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ABSTRACT 

The E. coli mechanosensitive (MS) channel of small conductance (EcMscS) is the 

prototype of a diverse family of channels present in all domains of life. While EcMscS has 

been extensively studied, recent developments show that MscS may display some 

characteristics not widely conserved in this protein subfamily. With numerous members now 

electrophysiologically characterised, this subfamily of channels displays a breadth of ion 

selectivity with both anion and cation selective members. The selectivity of these channels 

may be relatively weak in comparison to voltage-gated channels but their selectivity 

mechanisms represent great novelty. Recent studies have identified unexpected residues 

important for selectivity in these homologues revealing different selectivity mechanisms than 

those employed by voltage gated K+, Na+, Ca2+ and Cl- channels whose selectivity filters are 

housed within their transmembrane pores. This review looks at what is currently known about 

the MscS subfamily selectivity and begins to unravel the potential physiological relevance of 

these differences.  

 [150 words] no more than 150 words 
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Introduction 

The E. coli mechanosensitive channel of small conductance (EcMscS) is often thought of as 

the archetypal member of the MscS channel subfamily. Characteristic stretch-activated 

activity of this family of channels was indeed the first report of bacterial mechanosensitive 

channels more than 25 years ago.1 This diverse family can be broadly subdivided into two 

groups; the smaller proteins such as EcMscS (circa 250 - 500 aa) and the larger proteins such 

as MscK (circa 500 – 1000+ aa).2-4 These channels, in the main, play an integral role in 

osmoprotection acting as emergency release valves in the face of large reductions in 

environmental osmolarity (Fig. 1).3, 5 However, due to the seeming ‘redundancy’ of some 

paralogues, alternative, as yet undiscovered, physiological functions must be carried out by 

these channels (See Malcolm et al., 2012 for review)6. Examples of electrophysiologically 

characterised channels that potentially fulfil alternate or additional functions include MSC1 

(Chlamydomonas reinhardtii), Msy1/2 (Saccharomyces pombe) and MSL10 (Arabidopsis 

thaliana).7-9 It is important to note that the seeming redundancy of some MscS-like channels 

may well be simply a function of their cellular expression levels and does not imply an 

inherent lack of mechanosensitivity or preclude roles in processes other than 

osmoprotection.10

MscS family structure is characterised by multiple N-terminal transmembrane domains 

followed by a large water-filled C-terminal cytoplasmic vestibule.11, 12 The number of N-

terminal transmembrane helices varies greatly throughout the MscS family with channels like 

EcMscS and MscSP possessing three and larger proteins such as MscK likely possessing 

11.13-15 The ubiquitous nature of the cytoplasmic domain is hinted at from hydropathy plots16-

18 from MscS-like channels and is clearly illustrated in each of the three MscS homologues to 

have been crystallised thus far (Escherichia coli MscS, Helicobacter pylori MscS and 

Thermoanerobacter tengcongensis MscS) (Fig. 2).19-21 In addition to this, all crystal structures 

we currently possess illustrate homoheptameric assembly. A notable feature of EcMscS is the 

seven lateral ~12 Å portals that perforate the cytoplasmic vestibule.11, 12, 22 Whether the 

vestibular perforations seen in E. coli MscS are a widely distributed structural characteristic 

of this family of channels is however unknown. This is further complicated by the fact that the 

C-terminal vestibule is an area in which large insertions and/or deletions can be found in 

MscS homologues.2 As an example, these perforations seem to be greatly restricted and 

almost absent in an MscS-like homologue found in the anaerobic thermophile T. 

tengcongensis which leads to the possibility that larger conducting homologues possess these 

perforations, in various sizes, whereas they are largely constricted or absent in lower 
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conducting homologues.20 In all likelihood the presence of cytoplasmic perforations will 

impact greatly on both conductance and the location of the structural determinants of 

selectivity in MscS-like channels.   

Many studies have focused on the role of the cytoplasmic vestibule in MscS channel 

function23-25. In particular the possibility that the cytoplasmic vestibule is a dynamic structure 

which plays an active role in channel gating 23, 26, 27. For example interactions between the 

amphiphilic TM3b helices and the roof of the cytoplasmic domain have been shown to be 

important in EcMscS adaptation/inactivation26. Interestingly inactivation in this channel 

family seems not to be wide spread with only two of the nine currently characterised 

homologues exhibiting this attribute (Fig 3.). Although there is a recent report that suggests an 

MscS homologue in Vibrio cholerae may also exhibit inactivation28. The suggestion that the 

cytoplasmic domain is involved in channel selectivity is not a new hypothesis29 and was 

strengthened greatly by the fact that mutations within the pore region of MscS do not affect its 

selectivity profile30. In fact, looking at the putative pore forming helices of all 

electrophysiologically characterised MscS homologues shows they are devoid of any potential 

descriptors of ionic selectivity, being in the main hydrophobic16.  In addition, a molecular 

dynamics study also demonstrated the fact the cytoplasmic domain may play an ion filtering 

role25.  Specific structural information about the cytoplasmic selectivity function of MscS-like 

channels has been provided by two recent publications. These have provided the first insights 

into the potential basis of ionic selectivity mechanism or mechanisms of MscS-like channels 
16, 20.  By going beyond the current insight31 this review aims to address what is currently 

known regarding MscS-like channel ionic selectivity with particular reference to the role of 

the C-terminal domain.  

Reports of MscS selectivity date back to the very first description of mechanosensitive 

channels in bacteria and range between PCl/PK 1.2 - 330, 32, 33. Since that report 8 other 

members of this diverse family have been electrophysiologically characterised. Their 

selectivity ranges from a PCl/PK – 0.1 – 9 (Fig. 3). These anion-cation permeability ratios are,

in the main, relatively modest especially when compared to chloride channels like the glycine 

receptor chloride channel (PCl/PNa = ~25)34 and cannot compare with the exquisite selectivity 

shown by other channels such as voltage-gated K+ channels (PCl = ~0).

In addition to these homologues, 4 other members of the MscS family from E. coli

have been electrophysiologically characterised17, 35. These are the gene products of ybdG, 

ybiO, yjeP and ynaI. Initially thought to be a product of ybdG MscM activity is now thought 

to be related to the gene yjeP
17. This is due to the fact that MscM-like activity was still seen in 
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a ΔybdG mutant and that MscM-like activity in spheroplasts over expressing YbdG could 

only be identified via mutation (V229A)35. The selectivity is only known of an MscM-like 

channel identified by Berrier et al., 1996 (PCl/PK – 0.4)36 with the likely genetic origin of this 

activity being yjeP and not ybdG as previously suggested10, 17, 31.  

Structural determinants of MscS-like channel selectivity 

In E. coli MscS two negatively charged residues (E187 and E227) situated in the 

cytoplasmic domain (Fig. 4, top right panel) in relatively close proximity to the lateral 

vestibular portals have been implicated in selectivity16. This is proposed to occur via cation 

‘trapping’ creating a more favourable path for anions (Fig. 5). This is supported by the larger 

transit times of cations through MscS compared with anions demonstrated in a molecular 

dynamic simulation study25. In addition, Zhang et al., 201218 convincingly implicate a 

charged residue (E278) on the outside of the β-Barrel in the anion selectivity of an MscS 

homologue from T. tengcongensis. These authors suggest that this residue may also act by 

cation ‘trapping’ resulting in a more thermodynamically favourable path for the transit of 

anions (Fig. 4, bottom left panel, Fig. 5). This residue however, is not well conserved 

throughout anion selective MscS homologues. In addition, neutralisation of this charge 

(E278A) resulted in a mutant that still displayed anion selectivity. A possible explanation of 

such a result is that while E278 plays an integral role in the selectivity of TtMscS this is in 

addition to other charged residues within its cytoplasmic domain (Fig. 4, top left panel, Fig. 

5)16. A region of high electronegativity is identifiable in the cytoplasmic domain of TtMscS 

(D226 and D229) akin to that seen in EcMscS (Fig. 4, top left and right panels). As a result 

the cytoplasmic domain in this MscS homologue may well ‘trap’ cations much in the same 

way as illustrated for EcMscS. Another interesting finding from this study relates to ion 

permeation via the β-barrel of E. coli MscS. A number of in silico studies utilizing molecular 

dynamics indicate that permeation via this narrow hydrophobic pore is unlikely37. However, a 

chimera of the β-barrel region of E. coli MscS with the T. tengcongensis MscS protein creates 

a functional protein hinting that permeation may in fact be possible20.     

These slightly different mechanisms may reveal an interesting feature of this family 

whereby selectivity mechanisms are unique to individual homologues. But a unifying fact is 

that the structural descriptors of ion selectivity are found in the cytoplasmic domain and not in 

the transmembrane pore region.    

The MscS-like family contains a number of unique members one of the currently most 

intriguing being MscCG38-40. This channel possesses an extra transmembrane domain after the 
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large cytoplasmic vestibule and exhibits a slight cationic preference (PCl/PK – 0.3-0.8)39, 41. 

This protein has been found to be responsible for glutamate efflux under certain conditions 

(i.e. penicillin or biotin treatment) and is utilised industrially for the production of glutamate 
40, 41. This raises the questions: (i) can the selectivity of this channel be modified to increase 

glutamate efflux, and (ii) can the selectivity be modified to increase the efflux of other 

overproduced compounds? Intriguingly, the putative β-barrel structure of MscCG has a lysine 

at the equivalent position to M273 in EcMscS, which is a major constriction point in the β-

barrel of EcMscS. It is possible that rearrangement of the cytoplasmic domain under certain 

conditions results in permeation via the β-barrel alone and this ring of lysines increases anion 

(glutamate) selectivity. A recent study indicates that a loop which forms part of the 

cytoplasmic cage between residues 221-232 containing three negatively charged residues 

(IAPEILGELDVH) is essential for glutamate efflux as ablation of this loop abolishes 

glutamate efflux42. The exact role this loop plays in facilitating glutamate efflux is thus far 

unknown.   

Another interesting development is the reporting of the crystal structure of the MscS 

homologue from Helicobacter pylori
43. The crystal structure illustrates a homoheptameric 

assembly of HpMscS thought to correspond to the channel closed state (Fig. 2). Many similar 

functional residues can be identified including a potentially conserved interaction with a 

phenylalanine (TM2) and two leucine residues (TM3) shown to be important in MscS 

mechanosensing43, 44 (Fig. 6). This is in addition to hydrophobic residues which represent the 

channel gate (Fig 2. & Fig 6)45-47. This channel is yet to be electrophysiologically 

characterised but has conserved acidic residues in positions shown to be important for 

EcMscS anion selectivity, namely E187 and E227.  

MSL10, an anion selective (PCl/PNa – 5.9) MscS-like channel homologue expressed in 

the plant Arabidopsis thaliana shows little homology with EcMscS (< 5%) and displays 

vastly different gating kinetics (Haswell 2012). This makes structural comparisons from 

sequence alone difficult. There is at least no conservation of the residues proposed to be 

important for TtMscS and EcMscS selectivity, E278 and E187/E227 respectively. However, 

this does not preclude a similar selectivity mechanism in this homologue. The proposal has 

been made that the selectivity profile of this channel is intimately linked with its physiological 

function. An exciting paradigm is that this channel allows Cl- efflux potentially culminating in 

membrane depolarisation and the propagation of an electrical signal48.  While such a 

proposition is attractive, assumptions about effects on membrane potential subsequent to 
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channel gating are difficult when the ionic environment and resting membrane potential are to 

a large extent unknown.  

The MscS-like channel MSC1 expressed in the chloroplasts of the green alga 

Chlamydomonas reinhardtii displays a similar selectivity profile to MSL10 (PCl/PK – 7)49. In 

addition much like MSL10, there is no conservation of residues purported to be important for 

selectivity in TtMscS and EcMscS. Interestingly, this channel seems to be intimately involved 

in chloroplast organisation, which is allegedly dependent on its anion preference. This 

channel has an N-terminal cleavable sequence, and failure to cleave this sequence results in an 

inability to incorporate in the E. coli membrane meaning this sequence would likely be a 

targeting sequence for the chloroplast membrane.    

Biophysical characterisation provides functional insight 

All this structural information and in depth biophysical characterisation of these channels is 

interesting, however the question becomes are these differences in selectivity physiologically 

relevant. One attractive proposal for EcMscS is that rather than being an arbitrary biophysical 

characteristic, its selectivity is as important to its function as K+ selectivity is to K channels. 

By honing the selectivity of EcMscS and other MscS-like channels, whose main role is in 

osmoprotection, over many evolutionary years each organism has matched its MscS-like 

channel selectivity with the electrochemical gradient for efflux of major internal osmolytes to 

reduce the impact channel gating has on the resting membrane potential. As previously 

suggested for EcMscS, this ability to allow neutral efflux of positive and negatively charged 

solutes prevents any change in membrane potential conserving the ability of H+-driven 

ATPases to generate ATP25. Any MscS-like channel whose major role is in osmoprotection 

would need to be able to balance anion and cation efflux in order to have as limited an effect 

on membrane potential as possible. Other MscS-like channels (MSC1 and MSL10) exhibit 

higher levels of selectivity that may have evolved over time and may indeed be indicative of 

their alternate functions within their host organism or may simply be a result of the different 

electrochemical environment that these respective channels find themselves in. In contrast, the 

lack of selectivity in MscL is indicative of its imperative role in osmolyte efflux. Its large pore 

diameter combined with a pressure threshold of activation lying directly below the lytic limit 

of the cell membrane makes this channel a perfect fit for its physiological role. 
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Conclusions 

While initial inspection of the modest selectivity differences in the MscS famly of channels 

seems unimportant it is in fact far more interesting. Selectivity studies from these channels 

have revealed numerous potential selectivity mechanisms within a single channel family. 

These reports compound the important function of the large cytoplasmic vestibulum and 

confirm its role in selectivity. In addition, far more than being just a biophysical 

characteristic, the selectivity of these channels is likely to have been refined over millions of 

years of evolution to provide channels that can balance osmolyte efflux with minimal effect 

on membrane potential. Knowledge regarding MscS-like channel selectivity may well be 

commercially and industrially important particularly in the case of amino acid production 

(glutamate) using channels such as MscCG.        

Recent work suggests that this family of channels, which contains anion and cation selective 

members, has a diverse set of structural motifs that dictate their selectivity. However, a 

unifying property is that the structural determinants of selectivity are not housed within the 

transmembrane region of these channels, as seen for all voltage gated Ca2+, K+, Na+ and Cl-

channels. 

Methods 

Bioinformatics 

Phylogenetic analysis was carried out using Geneious software. Initial global alignment was 

carried using a Blosum matrix with the corresponding phylogenetic tree being produced using 

the Jukes-Cantor genetic distance model. Boot strap proportions are omitted for clarity 

Molecular modelling 

The MscS crystal structures ([E. coli: PDB:2VV5 & 2OAU] [H. pylori: PDB:4HW9] [T. 

tengcongensis: PDB: 3T9N]) were viewed in Chimera UCSF 1.6 and used to generate 

Coulombic charge maps at pH 7.2. Coulombic charge maps were generated using standard 

histidine protonation.
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FIGURE LEGENDS 

Figure 1. Mechanosensitive channel function in E. coli. In response to a reduction in 

external osmolarity H2O floods into bacterial cells resulting in swelling and a corresponding 

rise in cellular turgor and membrane tension. This rise in membrane tension first gates MscS 

and then MscL (immediately below the lytic limit of the cell membrane) allowing the efflux 

of intracellular osmolytes thus relieving this pressure and preventing cellular lysis (left panel). 

In the absence of MS channels (MscS and MscL) this rise in membrane tension is left 

unchecked and results in cell lysis (right panel).

Figure 2. Structure of three crystallised MscS family members. Crystal structures of E. 

coli MscS (EcMscS), Helicobacter pylori MscS (HpMscS) and Thermoanaerobacter 

tengcongensis (TtMscS). Upper panel is a side view illustrating characteristic MscS family 

structure including a large water-filled C-terminal domain. The lower panel provides a 

periplasmic view of the respective channels with the residues coloured in grey likely forming 

the vapour lock gates (EcMscS – L105 & L109, HpMscS – I94 & L98, TtMscS - L104, 

F108).

Figure 3. MscS subfamily phylogenetic tree displaying nine electrophysiologically 

charactertisedhomologues. The reported anion-cation permeability ratios expressed as 

PCl/PK are illustrated along with whether these channels display inactivation. Bar represents 

0.1 substitutions per site. (Green = archaea, Black = bacteria, Red = eukaryotes) 

Figure 4. Comparison between EcMscS and Tt MscS cytoplasmic domains. Upper panel 

shows a Coulombic charge distribution of a transverse section as viewed from the periplasmic 

side of TtMscS (PDB: 3T9N; left side) and EcMscS (PDB: 2VV5; right side). Regions of 

electronegativity (denoted as red) can be identified centred around D226/D229 and 

E187/E227, respectively. The lower panel shows the underside of the cytoplasmic domain of 

TtMscS (right side) EcMscS (left side) highlighting the β-barrel residue implicated in anion 

selectivity in TtMscS ((kcal/(mol·e) at 298  K).         
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Figure 5. Graphic illustration of the proposed selectivity mechanisms of E. coli MscS 

and T. tengcongensis MscS. (A) An electronegative region centred around E187 and E227 

on the floor of the cytoplasmic domain ‘traps’ cations resulting in easier transit for anions. (B)

A residue on the outside of the β-barrel ‘E278’ likely traps cations making an environment 

conducive to anion conduction. This is in addition to an electronegative region on the floor of 

the cytoplasmic domain that likely ‘traps’ permeating cations in a similar manner to EcMscS, 

which results in higher anion selectivity of TtMscS compared to EcMscS (Fig. 4).    

Figure 6. Conserved tension transmitting residues in EcMscS, HpMscS and TtMscS. (A)

Open structure of EcMscS showing close association of F68 and L111/115. (B)

Closed/inactivated structure of EcMscS showing dissociation of tension transmitting residues. 

(C) Illustration of similar position of a phenylalanine residue and leucine residues in closed 

structure of HpMscS. (D) In the closed structure of TtMscS the location of these residues may 

be switched. However multiple alternative hydrophobic residues are present that may interact 

in a similar way to F68 and L111/115 in EcMscS.   
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