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DAESA, Differential-Algebraic Equations Structural Analyzer, is a MATLAB tool for structural analysis of
differential-algebraic equations (DAEs). It allows convenient translation of a DAE system into MATLAB and
provides a small set of easy-to-use functions. DAESA can analyze systems that are fully nonlinear, high-
index, and of any order. It determines structural index, number of degrees of freedom, constraints, variables
to be initialized, and suggests a solution scheme. The structure of a DAE can be readily visualized by this
tool. It also can construct a block-triangular form of the DAE, which can be exploited to solve it efficiently
in a block-wise manner.

This paper describes the theory and algorithms underlying the code.
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1. INTRODUCTION

For some years the authors have been developing a numerical code DAETS, see Ne-
dialkov and Pryce [2008; 2009], for solving differential-algebraic equation systems
(DAEs). It is based on a structural analysis (SA) of the sparsity of the DAE that we
call the signature matrix method, or Σ-method. To a large extent, it is equivalent to the
well-known method of Pantelides [1988], and in particular computes the same struc-
tural index [Duff and Gear 1986; Pryce 2001]. However, our method is easier to apply
and can be applied to DAEs of any order, not just first order.

Large DAE systems are produced routinely by equation-based modeling methods
in disciplines such as electronic circuits, the study of robots and other mechanical
systems, chemical engineering, etc. It is now routine that such models are built using
interactive design systems (GPROMS, MAPLESIM, SIMULINK, various tools based on
the MODELICA language, etc. [Cameron and Gani 2011]). Mostly these have some kind
of SA built in.

For instance, GPROMS [Process Systems Enterprise Ltd. 2004] uses the method
of Pantelides [1988] to determine if the DAE is of index 1. If so, GPROMS checks if
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the given initial values are consistent, and if they are, integrates the problem using
DASSL [Brenan et al. 1996]. In the case when the problem is not well posed, GPROMS
detects over-specified and under-specified parts and provides diagnostic information to
the user. If the DAE is of index greater than 1, GPROMS reports a subset of equations
and variables that cause the higher index.

DYMOLA [Dynasym AB 2004] also uses Pantelides’s algorithm to determine the
index of a DAE and then applies the dummy-derivative index reduction technique
[Mattsson and Söderlind 1993] to convert it to an index-1 problem, which is then solved
by DASSL.

Originally, our SA was merely a necessary preprocessing stage to set up the numer-
ical solution method for a DAE initial value problem (IVP). However, as we have en-
countered users with increasingly large problems, it has become clear that they value
its diagnostic abilities, not all which are present in systems such as GPROMS and DY-
MOLA mentioned above, although there is a large overlap. In particular, our SA is able
to identify subsystems of a DAE, and the hierarchy of dependencies among them, to a
finer resolution than many other methods. Thereby, it can often reduce the number of
initial values (IVs) required for numerical solution, beyond what those other methods
achieve.

Thus it seemed useful to present it as a free-standing tool, with enhanced reporting
and diagnostic capabilities. The result is the program DAESA. Written in MATLAB, it
accepts a MATLAB description of a DAE, which is nearly identical to the C++ descrip-
tion accepted by DAETS. The theory behind DAESA is presented here, and its current
facilities are described in detail by the companion paper [Nedialkov et al. 2013].

Section 2 states the class of problem DAESA handles and describes the basic theory
of the DAE’s linear assignment problem and offsets, leading to a stage-wise solution
scheme. Section 3 discusses consistent points and introduces the problem of mini-
mizing the number of IVs the user must supply. Section 4 describes different block-
triangular forms for the DAE and how they may simplify numerical solution and re-
duce the number of IVs. Section 5 presents examples illustrating the previous sections.
Section 6 discusses some implementation issues. Finally, Section 7 summarizes the fa-
cilities DAESA offers and some ideas for future development. Small examples in the
text illustrate the theory; larger examples are in the companion paper.

2. OVERVIEW OF THE SIGNATURE-MATRIX METHOD

We present the class of problems DAESA handles (§2.1), describe how we compute the
offsets of the problem, (§2.2), and outline the solution scheme based on the Σ-method
(§2.3). For the basic ideas and results summarized here, see [Pryce 2001] unless stated
otherwise.

2.1. The class of DAE handled by DAESA

The code DAETS solves DAE IVPs by expansion in Taylor series. DAESA is an offshoot
of it, and performs essentially the same SA. Both codes handle DAEs of the general
form

fi( t, the xj and derivatives of them ) = 0, i = 1, . . . , n, (1)

where the xj(t), j = 1, . . . , n are state variables that are functions of an independent
(time) variable t. The fi can be arbitrary expressions built from the xj and t using
+,−,×,÷, other analytic standard functions, and the differentiation operator dp/dtp.
They can be nonlinear and fully implicit in the variables and derivatives. An equation
such as

((tx′
1)

′)
2
/
(
1 + (x′′

2)
2
)
+ t2 cosx2 = 0
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can be encoded directly into either code.
We call our approach the Σ-method, because it is based on the n × n signature ma-

trix Σ, whose i, j entry σij is either an integer ≥ 0, namely the order of the highest
derivative to which variable xj occurs in the function fi; or −∞ if xj does not occur
in fi. This compact description provably represents the essential structure for several
classical DAE forms, such as Hessenberg (block-nearly-triangular). Perhaps unexpect-
edly, it does so also for a large number of DAEs that occur in applications and do not
obviously fall in one of the classical forms.

2.2. The linear assignment problem

The start of the process is to take Σ as the matrix of a linear assignment problem (LAP).
Let the variables (columns) represent n workers and the equations (rows) represent
n tasks. Then σij represents the competence of worker i at doing task j, with −∞
meaning total incompetence. The problem is to assign one worker per task to maximize
the competence of the team, measured as the sum of individual competences. Each
such assignment can be specified by a transversal, a set T of n positions (i, j), with
just one entry in each row and each column; the team competence is then the sum∑

(i,j)∈T σij , which we call the value of T , written Val(T ).

We seek a highest-value transversal, or HVT, that gives Val(T ) its largest possible
value: this is called the value of the signature matrix, Val(Σ). The DAE is structurally
well-posed, if it has a T , all of whose σij are finite (so Val(T ) and hence Val(Σ) are
finite), else structurally ill-posed.

A LAP is a kind of linear programming problem (LPP), so it has a dual problem. In
the formulation we use, this has 2n dual variables, c = (c1, . . . , cn) and d = (d1, . . . , dn),
associated with the equations and the variables of (1), respectively. The dual LPP con-
sists of minimizing

∑
dj −

∑
ci subject to1

dj − ci ≥ σij for all i, j, (2)

together with ci ≥ 0 for all i.
Assume henceforth a structurally well-posed DAE. Then both the primal and the

dual LPP have feasible solutions, so the two objective functions have the same optimal
value, which is Val(Σ). When the method succeeds (see §3.2), this equals the number
of degrees of freedom (DOF) of the DAE.

Any optimal solution vectors c, d of the dual are termed valid offsets. They have
dj ≥ 0 as well as ci ≥ 0, and are characterized by

ci ≥ 0; dj − ci ≥ σij for all i, j, with equality on some HVT, hence on all HVTs, (3)

see [Pryce 2001, Theorem 3.4]. Valid offsets are never unique, e.g., if ci, dj solve (3),
then so do c′i = ci+K, d′j = dj+K for any constant K provided c′i ≥ 0, i.e. K ≥ −mini ci.
However [ibid., Theorem 3.6], there exists a unique elementwise smallest solution of
(3) called the canonical offsets. It is convenient, but not essential, to base the SA and
numerical solution on these.

1Historically, the inequalities (2) were identified first as key to the solution process, and the LAP derived
from them.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: YYYY.
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Example 2.1. The DAE of the simple pendulum in Cartesian coordinates will be
used frequently as an example:

PEND

0 = A = x′′ + xλ
0 = B = y′′ + yλ−G
0 = C = x2 + y2 − L2

Σ =

x y λ ci[ ]
A 2• 0◦ 0

B 2◦ 0• 0

C 0◦ 0• 2

dj 2 2 0

(4)

x, y and λ are state variables. G and L are constants > 0. A blank in Σ means −∞.

The rows and columns of the signature matrix are annotated on the left and top with
the names of the functions A,B,C and the variables x, y, λ, and on the right and bottom
with the offsets. To match the general notation of (1), the functions and variables are
regarded as also being named f1, f2, f3 and x1, x2, x3 respectively, in the order given.
There are two HVTs here, marked with • and ◦.

Remark 2.2. LAPs are solved in DAESA using Y. Cao’s MATLAB implementation
[Cao 2011] of the Jonker-Volgenant algorithm [Jonker and Volgenant 1987].

2.3. The basic staged solution scheme

A basic solution approach, in theory and practice, is to differentiate equations one or
more times (with respect to t) to obtain an enlarged system that can be solved to give
an ODE in the xj . The smallest number of differentiations of any equation needed to
do this is the DAE’s differentiation index ν.

The offsets produced by the Σ-method prescribe a stage-by-stage solution process.
Viewed symbolically, this comprises a sequence of differentiations and applications of
the Implicit Function Theorem that convert the DAE to an ODE; or, if not carried
to completion, convert it to one of lower index (index-reduction). Viewed numerically,
it yields various methods, e.g., the one currently used by DAETS, which expands the
solution in Taylor series at each integration step.

The number of differentiations specified by this staged process gives a formula for
the structural index νS of the DAE:

νS = max
i

ci +

{
1 if some dj is zero,
0 otherwise.

When SA succeeds (§3.2), this is known to be an upper bound for the differentiation
index ν. In our experience it usually equals it: that is, SA finds the smallest possible
set of differentiations.

As a reminder of notation for differentiated functions, suppose x, y, . . . are variables
that depend on t, and f is a function of them and possibly of their first or higher t-
derivatives x′, y′, . . .. Then f ′ denotes df/dt treating the variables in f as functions of
t. In general, it is a function of the variables in f , and also of derivatives to one order
higher than those in f . For instance, if f = x sin(x′y)—a function f(x, x′, y)—then

f ′ =
∂f

∂x
x′ +

∂f

∂x′
x′′ +

∂f

∂y
y′ = sin(x′y)x′ + xy cos(x′y)x′′ + xx′ cos(x′y)y′,

a function f ′(x, x′, x′′, y, y′). Higher derivatives f ′′ = f (2), f ′′′ = f (3), . . . are defined
inductively.

The staged solution process is defined for a DAE (1) by

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: YYYY.
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Starting with k = −max dj , in order of increasing stage number k,

solve the equations f
(k+ci)
i = 0 for those i such that k + ci ≥ 0 (5)

for the unknowns x
(k+dj)
j for those j such that k + dj ≥ 0. (6)

This deceptively simple rule needs explanation. Define mk and nk to be the number of
non-negative k + ci, and k + dj , respectively, so that (5, 6) specify mk equations in nk

unknowns.
For k < kc := −maxi ci, there are no equations to solve (mk = 0), and for k < kd :=

−maxj dj there are no unknowns to solve for (nk = 0). Since all finite σij are ≥ 0, it
follows from (2) that kd ≤ kc ≤ 0 (and kd < 0, except in the special case that the DAE
is a purely algebraic system). Thus the solution process starts at stage k = kd.

It is immediate from their definition that the mk and nk increase with k, with mk ≤
nk for all k, and mk = nk = n when k ≥ 0.

The variables and derivatives found at a given stage occur (usually) in the equa-
tions at all later stages. Thus, globally over all the stages, the equations have a block-
triangular structure that is solved by block forward substitution: known values from
previous stages are substituted into the mk equations (5) of the current stage, leaving
just the nk items (6) to solve for.

The block-triangular structure of the process for the pendulum DAE (4) is illustrated
in Table I.

Table I. Block-triangular structure of the general solution
scheme, shown for the Pendulum DAE. • marks values to

be solved for at current stage; × marks values known from
previous stages. Stages −2,−1 are under-determined.

Stage k x, y x′, y′ x′′, y′′, λ x′′′, y′′′, λ′ . . .

−2 C = 0 •

−1 C ′ = 0 × •

0 A,B,C ′′ = 0 × × •

1 A′, B′, C ′′′ = 0 × × × •
...

...
. . .

3. CONSISTENT POINTS AND INITIAL VALUES

First, we introduce some convenient notation (§3.1). Then we discuss the SA view of
consistent points and constraints (§3.2) and the desirability of minimizing the number
of initial values required by an IVP (§3.3), a problem addressed by the block-triangular
form (BTF) analysis introduced in the next section.

3.1. Notation for vectors of derivatives

Henceforth, for brevity, we write “derivatives of xj” instead of “xj and its derivatives”—

derivatives v(l) of a variable v include v itself as the case l = 0. Let J be the set of
index-pairs labeling arbitrary derivatives of the xj , or of the fi:

J = { (j, l) | 1 ≤ j ≤ n; l ∈ N = {0, 1, 2, . . .} }, (7)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: YYYY.
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A vector of specified derivatives of state variables of (1) can be denoted as xJ for some

finite subset J of J , meaning the vector of all derivatives x
(l)
j for (j, l) ∈ J ; it may be

numeric, or symbolic, or a vector function xJ(t), depending on context.
For a DAE with individually named variables, such as the pendulum (4), we use a

natural notation for vectors x of derivatives: for instance we may consider the vector

x = (x, x′, y, y′).

This converts to the general notation thus: since x, y are x1, x2, we have

x =
(
x
(0)
1 , x

(1)
1 , x

(0)
2 , x

(1)
2

)
,

so

x = xJ , J = {(1, 0), (1, 1), (2, 0), (2, 1)} ⊂ J .

Similarly, the vector of functions

(A,B,C ′′) = (f
(0)
1 , f

(0)
2 , f

(2)
3 ) = fI , where I = {(1, 0), (2, 0), (3, 2)} ⊂ J .

3.2. The SA view of consistent points

We say, see [Nedialkov and Pryce 2005, §4.4], that solutions of the DAE live in xJ

space, if there is at most one solution having given values of the derivatives specified
by xJ at t = 0—or at a given t, if the DAE is non-autonomous, i.e., if t occurs explicitly
in it. We assume that the same J will do for all points along a solution path and for all
solution paths (however many DAEs have “switching” behavior that violates this). Let
us call an xJ space a home, if the DAE lives in it. A home is not unique: any “larger”
space (an xJ ′ space with J ′ ⊃ J) has the same property.

Finding a home space amounts to finding what derivatives x
(l)
j must be given IVs to

define a unique solution, as argued in §3.3. So it is an important user-interface issue.
A point of a home space through which a solution of the DAE exists is called a

consistent point. The set M of all consistent points is the consistent manifold for this
space. Equations of which M is the zero-set are constraints of the DAE for this space.

Crucial for our solution method is the DAE’s n×n System Jacobian matrix J, where

Jij =
∂fi

∂x
(dj−ci)
j

=





∂fi

∂x
(σij)
j

if dj − ci = σij , and

0 otherwise.

If there exists a consistent point at which J is nonsingular, then there is a solution of
the DAE through it, at least locally, and we say the SA succeeds; otherwise it fails. In
our experience, SA succeeds in most practical applications, but not all.

The problem of checking for success numerically is similar to that of finding a con-
sistent point to start integrating an IVP, with the difference that there are no user-
specified IVs to keep “close” to: any point will do that satisfies the consistency equa-
tions and has J nonsingular. Currently DAESA does not do a numerical success check.
We aim to offer this in a future version.

When SA succeeds (and along the thus defined solution path), the equations (5, 6)
form, for each k > 0, a square nonsingular linear system whose matrix is J, which
therefore has a unique solution. This also holds for k = 0 in the common case that the

DAE is quasilinear, that is, the x
(dj)
j for j = 1, . . . , n, occur linearly (or are absent) in fi

for i = 1, . . . , n.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: YYYY.
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That is, once one has solved all stages k ≤ 0 (k < 0 if quasilinear), the solution is
uniquely determined. Equivalently, one does not need to look for a home space larger
than xJ≤0

, or xJ<0
if quasilinear, where the index sets

J≤0 = { (j, l) | j = 1, . . . , n; l = 0, . . . , dj } and

J<0 = { (j, l) | j = 1, . . . , n; l = 0, . . . , dj−1 }
(8)

list the x
(l)
j solved for in stages k ≤ 0, and k < 0, respectively. Further, the constraints

that define M are the set of equations fI≤0
= 0, when solutions live in xJ≤0

space, or
fI<0

= 0, when solutions live in xJ<0
space, where

I≤0 = { (i, l) | i = 1, . . . , n; l = 0, . . . , ci } and

I<0 = { (i, l) | i = 1, . . . , n; l = 0, . . . , ci−1 }
(9)

list the f
(l)
i solved for in stages k ≤ 0, and k < 0, respectively.

Example 3.1. For the pendulum DAE (4) the Jacobian is

J =

x y λ






A 1 x

B 1 y

C 2x 2y

,

where a blank means zero. We see the method succeeds, because detJ = −2(x2 + y2) =
−2L2 6= 0 at a consistent point. The DAE is quasilinear: once stage k = −2’s values x, y
and stage k = −1’s values x′, y′ are known at a given t, a nonsingular linear system
determines stage k = 0’s values x′′, y′′ and λ.

Hence, solutions live in 4-dimensional (x, x′; y, y′) space, and in this space the con-
sistent manifold M is the 2-dimensional solution set defined by constraints

C = x2 + y2 − L2 = 0 and C ′ = 2xx′ + 2yy′ = 0. (10)

In the general notation, M is defined by fI<0
= 0 in xJ<0

space, where

J<0 = {(1, 0), (1, 1); (2, 0), (2, 1)} and I<0 = {(3, 0), (3, 1)}.

Constraints that are some fi differentiated at least once are often called “hidden
constraints”. Here, C ′ is a “hidden” and C an “explicit” constraint.

As (8, 9) illustrate, home spaces of interest to us here and in Section 4 have the form
“all xj-derivatives up to some j-dependent order”, and the corresponding constraints
have the form “all fi-derivatives = 0 up to some i-dependent order”. Hence we define,
for a non-negative integer vector δ = (δ1, . . . , δn), the notation

J (δ) = { (j, l) | j = 1, . . . , n; 0 ≤ l < δj } (11)

a subset of J in (7).
In this notation, (8, 9) say that a home space is xJ (d) with constraints fJ (c) = 0, if

the DAE is quasilinear, and xJ (d+1) with constraints fJ (c+1) = 0 otherwise. Here c and
d are the offset vectors, and c+ 1 denotes (c1 + 1, . . . , cn + 1), and d+ 1 similarly.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: YYYY.
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3.3. Minimizing the set of initial values

How should a user specify a numerical IVP? Ideally, by giving an exact consistent
point: numerical values for some collection of derivatives, such that there is one and
only one solution taking these values at the initial t. However, it is notoriously hard
to make even a good guess at consistent values, especially of derivatives, so one would
like an IVP code to minimize the number of IVs2: to ask the user for an x

∗
J where |J |,

the number of elements in J , is a minimum given that solutions live in xJ space.
Typically a code then finds a nearby xJ that is consistent (within a tolerance).

E.g., for the pendulum, given a numerical x
∗
J = (x∗, y∗, (x′)∗, (y′)∗) it might seek

xJ = (x, y, x′, y′) that minimizes ‖xJ − x
∗
J‖ in some norm subject to the constraints

(10) that define M.
Common sense, and the stage-wise form of the solution process (5, 6), suggest the

IVs should not include a derivative of some variable, if there is a lower derivative of the
same variable that is not included. E.g., for the pendulum, maybe values for x, x′′, y′, λ
specify a unique solution, but these are not sensible IVs to ask of a user.

Hence, we restrict attention to IV data of the form xJ (δ) as in (11). Since |J (δ)| =∑
j δj , we pose the problem thus:

Seek a home space xJ (δ) with minimum
∑

j δj .

As seen above, we can take δ to be d in the quasilinear case, and d+1 otherwise. How-
ever, for most DAEs in applications, this is far from minimizing

∑
j δj . These global off-

sets dj should be replaced by the local offsets d̂j derived from BTF analysis as discussed
in Section 4.

Remark 3.2. Most current DAE codes do not have this ability to be selective about
the IVs needed for a particular problem. E.g., the code DASSL requires “flat” data com-
prising all variables (x1, . . . , xn) and all first derivatives (x′

1, . . . , x
′
n). This corresponds

to δ = (2, 2, . . . , 2) in the J (δ) notation.

Remark 3.3. Using the equations to reduce the IVs needed. At stage k there are nk

unknowns (derivatives) to find, which must satisfy mk ≤ nk equations. Often mk = 0,
in which case the unknowns are genuinely arbitrary initial values, as for an ODE.
However when mk > 0, there is the possibility of specifying nk − mk values—and/or
constraints of another kind—sufficient to determine all nk unknowns uniquely. E.g.,
suppose the pendulum DAE has L = 10. At stage −2 with m−2 = 1 equation x2 + y2 −
102 = 0 to solve for n−2 = 2 unknowns x, y, one could specify that x = 6 is fixed, plus
the constraint y < 0. This suffices to fix y = −8 uniquely. One can do similarly at stage
−1. In general, nk−mk is “the number of DOF introduced at stage k”, and its sum over
k < 0 is the total DOF of the system.

If done for all stages < 0 and based on BTF analysis, this approach has the merit
of requiring exactly as many IVs as there are DOF, but software must take care to
avoid problems of conditioning (in the above example, y is ill-determined when x is
just under 10), existence (there is no y when x > 10) and uniqueness (one must know
what constraints like “y < 0” to impose). Therefore we regard this idea as an issue of
user interface, not of the theory presented here, and do not pursue it further.

4. BLOCK-TRIANGULAR FORM WITHIN THE DAE

We illustrate how “superfluous” IVs are suggested by the original Σ-method (§4.1),
and show how block-triangular form (BTF), based on various sparsity patterns derived

2IV means both known initial values and also trial values, guesses at the solution of an equation system.
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from the DAE, can reduce the number of IVs (§4.2, §4.3). We discuss irreducible BTF
based on the Jacobian sparsity and the associated local offsets (§4.4, §4.5). Its synergy
with quasilinearity analysis often reduces the number of IVs still further (§4.6).

4.1. Illustrating the initial value anomaly

The equations (5, 6) can do without initial values when k is large enough that they
become square linear systems. However, this can happen for parts of the DAE before
one reaches stage k = 0, as illustrated by the system 2PENDA, comprising two simple
pendula with a coupling term:

2PENDA

0 = A = x′′ + xλ,

0 = B = y′′ + yλ−G,

0 = C = x2 + y2 − L2,

0 = D = u′′ + uµ,

0 = E = v′′ + vµ−G,

0 = F = u2 + v2 − (L+ cx′)2,

(12)

where G,L, c are constants. Its signature matrix and Jacobian are

Σ =

x y λ u v µ ci






A 2 0• 1

B 2• 0 1

C 0• 0 3

D 2 0• 0

E 2• 0 0

F 1 0• 0 2

dj 3 3 1 2 2 0

, J =

x y λ u v µ






A 1 x

B 1 y

C 2x 2y

D 1 u

E 1 v

F ξ 2u 2v

where ξ = −2c(L+cx′)

.

(A blank in Σ means −∞, and in J means zero.)

One can see just from Σ (or from J), without studying the equations themselves, that
the system splits into parts, i.e., subsystems: part 1 has equations A,B,C for variables
x, y, λ; part 2 has equations D,E, F for variables u, v, µ. Part 1 influences part 2 by the
F, x entry in the lower left block of Σ, but is uninfluenced by it since the top right block
is blank, thus giving a block-triangular form (BTF).

This coupling leaves the offsets of part 2 unchanged, but increases by one those of
part 1—from ci = 0, 0, 2, dj = 2, 2, 0 to ci = 1, 1, 3, dj = 3, 3, 1. This seems to change
the initial values part 1 requires—paradoxical, since part 1 is the “uninfluenced” one.
Namely, the combined DAE is quasilinear, so according to (8), IVs are needed for

xJ<0
= (x, x′, x′′; y, y′, y′′; λ;u, u′; v, v′).

So part 1 now seems to need IVs for x′′, y′′ and λ, which as a stand-alone system it did
not. Of course this is false.

When one considers the offsets as defining a scheme for computing successive deriva-
tives (equivalently, Taylor coefficients), the reason for the raised offsets of pendulum
1 is clear. In the absence of coupling, the natural scheme is: at stage k = −2, find x, y
and u, v; at k = −1, find x′, y′ and u′, v′; at k = 0, find x′′, y′′, λ and u′′, v′′, µ; and so on.
However, u, v must satisfy F = 0. With the coupling, F involves x′, which in the above
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scheme has not been found yet. Similarly, u′, v′ must satisfy F ′ = 0, which involves x′′,
which has not been found yet, and so on. This is cured by shifting pendulum 1 back
one stage, so that the scheme becomes:

k find then find
−3 x, y
−2 x′, y′ u, v
−1 x′′, y′′, λ u′, v′

0 x′′′, y′′′, λ′ u′′, v′′, µ

and so on. Hence, provided pendulum 1’s equations are solved before those of pendu-
lum 2 at each k-stage,

— pendulums 1 and 2 can be solved as separate size 3 systems;
— but, each derivative of x is available just when needed by pendulum 2.

Because of the shift, pendulum 1 behaves as if the overall stages k = −3,−2,−1, . . .

are its local stages k̂ = k + 1 = −2,−1, 0, . . . associated with local offsets ĉi = 0, 0, 2 and

d̂j = 2, 2, 0, which come from analyzing it as a stand-alone system. This shows that the
relation between the “minimal initial values” problem and the sequencing of a solution
scheme involves the DAE’s block-triangular structure.

4.2. Sparsity patterns and BTF

A BTF of (1) is obtained from a sparsity pattern, which is some subset A of {1, . . . , n}2,
the n × n matrix positions (i, j) for i and j from 1 to n. When appropriate, we identify
A with its n× n incidence matrix

(aij) where aij = 1 if (i, j) ∈ A, 0 otherwise.

A natural sparsity pattern for the DAE is the set where the entries of Σ are finite:

S = { (i, j) | σij > −∞} (the sparsity pattern of Σ). (13)

However, a more informative BTF comes from the sparsity pattern of the Jacobian J

(but see the caveats in §4.3). It depends, as does J, on the (valid) offsets c, d used:

S0 = S0(c, d) = { (i, j) | dj − ci = σij } (the sparsity pattern of J). (14)

A less obvious, but useful, set [Nedialkov and Pryce 2005] is

Sess = the union of all HVTs of Σ. (the essential sparsity pattern).

(Sess was called S00 in [Pryce 2001].) Both S and Sess depend only on the DAE, while to
compute an S0 one needs to find c, d first. Since dj − ci = σij holds on each HVT by (3),
and implies σij > −∞, we have

Sess ⊆ S0(c, d) ⊆ S for any c, d. (15)

Experience suggests that in applications, a BTF based on S0 is usually significantly
finer than one based on S. We refer to the former as a fine BTF, and we refer to the
latter as coarse BTF.

A permuted block form of the DAE is created by forming permutations (f̃1, . . . , f̃n)
and (x̃1, . . . , x̃n) of the vectors of equations and variables, and then writing these in
block form (F1, . . . , Fp) and (X1, . . . , Xp), where subvectors Fl and Xl have the same
number Nl > 0 of elements for each l, and N1 + · · ·+Np = n. Then Σ, J and a sparsity
pattern A are permuted and put in block form correspondingly. We ignore the permuta-
tions, i.e., suppose them already done (in examples we make them obvious by labeling
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rows and columns with the equation and variable names), and write in p×p block form:

Σ =



Σ11, · · · , Σ1p

...
...

Σp1, · · · , Σpp


 , J =



J11, · · · , J1p

...
...

Jp1, · · · , Jpp


 , A =



A11, · · · , A1p

...
...

Ap1, · · · , App


 , (16)

where the (l,m) block is of size Nl by Nm.
Let blockOf(i) denote the block that index i belongs to, that is

blockOf(i) = l if
∑l−1

m=1 Nm < i ≤
∑l

m=1 Nm, (17)

where 1 ≤ i ≤ n, 1 ≤ l ≤ p.
DAESA uses upper BTF, so Σ is in BTF if the below-diagonal blocks (where l > m) are

all −∞; while J, and A viewed as an incidence matrix, are in BTF if the below-diagonal
blocks are zero. When A is viewed as a set of (i, j)’s, it is the disjoint union of its subsets

Alm = { (i, j) ∈ A | blockOf(i) = l and blockOf(j) = m },

and is in BTF if the below-diagonal blocks are empty.
Basing BTF on a sparsity pattern S0 of (14) will of course put the corresponding

J into BTF, but may not do so for Σ, since there may be elements of the (permuted)
pattern S of (13) below the block diagonal, if S0 is a proper subset of it.

The following facts about transversals are relevant. Fuller proofs of these and other
results in Section 4 are in the future article [Tan et al. 2012a].

LEMMA 4.1.

(i) Any transversal T of (i.e., contained in) a sparsity pattern A is contained in the
union of the diagonal blocks of any BTF of A.

(ii) Any transversal T of a Jacobian sparsity pattern S0(c, d), see (14), is a HVT of Σ.

The first of these is well known; for the second, we have

Val(Σ) =
∑n

j=1 dj −
∑n

i=1 ci since c, d are valid offsets

=
∑

(i,j)∈T (dj − ci) since T is a transversal

=
∑

(i,j)∈T σij since T ⊆ S0

= Val(T ) by definition,

proving that T is a HVT.

4.3. Caveats

Some comments are needed about sparsity analysis. First, if the DAE is structurally
well-posed (§2.2), an analysis based on S0 can always be carried out. However, it is only
meaningful if the method is known to succeed: that is, if a consistent point where J is
nonsingular has been found. Second, S0 is the set of positions where Jij is nonzero (a)
structurally and (b) as far as DAESA can tell from the equations as written.

As regards (a), J varies along the solution, and a generically nonzero Jij may vanish
at certain t values. For (b), algebraic cancellation may make some Jij identically zero
for reasons that DAESA does not detect. For instance, suppose equation f1 is (tx1)

′ −
tx′

1 + x2 = 0, which simplifies to x1 + x2 = 0. DAESA applies quasilinearity analysis
based on an operator-overloading computation and does not do symbolic simplification,
so it finds σ11 = 1 instead of the true σ11 = 0. Such overestimation of elements of Σ
looks dangerous, but—provided a nonsingular J is in due course found—can do no
worse than cause some zero entries of J to be treated as nonzero, and make numerical
solution slightly less efficient than it could be: see [Nedialkov and Pryce 2005, §5].
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4.4. Irreducibility

An n × n sparsity pattern A (or matrix) is irreducible, if it cannot be permuted to a
non-trivial BTF (one with p > 1); otherwise it is reducible.

Classic results of graph theory, see e.g. [Pothen and Fan 1990; Coleman et al. 1986],
are the following. The bipartite graph of A is the undirected graph whose 2n vertices
are the n rows and n columns, and which has an edge between row i and column j
whenever (i, j) ∈ A.

THEOREM 4.2.

(a) The following are equivalent:
(i) A is structurally nonsingular (contains at least one transversal).

(ii) A has the Hall Property: for r = 1, . . . , n, any set of r columns of A contains
elements of at least r rows.

(b) The following are equivalent:
(i) A is irreducible.

(ii) A has the Strong Hall Property: for r = 1, . . . , n − 1, any set of r columns of A
contains elements of at least r + 1 rows.

(iii) Every element of A is on a transversal, and the bipartite graph of A is con-
nected.

Clearly, if any diagonal block All of a BTF of A is reducible (as a sparsity pattern
in its own right), this lets one refine the whole BTF of A, splitting the lth block into
two or more smaller blocks. Repeating this as needed, A has a BTF for which each
diagonal block is irreducible, which we call an irreducible BTF of A. This is unique up
to possible reordering of the blocks, [Duff et al. 1986].

The ⊆ part of the following result comes from Lemma 4.1(i,ii) and the definition of
Sess. The ⊇ part comes from the fact, which uses Theorem 4.2 (b)(iii), that each element
of each diagonal block (Sll) is on a transversal.

THEOREM 4.3. For a given signature matrix Σ, let (Slm) be an irreducible BTF of a
Jacobian sparsity pattern S0 = S0(c, d); that is,

Slm = { (i, j) ∈ S0 | blockOf(i) = l and blockOf(j) = m }.

Then the essential sparsity pattern Sess is exactly the union of the diagonal blocks,

Sess = S11 ∪ . . . ∪ Spp.

It follows that, up to possible reordering, all Jacobian sparsity patterns S0(c, d) of Σ
have the same block sizes N1, . . . , Np, and indeed identical diagonal blocks, in their
irreducible BTFs. Depending on the DAE, some ordering of blocks may be arbitrary;
some may be dictated by a specific choice of offsets c and d; some may be inherent in
the DAE. This is studied in [Tan et al. 2012a].

4.5. BTF, local offsets, and solution scheme

For any BTF (16) of a DAE, local offsets of part l (l = 1, . . . , p) are offsets obtained by
structural analysis of Σll, i.e., by treating part l as a free-standing DAE, with known
driving terms coming from any coupling to parts l+1, . . . , p. Since we are ignoring
the permutations, we write a set of global offsets—arbitrary valid offsets of Σ as a
whole—as c1, . . . , cn and d1, . . . , dn in the order of the permuted matrices in (16); and

the canonical local offsets as ĉ1, . . . , ĉn and d̂1, . . . , d̂n in the same way. (E.g., d1, . . . , dN1

and d̂1, . . . , d̂N1
are the global and local offsets of the variables of part 1 of the DAE,

and so on.)
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From [Tan et al. 2012a] we have the following, whose proof relies on Theorem 4.2
(b)(iii): an irreducible pattern has a connected bipartite graph.

THEOREM 4.4. Consider the irreducible BTF in of the Jacobian sparsity pattern
S0(c, d) for any valid (global) offsets c, d. Then the difference between global and local
offsets is constant on each block. That is, there are non-negative integers K1, . . . ,Kp such
that

cj − ĉj = dj − d̂j = Kl where l = blockOf(j), see (17).

Consider (5, 6) as a Taylor series generation scheme. Using the fine BTF, one can
regard part l for l = 1, . . . , p as a separate DAE, possibly receiving driving terms from
parts l + 1, . . . , p, the process being interleaved so that at each k-stage, needed Taylor
coefficients are available for substitution into the equations just when they are needed.

Theorem 4.4 shows that this works, because each part behaves as if its private solu-
tion scheme, including the negative stages, is the same as if it were free-standing using
its local offsets, but shifted Kl stages earlier. In particular, each part only requires the
IVs that are specified by its local offsets. In future article [Tan et al. 2012a] we prove,
with the notation and assumptions of §3.3:

THEOREM 4.5. The minimal vector xJ (δ) of initial values of the DAE is based on
the canonical local offsets, namely the vector δ is given by

δj =

{
d̂j if part blockOf(j) of the DAE is quasilinear,

d̂j + 1 otherwise.
(18)

The number Kl can be viewed as a “lead time” given to each k-stage of part l of the
DAE to ensure successful interleaving.

A detailed solution scheme, which is the refinement of (5, 6) based on the irre-
ducible blocks of S0 together with quasilinearity analysis, is displayed by DAESA’s
printSolScheme function. It gives valuable insight into the DAE and suggests ways
to improve computational efficiency.

4.6. Quasilinearity and local quasilinearity

The quasilinearity referred to in (18) is of course local, meaning that part l is quasi-

linear regarded as a free-standing DAE—that is, the d̂jth derivative of xj , for all j
belonging to block l, occurs linearly (or is absent) in fi for all i belonging to block l.

Local quasilinearity occurs frequently, which is one reason why linearity analysis
and BTF analysis together are more effective than either separately at reducing the
number of IVs required. We call the DAE as a whole locally quasilinear, if each block
in the irreducible BTF based on S0 is locally quasilinear. Since these blocks are the
same as those of Sess by Theorem 4.3, this is a well-defined property independent of
the (global) offsets c, d used to define S0.

[Tan et al. 2012b] describes the algorithms used in DAETS and DAESA to determine
quasilinearity.

5. SOME EXAMPLES

We give some examples to illustrate these ideas. The facts reported were confirmed
using DAESA.

For a notation independent of permutations, matrix entries and offsets in these
examples are labeled by their equation and/or variable instead of numerically, e.g.,
cA, cB , . . ., dx, dy, . . ., σA,x , . . . instead of c1, c2, . . ., d1, d2, . . ., σ11, . . ..
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Example 5.1. For the 2PENDA system (12), the sparsity patterns S and S0 give the
same block structure: we show its signature matrix and Jacobian, permuted to upper
BTF, annotated by both global and local offsets, and with the HVT marked with •
placed on the main diagonal.

2PENDA

Σ =

u v µ x y λ ci ĉi






F 0• 0 1 2 2

E 2• 0 0 0

D 2 0• 0 0

C 0• 0 3 2

B 2• 0 1 0

A 2 0• 1 0

dj 2 2 0 3 3 1

d̂j 2 2 0 2 2 0

, J =

u v µ x y λ






F 2u 2v ξ

E 1 v

D 1 u

C 2x 2y

B 1 y

A 1 x

where ξ = −2c(L+cx′)

.

(19)

The DAE is locally quasilinear. Although the global offsets dj indicate x′′, y′′ and
λ need to be given as IVs, the local offsets show this is not so. Sufficient IVs are
x, y;u, v;x′, y′;u′, v′.

Example 5.2. In 2PENDA of (12) and (19), Σ and J have the same sparsity pattern,
i.e. S = S0. A small change shows the BTF based on the sparsity of J can be finer than
that based on the sparsity of Σ. Namely change equation A to, say,

A : x′′ + xλ+ cu = 0. (20)

This produces 2PENDB, with the signature matrix entry σA,u (in the original form (12)
it is σ14) changed from −∞ to 0. Permuting as in (19) gives:

2PENDB

Σ =

u v µ x y λ ci ĉi






F 0• 0 1 2 2

E 2• 0 0 0

D 2 0• 0 0

C 0• 0 3 2

B 2• 0 1 0

A 0 2 0• 1 0

dj 2 2 0 3 3 1

d̂j 2 2 0 2 2 0

, J =

u v µ x y λ






F 2u 2v ξ

E 1 v

D 1 u

C 2x 2y

B 1 y

A 1 x

where ξ = −2c(L+cx′)

.

This does not change the offsets; but there is now two-way coupling between the
pendula, and the BTF based on S is one irreducible block. However, the new entry
σA,u = 0 is strictly less than du − cA = 2 − 1 = 1, so it does not give a new element of
S0 (a nonzero in J). Thus the BTF based on S0 is the same as with 2PENDA.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: YYYY.



DAESA— a MATLAB Tool for Structural Analysis of DAEs A:15

As a DAE, pendulum 1 still drives pendulum 2—the reverse effect is too weak to
change the solution scheme’s block structure. Therefore the local offsets are also un-
changed, and x, y;u, v;x′, y′;u′, v′ still suffice as IVs.

Example 5.3. Now consider 2PENDC, in which the cu term in (20) is changed to cu′.
This still does not change the global offsets; but now σA,u = 1 = du − cA, so J has a
(structural) nonzero here, namely JA,u = c, and the two-way coupling is stronger. Now
S0 = S, and the BTF based on S0 is one irreducible block.

Thus the local offsets are now the same as the global ones; each solution stage
(for k ≥ 0) entails solving a 6 × 6 linear system instead of two 3 × 3 ones; and
x, y;u, v;x′, y′;u′, v′ no longer suffice as IVs—one must provide x′′, y′′ and λ also.

Example 5.4. All of 2PENDA, 2PENDB and 2PENDC have 4 DOF and index 4; but
if we go one further and form 2PENDD, in which the cu term in (20) becomes cu′′, the
nature of the system alters completely. It now has 5 DOF and index 3.

The unpermuted Σ, showing the (unique) HVT and the global offsets, is below. The
dividing lines show the two nominal subsystems, but have no relation to the true BTF.

Σ =

2PENDD
x y λ u v µ ci







A 2 0 2• 0

B 2 0• 0

C 0 0• 2

D 2 0• 0

E 2• 0 0

F 1• 0 0 1

dj 2 2 0 2 2 0

In 2PENDA to C, the (F, u) and (F, v) entries in Σ gave rise to nonzero Jacobian
entries, but now we have σF,u = 0 < 1 = du − cF and σF,v = 0 < 1 = dv − cF . Thus the
entries JF,u and JF,v are now structural zeros of J.

As a result the fine BTF now has six blocks of size 1. The permuted signature matrix
with global and local offsets, and corresponding Jacobian, are

2PENDD

Σ =

v µ u λ y x ci ĉi






E 2• 0 0 0

D 0• 2 0 0

A 2• 0 2 0 0

B 0• 2 0 0

C 0• 0 2 0

F 0 0 1• 1 0

dj 2 0 2 0 2 2

d̂j 2 0 2 0 0 1

, J =

v µ u λ y x






E 1 v

D u 1

A c x 1

B y 1

C 2y 2x

F ξ

where ξ = −2c(L+cx′)

.

The IVs comprise x, y;x′;u, v;u′, v′, of which each of y and x′ is a guess at the solution
of a single nonlinear equation, and the remaining five are arbitrary, unconstrained,
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values. A solution process is as follows:

• k=−2, 4 blocks:
— blocks (F, x), (A, u), (E, v): solve nothing, but give IVs for x, u, v
— block (C, y): give a guess for y and solve (nonlinear) 0 = C = x2 + y2 − L2 for y

• k=−1, 4 blocks:
— block (F, x): use u, v, give a guess for x′, solve (nonlinear) 0 = F = u2+v2−(L+cx′)2

for x′

— block (C, y): use x, x′, y, solve 0 = C ′ = 2xx′ + 2yy′ for y′.
— blocks (A, u), (E, v): solve nothing, but give initial values for u′, v′

• k=0, 6 blocks:

block use solve for

(F, x) x′, u, u′, v, v′ 0 = F ′ =
(
u2 + v2 − (L+ cx′)2

)′
x′′

(C, y) x, x′, x′′, y, y′ 0 = C ′′ =
(
x2 + y2 − L2

)′′
y′′

(B, λ) y, y′′ 0 = B = y′′ + yλ−G λ

(A, u) x, x′′, λ 0 = A = x′′ + xλ+ cu′′ u′′

(D,µ) u, u′′ 0 = D = u′′ + uµ µ

(E, v) v, µ 0 = E = v′′ + vµ−G v′′

• k>0. Solve in order 0 = F (k+1) for x(k+2), 0 = C(k+2) for y(k+2), 0 = B(k) for λ(k),
0 = A(k) for u(k+2), 0 = D(k) for µ(k), and 0 = E(k) for v(k+2)

Example 5.5. Chemical Akzo Nobel problem
This problem, from the ODE/DAE test set [Mazzia and Iavernaro 2003], is a DAE of

index 1 that, with a small change of notation, can be written as:

0 = f1 = −y′1 −2r1 +r2 −r3 −r4,

0 = f2 = −y′2 − 1
2r1 −r4 − 1

2r5 +Fin,

0 = f3 = −y′3 +r1 −r2 +r3,

0 = f4 = −y′4 −r2 +r3 −2r4,

0 = f5 = −y′5 +r2 −r3 +r5,

0 = f6 = Ks y1 y4 − y6 ,

(21)

where r1 to r5 and Fin are auxiliary variables given by

r1 = c1 y
4
1 y

1

2

2 , r2 = c2 y3 y4, r3 = c3 y1 y5,

r4 = c4 y1y
2
4 , r5 = c5 y

2
6 y

1

2

2 , Fin = c6(c7 − y2),

and Ks and the ci are positive constants.
The signature matrix is below left. According to SA based on its sparsity pattern,

the problem is irreducible. Further, the ri are nonlinear in the yi, so it appears the
solution process involves a fully nonlinear system of size 6.

However, SA based on the S0 sparsity gives a different picture. The only off-diagonal
entries where dj − ci = σij are in the last column. Thus J, below right, is much sparser
than Σ and is already triangular without reordering.
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Σ =

y1 y2 y3 y4 y5 y6 ci






f1 1• 0 0 0 0 0

f2 0 1• 0 0 0

f3 0 0 1• 0 0 0

f4 0 0 1• 0 0

f5 0 0 0 0 1• 0 0

f6 0 0 0• 0

dj 1 1 1 1 1 0

, J =

y1 y2 y3 y4 y5 y6





f1 −1

f2 −1 −ξ

f3 −1

f4 −1

f5 −1 2ξ

f6 −1

where ξ = c5y6y
1

2

2

.

(22)

Hence the fine BTF has six blocks of size 1. In fact each is quasilinear, so that the
solution scheme only solves linear systems of size 1. Namely at stage k = −1, give
arbitrary IVs for y1, y2, y3, y4, y5. At stage k = 0, solve f6 for y6, then fi for y′i, i = 1, . . . , 5
(all linear). See also §5.3 in the companion paper.

Example 5.6. A more extreme example of the saving in IVs achieved by using local
offsets is the multi-pendula “chain” in §6.1 of the companion paper. This is similar to
the 2PENDA,B,C,D examples, but with p pendula coupled in such a way that each
new one added increases the global offsets of the first, “independent” pendulum—as
well as the index of the whole system—by 2. With the correct analysis, based on the
local offsets, the whole system requires 4p initial values (an x, y, x′ and y′ for each
pendulum) as one expects; but analysis based on the global offsets requires O(p2) IVs.

6. IMPLEMENTATION ISSUES

We discuss finding global and local offsets (§6.1), analyzing linearity (§6.2), and possi-
bilities for parallelism (§6.3).

6.1. Efficiently finding the global and local offsets

As noted above, block-triangularization based on S0 can only be done after the global
offsets are computed. However, our goal is to handle large systems with n up to 105 or
greater. Solving the linear assignment problem to find a HVT is a large part of the cost
for such DAEs—the standard algorithms have O(n3) complexity for a dense matrix.
Even though this is more like O(n2) for the sparse case, using an initial BTF usually
pays off handsomely, because the HVT can be found for each diagonal block separately.
(For instance, if a sparse system of size n = Np has p blocks of size N , then solving
separately costs ≈ p · CN2 compared with ≈ C(Np)2 for solving all at once, saving a
factor of ≈ p.)

Hence DAESA uses two passes. The first finds a coarse BTF based on S. In the second
pass, the LAP is solved, and resulting (canonical) offsets are found for each coarse
block. This leads to a local BTF of fine blocks within each coarse block. The local offsets
of each fine block are found here. (Since the off-block-diagonal elements are irrelevant
here, the second pass, up to this point, could be done in parallel over coarse blocks.)
Taking account of Σ entries outside the coarse diagonal blocks, one further pass over
the fine blocks assembles the global offsets of the whole system from the local offsets.
(This part is sequential over the fine blocks; finding the local offsets of each fine block
can be done in this pass, depending on how much parallelism one uses.)

Our experience is that almost all DAEs of nontrivial size in applications have a
useful fine block structure, and that the size of blocks varies widely.
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For a large example, we constructed a DAE whose Σ has the sparsity pattern of
the LHR71 matrix from the Florida collection [Davis and Hu 2011], with the finite σij

being 0, 1 or 2 at random. The system is of size n = 70304; its block structure comprises
15774 blocks of size 1, four of size 8, 154 of size in the tens, 24 of size in the hundreds,
and 14 of size in the thousands, the largest being two of size 4586.

6.2. Analyzing linearity

DAESA verifies whether any block of equations and variables is linear in the variables
to be solved for, using operator overloading and a variant of the automatic differentia-
tion method by which the signature matrix is computed.

The analysis is made easier by some simple facts. The first, which follows from (2,
5, 6), is that in any single, undifferentiated equation fi, the unknowns to be solved
for—however the system may have been decomposed into triangular form—are always

a subset of the highest-order derivatives, that is of the x
(σij)
j , j = 1, . . . , n. For instance

if fi involves x′
2, x4 and x′′

4 then x′
2 and x′′

4 may be among the unknowns to be solved
for, but x4 cannot be.

The second fact is that in any function differentiated (w.r.t. t) one or more times, all
the highest derivatives occur linearly. For instance if fi is a function only of (x′

2, x4, x
′′
4)

then f ′
i is a function only of (x′

2, x
′′
2 , x4, x

′
4, x

′′
4 , x

′′′
4 ), namely

f ′
i =

∂fi
∂x′

2

(x′
2, x4, x

′′
4)x

′′
2 +

∂fi
∂x4

(x′
2, x4, x

′′
4)x

′
4 +

∂fi
∂x′′

4

(x′
2, x4, x

′′
4)x

′′′
4 ,

which is linear in its highest derivatives x′′
2 and x′′′

4 .
Hence each fi needs exactly one linearity check, at the unique stage in the sequence

(5, 6) where it occurs undifferentiated: namely for k = −ci. It is checked against the set
of unknowns in its equation-block, which depends on the chosen BTF. At earlier stages
the equation does not appear; at later ones, it appears differentiated, so is necessarily
linear.

6.3. Parallelizing the solution of IVPs

For large systems, parallel computation may be useful during the process of finding a
block-triangular form, as noted above. It also seems a promising approach for numeri-
cal integration of IVPs, exploiting BTF.

One way is as follows. Some coarse BTF, based on S, is used to handle blocks of
equations by separate threads on the machine, possibly on separate processors. Let
the lth block of equations be F (l) = 0, to solve for variables X(l), l = 1, . . . , q. The off-
diagonal block structure defines a directed acyclic graph: its vertices are the threads,
and an edge to l from l′ > l means l uses l′, i.e., F (l) contains variables from X(l′).
Each thread l is responsible for generating a sufficiently smooth piecewise polynomial
representation P (l)(t) of its solution function X(l)(t), and as many derivatives as may
be needed by other threads.

The threads have their own independent step size control, so that at any moment
they have in general integrated up to different points t = τ (l). Integration is advanced
on demand. The process is kicked off by telling each output thread l (one which no
other threads use) to integrate from t = 0 to some t = T . Each of these chooses a trial
step, say to t = h(l). This generates a demand that all blocks, which this block uses,
integrate at least as far over [0, h(l)] to provide their needed polynomial approximants
on this interval. These demands cascade back so that each thread, independently, is
made to integrate at least as far as the smallest of the h(l)’s over all output threads.

Once each output thread l has achieved a successful step it repeats the process until
it reaches t = T , thus forcing all other threads to integrate up to T . Such a scheme
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allows the integrators of different blocks considerable freedom. For instance one block
might be “difficult” requiring small steps, which would not need to impact on other
blocks that might be able to take larger steps.

Such a scheme is generally not possible using a fine BTF based on S0, because l′ > l
may not imply block l′ is completely independent of block l. Thus one cannot do several
integration steps (or even one) of l′ independently of l, by contrast with the coarse BTF
case.

7. SUMMARY OF DAESA FEATURES, AND FUTURE WORK

DAESA’s facilities, given in detail in [Nedialkov et al. 2013], are outlined here. The
analysis is begun by passing MATLAB code of the DAE to the daeSA function, which
returns the results of its analysis in a MATLAB structure. Other functions can then
extract the information for further use in a program and/or display it, for example:

— Produce a graphical display of the signature matrix with global, and local if ap-
propriate, offsets; either in its original form or permuted into the coarse BTF based on
S, or the fine BTF based on S0.

— Display the refined solution scheme based on the fine BTF, indicating which sets
of equations are underdetermined, which are quasilinear, etc.

— List a minimal set of derivatives required as IVs, obtained from the solution
scheme.

Taken together, these features go beyond the structural analysis provided by any other
current DAE solver or simulation system.

There is currently one serious omission—a numerical check that structural analysis
has succeeded. It is well known that SA can fail to find a DAE’s true structure, thus
producing an identically singular Jacobian: examples are the Campbell–Griepentrog
Robot Arm [Campbell and Griepentrog 1995] and the Ring Modulator [Mazzia and
Iavernaro 2003].

This difficulty has occurred surprisingly rarely in the applications we have met to
date, but it should be catered for. To show success, it suffices to find some point that
satisfies the equations for consistency and at which the System Jacobian J is nonsingu-
lar. It is reasonable to ask users to specify some initial data to this process, but maybe
not as much, or not as carefully, as when specifying an IVP, and it is probably wise to
make some random perturbations to such data to avoid isolated points of singularity.
Preliminary tests on these lines are promising, and we aim to include such a method
into DAESA when it has proven sufficiently robust.
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