of trifluoroacetyl nitrate from trifluoroacetic 

anhydride and potassium nitrate. 

. 

 

 

 

 

Scheme 4.5a Synthesis of dianhydride  compounds. 

. 
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Table 4.6a 

Substrate Dinitro Derivative % Yield 

  

 

71 

  

 

91 

  

 

93 

 
 

 

99 

  

 

92 

  

 

98 

 

  

 

63 

  

 

100 

  

 

100 
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This nitration reaction can be carried out in a number of solvents although, it was found that 

nitrations in acetonitrile were more homogeneous due to greater solubility of the inorganic 

salts. The nitration may also be carried out using a number of nitrate salts, however 

potassium nitrate was chosen because it was the least hydroscopic of the most common 

nitrates. It was found that heating the reaction to 60 °C to increase the reaction rate produces 

a larger quantity of impurities and lowers yields. For this reason, all reactions were carried 

out at room temperature over 24 h. The crude products were then purified by column 

chromatography. The polar impurities were retained at the baseline of the silica, simplifying 

the purification procedure to a filtration through silica, affording pure products. 

 

4.7: Tetranitro Compounds 

 

 

The synthesis of 6,6’,7,7’-tetranitro-3,3,3’,3’-tetramethyl-1,1’-spirobisindane (38) and 9,10-

dimethyl-9,10-dihydro-2,3,6,7-tetranitro-9,10-ethanoanthracene (39) was based on a 

procedure from literature
146

. It was found that nitrations using 100% "fuming" nitric acid 

alone produced a mixture of di and tri-nitrated products and increasing the temperature of the 

reactions to 80 ºC produced low yields of tetra-nitrated products. Yields were substantially 

increased using a nitration mixture consisting of equal quantities of nitric acid (100%) and 

sulfuric acid (98%). The nitration procedure was conducted in three stages. First, the addition 

of the substrate to the nitration mixture produced a vigorous reaction that required cooling at 

0 ºC. The vigorous reaction was allowed to subside at room temperature and the temperature 

was then raised to 80 ºC for 3h to complete the nitration. The crude products contained major 

tetra-nitrated products with minor tri-nitrated products. Increasing the reaction times did not 

improve yields any further. The tetra-nitrated fractions were separated using column 

Scheme 4.7a Synthesis of tetranitro derivatives. 

. 
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chromatography to give pure products in 91% and 79% yields for compounds 38 and 39 

respectively and for the latter, a crystal structure was obtained (Fig 4.7a). 

  

 

 

4.8: Diamino Compounds 

 

 

 

The synthesis of all diamino compounds was based on a modified procedure from 

literature
147

. A number of common methods for the reduction of aromatic nitro groups to 

amines were tested but it was found that reduction using hydrazine monohydrate and a 

catalytic quantity of Raney nickel produced the highest purity amines. The reduction may be 

carried out at room temperature, however it may also be conducted under reflux, allowing a 

shorter reaction time. An important factor that influences the product purity is that the 

reduction must be conducted under an inert atmosphere using solvents that have been 

thoroughly deoxygenated. It was found that the choice of solvent was also an important factor 

that determines the purity of the product, with some derivatives changing colour during the 

reaction in certain solvents. The choice of solvent (ethanol, tetrahydrofuran or diethyl ether) 

for each derivative was made by trial and error.  

Aromatic amines are known to be air sensitive
146

 and it was found that the diamines 

described in this thesis were all sensitive when dissolved (changing from colourless to a dark 

yellow, brown or pink colour) but are relatively stable in the solid state. All diamine 

monomers were found to be pure by NMR and were used without purification. This method 

was used to form a number of aromatic diamino derivatives, all of which were obtained in 

quantitative yields summarised in Table 4.8a. 

 

Fig 4.7a Crystal structure of  compound 39 (left), side view illustrating dihedral angle (middle) and unit cell (right). 

 

 

 

 

Scheme 4.8a Synthesis diamino derivatives from dinitro compounds. 
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Table 4.8a 

Dinitro Derivative Diamino Derivative 
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2,6-diaminoanthracene 

 

The reduction of 2,6-diaminoanthraquinone to 2,6-diaminoanthracene (48) using zinc was 

based on a procedure from literature
148

. The reaction of 2,6-diaminoanthraquinone with zinc 

mesh in aqueous sodium hydroxide was achieved by refluxing under an inert atmosphere for 

48 h. Ethanol was added both to increase the solubility of the starting material and to inhibit 

excessive foaming due to the formation of hydrogen gas. Purification of the crude brown 

product was found to be problematic due to low solubility in a range of solvents, although the 

product appeared to be moderately soluble in acetone, leaving a sodium zincate residue that 

could be removed by filtration. The crude product was then subjected to soxhlet extraction 

over one week using acetone under a nitrogen atmosphere. Recrystallisation of the extract 

afforded the desired product 2,6-diaminoanthracene in 28% yield as bright yellow crystals. 

The product was found to be extremely air sensitive. 

 

9,10-dihydro-2(3),6(7)-diamino-11,12-cis(trans)dichloro-9,10-ethanoanthracene 

 

Synthesis of 9,10-dihydro-2(3),6(7)-dinitro-11,12-cis(trans)dichloro-9,10-ethanoanthracene 

(49) was achieved using tin (II) chloride which was generated in situ by the reaction between 

granulated tin metal and concentrated hydrochloric acid. Ethanol was added to improve the 

solubility of the starting material and was found to substantially increase the rate of reaction. 

Although the acidic environment protects the amine product from oxidation, the reaction was 

conducted under an inert environment. With the addition of granulated tin metal, a vigorous 

reaction occurred immediately and after 30 min the colourless mixture changed to a light 

yellow colour and then back to a colourless homogeneous solution after 16h. After removal 

of the ethanol from the solvent system, the mixture was neutralised with sodium hydroxide 

Scheme 4.8b Synthesis of 2,6-diaminoanthracene. 

 

. 

 

 

 

 

Scheme 4.8c Synthesis of 9,10-dihydro-2(3),6(7)-diamino-11,12-cis(trans)dichloro-9,10-ethanoanthracene. 
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solution to precipitate the freebase amine. Since the freebase amine was found to be air 

sensitive, the product was dried under a stream of nitrogen gas. The precipitate was washed 

with tetrahydrofuran to extract the product from residual tin salts (SnO.H2O and NaSn(OH)3). 

This procedure afforded pure 9,10-dihydro-2(3),6(7)-diamino-11,12-cis(trans)dichloro-9,10-

ethanoanthracene (49) as a colourless powder in a quantitative yield 

 

4.9: Tetraamine Hydrochloride Salts 

 

 

 

Aromatic tetraamines are exceptionally air and light sensitive so are commonly synthesised 

as salts to protect the amine groups from oxidation
146

. The synthesis of 6,6’,7,7’-tetraamino-

3,3,3’,3’-tetramethyl-1,1’-spirobisindane hydrochloride (50) and 9,10-dimethyl-9,10-dihydro-

2,3,6,7-tetraamino-9,10-ethanoanthracene hydrochloride (51) was based on a procedure from 

literature
149

. As with the previous procedure, the tetranitro derivatives were reduced to amine 

hydrochloride salts by tin (II) chloride generated in situ under a nitrogen atmosphere. A 

vigorous reaction occurred immediately with the addition of tin and after 30 min the 

colourless mixture changes to a dark orange colour and then back to a colourless 

homogeneous solution after 16 h. Apart from the colour change, this procedure differs from 

the previous, where cooling the reaction back to room temperature resulted in the complete 

precipitation of the corresponding tetraamine salt. This salts were found to be heat sensitive 

when wet and so the products were dried under a stream of nitrogen gas. This procedure 

afforded the pure tetraamine salts 50 and 51 in 97% and 99% yields respectively. Both salts 

were found to be stable at room temperature for extended time periods. 

 

 

Scheme 4.9a Synthesis of tetraamine hydrochloride salts from tetranitro compounds. 
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4.10: Tetraamino Compounds 

 

 

The freebase amines 6,6’,7,7’-tetraamino-3,3,3’,3’-tetramethyl-1,1’-spirobisindane (52) and 

9,10-dimethyl-9,10-dihydro-2,3,6,7-tetraamino-9,10-ethanoanthracene (53) were formed by 

the neutralisation of the corresponding hydrochloride salt. The hydrochloride salts were 

found to be highly soluble in water from which the freebase amines were precipitated by the 

addition of sodium hydroxide solution. It was found that deoxygenation of the deionised 

water was not a necessity due to the freebase amine being directly formed as a solid, 

however, it was decided that the use of a deoxygenated solvent would be prudent. Due to the 

air sensitivity of the products, the precipitates were dried under a stream nitrogen gas to 

afford the desired freebase tetraamines in quantitative yields. The tetraamines were found to 

be extremely unstable when dissolved in a solvent (changing to a red colour within 1 h) but 

were found to be relatively stable in the solid form for up to a week.  

 

4.11: Diamine Hydrochloride Salts 

 

 

As previously mentioned, the diamines reported in this thesis were found to be unstable if 

stored for extended periods of time. Diamines 40 and 43 were converted to 6,(7)-amino-

Scheme 4.11a Synthesis of diamine hydrochloride salts. 

 

 

 

 

Scheme 4.10a Synthesis of freebase tetraamines from tetraamine hydrochloride salts. 
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1,3,3-trimethyl-1-(4-aminophenyl)indane hydrochloride (54) and 9,10-dimethyl-9,10-

dihydro-2,6(7)-diamino-9,10-ethanoanthracene hydrochloride (55) respectively to test if the 

salts were air stable and also if hydrochloride salts could be used in place of freebase amines 

in Tröger's base polymerisations. The hydrochloride salts were obtained by dissolving the 

corresponding diamine compound in deoxygenated diethyl ether and passing a stream of dry 

hydrogen chloride gas (generated from calcium chloride and concentrated hydrochloric acid) 

through the solution to form a white precipitate. The precipitates were found to be heat 

sensitive when wet and so the products were dried under a stream of nitrogen gas to afford 

pure hydrochloride salts 54 and 55 in quantitative yields. Both salts were found to be stable 

under ambient conditions but the salts appeared to be moderately hydroscopic. 

 

4.12: 9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene trifluoroacetate 

 

 

As for the previously described diamine hydrochloride salts, diamine 43 was also converted 

to the trifluoroacetate salt to test stability and possible use in Tröger's base polymerisations. 

The trifluoroacetate salt was obtained by the addition of a stoichiometric quantity of 

trifluoroacetic acid to a solution of diamine 43 in deoxygenated diethyl ether to form a yellow 

precipitate. The trifluoroacetate salt was found to be heat sensitive when wet and so the 

precipitate was dried under a stream of nitrogen gas to afford the desired product 9,10-

dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene trifluoroacetate (56) as a 

yellow powder in a quantitative yield. The trifluoroacetate salt was found to be stable under 

ambient conditions however, the salt was found to be extremely hydroscopic, forming a 

liquid after two weeks. The salt was also found to show instability towards heat, 

decomposing at 62-63 ºC. 

 

 

 

 

 

Scheme 4.12a Synthesis  of 9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene trifluoroacetate. 
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Chapter 5: Polymer Synthesis 

All polymers reported in this thesis were synthesised with the intention of casting defect-free 

films, durable enough for membrane gas permeation experiments. Formation of such a film 

can be a challenging undertaking. The polymer must first be soluble, pre-disposed to film 

formation and free of insoluble cross-linked particles. Generally, minimum molecular 

weights of approximately 40-50 Kg mol
-1

 are required to form self-standing, flexible PIM 

films. Low molecular weight polymers typically form fragile and discontinuous films. The 

presence of oligomeric material in high molecular weight samples can cause films to become 

brittle. All procedures were optimised with a view to producing high molecular weight 

soluble polymers without the formation of insoluble cross-linked material. Polymer solubility 

was tested in a range of common solvents such as acetone, acetonitrile, chloroform, DCM, 

DMAc, DMF, DMSO, hexane, NMP, THF and toluene. Purification of polymer samples was 

achieved using a re-precipitation procedure involving the addition of a polymer solution into 

a solvent in which the polymer shows poor solubility. The higher molecular weight polymer 

fraction precipitates as a solid or gel while the solvent retains the more soluble lower 

molecular weight fraction. This procedure may be repeated as needed. 

Non-absolute molecular weights (Mn = number average, Mw = weight average) of polymer 

samples were determined by gel permeation chromatography (GPC) calibrated against 

polystyrene standards. Since the structure of PIMs are by definition more rigid and disordered 

than polystyrene, GPC which correlates hydrodynamic volume, may over-estimate the 

molecular weight of PIM samples. GPC can also provide an indication of the distribution of 

molecular weights within a polymer sample known as the polydispersity index (Mw/Mn). 

Visual inspection of the peaks in a GPC trace may also reveal the presence of impurities and 

oligomeric material. All polymer samples were fully characterised to confirm structure and 

purity using FTIR spectroscopy, thermal gravimetric analysis (TGA) and nuclear magnetic 

resonance (
1
H & 

13
C). Analysis of low molecular weight oligomeric material removed from 

crude polymer samples by acetone washing and re-precipitation procedures using MALDI-

TOF may also provide additional information. A MALDI spectrum may reveal the presence 

of oligomers of different chain lengths, differing by multiples of the repeat monomeric unit. 

The mass of the individual chains can also reveal if the structures are linear (containing end 

groups) or cyclic in nature, which can provide insight into the polymerisation reaction itself.
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Chapter 6: Tröger's Base Polymers 

6.1: Tröger's Base 

Tröger’s base (TB) was first isolated by the German chemist Julius Tröger in 1887 while 

studying an acid mediated reaction of p-toluidine with formaldehyde
150

 (Scheme 6.1a). 

 

Tröger isolated a basic compound with the formula C17H18N2 but failed to elucidate the true 

structure. The correct structure was assigned in 1935 by M. A. Spielman
151

 and confirmed 

almost 100 years after its discovery by single crystal X-ray diffraction in 1986
152

. TB is well 

known for containing two stereogenic nitrogen atoms in its rigid twisted V-shaped structure 

(Fig 6.1a
153

). Enantiomers containing stereogenic N-centres often cannot be resolved due to 

rapid inversion at room temperature but the rigid TB structure is an exception to this rule as 

inversion is prevented by ring strain
154

.  

  

TB was initially estimated to be only weakly basic
155

, however, a study on the hydrogen 

bonding acceptor strength in 2004 reported that TB is strongly basic compared to other 

aromatic amines (pKHB(N) = 1.15)
156

. The relatively high basicity is thought to be due to the 

rigid structure forcing the nitrogen lone pairs into an orientation where there is little orbital 

overlap with the connected aromatic ring system and hence conjugation is disrupted
157

. The 

basic nature of TB has recently been exploited in heterogeneous catalysis
158, 159

 and also 

suggests an opportunity for use in CO2 capture materials, where basic amine functionality has 

demonstrated an increased affinity for CO2
160

. The rigid bicyclic shape of TB presents an 

attractive unit to incorporate into a PIM as a site of contortion and facilitates the 

incorporation of basic amine functionality. In their neutral form, the tertiary amines also 

ensure hydrogen bonding does not occur, which would otherwise result in a reduced surface 

area of the material. 

Scheme 6.1a Synthesis of Tröger's Base. 

 

 

 

Fig 6.1a MMFFs-Optimized geometry of the two enantiomers of Tröger's base (left), overhead view (right). 
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Since its discovery, a number of methodologies have been reported for TB synthesis, all of 

which remain analogous to the original procedure
157

. An aromatic amine derivative is reacted 

with a "methylene supplier" under acidic conditions to form TB. The "methylene supplier" is 

a synthetic equivalent of methylene such as formaldehyde
150

 or a methylene precursor such as 

paraformaldehyde
161

, hexamethylenetetramine
162

, and dimethoxymethane
163

. An acid, such as 

hydrochloric acid
150

, methanesulfonic acid
164

 and trifluoroacetic acid
162

, serves as a solvent as 

well as a catalyst for the formation of the "methylene supplier" and TB. The reaction takes 

place via a mechanism proposed by Wagner
165, 166

 and Farrar
167

 (Scheme 6.1b) that is 

supported by Eberlin and Coelho
168

 who studied the reaction intermediates using mass 

spectrometry. A number of by-products are known to form, one of which is of interest to this 

research
157

.  

 

 
 

Scheme 6.1b Mechanism of Tröger's Base formation proposed by Wagner and Farrar using 

dimethoxymethane as an example of a methylene precursor and a confirmed by-product. 
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6.2: Tröger's Base Polymerisation 

Early attempts within our research group (Dr. Mariolino Carta) to incorporate preformed TB 

units into PIMs using dibenzodioxane chemistry did not give polymers with satisfactory film 

forming properties unless only small percentages of TB units were used in co-polymers. A 

different approach however, using TB formation as the linking reaction between monomers 

in a polymerisation was much more successful. Replacing p-toluidine with a “dianiline”, as 

the starting material in Tröger’s base formation, a novel polymerisation reaction will result 

(Scheme 6.2a).  

 

Previous work within our research group (now patented
169

) has determined that the highest 

molecular weight polymers are formed when dimethoxymethane is used as a methylene 

precursor and trifluoroacetic acid (TFA) is used both as the acid catalyst and solvent. 

Comparing more recent work with research group members has led to the conclusion that a 

general procedure is not adequate to satisfy the requirements of all monomers and the 

polymerisation of each monomer must be optimised individually. The reasons for this will be 

discussed in specific cases later in this chapter. We have however, agreed on a general 

procedure that is a good starting point when dealing with new monomers and produces high 

molecular weight polymers in the majority of cases.  

A typical procedure is as follows: One equivalent of a pure (determined by NMR) aromatic 

diamine is mixed with five equivalents of dimethoxymethane (two equivalents excess) and 

cooled to ice temperature. TFA (approximately 10 ml per gram of monomer) is then slowly 

added drop-wise over 30 minutes. In some cases, if the addition is slow enough a gel will 

form that dissolves with the addition of more TFA. This mixture is then stirred at room 

temperature under a static inert atmosphere until the solution achieves the desired viscosity 

(determined arbitrarily by the impulse response of a magnetic stirrer bar to changes in speed). 

At this time the colour of the solution will typically change to an orange or dark red colour. 

The mixture is then slowly poured into aqueous ammonium hydroxide solution to quench the 

reaction and precipitate the polymer (Fig 6.2a) as an amorphous solid. The polymer is filtered 

and washed with acetone to remove oligomeric material and then purified by a re-

precipitation procedure.  

Scheme 6.2a Synthesis of Tröger's Base polymers. 
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Optimisation of a TB polymerisation has so far been a challenging undertaking of trial and 

error. The polymerisation may be optimised by varying concentration and rate of TFA 

addition. If a mixture fails to become viscous in a reasonable time (more than five days), it is 

usually due to an inadequately low concentration and the product is formed as low molecular 

weight linear and cyclic oligomers. In many cases, a slightly higher concentration or a slower 

TFA addition rate can result in the formation of insoluble "jelly" like particles or a "rubber" 

like material at the end point of the polymerisation. It is likely that the insoluble products are 

the result of cross-chain reactions from which a number the reactive intermediates proposed 

in Scheme 6.1b may be responsible. TB polymerisations appear to be highly sensitive to 

changes in concentration and the rate of TFA addition. In extreme cases, by changing the 

TFA addition time from 30 to 40 minutes for example, a polymerisation can change from a 

low viscosity liquid to a rubbery solid in a matter of seconds without warning at an 

unpredictable time from the start of the reaction. For a select few cases however, 

polymerisations can be relatively predictable, yielding soluble polymers with repeatable 

molecular weights and surface areas.   

There has so far been limited use of TB as a component in polymer architecture
159, 170

 but the 

synthesis of TB oligomers was reported recently in 2012, that feature a small number of 

successive TB links between benzene units
171

. Previous to the research described in this 

thesis, there were no reports on the use of TB formation as a polymerisation reaction. The 

following sections of this chapter will discuss the synthesis and properties of a number of 

novel examples from this new class of microporous polymers. 

Fig 6.2a TB polymerisation of DMEA.TB (left), precipitation into NH4OH solution (middle & right). 
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6.3: Tröger's Base Polymers from Synthetic Monomers 

6.3.1: DMEA.TB 

DMEA.TB was synthesised in 76% yield from the TB polymerisation of 9,10-dimethyl-9,10-

dihydro-2,6(7)-diamino-9,10-ethanoanthracene at a concentration of 8.33 ml of TFA per 

gram of monomer over 48 h (Scheme 6.3.1a) and was isolated as a white powder. 

 

Thermal gravimetric analysis shows the polymer is stable up to 260 °C with an initial 10% 

decrease in mass, consistent with the loss of an ethylene fragment from the ethanoanthracene 

unit via a retro Diels-Alder reaction
172

. Differential scanning calorimetry did not reveal the 

presence of a glass transition under its decomposition temperature. 

Analysis of the acetone washings from the crude polymer using MALDI-TOF revealed 

multiples of the presumed polymeric repeating unit (C21H20N2) (Fig 6.3.1a). The values 

obtained show the presence cyclic oligomers from dimers to pentadecamers with dimers, 

trimers and hexamers being particularly favoured. Ring strain resulting from a hexameric unit 

suggests either a twisted cyclic structure or that of a catenane (two interlocked trimer rings). 

 

Scheme 6.3.1a Synthesis of DMEA.TB. 

 

 

 

Fig 6.3.1a MALDI-TOF spectrum of acetone soluble oligomers of DMEA.TB showing the repeating 

unit of the polymer resulting from cyclic oligomers and a catenane hexamer is illustrated. 
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Nitrogen adsorption shows DMEA.TB has an unusually high BET surface area of 1028 m
2
/g 

which is the highest recorded for any soluble polymer to date. This can be attributed to the 

extreme structural rigidity of both the ethanoanthracene and the TB linking units. Both 

structures also host a site of contortion that impose a series of kinks into the stiff polymer 

chain (Fig 6.3.1b
173

). 

 

It was found by varying the polymerisation concentration, that while it is certainly possible 

for DMEA.TB to cross-link, it is more resistant to cross-linking than other monomers. This is 

likely due to the bridgehead methyl groups sterically hindering electrophilic attack of the 1,4 

and 5,8 aromatic positions from reactive TB intermediates. This allows the formation of a 

high molecular weight polymer (GPC: Mn = 40,700, Mw = 155,800) without insoluble gel 

formation. DMEA.TB was found to have exceptional film forming properties and a number 

of films were formed for membrane gas permeation studies (Fig 6.3.1c). 

 

 

 

Before the first permeation measurements were carried out on a new class of polymer, it was 

important to determine if TB polymers respond to methanol treatment in the same way as 

other PIMs and if methanol is indeed the best solvent to cancel membrane history. A film was 

cut into small samples, separately treated with a range of solvents for 2 hours and dried under 

vacuum at 25 °C for 2 hours. These treatments were designed to reproduce those typically 

Fig 6.3.1b Molecular model of DMEA.TB illustrating its highly contorted and rigid polymer chain. 

 

 

 

Fig 6.3.1c An optically clear chloroform-cast film (10 cm x 181 μm) of DMEA.TB, through which is 

visible its molecular structure printed on a piece of paper. 
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used before membrane permeability tests at ITM. One sample was left untreated (as cast) and 

another was dried at 120 °C for 6 hours in a vacuum oven to remove all traces of solvent for 

comparison. Each of the samples were then assessed for solvent content using TGA (Fig 

6.3.1d). 

 

 

The results show that the casting solvent (chloroform) is held tenaciously by the membrane 

and is only fully removed by heating to near the decomposition temperature of the polymer. 

Ethanol and diethyl ether effectively remove the casting solvent but are also both held 

strongly by the membrane, being fully removed at ~170 °C and ~ 200 °C respectively. 

Methanol also effectively removes casting solvent but is however easily removed by heating 

to just ~80 °C. This study confirms that like other PIMs, methanol is the best solvent to be 

used for cancelling membrane history and conveniently allows direct permeability 

comparisons with other PIMs. With this information in hand, researchers at ITM conducted 

permeability experiments using a number of membranes: untreated 178 μm (As cast), 

methanol treated 181 μm (expanded from 178 μm with methanol swelling), a thinner 95 μm 

membrane (treated with methanol) and the same methanol treated 181 μm membrane aged for 

24 hours. The calculated transport parameters for DMEA.TB are shown in table 6.3.1a along 

with PIM-1 data (120 μm methanol treated, collected at ITM) for comparison. 

 

Fig 6.3.1d TGA of DMEA.TB membranes after different solvent and post solvent treatments. 
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Table 6.3.1a :DMEA.TB Membrane Permeability Measurements 

Transport 
parameter 

Membrane N2 O2 CO2 CH4 H2 He 
 
 

Px [Barrer] 

178 μm As Cast 178 687 2319 259 2175 779 

181 μm MeOH 525 2150 7140 699 7760 2570 

95 μm MeOH 380 1630 5100 572 7310 2720 

181 μm MeOH 24h 370 1590 4780 502 6155 2070 

120 μm PIM-1 
MeOH 

773 2135 12775 1281 4711 1830 

 
 

α(Px/PN2) 

178 μm As Cast - 3.87 13.05 1.46 12.24 4.39 

181 μm MeOH - 4.1 13.6 1.3 14.8 4.9 

95 μm MeOH - 4.3 13.4 1.5 19.2 7.2 

181 μm MeOH 24h - 4.3 12.9 1.4 16.6 5.6 

120 μm PIM-1 
MeOH 

- 2.76 16.52 1.66 6.09 2.37 

 
 

Dx [10-12 m2s-1] 

178 μm As Cast 36.2 125.46 38.6 12.87 2986.48 5028.48 

181 μm MeOH 99.5 318 87 36 >7000* >10000* 

95 μm MeOH 40.5 177 41 12 >5000* >6000* 

181 μm MeOH 24h 49.1 210 60.7 14.9 >5000* >6000* 

120 μm PIM-1 
MeOH 

164.6 452.3 199.4 70.0 5763.3 7119.6 

 
 
 

α (Dx/DN2 ) 

178 μm As Cast - 3.47 1.07 0.35 82.50 138.91 

181 μm MeOH - 3.7 1 0.32 >90* >116* 

95 μm MeOH - 4.37 1.01 0.30 >123.4* >148.1* 

181 μm MeOH 24h - 4.28 1.24 0.30 >101.8* >122.2* 

120 μm PIM-1 
MeOH 

- 2.748 1.211 0.425 35.018 43.259 

 
 

Sx [cm3 cm-3 
bar-1] 

178 μm As Cast 3.68 4.11 45.07 15.12 0.55 0.12 

181 μm MeOH 4.7 6 57 14.8 <0.8* <0.2* 

95 μm MeOH 7 6.9 92 35.5 <1.1* <0.3* 

181 μm MeOH 24h 5.7 6 58.5 25.2 <1.1* <0.3* 

120 μm PIM-1 
MeOH 

3.52 3.54 48.06 13.73 0.61 0.19 

 
 
 

α (Sx/SN2 ) 

178 μm As Cast - 1.12 12.25 4.11 0.15 0.03 

181 μm MeOH - 1.1 12 4.3 <0.06* <0.02* 

95 μm MeOH - 0.99 13.14 5.07 <0.16* <0.04* 

181 μm MeOH 24h - 1.05 10.26 4.42 0.19 <0.05* 

120 μm PIM-1 
MeOH 

- 1.004 13.634 3.894 0.174 0.055 

*A time lag (<1 s) allows only an estimation of the minimum limit of D and maximum limit of S. 
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Consistent with the extremely high BET surface area, the permeabilities for DMEA.TB are 

particularly high due to combined high diffusion and solubility coefficients. As predicted, 

methanol treatment significantly improves permeability, for example after treatment the 

membrane is over ten times more permeable to CO2. The thicker 181 μm membrane is more 

permeable than the thinner 95 μm membrane. This is a known phenomenon
174

 that is 

attributed a higher relative contribution of the less permeable dense surface region of thinner 

membranes relative to thicker membranes. Measurements of the methanol treated 181 μm 

membrane 24 hours after the first measurement shows a decrease in permeability due rapid 

physical ageing (as with all ultra-permeable polymers) with a corresponding increase in 

selectivity.  

The order of gas permeabilities (H2 > CO2 > He > O2 > CH4 > N2) demonstrates preferential 

permeation for smaller gas molecules. This is not the usual trend observed for reverse 

selective PIMs that typically are more permeable to CO2 than H2 and more permeable to O2 

than He. This suggests that gas permeation through DMEA.TB operates at least partially on a 

molecular sieving mechanism. This also suggests that DMEA.TB contains smaller pores than 

PIM-1 however, positron annihilation lifetime spectroscopy (PALS) data would be more 

instructive.  

According to the Robeson
126

 relation, polymers are highly permeable at the expense of 

selectivity. DMEA.TB however, displays remarkably high selectivities (Px/Py), especially for 

gas pairs with smaller kinetic diameters (He, H2, and O2) over larger diameters (CO2, N2 and 

CH4) due to enhanced diffusivity selectivities (Dx/Dy). Data for technologically important gas 

pairs O2/N2, H2/N2, H2/CH4 and H2/CO2 lie far over the present Robeson upper bound and 

close to the upper bound for CO2/CH4 and He/N2 (Fig 6.3.1e). 
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Fig 6.3.1e Robeson plots of selected gas pairs for DMEA.TB with 1991 (—) and 2008 (—) upper bounds : 

178 μm As Cast (●), 181 μm MeOH (▲), 95 μm MeOH (■), 181 μm MeOH 24h (♦) and 181 μm MeOH 

average O2/N2 values obtained for air at variable feed pressures (⨯) compared to PIM-1 (●), PIM-7 (▲)
95

, 

PIM-PI-8 (■)
89

 and Robeson's literature data lying close to the upper bounds (○)
126, 127

. 

DMEA.TB was also assessed for the enrichment of O2 from air using an aged (3 days) 

methanol treated membrane over a range of feed pressures up to 7 bar. High permeabilities, 

almost independent of pressure, ranging from 900-1100 barrer (O2) and 160-205 barrer (N2) 

were observed. These high permeabilities coupled with exceptional selectivities (4.5-6.1) 

place DMEA.TB substantially over the upper bound for enrichment of O2 from air. 

The enhanced gas separation characteristics of DMEA.TB are particularly evident for 

hydrogen paired gases which indicates unparalleled potential for a soluble polymer to 

separate hydrogen in applications such as Haber–Bosch ammonia production, natural gas 

purification, and carbon capture from steam reforming of fossil fuels.  

Many gas separation processes take place at elevated temperatures and hence data collected 

at 25 °C is not directly applicable. A number of similar permeation experiments were 

performed by Dr. Tim Merkel at Membrane Technology and Research, Inc (MTR), 

California before and after heat treatment (150 °C) of 160 μm (as cast) and 145 μm (MeOH 

treated) membranes. The results of this study are summarised in table 6.3.1b. 
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Table 6.3.1b DMEA.TB MTR Membrane Permeability Measurements 
Transport 
parameter 

Membrane N2 CO2 CH4 H2 He 
 
 

Px [Barrer] 

160 μm As Cast 18 770 46 290 120 

160 μm As Cast After 150 °C 
Exposure 

50 1100 110 1300 500 

145 μm MeOH 640 6700 1200 3800 1900 

145 μm MeOH After 150 °C 
Exposure 

460 4900 820 5200 1800 

 
 
 

α(Px/PN2) 

160 μm As Cast 
- 43 2.6 16 6.8 

160 μm After 150 °C 
Exposure 

- 20 1.9 24 9.1 

145 μm MeOH - 10 1.9 5.9 3.0 

145 μm MeOH After 150 °C 
Exposure 

- 11 1.8 11 4.0 

% Change in 
Px after 150 °C 
Exposure  

160 μm As Cast 181% 43% 137% 348% 315% 

145 μm MeOH -28% -27% -32% 37% -5% 

% Change in α 
after 150 °C 
Exposure 

160 μm As Cast - -54% -26% 51% 35% 

145 μm MeOH - -7% 4% 95% 33% 

 

The results show that heat treatment of the "as cast" sample increases the permeability of all 

gases due to partial removal of the casting solvent. The heat treatment of the methanol treated 

sample however shows a decrease in the permeability of all gases except H2 with an overall 

increase in selectivities. Although heat treatment removes residual methanol, increasing 

permeability, the overall decrease in permeability is due to temperature induced acceleration 

of physical ageing being a dominant factor. Even after heat treatment, data for H2/N2, H2/CH4 

and H2/CO2 remain over the present Robeson upper bound. 

A second experiment was performed by MTR to evaluate the potential of DMEA.TB for 

hydrogen enrichment and carbon capture at elevated feed temperatures during the steam 

reforming of fossil fuels.  

The permeabilities of H2 and CO2 on both as cast and methanol treated membranes were 

measured as a function of feed temperature at a constant feed pressure of 4.5 bar (Fig 6.3.1f). 
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As expected, the permeabilities of both gases are higher for the methanol treated membrane 

and become similar values for both membranes at higher temperatures due to solvent 

removal. For both samples, CO2 is initially more permeable than H2 but the reverse becomes 

true as solvent is removed. The permeability of both H2 and CO2 initially increase with 

temperature for both samples as solvent is removed from the membranes. According to the 

dual sorption model, permeate diffusion through a high free volume polymer is a thermally 

activated process and so the diffusion coefficients increase with temperature which contribute 

towards initial higher permeabilities. After the initial increase, permeabilities then decrease 

due to accelerated physical ageing. Another factor decreasing the permeability is that gas 

solubility in polymers decreases with increasing temperature.  

This decrease in solubility affects larger, more condensable gas molecules than smaller, less 

condensable molecules. As temperature increases, there is then a larger decrease in the 

solubility of CO2 than there is for H2 which is responsible for a larger drop in the observed 

permeability for CO2 than H2. It follows that as temperature increases, the relative difference 

in permeabilities of H2 and CO2 also increases and so selectivity increases with temperature 

(Fig 6.3.1g). 

Fig 6.3.1f Permeability of "as cast" and "MeOH treated" DMEA.TB membranes as a function of feed temperature. 
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At higher temperatures both samples provide data over the present upper bound (Fig 6.3.1h) 

indicating that DMEA.TB has potential in high temperature separation of H2/CO2. 

 

 

Fig 6.3.1g Selectivity of "as cast" and "MeOH treated" DMEA.TB membranes as a function of feed temperature. 

 

 

 

 

Fig 6.3.1h Robeson plot of H2/CO2 with 1991 (—) and 2008 (—) upper bounds: as cast (●) and MeOH 

treated (●)  DMEA.TB membranes at different temperatures. 
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6.3.2: DHEA.TB  

With the success of DMEA.TB for gas permeation due to its enhanced rigidity, it was 

speculated that the methyl groups may be acting as rotors that impede or accelerate the 

passage of permeate molecules. It was theorised that selectivity could be improved by 

preparing an analogue polymer, DHEA.TB, lacking these bridgehead methyl groups to 

increase structural rigidity even further.  

DHEA.TB was synthesised in 91% yield from the TB polymerisation of 9,10-dihydro-2,6(7)-

diamino-9,10-ethanoanthracene at a concentration of 8.33 ml of TFA per gram of monomer 

over 2 h (Scheme 6.3.2a) and was isolated as a white powder. 

 

Thermal gravimetric analysis shows the polymer is stable up to 260 °C with an initial 10% 

decrease in mass, consistent with the loss of an ethylene fragment from the ethanoanthracene 

unit via a retro Diels-Alder reaction
172

. Differential scanning calorimetry did not reveal the 

presence of a glass transition below its decomposition temperature. Analysis of the acetone 

washings from the crude polymer using MALDI-TOF failed to reveal an oligomeric pattern.  

Nitrogen adsorption shows DHEA.TB has a high BET surface area of 843 m
2
/g which again, 

can be attributed to the extreme structural rigidity of both the ethanoanthracene and the TB 

linking units. The somewhat lower BET surface area of DHEA.TB compared to DMEA.TB 

confirmed our suspicion that the bridgehead methyl groups in DMEA.TB serve as struts that 

further disrupt polymer chain packing in a similar manor to the previously described 

bridgehead alkylated triptycene network polymers
76

.  

It was found by varying the polymerisation concentration, that DHEA.TB is much less 

resistant to cross-linking than DMEA.TB. This is likely due to the 1,4 and 5,8 aromatic 

positions being less sterically protected from electrophilic attack of the from reactive TB 

intermediates compared to DMEA.TB. For this reason a shorter reaction time of 2h was 

required to produce a high molecular weight polymer (GPC: Mn = 9,200, Mw = 49,300) 

before the onset of insoluble gel formation. DHEA.TB was found to have almost identical 

film forming properties to DMEA.TB and a number of membranes were formed (Fig 6.3.2a) 

for gas permeation studies by ITM. The results of permeation tests on a 128 μm as cast and a 

Scheme 6.3.2a Synthesis of DHEA.TB. 
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130 μm MeOH treated membrane are summarised in table 6.3.2a along with results from a 

181 μm DMEA.TB methanol treated membrane for comparison. 

 

 

Table 6.3.2a DHEA.TB Membrane Permeability Measurements 

Transport 
parameter 

Membrane N2 O2 CO2 CH4 H2 He 

 
Px [Barrer] 

128 μm As Cast 29 94 495 64 262 118 

130 μm MeOH 369 1673 6097 469 6088 1938 

DMEA.TB 181 
μm MeOH 

525 2150 7140 699 7760 2570 

 
α(Px/PN2) 

128 μm As Cast - 3.23 17.05 2.20 9.01 4.05 

130 μm MeOH - 4.68 17.05 1.28 17.02 5.42 

DMEA.TB 181 
μm MeOH 

- 4.1 13.6 1.3 14.8 4.9 

 
Dx [10-12 m2s-1] 

128 μm As Cast 16.27 40.41 13.68 6.35 802.6 2006.8 

130 μm MeOH 47.64 216.42 66.44 15.06 5634.2 7822.1 

DMEA.TB 181 
μm MeOH 

99.5 318 87 36 >7000* >10000* 

 
α (Dx/DN2 ) 

128 μm As Cast - 2.48 0.84 0.39 49.33 123.34 

130 μm MeOH - 4.54 1.39 0.32 118.27 164.19 

DMEA.TB 181 
μm MeOH 

- 3.7 1 0.32 >90* >116* 

 
Sx [cm3 cm-3 

bar-1] 

128 μm As Cast 1.34 1.73 27.13 7.54 0.24 0.04 

130 μm MeOH 5.63 5.80 68.83 22.83 0.81 0.19 

DMEA.TB 181 
μm MeOH 

5.7 6 58.5 25.2 1.1 0.3 

 
α (Sx/SN2 ) 

128 μm As Cast - 1.29 20.28 5.63 0.18 0.03 

130 μm MeOH - 1.03 12.22 4.05 0.14 0.03 

DMEA.TB 181 
μm MeOH 

- 1.1 12 4.3 <0.06* <0.02* 

*A time lag (<1 s) allows only an estimation of the minimum limit of D and maximum limit of S. 

Fig 6.3.2a An optically clear chloroform-cast film (10 cm x 128 μm) of DHEA.TB, through which is visible 

its molecular structure printed on a piece of paper. 
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As with DMEA.TB, methanol treatment of the DHEA.TB membrane results in a significant 

increase in permeability. The permeabilities of all gases are lower for DHEA.TB than 

DMEA.TB which is consistent with the lower surface area of DHEA.TB. These 

permeabilities are however still relatively high. The order of gas permeabilities for DHEA.TB 

(CO2 > H2 > He > O2 > CH4 > N2) is slightly different to that of DMEA.TB where CO2 is 

marginally more permeable than H2 (differing by only 9 barrer). DHEA.TB however 

demonstrates analogous molecular sieving type permeation observed for DMEA.TB. In 

accordance with the Robeson trade off relation, the less permeable DHEA.TB displays higher 

selectivities (Px/Py), than DMEA.TB due to higher diffusivity selectivities (Dx/Dy). Larger 

selectivities are again observed for gas pairs with smaller kinetic diameters (He, H2, and O2) 

over larger diameters (CO2, N2 and CH4). Data for technologically important gas pairs H2/N2, 

H2/CH4, and O2/N2, lie far over the present Robeson upper bound and close to the upper 

bound for H2/CO2 (Fig 6.3.2b). 

 

 

Fig 6.3.2b Robeson plots of selected gas pairs for DMEA.TB with 1991 (—) and 2008 (—) upper bounds : 

128 μm As Cast (●) and 130 μm MeOH (▲) compared to PIM-1 (●), PIM-7 (▲)
95

, PIM-PI-8 (■)
89

, and 

Robeson's literature data lying close to the upper bounds (○)
126, 127

. 
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6.3.3: DCEA.TB 

Incorporation of polar functional groups into microporous polymers has been known to 

improve gas solubility and selectivity by increasing electrostatic interactions
119

. As an 

intermediate in the synthesis of the DHEA.TB monomer, 9,10-dihydro-11,12-

cis(trans)dichloro-9,10-ethanoanthracene presented an opportunity to introduce chlorine 

functionality into a TB polymer and test the functional group tolerance of the TB 

polymerisation.  

DCEA.TB was synthesised in 88% yield from the TB polymerisation of 9,10-dihydro-

2(3),6(7)-diamino-11,12-cis(trans)dichloro-9,10-ethanoanthracene at a concentration of 8.33 

ml of TFA per gram of monomer over 3 days (Scheme 6.3.3.a) and was isolated as a light 

brown powder. 

 

Thermal gravimetric analysis shows the polymer is stable up to 250 °C with an initial 20% 

decrease in mass, consistent with the loss of Cl2 from the bridge unit to form 

dibenzobarrelene units. Differential scanning calorimetry did not reveal the presence of a 

glass transition below its decomposition temperature. Analysis of the acetone washings from 

the crude polymer using MALDI-TOF failed to reveal an oligomeric pattern.  

Nitrogen adsorption shows DHEA.TB has only a modest BET surface area = 360 m
2
/g. The 

chlorine atoms were initially expected to act as struts that separate polymer chains, however 

it is likely that the large chlorine atoms fill any pore space that is created. 

The molecular weight of DCEA.TB remains undetermined as it was not soluble in a solvent 

suitable for GPC analysis. It can be said however, that the polymerisation afforded a highly 

viscous solution which suggests a high molecular weight polymer had been formed. The only 

solvent that DCEA.TB was found to be soluble in was DMSO, which is unsuitable for film 

formation and hence no permeability measurements were made. 

In possible future studies, the chlorine functionality can be removed post-polymerisation by 

heating the polymer to 250 °C, forming dibenzobarrelene units throughout the polymer chain, 

further enhancing structural rigidity and thermal stability. 

Scheme 6.3.3.a Synthesis of DCEA.TB. 
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6.3.4: TMEA.TB 

The design of the TMEA.TB monomer was expected to serve a number of functions. The 

aromatic methyl groups placed adjacent to the amine groups prevent reactions at these 

positions and offer only a single free position for TB formation. This reduces the number of 

possible cross-linking sites on the aromatic rings and further hinders the remaining sites from 

attack. It also forces the polymer into a more contorted "zigzag" conformation with extra 

methyl group struts that further disrupt efficient chain packing. It was also expected that the 

directions of polymer growth imposed by the methyl groups would prevent the formation of 

cyclic structures, while simultaneously increasing amine nucleophilicity, both having a 

positive contribution to molecular weight. 

The synthesis of TMEA.TB was attempted from the TB polymerisation of 2,6,9,10-

tetramethyl-9,10-dihydro-3,7-diamino-9,10-ethanoanthracene at a concentration of 5 ml of 

TFA per gram of monomer over 7 days (Scheme 6.3.4a). 

 

The TB polymerisation did not achieve a high viscosity, even at higher concentrations, 

temperatures or prolonged reaction times, suggesting only oligomeric material had formed. A 

large proportion of the material recovered was acetone soluble, leaving only a small quantity 

(43% yield) of higher molecular weight oligomers as a white powder. Purification of the 

oligomeric material was unsuccessful due to high solubility preventing the precipitation of 

higher oligomers. 

The reason a high molecular weight polymer did not form is likely due to the only free 

position available for TB formation being too sterically hindered by the bridgehead methyl 

groups, resulting in a greatly reduced reaction rate. A possible solution to the problem would 

be to use a monomer lacking bridgehead methyl groups, although a lower surface area is a 

possible consequence. 

Thermal gravimetric analysis shows the material is stable up to 260 °C, consistent with other 

TB polymers based on ethanoanthracenes. Differential scanning calorimetry did not reveal 

the presence of a glass transition below its decomposition temperature. 

Scheme 6.3.4a Synthesis of TMEA.TB. 
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Analysis of the recovered material using MALDI-TOF revealed multiples of the presumed 

polymeric repeating unit (C23H24N2) with the additional weight of two amine end groups (Fig 

6.3.4a).  

 

 

The values obtained show the presence of linear oligomers from trimers to octamers and 

possibly higher oligomers. The absence of cyclic structures confirms the earlier presumption 

that cyclic oligomers would be prevented from forming due to the imposed directions of 

polymer growth. 

Nitrogen adsorption shows that the low molecular weight material has a low BET surface 

area of only 70 m
2
/g. This may be attributed to the oligomeric nature of the material and the 

inability to remove impurities using a re-precipitation method. It may also be the case that the 

extra methyl groups fill pore space and reduce free volume. Without measurements from a 

high molecular weight sample, it is difficult to determine the reason for such a relatively low 

surface area compared to other EA.TB analogues. 

 

 

 

Fig 6.3.4a MALDI-TOF spectrum of recovered TMEA.TB oligomers showing the repeating unit 

of the polymer resulting from linear oligomers and a linear tetramer is illustrated. 
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6.3.5: Anth.TB 

The rigid extended rod-like structure of anthracene has previously been incorporated into 

polymers such as polyesters
175

 and polyimides
148, 176

. Polymers incorporating planar 

anthracene structures tend to be insoluble due to aggregation of anthracene units resulting 

from non-covalent interactions. Such a trait can make the processing of these polymers 

problematic. A solution to this problem is to first synthesise a soluble precursor polymer that 

can be processed into the required form such as a film. This film can be subsequently 

converted into the required aromatic anthracene polymer via a simple reaction such as 

thermal treatment. This “precursor-polymer” approach was utilised by Hodge
148

 and co-

workers in 1996 to produce polyimides containing anthracene units. Hodge and co-workers 

prepared a number of precursor polyimides from monomers that were Diels-Alder adducts of 

diaminoanthracene with dienophiles such as dimethyl fumarate and N-methylmaleimide. 

These soluble precursor polymers were then formed into films and subsequently heated to 

220 °C to convert them to anthracene polyimides by a thermal retro Diels-Alder reaction that 

removes the dieneophile bridge units. 

This precursor polymer approach was applied in an attempt to synthesise Anth.TB. Diels-

Alder adducts of diaminoanthracene with diethyl fumarate and N-methylmaleimide were 

used as TB monomers to form precursor polymers that could be subsequently converted to 

Anth.TB by thermal treatment (Scheme 6.3.5a). 

 

 

 

Scheme 6.3.5a Synthesis of  precursor polymers DEEEA.TB, NMDCEA.TB and subsequent thermal 

treatment to form Anth.TB 
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The synthesis of both precursor polymers DEEEA.TB and NMDCEA.TB was attempted 

from the TB polymerisation of 9,10-dihydro-2(3),6(7)-diamino-9,10-ethanoanthracene-11,12-

trans-diethyl ester and N-methyl-9,10-dihydro-2(3),6(7)-diamino-9,10-ethanoanthracene-

11,12-cis-dicarboximide respectively. Both polymerisation reactions were conducted at a 

concentration of 10 ml of TFA per gram of monomer over 3 days (Scheme 6.3.5a). Both 

polymerisations failed to achieve a high viscosity, even at higher concentrations, 

temperatures or prolonged reaction times, suggesting only oligomeric material had formed. 

This may be due to electron withdrawing effects of the bridge substituents reducing amine 

nucleophilicity. A large proportion of the material recovered was acetone soluble, leaving 

only a small quantity of higher molecular weight oligomers as a white powder. Purification of 

the oligomeric material was unsuccessful due to high solubility preventing the precipitation 

of higher oligomers. Analysis of the oligomers using MALDI-TOF failed to reveal an 

oligomeric pattern. Nitrogen adsorption shows that both materials were not microporous, 

having BET surface areas of 0 and 2 m
2
/g for DEEEA.TB and NMDCEA.TB respectively. 

This may be attributed to the oligomeric nature of the material and the inability to remove 

impurities using a re-precipitation method. 

A second route was also tested to form Anth.TB directly from the TB polymerisation of 2,6-

diaminoanthracene at a concentration of 10 ml of TFA per gram of monomer over 3 days 

(Scheme 6.3.5b). 

 

This polymerisation also failed to achieve a high viscosity and instead, precipitated a dark 

brown powder that was insoluble in all common solvents and acids. This is likely due to 

extensive cross-linking at a number of free aromatic positions on the monomer. Nitrogen 

adsorption shows that the material was not microporous, having BET surface area of 1 m
2
/g. 

This may be attributed to non-covalent interactions between anthracene units enabling 

efficient packing of polymer chains. Since Anth.TB has was shown to be thermally stable up 

to 377 °C by TGA, it is possible that an Anth.TB film could be formed directly from the 

thermal treatment of a DHEA.TB film. The low BET surface area observed for Anth.TB 

however, does not indicate that this material would suitable for gas separation membrane 

applications. 

Scheme 6.3.5b Synthesis of Anth.TB. 
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6.3.6: TMPI.TB 

The TMPI.TB monomer is the same diaminophenylindane used for the previously described 

Matrimid®
85

 polyimide. The phenylindane skeleton contains a single carbon-carbon bond 

between the phenyl and indane unit that can freely rotate. While this is not a usual feature of 

a PIM monomer, the connected tetrahedral carbon provides a site of contortion.  

The synthesis of TMPI.TB was attempted from the TB polymerisation of 6,(7)-amino-1,3,3-

trimethyl-1-(4-aminophenyl)indane at a concentration of 30 ml of TFA per gram of monomer 

over 16 h (Scheme 6.3.6a) and was isolated as a white powder. 

 

Thermal gravimetric analysis shows the polymer is stable up to 349 °C. Differential scanning 

calorimetry did not reveal the presence of a glass transition below its decomposition 

temperature. 

It was found that TMPI.TB is extremely sensitive to changes in the concentration of 

polymerisation, even only using three equivalents of dimethoxymethane. At concentrations 

higher than 30 ml of TFA per gram of monomer, the polymer cross-links at an unpredictable 

time from the start of the reaction. This is likely due to a number of free positions on the 

benzene rings that are vulnerable to cross-linking reactions. At lower concentrations a low 

molecular weight polymer is formed (GPC: Mn = 200, Mw = 1,700) (Fig 6.3.6a).  

  

Scheme 6.3.6a Synthesis of TMPI.TB. 

 

 

 

Fig 6.3.6a Gel permeation chromatography (chloroform) traces of TMPI.TB: Crude polymer (left) 

and polymer purified by three re-precipitation procedures with second peak highlighted (right). 
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After the polymer had been subjected to three re-precipitation purification procedures, a 

second, less intense peak became visible (GPC retention volume ~ 16 ml) (Fig 6.3.6a). This 

second peak suggests the material contains a small proportion of high molecular weight 

polymer but a much larger proportion of low molecular weight oligomers. 

Analysis of the crude polymer using MALDI-TOF revealed multiples of the presumed 

polymeric repeating unit (C21H22N2) as sharp intense peaks (Fig 6.3.6b).  

 

 

The values obtained show the presence of cyclic oligomers from dimers to heptadecamers. 

The rotatable single carbon-carbon bond between the phenyl and indane unit provides the 

monomer enough flexibility to twist and bend into the correct conformation to form cyclic 

structures. It is likely that this is the reason for the formation of such a large proportion of 

oligomeric material compared to high molecular weight polymer. 

Nitrogen adsorption shows TMPI.TB has a high BET surface area of 535 m
2
/g. This 

relatively high surface area is somewhat surprising considering the polymer contains 

rotatable bonds. It demonstrates however, that a single carbon-carbon bond connected to a 

tetrahedral carbon in a five membered ring can provide an effective site of contortion in PIM 

design. 

Fig 6.3.6b MALDI-TOF spectrum of TMPI.TB oligomers showing the repeating unit of the 

polymer resulting from cyclic oligomers and a cyclic dimer is illustrated. 
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6.3.7: SBI.TB 

The spirobisindane architecture has been previously described in its use in the synthesis of a 

number of PIMs, most notably PIM-1. Similar to the TMPI.TB phenylindane monomer, the 

SBI.TB monomer differs where a tetrahedral carbon is shared by two five membered rings. 

This structure, known as a spiro unit, is significantly more shape persistent than the 

phenylindane structure and offers increased structural rigidity compared to TMPI.TB. 

SBI.TB was synthesised in 73% yield from the TB polymerisation of 6,(7),6’,(7’)-diamino-

3,3,3’,3’-tetramethyl-1,1’-spirobisindane at a concentration of 8.33 ml of TFA per gram of 

monomer over 48 h (Scheme 6.3.7a) and was isolated as a white powder. 

 

Thermal gravimetric analysis shows the polymer is stable up to 435 °C. Differential scanning 

calorimetry did not reveal the presence of a glass transition below its decomposition 

temperature. Analysis of the acetone washings from the crude polymer using MALDI-TOF 

failed to reveal an oligomeric pattern.  

Nitrogen adsorption shows SBI.TB has a high BET surface area of 745 m
2
/g. As expected 

this value is higher than TMPI.TB due to enhanced structural rigidity. This value is however 

lower compared to TB polymers containing ethanoanthracene units, suggesting that 

spirobisindane units are relatively flexible in comparison.  

It was found by varying the polymerisation concentration, that SBI.TB is significantly more 

resistant to cross-linking than other all other TB monomers discussed in this thesis. This is 

likely due to the 5,5' aromatic positions being sterically protected from reactive TB 

intermediates by two methyl groups each and the 8,8' positions being protected by both 

monomer geometry and one methylene group each. This increased resistance to cross-linking 

enabled the polymerisation reaction to proceed for a longer time of 48 h before the onset of 

insoluble gel formation. The longer reaction time enabled SBI.TB to be obtained as a very 

high molecular weight polymer (GPC: Mn = 96,000, Mw = 360,000), which is the highest so 

far obtained for a TB polymer. In addition, the geometry and enhanced rigidity of the SBI 

structure compared to the phenylindane unit is likely to inhibit the formation of cyclic 

Scheme 6.3.7a Synthesis of SBI.TB. 
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structures, leading to an increase in molecular weight. SBI.TB was found to have excellent 

film forming properties and a number of films were formed (Fig 6.3.7a) for membrane gas 

permeation studies by ITM. The results of permeation tests on a 193 μm as cast, a 157 μm 

MeOH and a 128 μm MeOH treated membrane are summarised in Table 6.3.7a. 

 

 

Table 6.3.7a SBI.TB Membrane Permeability Measurements 
Transport 
parameter 

Membrane N2 O2 CO2 CH4 H2 He 

 
Px [Barrer] 

193 μm As Cast 71 269 1056 121 1036 471 

157 μm MeOH 232 720 2900 450 2200 878 

128 μm MeOH 215 657 2720 406 2110 858 

 
α(Px/PN2) 

193 μm As Cast - 3.78 14.82 1.69 14.54 6.60 

157 μm MeOH - 3.1 12.5 1.9 9.4 3.8 

128 μm MeOH - 3.1 12.7 1.9 9.8 4 

 
 

Dx [10-12 m2s-1] 

193 μm As Cast 30.8 94.24 36.52 11.68 >2116* >3980* 

157 μm MeOH 75.2 201 74 31.5 3500 >5000* 

128 μm MeOH 70.1 187 66 19.1 >3000* >5000* 

 
 

α (Dx/DN2)  

193 μm As Cast - 3.06 1.19 0.38 >68.70* >129.2* 

157 μm MeOH - 2.7 1 0.35 45 >69* 

128 μm MeOH - 2.67 0.94 0.27 >42.8* >71.33* 

 
 

Sx [cm3 cm-3 
bar-1] 

193 μm As Cast 1.74 2.14 21.7 7.75 <0.37* <0.09* 

157 μm MeOH 2.3 2.7 29.4 10.7 0.47 <0.12* 

128 μm MeOH 2.3 2.6 30.7 10.5 <0.5* <0.12* 

 
 

α (Sx/SN2 ) 

193 μm As Cast - 1.23 12.47 4.45 <0.21* <0.05* 

157 μm MeOH - 1.35 13 4.6 0.20 <0.05* 

128 μm MeOH - 1.13 13.35 4.57 <0.22* <0.05* 

*A time lag (<1 s) allows only an estimation of the minimum limit of D and maximum limit of S. 

 

Fig 6.3.7a An optically clear chloroform-cast film (10 cm x 193 μm) of SBI.TB, through which is visible its 

molecular structure printed on a piece of paper. 
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As with other TB polymers, methanol treatment of the membrane results in a significant 

increase in permeability. The permeabilities of all gases are drastically lower for SBI.TB than 

DMEA.TB and DHEA.TB due to lower diffusion and solubility coefficients. The lower 

permeabilities are consistent with the lower surface area of SBI.TB. The order of gas 

permeabilities for SBI.TB are the same as for DHEA.TB (CO2 > H2 > He > O2 > CH4 > N2) 

but H2 is considerably less permeable than CO2 (by 700 barrer for the 157 μm membrane). 

DHEA.TB also displays lower selectivities (Px/Py), than DMEA.TB and DHEA.TB due to 

combined lower diffusivity (Dx/Dy) and solubility (Sx/Sy) selectivities. Selectivity is also 

generally lower for the methanol treated membranes compared to the "as cast" samples where 

the opposite was observed for DMEA.TB and DHEA.TB. All data for technologically 

important gas pairs lie below the present Robeson upper bound and data for most gas pairs lie 

below the 1991 upper bound. Data for O2/N2, H2/N2, H2/CH4 and H2/CO2 however, lie close 

to or above the 1991 upper bound. In the case of H2/CO2, SBI.TB marginally exceeds the 

performance of PIM-1, PIM-7 and PIM-PI-8 (Fig 6.3.7b). 

 

 

Fig 6.3.7b Robeson plots of selected gas pairs for SBI.TB with 1991 (—) and 2008 (—) upper bounds : 193 

μm As Cast (●) and 157 μm MeOH (▲) compared to PIM-1 (●), PIM-7 (▲)
95

, PIM-PI-8 (■)
89

, and Robeson's 

literature data lying close to the upper bounds (○)
126, 127

. 
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6.4: Tröger's Base Polymers from Commercial Monomers 

 

There are a number of cheap commercially available aromatic diamine compounds that can 

be used in the formation of Tröger's base polymers. Three such monomers based on a 

diphenylmethane (DPM) structure were tested. While the DPM skeleton which contains 

rotatable carbon-carbon bonds, does not conform to the PIM design concept, it was the 

intention that these monomers would offer a cheap and convenient route to TB polymers that 

may be used for further experimentation such as amine quaternerisation (chapter 7). The 

synthesis of DPM.TB and HFIP.TB was attempted from the TB polymerisation of 4,4’-

diaminophenylmethane and 4,4′-(hexafluoroisopropylidene)dianiline respectively at a 

concentration of 8.33 ml of TFA per gram of monomer (Scheme 6.4a). 

 

 

It was found that both polymerisations inevitably result in cross-linking, even at lower 

concentration, temperature and using only three equivalents of dimethoxymethane. This is 

likely due to a number of free positions on the benzene rings that are vulnerable to cross-

linking reactions.  

In the case of DPM.TB, the onset of gel formation occurred after a reaction time of 1 h, while 

in contrast, gel formation of HFIP.TB onset occurred after a reaction time of 6h. The reduced 

reaction rate of HFIP.TB may be attributed to the electron withdrawing effects of the two CF3 

groups reducing amine nucleophilicity. It does however suggest for future studies that 

incorporation of polar CF3 groups into TB polymers is at least possible. 

Nitrogen adsorption shows that both DPM.TB and HFIP.TB are not microporous, having 

BET surface areas of 0.82 and 20 m
2
/g respectively. This can be attributed to both the 

rotatable carbon-carbon bonds providing flexibility in the DPM skeleton and cross-linking 

bonds locking polymer chains in close proximity. 

Scheme 6.4a Synthesis of DPM.TB and  HFIP.TB. 
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A third DPM monomer was also tested, featuring an aromatic methyl group adjacent to each 

amine, offering protection of aromatic positions from cross-linking reactions.  

DMDPM.TB was synthesised in 88% yield from the TB polymerisation of 4,4’-diamino-3,3’-

dimethylphenylmethane at a concentration of 8.33 ml of TFA per gram of monomer over 3 d 

(Scheme 6.4b) and was isolated as an off-white powder. 

 

 

Thermal gravimetric analysis shows the polymer is stable up to 357 °C. Differential scanning 

calorimetry did not reveal the presence of a glass transition under its decomposition 

temperature. Nitrogen adsorption shows that DMDPM.TB has a low BET surface area of 38 

m
2
/g which can be attributed to the rotatable carbon-carbon bonds. 

Analysis of the acetone washings from the crude polymer using MALDI-TOF revealed 

multiples of the presumed polymeric repeating unit (C18H18N2) (Fig 6.4a).  

 

 

 

The values obtained show the presence cyclic oligomers from trimers to octamers. The 

rotatable single carbon-carbon bonds between the phenyl units provides the monomer enough 

Scheme 6.4b Synthesis of  DMDPM.TB. 

 

 

 

Fig 6.4a MALDI-TOF spectrum of DMDPM.TB oligomers showing the repeating unit of the 

polymer resulting from cyclic oligomers and a cyclic trimer is illustrated. 
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flexibility to twist and bend into the correct conformation to form cyclic structures which is 

detrimental to the formation of high molecular weight polymer.  

It was found that DMDPM.TB is highly resistant to gel formation by virtue of the protecting 

aromatic methyl groups. This allows the formation of a high molecular weight polymer 

(GPC: Mn = 49,600, Mw = 94,600) despite the apparent ease of the monomer to form cyclic 

structures.  

DMDPM.TB was found to have exceptional film forming properties and a number of films 

were formed (Fig 6.4b) for further experimentation (chapter 7). 

 

 

Below is a table summarising the some of the physical characteristics of the TB polymers 

reported in this thesis. 

Tröger's 
Base 

Polymers 

 
BET Analysis 

 
GPC 

 
TGA 

 
 

Film 
Formation Polymer BET Surface 

Area (m2 g-1) 
Pore Volume 

(cm3 g-1) 
Mw Mn Mw/Mn 

(PDI) 
TDEC 

(°C) 

DMEA.TB 1028 0.75 155,800 40,700 3.83 260  

DHEA.TB 843 0.6178 49,300 9,200 5.35 260  
SBI.TB 745 0.542 360,000 96,000 3.75 435  

TMPI.TB 535 0.9814 4,200 700 5.93 349  

DCEA.TB 360 0.4246 * * * 250  

TMEA.TB 70 0.3069 - - - 260  

DMDPM.TB 38 0.1378 94,600 49,600 1.91 357  

HFIP.TB 20 0.9814 X X X 280  

NMDCEA.TB 2 0.009 - - - 300  

Anth.TB 1 0.0131 X X X 377  

DPM.TB 0.82 0.007 X X X 362  

DEEEA.TB 0 0.009 - - - 360  

GPC values: X indicates polymer is cross-linked, - indicates oligomeric material, * indicates the 
polymer is not soluble in a solvent suitable for GPC 

Fig 6.4b An optically clear chloroform-cast film of DMDPM.TB, through which is visible its molecular 

structure printed on a piece of paper. 

 

 

 

 



Tröger's Base Polymers 

 

 

 

87 
 

Below are the BET isotherms from which the BET surface areas were calculated for the TB 

polymers reported in this thesis. 
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Chapter 7: Quaternerised Tröger’s Base Polymers 

The basic tertiary amine functionality contained in TB polymers provides an obvious target 

for functionalisation to produce microporous ionic polymers. Ionic polymers have found a 

number of important applications in ion exchange
55

, catalysis
64, 177

 and solid polymer 

electrolyte
178

 applications. The nitrogen atoms contained in the methanodiazocine ring are 

easily quaternerised to form monoquaternary TB salts using alkyl or benzyl halides
157

 

(Scheme 7a) .  

 

Formation of the first quaternerary nitrogen on the methanodiazocine ring significantly 

reduces the nucleophilicity of the second nitrogen atom due to a strong negative inductive 

effect
157

. For this reason, chemistry on TB nitrogen atoms has been effectively limited to 

monoquaternary salts
179

 but in 2006, Lenev and co-workers
179

 successfully formed 

dimethylated TB analogues using dimethyl sulfate. The anion may then be exchanged with a 

vast range of counterions to tailor physical and chemical properties. 

 

7.1: Tröger’s Base Polymer Methylation  

The methylation of two TB polymers DMDPM.TB and DMEA.TB was carried out using an 

excess of methyl iodide at room temperature over 16 h to form DMDPM.TB Me.I and 

DMEA.TB Me.I respectively in quantitative yields as dark brown powders (Scheme 7.1a). 

 

 

Both quaternerised polymers were found to be only soluble in dimethyl sulfoxide and so this 

solvent was used in the methylation procedure to ensure a complete reaction. Alternatively, 

Scheme 7.1a Quaternerisation of DMDPM.TB and DMEA.TB with methyl iodide. 

DMDPM.TB. 

 

 

 

Scheme 7a Quaternerisation of Tröger’s Base where R
2
 = alkyl or benzyl and X= Cl, Br or I. 

DMDPM.TB. 
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methylation of preformed a film is also possible by soaking in a mixture of methyl iodide and 

methanol however, these methylated films tend to become less robust. 

Thermal gravimetric analysis shows that both polymers are only stable up to 100 °C with an 

initial decrease in mass consistent with the loss of one equivalent of methyl iodide per 

repeating unit.  

Nitrogen adsorption shows that DMDPM.TB Me.I has a BET surface area of 74 m
2
/g which 

is higher than its parent polymer DMDPM.TB (38 m
2
/g). This is possibly due to the large 

iodide counterions separating polymer chains to create extra void space which moderately 

increases free volume from a somewhat poor starting point. The BET surface area of 

DMEA.TB Me.I was found to be significantly lower (116 m
2
/g) than the parent polymer 

DMEA.TB (1028 m
2
/g). This is likely due to the large iodide counterions filling pore space 

with a decrease in free volume. The low surface areas observed for both polymers limit their 

applicability in gas separations but exchange of the iodide counterion offers the ability to tune 

the properties of the materials. 

 

7.2: Ion Exchange 

7.2.1: Exchange with Fluoride 

In an effort to increase the free volume of the quaternerised DMEA.TB Me.I polymer, the 

large iodide counterion was exchanged with fluoride to form DMEA.TB Me.F (Scheme 

7.2.1a).  

 

The ion exchange was carried out by stirring powdered DMEA.TB Me.I in a sodium fluoride 

solution (1 M) for 24 h after which time the mixture had changed from a dark brown to a 

light brown colour to afford DMEA.TB Me.F in a quantitative yield. 

Thermal gravimetric analysis shows that the polymer is stable up to 165 °C with a loss of 

mass below consistent with one equivalent of methyl fluoride. 

Nitrogen adsorption shows that DMEA.TB Me.F has a BET surface area of 454 m
2
/g which 

is lower than the parent polymer DMEA.TB (1028 m
2
/g) but significantly higher than the 

Scheme 7.2.1a Ion exchange of DMEA.TB Me.I with NaF to form DMEA.TB Me.F. 

DMDPM.TB. 
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iodide analogue DMEA.TB Me.I (116 m
2
/g). This can be attributed to the fluoride counterion 

filling relatively less pore space than the iodide.  

DMEA.TB Me.F was found to be soluble in methanol from which a number of films were 

cast (Fig 7.2.1a) for membrane gas permeation studies by ITM. The membranes were 

however not mechanically robust enough to withstand the permeation tests and were 

damaged during analysis. 

 

 

7.2.2: Exchange with Bistrifluoromethanesulfonimide (Bistriflimide) 

Research conducted by Johannes Jansen (at ITM) and co-workers has shown that a 

poly(vinylidenefluoride-co-hexafluoropropylene) membrane containing up to 80 wt % of the 

ionic liquid 1-ethyl-3-methylimidazolium bistriflimide improves gas permeability over the 

pure polymer, most notably for CO2
180

. Addition of an ionic liquid to a polymer however, 

results in a significant reduction of the mechanical strength of the membrane.  

Inspired by this work, an ion exchange was carried out on DMDPM.TB Me.I and DMEA.TB 

Me.I with the bistriflimide anion to form DMDPM.TB Me.BTFSI and DMEA.TB Me.BTFSI 

respectively (Scheme 7.2.2a) 

 

Fig 7.2.1a An optically clear methanol-cast film of DMEA.TB Me.F. 

 

 

 

 

Scheme 7.2.2a Ion exchange of DMDPM.TB Me.I and DMEA.TB Me.I with lithium bistriflimide. 

DMDPM.TB. 
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The ion exchange was carried out by refluxing the corresponding powdered methyl iodide 

quaternerised TB polymer in a methanol solution of lithium bistriflimide for 16 h by which 

time the mixture had changed from a dark brown to a light orange colour. 

Thermal gravimetric analysis shows that DMDPM.TB Me.BTFSI and DMEA.TB Me.BTFSI 

are stable up to 300 and 260 °C respectively, with the latter showing initial decrease in mass 

consistent with the loss of an ethylene fragment via a retro Diels-Alder reaction
172

. Nitrogen 

adsorption shows that DMDPM.TB Me.BTFSI and DMEA.TB Me.BTFSI have BET surface 

areas of 0 and 24 m
2
/g respectively. This large reduction in surface area over the parent 

polymers may be attributed to the large and flexible bistriflimide anion filling pore space and 

reducing free volume. Both polymers were found to be soluble in acetone although, attempts 

to cast films resulted in cracked samples. Using 2-butanone as a less volatile solvent 

however, resulted in the formation of films (Fig 7.2.2a) that were more robust for membrane 

gas permeation studies by ITM.  

         

 

Since DMDPM.TB Me.BTFSI was found to be non-porous, only a 86 μm DMEA.TB 

Me.BTFSI sample was tested, the results of which are summarised in table 7.2.2a. 

Unfortunately, methanol treatment caused the membrane to fragment and only "as cast" data 

could be collected. 

Table 7.2.2a DMEA.TB Me.BTFSI Membrane Permeability Measurements 
Transport parameter N2 O2 CO2 CH4 H2 He 

Px [Barrer] 1.06 6.57 53.48 4.5 40.43 41.30 

α(Px/PN2) - 6.22 50.6 4.25 38.2 39.1 

Dx [10-12 m2s-1] 3.40 11.23 3.96 0.37 188.78 326.10 

α (Dx/DN2 ) - 3.30 1.16 0.11 55.52 95.91 

Sx [cm3 cm-3 bar-1] 0.23 0.44 10.14 9.16 0.16 0.09 

α (Sx/SN2 ) - 1.91 44.09 39.83 0.70 0.39 

Fig 7.2.2a Optically clear 2-butanone-cast films of DMDPM.TB Me.BTFSI (left) and DMEA.TB Me.BTFSI (right). 
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The permeabilities of all gases are drastically lower for DMEA.TB Me.BTFSI than the parent 

polymer DMEA.TB due to lower diffusion and solubility coefficients. The lower 

permeabilities are consistent with the lower surface area of DMEA.TB Me.BTFSI. The order 

of gas permeabilities for DMEA.TB Me.BTFSI (CO2 > He > H2 > O2 > CH4 > N2) is slightly 

different to that of DMEA.TB where He is marginally more permeable than H2 (differing by 

less than 1 barrer).  

DMEA.TB Me.BTFSI also displays lower selectivities (Px/Py), than DMEA.TB due to 

combined lower diffusivity (Dx/Dy) and solubility (Sx/Sy) selectivities however, the selectivity 

of CO2/N2 displays a potentially interesting value of 50.6.  

All data for technologically important gas pairs lie far below the 1991 and present upper 

bounds except for O2/N2 that lies close to the 1991 upper bound (Fig 7.2.2b). 

 

 

 

 

Fig 7.2.2b Robeson plots of selected gas pairs for DMEA.TB Me.BTFSI with 1991 (—) and 2008 (—) upper 

bounds : 86 μm As Cast (●) compared to PIM-1 (●), PIM-7 (▲)
95

, PIM-PI-8 (■)
89

, and Robeson's literature 

data lying close to the upper bounds (○)
126, 127

. 
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7.2.3: Exchange with 2,6-Naphthalene Disulfonic acid  

As previously mentioned, cross-linking of a polymer can improve solvent resistance and 

reduce physical ageing. Ion exchange on TB polymers offers the possibility of exchanging 

the iodide anion for a dianionic (or polyanionic) species that will form ionic bridges between 

polymer chains that function as "pseudo cross-links". Since these cross-links are not covalent 

in nature, such polymers may be soluble in polar solvents that are suitable for film formation. 

Two polymers DMDPM.TB Me.NDSA and DMEA.TB Me.NDSA were tested using 2,6-

naphthalene disulfonic acid as the bridging unit (Scheme 7.2.3a).  

 

 

The ion exchange was carried out by refluxing the corresponding powdered methyl iodide 

quaternerised TB polymer in a solution of 2,6-naphthalenedisulfonic acid disodium salt in 

deionised water. After refluxing for 16 h, the mixture had changed from a dark brown to an 

off white colour. 

Thermal gravimetric analysis shows that DMDPM.TB Me.NDSA and DMEA.TB Me.NDSA 

are stable up to 300 and 260 °C respectively; with the latter showing initial decrease in mass 

consistent with the loss of an ethylene fragment via a retro Diels-Alder reaction
172

.  

Scheme 7.2.3a Ion exchange of DMDPM.TB Me.I and DMEA.TB Me.I with 2,6-naphthalenedisulfonic 

acid disodium salt . 

DMDPM.TB. 
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Nitrogen adsorption shows that DMDPM.TB Me.NDSA and DMEA.TB Me.NDSA have 

BET surface areas of 0 and 3 m
2
/g respectively. These extremely low surface areas may be 

attributed the naphthalene cross-linking unit filling pore space and forcing adjacent chains 

into close proximity to each other which reduces free volume. A possible improvement may 

be to use larger linking units or units that are also sites of contortion. 

DMDPM.TB Me.NDSA was found to be only sparingly soluble in DMSO while DMEA.TB 

Me.NDSA was found to be insoluble and hence films could not be formed for membrane gas 

permeation tests. Films could be obtained from quaternerisation and subsequent ion exchange 

on preformed films but the low surface areas observed for these materials limit their 

applicability in gas separations. 

It is clear from these experiments that quaternerisation of TB polymers significantly changes 

the physical properties such as solubility, surface area and gas transport parameters. The vast 

range of possible counterions available provides almost endless possibilities for tailoring 

these physical properties. Quaternerised TB polymers are currently being investigated by our 

collaborators for use as catalysis and solid polymer electrolytes for alkaline fuel cell 

applications. 

Below is a table summarising the some of the physical characteristics of the quaternerised TB 

polymers reported in this thesis. 

 

Quaternerised Tröger's 
Base Polymers 

BET Analysis TGA  
Suitable 
Solvent 

 
Film 

Formation 
From Powder 

Polymer BET Surface 
Area (m2 g-1) 

Pore Volume 
(cm3 g-1) 

TDEC (°C) 

DMEA.TB Me.F 454 0.3096 165 MeOH  

DMEA.TB Me.I 116 0.1013 100 DMSO  

DMDPM.TB Me.I 74 0.3400 100 DMSO  

DMEA.TB Me.BTFSI 24 0.0842 260 2-butanone, 
acetone 

 

DMEA.TB Me.NDSA 3 0.3542 260 -  

DMDPM.TB Me.NDSA 0 0.0336 300 DMSO  

DMDPM.TB Me.BTFSI 0 0.0089 300 2-butanone, 
acetone 

 
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Below are the BET isotherms from which the BET surface areas were calculated for the 

quaternerised TB polymers reported in this thesis. 
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Chapter 8: Polyimides 

The importance of polyimides in gas separation membrane technology has been discussed 

previously. Also discussed, was the effect of polymer rigidity and hindered rotation around 

the imide linking bonds on gas transport properties. The dimethyl ethanoanthracene unit has 

been proved to be a highly effective TB monomer due to its enhanced rigidity and contorted 

shape. The dimethyl ethanoanthracene unit was also tested in the synthesis of polyimides. 

Polyimides are classically synthesised by a cycloimidisation polycondensation reaction 

between bis-carboxylicanhydride and diamine monomers (Scheme 8a). 

 

 

The synthesis of the polyimides described in this thesis was achieved using a similar 

procedure known as the "ester acid" route
181

 that produces high molecular weight soluble 

polyimides with a high degree of imidisation (Scheme 8b).  

 

 

Scheme 8a Synthesis of polyimides by high temperature cycloimidization. 

 

 

 

Scheme 8b Synthesis of polyimides using the ester acid route. 
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This procedure first involves conversion of the bis-carboxylicanhydride monomer to a 

diester-diacid by reacting the monomer with refluxing ethanol in the presence of 

triethylamine. The residual ethanol and triethylamine are then removed under heating and the 

diamine is added along with N-methyl-2-pyrrolidone (NMP) as a solvent. The diamine is then 

reacted with the ester groups under a nitrogen atmosphere at low temperature (80 °C) to form 

a high molecular weight polyamic acid. The polyamic acid is then heated to 200 °C where it 

undergoes an imidisation reaction to form a polyimide. On larger scale polymerisations, 1,2-

dichlorobenzene may also be added to form an azeotrope with the water produced, which can 

then be extracted using a reverse Dean-Stark trap. It was found that for small scale reactions, 

removal of water was more efficient by simply removing a stopper from the two-necked 

reaction flask and allowing a stream of nitrogen to remove evaporated water. This modified 

method requires heating of the sides of the reaction flask with a heat gun and replacement of 

evaporated NMP as needed.  

Using this method, three ethanoanthracene diamine analogues (43, 44, 45) containing 

different numbers of aromatic methyl groups adjacent to each amine were reacted with an 

ethanoanthracene bis-carboxylicanhydride monomer (27) (Scheme 8c). 

 

 Scheme 8c Synthesis of polyimides using the ester acid route. 
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Three polyimides DMEA.DMEA.PI, DMEA.TMEA.PI and DMEA.HMEA.PI were 

synthesised in yields of 90, 73 and 86 % respectively as light brown powders.  

Solid state FTIR spectroscopy of all three polymers revealed similar absorption bands at: 

~1775 (C=O asymm), ~1720 (C=O symm), ~1360 (C-N stretch) and ~ 745 (imide ring 

deformation) (cm
-1

) which are due to the imide structure. Absorption bands due to polyamic 

acid structures: ~2700 (OH stretch), ~1720 (acid C=O), ~1660 (amide C=O), and ~1535 (C-

N stretch)
182, 183

 (cm
-1

) were not visible. The absence of polyamic acid structures was also 

confirmed using 
1
H NMR, indicating a high degree of imidisation.   

Thermal gravimetric analysis shows that all three polyimides are stable up to 260 °C with all 

polymers showing an initial decrease in mass consistent with the loss of an ethylene fragment 

via a retro Diels-Alder reaction
172

. Differential scanning calorimetry did not reveal the 

presence of glass transitions below the decomposition temperatures. Analysis of the acetone 

washings from the crude polymer using MALDI-TOF failed to reveal an oligomeric pattern.  

Nitrogen adsorption shows that DMEA.DMEA.PI, DMEA.TMEA.PI and DMEA.HMEA.PI 

have high BET surface areas of 373, 622 and 694 m
2
/g respectively. The high surface areas 

can be partially attributed to the enhanced rigidity of the ethanoanthracene monomeric units.  

 

DMEA.DMEA.PI contains no aromatic methyl groups adjacent to the imide linking bonds 

and polymer segments can freely rotate. For this reason, DMEA.DMEA.PI is the least rigid 

polymer of the series and displays the lowest BET surface area.  



Polyimides 

 

 

 

99 
 

DMEA.TMEA.PI contains one aromatic methyl group adjacent to the imide linking bonds 

which restricts full rotation of polymer segments and is hence more rigid than 

DMEA.DMEA.PI. For this reason DMEA.TMEA.PI displays a much higher BET surface 

area than DMEA.DMEA.PI.  

DMEA.HMEA.PI contains two aromatic methyl groups adjacent to the imide linking bonds 

which further restricts polymer segment rotation. For this reason, DMEA.HMEA.PI 

possesses the greatest rigidity of the polymer series and displays the highest BET surface 

area. 

DMEA.DMEA.PI and DMEA.TMEA.PI were formed as relatively high molecular weight 

polymers (GPC: Mn = 21,700, Mw = 67,000 and Mn = 49,400, Mw = 63,900 respectively) 

however, many attempts to form DMEA.HMEA.PI resulted in only a moderate molecular 

weight (GPC: Mn = 19,300, Mw = 28,100). The relatively low molecular weight of 

DMEA.HMEA.PI may be due to the two aromatic methyl groups adjacent to each amine 

sterically hindering the polymerisation reaction. DMEA.DMEA.PI and DMEA.TMEA.PI 

were found to have excellent film forming properties and a number of films were formed (Fig 

8a) for membrane gas permeation studies by ITM. Attempts to cast a film from 

DMEA.HMEA.PI however, resulted in brittle films that were unsuitable for gas permeation 

tests. 

       

 

 

The results of permeation tests on a DMEA.DMEA.PI 108 μm As Cast and a 106 μm MeOH 

treated film along with a DMEA.TMEA.PI 137 μm As Cast and a 143 μm MeOH treated film 

are summarised in Table 8a.  

 

Fig 8a Optically clear chloroform-cast films of DMEA.DMEA.PI (10 cm x 108 μm) (left) and DMEA.TMEA.PI 

(10 cm x 137 μm) (right) through which is visible the molecular structures printed on a piece of paper. 
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Table 8a Polyimide Membrane Permeability Measurements 

Transport 
parameter 

Membrane N2 O2 CO2 CH4 H2 He 

 
Px [Barrer] 

DMEA.DMEA 108 
μm As Cast  

11.76 36.17 267.58 21.98 105.81 61.69 

DMEA.TMEA 137 
μm As Cast 

42.72 110.10 954.70 88.39 259.46 134.44 

DMEA.DMEA 106 
μm MeOH 

93.56 331.82 1825.19 128.24 1233.14 514.79 

DMEA.TMEA 143 
μm MeOH 

429 1211 6168 673 3325 1213 

 
α(Px/PN2) 

DMEA.DMEA 108 
μm As Cast  

- 3.78 27.98 2.20 11.07 6.45 

DMEA.TMEA 137 
μm As Cast 

- 2.86 27.29 2.32 7.42 3.84 

DMEA.DMEA 106 
μm MeOH 

- 3.55 19.51 1.37 13.18 5.50 

DMEA.TMEA 143 
μm MeOH 

- 2.82 14.38 1.57 7.75 2.83 

Dx [10-12 m2s-1] DMEA.DMEA 108 
μm As Cast  

14.0 36.9 12.0 5.8 592.4 2015 

DMEA.TMEA 137 
μm As Cast 

31.2 62.7 29.3 13.8 1027.9 2526.2 

DMEA.DMEA 106 
μm MeOH 

22.0 77.7 26.8 7.4 1937.9 3043.0 

DMEA.TMEA 143 
μm MeOH 

88.6 253.7 88.8 35.8 4127.6 5772.8 

 
α (Dx/DN2 ) 

DMEA.DMEA 108 
μm As Cast  

- 2.63 0.85 0.41 42.18 143.46 

DMEA.TMEA 137 
μm As Cast 

- 2.01 0.94 0.44 32.98 81.05 

DMEA.DMEA 106 
μm MeOH 

- 3.531 1.219 0.338 88.049 138.259 

DMEA.TMEA 143 
μm MeOH 

- 2.86 1.00 0.40 46.61 65.18 

 
Sx [cm3 cm-3 

bar-1] 

DMEA.DMEA 108 
μm As Cast  

0.511 0.736 16.738 2.744 0.134 0.023 

DMEA.TMEA 137 
μm As Cast 

0.84 1.20 24.47 4.41 0.19 0.04 

DMEA.DMEA 106 
μm MeOH 

3.1886 3.2029 51.0255 12.9357 0.4773 0.1269 

DMEA.TMEA 143 
μm MeOH 

3.63 3.58 52.09 14.07 0.60 0.16 

 
α (Sx/SN2 ) 

DMEA.DMEA 108 
μm As Cast  

- 1.44 32.78 5.37 0.26 0.04 

DMEA.TMEA 137 
μm As Cast 

- 1.42 29.07 5.23 0.22 0.05 

DMEA.DMEA 
106μm MeOH 

- 1.004 16.002 4.057 0.150 0.040 

DMEA.TMEA 143 
μm MeOH 

- 0.99 14.34 3.87 0.17 0.04 
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Consistent with the high BET surface areas, the permeabilities of both polyimides are 

relatively high due to combined high diffusion and solubility coefficients. Consistent with the 

higher surface area and polymer rigidity, DMEA.TMEA.PI displays significantly higher 

permeabilities than DMEA.DMEA.PI due to enhanced diffusion coefficients. As with other 

polyimide samples, methanol treatment drastically improves permeability of both samples. 

The order of gas permeabilities for both samples (CO2 > H2 > He > O2 > CH4 > N2) show the 

typical trend observed for reverse selective PIMs working under the solution diffusion 

mechanism.  

Both polyimides display high selectivities (Px/Py) with DMEA.DMEA.PI displaying 

proportionately higher selectivities than DMEA.TMEA.PI due to enhanced diffusivity 

selectivities (Dx/Dy), consistent with the Robeson
126

 relation. All data for technologically 

important gas pairs lie below the present Robeson upper bound however, data for O2/N2, 

H2/N2 and H2/CH4 lie above the 1991 upper bound and close to the 1991 upper bound for 

H2/CO2. Data for H2/N2, H2/CH4 and H2/CO2 surpass that of PIM-PI-8 (Fig 8b). 

 

 

Fig 8b Robeson plots of selected gas pairs for DMEA.DMEA.PI and DMEA.TMEA.PI with 1991 (—) and 

2008 (—) upper bounds: DMEA.DMEA.PI 108μm As Cast (●), 106μm MeOH (▲), DMEA.TMEA.PI 137μm 

As Cast (●), 143μm MeOH (▲) compared to PIM-PI-8 (■)
89

 and Robeson's literature data lying close to the 

upper bounds (○)
126, 127

. 
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Chapter 9: Polysquaraines 
 

Squaraines are formally polycondensation products of squaric acid (3,4-dihydroxy-3-

cyclobutene-1,2-dione) with a wide range of aromatic
184, 185

 or heteroaromatic compounds
186

 

(Scheme 9a) and are usually highly coloured materials with zwitterionic resonance structures.  

 

 

Squaraines were first reported in 1965
186

 and due to the intense colours of the materials, they 

have since been used as organic dyes
187

 and fluorescent probes
188

. Recently in 2013, a 

copper(II) porphyrin based, squaraine-linked, mesoporous COF (CuP-SQ-COF) was 

reported
185

. The COF was prepared by refluxing TAP-CuP and squaric acid in a mixture of n-

butanol and 1,2-dichlorobenzene (Scheme 9b). 

 

Scheme 9a Synthesis of various squaraines. 

 

 

 

Scheme 9b Synthesis of CuP-SQ-COF. 
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CuP-SQ-COF has a reported BET surface area of 539 m
2
/g which can be attributed to the 

rigid structure of both the porphyrin and the squaraine units. Squaraines formed from 

aromatic primary amines possess a rigid planar "zigzagged" skeleton with extended π-

conjugation
189

 that presents an attractive unit to incorporate into a PIM. The zwitterionic 

nature of squaraines also offers the possibility to form ionic PIMs without the need for 

counterions that have been previously shown to fill pore space and reduce free volume. 

Fully conjugated linear squaraine polymers (polysquaraines) have attracted attention most 

notably as electrically conducting polymers since 1993
190

. Polysquaraines have been 

previously synthesised from the polymerisation reaction between appropriately di-

functionalised monomers such as bis-pyrroles
191

 and squaric acid but no examples of linear 

polymers formed from aromatic primary amines and squaric acid could be found in literature 

to date. Inspired by the chemistry used to form CuP-SQ-COF, a number of diamine 

monomers were polymerised with squaric acid to form a new class of linear polysquaraines 

(Scheme 9c). 

 

Preliminary experimentation with the new polymerisation reaction using the n-butanol/1,2-

dichlorobenzene solvent mixture reported for CuP-SQ-COF, resulted in the precipitation of a 

bright yellow powders after refluxing for 2 h. Analysis of these materials by FTIR and NMR 

spectroscopy confirmed the expected structure of the polymers consistent with 

characterisation of CuP-SQ-COF and discrete squaraines from literature
192

. FTIR 

Scheme 9c Synthesis of linear polysquaraines. 
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spectroscopy revealed a characteristic squaraine C=O vibration band at ~1600 cm
-1 

while 

NMR spectroscopy revealed both secondary NH and tertiary N
+
H peaks with equal 

integration and no protonated oxygen peaks.  

All products displayed poor solubility in all solvents except DMSO and for this reason, 

estimation of molecular weight by GPC was not possible although, all the isolated materials 

displayed low viscosities when dissolved which is characteristic of low molecular weight 

material. 

An improved method was then devised involving heating the corresponding diamine 

monomer with squaric acid to 120 °C under a nitrogen atmosphere using anhydrous DMSO 

as a solvent. Replacing the n-butanol/1,2-dichlorobenzene solvent mixture with DMSO 

allowed the polymer to remain dissolved and to continue polymerising without precipitating 

out of solution as oligomers. After a reaction time of 12 h, bright yellow and highly viscous 

solutions were obtained from diamine monomers 59, 41, 43 and 44. The polymers were 

obtained as intense yellow powders by the addition of the reaction mixture to a large excess 

of ethanol and subsequent filtration of the product. After purification by re-precipitation from 

DMSO, the desired polymers DMDPM.PSQU, SBI.PSQU, DMEA.PSQU and TMEA.PSQU 

were obtained in 96, 99, 99 and 95 % yields respectively. 

Thermal gravimetric analysis shows that DMDPM.PSQU and SBI.PSQU are both stable up 

to 300 °C while DMEA.PSQU and TMEA.PSQU are both stable up to 260 °C showing an 

initial decrease in mass consistent with the loss of an ethylene fragment via a retro Diels-

Alder reaction
172

. Differential scanning calorimetry did not reveal the presence of glass 

transitions below the decomposition temperatures. Analysis of the ethanol washings from the 

crude polymers using MALDI-TOF failed to reveal an oligomeric pattern. 

Nitrogen adsorption shows that DMDPM.PSQU, SBI.PSQU, DMEA.PSQU and 

TMEA.PSQU have low BET surface areas of 45, 62, 67 and 68 m
2
/g respectively. The low 

surface areas may be attributed to hydrogen bonding between secondary amine groups, ionic 

bonding and rotation of polymer segments around aromatic amine bonds. The relative order 

of observed BET surface areas appear to correlate with the with monomer rigidity although, 

the difference between the values of SBI.PSQU, DMEA.PSQU and TMEA.PSQU are within 

BET experimental error and for practical purposes, can be considered equal. It appears in the 

case of PIM polysquaraines, that increasing monomer and polymer segment rigidity has little 

effect on the resulting free volume of the polymer. A possible explanation may be that 
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polysquaraines do not respond to methanol treatment in such a dramatic manor as observed 

with other PIMs and physical ageing cannot be so easily cancelled. The obtained yields also 

suggest that little oligomeric material or impurities were removed by the re-precipitation 

procedures and this could affect the observed surface areas. 

Unfortunately, films could not be formed from the isolated polysquaraines as DMSO is 

unsuitable for film formation using previously outlined laboratory methods although, other 

methods such as "dual bath coagulation"
193

 could be utilised to obtain films. 

Below are the BET isotherms from which the BET surface areas were calculated for the 

polysquaraines reported in this thesis. 

 

Below is a table summarising the some of the physical characteristics of the polysquaraines 

reported in this thesis. 

Polysquaraine 
Polymers 

BET Analysis TGA 

Polymer BET Surface Area (m2 g-1) Pore Volume (cm3 g-1) TDEC (°C) 

TMEA.PSQU 68 0.4792 260 

DMEA.PSQU 67 0.3264 260 

SBI.PSQU 62 0.4036 300 

DMDPM.PSQU 45 0.3366 300 
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Chapter 10: Polybenzimidazoles 

Aromatic polybenzimidazoles (PBI) are formed from the polycondensation of aromatic 

tetraamines with aromatic dicarboxylic acids
194

 or diphenylesters
195

. The polymerisations are 

conducted at high temperature, either as a solvent free melt condensation
194

 or in 

polyphosphoric acid (PPA) (190 °C)
196

 (Scheme 10a).  

 

The first aromatic polybenzimidazoles were reported in 1961 by Marvel and Vogel
194

 and 

due to their exceptional chemical and thermal stability, have since been used primarily as 

heat resistant coatings and synthetic fibres to fabricate thermally protective apparel
197

. 

Polybenzimidazole membranes have found a number of uses in applications such as reverse 

osmosis
198

 and solid polymer electrolytes in proton exchange membrane fuel cells
196

. 

Polybenzimidazoles have also been tested as gas separation membranes, displaying enhanced 

selectivity towards H2/CO2 at elevated temperatures
199

. The measured permeabilities 

however, have been shown to be very low especially at lower temperatures. This is likely due 

to the dense, close chain packing structure of polybenzimidazoles resulting from rotation 

around the single linking bonds, cohesive interactions of planar monomers and hydrogen 

bonding of the secondary amine groups. Due to their high thermal stability, 

polybenzimidazoles remain a promising material for membrane applications that require 

elevated feed temperatures such as carbon capture from flue gas or steam reforming of fossil 

fuels. By applying the PIM design concept and introducing sites of contortion into the 

polybenzimidazole chains, the permeability of resulting membranes could be improved. 

Three such polybenzimidazoles, DMEA.Benz.PBI, SBI.DMEA.PBI, and DMEA.DMEA.PBI 

were synthesised from tetraamines 53 and 52 and dicarboxylic acids 24 and 60 (commercially 

available) (Scheme 10b). 

 

 

Scheme 10a Synthesis of polybenzimidazoles. 
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Due to the sensitivity of the tetraamine monomers to air and heat, the polyphosphoric acid 

method
196

 was used instead of the solvent free melt method. The polyphosphoric acid 

requires a lower temperature, catalyses the reaction and also protects the tetraamine from 

oxidation by protonation of the amine groups. The polymerisations were carried out under a 

nitrogen atmosphere by slowly heating a mixture of corresponding tetraamine monomer and 

dicarboxylic acid in polyphosphoric acid to 190 ºC, over 1h. The mixtures were then stirred at 

this temperature for a further 16h to form dark brown viscous mixtures. The mixtures were 

then poured into crushed ice and neutralised with saturated sodium bicarbonate solution to 

afford light brown precipitates. The precipitates were filtered and washed with hot acetone to 

afford the desired polymers DMEA.Benz.PBI, SBI.DMEA.PBI, and DMEA.DMEA.PBI in 

97, 94 and 96 % yields respectively as dark brown powders. The isolated products were 

found to be insoluble in all common solvents but were soluble in sulfuric and trifluoroacetic 

acid. For this reason, estimation of molecular weight by GPC was not possible although, all 

Scheme 10b Synthesis of polybenzimidazoles. 
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the isolated materials displayed high viscosities when dissolved in TFA which is 

characteristic of high molecular weight material. 

Thermal gravimetric analysis shows that all three polymers are stable up to 200 °C. 

Differential scanning calorimetry did not reveal the presence of glass transitions below the 

decomposition temperatures. Analysis of the acetone washings from the crude polymers 

using MALDI-TOF failed to reveal an oligomeric pattern. 

Nitrogen adsorption shows that DMEA.Benz.PBI, SBI.DMEA.PBI, and DMEA.DMEA.PBI 

have low BET surface areas of 1, 10 and 29 m
2
/g respectively. The low surface areas can be 

attributed to polymer segment rotation around the single C-C linking bonds and hydrogen 

bonding of the secondary amine groups. It can be concluded that incorporation of rigid and 

contorted polymer segments in polybenzimidazoles to induce microporosity is counteracted 

by the overbearing polymer cohesive interactions. The relative order of observed BET 

surface areas does however appear to correlate with monomer rigidity. DMEA.Benz.PBI 

contains only one site of contortion from the ethanoanthracene unit and has the lowest BET 

surface area of the series. SBI.DMEA.PBI contains two sites of contortion from 

ethanoanthracene and somewhat less rigid spirobisindane units which generates a slightly 

higher BET surface area than DMEA.Benz.PBI. DMEA.DMEA.PBI has the highest BET 

surface area of the series resulting from both sites of contortion being provided by highly 

rigid ethanoanthracene units. 
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Polybenzimidazoles are commonly soluble in dimethylacetamide from which films may be 

cast
199

 however, all isolated products were insoluble in this solvent. A number of attempts 

were made to cast films from trifluoroacetic acid however, this resulted in the polymers 

precipitating as a powder before complete evaporation of the solvent.  

Another method, used for fabricating conductive proton exchange membranes doped with 

phosphoric acid for fuel cell applications
196

, was also attempted. This method involves 

forming a film directly from a polymerisation mixture in polyphosphoric acid and allowing 

the slow hydrolysis of the polyphosphoric acid to phosphoric acid by ambient moisture. The 

polymer then slowly precipitates forming a solid film containing phosphoric acid. The 

phosphoric acid may then be washed out with water leaving a polybenzimidazole film. This 

method was attempted with all three polymers by slow hydrolysis over two months however, 

the result in all cases was a jelly like material. In an effort to obtain solid materials, the PTFE 

casting containers were carefully immersed in water to remove phosphoric acid. The isolated 

materials were found to be non-flexible, brittle and subsequently crumbled into powders upon 

removal from the casting containers.  

It is clear that further experimentation is required to form films suitable for gas permeation 

studies however, due to the low surface areas observed, it is likely that permeabilities would 

be extremely low. As previously mentioned, the permeability of polybenzimidazole 

membranes increases with temperature and the applications of potential interest operate at 

elevated temperatures. All three polymers DMEA.Benz.PBI, SBI.DMEA.PBI, and 

DMEA.DMEA.PBI are only stable up to 200 °C which limits their potential in high 

temperature processes. This could be potentially solved using monomers with higher thermal 

stability such as triptycene, spirobisindane and spirobifluorene. 

Below is a table summarising the some of the physical characteristics of the 

polybenzimidazoles reported in this thesis. 

Polybenzimidazole 
Polymers 

BET Analysis TGA 

Polymer BET Surface Area (m2 g-1) Pore Volume (cm3 g-1) TDEC (°C) 

DMEA.DMEA.PBI 29 0.0990 200 

SBI.DMEA.PBI 10 0.0289 200 

DMEA.Benz.PBI 1 0.0140 200 
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Chapter 11:Polypyrrolones  

Polypyrrolones (PPy) were first reported by Dawans and Marvel in Oct 1965
200

 in which they 

referred to their new class of polymer as polybenzimidazolimides. Other researchers in the 

field later referred to these polymers as polyimidazopyrrolones (Bell and Pezdirtz, Dec 

1965
201

) or polybenzoylenebenzimidazoles (Colson, Michel and Paufler, 1966
202

). For the 

purpose of consistency, these polymers shall be referred to in this thesis as polypyrrolones, 

which appears to be the most common name used in present day literature.  

Polypyrrolones are insoluble step-ladder polymers derived from the polycondensation of 

aromatic tetraamines and aromatic dianhydrides in a two-step synthesis (Scheme 11a
203

). 

 

The first step involves a polycondensation reaction at 0 °C by the slow addition of a solution 

of the dianhydride monomer to a solution of the tetraamine monomer to form a polyamide 

amino acid (PAAA) precursor polymer. The polymerisation requires a polar aprotic solvent 

such as dimethylformamide (DMF) although dimethylacetamide (DMAc) is most commonly 

used. The use of a tetraamine monomer is known to make this polymerisation notoriously 

Scheme 11a Synthesis of polypyrrolones via polyamide amino acids. 
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difficult
203

 as it can potentially react with four equivalents of the dianhydride monomer, 

forming a network polymer. This often results in an instantaneous insoluble gel formation 

during the polymerisation reaction which cannot be further processed. To avoid network 

formation, low temperatures, high monomer purity, slow monomer addition and precise 

monomer stoichiometry are required. Once a soluble polyamide amino acid is formed, this 

precursor polymer may then be processed into the required form such as a coating or solvent-

cast film. The second step involves a staged thermal curing of the precursor polymer at 150-

200 °C to convert the polyamide amino acid to a polybenzimidazole acid/polyaminoimide co-

polymer. The temperature is then increased up to 290-300°C 
204, 205

 to form the polypyrrolone 

structure. During the thermal curing process, cross-chain reactions inevitably occur, forming 

cross-links between chains, resulting in an insoluble polymer. The final dehydration reaction 

is known to be often incomplete, leaving a partial "imide/imidazole character" within the 

polymer structure
203

. 

Polypyrrolones, similar to polybenzimidazoles, are thermally stable polymers due to the 

inherent stability of their fused ring systems and have been intensely studied as heat and 

radiation resistant laminates by NASA
206

. The few examples of polypyrrolones studied as gas 

separation membranes
204, 205, 207

 show data above the Robeson 1991 upper bound for O2/N2 

and CO2/CH4 although the measured permeabilities were found to be relatively low. The 

permeability of polypyrrolones has been shown to improve for high temperature (200 °C) gas 

separations
207

 which combined with their thermal stability, makes these polymers potential 

candidates for high temperature applications. The permeability of polypyrrolone membranes 

can likely be improved further by applying the PIM design concept and incorporating 

contorted polymer segments. The pyrrolone linking unit is likely to be more successful at 

maintaining intrinsic microporosity than the previously described benzimidazoles because 

pyrrolone linkages are comprised of highly rigid fused ring units and tertiary nitrogen atoms 

that will not decrease free volume by hydrogen bonding. 

To investigate polypyrrolones formed from PIM-type monomers, four polyamide amino acid 

precursor polymers DMEA.Benz.PAAA, DMEA.SBI.PAAA, DMEA.DMEA.PAAA and 

SBI.SBI.PAAA were formed from tetraamine hydrochlorides 50 and 51 with dianhydrides 

27, 28 and 61 (commercially available) using a modified procedure from literature
206

 

(Scheme 11b). 
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The most common methods of preparing polyamide amino acid precursor polymers use a 

freebase tetraamine monomer. A method first reported by Bell and Pezdirtz
201

 offers an 

alternative procedure when particularly sensitive tetraamines are involved by using the less 

sensitive tetraamine hydrochloride salt along with pyridine to convert the hydrochloride to 

the freebase in situ. Preliminary experimentation with this method using DMAc as a solvent 

resulted in instantaneous gel formation after only half an equivalent of the dianhydride 

monomer had been added. This was due to the poor solubility of the tetraamine monomers in 

Scheme 11b Synthesis of polyamide amino acid precursor polymers. 
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DMAc which resulted in only a small proportion of solvated tetraamine that changed the 

stoichiometry of the polymerisation. Both tetraamine hydrochlorides 50 and 51 were found to 

be most soluble in DMSO and remained in solution after the addition of pyridine. The 

polymerisations were then conducted using DMSO as the solvent. Under a nitrogen 

atmosphere, the corresponding tetraamine hydrochloride salt was dissolved in anhydrous 

DMSO and the solution was cooled in an ice bath. A solution of the corresponding 

dianhydride monomer in anhydrous pyridine and DMSO was added drop-wise over 2 h to 

produce a viscous bright yellow mixture. It was found that if these mixtures were allowed to 

stir for more than one hour after the addition, they were likely to form insoluble gels. The 

polymerisations were quenched in deionised water and washed with water and ethanol to 

remove pyridine hydrochloride, The polymers were then dried under nitrogen to afford 

DMEA.Benz.PAAA, DMEA.SBI.PAAA, DMEA.DMEA.PAAA and SBI.SBI.PAAA as 

bright yellow powders in 98, 98, 98 and 99 % yields respectively. It has been reported that 

precursor polymers of this type are commonly air sensitive and will rapidly turn green if not 

stored under a nitrogen atmosphere
203

. The isolated products were only found to be air 

sensitive when being dried from a solvent and were subsequently air stable when dry. 

Nitrogen adsorption shows that all the isolated products are non-porous, possessing BET 

surface areas of 0 m
2
/g with irregular isotherms. This can be attributed to rotation around 

amide linkages and extensive hydrogen/ionic bonding. 

PAAA precursor polymers are commonly soluble in DMAc, DMF, NMP and DMSO
203

 

however, once precipitated from the DMSO polymerisation solution, the isolated products 

were found to be insoluble in all common solvents, including DMSO. The products were only 

soluble in pure TFA, from which a number of attempts were made to cast films but this 

resulted in the polymers precipitating as a powder before complete evaporation of the solvent. 

A possibility for future work is to cast a film directly from the polymerisation solution and 

allow the polymer to form a cross-linked gel. Thermal treatment under vacuum would then 

form the polypyrrolone structure while removing the reaction solvent. 

Thermal gravimetric analysis of each precursor polymer reveals a loss of mass between 150 

and 400 °C, approximately equal to that calculated for predicted thermal reactions (Fig 11a) 

and are summarised in Table 11a. The precursor polymer dehydrates forming two molecules 

of H2O per repeating unit to form a polybenzimidazole acid/polyaminoimide co-polymer. A 

higher temperature dehydration then forms two molecules of H2O per repeating unit to form a 
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polypyrrolone. Polymers containing dimethyl ethanoanthracene units, also undergo the loss 

of an ethylene fragment unit via a retro Diels-Alder reaction
172

 at approximately 260 °C to 

form dimethyl anthracene units. All polymers appear to decompose above 400 °C. 

 

 

 

Table 11a Polyamide Amino Acid Thermal Gravimetric Analysis 

Precursor Polymer Species Lost Per Repeating Unit Calculated Loss of Mass TGA Loss of Mass 

DMEA.Benz.PAAA 4 H2O, C2H4 19.53% 19.87% 

DMEA.SBI.PAAA 4 H2O, C2H4 14.08% 18.13% 

DMEA.DMEA.PAAA 4 H2O, 2 C2H4 19.17% 18.55% 

SBI.SBI.PAAA 4 H2O 9.57% 9.14% 

The precursor polymers were then converted to the corresponding polypyrrolone polymers 

using a tube furnace. Under a nitrogen atmosphere the corresponding powdered precursor 

polymers were placed in a ceramic boat crucible and positioned inside a wire wound single 

zone tube furnace. The furnace was ramped 10°C /min to 200 °C for 1 h, then 10°C /min to 

Fig 11a Thermal gravimetric analysis of polyamide amino acid precursor polymers. 
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300 °C for 4 h and cooled to room temperature to produce DMAnth.Benz.PPy, 

DMAnth.DMAnth.PPy, DMAnth.SBI.PPy and SBI.SBI.PPy in 98, 99, 98 and 99 yields 

respectively as dark brown powders (Scheme 11c). 

 

Thermal gravimetric analysis (Fig 11b) shows DMAnth.Benz.PPy, DMAnth.DMAnth.PPy, 

DMAnth.SBI.PPy and SBI.SBI.PPy are stable up to ~ 382, 477, 400 and 480 °C respectively. 

 

Scheme 11c Synthesis of polypyrrolones from polyamide amino acids. 

 

 

 

Fig 11b Thermal gravimetric analysis of thermally cured polypyrrolones. 
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NASA reports that PAAA precursor polymers are fusible materials at the temperatures 

required for pyrrolone formation and that sufficient flow is a requirement to form high 

strength films and laminates
203

. The products were isolated as powders which suggests, the 

precursor polymers were infusible and differential scanning calorimetry of the precursor 

polymers did not reveal the presence of glass transitions below 400 °C. 

The insoluble polypyrrolones were characterised using FTIR spectroscopy and solid state 
13

C 

NMR. FTIR spectroscopy revealed absorption bands at ~1775 (C=O asymm), ~1720 (C=O 

symm), 1615 (C=N stretch), ~1360 (C-N stretch), 745 (imide ring deformation) (cm
-1

). 

Absorption bands due to C=O, C=N and C-N are ambiguous and could be assigned to either 

pyrrolone, imide or imidazole structures however, absorption bands at ~745 cm
-1

 are 

characteristic of imide ring deformation. This suggests that all four isolated products have at 

least a partial imide/imidazole character that may have resulted from branching in the 

precursor polymer and cross-chain reactions during thermal curing. 

Nitrogen adsorption shows that thermally cured DMAnth.DMAnth.PPy, DMAnth.Benz.PPy, 

DMAnth.SBI.PPy and SBI.SBI.PPy possess relatively low BET surface areas of 45, 68, 149 

and 284 m
2
/g respectively.  

 

Preceding the removal of carboxylic acid groups by the first dehydration reaction of the non-

porous PAAA precursor polymers, a portion of free volume is conceivably gained from the 

release of ionic (-NH3
+
/-CO2

-
) bonding. This likely followed by thermally accelerated ageing 
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and finally the polymer is locked into this state by cross-chain reactions during the higher 

temperature dehydration. It is possible that the surface areas may then change depending on 

the thermal curing procedure and could be optimised with a view to producing high surface 

area materials rather than dense and tough laminates.  

For the polymers containing planar anthracene units, one would expect dense solids with a 

surface area of 0 m
2
/g however, corresponding ethanoanthracene units contained in the 

precursor polymers presumably create a pore structure in the intermediate co-polymer that, to 

some degree, remains after thermal cross-linking. DMAnth.DMAnth.PPy has a lower BET 

surface area than DMAnth.Benz.PPy due to the incorporation of two anthracene units that 

enforce polymer chain cohesion by non-covalent interactions. Substantially higher surface 

areas are observed for the polymers containing thermally stable spirobisindane units that 

remain intact after thermal treatment. SBI.SBI.PPy has a higher BET surface area than 

DMAnth.SBI.PPy due to the incorporation of two spirobisindane units that act as sites of 

contortion between the planar pyrrolone linkages.  

SBI.SBI.PPy appears to be the most promising polypyrrolone of the series for high 

temperature gas separations although the inability to process the insoluble and infusible 

precursor polymer into films is a problem that may be challenging to overcome.  

A report published by NASA in 1969
203

 contains what appears to be a similar example of a 

precursor polymer that was insoluble in commonly used solvents and infusible. The authors 

attribute this behaviour to strong electrostatic interactions between ionic sites (-NH3
+
/-CO2

-
) 

of a postulated zwitterionic form of a PAAA. This ionic cross-linking renders the polymer 

insoluble and increases the melting temperature. It is unclear if a "neutral" polymer results 

from impurities contained in the solvents acting as counterions or direct interaction with the 

polymerisation solvents. It is likely that the precursor polymers described in this thesis were 

obtained as a rarely observed ionised form instead of the more common "neutral" form. This 

may also be the reason for the apparent higher stability towards air of the isolated products 

compared with examples from literature. The authors of the study also report a simple 

solution to this problem that could be attempted in future work. By using a tetra-ester instead 

of a bisanhydride monomer, the resulting polymerisation will produce a polyamide where 

ionisable -CO2H groups are replaced with -CO2R groups. The addition of ester groups to the 

precursor polymer may also enhance solubility in less polar solvents that are more easily 

removed during film formation.   
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Chapter 12: Preliminary Study of  Cross-Linking  DHEA.TB with PIM-1 

Cross-linking of polymeric membranes is an important aspect of membrane technology as it 

can improve solvent resistance, reduce polymer plasticisation and decrease physical ageing. 

In chapter 7.2.3, it was shown that it is possible to cross-link Tröger's base polymers by ion 

exchange of methyl iodide quaternerised TB polymers with a dianionic counterion. It was 

also shown that the presence of counterions significantly decreases free volume by filling 

pore space. The reduction of free volume has shown to be minimised using a small 

counterion and it is also plausible that using a very large counterion may separate polymer 

chains and maintain porosity. Another option is to use an anionic species which is itself, 

intrinsically microporous.  

A species that fits this description was described previously in chapter 1.8.3.1. In 2009, 

Guiver and co-workers reported the hydrolysis of pendent nitrile groups in a PIM-1 film 

forming a carboxylated PIM
93

. As a result, the permeability and solubility of the material was 

significantly reduced due to extensive hydrogen bonding of the pendent carboxylic acid 

groups. Carboxylated PIM-1 can be incorporated into a Tröger's base polymer membrane to 

act as a microporous pseudo cross-linking counterion by virtue of a salt formation between 

the acidic carboxylic acid groups on carboxylated PIM-1 with the basic nitrogen atoms on the 

TB polymer. 

This chapter reports a short preliminary investigation into the cross-linking of the most 

commercially applicable TB polymer, DHEA.TB, using carboxylated PIM-1 as a counterion. 

The approach involved the casting of a film from a chloroform solution consisting of a 

mixture of non-hydrolysed PIM-1 and DHEA.TB. The film obtained was then hydrolysed, 

converting the PIM-1 portion to carboxylated PIM-1, which subsequently formed ionic bonds 

with the DHEA.TB portion achieving a cross-linked film. 

Samples of all polymers and polymer mixtures were synthesised separately as powders for 

characterisation and BET surface area analysis. Film samples were then cast separately and 

compared. 
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Polymer Synthesis 

DHEA.TB 

DHEA.TB was synthesised as previously described (Scheme 12a) with a high molecular 

weight (GPC: Mn = 9,200, Mw = 49,300) and a BET surface area of 843 m
2
/g. A sample was 

refluxed in an equal mixture of ethanol and saturated sodium hydroxide solution for 24 h and 

it was confirmed by NMR the polymer was stable in basic conditions. 

 

 

PIM-1 

PIM-1 was synthesised according to a procedure from literature
73

 (Scheme 12b) by stirring 

mixture of 3,3,3',3'-tetramethyl-1,1'-spirobisindane-5,5',6,6'-tetrol and 2,3,5,6 

tetrafluoropthalonitrile in anhydrous dimethylformamide with anhydrous potassium 

carbonate at 65-70 °C for 72 h. 

 

The bright yellow mixture was quenched in water and stirred for 1 hr. The solid was collected 

by filtration, washed with water and then acetone until the washings were clear. The resulting 

powder was dried, and purified by re-precipitation from tetrahydrofuran into a mixture of 

methanol and acetone to afford PIM-1 in 92% yield. PIM-1 was obtained as a high molecular 

weight polymer (GPC: Mn = 60,400, Mw = 194,700) with a BET surface area of 812 m
2
/g. 

Thermal gravimetric analysis shows that the sample is stable up to 500 °C. 

 

PIM-1.CO2H 

PIM-1.CO2H was synthesised according to a procedure from literature
93

 by refluxing a 

suspension of PIM-1 in an equal mixture of ethanol and saturated sodium hydroxide solution 

for 24 h (Scheme 12c). The dark grey mixture was filtered, washed with deionised water and 

Scheme 12a Synthesis of DHEA.TB. 

 

 

 

Scheme 12b Synthesis of PIM-1. 
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then refluxed in deionised water containing a few drops of hydrochloric acid (pH 4) for 1h to 

neutralise the polymer. The light grey mixture was filtered, washed with deionised water and 

then acetone until washings were clear to afford carboxylated PIM-1 in 94% yield. 

 

Hydrolysis was confirmed by FTIR spectroscopy and noting the disappearance of the weakly 

absorbing PIM-1 nitrile C=N band at 2241 cm
-1

 and the appearance of strong carbonyl 

absorption bands at 1672 (C=O asymm) and 1601 (C=O symm). Thermal gravimetric 

analysis shows that the sample is less stable than PIM-1 and decomposed above 200 °C, 

possibly with the loss of CO2. Carboxylated PIM-1 has a BET surface area of 399 m
2
/g which 

is substantially lower than PIM-1 and can be attributed to extensive hydrogen bonding 

reducing free volume. 

 

PIM-1 10%, DHEA.TB 90% Mixture 

A mixture of PIM-1 10% and DHEA.TB 90% by weight was prepared by dissolving PIM-1 

and DHEA.TB in HPLC chloroform and stirring thoroughly for 16h. A film was cast in a 10 

cm PTFE dish in the normal manner to give a flexible light yellow film (Fig 12a). The film 

was refluxed in methanol for 24 h, and dried in a vacuum oven at 120 °C for 9 h. A second 

identical mixture was precipitated into methanol and filtered to afford a light yellow powder 

which was post treated in the same manner. 

Nitrogen adsorption shows that the isolated powder has a BET surface area of 655 m
2
/g 

which is lower than that observed from either component in the mixture measured separately. 

This suggests that a mixture of the two polymers can pack space more efficiently than the 

pure component polymers. Thermal gravimetric analysis shows that the sample is stable up to 

260 °C which is due to decomposition of the DHEA.TB component. 

A previous attempt was made to cast a film from a PIM-1 50% / DHEA.TB 50% mixture 

however, the film was non-homogenous and extremely brittle. Placing the film under a 

Scheme 12c Synthesis of carboxylated PIM-1. 
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254nm UV lamp revealed phase separation of the fluorescent PIM-1 from DHEA.TB. 

Reducing the PIM-1 content to 10% produced a homogeneous and flexible film (Fig 12a) 

   

 

 

PIM-1.CO2H 10%.DHEA.TB 90% 

One half of the film containing PIM-1 10% and DHEA.TB 90% was hydrolysed using the 

same method as with PIM-1.CO2H (Scheme 12d) to afford a flexible light orange film. 

 

A powdered sample containing PIM-1 10% and DHEA.TB 90% was treated with the same 

procedure to afford a light orange powder. Hydrolysis could not be confirmed by FTIR 

spectroscopy as the weakly absorbing PIM-1 nitrile band in the original film and carbonyl 

absorption bands in the treated film were not visible due to the low PIM-1 content. Thermal 

gravimetric analysis shows that the sample is stable up to 300 °C. Nitrogen adsorption shows 

that the isolated powder has a BET surface area of 253 m
2
/g which is lower than that 

observed for PIM-1.CO2H. This is consistent with strong ionic bonding between the two 

component polymers compared with the weaker hydrogen bonding in PIM-1.CO2H. 

Below are the BET isotherms from which the BET surface areas were calculated for different 

PIM-1/DHEA.TB mixtures. 

Scheme 12d Hydrolysis of a PIM-1.CO2H 10%, .DHEA.TB 90% mixture. 

 

 

 

Fig 12a A PIM-1 50%/DHEA.TB 50% film (left),  under UV light (middle) and a PIM-1 10%/DHEA.TB 

50% film under UV light (right). 
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Placing the non-hydrolysed film next to the hydrolysed film under 254nm UV lamp revealed 

that the treated film appears more brightly fluorescent than the untreated film when pure 

PIM-1.CO2H is non-fluorescent. A piece of each film was cut off and placed in separate vials 

containing chloroform. The non-hydrolysed sample completely dissolved after 1 h and the 

hydrolysed sample remained insoluble after 24 h which confirms cross-linking of the film 

(Fig 12b). 

   

 

The film samples were sent for gas permeation studies by ITM but the samples were not 

mechanically robust enough to withstand the permeation tests and were damaged during 

analysis. This study has achieved only a proof of concept and it is clear that further work is 

needed to optimise film strength and free volume. In future work there are a number of 

variables that can be investigated such as PIM-1.CO2H content and degree of hydrolysis.  

Fig 12b Non-hydrolysed and hydrolysed PIM-1 10%/DHEA.TB 90% films (left),  under UV light (middle) 

and  small film pieces placed in vials containing chloroform after 24 h (right). 
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Chapter 13: Conclusions 

Five classes of polymer featuring tertiary amine functionality were synthesised from a range 

of aromatic diamine, tetraamine, dianhydride, and dicarboxylic acid monomers that conform 

to the PIM design concept. Structure-property relationships were established between these 

polymers with BET surface area and gas permeation measurements.  

It was found that monomeric units which contain structural features that induce rigidity and 

contortion, combined with rigid linkers that prevent polymer segment rotation will maximise 

surface area and increase gas permeability. Chain flexibility and structural features that 

increase polymer chain cohesive interactions such as planar monomeric units and hydrogen 

bonding groups serve to decrease surface area and gas permeability. 

A novel polymerisation reaction was developed, giving rise to a new class of microporous 

polymer called Tröger's Base PIMs. These polymers were found to be solution-processable 

and can possess a wide range of BET surface areas ranging from 0-1028 m
2
/g. The highest 

BET surface area was observed from DMEA.TB which combines the enhanced structural 

rigidity of both ethanoanthracene and Tröger's Base units with sites of contortion possessed 

by both polymer segments. These features bestowed the highest recorded BET surface area 

for any soluble polymer to date, while placing gas permeation data for technologically 

important gas pairs far over the present Robeson upper bound. Enhanced molecular sieving 

type permeability characteristics were found to be particularly evident for gases paired with 

hydrogen. Quaternerisation and subsequent ion exchange of Tröger's Base polymers has 

shown that the properties of these polymers can be dramatically altered according to the 

choice of counterion. Ion exchange with polyanionic counterions has also been investigated 

as a platform for the cross-linking of Tröger's Base polymers. It was found that counterions 

fill pore space and a compromise in surface area is made however, it was also shown that 

using counterions that are intrinsically microporous can maintain free volume. 

Three polyimides were synthesised from highly rigid and contorted ethanoanthracene 

monomers containing differing numbers of methyl groups that restrict rotation around 

polymer segments. It was found that increasing the number of methyl groups next to the 

imide linkages increased polymer chain rigidity and a subsequent increase in BET surface 

area and gas permeability was observed. These polyimides were shown to possess a range of 

BET surface areas from 373-694 m
2
/g although only moderate gas permeation characteristics 

were displayed.  



Conclusions 

 

 

 

124 
 

A new class of zwitterionic polysquaraines were synthesised from monomers that conform to 

the PIM design concept but it was found that these materials were non-porous, possessing 

BET surface areas in the range of 45-68 m
2
/g. This can be attributed to the polymer linkages 

containing rotatable bonds and to strong ionic/hydrogen bonding that increases polymer chain 

cohesion. These materials were found to be soluble only in DMSO and so film formation was 

not possible with these materials using methods outlined in this research. In future work, 

films may be attempted to be formed with the use of a dedicated vacuum oven or a dual bath 

coagulation method. 

A number of novel polybenzimidazoles were from synthesised monomers that conform to the 

PIM design concept but it was found that these materials were non-porous, possessing BET 

surface areas in the range of 1-29 m
2
/g. This can again be attributed to the polymer linkages 

containing rotatable bonds and to extensive hydrogen bonding that reduces free volume, 

forming non porous solids. These polymers were found to be only soluble in acids from 

which film casting proved to be ineffective. Due to the low surface areas observed, it is not 

likely that these materials will offer any improvement over present technology. 

Various novel polypyrrolones were synthesised via polyamide amino acid precursor 

polymers. The precursor polymers were found to be only soluble in acids from which films 

could not be effectively formed. The insolubility of all precursor polymers was likely the 

result of strong electrostatic interactions between ionic sites of a postulated zwitterionic form. 

After thermal curing of the precursor polymers the resulting polypyrrolones exhibited BET 

surface areas ranging from 45-284 m
2
/g. The polypyrrolone possessing the highest BET 

surface area of the series was formed from monomers that both contained spirobisindane 

architectures, while lower surface areas were observed for polymers containing planar 

anthracene units. In future work, addition of ester groups to the precursor polymer may 

enhance solubility and aid film formation. It is also likely that the free volume in these 

polymers may be altered by adjusting the thermal curing process as to maximise gas 

permeability characteristics. 

This work has shown that microporous polymers containing tertiary amine functionality can 

be formed using monomers that conform to the PIM design concept and can be tailored to 

exhibit a wide range of properties. Some of the materials resulting from this research may 

have little technological significance at present however, there is now a growing interest in 

the application of Tröger's Base PIMs in gas separation, catalysis and electrochemistry.
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Chapter 14: Experimental 

14.1: General Methods and Equipment 

All reactions using air/moisture sensitive reagents were performed in oven-dried apparatus, 

under a nitrogen atmosphere. TLC analysis refers to analytical thin layer chromatography, 

using aluminium-backed plates coated with Merck Kieselgel 60 GF254. Product spots were 

viewed either by the quenching of UV fluorescence, or by staining with a solution of Cerium 

Sulfate in aqueous H2SO4. Commercially available reagents were used without further 

purification unless otherwise stated. Anhydrous solvents were obtained by distillation over 

calcium hydride (dichloromethane), drying over activated molecular sieves (tetrahydrofuran), 

purchased from Sigma-Aldrich (benzene, dimethylformamide, dimethyl sulfoxide, propan-2-

ol and pyridine) or from a solvent purification system (diethyl ether, toluene). Column 

chromatography was performed over a silica gel (pore size 60 Å, particle size 40-63 µm) 

stationary phase.  

Melting Points (MP) 

Melting points were recorded using a Gallenkamp Melting Point apparatus and are 

uncorrected. Dec refers to the compound decomposing instead of melting at the stated 

temperature. 

Infrared Spectra (IR) 

Infrared adsorption spectra were recorded in the range 4000 - 400 cm
-1

 using either a Perkin-

Elmer 660 plus FTIR spectrophotometer as a thin film cast from dichloromethane between 

sodium chloride plates or a Shimadzu IRAffinity-1 FTIR spectrophotometer as a solid film or 

powder. Broad peaks are further labelled br. 

Nuclear Magnetic Resonance (NMR) 

1
H and 

13
C NMR spectra were recorded in a suitable deuterated solvent using an Avance 

Bruker DPX 250, Avance Bruker DPX 400 or Avance Bruker DPX 500 instrument. 
19

F NMR 

spectra were recorded on a Jeol JNM-ECP 300 instrument. Solid state 
13

C NMR spectra were 

recorded by the EPRSC funded solid state NMR service at Durham University. 

Chemical shifts (δ) were recorded in parts per million (ppm) and corrected according to 

solvent peaks listed in Table 14a. 
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Table 14a Corrected 
1
H and 

13
C chemical shifts of employed deuterated solvents. 

Solvent Formula 1
H Corrected δ 13

C Corrected δ 

Acetone-d6 (CD3)2CO 2.05 29.90, 206.68 

Chloroform-d CDCl3 7.24 77.23 

Deuterium oxide-d2 D2O 4.80 - 

DMSO-d6 (CD3)2SO 2.50 39.51 

Methanol-d4 CD3OD 3.31 49.15 

Trifluoroacetic acid -d  CF3CO2D 11.50 116.60, 164.20 

 

Multiplicity is reported as singlet (s), doublet (d), doubled-doublet (dd), doubled-triplet (dt), 

triplet (t), quartet (q), pentet (p) or multiplet (m). Broad peaks are further labelled br. 

Coupling constants (J) are quoted in Hz. 

Mass Spectrometry 

Small molecule (MW < 1000 g mol
-1

) low-resolution mass spectrometric (LRMS) were 

obtained using a Fisons VG Platform II quadrupole instrument. High resolution mass 

spectrometric (HRMS) data were obtained using a Waters GCT Premier E1 instrument, 

utilising either electron impact (EI), electrospray (ES) or atmospheric pressure chemical 

ionisation (APCI). Ion peaks are labelled [M
+
] or [M

-
] if the spectra was obtained in positive 

or negative mode respectively. Oligomers (MW ≥ 1000 g mol
-1

) low-resolution mass 

spectrometric data were obtained using a Waters Micromass Q-Tof micro mass spectrometer, 

utilising matrix assisted laser desorption ionisation (MALDI) and calibrated to poly(ethylene 

glycol) standards (MW 1000 – 3000 g mol
-1

). 

BET Surface Areas 

Low-temperature (77 K) nitrogen adsorption/desorption isotherms were obtained using a 

Coulter SA3100 surface area analyser. Accurately weighed powdered samples of roughly 

0.10 g were degassed for 15 h at 120 °C under high vacuum prior to analysis unless otherwise 

stated. 
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Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimetry 

Thermo-gravimetric and differential scanning calorimetry analyses were performed on a 

Thermal Analysis SDT Q600 system, heating samples (~ 10 mg) at a rate of 10 °C/min from 

50°C to 1000 °C under a nitrogen atmosphere.  

X-Ray Crystal Structure Determination 

Single crystal X-ray structures were recorded either at Cardiff University using a Bruker-

Nonius Kappa CCD area-detector diffractometer equipped with an Oxford Cryostream low 

temperature cooling device operating at 150(2) K (λ = 0.71073 Å), or at station I19 of the 

Diamond Light Source using synchrotron radiation and a Rigaku Satum 724 CCD 

diffractometer (graphite monochromated radiation). All structures were solved by direct 

methods and all calculations were carried out using the SHELX-97 package. All Pictures 

were obtained using Mercury 2.2 (Build RC5) and solvent molecules were removed for 

clarity. 

Gel Permeation Chromatography (GPC). 

Gel permeation chromatography (GPC) analyses were performed on chloroform solutions (2 

mg ml
-1

) using a GPC MAX variable loop equipped with two KF-805L SHODEX columns 

and a RI(VE3580) detector, operating at a flow rate of 1 ml min
-1

. Calibration was achieved 

using Viscotek polystyrene standards (Mw 1000 – 1,000,000 g mol
-1

). 

Film Fabrication for Membrane Gas Permeation Studies 

Film formation was achieved by preparing a solution of polymer (e.g. 0.70 g for the 180 μm 

film and 0.35 g for the 90 μm film) in chloroform (15 ml), which was filtered through glass 

wool and poured into a 10 cm circular Teflon mould. The film was allowed to form by slow 

solvent evaporation for 96 h in a desiccator. Membranes were post-treated with MeOH to 

cancel casting history and to remove traces of residual solvent. This treatment consists in 

soaking overnight in MeOH and drying for 24h under ambient conditions. 

 

Measurement of Membrane Gas Permeabilities  

Low temperature measurements were carried out by the Institute on Membrane Technology 

(ITM-CNR), Calabria, Italy. Gas permeation tests of single gases were carried out at 25 °C 

and at a feed pressure of 1 bar, using a fixed-volume pressure increase instrument, described 

in the background theory section. Before analysis, the membrane samples were carefully 
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evacuated to remove previously dissolved species. The gases were tested in the following 

order: He, N2, O2, CH4 and CO2. A total membrane area of 2.14 cm
2
 was used and five 

thickness measurements were made for each membrane sample with a digital micrometer 

(Mitutoyo). The pressure increase in the permeate volume was monitored by a pressure 

transducer, starting from the instant of exposure of the membrane to the feed gas. High 

temperature measurements were carried out by Dr. Tim Merkel at Membrane Technology 

and Research, Inc (MTR), California using a similar pressure increase instrument. All values 

were calculated from the slope of the pressure-time curves by methods described in 

background theory section. 

14.2: Monomer Synthesis 

1,3,3-trimethyl-1-phenylindane  

(A modified procedure from literature
136

) 

 

A solution of α-methyl styrene (20.0 g, 22.0 ml) in n-hexane (300 ml) was filtered through 

basic alumina to remove 4-tert-butylcatechol (a self-polymerisation inhibitor) and the solvent 

was removed under vacuum. Purified α-methyl styrene (10.0 g, 11.0 ml, 85 mmol) was added 

drop-wise to trifluoroacetic acid (20.0 ml) with vigorous stirring over 10 min. After stirring 

for a further 20 min, the mixture was quenched in water (200 ml), extracted with chloroform 

and washed with saturated sodium hydrogen carbonate solution. The extract was dried over 

magnesium sulfate and the solvent was removed under vacuum. The crude product was 

distilled under reduced pressure (1.2 mbar) and the fraction boiling at 112-113 ºC was 

collected to afford the desired product 1,3,3-trimethyl-1-phenylindane (1) (7.26 g, 73%, lit
136

 

75%) as a colourless liquid which crystallised on standing. Mp: 50-51 ºC (lit
136

 52 ºC); νmax 

(CH2Cl2/cm
-1

): 3197, 3084, 3060, 3019, 2957, 2924, 2862, 1598; 
1
H NMR (400 MHz, 

CDCl3): δH = 7.56 (m, 9H, Ar H), 2.83 (d,
 
J  = 12.99 Hz, 1H, CH2), 2.59 (d,

 
J  = 12.99 Hz, 1H, 

CH2), 2.08 (s, 3H, CH3), 1.74 (s, 3H, CH3), 1.44 (s, 3H, CH3); 
13

C NMR (101 MHz, CDCl3): 

δC = 152.49, 151.33, 149.03, 128.40, 127.65, 127.05, 125.90, 125.38, 122.93, 59.68, 51.19, 

43.24, 31.37, 31.13, 30.83; TOF-LRMS (EI, m\z): calculated C18H20 236.16 found: 236.14 

[M
+
]. 



Experimental 

 

 

 

129 
 

4-methyl-4-benzyl-2-pentanone 

(Based on a procedure from literature
138

) 

 

Under a nitrogen atmosphere, a suspension of aluminium trichloride (60.00 g, 450 mmol) in 

anhydrous benzene (140.0 ml) was cooled in an ice bath. With vigorous stirring, 4-methyl-3-

pentene-2-one (40.0 ml, 34.16 g, 348 mmol) was injected drop-wise over 30 min. The 

mixture was stirred for 3 h at 0 ºC to form a dark brown solution. The mixture was poured 

into crushed ice, extracted with diethyl ether and the solvent was removed under vacuum. 

The crude product was distilled under reduced pressure (2.5 mbar) and the fraction boiling at 

98-102 ºC (lit
138

 100-101 °C at 5.3 mbar) was collected to afford the desired product 4-

methyl-4-benzyl-2-pentanone (2) (47.85g, 78%, lit
138

 80%) as a colourless liquid. νmax 

(CH2Cl2/cm
-1

): 3059, 2965, 2877, 1704, 1700; 
1
H NMR (500 MHz, CDCl3): δH = 7.31 (d,

 
J = 

7.86 Hz, 2H, Ar H), 7.23 (t,
 
J  = 7.58 Hz, 2H, Ar H), 6.93 (t, J = 7.86 Hz, 1H, Ar H), 2.64 (s, 

2H, CH2), 2.68 (s, 3H, C=OCH3), 1.37 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, CDCl3): δC = 

206.78, 148.30, 128.25, 125.89, 125.50, 56.43, 37.10, 31.54, 28.92; TOF-HRMS (EI, m\z): 

calculated C12H16O 176.1201 found: 176.1200 [M
+
]. 

 

3,3,3’,3’-tetramethyl-1,1’-spirobisindane 

(A modified procedure from literature
138

) 

 

Under a nitrogen atmosphere, a stirred suspension of anhydrous zinc chloride (21.00 g, 154 

mmol) in 4-methyl-4-benzyl-2-pentanone (2) (27.14 g, 154 mmol) was heated to 180 ºC, at 

which point a rapid effervescent reaction took place. The mixture was maintained at 180 ºC 

until two distinct phases separated. The mixture was cooled to room temperature and the 

clear upper phase was extracted from the lower tar-like phase with hot n-hexane. The crude 

product was recrystallised from n-hexane multiple times to afford the desired product 

3,3,3’,3’-tetramethyl-1,1’-spirobisindane (3) (8.91 g, 21%, lit
138

 33%) as colourless needle 
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shaped crystals . Mp: 126-127 ºC (lit
138

 130-131 ºC); νmax (CH2Cl2/cm
-1

): 3063, 3018, 2949, 

2922, 2861; 
1
H NMR (500 MHz, CDCl3): δH = 7.30 (m, 6H, Ar H), 6.94 (d,

 
J  = 7.54 Hz, 2H, 

Ar H), 2.49 (d,
 
J = 13.05 Hz, 2H, CH2), 2.39 (d,

 
J = 13.05 Hz, 2H, CH2), 1.54 (s, 6H, 2 CH3), 

1.49 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, CDCl3): δC = 152.28, 150.81, 127.24, 127.05, 

124.44, 121.89, 59.53, 57.81, 43.62, 31.85, 30.38; TOF-HRMS (EI, m\z): calculated C21H24 

276.1878 found: 276.1875 [M
+
]. 

Note that the structure and formula of this product was assigned incorrectly in literature
138

 but 

a subsequent study
139

 confirmed that 3,3,3’,3’-tetramethyl-1,1’-spirobisindane was formed 

from the above procedure. 

 

3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-spirobisindane 

(Based on a literature procedure for the preparation of substituted 3,3,3',3'-tetramethyl-1,1'-

spirobisindanes
140

) 

 

Under a nitrogen atmosphere, aluminium tribromide (5.32 g, 20 mmol) was dissolved in o-

xylene (180 ml) and freshly distilled 2-bromopropene (33 ml, 24.10 g, 199 mmol) was added 

drop-wise over 30 min to produce a dark red mixture. The mixture was heated to 60 ºC for 72 

h, cooled to room temperature and quenched in crushed ice. The mixture was extracted with 

diethyl ether and subjected to column chromatography (n-hexane). The yellow oil obtained 

was crystallised from an acetone/methanol (4) (1:1) mixture to afford the desired product 

3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-spirobisindane (7.0 g, 32%) as colourless crystals. Mp: 

144-145 ºC; νmax (cm
-1

): 2952, 2863, 1488, 1448; 
1
H NMR (500 MHz, CDCl3): δH = 7.44 (s, 

2H, Ar H), 7.12 (s,
 
2H, Ar H), 2.8 (d,

 
J = 12.97 Hz, 2H, CH2), 2.73 (m, 8H, CH2 + 2 Ar CH3), 

2.62 (s, 6H, 2 Ar CH3), 1.88 (s, 6H, CH3), 1.82 (s, 6H, CH3) ; 
13

C NMR (125 MHz, CDCl3): 

δC = 150.34, 148.84, 135.72, 135.47, 125.70, 123.28, 60.45, 57.68, 43.54, 32.22, 30.92, 20.37, 

20.15; TOF-HRMS (EI, m\z): calculated C25H32 332.2504 found: 332.2509 [M
+
]. 
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9,10-dihydro-11,12-cis(trans)dichloro-9,10-ethanoanthracene 

(A modified procedure from literature
141

) 

 

A mixture of cis/trans (1:1) 1,2-dichloroethylene (3.0 ml, 3.80 g, 39.1 mmol) and anthracene 

(2.00 g, 11.2 mmol) were heated to 215 ºC at 200 PSI for 5 h under microwave irradiation 

(300 W fixed). Excess 1,2-dichloroethylene was removed under vacuum and the black 

residue was dissolved in toluene (50 ml). Furan-2,5-dione (maleic anhydride) (1.00 g, 10 

mmol) was added and the mixture was refluxed for 16 h to remove residual anthracene. The 

mixture was cooled to room temperature and the solvent was removed under vacuum. The 

black residue subjected to column chromatography (n-hexane) and the resulting yellow 

crystals were recrystallised from ethanol to afford the desired product 9,10-dihydro-11,12-

cis(trans)dichloro-9,10-ethanoanthracene (5) (1.54 g, 50%, lit
141

 cis: 75 %, trans: 82%) as 

colourless crystals. Mp: 190-192 ºC (lit
141

 cis: 203-204 ºC, trans: 113-114 ºC); νmax (cm
-1

): 

3074, 3044, 3023, 2972, 1785, 1467, 1458, 1252, 877, 751 ; 
1
H NMR (500 MHz, CDCl3): δH 

= 7.44 (m, 2H, Ar H), 7.37 (m, 2H, Ar H), 7.30 (m, 2H, Ar H), 7.23 (m, 2H, Ar H), 4.57 (s, 

2H, bridgehead CH), 4.52 (s, 2H, bridge CH); 
13

C NMR (125 MHz, CDCl3): δC = 140.35, 

137.87, 127.80, 127.38, 127.19, 126.84, 126.49, 125.25, 1124.64, 58.75, 52.59, 47.99, 45.44; 

TOF-HRMS (EI, m\z): calculated C16H12Cl2 274.0316 found: 274.0313 [M
+
].  

 

9,10-dihydro-9,10-ethenoanthracene (Dibenzobarrelene)  

(Following a procedure from literature
141

) 

 

Under a nitrogen atmosphere, 9,10-dihydro-11,12-cis(trans)dichloro-9,10-ethanoanthracene 

(5) (6.60 g, 24 mmol) was dissolved in a refluxing mixture of anhydrous tetrahydrofuran (100 

ml) and anhydrous propan-2-ol (100 ml). Sodium metal (5.49 g, 240 mmol) was added 

slowly in small portions and the mixture was refluxed until the sodium had been consumed. 

The mixture was cooled to room temperature and quenched in water. The white precipitate 

was filtered, washed with water and dried. The precipitate was recrystallised from methanol 



Experimental 

 

 

 

132 
 

to afford the desired product 9,10-dihydro-9,10-ethenoanthracene (6) (3.50 g, 71%, lit
141

 

60%) as colourless crystals. Mp: 125-126ºC (lit
141

 118-119 ºC); νmax (/cm
-1

): 3068, 3041, 

3016, 2974, 1456, 1147, 806 ; 
1
H NMR (500 MHz, CDCl3): δH = 7.39 (m, 4H, Ar H), 7.11 

(m, 2H, =CH), 7.06 (m, 4H, Ar H), 5.25 (m, 2H, bridgehead CH); 
13

C NMR (125 MHz, 

CDCl3): δC = 146.23, 139.52, 124.52, 123.15, 51.28; TOF-HRMS (EI, m\z): calculated C16H12 

204.0939 found: 204.0943 [M
+
]. 

 

9,10-dihydro-9,10-ethanoanthracene 

 

Under a nitrogen atmosphere, 9,10-dihydro-9,10-ethenoanthracene (6) (5.00 g, 24 mmol) was 

dissolved in tetrahydrofuran (100 ml, de-oxygenated). Raney nickel (~40 mg) and hydrazine 

monohydrate (24.7 ml, 24.50 g, 490 mmol) was added and the mixture was refluxed for 24 h. 

The colourless mixture was cooled to room temperature and filtered under nitrogen. The 

organic phase was extracted with chloroform and the solvent was removed under vacuum at 

to afford the desired product 9,10-dihydro-9,10-ethanoanthracene (7) in a quantitative yield 

as colourless crystals. Mp: 143-144 ºC (lit
141

 142-143 ºC); νmax (cm
-1

): 3020, 2953, 2868, 

1456; 
1
H NMR (500 MHz, CDCl3): δH = 7.17 (m, 4H, Ar H), 7.00 (m, 4H, Ar H), 4.23 (s, 

2H, bridgehead CH), 1.61 (m, 4H, bridge CH2); 
13

C NMR (125 MHz, CDCl3): δC = 143.91, 

125.63, 123.38, 44.13, 26.76; TOF-HRMS (EI, m\z): calculated C16H14 206.1096 found: 

206.1096 [M
+
]. 

 

9,10-dihydro-9,10-ethanoanthracene-11,12-trans-diethyl ester 

(Following a procedure from literature
142

) 

 

Under a nitrogen atmosphere, anthracene (2.50 g, 14 mmol), diethyl fumarate (3.44 ml, 3.62 

g, 21 mmol) and aluminium trichloride (3.73 g, 28 mmol) were dissolved in distilled 

dichloromethane (100 ml dried over CaH2). The reaction mixture was stirred at room 
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temperature for 6 h and then poured into crushed ice. The organic layer was extracted with 

chloroform and the solvent was removed under vacuum to give a colourless oil. The crude 

product was recrystallised from methanol to afford the desired product 9,10-dihydro-9,10-

ethanoanthracene-11,12-trans-diethyl ester (8) (4.1 g, 83%) as colourless, needle-shaped 

crystals: Mp: 101-103 ºC (lit
208

 104 ºC ); νmax (CH2Cl2/cm
-1

): 2979, 2953, 1732; 
1
H NMR 

(400 MHz, CDCl3): δH = 7.3 (m, 2H, Ar H), 7.2 (m, 2H, Ar H), 7.0 (m, 4H, Ar H), 4.6 (s, 2H, 

bridgehead CH), 4.0 (m, 4H, CH2), 3.4 (s, 2H, bridge CH), 1.1 (t, J = 7.13 Hz, 6H, CH3) ; 
13

C 

NMR (101 MHz, CDCl3): δC = 172.36, 142.10, 140.43, 126.42, 126.25, 124.62, 123.84, 

61.07, 47.77, 46.83, 14.34; TOF-LRMS (EI, m\z): calculated C22H22O4 350.15 found: 350.15 

[M
+
]. 

 

N-methyl-9,10-dihydro-9,10-ethanoanthracene-11,12-cis-dicarboximide 

(A modified procedure from literature
142

) 

 

Under a nitrogen atmosphere, anthracene (1.00 g, 6 mmol), N-methylmaleimide (0.93 g, 8 

mmol) and aluminium trichloride (1.30 g, 10 mmol) was dissolved in distilled 

dichloromethane (50 ml dried over CaH2). The reaction mixture was stirred at room 

temperature for 16 h and then poured into crushed ice. The organic layer was extracted with 

chloroform and the solvent was removed under vacuum to give a colourless oil. The crude 

product was recrystallised from methanol to afford the desired product N-methyl-9,10-

dihydro-9,10-ethanoanthracene-11,12-cis-dicarboximide (9) (0.98g, 60%) as colourless, 

needle-shaped crystals: Mp: 267-268 ºC (lit
209

 268-269 ºC); νmax (CH2Cl2/cm
-1

): 2964, 1694, 

1129;
 1

H NMR (400 MHz, CDCl3): δH = 7.29 (m, 2H, Ar H), 7.18 (m, 2H, Ar H), 7.09 (m, 

2H, Ar H), 7.03 (m, 2H, Ar H), 4.70 (s, 2H, bridge CH), 3.12 (s, 2H, bridgehead CH), 2.42 (s, 

3H, CH3); 
13

C NMR (101 MHz, CDCl3): δC = 176.99, 141.45, 138.50, 127.02, 126.75, 

124.87, 124.28, 47.02, 45.55, 24.29; TOF-LRMS (APCI, m\z): calculated C19H15NO2 289.11 

found: 331.15 [M + CH3CNH
+
] (solvent). 
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General Procedure (14.2a) for Diol Compounds 

Under a nitrogen atmosphere, magnesium turnings and an iodine crystal (~5 mg) was 

suspended in dry tetrahydrofuran. With vigorous stirring, the corresponding bromo reagent 

was injected drop-wise and the mixture was refluxed until the magnesium was consumed. A 

solution of 2,5-hexanedione was injected drop-wise and the mixture was allowed to reflux for 

a further hour. The mixture was cooled to room temperature and then poured into crushed ice. 

The organic layer was extracted with diethyl ether and the solvent was removed under 

vacuum. The resulting oil was purified appropriately to afford the desired product. 

 

2,5-diphenylhexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (10.00 g, 411 mmol), 

tetrahydrofuran (200 ml), bromobenzene (44 ml, 64.6 g, 411 mmol) and 2,5-hexanedione (24 

ml, 23.48 g, 206 mmol). The resulting yellow oil was dissolved in boiling acetone (100 ml) 

and the diol was precipitated with the addition of n-hexane (400 ml) and filtered to afford the 

desired product 2,5-diphenylhexane-2,5-diol (10) (36.10 g, 65%) as a colourless powder Mp: 

121-122 ºC (lit
210

 121-122 ºC) ; νmax (CH2Cl2/cm
-1

): 3398 (br), 2939, 2864; 
1
H NMR (400 

MHz, CDCl3): δH = 7.35 (m, 6H, Ar H), 7.24 (m, 2H, Ar H), 2.43 (s, br, 2H, OH), 1.88 (m, 

2H, CH2), 1.73 (m, 2H, CH2), 1.54 (s, 3H, CH3), 1.49 (s, 3H, CH3); 
13

C NMR (101 MHz, 

CDCl3): δC = 147.85, 147.60, 128.18, 126.52, 126.50, 124.86, 124.80, 74.53, 74.41, 38.10, 

37.95, 31.32, 30.48; TOF-LRMS (EI, m/z): calculated C18H22O2 270.16 found: 252.00 [M - 

H2O
+
]. 

 

2,5-di(3-methylphenyl)hexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (10.00 g, 411 mmol), 

tetrahydrofuran (200 ml), 3-bromotoluene (50 ml, 70.37 g, 411 mmol) and 2,5-hexanedione 

(24 ml, 23.48 g, 206 mmol). The resulting yellow oil was subjected to column 

chromatography (dichloromethane) to afford the desired product 2,5-di(3-
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methylphenyl)hexane-2,5-diol (11) (53.72 g, 86%) as a colourless oil. Mp: under 25 ºC; νmax 

(cm
-1

): 3408 (br), 3020, 2970, 2926, 2868, 1701; 
1
H NMR (500 MHz, CDCl3): δH = 7.07 (m, 

6H, Ar H), 6.92 (m, 2H, Ar H), 2.88 (s, br, 2H, 2 OH), 2.23 (m, 6H, 2 Ar CH3), 1.75 (m, 2H, 

CH2), 1.63 (m, 2H, CH2), 1.39 (s, 3H, CH3), 1.33 (s, 3H, CH3); 
13

C NMR (125 MHz, CDCl3): 

δC = 148.07, 147.82, 137.57, 128.14, 128.01, 127.35, 127.12, 125.64, 125.60, 74.47, 74.35, 

38.14, 37.94, 31.32, 30.35, 21.66, 21.63; TOF-HRMS (ES, m\z): calculated C20H26O2 

298.1933 found: 298.1924 [M
-
].  

 

2,5-di(4-methylphenyl)hexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (10.00 g, 411 mmol), 

tetrahydrofuran (200 ml), 4-bromotoluene (50.6 ml, 70.36 g, 411 mmol) and 2,5-hexanedione 

(24 ml, 23.48 g, 206 mmol). The resulting yellow oil was subjected to column 

chromatography (dichloromethane) to afford the desired product 2,5-Di(4-

methylphenyl)hexane-2,5-diol (12) (49.6 g, 81%) as a colourless oil. Mp: under 25 ºC; νmax 

(cm
-1

): 3410 (br), 3140, 2926, 2890 ; 
1
H NMR (500 MHz, CDCl3): δH = 7.15 (m,

 
4H, Ar H), 

7.02 (m,
 
4H, Ar H), 2.67 (s, br, 2H, 2 OH), 2.24 (s, 3H, Ar CH3), 2.22 (s, 3H, Ar CH3), 1.75 

(m, 2H, CH2), 1.62 (m, 2H, CH2), 1.39 (s, 3H, CH3), 1.34 (s, 3H, CH3); 
13

C NMR (125 MHz, 

CDCl3): δC = 145.11, 144.85, 135.88, 135.83, 128.80, 128.63, 124.84, 124.64, 74.37, 74.25, 

38.14, 37.98, 31.26, 30.39, 20.94, 20.92; TOF-HRMS (ES, m\z): calculated C20H26O2 

298.1933 found: 333.1626 [M + Cl
-
]. 

 

2,5-di(3,4-dimethylphenyl)hexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (10.00 g, 411 mmol), 

tetrahydrofuran (200 ml), 4-bromo-1,2-dimethylbenzene (55.6 ml, 76.14 g, 411 mmol) and 

2,5-hexanedione (24 ml, 23.48 g, 206 mmol). The resulting yellow semi-solid was triturated 

in n-hexane and filtered to afford the desired product 2,5-di(3,4-dimethylphenyl)hexane-2,5-

diol (13) (64.1 g, 95%) as colourless crystals. Mp: 117-120 ºC; νmax (CH2Cl2/cm
-1

): 3390 (br), 
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3018, 3018, 2971, 2921, 2864, 1506, 1451 ; 
1
H NMR (500 MHz, CDCl3): δH = 7.02 (s, 2H, 

Ar H), 6.94 (m, 4H, Ar H), 2.83 (s, br, 1H, OH), 2.72 (s, br, 1H, OH), 2.12 (m, 12H, 4 Ar 

CH3), 1.73 (m, 2H, CH2), 1.62, (m, 2H, CH2), 1.37 (s, 3H, CH3), 1.32 (s, 3H, CH3); 
13

C NMR 

(125 MHz, CDCl3): δC = 145.69, 145.44, 136.13, 134.54, 134.48, 129.46, 129.44, 126.27, 

1216.23, 122.41, 122.35, 74.43, 74.31, 38.17, 37.94, 31.43, 30.45, 20.05, 20.03, 19.35, 19.32; 

TOF-HRMS (EI, m\z): calculated C22H30O2 326.2246 found: 308.2140 [M - H2O
+
]. 

 

2,5-di(3,5-dimethylphenyl)hexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (10.00 g, 411 mmol), 

tetrahydrofuran (200 ml), 1-bromo-3,5-dimethylbenzene (55.9 ml, 76.14 g, 411 mmol) and 

2,5-hexanedione (24 ml, 23.48 g, 206 mmol). The resulting yellow oil was triturated in n-

hexane to afford the desired product 2,5-di(2,4-dimethylphenyl)hexane-3,5-diol (14) (61.4 g, 

91%) as a colourless oil. Mp: under 25 ºC; νmax (cm
-1

): 3400 (br), 3005, 2970, 1918, 1604 

1450; 
1
H NMR (500 MHz, CDCl3): δH = 7.07 (m, 4H, Ar H), 6.95 (s, 1H, , Ar H), 6.93 (s, 

1H, , Ar H), 3.04 (s, br, 2H, 2 OH), 2.40 (s, 6H, 2 Ar CH3), 2.38 (s, 6H, 2 Ar CH3), 1.95 (m, 

2H, CH2), 1.84 (m, 2H, CH2), 1.58 (s, 3H, CH3), 1.53 (s, 3H, CH3); 
13

C NMR (125 MHz, 

CDCl3): δC = 148.18, 147.90, 137.51, 128.13, 128.06, 122.80, 122.77, 74.53, 74.42, 38.14, 

37.87, 31.58, 30.43, 21.63, 21.60; TOF-HRMS (EI, m\z): calculated C22H30O2 326.2246 

found: 308.2141 [M - H2O
+
]. 

 

2,5-di(2,5-dimethylphenyl)hexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (10.00 g, 411 mmol), 

tetrahydrofuran (200 ml), 2-bromo-1,4-dimethylbenzene (56.8 ml, 76.14 g, 411 mmol) and 

2,5-hexanedione (24 ml, 23.48 g, 206 mmol). The resulting yellow oil was subjected to 
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column chromatography (1:4 EtOAc : n-hexane) afford the desired product 2,5-di(2,5-

dimethylphenyl)hexane-2,5-diol (15) (51.40 g, 77%) as colourless crystals. Mp: 111-112ºC; 

νmax (cm
-1

): 3522 (br), 3390, 2972, 2925, 2870, 1496, 1458; 
1
H NMR (500 MHz, CDCl3): δH 

= 7.46 (s, 1H, Ar H), 7.41 (s, 1H, Ar H), 7.10 (m, 4H, Ar H), 3.31 (s, br, 2H, 2 OH), 2.48 (m, 

6H, 2 CH3), 2.44 (m, 6H, 2 CH3), 2.10 (m, 2H, CH2), 1.94 (m, 2H, CH2), 1.73 (s, 3H, CH3), 

1.68 (s, 3H, CH3); 
13

C NMR (125 MHz, CDCl3): δC = 144.95, 144.69, 134.90, 134.85, 

132.68, 132.08, 131.90, 127.52, 127.29, 127.22, 75.71, 75.67, 36.63, 36.56, 29.92, 29.36, 

21.91, 21.85, 21.36, 21.32; TOF-HRMS (EI, m\z): calculated C22H30O2 326.2246 found: 

326.2223 [M
-
]. 

 

2,5-di-(2,5-dimethoxyphenyl)hexane-2,5-diol 

 

General procedure 14.2a was followed using magnesium turnings (0.6 g, 23 mmol), 

tetrahydrofuran (100 ml), 2-bromo-1,4 dimethoxybenzene (3.5 ml 5 g, 23 mmol) and 2,5-

hexanedione (1.35 ml, 1.3 g, 11.4 mmol. The organic layer was extracted with diethyl ether 

and the solvent was removed under vacuum. The resulting yellow oil was triturated in n-

hexane (200 ml) for 24 h and filtered to afford the desired product 2,5-di-(2,5-

dimethoxyphenyl)hexane-2,5-diol (16) (2.63 g, 59%) as a colourless powder Mp: 98-100 ºC; 

νmax (CH2Cl2/cm
-1

): 3434 (br), 2937, 2833, 1489, 1219, 1049; 
1
H NMR (500 MHz, CDCl3): 

δH = 6.94 (s, 2H, Ar H), 6.75 (m, 4H, Ar H), 4.39 (s, br, 2H, OH), 3.75 (m, 12H, O-CH3), 

1.99 (m, 2H, CH2), 1.84 (m, 2H, CH2), 1.54 (s, 3H, CH3), 1.50 (s, 3H, CH3); 
13

C NMR (125 

MHz, CDCl3): δC = 153.60, 150.93, 150.85, 136.48, 136.02, 114.16, 113.89, 112.09, 111.41, 

75.02, 74.89, 55.67, 36.61, 36.32, 27.98, 27.32; TOF-HRMS (APCI, m\z): calculated 

C22H30O6 390.2042 found: 391.2111 [M + H
+
]. 
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General Procedure (14.2b) for Ethanoanthracene Compounds Derived from Diols 

 

Under a nitrogen atmosphere, the diol was suspended in anhydrous toluene and cooled in an 

ice bath. Aluminium trichloride was slowly added over 30 min and the mixture was stirred 

for 1 h and then at room temperature for 1 h. The mixture was then refluxed for 24 h, cooled 

and poured into crushed ice. The organic layer was extracted with chloroform and the solvent 

was removed under vacuum. The residue was subjected to column chromatography (n-

hexane) and the resulting green oil was recrystallised from a suitable solvent to afford the 

desired product. 

 

9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene 

(A modified procedure from literature
143

) 

 

General procedure 14.2b was followed using 2,5-diphenylhexane-2,5-diol (10) (22.00 g, 81 

mmol), toluene (70 ml), aluminium trichloride (10.80 g, 81 mmol) and recrystallisation from 

n-hexane to afford the desired product 9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene 

(17) (6.77 g, 36%, lit
143

 59%) as colourless needle shaped crystals: Mp: 129-130 ºC (lit
143

 

126-128 ºC) ; νmax (CH2Cl2/cm
-1

): 2924, 2857; 
1
H NMR (400 MHz, CDCl3): δH = 7.51 (m, 

4H, Ar H), 7.36 (m, 4H, Ar H), 2.17 (s, 6H, 2 CH3), 1.83 (s, 4H, 2 CH2); 
13

C NMR (101 

MHz, CDCl3): δC = 146.56, 125.42, 120.51, 41.93, 36.05, 18.57; TOF-LRMS (EI, m/z): 

calculated C18H18 234.14 found: 234.01 [M
+
]. Crystals were prepared by a slow evaporation 

of a solution of the compound in chloroform. Crystal size: 0.10 × 0.05 × 0.05 mm, 

orthorhombic, space group Pccn, a = 14.3872 (2), b= 20.7406 (3), c= 8.4818 (1) Å, V = 

2530.96 (6) Å
3
, Z = 8: μ= 0.07 mm

−1
, 42675 reflections measured, 3822 unique reflections 

(Rint = 0.055), 3671 reflections with I >2σ(I), R(%) = 4.42. 
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2,6,9,10-tetramethyl-9,10-dihydro-9,10-ethanoanthracene  

 

General procedure 14.2b was followed using 2,5-di(3-methylphenyl)hexane-2,5-diol (11) 

(53.72 g, 180 mmol), toluene (150 ml), aluminium trichloride ( 24.00 g, 180 mmol) and 

recrystallisation from n-hexane to afford the desired product 2,6,9,10-tetramethyl-9,10-

dihydro-9,10-ethanoanthracene (18) (17.45 g, 37%) as colourless needle shaped crystals: Mp: 

81-82 ºC; νmax (cm
-1

): 2920, 2858, 1456; 
1
H NMR (500 MHz, CDCl3): δH = 7.84 (d, J = 7.58 

Hz, 2H, Ar H), 7.81 (s, 2H, Ar H), 7.62 (d, J = 7.58 Hz, 2H, Ar H), 3.02 (s, 6H, 2 Ar CH3), 

2.60 (s, 6H, 2 CH3), 2.28 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 146.65, 143.63, 

134.45, 125.68, 121.24, 120.21, 41.41, 36.18, 21.49, 18.49; TOF-HRMS (EI, m\z): calculated 

C20H22 262.1722 found: 262.1727 [M
+
]. Crystals were prepared by a slow evaporation of a 

solution of the compound in chloroform. Crystal size: 0.70 × 0.10 × 0.10 mm, orthorhombic, 

space group Pccn, a = 15.3760 (6), b= 22.6359 (7), c=8.7141 (3) Å , V = 3032.94 (18) Å
3
, Z 

= 8: μ= 0.06 mm
−1

, 21076 reflections measured, 3612 unique reflections (Rint = 0.147), 2103 

reflections with I >2σ(I), R(%) = 7.16. 

 

2,3,6,7,9,10-hexamethyl-9,10-dihydro-9,10-ethanoanthracene 

 

General procedure 14.2b was followed using 2,5-di(3,4-dimethylphenyl)hexane-2,5-diol (13) 

(41.00 g, 126 mmol), toluene ( 150 ml), aluminium trichloride (16.75 g, 126 mmol) and 

recrystallisation from n-hexane to afford the desired product 2,3,6,7,9,10-hexamethyl-9,10-

dihydro-9,10-ethanoanthracene (19) (6.54 g, 18%) as colourless crystals: Mp: 226-227 ºC; 

νmax (cm
-1

): 2959, 2938, 2856, 1456; 
1
H NMR (500 MHz, CDCl3): δH = 7.40 (s, 4H, Ar H), 

2.58 (s, 12H, 4 Ar CH3), 2.28 (s, 6H, 2 CH3), 1.97 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, 

CDCl3): δC = 144.58, 132.99, 122.11, 41.26, 36.57, 19.94, 18.75; TOF-HRMS (EI, m/z): 

calculated C22H26 290.2035 found: 290.2033 [M
+
]. 

 

 

file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_exptl_crystal_size_max
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_exptl_crystal_size_mid
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_exptl_crystal_size_min
file:///C:/Users/student/Desktop/0Thesis/Thesis/ev53new%20_symmetry_space_group_name_H-M
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_cell_length_a
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_cell_length_b
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_cell_length_c
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_cell_volume
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_diffrn_reflns_number
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_reflns_number_total
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_diffrn_reflns_av_R_equivalents
file:///C:/Users/student/Desktop/0Thesis/Thesis/shelxl%20_reflns_number_gt


Experimental 

 

 

 

140 
 

1,3,5,7,9,10-hexamethyl-9,10-dihydro-9,10-ethanoanthracene/1,3,6,8,9,10-hexamethyl-

9,10-dihydro-9,10-ethanoanthracene 

 

General procedure 14.2b was followed using 2,5-di(2,4-dimethylphenyl)hexane-3,5-diol (14) 

( 63.86 g, 196 mmol), toluene ( 200 ml), aluminium trichloride ( 26.00 g, 196 mmol) and 

recrystallisation from acetonitrile to afford the desired product mixture of 1,3,5,7,9,10-

hexamethyl-9,10-dihydro-9,10-ethanoanthracene and 1,3,6,8,9,10-hexamethyl-9,10-dihydro-

9,10-ethanoanthracene (20) (0.77 g, 1.36%) as colourless crystals: Mp: 167-168 ºC; νmax (cm
-

1
): 2958, 2910, 2856, 1467;

1
H NMR (500 MHz, CDCl3): δH = 7.12 (s, 1H, Ar H), 7.11 (s, 1H, 

Ar H), 6.79 (s, 1H, Ar H), 6.78 (s, 1H, Ar H), 2.65 (s, 3H, Ar CH3), 2.63 (s, 3H, Ar CH3), 

2.37 (s, 3H, Ar CH3), 2.35 (s, 3H, Ar CH3), 2.22 (s, 3H, CH3), 2.20 (s, 3H, CH3), 1.94 (s, 2H, 

CH2), 1.60 (s, 2H, CH2); 
13

C NMR (125 MHz, CDCl3): δC = 149.24, 139.94, 134.15, 131.85, 

130.92, 120.42, 44.25, 37.57, 24.25, 23.10, 21.12 ;TOF-HRMS (EI, m/z): calculated C22H26 

290.2035 found: 290.2044 [M
+
]. 

 

1,5,8-trimethyl-3-(ethyl-2-(2,5-dimethylphenyl))indane 

 

General procedure 14.2b was followed using 2,5-di(2,5-dimethylphenyl)hexane-2,5-diol (15) 

(10.00 g, 31 mmol), toluene (50 ml), aluminium trichloride (4.08 g, 31 mmol) and 

recrystallisation from acetonitrile to afford the undesired product 1,5,8-trimethyl-3-(ethyl-2-

(2,5-dimethylphenyl))indane (23) (0.9 g, 10%) as colourless crystals: Mp: 127-128 ºC; νmax 

(CH2Cl2/cm
-1

): 3040, 2957, 2924; 
1
H NMR (500 MHz, CDCl3): δH = 7.21 (s, 1H, Ar H), 7.05 

(d, J = 7.64 Hz, 1H, Ar H), 6.99 (d, J = 7.64 Hz, 1H, Ar H), 6.95 (d, J = 7.54 Hz, 1H, Ar H), 

6.87 (d, J = 7.54 Hz, 1H, Ar H), 3.65 (m, 1H, CH), 3.51 (m, 1H, CH), 3.29 (m, 1H, CH), 2.42 

(s, 3H, Ar CH3), 2.35 (s, 3H, Ar CH3), 2.16 (s, 3H, Ar CH3), 2.01 (s, 3H, Ar CH3), 1.51 (2s, 

3H, CH3), 1.27 (2s, 3H, CH3); 
13

C NMR (125 MHz, CDCl3): δC = 147.19, 144.54, 144.08, 
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135.07, 133.01, 131.89, 131.20, 130.20, 128.57, 127.91, 126.44; TOF-HRMS (EI, m/z): 

calculated 292.2191 found: 292.2190 [M
+
]. Crystals were prepared by a slow evaporation of 

a solution of the compound in chloroform. Crystal size: 0.40 × 0.15 × 0.15 mm, Triclinic, 

space group Pī, a = 7.5701 (6), b= 7.6145 (7), c= 15.1260 (9) Å , α = 92.468 (5)°, β = 90.324 

(4)°, γ = 94.855 (3)° V = 867.93 (12) Å
3
, Z = 2: μ= 0.06 mm

−1
, 6043 reflections measured, 

3955 unique reflections (Rint = 0.041 ), 2433 reflections with I >2σ(I), R(%) = 7.81.  

 

General Procedure (14.2c) for Carboxylic acid Compounds 

(Based on a procedure from literature
144

) 

The corresponding dimethyl or tetramethyl compound was suspended in an equal mixture of 

pyridine and deionised water and the mixture was heated to reflux. Half the specified quantity 

of potassium permanganate was added in small portions, allowing for foaming between 

additions and the mixture was refluxed for 12 h. The remaining quantity of potassium 

permanganate was added in small portions as before and the mixture was refluxed for an 

additional 24h. The black mixture was filtered hot and the manganese dioxide was washed 

with hot deionised water. The filtrate was cooled to room temperature and the pyridine/water 

mixture was removed under vacuum. The solid obtained was dissolved in deionised water 

and neutralised with concentrated hydrochloric acid to give a white precipitate. The solid was 

filtered, dried and recrystallised from the appropriate solvent to afford the desired product. 

 

9,10-dimethyl-9,10-dihydro-2,6-dicarboxyl-9,10-ethanoanthracene 

 

General procedure 14.2c was followed using 2,6,9,10-tetramethyl-9,10-dihydro-9,10-

ethanoanthracene (18) (5.30 g, 20 mmol), pyridine/deionised water (200 ml) and potassium 

permanganate (31.92 g, 200 mmol) to afford the desired product 9,10-dimethyl-9,10-dihydro-

2,6-dicarboxyl-9,10-ethanoanthracene (24) (5.96 g, 92%) as a colourless powder. Mp: over 

300 ºC; νmax (cm
-1

):3100 (br), 2967, 2936, 2868, 1689, 1294, 1269; 
1
H NMR (500 MHz, 

(CD3)2SO): δH = 12.83 (s, br, 2H, 2 CO2H), 7.84 (s, 2H, Ar H), 7.78 (d, J = 7.23 Hz, 2H, Ar 

H), 7.37 (d, J = 7.23 Hz, 2H, Ar H), 1.93 (s, 6H, 2 CH3), 1.52 (s, 4H, 2 CH2); 
13

C NMR (125 
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MHz, (CD3)2SO): δC = 167.90, 151.05, 145.97, 128.50, 127.57, 121.60, 121.10, 42.32, 35.23, 

18.20; TOF-HRMS (EI, m\z): calculated C20H18O4 322.1205 found: 322.1200 [M
+
]. 

 

9,10-dimethyl-9,10-dihydro-2,3,6,7-tetracarboxyl-9,10-ethanoanthracene 

 

General procedure 14.2c was followed using 2,3,6,7,9,10-hexamethyl-9,10-dihydro-9,10-

ethanoanthracene (19) (4.17 g, 14 mmol), pyridine/deionised water (200 ml) and potassium 

permanganate (22.69 g, 144 mmol) to afford the desired product 9,10-dimethyl-9,10-dihydro-

2,3,6,7-tetracarboxyl-9,10-ethanoanthracene (25) (4.88 g, 83%) as an off-white powder. Mp: 

287-288 ºC; νmax (CH2Cl2/cm
-1

): 3100 (br), 2965, 1698, 1249; 
1
H NMR (500 MHz, 

(CD3)2SO): δH = 13.08 (s, br, 4H, 4 CO2H), 7.56 (s, 4H, Ar H), 1.99 (s, 6H, 2 CH3), 1.63 (s, 

4H, 2 CH2); 
13

C NMR (125 MHz, (CD3)2SO): δC = 169.18, 148.24, 131.01, 121.14, 42.49, 

35.00, 17.92; TOF-HRMS (ES, m\z): calculated C22H18O8 410.1002 found: 409.0932 [M
-
]. 

 

3,3,3’,3’-octamethyl-6,6’,7,7’-tetracarboxyl-1,1’-spirobisindane 

 

General procedure 14.2c was followed using 3,3,3’,3’,6,6’,7,7’-octamethyl-1,1’-

spirobisindane (4) (5.00 g, 15 mmol), pyridine/deionised water (200 ml) and potassium 

permanganate (23.76 g, 150 mmol) to afford the desired product 3,3,3’,3’-octamethyl-

6,6’,7,7’-tetracarboxyl-1,1’-spirobisindane (26) (6.6 g, 97%) as a colourless powder. Mp: 

182-183 ºC; νmax (cm
-1

): 3027 (br), 2965, 2866, 1844, 1772, 1349; 
1
H NMR (500 MHz, 

(CD3)2SO): δH = 13.02 (s, br, 4H, 4 CO2H), 8.11 (s, 2H, Ar H), 7.43 (s, 2H, Ar H), 2.55 (d, J 

=13.29 Hz, 2H, CH2), 2.37 (d, J =13.29 Hz, 2H, CH2), 1.53 (s, 6H, 2 CH3), 1.41 (s, 6H, 2 

CH3); 
13

C NMR (125 MHz, (CD3)2SO): δC = 163.38, 162.08, 158.54, 131.70, 131.59, 121.79, 

120.59, 121.79, 120.59, 58.15, 57.79, 44.52, 44.18, 31.41, 29.70, 29.30; TOF-HRMS (ES, 

m\z): calculated C25H24O8 452.1471 found: 452.1415 [M
-
]. 
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General Procedure (14.2d) for Dianhydride Compounds 

Under a nitrogen atmosphere the corresponding tetra-carboxylic acid was dissolved in acetic 

anhydride. The mixture was refluxed for 12 h, cooled to room temperature and the acetic 

anhydride/acetic acid was removed under vacuum to give a black solid. The solid was 

recrystallised from the appropriate solvent until pure to afford the desired product. 

 

9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene-2,3,6,7-dianhydride 

 

General procedure 14.2d was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-

tetracarboxyl-9,10-ethanoanthracene (25) (4.88 g, 12 mmol), acetic anhydride (200 ml) and 

recrystallisation from tetrahydrofuran to afford the desired product 9,10-dimethyl-9,10-

dihydro-9,10-ethanoanthracene-2,3,6,7-dianhydride (27) (2.03 g, 46%) as an off-white 

powder. Mp: 340-355 ºC (dec); νmax (CH2Cl2/cm
-1

): 2959, 2863, 1838, 1778, 1286, 1236; 
1
H 

NMR (500 MHz, CDCl3): δH = 7.98 (s, 4H, Ar H), 2.21 (s, 6H, 2 CH3), 1.83 (s, 4H, 2 CH2); 

13
C NMR (125 MHz, CDCl3): δC = 162.73, 153.71, 129.96, 118.26, 118.26, 44.34, 34.39, 

18.46; TOF-HRMS (EI, m\z): calculated C22H14O6 374.0790 found: 374.0784 [M
+
]. 

 

3,3,3’,3’-octamethyl-1,1’-spirobisindane-6,6’,7,7’-dianhydride 

 

General procedure 14.2d was followed using 3,3,3’,3’-octamethyl-6,6’,7,7’-tetracarboxyl-

1,1’-spirobisindane (26) (5 g, 11 mmol), acetic anhydride (200 ml) and recrystallisation from 

chloroform : n-hexane (8:2) to afford the desired product 3,3,3’,3’-octamethyl-1,1’-

spirobisindane-6,6’,7,7’-dianhydride (28) (4.11 g, 89%) as a colourless powder. Mp: 285-286 

ºC; νmax (CH2Cl2/cm
-1

): 2962, 1844, 1777, 1232; 
1
H NMR (500 MHz, CDCl3): δH = 7.79 (s, 

2H, Ar H), 7.28 (s, 2H, Ar H), 2.52 (d, J =13.46 Hz, 2H, CH2), 2.32 (d, J =13.46 Hz, 2H, 

CH2), 1.47 (s, 6H, 2 CH3), 1.39 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, CDCl3): δC = 162.48, 
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162.06, 158.50, 131.52, 131.39, 121.73, 120.13, 58.70, 57.93, 44.45, 31.52, 29.60; TOF-

HRMS (EI, m\z): calculated C25H20O6 416.1260 found: 416.1255 [M
+
]. 

 

General Procedure (14.2e) for Dinitro Compounds 

(Based on a procedure from literature
145

) 

Trifluoroacetic anhydride was added drop-wise to a mixture of potassium nitrate and the 

corresponding substrate in acetonitrile. The mixture was stirred for 24 h, after which time a 

white precipitate had formed. The solvent was removed under vacuum and the residue was 

stirred in water, then extracted with chloroform to afford a yellow solid. The crude product 

was subjected to column chromatography (chloroform) to afford the desired product. 

 

6,(7)-nitro-1,3,3-trimethyl-1-(4-nitrophenyl)indane 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (43.7 ml, 65.07 g, 309 

mmol, potassium nitrate (8.94 g, 88 mmol) and 1,3,3-trimethyl-1-phenylindane (1) (10.45 g, 

44 mmol) in acetonitrile (150 ml) to afford the desired product 6,(7)-nitro-1,3,3-trimethyl-1-

(4-nitrophenyl)indane (29) (10.23 g, 71%) as a colourless powder Mp: 115-127 ºC, (lit
211

 

110-126 ºC); νmax (CH2Cl2/cm
-1

): 3064, 2963, 1593, 1520, 1338; 
1
H NMR (400 MHz, 

CDCl3,): δH = 8.09 (m, 4H, Ar H), 7.29 (m, 3H, Ar H), 2.54 (d,
 
J = 13.42 Hz, 1H, CH2), 2.38 

(d,
 
J  = 13.42 Hz, 1H, CH2), 1.80 + 1.79 (2 s, 3H, CH3), 1.44 + 1.43 (2s, 3H, CH3), 1.13 + 

1.11 (2s, 3H, CH3); 
13

C NMR (101 MHz, CDCl3): δC = 159.69, 157.02, 154.84, 154.08, 

149.23, 148.45, 147.87, 146.28, 127.44, 125.61, 123.84, 123.64, 122.94, 120.24, 118.56 , 

58.93, 58.85, 51.44, 51.14, 43.47, 43.23, 30.48, 30.26, 30.07; TOF-LRMS (EI, m\z): 

calculated C18H18N2O4 326.13 found: 326.59 [M
+
]. 
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6,(7),6’,(7’)-dinitro-3,3,3’,3’-tetramethyl-1,1’-spirobisindane 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (79.0 ml, 53.26 g, 253 

mmol), potassium nitrate (7.31 g, 72 mmol) and 3,3,3’,3’-tetramethyl-1,1’-spirobisindane (3) 

(10.00 g, 36 mmol) in acetonitrile (400 ml) to afford the desired product 6,(7),6’,(7’)-dinitro-

3,3,3’,3’-tetramethyl-1,1’-spirobisindane (30) (12.00 g, 91%) as an off white powder. Mp: 

140-141 ºC; νmax (CH2Cl2/cm
-1

): 3093, 3063, 2958, 2865, 1591, 1522, 1343; 
1
H NMR (500 

MHz, CDCl3): δH = 8.13 (m, 1H, Ar H), 8.05 (m, 2H, Ar H), 7.64 (dd, J = 6.4, 2.1 Hz, 1H, Ar 

H), 7.38 (dd, J = 8.4, 3.1 Hz, 1H, Ar H), 6.92 (dd, J = 8.4, 3.1 Hz, 1H, Ar H), 2.52 (d, J = 

13.3 Hz, 2H, CH2), 2.35 (m, 2H, CH2), 1.45 (m, 6H, 2 CH3), 1.42 (m, 6H, 2 CH3); 
13

C NMR 

(125 MHz, CDCl3): δC = 153.66, 153.47, 152.51, 152.11, 145.69, 145.64, 145.58, 145.46, 

142.90, 142.82, 141.54, 141.07, 125.19, 124.95, 122.34, 114.74, 114.49, 114.45, 110.91, 

110.72, 108.41, 108.36, 59.96, 59.89, 59.69, 57.62, 56.99, 56.35, 43.39, 43.18, 42.87, 42.64, 

31.91, 31.79, 31.70, 31.57, 30.59, 30.23; TOF-HRMS (EI, m/z): calculated C21H22N2O4 

366.1580 found: 366.1580 [M
+
]. 

 

9,10-dihydro-2(3),6(7)-dinitro-11,12-cis(trans)dichloro-9,10-ethanoanthracene 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (12.4 ml, 18.73 g, 89 

mmol), potassium nitrate (2.57 g, 25 mmol) and 9,10-dihydro-11,12-cis(trans)dichloro-9,10-

ethanoanthracene (5) (3.5 g, 13 mmol) in acetonitrile (50 ml) to afford the desired product 

9,10-dihydro-2(3),6(7)-dinitro-11,12-cis(trans)dichloro-9,10-ethanoanthracene (31) (4.30 g, 

93%) as an off-white powder. Mp: 242-243 ºC; νmax (cm
-1

): 3089, 3041, 1517, 1342, 854; 
1
H 

NMR (500 MHz, CDCl3): δH = 8.32 (m, 1H, Ar H), 8.29 (m, 1H, Ar H), 8.24 (m, 1H, Ar H), 

8.19 (m, 1H, Ar H), 7.60 (m, 2H, Ar H), 4.84 (m, 2H, bridge CH), 4.55 (m, 2H, bridgehead 

CH); 
13

C NMR (125 MHz, CDCl3): δC = 147.28, 145.55, 143.51, 140.82, 138.60, 127.64, 

125.91, 123.63, 123.10, 121.91, 121.88, 120.24, 120.20, 57.05, 57.03, 57.00, 52.43, 52.35, 
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52.27, 52.21; TOF-HRMS (EI, m\z): calculated C16H10Cl2N2O4 364.0018 found: 364.0017 

[M
+
]. 

 

9,10-dihydro-2,6(7)-dinitro-9,10-ethanoanthracene 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (40.50 ml, 61.18 g, 

290 mmol), potassium nitrate (19.61 g, 194 mmol) and 9,10-dihydro-9,10-ethanoanthracene 

(7) (20 g, 97 mmol) in acetonitrile (400 ml) to afford the desired product 9,10-dihydro-2,6(7)-

dinitro-9,10-ethanoanthracene (32) (28.43 g, 99%) as an off-white powder. Mp: 132-133 ºC; 

νmax (cm
-1

): 2962, 1512, 1336; 
1
H NMR (500 MHz, CDCl3): δH = 8.18 (m, 2H, Ar H), 8.08 

(m, 1H, Ar H), 8.06 (m, 1H, Ar H), 7.49 (d, J = 8.10 Hz, 1H, Ar H), 7.47 (d, J = 8.10 Hz, 1H, 

Ar H), 4.64 (s, 2H, bridgehead CH), 1.82 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 

149.83, 149.33, 146.40, 143.94, 143.45, 124.46, 124.38, 122.07, 118.94, 118.83, 44.08, 

43.98, 43.90, 25.64, 25.56, 25.49; TOF-HRMS (EI, m\z): calculated C16H12N2O4 296.0797 

found: 296.0800 [M
+
]. 

 

9,10-Dimethyl-9,10-dihydro-2,6(7)-dinitro-9,10-ethanoanthracene 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (37.5 ml, 55.90 g, 270 

mmol), potassium nitrate (8.15 g, 81 mmol) and 9,10-dimethyl-9,10-dihydro-9,10-

ethanoanthracene (17) (9.00 g, 38.5 mmol) in acetonitrile (350 ml) to afford the desired 

product 9,10-dimethyl-9,10-dihydro-2,6(7)-dinitro9,10-ethanoanthracene (33) (11.46 g, 92%) 

as an off-white powder : Mp: 185-186 ºC; νmax (CH2Cl2/cm
-1

): 2965, 2922, 2851, 1522, 1343; 

1
H NMR (500 MHz, CDCl3): δH = 8.14 (m, 2H, Ar H), 8.06 (d, J = 8.30 Hz, 1H, Ar H), 8.05 

(d, J = 8.30 Hz, 1H, Ar H), 7.48 (d, J = 4.83 Hz, 1H, Ar H), 7.46 (d, J = 4.83 Hz, 1H, Ar H), 

2.10 (m, 6H, 2 CH3) 1.73 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 152.40, 151.97, 

146.96, 146.53, 146.48, 121.67, 121.63, 121.56, 116.15, 116.01, 43.18, 42.90, 42.63, 34.99, 

34.91, 34.83, 18.18, 18.05, 17.92; TOF-HRMS (EI, m/z): calculated C18H16N2O4 324.1110 

found: 324.1113 [M
+
]. 
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2,6,9,10-tetramethyl-9,10-dihydro-3,7-dinitro-9,10-ethanoanthracene  

 

General procedure 14.2e was followed using trifluoroacetic anhydride (18.6 ml, 28.06 g, 133 

mmol), potassium nitrate (3.85 g, 38 mmol) and 2,6,9,10-tetramethyl-9,10-dihydro-9,10-

ethanoanthracene (18) (5.00 g, 19 mmol) in acetonitrile (150 ml) to afford the desired product 

2,6,9,10-tetramethyl-9,10-dihydro-3,7-dinitro-9,10-ethanoanthracene (34) (6.59 g, 98%) as an 

off-white powder. Mp: 275-276 ºC; νmax (cm
-1

):2953, 2866, 1508, 1336, 1317; 
1
H NMR (500 

MHz, CDCl3): δH = 7.90 (s, 2H, Ar H), 7.24 (s, 2H, Ar H), 2.59 (s, 6H, 2 Ar CH3), 2.01 (s, 

6H, 2 CH3), 1.68 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC =150.77, 147.00, 144.05, 

131.83, 125.13, 117.36, 42.04, 35.03, 20.64, 17.95; TOF-HRMS (EI, m\z): calculated 

C20H20N2O4 352.1423 found: 387.1129 [M + Cl
-
]. 

 

1,3,5,7,9,10-hexamethyl-9,10-dihydro-2,6-dinitro-9,10-ethanoanthracene/1,3,6,8,9,10-

hexamethyl-9,10-dihydro-2,7-dinitro-9,10-ethanoanthracene 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (2.6 ml, 3.90 g, 19 

mmol), potassium nitrate (0.54 g, 5 mmol) and mixture of 1,3,5,7,9,10-hexamethyl-9,10-

dihydro-9,10-ethanoanthracene and 1,3,6,8,9,10-hexamethyl-9,10-dihydro-9,10-

ethanoanthracene (20) (0.77 g, 3 mmol) in acetonitrile (100 ml) to afford the desired product, 

a mixture of 1,3,5,7,9,10-hexamethyl-9,10-dihydro-2,6-dinitro-9,10-ethanoanthracene and 

1,3,6,8,9,10-hexamethyl-9,10-dihydro-2,7-dinitro-9,10-ethanoanthracene (35) (0.63 g, 63%) 

as an off-white powder. Mp: over 300 ºC; νmax (cm
-1

): 2953, 2866, 1517, 1369; 
1
H NMR (500 

MHz, CDCl3): δH = 7.12 (s, 2H, Ar H), 2.44 (s, 6H, 2 CH3), 2.24 (s, 6H, 2 Ar CH3), 2.16 (s, 

6H, 2 Ar CH3), 2.89 (m, 2H, 2 CH2), 2.52 (m, 2H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC 

= 152.48, 149.45, 140.90, 125.79, 125.69, 123.36, 122.27, 117.19, 44.93, 41.96, 37.26, 36.81, 

34.55, 24.34, 20.83, 19.13, 17.31, 17.26, 15.75, 15.65; TOF-HRMS (EI, m\z): calculated 

C22H24N2O4 380.1736 found: 380.1739 [M
+
]. 

 



Experimental 

 

 

 

148 
 

9,10-dihydro-2(3),6(7)-dinitro-9,10-ethanoanthracene-11,12-trans-diethyl ester  

 

General procedure 14.2e was followed using trifluoroacetic anhydride (2.8 ml, 4.17 g, 20 

mmol), potassium nitrate (0.58 g, 6 mmol) and 9,10-dihydro-9,10-ethanoanthracene-11,12-

trans-diethyl ester (8) (1.00 g, 3 mmol) in acetonitrile (30 ml) to afford the desired product 

9,10-dihydro-2(3),6(7)-dinitro-9,10-ethanoanthracene-11,12-trans-diethyl ester (36) in a 

quantitative yield as a colourless glass. Mp: 106-130 ºC ; νmax (CH2Cl2/cm
-1

): 2982, 1732, 

1616, 1523, 1348; 
1
H NMR (400 MHz, CDCl3): δH = 8.13 (s, 1H, Ar H), 8.07 (m, 0.5H, Ar 

H), 8.01 (m, 3H, Ar H), 7.52 (m, 0.5H, Ar H), 7.43 (m, 1H, Ar H), 4.91 (s, 2H, bridge CH), 

4.0 (m, 4H, O-CH2), 3.4 (s, 2H, bridgehead CH), 1.2 (m, 6H, CH3); 
13

C NMR (101 MHz, 

CDCl3): δC = 171.04, 147.89, 147.46, 146.85, 146.61, 146.20, 142.41, 141.98, 141.05, 140.63, 

125.99, 125.91, 125.16, 125.10, 122.83, 122.64, 120.24, 120.13, 119.55, 119.47, 61.87, 

61.80, 46.94, 46.85, 46.77, 46.69, 46.48, 40.15, 14.26; TOF-HRMS (EI, m\z): calculated 

C22H20N2O8 440.1220 found: 440.1220 [M
+
]. 

 

N-methyl-9,10-dihydro-2(3),6(7)-dinitro-9,10-ethanoanthracene-11,12-cis-dicarboximide 

 

General procedure 14.2e was followed using trifluoroacetic anhydride (3.2 ml, 4.77 g, 23 

mmol), potassium nitrate (0.66 g, 7 mmol) and N-methyl-9,10-dihydro-9,10-

ethanoanthracene-11,12-cis-dicarboximide (9) (0.95 g, 3 mmol) in acetonitrile (30 ml) to 

afford the desired product N-methyl-9,10-dihydro-2(3),6(7)-dinitro-9,10-ethanoanthracene-

11,12-cis-dicarboximide (37) in a quantitative yield as a colourless glass. Mp: 125-145 ºC; 

νmax (CH2Cl2/cm
-1

): 3069, 2950, 1709, 1592, 1520, 1347;
 1

H NMR (400 MHz, CDCl3): δH = 

8.32 (m, 1H, Ar H), 8.17 (m, 3H, Ar H), 7.63 (m, 1H, Ar H), 7.53 (m, 1H, Ar H), 5.10 (m, 

2H, bridge CH), 3.35 (m, 2H, bridgehead CH), 2.62 (s, 3H, N-CH3); 
13

C NMR (101 MHz, 

CDCl3): δC = 175.19, 147.30, 147.17, 147.08, 146.84, 144.70, 144.24, 142.00, 141.53, 139.41, 
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138.94, 127.70, 126.25, 125.52, 125.27, 125.03, 123.23, 123.16, 120.36, 119.95, 119.89, 

45.89, 45.75, 45.28, 45.19, 24.78; TOF-LRMS (EI, m\z): calculated C19H13N3O6 379.08 

found: 379.07 [M
+
]. 

 

General Procedure (14.2f) for Tetranitro Compounds 

Equal quantities of fuming nitric acid (100%) and sulfuric acid (98%) were cooled separately 

in an ice bath. The cooled nitric acid was slowly added to the sulfuric acid with cooling from 

an ice bath. The corresponding substrate was added slowly in small portions to the nitration 

mixture with cooling from an ice bath. The mixture was stirred at room temperature for 1 h 

and then at 80 ºC for 3h. The mixture was cooled to room temperature and slowly added to 

crushed ice. The precipitate was filtered and the crude product was subjected to column 

chromatography (chloroform) to afford the desired product as an off white powder. 

 

6,6’,7,7’-tetranitro-3,3,3’,3’-tetramethyl-1,1’-spirobisindane 

 

General procedure 14.2f was followed using 3,3,3’,3’-tetramethyl-1,1’-spirobisindane (3) 

(5.00 g, 18 mmol), and a 50:50 nitric acid and sulfuric acid mixture (150 ml) to afford the 

desired product 6,6’,7,7’-tetranitro-3,3,3’,3’-tetramethyl-1,1’-spirobisindane (38) (7.50 g, 

91%) as an off white powder. Mp: 262-263 ºC; νmax (CH2Cl2/cm
-1

): 3093, 3025, 2965, 2925, 

1538, 1367, 1342; 
1
H NMR (500 MHz, (CD3)2CO): δH = 8.07 (s, 2H, Ar H), 7.85 (s, 2H, Ar 

H), 2.74 (d, J = 13.45 Hz, 2H, CH2), 2.60 (d, J = 13.45 Hz, 2H, CH2), 1.60 (s, 6H, 2 CH3), 

1.53 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, (CD3)2CO): δC =159.16, 154.36, 143.60, 143.05, 

121.90, 119.81, 58.25, 57.87, 44.71, 30.32, 28.26; TOF-HRMS (EI, m\z): calculated 

C21H20N4O8 456.1281 found: 456.1278 [M
+
]. 
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9,10-dimethyl-9,10-dihydro-2,3,6,7-tetranitro-9,10-ethanoanthracene 

 

General procedure 14.2f was followed using 9,10-dimethyl-9,10-dihydro-9,10-

ethanoanthracene (17) (6.00 g, 25 mmol) and a 50:50 nitric acid and sulfuric acid mixture 

(150 ml) to afford the desired product 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetranitro-9,10-

ethanoanthracene (39) (8.42 g, 79%) as an off white powder. Mp: above 300 ºC; νmax 

(CH2Cl2/cm
-1

): 2956, 2867, 1570, 1509, 1321; 
1
H NMR (500 MHz, (CD3)2SO): δH = 8.14 (s, 

4H, Ar H), 2.08 (s, 6H, 2 CH3), 1.74 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, (CD3)2SO): δC = 

150.88, 140.98, 119.16, 44.18, 34.00, 17.54; TOF-HRMS (EI, m\z): calculated C18H14N4O8 

414.0812 found: 449.0488 [M + Cl
-
]. Crystals were prepared by a slow evaporation of a 

solution of the compound in chloroform. Crystal size: 0.5 × 0.35 × 0.3 mm, Triclinic, space 

group Pī, a = 8.3273 (3), b= 9.8882 (2), c= 10.7493 (3) Å , α = 90.344 (2)°, β = 98.347 (1)°, 

γ = 91.939 (2)°, V = 875.19 (4) Å
3
, Z = 2: μ= 0.13 mm

−1
, 5890 reflections measured, 3975 

unique reflections (Rint = 0.019), 3507 reflections with I >2σ(I), R(%) = 3.9. 

 

General Procedure (14.2g) for Diamino Compounds 

(A modified procedure from literature
147

) 

Under a nitrogen atmosphere, the corresponding dinitro compound was dissolved in a 

suitable solvent (de-oxygenated). Raney nickel and hydrazine monohydrate was added and 

the mixture was refluxed for 24 h. The colourless mixture was cooled in ice and filtered 

under nitrogen. The organic phase was extracted and the solvent was removed under vacuum 

at 25 ºC to afford the desired product. 
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6,(7)-amino-1,3,3-trimethyl-1-(4-aminophenyl)indane 

 

General procedure 14.2 g was followed using 6,(7)-nitro-1,3,3-trimethyl-1-(4-

nitrophenyl)indane (29) (3.00 g, 9 mmol) in ethanol (150 ml ), Raney nickel (~40 mg) and 

hydrazine monohydrate (7.36 g, 7.1 ml, 147 mmol). The organic phase was extracted with 

diethyl ether and the solvent was removed under vacuum at 25 ºC to afford the desired 

product 6,(7)-amino-1,3,3-trimethyl-1-(4-aminophenyl)indane (40) as a colourless glass in a 

quantitative yield. Mp: 41-46 ºC (lit
211

 47-54 ºC); νmax (CH2Cl2/cm
-1

): 3434, 3349, 3215, 

3006, 2955, 2861, 1618, 1511; 
1
H NMR (400 MHz, CDCl3): δH = 6.84 (m, 3H, Ar H), 6.40 

(m, 4H, Ar H), 3.43 (s, br, 4H, 2 NH2), 2.27 (m, 1H, 0.5 CH2), 2.02 (m, 1H, 0.5 CH2), 1.51 

(m, 3H, CH3), 1.19 (m, 3H, CH3), 0.92 (m, 3H, CH3); 
13

C NMR (101 MHz, CDCl3): δC = 

153.62, 151.00, 146.06, 145.64, 144.27, 144.15, 142,66, 141.77, 141.32, 139.57, 127.84, 

127.74, 125.72, 123.23, 115.04, 114.88, 114.40, 111.61, 109.29, 68.12, 60.07, 59.86, 50.20, 

49.60, 42.86, 42.35, 31.61, 31.47, 31.01, 30.89, 30.61, 25.90; TOF-LRMS (EI, m\z): 

calculated C18H22N2 266.18 found 266.18 [M
+
] 

 

6,(7),6’,(7’)-diamino-3,3,3’,3’-tetramethyl-1,1’-spirobisindane 

 

General procedure 14.2g was followed using 6,(7),6’,(7’)-dinitro-3,3,3’,3’-tetramethyl-1,1’-

spirobisindane (30) (4.00 g, 12 mmol) in diethyl ether (200 ml), Raney nickel (~40 mg) and 

hydrazine monohydrate (11.5 ml, 11.90 g, 238 mmol). The organic phase was extracted with 

diethyl ether and the solvent was removed under vacuum at 25 ºC to afford the desired 

product 6,(7),6’,(7’)-diamino-3,3,3’,3’-tetramethyl-1,1’-spirobisindane (41) as a colourless 

glass in a quantitative yield. Mp: 164-168 ºC; νmax (CH2Cl2/cm
-1

): 3446, 3366, 3213, 2951, 

2860, 1619, 1495, 1319; 
1
H NMR (500 MHz, CDCl3): δH = 7.00 (m, 1H, Ar H), 6.64 (m, 4H, 

Ar H), 6.20 (s, 1H, Ar H), 3.56 (s, br, 4H, 2 NH2), 2.34 (m, 2H, CH2), 2.24 (m, 2H, CH2), 
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1.38 (m, 12H, CH3); 
13

C NMR (125 MHz, CDCl3): δC = 159.74, 156.71, 154.06, 154.03, 

151.09, 150.98, 148.18, 124.97, 124.90, 123.52, 123.47, 123.37, 123.32, 123.12, 123.10, 

119.64, 119.59, 117.81, 117.80, 58.99, 58.98, 58.85, 58.80, 57.87, 57.56, 57.25, 44.14, 44.03, 

43.93, 43.82, 31.46, 31.42, 31.36, 31.34, 29.81, 29.72, 29.70, 29.59; TOF-HRMS (ES, m/z): 

calculated C21H26N2 306.2096 found: 348.2430 [M + CH3CNH
+
] (solvent). 

 

9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene 

 

General procedure 14.2g was followed using 9,10-dihydro-2,6(7)-dinitro-9,10-

ethanoanthracene (32) (5.00 g, 17 mmol) in tetrahydrofuran (200 ml), Raney nickel (~40 mg) 

and hydrazine monohydrate (16.4 ml, 18.90 g, 34 mmol). The organic phase was extracted 

with dichloromethane and the solvent was removed under vacuum at 25 ºC to afford the 

desired product 9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene (42) as a colourless 

powder in a quantitative yield. Mp: 181-185 ºC (dec); νmax (cm
-1

): 3402, 3354, 3003, 2949, 

2864, 1620, 1481; 
1
H NMR (500 MHz, CDCl3): δH = 7.01 (d, J = 7.74 Hz, 1H, Ar H), 7.00 

(d, J = 7.74 Hz, 1H, Ar H), 6.64 (m, 2H Ar H), 6.41 (m, 2H, Ar H), 4.10 (m, 2H, bridgehead 

CH), 3.48 (s, br, 4H, 2 NH2), 1.68 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 145.85, 

144.91, 144.13, 143.97, 135.25, 134.24, 123.78, 123.53, 111.77, 111.56, 111.21, 110.95, 

44.44, 43.38, 42.33, 27.69, 27.20, 26.73; TOF-HRMS (EI, m\z): calculated C16H16N2 

236.1313 found: 236.1311 [M
+
]. 

 

9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene 

 

General procedure 14.2g was followed using 9,10-dimethyl-9,10-dihydro-2,6(7)-dinitro-9,10-

ethanoanthracene (33) (4.10 g, 13 mmol) in diethyl ether (200 ml), Raney nickel (~40 mg) 

and hydrazine monohydrate (12.3 ml, 12.66 g, 253 mmol) to afford the desired product 9,10-

dimethyl9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene (43) as a colourless powder in a 

quantitative yield.. Mp: 62-64 ºC; νmax (CH2Cl2/cm
-1

): 3456, 3342, 3261, 2958, 2933, 2857, 

1619, 1476; 
1
H NMR (500 MHz, CDCl3): δH = 7.03 (d, J = 7.9 Hz, 2H, Ar H), 6.66 (d, J = 
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3.30 Hz, 1H, Ar H), 6.65 (d, J = 3.30 Hz, 1H, Ar H), 6.45 (m, 2H, Ar H), 3.39 (s, br, 4H, 2 

NH2), 1.88 (m, 6H, 2 CH3), 1.61 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 148.33, 

147.53, 143.83, 143.66, 137.80, 136.93, 120.99, 120.67, 111.40, 111.19, 108.77, 108.45, 

65.85, 41.72, 41.04, 40.37, 36.43, 36.20, 36.00, 18.42, 15.29; TOFHRMS (EI, m/z): 

calculated C18H20N2 264.1626 found: 264.1635 [M
+
]. 

 

2,6,9,10-tetramethyl-9,10-dihydro-3,7-diamino-9,10-ethanoanthracene 

 

General procedure 14.2g was followed using 2,6,9,10-tetramethyl-9,10-dihydro-3,7-dinitro-

9,10-ethanoanthracene (34) (4.00 g, 11 mmol) in tetrahydrofuran (200 ml), Raney nickel (~40 

mg) and hydrazine monohydrate (11.0 ml, 11.36 g, 227 mmol) to afford the desired product 

2,6,9,10-tetramethyl-9,10-dihydro-3,7-diamino-9,10-ethanoanthracene (44) as a colourless 

powder in a quantitative yield. Mp: 219-220 ºC; νmax (CH2Cl2/cm
-1

): 3420, 3332, 3235, 2935, 

2857, 1624, 1476, 1327; 
1
H NMR (500 MHz, CDCl3): δH = 7.04 (s, 2H, Ar H), 6.72 (s, 2H, 

Ar H), 3.50 (s, br, 4H, 2 NH2), 2.23 (s, 6H, 2 Ar CH3), 1.99 (s, 6H, 2 bridgehead CH3), 1.71 

(s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 146.21, 141.83, 137.14, 122.61, 118.17, 

108.35, 40.74, 36.56, 18.72, 17.42; TOF-HRMS (ES, m\z): calculated C20H24N2 292.1939 

found: 293.2013 [M + H
+
]. 

 

1,3,5,7,9,10-hexamethyl-9,10-dihydro-2,6-diamino-9,10-ethanoanthracene/1,3,6,8,9,10-

hexamethyl-9,10-dihydro-2,7-diamino-9,10-ethanoanthracene 

 

General procedure 14.2g was followed using a mixture of 1,3,5,7,9,10-hexamethyl-9,10-

dihydro-2,6-dinitro-9,10-ethanoanthracene/1,3,6,8,9,10-hexamethyl-9,10-dihydro-2,7-dinitro-

9,10-ethanoanthracene (35) (0.63 g, 2 mmol) in tetrahydrofuran (50 ml), Raney nickel (~40 

mg) and hydrazine monohydrate (1.6 ml, 1.66 g, 33 mmol) to afford the desired product, a 

mixture of 1,3,5,7,9,10-hexamethyl-9,10-dihydro-2,6-diamino-9,10-

ethanoanthracene/1,3,6,8,9,10-hexamethyl-9,10-dihydro-2,7-diamino-9,10-ethanoanthracene 
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(45) as a colourless glass in a quantitative yield. Mp: 98-105 ºC; νmax (cm
-1

): 3441, 3350, 

2924, 2852, 1618, 1460; 
1
H NMR (500 MHz, CDCl3): δH = 7.22 (s, 2H, Ar H), 3.67 (s, br, 

4H, 2 NH2), 2.65 (s, 6H, 2 CH3), 2.44 (s, 6H, 2 Ar CH3), 2.41 (s, 6H, 2 Ar CH3), 2.14 (m, 2H, 

CH2), 1.78 (m, 2H, CH2); 
13

C NMR (125 MHz, CDCl3): δC = 146.17, 142.07, 141.36, 139.36, 

123.28, 121.40, 120.68, 118.10, 117.32, 44.10, 43.81, 38.94, 38.50, 30.59, 25.80, 18.31, 

14.31; TOF-HRMS (EI, m\z): calculated C22H28N2 320.2252 found: 320.2246 [M
+
]. 

 

9,10-dihydro-2(3),6(7)-diamino-9,10-ethanoanthracene-11,12-trans-diethyl ester  

 

General procedure 14.2g was followed using 9,10-dihydro-2(3),6(7)-dinitro-9,10-

ethanoanthracene-11,12-trans-diethyl ester (36) (1.00 g, 2 mmol) in tetrahydrofuran (20 ml) 

and hydrazine monohydrate (1.14 g, 1.1 ml, 23 mmol) to afford the desired product 9,10-

dihydro-2(3),6(7)-diamino-9,10-ethanoanthracene-11,12-trans-diethyl ester (46) as a 

colourless glass in a quantitative yield. Mp: 91-98 ºC); νmax (CH2Cl2/cm
-1

): 3445, 3369, 3225, 

2978, 1722, 1625; 
1
H NMR (400 MHz, CDCl3): δH = 6.98 (m, 1H, Ar H), 6.88 (m, 1.5H, Ar 

H), 6.62 (m, 1H, Ar H), 6.51 (m, 0.5H, Ar H), 6.32 (m, 2H, Ar H), 4.4 (m, 2H, 2 bridge CH), 

3.98 (m, 4H, 2 O-CH2), 3.37 (s, br, 4H, 2 NH2), 3.28 (m, 2H, 2 bridgehead CH), 1.14 (t,
 
J = 

7.13 Hz, 6H, 2 CH3), 
13

C NMR (101 MHz, CDCl3): δC = 172.64, 144.45, 144.27, 144.19, 

144.03, 143.23, 141.45, 131.60, 130.69, 125.11, 124.84, 124.03, 112.67, 112.49, 112.37, 

111.65, 111.37, 60.92, 48.57, 48.05, 47.59, 47.06, 46.12, 45.31, 40.15, 30.34, 14.35; TOF-

HRMS (EI, m\z): calculated C22H24N2O4 380.1736 found: 380.1736 [M
+
]. 
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N-methyl-9,10-dihydro-2(3),6(7)-diamino-9,10-ethanoanthracene-11,12-cis-

dicarboximide 

 

General procedure 14.2g was followed using N-methyl-9,10-dihydro-2(3),6(7)-dinitro-9,10-

ethanoanthracene-11,12-cis-dicarboximide (37) (1.0 g, 3 mmol) in tetrahydrofuran (20 ml), 

hydrazine monohydrate (1.32 g, 1.3 ml, 26 mmol) to afford the desired product N-methyl-

9,10-dihydro-2(3),6(7)-diamino-9,10-ethanoanthracene-11,12-cis-dicarboximide (47) as a 

colourless glass in a quantitative yield. Mp: 156-163 ºC; νmax (CH2Cl2/cm
-1

): 3444, 3361, 

3228, 2955, 1770, 1694, 1622, 1485; 
1
H NMR (400 MHz, (CD3)2SO): δH = 7.00 (m,

 
1H, Ar 

H), 6.78 (m,
 
1H, Ar H), 6.65 (m, 1H, Ar H), 6.42 (m, 1H, Ar H), 6.28 (m,, 2H, Ar H), 4.94 (s, 

br, 4H, 2 NH), 4.30 (m, 2H, 2 bridge CH), 3.38 (s, 2H, 2 bridgehead CH), 2.42 (s, 3H, N-

CH3); 
13

C NMR (101 MHz, (CD3)2SO): δC = 177.08, 177.19, 147.51, 146.79, 143.02, 140.36, 

129.52, 126.29, 124.60, 124.23, 110.74, 110.47, 110.33, 110.19, 47.45, 47.00, 44.21, 44.20, 

23.88; TOF-LRMS (EI, m\z): calculated C19H17N3O2 319.1321 found: 319.1321` [M
+
]. 

 

2,6-diaminoanthracene 

(A modified procedure from literature
148

) 

 

Under a nitrogen atmosphere, zinc mesh (30.00 g, 450 mmol) was slowly added to a 

suspension of 2,6-diaminoanthraquinone (13.10 g, 55 mmol) in sodium hydroxide solution 

(125 ml, 2M). Ethanol (20 ml) was added to inhibit foaming and the mixture was refluxed for 

48 h. The brown solid was filtered from the mixture and washed with hot water until 

washings were clear. The crude product was subjected to soxhlet extraction over one week 

(acetone) under a nitrogen atmosphere. Recrystallisation of the extract afforded the desired 

product 2,6-diaminoanthracene (48) (3.16 g, 28%, lit
148

 40%) as bright yellow crystals: Mp: 

231-232 ºC (dec), (lit
148

 230 ºC); νmax (CH2Cl2/cm
-1

): 3403, 3326, 3204, 3009 2957, 1635, 

1572, 1475; 
1
H NMR (400 MHz, (CD3)2SO): δH = 7.88 (s, 2H, Ar H), 7.64 (d, J = 8.9 Hz, 2H, 
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Ar H), 6.93 (d, J = 8.9 Hz, 2H, Ar H), 6.8 (s, 2H, Ar H), 5.24 (s, br, 4H, 2 NH2); 
13

C NMR 

(101 MHz, (CD3)2SO): δC = 144.02, 130.62, 127.91, 127.24, 121.33, 120.45, 103.72; TOF-

LRMS (EI, m\z): calculated C14H12N2 208.1 found: 208.1 [M
+
]. 

 

9,10-dihydro-2(3),6(7)-diamino-11,12-cis(trans)dichloro-9,10-ethanoanthracene 

 

Under a nitrogen atmosphere, 9,10-dihydro-2(3),6(7)-dinitro-11,12-cis(trans)dichloro-9,10-

ethanoanthracene (31) (4.30 g, 12 mmol) was dissolved in a refluxing mixture of 

concentrated hydrochloric acid (100 ml) and ethanol (100 ml). Tin powder (13.98 g, 118 

mmol) was added in small portions and the mixture was refluxed for 16 h. The mixture was 

cooled to room temperature and the ethanol was removed under vacuum. The mixture was 

neutralised with sodium hydroxide solution (1M) and the precipitate was filtered and dried 

under nitrogen. The precipitate was washed with tetrahydrofuran and the filtrate was 

collected. The solvent was removed under vacuum to afford the desired product 9,10-

dihydro-2(3),6(7)-diamino-11,12-cis(trans)dichloro-9,10-ethanoanthracene (49) as a 

colourless powder in a quantitative yield. Mp: 117-120 ºC; νmax (cm
-1

):3363, 3286, 3014, 

2958, 1622, 1489, 904, 730; 
1
H NMR (500 MHz, CDCl3): δH = 7.00 (m, 2H, Ar H), 6.62 (m, 

1H, Ar H), 6.52 (m, 1H, Ar H), 6.42 (m, 1H, Ar H), 6.33 (m, 1H, Ar H), 4.35 (m, 2H, bridge 

CH), 4.16 (m, 2H, bridgehead CH), 3.51 (s, br, 4H, 2 NH2); 
13

C NMR (125 MHz, CDCl3): δC 

= 145.78, 145.61, 145.34, 145.28, 145.12, 142.31, 141.47, 141.10, 140.28, 139.81, 139.02, 

138.82, 130.88, 129.96, 128.75, 127.82, 127.32, 127.05, 126.71, 126.71, 125.60, 125.33, 

124.54, 124.32, 113.96, 113.75, 113.14, 113.10, 112.93, 112.90, 111.66, 111.43, 59.59, 

59.42, 59.26, 59.21, 59.10, 58.88, 52.91, 52.72, 51.99, 51.82, 51.80, 50.90; TOF-HRMS (EI, 

m\z): calculated C16H14Cl2N2 304.0534 found: 304.0536 [M
+
]. 
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General Procedure (14.2h) for Tetraamine Hydrochloride Salts 

(A modified procedure from literature
149

) 

Under a nitrogen atmosphere, the corresponding tetranitro compound was dissolved in a 

refluxing mixture of ethanol and concentrated hydrochloric acid. Tin powder was added in 

small portions and the mixture was refluxed for 16 h and the mixture was cooled to room 

temperature. The white precipitate was filtered, washed with concentrated hydrochloric acid, 

then ethanol and dried under nitrogen to afford the desired product. 

 

6,6’,7,7’-tetraamino-3,3,3’,3’-tetramethyl-1,1’-spirobisindane hydrochloride 

 

General procedure 14.2h was followed using 6,6’,7,7’-tetranitro-3,3,3’,3’-tetramethyl-1,1’-

spirobisindane (38) (5.00 g, 11 mmol), ethanol (100 ml), concentrated hydrochloric acid (100 

ml) and tin powder (13.00 g, 110 mmol) to afford the desired product 6,6’,7,7’-tetraamino-

3,3,3’,3’-tetramethyl-1,1’-spirobisindane hydrochloride (50) (5.15 g, 97%) as colourless 

crystals. Mp: 239-241 ºC; νmax (cm
-1

): 3398, 2818, 2542, 1489, 1109; 
1
H NMR (500 MHz, 

(CD3)2SO): δH = 9.10 (s, br, 12H, 4 NH3
+
), 7.17 (s, 2H, Ar H), 6.70 (s, 2H, Ar H), 2.32 (d, J = 

13.14 Hz, 2H, CH2), 2.13 (d, J = 13.14 Hz, 2H, CH2), 1.33 (s, 6H, 2 CH3), 1.26 (s, 6H, 2 

CH3); 
13

C NMR (125 MHz, (CD3)2SO): δC = 147.47, 128.44, 118.07, 116.33, 56.99, 43.38, 

31.64, 30.49, 25.60; TOF-HRMS (ES, m\z): calculated C21H32Cl4N4 482.13198 found: 

338.2408 [M-2HCl-2Cl
+
]. 
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9,10-dimethyl-9,10-dihydro-2,3,6,7-tetraamino-9,10-ethanoanthracene hydrochloride 

 

General procedure 14.2h was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetranitro-

9,10-ethanoanthracene (39) (5.00 g, 12 mmol), ethanol (100 ml), concentrated hydrochloric 

acid (100 ml) and tin powder (14.32 g, 120 mmol) to afford the desired product 9,10-

dimethyl-9,10-dihydro-2,3,6,7-tetraamino-9,10-ethanoanthracene hydrochloride (51) (5.28, 

99%) as colourless crystals. Mp: 256-258 ºC; νmax (cm
-1

): 3655, 2852, 2548, 1627, 1475; 
1
H 

NMR (500 MHz, CDCl3): δH = 8.97 (s, br, 12H, 4 NH3
+
), 7.04 (s, 4H, Ar H), 1.76 (s, 6H, 2 

CH3), 1.50 (s, 4H, 2 CH2); 
13

C NMR (125 MHz, CDCl3): δC = 142.29, 126.42, 114.26, 41.01, 

35.72, 18.40; TOF-HRMS (ES, m\z): calculated C18H24Cl4N4 440.0928 found: 296.1709 [M-

2HCl-2Cl
+
]. 

 

General Procedure (14.2i) for Tetraamino Compounds 

The corresponding Tetraamine Salt was dissolved in deionised (deoxygenated) water and 

cooled in an ice bath. The salt was neutralised with the slow addition of sodium hydroxide 

(1M) to form a white precipitate. The precipitate was filtered and dried under nitrogen to 

afford the desired product. 

 

6,6’,7,7’-tetraamino-3,3,3’,3’-tetramethyl-1,1’-spirobisindane 

 

General procedure 14.2i was followed using 6,6’,7,7’-tetraamino-3,3,3’,3’-tetramethyl-1,1’-

spirobisindane hydrochloride (50) (5.15 g, 11 mmol) to afford the desired product 6,6’,7,7’-

tetraamino-3,3,3’,3’-tetramethyl-1,1’-spirobisindane (52) as a colourless powder in a 

quantitative yield. Mp: 105-106 ºC; νmax (cm
-1

): 3323, 3211, 2947, 2858, 1498, 1319; 
1
H 

NMR (500 MHz, CDCl3): δH = 6.51 (s, 2H, Ar H), 6.19 (s, 2H, Ar H), 3.36 (s, br, 4H, 2 

NH2), 3.21 (s, br, 4H, 2 NH2), 2.25 (d, J = 12.9 Hz, 2H, CH2), 2.13 (d, J = 12.9 Hz, 2H, CH2), 

1.32 (s, 6H, 2 CH3), 1.28 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, CDCl3): δC = 144.47, 142.92, 
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134.12, 112.45, 109.79, 59.91, 56.98, 42.91, 31.77, 30.55; TOF-HRMS (EI, m\z): calculated 

C21H28N4 336.2314 found: 336.2312 [M
+
]. 

 

9,10-dimethyl-9,10-dihydro-2,3,6,7-tetraamino-9,10-ethanoanthracene 

 

General procedure 14.2i was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetraamino-

9,10-ethanoanthracene hydrochloride (51) (5.28 g, 12 mmol) to afford the desired product 

9,10-dimethyl-9,10-dihydro-2,3,6,7-tetraamino-9,10-ethanoanthracene (53) as a colourless 

powder in a quantitative yield. Mp: 310-311 ºC (dec); νmax (cm
-1

): 3369, 3318, 3191, 2959, 

2929, 2855, 1662, 1483, 1321; 
1
H NMR (500 MHz, CDCl3): δH = 6.62 (s, 4H, Ar H), 3.25 (s, 

br, 8H, 4 NH2), 1.78 (s, 4H, 2 CH2), 1.55 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, CDCl3): δC = 

139.31, 131.35, 110.14, 40.46, 36.59, 18.59; TOF-HRMS (ES, m\z): calculated C18H22N4 

294.1844 found: 295.1921 [M+H
+
]. 

 

General Procedure (14.2j) for Diamine Hydrochloride Salts 

The corresponding diamine compound was dissolved in diethyl ether (deoxygenated) and 

cooled in an ice bath. A stream of dry hydrogen chloride gas (generated from calcium 

chloride and concentrated hydrochloric acid) was bubbled through the solution to form a 

white precipitate. The precipitate was filtered and dried under nitrogen to afford the desired 

product. 

 

6,(7)-amino-1,3,3-trimethyl-1-(4-aminophenyl)indane hydrochloride 

 

General procedure 14.2j was followed using 6,(7)-amino-1,3,3-trimethyl-1-(4-

aminophenyl)indane (40) (5.00 g, 19 mmol) to afford the desired product 6,(7)-amino-1,3,3-

trimethyl-1-(4-aminophenyl)indane hydrochloride (54) as a colourless powder in a 
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quantitative yield. Mp: 166-167 ºC (dec); νmax (cm
-1

): 2825, 2559, 1506, 1489; 
1
H NMR (500 

MHz, D2O): δH = 7.22 (m, 7H, Ar H), 2.83 (m, 1H, CH2), 2.09 (d,
 
J  = 13.14 Hz, 1H, CH2), 

1.52 (s, 1.5H, CH3), 1.49 (s, 1.5H, CH3), 1.17 (s, 1.5H, CH3), 1.14 (s, 1.5H, CH3), 0.86 (s, 

1.5H, CH3), 0.83 (s, 1.5H, CH3); 
13

C NMR (125 MHz, D2O): δC = 154.92, 153.74, 151.70, 

151.58, 150.54, 149.45, 129.25, 128.56, 128.39, 128.35, 127.52, 126.58, 124.60, 122.83, 

122.77, 122.44, 121.67, 119.58, 58.30, 50.49, 50.31, 42.66, 42.45, 30.00, 29.34; TOF-HRMS 

(ES, m\z): calculated C18H24Cl2N2 338.1317 found: 267.1852 [M-2Cl
2+

]. 

 

9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene hydrochloride 

 

General procedure 14.2j was followed using 9,10-dimethyl9,10-dihydro-2,6(7)-diamino-9,10-

ethanoanthracene (43) (5.00 g, 19 mmol) to afford the desired product 9,10-dimethyl9,10-

dihydro-2,6(7)-diamino-9,10-ethanoanthracene hydrochloride (55) as a colourless powder in 

a quantitative yield. Mp: 201-202 ºC (dec); νmax (cm
-1

): 2854, 2575, 1614, 1475; 
1
H NMR 

(500 MHz, D2O): δH = 7.44 (m, 2H, Ar H), 7.32 (m, 2H, Ar H), 7.18 (m, 2H, Ar H), 2.12 (s, 

4H, 2 CH2), 1.92 (s, 6H, 2 CH3); 
13

C NMR (125 MHz, D2O): δC = 148.44, 146.98, 127.59, 

127.52, 122.31, 120.22, 115.68, 42.14, 41.99, 34.75, 30.32, 17.36, 17.24, 17.11; TOF-HRMS 

(ES, m\z): calculated C18H22Cl2N2 336.1160 found: 265.1700 [M - HCl - Cl
+
]. 

 

9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-ethanoanthracene trifluoroacetate 

 

Under a nitrogen atmosphere, 9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-9,10-

ethanoanthracene (43) (5.00 g, 19 mmol) was dissolved in diethyl ether (deoxygenated) (200 

ml) and cooled in an ice bath. Trifluoroacetic acid (2.9 ml, 4.31 g, 38 mmol) in diethyl ether 

(deoxygenated) (10 ml) was added drop-wise to form a yellow precipitate. The precipitate 

was filtered and dried under nitrogen to afford the desired product 9,10-dimethyl-9,10-

dihydro-2,6(7)-diamino-9,10-ethanoanthracene trifluoroacetate (56) as a yellow powder in a 

quantitative yield. Mp: 62-63 ºC (dec); νmax (cm
-1

): ; 
1
H NMR (500 MHz, CD3OD): δH = 7.45 
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(d,
 
J  = 8.06 Hz, 1H, Ar H), 7.44 (d,

 
J  = 8.06 Hz, 1H, Ar H), 7.33 (m,

 
2H, Ar H), 7.19 (d,

 
J  = 

8.06 Hz, 1H, Ar H), 7.17 (d,
 
J  = 8.06 Hz, 1H, Ar H), 2.00 (s, 4H, 2 CH2), 1.66 (s, 6H, 2 

CH3); 
13

C NMR (125 MHz, CD3OD): δC = 163.38, 163.24, 162.97, 148.20, 147.92, 145.99, 

145.72, 129.66, 121.67, 117.1, 114.82, 41.95, 41.75, 41.54, 35.16, 35.09, 35.04, 17.18, 17.06, 

16.59;
 19

F NMR (300 MHz, CD3OD): δF = -76.61 (s, 6F, 2 CF3); TOF-HRMS (ES, m\z): 

calculated C22H22F6N2O4 492.1484 found: 265.1725 [M - 2CF3CO2 - H
+
]. 

 

14.3: Polymers Synthesis 

14.3.1a: Tröger's Base Polymers 

General Procedure (14.3.1a) for Tröger’s Base Polymerisations 

Under a nitrogen atmosphere, the corresponding diamino monomer was dissolved or 

suspended in dimethoxymethane and the solution was cooled in an ice bath. Trifluoroacetic 

acid was added drop-wise over 30 min and the mixture was stirred for an appropriate time at 

room temperature. The viscous orange to dark red mixture was slowly poured into aqueous 

ammonium hydroxide solution and stirred vigorously for 2 h during which a white to yellow 

solid was formed. The solid was collected by filtration, washed with water and then acetone 

until the washings were clear. The resulting white powder was dissolved in chloroform and 

methanol was added drop-wise until the solution became turbid. The solution was stirred for 

a further 30 min to precipitate a gel. The re-precipitation from chloroform was repeated 

twice. The polymer was dissolved in chloroform and added drop-wise to n-hexane with 

vigorous stirring and the precipitated fine powder was filtered. The white powder was 

refluxed in methanol for 24 h, filtered and then dried in a vacuum oven at 120 °C for 9 h to 

afford the desired polymer. 

 

Anth.TB 

 

General procedure 14.3.1a was followed using 2,6-diaminoanthracene (1g, 4.8 mmol), 

dimethoxymethane (2.27 ml, 1.1 g 14.4 mmol), trifluoroacetic acid (10 ml) and 3 days 

stirring time. The resulting brown powder (1.12 g, 95%) was insoluble in all common 
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solvents and acids. νmax (cm
-1

): 2910, 1655, 1570, 1296: BET surface area = 1 m
2
/g; total pore 

volume = 0.0131 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal 

degradation commences at ~ 377 °C with a 30% loss of mass below 1000 °C. 

 

DPM.TB 

 

General procedure 14.3.1a was followed using 4,4’-diaminophenylmethane (3.0 g, 15.1 

mmol), dimethoxymethane (4.0 ml, 3.46 g, 45.4 mmol), trifluoroacetic acid (25.0 ml) and 1h 

stirring time. The resulting dark orange jelly was slowly poured into aqueous ammonium 

hydroxide solution and stirred vigorously for 24 h to form an orange powder. The solid was 

filtered, washed with water and then acetone until washings were clear. The resulting orange 

solid (3.50 g, 99%) was insoluble in all common solvents and acids: νmax (cm
-1

): 2891, 2841, 

1487, 1203; BET surface area = 0.82 m
2
/g; total pore volume = 0.007 cm

3
/g at (P/Po = 

0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at ~ 362 

°C with a 39% loss of mass below 1000 °C. 

 

HFIP.TB 

 

General procedure 14.3.1a was followed using 4,4′-(hexafluoroisopropylidene)dianiline (1.50 

g, 5 mmol), dimethoxymethane (2.0 ml, 1.70 g, 22 mmol), trifluoroacetic acid (12.5 ml) and 

6 h stirring time. The resulting dark red mixture was slowly poured into aqueous ammonium 

hydroxide solution and stirred vigorously for 24 h to form a colourless powder. The solid was 

filtered, washed with water and then acetone. The resulting colourless powder (1.61 g, 97%) 

was insoluble in all common solvents and acids: νmax (cm
-1

): 2980, 1614, 1516, 1244, 1165; 

BET surface area = 20 m
2
/g; total pore volume = 0.1372 cm

3
/g at (P/Po = 0.9814); TGA 

analysis: Initial weight loss due to thermal degradation commences at ~ 280 °C with a 65% 

loss of mass below 1000 °C. 
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DMDPM.TB 

 

General procedure 14.3.1a was followed using 4,4’-diamino-3,3’-dimethylphenylmethane 

(3.0 g, 13 mmol), dimethoxymethane (5.9 ml, 5.04 g, 66 mmol), trifluoroacetic acid (25.0 ml) 

and 3 days stirring time to afford the desired polymer DMDPM.TB (3.07 g, 88%) as an off 

white powder. νmax (cm
-1

): 3002, 2946, 2842, 1671, 1476, 1438, 1329, 1213. 
1
H NMR (500 

MHz, CDCl3): δH = 6.81 (br, s, 2H, Ar H), 6.58 (br, s, 2H, Ar H), 4.54 (br, m, 2H, N-CH2-

Ar), 4.29 (br, s, 2H, N-CH2-N), 3.95 (br, m, 2H, N-CH2-Ar), 3.67 (br, s, 2H, CH2), 2.37 (br, 

s, 6H, 2 CH3). 
13

C NMR (125 MHz, CDCl3): δC = 144.21, 136.40, 132.91, 129.37, 128.06, 

124.52, 67.53, 54.97, 41.07, 17.13; GPC (Chloroform): Mn = 49,600, Mw = 94,600; BET 

surface area = 38 m
2
/g; total pore volume = 0.1378 cm

3
/g at (P/P0) = 0.9814; TGA analysis: 

Initial weight loss due to thermal degradation commences at ~ 357 °C with a 45% loss of 

mass below 1000 °C. LRMS (acetone washings) (MALDI, m\z): calculated repeating unit 

C18H18N2: 262.36 found: 787.07 (cyclic trimer), 1049.23 (cyclic tetramer), 1311 (cyclic 

pentamer), 1574.16 (cyclic hexamer), 1836.40 (cyclic heptamer), 2098.48 (cyclic octamer). 

 

TMPI.TB 

 

General procedure 14.3.1a was followed using 6,(7)-amino-1,3,3-trimethyl-1-(4-

aminophenyl)indane (3.0 g, 11 mmol), dimethoxymethane (2.9 ml, 2.57 g, 34 mmol), 

trifluoroacetic acid (30.0 ml) and 16 h stirring time to afford the desired polymer TMPI.TB 

(2.12 g, 62%) as a white powder. νmax (cm
-1

): 2953, 2860, 1612, 1570, 1489, 1325, 1203; 
1
H 

NMR (500 MHz, CDCl3): δH = 6.60 (br, m, 5H, Ar H), 4.44 (br, m, 2H, N-CH2-N), 4.10 (br, 

m, 4H, 2 N-CH2-Ar), 2.10 (br, s, 1H, 0.5 CH2), 1.86 (br, s, 1H, 0.5 CH2), 1.34 (br, s, 3H, 

CH3), 1.05 (br, s, 3H, CH3), 0.81 (br, s, 3H, CH3); 
13

C NMR (125 MHz, CDCl3): δC = 145.61, 

126.91, 125.85, 124.48, 122.73, 121.42, 66.67, 59.10, 58.55, 50.22, 42.45, 30.77; GPC 
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(Chloroform): Mn = 700, Mw = 4,200 ; BET surface area = 535 m
2
/g; total pore volume = 

0.16 cm
3
/g at (P/P0) = 0.9814; TGA analysis: Initial weight loss due to thermal degradation 

commences at ~ 349 °C with a 43% loss of mass below 1000 °C. LRMS (acetone washings) 

(MALDI, m\z): calculated repeating unit C21H22N2: 302.42 found: 606 (cyclic dimer), 909 

(cyclic trimer), 1211 (cyclic tetramer), 1514 (cyclic pentamer), 1818 (cyclic hexamer), 2120 

(cyclic heptamer), 2424 (cyclic octamer) 2726 (cyclic nonamer), 3029 (cyclic decamer), 3333 

(cyclic undecamer), 3636 (cyclic dodecamer), 3939 (cyclic tridecamer), 4242 (cyclic 

pentadecamer), 4545 (cyclic hexadecamer), 4848 (cyclic heptadecamer). 

 

SBI.TB 

 

General procedure 14.3.1a was followed using 6,(7),6’,(7’)-diamino-3,3,3’,3’-tetramethyl-

1,1’-spirobisindane (3.00 g, 10 mmol), dimethoxymethane (4.42 ml, 50 mmol), 

trifluoroacetic acid (25 ml) and 48h stirring time to afford the desired polymer SBI.TB (2.45 

g, 73%) as a white powder. νmax (cm
-1

): 2949, 2891, 1614, 1479, 1409, 1372; 
1
H NMR (500 

MHz, CDCl3): δH = 6.72 (br, m, 4H, Ar H), 4.66 (br, s, 2H, N-CH2-N), 4.22 (br, s, 4H, 2 N-

CH2-Ar), 2.24 (br, s, 4H, 2 CH2), 1.32 (br, s, 12H, 4 CH3); 
13

C NMR (125 MHz, CDCl3): δC 

= 148.3-146.8, 125.9, 123.4–117.1, 67.8–64.7, 61.6-59.2, 58.9–57.9, 57.5–56.0, 43.5–41.8, 

32.5–30.9, 30.8–29.3; GPC (Chloroform): Mn = 96,000, Mw = 360,000; BET surface area = 

745 m
2
/g; total pore volume = 0.542 cm

3
/g at (P/P0) = 0.9814; TGA analysis: Initial weight 

loss due to thermal degradation commences at ~ 435 °C with a 32% loss of mass below 1000 

°C. 
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DHEA.TB  

 

General procedure 14.3.1a was followed using 9,10-dihydro-2,6(7)-diamino-9,10-

ethanoanthracene (3.00 g, 13 mmol), dimethoxymethane (5.6 ml, 4.83 g, 63 mmol), 

trifluoroacetic acid (25 ml) and 2 h stirring time to afford the desired polymer DHEA.TB 

(3.15 g, 91%) as a white powder. νmax (cm
-1

): 2933, 2846, 1507, 1469, 1421; 
1
H NMR (500 

MHz, CDCl3): δH = 6.84 (br, m, 4H, Ar H), 4.60 (br, s, 2H, N-CH2-N), 4.05 (br, s, 4H, 2 N-

CH2-Ar), 1.56 (s, br, 6H, 2 bridgehead CH + 2 bridge CH2) . 
13

C NMR (100 MHz, solid 

state): δC = 146.45 (br), 143.32 (br), 140.18 (br), 125.15 (br), 120.60 (br), 68.07 (br), 59.65 

(br), 44.87 (br), 27.54 (br); GPC (Chloroform): Mn = 9,200, Mw = 49,300. BET surface area 

= 843 m
2
/g; total pore volume = 0.6178 cm

3
/g at (P/Po = 0.9814); TGA analysis: Initial 

weight loss due to thermal degradation commences at ~ 260 °C with a 10% loss of mass 

below 400 °C consistent with the loss of an ethylene fragment from the ethanoanthracene unit 

via a retro Diels-Alder reaction
172

 and a further 24% mass loss below 1000 °C. 

 

DMEA.TB 

 

General procedure 14.3.1a was followed using 9,10-dimethyl-9,10-dihydro-2,6(7)-diamino-

9,10-ethanoanthracene (3.00 g, 11 mmol), dimethoxymethane (5.0 ml, 4.32 g, 56 mmol), 

trifluoroacetic acid (25 ml) and 48 h stirring time to afford DMEA.TB (2.60 g, 76%) as a 

white powder. νmax (cm
-1

): 2935, 2858, 1452, 1411, 1328; 
1
H NMR (500 MHz, CDCl3): δH = 

7.28 (br, m, 4H, Ar H), 4.57 (br, s, 2H, N-CH2-N), 4.05 (br, s, 4H, 2 N-CH2-Ar), 1.81 (br, m, 

6H, 2 CH3), 1.65 (br, m, 4H, 2 CH2). 
13

C NMR (125 MHz, CDCl3): δC = 146.22-143.67, 

142.54-140.01, 120.53-114.08, 66.55, 58.59, 41.02, 36.01, 18.41; GPC (Chloroform): Mn = 

40,700, Mw = 155,800. BET surface area = 1028 m
2
/g; total pore volume = 0.75 cm

3
/g at 

(P/Po = 0.9814); TGA analysis: A 4% loss of weight occurred at between 20-50 °C. Initial 

weight loss due to thermal degradation commences at ~ 260 °C with a 10% loss of mass 
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below 400 °C consistent with the loss of an ethylene fragment from the ethanoanthracene unit 

via a retro Diels-Alder reaction
172

 and a further 15% mass loss below 1000 °C. LRMS 

(acetone washings) (MALDI, m\z): calculated repeating unit C21H20N2: 300.41 found: 603.68 

(cyclic dimer), 901.95 (cyclic trimer), 1201.95 (cyclic tetramer), 1503.19 (cyclic pentamer), 

1802.66 (cyclic hexamer), 2103.71 (cyclic heptamer), 2403.97 (cyclic octamer), 2703.69 

(cyclic nonamer), 3006.24 (cyclic decamer), 3306.23 (cyclic undecamer), 3608.45 (cyclic 

dodecamer), 3909.23 (cyclic tridecamer), 4208.66 (cyclic pentadecamer). 

 

DCEA.TB 

 

General procedure 14.3.1a was followed using 9,10-dihydro-2(3),6(7)-diamino-11,12-

cis(trans)dichloro-9,10-ethanoanthracene (3.0 g, 10 mmol), dimethoxymethane (4.4 ml, 3.74 

g, 49 mmol), trifluoroacetic acid (25 ml), 3 d stirring time and no purification to afford the 

desired polymer DCEA.TB (2.91 g, 88%) as a light brown powder. νmax (cm
-1

): 2941, 2858, 

1644, 1612, 1469, 1344; 
1
H NMR (500 MHz, (CD3)2SO): δH = 7.40 (br, s, 4H, Ar H), 4.58 

(br, m, 6H, N-CH2-N + 2 N-CH2-Ar), 4.04 (br, m, 4H, 4 CH); BET surface area = 360 m
2
/g; 

total pore volume = 0.4246 cm
3
/g at (P/Po = 0.9814), A 3% loss of weight occurred at 

between 20-50 °C. Initial weight loss due to thermal degradation commences at ~ 250 °C 

with a 20% loss of mass below 400 °C consistent with the loss Cl2 from the bridge unit to 

form dibenzobarrelene and a further 24% mass loss below 1000 °C. 

 

TMEA.TB 

 

General procedure 14.3.1a was followed using 2,6,9,10-tetramethyl-9,10-dihydro-3,7-

diamino-9,10-ethanoanthracene (3.0 g, 10 mmol), dimethoxymethane (4.5 ml, 3.0 g, 51 



Experimental 

 

 

 

167 
 

mmol), trifluoroacetic acid (15 ml) and 7 d stirring time to afford oligomers of the polymer 

TMEA.TB (1.43 g, 43%) as a white powder. νmax (cm
-1

): 2935, 2889, 1614, 1568, 1454, 

1433; 
1
H NMR (500 MHz, CDCl3): δH = 7.19 (br, m, 2H, Ar H), 4.85 (br, m, 4H, 2 N-CH2-

Ar), 3.77 (br, m, 2H, N-CH2-N), 2.40 (br, m, 4H, 2 CH2), 2.02 (br, m, 6H, 2 Ar CH3), 1.57 

(br, m, 6H, 2 CH3). 
13

C NMR (125 MHz, CDCl3): δC = 146.94, 138.16, 128.01, 122.93, 

117.81, 113.25, 63.50, 53.77, 44.39, 41.40, 38.34, 36.19, 18.51; BET surface area = 70 m
2
/g; 

total pore volume = 0.3069 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to 

thermal degradation commences at ~ 260 °C with a 60% loss of mass below 1000 °C. LRMS 

(acetone washings) (MALDI, m\z): calculated repeating unit C23H24N2: 328.46 found: 949.42 

(linear trimer), 1279.52 (linear tetramer), 1606.63 (linear pentamer), 1935.77 (linear 

hexamer). 

 

DEEEA.TB 

 

General procedure 14.3.1a was followed using 9,10-dihydro-2(3),6(7)-diamino-9,10-

ethanoanthracene-11,12-trans-diethyl ester (1g, 2.6 mmol), dimethoxymethane (0.69ml, 0.6 

g, 7.8 mmol), trifluoroacetic acid (10 ml) and 3 days stirring time to afford oligomers of the 

polymer DEEEA TB (0.60 g, 55%) as a light brown powder. νmax (cm
-1

): 2974, 1712, 1469, 

1182, 1020; 
1
H NMR (500 MHz, CDCl3): δH = 6.72 (br, m, 4H, Ar H), 4.45 (br, m, 4H, 2 

CH2), 3.97 (br, m, 6H, N-CH2-N + 2 N-CH2-Ar), 3.24 (br, m, 4H, 4 CH), 1.11 (br, m, 6H, 2 

CH3); 
13

C NMR (125 MHz, CDCl3): δC = 172.24, 146.10, 139.21, 128.86, 127.04, 119.25, 

61.19, 47.75, 41.30, 14.33; BET surface area = 0 m
2
/g; total pore volume = 0.009 cm

3
/g at 

(P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at 

~ 360 °C with a 40% loss of mass below 600 °C consistent with the loss of a diethyl fumarate 

fragment from the ethanoanthracene units via a retro Diels-Alder reaction and a further 20% 

mass loss below 1000 °C. 
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NMDCEA.TB 

 

General procedure 14.3.1a was followed using N-methyl-9,10-dihydro-2(3),6(7)-diamino-

9,10-ethanoanthracene-11,12-cis-dicarboximide (1.0 g, 3.1 mmol), dimethoxymethane (0.83 

ml, 0.72 g, 9.4 mmol) ), trifluoroacetic acid (10 ml) and 3 days stirring to afford oligomers of 

the polymer NMDCEA TB (0.82 g, 73%) as a light brown powder. νmax (cm
-1

): 2922, 1693, 

1427, 1278; 
1
H NMR (500 MHz, CDCl3): δH = 7.03 (m, 4H, Ar H), 4.64 (m, 4H, 2 N-CH2-

Ar), 4.03 (m, 2H, N-CH2-N), 3.02 (m, 3H, CH3), 2.36 (m, 4H, 4 CH). 
13

C NMR (125 MHz, 

CDCl3): δC = 176.95, 176.63, 146.22, 140.51, 138.17, 136.91, 127.20, 124.65, 122.55, 

122.53, 120.84, 58.53, 47.03, 47.00, 45.32, 24.28; BET surface area = 2 m
2
/g; total pore 

volume = 0.009 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal 

degradation commences at ~ 300 °C with a 32% loss of mass below 1000 °C. 

 

14.3.2: Quaternerised Tröger’s Base PIMs 

General Procedure (14.3.2a) for Methyl Iodide TB Polymers 

The Tröger’s base polymer was suspended in dimethyl sulfoxide and methyl iodide was 

added. The mixture was stirred for 16 h by which time the mixture had become a dark brown 

solution. The mixture was poured into a large quantity of deionised water and the brown 

precipitate was filtered. The polymer was washed with hot deionised water and dried under a 

stream of nitrogen. The polymer was refluxed in methanol for 24 h, filtered and then dried in 

a vacuum oven at 60 °C for 9 h to afford the desired polymer. 
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DMDPM.TB Me.I 

 

General procedure 14.3.2a was followed using DMDPM.TB (2.00 g, 8 mmol), methyl iodide 

(2.4 ml, 5.41 g, 38 mmol) in dimethyl sulfoxide (50 ml) to afford the desired polymer 

DMDPM.TB Me.I in a quantitative yield as a dark brown powder. νmax (cm
-1

): 2924, 1674, 

1475, 1437, 1211; 
1
H NMR (500 MHz, (CD3)2SO): δH = 6.82 (br, m, 2H, Ar H), 6.57 (br, m, 

2H, Ar H), 4.21 (br, m, 2H, N-CH2-N), 4.16 (br, m, 2H, N-CH2-Ar), 3.86 (br, m, 2H, N-CH2-

Ar), 3.65 (br, m, 3H, N
+
CH3), 2.69 (br, m, 2H, CH2), 2.27 (br, m, 6H, 2 Ar CH3); 

13
C NMR 

(125 MHz, (CD3)2SO): δC = 136.94, 132.53, 129.48, 128.12, 79.68, 54.79, 22.78, 17.27; BET 

surface area (degassed at 60 °C) = 74 m
2
/g; total pore volume = 0.3400 cm

3
/g at (P/Po = 

0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at ~ 100 

°C with a 35% loss of mass below 400 °C, consistent with the loss of one equivalent of 

methyl iodide. A further 30% mass was lost below 1000 °C. 

 

DMEA.TB Me.I 

 

General procedure 14.3.2a was followed using DMEA.TB (2.00 g, 7 mmol), methyl iodide 

(2.1 ml, 4.73 g, 33 mmol) in dimethyl sulfoxide (ml) to afford the desired polymer 

DMEA.TB Me.I in a quantitative yield as a dark brown powder. νmax (cm
-1

): 2904, 1610, 

1405; 
1
H NMR (500 MHz, (CD3)2SO): δH = 7.47 (br, m, 4 H, Ar H), 4.26 (br, m, 6H, 2 N-

CH2-Ar + N-CH2-N), 2.93 (br, s, 3H, N
+
CH3), 2.77 (br, s, 4H, CH2), 1.94 (br, s, 6H, 2 CH3); 

BET surface area (degassed at 60 °C) = 116 m
2
/g; total pore volume = 0.1013 cm

3
/g at (P/Po 

= 0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at ~ 100 

°C with a 38% loss of mass below 400 °C, consistent with the loss of one equivalent of 

methyl iodide and an ethylene fragment from the ethanoanthracene unit via a retro Diels-

Alder reaction
172

. A further 15% mass was lost below 1000 °C. 
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DMEA.TB Me.F 

 

DMEA.TB Me.I (1.00 g, 2 mmol) was suspended in sodium fluoride solution (50 ml, 1.0 M) 

and the mixture was stirred for 24 h by which time the mixture had become a light brown 

colour. The polymer was filtered, washed with hot deionised water and dried under a stream 

of nitrogen. The polymer was then dried in a vacuum oven at 120 °C for 9 h to afford the 

desired polymer DMEA.TB Me.F in a quantitative yield. νmax (cm
-1

): 2930, 2862, 1614, 

1450; 
1
H NMR (500 MHz, (CD3)2SO): δH = 6.64 (br, m, 4 H, Ar H), 4.27 (br, m, 6H, 2 N-

CH2-Ar + N-CH2-N), 2.43 (br, m, 3H, N
+
CH3), 1.52 (br, m, 10H, 2 CH2 + 2 CH3); BET 

surface area = 454 m
2
/g; total pore volume = 0.3096 cm

3
/g at (P/Po = 0.9814); TGA analysis: 

Initial weight loss due to thermal degradation commences at ~ 165 °C with a 19% loss of 

mass below 300 °C consistent with the loss of one equivalent of methyl fluoride and an 

ethylene fragment from the ethanoanthracene unit via a retro Diels-Alder reaction
172

. A 

further 35% mass was lost below 1000 °C. 

 

General Procedure (14.3.2b) for Trifluoromethanesulfonimide TB Polymers 

The methyl iodide quaternerised Tröger’s base polymer was suspended in a solution of 

lithium bistriflimide in methanol. The mixture was stirred under reflux for 16 h by which 

time the mixture had changed from a dark brown to a light orange suspension. The mixture 

was filtered, washed with hot methanol and dried under a stream of nitrogen. The polymer 

was refluxed in methanol for 24 h, filtered and then dried in a vacuum oven at 120 °C for 9 h 

to afford the desired polymer. 
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DMDPM.TB Me.BTFSI 

 

General procedure 14.3.2b was followed using DMDPM.TB Me.I (1.00 g, 3 mmol), lithium 

bistriflimide (3.55 g, 12 mmol) and methanol (50 ml) to afford the desired polymer 

DMDPM.TB Me.BTFSI in a quantitative yield as an orange powder. νmax (cm
-1

): 2939, 1739, 

1477, 1442, 1350, 1192, 1057; 
1
H NMR (500 MHz, (CD3)2CO): δH = 6.88 (br, m, 4H, Ar H), 

5.18 (br, m, 4H, N-CH2-Ar + N-CH2-N), 4.26 (br, m, 2H, N-CH2-Ar), 3.87 (br, s, 3H, 

N
+
CH3), 2.74 (br, m, 2H, CH2), 2.26 (br, m, 6H, 2 Ar CH3); 

13
C NMR (125 MHz, 

(CD3)2CO): δC = 131.56, 129.17, 124.49, 121.45, 118.89, 81.88, 64.52, 54.80, 54.26, 51.93, 

21.97, 16.34, 16.08; 
19

F NMR (300 MHz, (CD3)2CO): δF = -79.60 (s, 6F, 2 CF3); BET 

surface area = 0 m
2
/g; total pore volume = 0.0089 cm

3
/g at (P/Po = 0.9814); TGA analysis: 

Initial weight loss due to thermal degradation commences at ~ 300 °C with a 57% loss of 

mass below 1000 °C. 

 

DMEA.TB Me.BTFSI 

 

General procedure 14.3.2b was followed using DMEA.TB Me.I (1.00 g, 2 mmol), lithium 

bistriflimide (3.25 g, 11 mmol) and methanol (50 ml) to afford the desired polymer 

DMEA.TB Me.BTFSI in a quantitative yield as an orange powder. νmax (cm
-1

): 2933, 1446, 

1344, 1321, 1176, 1130, 1051; 
1
H NMR (500 MHz, (CD3)2CO): δH = 7.25 (br, m, 4H, Ar H), 

5.24 (br, m, 6H, 2 N-CH2-Ar + N-CH2-N), 3.89 (br, s, 3H, N
+
CH3), 3.23 (br, m, 10H, 2 CH2 

+ 2 CH3); 
19

F NMR (300 MHz, (CD3)2CO): δF = -79.21 (s, 6F, 2 CF3); BET surface area = 24 

m
2
/g; total pore volume = 0.0842 cm

3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss 

due to thermal degradation commences at ~ 260 °C with a 50% loss of mass below 1000 °C. 
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General Procedure (14.3.2c) for Napthalene Disulfonic acid TB Polymers 

The methyl iodide quaternerised Tröger’s base polymer was suspended in a solution of 2,6-

naphthalenedisulfonic acid disodium salt in deionised water. The mixture was stirred under 

reflux for 16 h by which time the mixture had changed from a dark brown to an off white 

suspension. The mixture filtered, washed with hot deionised water and dried under a stream 

of nitrogen. The polymer was refluxed in methanol for 24 h, filtered and then dried in a 

vacuum oven at 120 °C for 9 h to afford the desired polymer. 

 

DMDPM.TB Me.NDSA 

 

 

 

General procedure 14.3.2c was followed using DMDPM.TB Me.I (1.00 g, 3 mmol), 2,6-

naphthalenedisulfonic acid disodium salt (4.10 g, 12 mmol) and deionised water (50 ml) to 

afford the desired polymer DMDPM.TB Me.NDSA in a quantitative yield as an off-white 

powder. νmax (cm
-1

): 3001, 1737, 1716, 1477, 1357, 1215; 
1
H NMR (500 MHz, (CD3)2SO): 

δH = 8.05 (br, s, 1H, Napth Ar H), 7.73 (br, s, 1H, Napth Ar H), 7.66 (br, s, 1H, Napth Ar H), 

6.93 (br, m, 4H, Ar H), 5.16 (br, m, 2H, N-CH2-N), 4.52 (br, m, 2H, N-CH2-Ar), 3.99 (br, m, 

2H, N-CH2-Ar), 3.43 (br, s, 3H, N
+
CH3), 2.61 (br, s, 2H, CH2), 2.23 (br, s, 6H, 2 CH3); BET 

surface area = 0 m
2
/g; total pore volume = 0.0336 cm

3
/g at (P/Po = 0.9814); TGA analysis: 

Initial weight loss due to thermal degradation commences at ~ 300 °C with a 55% loss of 

mass below 1000 °C. 
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DMEA.TB Me.NDSA 

 

General procedure 14.3.2c was followed using DMEA.TB Me.I (1.00 g, 2 mmol), 2,6-

naphthalenedisulfonic acid disodium salt (3.76 g, 11 mmol) and deionised water (50 ml) to 

afford the desired polymer DMEA.TB Me.NDSA in a quantitative yield as an off-white 

powder. The resulting powder was insoluble in all common solvents. νmax (cm
-1

): 2864, 1626, 

1450, 1178, 1028; BET surface area = 3 m
2
/g; total pore volume = 0.3542 cm

3
/g at (P/Po = 

0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at ~ 260 

°C with a 52% loss of mass below 1000 °C. 

 

14.3.3: Polyimides 

General Procedure (14.3.3a) for Polyimide Synthesis (via ester-acid) 

(A modified procedure from literature
181

) 

Under a nitrogen atmosphere, the bis-anhydride was dissolved in ethanol in a two-necked 

flask equipped with a reflux condenser. Triethylamine was injected and the mixture was 

refluxed for 1h. The side arm was opened to remove the solvent under a stream of nitrogen to 

give a light brown semi-solid. A solution of the diamine in NMP was added and the mixture 

was heated to 80 ºC for 1 h. The side arm was opened occasionally to remove ethanol formed 

in the reaction. The mixture was gradually heated to 200 ºC over 3 h and any water formed 

was removed by opening the side arm. The temperature was maintained until the desired 

viscosity was achieved. The mixture was cooled to room temperature and diluted with 

chloroform. The mixture was poured into ethanol to precipitate a light brown solid. The solid 

was collected by filtration, washed with ethanol and then acetone until the washings were 

clear. The resulting powder was dissolved in chloroform and methanol was added drop-wise 

until the solution became turbid. The solution was stirred for a further 30 min to precipitate a 
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gel. The re-precipitation from chloroform was repeated twice. The polymer was dissolved in 

chloroform and added drop-wise to n-hexane with vigorous stirring and the precipitated fine 

powder was filtered. The light brown powder was refluxed in methanol for 24 h, filtered and 

then dried in a vacuum oven at 120 °C for 9 h to afford the desired polymer. 

 

DMEA.DMEA.PI 

 

General procedure 14.3.3a was followed using 9,10-dimethyl9,10-dihydro-2,6(7)-diamino-

9,10-ethanoanthracene (0.8560 g, 3.24 mmol), 9,10-dimethyl-9,10-dihydro-9,10-

ethanoanthracene-2,3,6,7-dianhydride (1.2121 g, 3.24 mmol), ethanol (15 ml), triethylamine 

(1.6383 g, 2.26 ml, 16.19 mmol) and NMP (5 ml) to afford DMEA.DMEA.PI (1.76 g, 90%) 

as a brown powder. νmax (cm
-1

): 2962, 2900, 1774, 1712, 1363, 743; 
1
H NMR (500 MHz, 

CDCl3): δH = 7.46 (br, s, 4H, Ar H), 7.43 (br, s, 6H, Ar H), 2.01 (br, s, 8H, 4 CH2), 1.70 (br, 

s, 12H, 4 CH3); GPC (Chloroform): Mn = 21,700, Mw = 67,000. BET surface area = 373 

m
2
/g; total pore volume = 0.2839 cm

3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss 

due to thermal degradation commences at ~ 260 °C with a 9% loss of mass below 400 °C 

consistent with the loss of an ethylene fragment from the ethanoanthracene units via a retro 

Diels-Alder reaction
172

 and a further 31% mass loss below 1000 °C. 

 

DMEA.TMEA.PI 

 

General procedure 14.3.3a was followed using 2,6,9,10-tetramethyl-9,10-dihydro-3,7-

diamino-9,10-ethanoanthracene (0.5420 g, 1.85 mmol), 9,10-dimethyl-9,10-dihydro-9,10-

ethanoanthracene-2,3,6,7-dianhydride (0.6938 g, 1.85 mmol), ethanol (15 ml), triethylamine 

(0.9385 g, 1.29 ml, 9.27 mmol) and NMP (5 ml) to afford DMEA.TMEA.PI (0.85 g, 73%) as 
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a brown powder. νmax (cm
-1

): 2970, 1778, 1716, 1359, 746; 
1
H NMR (500 MHz, CDCl3): δH = 

7.88 (br, s, 4H, Ar H), 7.18 (br, s, 2H, Ar H), 6.98 (br, s, 2H, Ar H), 2.06 (br, s, 8H, 4 CH2), 

1.85 (br, m, 18H, 6 CH3). 
13

C NMR (125 MHz, CDCl3): δC = 167.85, 167.41, 152.18, 147.04, 

144.63, 132.93, 130.38, 127.51, 123.32, 120.16, 116.35, 44.03, 41.50, 35.11, 18.65, 18.12; 

GPC (Chloroform): Mn = 49,400, Mw = 63,900. BET surface area = 622 m
2
/g; total pore 

volume = 0.4606 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal 

degradation commences at ~ 260 °C with a 9% loss of mass below 400 °C consistent with the 

loss of an ethylene fragment from the ethanoanthracene units via a retro Diels-Alder 

reaction
172

 and a further 46% mass loss below 1000 °C. 

 

DMEA.HMEA.PI 

 

General procedure 14.3.3a was followed using a mixture of 1,3,5,7,9,10-hexamethyl-9,10-

dihydro-2,6-diamino-9,10-ethanoanthracene/1,3,6,8,9,10-hexamethyl-9,10-dihydro-2,7-

diamino-9,10-ethanoanthracene (0.9126 g, 2.85 mmol), 9,10-dimethyl-9,10-dihydro-9,10-

ethanoanthracene-2,3,6,7-dianhydride (1.066 g, 2.85 mmol), ethanol (15 ml), triethylamine 

(1.4409 g, 1.98 ml, 14.24 mmol) and NMP (5 ml) to afford DMEA.HMEA.PI ( 1.62 g, 86%) 

as a brown powder. νmax (cm
-1

): 2970, 1737, 1726, 1365, 748; 
1
H NMR (500 MHz, CDCl3): 

δH = 7.97 (br, s, 4H, Ar H), 7.21 (br, m, 2H, Ar H), 2.18 (br, m, 32H, 4 CH2 + 8 CH3). 
13

C 

NMR (125 MHz, CDCl3): δC = 168.03, 152.28, 130.36, 128.26, 116.47, 44.80, 44.19, 18.65, 

15.81; GPC (Chloroform): Mn = 19,300, Mw = 28,100. BET surface area = 694 m
2
/g; total 

pore volume = 0.6418 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to 

thermal degradation commences at ~ 260 °C with a 9% loss of mass below 400 °C consistent 

with the loss of an ethylene fragment from the ethanoanthracene units via a retro Diels-Alder 

reaction
172

 and a further 30% mass loss below 1000 °C. 
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14.3.4 Polysquaraines 

General Procedure (14.3.4a) for Polysquaraine Polymers 

Under a nitrogen atmosphere, the corresponding diamino monomer and 3,4-dihydroxy-3-

cyclobutene-1,2-dione (squaric acid) were suspended in anhydrous dimethyl sulfoxide. The 

mixture was heated to 120 ºC for 12 h to give a viscous bright yellow solution. The mixture 

was poured into ethanol, filtered and washed with hot ethanol until washings were clear. The 

resulting yellow powder was dissolved in dimethyl sulfoxide and ethanol was added drop-

wise until the solution became turbid. The solution was stirred for a further 30 min and the 

precipitated powder was filtered. The yellow powder was refluxed in methanol for 24 h, 

filtered and then dried in a vacuum oven at 120 °C for 9 h to afford the desired polymer. 

 

DMDPM.PSQU 

 

General procedure 14.3.4a was followed using 4,4’-diamino-3,3’-dimethylphenylmethane 

(1.00 g, 4.42 mmol), 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.5039 g, 4.42 mmol) and 

anhydrous dimethyl sulfoxide (20 ml) to afford DMDPM.PSQU (1.2932 g, 96%) as a bright 

yellow powder. νmax (cm
-1

): 2943, 1604, 1531, 1394; 
1
H NMR (500 MHz, (CD3)2SO): δH = 

10.74 (br, s, 1H, N
+
H), 9.35 (br, s, 1H, NH), 7.06 (br, m, 6H, Ar H), 3.19 (br, s, 2H, CH2), 

2.26 (br, s, 6H, 2 CH3); BET surface area 45 m
2
/g; total pore volume = 0.3366 cm

3
/g at (P/Po 

= 0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at ~ 300 

°C with a 19% loss of mass below 400 °C and a further 37% mass loss below 1000 °C. 
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SBI.PSQU 

 

General procedure 14.3.4a was followed using 6,(7),6’,(7’)-diamino-3,3,3’,3’-tetramethyl-

1,1’-spirobisindane (1.00 g, 3.27 mmol), 3,4-dihydroxy-3-cyclobutene-1,2-dione (0.3734 g, 

3.27 mmol) and anhydrous dimethyl sulfoxide (20 ml) to afford SBI.PSQU (1.2493 g, 99%) 

as a bright yellow powder. νmax (cm
-1

): 2995, 1599, 1532, 1408; 
1
H NMR (500 MHz, 

(CD3)2SO): δH = 11.07 (br, s, 1H, N
+
H), 9.58 (br, s, 1H, NH), 7.04 (br, m, 6H, Ar H), 2.06 

(br, m, 4H, 2 CH2), 1.06 (br, s, 12H, 4 CH3); BET surface area 62 m
2
/g; total pore volume = 

0.4036 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal degradation 

commences at ~ 300 °C with a 53% loss of mass below 1000 °C. 

 

DMEA.PSQU 

 

General procedure 14.3.4a was followed using 9,10-dimethyl9,10-dihydro-2,6(7)-diamino-

9,10-ethanoanthracene (1.2024g, 4.57 mmol), 3,4-dihydroxy-3-cyclobutene-1,2-dione 

(0.5207 g, 4.57 mmol) and anhydrous dimethyl sulfoxide (20 ml) to afford DMEA.PSQU 

(1.538 g, 99%) as a bright yellow powder. νmax (cm
-1

): 2958, 1597, 1529, 1406; 
1
H NMR 

(500 MHz, (CD3)2SO): δH = 9.84 (br, s, 1H, N
+
H), 7.92 (br, s, 1H, NH), 7.47 (br, s, 2H, Ar 

H), 7.17 (br, s, 4H, Ar H), 1.87 (br, s, 6H, 2 CH3), 1.52 (br, s, 4H, 2 CH2); BET surface area 

67 m
2
/g; total pore volume = 0.3264 cm

3
/g at (P/Po = 0.9814); TGA analysis: Initial weight 

loss due to thermal degradation commences at ~ 260 °C with a 43% loss of mass below 1000 

°C. 
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TMEA.PSQU 

 

General procedure 14.3.4a was followed using 2,6,9,10-tetramethyl-9,10-dihydro-3,7-

diamino-9,10-ethanoanthracene (0.9162 g, 3.14 mmol), 3,4-dihydroxy-3-cyclobutene-1,2-

dione (0.3586 g, 3.14 mmol) and anhydrous dimethyl sulfoxide (20 ml) to afford 

TMEA.PSQU (1.1048 g, 95%) as a bright yellow powder. νmax (cm
-1

): 2910, 1585, 1516, 

1400; 
1
H NMR (500 MHz, (CD3)2SO): δH = 10.55 (br, s, 1H, N

+
H), 9.18 (br, s, 1H, NH), 

7.07 (br, m, 2H, Ar H), 6.85 (br, m, 2H, Ar H), 2.06 (br, s, 6H, 2 Ar CH3), 1.61 (br, s, 6H, 2 

CH3), 1.27 (br, s, 4H, 2 CH2); BET surface area 68 m
2
/g; total pore volume = 0.4792 cm

3
/g at 

(P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal degradation commences at 

~ 260 °C with a 52% loss of mass below 1000 °C 

 

14.3.5: Polybenzimidazoles 

General Procedure (14.3.5a) for Polybenzimidazoles 

 (A modified procedure from literature
196

) 

Under a nitrogen atmosphere, the corresponding tetraamino monomer and dicarboxylic acid 

were suspended in polyphosphoric acid. The mixture was slowly heated to 190 ºC over 1h 

and then stirred for a further 16h. The dark brown viscous mixture was cooled to room 

temperature, slowly poured into crushed ice and neutralised with saturated sodium 

bicarbonate solution. The light brown precipitate was filtered, washed with hot water and 

then acetone until washings were clear. The powder was refluxed in methanol for 24 h, 

filtered and then dried in a vacuum oven at 120 °C for 9 h to afford the desired polymer. 
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DMEA.Benz.PBI 

 

General procedure 14.3.5a was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-

tetraamino-9,10-ethanoanthracene (2.0145 g, 6.8 mmol), benzene-1,4-dicarboxylic acid 

(1.1368 g, 6.8 mmol) and polyphosphoric acid (50 ml) to afford DMEA.Benz.PBI (2.58 g, 

97%) as a dark brown powder. νmax (cm
-1

): 3026, 2962, 1587, 1377; 
1
H NMR (500 MHz, 

CF3CO2D): δH = 9.43 (br, m, 4H, Ar H), 8.90 (br, s, 4H, Ar H), 3.30 (br, m, 10H, 2 CH3 + 2 

CH2); 
13

C NMR (125 MHz, CF3CO2D): δC = 147.15, 145.84, 131.32, 129.28, 128.63, 127.19, 

126.00, 117.56, 115.30, 113.04, 110.79, 105.99, 42.49, 34.08, 17.13; BET surface area 1 

m
2
/g; total pore volume = 0.0140 cm

3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss 

due to thermal degradation commences at ~ 200 °C with a 28% mass loss below 1000 °C. 

 

SBI.DMEA.PBI 

 

General procedure 14.3.5a was followed using 6,6’,7,7’-tetraamino-3,3,3’,3’-tetramethyl-

1,1’-spirobisindane (2.0045 g, 6.0 mmol), 9,10-dimethyl-9,10-dihydro-2,6-dicarboxyl-9,10-

ethanoanthracene (1.9204 g, 6.0 mmol) and polyphosphoric acid (50 ml) to afford 

SBI.DMEA.PBI (3.29 g, 94%) as a dark brown powder. νmax (cm
-1

): 2941, 2814, 1440, 1381; 

1
H NMR (500 MHz, CF3CO2D): δH = 9.15 (br, m, 7H, Ar H), 8.86 (br, m, 3H, Ar H), 3.78 

(br, m, 2H, CH2), 3.29 (br, m, 6H, 3 CH2), 2.72 (br, m, 18H, 6 CH3); BET surface area = 10 

m
2
/g; total pore volume = 0.0289 cm

3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss 

due to thermal degradation commences at ~ 200 °C with a 17% loss of mass below 400 °C 

and a further 48% mass loss below 1000 °C. 
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DMEA.DMEA.PBI 

 

General procedure 14.3.5a was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-

tetraamino-9,10-ethanoanthracene (2.0030 g, 6.8 mmol), 9,10-dimethyl-9,10-dihydro-2,6-

dicarboxyl-9,10-ethanoanthracene (2.1932 g, 6.8 mmol) and polyphosphoric acid (50 ml) to 

afford DMEA.DMEA.PBI (3.56 g, 96%) as a dark brown powder. νmax (cm
-1

): 3051, 1608, 

1444, 1045; 
1
H NMR (500 MHz, CF3CO2D): δH = 7.14 (br, m, 10H, Ar H), 1.55 (br, s, 6H, 2 

CH3), 1.50 (br, s, 6H, 2 CH3), 1.89 (br, m, 8H, 4 CH2); BET surface area = 29 m
2
/g; total 

pore volume = 0.0990 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to 

thermal degradation commences at ~ 200 °C with a 21% loss of mass below 600 °C and a 

further 29% mass loss below 1000 °C. 

 

14.3.6: Polyamide Amino Acids 

General Procedure (14.3.6a) for Polyamide amino acids 

(A modified procedure from literature
206

) 

Under a nitrogen atmosphere, the corresponding tetraamine hydrochloride salt was dissolved 

in anhydrous dimethyl sulfoxide and the solution was cooled in an ice bath. A solution of the 

corresponding dianhydride monomer in anhydrous pyridine and dimethyl sulfoxide was 

added drop-wise over 2 h. The yellow mixture was stirred for 1 h at which point the mixture 

had become viscous. The mixture was quenched in water, filtered and the precipitate was 

washed with hot deionised water followed by ethanol. The powder was refluxed in methanol 

for 24 h, filtered and then dried in a vacuum oven at 70 °C for 9 h to afford the desired 

polymer. 
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DMEA.Benz.PAAA  

 

General procedure 14.3.6a was followed 9,10-dimethyl-9,10-dihydro-2,3,6,7-tetraamino-

9,10-ethanoanthracene hydrochloride (1.0000 g, 2.27 mmol) in anhydrous dimethyl sulfoxide 

(10 ml), benzene-1,2,4,5-dianhydride (0.4955 g, 2.27 mmol) in anhydrous pyridine (0.7 ml, 

0.7187 g, 9.09 mmol) and dimethyl sulfoxide (10 ml) to afford DMEA.Benz.PAAA (1.1401 

g, 98%) as a yellow powder. νmax (cm
-1

): 2956, 1734, 1628, 1345; 
1
H NMR (500 MHz, 

CF3CO2D): δH = 9.74 (br, m, 4H, Ar H), 8.88 (br, m, 2H, Ar H), 3.29 (br, s, 4H, 2 CH2), 3.05 

(br, s, 3H, CH3), 2.63 (br, s, 3H, CH3); BET surface area = 0 m
2
/g; TGA analysis: Initial 

weight loss due to thermal degradation commences at ~ 150 °C with a mass loss of 20% 

below 400 °C consistent with combined water loss from imide and pyrrolone formation and 

the loss of an ethylene fragment from the ethanoanthracene unit via a retro Diels-Alder 

reaction
172

. A further 36% mass was lost below 1000°C. 

 

DMEA.SBI.PAAA 

 

General procedure 14.3.6a was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-

tetraamino-9,10-ethanoanthracene hydrochloride (1.0000 g, 2.27 mmol) in anhydrous 

dimethyl sulfoxide (10 ml), 3,3,3’,3’-octamethyl-1,1’-spirobisindane-6,6’,7,7’-dianhydride 

(0.9459 g, 2.27 mmol) in anhydrous pyridine (0.7 ml, 0.7187 g, 9.09 mmol) and dimethyl 

sulfoxide (10 ml) to afford DMEA.SBI.PAAA (1.5901 g, 98%) as a yellow powder. νmax (cm
-

1
): 2954, 1720, 1583, 1344; 

1
H NMR (500 MHz, CF3CO2D): δH = 8.29 (br, m, 8H, Ar H), 

3.29 (br, s, 4H, CH2), 2.86 (br, m, 4H, CH2), 2.00 (br, m, 18H, 6 CH3); BET surface area = 0 

m
2
/g; TGA analysis: Initial weight loss due to thermal degradation commences at ~ 150 °C 
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with a mass loss of 18% below 400 °C consistent with combined water loss from imide and 

pyrrolone formation and the loss of an ethylene fragment from the ethanoanthracene unit via 

a retro Diels-Alder reaction
172

. A further 39% mass was lost below 1000°C. 

 

DMEA.DMEA.PAAA 

 

General procedure 14.3.6a was followed using 9,10-dimethyl-9,10-dihydro-2,3,6,7-

tetraamino-9,10-ethanoanthracene hydrochloride (1.1760 g, 2.67 mmol) in anhydrous 

dimethyl sulfoxide (10 ml), 9,10-dimethyl-9,10-dihydro-9,10-ethanoanthracene-2,3,6,7-

dianhydride (1.0000 g, 2.67 mmol) in anhydrous pyridine (0.9 ml, 0.8452 g, 10.69 mmol) and 

dimethyl sulfoxide (10 ml) to afford DMEA.DMEA.PAAA (2.6300 g, 98%) as a yellow 

powder. νmax (cm
-1

): 2962, 1776, 1722, 1591, 1379; 
1
H NMR (500 MHz, CF3CO2D): δH = 

8.97 (br, m, 8H, Ar H), 3.38 (br, m, 12H, 4 CH3), 2.96 (br, s, 8H, 4 CH2); BET surface area = 

0 m
2
/g; TGA analysis: Initial weight loss due to thermal degradation commences at ~ 150 °C 

with a mass loss of 19% below 400 °C consistent with combined water loss from imide and 

pyrrolone formation and the loss of an ethylene fragment from the ethanoanthracene unit via 

a retro Diels-Alder reaction
172

. A further 23% mass was lost below 1000°C. 

 

SBI.SBI.PAAA  

 

General procedure 14.3.6a was followed using 6,6’,7,7’-tetraamino-3,3,3’,3’-tetramethyl-

1,1’-spirobisindane hydrochloride (1.0000 g, 2.07 mmol) in anhydrous dimethyl sulfoxide 

(10 ml), 3,3,3’,3’-octamethyl-1,1’-spirobisindane-6,6’,7,7’-dianhydride (0.8634 g, 2.07 

mmol) in anhydrous pyridine (0.7 ml, 0.6559 g, 8.29 mmol) and dimethyl sulfoxide (10 ml) 
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to afford SBI.SBI.PAAA (1.5436 g, 99%) as a yellow powder. νmax (cm
-1

): 2955, 2864, 1778, 

1716, 1363; 
1
H NMR (500 MHz, CF3CO2D): δH = 8.62 (br, m, 8H, Ar H), 3.48 (br, m, 8H, 4 

CH2), 2.44 (br, s, 24H, 8 CH3); BET surface area = 0 m
2
/g; TGA analysis: Initial weight loss 

due to thermal degradation commences at ~ 150 °C with a mass loss of 9% below 400 °C 

consistent with combined water loss from imide and pyrrolone formation. A further 32% 

mass was lost below 1000°C. 

 

14.3.7: Polypyrrolones 

General Procedure (14.3.7a) for Polypyrrolones 

Under a nitrogen atmosphere the polyamide amino acid precursor polymer was placed in a 

ceramic boat crucible and positioned inside a wire wound single zone tube furnace. The 

furnace was ramped 10°C /min to 200 °C for 1 h, then 10°C /min to 300 °C for 4 h and 

cooled to room temperature. The dark brown powder was refluxed in methanol for 24 h, 

filtered and then dried in a vacuum oven at 120 °C for 9 h to afford the desired polymer. 

 

DMAnth.Benz.PPy 

 

General procedure 14.3.7a was followed using DMEA.Benz.PAAA (1.00 g, 1.95 mmol) to 

afford the desired polymer DMAnth.Benz.PPy (0.7865 g, 98%) as a dark brown powder. νmax 

(cm
-1

): 2047, 1782, 1732, 1620, 1338, 715;
 13

C NMR (100 MHz, solid state): δC = 196.92 

(br), 168.23 (br), 142.63 (br), 14.47 (br); BET surface area = 68 m
2
/g; total pore volume = 

0.2621 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to thermal degradation 

commences at ~ 382 °C with a 46% loss of mass below 1000 °C. 
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DMAnth.DMAnth.PPy 

 

General procedure 14.3.7a was followed using DMEA.DMEA.PAAA (1.00 g, 1.50 mmol) to 

afford the desired polymer DMAnth.DMAnth.PPy (0.7984 g, 99%) as a dark brown powder. 

νmax (cm
-1

): 2918, 1770, 1716, 1616, 1357, 743; 
13

C NMR (100 MHz, solid state): δC = 

196.43 (br), 165.63 (br), 146.30 (br), 129.17 (br), 13.35 (br); BET surface area = 45 m
2
/g; 

total pore volume = 0.3108 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to 

thermal degradation commences at ~ 477 °C with a 29% loss of mass below 1000 °C. 

 

DMAnth.SBI.PPy 

 

General procedure 14.3.7a was followed using DMEA.SBI.PAAA (1.00 g, 1.41 mmol) to 

afford the desired polymer DMAnth.SBI.PPy (0.8402 g, 98%) as a dark brown powder. νmax 

(cm
-1

): 2951, 1778, 1728, 1610, 1361, 752;
 13

C NMR (100 MHz, solid state): δC = 195.40 

(br), 166.37 (br), 152.03 (br), 127.60 (br), 57.94 (br), 43.35 (br), 30.23 (br), 14.08 (br); BET 

surface area (powder) = 149 m
2
/g; total pore volume = 0.1456 cm

3
/g at (P/Po = 0.9814); TGA 

analysis: Initial weight loss due to thermal degradation commences at ~ 400 °C with a 33% 

loss of mass below 1000 °C. 
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SBI.SBI.PPy 

 

General procedure 14.3.7a was followed using SBI.SBI.PAAA (1.00 g, 1 mmol) to afford the 

desired polymer SBI.SBI.PPy (0.8926 g, 99%) as a dark brown powder. νmax (cm
-1

): 2953, 

1755, 1699, 1622, 1359, 785;
 13

C NMR (100 MHz, solid state): δC = 198.28 (br), 165.78 (br), 

149.97 (br), 132.25 (br), 57.75 (br), 43.40 (br), 30.67 (br); BET surface area = 284 m
2
/g; total 

pore volume = 0.2166 cm
3
/g at (P/Po = 0.9814); TGA analysis: Initial weight loss due to 

thermal degradation commences at ~ 480 °C with a 26% loss of mass below 1000 °C. 

 

14.4: Membrane Cross-linking 

PIM-1 

(Based on a procedure from literature
73

) 

 

A mixture of 3,3,3',3'-tetramethyl-1,1'-spirobisindane-5,5',6,6'-tetrol (5.0000 g, 14.69 mmol), 

2,3,5,6 tetrafluoropthalonitrile (2.9389 g, 14.69 mmol, recrystallised from ethanol) and 

anhydrous potassium carbonate (16.2390 g, 117.50 mmol) in anhydrous dimethylformamide 

(100 ml) was stirred at 65-70 °C for 72 h. The bright yellow mixture was cooled to room 

temperature, poured into water (500 ml) and stirred for 1 hr. The solid was collected by 

filtration, washed with water and then acetone until the washings were clear. The resulting 

powder was dried, dissolved in tetrahydrofuran and methanol was added drop-wise until the 

solution became turbid. The solution was stirred for a further 30 min to precipitate a gel. The 

polymer was then dissolved in tetrahydrofuran and added drop-wise to a mixture of methanol 

and acetone (500 ml, 1:1) with vigorous stirring and the precipitated fine powder was filtered. 

The powder was refluxed in methanol for 24 h, filtered and then dried in a vacuum oven at 
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120 °C for 9 h to afford the desired polymer (6.65 g, 92%, lit
73

 95%) as a bright yellow 

powder. νmax (polymer film) (cm
-1

): 2953, 2864, 2241, 1445, 1262, 1009; 
1
H NMR (250 

MHz, CDCl3): δH = 6.81 (br, s, 2H, Ar H), 6.42 (br, s, 2H, Ar H), 1.56 (br, m, 4H, 2 CH2), 

1.31 (br, m, 12H, 4 CH3); GPC (Chloroform): Mn = 60,400, Mw = 194,700. BET surface area 

= 812 m
2
/g; total pore volume = 0.7648 cm

3
/g at (P/Po = 0.9814); TGA analysis (polymer 

film): Initial weight loss due to thermal degradation commences at ~ 500 °C with a 87% loss 

of mass below 1000 °C. 

 

PIM-1.CO2H 

(Based on a procedure from literature
93

) 

 

PIM-1 (1.00 g, 2 mmol) was suspended in a solution of ethanol (50 ml) and saturated sodium 

hydroxide solution (50 ml) and refluxed for 24 h. The dark grey mixture was filtered and 

refluxed in deionised water containing a few drops of hydrochloric acid (pH 4) for 1h. The 

light grey mixture was filtered, washed with deionised water and then acetone until washings 

were clear. The powder was refluxed in methanol for 24 h, and dried in a vacuum oven at 120 

°C for 9 h to afford the desired polymer PIM-1.CO2H (1.02g, 94%) as a dark grey powder. 

νmax (cm
-1

): 2949, 2855, 1672, 1601, 1487, 1437, 1314, 1003; BET surface area = 399 m
2
/g; 

total pore volume = 0.2833 cm
3
/g at (P/Po = 0.9814); TGA analysis: A 15% loss of weight 

occurred between 200-400 °C. Initial weight loss due to thermal degradation commences at ~ 

400 °C with a 35% loss of mass below 1000 °C. 
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PIM-1 10%.DHEA.TB 90% 

 

PIM-1 (0.075 g) and DHEA.TB (0.675 g) were dissolved in HPLC chloroform (10 ml) and 

stirred thoroughly overnight. A film was cast in a 10 cm PTFE dish in the normal manor to 

give a flexible light yellow film. The film was refluxed in methanol for 24 h, and dried in a 

vacuum oven at 120 °C for 9 h. A second sample containing PIM-1 (0.100 g) and DHEA.TB 

(0.900 g) in HPLC chloroform (20 ml) was precipitated into methanol and filtered. The 

powder was refluxed in methanol for 24 h, filtered and then dried in a vacuum oven at 120 °C 

for 9 h to afford a light yellow powder. νmax (polymer film) (cm
-1

): 3329 (br) , 2937, 2868, 

1624, 1560, 1467, 1419; BET surface area = 655 m
2
/g; total pore volume = 0.4918 cm

3
/g at 

(P/Po = 0.9814); TGA analysis (polymer film): Initial weight loss due to thermal degradation 

commences at ~ 260 °C with a 27% loss of mass below 1000 °C. 

 

PIM-1.CO2H 10%.DHEA.TB 90% 

 

One half of a film containing PIM-1 10% and DHEA.TB 90% was placed into a solution of 

ethanol (100 ml) and saturated sodium hydroxide solution (100 ml) and refluxed for 24 h. 

The film was boiled in deionised water containing a few drops of hydrochloric acid (pH 4) 

for 1h and then washed with deionised water. The film was refluxed in methanol for 24 h, 
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and dried in a vacuum oven at 120 °C for 9 h to give a flexible light orange film. A powdered 

sample was treated with the same procedure to afford a light orange powder. νmax (polymer 

film) (cm
-1

): 3329 (br), 2939, 2868, 1618, 1475, 1433; BET surface area = 253 m
2
/g; total 

pore volume = 0.3182 cm
3
/g at (P/Po = 0.9814); TGA analysis (polymer film): A 6% loss of 

weight occurred between 100-300 °C. Initial weight loss due to thermal degradation 

commences at ~ 300 °C with a 26% loss of mass below 1000 °C. 
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