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ABSOLUTELY CONTINUOUS SPECTRUM OF DIRAC OPERATORS WITH SQUARE

INTEGRABLE POTENTIALS

DANIEL HUGHES AND KARL MICHAEL SCHMIDT

Abstract. We show that the absolutely continuous part of the spectral function of the one-dimensional
Dirac operator on a half-line with a constant mass term and a real, square-integrable potential is strictly
increasing throughout the essential spectrum (−∞,−1] ∪ [1,∞). The proof is based on estimates for the

transmission coefficient for the full-line scattering problem with a truncated potential and a subsequent
limiting procedure for the spectral function. Furthermore, we show that the absolutely continuous spectrum
persists when an angular momentum term is added, thus establishing the result for spherically symmetric
Dirac operators in higher dimensions, too.

1. Introduction

Consider the one-dimensional Schrödinger operator ς = − d2

dx2 + q. It is well known that any self-adjoint
realisation of ς on [0,∞) has essential spectrum [0,∞) if q is integrable at 0 and q(x) → 0 (x → ∞). Under
certain conditions, e.g. if q ∈ L1([0,∞)), this spectrum is purely absolutely continuous [30, Thm 15.3]. In a
slightly more general situation, however, the essential spectrum can be far from purely absolutely continuous;
indeed Naboko [19] and Simon [27] constructed potentials such that x|q(x)| → ∞ (x → ∞) arbitrarily slowly
and ς has dense point spectrum in [0,∞). In these examples, dense point spectrum is overlaid with absolutely
continuous spectrum. This can be seen from subsequent work focused on providing sufficient conditions on
the potential to ensure the existence of (not necessarily purely) absolutely continuous spectrum. For example,

Kiselev, Christ and Remling ([4], [3], [23]) have shown that for potentials obeying |q(x)| ≤ C(1 + |x|)− 1
2−ε

for large x, the absolutely continuous spectral measure of ς is essentially supported on [0,∞); the examples
in [19] and [27] satisfy this condition. In their celebrated paper [6], Deift and Killip discovered that an
integral-type condition on the potential is more natural than a pointwise bound, proving that the absolutely
continuous spectrum of the Schrödinger operator is essentially supported on [0,∞) whenever q ∈ L2([0,∞)).
This result is optimal in terms of Lp decay, as there exist potentials belonging to Lp, for all p > 2, such
that ς has no absolutely continuous spectrum [16]. We remark that the crucial identity in [6], analogous to
(3.18) below, already arises from comparing the two expressions given for the asymptotic constant c3 in [32,
§3]. More recently, Killip and Simon have given an equivalent characterisation of the spectral measures of
Schrödinger operators with square-integrable potentials which includes the Deift-Killip result [15].

In the present paper we consider the relativistic counterpart of ς, the Dirac operator

τ = −iσ2
d

dx
+ σ3 + q(x), (1.1)

where σ2, σ3 are Pauli matrices and q ∈ L1
loc(R). It is the Hamiltonian of a one-dimensional relativistic

particle of mass 1 moving in a force field of potential q. As this formal differential expression is always in

the limit point case at ±∞, it has a unique self-adjoint realisation T̃ in L2(R)2. We are mainly interested in
the self-adjoint operator T realising τ on the half-line [0,∞) with the boundary condition

u1(0) cos α + u2(0) sin α = 0, (1.2)

for fixed α ∈ R. The spectral analysis of T̃ and T is based upon the study of the corresponding Dirac
eigenvalue equation

τu(x, λ) = −iσ2u
′(x, λ) + σ3u(x, λ) + q(x)u(x, λ) = λu(x, λ), λ ∈ C. (1.3)

The Dirac operator differs from the Schödinger operator in several essential respects. Most strikingly, the
spectrum of the Dirac operator is unbounded below; for example, if q is absolutely integrable, then T̃ and
T have purely absolutely continuous spectrum in the bands (−∞,−1] ∪ [1,∞) [30, Thm 16.7]. If one only
assumes that q(x) → 0 (x → ∞), the essential spectrum of T is (−∞,−1] ∪ [1,∞), but need not be purely
absolutely continuous; there are examples of potentials such that x|q(x)| → ∞ (x → ∞) arbitrarily slowly
and the operator has a dense set of eigenvalues in the whole or part of its essential spectrum [26].

At a superficial glance, one could be inclined to think that the question about the existence of absolutely
continuous spectrum of T under the assumption of square-integrability of q was settled long ago by the work
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on Krein systems, which are closely related to the Dirac operator (cf. [17, eq. (15)]). Indeed, Denisov’s
extensive reworking of Krein’s ideas includes the result that the wave operators for the half-line operator

−iσ2
d

dx
+ a(x)σ1 + b(x)σ3 (1.4)

with a, b ∈ L2([0,∞)) relative to that with a = b = 0 exist [7], [8, Thm 13.3]. Thus (1.4) with square-
integrable coefficients will have absolutely continuous spectrum covering the whole real axis; this had been
shown directly by Martin [18] using the method of [6]. Now τ in (1.1) can be brought into the form of (1.4)
by a pointwise unitary transformation; indeed, if Q′ = q, then

eiσ2Q τ e−iσ2Q = −iσ2
d

dx
+ e2iσ2Q σ3,

which is (1.4) with a = − sin 2Q, b = cos 2Q. But then |a|2 + |b|2 = 1, so the hypothesis that both a and
b are square-integrable on [0,∞) is never fulfilled. In fact, it would seem that a Dirac operator (1.4) with
square-integrable a, b will arise very rarely, if ever, in physical situations.

The main result of the present paper is the following extension of [6] and [18] to Dirac operators with a
mass term (1.1).

Theorem 1. If q ∈ L2([0,∞)), then the absolutely continuous part of the spectral function of T is strictly
increasing in (−∞,−1] ∪ [1,∞).

Without loss of generality, we are able to restrict our attention to the case α = 0 in the boundary condition
(1.2), as the Titchmarsh-Weyl m-functions for different α are related by a Möbius transformation (see, for
example, [20] Equation (4)). From this we can deduce that the absolutely continuous parts of the spectral
function for two different values of α have the same essential supports.

On the basis of Theorem 1, we can also treat the case of a Dirac operator with an angular momentum
term, as will arise from the rotationally symmetric two- or three-dimensional Dirac operator by separation
of spherical polar coordinates [30, Appendix to Sect. 1].

Theorem 2. Let q ∈ L2([0,∞)) ∩ L∞([0,∞)), then the absolutely continuous part of the spectral function
of Tk, the self-adjoint realisation of

τk = −iσ2
d

dx
+ σ3 +

k

x
σ1 + q(x) (x ∈ (0,∞))

is strictly increasing in (−∞,−1] ∪ [1,∞).

The angular momentum quantum number k is in Z − 1
2 in the two-dimensional, in Z \ {0} in the three-

dimensional case.

The paper is organised as follows. In Section 2 we prove that the spectral measure for the operator τ
with potential q is the limit of the spectral measures for operators with truncated potentials, set equal to q
on [0, n] and to zero on [n,∞), as n → ∞. Having a compactly supported potential simplifies the scattering
analysis. In Section 3 we consider the transmission coefficient and prove the following crucial inequality.

Theorem 3. Let q be a-real valued square-integrable function on [0,∞) with compact support. Then
∫

(−∞,−1]∪[1,∞)

|λ|
√

λ2 − 1 log |a(λ)|dλ ≤ π

2

∫

R

q2(x)dx. (1.5)

Here the function a(λ) is the inverse transmission coefficient. The underlying identity (3.18) appears
in the expression for an asymptotic constant in [10, p. 78]. A proof of (1.5) under additional smoothness
assumptions on q is given in [31]. In Section 4 we use this inequality together with the observations in
Section 2 to prove Theorem 1. Finally, in Section 5 we apply subordinacy theory to extend Theorem 1 to
the full line and use a perturbation theoretic approach to prove Theorem 2.

2. Compactly Supported Potentials and Convergence of Spectral Measures

For the proof of Theorem 1, we shall first prove the result for compactly supported potentials and then
treat q ∈ L2(0,∞) as a limit of truncated potentials as the cut-off point moves to infinity. The spectral
measures of the half-line operators with truncated potentials then converge vaguely to the spectral measure
of T , as our first lemma shows.
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Let m, ρ be the Titchmarsh-Weyl m-function and the spectral function of T , respectively. For n ∈ N, let
qn = χ[0,n]q and consider the Dirac operator associated with the differential expression

−iσ2
d

dx
+ σ3 + qn (2.1)

on [0,∞) with boundary condition (1.2). We denote its Titchmarsh-Weyl and spectral functions by mn and
ρn, respectively.

Lemma 1. lim
n→∞

ρn = ρ at all points of continuity of ρ.

Proof. Let z ∈ C \ R, and let v : [0,∞) → C
2 be the solution of the initial-value problem τ v = z v,

v(0) =

(
− sin α
cos α

)
. Note that the differential equations with potentials q and qn are identical on the interval

[0, n]. Thus, from Weyl theory (see [5, Ch. 9, Sect. 2]), it is known that the limit points mn(z) and m(z) lie
inside a complex circle of radius

rn =
1

2ℑz
∫ n

0
|v|2 .

Hence |mn(z) − m(z)| ≤ 2rn(z) → 0 (n → ∞), as the Dirac equation is in the limit-point case at ∞ and
therefore v /∈ L2(0,∞).

We deduce from the Herglotz representation of mn (see [20, Eq. 5, 5’]) and the boundedness of (mn(i))n∈N

that ∫

R

dρn(λ)

λ2 + 1
= ℑmn(i) ≤ C

with a constant C independent of n. It follows that |ρn(x)| ≤ C(x2 + 1) (x ∈ R), so by Helly’s Selection
Theorem, (ρn)n∈N has a subsequence which converges pointwise to a non-decreasing function ρ̃. By Helly’s
Limit Theorem, ∫

R

dρ̃(λ)

1 + λ2
≤ C.

This allows us to relate the limit function ρ̃ to the m function for the problem with full potential

ℑm(µ)

ℑµ
=

∫

R

dρ̃

|λ − µ|2 + k, (µ ∈ C \ R),

with some constant k ∈ R. Hence we can deduce a Stieltjes inversion formula ([5, Ch. 9, Eq. 3.9]) for ρ̃ in
terms of m. This, together with the Stieltjes inversion formula applied to ρ (which relates ρ to m) gives

π

∫ µ2

µ1

dρ(λ) = lim
ε→0

∫ µ2

µ1

ℑm(ν + iε)dν = π

∫ µ2

µ1

dρ̃(λ) (µ1, µ2 ∈ R \ S),

where S is the set of points of discontinuity of ρ̃ or ρ. Thus ρ = ρ̃ a.e., using the convention that these
functions are right continuous and vanish at 0. As all subsequences of (ρn)n∈N have the same limit ρ̃ = ρ, it
follows that ρn → ρ̃ = ρ (n → ∞) on R \ S. ¤

3. The Transmission Coefficient

Throughout this section, we assume that q is a square-integrable function with compact support in [0,∞).
We shall use the function

ω(λ) =
⋆
√

λ + 1
√

λ − 1 (λ ∈ C), (3.1)

where ⋆
√

is the complex square root with branch cut along the negative real axis and arg ⋆
√

z ∈ (−π
2 , π

2 ]
(z ∈ C), while

√
is the standard complex square root with branch cut along the positive real axis and

arg
√

z ∈ [0, π). The function ω is the relativistic substitute for the momentum variable k =
√

λ used in
scattering analysis of the Schrödinger operator. Clearly ω is analytic in C \ ((−∞,−1]∪ [1,∞)) and satisfies
ω(λ)2 = λ2 − 1 on C. Moreover, ℑω(λ) > 0 whenever ℑλ > 0, and for real λ we have

ω(λ) =





−
√

λ2 − 1, λ ∈ (−∞,−1]

i
√

1 − λ2, λ ∈ (−1, 1)√
λ2 − 1, λ ∈ [1,∞).

(3.2)

By continuity, there is an open neighbourhood Ω of (−1, 1) in which ℑω > 0.

Lemma 2. Let q ∈ L1([a, b]), −∞ < a < b < ∞. The function ω(λ) defined in (3.1) satisfies

(i) (ω + λ)(ω − λ) = −1;
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(ii) ω(z) = −ω(−z), (z ∈ C+);

(iii) e±
i

ω(ω+λ)

R

y

x
q = 1 + O

(
1

|λ|2
)

(λ → ∞) uniformly in x, y ∈ [a, b];

(iv) e
i

ω(ω−λ)

R

y

x
q = e2i

R

y

x
q
(
1 + O

(
1

|λ|2
))

(λ → ∞) uniformly in x, y ∈ [a, b].

Proof. (i) and (ii) are simple calculations. For (iii) we estimate

∣∣∣e
i

ω(ω+λ)

R

y

x
q − 1

∣∣∣ ≤
∞∑

j=1

∣∣∣∣
i

ω(ω + λ)

∣∣∣∣
j ‖q‖j

1

j!
= O

(
1

|λ|2
)

(λ → ∞)

uniformly in x, y ∈ [a, b]. Hence (iv) follows, as

e
i

ω(ω−λ)

R

b

a
q = e−i(1+ λ

ω )
R

b

a
q = e−2i

R

b

a
qe−

i
ω(ω+λ)

R

b

a
q = e−2i

R

b

a
q

(
1 + O

( 1

|λ|2
))

(λ → ∞;x, y ∈ [a, b])

¤

Now consider the Dirac equation (1.3) on the whole real line, extending q by 0 to the negative half-line.
For λ ∈ C \ {−1, 1}, the functions

u(x, λ) =

(
− iω

λ−1

1

)
eiωx, ũ(x, λ) =

(
iω

λ−1

1

)
e−iωx (x ∈ I)

(where we write briefly ω for ω(λ)) form a fundamental system of this equation on all intervals I where q

vanishes. If λ ∈ R \ [−1, 1], then ω(λ) ∈ R \ {0}, and hence ũ(·, λ) = u(·, λ).
In particular, there is a solution y(·, λ) for such λ with the property y(x, λ) = u(x, λ) for all x to the right

of the support of q. For x to the left of the support of q this solution can be expressed as

y(x, λ) = a(λ)u(x, λ) + b(λ)ũ(x, λ) (3.3)

with suitable constants a(λ) and b(λ). Since e±iωx represent right- and left-traveling waves, the solution y
can be interpreted as describing a scattering process of a wave of amplitude a approaching from the left and
split into a transmitted wave travelling to the right of amplitude 1 and a reflected wave traveling to the left
of amplitude b. Correspondingly, t = 1

a and r = b
a are called the transmission and reflection coefficients,

respectively.
For λ ∈ R \ [−1, 1], y(·, λ) is another solution of (1.3). Evaluating the constant Wronskian of y(·, λ) and

y(·, λ) both to the right and to the left of the support of q, we find that

|a(λ)|2 = 1 + |b(λ)|2. (3.4)

Thus a(λ) 6= 0, and |t|2 = 1 − |r|2, expressing the conservation of the probability current in the quantum
mechanical scattering process.

For points x to the left of the support of q, we obtain from (3.3) that

y1(x, λ)ũ2(x, λ) − y2(x, λ)ũ1(x, λ) = a(λ)(u1(x, λ)ũ2(x, λ) − u2(x, λ)ũ1(x, λ)) =
2iω(λ)

1 − λ
a(λ),

so

a(λ) =
1 − λ

2iω(λ)
(y1(x, λ)ũ2(x, λ) − y2(x, λ)ũ1(x, λ)) (3.5)

with arbitrary x < 0. From this formula it is apparent that a is well defined for λ ∈ C \ {−1, 1}, continuous

for λ ∈ (C+ ∪ Ω) \ {−1, 1} and analytic in C
+ ∪ Ω. Furthermore, it is immediate from (3.3) that

(
− iω

λ−1

1

)
a(λ) = lim

x→−∞
e−iωxy(x, λ) (λ ∈ C

+ ∪ Ω).

The zeros of a in C
+ ∪Ω are exactly the eigenvalues of the full-line Dirac operator T̃ and hence are all real.

Indeed, for such λ, y(·, λ) is square integrable at ∞, and ũ(·, λ) is square integrable at −∞ whilst u(·, λ)
is not. Thus y(·, λ) ∈ L2(R2) if and only if a(λ) = 0. Further, (3.4) implies that a(λ) has no zeros for
λ ∈ R \ [−1, 1]. Moreover, we have the following information about the zeros of a.

Lemma 3. The number of zeros of a in C
+ ∪ Ω is finite. On (−1, 1), a is real-valued and all its zeros are

simple.
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Proof. For the first statement, see [13, Cor. 3.2], bearing in mind that q has compact support. If λ ∈ (−1, 1),

then ω(λ) = i
√

1 − λ2, so

y(x, λ) =

( √
1−λ2

λ−1

1

)
e−

√
1−λ2x ∈ R

2

for x to the right of the support of q. As all coefficients of the Dirac equation (1.3) are real, y(·, λ) is
real-valued throughout, in particular

a(λ)

( √
1−λ2

λ−1

1

)
+ b(λ)

(
−

√
1−λ2

λ−1

1

)
= y(0, λ) ∈ R

2,

which implies that a(λ), b(λ) ∈ R. The last statement can be proved as [28, Lemma 2.12]. ¤

In the proof of Theorem 3, we shall on several occasions use the following observation about the function
sin(2R|x|)/|x|, which is not absolutely integrable and has an R-independent envelope, but nevertheless turns
out to generate an asymptotically diagonal integral kernel in a weak sense as R → ∞. The square integral
of q on the right-hand side of the inequality (1.5) arises in this way.

Lemma 4. For compactly supported q ∈ L2(R),

lim
R→∞

∫

R

∫

R

sin(2R|x − y|)
π|x − y| q(x)dx q(y) dy =

∫

R

|q|2.

Proof. Set qR := q( π
2R ·) and f(t) = sin πt

πt (t ∈ R \ {0}). Then q̂R(λ) = 2R
π q̂

(
2Rλ

π

)
and f̂ = χ[− 1

2 , 1
2 ]. Hence

1

π

∫

R

∫

R

sin(2R(y − x))

(y − x)
q(x) dx q(y) dy =

π

2R
(f ∗ qR, qR) =

π

2R
(f̂ · q̂R, q̂R)

=
π

2R

∫

R

f̂(λ)|q̂R(λ)|2dλ =

∫

R

f̂

(
πζ

2R

)
|q̂(ζ)|2dζ =

∫ R
π

−R
π

|q̂(ζ)|2dζ → ‖q̂‖2 = ‖q‖2

as R → ∞. ¤

We now proceed to prove Theorem 3. Consider λ ∈ C
+ ∪ Ω; then ℑω > 0, where we write ω briefly for

ω(λ). Let y be as in (3.3), and define associated functions a(x, λ), b(x, λ) (x ∈ R, λ ∈ C \ {−1, 1}) by setting

y(x, λ) = a(x, λ)u(x, λ) + b(x, λ)ũ(x, λ)

for all x ∈ R. By comparison with (3.3), a(x, λ) = a(λ) and b(x, λ) = b(λ) to the left of the support of q,
while a(x, λ) = 1 and b(x, λ) = 0 to the right of the support of q. We shall now derive an integral equation
for the function a.

The function w(x, λ) := e−i
R

∞

x
q(t)dt−iω(λ)xy(x, λ) satisfies the differential equation

w′ = (σ1 + iσ2λ + iω)w + iq(1 − σ2)w.

Treating the potential term as a perturbation, we note that the equation in which the term involving q is
dropped has the fundamental system

ϕ(x, λ) = e−iωx(u(x, λ), ũ(x, λ)) =

(
− iω(λ)

λ−1
iω(λ)
λ−1 e−2iω(λ)x

1 e−2iω(λ)x

)
(x ∈ R, λ ∈ C \ {−1, 1}).

Writing w = ϕA, we find that A(x, λ) = e−i
R

∞

x
q

(
a(x, λ)
b(x, λ)

)
. In particular, A(x, λ) =

(
1
0

)
for x to the right

of the support of q, and A′ = ϕ′(1 − σ2)iqϕA. This yields the integral equation

A(x, λ) =

(
1
0

)
− 1

ω(λ)

∫ ∞

x

q(t)Φ(t)A(t, λ)dt

with

Φ(t) :=

(
i(ω − λ) ie−2iωt

−ie2iωt i(ω + λ)

)
.
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Iterating this equation twice, we obtain the following identity for the top entry of A,

e−i
R

∞

x
qa(x, λ) = A1(x, λ) = 1 +

i

ω(λ + ω)

∫ ∞

x

qdt +
1

ω2

∫ ∞

x

∫ ∞

t

q(t)q(s)

{
e2iω(s−t) − 1

(λ + ω)2

}
ds dt

− 1

ω3

∫ ∞

x

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)e−i
R

∞

r
q
{[

i

(ω + λ)3
− ie2iω(s−t)

ω + λ
− ie2iω(r−s)

ω + λ
− ie2iω(r−t)

ω − λ

]
a(r, λ)

+

[
ie2iω(s−t−r) − ie2iωr

(λ + ω)2
+ ie−2iωs − ie−2iωt

(ω − λ)2

]
b(r, λ)

}
dr ds dt

Now, from the differential equation for A, we see that

A′
1(x, λ) = − iq(x)A1(x, λ)

ω(λ)(ω(λ) + λ)
+

iq(x)e−2iω(λ)xA2(x, λ)

ω(λ)

A′
2(x, λ) = − iq(x)e2iω(λ)xA1(x, λ)

ω(λ)
− iq(x)A2(x, λ)

ω(λ)(ω(λ) − λ)

and so, solving each as a first order differential equation,

A1(x, λ) = e
i

ω(λ)(ω(λ)+λ)

R

∞

x
q −

∫ ∞

x

iqe−2iω(λ)t

ω(λ)
e

i
ω(λ)(ω(λ)+λ)

R

t

x
qA2(t, λ)dt

A2(x, λ) =

∫ ∞

x

iq(t)e2iω(λ)t

ω(λ)
e

i
ω(λ)(ω(λ)−λ)

R

t

x
qA1(t, λ)dt.

Hence eliminating A2,

A1(x, λ) = e
i

ω(ω+λ)

R

∞

x
q +

1

ω2

∫ ∞

x

∫ ∞

t

q(t)q(s)e2iω(s−t)e
i

ω(ω+λ)

R

t

x
qe

i
ω(ω−λ)

R

s

t
qA1(s, λ)ds dt. (3.6)

We now assume that |λ|, and hence |ω|, is large enough so that
∣∣∣e

i
ω(λ)(ω(λ)+λ)

R

∞

·
q
∣∣∣ ≤ 2 and

1

ω(λ)2

∫ ∞

x

∫ ∞

t

|q(t)| |q(s)|
∣∣∣e

i
ω(λ)(ω(λ)+λ)

R

t

x
q
∣∣∣

∣∣∣e
i

ω(λ)(ω(λ)−λ)

R

s

t
q
∣∣∣ ds dt <

1

2
;

this can be achieved in view of Lemma 2 (iii) and (iv), respectively. Hence, noting that |a| = |A1|, we obtain
from (3.6) that

‖a(·, λ)‖∞ ≤ 2 +
‖a(·, λ)‖∞

2
,

which implies that ‖a(·, λ)‖∞ ≤ 4, for such values of λ. Thus

e−i
R

∞

x
qa(x, λ) = 1 +

i

ω(λ + ω)

∫ ∞

x

qdt +
1

ω2

∫ ∞

x

∫ ∞

t

q(t)q(s)

{
e2iω(s−t) − 1

(λ + ω)2

}
ds dt

− 1

ω3

∫ ∞

x

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)

[
i

(ω + λ)3
− ie2iω(s−t)

ω + λ
− ie2iω(r−s)

ω + λ
− ie2iω(r−t)

ω − λ

]

×
{

e
i

ω(ω+λ)

R

∞

r
q +

1

ω2

∫ ∞

r

∫ ∞

p

q(r)q(p)e2iω(u−p)e
i

ω(ω+λ)

R

p

r
qe

i
ω(ω−λ)

R

u

p
qA1(u, λ)dudp

}
dr ds dt

− 1

ω3

∫ ∞

x

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)

[
ie2iω(s−t−r) − ie2iωr

(λ + ω)2
+ ie−2iωs − ie−2iωt

(ω − λ)2

]

×
{∫ ∞

r

iq(p)e2iωp

ω
e

i
ω(ω−λ)

R

p

r
qA1(p, λ)dp

}
dr ds dt

= 1 +
i

ω(λ + ω)

∫ ∞

x

qdt +
1

ω2

∫ ∞

x

∫ ∞

t

q(t)q(s)e2iω(s−t)ds dt

− i(ω + λ)

ω3

∫ ∞

x

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)e2iω(r−t)e
i

ω(ω+λ)

R

∞

r
qdr ds dt

− (ω + λ)2

ω4

∫ ∞

x

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)

R

p

r
qA1(p, λ)dp dr ds dt

+ O

(
1

|λ|4
)

(|λ| → ∞).
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We now take the limit x → −∞. Furthermore, using equation (3.6) we can substitute for A1(x, λ) in the
above equation. The 6-fold integral which arises can be moved directly into the asymptotic term. Using
Lemma 2 (iii) to handle the first term from (3.6) we obtain:

e−i
R

∞

−∞
qa(λ) = lim

x→−∞
e−i

R

∞

x
qa(x, λ)

= 1 +
i

ω(λ + ω)

∫

R

qdt +
1

ω2

∫ ∞

−∞

∫ ∞

t

q(t)q(s)e2iω(s−t)ds dt

− i(ω + λ)

ω3

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)e2iω(r−t)dr ds dt

− (ω + λ)2

ω4

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)

R

p

r
qdp dr ds dt

+ O

(
1

|λ|4
)

(|λ| → ∞). (3.7)

Consider the anticlockwise contour in the complex upper half-plane γR parametrised by λ(θ) =
√

R2e2iθ + 1

(θ ∈ [0, π]), with R > 1. This contour is chosen so that ω(λ(θ)) = Reiθ; it follows that dλ = iω(λ)2

λ dθ = ω
λ dω.

Then

∫

γR

λω(λ) log
[
ei

R

∞

−∞
qa(λ)

]
dλ =

∫

γR

{ iλ

λ + ω

∫

R

qdt +
λ

ω

∫ ∞

−∞

∫ ∞

t

q(t)q(s)e2iω(s−t) ds dt

+
iλ

ω2(ω − λ)

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)e2iω(r−t) dr ds dt

− λ

ω3(ω − λ)2

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)

R

p

r
q dp dr ds dt

+ O

(
1

|λ|2
)}

dλ (|λ| → ∞). (3.8)

We now consider each integral term on the right-hand side in turn. The first one evaluates to

∫

γR

(
iλ

λ + ω

∫

R

q dt

)
dλ = i

(∫

R

q dt

) ∫

γR

λ(λ −
√

λ2 − 1) dλ =

[
2iR3

3
− 2i

√
R2 + 1

3

] ∫

R

q dt,

which is purely imaginary. To treat the second term, we apply the symmetrisation rule which states that

F ∈ L1(R2), F (x, y) = F (y, x) ((x, y) ∈ R
2) =⇒

∫ ∞

−∞

∫ ∞

x

F (x, y) dy dx =
1

2

∫

R2

F. (3.9)

We also make a change of variables in the contour integral, using ω to denote the transformed variable by
a slight abuse of notation. The transformed contour is γω

R := ω(γR), in fact a simple semicircle. Since∫
γR

λ
ω(λ) e2iω(λ)|s−t| dλ =

∫
γω

R

e2iω|s−t| dω = − sin(2R|x − y|)/|x − y|,

∫

γR

λ

ω

∫ ∞

−∞

∫ ∞

t

q(t)q(s)e2iω(s−t)ds dt dλ =

∫

γR

λ

2ω

∫

R

∫

R

q(t)q(s)e2iω|s−t|ds dt dλ → −π

2

∫

R

q2 (R → ∞)

by (3.9) and Lemma 4. For the third integral in (3.8),

∫

γR

iλ

ω2(ω − λ)

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)e2iω(r−t) dr ds dt dλ

=

∫

γω
R

i

(
−2 − 1

ω(ω + λ)

)∫ ∞

−∞

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)e2iω(r−t) dr ds dt dω

= −2i

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

sin(2R(r − t))

(r − t)
q(t)q(s)q(r) dr ds dt + O

(
1

R

)
(R → ∞)
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noting that the length of the contour γω
R is O(R). This is purely imaginary up to the error term. For the

final integral term in (3.8), we have

∫

γR

λ

ω3(ω − λ)2

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)

R

p

r
qdp dr ds dt dλ

=

∫

γR

λ
[
4ω2 + 4(λ − ω)ω + (λ − ω)2

]

ω3

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e
i

ω(ω−λ)

R

p

r
qdp dr ds dt dλ

= 4

∫

γω
R

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e−2i
R

p

r
qdp dr ds dt dω + O

(
1

R

)
(R → ∞)

where we used Lemma 2 (iv) in the last step. By an integration by parts,

∫ ∞

r

q(p)e2iω(p−t)e−2i
R

p

r
qdp = − i

2
e2iω(r−t) + ω

∫ ∞

r

e−2i
R

p

r
qe2iω(p−t)dp.

Thus

4

∫

γω
R

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

∫ ∞

r

q(t)q(s)q(r)q(p)e2iω(p−t)e−2i
R

p

r
q dp dr ds dt dω

= −2i

∫

γω
R

∫ ∞

−∞

∫ ∞

r

∫ ∞

s

q(t)q(s)q(r)e2iω(r−t) dr ds dt dω

+

∫

γω
R

4ω

∫ ∞

−∞

∫ ∞

t

∫ ∞

s

q(t)q(s)q(r)

[∫ ∞

r

e−2i
R

p

r
qe2iω(p−t)dp

]
dr ds dt dω. (3.10)

This leaves us with two integrals to consider. Performing the contour integral first, we see that the first term
is purely imaginary. The remaining integral can be resolved by repeated integrations by parts, starting from
the innermost integral. Observe that for any z ∈ R and x ≥ v

∫ ∞

z

q(x)e−2i
R

∞

x
q

[∫ ∞

x

e2i
R

∞

y
qe2iω(y−v)dy

]
dx =

i

2
e−2i

R

∞

z
q

∫ ∞

z

e2i
R

∞

y
qe2iω(y−v)dy +

1

4ω
e2iω(z−v). (3.11)

Thus, by an integration by parts, the last term in (3.10) equals

∫

γω
R

∫ ∞

−∞

∫ ∞

t

q(t)q(s)e2iω(s−t) ds dt dω

+

∫

γω
R

2iω

∫ ∞

−∞

∫ ∞

t

q(t)q(s)e−2i
R

∞

s
q

[∫ ∞

s

e2i
R

∞

p
qe2iω(p−t)dp

]
ds dt dω. (3.12)

Again we have two integrals to consider. After symmetrisation, the first term in (3.12) tends to −π
2

∫
R

q2 as
R → ∞ by Lemma 4. We can again apply (3.11) to the second integral in (3.12), then integrate by parts in
the innermost integral, giving

∫

γω
R

2iω

∫ ∞

−∞
q(t)

∫ ∞

t

q(s)e−2i
R

∞

s
q

[∫ ∞

s

e2i
R

∞

p
qe2iω(p−t)dp

]
ds dt dω

= −
∫

γω
R

ω

∫

R

q(t)e−2i
R

∞

t
q

[∫ ∞

t

e2i
R

∞

p
qe2iω(p−t) dp

]
dt dω +

i

2

∫ ∞

−∞
q

∫

γω
R

dω

= −
∫

γω
R

∫ ∞

−∞
q(t) e−2i

R

∞

t
q

∫ ∞

t

q(p) e2i
R

∞

p
q e2iω(p−t) dp dt dω

=

∫ ∞

−∞

∫ ∞

t

q(t) q(p) e2i
R

t

p
q sin(2R(p − t))

(p − t)
dp dt.
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Taking the real part, symmetrising and applying Lemma 4 twice, we find that

ℜ
(∫

γω
R

2iω

∫ ∞

−∞
q(t)

∫ ∞

t

q(s)e−2i
R

∞

s
q

[∫ ∞

s

e2i
R

∞

p
qe2iω(p−t)dp

]
ds dt dω

)

=

∫ ∞

−∞

∫ ∞

t

q(t)q(p) cos
(
2

∫ t

p

q
) sin(2R(p − t))

(p − t)
dp dt

=
1

2

∫ ∞

−∞

∫ ∞

−∞
q(t)q(p)

(
cos

(
2

∫ ∞

p

q
)

cos
(
2

∫ ∞

t

q
)

+ sin
(
2

∫ ∞

p

q
)

sin
(
2

∫ ∞

t

q
))

sin(2R|p − t|)
|p − t| dp dt

→ π

2

∫ ∞

−∞
q2(t)

[
cos2

(
2

∫ ∞

t

q
)

+ sin2
(
2

∫ ∞

t

q
)]

dt =
π

2

∫ ∞

−∞
q2(t)dt

as R → ∞. This cancels out the first term of (3.12). In summary, (3.8) comes down to

lim
R→∞

ℜ
∫

γR

λω(λ) log
[
e−i

R

∞

−∞
qa(λ)

]
dλ = −π

2

∫

R

q2(x)dx. (3.13)

Let 0 < ε < 1 and consider the closed contour Γ̃R
ε = ΓR,ε ∪ Γε ∪ γR,ε where γR,ε = γR ∩ {λ : ε ≤ ℑλ},

Γε = [−1 + iε, 1 + iε] and ΓR,ε = [κ−,−1 + iε] ∪ [1 + iε, κ+]; here κ± are the points where the contour γR

intersects the line ℑλ = ε. In addition, we consider the two-component contour γc
R,ε = γR \ γR,ε. Recalling

that λω(λ) log
[
e−i

R

∞

−∞
qa(λ)

]
= O(1) (|λ| → ∞) from (3.7), we see that

ℜ
∫

γc
R,ε

λω(λ) log
[
e−i

R

∞

−∞
qa(λ)

]
dλ = O(ε) (ε → 0).

On the other hand, we find using Cauchy’s Integral Theorem that

−ℜ
∫

γR,ε

λω(λ) log
[
e−i

R

∞

−∞
qa(λ)

]
dλ

= ℜ
( ∫

ΓR,ε

λω(λ) log a(λ) dλ +

∫

Γε

λω(λ) log a(λ) dλ + log
[
e−i

R

∞

−∞
q
] ∫

ΓR,ε∪Γε

λω(λ) dλ
)
. (3.14)

By Lemma 2 (ii), it is clear that ℜω(−µ + iε) = −ℜω(µ + iε) and ℑω(−µ + iε) = ℑω(µ + iε). Hence the
imaginary part of the integrand of the last integral in (3.14) is odd, and the logarithmic factor is purely
imaginary. Thus the real part of the last term in (3.14) vanishes.

The first integral in (3.14) can be rewritten as
∫

ΓR,ε

λω(λ) log a(λ) dλ =

∫

ΓR,ε

λω(λ) log |a(λ)| dλ + i

∫

ΓR,ε

λω(λ) arg a(λ) dλ.

Now it is clear that

lim
ε→0

ℑ
∫

ΓR,ε

λω(λ) arg a(λ) dλ = 0,

as arg a(λ) is real and bounded and ℑ(λω(λ)) → 0 uniformly. Thus we need only consider

lim
ε→0

∫

ΓR,ε

λω(λ) log |a(λ)| dλ = lim
ε→0

∫

(−
√

R2+1,−1]∪[1,
√

R2+1)

(t + iε)ω(t + iε) log |a(t + iε)| dt.

In view of (3.5),

lim
λ→±1

λω(λ) log |a(λ)| = 0

for real λ; also a is continuous and has no zeros in R\ [−1, 1]. Thus (t+ iε)ω(t+ iε) log |a(t + iε)| is bounded

uniformly in ε on (−
√

R2 + 1,−1] ∪ [1,
√

R2 + 1), and by dominated convergence

lim
ε→0

ℜ
∫

ΓR,ε

λω(λ) log a(λ) dλ =

∫

(−
√

R2+1,−1]∪[1,
√

R2+1)

λω(λ) log |a(λ)| dλ. (3.15)

Finally we consider the second integral in (3.14),
∫

Γε

λω(λ) log a(λ) dλ =

∫ 1

−1

(t + iε)ω(t + iε) log |a(t + iε)| dt + i

∫ 1

−1

(t + iε)ω(t + iε) arg a(t + iε) dt. (3.16)
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For the first of these integrals, we note that a has a finite number of distinct zeros in the interval (−1, 1),
which we label β1, . . . , βM in increasing order. The (real) logarithm function is integrable at zero and so, by
dominated convergence and (3.2), this integral tends to the purely imaginary limit

∫ 1

−1

t ω(t) log |a(t)| dt =

∫ 1

−1

it
√

1 − t2 log |a(t)| dt

as ε → 0. Concerning the second integral in (3.16), we note that, by Lemma 3, a(λ) is real for λ ∈ (−1, 1).
Therefore, between any two zeros of a on (−1, 1), the argument of a is constant. Thus we need only consider
the argument of a at a zero βj . We write

a(λ) = (λ − βj) b(λ),

where b is analytic and non-zero in some neighbourhood Ω of βj . The respective arguments satisfy

arg a(λ) = arg(λ − βj) + arg b(λ)

and arg b(λ) is continuous at βj . Therefore, if we consider a(λ) on the intersection of {λ : ℑλ = ε} with
B√

ε(βj), the ball of radius
√

ε and centre βj , the argument of b is almost constant and thus the change in

the argument of a between the left and right ends of this interval is ∼ −2 arccos
√

ε, which tends to −π in
the limit ε → 0. The limiting values of the argument of a thus have the form

arg a(λ) = arg a(−1 + 0) − π

M∑

m=1

χ(βm,1)(λ) (λ ∈ (−1, 1) \ {βi | i ∈ {1 . . . M}}).

Thus, bearing in mind (3.2),

i lim
ε→0

∫ 1

−1

(λ + iε)ω(λ + iε) arg a(λ + iε) dλ

= − arg a(−1 + 0)

∫ 1

−1

λ
√

1 − λ2 dλ + π
M∑

m=1

∫ 1

βm

λ
√

1 − λ2 dλ

= −π

3

∑

m

(1 − β2
m)

3
2 . (3.17)

Hence, by (3.13), (3.14), (3.15), (3.17) and (3.2),

π

2

∫

R

q2 = − lim
R→∞

lim
ε→0

ℜ
∫

γR,ε

λω(λ) log
[
ei

R

R
q a(λ)

]
dλ

=

∫

(−∞,−1]∪[1,∞)

|λ|
√

λ2 − 1 log |a(λ)| dλ +
π

3

∑

m

(1 − β2
m)

3
2 . (3.18)

This completes the proof of Theorem 3.

4. The Spectral Function

We now proceed to prove Theorem 1. We shall show that for all compact subsets K ∈ R\[−1, 1] of positive
Lebesgue measure, ρ(K) > 0. This implies the statement of Theorem 1; indeed, assume λ ∈ R \ [−1, 1] is
not a growth point of the absolutely continuous part of the spectral function, ρac. Then there is ε > 0 such
that ρac([λ− ε, λ + ε]) = 0. Let B ⊂ R be an open set of Lebesgue measure < ε such that ρsing(R \B) = 0.
Then K := [λ − ε, λ + ε] \ B is compact and has positive Lebesgue measure, so by the above

0 < ρ(K) = ρac(K) ≤ ρac([λ − ε, λ + ε]) = 0,

a contradiction.
The proof of the above statement is based on the following estimate (cf. [6]).

Lemma 5. Let A ⊂ R be open and let w ∈ L1
loc(A), w > 0. Let (ρn)n∈N be a sequence of absolutely continuous

non-decreasing functions which converge to a non-decreasing function ρ at its points of continuity. Let K ⊂ A
be compact and of positive Lebesgue measure. Then

lim sup
n→∞

∫

K

log

(
ρ′n
w

)
w

w(K)
≤ log

(
ρ(K)

w(K)

)
, (4.1)

where w(K) =
∫

K
w.
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Proof. Let
φn(x) = max{0, 1 − ndist(x,K)}, (x ∈ R, n ∈ N).

Then supp(φn(x)) ⊂ [inf K − 1, sup K + 1]. Further, (φn)n∈N is a non-increasing sequence converging to χK

pointwise as n → ∞, the characteristic function of K. Thus

ρ(K) =

∫

R

χK(x) dρ = lim
m→∞

∫

R

φm(x) dρ = lim
m→∞

lim
n→∞

∫

R

φm(x) dρn ≥ lim sup
n→∞

∫

K

ρ′n,

where the second equality follows from the monotone convergence theorem, the third by Helly’s integration
theorem and the inequality from the fact that φn ≥ χK . Thus

log

(
ρ(K)

w(K)

)
≥ lim sup

n→∞
log

∫

K

ρ′n
w

w

w(K)
≥ lim sup

n→∞

∫

K

log

(
ρ′n
w

)
w

w(K)
,

where the last inequality follows from Jensen’s Inequality [24, Theorem 3.3]. ¤

From Lemma 1 and Lemma 5 we see that it is sufficient to prove that
∫

K

(
− log

(
ρ′n
w

)
w

)
=

∫

K

(
− log

[ℑmn(λ + i0)

πw(λ)

]
w(λ)

)
dλ

is bounded above uniformly in n for some positive weight function w. As qn is square integrable with com-
pact support, the Titchmarsh-Weyl m-function for the Dirac equation associated with (2.1) with boundary
condition (1.2) can be expressed in terms of the solution y of (3.3),

mn(λ) =
yn,2(0, λ)

yn,1(0, λ)
= i

λ − 1

ω(λ)

an(λ) + bn(λ)

an(λ) − bn(λ)
= i

λ − 1

ω(λ)

1 + rn(λ)

1 − rn(λ)
,

denoting by an and bn the coefficients of yn, and by rn the corresponding reflection coefficient. Conversely

rn(λ) = mn(λ)−i(λ−1)/ω(λ)
mn(λ)+i(λ−1)/ω(λ) . Thus

|tn(λ)|2 = 1 − |rn(λ)|2 =
4ℜ

(
mn(λ + i0) i(λ−1)

ω(λ)

)

∣∣∣mn(λ + i0) + i(λ−1)
ω(λ)

∣∣∣
2

for a.e. λ ∈ R \ [−1, 1]. Now the spectrum is purely absolutely continuous in this set because the potential
has compact support, and so (see [12]) 0 < lim

ε→0
mn(λ + iε) < ∞ and (λ − 1)/ω(λ) > 0. Consequently

lim
ε→0

∣∣∣∣mn(λ + iε) +
i(λ + iε − 1)

ω(λ + iε)

∣∣∣∣
2

=

(
λ − 1

ω(λ)
+ ℑ lim

ε→0
mn(λ + iε)

)2

+ (ℜ lim
ε→0

mn(λ + iε))2 ≥
(

λ − 1

ω(λ)

)2

(λ ∈ R \ [−1, 1]). Thus we can estimate

1

|an(λ)|2 = |tn(λ)|2 ≤ 4ω(λ)

λ − 1
ℑ lim

ε→0
mn(λ + iε).

Now let δ > 0 and apply Lemma 5 with A := R \ [−1 − δ, 1] and w(λ) := |λ − 1|/(4π
√

λ2 − 1) (λ ∈ A). For
any compact set K ⊂ A of positive Lebesgue measure, we find using Theorem 3 and the facts that |an| ≥ 1
and

|λ − 1|√
λ2 − 1

=

√
λ2 − 1

|λ + 1| ≤
√

λ2 − 1

δ
(λ ∈ A)

that

−
∫

K

log

(
ρ′n
w

)
w = −

∫

K

log

(ℑ limε→0 mn(λ + iε)

πw(λ)

)
w(λ) dλ

= − 1

4π

∫

K

log

(
4ℑ limε→0 mn(λ + iε)ω(λ)

λ − 1

) |λ − 1|√
λ2 − 1

dλ

≤ 1

2π

∫

K

log |an(λ)| |λ|
δ

√
λ2 − 1 dλ ≤ 1

2πδ

∫

R\(−1,1)

log |an(λ)| |λ|
√

λ2 − 1 dλ (4.2)

≤ 1

4δ

∫

R

q2
n ≤ 1

4δ

∫

R

q2.

Thus the integral in (4.1) is bounded below independently of n ∈ N, and so ρ(K) > 0. This concludes the
proof of Theorem 1.

Remark. The first inequality in (4.2) is a rather bad estimate for large values of λ; indeed, the bounded
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factor |λ − 1|/
√

λ2 − 1 is replaced with the upper bound
√

λ2 − 1 |λ|/δ, which grows as λ2 for λ → ±∞, in
order to fit the estimate (1.5).

In fact, the assertion of Theorem 1 will already follow if
∫

(−∞,−1]∪[1,∞)

λω

λ2 + 1
log |an(λ)| dλ

is bounded above. Estimating this integral by the method of Section 3 turns out to be easier due to the
better decay properties of the integrand, and gives, instead of (1.5),

∫

(−∞,−1]∪[1,∞)

λω

λ2 + 1
log(an(λ)) dλ = −

√
2π log |an(i)| − π

M∑

m=1

∫ 1

βm

λ
√

1 − λ2

λ2 + 1

≤ −
√

2π log |an(i)|,
where the βm, m ∈ {1, 2, ...,M}, are the zeros of a as before. More generally,

∫

(−∞,−1]∪[1,∞)

λω

λ2 + α2
log |an(λ)| dλ ≤ −

√
2π log |an(iα)|

for any α > 0. This means that, in order to obtain an equivalent result to Theorem 1, one only needs to show
that there exists an α > 0 such that |an(iα)| 6→ 0 as the cut off point of the potential tends to infinity. This
seems to be a very weak condition and its relation to the L2 condition in Theorem 1 is somewhat obscure.
Note that if we consider a constant potential, for which the assertion of Theorem 1 clearly does not hold,
then |an(iα)| → 0 (n → ∞) for all α > 0.

5. Angular Momentum

In practice the one-dimensional Dirac operator most commonly arises from the three-dimensional Dirac
operator with a spherically symmetric potential by separation of variables in spherical polar coordinates (cf.
[30, Appendix to Ch. 1]). It then takes the form

−iσ2
d

dx
+ σ3 +

k

x
σ1 + q(x) (x ∈ (0,∞)),

where σ1 is the third Pauli matrix and k ∈ Z\{0}. (In the case of a rotationally symmetric two-dimensional
Dirac operator, k ∈ Z− 1

2 .) The additional angular momentum term k
xσ1 introduces a singularity at 0. This

singular end-point is in the limit-point case if |k| ≥ 1
2 and q is less singular at 0; indeed q ∈ L1([0, ∗]) (which

follows from q ∈ L2([0,∞))) is sufficient to ensure limit-point case at zero [9]. As the operator is always in
the limit-point case at ∞ (see [30, Thm 6.8]), this means that it has a unique self-adjoint realisation Tk.

In the following, we denote by S1 the space of trace-class operators and by S2 the space of Hilbert-Schmidt
operators. We shall use the following corollary to the Kato-Rosenblum perturbation theorem.

Theorem 4 ([14, Thm 4.12]). Let H1 and H2 be self-adjoint operators in a Hilbert space such that

(H2 − z)−1 − (H1 − z)−1 ∈ S1

for some non-real z. Then the wave operators W±(H2,H1) exist and are complete. In particular, the
absolutely continuous parts of H1 and H2 are unitarily equivalent.

From the Gilbert-Pearson theory of subordinacy ([12], [11]), as well as its extension to Dirac operators
([2], [1]), it is known that a minimal support of the absolutely continuous spectral measure of a self-adjoint
Dirac operator L on (α, β) is given by

Mac(L) = {λ ∈ R : no solution of Lu = λu is subordinate at β}
if α is a regular, β a singular end-point, and

Mac(L) = {λ ∈ R : no solution of Lu = λu is subordinate at β} (5.1)

∪ {λ ∈ R : no solution of Lu = λu is subordinate at α}
if both end-points are singular. Here a subset S of R is said to be a minimal support of a measure ν if
ν(R \ S) = 0 and ν(S0) = 0 ⇒ mes S0 = 0 (S0 ⊂ S), where mes denotes the Lebesgue measure. Also, the
essential closure of a set Σ ⊂ R is defined as

Σ
ess

= {λ ∈ R : mes ((λ − ε, λ + ε) ∩ Σ) > 0 (ε > 0)}.
12



It follows immediately that if Σ1 ⊂ Σ2, then Σ
ess

1 ⊂ Σ
ess

2 . The relationship between the absolutely continuous
spectrum and the minimal support Mac of the absolutely continuous part of the spectral measure is expressed
in the following lemma.

Lemma 6. The set of growth points of ρac is equal to Mess

ac .

Proof. Let λ be a growth point of ρac. Then 0 < ρac((λ − ε, λ + ε) ∩ Mac) for all ε > 0, by the defining
property of a minimal support. As ρac is absolutely continuous with respect to the Lebesgue measure, this
implies that mes ((λ − ε, λ + ε) ∩Mac) > 0, and hence λ ∈ Mess

ac .

Conversely, let λ ∈ Mess

ac . Then for all ε > 0, mes ((λ − ε, λ + ε) ∩Mac) > 0. Hence 0 < ρac((λ − ε, λ +
ε) ∩Mac) = ρac((λ − ε, λ + ε)) and so λ is a growth point of (ρac). ¤

In particular, (5.1) implies that

σac(H) = σac(H
α
c ) ∪ σac(H

β
c ),

where c ∈ (α, β) and Hβ
c is the operator restricted to [c, β) and Hβ

c that to (α, c] with some boundary
condition at c [11]. Thus we can draw the following conclusion from Theorem 1.

Corollary 1. Consider the self-adjoint Dirac operator on R

T̃ = −iσ2
d

dx
+ σ3 + q (x ∈ R).

If q ∈ L2(R), then the absolutely continuous part of the spectral function of T̃ is strictly increasing in
(−∞,−1] ∪ [1,∞).

We now consider

Tk = −iσ2
d

dx
+ σ3 +

k

x
σ1 + q(x)

in L2((0,∞)), where |k| ≥ 1
2 and q ∈ L2([0,∞)) ∩ L∞([0,∞)). Then, by [25, Lemma 3], the operators Tk

and

T̃k = −iσ2
d

dx
+ σ3 + µ(x)σ3 + q̃(x),

with µ(x) =
√

1 + k2

x2 − 1 and q̃(x) = q(x) + k
2(x2+k2) (x > 0), are unitarily equivalent. Obviously q̃ ∈

L2([0,∞)) ∩ L∞([0,∞)) and µ ∈ L1((c,∞)) ∩ L2((c,∞)), fixing c > 0 arbitrarily.
Consider also the operator on R,

H = −iσ2
d

dx
+ σ3 + µ̂(x)σ3 + q̂(x) (x ∈ R),

where q̂ is the even extension of q̃ to the whole real line and µ̂ is the even extension of χ[c,∞)µ to the whole
real line. The transformation u(x) = σ3v(−x) then turns Hu = λu into Hv = λv. Because of this symmetry,
the sets

{λ ∈ R : no solution of Hu = λu is subordinate at ∞}
and

{λ ∈ R : no solution ofHu = λu is subordinate at −∞}
coincide. As the differential expressions for H and T̃k are the same near +∞, (5.1) then implies that

Mac(H) ⊂ Mac(T̃ ). (5.2)

Define two further operators on R, namely

H0 = −iσ2
d

dx
+ σ3 + q̂(x), H00 = −iσ2

d

dx
+ σ3.

As both H and H0 have the form H00 + F , where F is a bounded perturbation, all three operators have
the same domain. From [21, Thm XI.20] and a simple modification of its proof, we obtain the following
statement.

Lemma 7. Let ϕ ∈ L2(R) ∩ L∞(R). Then

ϕ(H00 − λ)−1 ∈ S2, (H00 − λ)−1ϕ ∈ S2.
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Thus, taking λ ∈ C \ R and using the Second Resolvent Identity [29, Theorem 5.1], we find

(H − λ)−1 − (H0 − λ)−1 = (H − λ)−1(−µ̂σ3)(H0 − λ)−1

= (H − λ)−1(−µ̂σ3)(H00 − λ)−1 − (H − λ)−1(−µ̂σ3)(H00 − λ)−1q̂(H0 − λ)−1

= (H00 − λ)−1(−
√

µ̂ σ3

√
µ̂)(H00 − λ)−1 + (H − λ)−1(µ̂σ3 + q̂)(H00 − λ)−1(−µ̂σ3)(H00 − λ)−1

+ (H − λ)−1µ̂σ3(H00 − λ)−1q̂(H00 − λ)−1 + (H − λ)−1µ̂σ3(H00 − λ)−1q̂(H00 − λ)−1q̂(H0 − λ)−1 ∈ S1.

Here we used Lemma 7 together with the facts that S2S2 ⊂ S1 and that S1 and S2 are invariant under
multiplication with bounded operators [22, Section VI.6]. Thus, by Theorem 4, the absolutely continuous
parts of H and H0 are unitarily equivalent. By Corollary 1, this implies that H has absolutely continuous
spectrum on (−∞,−1] ∪ [1,∞). Thus (5.2) and Lemma 6 give

(−∞,−1] ∪ [1,∞) ⊂ σac(H) = Mess

ac (H) ⊂ Mess

ac (T̃k) = σac(T̃k),

and Theorem 2 follows.
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