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Summary 

Schizophrenia is a highly heritable, common psychiatric disorder. Although onset 
generally occurs during adolescence, multiple lines of evidence point to a 
neurodevelopmental insult that occurs many years prior to the presentation of 
symptoms. Many different approaches have been used to elucidate the genetic risk 
factors and their impact; however, few unequivocal facts have been established. 
With a considerable amount of data publically available, integrative approaches look 
to leverage multiple data sources to identify coherent themes. This thesis 
investigates the neurodevelopmental hypothesis of schizophrenia by incorporating 
results from genome-wide association studies and copy number variation studies 
with gene expression datasets, with the overall aim of identifying functional 
pathways that may be disrupted in the aetiology of the disorder. 
 
This study used foetal and developmental expression datasets of the human brain 
and statistical approaches to characterise the expression profiles of schizophrenia 
risk genes. Both spatial profiles in the mid-foetal brain and temporal profiles across 
development were considered. Data from genome-wide association studies and 
copy number variation studies were used to test for an enrichment of risk genes; in 
addition the genetic overlap with bipolar disorder identified through genome-wide 
association studies was used for validation. Gene sets with a common expression 
profile enriched for schizophrenia variants were used to identify biological pathways 
and assessed for their polygenic contribution to schizophrenia risk.  
 
The results of this thesis converged on a common developmental expression profile 
for schizophrenia risk genes. Genes identified with this profile were shown to 
harbour multiple, common risk variants for schizophrenia and were implicated in 
epigenetic processes relating to the regulation of gene transcription. Together this 
suggests that schizophrenia associated genes are involved in brain development, 
particularly during foetal stages, and may play a role in the regulation of this process. 
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Chapter 1: Introduction 

1.1 Introduction to disorders 

1.1.1 Schizophrenia  

Schizophrenia (SCZ) is a complex psychiatric disorder with a median lifetime 

prevalence estimate of 0.4% and a median lifetime morbid risk estimate of 0.7% 

(McGrath et al., 2008). The primary diagnostic feature is an episode of psychosis 

characterised by hallucinations, delusions, disorganised thought or speech, with 

additional negative symptoms that affect normal functioning such as affective 

flattening, anhedonia (inability to experience pleasure) or avolition (lack of 

motivation), also required for diagnosis (Andreasen, 1995, Linden, 2011). Deficits in 

motor and cognitive domains (Heinrichs and Zakzanis, 1998, Dickinson et al., 2007) 

are also often part of this heterogeneous disorder. This range of clinical features 

means psychiatrists can see a variety of different presentations, with potentially two 

patients having few common symptoms.  

 

The onset of SCZ typically occurs during adolescence or early adulthood, generally 

occurring later in females (Hafner et al., 1994). Incidence rates are higher in males 

compared to females with a relative risk of approximately 1.4 (Aleman et al., 2003, 

McGrath et al., 2008). Current diagnosis is based on matching observed or reported 

symptoms with descriptions provided by the World Health Organisation in the 

International Classification of Diseases (World Health Organization, 1993) or the 

American Psychiatric Association’s Diagnostic and Statistical Manual of Mental 

Disorders (American Psychiatric Association, 2000, American Psychiatric Association, 

2013), both of which have been revised over the years to reflect research findings.  

 

1.1.2 Bipolar disorder 

Bipolar disorder (BPD) is also a common psychiatric disorder with lifetime prevalence 

estimates ranging from 2-4.4% depending upon the clinical subtypes included 
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(Kessler et al., 2005, Merikangas et al., 2007, Kessler et al., 2012). It is characterised 

by contrasting episodes of depression and mania, sometimes including psychotic 

symptoms (Goodwin and Jamison, 1990), with periods of remission. Similar to SCZ, 

onset generally occurs during early adulthood (Joyce, 1984) and is diagnosed using 

the aforementioned diagnostic manuals.  

 

1.1.3 Schizophrenia and bipolar disorder as separate diagnostic entities 

At the end of the 19th century German psychiatrist Emil Kraepelin first described the 

two diagnostic entities dementia praecox and manic depression (Kraepelin, 1899), 

which are considered the forerunners to SCZ and BPD. This dichotomy has since 

remained, but research findings are challenging such a format (Craddock and Owen, 

2005). 

 

An overlap in clinical features is not uncommon with SCZ patients presenting 

symptoms of depression (Zisook et al., 1999, Majadas et al., 2012) and the first-rank 

symptoms introduced by Schneider (Schneider, 1959), which encompass 

hallucinations and delusions, present in some BPD patients (Rosen et al., 2011). 

Moreover, the idea that these disorders ‘breed true’ has been challenged through 

family and molecular genetic studies providing evidence for a shared genetic 

susceptibility (Lichtenstein et al., 2009, Purcell et al., 2009). The overlap of 

associated risk factors will be discussed further in the following sections. 

 

1.2 Neurodevelopmental hypothesis 

SCZ is classed as a neurodevelopmental disorder (Murray and Lewis, 1987, 

Weinberger, 1987) in which a disruption during the critical period of brain 

development plays a major role in the disease aetiology. This is unlikely to be 

sufficient to cause SCZ and may be combined with genetic predisposition or an 

additional insult during adolescence (Bayer et al., 1999, Keshavan, 1999).  BPD has 

typically been considered an adult disorder, although in light of evidence supporting 

a nosological overlap with SCZ a neurodevelopmental insult has been proposed as 
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part of BPD aetiology (Nasrallah, 1991). Currently, evidence for BPD as a 

neurodevelopmental disorder is inconsistent, with methodological issues limiting the 

ability to draw cohesive conclusions (Sanches et al., 2008). 

 

1.2.1 Human brain development 

Human brain development is a sensitive sequence of processes, coordinated by 

genetic, epigenetic and environmental influences (Tau and Peterson, 2010). By the 

end of the third post conception week (PCW), the earliest neural progenitor cells 

have migrated to the neural plate signalling the start of brain development. The 

neural plate becomes the neural tube, which grows and changes from its cylindrical 

shape to eventually form the cerebral shape of the brain we are familiar with as well 

as the rest of the central nervous system (Stiles and Jernigan, 2010).  

 

The establishment of the regions of the brain happens progressively by a process 

called neural patterning. The first subdivision forms the prosencephalon (forebrain), 

mesencephalon (midbrain) and rhombencephalon (hindbrain). By the end of the 

embryonic period (8th gestational week) both the prosencephalon and 

rhombencephalon further subdivide into the telencephalon and diencephalon and 

the metencephalon and myelencephalon respectively.  Neural patterning, which 

gives rise to the regional organisation of the central nervous system, is coordinated 

by the expression level of signalling molecules (Hoch et al., 2009). These molecules 

prompt neural progenitors to differentiate into neurons appropriate for each region 

(Hebert and Fishell, 2008), a process which continues postnatally. The early stages of 

brain development are characterised by neurogenesis, migration and differentiation 

(Stiles and Jernigan, 2010). 

 

While growth in total brain volume slows after early childhood (Dekaban, 1978, Brain 

Development Cooperative Group, 2012), the human brain still undergoes structural 

changes with maturational processes active up to and during adolescence. Structural 

magnetic resonance imaging has shown that white matter volume continues 

increasing throughout the second and third decade of life (Lenroot et al., 2007, 
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Koolschijn and Crone, 2013). In contrast, grey matter volume reaches its maximum 

during childhood, although the exact time point varies between lobes, before 

decreasing through adolescence (Gogtay et al., 2004, Lenroot et al., 2007, Koolschijn 

and Crone, 2013).  

 

White matter is composed of myelin, a fatty sheath that insulates axons to improve 

the transmission of impulses between neurons; therefore structural brain scans that 

identify changes in the volume of white matter reflect the accumulation and loss of 

myelination (Giedd, 2004). The increases of white matter are consistent with the 

knowledge that myelination continues into adolescence (Benes et al., 1994). 

Moreover, increased white matter volume indicates more efficient communication 

across the brain (Paus, 2005). Myelination is a progressive event that is active during 

the same developmental stages as the regressive mechanism of synaptic pruning, 

both of which may play a role in these structural changes (Sowell et al., 2001). 

Synaptic pruning, which occurs throughout childhood and adolescence 

(Huttenlocher, 1979), will also improve the efficiency of communication within the 

brain.  

 

Given the common onset of SCZ during teenage years and early adulthood there has 

been much interest in this time period. As brain development continues for at least 

two decades, insults early on may have immediate effects or some latency before 

any impacts manifest.  Aetiological hypotheses regarding adolescent 

neurodevelopment have been proposed such as faulty synaptic pruning (Feinberg, 

1982). Further, there has been much focus on the prefrontal cortex as it is one of the 

last brain regions to mature during adolescence (Gogtay et al., 2004) and is related 

to executive functions that are affected in SCZ (Bozikas et al., 2006).  

 

1.2.2 Evidence of neurodevelopmental antecedents for schizophrenia 

Premorbid impairments 

Support for a neurodevelopmental contribution to SCZ aetiology comes from many 

different studies. Birth cohort studies, as well as other study designs, find childhood 
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impairments in motor (Jones et al., 1994, Cannon et al., 2002a, Clarke et al., 2011, 

Dickson et al., 2012), social (Jones et al., 1994, Bearden et al., 2000, Schiffman et al., 

2004) and cognitive (Jones et al., 1994, Cannon et al., 2002a, Dickson et al., 2012) 

domains amongst those who go on to develop the disorder. These could be potential 

indictors of those at higher risk of developing SCZ with aberrant brain development 

leading to both these premorbid features and SCZ symptoms later in life.  

 

As the name may suggest, Kraepelin’s initial descriptions of dementia praecox 

included deterioration of cognitive function (Kraepelin, 1899). In later revisions, 

Kraepelin himself began to recognise that functional recovery did occur in some 

patients (Kraepelin, 1919). This deterioration aspect of SCZ has been a contentious 

issue with the most recent meta-analysis finding no evidence for such a decline 

during disease onset, further supporting a developmental insult giving rise to SCZ 

symptoms (Bora and Murray, 2013). 

 

Pre- and perinatal events 

Complications during pregnancy and delivery are proposed as risk factors for SCZ 

that may have a negative impact on brain development. Studies have found 

increased rates of specific complications in those who go on to develop SCZ including 

low Apgar scores, a scale used immediately after birth to assess the health of 

newborn babies (Cannon et al., 2002a), small for gestational age (Cannon et al., 

2002a), preeclampsia (Cannon et al., 2002b, Byrne et al., 2007), hypoxia or ischaemia 

(Zornberg et al., 2000, Cannon et al., 2002a) and low birth weight (Cannon et al., 

2002b) amongst others. These findings are primarily based on prospective 

population-based samples which, given a lifetime prevalence of 0.4% (McGrath et 

al., 2008) require large cohorts to obtain even a handful of SCZ cases. With a small 

number of cases power is then limited to detect the small effect sizes (odds ratio < 2) 

that are often associated with these risk factors (Cannon et al., 2002b). In addition, 

simultaneously investigating many different individual complications increases the 

multiple testing burden, and therefore the chances of a spurious association if the 

significance level is not adjusted to reflect this. A combination of these issues means 
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that robust replicated findings for specific obstetric complications as yet have not 

been identified but a general increased rate has been reported (Cannon et al., 

2002a). 

 

Exposure in the womb to viruses or infections is one specific insult which may impact 

on brain development that has received much attention. A recent meta-analysis 

supported previous reports of an increased rate of SCZ in offspring whose mothers 

were exposed to infectious agents including Human herpesvirus 2, Toxoplasma 

gondii, Borna disease virus, or Human endogenous retrovirus-W during pregnancy 

(Arias et al., 2012). The association for Borna disease virus was based on the largest 

sample with over 2000 cases and controls, followed by the samples for Human 

herpesvirus 2 and Toxoplasma gondii, the latter of which had evidence of a 

publication bias. However, given that no correction was applied to take into account 

the multiple exposures that were tested, further replication would be required for 

each of these exposures. Additionally, larger samples would allow a more accurate 

estimate of the risk associated with these exposures. 

 

Population-based cohort studies have reported similar increased risk of SCZ in the 

offspring of mothers hospitalised for infection (Nielsen et al., 2013), or diagnosed 

with a bacterial (Sorensen et al., 2009) or respiratory infection (Brown et al., 2000a) 

during pregnancy. As with the obstetric complications these need to have large 

sample sizes to ensure enough SCZ cases, with all of these studies having at least 75 

affected individuals. Studies of the impact of maternal illness have attempted to 

narrow down the period of increased risk, leading to suggestions that the earliest 

stages of pregnancy may be the most vulnerable (Khandaker et al., 2013).  

 

Famine studies look at nutritional deficiency during pregnancy and the impact this 

may have on developing illness later in life.  These are uncommon events but one 

such study showed that those conceived during the lowest point of the Dutch 

Hunger Winter famine during 1945 had an increased risk of developing SCZ (Susser 

et al., 1996, Hoek et al., 1998). A similar study of the Chinese Great Leap Forward 

famine also found that people born during the latter stages, from 1959-1961, and 
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therefore conceived during the famine, also had a greater risk of SCZ (St Clair et al., 

2005).  In both studies risk was estimated from birth rates, death rates and SCZ 

diagnoses from psychiatric hospital records of large geographical regions with 

minimal migration, and therefore had very considerable sample sizes. Famine is a 

broad exposure and can encompass a range of deficiencies, including particular 

nutrients or vitamins, as well as other factors such as maternal stress, which may 

have an impact, making it challenging to identify how exposure to famine may affect 

brain development and ultimately SCZ risk.  

 

One potentially more revealing approach is the study of minor physical anomalies, 

such as cleft palate, low-seated ears or furrowed tongue. As these characteristics are 

established during gestation, they are proposed to be indicative of disruptions during 

the period of early brain development (Lobato et al., 2001). SCZ patients have been 

shown in meta-analyses to have an increased number of minor physical anomalies 

(Weinberg et al., 2007, Xu et al., 2011). Both of these studies obtained total samples 

of over 1000 cases from 11 and 14 studies respectively, which suggest that individual 

studies to date have had quite small sample sizes. Within these, secondary analyses 

of specific anomalies or anomalies affecting a particular area of the body were 

sometimes also tested but the number of studies and hence total sample size for 

these was further reduced. Therefore interpretation of these results requires 

additional caution. 

 

A similar idea is behind the study of dermatoglyphic anomalies, as they are also 

established during foetal development and thought to be markers of insults during 

this timeframe (Lobato et al., 2001).  As with minor physical anomalies 

dermatoglyphic abnormalities are more common in SCZ patients compared to 

controls (Bramon et al., 2005). This includes evidence for two different 

dermatoglyphic abnormalities which implicate different developmental time points, 

suggesting that disruptions potentially causing SCZ could occur at multiple points of 

foetal development (Golembo-Smith et al., 2012). These findings were also based on 

meta-analyses of many small studies producing combined samples of sizes similar to 
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those for the studies of minor physical anomalies and hence further studies should 

look to confirm these findings. 

 

Although lots of studies have been performed investigating the role of pre- and 

perinatal risk factors, the majority of these were based on small samples (< 100 

cases or controls). Meta-analyses look to synthesize the existing evidence but even 

when combined, the samples amount to less than 2000 cases or controls. While 

further evidence is required to strengthen the association for each specific risk factor 

and to accurately quantify the increased risk, as a group they indicate that 

disruptions during foetal brain development play a role in the development of SCZ.  

 

These insults are estimated to have small effect sizes (generally ≤ 2), and therefore 

as the risk to the general population for SCZ is low these will only increase the risk of 

SCZ by an additional few per cent. In addition, there will be many others who 

experience the same complications but do not develop SCZ (Clarke et al., 2006) so 

they have limited predictive power (Lewis and Levitt, 2002). Each factor, therefore, 

contributes to the risk but is not enough to cause it outright; a combination of 

environmental and genetic factors play a part in an individual’s liability. Genetic risk 

factors will be discussed further in Section 1.3. 

 

1.2.3 Evidence of neurodevelopmental antecedents for bipolar disorder 

For BPD the evidence for a neurodevelopment insult is inconsistent. Early studies did 

not find evidence for premorbid impairments in those that went on to develop BPD 

(Zammit et al., 2004, Reichenberg et al., 2005). More recent studies found lower 

cognitive scores in those who went on to develop BPD but these were not 

significantly worse than controls (Osler et al., 2007, Seidman et al., 2012). These 

studies did find a significant difference between SCZ and healthy controls but the 

number of individuals in the SCZ group was greater than that in the BPD group, 

meaning there was reduced power to detect a difference between BPD and controls.  
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Two studies found an association between obstetric complications and BPD although 

both were based on a combined sample of less than 50 (Kinney et al., 1993, Kinney 

et al., 1998), hence a subsequent meta-analysis of eight studies with over 500 

individuals was not significant (Scott et al., 2006). Very little has been reported for 

prenatal exposure to infection for those who go on to develop BPD, with mostly 

negative findings from modest sample sizes that would not have been able to detect 

small effects (Machon et al., 1997, Stober et al., 1997, Mortensen et al., 2011). Rates 

of BPD were found to be higher in those exposed prenatally to the Dutch Hunger 

Winter (Brown et al., 2000b) although this was based on hospitalisation records and 

therefore could reflect a more severely affected subgroup, which may be more 

similar to SCZ.  

 

There is also a paucity of studies looking at the occurrence of minor physical 

anomalies in BPD groups with early studies not finding any association (Green et al., 

1994, Trixler et al., 2001). The most recent reported a significantly higher incidence 

of anomalies affecting the mouth, feet and head, which although the largest to date, 

was based on less than 200 subjects (Akabaliev et al., 2011). In sum, the evidence 

reported so far is inconclusive as to whether BPD can be considered a 

neurodevelopmental disorder, primarily due to a lack of studies with adequate 

sample sizes. Therefore a comparison with SCZ pre- or perinatal risk factors at this 

stage would be inappropriate.  

 

1.3 Genetics of schizophrenia and bipolar disorder 

1.3.1 Heritability and family studies 

Heritability is currently estimated from twin studies at about 80-85% for SCZ (Cardno 

and Gottesman, 2000, Sullivan et al., 2003) and marginally higher at 85-93% for BPD 

(McGuffin et al., 2003, Kieseppa et al., 2004). A large scale study taking advantage of 

the Swedish registry system showed that families where the proband had SCZ had an 

increased risk for both SCZ and BPD, with a similar finding in families where the 

proband had BPD (Lichtenstein et al., 2009). Full siblings had a relative risk of 9.0 for 

SCZ and 3.7 for BPD if their sibling had SCZ, whereas if their sibling had BPD the 
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relative risk was 7.9 for BPD and 3.9 for SCZ. While this supports a shared genetic 

component and discredits the idea that these disorders breed true, they also showed 

that there are unique genetic factors for each disorder.  

 

1.3.2 Association studies 

Earliest genetic studies: linkage and candidate gene studies 

The search for associated genes and variants for SCZ and BPD has followed a similar 

course. Linkage studies were one of the first analysis tools used to identify 

chromosomal regions associated with disease (Teare and Barrett, 2005). Using a 

family pedigree, linkage analysis looks for regions with the same genetic variation 

present in affected family members and not present in unaffected family members. 

The test is based on the probability of loci within these regions segregating together 

to identify regions where this is highly unlikely to have happened by chance.  

 

A limitation of this approach is that it only indicates broad regions of chromosomes 

and not specific genes, with one review summarising that the combined results of 

two meta-analyses for SCZ implicates around 4000 genes (Tandon et al., 2008).  

Another limitation, perhaps the most important for psychiatric disorders, is that it is 

not appropriate to identify variants with small effect sizes (Risch and Merikangas, 

1996). While regions have been identified through this method for both SCZ and BPD 

(Badner and Gershon, 2002, Ng et al., 2009), the replication of these has been 

limited and no specific genes have been identified. 

 

Candidate gene studies were the next step, which looked at variants within genes 

hypothesised as relevant for either SCZ or BPD. These looked at single nucleotide 

polymorphisms (SNPs), which are single deoxyribonucleic acid (DNA) base changes 

that vary between individuals. If these differences occur in coding sequences they 

can alter the resulting amino acid sequence, which may have functional 

consequences. Alternatively, if they are found in non-coding regions they may affect 

regulatory processes such as transcription factor binding and ultimately gene 

expression. Such variants are associated to disease generally through statistical tests 
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that compare the allele frequencies between affected and unaffected individuals 

looking for significant differences. 

 

Most of the candidate genes considered were based on drug mechanisms that were 

successful at reducing symptoms such as dopamine receptor genes, which are the 

targets of antipsychotics. Genes involved in other neurotransmitter systems or brain 

development, based on the neurodevelopmental hypothesis, were also considered 

(Linden, 2011). Serotoninergic genes were amongst the most studied for BPD 

(Seifuddin et al., 2012), in addition to genes involved in the dopaminergic, 

glutamatergic and gamma-aminobutyric acid (GABA) pathways.  However, regardless 

of the biological plausibility of these genes none of these studies were fruitful in 

terms of associating with high levels of confidence specific mutations with SCZ (Allen 

et al., 2008) or BPD (Seifuddin et al., 2012). The limitations of these studies included 

sample size, which meant there was only power to detect variants with large effect 

sizes, and a lack of statistical rigour (Chanock et al., 2007). As a result a large body of 

conflicting studies were reported with limited information about either SCZ or BPD. 

 

Genome-wide association studies: single locus analyses 

As for many areas of medicine, the sequencing of the human genome (Lander et al., 

2001, Venter et al., 2001) was heralded as the start of a new and more productive 

era in psychiatric genetics (Corvin and Gill, 2003). Candidate gene studies had 

introduced a bias to the literature as only genes with a prior hypothesis, based on 

varying types and strength of evidence, were investigated. Genome-wide association 

studies (GWAS) allow the investigation of in excess of a million SNPs at sites across 

the genome in a single study (Beaudet and Belmont, 2008). The main benefit of this 

is that no prior hypotheses are required and potentially novel findings in genes not 

previously considered may be unearthed.   

 

GWAS are designed to identify common (> 1%) variants that are associated with an 

increased risk to complex diseases (Bush and Moore, 2012) and are more powerful 

to detect markers of small effect compared to linkage studies (Risch and Merikangas, 
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1996). They have been made possible not only through the sequencing of the human 

genome but also through the characterisation of linkage disequilibrium (LD) between 

SNPs (International HapMap Consortium, 2005). This knowledge means that only a 

subset of SNPs, called tag SNPs, need to be directly genotyped or tested in order to 

look for association across the genome (Hirschhorn and Daly, 2005). A by-product of 

this is that it is unlikely that any associated SNP identified in a GWAS will be the 

causal marker, more that they tag the true functional variant.  

 

Like candidate gene studies, statistical tests compare the allele frequencies for each 

SNP separately between cases and controls to see if they are significantly different 

(Hirschhorn and Daly, 2005). Power to detect an association of a true disease variant 

is related to both the frequency and effect size of the SNP, being lower for rarer 

alleles and smaller effect sizes (Klein, 2007, Spencer et al., 2009). GWAS are not 

appropriate for looking at very rare SNPs as these cannot be adequately tagged.  

 

While the ability to study hundreds of thousands of variants simultaneously is very 

efficient, it introduces the caveat of multiple testing. Neighbouring loci are known 

not to be independent, so a Bonferroni correction to prevent false positives based 

on the number of SNPs tested would be too severe (Pe'er et al., 2008). Based on a 

UK Caucasian sample, across the autosomes it has been estimated that there are 

effectively 693,138 independent tests equating to a genome-wide significant 

threshold of 7.2 x 10-8 (Dudbridge and Gusnanto, 2008). This is in line with the 

HapMap Consortium’s estimate of 150 effective tests per 500kb of the genome, 

equivalent to 900,000 tests (human genome assumed to be 3000Mb) and a p value 

threshold of 5.5 x 10-8 (International HapMap Consortium, 2005). Generally a p value 

< 5 x 10-8 is accepted as a genome-wide significant result. 

 

Initial GWAS for schizophrenia and bipolar disorder 

Despite much early enthusiasm with many studies, small by today’s standards, being 

performed, it is only in the last few years that robust associations have been 

reported. The first genome-wide significant variants for SCZ were linked to ZNF804A 
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(Williams et al., 2011b), NRGN (Stefansson et al., 2009, Steinberg et al., 2011), TCF4 

(Stefansson et al., 2009, Steinberg et al., 2011), VRK2 (Steinberg et al., 2011) and the 

extensive major histocompatibility complex (MHC) region on chromosome 6 (Purcell 

et al., 2009, Shi et al., 2009, Stefansson et al., 2009). Comparable results were found 

in BPD GWAS for DGKH (Baum et al., 2008), ANK3 (Ferreira et al., 2008), CACNA1C 

(Ferreira et al., 2008) and NCAN (Cichon et al., 2011).  

 

Even in combination these genome-wide significant results only explained a small 

part of the genetic heritability of both disorders, and like many other complex 

diseases the majority was still unaccounted for (Manolio et al., 2009). A susceptibility 

model containing a few common variants of large effect  (genotypic relative risk > 

1.3) was effectively ruled out of SCZ aetiology, as it was demonstrated that there 

was sufficient power in existing studies to identify these if they existed (Shi et al., 

2009). Although alternative genetic models involving rare alleles were also proposed 

(McClellan et al., 2007), GWAS were now focused on identifying many risk alleles, 

implicating many genes, with small effect sizes (~1.1) that only make a small 

contribution to an individual’s risk.  This polygenic architecture of common variants 

was successfully demonstrated using the results of the International Schizophrenia 

Consortium (ISC) GWAS for genetic prediction. In a completely independent dataset, 

scores based on the number of risk alleles identified in the ISC GWAS, including 

those below the threshold for genome-wide significance, were found to be 

significantly higher in cases compared to controls (Purcell et al., 2009). This 

demonstrated that common variants tagged in current studies do play a part in the 

genetics of SCZ (Wray and Visscher, 2010). The majority of these variants have not 

yet reached genome-wide significance due to limited power, but could in principle 

be unearthed in larger sample sizes (Sullivan et al., 2012).  

 

Consortium GWAS 

For both disorders international collaboration through the Psychiatric Genomics 

Consortium (PGC) has brought together samples from across the world, primarily of 

European ancestry, which were analysed in the largest studies at that time. In 2011, 
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results were published from a stage 1 sample of 9394 SCZ cases and 12462 controls 

and an independent stage 2 of 8442 SCZ cases and 21397 controls. Seven loci were 

significant at a genome-wide threshold from a meta-analysis of both stages. Five of 

these were novel associations, located in or nearest to MIR137, PCGEM1, CSMD1, 

MMP16, and CNNM2 or NT5C2, in addition to further support for the MHC region on 

chromosome 6 and a region containing TCF4 and CCDC68 (Ripke et al., 2011). The 

BPD sample comprised of 7481 cases and 9250 controls in stage 1 with 4496 

independent cases and 42422 controls used for replication and identified a novel 

locus in ODZ4 in addition to further support for CACNA1C (Sklar et al., 2011).  

 

Since these publications, meta-analyses of the PGC SCZ study with additional 

samples has identified a further 14 novel loci including SDCCAG8 (Hamshere et al., 

2013), MAD1L1, TSNARE1, AKT, and FONG (Ripke et al., 2013), as well support for 

CACNA1C and the ITIH3/4 region (Hamshere et al., 2013, Ripke et al., 2013). A meta-

analysis of the BPD PGC sample with an independent sample has also obtained 

genome-wide significance for a SNP in TRPC4AP and a region on chromosome 12 

between RHEBL1 and DHH (Green et al., 2012). Genome-wide significance has also 

been reported for SNPs in TRANK1, LMAN2L and PTGFR from a meta-analysis of a 

European BPD sample and a small Asian BPD sample (Chen et al., 2013a). 

 

Estimates of SNP heritability 

Secondary analyses of GWAS data include quantifying how much heritability is 

accounted for by the common SNPs investigated with current microarray 

technology, referred to as the SNP heritability or chip heritability. The ISC found that 

their polygenic genetic prediction procedure using their dataset as the discovery 

sample from which risk alleles were identified, and predicting in the independent 

Molecular Genetics of Schizophrenia (MGS) dataset could explain approximately 3% 

of the variance for SCZ risk. By simulating samples approximately similar to the true 

ISC and MGS data for a range of genetic models they estimated that at least one 

third of the genetic variance could be explained by common variants found on 

genotype chips (Purcell et al., 2009).  
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An alternative methodology which is part of the genome-wide complex trait analysis 

(GCTA) toolkit (Yang et al., 2011), based on a linear mixed model, estimated that 23% 

of the liability variance could be attributed to SNPs using the PGC SCZ data (Lee et 

al., 2012a).  This method has also been applied to BPD PGC data where the SNP 

heritability was calculated to be 25% (Lee et al., 2013). Both of these estimates for 

SNP heritability further imply that common variants play a sizeable role in SCZ and 

BPD aetiology and increasing the sample size for GWAS will help to identify them 

(Lee et al., 2012a).  

 

Approximate Bayesian methods have been developed as an extension to Purcell et 

al.’s polygenic approach to estimate the proportion of variance attributable to 

common variants as well as estimate the number of SNPs involved and the 

distribution of their effect sizes and frequencies (Stahl et al., 2012). This approach 

produced the largest estimate of SNP heritability at 43% (assuming population risk 

estimate of 0.01) and further, predicted that SCZ would have 8300 independent 

SNPs that account for 50% of the variance in liability (Ripke et al., 2013).  

 

Evidence of genetic overlap between schizophrenia and bipolar disorder and 

estimating genetic correlation 

Molecular evidence of overlapping genetic associations for SCZ and BPD is growing, 

particularly for common variants. Prior to the publication of the PGC studies, GWAS 

datasets had been used to show that an overlap did exist and was present among 

SNPs tagged in current studies. The ISC tested their polygenic score approach based 

on SCZ associated alleles in a BPD study and found that BPD cases, like SCZ cases, 

had higher scores compared to controls. Moreover, this was not the case for type 

one or type two diabetes, coronary artery disease, rheumatoid arthritis, Crohn’s 

disease or hypertension sufferers, supporting an overlap in the common variants 

between SCZ and BPD (Purcell et al., 2009). This analysis has been repeated with all 

of the PGC datasets, including attention deficit hyperactivity disorder (ADHD), autism 

and major depressive disorder, for all pairs of the five disorders. Overlap of common 
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variants was found between all disorders, however the most successful pairing used 

SCZ associated alleles to predict BPD status or vice versa (Smoller et al., 2013).  

 

An alternative approach again using the PGC GWAS datasets looked to quantify the 

shared genetic relationships between these five disorders. This methodology (Lee et 

al., 2012b) was similar to the GCTA linear mixed model approach used to calculate 

the SNP based heritability of complex disorders and like the polygenic approach 

found the pairing of SCZ and BPD had the largest genetic correlation, estimated at 

0.68, of all the pairs of PGC disorders (Lee et al., 2013). This estimate of genetic 

correlation was consistent with that estimated from the Swedish national family 

study of 0.6 (Lichtenstein et al., 2009).  

 

Identifying overlapping common variants 

Initial attempts to identify the common genetic variants between BPD and SCZ, took 

risk factors identified in one disorder and investigated them in the second, requiring 

a lower level of significance (one tailed p < 0.05) for evidence of an association. For 

example, rs1006737 found within CACNA1C, identified in a BPD GWAS (Ferreira et 

al., 2008) also showed an association with SCZ (Green et al., 2010). Further, SNPs 

from the MHC region and NRGN identified for SCZ have been shown to be associated 

with BPD, although in the same study variants from TCF4 were not associated with 

BPD and no association was found between ANK3 SNPs and SCZ (Williams et al., 

2011a).  

 

To date, genome-wide significance in separate GWAS for both SCZ and BPD has been 

reported for SNPs in NCAN (Cichon et al., 2011, Ripke et al., 2013), and CACNA1C 

(Ferreira et al., 2008, Sklar et al., 2011, Hamshere et al., 2013, Ripke et al., 2013). 

Combined analyses, where both SCZ and BPD individuals are compared to healthy 

controls, can also be used to identify variants that contribute to the shared genetic 

component while increasing the power to detect those with smaller effect sizes. 

With this approach, genome-wide significance has been obtained for SNPs in 

ZNF804A (O'Donovan et al., 2008), ANK3 (Sklar et al., 2011), and the ITIH3-ITIH4 
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region (Sklar et al., 2011). A GWAS based on a psychosis phenotype including SCZ, 

BPD and related psychoses also found a novel genome-wide significant SNP in the 

16p11.2 region which was associated with gene expression at MAPK3 (Steinberg et 

al., 2012).  

 

The genetic overlap of common variants for SCZ and BPD has been used 

advantageously in conditional false discovery rate analyses which have increased 

power to detect SNPs associated to both disorders (Andreassen et al., 2013). Using 

the PGC data this approach, at a false discovery rate of 0.05, identified 58 SCZ loci 

including 51 novel loci and 35 BPD loci, of which, 30 were novel. Further a 

conjunction p value, taken as the maximum of the two disorder p values, was used 

to identify 14 loci with pleiotropic effects for both disorders including genes 

previously identified such as CACNA1C and ITIH4 as well as novel candidates such as 

PPM1F and IFI44.   

 

Biological pathways associated with GWAS results 

Given few markers have surpassed genome-wide significance it may be a little 

premature to look for common functions but one recurring theme of genes 

identified as top hits in SCZ or BPD GWAS are those relating to calcium channels such 

as CACNA1C or CACNB2 (Ripke et al., 2013). Both of these genes, along with others 

relating to calcium channel activity, have also been implicated in autism, ADHD and 

major depressive disorder through a combined GWAS of psychiatric disorders 

suggesting that this functional process may be disrupted in many disorders (Smoller 

et al., 2013). 

 

Gene-based tests 

For genes to be associated through a GWAS generally they require a SNP located 

within or proximal to them to be significant genome-wide. Although the number is 

steadily increasing, so far few SNPs have been found at the genome-wide 

significance level compared to the large number of genes expected to be associated 
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to either SCZ or BPD. Gene-based tests look to combine SNPs located across a gene 

to see if as a group they confer risk and are likely to be an informative tool (Neale 

and Sham, 2004).  

 

Looking for significant genes as opposed to significant SNPs is a more powerful study 

design as it reduces the multiple testing burden (Li et al., 2011) and multiple 

methods have been tested.  One of the simplest approaches is to identify the 

smallest SNP p value, generally after applying a correction for the number of SNPs 

within that gene. Other methods look at combining SNP association p values such as 

the product of P, or the closely associated truncated product of P (Zaykin et al., 

2002). The presence of LD means that the individual SNP tests are not independent 

and permutations have been used to calculate empirical significance for each gene, 

however this has been found not to be a sufficient correction for the product of P 

approaches (Moskvina et al., 2012).  

 

An alternative methodology made use of Brown’s method (Brown, 1975) for 

combining test statistics that are not independent. By incorporating the correlation 

between markers, permutations are not required to ascertain significance and hence 

this approach is very efficient to run (Moskvina et al., 2011). Thus far the 

performance of each of these methods has rarely been evaluated, and despite being 

applied to real datasets these methods have yet to be used to investigate or identify 

novel genes for SCZ or BPD aetiology.  

 

1.3.3 Copy number variation studies 

Copy number variants (CNVs) are a common class of structural variant where large 

segments of the genome are deleted or duplicated, altering the number of copies of 

any genes within the affected region. The availability of raw genome-wide SNP 

intensity data meant that algorithms could be developed to detect CNVs so that they 

could be investigated in the context of human disease (McCarroll et al., 2006, Redon 

et al., 2006).  
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Copy number variants in schizophrenia 

SCZ patients have been shown to have an increased number or burden of CNVs 

across the genome, which are generally larger and more likely to affect loci that are 

hit rarely in the general population when compared to CNVs found in controls 

(International Schizophrenia Consortium, 2008, Walsh et al., 2008, Kirov et al., 

2009a). The effect sizes of CNVs are typically larger than those found in GWAS for 

SNPs and hence specific loci at which SCZ patients have a significantly increased rate 

of CNVs have been found and are displayed in Table 1.1. There are likely additional 

rarer CNV loci that will be identified as sample sizes increase (Malhotra and Sebat, 

2012). Individuals with SCZ also suffer a higher number of de novo CNVs (Xu et al., 

2008, Malhotra et al., 2011, Kirov et al., 2012), new mutations that have arisen in the 

individuals’ DNA that are not found in their parents, which may explain some non-

familial cases of SCZ.  

 

Deletion CNV loci Schizophrenia Bipolar disorder 

1q21.1 (International Schizophrenia 
Consortium, 2008, Stefansson et 
al., 2008, Kirov et al., 2009a, 
Levinson et al., 2011) 

 

2p16.3 (NRXN) (Kirov et al., 2009b, Levinson et 
al., 2011) 

 

3q29 (Mulle et al., 2010, Levinson et 
al., 2011) 

 

15q11.2 (Stefansson et al., 2008, Kirov et 
al., 2009a) 

 

15q13.3 (International Schizophrenia 
Consortium, 2008, Stefansson et 
al., 2008, Kirov et al., 2009a, 
Levinson et al., 2011, Vacic et al., 
2011) 

 

17q12 (Moreno-De-Luca et al., 2010)  

22q11.2 (International Schizophrenia 
Consortium, 2008, Mulle et al., 
2010, Levinson et al., 2011, Vacic 
et al., 2011) 

 

Duplication CNV loci   

7q36.3 (VIPR2) (Levinson et al., 2011, Vacic et al., 
2011) 

 

16p11.2 (McCarthy et al., 2009, Levinson 
et al., 2011, Vacic et al., 2011) 

(McCarthy et al., 2009) 

16p13.1 (Ingason et al., 2011)  

 Table 1.1: CNV loci associated with schizophrenia or bipolar disorder. 
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Copy number variants in bipolar disorder 

Findings for specific loci for BPD are much less frequent. Table 1.1 shows one locus, 

which has a significantly increased rate, a locus that is also associated with SCZ. 

Further, burden analyses for BPD patients have produced inconsistent results. Some 

report evidence for an increased frequency of rare CNVs compared to controls 

(Zhang et al., 2009, Priebe et al., 2012) whereas others find no difference (Grozeva et 

al., 2010, McQuillin et al., 2011). Similar to SCZ, a higher rate of de novo CNVs have 

been reported in BPD patients (Malhotra et al., 2011). Where increased rates of 

CNVs have been reported for BPD, they were strongest in the subset of individuals 

with an earlier age of onset (Zhang et al., 2009, Malhotra et al., 2011, Priebe et al., 

2012). Therefore CNVs may play a smaller role in BPD aetiology than in SCZ and be 

specific to those with an earlier age of onset which is associated with a more severe 

subtype including more psychotic features, suicide attempts, rapid cycling and worse 

mania symptoms (Schurhoff et al., 2000, Azorin et al., 2013). 

 

Biological pathways associated with CNVs 

One of the early CNV findings was that genes hit by CNVs found in SCZ were 

overrepresented in neurodevelopmental pathways (Walsh et al., 2008), supporting 

the hypothesis that an insult during early development plays a role in SCZ aetiology.  

Although the initial study did not control for the size of the genes hit by each CNV or 

the size of the CNVs themselves, a subsequent investigation controlling for these 

factors has shown that neuronal-activity genes were enriched in this dataset 

(Raychaudhuri et al., 2010).  Pathway analyses for genes hit by de novo CNVs have 

also reported enrichment in brain development categories as well synaptic genes 

(Malhotra et al., 2011) in particular for the N-methyl-D-aspartate receptor (NMDAR) 

and activity-regulated cytoskeleton (ARC) postsynaptic complexes (Kirov et al., 

2012).  

 



21 
 

CNVs have been shown to play a role in other neurodevelopmental disorders 

including autism (Sebat et al., 2007), ADHD (Williams et al., 2010) and intellectual 

disability (Cooper et al., 2011). Moreover, CNV loci have been shown to confer risk of 

multiple developmental disorders, for example 16p11.2 also confers risk for autism 

(Marshall et al., 2008, Weiss et al., 2008) and mental retardation (Ballif et al., 2007, 

Ghebranious et al., 2007). This suggests that CNVs are non-specific risk factors and 

that they may underlie some of the common phenotypes of these disorders such as 

cognitive impairments (Van Den Bossche et al., 2012). 

 

1.3.4 Rare variants: exome and whole genome sequencing 

As discussed in Section 1.3.2, power to detect rare variants in GWAS is reduced 

compared to common variants, meaning that sequencing is the best approach to 

capture variants at the lower end of the frequency spectrum (Eberle et al., 2007).  

Developments in technology and the shift to next-generation sequencing techniques 

have enabled the study of rare or moderately rare variants. Whole genome 

sequencing, which provides the entire sequence of an individual’s DNA, is considered 

the gold standard but current prices make this prohibitive for the large sample sizes 

required to study rare variants (Cirulli and Goldstein, 2010). Although both the cost 

and sequencing time are falling rapidly, exome sequencing, which only looks at ~1% 

of the genome containing protein-coding regions (Teer and Mullikin, 2010), has been 

used as an interim solution.  

 

Currently, no single nucleotide variants (SNVs) have been robustly associated with an 

increased risk for SCZ (Need et al., 2012). Exome sequencing studies of trios 

(proband and both parents) have identified de novo SNVs in SCZ patients and 

reported higher nonsynonymous-to-synonymous (Xu et al., 2012) and nonsense-to-

missense ratios (Girard et al., 2011), as well as an increased likelihood of carrying a 

mutation predicted as damaging (Gulsuner et al., 2013) suggesting these variants are 

involved in the pathogenesis of SCZ.  Although ongoing, no studies of SNVs have 

been published for BPD. 
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1.3.5 Gene expression studies 

After identifying genes implicated in the aetiology of SCZ or BPD through GWAS or 

CNV studies, and likely in the future exome or whole genome sequencing, the 

functions or mechanisms of these genes need to be clarified, particularly in relation 

to disease pathology. Gene expression studies quantify the abundance of gene 

transcripts in a tissue or cell of interest. These studies are an intermediate between 

genotype and phenotype and may provide valuable information in identifying the 

mechanisms relevant to disease aetiology.  

 

Microarray studies of schizophrenia post-mortem brains 

Numerous studies have been undertaken comparing post-mortem SCZ brains to 

control brains. A variety of approaches have been used including real-time 

quantitative polymerase chain reaction (RT-qPCR) and in situ hybridisation (ISH), 

which while more accurate can only be used to look at a handful of genes. 

Microarray technology can be used to assay the whole transcriptome in a hypothesis 

free manner, to identify genes with significantly different expression levels in disease 

brains compared to control brains which may then be taken forward as candidate 

risk genes. Pathway analysis is generally also performed on these sets of candidate 

genes to infer potentially disrupted biological mechanisms for SCZ. 

 

From the studies performed so far, there has been limited replication, particularly at 

the individual gene level, primarily due to methodological differences such as 

microarray platform, age of sample, cause of death, tissue dissected and statistical 

protocols (Sequeira et al., 2012). Sample size is another issue as post-mortem brain 

samples are of limited availability (Mistry et al., 2012) with few studies including 

more than 35 SCZ or control brains. More recent studies have combined data from 

existing studies to obtain sample sizes of over 100 brains (Mistry et al., 2012, Perez-

Santiago et al., 2012), but this is still much smaller than those used for association 

studies and will be limited when trying to detect small changes.  
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Table 1.2: Functional pathways identified from genes differentially expressed between schizophrenia 
or bipolar disorder post-mortem brains and controls.  
In each row first set of studies showed statistical overrepresentation of differentially expressed genes 
in a particular pathway, second set are additional studies that describe genes differentially expressed 
in these pathways. (*Choi et al., 2008) study was based on a psychosis sample. 

 

Another caveat to these studies is the presence and variability of medication 

exposure, both in terms of type and cumulative dosage, within the SCZ samples. 

Antipsychotics have already been shown to affect both proteins and metabolites in 

Pathways implicated Studies comparing schizophrenia 
post-mortem brains to controls 

Studies comparing bipolar 
disorder post-mortem brains to 

controls 

GABA (Mirnics et al., 2000, Glatt et al., 
2005) 
(Hakak et al., 2001, Hashimoto et 
al., 2008) 

 

Glutamate (Mirnics et al., 2000, Maycox et al., 
2009) 
(Bowden et al., 2008) 

 

Immune response (Saetre et al., 2007, Shao and 
Vawter, 2008, Mistry et al., 2012, 
Roussos et al., 2012) 
(Arion et al., 2007, Barnes et al., 
2011) 

(Ryan et al., 2006, Shao and 
Vawter, 2008) 

Mitochondria and 
energy metabolism 

(Mirnics et al., 2000, Prabakaran et 
al., 2004, Glatt et al., 2005, Katsel 
et al., 2005b, Mistry et al., 2012) 
(Middleton et al., 2002, Altar et al., 
2005, Iwamoto et al., 2005, 
Khaitovich et al., 2008) 

(Konradi et al., 2004) 
(Iwamoto et al., 2005, Sun et al., 
2006) 

Myelination and 
oligodendrocytes 

(Katsel et al., 2005b) 
(Hakak et al., 2001, Tkachev et al., 
2003, Aston et al., 2004, Sugai et 
al., 2004) 

(Tkachev et al., 2003) 

Neurogenesis, 
neurodevelopment 

(Shao and Vawter, 2008, Maycox et 
al., 2009) 
(Hakak et al., 2001, Aston et al., 
2004, Bowden et al., 2008) 

(Nakatani et al., 2006, Shao and 
Vawter, 2008) 

Stress response (*Choi et al., 2008) (Iwamoto et al., 2004) 

Synapse and signalling  (Mirnics et al., 2000, Prabakaran et 
al., 2004, Katsel et al., 2005b, 
Maycox et al., 2009, Perez-Santiago 
et al., 2012, Roussos et al., 2012) 
(Hakak et al., 2001, Vawter et al., 
2001, Aston et al., 2004, Altar et 
al., 2005, Barnes et al., 2011) 

(Ryan et al., 2006, Chen et al., 
2013b) 
(Iwamoto et al., 2004) 

Transcription and 
translation 

(*Choi et al., 2008, Roussos et al., 
2012) 
(Vawter et al., 2001, Aston et al., 
2004) 

(Iwamoto et al., 2004) 
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SCZ human post-mortem brains (Guest et al., 2010, Chan et al., 2011) and alter gene 

expression in primate and rat brains (Healy and Meador-Woodruff, 1997, Schmitt et 

al., 2003, O'Connor et al., 2007). The effect of medication on gene expression studies 

could introduce both false positive or false negative results either by creating 

differences not primarily caused by SCZ pathology or by normalising disease-related 

changes so that they are not detected (Mistry et al., 2012). 

 

Despite all these limitations some broadly consistent themes have emerged when 

considering genes in functionally related groups shown in Table 1.2. Genes 

dysregulated between SCZ post-mortem brains and control brains include those 

involved in immune response pathways, mitochondria and energy metabolism, 

myelination and oligodendrocytes, neurogenesis and neurodevelopment, stress 

response, synapse and signalling, and transcription and translation. There is also 

support for disrupted neurotransmitter systems including glutamate and GABA.  

 

The initial focus of gene expression studies for SCZ was on samples from the 

prefrontal cortex, in particular the dorsolateral prefrontal cortex. This was based on 

the rationale that it continues developing through to adolescence (Gogtay et al., 

2004, Lenroot and Giedd, 2006), the time point when SCZ typically presents, and 

impairments in executive functions, which are common in SCZ patients (Bozikas et 

al., 2006) have been attributed to this region (Orellana and Slachevsky, 2013). 

Interestingly though, the number of expression differences found in this region is 

amongst the lowest (Katsel et al., 2005a, Roussos et al., 2012) and in fact the highest 

number of differences were found in the temporal regions (Katsel et al., 2005a).  

 

Microarray studies of bipolar disorder post-mortem brains 

Fewer studies have considered BPD brains including a maximum of 35 post-mortem 

brains. These have found an overlap with SCZ studies in the pathways implicated 

including myelination and oligodendrocyte, mitochondria and energy metabolism, 

synapse and signalling and immune response; see Table 1.2.  
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Gene expression studies directly comparing expression profiles between the two 

disorders are infrequent. Despite one study finding only a few genes differentially 

expressed in SCZ and BPD that overlapped (Iwamoto et al., 2004), a subsequent 

study found more overlapping than expected by chance (Shao and Vawter, 2008). 

While these were enriched for nervous system development, cell death and immune 

categories, only one set of controls was used. 

 

Next-generation sequencing: RNA-Seq 

Technological advances mean there is currently a shift to next-generation expression 

profiling in the form of RNA-Seq. Studies so far have supported the themes identified 

with microarrays such as neural development, mitochondrial function, synapse 

vesicle trafficking (Wu et al., 2012) and inflammatory response (Fillman et al., 2013) 

with genes in these pathways being dysregulated between SCZ and control brains. 

However, these were based on similar sample sizes to the initial microarray studies 

with 9 and 20 matched cases and controls respectively, therefore larger samples will 

be needed in future studies to validate these findings.  

 

Temporal expression profiles of genes associated to schizophrenia  

An alternative approach has considered the expression profiles of SCZ candidate 

genes throughout brain development of healthy individuals (Colantuoni et al., 2008, 

Choi et al., 2009, Harris et al., 2009). All of these studies were before the publication 

of the SCZ PGC GWAS when only a handful of genes were robustly associated, which 

questions any reported findings for SCZ associated genes. There is, however, some 

overlap in the functional classes enriched for genes whose expression was associated 

with age and those enriched for genes differentially expressed between SCZ and 

control brains such as neurodevelopmental processes (Choi et al., 2009, Harris et al., 

2009), synaptic activity (Mistry and Pavlidis, 2010), neurotransmitter systems (Harris 

et al., 2009, Mistry and Pavlidis, 2010) and energy metabolism (Harris et al., 2009). 

One transcriptomics study has found that the expression profiles of genes whose 

expression is associated with age can differentiate SCZ cases from controls 



26 
 

(Torkamani et al., 2010). Therefore in light of successful GWAS studies these sorts of 

analyses should be repeated.  Such studies have not been undertaken for BPD genes 

as far as I am aware. 

 

Alternative splicing 

Alternative splicing is a mechanism that produces different gene transcripts by 

including or excluding exons of a gene, affecting the proteins coded for and 

ultimately the gene’s function. These alternatively spliced variants mean that the 

approximately 22,000 genes in the human genome can code for many more 

proteins. This process is estimated to occur in approximately 95% of human genes 

with more than one exon (Pan et al., 2008). In most cases, it is tissue specific and in 

human adults occurs most often in the brain (Yeo et al., 2004).  

 

Splicing is known to be important for many processes during brain development 

including synaptogenesis, as well as affecting ion channel and neurotransmitter 

proteins in mature neurons (Li et al., 2007). Therefore, disruption to this mechanism 

could be relevant to SCZ and BPD, as both calcium channel genes and 

neurotransmitter systems are thought to be involved in the pathogenesis. The vast 

majority of studies have only considered at most a couple of candidate splicing 

genes. Genes including GRIN1 (Le Corre et al., 2000), GRM3 (Sartorius et al., 2008), 

and GABRB2 (Huntsman et al., 1998, Zhao et al., 2009) have been shown to be 

abnormally spliced between either SCZ or BPD and control post-mortem brains. 

Additional aberrantly spliced genes for SCZ include those related to brain 

development (Law et al., 2006, Gibbons et al., 2009).  

 

A genome-wide study looked at two brain regions for SCZ, the prefrontal cortex and 

caudate head, for 20 SCZ samples and 20 control samples and identified 43 and 31 

transcripts as alternatively spliced. Functional analysis found one biological pathway 

overrepresented for the 31 transcripts identified in the caudate head, ‘Agrin in 

Postsynaptic Differentiation’ (Cohen et al., 2012). However due to the paucity of 
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studies in this area, it is hard to assess the reliability of these findings and the impact 

splicing has on psychiatric disorders. 

 

1.3.6 Biological pathway analysis 

Pathway analysis or functional analysis looks to identify the common processes of a 

set of genes related to a trait from association or transcriptome studies. They are 

commonly used as the final step of a genetic study to infer some meaning or 

interpretation of molecular results for the disease of interest. Many genes, but still 

not all, have been functionally characterised and categorised into pathways that 

describe the mechanisms or biological functions they are part of. Resources such as 

the Gene Ontology (GO) database (Ashburner et al., 2000) or Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) (Kanehisa, 1997, Kanehisa and Goto, 2000) provide this 

information so that researchers can integrate it with the results of their genetic 

studies. 

 

The GO Consortium was established to formulate and organise a controlled, 

structured hierarchy of species independent annotation terms separated into 

molecular function, biological process and cellular component ontologies (Ashburner 

et al., 2000) which over time has become the largest such resource (du Plessis et al., 

2011). Terms can be represented by a directed acyclic graph, which demonstrates 

the hierarchical relationships between parent and child terms (Gene Ontology 

Consortium, 2001).  

 

Genes are associated to annotations through existing evidence from the literature or 

other databases. Each association has an evidence code that documents whether it 

was based on experimental evidence and the type of experiment (Gene Ontology 

Consortium, 2001) e.g. introducing a mutation to the gene or affecting the 

expression of the gene, or computational information such as sequence orthology or 

sequence alignment with genes that have highly confident functional information. 

Evidence codes are assigned by expert curators of the database who assess the 
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available evidence and therefore can be used as an indicator of the level of 

confidence in that association.  

 

One evidence code exists for gene annotation associations that have not been 

manually curated and only exist as a result of automated annotation (Rhee et al., 

2008). Even though these constitute the vast majority (> 95%) of annotation terms in 

the database (du Plessis et al., 2011, Khatri et al., 2012) some researchers may wish 

to exclude such associations as the quality of the evidence has not yet be assessed. 

Although these are generally classed as unreliable, comparing successive versions of 

the GO database showed that many of these terms were subsequently verified to 

have experimental evidence, further, this proportion was in line with those manually 

curated and assessed to have computation evidence which were then promoted to 

have experimental evidence (Skunca et al., 2012). 

 

Commonly, gene sets of interest are tested to see if they overlap with a biological 

pathway more than would be expected by chance when compared to a background 

list. The choice of the background or reference list is important as it should reflect 

the genes involved in the experiment, not just all genes in the genome as this will 

introduce errors into the results (Rhee et al., 2008). The limitation of this approach is 

that after selecting only the most significant genes, all members of this set are 

considered equal and assumed to be independent (Khatri et al., 2012). More 

complex methods look to incorporate the effect size associated to each gene, by 

treating each pathway as a gene set for which a summary statistic reflecting the 

combined effect size and empirical significance through permutations can then be 

calculated (Subramanian et al., 2005). 

  

1.3.7 Integrating the ‘omics 

As discussed above many different molecular techniques have been used to 

investigate the biological causes of SCZ and BPD. Despite a lot of different datasets 

being published, there is still a paucity of clear facts for SCZ or BPD. In light of this, 

attempts have been made to integrate data from many different approaches 
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including GWAS, transcriptomics (including from multiple tissues and organisms), 

linkage, CNVs and animal models. So far this has involved two approaches, the first is 

a gene discovery methodology and the second is a validation exercise (Niculescu, 

2013).  

 

The first approach uses algorithms to combine information from different sources 

generally producing scores to indicate the strength of evidence across each data 

type which can then be used to rank genes (Patel et al., 2010, Ayalew et al., 2012, 

Zhao et al., 2013). Validation of this approach is shown by genotyping SNPs within 

the genes with the strongest evidence across the sources and testing them an 

independent dataset (Patel et al., 2010, Ayalew et al., 2012, Zhao et al., 2013). An 

alternative approach produced a network of genes with a strong likelihood of 

sharing the phenotype of interest (Gilman et al., 2012). These lists of candidate 

genes can then be used to identify functional pathways and so far have found 

enrichment in processes relating to neurodevelopment (Gilman et al., 2012) and 

glutamate receptor signalling (Ayalew et al., 2012) consistent with gene expression 

studies. 

 

This multifaceted approach is also being incorporated into genetic studies as data 

are first published. One such example is a CNV study that used annotations derived 

from proteomics data as the basis of pathway analyses (Kirov et al., 2012) or recent 

sequencing studies that have incorporated expression and proteomics data to 

characterise the potential risk genes identified in order to validate and interpret 

their findings (Xu et al., 2012, Gulsuner et al., 2013).  

 

Obviously the results of these investigations are completely reliant on the quality of 

the contributing data. Generally they will work best when all genes have been 

studied equally, although attempts have been made to avoid this ‘popularity bias’ by 

implementing a maximum score for each contributing factor (Ayalew et al., 2012). 

Therefore as more high-quality data resources are published these combinatorial 

approaches may prove extremely informative in identifying common themes and 

mechanistic targets for treatment.  
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1.4 Aims and objectives of thesis 

The overall aim of this thesis was to integrate analyses of neurodevelopmental gene 

expression data with GWAS and CNV results for SCZ and BPD to identify functional 

pathways. The research question addressed within this was whether genes whose 

expression showed either spatial or temporal variability were associated with SCZ or 

BPD.   

 

1.5 Outline of subsequent chapters  

Chapter 2 investigates spatial gene expression patterns and alternative splicing 

across the mid-foetal brain to identify associations for SCZ or BPD risk genes 

identified through GWAS and CNV studies. Gene expression characteristics 

associated with either disorder were then used to identify pathways from the GO 

database.   

 

Chapter 3 looks at temporal expression profiles identified in an expression dataset 

covering the full scope of human brain development for SCZ and BPD associated 

genes. Similar to Chapter Two, functional analysis was performed for any expression 

profiles associated to SCZ or BPD.  

 

Finally, Chapter 4 develops the framework of the polygenic model described in 

Section 1.3.2 before calculating polygenic scores based on the gene sets associated 

with SCZ from the expression work. These gene set polygenic scores were then 

tested to see if they predicted SCZ status and whether they were a better predictor 

than scores calculated across all SNPs. 
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Chapter 2: The expression of schizophrenia and bipolar 
disorder risk genes during human foetal brain 
development 

2.1  Introduction 

2.1.1 Background 

The human brain relies on a complex series of molecular mechanisms and 

environmental inputs in order to fully mature. These developmental mechanisms 

start as early as two weeks post gestation (Stiles and Jernigan, 2010) and can be 

extremely vulnerable to disruptions. Such an insult during this period is posited to be 

a factor in the aetiology of both SCZ and BPD (Murray and Lewis, 1987, Weinberger, 

1987, Nasrallah, 1991), and the evidence behind this neurodevelopmental 

hypothesis was discussed in more detail in the Introduction, Section 1.2.  One part of 

this is an increased rate of minor physical anomalies in patients reported in both 

disorders (Akabaliev et al., 2011, Xu et al., 2011), although more consistently so for 

SCZ, which are suggestive of disruptions during foetal brain development (Lobato et 

al., 2001). Insults during this time frame not only lead to the dysmorphogenesis of 

external features but may also predispose the individual to a psychiatric or mood 

disorder in later life (Guy et al., 1983). Therefore this chapter was interested in 

whether expression patterns during foetal brain development are informative to the 

aetiology of SCZ and BPD. 

 

In their study Johnson et al. investigated transcriptional patterns in developing 

human brains. They found that 76% of genes were expressed in at least one brain 

region in mid-foetal brains, of which 33% were differentially expressed and 28% 

showed evidence of alternative splicing across the five major brain structures 

considered: neocortex, cerebellum, hippocampus, striatum and thalamus. The set of 

differentially expressed genes were enriched for human-accelerated conserved 

noncoding sequences, defined as small regions of the genome with more human-

specific substitutions than expected by chance (Prabhakar et al., 2006). This 
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enrichment remained, although to a lesser degree, when excluding genes associated 

with chimpanzee-accelerated conserved noncoding sequences, suggesting that this 

set of genes may be responsible for human-specific attributes (Johnson et al., 2009).  

 

Despite SCZ being associated with reduced fecundity (Power et al., 2013) the 

disorder is still present in today’s society and population prevalence rates appear 

uniform across the globe (Jablensky et al., 1992). As an explanation of these facts, 

SCZ has been proposed to be a consequence of human evolution (Crow, 1997). In 

line with this theory the mutations associated with the ‘speciation events’ that gave 

rise to the appearance of humans would also play a role in the development of the 

disorder. Further, given that the disorder is equally prevalent around the world 

(Jablensky et al., 1992) the associated mutations must have arisen prior to the 

divergence of today’s populations. Therefore, based on this hypothesis and Johnson 

et al.’s findings that genes differentially expressed in the human foetal brain were 

enriched for human-specific noncoding sequences, this chapter looked at risk genes 

for both SCZ and BPD, based on the strongest genetic evidence to date, and 

investigated whether they displayed any characteristic pattern of expression in the 

human foetal brain. 

 

2.1.2 Outline 

Aim 

The research question considered in this chapter was whether genes associated with 

either SCZ or BPD had common expression profiles, either consistent or variable, in 

the human foetal brain.  

 

Datasets 

The primary dataset used in this chapter was that of the Johnson study (Johnson et 

al., 2009) which contained expression data sampled from four human mid-foetal 

brains (18-23 weeks gestation). For each brain, samples were taken from thirteen 

different brain regions, listed in Table 2.1 with their abbreviations, from both 
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hemispheres. These data, referred to as the Johnson dataset, were obtained with 

the Affymetrix Human Exon 1.0 ST chip, which provides expression values at both 

the gene and exon level. Further details on data processing can be found at the end 

of this chapter in the Methods section. Unless referred to otherwise all analyses 

used the gene level expression values. In Johnson et al.’s original study they 

controlled for individual and hybridisation date differences, hence these variables 

were also included in this work. 

 

 Full name Abbreviation 

Neocortex: prefrontal cortex 

Dorsolateral prefrontal cortex DLPFC 

Medial prefrontal cortex MPFC 

Orbital prefrontal cortex OPFC 

Ventrolateral prefrontal cortex VLPFC 

Neocortex: non-frontal regions 

Motor-somatosensory cortex MS 

Parietal association cortex PAS 

Temporal auditory cortex TAU 

Temporal association cortex TAS 

Occipital visual neocortex OCC 

Hippocampus HIP 

Striatum STR 

Mediodorsal thalamus THAL 

Cerebellum CBL 

Table 2.1: Brain regions included in the Johnson dataset with abbreviations. 

 

A second publically available microarray dataset from a study by Kang et al. was used 

for replication, where gene expression values were obtained for human brains 

covering the full range of development (Kang et al., 2011). Like the Johnson dataset, 

multiple regions from both hemispheres were available and the same microarray 

chip was used to derive the expression values. Twelve regions overlapped with the 

Johnson dataset and these are identified in Table 2.2. Throughout the text the 

Johnson abbreviations will be used for common regions but readers can refer to 

Table 2.2 for the nomenclature used in the Kang manuscript.  

 

Five independent individuals that fell in the same gestational period (18-23 weeks) 

as the Johnson dataset were extracted to form a replication dataset, referred to as 

the Kang dataset. The dataset downloaded for this work was already normalised, 
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Kang et al. having used the same software package as the Johnson study. In their 

study Kang et al. included covariates to adjust for sample RNA integrity (RIN) and 

post-mortem interval (PMI), therefore these were taken into account in this work 

also. In order to keep the analyses across the two datasets consistent, ideally the 

same covariates would have been used for both the Johnson and Kang dataset. This 

was not possible as the additional sample information provided with the datasets did 

not contain the relevant data. Johnson et al. included a covariate to control for 

individual differences based on the observation that after brain region, this factor 

contributed the next highest proportion of the variation in the expression data. This 

covariate could have been included in the analyses of the Kang dataset and will 

capture a variety of differences between the samples, including lifestyle differences 

which are hard to measure and factors relating to the post-mortem brain such as 

PMI. However, including it in the initial analyses may remove some the general 

variation we were interested in detecting. 

 

 Full name Abbreviation 
Johnson 

equivalent 

Neocortex: prefrontal 
cortex 

Dorsolateral prefrontal cortex DLPFC DLPFC 

Medial prefrontal cortex MPFC MPFC 

Orbital prefrontal cortex OPFC OPFC 

Ventrolateral prefrontal cortex VLPFC VLPFC 

Neocortex: non-frontal 
regions 

Primary motor cortex M1C  

Primary sensory cortex S1C  

Primary auditory cortex A1C TAU 

Primary visual cortex V1C OCC 

Posterior inferior parietal 
cortex 

IPC PAR 

Superior temporal cortex STC TAS 

Inferior temporal cortex ITC  

Hippocampus HIP HIP 

Amygdala AMY  

Striatum STR STR 

Mediodorsal thalamus THAL THAL 

Cerebellum CBL CBL 

Table 2.2: Brain regions included in the Kang dataset with abbreviations and Johnson equivalents. 

 

Analyses reported in this thesis were based on two different types of genetic 

variants. SNP association results were taken from the PGC studies, the largest GWAS 
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available for both SCZ (Ripke et al., 2011) and BPD (Sklar et al., 2011). The SNP p 

values for each PGC study were combined into two summary statistics for each gene. 

Firstly, gene-wide p values based on Brown’s formula (Brown, 1975) which allows for 

correlations between SNPs were calculated and provided by V. Escott-Price 

(Moskvina et al., 2011). Secondly, the p values of all SNPs within a gene were 

corrected for multiple testing using Simes’ procedure (Simes, 1986) and the most 

significant one taken. Simes’ method was developed to be less conservative than the 

Bonferroni method and was promoted for situations comprising of many highly 

correlated test statistics.  

 

 

Figure 2.1: QQ plot to demonstrate distribution of gene-wide logP. 
Panels A and B are QQ plots plotted with SCZ gene-wide logP; panels C and D are BPD gene-wide logP. 
Panels A and C are Brown’ logP; panels B and D are Simes' logP. 
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Brown’s p values are designed to take into account multiple independent SNP signals 

within a gene, whereas Simes’ p values would be better if a gene has a single highly 

significant SNP result. While consistent enrichment across both types of p value was 

desirable, as they should both be capturing true association signal, stronger 

enrichments with Brown’s p values might suggest that many of the genes harbour 

multiple semi-independent associated variants consistent with a polygenic model. 

Neither type of p value was biased by gene size, important for this study as brain 

genes are generally large (Raychaudhuri et al., 2010). Including p values based on 

these two methods allows an assessment of the performance of each as well as an 

opportunity to establish the robustness of the results reported. All gene-wide p 

values were –log10 transformed and will be referred to as Brown’s logP or Simes’ 

logP. Figure 2.1 presents QQ plots for all four sets of gene-wide p values. These 

figures show that all four sets are inflated and pull away from the null line quite early 

on. It can also be seen that there is greater inflation in the SCZ logP compared to the 

BPD logP, compare panels A and C with B and D respectively, likely reflecting the 

larger sample size and greater power to detect small effects. In addition, the Brown’s 

logP (panels A and B) show less inflation than the Simes’ logP (panels C and D).   

 

The genetic overlap of SCZ and BPD, particularly for common variants, is well 

documented and was discussed in the Introduction Section 1.3.2. The inclusion of 

BPD gene-wide p values in addition to SCZ gene-wide p values provides a level of 

genetic replication; however the PGC samples contained overlapping controls and 

hence were not entirely independent.  

 

CNV data, solely for SCZ, from both the ISC (International Schizophrenia Consortium, 

2008) and MGS (Levinson et al., 2011) collaborations were also included. CNVs found 

in SCZ individuals were compared to see if they overlapped with any control CNV, 

those that did not were classed as singletons. Table 2.3 displays the counts of CNVs 

found in cases and controls as well as the number of deletions, duplications and 

singleton CNVs for both datasets. The ISC study was performed on two different 

chips, Affymetrix 5.0 and Affymetrix 6.0, whereas the MGS was done solely on 

Affymetrix 6.0, therefore chip differences were controlled for in addition to study 
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differences in all analyses. The numbers presented in Table 2.3 do not match those 

in the corresponding manuscripts, as the raw data were available in-house the size 

filter was relaxed by E. Rees to include all CNVs larger than 15kb. These CNVs were 

then annotated with the genes hit by A. Pocklington. 

 

 
All CNVs CNVs that hit at least 1 gene 

Cases Controls Cases Controls 

ISC 7288 7397 3499 3351 

ISC: deletion 3693 3843 1372 1270 

ISC: duplications 3595 3554 2127 2081 

ISC: singletons 1081 n/a 601 n/a 

ISC: singletons & 
deletions 

524 n/a 234 n/a 

ISC: singletons & 
duplications 

557 n/a 367 n/a 

MGS 4847 5366 2353 2549 

MGS: deletion 2738 2964 1086 1111 

MGS: 
duplications 

2109 2402 1267 1438 

MGS: singletons 969 n/a 513 n/a 

MGS: singletons 
& deletions 

516 n/a 235 n/a 

MGS: singletons 
& duplications 

453 n/a 278 n/a 

Table 2.3: Counts of CNVs from ISC and MGS studies. 

 

Outline of analysis 

Various different expression profiles were identified in the Johnson and Kang 

datasets. Sets of genes with generally consistent or variable expression profiles 

across the mid-foetal brain were identified based on summary statistics for each 

gene and tested for an enrichment of SCZ and BPD associated variants. More specific 

variable profiles of genes characteristic of each brain region were also identified and 

tested in a similar manner. Each set of genes was tested for an enrichment of gene-

wide p values based on common variants in the largest GWAS studies. In addition, 

genes with these expression profiles were tested to see if they were hit more 

frequently by CNVs found in SCZ individuals compared to those found in healthy 

controls, and within SCZ CNVs comparing genes hit by singleton CNVs to all 
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remaining case CNVs. This methodology was repeated in a second expression 

dataset for replication and permutations were performed to ascertain if significant 

findings across the datasets were unlikely to have occurred by chance. 

 

P values reflecting evidence of alternative splicing were derived for each gene to 

reflect both global and region specific splicing. Alternatively spliced genes were then 

tested for enrichment with SCZ and BPD common risk variants and SCZ CNVs.  Finally, 

sets of genes that were enriched for SCZ or BPD associated variants were used to 

identify GO pathways relevant for disease aetiology.  

 

2.2  Results 

2.2.1 Global pattern of gene expression and common risk variants 

In order to characterise global expression patterns across the mid-foetal brain, three 

summary scores were calculated for each gene: the mean, scaled mean and 

coefficient of variation. In their work, Johnson et al. showed that many genes were 

co-expressed across the nine neocortical regions they included. To prevent the 

neocortex from being over-represented in the summary statistics the median value 

across all neocortical samples, for all individual and hemisphere pairings, was taken 

for each gene. The mean was then computed across the neocortical medians and all 

non-neocortical samples for each gene, to identify those highly expressed. Alongside 

this a scaled version of the mean was calculated, where it was divided by the 

maximum expression value for that gene. This restricts all values for this metric to 

fall between 0 and 1, with larger values representing more consistent expression 

relative to the maximum value for a given gene. Ultimately this will identify highly 

consistent but not necessarily highly expressed genes.  In addition the coefficient of 

variation was also calculated. This measure was included to identify more variable 

expression profiles and hence, is inversely correlated to the scaled mean. It would be 

expected, therefore, that their results would be correlated also. The scaled mean is 

looking for consistency with its maximum expression value whereas the coefficient 

of variation is just looking for general consistency or variation. For genes where the 

expression values are either highly consistent or highly variable, the ranks from these 



40 
 

metrics should be negatively correlated. However, this may not be the case for genes 

in between these two extremes and agreement between these two metrics would 

present a more robust finding.  These three measures will be referred to as global 

metrics. 

 

A regression approach was used to test for correlations between the gene 

expression global metrics and SCZ or BPD gene-wide p values. The linear model took 

each global metric in turn as the independent variable and either Brown’s or Simes’ 

logP as the dependent variable for SCZ and BPD separately. These results are 

displayed in Table 2.4. 

 

Strongly significant positive relationships were found between mean expression and 

SCZ Brown’s logP (p = 1.07 x 10-10) and BPD Brown’s logP (p = 4.89 x 10-6) indicating 

that genes with high means and therefore highly expressed have smaller association 

p values. An even more significant positive relationship was observed between the 

scaled mean and both SCZ (p = 4.58 x 10-14) and BPD (p = 3.06 x 10-8). Conversely, 

highly significant negative relationships were found when testing the coefficient of 

variation (SCZ p = 3.03 x 10-13; BPD p = 1.99 x 10-7), implying genes not variably 

expressed were associated to these disorders. By definition if a gene is not variably 

expressed it must be consistently expressed. Therefore, all three global metrics have 

identified an enrichment of SCZ and BPD common variants in genes with high 

consistent expression across the foetal brain.  The same pattern of results was seen 

with the Simes’ logP, again with strong levels of significance, although less significant 

than with Brown’s logP.  

 

Despite the high significance of the regression models between the global metrics 

calculated in the mid-foetal brain and gene-wide p values for SCZ and BPD, the 

correlation coefficients were small with absolute values between 0.03 and 0.07. 

Table 2.4 shows that these were marginally higher for SCZ compared to BPD, and 

generally also slightly higher for Brown’s logP compared to Simes’ logP. 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Mean 

P value 1.07 x 10-10 6.25 x 10-8 4.89 x 10-6 2.29 x 10-6 

Correlation 
Coeff. 

0.0562 0.0502 0.0390 0.0438 

+ + + + 

Scaled 
mean 

P value 4.58 x 10-14 1.47 x 10-7 3.06 x 10-8 2.10 x 10-5 

Correlation 
Coeff. 

0.0657 0.0488 0.0473 0.0395 

+ + + + 

Coeff. of 
variation 

P value 3.03 x 10-13 2.98 x 10-6 1.99 x 10-7 6.24 x 10-5 

Correlation 
Coeff. 

-0.0635 -0.0433 -0.0444 -0.0371 

- - - - 

Excluding genes in MHC region 

Mean 

P value 2.69 x 10-15 7.47 x 10-13 3.46 x 10-6 3.66 x 10-6 

Correlation 
Coeff. 

0.0692 0.0670 0.0399 0.0433 

+ + + + 

Scaled 
mean 

P value 4.31 x 10-16 1.05 x 10-9 1.73 x 10-8 1.04 x 10-5 

Correlation 
Coeff. 

0.0711 0.0570 0.0484 0.0412 

+ + + + 

Coeff. of 
variation 

P value 5.27 x 10-15 1.23 x 10-7 5.27 x 10-7 3.49 x 10-5 

Correlation 
Coeff. 

-0.0684 -0.0494 -0.0456 -0.0387 

- - - - 

Table 2.4: Linear regression results and correlation coefficients testing global metrics calculated in the 
Johnson dataset with gene-wide logP. 

Figure 2.2 presents scatterplots of the six relationships between the global metrics 

and Brown’s logP. These associations do not look as convincingly linear as the 

regression p values may suggest, showing a large degree of noise. This is consistent 

with the small correlation coefficients reported in Table 2.4, indicating that although 

these results were highly significant, there are SCZ or BPD risk genes for which this 

relationship is not apparent. Corresponding scatterplots for Simes’ logP can be seen 

in Appendix Figure 7.1 and show similar relationships.  
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Figure 2.2: Scatterplots of relationships between global metrics calculated in the Johnson dataset and 
Brown’s gene-wide p values. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Brown’s 
logP against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and 
D plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 

These analyses were repeated removing genes found in the MHC region which is 

strongly associated to SCZ. Due to the strong LD within this region many genes are 

likely to have highly significant gene-wide p values and may cause spurious results if 
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these genes are also highly co-expressed. Even without the MHC genes the same 

pattern of significance remained, shown in Table 2.4. While the BPD results were not 

greatly altered, the linear relationships with SCZ logP were a couple of orders of 

magnitude more significant and the correlation coefficients slightly stronger. The 

association between SNPs in this region is predominantly with SCZ rather than BPD 

(Bergen et al., 2012) and therefore a greater effect on the SCZ regression models 

would be expected. Interestingly though these results suggest that the MHC region 

was not causing false positive results, in fact it was having an effect in the opposite 

direction and suppressing the signal.  

 

Linear regression assumes that the errors have a normal distribution; despite linear 

regression being fairly robust, the possibility remains that the results from a 

parametric approach with this assumption may be biased. This problem is irrelevant 

in a nonparametric test such as the Mann-Whitney test, as no extra weight is given 

to highly significant p values, just a higher ranking. Therefore a rank-based approach 

was used to validate the results found with the parametric methods. Genes were 

ranked separately by each of the three global metrics before the top n% (5, 10…50%) 

was selected and tested for more significant p values against the bottom 50%.  

 

In Figure 2.3 panel A, a clear enrichment of more significant SCZ Brown’s p values 

can be seen in the sets of highest ranked genes by either the mean or scaled mean, 

i.e. those highly and consistently expressed. The most significant enrichments 

occurred when testing the top 20-50%. For example the strongest enrichment was 

found in the top 45% of genes ranked by mean expression (p = 5.27 x 10-13) and in 

the top 25% of genes ranked by their scaled mean expression (p = 1.70 x 10-15) 

showing that the regression results were not due to outliers. Panel C of Figure 2.3 

shows that enrichments for BPD signals were also present in gene sets other than 

just the top 5 or 10% when ranked by either the mean or scaled mean; therefore 

these regression results were not due to extreme values either. No significant results 

were found for genes with high coefficients of variation, validating the regression 

findings that genes consistently expressed across the foetal brain regions were 

enriched for SCZ and BPD risk variants.  
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Figure 2.3: Results from Mann-Whitney tests for genes ranked by global metrics calculated in the 
Johnson and Kang datasets.  
Panels A & B are results testing top n% of genes ranked by each global metric in turn against the 
bottom 50% for smaller SCZ p values; panels C & D are results testing for smaller BPD p values. Panels 
A & C global metrics were calculated in the Johnson dataset; panels B & D were calculated in Kang 
dataset. Black dashed line is p = 0.05. 

 

The same pattern of results was seen with Simes’ p values, also shown in Figure 2.3, 

although less significantly compared to results with Brown’s p values.  Results were 

generally more significant when testing SCZ p values compared to BPD p values. 

Removing genes in the MHC region had minimal effects on the results of the Mann-

Whitney tests; hence these results are not presented here but can be found in 

Appendix Figure 7.5. 

 

In the analyses presented so far, expression values for all neocortical regions have 

been combined into a single measure. To see if the findings reported above held 
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within the neocortex, the global metrics were calculated across the nine neocortical 

brain regions. Highly significant positive relationships were again found between the 

gene-wide logP and the mean or scaled mean expression, and highly significant 

negative relationships were found with the coefficient of variation.  The correlation 

coefficients associated with these relationships were of a similar strength to those 

presented in Table 2.4 for global metrics calculated across the mid-foetal brain. This 

pattern of results, shown in Table 2.5, was found with both Brown’s and Simes’ p 

values. As with the global metrics calculated across the five major brain structures, 

Figure 2.4 and Appendix Figure 7.2 show that there was a fair amount of noise 

present in the significant relationships presented in Table 2.5. 

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Mean 

P value 2.07 x 10-11 8.36 x 10-12 1.38 x 10-6 1.14 x 10-6 

Correlation 
Coeff. 

0.0583 0.0617 0.0412 0.0424 

+ + + + 

Scaled 
mean 

P value 6.92 x 10-16 5.01 x 10-11 9.62 x 10-7 2.54 x 10-5 

Correlation 
Coeff. 

0.0702 0.0594 0.0419 0.0399 

+ + + + 

Coeff. of 
variation 

P value 1.25 x 10-14 2.22 x 10-11 1.17 x 10-6 6.53 x 10-5 

Correlation 
Coeff. 

-0.0671 -0.0605 -0.0415 -0.0380 

- - - - 

Excluding genes in MHC region 

Mean 

P value 5.86 x 10-16 7.95 x 10-19 9.49 x 10-7 2.80 x 10-6 

Correlation 
Coeff. 

0.0708 0.0806 0.0421 0.0427 

+ + + + 

Scaled 
mean 

P value 1.29 x 10-20 5.92 x 10-17 3.93 x 10-7 7.50 x 10-6 

Correlation 
Coeff. 

0.0813 0.0761 0.0436 0.0408 

+ + + + 

Coeff. of 
variation 

P value 6.68 x 10-18 5.20 x 10-16 5.75 x 10-7 1.85 x 10-5 

Correlation 
Coeff. 

-0.0754 -0.0738 -0.0430 -0.0390 

- - - - 

Table 2.5: Linear regression results and correlation coefficients testing global metrics calculated 
within neocortical regions in the Johnson dataset with gene-wide logP. 
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Figure 2.4: Scatterplots of relationships between testing global metrics calculated within neocortical 
regions in the Johnson dataset and Brown’s gene-wide logP.  
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Brown’s 
logP against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and 
D plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 
 

Nonparametric tests, presented in Figure 2.5, showed these results were not due to 

extreme values as enrichments were found in the top 20-50% with both sets of p 

values, supportive of the general pattern of results. All analyses remained significant 
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after excluding the MHC genes, shown in Table 2.5 and Appendix Figure 7.5. 

Therefore the results presented so far show that genes consistently expressed across 

the neocortex and wider brain structures are enriched for SCZ and BPD common risk 

variants.  

 

Figure 2.5: Results from Mann-Whitney tests for genes ranked by global metrics within neocortical 
regions calculated in the Johnson and Kang datasets. 
Panels A & B are results testing top n% against the bottom 50% for smaller SCZ p values; panels C & D 
are results testing for smaller BPD p values. Panels A & C global metrics were calculated in the 
Johnson dataset; panels B & D were calculated in Kang dataset. Black dashed line is p = 0.05. 

 

Validation in an independent expression dataset 

All analyses were repeated in the Kang dataset to look for replications. Table 2.6 

presents the results of the linear regression analyses for the global metrics 

calculated using the median neocortex values. Significant positive relationships were 

found when testing the mean (SCZ p = 9.87 x 10-8; BPD p = 3.13 x 10-5) and the scaled 
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mean (SCZ p = 1.57 x 10-6; BPD p = 1.59 x 10-5). As in the Johnson dataset a significant 

negative relationship was found with the coefficient of variation, although this was 

only nominally significant with Brown’s BPD logP (SCZ p = 0.000149; BPD p = 0.0108).  

Results with Simes’ logP were consistent with those for Brown’s logP, although the 

negative relationship between the coefficient of variation and BPD Simes’ logP was 

not significant. The correlation coefficients reported in Table 2.6 were of a similar 

magnitude to those reported in Table 2.4 for the Johnson dataset. Figure 2.6 and 

Appendix Figure 7.3 both show that these linear relationships were subject to a lot of 

noise and do not hold for all SCZ and BPD risk genes. 

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Mean 

P value 9.87 x 10-8 1.47 x 10-8 3.13 x 10-5 4.97 x 10-6 

Correlation 
Coeff. 

0.0462 0.0510 0.0354 0.042 

+ + + + 

Scaled mean 

P value 1.57 x 10-6 2.84 x 10-5 1.59 x 10-5 0.000949 

Correlation 
Coeff. 

0.0416 0.0377 0.0367 0.0297 

+ + + + 

Coeff. of 
variation 

P value 0.000149 0.00822 0.0108 0.102 

Correlation 
Coeff. 

-0.0329 -0.0238 -0.0217 -0.0147 

- - - - 

Excluding genes in MHC region 

Mean 

P value 1.22 x 10-11 8.18 x 10-15 1.87 x 10-5 3.83 x 10-6 

Correlation 
Coeff. 

0.0591 0.0703 0.0366 0.0419 

+ + + + 

Scaled mean 

P value 9.12 x 10-8 2.53 x 10-7 9.15 x 10-6 4.49 x 10-4 

Correlation 
Coeff. 

0.0466 0.0467 0.0379 0.0318 

+ + + + 

Coeff. of 
variation 

P value 0.000145 0.00705 0.00885 0.090 

Correlation 
Coeff. 

-0.0331 -0.0244 -0.0224 -0.0154 

- - - - 

Table 2.6: Linear regression results and correlation coefficients testing global metrics calculated in the 
Kang dataset with gene-wide logP. 
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Figure 2.6: Scatterplots of relationships between global metrics calculated in the Kang dataset and 
Brown’s gene-wide logP. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Brown’s 
logP against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and 
D plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 
 

Removing genes from the MHC region caused the SCZ regression models to become 

more significant and had a minimal effect on the BPD regression models, see Table 

2.6. As in the Johnson dataset this showed that these associations were not driven 
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by the highly correlated p values of these genes. Mann-Whitney tests verified the 

regression associations with Brown’s logP and SCZ Simes’ logP, shown in Figure 2.3 

panels B and D. An enrichment of BPD Simes’ p values was found in gene sets ranked 

by their scaled mean, but only a trend for enrichment was found for genes ranked in 

the top 10% by their mean expression value. Removing the MHC genes from the 

Mann-Whitney results had minimal impact, shown in Appendix Figure 7.5. 

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Mean 

P value 9.90 x 10-9 6.58 x 10-10 1.98 x 10-6 1.01 x 10-6 

Correlation 
Coeff. 

0.0497 0.0556 0.0404 0.0440 

+ + + + 

Scaled mean 

P value 8.80 x 10-6 3.66 x 10-5 1.33 x 10-6 6.76 x 10-6 

Correlation 
Coeff. 

0.0385 0.0372 0.411 0.0405 

+ + + + 

Coeff. of 
variation 

P value 6.69 x 10-6 0.00151 4.79 x 10-6 0.000187 

Correlation 
Coeff. 

-0.0390 -0.0286 -0.0389 -0.0336 

- - - - 

Excluding genes in MHC region 

Mean 

P value 9.68 x 10-13 8.63 x 10-17 8.77 x 10-7 4.73 x 10-7 

Correlation 
Coeff. 

0.0622 0.0754 0.0420 0.0456 

+ + + + 

Scaled mean 

P value 1.49 x 10-7 2.42 x 10-8 4.84 x 10-7 2.08 x 10-6 

Correlation 
Coeff. 

0.0458 0.0506 0.0430 0.0430 

+ + + + 

Coeff. of 
variation 

P value 5.13 x 10-8 3.72 x 10-6 1.42 x 10-6 5.17 x 10-5 

Correlation 
Coeff. 

-0.0475 -0.0419 -0.0412 -0.0367 

- - - - 

Table 2.7: Linear regression results and correlation coefficients testing global metrics calculated 
within neocortical regions in the Kang dataset with gene-wide logP. 

Analyses were repeated in the Kang dataset within the neocortical samples and are 

presented in Table 2.7. Significant linear models were found for both disorders, with 

both sets of gene-wide p values for all three global metrics, consistent with the 

results in the Johnson dataset shown in Table 2.5. The results of the rank-based tests 

with Brown’s p values, see Figure 2.5, verified these regression results. Generally 

results testing Simes’ p values showed that the regression associations were not due 

to extreme values although only nominal enrichments were found for BPD in the top 

10, 30 and 50% of genes ranked by their mean expression. Again, scatterplots of 
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these associations, Figure 2.7 and Appendix Figure 7.4, showed that these signals 

were particularly noisy. Rerunning these analyses without the MHC genes did not 

change the pattern of results; see Table 2.7 and Appendix Figure 7.6. 

 

Figure 2.7 Scatterplots of relationships testing global metrics calculated within neocortical regions in 
the Kang dataset and Brown’s gene-wide logP. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Brown’s 
logP against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and 
D plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 
 



52 
 

Summary 

The analyses presented from two independent expression datasets showed that 

genes consistently and highly expressed across the human mid-foetal brain were 

enriched for both SCZ and BPD risk variants. This was found to be the case for gene 

expression across non-neocortex structures as well as across neocortical regions. 

Although no formal correction for multiple testing has been applied to these p values 

they were generally sufficiently small to remain significant even after a conservative 

Bonferroni correction. Adjusting the significance threshold of p < 0.05 for the 12 

tests in the top half of Tables 2.4-7 would require a p value of less than 0.00417 to 

report the tests as significant. Despite these associations being highly significant, 

they were found to be particularly noisy, meaning that this relationship does not 

hold for all SCZ and BPD associated genes. 

 

The initial associations found with a parametric regression model were validated 

with rank-based tests showing that these results were not due to extreme values, 

neither were the associations due to genes in the MHC region. Testing both Brown’s 

and Simes’ gene-wide p values obtained broadly the same results pattern, however 

more significantly and consistently across SCZ and BPD with Brown’s p values.  

 

2.2.2 Regional characteristic gene expression and common risk variants 

So far the variation in expression levels across the mid-foetal brain captured through 

the global metrics has been fairly general. This section investigates genes that exhibit 

specific patterns of variation, looking for those upregulated or downregulated in an 

individual brain region. Such genes were referred to as characteristic genes for that 

region. 

 

Initially a characteristic score was defined based on fold changes between brain 

region expression values (taking the mean expression across individuals and 

hemispheres) to calculate a relative enrichment score for each gene in each region 

(Doyle et al., 2008). Regional characteristic scores were then regressed against the 

gene-wide logP to identify any region(s) where relative expression levels were 
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correlated with disease risk. On closer inspection of the results it was found that 

correlations were typically driven by extreme scores in one or occasionally two 

individuals.  

 

To properly control for inter-individual variation, along with other sample 

differences, a linear model was constructed in which these appeared as covariates 

alongside a binary brain region term that was used to compare the expression values 

of one region to all others. By fitting this model separately for each brain region, 

characteristic scores for each gene were derived from the p value and coefficient 

estimates of this binary term. The magnitude or absolute value of this score 

indicated how strongly characteristic the gene was of that region and the sign of the 

score specified whether there was an increase or decrease in expression relative to 

the average expression across all other brain regions. This formed a scale where 

large positive values of the characteristic score indicated genes with a highly 

characteristic increase of expression in that brain region relative to all other brain 

regions, and large negative values indicated genes with a highly characteristic 

decrease of expression (further detail in the Methods). 

 

Significant number of associated regions across both microarray datasets 

The characteristic scores for each region were tested for a linear relationship with 

the dependent variable Brown’s logP. Significant results with positive coefficients 

signified that upregulated genes in that brain region were associated with more 

significant gene-wide p values, whereas significant results with a negative coefficient 

indicated that downregulated genes in that brain region were associated with more 

significant gene-wide p values. Before considering the results for each brain region, 

the true results were compared to permutations to see whether the number of 

significant models, limited to the 12 brain regions present in both datasets, was 

greater than that expected by chance.  

 

Briefly, in each dataset the sample labels (containing individual, hemisphere and 

region information) were permuted before the characteristic scores were 
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recalculated and tested with SCZ and BPD Brown’s logP. Based on 1000 

permutations, empirical p values were calculated for the number of significant SCZ 

or BPD regression models (p < 0.01) for both expression datasets, shown in Table 

2.8. Empirical p values were also calculated for the number of regions significant 

across both datasets, and in the same direction, for all pairs of permutations, 106 in 

total, presented in Table 2.9.  

 

Johnson 
Number of 

brain regions 
Empirical p 

value 
Brain regions 

Schizophrenia p < 0.01 5 0.553 
CBL, DLPFC, HIP, MPFC, 

THAL 

Bipolar disorder p < 0.01 3 0.521 HIP, MPFC, THAL 

Kang    

Schizophrenia p < 0.01 6 0.533 
CBL, HIP, TAS, THAL, PAS, 

OCC 

Bipolar disorder p < 0.01 5 0.458 
HIP, THAL, MPFC, PAS, 

OCC 

Table 2.8: Empirical p values for the number of significant regression models between regional 
characteristic scores and SCZ or BPD Brown’s logP. 
Based on 12 regions overlapping both datasets and 1000 permutations. 

Across both Johnson and Kang 
Number of 

brain regions 
Empirical p 

value 
Brain regions 

Schizophrenia p < 0.01 3 0.376 CBL, HIP,THAL 

Schizophrenia p < 0.01, in same 
direction 

3 0.096 CBL, HIP,THAL 

Bipolar disorder p < 0.01 3 0.075 MPFC, HIP, THAL 

Bipolar disorder p < 0.01, in same 
direction 

3 0.013 MPFC, HIP, THAL 

Schizophrenia & bipolar disorder p 
< 0.01 

2 0.083 HIP, THAL 

Schizophrenia & bipolar disorder p 
< 0.01, in same direction 

2 0.025 HIP, THAL 

Table 2.9: Empirical p values for the number of significant regression models between regional 
characteristic scores and SCZ or BPD Brown’s logP across both datasets. 
Based on 12 regions overlapping both datasets and 106 permutations. 

The first observation from these results was that events expected to be quite rare, 

for example Table 2.8 shows 5 of 12 regions having a SCZ regression model p value 

less than 0.01, had quite a high empirical p value (p = 0.553).  Expression across 

neocortical regions has previously been shown to be co-expressed (Johnson et al., 

2009), which could reduce the independence of the observations, particularly if the 

associations indicate differential expression between neocortical regions and non-
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neocortical regions.   The second observation was that each dataset taken 

individually did not show more significant associations between brain region 

characteristic genes and disease p values than expected by chance (all empirical p > 

0.05).  

 

When looking for consistent results across datasets, two results were greater than 

expected by chance. BPD Brown’s logP were associated with three regional 

characteristic scores with the same sign of the coefficient: HIP, THAL and MPFC (p = 

0.013). The second significant result was across both disorders where two regions, 

HIP and THAL, were significant in the same direction across both datasets (p = 

0.025). 

 

Table 2.10 shows the results of the regression analyses for the HIP, THAL and MPFC 

in the Johnson dataset adjusted for testing 13 brain regions by Bonferroni’s 

procedure. This shows that genes with decreased expression or downregulated in 

the HIP were enriched for SCZ (corrected p = 1.76 x 10-6) and BPD (corrected p = 

0.0186) Brown’s logP. The THAL characteristic scores were also negatively correlated 

with the SCZ (corrected p = 0.0178) and BPD (corrected p = 0.000534) Brown’s logP 

and hence it was genes downregulated in this brain region that were associated with 

more significant gene-wide p values. Conversely, genes with increased expression or 

upregulated in the MPFC were associated with BPD common variants (corrected p = 

0.0384), although in this dataset the enrichment was stronger with SCZ Brown’s logP 

(corrected p = 2.63 x 10-5). Table 2.10 also shows that characteristic scores for these 

three regions were significant when tested with SCZ Simes’ logP. Nominal evidence 

was found with the BPD Simes’ logP, which did not remain significant after 

correction for 13 brain regions, but was importantly in the same direction. The full 

results for this dataset including all other brain regions can be found in Appendix 

Table 7.1. 

 

The correlation coefficients for these relationships, also presented in Table 2.10, 

were small and of a similar magnitude to those reported with the global metrics in 

Section 2.2.1. The strongest correlation was found between the HIP characteristic 
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scores and SCZ Brown’s logP (r = -0.0459). Generally the correlations were stronger 

for associations with SCZ logP, as was observed with the global metrics in Section 

2.1.1. 

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

MPFC 

P value 
2.02 x 10-6 

(2.63 x 10-5) 
3.52 x 10-5 
(0.000458) 

0.00295 
(0.0384) 

0.0341 
(0.443) 

Correlation 
Coeff. 

0.0414 0.0374 0.0254 0.0192 

+ + + + 

HIP 

P value 
1.35 x 10-7 

(1.76 x 10-6) 
1.78 x 10-6 

(2.32 x 10-5) 
0.00143 
(0.0186) 

0.0283 
(0.368) 

Correlation 
Coeff. 

-0.0459 -0.0432 -0.0272 -0.0198 

- - - - 

THAL 

P value 
0.00137 
(0.0178) 

2.37 x 10-5 
(0.000308) 

4.10 x 10-5 
(0.000534) 

0.00668 
(0.0868) 

Correlation 
Coeff. 

-0.0279 -0.0382 -0.0350 -0.0245 

- - - - 

Table 2.10: Linear regression results and correlation coefficients testing regional characteristic scores 
calculated in the Johnson dataset with gene-wide logP. 
P values in brackets have been corrected for 13 brain regions using Bonferroni’s method. 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

MPFC 

P value 0.997 0.324 
0.00195 

(0.0312) 

0.0203 

(0.324) 

Correlation 

Coeff. 

-3.17 x 10-5 0.00888 0.0133 0.0209 

- + + + 

HIP 

P value 
8.28 x 10-10 

(1.32 x 10-8) 

8.78 x 10-8 

(1.40 x 10-6) 

3.35 x 10-6 

(5.36 x 10-5) 

9.23 x 10-6 

(0.000148) 

Correlation 

Coeff. 

-0.0532 -0.0481 -0.00743 -0.0399 

- - - - 

THAL 

P value 
2.66 x 10-5 

(0.000425) 

6.69 x 10-7 

(1.07 x 10-5) 

4.55 x 10-6 

(7.28 x 10-5) 

0.00293 

(0.0469) 

Correlation 

Coeff. 

-0.0364 -0.0447 -0.00390 -0.0268 

- - - - 

Table 2.11: Linear regression results and correlation coefficients testing regional characteristic scores 
calculated in the Kang dataset with gene-wide logP. 
P values in brackets have been corrected for 16 brain regions using Bonferroni’s method, where 
missing corrected p value was 1. 

Table 2.11 presents the results from the same analyses but for the Kang dataset, 

where the p values were corrected for 16 brain regions. Strong negative correlations 
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were found between the HIP and THAL characteristic scores and both the BPD and 

SCZ Brown’s logP.  It can also be seen that there was a positive correlation between 

the MPFC characteristic scores and the BPD logP only. Results with the Simes’ logP 

supported these associations. Compared to Table 2.10 the results were more 

significant in the Kang dataset. The correlation coefficients are again small, 

suggesting these results do not explain the totality of risk genes for SCZ and BPD. The 

full results for this dataset can be found in Appendix Table 7.2. 

 

Validation with nonparametric tests 

For the same reasons outlined in the global metrics analyses (Section 2.2.1) 

nonparametric tests were used to verify the regression results. In order to test for an 

enrichment in either the upregulated or downregulated set of characteristic genes, 

tests were run as follows. Genes were ranked by the absolute value of their 

characteristic score i.e. the p value for differential expression of that gene in the 

region in question, and the top n% (5, 10…50%) selected. These sets were then split 

into two subgroups, genes with positive characteristic scores indicating increased 

characteristic expression, and genes with negative characteristic scores indicating 

decreased characteristic expression. The relevant subset consistent with the 

coefficient of the significant regression model was then tested against the bottom 

50% of genes i.e. those that were not characteristic of that region in either direction, 

for more significant gene-wide p values. 
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Figure 2.8: Results from Mann-Whitney tests to verify significant regression models with regional 
characteristic scores calculated in the Johnson and Kang datasets. 
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative 
subsets. The subset consistent with the direction of the significant regression model in Tables 2.10 
and 2.11 was tested in a one-sided Mann-Whitney test against the bottom 50%. Panels A - D tested 
the negative subset i.e. genes with decreased expression; panels E & F tested the positive subset i.e. 
genes with increased expression. Panels A & B tested for smaller SCZ p values; panels C - F tested for 
smaller BPD p values. Panels A, C & E characteristic scores were calculated in the Johnson dataset; 
panels B, D & F were calculated in Kang dataset. Black dashed line is p = 0.05. 
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Mann-Whitney tests found significantly smaller SCZ or BPD Brown’s p values in genes 

with decreased expression in either the HIP or THAL in the top 15-50% in both the 

Johnson and Kang datasets; see Figure 2.8 panels A-D. This verifies that the 

regression results reported for these regions were not due to outliers. Across both 

datasets enrichments were also found for smaller BPD Brown’s p values in genes 

with increased expression in the MPFC, panels E-F in Figure 2.8. As this was the case 

for genes in the top 20-50% of characteristic genes for this region, this result was 

also not caused by outliers.  

 

Simes’ p values produced less significant results in the rank-based tests compared to 

Brown’s p values, an observation that was broadly the case in the regression results. 

Mann-Whitney tests with SCZ Simes’ p values were significant for genes with 

decreased expression in the HIP and THAL in the top 30-50% for both datasets. 

Results from testing BPD Simes’ p values were less significant, with a trend for 

enrichment in genes with increased expression in the MPFC found only in the Kang 

dataset. In the top 35-50% of genes ranked by HIP characteristic score in the Kang 

dataset nominal enrichments were found for BPD Simes’ p values, whereas only a 

trend for significance was found in the top 45% in the Johnson dataset. Enrichments 

were found in both datasets for genes with decreased expression in the THAL in the 

top 10-40%. 

 

For the regional characteristic scores showing consistent associations across both 

datasets, combined scores were calculated using expression data from both the 

Johnson and Kang studies.  This was done to reduce the noise present in either 

dataset, as genes detected across both studies were more likely to be true signals. 

All subsequent analyses in this section were performed with these combined 

characteristic scores. Initially these were used to check that the associations were 

not driven by genes in the MHC region. 

 

As expected Table 2.12 shows significant linear relationships between the Brown’s 

logP and combined dataset characteristic scores for the HIP, THAL and MPFC. 

Running the analyses without the MHC genes broadly did not affect the results but 
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did reduce the significance of several models, such as MPFC in BPD and THAL in SCZ. 

Generally the same results pattern was found with Simes’ logP, however for BPD the 

associations were only nominally significant, and after removing the MHC genes the 

MPFC model was no longer significant. While all correlation coefficients were small, 

the strongest correlation coefficient was for the association between HIP 

characteristic scores and SCZ Brown’s logP. 

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

MPFC 

P value   0.000995 0.0362 

Correlation 
Coeff. 

  0.0282 0.0190 

  + + 

HIP 

P value 2.39 x 10-7 5.92 x 10-6 0.000539 0.00285 

Correlation 
Coeff. 

-0.0450 -0.0410 -0.0296 -0.0270 

- - - - 

THAL 

P value 0.000167 7.00 x 10-6 2.91 x 10-5 0.0205 

Correlation 
Coeff. 

-0.0328 -0.0407 -0.0358 -0.0210 

- - - - 

Removing MHC genes 

MPFC 

P value   0.00269 0.0596 

Correlation 
Coeff. 

  0.0258 0.0172 

  + + 

HIP 

P value 5.10 x 10-7 4.40 x 10-6 0.000505 0.00186 

Correlation 
Coeff. 

-0.0440 -0.0419 -0.0299 -0.0284 

- - - - 

THAL 

P value 0.00148 0.000124 3.29 x 10-5 0.0166 

Correlation 
Coeff. 

-0.0279 -0.0350 -0.0357 -0.0219 

- - - - 

Table 2.12: Linear regression results and correlation coefficients testing regional characteristic scores 
calculated across both the Johnson and Kang datasets with gene-wide logP. 

 

The results of nonparametric tests, presented in Figure 2.9, supported the regression 

results with Brown’s p values presented in Table 2.12. Genes with decreased 

expression in the HIP were enriched for more significant SCZ (best p = 1.30 x 10-5 top 

35%) and BPD p values (best p = 0.000903 top 20%). Similar results were found for 

genes with decreased expression in the THAL (SCZ best p = 6.07 x 10-6 top 35%; BPD 

best p = 2.11 x 10-5 top 30%). The top 25-50% of MPFC characteristic genes with 

increased expression were enriched for BPD Brown’s p values (best p = 0.00181 top 
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25%). 

 

Figure 2.9: Results from Mann-Whitney tests to verify significant regression models with regional 
characteristic scores calculated across Johnson and Kang datasets.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative 
subsets. The subset consistent with the direction of the significant regression model in Table 2.12 was 
tested in a one-sided Mann-Whitney test against the bottom 50%. Panels A - D tested the negative 
subset i.e. genes with decreased expression; panels E-F tested the positive subset i.e. genes with 
increased expression. In all panels results are based on characteristic scores calculated across Johnson 
and Kang datasets. Panels A & B tested for smaller SCZ p values; panels C - F tested for smaller BPD p 
values. Panels A, C & E included all genes, panels B, D & F excluded genes in MHC region from 
analysis. Black dashed line is p = 0.05. 



62 
 

Results from testing SCZ Simes’ p values showed only nominal significance when 

testing genes with decreased expression in either the HIP or THAL. A trend for 

significance or nominal significance was found with BPD Simes’ p values in HIP or 

THAL characteristic genes and no significance was found in genes with increased 

expression in the MPFC. Almost identical results were found when removing the 

MHC genes from the nonparametric analyses; see Figure 2.9 panels B, D & F. 

 

Test for independent associations 

Using the combined dataset characteristic scores, the associations for each set were 

tested simultaneously to see if they were independent. The results of linear 

regression models for each pair of scores predicting Brown’s logP only, as this set of 

p values had the most consistent enrichments, are presented in Table 2.13.  

 

Dependent 
variable (Brown’s 

logP) 

Independent variables included in regression model 

HIP characteristic score THAL characteristic 
score 

MPFC characteristic 
score 

P value Coeff. P value Coeff. P value Coeff. 

Schizophrenia 1.11 x 10-5 - 0.00915 -   

Bipolar disorder 0.0112 - 0.000553 -   

Bipolar disorder 0.00307 -   0.00574 + 

Bipolar disorder   0.000555 - 0.0215 + 

Bipolar disorder 0.0216 - 0.00369 - 0.0420 + 

Table 2.13: Linear regression results testing regional characteristic scores calculated across both the 
Johnson and Kang datasets simultaneously to predict Brown’s logP. 
Each row represents a separate regression model. 

 

In each pair of characteristic scores, both remained significant although to a lesser 

degree than when tested individually; compare Table 2.13 to Table 2.12. This 

indicates that the associations of the characteristic scores were not completely 

independent.  A model was also fitted predicting BPD Brown’s logP with all three 

characteristic scores; this showed that the MPFC score explained little of the signal 

when including both the THAL and HIP. Therefore as the HIP and THAL were 

consistent across the two disorders, and largely explain the MPFC signal only these 

will be considered further. 
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Expression of enriched gene sets across brain development 

In order to compare the results of this Section with that found in Section 2.2.1 for 

genes consistently expressed across the mid-foetal brain, the expression of the most 

enriched HIP and THAL characteristic genes was plotted. Based on the results from 

the Mann-Whitney tests those with negative characteristic scores in the top 35% of 

genes ranked by their absolute HIP characteristic score were taken as the most 

enriched set. Figure 2.9 panel A shows that the most significant result with SCZ 

Brown’s gene-wide p values came in the top 35% and panel C shows that the most 

significant results with BPD Brown’s gene-wide p values came in the top 20%, hence 

the top 35% was chosen as this encompassed the top enrichments for both 

disorders. Similarly, the genes with negative characteristic scores in the top 35% of 

absolute THAL characteristic scores were taken as that most enriched set, as the top 

35% was most enriched for smaller SCZ Brown’s gene-wide p values and the top 30% 

for smaller BPD Brown’s gene-wide p values, also shown in Figure 2.9 panels A and C. 

 

Thus far, only a small part of mid-foetal development has been considered, between 

18 and 23 weeks gestation. The Kang replication dataset was taken from a larger 

transcriptome study covering a much wider range of human brain development and 

can be used to look at expression profiles over a longer period of development. For 

each brain region, at each time point, the median expression for the set of enriched 

genes was plotted from embryonic through to adolescence. For comparison a 

corresponding value was calculated based on all remaining genes in the dataset that 

were not in the enriched gene set.  
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Figure 2.10: Expression across development for most enriched characteristic HIP and THAL gene sets.  
The sets of genes with decreased expression in either the HIP or THAL most enriched for smaller SCZ 
Brown’s gene-wide p values and BPD Brown’s p values were identified from Mann-Whitney tests of 
characteristic scores calculated across both the Johnson and Kang datasets; panel A top 35% HIP 
decreased, panel B top 35% THAL decreased.  Median expression values for each time point were 
calculated in more extensive version of Kang dataset, in addition median expression values were also 
calculated for all remaining genes not part of the enriched gene sets labelled as ‘Rest’ in figure. PCW – 
post conception weeks, Mon – months, Y-years, NCTX – neocortex. 

Figure 2.10 shows that the set of enriched characteristic HIP genes do have lower 

expression in the HIP compared to all other regions however, these genes are still 
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relatively highly expressed in this region, consistent with the results of Section 2.2.1. 

In fact the decreased expression in the HIP occurs across all foetal samples up to 22 

PCW. In this set of genes all brain regions had a peak of expression during foetal 

development that dropped off before birth, followed by lower expression in 

postnatal samples. In contrast, genes not part of this enriched set showed a 

relatively consistent profile across development. A similar pattern was seen when 

taking the most enriched set of THAL decreased genes. Despite an obvious decrease 

in expression relative to the neocortical regions in the THAL, these genes were still 

highly expressed in this region. The decrease in expression for the THAL compared to 

other samples was greater than seen in the HIP and remained throughout early 

years.  

 

The expression plots of these two sets of enriched genes corroborates the pairwise 

regression analyses by suggesting there was an underlying common set of genes 

with the same development expression profile. Further, it was evident from these 

graphs that these genes would have higher means than the remaining set of genes 

and suggests some overlap in these results with those in the Section 2.2.1. 

 

Summary 

In summary, two sets of characteristic genes showed enrichment for SCZ common 

variants: genes downregulated in the HIP and genes downregulated in the THAL. 

Both of these gene sets, as well as genes upregulated in the MPFC, were enriched for 

BPD common variants. The association of two sets of characteristic scores (HIP and 

THAL) with SCZ and BPD, in the same direction across both datasets, was significantly 

greater than expected when compared to random permutations. The significant 

enrichment of the MPFC characteristic scores with BPD, in the same direction across 

both datasets, in addition to the HIP and THAL associations was also more than 

expected by chance. All three of these relationships were associated with small 

correlation coefficients, indicating that they do not explain all of SCZ or BPD risk. 

These results were most consistent with the Brown’s p values using both regression 
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and rank-based tests. Simes’ gene-wide p values showed associations in the same 

direction but not always significantly nor consistently across disorders or tests. 

 

The associations of the HIP, THAL, MPFC characteristic genes with BPD variants were 

found to be partly overlapping, with the HIP and THAL associations capturing most of 

the MPFC signal. The SCZ signals in the HIP and THAL characteristic genes were also 

shown to be overlapping. A common variable profile of expression across 

development was identified for the enriched sets of genes characteristic of the HIP 

and THAL, further supporting the idea that they have captured an overlapping set of 

co-regulated genes. The profile was characterised by a peak of expression during 

foetal development followed by a relative decrease in postnatal stages and suggests 

these are developmentally regulated genes, which may be particularly important 

during foetal brain development. 

 

2.2.3 Global pattern of gene expression and schizophrenia structural variants 

In this section CNVs identified in SCZ case control studies were tested to see if they 

hit genes with common expression profiles. For each CNV the global metrics, 

introduced in Section 2.2.1, were collated for each gene hit and the minimum, 

median and maximum calculated. A series of logistic regression models were fitted 

to compare these metrics between CNVs found in SCZ patients and those found in 

controls (formulae for these can be found in the Methods). CNV data from the MGS 

and ISC studies were combined for this analysis, so extra covariates were included to 

control for study and chip differences. In addition a term for the number of genes hit 

by that CNV (limited to those found in the expression dataset) was included to 

control for any CNV size bias, as CNVs that hit more genes are more likely to have an 

extreme score. Each model was fitted for the full set of CNVs, and the deletions and 

duplications separately. 

 

No significant differences were found for any of the global metrics (mean, scaled 

mean or coefficient of variation) when taking the minimum, median or maximum 
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score of the genes hit by each CNV, see Table 2.14. This was also the case when 

testing the deletions and duplications separately. 

 

 Compare genes hit by 
schizophrenia CNVs to control 

CNVs 

Compare singleton 
schizophrenia CNVs to non-

singleton schizophrenia CNVs 

All CNVs Min. Med. Max. Min. Med. Max. 

Mean P value 0.594 0.492 0.431 0.320 0.0852 0.0305 

Coeff. - - - + + + 

Scaled mean P value 0.319 0.523 0.771 0.236 0.182 0.0401 

Coeff. - - - + + + 

Coeff. of 
variation 

P value 0.745 0.453 0.131 0.0700 0.179 0.527 

Coeff. + + + - - - 

Deletion CNVs 

Mean P value 0.644 0.877 0.762 0.205 0.129 0.150 

Coeff. - + + + + + 

Scaled mean P value 0.170 0.573 0.832 0.111 0.0339 0.0198 

Coeff. - - - + + + 

Coeff. of 
variation 

P value 0.931 0.740 0.240 0.0585 0.0928 0.299 

Coeff. + + + - - - 

Duplication CNVs 

Mean P value 0.643 0.377 0.443 0.885 0.364 0.106 

Coeff. - - - + + + 

Scaled mean P value 0.973 0.899 0.562 0.902 0.852 0.511 

Coeff. + + + + - + 

Coeff. of 
variation 

P value 0.745 0.773 0.413 0.480 0.816 0.895 

Coeff. - + + - - + 

Table 2.14: Logistic regression results testing CNV status on global metrics calculated in the Johnson 
dataset. 

 

Studies have shown that not only do SCZ patients have an increased number of 

CNVs, but also that those found in SCZ patients are rare in the general population 

(International Schizophrenia Consortium, 2008, Walsh et al., 2008).  Hence, the 

global metrics for each case CNV, calculated as above, were tested to see if singleton 

CNVs, defined as those that did not overlap with any control CNV, hit genes with 

common expression characteristics. Similar to above, a logistic regression framework 

was used for this analysis, to compare singleton case CNVs to the remaining case 

CNVs.  

 



68 
 

Nominal p values for the maximum mean values (p = 0.0305) and maximum scaled 

mean (p = 0.0401) suggest that singleton SCZ CNVs hit genes more highly and 

consistently expressed compared to more common SCZ CNVs, see Table 2.14. 

Analyses run separately showed that this was not specific to either deletions or 

duplications when testing the mean metric. The median (p = 0.0339) and maximum 

(p = 0.0198) scaled means were significantly higher in singleton deletions compared 

to non-singleton deletions but not when comparing duplications. However these 

results were only nominally significant and would not survive multiple testing. 

 

 Compare genes hit by 
schizophrenia CNVs to control 

CNVs 

Compare singleton 
schizophrenia CNVs to non-

singleton schizophrenia CNVs 

All CNVs Min. Med. Max. Min. Med. Max. 

Mean P value 0.620 0.594 0.589 0.679 0.197 0.0203 

Coeff. - - - + + + 

Scaled mean P value 0.377 0.497 0.473 0.133 0.0430 0.00338 

Coeff. - - - + + + 

Coeff. of 
variation 

P value 0.503 0.457 0.407 0.155 0.332 0.603 

Coeff. + + + - - - 

Deletion CNVs 

Mean P value 0.652 0.333 0.190 0.890 0.617 0.512 

Coeff. + + + + + + 

Scaled mean P value 0.572 0.655 0.660 0.334 0.195 0.0566 

Coeff. - + + + + + 

Coeff. of 
variation 

P value 0.599 0.562 0.699 0.130 0.151 0.269 

Coeff. - - - - - - 

Duplication CNVs 

Mean P value 0.116 0.0829 0.127 0.717 0.221 0.0149 

Coeff. - - - + + + 

Scaled mean P value 0.456 0.284 0.436 0.308 0.128 0.0289 

Coeff. - - - + + + 

Coeff. of 
variation 

P value 0.401 0.221 0.196 0.635 0.911 0.708 

Coeff. + + + - + + 

Table 2.15: Logistic regression results testing CNV status on global metrics calculated in Kang dataset. 

Validation in independent expression dataset 

Repeating these analyses in the Kang dataset, presented in Table 2.15, found no 

significant differences in the global metrics of genes hit when comparing case CNVs 

to control CNVs.  Singleton SCZ CNVs were found to hit genes with higher mean 

expression, testing the maximum (p = 0.0203), and higher scaled mean expression, 
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when testing the median (p = 0.0430) and maximum (p = 0.00338). None of these 

remained significant when limiting the analysis to deletions but when testing the 

duplications both the maximum mean (p = 0.0149) and maximum scaled mean (p = 

0.0289) of the genes hit were significantly higher in the singleton CNVs. 

 

Summary  

No significant differences were found in either dataset when comparing SCZ CNVs to 

those found in healthy controls for the mean, scaled mean or coefficient of variation 

of the genes hit by each CNV. Both datasets provided nominal evidence that 

singleton SCZ CNVs hit genes with increased means and scaled means, which after 

correction for multiple testing would be unlikely to remain significant. Therefore 

further replication of these results would be needed. 

 

2.2.4 Regional characteristic gene expression and schizophrenia structural variants 

Next, SCZ CNVs were compared to control CNVs to see if the genes they hit were 

more characteristic of particular brain regions. For each brain region, the 

characteristic scores for each gene hit by each CNV were collated and the minimum, 

median and maximum were taken. As positive characteristic scores indicated an 

increase of expression in that region and negative scores indicated a decrease of 

expression in that region, for any significant model the sign of the coefficient 

informed which type of characteristic genes were associated. The same regression 

framework from the previous section was used, controlling for study, chip and the 

number of genes hit by each CNV. No significant differences (p < 0.01) were found 

between genes hit by SCZ CNVs compared to control CNVs for any brain region’s 

characteristic scores. Further, no significant results were found when separately 

analysing the deletions and duplications. This was also the case in the Kang dataset 

results; these results can be found in Appendix Tables 7.3 and 7.5. 

 

Singleton CNVs were compared to all remaining case CNVs for each brain region’s 

characteristic scores. After correcting the analyses in both the Johnson and Kang 
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datasets for the number of brain regions tested no regression model was significant 

across both datasets. Hence these results will be discussed no further but can be 

found in the Appendix Tables 7.4, 7.6. 

 

2.2.5 Alternative splicing and common risk variants 

So far the methods used in this chapter for identifying variable expression in the 

foetal brain would not capture whether multiple isoforms of a gene were being 

expressed. The previous analyses of variably expressed genes, in Sections 2.2.1 and 

2.2.2 were based on a composite value of expression taken from multiple transcripts 

for each gene, so it is possible that consistently expressed genes were present as 

alternative isoforms.  

 

The availability of expression data at the exon level from the Affymetrix Human Exon 

chip enabled methods to be employed to detect for alternative splicing events. The 

FIRMA (finding isoforms using robust multichip analysis) algorithm (Purdom et al., 

2008) was used to identify alternative splicing. FIRMA calculates a score for each 

exon-sample pairing based on the residual from the estimation step of the robust 

multichip average (RMA) normalisation procedure to characterise differences 

between the observed and estimated expression values. The benefit of using this 

method was that it enabled comparisons between groups, so both global alternative 

splicing and splicing specific to each brain region could be investigated.  

 

This method was applied separately to each individual in the dataset before being 

combined. Initially, to look at global splicing across the foetal brain, the FIRMA 

scores were summarised into a single value for each exon.  This was achieved by 

fitting a linear model for each exon to see if any brain region had a non-zero 

coefficient. To give each gene an overall splicing p value, all p values from all exons 

and individuals were collated and the best Simes’ corrected one taken. 

 

In order to minimize the number of false positives it has been suggested to remove 

lowly expressed genes prior to detecting alternative splicing (Affymetrix, 2008). The 
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FIRMA method was applied to the raw CEL files, which prevented pre-filtering steps 

from being applied prior to the algorithm itself.  Instead genes with only one exon 

and genes filtered out of the previous analyses as lowly expressed in the foetal brain 

were removed after calculating FIRMA p values before any further analyses. One 

caveat of using the FIRMA method was that potential confounders, such as individual 

and hybridisation date could not be included.  

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Johnson 

P value 0.787 0.419 0.536 0.241 

Correlation  
Coeff. 

0.00236 0.00734 0.00228 0.0107 

+ + + + 

Kang 

P value 0.354 0.637 0.847 0.167 

Correlation 
Coeff. 

-0.00806 0.00426 -0.00165 0.0125 

- + - + 

Table 2.16: Linear regression results and correlation coefficients testing global splicing logP with gene-
wide logP. 

 

The global splicing logP were tested in a regression framework with the Brown’s logP 

to assess if genes with evidence of alterative splicing were enriched for association 

signal. No significant relationship with either SCZ (p = 0.787) or BPD (p = 0.536) 

Brown’s logP was found, shown in Table 2.16. In the Kang dataset none of the 

regression models with either the Brown’s or Simes’ logP were significant.  

 

Brain region splicing p values were also calculated from the FIRMA scores using a 

linear model to compare the scores from one region to all other regions and deriving 

a p value for each exon for each brain region. These were combined into gene level 

brain region splicing p values by selecting the best p value after Simes' correction. 

Each set of brain region splicing logP were then tested in a linear model with the 

Brown’s logP. Across the Johnson and Kang dataset, no set of region splicing p values 

were consistently associated with either SCZ or BPD. Therefore these results will not 

be presented here but can be found in Appendix Tables 7.7 and 7.8. 
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2.2.6 Alternative splicing and schizophrenia structural variants 

The minimum, median and maximum global splicing logP were calculated from the 

genes hit by each CNV to test if they were significantly different between case and 

control CNVs. This was not the case, neither were they significantly different 

between singleton case CNVs and all other case CNVs, Table 2.17.   

 

 
Comparing schizophrenia CNVs to 

control CNVs 

Comparing rare schizophrenia CNVs to 
common schizophrenia CNVs 

All CNVs Minimum Median Maximum Minimum Median Maximum 

P value 0.795 0.643 0.460 0.423 0.477 0.737 

Coeff. - - - - - - 

Deletion CNVs 

P value 0.409 0.520 0.363 0.400 0.419 0.469 

Coeff. - - - + + + 

Duplication CNVs 

P value 0.962 0.932 0.902 0.105 0.140 0.349 

Coeff. + - + - - - 

Table 2.17: Logistic regression results testing CNV status on global splicing logP calculated in the 
Johnson dataset. 

None of the twelve overlapping regions between the two expression datasets had 

significantly different brain region splicing p values between case and control CNVs 

across both datasets; results presented in Appendix Tables 7.9 and 7.11. Significant 

models were found when comparing singleton SCZ CNVs to all other SCZ CNVs, 

although after correction for testing multiple brain regions there were no consistent 

enrichments across the Johnson and Kang datasets. These results will not be 

presented here but can be found in Appendix Tables 7.10 and 7.12. 

 

2.2.7 Functional analysis of genes with enriched expression profiles 

Significant associations were found between SCZ and BPD common variants and 

genes with decreased expression in the HIP or THAL, therefore characteristic scores 

for both of these regions were used to identify functional terms. Annotation terms 

were taken from the GO database (Ashburner et al., 2000) to identify those that 

were enriched for genes with decreased expression in either the HIP or THAL, 

consistent with the direction of the association reported in Section 2.2.2. The GO 
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terms are the largest resource of pathways (du Plessis et al., 2011) with a wide range 

of terms and therefore were used here for a hypothesis free analysis. 

 

The GO terms were filtered to those with between 20 and 2000 genes, leaving 3204 

unique terms that were tested.  A Mann-Whitney test was used for each GO term to 

compare the HIP and THAL characteristic scores for genes annotated to that term 

against all remaining genes, to see if they had smaller characteristic scores. In other 

words these tests looked to identify GO terms with genes that had decreased 

expression in these regions in line the enrichments reported for SCZ and BPD 

variants in Section 2.2.2.  

 

A Bonferroni corrected significance threshold of 1.56 x 10-5 was used to identify 

significant GO terms for the HIP and THAL separately. Many of the GO terms within 

each set are known to be overlapping and therefore the significance of many of the 

pathways was not independent. Within each set the pathways were clustered into 

related groups by identifying the smallest term that captured the signal of any larger 

terms. Genes in the smallest pathway were removed from all larger pathways and 

the enrichment analysis was repeated on the remaining genes in each larger 

pathway. If the larger pathway was no longer significantly enriched for characteristic 

genes, the smaller pathway was said to explain it. Any pathways explained were 

combined with the smaller pathway into a merged pathway, and the process 

repeated until no more pathways could be explained.  

 

The set of terms enriched for lower THAL characteristic scores was the largest with 

134 terms compared to 105 with lower HIP characteristic scores. In each set 32 

terms were found to explain at least one other term, shown in Figures 2.6 and 2.7, 

with seventeen terms common to the two figures, highlighted in yellow. Within each 

panel the terms and clusters have been manually grouped into broad themes, with 

the same themes appearing in both sets. These themes were ‘Chromosome: 

structural modification & repair’, ‘Transcription’ and ‘Post-transcriptional RNA 

processing & transport’. 
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Figure 2.11: Key annotation terms identified from set of significant GO terms with significantly smaller HIP characteristic scores.  
Figure shows set of 32 GO terms that explained at least one other term in the set of significant pathways. Terms that did not explain any other term were not included in 
the Figure. Arrows point from explaining term to the merged pathway it explains i.e. the term pointed to, merged with all other terms it explains. Terms in yellow ovals are 
also present in Figure 2.12; terms in black boxes were grouped into common themes. 
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Figure 2.12: Key annotation terms identified from set of significant GO terms with significantly smaller THAL characteristic scores.  
Figure shows set of 32 GO terms that explained at least one other term in the set of significant pathways. Terms that did not explain any other term were not included in 
the Figure. Arrows point from explaining term to the merged pathway it explains i.e. the term pointed to, merged with all other terms it explains. Terms in yellow ovals are 
also present in Figure 2.11; terms in black boxes were grouped into common themes. *Means merged term explains pathway pointed to. 
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Having found characteristic gene sets that were associated with SCZ and BPD and 

identified pathways enriched in these gene sets, the final step was to test whether 

these pathways captured the association signal of each gene set. The set of genes 

with the strongest enrichment for SCZ and BPD gene-wide p values identified from 

the Mann-Whitney tests, the top 35% for the HIP and the top 35 % for THAL, were 

used as the basis for set-based tests. The HIP decreased genes and the THAL 

decreased genes were then spilt into two groups, those that were annotated to one 

of the significant pathways for that region, and those that were not annotated to any 

of the significant pathways. A set-based test was then performed on each subset to 

look for an association with SCZ or BPD. This set-based test was equivalent to 

Brown’s method for combining non-independent test statistics and in this case 

collapses the SNP p values from a GWAS into a single p value to demonstrate the 

sets’ overall association with a phenotype.  

 

The SNP association p values were taken from the PGC GWAS for SCZ and BPD and 

SNP correlations were calculated from the HapMap data 

(http://hapmap.ncbi.nlm.nih.gov/). At a gene set level, where SNPs from multiple 

genes were combined, it was noticed that sets with more SNPs had more significant 

p values. In order to correct for this, 10000 simulations were performed (see 

Methods for details) and an adjustment made for the number of SNPs in each set.   

 

Genes with decreased expression in the HIP and in pathways enriched for HIP 

decreased genes showed evidence for association with both SCZ (adjusted p = 

0.00611) and BPD (adjusted p = 0.0290) compared to genes not in significant 

pathways, results in Table 2.18. This was also the case for genes with decreased 

expression in the THAL, where genes in significant pathways were associated to both 

disorders (SCZ adjusted p = 0.000804; BPD adjusted p = 0.000463) whereas genes 

with decreased expression in the THAL but not in significant pathways were not. This 

result would not have been expected if either the SCZ or BPD associations or 

functional gene set enrichments with the HIP or THAL characteristic scores were 

spurious, and therefore validates these findings.  

http://hapmap.ncbi.nlm.nih.gov/
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Schizophrenia Bipolar disorder 

Number of SNPs 
in set 

Adjusted p 
value 

Number of 
SNPs in set 

Adjusted p 
value 

Top 35% HIP 
decreased 

genes 

In 
pathways 

40164 0.00611 76007 0.0290 

Not in 
pathways 

44160 0.145 83138 0.0975 

Top 35% THAL 
decreased 

genes 

In 
pathways 

37620 0.000804 69560 0.000463 

Not in 
pathways 

35932 0.134 68408 0.722 

Table 2.18: Results of set-based tests for genes found in HIP and THAL enriched sets split into those 
annotated to a significant pathway and those not. 
Set p values were adjusted for number of SNPs in each set. 

 

Further set-based tests were then used to ascertain which of the pathway groups in 

Figures 2.6 and 2.7 were the most enriched for association signal. For each pathway 

group a set was formed based on the genes in either the top 35% of HIP decreased, 

or the top 35% of THAL decreased, and in any of the pathways within that group. 

After adjusting for the number of SNPs in each set, all pathway groups had a 

significant association with SCZ, with the most significant p value for the 

‘Chromosome: structural modification & repair’ group (adjusted p = 0.000599). For 

BPD, two of the three pathway groups were associated with the ‘Transcription’ 

group being the exception. The most significant group for BPD was the ‘Post-

transcriptional RNA processing & transport’ group (adjusted p = 3.40 x 10-6). 

 

 

Schizophrenia Bipolar disorder 

Number of 
SNPs in set 

Adjusted p 
value 

Number of 
SNPs in set 

Adjusted p 
value 

Chromosome: structural modification 
& repair 

13063 0.000599 24190 0.00475 

Transcription 11390 0.0124 20922 0.381 

Post-transcriptional RNA processing & 
transport 

18032 0.00983 33032 3.40 x 10-6 

Table 2.19: Results of set-based tests based on pathway groups in Figures 2.11 and 2.12. 
Set p values were adjusted for number of SNPs in each set. 
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2.3 Discussion 

2.3.1 Identification of common spatial expression profiles 

This chapter presents the first brain-wide and genome-wide study in the human 

foetal brain for either SCZ or BPD associated genes. In particular, expression profiles 

across multiple regions of the mid-foetal human brain were investigated to identify 

sets of genes associated with SCZ or BPD. The first reported association in Section 

2.2.1 was between genes consistently highly expressed across the mid-foetal brain, 

and both SCZ and BPD common risk variants. This finding was then replicated in an 

independent expression dataset covering the same period of gestation.  

 

While general variation was not enriched for SCZ or BPD common variants, 

enrichments were found in gene sets identified with specific variable expression 

profiles in Section 2.2.2. Genes with decreased expression in the HIP or THAL were 

found to be associated with risk genes for both disorders. In addition, genes with 

increased expression in the MPFC during this period of foetal development were 

associated with BPD. These results were also replicated in an independent 

expression dataset and across the two datasets the probability of these results 

occurring by chance was nominal, hence these appear to be robust results.  

 

The associations of these three sets of characteristic genes were not independent. 

The HIP and THAL enriched genes were shown to have the same variable 

development profile from foetal through to adolescence supporting the idea that 

there was a common underlying gene set driving the associations. This common 

profile, shown in Figure 2.10, had high expression during foetal development and 

lower levels of expression during postnatal stages. The peak of expression of these 

gene sets was observed to occur during the second trimester suggesting these genes 

play a role in development processes active during this time frame, before dropping 

off in the third trimester. The second trimester is an important period of 

neurogenesis. Neurons are produced at a very high rate and even a minor insult can 

significantly affect the maturation of these cells influencing the structure and 
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function of the brain, making this period of brain development particularly 

vulnerable (Miranda, 2012).  

 

Two recently published studies also made use of the BrainSpan publically available 

expression datasets to investigate the spatial and temporal patterns of autism risk 

genes (Parikshak et al., 2013, Willsey et al., 2013). Both used a network-based 

approach to identify genes that showed common expression profiles in the 

developing brain. Willsey et al. looked at co-expression between nine autism risk 

genes, selected as having the strongest evidence for association, and all other genes 

in the dataset. Resulting networks based on co-expression during mid-foetal 

development (10-24 PCW) and in prefrontal regions were enriched for a second set 

of autism risk genes, termed probable risk genes as they were based on weaker 

evidence than the initial high confidence set. This work and the work presented this 

chapter highlights the importance of gene expression in the human mid-foetal brain 

for both SCZ and autism. 

 

In contrast, Parikshak et al. created a weighted gene co-expression network using 

correlations between all pairs of genes in the dataset, and identified distinct 

modules enriched for autism candidate genes that had common developmental 

expression trajectories. Their module M2, and to some degree M3, showed a 

temporal expression profile consistent with that in Figure 2.10. Further, both of 

these modules were enriched for GO pathways relating to the regulation of 

expression including specific terms identified in Figures 2.11 and 2.12 such as ‘zinc 

ion binding’ and ‘histone modification’. The similarity of these findings and those 

presented in this thesis suggest that the developmental trajectory described is not 

specific to SCZ but may be the case for a number of neurodevelopmental disorders 

including both SCZ and autism. 

 

This finding is consistent with an early developmental model for SCZ with 

widespread effects. Prenatal insults associated with SCZ risk are thought to occur 

during this period of gestation. Minor physical anomalies are presumed to be 

markers of aberrant brain development during the first or second trimester as they 
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are formed from the same primordial tissue (Lobato et al., 2001). In particular 

anomalies of the craniofacial region, for which there is evidence of in SCZ (Ismail et 

al., 1998, Weinberg et al., 2007), are posited to be the result of an insult during the 

critical period of 9-16 weeks gestation (Waddington et al., 1998). Differences in 

fingertip ridge count, observed in SCZ, are also thought to be caused by second 

trimester insults (Bracha et al., 1992).  

 

The identification of variable profiles across brain regions and genes highly 

consistently expressed appears contradictory. However, Figure 2.10 shows genes 

identified with variable expression across brain regions still have higher expression 

across the mid-foetal brain compared to all other genes in the dataset. These genes 

would have a higher mean expression value than the remaining genes. The mean 

was one of the global metrics used to identify consistently expressed genes and was 

part of the calculation of both the scaled mean and coefficient of variation. 

Therefore in the mid-foetal brain SCZ and BPD genes in general have higher 

expression that is relatively lower in the HIP and THAL compared to other brain 

regions. Moreover, disruptions in the expression of these genes could have fairly 

global, rather than specific effects on foetal neurodevelopment. Although higher 

gene expression was observed in neocortical regions when compared to other 

regions, in particular the HIP and THAL, there was no support for any particular 

neocortical region being involved in SCZ or BPD pathogenesis.  

 

These associations were found by looking for a correlation between a summary 

expression metric and gene-level summarised p values calculated from GWAS 

results. These gene-wide p values which by definition are found in the interval [0, 1] 

were –log10 transformed to the interval [0, ∞) which emphasises the most 

significant genes, giving them more weight in the regression model used to test for 

associations. This transformation creates an unsymmetrical distribution of the gene-

wide p values which may cause the assumptions of the regression model to no 

longer be satisfied, and can introduce outliers that may cause highly significant but 

noisy associations. In order to minimise the possibility of reporting false positive 
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results, additional nonparametric tests were used to validate any significant 

regression results reported in this chapter.   

 

No consistent results were found for any analyses with SCZ CNVs, this may be 

surprising given CNVs have been shown not only to increase the risk of SCZ but also 

the risk of other developmental disorders. The results here should not be 

interpreted to mean that CNVs do not have an impact in the foetal brain; rather they 

do not appear to have a specific impact. Further, no associations were found 

between genes with evidence of alternative splicing in the foetal brain and either 

SCZ or BPD.  

 

2.3.2 Identification of functional pathways from enriched expression gene sets 

Pathway analysis in Section 2.2.7 identified three groups of terms associated with 

genes with decreased expression in the HIP or THAL: ‘Chromosome: structural 

modification & repair’, ‘Transcription’ and ‘Post-transcriptional RNA processing & 

transport’. All three of these groups imply that these genes are involved in the 

regulation or control of gene expression particularly during the process of 

transcription. Genes with characteristic expression of the HIP and THAL within these 

pathways were found to be associated with SCZ and BPD, therefore this suggests 

that SCZ and BPD risk genes are involved in the regulation of gene expression. The 

cascade of brain development mechanisms is controlled by gene expression 

concentrations, therefore given the temporal profile described above for genes 

enriched for SCZ and BPD common variants, these genes may be involved in the 

control of expression throughout brain development. Furthermore, a disruption 

early on could have consequences later in life. The temporal profile of SCZ and BPD 

genes will be investigated further in the next chapter. 

 

The coherence of the functional results was somewhat noteworthy. Given that GO is 

incomplete, as not all genes have been fully characterised (Khatri et al., 2012), it 

would be expected that some true overlaps would be missing and therefore the 

groupings in Figures 2.6 and 2.7 would not be complete. While the HIP and THAL 
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scores were shown not to be entirely independent, there will be some variation 

between them which may lead to the identification of some spurious terms. 

Considering this, the concordance of the results across both sets increases the 

confidence of these results. Further the fact that the subset of genes with these 

characteristic expression profiles also present in the associated pathway groups 

were enriched for SCZ, and to some extent BPD GWAS signal supports the relevance 

of these categories for SCZ aetiology.  

 

2.3.3 Comparison of results with schizophrenia and bipolar disorder variants 

Given the genetic overlap of common variants discussed in the Introduction Section 

1.3.2 it was not surprising that results were consistent for both disorders, and in fact 

the reason for including both was for genetic replication. Generally there was 

stronger evidence for enrichment of the association signal with the SCZ gene-wide p 

values compared to BPD gene-wide p values. In all likelihood this was due to the 

larger sample size in the SCZ PGC GWAS (approximately 9,400 SCZ cases and 12,500 

controls compared to 7,500 BPD cases and 9,300 controls) giving the study more 

power to detect small effect sizes, which in turn meant there was more power in this 

study to detect associations.  

 

2.3.4 Comparison of results with Brown’s and Simes’ gene-wide p values 

Two sets of gene-wide p values were used in this chapter, based on Simes’ multiple 

correction procedure (Simes, 1986) and Brown’s method for combining correlated 

test statistics (Brown, 1975). Generally the results were more significant and more 

consistent with Brown’s gene-wide p values compared to Simes’ p values. This is 

supportive of a polygenic model for common variants as this suggests that 

recognizing and incorporating multiple, semi-independent association signals within 

genes leads to more significant associations, compared to just using the single best p 

value. 
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2.3.5 Summary of chapter findings 

The original premise of this study was based on the fact that SCZ has been 

postulated as a human specific disorder (Crow, 1997) and sequences associated with 

human evolution were found to be enriched in genes differentially expressed in the 

foetal brain (Johnson et al., 2009).  While enrichments for SCZ risk genes were found 

in specific variable expression patterns, they were not found for general variation. 

Regions identified with human-specific evolutionary signatures have been 

investigated in another study with the PGC data, and no enrichment for SCZ or BPD 

common variants was found (Bigdeli et al., 2013). The authors conjectured that using 

common variants limits the power to investigate this theory, and rarer variants 

identified from sequencing studies may be more appropriate, which may also be the 

case here.  

 

In sum, the findings reported in this chapter suggest that SCZ risk genes play a role in 

the regulation of brain development particularly during foetal stages. Therefore in 

the next chapter, gene expression across the full range of brain development will be 

investigated to see if genes associated to SCZ or BPD have a common temporal 

profile. 

 

2.4  Methods 

All methods described below were completed with the R statistical language unless 

otherwise stated. 

 

Preliminary data processing: Johnson 

A previously published microarray dataset was downloaded as CEL files from the 

National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO), accession number GSE13344. In total 95 samples from up to thirteen brain 

regions for four individuals, from both hemispheres, were hybridised to the 

Affymetrix Human Exon 1.0 chip to obtain genome-wide expression values, these 

data are referred to as the Johnson dataset. Further details on the quality control, 
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assessment of the tissue samples and microarray procedure can be found in the 

original manuscript (Johnson et al., 2009).  

 

Partek Genomics Suite software (Partek GS) was used to process the CEL files into 

expression values.  The RMA algorithm with its default settings was used to 

transform intensity values into exon transcript values. Principal component analysis 

reduced the data into 3 dimensions to detect for outliers. By visual inspection no 

outliers were identified, so all samples were included in the analysis. The Tukey 

biweight one-step algorithm, with default settings, was then used to calculate gene 

transcript scores from the exon transcript values. At this stage the data were 

exported out of Partek GS.  

 

All gene transcripts denoted as core and unique were annotated using messenger 

ribonucleic acid (mRNA) information of the corresponding exon probesets extracted 

from the annotation files provided online by Affymetrix 

(http://www.affymetrix.com/support/technical/annotationfilesmain.affx). These 

were then mapped to Entrez ids in the latest build of the genome (37.3), checking 

they matched the accompanying gene symbol, by a series of python scripts. Any 

Entrez ID annotated to a gene by more than 90% of the possible probesets was kept. 

Genes with multiple or non-unique Entrez IDs were removed, so that each Entrez ID 

was unique in the final dataset. From here gene transcripts will be referred to as 

genes. The gene expression values were filtered on a gene by gene basis to remove 

any genes that were lowly expressed, specifically anything with a median less than 3 

or a maximum less than 5 done by another python script. The final dataset 

comprised of 16,212 genes. 

 

Preliminary data processing: Kang 

The Kang replication microarray dataset, accession number GSE25219, was also 

downloaded from GEO. This dataset contained post-mortem brains from individuals 

throughout development, but only those that fell between 18 and 23 weeks 

gestation were extracted to form the replication dataset. The Kang dataset and 
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Johnson dataset were known to have overlapping individuals; therefore any 

individual in the Kang dataset that matched an individual in the Johnson dataset 

based on age, gender and available brain regions was removed to leave five 

independent individuals. These data were downloaded already normalised, Kang et 

al. having also used Partek GS with the same default settings. The same annotation 

and filtering procedures were applied as described for the Johnson microarray 

dataset. 

Calculating Brown’s gene-wide p values from GWAS results 

Brown’s gene-wide p values were provided by V. Escott-Price having been calculated 

as described in (Moskvina et al., 2011). Briefly, after excluding monomorphic SNPs, 

GWAS p values for all SNPs located within the start and stop position of each gene 

were combined into a single p value using Brown’s method for combining dependent 

tests (Brown, 1975). 

 

Calculating Simes’ gene-wide p values from GWAS results 

Gene locations were downloaded from the NCBI website for build 36.3. SNPs were 

filtered by minor allele frequency (MAF > 0.01) and INFO score (> 0.8) before all SNPs 

located within each gene’s start and stop position along with their association p 

values for SCZ and BPD from the PGC GWAS were collated. Simes’ procedure (Simes, 

1986) for multiple comparisions was applied to all SNP p values and the most 

significant one after correction was taken as the Simes’ p value.  

 

Global metrics across the foetal brain 

In their initial work Johnson et al. included covariates to control for differences 

between individuals and date of hybridisation between samples. For this analysis the 

first step was to regress out the effects of these variables. This was done using a 

linear regression model with the expression value for each gene taken as the 

dependent variable with individual and scan date the independent variables. As the 

residuals are standardised to have a mean of 0 they are unrelated to the original 

expression values, and therefore ranking genes by these values would be effectively 
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random. Hence for each sample the residuals were added to the intercept of the 

model for each gene. A similar procedure was applied to all Kang expression values 

to regress out the effects of RIN and PMI variables, consistent with the covariates 

used in their analysis.  

 

Based on Johnson et al.’s findings explained in the main text, all samples from 

neocortical regions were combined by taking the median expression value for each 

individual, separately for each hemisphere, to replace the individual neocortical 

sample values. For each gene, across all individuals, the mean and scaled mean 

(mean divided by the maximum expression value) were calculated across the 

neocortical medians and non-neocortical samples. The coefficient of variation 

(standard deviation divided by the mean) was calculated separately for each 

individual and then averaged into a single value for each gene, to remove any effects 

of individual variation. In addition, the mean, scaled mean and coefficient of 

variation were calculated as described here but for the subset of neocortical 

samples. 

 

Brain region characteristic scores 

Brain region characteristic scores were derived from a linear model controlling for 

individual, hemisphere as well as the additional confounders specific to each dataset, 

shown in Equation 2.1.  

 

expijk =  individuali +  hemispherek +  confounderijk + brainregionjl 

Equation 2.1 Regression model used to calculate characteristic scores for brain region l, where exp ijk is 
the gene expression value for individual i, in brain region j and hemisphere k, and brainregionjl is a 
binary variable denoting whether that sample came from the brain region l or not i.e. are brain 
regions j and l the same. 

 

In the Johnson dataset an additional covariate was included for hybridisation date, 

whereas for the Kang microarray data the additional covariates included were RIN 

and PMI. The model was fitted separately for each brain region, for each gene across 

all samples. The brain region term was a binary variable indicating whether the 
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expression value was taken from the brain region in question or not. Three samples 

from three individuals were excluded from the model fitting as the hemisphere was 

denoted NA. The characteristic p value was taken as the p value for the binary brain 

region term in the model. A characteristic score was defined for each gene as the –

log10(characteristic p value) for the brain region term multiplied by the sign of the 

coefficient associated with the same term.  

 

For regional characteristic scores found to be associated with either SCZ or BPD 

gene-wide p values, combined characteristic scores were calculated across the 

Johnson and Kang datasets. This used the model in Equation 2.1 and included 

hemisphere and individual covariates. There was no need to include a study 

covariate, as the individual term absorbed these differences.  In addition the extra 

confounders were excluded, as these were not the same across the two datasets. 

 

Alternative splicing - FIRMA 

The FIRMA algorithm was used to identify alternative splicing (Purdom et al., 2008). 

This method was implemented in R as part of the aroma.affymetrix package 

(Bengtsson et al., 2008), following an online vignette provided by the authors 

(http://www.aroma-project.org/vignettes/FIRMA-HumanExonArrayAnalysis), to each 

individual separately as there was no option to include potential confounders.  

 

After generating the FIRMA scores, the authors have proposed using the limma 

package (Smyth, 2005) in R, to fit a linear model and consider F–statistics to see if 

any tissue type, in this case brain region, has a non-zero coefficient. The p values for 

each exon and individual were combined into an overall global splicing p value by 

selecting the best one after Simes’ correction. To calculate brain region splicing p 

values, the FIRMA scores from each brain region were compared to all others with a 

linear model and combined as described for the global splicing p values. Genes with 

only one exon were removed, as were genes lowly expressed prior to testing for 

associations with either SCZ or BPD variants. 
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Testing for enrichment with gene-wide p values 

Mean expression, scaled mean expression, coefficient of variation, brain region 

characteristic scores and FIRMA gene level logP were tested in separate models with 

the PGC gene-wide logP. This was done for all four combinations of disease (SCZ and 

BPD) and summarised p value (Brown’s and Simes’). Some of the SCZ Brown’s p 

values had a value of 0 and could not be log transformed so were excluded from this 

analysis. 

 

Nonparametric Mann-Whitney tests were used for validation of any significant 

regression results. Genes were ranked by mean expression, scaled mean expression, 

coefficient of variation and splicing p values separately and the top 5, 10,…, 50% was 

tested against the bottom 50% in a one-tailed test for smaller gene-wide p values. 

For regional characteristic scores found to be associated with either SCZ or BPD 

across both datasets, genes were ranked by the absolute values of the score and the 

top 5,10,…,50% taken. Each set of genes was then separated based on the sign of the 

characteristic score into two subgroups. If the characteristic score was positive, the 

genes detected had increased expression in that brain region relative to the average 

of all other brain regions. Alternatively if the score was negative the genes had 

decreased expression relative to the other brain regions. Depending on the 

coefficient of the significant regression model the appropriate subset was tested 

with a one sided Mann-Whitney test for smaller gene-wide p values against genes 

ranked in the bottom 50% by absolute characteristic score. 

 

Overlap of significantly associated regions across datasets 

Brain regions not present in both the Johnson and Kang datasets were removed for 

this analysis leaving 12: DLPFC, MPFC, OPFC, VLPFC, TAU, TAS, PAS, OCC, HIP, THAL, 

CBL and STR. Separately for each dataset the sample labels, containing region, 

individual and hemisphere information, were permuted 1000 times and the 

characteristic regression model in Equation 2.1 fitted for each region. Characteristic 

scores were calculated as for the true data and tested with a linear regression model 

predicting SCZ and BPD Brown’s logP for each brain region.  
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Empirical p values were calculated for each dataset by counting how many times in 

the 1000 permuted datasets, the same number or more, significant models occurred 

(p < 0.01). All pairs of permutations (106 in total) were then considered and the 

number of regions significant in both datasets and in the same direction was 

counted so that empirical p values could be calculated. In addition, the number of 

regions significant for both SCZ and BPD, in the same direction across both datasets, 

was also counted. 

 

CNV logistic regression 

CNVs from the ISC (International Schizophrenia Consortium, 2008) and MGS 

(Levinson et al., 2011) study were provided annotated with the genes hit by each by 

A. Pocklington based on builds 35.1 and 36.3 respectively. For each CNV the 

corresponding global metrics, characteristic scores and –log 10 FIRMA gene-level 

splicing p values for each gene hit were taken, and the minimum, median and 

maximum identified. Only CNVs that hit genes found in the expression datasets were 

used for these analyses. In order to test for a significant difference in each of these 

metrics the following logistic regression model was fitted across the combined set of 

CNVs from the ISC and MGS. The p value was taken from the M(genes hit) term and 

the coefficient considered to identify the direction of any associations. Separate 

models were fitted for all CNVs in addition to the deletions and duplications subsets.  

 

 

case CNV = M(genes hit) +  N + study + chip 

Equation 2.2 Logistic regression model to test if genes hit by SCZ CNVs have common characteristic 
profile, where case CNV is the case status of the individual the CNV was found in, M(genes hit) is 
either the minimum, median or maximum metric of the genes hit and N is the number of genes in the 
expression dataset hit by the CNV. 

Each SCZ CNV was compared to all control CNVs in the ISC and MGS datasets to see if 

there was any overlap with any control CNV or was unique to SCZ cases. Those that 

did not overlap with any control CNV were classed as singletons. These singleton 
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CNVs were then compared to all remaining SCZ CNVs with a logistic regression model 

defined as follows. 

 

singleton CNV = M(genes hit) +  N + study + chip 

Equation 2.3 Logistic regression model to test if genes hit by singleton SCZ CNVs have common 
characteristic profile, where singleton CNV denotes whether the CNV was singleton or not, M(genes 
hit) is either the minimum, median or maximum metric of the genes hit and N is the number of genes 
in the expression dataset hit by the CNV. 

 

As with the previous CNV logistic regression model, the p value was taken from the 

M(genes hit) term and the coefficient considered to identify the direction of any 

associations. This model was fitted for all CNVs, as well as deletions and duplications 

separately. 

 

Functional analysis 

Using the HIP and THAL combined characteristic scores (those calculated across both 

the Kang and Johnson datasets) functional pathways from the GO database were 

tested to identify those with genes with decreased expression in either the HIP or 

THAL. A file containing annotation categories and their associated genes was 

provided by P. Holmans. Each annotation term was tested with a one-sided Mann-

Whitney test to see if genes within that category had lower HIP or THAL 

characteristic scores than genes not in the category. Only genes annotated to at least 

one GO term and terms with between 20 and 2000 genes were considered in these 

Mann-Whitney tests. 

 

Significant terms identified from a Bonferroni corrected p value of 1.56 x 10-5 were 

combined into groups of related terms, to identify the predominant functions 

represented. In each set the smallest pathway was selected and all other pathways 

with any overlapping genes identified. The Mann-Whitney test was rerun for each of 

the larger pathways, removing any genes that overlapped with the smaller pathway 

to see if it remained significant (p < 0.01). If it did not, the smaller pathway was said 

to explain the larger pathway. All explained larger pathways were combined with the 
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smaller pathway they were explained by into a merged pathway and the process was 

repeated until no more pathways could be explained.  

 

Set-based tests 

Genes with decreased expression in the top 35% of HIP and THAL characteristic 

genes were identified as the most significantly enriched sets from the Mann-Whitney 

tests in Figure 2.9 for both SCZ and BPD Brown’s p values. Each set was split into two 

groups, those that overlapped with a significant GO pathway found with that 

characteristic score and those that did not. For both subsets, in pathways and not in 

pathways, set-based p values were calculated. In addition each group of terms in 

Figures 2.6 and 2.7 had a set-based p value calculated for genes that intersected 

with either the top HIP or THAL enriched sets. 

 

GWAS results from PGC SCZ and BPD were filtered to remove SNPs with MAF less 

than 0.01, INFO score less than 0.8 and all SNPs in the MHC region (chr6:25000000-

35000000). All remaining genic SNP p values were corrected for genomic inflation. 

Set-based p values were calculated from these corrected p values using the 

undocumented –set-screen command in PLINK (Brown, 1975, Purcell et al., 2007, 

Moskvina et al., 2011). HapMap genotype data release 23 for Europeans only were 

downloaded (http://hapmap.ncbi.nlm.nih.gov/) and used for the LD statistics 

involved in the calculation.  

 

Simulations for set-based tests 

After observing a correlation between set p value and the number of SNPs in each 

set, simulations were used to adjust the set p values. Simulated sets with between 

20 and 3000 random genes were created and a set-based p value calculated for 

each. A regression model was then fitted to predict the set log p value from the 

number of SNPs. Using this relationship, for each true set the predicted log p value 

was calculated and subtracted from the true log p value. If the residual was positive 

i.e. the true p value was more significant than the predicted p value then the residual 

http://hapmap.ncbi.nlm.nih.gov/
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was unlogged to derive the adjusted p value.  A separate set of simulations and 

adjustment formula was performed for the PGC SCZ and the PGC BPD. 
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Chapter 3: Expression patterns of schizophrenia and 
bipolar disorder risk genes throughout human brain 
development 

3.1 Introduction 

3.1.1 Background 

The human brain continues to develop throughout postnatal life (Stiles and Jernigan, 

2010). During early years the brain rapidly increases in volume (Dobbing and Sands, 

1973, Matsuzawa et al., 2001, Knickmeyer et al., 2008), while synaptogenesis and 

pruning modify connectivity throughout the first two decades of life (Glantz et al., 

2007). Therefore, as the brain is still developing through the period of onset for SCZ 

and BPD in adolescence or early adulthood it is reasonable to look at expression 

across these stages in addition to the earliest stages of brain development.   

 

Kang et al. conducted a study covering the full range of brain development including 

foetal post-mortem brains and found 86% of genes surveyed were expressed in at 

least one region in one of their defined development stages (Kang et al., 2011). 

Almost 90% of these expressed genes were differentially expressed across 

development stages with the major differences occurring between foetal stages and 

either postnatal or adult stages. An accompanying study, based on more individuals 

but with just one prefrontal cortex sample per individual, showed that the highest 

rates of change in expression occurred during foetal development (Colantuoni et al., 

2011).  

 

Results from Chapter 2 found that genes enriched for either SCZ or BPD common 

variants were highly expressed in the mid-foetal brain. Visual inspection of the 

median expression of these genes across development showed a variable profile 

with peak expression values during the second trimester and a drop in expression 

during the third trimester. In this chapter a more formal analysis was conducted to 

see if genes associated with either SCZ or BPD were enriched in sets of genes with 
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common developmental expression profiles. The findings in the previous chapter 

suggest that SNPs contribute to prenatal expression, however in this chapter all 

stages across the full range of human life were considered to see if they also 

contributed to the expression patterns in other stages of development such as 

adolescence. 

 

3.1.2 Outline 

Aim 

In this chapter, genes with variable profiles across the full range of human brain 

development were tested for enrichment of SCZ or BPD risk genes, in order to 

characterise a developmental expression profile. Results from Chapter 2 suggest that 

expression patterns during prenatal stages will be important for SCZ and BPD. Both 

SCZ and BPD present symptoms around adolescence coinciding with the maturation 

of brain structures, such as the prefrontal cortex, associated with the executive 

functions that are commonly impaired in SCZ (Orellana and Slachevsky, 2013) 

therefore differences at this time point would also be of interest.  

 

Datasets 

BrainSpan: Atlas of Developing Human Brain (http://www.brainspan.org) is a 

publically available internet resource providing RNA-Seq expression data to enable 

studies of the developing brain transcriptome. This resource contains gene 

expression data on 41 individuals from 8 PCW to 41 years with up to 16 different 

brain regions for each individual. Microarray expression data taken from the Kang et 

al. study introduced in the previous chapter were also used. This dataset provided 

expression values for multiple brain regions, from both hemispheres, for 57 

individuals from embryonic to late adulthood (Kang et al., 2011). Almost all of the 

BrainSpan individuals were also present in the Kang dataset; therefore this was used 

for technical not biological replication.  
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RNA-Seq data are generated through the direct sequencing of transcripts. The 

resulting data are more reliable and accurate than that of microarrays, which suffer 

from cross hybridisation and are limited to detecting the transcripts represented on 

the chip (Wang et al., 2009). In both datasets individuals were classified into 15 

development stages from embryonic to late adulthood as defined in the original 

Kang et al. manuscript, shown in Table 3.1. No individuals in the BrainSpan data were 

part of the embryonic, middle adulthood or late adulthood stages.  

 

Development stage Time period Development stage Time period 

Embryonic [4 pcw, 8 pcw) 
Neonatal and early 

infancy 
[birth, 6 mon) 

Early foetal A [8 pcw, 10 pcw) Late infancy [6 mon, 12 mon) 

Early foetal B [10 pcw, 13 pcw) Early childhood [12 mon, 6 yr) 

Early mid-foetal A [13 pcw, 16 pcw) 
Middle and late 

childhood 
[6 yr, 12 yr) 

Early mid-foetal B [16 pcw, 19 pcw) Adolescence [12 yr, 20 yr) 

Late mid-foetal [19 pcw, 24 pcw) Young adulthood [20 yr, 40 yr) 

Late foetal [24 pcw, 38 pcw) Middle adulthood [40 yr, 60 yr) 

  Late adulthood [60 yr, ] 

Table 3.1: Development stages as defined by Kang et al. 
pcw – post conception weeks, mon – months, yr- years. 

 

GWAS data from the SCZ and BPD PGC studies (Ripke et al., 2011, Sklar et al., 2011), 

summarised as described in Chapter 2 into Brown’s and Simes’ gene-wide p values, 

were also used in this chapter to test for associations. In addition, GWAS data from 

similar large studies for Alzheimer’s disease (Harold et al., 2009), and Parkinson’s 

disease (UK sample from (Nalls et al., 2011)) were combined into gene-wide p values 

using Brown’s method by V.Escott-Price and permission given for use. All 

summarised p values were -log10 transformed and shall be referred to as logP. CNV 

data from the ISC (International Schizophrenia Consortium, 2008) and MGS 

(Levinson et al., 2011) studies were also included as an alternative type of variant, to 

test for enrichment in a manner similar to that of the previous chapter.  
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Outline of analysis 

Temporal expression patterns were quantified using regression in a similar fashion to 

the brain region analysis of Chapter 2. Characteristic scores for each gene in each 

development stage were derived from linear models, to indicate whether genes 

were upregulated or downregulated during each period. These were tested for 

relationships with SCZ and BPD gene-wide logP and genes hit by SCZ CNVs. 

 

One unifying explanation of the polygenic nature of SCZ or BPD whereby many 

variants that only slightly increase an individual’s risk of SCZ or BPD are distributed 

across both genes and the genome, is that these variants work in combination and 

affect common pathways or mechanisms (Sullivan, 2012). In order, therefore, to 

have a noticeable influence it would be expected that risk genes would be co-

expressed. This was tested by taking genes highly co-expressed with risk genes 

identified from the PGC GWAS, the most powerful study and therefore most likely to 

be true associations, to investigate if they were enriched for association signal. If 

enrichment was found in the co-expressed gene sets their developmental profile 

could be looked at and results compared with that of the previous analysis of 

development stage characteristic genes, ideally looking for a convergent profile. 

 

All these methods were performed initially in the BrainSpan RNA-Seq dataset and 

followed up in the Kang microarray dataset. Both parametric and nonparametric 

tests were used to validate results. Functional analysis was then performed on genes 

enriched for SCZ or BPD variants to elucidate potential mechanisms and interpret 

these results. 

 

3.2 Results 

3.2.1 Development stage characteristic gene expression and common risk variants 

In Chapter 2, genes with expression characteristic of each brain region in the foetal 

brain were identified. In this chapter a very similar approach was used in the 

BrainSpan RNA-Seq dataset to identify genes with an increase or decrease of 
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expression during each development stage described in Table 3.1, relative to all 

other time points. Here characteristic scores, defined in the same way as the 

previous chapter, were taken from a linear model with a binary development stage 

term and an additional covariate controlling for brain region differences.  

 

For each development stage, a linear regression model was used to test for a 

significant association between its characteristic scores and Brown’s logP. Figure 3.1 

panel A shows these results, where positive relationships indicating upregulation are 

represented by bars above the origin and negative relationships indicating 

downregulation are represented by bars below the origin. There was a clear pattern 

to these results, which broadly suggests that SCZ risk genes are upregulated in early 

and mid-foetal stages after which their expression levels decrease until early 

childhood during which they are downregulated. Nine of the twelve stages had 

significant linear relationships with SCZ Brown’s logP after correcting for testing 

twelve models. In particular the most significant enrichments were found in genes 

characteristic of early childhood (corrected p = 1.55 x 10-15) and early mid-foetal A 

(corrected p = 9.36 x 10-9). When testing BPD Brown’s logP, the directions of effect 

were consistent with the results for SCZ for ten stages, overall showing a parallel 

pattern of results, although less significantly. Only two stages were significant after 

correcting the number of development stages tested, both of which were also 

significantly associated with smaller SCZ p values.  As in Chapter 2, the correlation 

coefficients associated with these significant relationships were small, all absolute 

values < 0.07; see Appendix Table 8.1. Generally these were larger for SCZ logP than 

BPD logP consistent with the higher number of significant developmental stages. 

 

The same pattern of enrichment was seen across all stages when testing SCZ Simes’ 

logP instead of Brown’s logP, see Figure 3.1 panel B. For SCZ seven stages had 

significant regression models, all of which were significant with the Brown’s logP in 

the same direction. Early childhood (corrected p = 1.49 x 10-7) and early mid-foetal A 

(corrected p = 1.36 x 10-7) were again the most significant stages. For BPD although 

no regression models were significant after correcting for twelve development 
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stages, the directions of effect were consistent with the SCZ results and supported 

the pattern described.  

 

Figure 3.1: Linear regression results testing development stage characteristic scores calculated in the 
BrainSpan RNA-Seq dataset. 
P values were –log10 transformed and multiplied by the sign of the coefficient, therefore bars above 
the origin indicate positive regression coefficients; bars below the origin indicate negative regression 
coefficients. Panel A tested Brown’s logP; panel B tested Simes’ logP. All p values were corrected for 
12 development stages using Bonferroni’s method. Black dashed line is p = 0.05. 
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As in Chapter 2 rank-based tests were used to verify the associations reported 

between characteristic scores and gene-wide p values with a regression approach. 

Mann-Whitney tests showed that genes with increased expression during foetal 

development and genes with decreased expression in postnatal stages were 

enriched for smaller gene-wide p values; see Appendix Figures 8.1 and 8.2. All 

significant regression models in Figure 3.1 were verified and shown not to be due to 

extreme values, supporting the results profile already described.  

 

As in the previous chapter these analyses were repeated removing genes located in 

the MHC. While this reduced the significance of some of the linear regression 

models, the overall results profile remained. The impact on the Mann-Whitney tests 

was minimal and hence it can be concluded that this results pattern was not due to 

the correlated association of genes in the MHC, results presented in Appendix 

Figures 8.3-8.5. 

 

Comparison with other disorders 

The above analyses suggest that SCZ risk genes have a variable profile across brain 

development with increased expression during mid-foetal stages and decreased 

expression from birth. Findings with BPD p values were only nominally significant but 

consistent with this profile. In this section other psychiatric disorders were tested to 

assess whether the association of a developmental expression profile was specific to 

SCZ and BPD. Parkinson’s disease and Alzheimer’s disease are adult 

neurodegenerative disorders with onset much later than SCZ and BPD, rarely 

occurring before 50 for Parkinson’s (de Lau and Breteler, 2006) or 65 for Alzheimer’s 

disease (Reitz et al., 2011), therefore Brown’s p values for these diseases were used 

as negative controls.  

 

No significant results were observed for Parkinson’s Brown’s logP, shown in Figure 

3.1 panel A. Initially Alzheimer’s disease Brown’s logP were associated with genes 

with increased expression during early childhood (corrected p = 6.93 x 10-7), 
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although this was not validated with the Mann-Whitney tests. Further investigation 

found that the regression signal was biased by two highly significant Brown’s logP for 

APOE and APOC1. When these genes were removed from the analysis there were no 

significant enrichments for Alzheimer’s disease logP. This advocates the use of both 

parametric and nonparametric approaches to verify that associations were not due 

to extreme values.  

 

Technical validation with microarray data 

Characteristic scores were also calculated for each development stage in the Kang 

microarray dataset from linear models that included extra covariates for 

hemisphere, PMI and RIN. Figure 3.2 presents the results of testing for enrichment 

with these characteristic scores. These results showed that genes with smaller SCZ 

Brown’s p values were upregulated in early foetal development and downregulated 

during early childhood, consistent with the results in the RNA-Seq dataset. Results 

with BPD Brown’s p values were consistent with risk genes being downregulated 

during middle and late childhood. In contrast to Figure 3.1, genes upregulated during 

adolescence and young adulthood were enriched for more significant SCZ p values 

which was opposite to the direction of effect reported in the RNA-Seq dataset. 

Therefore, although the microarray data during early foetal B and childhood was 

coherent with the results described in the RNA-Seq dataset, the results profile across 

the development stages was not technically validated across the two datasets. 

 

Results testing Simes’ p values in Figure 3.2 panel B were broadly consistent with 

downregulation during early childhood for SCZ risk genes. Interestingly, early mid-

foetal B characteristic scores were positively associated with Simes’ SCZ logP rather 

than early foetal B which were associated with Brown’s SCZ p values. Although there 

was no association with young adulthood scores, there was an enrichment in genes 

with decreased expression during late adulthood.  BPD Simes’ p values were also 

associated with genes downregulated during late childhood consistent with that 

found with Brown’s p values. Mann-Whitney tests with both Brown’s and Simes’ p 

values verified most of these findings; see Appendix Figures 8.6 and 8.7.  
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Figure 3.2: Linear regression results testing development stage characteristic scores calculated in 
Kang microarray dataset.  
P values were –log10 transformed and multiplied by the sign of the coefficient, therefore bars above 
the origin indicate positive regression coefficients; bars below the origin indicate negative regression 
coefficients.  Panel A tested Brown’s logP; panel B tested Simes’ logP. All p values were corrected for 
15 development stages using Bonferroni’s method. Black dashed line is p = 0.05. 
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Figure 3.3: Linear regression results testing development stage characteristic scores calculated in 
Kang microarray dataset, excluding MHC genes.  
P values were –log10 transformed and multiplied by the sign of the coefficient, therefore bars above 
the origin indicate positive regression coefficients; bars below the origin indicate negative regression 
coefficients. Analysis was run excluding MHC genes. Panel A tested Brown’s logP; panel B tested 
Simes’ logP. All p values were corrected for 15 development stages using Bonferroni’s method. Black 
dashed line is p = 0.05. 
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Removing genes from the MHC region produced a similar profile of results, however 

genes with increased expression in foetal development or decreased expression 

during early postnatal years were no longer significantly enriched for SCZ Brown’s 

logP, see panel A of Figure 3.3. There was, however, still enrichment for BPD Brown’s 

logP in genes with decreased expression during late childhood. Further, there was 

still an enrichment for more significant SCZ Simes’ p values in genes with increased 

expression during mid-foetal development, see panel B of Figure 3.3. Mann-Whitney 

tests broadly supported the significant associations in Figure 3.3; see Appendix 

Figures 8.8 and 8.9. Therefore in this dataset, the MHC genes appear to be having a 

greater effect on the results. 

 

Effect of post-mortem interval covariate 

Two potential confounders associated with the quality of the post-mortem brain 

samples were included when calculating the characteristic scores. One of these, PMI 

was observed to correlate with the age of the sample, and therefore may have been 

removing some of the temporal effects the characteristic scores were designed to 

capture. To examine the impact of this, characteristic scores were recalculated 

omitting this variable and tested as previously described. 

 

Excluding the PMI variable produced a results profile more in line with that found in 

the RNA-Seq dataset, see Figure 3.4. Genes upregulated during early and mid-foetal 

development and genes downregulated in early postnatal years were enriched for 

smaller SCZ Brown’s p values. The results testing BPD p values were consistent with 

this profile, as were results testing Simes’ logP. Again, the correlation coefficients, 

shown in Appendix Table 8.5 were small, all absolute values < 0.05, suggesting that 

these expression patterns are not true for all risk genes. Rank-based tests verified all 

significant regression models; Appendix Figures 8.10 and 8.11. Therefore, the PMI 

covariate does appear to absorbing some of the temporal expression profile. 
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Figure 3.4: Linear regression results testing development stage characteristic scores calculated in 
Kang microarray dataset without PMI covariate. 
P values were –log10 transformed and multiplied by the sign of the coefficient, therefore bars above 
the origin indicate positive regression coefficients; bars below the origin indicate negative regression 
coefficients. Panel A tested Brown’s logP; panel B tested Simes’ logP. All p values were corrected for 
15 development stages using Bonferroni’s method. Black dashed line is p = 0.05. 
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Removing genes located in the MHC region did reduce the significance of some of 

the regression models, but the same broad pattern was present indicating that 

genes outside of the MHC region associated to SCZ had increased expression in mid-

foetal stages and decreased expression after birth, presented in Appendix Figure 

8.12. These associations without the MHC genes were also verified with Mann-

Whitney tests, see Appendix Figures 8.13 and 8.14. 

 

These results do suggest that the PMI covariate was removing some of the temporal 

effects, however it was not possible to disentangle whether the temporal expression 

profiles enriched for SCZ variants were genuine or due to the differences in PMI 

between the samples.  

 

Test for independent associations 

So far each characteristic profile has been considered separately and a general 

pattern of results has been found, where genes with increased expression during 

early and mid-foetal development, and genes with decreased expression in postnatal 

stages were associated with SCZ common variants. As characteristic scores were 

calculated relative to the expression in all other stages, they were to some degree 

correlated; therefore the reported associations may be correlated also. In the RNA-

Seq dataset the strongest enrichment was found with early childhood scores 

(uncorrected p = 1.29 x 10-16). The eight other significant stages were tested in a 

pairwise manner alongside the early childhood scores to see whether both scores 

remained significant and the associations were independent. 

 

Table 3.2 shows that in almost all models (each one represented by a row) the early 

childhood scores remained highly significant whereas the paired characteristic scores 

did not. The exception was late foetal, which also remained significant. This showed 

that the associations demonstrated in Figure 3.1 generally were not independent, 

and were detecting enrichment in similar sets of genes which had increased 

expression through foetal development followed by a decrease through birth and 

early postnatal years to the lowest expression values in early childhood. 
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Development stage 
Development stage Early childhood  

P value Coeff. P value Coeff. 

Early foetal B 0.569 - 1.66 x 10-13 - 

Early mid-foetal A 0.179 + 1.22 x 10-8 - 

Early mid-foetal B 0.359 + 3.56 x 10-10 - 

Late mid-foetal 0.329 + 3.79 x 10-13 - 

Late foetal 0.00206 - 7. 36 x 10-16 - 

Late infancy 0.189 + 1.90 x 10-13 - 

Late childhood 0.114 - 6.57 x 10-12 - 

Adolescence 0.749 - 8.82 x 10-13 - 

Table 3.2: Linear regression results testing development stage characteristic scores calculated in the 
BrainSpan RNA-Seq dataset simultaneously predicting SCZ Brown’s logP.  
Each row represents a separate regression model. 

 

In the Kang microarray dataset, the most significant stage was young adulthood 

(uncorrected p = 6.13 x 10-5) so all other significant stages were tested 

simultaneously with this stage to predict SCZ Brown’s logP. Interestingly, and in 

contrast to the RNA-Seq results, all stages remained significant implying that these 

were independent associations, Table 3.3. 

 

 
Development stage Young adulthood 

P value Coeff. P value Coeff. 

Early foetal B 7.08 x 10-5 + 9.81 x 10-6 + 

Early childhood 0.000347 - 5.57 x 10-5 + 

Late adulthood 2.05 x 10-6 - 3.12 x 10-7 + 

Table 3.3: Linear regression results testing development stage characteristic scores calculated in Kang 
microarray dataset simultaneously predicting SCZ Brown’s logP.  
Each row represents a separate regression model. 

 

 
Development stage Early mid-foetal B 

P value Coeff. P value Coeff. 

Early foetal B 0.117 + 0.000385 + 

Early mid-foetal A 0.183 + 0.000527 + 

Early infancy 0.0763 - 9.55 x 10-6 + 

Late infancy 0.0328 - 0.00286 + 

Early childhood 0.00205 - 6.77 x 10-7 + 

Middle adulthood 0.368 - 0.00234 + 

Table 3.4: Linear regression results testing development stage characteristic scores calculated in Kang 
microarray dataset without PMI covariate simultaneously predicting SCZ Brown’s logP.  
Each row represents a separate regression model. 
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These pairwise analyses were also done with the microarray characteristic scores 

calculated without the PMI covariate, where the most significantly associated stage 

was early mid-foetal B (uncorrected p = 2.39 x 10-7). Most stages, see Table 3.4, were 

not significant after controlling for the early mid-foetal association implying that 

many of these associations were not entirely independent.  

 

Summary 

Genes with increased expression during mid-foetal development and decreased 

expression around birth and in postnatal stages were shown to be enriched for 

common SCZ risk variants.  This was primarily found in the RNA-Seq dataset and 

verified with both parametric and nonparametric tests. When these analyses were 

repeated in a microarray dataset containing overlapping individuals, although the 

number of significant stages was less, those that were significant were consistent 

with the results profile for SCZ risk genes described in the RNA-Seq dataset. The lack 

of complete coherence between the RNA-Seq and microarray datasets was in part 

due to the inclusion of the PMI covariate, which was observed to correlate with the 

age of the sample. Removing this covariate produced a results profile more similar to 

that found with the RNA-Seq data. In addition, microarray data have reduced 

sensitivity and are not able to detect the small differences that RNA-Seq data can, 

which may also have contributed to the more significant results in the RNA-Seq 

dataset. 

 

The association of each set of characteristic scores in the RNA-Seq dataset or 

microarray dataset without the PMI covariate was not completely independent and 

suggests that a common set of genes underlie the significant results pattern. 

Generally only nominally significant results were found when testing BPD p values 

but these were consistent with the pattern seen with SCZ p values, whereas no 

significant associations were found for either Alzheimer’s disease or Parkinson’s 

disease. Therefore, SCZ risk genes have been shown to have a common variable 

expression profile across brain development.  
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3.2.2 Schizophrenia risk genes co-expression models 

So far specific expression profiles across brain development have been identified and 

enrichments found for SCZ associated genes. In this section genes co-expressed with 

known SCZ risk genes were identified to see if they were enriched for disease risk.  

 

Ten independent genome-wide significant SNPs were reported in the PGC 

manuscript across the two stages of the study, with the nearest gene for each 

identified (Ripke et al., 2011). These genes were chosen as having the strongest 

current evidence as they were identified in the largest published GWAS for SCZ to 

date. Of these TRIM26 is located in the MHC region and was excluded from 

consideration (and eventual analyses) as it is unclear where the true association in 

this region is. Two genes, PCGEM1 and MIR137, were not present in the BrainSpan 

dataset leaving seven genes to be considered: CSMD1, CNNM2, NT5C2, TCF4, 

CCDC68, MMP16 and STT3A. 

 

Genes co-expressed with schizophrenia risk genes 

Taking the expression profile for each of these genes across brain development, a 

linear regression framework was used to compare the expression of all remaining 

genes in the dataset. P values were calculated for all genes in the dataset, excluding 

those considered for the co-expression model, indicating how closely their 

expression profile correlated across development with the expression of each risk 

gene, further details in the Methods. These co-expression p values, referred to as 

model p values, were then used to test for association with the Brown’s logP. 

 

Genes whose expression correlated with either CNNM2 (p = 1.27 x 10-6), NT5C2 (p = 

1.58 x 10-6), MMP16 (p = 0.0104) or TCF4 (p = 5.71 x 10-5) were enriched for SCZ 

associated common variants, while the CSMD1 model logP showed a trend for 

significance (p = 0.0643), results in Table 3.5. Only CCDC68 had a negative 

coefficient. Similar to all previous analyses with gene-wide logP the correlation 

coefficients were small. Nonparametric tests were then used to verify these 

associations, see Figure 3.4. CNNM2, CSMD1, TCF4, NT5C2 and MMP16 all showed 
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evidence of enrichment with this approach that was not driven by extreme values, 

while STT3A did not. In sum, five of the seven genes considered at this stage were 

enriched for SCZ risk supportive of the idea that genes harbouring associated 

variants are co-expressed. 

 

Gene Model CSMD1 CNNM2 NT5C2 CCDC68 

P value 0.0643 1.27 x 10-6 1.58 x 10-6 0.139 

Correlation 

Coeff. 

0.0164 0.0430 0.0426 -0.0132 

+ + + - 

Gene Model MMP16 TCF4 STT3A 

P value 0.0104 5.71 x 10-5 0.276 

Correlation 

Coeff. 

0.0227 0.0357 0.00968 

+ + + 

Table 3.5: Linear regression results and correlation coefficients testing single SCZ risk gene co-
expression model logP calculated in the BrainSpan RNA-Seq dataset with SCZ Brown’s logP.  

 
Figure 3.5: Results from Mann-Whitney tests for genes ranked by single SCZ risk gene co-expression 
model p values calculated in the BrainSpan RNA-Seq dataset. 
Genes ranked by SCZ single risk gene co-expression model p values and top n% tested for smaller SCZ 
Brown’s p values against bottom 50%. Black dashed line is p = 0.05. 

 



111 
 

Identifying alternative genes 

Typically, the gene located closest to each associated SNP is assumed to be the most 

functionally relevant, however this may not always be the case. Taking the two 

genes for which co-expression did not index disease association (CCDC68 and 

STT3A), additional proximal genes to the SNP associated in PGC study were tested to 

see if they showed evidence for a correlation between co-expression and SCZ 

association. SNPs in strong LD with those reported in the PGC paper were identified 

using the data from HapMap phases 1, 2 & 3. 

 

For CCDC68, a region was taken ~350 kb either side of rs12966547 to include the two 

neighbouring genes RAB27B and TCF4. Five SNPs were found to be in perfect LD (r2 = 

1, D’ = 1) with the genome-wide significant SNP. Three of these were found closest 

to CCDC68 (rs4131791, rs4309482, rs12969453) and the other two approximately 

halfway (>100 kb) between CCDC68 and TCF4 (rs11874716, rs4891131) for which co-

expression had already been shown to index SCZ association, see Table 3.4. If risk 

enrichment of co-expressed genes was used as a measure of SCZ relevance, then it 

would predict that the association at rs12966547 is most likely through TCF4. 

 

For STT3A, a region of 100kb on chromosome 11 containing EI24 and CHEK1 around 

rs548181 was taken. In this region five SNPs were found in perfect LD, three of which 

were closest to or within STT3A (rs503288, rs513209, rs540723), and the remaining 

two found in CHEK1 (rs540436, rs569766). Genes co-expressed with CHEK1 were 

identified using the method described but these were not associated with SCZ 

association (p = 0.916; r = -0.000942). 

 

Co-expression with multiple schizophrenia risk genes 

In this section the co-expression model was extended to investigate if identifying co-

expression with multiple risk genes was a more significant predictor of association 

signal. A combined model based on the genes whose expression pattern successfully 

predicted SCZ association should reduce any noise present assuming there is a 

consistent expression pattern amongst these risk genes.  
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P values were obtained for all genes as a measure of their co-expression with 

CNNM2, CSMD1, MMP16, NT5C2 and TCF4. A significant positive relationship (p = 

1.06 x 10-7) between SCZ Brown’s logP and model logP was found that was more 

significant and had a larger correlation coefficient than identifying co-expressed 

genes using any gene individually (compare Table 3.6 with Table 3.5). Similarly the 

nonparametric test results were all highly significant with the best p-value when 

testing the top 25% (p = 9.30 x 10-13) see Appendix Figure 8.15 panel A.  

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

P value 1.06 x 10-7 3.92 x 10-5 0.00522 0.00104 

Correlation Coeff. 
0.0472 0.0378 0.0243 0.0302 

+ + + + 

Excluding MHC genes 

P value 7.41 x 10-9 2.82 x 10-7 0.00252 0.000512 

Correlation Coeff. 
0.0516 0.0476 0.0264 0.0322 

+ + + + 

Table 3.6: Linear regression results and correlation coefficients testing SCZ risk genes co-expression 
model logP across development calculated in the BrainSpan RNA-Seq dataset with gene-wide logP. 
Based on co-expression model with CNNM2, CSDM1, MMP16, NT5C2 and TCF4. 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

P value 1.29 x 10-6 0.000126 0.00922 0.00273 

Correlation Coeff. 
0.0430 0.0353 0.0226 0.0276 

+ + + + 

Excluding MHC genes 

P value 1.23 x 10-7 1.89 x 10-6 0.00458 0.0014 

Correlation Coeff. 
0.0472 0.0441 0.0248 0.0296 

+ + + + 

Table 3.7: Linear regression results and correlation coefficients testing SCZ risk genes co-expression 
model logP across brain regions calculated in the BrainSpan RNA-Seq dataset with gene-wide logP. 
Based on co-expression model with CNNM2, CSDM1, MMP16, NT5C2 and TCF4. 

This association test was also rerun removing genes in the MHC, Table 3.6 and 

Appendix Figure 8.15. The associations were marginally stronger (regression p = 7.41 

x 10-9; Mann-Whitney p = 9.33 x 10-14 top 25%), so genes within this region were not 

driving this result. An association was also found between BPD Brown’s logP and the 

SCZ model logP. This was both with (p = 0.00522) and without the MHC genes (p = 
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0.00252). The SCZ model p values were also correlated with the Simes’ logP for SCZ 

and BPD, a result that withstood removing the MHC genes. 

 

Variation across brain regions 

The models used so far have looked at temporal co-expression but due to the nature 

of this dataset spatial co-expression could also be investigated, using a similar 

regression framework to try to identify which is most relevant for capturing SCZ 

association. Regression analysis found a slightly weaker enrichment (p = 1.29 x 10-6) 

with a smaller correlation coefficient than when correlating across development, 

results presented in Table 3.7, that was verified with rank-based tests shown in 

Appendix Figure 8.15. This model was also enriched for BPD p values (p = 0.00922), 

and was also significant with Simes’ logP (SCZ p = 0.000126; BPD p = 0.00273). 

Further, all models remained significant after removing genes from the MHC.   

 

When fitting a regression model to predict SCZ Brown’s logP with the model logP 

measuring co-expression across development and co-expression across brain regions 

simultaneously, both terms were a lot less significant but the model across 

development remained just significant (p = 0.0201), whereas the model across brain 

regions did not (p = 0.445). Both models appear to be capturing very similar sets of 

genes that were co-regulated across development stages and brain regions. 

Therefore, only variation across development will be considered further in this 

section. 

 

Comparison of results with Section 3.2.1 

In order to see if these results converged with those in Section 3.2.1 where 

development stage characteristic scores were tested for association with gene-wide 

p values, the characteristic scores of genes identified from the SCZ co-expression 

model were examined.  The set of genes most enriched for SCZ association was 

identified as the top 25% from Appendix Figure 8.15 panel A and the median 

development stage characteristic scores for this set of genes were plotted in Figure 
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3.6. An identical pattern to that seen in Figure 3.1 showed that the results from this 

section converged with the results in Section 3.2.1. Both sections found enrichment 

for SCZ and BPD common variants in genes with increased expression during early 

and mid-foetal development that dropped off prior to birth and had decreased 

values through late infancy and childhood before increasing through adolescence 

and young adulthood. 

 

 

Figure 3.6: Median development stage characteristic scores calculated in the BrainSpan RNA-Seq 
dataset for most enriched gene set identified from SCZ risk genes co-expression model. 
Based on the top 25% of genes ranked by SCZ risk genes co-expression model p values identified as 
most enriched gene set from the Mann-Whitney tests. For each development stage, the median 
characteristic score of this set of genes was calculated. 

 

MIR137 targets 

One particularly interesting top hit in the SCZ PGC GWAS was MIR137, as prior 

evidence suggests this gene plays a role in brain development, in particular 

regulating adult neurogenesis (Szulwach et al., 2010) and neuron maturation (Smrt 

et al., 2010). Therefore, disruptions to this gene may form part of the 

neurodevelopmental hypothesis of SCZ’s aetiology. The PGC authors found that SNPs 
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in or near predicted targets of MIR137 were enriched for association (Ripke et al., 

2011), a finding that was validated with results from a subsequent meta-analysis of 

SCZ GWAS (Ripke et al., 2013). MIR137 could not be included in the SCZ co-

expression model as it was not present in the expression dataset.  

 

A list of 301 genes predicted as targets for MIR137, obtained from TargetScan (Lewis 

et al., 2005), were tested with a Mann-Whitney test to see if they were more closely 

co-expressed across development with the top hits in the PGC GWAS compared to all 

other genes. This was found to be the case (p = 5.54 x 10-22) demonstrating that 

these target genes more closely resemble the developmental profile of the SCZ 

genes than the genes not predicted as targets.  

 

Technical validation in microarray dataset 

The same approach was applied using the microarray data, although only six genes 

(CCDC68, CNNM2, CSMD1, NT5C2, STT3A, and TCF4) were considered, as MMP16 

was not present in the final dataset. Co-expression model logP were not associated 

with SCZ Brown’s logP (all p > 0.05) for any of the six genes considered, shown in 

Table 3.8.  

Table 3.8: Linear regression results and correlation coefficients testing single SCZ risk gene co-
expression model logP calculated in Kang microarray dataset with SCZ Brown’s logP. 

 

 
CCDC68 CNNM2 CSMD1 NT5C2 STT3A TCF4 

P-value 0.0866 0.598 0.190 0.288 0.434 0.977 

Correlation 

Coeff 

-0.0149 0.00460 -0.0114 0.00927 0.00682 0.000257 

- + - + + + 
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Figure 3.7: SCZ risk genes comparing microarray and RNA-Seq expression values.   
Risk genes selected from PGC GWAS whose co-expression indexed association in the RNA-Seq dataset 
and were also present in the microarray dataset. Median expression values calculated for each 
development stage in each dataset, scale on left for RNA-Seq data, scale on right for microarray data. 
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In order to compare these results to those found in the RNA-Seq dataset, the 

microarray and RNA-Seq expression values for common genes were plotted on the 

same graph but with scales appropriate to each type, see Figure 3.7. The red lines 

that represent the RNA-Seq values show much more variability in expression values 

across development compared to the microarray values in blue. RNA-Seq expression 

values are known to have a much larger dynamic range than microarray expression 

values (Wang et al., 2009), which is partly why they are more accurate. For some 

genes however, such as NT5C2 or TCF4, the microarray expression values appear to 

be slightly higher in foetal stages compared to postnatal stages. The reduced 

sensitivity of microarrays meant that the linear model was unable to detect these 

subtle expression differences that could be picked up when using data from next-

generation sequencing technologies. Therefore these results could not be technically 

validated in the Kang dataset. 

 

Summary 

Genes identified as having an expression profile that follows the same trajectory 

across development as CNNM2, CSMD1, MMP16, NT5C2 and TCF4, through the SCZ 

co-expression model, were enriched for SCZ gene-wide p values. These five genes 

were identified as genome-wide significant in the largest GWAS to date and are 

presumed most likely to be true associations. Initially genes co-expressed with each 

gene separately were shown to be enriched for SCZ variants, but the association with 

SCZ gene-wide p values was more significant when considering these five genes 

together. These results were validated with both parametric and nonparametric 

approaches. Further, genes predicted as targets for MIR137, another genome-wide 

significant hit for SCZ, were also enriched for genes co-expressed with these SCZ risk 

genes. The results in this section for co-expressed genes were not validated in the 

microarray data, although this was likely due to technical differences in the 

expression values each method obtains. 

 

Genes identified as co-expressed with these genes were shown to have a profile of 

development stage characteristic scores consistent with the results in Section 3.2.1. 
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Therefore the two different approaches in Sections 3.2.1 and 3.2.2 have identified 

the same expression profile for SCZ risk genes, characterised by highest expression 

values during foetal development, followed by a drop in expression around birth to 

the lowest values around late infancy and early childhood before increasing again.  

 

3.2.3 Bipolar disorder risk genes co-expression models 

An equivalent approach was performed considering BPD risk genes identified from 

the PGC study. Four genome-wide significant SNPs were associated in either the 

primary analysis or the combined primary and replication meta-analysis (Sklar et al., 

2011). These were located closest to ANK3, SYNE1, ODZ4, and CACNA1C, all of which 

were present and expressed in the RNA-Seq data. To begin with separate models 

were fitted for each gene and all remaining genes in the expression dataset were 

given a p value for how highly co-expressed they were with each risk gene.  

 

Figure 3.8: Results from Mann-Whitney tests for genes ranked by single BPD risk gene co-expression 
model p values calculated in the BrainSpan RNA-Seq dataset. 
Genes ranked by BPD single risk gene co-expression model p values and top n% tested for smaller BPD 
Brown’s p values against bottom 50%. Black dashed line is p = 0.05. 

Significant positive correlations were found between the co-expression model logP 

and BPD Brown’s logP for all four genes (ANK3 p = 0.0199, r = 0.0202; CACNA1C p = 
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3.63 x 10-6, r = 0.0402; ODZ4 p = 3.30 x 10-5, r = 0.0361; SYNE1 p = 2.05 x 10-5, r = 

0.0370). Nonparametric tests verified the associations for each gene model logP, for 

all top proportions of genes tested, see Figure 3.8. Therefore co-expression with any 

of the four genes identified from the PGC study was associated with more significant 

BPD associations, adding further confidence that these risk genes are true.  

 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

P value 1.97 x 10-5 1.23 x 10-5 3.68 x 10-5 2.35 x 10-6 

Correlation Coeff. 
0.0379 0.0402 0.0358 0.0434 

+ + + + 

Excluding MHC genes 

P value 5.27 x 10-7 7.49 x 10-8 1.89 x 10-5 1.15 x 10-6 

Correlation Coeff. 
0.0448 0.0498 0.0374 0.0451 

+ + + + 

Table 3.9: Linear regression results and correlation coefficients testing BPD risk genes co-expression 
model logP across development calculated in the BrainSpan RNA-Seq dataset with gene-wide logP. 
Based on co-expression model with ANK3, CACNA1C, ODZ4, and SYNE1. 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

P value 0.00289 0.000154 7.05 x 10-5 1.96 x 10-5 

Correlation Coeff. 
0.0265 0.0348 0.0304 0.0393 

+ + + + 

Excluding MHC genes 

P value 0.000111 8.31 x 10-6 4.08 x 10-5 1.16 x 10-5 

Correlation Coeff. 
0.0345 0.0413 0.0358 0.0406 

+ + + + 

Table 3.10: Linear regression results and correlation coefficients testing BPD risk genes co-expression 
model logP across brain regions calculated in the BrainSpan RNA-Seq dataset with gene-wide logP. 
Based on co-expression model with ANK3, CACNA1C, ODZ4, and SYNE1. 

Two further models were fitted including all four of these genes, one measuring 

temporal co-expression and the other spatial co-expression, results in Tables 3.9 and 

3.10. A marginally stronger association was found with BPD Brown’s logP and 

temporal co-expression logP (p = 3.68 x 10-5) rather than spatial co-expression logP 

(p = 7.05 x 10-5). The results of the Mann-Whitney tests verified these enrichments, 

see Appendix Figure 8.16, and showed that they were not due to extreme values. 
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Genes identified with each model were also associated with SCZ Brown’s logP with 

both parametric and nonparametric tests. A more significant result was found when 

considering variation across development (p = 1.97 x 10-5) compared to development 

across brain regions (p = 0.00289), see Tables 3.9 and 3.10. Enrichments for both SCZ 

and BPD were also found with Simes’ logP, and all enrichments remained after 

removing genes located in the MHC. All significant regression models were validated 

with nonparametric tests and shown not to be due to extreme values, see Appendix 

Figures 8.16. 

 

 

Figure 3.9: Median development stage characteristic scores calculated in the BrainSpan RNA-Seq 
dataset for most enriched gene set identified from BPD risk genes co-expression model. 
Based on the top 40% of genes ranked by BPD risk genes co-expression model p values identified as 
most enriched gene set from the Mann-Whitney tests. For each development stage, the median 
characteristic score of this set of genes was calculated. 

 

As with the SCZ co-expression model the most enriched set of genes identified 

through the BPD co-expression model were taken and their median characteristic 

scores were plotted, see Figure 3.9. The graph looked very similar to that of Figure 

3.1 and Figure 3.6 showing that these genes had very similar expression 

characteristics to those found to be enriched in Sections 3.2.1 and 3.2.2. Therefore 
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the results of the BPD co-expression model also converged with those reported in 

Sections 3.2.1 and 3.2.2. This would imply that both the SCZ and BPD co-expression 

models were selecting fairly similar sets of genes. The median characteristic scores in 

Figure 3.9 were not as extreme as in those in Figure 3.6 in Section 3.2.2 perhaps 

suggesting that BPD risk genes do not have as an extreme temporal expression 

profile compared to SCZ risk genes.  

 

When the logP from the SCZ co-expression model and BPD co-expression model 

were tested simultaneously to predict BPD Brown’s logP, both terms were 

considerably less significant than when tested separately with the BPD model logP 

remaining significant (SCZ model logP p = 0.490; BPD model logP p = 0.00139). A 

similar result was found when predicting SCZ Brown’s logP with the SCZ co-

expression model logP remaining significant (SCZ model logP p = 0.000412; BPD 

model logP p = 0.491).  

 

This follows what was observed in Figures 3.6 and 3.9 that both models were 

capturing an overlapping set of genes. Interestingly, despite this high degree of 

overlap, the BPD model was most enriched for BPD signal whereas the SCZ model 

was most enriched for SCZ signal. This perhaps suggests that the models were 

picking up slightly different temporal expression characteristics for each disorder 

although this was not evident from Figures 3.6 and 3.9. The only notable difference 

was that the median expression characteristic scores for the BPD co-expressed genes 

were not as extreme as those for the SCZ co-expressed genes. 

 

Validation with microarray data 

This approach was repeated in the microarray dataset, although only two genes 

ANK3, SYNE1 were present. Neither regression result with SYNE1 model logP (p = 

0.597, r = 0.00452) or ANK3 model logP (p = 0.803, r = -0.00214) was significant and 

hence no further models were fitted. As with the SCZ model, the lack of significance 

in this dataset compared to the RNA-Seq dataset was attributed to the smaller 

dynamic range of microarray expression values observed when comparing the 
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expression of these two genes across the two technologies; see Appendix Figure 

8.17. 

 

Summary 

Genes whose expression profiles correlated with strongly associated BPD risk genes 

ANK3, CACNA1C, ODZ4 and SYNE1, identified in the largest GWAS, were found to be 

enriched for genes with common variants associated to SCZ and BPD. The 

enrichment was slightly stronger when identifying variation across development 

stages, compared to variation across brain regions.  Applying these methods to 

microarray data did not find the same enrichments, and as in Section 3.2.2 this was 

thought to be due to the smaller dynamic range of these expression values. The 

profiles of these genes share the same characteristics with the genes in the SCZ co-

expression model, shown statistically when the association of these two models was 

not independent, and were consistent with the results described in Section 3.2.1. 

 

3.2.4 Development stage characteristic gene expression and schizophrenia 

structural variants 

CNVs found in SCZ patients were compared to those found in healthy controls to see 

if the genes hit were more characteristic of a particular developmental stage. A 

logistic regression model was used, as described in Chapter 2, comparing the 

minimum, median and maximum characteristic score of the genes hit by each CNV 

for each development stage. Genes hit by SCZ CNVs were not more characteristic of 

any stage compared to those hit by control CNVs, further no significant results were 

found when testing the deletions or duplications. These results can be found in 

Appendix Table 8.7.   
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Figure 3.10: Logistic regression results testing CNV singleton status on development stage 
characteristic scores calculated in the BrainSpan RNA-Seq dataset. 
Panel A is all CNVs, panel B deletions, and panel C duplications. P values were corrected for 12 
development stages using Bonferroni’s method. Black dashed line is 0.05. 

 

Singleton SCZ CNVs were compared to all remaining SCZ CNVs to see if they were 

enriched for genes characteristic of any development stage. Only a couple of 
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marginally significant results were found with no obvious pattern to the results. The 

most significant result suggested singleton SCZ CNVs hit genes with higher early 

foetal A characteristic scores (median metric corrected p = 0.0145; maximum metric 

corrected p = 0.000788). This result was also found in the deletions (minimum metric 

corrected p = 0.00344; median metric corrected p = 0.00315; maximum metric 

corrected p = 0.00608).  

 

Technical validation with microarray dataset 

Repeating these analyses in the Kang microarray dataset showed no significant 

differences between the genes hit by case CNVs compared to control CNVs for any 

set of development stage characteristic scores, results in Appendix Table 8.9. When 

testing genes hit by singleton SCZ CNVs, again there was no pattern to the results 

however a significant result was found for early foetal A (median metric corrected p 

= 0.0327; maximum metric corrected p = 0.0109), see Figure 3.11. This was in the 

same direction as in the RNA-Seq data and was also significant when testing just the 

deletions. This result remained when excluding the PMI covariate results in Appendix 

Table 8.12 or Appendix Figure 8.18.  
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Figure 3.11: Logistic regression results testing CNV singleton status on development stage 
characteristic scores calculated in Kang microarray dataset. 
Panel A is all CNVs, panel B deletions, and panel C duplications. P values were corrected for 15 
development stages using Bonferroni’s method. Black dashed line is 0.05. 
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Summary 

Singleton SCZ CNVs were found to hit genes with higher early foetal A characteristic 

scores, compared to all remaining SCZ CNVs with characteristic scores calculated in 

either the RNA-Seq dataset or the microarray dataset. This was particularly the case 

for deletions. This suggests genes disrupted by singleton SCZ CNVs have increased 

expression in the brain during this early development stage. While a similar finding 

was reported for genes with common variants associated to SCZ, this was in later 

foetal stages, with no association found for early foetal A characteristic scores. 

 

3.2.5 Functional analysis of genes with enriched expression profiles 

As the SCZ co-expression model in the RNA-Seq dataset captured fundamentally the 

same enriched expression profile found through the separate development stage 

characteristic scores in Section 3.2.1 through one metric, p values from this model 

were used for functional analysis. Genes annotated to each functional category were 

compared to all remaining genes in the expression dataset to see if they were more 

closely co-expressed with SCZ risk genes. Of 3085 unique terms from the GO 

database with between 20 and 200 genes, 219 had significantly lower ranked model 

p values at a Bonferroni corrected threshold of 1.62 x 10-5. This set of terms was 

clustered in groups following the procedure described in the previous chapter.  
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Figure 3.12: Key annotation terms identified from set of significant GO terms with smaller SCZ risk genes co-expression model p values. 
Figure shows set of 54 GO terms that explained at least one other term in the set of significant pathways. Terms that did not explain any other term were not included in 
the Figure. Arrows point from explaining term to the merged pathway it explains i.e. the term pointed to, merged with all other terms it explains. Terms in red ovals are 
also present in Figures 2.6 and 2.7 in the previous chapter; terms in black boxes were grouped into common themes. 
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Fifty-four terms explained the enrichment of at least one other larger GO term or 

merged GO pathway. Figure 3.12 displays these terms where they have been 

manually grouped into five common themes: ‘Chromosome: structural modification 

& repair’, ‘Cell cycle (mitosis)’, ‘RNA processing’, ‘RNA/protein transport’, and ‘Signal 

transduction’. Similar to the set-based tests performed in the previous chapter, the 

combined association signal of genes with the temporal expression profile was 

compared between those in these functional categories against genes not in any 

pathway to confirm that these pathways did contain SCZ association signal. The set 

of genes with the most significantly smaller SCZ Brown’s gene-wide p values 

identified from the Mann-Whitney tests for the top 5-50% of genes ranked by their 

SCZ co-expression model p values, shown in Appendix Figure 8.15 panel A to be the 

top 25%, were taken as the set of genes with temporally variable expression.  

Separate set-based tests were then performed to identify which terms may be more 

important for SCZ aetiology. 

 

 

Schizophrenia Bipolar disorder 

Number of 
SNPs in 

pathway 

Adjusted p 
value 

Number of 
SNPs in 

pathway 

Adjusted p 
value 

Top 25% of 
SZ Model 

genes 

In pathways 93728 0.00195 177267 0.00325 

Not in pathways 28507 0.625 54006 0.271 

Cell cycle 
(mitosis) 

9131 0.00129 17400 0.148 

Chromosome: 
structural 

modification & 
repair 

23283 0.0262 42535 0.00390 

RNA/protein 
transport 

19394 0.206 38920 0.324 

RNA processing 10753 0.0706 19677 0.567 

Signal 
transduction 

38289 0.0543 73974 0.0206 

Table 3.11: Results of set-based tests for genes found in most enriched gene set from SCZ co-
expression model and in significantly enriched pathways.  
Set p values adjusted for number of SNPs in each set. 

 

Table 3.11 shows that genes with the temporal expression profile and in significant 

pathways were associated to both SCZ (adjusted p = 0.00195) and BPD (adjusted p = 

0.00325). In contrast genes with the temporal expression profile but not in an 
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enriched pathway, as a group, were not associated to either SCZ or BPD.  Of the 

pathway groups ‘Cell cycle (mitosis)’ and ‘Chromosome: structural modification & 

repair’ had a significant set-based p values when combining SCZ GWAS results. 

Interestingly ‘Chromosome: structural modification & repair’ and ‘Signal 

transduction’ were enriched for BPD GWAS signal. Two groups, ‘RNA/protein 

transport’ and ‘RNA processing’ were not significant for either SCZ or BPD.  

 

3.3 Discussion 

3.3.1 Identification of common developmental expression profile 

An expression profile that shows variation across development has been identified 

for SCZ risk genes. Gene sets identified with increased characteristic expression 

during early to late mid-foetal development, and gene sets with decreased 

characteristic expression in postnatal stages were enriched for common SCZ risk 

variants. These associations were found not to be independent suggesting there is 

an underlying common set of genes with both aspects of these expression profiles. 

 

Separate analyses showed that genes with expression that correlated closely with 

five strongly associated SCZ genes (CNNM2, NT5C2, TCF4, MMP16 and CSMD1) 

identified from the largest published GWAS (Ripke et al., 2011) were enriched for 

risk variants. Genes identified with this approach showed the same characteristic 

expression profile as the results in the first section of this chapter. Together, these 

two approaches suggest that risk genes for SCZ are characterised by a peak of 

expression during foetal development followed by a gradual decrease starting prior 

to birth and continuing through to the lowest values around early childhood, before 

beginning to increase again through adolescence.  

 

Additional analyses found that genes predicted as MIR137 targets were more similar 

to this developmental profile than remaining genes in the dataset. As these genes 

have previously been shown to be enriched for SCZ common variants (Ripke et al., 

2011, Ripke et al., 2013) this further supports the described temporal profile for SCZ 

associated genes.  
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While previous studies have suggested SCZ genes have age-related expression 

profiles (Colantuoni et al., 2008, Choi et al., 2009, Harris et al., 2009), these were 

based on samples covering a smaller period of brain development with entirely 

postnatal individuals. In addition, these were conducted prior to the GWAS era and 

the list of SCZ risk genes were primarily based on literature reviews. Therefore this 

work strengthens these findings, and extends them by describing the temporally 

variable profile identified.  

 

Gene sets identified with common spatial profiles in mid-foetal brains and enriched 

for SCZ and BPD common variants in Chapter 2 showed a developmental profile 

consistent with that identified here, see Figure 2.10. Two exome sequencing studies 

have looked at the temporal expression profile of genes with de novo mutations and 

observed higher expression in prenatal samples (Xu et al., 2012, Gulsuner et al., 

2013), in line with the findings reported here.  Another study using GWAS, CNV and 

SNV data to create networks of genes based on the likelihood of them contributing 

to SCZ aetiology, also reported higher prenatal expression for genes within the 

resulting clusters (Gilman et al., 2012). All of these studies used either the BrainSpan 

or Kang datasets and while it is encouraging to identify the same expression 

characteristics, replication in an independent expression dataset for this expression 

profile would still be warranted. These studies  

 

The temporal profile described is consistent with neurodevelopment models of SCZ 

which posit that a disruption early on in development interacts with normal 

maturational processes during adolescence (Weinberger, 1987). While upregulation 

of expression during foetal development has previously been reported, 

downregulation during early childhood is a novel finding for SCZ associated genes. If 

disruptions to a risk gene or genes during this time point were causative of SCZ, this 

would suggest that the window for developmental insults that increase the risk of 

SCZ extends beyond the period around birth. It would also imply that developmental 

delays would only occur after this time point, a hypothesis that could be investigated 

in a prospective birth cohort. An alternative hypothesis would be that altered gene 
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expression during this developmental period may be a result of an earlier disruption 

to brain development, and mediates the relationship between developmental insults 

and SCZ. 

 

Genes with this developmental expression profile were also enriched for BPD 

common variants. Fewer and less significant results were found when testing genes 

characteristic of each development stage with BPD gene-wide p values. As in the 

previous chapter this was probably due to the smaller sample size of the BPD PGC 

GWAS, however, the directions of effect were consistent with the SCZ results. Genes 

identified with the SCZ co-expression model also showed enrichment for BPD 

common variants. Further, a BPD co-expression model based on genome-wide 

significant BPD genes (ANK3, CACNA1C, ODZ4, SYNE1) captured genes with a similar 

temporal profile to the SCZ risk genes and was associated with more significant  SCZ 

and BPD gene-wide p values.  

 

A few significant results were found when looking at genes hit by singleton SCZ 

CNVs. While singleton deletions were found to hit genes with increased expression 

in early foetal A in both the RNA-Seq and microarray dataset, neither of these results 

was particularly strong.  This result was broadly in line with the general finding that 

SCZ risk genes have increased expression during early foetal development, although 

this was at a later developmental stage, perhaps suggesting that CNVs affect earlier 

developmental processes.  

 

3.3.2 Identification of functional pathways from enriched expression gene sets 

GO terms enriched for genes with this temporal profile were identified and grouped 

into broad themes including ‘Chromosome: structural modification and repair’, ‘RNA 

processing’ and ‘RNA/protein transport’, which suggests that these genes play a role 

in transcription and the control of related processes. Of these three groups only the 

‘Chromosome: structural modification and repair’ group, when intersected with 

genes with the temporal profile, showed association to SCZ and BPD. A second 

pathway group ‘Cell cycle (mitosis)’ when intersected with genes with the temporal 
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profile, was also enriched for SCZ common variants. Taken together these two 

pathway groups may suggest a role for abnormal cellular proliferation in SCZ during 

the division stage of the cell cycle. Increased cellular proliferation has been reported 

in olfactory neurosphere-derived cells from SCZ patients compared to controls, 

which may impact on the early stages of neurodevelopment (Fan et al., 2012). 

 

Thirteen individual GO terms that explained other terms overlapped with those 

identified in the previous chapter for genes with decreased expression in the HIP and 

THAL, highlighted in red in Figure 3.12. Due to the inter-dependence of the GO 

hierarchy it was not possible to test if this was more than would be expected by 

chance, however it provides some validation that not only did the different 

approaches in the two chapters converge on the same temporal profile, but that 

they also identified the same functional pathways. In particular the common 

pathways relate to epigenetic processes, which along with the temporal profile 

suggest that these genes may play a role in the regulation of human brain 

development. Therefore, they may be particularly vulnerable to early insults 

affecting the course of normal development. 

 

Two groups of pathways, ‘Cell cycle (mitosis)’ and ‘Signal transduction’ were only 

found in this chapter for genes whose expression correlated with the temporal 

profile and were not picked up with the foetal spatial profiles. Synaptic genes have 

previously been implicated in SCZ pathology (Kirov et al., 2012, Perez-Santiago et al., 

2012, Gulsuner et al., 2013), and alterations to synaptic machinery during  synapse 

formation and pruning, which continues into adulthood, have been proposed as part 

of the neurodevelopmental model (Mirnics et al., 2000, Mirnics et al., 2001). 

Although the ‘Signal transduction’ group contained a few terms relating to the 

synapse, the genes in these pathways with the temporal expression profile only 

showed a trend for SCZ GWAS signal.  
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3.3.3 Comparison of results with Brown’s and Simes’ gene-wide p values 

Two methods to summarise GWAS results into gene-wide p values were used in this 

chapter to test for association of expression profiles with either SCZ or BPD. 

Generally the Brown’s gene-wide p values were more significant particularly, with 

the RNA-Seq dataset, in Sections 3.2.1 and 3.2.2. This is consistent with the results in 

the previous chapter suggesting that using a p value that can take into account 

multiple signals is more powerful. Interestingly, the Simes’ p values were more 

significant when testing the BPD co-expression models in Section 3.2.3.  

 

3.3.4 Technical replication across RNA-Seq and microarray expression data 

Both RNA-Seq and microarray expression datasets, with an overlap of individuals, 

were used in this chapter. Significant results with the development stage 

characteristic scores calculated in the microarray dataset were consistent with the 

results profile found with the RNA-Seq data, although there were not as many 

significant stages. When previously analysed, two additional covariates were 

included for the microarray dataset and that same procedure was followed here, 

whereas no such covariates were provided with the BrainSpan data. The removal of 

the PMI covariate when calculating the characteristic scores produced a results 

profile more in line with that found with the RNA-Seq data suggesting that some of 

the temporal effects were being captured by this variable. As the majority of the 

samples overlapped the two datasets, it may therefore be that the differences in 

PMI caused the observed expression profile. This was unlikely to be the sole factor in 

producing the temporal profile as even after inclusion of this covariate, the results 

still showed enrichment for SCZ risk genes in those with increased expression during 

early and mid-foetal stages or decreased expression around early childhood. 

 

Technical replication was not found with the microarray data for any of the co-

expression models. The next-generation sequencing technologies used to generate 

RNA-Seq expression data are more sensitive than microarray approaches and 

produce a larger range of expression values (Wang et al., 2009), observed for the 

genes used in the co-expression models in Figures 3.7 and 8.17. Therefore the linear 
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model approach used here was not able to capture the subtle differences across 

development with the microarray data that could be picked up with the RNA-Seq 

data.  

 

One of the main strengths of this study was the use of the most comprehensive 

expression datasets covering human brain development with multiple samples for 

each individual. The scarce availability of post-mortem brain samples makes this sort 

of resource rare and therefore there was no independent expression dataset even 

close to covering the same developmental window, with the same range of brain 

regions.  

 

An alternative approach would be to use another GWAS dataset for genetic 

replication. Results presented here with BPD gene-wide p values support the findings 

for SCZ and provide a level of replication. The PGC GWAS results were used as the 

basis for the gene-wide p values as it was the largest available study. Since 

publication the PGC have recruited an additional 35 SCZ sample collections on top of 

the initial 17 studies to further increase the sample size. Access to this dataset was 

provided and preliminary results support the findings reported in this chapter. 

 

3.3.5 Summary of chapter findings 

This and the previous chapter have identified common spatial and temporal 

expression profiles of SCZ risk genes, and through these common biological 

pathways of potential relevance to SCZ. Moreover, the gene sets with common 

spatial profiles in the previous chapter had a developmental expression profile that 

matched the findings in this chapter for SCZ risk genes. Generally the results were 

more significant when testing Brown’s gene-wide p values compared to Simes’, 

particularly for the SCZ co-expression model in Section 3.2.2. This suggests that many 

of the genes identified with the developmental profile were better represented by a 

p value that takes into account multiple, semi-independent common variants that 

increase the risk of SCZ or BPD rather than a p value based on only the most 
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significant SNP. This is consistent with a polygenic contribution of these genes, which 

will be investigated in the next chapter. 

 

3.4 Methods 

Preliminary data processing: BrainSpan RNA-Seq 

The BrainSpan RNA-Seq expression dataset was downloaded from an online resource 

(http://www.brainspan.org) already normalised to RPKM (reads per kilobase of exon 

model per million mapped reads) units. Lowly expressed genes were removed as any 

gene with a maximum value less than 1. Alongside the expression values, gene 

annotations were provided including Entrez IDs. These were added to the dataset 

and genes without Entrez IDs or non-unique Entrez IDs were removed.  

 

Preliminary data processing: Kang microarray 

This dataset was downloaded from the GEO database accession number GSE25219. 

Genes were annotated and filtered following the procedure described in the 

previous chapter applied to all samples. 

 

Development stage characteristic scores 

A linear model was fitted to identify genes characteristic of each development stage, 

shown in Equation 3.1.  

 

expij =  brain regionj +  development stageik 

Equation 3.1 Regression model to calculate characteristic scores for development stage k, where exp ij 

is the expression value for individual i from brain region j, brain region is a categorical term and the 
development stage term is a binary indicator variable denoting whether individual i was classed in 
stage k or not. 

 

Separate models were fitted for each development stage, for each gene. Only 

samples taken from brain regions present in nine out of the twelve development 

stages were used when fitting the model, removing ten regions and leaving sixteen. 

http://www.brainspan.org/
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Most of those removed were proxies for regions not yet developed in the foetal 

brains and hence only present in the foetal individuals. Development stage 

characteristic scores were derived based on the same formula used in Chapter 2, 

denoting the magnitude of the differential expression as well as whether it was 

increased or decreased expression. A similar model was fitted for the Kang 

microarray dataset, including additional covariates for hemisphere, RIN and PMI. 

 

Testing for enrichment with gene-wide p values 

Brown’s and Simes’ logP, were tested in a linear regression framework predicted in 

turn by the characteristic scores for each development stage. Significant results were 

verified with a rank-based Mann-Whitney test. Genes were ranked by the absolute 

value of the characteristic score for each development stage and the top n% (5, 

10…50%) selected. Each set was then separated by the sign of the characteristic 

score into those with increased characteristic expression (positive coefficient) and 

decreased characteristic expression (negative coefficient). The relevant subset, 

depending of the direction of the association in the linear regression was then tested 

with a one-sided Mann-Whitney test against the bottom 50% for more significant 

gene-wide p values. Analyses were repeated removing genes located in the MHC 

region, specifically those found in the chr6:25000000-35000000 region. 

 

Schizophrenia co-expression models 

expij =  SCZ geneij + brain regionj + individuali 

expij = brain regionj + individuali 

Equation 3.2 Formula for regression models compared to obtain a model p value for co-expression 
with SCZ risk genes, where expij is the expression value from individual i and brain region j. SCZ geneij 
is the expression value for that risk gene in individual i and brain region j with categorical covariates 
to control for brain region and individual differences. 

Genes identified from the SCZ PGC GWAS (Ripke et al., 2011) were used as the basis 

to identify sets of co-expressed genes. For each risk gene, linear models of the form 

in Equations 3.2 were compared for all remaining genes in the dataset with an 
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ANOVA to obtain a p value for co-expression, referred to as the co-expression model 

p value. 

 

In the Kang dataset extra covariates for hemisphere, PMI and RIN were also 

included. Genes whose co-expression indexed association signal were combined into 

a single model shown in Equation 3.3, which was also compared with an ANOVA to a 

model without the five risk gene terms. 

 

expij =  CNNM2ij + CSMD1ij + MMP16ij + NT5C2ij + TCF4ij + brain regionj

+ individuali 

Equation 3.3 Formula for regression models with multiple SCZ risk genes to identify genes co-
expressed across development, where expij is the expression value from individual i and brain region j, 
CSMD1ij etc. is the expression value for that risk gene in individual i and brain region j with categorical 
covariates to control for brain region and individual differences. 

 

Linear models shown in Equation 3.4 were used to investigate co-expression across 

brain regions, where a brain region term in Equation 3.3 was replaced with a 

development stage term. A p value was calculated from an ANOVA for all remaining 

genes in the expression dataset as a measure of co-expression.  

 

expij =  CNNM2ij +  CSMD1ij + MMP16ij+ NT5C2ij + TCF4ij

+ development stagei + individuali 

Equation 3.4 Formula for regression models with multiple SCZ risk genes to identify genes co-
expressed across brain regions, where expij is the expression value from individual i and brain region j, 
CSMD1ij etc. is the expression value for that risk gene in individual i and brain region j with categorical 
covariates to control for development stage and individual differences. 

 

MIR137 targets 

A list of MIR137 predicted targets was obtained using TargetScan (Lewis et al., 2005) 

with a probability of conserved target set to greater than or equal to 0.9. Of the 301 

genes, 275 had a SCZ model p values derived from ANOVAs comparing Equations 3.3, 

with TCF4 and CSMD1 automatically excluded as they were used to fit the model. 

This set was tested with a one-sided Mann-Whitney test for more significant SCZ co-



138 
 

expression across development model p values compared to all other genes in the 

expression dataset. 

 

Bipolar disorder co-expression models 

Four genes identified in the BPD PGC GWAS (Sklar et al., 2011) were considered for 

the BPD co-expression models. All four of these genes were present in the BrainSpan 

dataset and the models in Equations 3.5 were compared to derive a p value for co-

expression across development for all remaining genes. 

 

expij =  BPD geneij + brain regionj + individuali 

expij = brain regionj + individuali 

Equation 3.5 Formula for regression models compared to obtain a model p value for co-expression 
with BPD risk genes, where expij is the expression value from individual i and brain region j. BPD geneij 
is the expression value for that risk gene in individual i and brain region j with categorical covariates 
to control for brain region and individual differences. 

 

Co-expression with all genes was found to predict BPD association; hence all four 

were combined into two models. Equation 3.6 was used to derive p values for co-

expression across development and Equation 3.7 was used to look at co-expression 

across brain regions.  

 

expij =  ANK3ij + CACNA1Cij + ODZ4ij + SYNE1ij + brain regionj + individuali 

Equation 3.6 Formula for regression models with multiple BPD risk genes to identify genes co-
expressed across development, where expij is the expression value from individual i and brain region j, 
ANK3ij etc. is the expression value for that risk gene in individual i and brain region j with categorical 
covariates to control for brain region and individual differences. 

 

expij = ANK3ij + CACNA1Cij + ODZ4ij + SYNE1ij + development stagei

+ individuali 

Equation 3.7 Formula for regression models with multiple BPD risk genes to identify genes co-
expressed across brain regions, where expij is the expression value from individual i and brain region j, 
ANK3ij etc. is the expression value for that risk gene in individual i and brain region j with categorical 
covariates to control for development stage and individual differences. 
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CNV logistic regression 

For each CNV from the ISC and MGS study, characteristic scores for all genes hit from 

both the BrainSpan and Kang datasets were collated and the minimum, median and 

maximum for each development stage identified. Logistic regression models as 

described in Chapter 2 Equations 2.2 and 2.3 were used to test for an association 

between the development stage characteristic scores and genes hit by SCZ CNVs. 

 

Functional analysis 

Model p values from the RNA-Seq SCZ co-expression model with CNNM2, CSMD1, 

MMP16, NT5C2 and TCF4, across development shown in Equation 3.3, were used to 

identify relevant functional pathways. Categories from the GO database were tested 

with one-sided Mann-Whitney tests for significantly smaller model p values. 

Adjusting for 3085 unique terms with between 20 and 2000 genes a Bonferroni 

corrected p value threshold of 1.62 x 10-5 was used to identify significant terms. This 

set of significant terms was merged into clusters following the procedure described 

in the previous chapter. The resulting clusters were manually grouped into common 

themes.  

 

Set-based tests 

Sets were based on the most significant set of genes with the temporal profile, 

identified as the top 25% from the Mann-Whitney tests shown in Appendix Figure 

8.15. This set was split into two subsets; genes that were annotated to one of the 

219 significant pathways and those that were not. Further sets for the five pathway 

groups in Figure 3.12 were created based on the intersect of genes in the top 25% 

identified through the SCZ co-expression model and genes annotated to any 

pathway within that group. 
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For each set a combined set-based p value was calculated from the PGC SCZ and BPD 

GWAS results, which was subsequently adjusted for the number of SNPs in each set 

based on the procedure described in the Methods section of the previous chapter.  
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Chapter 4: Developing the polygenic model for 
application to expression derived gene sets  

4.1  Introduction 

4.1.1 Background 

Technological advances in the form of genome-wide SNP chips provided new 

opportunities to those looking for genetic risk factors in psychiatric disorders, as 

candidate gene studies had proved to be limited in their success. By vastly increasing 

the number of genetic markers included in a single study, the threshold for statistical 

significance had to become more stringent to account for the number of tests 

performed. The effective number of independent tests per genome has been 

estimated (International HapMap Consortium, 2005, Dudbridge and Gusnanto, 2008) 

in order to establish an industry standard level of genome-wide significance, to 

minimise false positive findings that would not be replicated. Initial SCZ GWAS failed 

to identify markers at this threshold, with sample size the limiting factor.  

 

In 2009 three studies were published simultaneously, one of which, conducted by 

the ISC, obtained genome-wide significance for an imputed SNP in the MHC region 

(Purcell et al., 2009). Each of these three studies then incorporated the data from 

the other two studies to see if any of their top hits could attain genome-wide 

significance. SNPs that passed this threshold in the meta-analyses were located on 

chromosomes 6p22.1 part of the MHC region (Shi et al., 2009, Stefansson et al., 

2009), 11q24.2 (Stefansson et al., 2009) and 18q21.2 (Stefansson et al., 2009). The 

MGS study concluded that they had satisfactory power to detect any common 

variants of large effect (relative risk > 1.3) and the fact that they had not meant 

there were likely few, if any, to detect (Shi et al., 2009). Instead it was postulated 

that many common markers were involved, each with a small or moderate 

contribution to the risk of developing SCZ. 

 



143 
 

Using their GWAS results the ISC derived a simple mathematical model that 

demonstrated this polygenic effect of thousands of markers, each of small effect. 

The principle of this model was to calculate a score, termed the polygenic score, for 

each individual in an independent dataset as the sum of their risk alleles at each SNP, 

weighted by the log odds ratio obtained from the initial GWAS. These scores were 

shown to be significantly different between cases and controls explaining ~3% of the 

variance (Purcell et al., 2009).  

 

Simulations were used to narrow down the possible genetic models that could have 

produced these results. These considered the proportion of associated markers that 

were actually causal compared to those that just tagged the relevant marker, as well 

as the distributions of allele frequencies and effect sizes of the associated SNPs. The 

simulations consistent with the true results showed that a minimum of one third of 

the genetic heritability could be explained by the polygenic contribution of common 

SNPs (Purcell et al., 2009). This was much greater than the observed 3% which was 

impacted by the accumulation of sampling errors of the estimated effect sizes 

(Dudbridge, 2013). More recently this methodology was repeated with the PGC 

GWAS results derived from a sample with more than double the number of 

individuals and was found to explain 6% of the variance (Ripke et al., 2011). An 

increased sample size meant that more true variants would be included in the score 

and that the odds ratios would be more accurately estimated, therefore the 

proportion of variance explained was improved. 

 

In the previous chapters, sets of genes with common expression profiles across the 

mid-foetal brain or brain development have been shown to be enriched for SCZ 

association signal using gene level summarised p values. In this chapter, genes with a 

common expression profile were investigated further to see if they harboured a 

polygenic signal that could better discriminate between cases and controls than the 

genome-wide polygenic score. As described above, the current procedure for 

calculating polygenic scores is quite simplistic, so the initial sections in this chapter 

focus on developing this model. Three adaptions to the model were investigated to 

incorporate population information, LD relationships between markers or SNP-SNP 
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interactions to see if the addition of this information improved the discrimination 

between SCZ cases and controls. 

 

4.1.2 Outline 

Aim 

The main aim of this chapter was to compare polygenic scores calculated from gene 

sets identified in the previous chapters to those calculated across all available SNPs 

to see whether they capture any additional SCZ polygenic signal. In order to make 

the best possible estimate of the signal captured, a prior aim was to explore whether 

the inclusion of population information, LD between SNPs or SNP-SNP interactions 

could improve the fit of the polygenic model described by the ISC. 

 

Datasets 

Genotype data from both the ISC and MGS studies were available for use and in all 

applications the polygenic model was trained in the biggest GWAS, the ISC, to obtain 

the most accurate estimates of effect size, and the MGS dataset was used as the 

target or test dataset. To avoid overestimating the predictive ability of the polygenic 

scores it is important that the training and target dataset are entirely independent 

(Powell and Zietsch, 2011). The ISC dataset contained 3322 cases and 3587 controls 

combined from 8 separate studies (Purcell et al., 2009). Data were obtained post 

quality control to remove problematic SNPs and individuals, with 739995 SNPs left.  

The MGS European-American dataset contained 2681 cases and 2653 controls and 

had 671422 SNPs after quality control (Shi et al., 2009).  

 

Both datasets were filtered to the set of 661356 overlapping SNPs to ease 

subsequent model developments and make them comparable. This was different to 

the procedure described in the ISC paper, where SNP filtering and pruning were 

performed on all SNPs in the ISC data which meant that some of the SNPs used to 

calculate the polygenic scores would not be found in the MGS data. All subsequent 

filtering steps were performed using the same thresholds detailed by the ISC; all 
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SNPs with a MAF < 0.02 or a missing genotype rate > 0.01 in the ISC study were 

removed. This left 275265 SNPs, with the majority excluded because some studies in 

the ISC were genotyped on a different chip with only ~380000 SNPs.  

 

SNPs were then pruned in a pairwise manner based on their r2 statistic using a sliding 

window of 200 SNPs and 1000kb. The ISC chose a threshold of r2 < 0.25 to create an 

independent set of SNPs and hence that threshold was used here for comparison. A 

set of 42113 SNPs with no pairwise r2 > 0.25 and all with a SCZ association p value < 

0.5 were used to calculate polygenic scores. These will be referred to as the 

independently associated SNP set or SNPIA which was used to compare the 

adaptations of the polygenic model described in this chapter. 

 

Outline of analysis 

The first adaptation considered population stratification. In the original application, 

the two Swedish studies were combined into a single population and all remaining 

studies taken as six other populations. This population stratification was controlled 

for in the association test to produce a single odds ratio for each SNP. Here, the 

polygenic framework was reformulated to allow multiple odds ratios for these 

different populations and incorporate this extra population information. 

  

The second development described looked at including the LD structure between 

SNPs to allow the inclusion of more SNPs when calculating the polygenic scores. In 

the framework proposed by the ISC, stringent pruning was applied to ensure SNPs 

were independent and prevent overestimating the effects of correlated SNPs. Here 

an alternative method was implemented that allows for LD when estimating the 

odds ratios, meaning that more SNPs can be retained and ultimately more 

information included.  

 

Finally the method was extended to calculate a polygenic score based on 

interactions between independently associated SNPs. Polygenic scores were 

calculated for each individual in the MGS dataset for each adaptation to be 
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compared to those calculated as described in the original formulation. Each set of 

scores was tested to see how strongly they predicted case control status in a logistic 

regression test. P values and Nagelkerke’s R2 values (Nagelkerke, 1991) were used to 

compare the performance of each model to the original ISC framework. 

 

After identifying which adaptations of the polygenic model improved the prediction 

of case control status and the amount of variance explained, these were used to 

calculate polygenic scores for all SNPs within a set of genes with a common temporal 

expression profile identified as enriched for SCZ common variants in Chapter 3. The 

gene set polygenic scores were tested simultaneously with genome-wide scores in a 

logistic regression model to see if it was a significant predictor after allowing for the 

genome-wide score. This would inform whether this gene-set contained any SCZ 

signal not captured by the genome-wide score. 

 

4.2 Results 

4.2.1 Standard polygenic scores 

All SNPs in the SNPIA set were used to calculate polygenic scores as described by the 

ISC, referred to here as the standard polygenic. Odds ratios were estimated from a 

logistic regression model that predicted case control status by the number of minor 

alleles at each SNP and included covariates to control for the seven populations. 

Output from these association analyses was used to calculate the polygenic scores in 

PLINK (Purcell et al., 2007), which divides the final polygenic score by the number of 

SNPs to give a mean score per SNP. These scores were found to be significantly 

different between cases and controls, p = 5.41 x 10-31, R2 = 0.0345. This result was 

mildly more significant than that reported by the ISC, which was probably due to a 

larger set of SNPs, obtained from a slightly different filtering procedure, being used. 

This was the baseline result to which all subsequent modifications were compared. 
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4.2.2 Population weighted polygenic scores 

After implementing a strict quality control procedure to genotype data to remove 

many sources of possible false positives, population stratification becomes the main 

concern for spurious results in GWAS (Tian et al., 2008a). In a case control study 

design if the population background of the cases and controls are not well matched, 

differences in allele frequencies between these populations may incorrectly 

associate a SNP to the disorder (Knowler et al., 1988, Campbell et al., 2005). This can 

be particularly problematic when markers are thought to only confer a small or 

modest effect on disease risk and studies are therefore only looking for subtle 

differences in allele frequencies such as the case for SCZ. As a result, GWAS methods 

have been developed either to take into account ancestral information or to reduce 

the resulting inflation of test statistics (Devlin and Roeder, 1999, Pritchard et al., 

2000, Price et al., 2006). These considerations are now part of the routine of 

association analyses, as the ISC study was a collaboration of eight other studies a 

Cochran-Mantel-Haenszel test, which allows for known categorical populations, was 

used.  

 

In the polygenic model there is the assumption that the alleles identified in the 

training dataset are also associated with disease risk in the target dataset, with the 

same direction of effect. While this methodology has been shown to work across 

different ethnicities, demonstrated by the ISC between European Americans and 

African Americans, the results were stronger if individuals in both datasets come 

from the same population (Purcell et al., 2009). Both the ISC and MGS have been 

filtered to only contain European individuals, but even within European 

subpopulations allele frequencies are known to differ and can cause false positive 

results (Seldin et al., 2006, Tian et al., 2008b). Within the ISC each study represents a 

subpopulation whose individuals were shown to cluster together in a plot of the first 

two multidimensional scaling components calculated from their genotypes, see 

Figure 4.1.  This plot shows that the samples originating from the British Isles, either 

Scotland, England or Ireland, group together but also overlap, whereas the 

Bulgarian, Portuguese and Swedish samples form distinct groups away from each 
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other and the British Isles cluster. Taking account of this subpopulation structure, 

and therefore any associated differences, should produce a better estimate of 

disease susceptibility for each SNP, for each individual. In the first adaption, this 

subpopulation information was incorporated to calculate personalised odds ratios 

for each individual in the MGS based on how well their genotypes matched each of 

the populations in the ISC study. 

 

 

Figure 4.1: Multidimensional scaling plot of individuals in ISC dataset. 
This is a two dimensional representation of the ISC genotype data where samples that are most 
similar will be placed closest together, and samples that show the most differences furthest apart. 
Each point in this plot represents an individual that is coloured by the sample collection the individual 
originated from. Taken from Supplementary Figure S1 in (Purcell et al., 2009). 

 

Log odds ratios, θjk, for each population j and SNP k were estimated from logistic 

regression models only including individuals from that population. Seven likelihood 

values wij were then calculated for each individual i in the MGS data, using the 

probability of their genotypes occurring in population j of the ISC data, see Equation 

4.1. The genotype probabilities were taken from the ISC data and calculated for the 

pruned SNP set (r2 < 0.25).  If a genotype was not observed in a population, the 

probability for that SNP was set to a value less than if there had be a single 

occurrence, i.e. set to a value smaller than what could have been observed (Cardiff: 
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0.0008, Dublin: 0.0008, Edinburgh: 0.001, Portugal: 0.001, Sweden: 0.001, UCL: 

0.0009, Aberdeen: 0.0007).  

 

wij = ∑ −log(αijk)

k

 

Equation 4.1 Formula for calculation of population weights wij for individual i in population j, where 
αijk is the probability of individual i’s genotype at SNP k in population j; αijk were taken from the 
genotype frequencies in the ISC dataset which was used as the training dataset. 

 

These wij were then standardised so that the sum of the weights across all 

populations for each individual totalled 1. To calculate the weighted log odds ratio 

θwik for individual i at SNP k, the weight for each population was multiplied by the 

relevant population log odds ratio and summed across the populations (Equation 

4.2).  

 

θwik
= ∑ wijθjk

j

 

Equation 4.2 Formula for the calculation of individual weighted log odds ratios θwik for individual i at 
SNP k, where wij is as in Equation 4.1 and θjk is the log odds ratio for population j at SNP k. 

 

Polygenic scores were calculated based on SNPs in the SNPIA subset (42118). For 

each individual a population weighted polygenic score or Pw was calculated using 

these weighted log odds ratios multiplied by the number of associated alleles at that 

SNP shown in Equation 4.3. If the genotype for an individual was missing at a 

particular SNP the expected value was calculated and multiplied by the weighted 

odds ratio. Consistent with the implementation in PLINK for polygenic scores the Pw 

were divided by the number of SNPs to create a mean score per SNP. 

 

Pwi
= ∑ θwik

 ηik

k

 

Equation 4.3 Formula for the calculation of population weighted polygenic scores Pwi for individual i, 
where θwik is as in Equation 4.2 and ηik is the number of associated alleles for individual i at SNP k. 
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The Pw were found to be significantly different between cases and controls; p = 7.48 

x 10-30; Nagelkerke’s R2 = 0.0331, which was marginally less significant than the 

standard polygenic baseline result. This population weighted approach assumes 

populations have different effect sizes at all SNPs. Therefore this method may be 

more beneficial when only applied to SNPs for which this was the case. Further, for 

SNPs that do not show any differences or only weak differences between 

populations, this method will introduce inaccuracies when estimating the effect sizes 

due to smaller sample sizes for the individual populations.  

 

To identify a relevant subset of SNPs to apply this approach to, two association 

regression models, shown in Equations 4.4, with and without interactions between 

the number of minor alleles and population covariates were compared. P values 

were taken from a chi squared 6 degree of freedom test used to compare the fit of 

these two models. Multiple p value thresholds (0.1, 0.05, 0.01, 0.005 and 0.001) 

were used to select SNPs to apply the population weighted approach to, with all 

remaining SNPs taking their odds ratios from Equation 4.4.A. 

 

status = nMA +  ω1  +  ω2 +  ω3 +  ω4 +  ω5 + ω6 A 

status = nMA +  ω1  +  ω2 +  ω3 +  ω4 +  ω5 + ω6 + nMA ∗ ω1 + nMA ∗ ω2 +

nMA ∗ ω3 + nMA ∗ ω4 + nMA ∗ ω5 + nMA ∗ ω6  B 

Equation 4.4 Formula for two regression models compared to identify SNPs with differences in effect 
sizes across populations and that population weighted log odds ratios should be calculated for, where 
status is SCZ case control status, nMA is the number of minor alleles at test SNP and ωj are binary 
covariates for population j. 

Table 4.1 shows that applying this population weighted approach to an informed 

subset of SNPs does marginally improve the significance compared to applying it to 

all SNPs and explains slightly more of the variance. The best result was obtained 

when using a threshold of 0.05 to select SNPs to apply the weighted approach to; 

however across the thresholds the results were broadly similar. In addition this 

result was also slightly more significant than the baseline polygenic result.  
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Threshold to 

select SNPs for 

weighted 

approach 

All SNPs P < 0.1 P < 0.05 P < 0.01 P < 0.005 P < 0.001 

Number of SNPs 

with weighted 

approach 

42113 4646 2374 480 258 51 

P value 6.43 x 10-30 3.28 x 10-31 2.98 x 10-31 4.46 x 10-31 3.52 x 10-31 4.99 x 10-31 

Coeff. + + + + + + 

R2 0.0332 0.0348 0.0348 0.0346 0.0347 0.0346 

Table 4.1: Logistic regression results testing population weighted polygenic scores.  
Population weighted approach applied to subsets of SNPs with significant difference in effect sizes 
between populations for different significance thresholds. Compare to baseline result of p = 5.41 x 10-

31, R2 = 0.0345. 

The lack of a noticeable improvement of the population weighted model introduced 

here compared to the standard polygenic model could have been due to the inability 

to detect true differences between populations, either because there were none or 

there was not adequate power to detect them. Alternatively, it may be that taking 

these differences into account did not improve the model, perhaps because the 

differences are small. The number of SNPs detected with significant differences 

across the populations in the ISC data was compared to 100 random permutations 

where the population structure had been removed. Population was permuted within 

cases and within controls separately to retain the same number of cases and 

controls per population but remove population differences across the sample. 

Equations 4.4 were fitted for each SNP in the permuted dataset and the number of 

SNPs with significant differences was counted. 

 

Table 4.2 shows that at each threshold, the number of SNPs with population 

differences in the true ISC data was greater than any permutation, except p < 0.01 

where one permutation had at least as many significant SNPs. This result is 

consistent with polymorphisms affecting the different populations within the ISC 

study to different extents. Alternatively, these results may reflect differing LD 

relationships between the causal SNP and the tag SNP across the populations. Where 

this correlation is weaker, the evidence for association and effect size between the 

tag SNP and SCZ disease status would smaller. In these instances, the model used to 

detect population differences would be unable to distinguish if it was true effect size 
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difference or merely a result of differing LD relationships. In either scenario, the 

additional noise from estimating the effect size for each population from a smaller 

sample size, meant allowing for these differences in the polygenic framework did not 

greatly improve discrimination between SCZ cases and controls. 

 

Threshold for significant 

differences across populations 
0.1 0.05 0.01 0.005 0.001 

Number of SNPs in ISC with 

differences across populations 
8805 4491 923 499 106 

Empirical p value based on 100 

permutations 
< 0.01 < 0.01 0.01 < 0.01 < 0.01 

Table 4.2: Empirical p values for number of SNPs with significant differences in effect size across 
populations in the ISC. 
Tested by comparing models in Equation 4.4 and comparing results in true ISC data to 100 
permutations where population structure was randomised. 

 

4.2.3 LD adjusted polygenic scores 

In the current framework when summing across SNPs, any pair of SNPs in even 

moderate LD will cause an overestimation of the number of independent effects. To 

prevent this, the original application was performed on a set of stringently pruned 

SNPs, where no pair of SNPs had an r2 > 0.25. This reduced the set of SNPs that 

passed quality control by approximately 70%, losing information from SNPs that was 

not captured by those they were partially correlated with. This could be particularly 

relevant when calculating polygenic scores for gene sets later in this chapter, which 

were based on a smaller set of SNPs. Results reported in Chapter 3 were more 

significant when testing for enrichment with summarised p values based on Brown’s 

method, reflecting semi-independent effects from across the gene. Stringent pruning 

of SNPs within this set may therefore lose some of this information.  

 

When using logistic regression as the test for association analysis, case control status 

is regressed on the number of minor alleles for the test SNP, denoted here as SNPtest. 

Within this framework covariates can easily be included to control for population 

structure with scope to include any other possible confounders. In order to account 

for the correlation between SNPs, an extra covariate for a SNP in high LD with 
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SNPtest, was included in the regression framework as follows. SNPs were considered 

in the order they were located along each chromosome. The first SNPtest on each 

chromosome was treated as usual with its odds ratio estimated from a logistic 

regression model. For each subsequent SNPtest, the SNP within the previous 200 SNPs 

and 1000 kb that was in strongest LD with SNPtest (identified by r2 calculated in 

controls only) was taken, denoted from here as SNPLD1.  

 

status ~ SNPtest + SNPLD1 + ω 

Equation 4.5 Logistic regression model used to adjust SNPtest’s odds ratio for SNPLD, where status is SCZ 
case control status, SNPtest and SNPLD1 are the number of minor alleles at these SNPs and ω is the 
population covariates. 

 

The number of minor alleles of SNPLD1 was then included as a covariate in the 

association test for SNPtest so that the odds ratio would be adjusted for LD between 

these two SNPs, see Equation 4.5. Therefore, if both of these SNPs were included 

when calculating the polygenic scores, the effects should no longer be 

overestimated. These polygenic scores will be referred to as LD adjusted polygenic 

scores or PLD.  

 

As regression is not effective at estimating parameters for highly correlated 

variables, some LD based pruning was required. Pruning was applied at six r2 

thresholds (0.8, 0.82, 0.84, 0.86, 0.88 and 0.9) to see if this produced any variation in 

the results. Table 4.3 displays the number of SNPs in each set.  

 

Pruning threshold 0.8 0.82 0.84 0.86 0.88 0.9 

Number of SNPs after 

LD pruning 
161793 164722 167939 171251 174923 178899 

Number of LD pruned 

SNPs with p < 0.5 
84397 85954 87651 89405 91359 93475 

Table 4.3: Number of SNPs after LD based pruning in sets used to calculate LD adjusted polygenic 
scores. 
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For each of these six SNP sets the first polygenic model fitted was based on odds 

ratios from logistic regression models not adjusted for any LD SNPs, results in Table 

4.4. At all thresholds the polygenic scores were significantly higher in SCZ cases 

compared to controls, with the most significant difference at r2 < 0.84 (p = 3.35 x 10-

42). All of these results were more significant than the baseline result, and explained 

~4.7-4.8% of the variance compared to ~3.5% in the baseline model. The inclusion of 

extra SNPs to calculate polygenic scores will increase the significant difference 

between cases and controls, however these may be an overestimation of the true 

effects due to the inclusion of correlated SNPs. 

 

Pruning 

threshold 
0.8 0.82 0.84 0.86 0.88 0.9 

Number of 

SNPs 
84397 85954 87651 89405 91359 93475 

P value 1.10 x 10-41 1.72 x 10-41 3.35 x 10-42 1.39 x 10-41 1.56 x 10-41 3.00 x 10-41 

Coeff. + + + + + + 

R2 0.0475 0.0473 0.0482 0.0474 0.0473 0.0470 

Table 4.4: Logistic regression results testing polygenic scores not adjusted for any LD SNPs.  
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

Pruning 

threshold 

0.8 0.82 0.84 0.86 0.88 0.9 

Total number of 

SNPs 
84397 85954 87651 89405 91359 93475 

P value 2.26 x 10-39 2.04 x 10-38 3.41 x 10-39 2.89 x 10-37 1.97 x 10-37 1.66 x 10-36 

Coeff. + + + + + + 

R2 0.0447 0.0435 0.0445 0.0421 0.0423 0.0412 

Table 4.5: Logistic regression results testing LD adjusted polygenic scores, where all SNPs were 
adjusted for an LD SNP.  
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

PLD produced a more significant difference between cases and controls than the 

standard polygenic scores from an LD pruned subset (the baseline comparison 

model). Table 4.5 shows this was true for all SNP sets, which were LD pruned at 

different thresholds. Generally the results across these thresholds were fairly stable, 

but more significant for SNP sets with r2 < 0.8, 0.82 or 0.84. The variance explained 

with this method increased by up to 1% to 4.5% in the 0.8 and 0.84 pruned SNP sets 

compared to the baseline result.  
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Compared to the results in Table 4.4 for the same sets of SNPs, but not adjusted for 

any LD SNPs, the results in Table 4.5 were a couple of orders of magnitude less 

significant. While in theory the LD adjusted model should be more accurate, 

including extra covariates, particularly correlated covariates, reduces the accuracy of 

the effect size estimates. Therefore this model may be less significant compared to 

the unadjusted model with the same number of SNPs, as it has introduced additional 

errors.  

 

Within the SNP sets, some SNPs will effectively have no correlation with any other 

SNP. Theoretically the adjustment for LD SNPs with weak correlation should be 

minimal. To confirm that controlling unnecessarily for SNPs not in LD did not stifle 

the association, in a second iteration LD adjusted odds ratios were only calculated if 

there was a SNPLD1 with evidence of correlation with SNPtest, identified by r2 > 0.25. 

With this criterion, adjusted odds ratios were calculated for between 54% and 59% 

of SNPs with the percentage increasing as the pruning threshold became less 

conservative. 

 

Pruning 

threshold 
0.8 0.82 0.84 0.86 0.88 0.9 

Number of SNPs 

adjusted for an 

LD SNP 

46070 

(54.6%) 

47714 

(55.5%) 

49493 

(56.5%) 

51308 

(57.4%) 

53303 

(58.3%) 

55438 

(59.3%) 

P value 1.74 x 10-39 1.40 x 10-38 1.65 x 10-39 1.67 x 10-37 1.11 x 10-37 8.45 x 10-37 

Coeff. + + + + + + 

R2 0.0448 0.0437 0.0449 0.0424 0.0426 0.0415 

Table 4.6: Logistic regression results testing LD adjusted polygenic scores, where SNPs where only 
adjusted for an LD SNP if r2 > 0.25.  
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

Only adjusting SNPs with a neighbouring SNP in sufficiently high LD produced 

nominally more significant differences between cases and controls compared to 

adjusting all SNPs, shown in Table 4.6. In principle and practice there was no benefit 

to accounting for weak correlation between SNPs. As it was possible that smaller r2 

values could have occurred by chance, in all subsequent applications a lower bound 
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was required when calculating adjusted odds ratios. This lower bound was set to r2 > 

0.25 as this was the pruning threshold used to create a set of independent SNPs. An 

additional benefit to this decision was a reduction in computation time.  

 

These results may still be an overestimate of the SCZ signal due to the aggregation of 

non-independent effects. Therefore this method was further extended to adjust the 

odds ratios for a second or even third LD SNP, denoted SNPLD2 and SNPLD3 

respectively. Partial correlations were used to identify the best SNPLD2 such that the 

correlation with SNPtest was independent to that already captured by SNPLD1, and 

SNPLD3 such that the correlation was independent to SNPLD1 and SNPLD2. SNPLD1, 

SNPLD2 and SNPLD3 were only included if there was evidence of LD with the SNPtest, 

identified as r2 or partial correlation greater than 0.25. Therefore SNPs were 

adjusted for zero, one, two or three other SNPs, depending on LD structure. In each 

pruning set pairs of SNPs with a partial correlation greater than the original pruning 

threshold were ignored.  

 

Pruning 

threshold 
0.8 0.82 0.84 0.86 0.88 0.9 

Total number 

of SNPs used 

in model 

84397 85954 87651 89405 91359 93475 

Number of 

SNPs adjusted 

for 2 LD SNPs 

12542 

(14.9%) 

12951 

(15.1%) 

13371 

(15.3%) 

13757 

(15.4%) 

14108 

(15.4%) 

14434 

(15.4%) 

P value 1.63 x 10-37 1.91 x 10-36 3.38 x 10-37 1.49 x 10-34 3.69 x 10-35 6.90 x 10-34 

Coeff. + + + + + + 

R2 0.0424 0.0411 0.0420 0.0388 0.0396 0.0380 

Table 4.7: Logistic regression results testing LD adjusted polygenic scores, where SNPs were adjusted 
for up to two LD SNPs.  
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

For each pruning threshold ~15% of all SNPs included were adjusted for two LD SNPs, 

results presented in Table 4.7. Controlling for a second LD SNP continued to 

significantly discriminate cases from controls but a couple of orders of magnitude 

less significantly than including one LD SNP, with a lower estimate for the variance 

explained. As with controlling for one LD SNP, the results were fairly consistent 
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across the pruning thresholds and again the more conservative thresholds (0.8, 0.82 

and 0.84) had the most significant results. 

 

Pruning 

threshold 
0.8 0.82 0.84 0.86 0.88 0.9 

Number of 

SNPs adjusted 

for 3 LD SNPs 

2818 (3.3%) 2887 (3.4%) 2959 (3.4%) 3015 (3.4%) 3092 (3.4%) 3093 (3.3%) 

P value 1.47 x 10-36 1.00 x 10-34 2.54 x 10-36 4.46 x 10-34 1.06 x 10-33 1.30 x 10-32 

Coeff. + + + + + + 

R2 0.0412 0.0390 0.0410 0.0382 0.0378 0.0365 

Table 4.8: Logistic regression results testing LD adjusted polygenic scores, where SNPS were adjusted 
for up to three LD SNPs.  
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

 

When controlling for a third LD SNP, SNPLD3, the proportion of SNPs for which three 

independent LD SNPs were identified was ~3%. This appears to have captured most 

of the LD structure for most SNPs in this dataset and hence no more LD SNPs were 

sought. The PLD were still significantly different between cases and controls, shown 

in Table 4.8, across all pruning thresholds although the variability of the results was 

greater than seen with zero, one or two LD SNPs.  

 

The decrease in significance of p values as a second and then a third LD SNP was 

included compared to the models adjusted for zero or one LD SNPs was again, likely 

due to increasingly poorly estimated effect sizes. However, even with poorly 

estimated effect sizes the increased number of SNPs in each of these sets meant all 

LD adjusted models were more significant than the baseline model on a more 

stringently pruned subset. The most significant result controlling for up to three LD 

SNPs in the r2 < 0.8 SNP set explained more than 4% of the variance, which was an 

improvement of half a per cent on the baseline comparison. 

 

Comparing pruning thresholds 

Regression models are known not to be good at handling highly correlated variables, 

which can cause unreliable estimates of the coefficients or effect size. The principle 
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here was to include SNPs in LD, i.e. those with a correlation between them, in the 

regression framework and take the coefficients from these as weights for the 

polygenic model. Therefore it was prudent to investigate the potential impact of this 

on the coefficient estimates. As an attempt to prevent extreme violations of this 

assumption, mild pruning based on the r2 statistic between SNPs was performed. 

Here the output of the logistic regression, in particular the standard errors (SE) of 

the coefficients for SNPtest, was examined to check the thresholds chosen were 

appropriate.  

 

Large SE can be caused by multicolinearity and signify that unreliable estimates of 

the odds ratio were used to calculate the polygenic scores. For regression models 

with one, two or three LD SNPs the distribution of SE were plotted for each pruning 

threshold and in particular the tails of the distribution were looked at for extreme 

SE. As the output of the logistic regression with no LD SNPs was the same across all 

pruning thresholds, the distributions were virtually identical, varying only by the 

number of SNPs (and which SNPs) included so just one plot with the most SNPs was 

produced for comparison. 

 

 



159 
 

 

Figure 4.2: Violin plots of SE for beta coefficients for SNPs in LD adjusted polygenic models. 
Each plot shows the range and frequency distribution of SE and represents a different polygenic 
model from Tables 4.6-4.8.Plots include SE from all SNPs used to calculate polygenic scores which will 
be adjusted for up to N SNPs on y axis. The violin plot at the top (yellow) is of SE from SNP set with r2 
< 0.9 not adjusted for any LD SNPs and is included for comparison. 

 

When no LD SNPs were included, no multicolinearity was introduced and the SE for 

the coefficient estimates were all less than 0.13, although the distribution shows a 
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long right tail with a 95th percentile of 0.089, see Figure 4.2. Generally the inclusion 

of LD SNPs shifts the distribution to the right, increases the inter-quartile range or 

spread of the data and the length of the right tail. This effect was intensified as the 

pruning threshold became more relaxed and the possibility of higher correlations 

between SNPs increases. Across the more conservative thresholds (0.8, 0.82 and 

0.84) the SE distributions were fairly similar when one, two or three SNPs were 

included in the regression.  For the less conservative thresholds (0.88 and 0.9) the 

inclusion of the second and third LD SNPs produced the longest tails, with the 0.86 

results intermediate to these two groups.  

 

Based on these observations and trying to retain as many SNPs as possible, a 

threshold of 0.84 appears the correct balance for these data as it did not have many 

SE larger than those observed at the more conservative thresholds. This SNP set 

produced only marginally less significant results when including any number of LD 

SNPs than the best results with the 0.8 threshold. In fact the three most conservative 

thresholds were always more significant than the three least conservative. Despite 

more relaxed pruning generating larger SNP sets, the higher SE associated with 

including more strongly correlated markers meant that the higher proportion of 

SNPs with unstable estimates of effect size introduced noise.  

 

The effect of correlated markers on estimates of the odds ratios will vary from 

dataset to dataset as larger samples will be able to handle multicolinearity, as well as 

multiple LD SNPs, better than smaller sample sizes. The size of the ISC sample 

appears to be big enough to avoid huge SE (> 1) even when including up to three 

extra SNPs correlated with the test SNP. However the increased error sizes appear to 

accumulate when summing over multiple SNPs and cause a decrease in significance 

as additional LD SNPs were included.  

 

4.2.4 SNP-SNP interaction polygenic scores 

The final adaptation to the polygenic model was to extend it to include interactions 

between pairs of SNPs. Significant interactions for all SNPs in the SNPIA set with 
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another independently associated SNP within this set were identified in the 

following manner. SNPs were ordered by their chromosomal position and for each 

SNP, taken as SNPtest, all SNPs with r2 < 0.25 from the preceding 200 and within 

1000kb were considered. Of these SNPint was selected as the one with the strongest 

individual evidence of association in the ISC GWAS, defined as the smallest 

association p value. As this SNPint is part of the SNPIA set its p value < 0.5 and 

therefore has some evidence of an association to SCZ. This approach ensures that for 

each SNP a unique interaction was considered. Equation 4.6 shows the logistic 

regression model fitted to estimate the odds ratios and significance of each 

interaction. 

 

status ~ SNPtest + SNPint + SNPtest ∗ SNPint +  ω 

Equation 4.6 Logistic regression model used to identify significant SNP-SNP interactions between 
SNPtest and SNPint, which are independently associated to SCZ and estimate the associated odds ratio , 

where status is SCZ case control status, SNPtest and SNPint are the number of minor alleles at these 
SNPs and ω is the population covariates. 

 

A SNP based polygenic score and interaction based polygenic score were calculated 

separately. The SNP score, SA, was calculated as described previously, shown in 

Equation 4.7, where for all SNPs without a significant interaction the odds ratios 

were taken from the standard logistic regression model used for testing association 

shown in Equation 4.4A. For SNPs with a significant interaction the odds ratios were 

taken from Equation 4.6 so that they were adjusted for the contribution of the 

interaction. 

 

SAi
= ∑ βk ηik

k

 

Equation 4.7 Formula to calculate SNP based polygenic score SAi for individual i, where βk is the 
coefficient for SNPtest taken from Equation 4.6 for significant interactions or Equation 4.4A otherwise 
and ηik is the number of associated alleles for individual i at SNP k. 
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The interaction score, SI, was calculated for each significant interaction as the 

product of the number of minor alleles at each SNP multiplied by the natural 

logarithm of the associated odds ratio from Equation 4.6, shown in Equation 4.8. 

 

SIi
= ∑ βintηinti

ηtesti

int

 

Equation 4.8: Formula to calculate interaction based polygenic score SIi for individual i, where ηtest is 
the number of associated alleles at SNPtest, ηint is the number of associated alleles at SNPint and βint is 
the coefficient for the interaction term from Equation 4.6. 

 

In any instance where the genotype was missing the expected value was taken based 

on the allele frequencies in the target dataset. The polygenic scores, as implemented 

in PLINK, are divided by the number of SNPs to give a mean score per SNP. Hence, SI 

was divided by the number of significant interactions to give the mean score per 

interaction. 

 

Interaction threshold 0.5 0.1 0.05 0.01 0.005 0.001 

Model 
testing 

SNP score: 
SA 

P value 1.84 x 10-19 1.18 x 10-19 6.31 x 10-21 1.33 x 10-30 1.86 x 10-30 4.19 x 10-31 

Coeff. + + + + + + 

R2 0.0203 0.0205 0.0219 0.0328 0.0326 0.0333 

Model 
testing 

interaction 
score: SI 

P value 0.284 0.286 0.289 0.293 0.293 0.285 

Coeff. - - - - - - 

R2 0.000288 0.000286 0.000283 0.000278 0.000277 0.000286 

Table 4.9: Logistic regression results testing polygenic SNP scores and polygenic interaction scores 
separately. 
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

Six thresholds (0.5, 0.1, 0.05, 0.01, 0.005 and 0.001) were used to identify significant 

interactions. The distribution of interaction p values was fairly uniform and at each 

threshold, the proportions that were significant were just less than would be 

expected by chance. Firstly the SA and SI were tested separately in logistic regression 

models predicting case control status. Table 4.9 shows the SNP scores, SA, all 

significantly predicted case control status, although less significantly than in the 

original framework. This discrepancy was due to a proportion of the SNPs using odds 

ratios adjusted for a significant interaction.  Fewer interactions will be found at more 
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stringent thresholds and therefore less of the SNP odds ratios will have been 

adjusted, meaning these SNP scores become closer to the baseline polygenic scores 

as the threshold became more significant. None of the interaction scores, SI, 

significantly predicted case control status, regardless of the threshold used to select 

interactions for inclusion.  

 

Both of these scores were then tested simultaneously in a joint model to see if the 

inclusion of the interaction term in addition to the SNP score improved the fit of the 

model, results presented in Table 4.10. Only at a threshold of 0.5 for significant 

interactions there was a trend for the interaction score to predict case control 

status. At all other thresholds the SNP score was significant but the interaction score 

was not. In sum, the inclusion of a polygenic score based on SNP-SNP interactions 

did not improve on just a SNP based score.  

 

Interaction threshold 0.5 0.1 0.05 0.01 0.005 0.001 

Joint 
model 

P value 3.44 x 10-19 8.30 x 10-19 7.02 x 10-20 1.56 x 10-29 1.53 x 10-29 2.44 x 10-30 

R2 0.0212 0.0207 0.0220 0.0329 0.0329 0.0338 

SNP score 
P value 5.27 x 10-20 1.28 x 10-19 1.05 x 10-20 1.89x 10-30 1.84 x 10-30 2.93 x 10-31 

Coeff. + + + + + + 

Interaction 
score 

P value 0.0571 0.319 0.714 0.515 0.287 0.175 

Coeff. + + + - - - 

Table 4.10: Logistic regression results testing polygenic SNP scores and polygenic interaction scores 
jointly. 
Compare to baseline result of p = 5.41 x 10-31, R2 = 0.0345. 

 

4.2.5 Summary of polygenic model adaptations 

Of the adaptations investigated here, the population weighted approach performed 

similarly to the baseline result and the inclusion of SNP-SNP interactions did not 

improve the model fit. Alternatively, including the LD relationships between SNPs 

meant that more than double the number of SNPs could be retained, which 

improved the significant difference in polygenic scores between cases and controls. 

Allowing for up to three LD SNPs captured the majority of the LD relationships and 

improved the variance explained by over half a per cent to more than 4%.   
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All of these approaches require large sample sizes to accurately estimate the odds 

ratios and may suffer from introducing additional inaccuracies. Despite this, in the LD 

adjusted model the relaxed LD pruning threshold meant more SNPs could be 

included and this outweighed the increased errors when estimating the effect sizes. 

In the next section the LD adjusted approach will be used to test gene sets identified 

from the expression work in the previous chapters. The pruning threshold of r2 < 

0.84 will be used as it was the best balance of maximising the number of SNPs and 

obtaining reasonable SE in the results presented so far. 

 

4.2.6 Application to gene set identified in Chapter 3 

In the previous chapter a temporal expression profile was identified for SCZ risk 

genes with increased expression during early and mid-foetal stages followed by a 

decrease of expression to the lowest values in early postnatal years before 

increasing though adolescence and adulthood. This was captured by identifying 

genes co-expressed with robustly associated SCZ genes over brain development 

through a linear model. Here the most enriched set, identified from the Mann-

Whitney tests shown in Appendix Figure 8.15 panel A as the top 25% of genes ranked 

by their SCZ co-expression model p values calculated from Equation 3.3, were taken 

and polygenic scores calculated for the set.  

 

These scores, calculated using the method as described by the ISC in a pruned SNP 

set (r2 < 0.25), were found to be significantly higher in SCZ cases compared to 

controls (p = 6.34 x 10-12; R2 = 0.0118).  This confirms the results in the previous 

chapter that genes identified with this common developmental expression profile 

harbour multiple common risk variants associated with SCZ. 

 

Scores calculated in a less stringently pruned SNP set  (r2 < 0.84) were a more 

significant predictor of case control status (p = 1.02 x 10-13; R2 = 0.0118) which was as 

to be expected, as more SNPs were included to calculate the score. Polygenic scores 

were also calculated using the LD adjusted method introduced in Section 4.2.3 for up 
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to three LD SNPs. Of these, presented in Table 4.11, the most significant result was 

when up to two LD SNPs were adjusted for (p = 3.97 x 10-9; R2 = 0.00866). Unlike with 

the genome-wide scores there was not a monotonic increase in p values as the 

number of LD SNPs included increased, further none of the LD adjusted results were 

more significant than the r2 < 0.25 pruned unadjusted result.  

 

Pruning 
threshold 

0.25 0.84 

Odds ratios 
adjusted for up 

to N SNPs 

0 0 1 2 3 

Number of 
SNPs used to 

calculate scores 

5362 10162 
10162 
(5019a) 

10162 
(3746a, 1273b) 

10162 
(3746a, 994b, 

279c) 

P value 6.34 x 10-12 1.02 x 10-13 1.38 x 10-7 3.97 x 10-9 6.59 x 10-8 

Coeff. + + + + + 

R2 0.0118 0.0138 0.00695 0.00866 0.00730 

Table 4.11: Logistic regression results testing expression gene set polygenic scores using unadjusted 
and LD adjusted methods. 
 a number of SNPs adjusted for 1 LD SNP, b number of SNPs adjusted for 2 LD SNPs, c number of SNPs 
adjusted for 3 LD SNPs.  

Pruning threshold 0.25 0.84 

Odds ratios adjusted for 
up to N SNPs 

0 0 1 2 3 

Joint 
model 

P value 1.42 x 10-32 2.99 x 10-44 1.77 x 10-41 4.52 x 10-39 1.01 x 10-37 

R2 0.0363 0.0494 0.0463 0.0436 0.0421 

Genome-
wide 

polygenic 
score 

P value 2.01 x 10-23 1.98 x 10-33 1.19 x 10-36 9.84 x 10-33 1.44 x 10-32 

Coeff. + + + + + 

R2 0.0248 0.0361 0.0396 0.0352 0.350 

Gene set 
polygenic 

score 

P value 0.00673 0.0252 0.0152 0.0111 0.0315 

Coeff. + + + + + 

R2 0.000186 0.00127 0.00150 0.00164 0.000117 

Table 4.12: Logistic regression results jointly testing genome-wide and gene set polygenic scores.  

The final step was to see if these gene set polygenic scores captured anything 

additional to the whole-genome polygenic score. As it was calculated with more 

SNPs the whole-genome polygenic score was, as expected, the more significant 

term, see Table 4.12. However in all five models the gene set score also remained 

significant implying it captured some SCZ signal not present in the whole-genome 

score. The gene set score was most significant in the more stringently pruned 
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unadjusted method. However, overall, for all models presented in Table 4.11, using 

both scores to predict case control status only explained slightly more of the 

variance compared to just using the whole genome score.  

 

The gene set scores were also compared to genome-wide measures calculated only 

from genic SNPs, results shown in Table 4.13. In this scenario the gene set score was 

not a significant predictor when the whole genome score was included in any of the 

five models tested. This implies that the gene set score was a proxy for the genome-

wide genic score and that there was additional genic signal outside this set. It also 

suggests that there was a polygenic signal for SCZ in both genic and non-genic SNPs, 

although this was weaker in the latter set. Therefore when the gene set score was 

tested against the whole genome score, which included both genic and non-genic 

SNPs, it remained significant as the genome-wide score had introduced a weaker 

signal from the non-genic SNPs. Whereas when the gene set score was tested 

against a genome-wide score calculated from just genic SNPs it did not contain any 

signal not already captured and hence was not significant. 

 

Pruning threshold 0.25 0.84 

Odds ratios adjusted for 
up to N SNPs 

0 0 1 2 3 

Joint model 
P value 1.61 x 10-27 2.63 x 10-35 8.32 x 10-36 1.61 x 10-32 3.80 x 10-31 

R2 0.0306 0.0394 0.0399 0.0362 0.0347 

Genome-
wide 

polygenic 
score 

P value 2.61 x 10-18 2.08 x 10-24 6.12 x 10-31 4.01 x 10-26 6.25 x 10-26 

Coeff. + + + + + 

R2 0.0190 0.0259 0l.0332 0.0278 0.0276 

Gene set 
polygenic 

score 

P value 0.400 0.862 0.148 0.233 0.462 

Coeff. + + + + + 

R2 0.000179 7.62 x 10-6 0.000531 0.000361 0.000137 

Table 4.13: Logistic regression results jointly testing genic genome-wide and gene set polygenic 
scores. 
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4.3 Discussion 

4.3.1 Extensions of polygenic model 

Of the adaptations described here the most successful was the inclusion of LD 

relationships between markers. The main benefit of this method was that the initial 

pruning threshold to obtain a set of independent SNPs could be relaxed, and 

therefore more SNPs were included when calculating the scores. From these extra 

SNPs additional information was retained that previously may have been missed.   

 

Theoretically the LD adjusted model should be more accurate than a model based on 

the same set of SNPs that incorrectly assumes the association of each SNP is 

independent. However, the more complex LD adjusted model will be limited by 

poorer estimates of effect size. As additional LD SNPs were controlled for, from zero 

to three, the p values for predicting case control status became less significant. The 

inclusion of each additional SNP as a covariate in the logistic regression model 

introduced larger SE for the odds ratios with a higher proportion of SE at the 

extreme end of the distribution, see Figure 4.2. This effect will be further enhanced 

when the covariates are correlated, such as the case here. When summing across 

SNPs for the polygenic score, the combination of even small errors becomes 

significant (Dudbridge, 2013), while the SE only increased for the subset of SNPs 

adjusted for LD SNPs the accumulative impact of this will affect the predictive ability 

of the polygenic scores. This would be improved by larger sample sizes, which would 

improve the accuracy of the effect size estimates and be able to handle correlated 

covariates better. 

 

This application, however, has shown that this approach is plausible with real data, 

and that the inclusion of additional SNPs still improves the discrimination of the 

scores even if the effect sizes have been estimated with reduced accuracy when 

compared to the stringently pruned, unadjusted baseline result. Ideally, a 

simulations procedure would be performed to directly compare the approach 

introduced here to the simple pruned version introduced by the ISC in scenarios 
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where the true variants and LD structure is known. This was beyond the time-frame 

of this project but would be an interesting extension.  

 

Although SNP chips only contain a few hundred thousand SNPs, the markers are 

carefully selected to capture genetic variation across the majority of the genome 

(Hirschhorn and Daly, 2005).  Based on the genotypes identified from a SNP chip 

experiment, many other SNPs can be imputed using the relationships between the 

markers and probability models. Imputation will further increase the information 

available to calculate polygenic scores, but the LD structure will need to be taken 

into account as the number of correlated associations from a GWAS based on an 

imputed dataset will be greater. The LD adjusted method proposed in this thesis 

may, therefore, enable the polygenic score approach to be applied to studies where 

imputation has been used. 

 

For SCZ the polygenic model had already been shown to be highly significant, even 

for a stringently pruned SNP set.  The LD adjusted method with a more relaxed 

pruning threshold improved the significance of this result further, by a couple of 

orders of magnitude. The benefit of this approach may be more relevant for 

scenarios where polygenic scores were only nominally associated to an outcome 

measure and the inclusion of extra SNPs through less conservative SNP pruning may 

help identify true signals. Such scenarios could include taking GWAS results from one 

phenotype to predict a different trait or disorder, or testing the polygenic nature of a 

subset of genes for example from a functional pathway. Caution is advised however, 

and users would have to consider how far the pruning threshold could be relaxed 

and how many LD SNPs could be included given their sample size, particularly, if this 

was already a factor of the initial inconclusive results.  

 

Sample size was also a factor in the calculation of the population weighted and 

interaction polygenic scores. Subdividing the ISC into seven smaller subpopulations 

will have introduced inaccuracies when estimating the effect sizes for each 

population, which would have been further exacerbated when summed across 

populations to calculate the population weighted odds ratios, and then across SNPs 
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to calculate the final polygenic scores. To accurately estimate interaction odds ratios 

a much larger sample size is required relative to that needed when estimating SNP 

odds ratios, in particular for small effects which is what the polygenic model is 

designed to capture. In both of these approaches with the current sample size the 

inaccuracies of the effect sizes will have introduced noise deflating the significant 

difference between cases and controls and may explain why neither adaptation 

performed better than the baseline comparison model. 

 

SNP-SNP interactions have been suggested to explain some of the missing 

heritability of complex disorders (Manolio et al., 2009). It is likely in this dataset that 

there was not enough power to identify truly associated interactions. In the 

implementation described here the SNP-SNP interactions were selected as the 

strongest independent association from a set of neighbouring SNPs. This obviously 

ignored any possible interactions between SNPs on different chromosomes. 

Alternative ways of choosing pairs of SNPs could be further investigated and for 

example may look at interactions within the same gene, or between functionally 

related genes which may be more likely to be associated to disease. A score based 

on these may be more effective at discriminating between cases and controls.  

 

An additional consideration for all of these adaptations is the additional 

computational time required.   The polygenic method as described in the ISC paper is 

part of the PLINK analysis package (Purcell et al., 2007) and post GWAS is very quick 

to implement. Each adaptation here requires additional association analyses on top 

of the initial GWAS to obtain an alternative effect size estimate, although in each 

case this was only applied to a subset of SNPs. The population weighted approach 

was the most computationally intensive as it also requires the calculation of the 

population likelihood values for each individual in the target dataset. The LD 

adjusted method was the easiest to implement because after adjusting the relevant 

odds ratios the PLINK –-score function can be used to calculate the target individuals 

LD adjusted polygenic scores.  
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4.3.2 Assessing polygenic contribution of gene set identified from Chapter 3 

The rationale behind these extensions was to identify possible improvements to the 

polygenic framework for use with a set of genes informed as relevant for SCZ 

aetiology from the gene expression work in Chapters 2 and 3. Polygenic scores 

calculated based on such a gene set significantly predicted SCZ case control status. 

This was in line with the enrichment of this set for gene-wide p values combined 

using Brown’s approach, which takes in account multiple signals within a gene in 

Chapter 3. Comparing the gene set polygenic scores to scores calculated from SNPs 

across the genome showed that they were representative of a score based on all 

genic SNPs suggesting SCZ signal is concentrated in genes, consistent with another 

study showing enrichment of association signal in genic elements for many complex 

diseases including SCZ and BPD (Schork et al., 2013). While it has previously been 

shown that common variants associated through GWAS with SCZ are over-

represented in brain-expressed genes (Lee et al., 2012a), it would be of interest to 

see if the subset of genes with a temporal profile across brain development used 

here harbour more polygenic signal compared to random gene sets with similar 

numbers of SNPs. Set-based tests in Section 3.2.5 in the previous chapter, found that 

this set of genes contained SCZ association signal after correcting for the number of 

SNPs within the set,  suggesting that this would be the case. 

 

4.3.3 Summary of chapter findings 

In sum, this chapter has shown that genetic prediction based on a subset of genes 

identified through gene expression profiles as enriched for SCZ signal can be used to 

discriminate between cases and controls. This suggests that within this set of genes 

there are likely many variants that are currently sub-threshold but as sample sizes 

increase will be identified as associated to SCZ. This is consistent with the findings in 

the previous chapter that genes within this set, identified by their co-expression with 

SCZ risk genes, are good candidates for SCZ aetiology. Further, functional analysis on 

this set of genes, as performed in Chapter 3, may help understand the biological 

causes of SCZ. 
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Chapter 5: Discussion 

5.1 Identification of temporal expression profile for schizophrenia risk 

genes 

SCZ is generally regarded as a neurodevelopmental disorder where aberrant brain 

development may cause symptoms to present later in life (Murray and Lewis, 1987, 

Weinberger, 1987). Increased rates of minor physical anomalies (Xu et al., 2011) and 

dermatoglyphic anomalies (Golembo-Smith et al., 2012) suggest that at least in some 

individuals a disruption occurs during gestation, prior to the formal onset of 

symptoms during adolescence. Further, association studies have identified genetic 

risk factors in genes related to brain development such as MIR137 (Ripke et al., 

2011) and genes hit by CNVs found in SCZ patients have been shown to be 

overrepresented in pathways relating to brain development (Walsh et al., 2008, 

Raychaudhuri et al., 2010).  

 

The purpose of this thesis was to investigate the neurodevelopmental hypothesis of 

SCZ, integrating transcriptomic, GWAS and CNV data to identify functional pathways. 

The main finding was a developmental expression profile for genes associated to 

SCZ. This was characterised by increased expression during foetal development, in 

particular during the second trimester, before a decrease prior to birth that 

continued to the lowest expression values around late infancy and early childhood 

before increasing through adolescence. This is supportive of the 

neurodevelopmental model for SCZ, where an insult during gestation, perhaps 

during the second trimester when gene expression values were greatest, may affect 

development to the extent that psychiatric symptoms present later in life. As 

discussed in Chapter 2, the second trimester has previously been suggested as a 

vulnerable time point for insults related to an increased risk of SCZ, with minor 

physical anomalies and dermatoglyphic abnormalities considered as markers for 

disruptions during this time frame (Lobato et al., 2001).  
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Previous studies have investigated the temporal profile of risk genes for SCZ 

(Colantuoni et al., 2008, Choi et al., 2009, Harris et al., 2009) however, this is the first 

study to include prenatal samples, covering the full range of human brain 

development up until late adulthood. Moreover, this study included multiple brain 

regions for each individual where previous studies have generally focused on 

samples from the prefrontal cortex. Chapter 2 focused on a period of mid-foetal 

development and identified spatial expression profiles, notably those with decreased 

expression in the HIP or THAL, enriched for both SCZ and BPD common variants. 

Gene sets with these expression patterns were also shown to have a variable 

expression profile across brain development with high expression during foetal 

development, which starts to decreases prior to birth to lower values during 

postnatal years until adolescence, shown in Figure 2.10.  

 

Chapter 3 identified the same developmental expression profile described in Chapter 

2 and extended it by considering samples up to late adulthood through two 

complementary approaches. Firstly, specific characteristic expression profiles across 

development were identified. Genes with increased expression during foetal 

development and decreased expression in early postnatal years were associated 

with more significant SCZ gene-wide p values. Secondly, sets of genes co-expressed 

with SCZ risk genes were shown to be enriched for SCZ common variants and their 

characteristic expression profiles matched the results of the first set of analyses. 

These results suggest that SCZ risk genes play a role in the development of the 

human brain, particularly during foetal stages when expression values were highest, 

but also during adolescence. 

 

Generally, previous studies have only considered linear relationships between 

expression values and age for SCZ risk genes in healthy post-mortem brains 

(Colantuoni et al., 2008, Choi et al., 2009). The strategy used here to identify genes 

characteristic of each development stage was more in line with that of Harris et al. 

who looked for genes with their maximum or minimum expression values during the 

period of onset for SCZ (Harris et al., 2009). The study presented in this thesis, 

however, considered fifteen separate development stages from early foetal through 
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to late adulthood. By using a regression framework for the analyses, sample 

differences or potential confounders could be taken into account. The enriched 

profile was non-linear, suggesting that to truly capture the variability of these genes 

simply correlating expression values with age is not sufficient. 

 

After identifying genes associated with age, only one other study did a formal 

analysis to demonstrate that age dependent genes were enriched for genes 

associated to SCZ (Choi et al., 2009).  All of these studies had identified SCZ risk 

genes from reviews of the literature before many, if any, robust associations had 

been reported, questioning the validity of these lists. In the analyses presented here, 

results from the largest published and therefore the most reliable GWAS to date 

were used as a measure of SCZ or BPD association. Therefore this study has 

extended these works by showing that genes associated to SCZ do vary across the 

full range of human life and has described the trajectory of these genes.  

 

Recently other studies have used the BrainSpan RNA-Seq or Kang microarray data to 

interpret their studies into the genetic causes of SCZ (Gilman et al., 2012, Xu et al., 

2012, Gulsuner et al., 2013). Their descriptions are consistent with the results 

reported here, finding relatively higher prenatal expression for SCZ risk genes 

(Gilman et al., 2012, Xu et al., 2012) as well as an increase during early adulthood 

(Gulsuner et al., 2013). These findings were based on simple comparisons of prenatal 

and postnatal expression (Gilman et al., 2012, Xu et al., 2012) or just descriptions of 

expression plots (Gulsuner et al., 2013).  In contrast, the techniques used in this 

thesis considered each development stage separately and therefore can be more 

specific about the developmental trajectory of these genes.  

 

Results in Chapters 3 and 4 showed that genes with this temporal profile contained 

multiple, independent common variants associated with an increased risk of SCZ. 

This is consistent with a previous finding that central nervous system (CNS) 

expressed genes are enriched for common variants associated to SCZ relative to their 

genomic length (Lee et al., 2012a). This study estimated that their set of CNS 

expressed genes contained around 7% of variation of liability to SCZ. Although the 
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gene set investigated in Chapter 4 was approximately the same size it only explained 

~1% of the variance. This value will be affected by the accuracy of the effect size 

estimates (Dudbridge, 2013) and is therefore an underestimate which will increase 

as the sample size of the discovery sample increases (Lee et al., 2012a).  

 

5.2 Identification of temporal expression profile for bipolar disorder 

risk genes 

While typically BPD has been considered an adult disorder, increasing evidence of an 

overlap with SCZ has meant that it has also been investigated for 

neurodevelopmental antecedents with currently inconclusive findings (Sanches et 

al., 2008). The developmental expression profile was primarily associated with more 

significant SCZ GWAS gene-wide p values. In Chapter 2, gene sets enriched for both 

SCZ and BPD common variants were observed to have this temporal expression 

profile. All results in Chapter 3 for BPD were consistent with the SCZ results but were 

generally less significant. The reduced significance in the BPD results can likely be 

explained by the GWAS results coming from a smaller study compared to SCZ, 

meaning that there was less power to detect associations for BPD in this study. 

However, this may also be evidence for a milder neurodevelopmental disruption 

compared to SCZ.  The results presented here suggest that genes associated with 

increased risk for BPD also exhibit this temporal expression pattern, consistent with 

the shared genetic aetiology between SCZ and BPD particularly for common variants. 

Interestingly when testing the SCZ and BPD co-expression models simultaneously, a 

stronger enrichment for SCZ variants was found with the SCZ co-expression model 

whereas a stronger enrichment for BPD variants was found with the BPD co-

expression model. Although these tests showed that both the SCZ and BPD co-

expression models were detecting similar sets of genes, these models may be 

capturing some genuine differences in risk genes and further investigation would be 

warranted to clarify this.   
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5.3 Identification of functional pathways from genes with common 

expression profiles 

Gene expression is seen as an intermediate between genotype and phenotype and 

therefore commonly used to infer biological mechanisms affected in SCZ aetiology 

(Hakak et al., 2001, Katsel et al., 2005b, Maycox et al., 2009). Part of the aim of this 

thesis was to identify functional pathways from the integration of GWAS, CNV and 

transcriptomic data; hence expression profiles associated with SCZ and BPD were 

subject to pathway analysis.  

 

Functional analysis of genes with the described temporal profile identified five 

groups of functional terms: ‘Chromosome: structural modification & repair’, ‘RNA 

processing’, ‘RNA/protein transport’, ‘Cell cycle (mitosis)’ and ‘Signal transduction’.  

Three of these were also identified in Chapter 2, however only genes within the 

‘Chromosome: structural modification & repair’ with the temporal profile or 

enriched spatial profiles in the mid-foetal brain had a significant SCZ association in 

both chapters. Therefore, these pathways were the most consistent across the two 

chapters, suggesting that SCZ risk genes play a role in epigenetic regulation through 

processes such as histone modification, methylation or acetylation. These 

mechanisms can either enhance or repress gene expression which, if disrupted, may 

impact on brain development and have functional consequences as the brain 

matures during adolescence.  

 

Two other pathway groups ‘RNA processing’, and ‘RNA/protein transport’, also 

relating to the control of gene expression, were identified in both Chapters 2 and 3 

but were only found to be enriched for SCZ association in Chapter 2. The lack of 

association in Chapter 3 may be explained by the fact that the spatial profile scores 

were calculated across two independent datasets to reduce the amount of noise and 

the number of spuriously associated terms. The temporal characteristic scores in 

Chapter 3 were only calculated within one dataset and therefore may contain some 

random variation, diffusing the SCZ association.  
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While predominantly interested in consistent themes across Chapters 2 and 3, the 

identification of the ‘Cell cycle (mitosis)’ functional group in Chapter 3 may also be 

relevant, as it was enriched for SCZ association. These terms are relevant to the 

production of neurons, which continues through the second trimester. Although 

these terms were not identified in the functional analysis in Chapter 2, Figure 2.10 

showed that the HIP and THAL characteristic genes had a peak of expression during 

the second trimester coinciding with the period of neurogenesis, suggesting that SCZ 

risk genes are involved in this process. During this period the rate of production of 

neurons is high, meaning disruptions could potentially impact on the structure and 

function of the mature brain (Miranda, 2012). 

 

5.4 Future work 

Although Chapter 3 used both microarray and RNA-Seq data to provide technical 

replication, these datasets were not independent. Moreover, not all results were 

verified across both technologies for example, testing the association of genes 

whose expression correlated with strongly associated SCZ genes in Section 3.1.2. As 

an independent expression dataset covering the same age range was not available, 

the primary objective of any future work would be replication of the described 

temporal profile for SCZ and BPD risk genes. 

 

The availability of an additional temporal expression dataset would also allow 

further investigation of two unanswered questions in this work. Firstly, it would 

ascertain if the temporal profile identified was an artefact of the different PMI 

between the prenatal and postnatal samples. Although including this variable as a 

covariate still supported the expression pattern described, it would be beneficial to 

confirm this in an independent dataset.  Secondly, the current expression dataset 

had few samples between 22 and 35 PCW. It was during this time frame that 

expression levels started to decrease and a dataset with more complete coverage of 

this developmental period would help specify further when the drop in expression 

occurs. 
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An alternative replication approach would be to use an independent GWAS dataset 

for replication, but again no such published independent dataset exists, at least one 

with the same level of confidence. The PGC have since expanded their SCZ mega-

analysis from 17 to 52 studies in version two, although this is yet to be published. 

This is obviously not independent to the GWAS already used here, but certainly is 

more powerful and is a useful resource to check the findings reported here hold up. 

Preliminary work shows that they do. 

 

The current work could easily be extended to incorporate sequencing data alongside 

the GWAS and CNV data. Exome sequencing and eventually whole genome 

sequencing data will become increasingly prevalent and will be able to identify a 

range of different mutations in those affected by SCZ or BPD (Gershon et al., 2011). 

The challenge will be distinguishing those that are disease causing from those that 

are part of natural variation; bioinformatic tools that predict the functional 

consequences of any mutation or variants that are found in multiple affected 

individuals may point researchers towards the right candidates (Ku et al., 2013). 

Current exome sequencing studies for SCZ have identified genes with de novo 

functional variants and have investigated the temporal expression of these genes (Xu 

et al., 2012, Gulsuner et al., 2013). An alternative approach would be to calculate 

gene-wide measures of rare variants through burden tests, or even a combined 

measure of rare and common variation for example using the Combined Multivariate 

and Collapsing test (Li and Leal, 2008) and test in a similar fashion to the gene-wide p 

values calculated from GWAS data used here. 

 

While this study included high-quality data from a variety of different studies, it 

remains a bioinformatics study. Functional mechanisms identified would need to be 

experimentally validated and tested to truly understand how they relate to SCZ 

aetiology. If the profile was confirmed in an independent dataset the next step 

would be to investigate how these findings relate to SCZ brains. One simple 

extension would be to see if genes with this temporal profile are differentially 

expressed between SCZ and control brains. Expression changes in SCZ brains can be 

influenced by many external factors, such as medication effects or lifestyle 
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differences such as alcohol or drug exposure, which makes it challenging to identify 

which changes are related to the primary disease processes from secondary 

responses. Ideally these issues would need to be addressed first in order to compile 

a list of genes that are truly dysregulated in SCZ before integrating with the analyses 

in this thesis.  

 

As a similar developmental study of SCZ brains would be impossible, an alternative 

would be to look in peripheral tissues such as blood, which could then be compared 

to healthy controls. One benefit to this approach would be that the same individual 

could be followed up over time, removing the issue of individual variation. As SCZ is 

not diagnosed until adolescence, this would need to be a prospective study based on 

a large population cohort such as the Avon Longitudinal Study of Parents and 

Children (ALSPAC) (Golding et al., 2001). Though even then, based on the prevalence 

of SCZ the number of cases is likely to be small. Such a study could lead to the 

identification of a biomarker which would have clinical utility (Gladkevich et al., 

2004, Chana et al., 2013). However, any findings would always need to be linked 

back to the tissue of interest, the brain, in order to develop our understanding of the 

causes of SCZ. 

 

A second alternative would be to look in animal models, which could be used to 

directly assess the impact of prenatal insults on gene expression.  Such studies have 

already been undertaken, with rodents subjected to in utero exposure to infection 

assessed for expression changes compared to control offspring. Despite many genes 

showing differences, these are rarely consistent across animal models (Schijndel and 

Martens, 2010). Further, any findings will also need to be related back to the human 

brain. 

 

The results presented in this thesis would recommend a follow-up investigation of 

expression quantitative trait loci or eQTLs in the developing human brain. This study 

has emphasised the importance of and the regulation of gene expression in brain 

development during mid-foetal and early childhood stages. If genotypes were 

available for the same samples, it could be tested whether expression at these time 
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points is genetically regulated. Further, it may be tested whether SNPs regulating 

gene expression at these time points are associated to SCZ in GWAS studies. These 

analyses would have the potential to explain some of the functional implications of 

genetic variants shown to increase risk of developing SCZ and would tie in with the 

transcriptional regulation themes arising from the GO analysis. 

 

Given the enrichment of these genes in terms relating to epigenetic processes, one 

direction would be to investigate epigenetic marks, such as histone methylation 

levels. Based ideally on the same sample, changes in methylation levels across 

development could be measured to see if these correlated with the expression 

findings. For example, histone methylation marks associated with repression of gene 

expression such as dimethylation of histone H3 at lysine 9 (H3K9me2) may be 

predicted to be associated with SCZ risk genes during postnatal years when 

expression values were lowest. Epigenetic mechanisms are dynamic processes 

throughout development that modify gene expression, generally through changes to 

chromatin structure or DNA methylation and play an important role in brain 

development (Fagiolini et al., 2009, Ma et al., 2010). Epigenetic changes have been 

reported as a result of prenatal stresses such as exposure to famine (Tobi et al., 

2009) and therefore may explain the link between these and SCZ risk.   Differences in 

DNA methylation have been found between SCZ post-mortem brains and control 

post-mortem brains (Mill et al., 2008) and it may be of interest to investigate if these 

epigenetic changes are related to the gene expression changes documented here.    

 

5.5 Concluding statement 

In sum, a developmental expression profile has been identified for genes containing 

common variants for SCZ and BPD. This profile and pathway analyses suggest that 

genes associated to SCZ and BPD play a role in human brain development and the 

regulation of related processes. This is consistent with the neurodevelopmental 

hypothesis where a disruption to these processes may impact on brain function in 

later life. 
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Chapter 7: Appendix A 
7.1 Additional tables for Chapter 2 

 
Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

DLPFC 

P value 
0.00161 
(0.0209) 

0.0194 
(0.252) 

0.439 0.304 

Correlation 
Coeff. 

-0.0275 -0.0211 -0.00662 -0.0093 

- - - - 

MPFC 

P value 
2.02 x 10-6 

(2.63 x 10-5) 
3.52 x 10-5 
(0.0005) 

0.00295 
(0.0384) 

0.0341 
(0.443) 

Correlation 
Coeff. 

0.0414 0.0374 0.0254 0.0192 

+ + + + 

OPFC 
 

P value 0.155 0.918 0.626 0.851 

Correlation 
Coeff. 

0.0124 0.000928 -0.00417 -0.00170 

+ + - - 

VLPFC 

P value 
0.0110 
(0.144) 

0.108 0.725 0.303 

Correlation 
Coeff. 

0.0221 0.0145 -0.00300 0.00931 

+ + - + 

MS 

P value 
0.00411 
(0.0535) 

3.71 x 10-6 
(4.83 x 10-5) 

2.84 x 10-8 
(3.69 x 10-7) 

6.06 x 10-5 
(0.000788) 

Correlation 
Coeff. 

0.0250 0.0418 0.0474 0.0363 

+ + + + 

PAS 

P value 
0.0719 
(0.935) 

0.0103 
(0.133) 

0.219 0.376 

Correlation 
Coeff. 

0.0157 0.0232 0.0105 0.00802 

+ + + + 

TAU 

P value 0.305 0.500 0.879 0.676 

Correlation 
Coeff. 

0.00894 0.00610 0.00113 0.00378 

+ + + + 

TAS 

P value 0.161 0.381 0.895 0.381 

Correlation 
Coeff. 

0.0122 0.00792 0.00113 -0.00792 

+ + + - 

OCC 

P value 0.120 0.153 
0.0165 
(0.214) 

0.997 

Correlation 
Coeff. 

0.0135 0.00129 0.0205 -3.65 x 10-5 

+ + + - 

HIP 

P value 
1.35 x 10-7 

(1.76 x 10-6) 
1.78 x 10-6 

(2.32 x 10-5) 
0.00143 
(0.0186) 

0.0283 
(0.368) 

Correlation 
Coeff. 

-0.0459 -0.0432 -0.0272 -0.0198 

- - - - 

STR 

P value 0.679 0.689 0.958 0.823 

Correlation 
Coeff. 

0.00360 0.00362 0.0187 -0.00202 

+ + + - 
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THAL 

P value 
0.00137 
(0.0178) 

2.37 x 10-5 
(0.000308) 

4.10 x 10-5 
(0.000534) 

0.00668 
(0.0868) 

Correlation 
Coeff. 

-0.0279 -0.0382 -0.0350 -0.0245 

- - - - 

CBL 

P value 
0.00865 
(0.112) 

0.0179 
(0.233) 

0.204 0.557 

Correlation 
Coeff. 

-0.0229 -0.0214 -0.0109 -0.00532 

- - - - 

Table 7.1: Linear regression results and correlation coefficients testing regional characteristic scores 
calculated in the Johnson dataset with gene-wide logP.  
P values in brackets have been corrected for 13 brain regions using Bonferroni’s method. 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

DLPFC 

P value 0.449  0.206 0.353 0.602 

Correlation 
Coeff. 

0.00657 0.0114 0.00412 0.00469 

+ + + + 

MPFC 

P value 0.997 0.324 
0.00195 
(0.0312) 

0.0203 
(0.324) 

Correlation 
Coeff. 

-3.17 x 10-5 0.00888 0.0133 0.0209 

- + + + 

OPFC 

P value 
0.0147 
(0.235) 

0.0553 
(0.884) 

0.0155 
(0.248) 

0.0740 

Correlation 
Coeff. 

0.0212 0.0173 0.0100 0.0161 

+ + + + 

VLPFC 

P value 0.390 0.624 0.632 0.351 

Correlation 
Coeff. 

0.00746 0.00442 0.00251 0.00839 

+ + + + 

M1C 

P value 0.714 0.601 
0.0327 
(0.523) 

0.175 

Correlation 
Coeff. 

-0.00318 -0.00471 0.00983 0.0122 

- - + + 

S1C 

P value 0.332 0.727 0.111 0.374 

Correlation 
Coeff. 

0.00842 0.00315 0.00880 0.00799 

+ + + + 

TAU 

P value 0.119 0.857 0.208 0.687 

Correlation 
Coeff. 

-0.0135 0.00162 -0.00596 -0.00363 

- + - - 

OCC 

P value 
3.57 x 10-8 

(5.70 x 10-7) 
5.04 x 10-8 

(8.06 x 10-7) 
7.34 x 10-5 

(0.00118) 

0.0105 
(0.168) 

Correlation 
Coeff. 

0.0478 0.0490 0.0102 0.0230 

+ + + + 

IPC 

P value 
0.000144 
(0.00230) 

4.98 x 10-5 
(0.000797) 

8.65 x 10-6 

(0.000138) 

0.00252 
(0.0403) 

Correlation 
Coeff. 

0.0330 0.0365 0.0186 0.0272 

+ + + + 

TAS 

P value 
0.00207 
(0.0331) 

0.00128 

(0.0205) 
0.0388 
(0.620) 

0.171 

Correlation 
Coeff. 

0.0267 0.0290 0.008110 0.0123 

+ + + + 

ITC 

P value 
0.0436 
(0.698) 

0.0220 
(0.353) 

0.0903 
0.0494 
(0.791) 

Correlation 
Coeff. 

0.0175 0.0206 -0.00913 -0.0177 

+ + - - 

HIP 

P value 
8.28 x 10-10 
(1.32 x 10-8) 

8.78 x 10-8 
(1.40 x 10-6) 

3.35 x 10-6 
(5.36 x 10-5) 

9.23 x 10-6 
(0.000148) 

Correlation 
Coeff. 

-0.0532 -0.0481 -0.00743 -0.0399 

- - - - 

AMY 

P value 0.319 0.249 0.208 0.182 

Correlation 
Coeff. 

0.00864 0.0104 0.00256 0.0120 

+ + + + 
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STR 

P value 0.141 0.756 0.858 0.852 

Correlation 
Coeff. 

0.0128 0.00280 -0.000188 0.00168 

+ + - + 

THAL 

P value 
2.66 x 10-5 
(0.000425) 

6.69 x 10-7 
(1.07 x 10-5) 

4.55 x 10-6 
(7.28 x 10-5) 

0.00293 
(0.0469) 

Correlation 
Coeff. 

-0.0364 -0.0447 -0.00390 -0.0268 

- - - - 

CBL 

P value 
0.00345 
(0.0552) 

0.0383 
(0.612) 

0.0906 0.462 

Correlation 
Coeff. 

-0.0254 -0.0187 -0.00119 -0.00663 

- - - + 

Table 7.2: Linear regression results and correlation coefficients testing regional characteristic scores 
calculated in the Kang dataset with gene-wide logP.  
P values in brackets have been corrected for 16 brain regions using Bonferroni’s method. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
P value 0.99 0.780 0.519 0.166 0.285 0.476 0.419 0.543 0.883 

Coeff. + - - - - - + + + 

MPFC 
P value 0.569 1 0.802 0.274 0.547 0.808 0.742 0.342 0.484 

Coeff. + + + - - + + + + 

OPFC 
P value 0.477 0.851 0.244 0.206 0.171 0.212 0.635 0.170 

0.0501 
(0.651) 

Coeff. + - - + + + - - - 

VLPFC 
P value 0.547 0.264 0.268 0.144 0.163 0.280 0.914 0.669 0.808 

Coeff. - - - - - - - - - 

MS 
P value 0.917 0.680 0.462 0.0980 0.124 0.136 

0.0650 
(0.845) 

0.163 0.314 

Coeff. + - - - - - + + + 

PAS 
P value 0.174 0.313 0.704 0.539 0.543 0.595 0.197 0.241 0.533 

Coeff. + + + + + + + + + 

TAU 
P value 0.547 0.757 1 0.758 0.493 0.422 0.672 0.974 0.859 

Coeff. + + + + + + + + - 

TAS 
P value 0.100 0.162 0.241 0.168 0.115 

0.067 
(0.877) 

0.471 0.656 0.776 

Coeff. + + + + + + + + + 

OCC 
P value 0.750 0.365 0.246 0.792 0.804 0.933 0.866 0.448 0.294 

Coeff. - - - - - - - - - 

HIP 
P value 0.932 0.960 0.728 0.232 0.475 0.718 0.541 0.668 0.405 

Coeff. - - + - - - + + + 
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STR 
P value 0.425 0.420 0.428 0.945 0.556 0.288 0.208 0.100 0.078 

Coeff. - - - + + + - - - 

THAL 
P value 0.468 0.555 0.267 0.349 0.319 0.167 0.767 0.699 0.889 

Coeff. + + + + + + - - + 

CBL 
P value 0.988 0.472 0.292 0.851 0.708 0.365 0.381 0.875 0.686 

Coeff. + + + + + + - + + 

Table 7.3: Logistic regression results testing CNV case control status on regional characteristic scores calculated in the Johnson dataset. 
All p values in brackets were adjusted for 13 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
P value 0.306 0.842 0.827 0.654 0.847 0.800 0.319 0.639 0.607 

Coeff. - - - - + + - - - 

MPFC 
P value 

0.0285 
(0.371) 

0.00983 
(0.128) 

0.0174 
(0.226) 

0.595 0.797 0.733 
0.000411 
(0.00535) 

0.000117 
(0.00152) 

0.000835 
(0.0109) 

Coeff. - - - + + + - - - 

OPFC 
P value 0.932 0.565 0.263 0.568 0.335 0.199 0.710 0.943 0.724 

Coeff. + + + + + + - - + 

VLPFC 
P value 

0.00278 
(0.0362) 

0.00434 
(0.0564) 

0.0117 
(0.152) 

0.180 0.265 0.463 0.00653 0.00518 0.00683 

Coeff. - - - - - - - - - 

MS 
P value 0.648 0.270 0.355 

0.00702 
(0.0912) 

0.00512 
(0.0665) 

0.00770 
(0.100) 

0.0860 0.326 0.346 

Coeff. + + + + + + - - - 

PAS 
P value 

0.0275 
(0.358) 

0.0307 
(0.399) 

0.0210 
(0.273) 

0.0109 
(0.142) 

0.0189 
(0.246) 

0.0253 
(0.329) 

0.463 0.412 0.237 

Coeff. + + + + + + + + + 

TAU 
P value 0.711 0.205 0.0322 

0.0627 
(0.815) 

0.0217 
(0.282) 

0.00703 
(0.0914) 

0.261 0.667 0.611 

Coeff. + + + + + + - - + 

TAS 
P value 0.361 0.992 0.540 0.319 0.506 0.342 0.771 0.468 0.931 

Coeff. - + - - - - - + + 

OCC 
P value 

0.00519 
(0.0675) 

0.0172 
(0.224) 

0.0547 
(0.711) 

0.133 0.244 0.329 
0.013 

(0.133) 
0.0159 
(0.207) 

0.0656 
(0.853) 

Coeff. + + + + + + + + + 

HIP 
P value 0.531 0.302 0.270 0.701 0.883 0.719 0.609 0.168 

0.0583 
(0.758) 

Coeff. + + + + + - + + + 
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STR 
P value 

0.0748 
(0.973) 

0.0676 
(0.878) 

0.233 0.637 0.734 0.946 
0.0514 
(0.668) 

0.0261 
(0.339) 

0.112 

Coeff. + + + + + + + + + 

THAL 
P value 

0.000284 
(0.00369) 

0.00878 
(0.114) 

0.0186 
(0.242) 

0.0385 
(0.501) 

0.0520 
(0.676) 

0.0174 
(0.226) 

0.00215 
(0.0280) 

0.0633 
(0.823) 

0.263 

Coeff. - - - - - - - - - 

CBL 
P value 0.0222 0.108 0.246 

0.00355 
(0.0461) 

0.00554 
(0.0720) 

0.0191 
(0.249) 

0.760 0.535 0.503 

Coeff. - - - - - - - + + 

Table 7.4: Logistic regression results testing CNV singleton status on regional characteristic scores calculated in the Johnson dataset.  
All p values in brackets were adjusted for 13 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
 

P value 0.298 0.178 0.0882 
0.0453 
(0.725) 

0.0338 
(0.541) 

0.0827 
 

0.990 0.964 0.619 

Coeff. - - - - - - + + - 

MPFC 
P value 0.770 0.484 0.356 

0.0308 
(0.493) 

0.0388 
(0.620) 

0.0547 
(0.875) 

0.111 0.243 0.384 

Coeff. - - - - - - + + + 

OPFC 
 

P value 0.942 0.730 0.599 0.434 0.306 0.508 0.732 0.596 0.854 

Coeff. - - - - - - + + + 

VLPFC 
P value 0.730 0.392 0.208 0.0739 

0.0477 
(0.763) 

0.0737 0.395 0.475 0.842 

Coeff. - - - - - - + + + 

M1C 
P value 0.635 0.521 0.761 

0.0259 
(0.415) 

0.0255 
(0.409) 

0.187 0.190 0.146 0.228 

Coeff. - - - - - - + + + 

S1C 
P value 0.636 0.843 0.798 0.475 0.530 0.655 0.236 0.283 0.522 

Coeff. + + - - - - + + + 

TAU 
P value 0.316 0.207 0.425 0.649 0.621 0.419 0.188 0.197 0.409 

Coeff. + + + - + + + + + 

OCC 
P value 0.171 0.112 0.0819 0.413 0.710 0.838 0.265 0.127 

0.0532 
(0.851) 

Coeff. - - - - - + - - - 

IPC 
P value 0.0848 0.215 0.149 0.920 0.756 0.731 

0.0372 
(0.595) 

0.0480 
(0.768) 

0.0576 
(0.921) 

Coeff. + + + - - + + + + 

TAS 
P value 0.290 0.187 0.149 0.676 0.397 0.174 0.417 0.233 0.230 

Coeff. + + + + + + + + + 
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ITC 
P value 0.326 0.332 0.381 

0.0456 
(0.729) 

0.00722 
(0.116) 

0.00614 
(0.0983) 

0.430 0.200 0.338 

Coeff. + + + + + + - - - 

HIP 
P value 0.455 0.646 0.890 0.324 0.357 0.486 0.143 0.178 0.357 

Coeff. + + + - - - + + + 

AMY 
P value 0.433 0.352 0.724 0.381 0.140 0.162 0.872 0.893 0.876 

Coeff. + + + + + + + + + 

STR 
P value 0.873 0.381 0.312 0.665 0.829 0.450 0.411 0.162 0.0956 

Coeff. - - - + + + - - - 

THAL 
P value 0.557 0.909 0.926 0.900 0.536 0.317 0.312 0.402 0.535 

Coeff. - - + - + + - - - 

CBL 
P value 0.916 0.858 0.939 0.673 0.795 0.697 0.286 0.586 0.638 

Coeff. + + + + + + - - + 

Table 7.5: Logistic regression results testing CNV case control status on regional characteristic scores calculated in the Kang dataset.  
All p values in brackets were adjusted for 16 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
P value 0.249 0.203 0.148 0.910 0.869 0.977 0.141 0.0844 0.0767 

Coeff. - - - + + + - - - 

MPFC 
P value 0.190 0.842 0.890 0.0123 0.0654 0.0872 0.518 0.132 0.178 

Coeff. + + + + + + - - - 

OPFC 
P value 0.151 0.0836 

0.0560 
(0.895) 

0.883 0.846 0.816 0.0877 
0.0353 
(0.565) 

0.0289 
(0.463) 

Coeff. - - - - - - - - - 

VLPFC 
P value 0.131 0.102 

0.0139 
(0.222) 

0.858 0.986 0.446 
0.0433 
(0.692) 

0.0395 
(0.632) 

0.0139 
(0.223) 

Coeff. - - - + - - - - - 

M1C 
P value 0.575 0.760 0.495 0.391 0.373 0.172 0.995 0.707 0.859 

Coeff. + + + + + + + - - 

S1C 
P value 0.127 0.264 0.549 0.569 0.663 0.815 0.120 0.257 0.513 

Coeff. - - - - - - - - - 

TAU 
P value 0.974 0.986 0.647 0.444 0.570 0.750 0.498 0.640 0.442 

Coeff. + - + - - - + + + 

OCC 
P value 0.0322 0.159 0.443 0.0297 0.0275 0.0659 0.366 0.799 0.478 

Coeff. + + + + + + + - - 

IPC 
P value 0.743 0.201 0.0646 0.802 0.762 0.984 0.807 0.146 

0.0132 
(0.211) 

Coeff. + + + + + + + + + 

TAS 
P value 0.202 0.237 0.0302 0.596 0.651 0.629 0.200 0.227 0.0126 

Coeff. + + + + + + + + + 

ITC 
P value 0.441 0.377 0.776 0.832 0.763 0.793 0.198 0.0987 0.523 

Coeff. + + + - - - + + + 
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HIP 
P value 0.237 0.220 0.187 0.148 0.309 0.524 0.689 0.414 0.204 

Coeff. + + + + + + + + + 

AMY 
P value 0.660 0.708 0.281 0.830 0.951 0.809 0.442 0.620 0.259 

Coeff. - - - + + + - - - 

STR 
P value 0.213 0.143 0.318 0.698 0.777 0.917 0.192 0.0914 0.174 

Coeff. + + + + + - + + + 

THAL 
P value 0.147 0.663 0.717 0.526 0.604 0.883 0.0183 0.321 0.578 

Coeff. - - - + + + - - - 

CBL 
P value 

0.0311 
(0.497) 

0.0706 0.0675 0.00401 0.00414 0.0104 0.956 0.622 0.945 

Coeff. - - - - - - - + - 

Table 7.6: Logistic regression results testing CNV singleton status on regional characteristic scores calculated in the Kang dataset.  
All p values in brackets were adjusted for 16 brain regions using Bonferroni’s method, where missing corrected p value was 1.
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

DLPFC 

P value 
0.00988 
(0.128) 

0.712 0.987 0.270 

Correlation 
Coeff. 

0.0226 0.00336 0.000145 0.0100 

+ + + + 

MPFC 

P value 0.326 0.399 0.233 
0.0325 
(0.422) 

Correlation 
Coeff. 

0.00861 0.00767 0.0102 0.0195 

+ + + + 

OPFC 

P value 0.184 
0.0141 
(0.183) 

0.578 0.902 

Correlation 
Coeff. 

0.0116 0.0223 -0.00477 0.00112 

+ + - + 

VLPFC 

P value 
0.0444 

(0.5777) 
0.0213 
(0.277) 

0.354 0.499 

Correlation 
Coeff. 

0.0176 0.0209 0.00797 0.00615 

+ + - + 

MS 

P value 
0.0270 
(0.350) 

0.0886 0.160 0.109 

Correlation 
Coeff. 

0.0194 0.0155 0.0121 0.0146 

+ + + + 

PAS 

P value 0.810 0.532 0.919 0.484 

Correlation 
Coeff. 

0.00210 0.00568 0.000879 0.00637 

+ + + + 

TAU 

P value 0.370 0.375 0.854 0.563 

Correlation 
Coeff. 

-0.00786 -0.00806 0.00158 0.00527 

- - + + 

TAS 

P value 
0.00417 
(0.0542) 

0.0199 
(0.259) 

0.613 0.267 

Correlation 
Coeff. 

0.0251 0.0212 0.00435 0.0101 

+ + + + 

OCC 

P value 0.360 0.232 0.216 0.507 

Correlation 
Coeff. 

0.00801 0.0109 0.0116 0.00604 

+ + + + 

HIP 

P value 
0.0443 
(0.575) 

0.516 0.738 0.792 

Correlation 
Coeff. 

0.0176 0.00591 0.00287 -0.00240 

+ + + - 

STR 

P value 0.415 
0.0269 
(0.349) 

0.560 0.237 

Correlation 
Coeff. 

0.00715 0.0201 0.00501 0.0108 

+ + + + 
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THAL 

P value 0.839 0.116 0.658 0.344 

Correlation 
Coeff. 

0.00178 0.0143 -0.00380 0.00862 

+ + - + 

CBL 

P value 
0.00651 
(0.0846) 

0.0601 
(0.781) 

0.124 
0.00476 
(0.0619) 

Correlation 
Coeff. 

-0.0238 -0.0171 0.0132 0.0257 

- - + + 

Table 7.7: Linear regression results and correlation coefficients testing regional splicing logP 
calculated in the Johnson dataset with gene-wide logP.  
P values in brackets have been corrected for 13 brain regions using Bonferroni’s method. 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

DLPFC 

P value 0.258 0.116 0.612 0.277 

Correlation 
Coeff. 

-0.00985 -0.0142 0.00433 0.00981 

- - + + 

MPFC 

P value 
0.0139 
(0.223) 

0.186 0.759 0.816 

Correlation 
Coeff. 

-0.0214 -0.0119 -0.00262 0.00210 

- - - + 

OPFC 
 

P value 0.0718 0.643 0.117 0.507 

Correlation 
Coeff. 

-0.0157 -0.00419 -0.0134 -0.00599 

- - - - 

VLPFC 

P value 0.762 0.434 0.563 0.284 

Correlation 
Coeff. 

-0.00264 -0.00707 0.00494 0.00967 

- - - + 

M1C 

P value 0.498 0.333 0.527 0.608 

Correlation 
Coeff. 

0.00590 -0.00874 0.00540 0.00463 

+ - + + 

S1C 

P value 0.338 0.552 0.780 0.718 

Correlation 
Coeff. 

-0.00834 -0.00537 -0.00238 -0.00326 

- - + - 

TAU 

P value 0.703 0.823 0.661 0.109 

Correlation 
Coeff. 

-0.00332 0.00202 -0.00375 -0.0145 

- + - - 

OCC 

P value 
0.00318 
(0.0508) 

0.0487 
(0.780) 

0.891 0.687 

Correlation 
Coeff. 

0.0257 0.01789 -0.00117 -0.00364 

+ + - - 

IPC 

P value 
0.00150 
(0.0240) 

0.00132 
(0.0211) 

0.556 0.504 

Correlation 
Coeff. 

-0.0276 -0.0290 -0.00502 -0.00603 

- - - - 

TAS 

P value 0.0652 0.702 0.778 0.526 

Correlation 
Coeff. 

0.0160 0.00346 -0.00241 0.00572 

+ + - + 

ITC 

P value 0.152 0.222 0.884 0.951 

Correlation 
Coeff. 

-0.0124 -0.0110 0.00125 0.000550 

- - + + 

HIP 

P value 
0.00324 
(0.0518) 

0.0248 
(0.396) 

0.482 0.319 

Correlation 
Coeff. 

0.0256 0.0203 0.00600 0.00899 

+ + + + 

AMY 

P value 0.291 0.861 0.198 0.866 

Correlation 
Coeff. 

-0.00919 0.00158 -0.0110 -0.00153 

- + - - 

STR 

P value 0.756 0.665 0.583 0.546 

Correlation 
Coeff. 

-0.00270 0.00392 -0.00469 0.00546 

- + - + 
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THAL 

P value 
0.0275 
(0.441) 

0.0893 
0.016 

(0.254) 

0.0347 
(0.556) 

Correlation 
Coeff. 

0.0192 0.0153 0.0206 0.0191 

+ + + + 

CBL 

P value 
0.0502 
(0.803) 

0.493 0.878 0.114 

Correlation 
Coeff. 

-0.0170 -0.00619 0.00131 0.0143 

- - + + 

Table 7.8: Linear regression results and correlation coefficients testing regional splicing logP 
calculated in the Kang dataset with gene-wide logP.  
P values in brackets have been corrected for 16 brain regions using Bonferroni’s method. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
P value 0.465 0.609 0.886 0.130 0.163 0.607 0.936 0.681 0.647 

Coeff. - - - - - - + + + 

MPFC 
P value 0.177 0.261 0.995 0.983 0.655 0.305 

0.0440 
(0.572) 

0.0613 
(0.797) 

0.718 

Coeff. - - + - + + - - - 

OPFC 
P value 0.241 0.220 0.0789 0.177 0.115 

0.0122 
(0.159) 

0.643 0.757 0.891 

Coeff. - - - - - - - - - 

VLPFC 
P value 0.0434 0.113 0.698 0.156 0.209 0.352 0.135 0.331 0.261 

Coeff. - - - - - + - - - 

MS 
P value 0.894 0.959 0.973 0.704 0.664 0.787 0.465 0.393 0.961 

Coeff. + - + + + + - - + 

PAS 
P value 0.436 0.424 0.651 0.272 0.508 0.987 0.678 0.574 0.817 

Coeff. - - - - - - - - - 

TAU 
P value 0.628 0.640 0.459 0.701 0.878 0.815 0.535 0.555 0.134 

Coeff. + + + - - - + + + 

TAS 
P value 0.424 0.283 0.495 0.428 0.421 0.876 0.700 0.680 0.829 

Coeff. - - - - - + - - - 

OCC 
P value 0.798 0.474 0.448 0.671 0.591 0.930 0.789 0.507 0.441 

Coeff. - - - - - - - - - 

HIP 
P value 0.937 0.926 0.389 0.274 0.684 0.620 0.457 0.858 0.312 

Coeff. + - + - - + + + + 

STR 
P value 0.991 0.821 0.812 0.761 0.843 0.917 0.956 0.834 0.987 

Coeff. + - - + + - - - + 

THAL 
P value 0.318 0.388 0.0790 0.288 0.294 

0.0670 
(0.871) 

0.759 0.745 0.234 

Coeff. + + + + + + + + + 
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CBL 
P value 0.657 0.625 0.582 0.758 0.802 0.910 0.226 0.283 0.526 

Coeff. - - - + + + - - - 

Table 7.9: Logistic regression results testing CNV case control status on regional splicing logP calculated in the Johnson dataset.  
All p values in brackets were adjusted for 13 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
P value 0.213 0.186 0.260 

0.0556 
(0.723) 

0.431 0.970 0.973 0.254 0.0118 

Coeff. + + + + + - + + + 

MPFC 
P value 0.265 0.0828 

0.00212 
(0.0275) 

0.302 0.232 0.0826 0.589 0.202 0.0132 

Coeff. + + + + + + + + + 

OPFC 
P value 

0.0493 
(0.0641) 

0.112 0.890 0.539 0.528 0.761 
0.0515 
(0.670) 

0.150 0.980 

Coeff. - - - - - - - - - 

VLPFC 
P value 

0.0230 
(0.300) 

0.000523 
(0.00680) 

0.0469 
(0.609) 

0.0455 
(0.591) 

0.0335 
(0.436) 

0.149 0.186 
0.00522 
(0.0679) 

0.0940 

Coeff. + + + + + + + + + 

MS 
P value 0.0105 0.0986 0.804 

0.000975 
(0.0127) 

0.00162 
(0.0211) 

0.0324 
(0.421) 

0.843 0.166 
0.0365 
(0.475) 

Coeff. - - + - - - + + + 

PAS 
P value 

0.00700 
(0.0910) 

0.0175 
(0.227) 

0.0288 
(0.0374) 

0.0184 
(0.239) 

0.0162 
(0.210) 

0.00162 
(0.0211) 

0.119 0.283 0.681 

Coeff. - - - - - - - - - 

TAU 
P value 0.764 0.347 

0.0300 
(0.390) 

0.304 0.475 0.510 0.184 
0.0548 
(0.713) 

0.00381 
(0.0495) 

Coeff. + + + - - - + + + 

TAS 
P value 

0.0356 
(0.462) 

0.0117 
(0.152) 

0.0769 
 

5.51 x 10-7 

(7.16 x 10-6) 
6.29 x 10-7 

(8.18 x 10-6) 
7.38 x 10-5 
(0.000959) 

0.197 0.535 0.598 

Coeff. + + + + + + - - - 

OCC 
P value 

0.000222 
(0.00289) 

0.000193 
(0.00251) 

0.0153 
(0.199) 

0.0599 
(0.779) 

0.0940 0.115 
0.000471 
(0.00612) 

0.000169 
(0.00220) 

0.0619 
(0.804) 

Coeff. - - - - - - - - - 
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HIP 
P value 0.138 0.138 0.0868 0.348 0.297 0.0896 0.246 0.310 0.468 

Coeff. - - - - - - - - - 

STR 
P value 

0.0358 
(0.466) 

0.0784 
0.0733 
(0.953) 

0.00644 
(0.0837) 

0.00256 
(0.0332) 

0.00373 
(0.0485) 

0.00180 
(0.235) 

0.00338 
(0.0439) 

0.00254 
(0.0330) 

Coeff. - - - + + + - - - 

THAL 
P value 0.694 0.339 0.589 

0.0359 
(0.467) 

0.0223 
(0.289) 

0.0590 
(0.767) 

0.212 0.516 0.429 

Coeff. + + + + + + - - - 

CBL 
P value 0.885 0.991 0.367 0.936 0.626 0.650 0.821 0.668 0.136 

Coeff. - - + - - - - + + 

Table 7.10: Logistic regression results testing CNV singleton status on regional splicing logP calculated in the Johnson dataset.  
All p values in brackets were adjusted for 13 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
P value 0.166 0.305 0.752 0.364 0.676 0.583 0.380 0.384 0.324 

Coeff. + + + + + - + + + 

MPFC 
P value 0.118 0.141 0.628 0.207 0.265 0.180 0.458 0.373 0.911 

Coeff. + + + + + + + + - 

OPFC 
P value 0.503 0.284 0.140 0.170 0.169 0.239 0.846 0.828 0.533 

Coeff. - - - + - - + - - 

VLPFC 
P value 0.537 0.371 0.235 0.215 0.209 0.115 0.926 0.832 0.640 

Coeff. - - - - - - + + + 

M1C 
P value 

0.00306 
(0.0490) 

0.000386 
(0.00617) 

0.000638 
(0.0102) 

0.00112 
(0.0180) 

0.00139 
(0.0222) 

0.00599 
(0.0958) 

0.212 
0.0502 
(0.804) 

0.0457 
(0.731) 

Coeff. - - - - - - - - - 

S1C 
P value 0.0743 

0.0250 
(0.400) 

0.920 0.632 0.495 0.370 
0.0290 
(0.465) 

0.0131 
(0.210) 

0.214 

Coeff. - - - - - + - - - 

TAU 
P value 0.0645 

0.0540 
(0.864) 

0.156 0.287 0.353 0.237 0.226 0.109 0.416 

Coeff. + + + + + + + + + 

OCC 
P value 0.157 0.205 0.262 0.632 0.424 0.319 0.0110 0.0197 0.0401 

Coeff. - - - + + + - - - 

IPC 
P value 0.405 0.208 0.757 0.846 0.940 0.840 0.107 0.0658 0.597 

Coeff. - - - + - + - - - 
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TAS 
P value 0.506 0.732 0.878 0.549 0.545 0.968 0.974 0.846 0.571 

Coeff. + + + + + - + - + 

ITC 
P value 0.249 0.0704 0.314 0.0414 0.0332 0.581 0.854 0.535 0.452 

Coeff. - - - - - - + - - 

HIP 
P value 0.896 0.815 0.589 0.341 0.422 0.854 0.496 0.709 0.235 

Coeff. + - + - - - + + + 

AMY 
P value 0.778 0.982 0.704 0.583 0.527 0.847 0.481 0.555 0.387 

Coeff. + + + - - - + + + 

STR 
P value 0.805 0.641 0.889 0.554 0.436 0.486 0.986 0.967 0.736 

Coeff. - - - - - - + - + 

THAL 
P value 0.0503 0.480 0.0988 0.697 0.499 0.180 0.656 0.578 0.107 

Coeff. + + + + + + + + + 

CBL 
P value 0.502 0.496 0.499 0.933 0.939 0.918 0.135 0.192 0.346 

Coeff. - - - - - + - - - 

Table 7.11: Logistic regression results testing CNV case control status on regional splicing logP calculated in the Kang dataset.  
All p values in brackets were adjusted for 16 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

DLPFC 
 

P value 
0.000566 
(0.00906) 

0.00677 
(0.108) 

0.0995 
0.0297 
(0.475) 

0.0911 0.377 
0.00862 
(0.138) 

0.0347 
(0.555) 

0.130 

Coeff. - - - - - - - - - 

MPFC 
P value 0.382 0.171 0.113 0.385 0.323 0.234 0.750 0.340 0.295 

Coeff. + + + + + + + + + 

OPFC 
 

P value 
0.000367 
(0.00587) 

0.000111 
(0.00177) 

6.25 x 10-5 
(0.00100) 

0.000229 
(0.00367) 

1.77 x 10-5 
(0.000282) 

1.27 x 10-7 

(2.03 x 10-6) 
0.109 0.123 0.150 

Coeff. + + + + + + + + + 

VLPFC 
P value 0.0770 0.784 0.584 0.988 0.683 0.299 0.0216 0.410 0.712 

Coeff. - - + - + + - - - 

M1C 
P value 0.975 0.856 0.344 0.580 0.615 0.956 0.611 0.884 0.303 

Coeff. - + + + + + - - + 

S1C 
P value 0.177 0.348 0.0445 0.152 0.493 

0.0459 
(0.734) 

0.652 0.513 0.817 

Coeff. - - + - - + - - + 

TAU 
P value 

6.77 x10-7 
(1.08 x 10-5) 

2.27 x 10-6 
(3.64 x 10-5) 

0.00268 
(0.0428) 

3.46 x 10-5 

(5.53 x 10-4) 
2.69 x 10-5 

(4.30 x 10-4) 
0.00125 
(0.0200) 

0.0142 
(0.227) 

0.0634 0.352 

Coeff. - - - - - - - - - 

OCC 
P value 0.750 0.704 0.239 0.478 0.444 0.143 0.889 0.874 0.773 

Coeff. + + + + + + - - + 

IPC 
P value 0.198 0.185 0.877 

0.0247 
(0.396) 

0.0449 
(0.719) 

0.0781 0.556 0.809 0.0794 

Coeff. - - + - - - + + + 

TAS 
P value 

0.00322 
(0.0516) 

0.0116 
(0.185) 

0.0203 
(0.325) 

0.0106 
(0.170) 

0.0638 0.130 0.129 0.0816 0.0936 

Coeff. + + + + + + + + + 
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ITC 
P value 0.245 0.184 0.400 0.818 0.909 0.565 

0.0621 
(0.993) 

0.0935 0.566 

Coeff. - - - + - - - - - 

HIP 
P value 

0.0212 
(0.339) 

0.222 0.884 0.271 0.403 0.782 
0.0406 
(0.650) 

0.397 0.685 

Coeff. - - + - - - - - + 

AMY 
P value 0.588 0.623 0.667 0.676 0.605 0.613 0.730 0.853 0.355 

Coeff. - - + - - - - - + 

STR 
P value 0.901 0.845 0.554 

0.0248 
(0.396) 

0.0322 
(0.515) 

0.0482 
(0.772) 

0.195 0.384 0.772 

Coeff. - + + + + + - - - 

THAL 
P value 0.358 0.615 0.795 0.0738 0.0731 0.163 

0.00509 
(0.0814) 

0.0241 
(0.385) 

0.150 

Coeff. - - - + + + - - - 

CBL 
P value 0.184 0.200 0.215 0.205 0.154 0.167 0.510 0.691 0.616 

Coeff. - - - - - - - - - 

Table 7.12: Logistic regression results testing CNV singleton status on regional splicing logP calculated in the Kang dataset.  
All p values in brackets were adjusted for 16 brain regions using Bonferroni’s method, where missing corrected p value was 1. 
 



236 
 

7.2 Additional figures for Chapter 2 

 

Figure 7.1: Scatterplots of relationships between global metrics calculated in the Johnson dataset and 
Simes’ gene-wide p values. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Simes’ logP 
against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and D 
plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 
. 
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Figure 7.2: Scatterplots of relationships between testing global metrics calculated within neocortical 
regions in the Johnson dataset and Simes’ gene-wide p values. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Simes’ logP 
against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and D 
plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 



238 
 

 

Figure 7.3: Scatterplots of relationships between global metrics calculated in the Kang dataset and 
Simes’ gene-wide p values. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Simes’ logP 
against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and D 
plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 
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Figure 7.4: Scatterplots of relationships between testing global metrics calculated within neocortical 
regions in the Kang dataset and Simes’ gene-wide p values. 
Panels A, C and E plot SCZ Brown’s logP against global metrics; panels B, D and F plot BPD Simes’ logP 
against global metrics. Panels A and B plot mean expression across mid-foetal brain; panels C and D 
plot scaled mean; panels E and F plot coefficient of variation against gene-wide logP. 
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Figure 7.5: Results from Mann-Whitney tests for genes ranked by global metrics calculated in the 
Johnson and Kang datasets, excluding MHC genes.  
Panels A & B are results testing top n% of genes ranked by each global metric in turn against the 
bottom 50% for smaller SCZ p values; panels C & D are results testing for smaller BPD p values. Panels 
A & C global metrics were calculated in the Johnson dataset; panels B & D were calculated in Kang 
dataset. Analyses were run excluding MHC genes. Black dashed line is 0.05. 
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Figure 7.6: Results from Mann-Whitney tests for genes ranked by global metrics within neocortical 
regions calculated in the Johnson and Kang datasets, excluding MHC genes.  
Panels A & B are results testing top n% of genes ranked by each global metric in turn against the 
bottom 50% for smaller SCZ p values; panels C & D are results testing for smaller BPD p values. Panels 
A & C global metrics were calculated in the Johnson dataset; panels B & D were calculated in the Kang 
dataset. Analyses were run excluding MHC genes. Black dashed line is 0.05.  
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Chapter 8: Appendix B 

8.1 Additional tables for Chapter 3 

 
Schizophrenia Bipolar disorder Parkinson’s Alzheimer’s 

Brown’s Simes’ Brown’s Simes’ Brown’s Brown’s 

Early foetal A 

P value 0.844 0.401 0.475 0.0977 0.368 0.408 

Correlation 
Coeff. 

0.0130 -0.00772 -0.00621 -0.0153 -0.00791 -0.00683 

+ - - - - - 

Early foetal B 

P value 
0.000147 
(0.00176) 

0.00791 
(0.0950) 

0.575 0.314 0.237 0.569 

Correlation 
Coeff. 

0.0293 0.0244 -0.00488 -0.00928 -0.0104 -0.00470 

+ + - - - - 

Early mid-foetal A 

P value 
7.80 x 10-10 
(9.36 x 10-9) 

1.14 x 10-8 
(1.36 x 10-7) 

0.0480 
(0.576) 

0.167 0.895 0.182 

Correlation 
Coeff. 

0.0562 0.0525 0.0172 0.0127 -0.00116 -0.0110 

+ + + + - - 

Early mid-foetal B 

P value 
4.40 x 10-8 

(5.28 x 10-7) 
1.13 x 10-6 

(1.36 x 10-5) 
0.00737 
(0.0884) 

0.0236 
(0.283) 

0.309 0.321 

Correlation 
Coeff. 

0.0538 0.0448 0.0233 0.0209 0.00893 -0.00819 

+ + + + + - 

Late mid-foetal 

P value 
4.45 x 10-5 
(0.000534) 

1.14 x 10-5 
(0.000137) 

0.0133 
(0.160) 

0.00458 
(0.0550) 

0.117 0.923 

Correlation 
Coeff. 

0.0263 0.0404 0.0215 0.0261 0.0138 0.000800 

+ + + + + + 

Late foetal 

P value 
0.000324 
(0.00389) 

0.00228 
(0.0274) 

0.00188 
(0.0225) 

0.00688 
(0.0826) 

0.800 0.109 

Correlation 

Coeff. 

-0.0277 -0.281 -0.0270 -0.0249 -0.00223 -0.0132 

- - - - - - 
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Neonatal and early 
infancy 

P value 
0.0246 
(0.295) 

0.142 0.862 0.457 0.127 0.575 

Correlation 
Coeff. 

-0.0305 -0.0135 -0.00151 0.00685 0.0134 0.00462 

- - - - + + 

Late infancy 

P value 
6.09 x 10-5 
(0.000731) 

0.00547 
(0.0656) 

0.0407 
(0.489) 

0.221 0.258 0.846 

Correlation 
Coeff. 

-0.0365 -0.0256 -0.0178 -0.0113 -0.00993 0.00160 

- - - - - + 

Early childhood 

P value 
1.29 x 10-16 

(1.55 x 10-15) 
1.24 x 10-8 

(1.49 x 10-7) 
0.00301 
(0.0361) 

0.0467 
(0.561) 

0.127 0.258 

Correlation 
Coeff. 

-0.0616 -0.0524 -0.0258 -0.0183 -0.0134 0.00932 

- - - - - + 

Middle and late 
childhood 

P value 
1.06 x 10-6 

(1.27 x 10-5) 
1.32 x 10-6 

(1.58 x 10-5) 
0.0491 
(0.589) 

0.0791 
(0.949) 

0.751 0.774 

Correlation 
Coeff. 

-0.0426 -0.0445 -0.0171 -0.0162 0.00279 0.00237 

- - - - + + 

Adolescence 

P value 
2.91 x 10-5 
(0.000350) 

8.87 x 10-5 
(0.00106) 

0.264 0.376 0.912 0.453 

Correlation 
Coeff. 

-0.0375 -0.0361 -0.00970 -0.00816 -0.000966 0.00619 

- - - - - + 

Young adulthood 

P value 
0.0405 
(0.486) 

0.0583 
(0.700) 

0.497 0.394 0.770 0.300 

Correlation 
Coeff. 

-0.0231 -0.0174 0.00590 0.00785 -0.00257 0.00854 

- - + - - + 

Table 8.1: Linear regression results and correlation coefficients testing development stage characteristic scores calculated in the BrainSpan RNA-Seq dataset with gene-
wide logP. 
P values in brackets corrected for 12 development stages, where missing corrected p value was 1. 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Early foetal A 

P value 0.784 0.199 0.339 
0.0535 
(0.643) 

Correlation 
Coeff. 

-0.00244 -0.0119 -0.00835 -0.0179 

- - - - 

Early foetal B 

P value 
0.00143 
(0.0228) 

0.00999 
(0.120) 

0.575 0.318 

Correlation 
Coeff. 

0.0285 0.0239 -0.00491 -0.00927 

+ + - - 

Early mid-foetal 
A 

P value 
3.54 x 10-8 

(5.67 x 10-7) 
6.97 x 10-7 

(8.36 x 10-6) 
0.0618 
(0.741) 

0.233 

Correlation 
Coeff. 

0.0492 0.0460 0.0163 0.0111 

+ + + + 

Early mid-foetal 
B 

P value 
1.04 x 10-6 

(1.66 x 10-5) 
0.000167 
(0.00201) 

0.0112 
(0.135) 

0.0380 
(0.456) 

Correlation 
Coeff. 

0.0436 0.0349 0.0222 0.0192 

+ + + + 

Late mid-foetal 

P value 
0.000377 
(0.00603) 

0.000237 
(0.00284) 

0.0175 
(0.210) 

0.00504 
(0.0604) 

Correlation 
Coeff. 

0.0317 0.0341 0.0208 0.0260 

+ + + + 

Late foetal 

P value 
0.000203 
(0.00324) 

0.00451 
(0.0542) 

0.00202 
(0.0243) 

0.00990 
(0.119) 

Correlation 
Coeff. 

-0.0332 -0.0263 -0.0270 -0.0239 

- - - - 

Neonatal and 
early infancy 

P value 0.258 0.779 0.904 0.298 

Correlation 
Coeff. 

-0.101 0.00260 0.00105 0.00965 

- + + + 

Late Infancy 

P value 
9.14 x 10-7 

(1.46 x 10-5) 
0.000106 
(0.00127) 

0.0294 
(0.353) 

0.173 

Correlation 
Coeff. 

-0.0438 -0.0359 -0.0190 -0.012 

- - - - 

Early childhood 

P value 
1.22 x 10-17 

(1.95 x 10-16) 
4.22 x 10-10 
(5.07 x 10-9) 

0.00292 
(0.0351) 

0.0419 
(0.503) 

Correlation 
Coeff. 

-0.0763 -0.0579 -0.0260 -0.0189 

- - - - 

Middle and late 
childhood 

P value 
2.78 x 10-5 
(0.000445) 

5.66 x 10-5 
(0.000679) 

0.0524 
(0.629) 

0.0727 
(0.872) 

Correlation 
Coeff. 

-0.0374 -0.0373 -0.0170 -0.0166 

- - - - 

Adolescence 

P value 
0.000417 
(0.00667) 

0.00111 
(0.0133) 

0.383 0.573 

Correlation 
Coeff. 

-0.0315 -0.0302 -0.00763 -0.00522 

- - - - 
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Young adulthood 

P value 0.126 0.116 0.428 0.328 

Correlation 
Coeff. 

-0.0136 -0.0145 0.00693 0.00907 

- - + + 

Table 8.2: Linear regression results and correlation coefficients testing development stage 
characteristic scores calculated in the BrainSpan RNA-Seq dataset with gene-wide logP, excluding 
MHC genes.  
P values in brackets corrected for 12 development stages, where missing corrected p value was 1.
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Schizophrenia Bipolar disorder Parkinson’s Alzheimer’s 

Brown’s Simes’ Brown’s Simes’ Brown’s Brown’s 

Embryonic 

P value 0.881 
0.000784 
(0.0118) 

0.454 0.123 0.298 0.222 

Correlation 
Coeff. 

0.00130 -0.0293 0.00641 -0.0135 -0.00896 -0.00986 

+ - + - - - 

Early foetal A 

P value 0.655 
0.0544 
(0.816) 

0.800 0.220 0.174 0.261 

Correlation 
Coeff. 

-0.00390 -0.0168 0.00216 -0.0108 -0.0117 -0.00906 

- - + - - - 

Early foetal B 

P value 
0.000452 
(0.00678) 

0.291 0.581 0.135 0.227 0.567 

Correlation 
Coeff. 

0.0306 0.00920 0.00472 -0.0131 -0.0104 -0.00462 

+ + + - - - 

Early mid-foetal A 

P value 0.493 0.602 0.446 0.938 0.953 0.505 

Correlation 
Coeff. 

0.00597 0.00454 0.00651 -0.000677 0.000506 0.00538 

+ + + - + + 

Early mid-foetal B 

P value 
0.0277 
(0.415) 

0.000825 
(0.0124) 

0.0405 
(0.607) 

0.00207 
(0.0311) 

0.0938 0.506 

Correlation 
Coeff. 

0.0192 0.0291 0.0175 0.0270 0.0144 -0.00536 

+ + + + + - 

Late mid-foetal 

P value 0.142 
0.00196 
(0.0293) 

0.926 0.518 0.264 0.721 

Correlation 
Coeff. 

0.0128 0.0270 -0.000798 0.00566 -0.00961 -0.00288 

+ + - + - - 

Late foetal 

P value 0.382 0.751 0.461 0.859 0.960 
0.0654 
(0.980) 

Correlation 
Coeff. 

-0.00762 0.00277 -0.00631 -0.00155 0.000434 0.0149 

- + - - + + 

Neonatal and early 
infancy 

P value 
0.00447 
(0.0670) 

0.513 0.905 0.538 0.583 0.356 

Correlation -0.0248 -0.00570 -0.00102 0.00540 -0.00473 0.00745 
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Table 8.3: Linear regression results and correlation coefficients testing development stage characteristic scores calculated in the Kang microarray dataset with gene-wide 
logP. 
P values in brackets corrected for 15 development stages, where missing corrected p value was 1. 

Coeff. - - - + - + 

Late infancy 

P value 0.171 0.869 0.381 0.818 0.372 0.742 

Correlation 
Coeff. 

-0.0119 -0.00144 -0.00749 0.00202 -0.00769 0.00265 

- - - + - + 

Early childhood 

P value 
0.000382 
(0.00573) 

0.00174 
(0.0261) 

0.219 0.244 0.658 0.548 

Correlation 
Coeff. 

-0.0310 -0.0273 -0.0105 -0.0102 0.00381 0.00484 

- - - - + + 

Middle and late 
childhood 

P value 0.194 
0.00691 
(0.104) 

0.000102 
(0.00153) 

0.000148 
(0.00222) 

0.521 0.0917 

Correlation 
Coeff. 

-0.0113 -0.0235 -0.0332 -0.0332 -0.00553 -0.0136 

- - - - - - 

Adolescence 

P value 
0.00341 
(0.0511) 

0.0850 0.592 0.983 0.262 0.335 

Correlation 
Coeff. 

0.0255 0.0150 0.00459 0.000189 0.00967 -0.00778 

+ + + + + - 

Young adulthood 

P value 
6.13 x 10-5 

(0.000919) 
0.0572 
(0.859) 

0.0553 
(0.830) 

0.207 0.154 0.182 

Correlation 
Coeff. 

0.0349 0.0166 0.0164 0.011 0.0123 -0.0108 

+ + + + + - 

Middle adulthood 

P value 
0.00447 
(0.0670) 

0.000761 
(0.0114) 

0.0327 
(0.490) 

0.154 0.359 0.460 

Correlation 
Coeff. 

-0.0248 -0.0293 -0.0183 -0.0125 0.00790 0.00595 

- - - - + + 

Late adulthood 

P value 
0.000423 
(0.00634) 

0.000282 
(0.00423) 

0.161 0.432 0.845 0.746 

Correlation 
Coeff. 

-0.0307 -0.0317 -0.0120 -0.00689 -0.00169 0.00261 

- - - - - + 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Embryonic 

P value 0.680 
9.37 x 10-7 

(1.41 x 10-5) 
0.515 

0.0619 
(0.928) 

Correlation 
Coeff. 

-0.00362 -0.0430 0.00560 -0.0165 

- - + - 

Early foetal A 

P value 0.414 
0.00318 
(0.0478) 

0.841 0.130 

Correlation 
Coeff. 

-0.00716 -0.0259 0.00173 -0.0134 

- - + - 

Early foetal B 

P value 
0.00663 
(0.0995) 

0.907 0.614 0.126 

Correlation 
Coeff. 

0.0238 0.00102 0.00434 -0.0135 

+ + + - 

Early mid-foetal A 

P value 0.725 0.947 0.460 0.910 

Correlation 
Coeff. 

0.00308 0.000586 0.00636 -0.00100 

+ + + - 

Early mid-foetal B 

P value 
0.0263 
(0.394) 

0.000674 
(0.0101) 

0.0700 0.00487 

Correlation 
Coeff. 

0.0195 0.0298 0.0156 0.0248 

+ + + + 

Late mid-foetal 

P value 0.281 
0.00160 
(0.0249) 

0.991 0.384 

Coeff. 
0.00946 0.0276 9.63 x 10-5 0.00768 

+ + + + 

Late foetal 

P value 0.118 0.329 0.351 0.686 

Correlation 
Coeff. 

-0.0137 -0.00857 -0.00802 -0.00356 

- - - - 

Neonatal and early 
infancy 

P value 
0.00601 
(0.0902) 

0.532 0.920 0.524 

Correlation 
Coeff. 

-0.0241 -0.00549 -0.000863 0.00562 

- - - + 

Late infancy 

P value 0.158 0.991 0.344 0.827 

Correlation 
Coeff. 

-0.0124 0.000101 -0.00814 0.00193 

- + - + 

Early childhood 

P value 
0.00412 
(0.0619) 

0.0194 
(0.291) 

0.257 0.313 

Correlation 
Coeff. 

-0.0251 -0.0205 -0.00975 -0.00890 

- - - - 

Middle and late 
childhood 

P value 0.420 
0.0306 
(0.459) 

0.000208 
(0.00312) 

0.000340 
(0.00510) 

Correlation 
Coeff. 

-0.00707 -0.0190 -0.0319 -0.0316 

- - - - 

Adolescence 

P value 
2.87 x 10-5 
(0.000430) 

0.000229 
(0.00343) 

0.359 0.645 

Correlation 
Coeff. 

0.00367 0.0323 0.00790 0.00406 

+ + + + 
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Young adulthood 

P value 
5.08 x 10-5 

(0.000763) 
0.0246 
(0.369) 

0.0494 
(0.740) 

0.220 

Correlation 
Coeff. 

0.0355 0.0197 0.0169 0.0108 

+ + + + 

Middle adulthood 

P value 
0.0255 
(0.383) 

0.0317 
(0.476) 

0.0267 
(0.401) 

0.134 

Correlation 
Coeff. 

-0.0196 -0.0189 -0.0191 -0.0132 

- - - - 

Late adulthood 

P value 
0.000331 
(0.00496) 

9.21 x 10-5 0.158 0.396 

Correlation 
Coeff. 

-0.0315 -0.0343 -0.0121 -0.00749 

- - - - 

Table 8.4: Linear regression results and correlation coefficients testing development stage 
characteristic scores calculated in the Kang microarray dataset with gene-wide logP, excluding MHC 
genes.  
P values in brackets corrected for 15 development stages, where missing corrected p value was 1. 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Embryonic 

P value 0.776 
9.50 x 10-5 

(0.00143) 
0.678 0.0886 

Correlation 

Coeff. 

-0.00248 -0.0340 0.00355 -0.0149 

- - + - 

Early foetal A 

P value 0.907 0.152 0.735 0.165 

Correlation 

Coeff. 

0.00102 -0.0125 0.00290 -0.0122 

+ - + - 

Early foetal B 

P value 
4.77 x 10-5 

(0.000715) 

0.0354 

(0.532) 
0.200 0.667 

Correlation 

Coeff. 

0.0355 0.0183 0.0110 -0.00378 

+ + + - 

Early mid-foetal A 

P value 
5.00 x 10-5 

(0.000750) 

0.00116 

(0.0174) 
0.123 0.917 

Correlation 

Coeff. 

0.0354 0.0283 0.0132 -0.000913 

+ + + - 

Early mid-foetal B 

P value 
2.39 x 10-7 

(8.59 x 10-8) 

8.59 x 10-8 

(1.29 x 10-6) 

0.00115 

(0.0173) 

0.00812 

(0.122) 

Correlation 

Coeff. 

0.0450 0.0467 0.0278 0.0232 

+ + + + 

Late mid-foetal 

P value 
0.0152 

(0.228) 

0.000628 

(0.00942) 
0.535 0.510 

Correlation 
Coeff. 

0.0212 0.0298 0.00531 0.00577 

+ + + + 

Late foetal 

P value 0.264 0.597 0.467 0.770 

Correlation 
Coeff. 

-0.00974 0.00460 -0.00622 -0.00256 

- + - - 

Neonatal and early 

infancy 

P value 
0.00138 

(0.0207) 
0.356 0.704 0.166 

Correlation 
Coeff. 

-0.0279 -0.0099 0.00325 0.0121 

- - + + 

Late infancy 

P value 
2.27 x 10-6 

(3.41 x 10-5) 

1.83 x 10-5 

(2.74 x 10-4) 

0.00650 

(0.0976) 
0.268 

Correlation 
Coeff. 

-0.0412 -0.0373 -0.0233 -0.00971 

- - - - 

Early childhood 

P value 
0.000691 

(0.0104) 

0.000575 

(0.00862) 

0.00418 

(0.0627) 

0.00467 

(0.0700) 

Correlation 
Coeff. 

-0.0296 -0.0300 -0.0245 -0.0248 

- - - - 

Middle and late 

childhood 

P value 
0.00454 

(0.0680) 

6.29 x 10-5 

(0.000943) 

0.00326 

(0.0490) 

0.0115 

(0.172) 

Correlation 
Coeff. 

-0.0247 -0.0349 -0.0252 -0.0221 

- - - - 
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Adolescence 

P value 
0.0241 

(0.361) 

0.0565 

(0.848) 
0.769 0.701 

Correlation 
Coeff. 

-0.0197 -0.0166 -0.00252 0.00337 

- - - + 

Young adulthood 

P value 0.831 0.298 0.666 0.593 

Correlation 
Coeff. 

-0.00186 -0.00907 0.00370 0.00469 

- - + + 

Middle adulthood 

P value 
1.95 x 10-5 

(0.000293) 

1.65 x 10-5 

(0.000248) 
0.0152 0.143 

Correlation 
Coeff. 

-0.0372 -0.0375 -0.0208 -0.0128 

- - - - 

Late adulthood 

P value 
0.0146 

(0.219) 
0.143 0.186 0.452 

Correlation 
Coeff. 

-0.0213 -0.0255 -0.0113 -0.00659 

- - - - 

Table 8.5: Linear regression results and correlation coefficients testing development stage 
characteristic scores calculated in the Kang microarray dataset without PMI covariate with gene-wide 
logP.  
P values in brackets corrected for 15 development stages, where missing corrected p value was 1 
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Schizophrenia Bipolar disorder 

Brown’s Simes’ Brown’s Simes’ 

Embryonic 

P value 0.442 
1.29 x 10-7 

(1.94 x 10-6) 
0.732 

0.0554 

(0.831) 

Correlation 

Coeff. 

-0.00674 -0.0463 0.00295 -0.0169 

- - + - 

Early foetal A 

P value 0.722 
0.00843 

(0.126) 
0.829 0.0815 

Correlation 

Coeff. 

-0.00312 -0.0231 0.00186 -0.0154 

- - + - 

Early foetal B 

P value 
0.00218 

(0.0326) 
0.394 0.241 0.583 

Correlation 

Coeff. 

0.0269 0.00748 0.0101 -0.00484 

+ + + - 

Early mid-foetal A 

P value 
0.00218 

(0.0326) 
0.0817 0.188 0.724 

Correlation 

Coeff. 

0.0266 0.0153 0.0113 -0.00312 

+ + + - 

Early mid-foetal B 

P value 
4.87 x 10-5 

(0.000730) 

0.000209 

(0.00313) 

0.00433 

(0.0649) 

0.0267 

(0.401) 

Correlation 

Coeff. 

0.0356 0.0325 0.0245 0.0195 

+ + + + 

Late mid-foetal 

P value 0.0818 
0.00461 

(0.0691) 
0.566 0.467 

Correlation 
Coeff. 

0.0153 0.0249 0.00493 0.00642 

+ + + + 

Late foetal 

P value 0.0617 0.502 0.356 0.582 

Correlation 
Coeff. 

-0.0164 -0.00590 -0.00794 -0.00486 

- - - - 

Neonatal and early 

infancy 

P value 
0.0273 

(0.409) 
0.925 0.651 0.133 

Correlation 

Coeff. 

-0.0194 0.000826 0.00389 0.0132 

- + + + 

Late infancy 

P value 
8.07 x 10-5 

(0.00121) 

0.000861 

(0.0129) 

0.00902 

(0.135) 
0.365 

Correlation 

Coeff. 

-0.0345 -0.0292 -0.0225 -0.00799 

- - - - 

Early childhood 

P value 
0.00157 

(0.0236) 

0.000637 

(0.00956) 

0.00414 

(0.0621) 

0.00493 

(0.0740) 

Correlation 
Coeff. 

-0.0277 -0.0300 -0.0247 -0.0248 

- - - - 

Middle and late 

childhood 

P value 0.132 
0.0225 

(0.338) 

0.00681 

(0.102) 

0.0244 

(0.366) 

Correlation 
Coeff. 

-0.0132 -0.0200 -0.0233 -0.0199 

- - - - 
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Adolescence 

P value 0.221 0.904 0.916 0.497 

Correlation 
Coeff. 

-0.0107 -0.00106 -0.000911 0.00599 

- - - + 

Young adulthood 

P value 0.651 0.916 0.541 0.524 

Correlation 
Coeff. 

0.00396 -0.000930 0.00526 0.00563 

+ - + + 

Middle adulthood 

P value 
0.000151 

(0.00227) 

0.000540 

(0.00810) 

0.0210 

(0.314) 
0.176 

Correlation 
Coeff. 

-0.0332 -0.0304 -0.0199 -0.0119 

- - - - 

Late adulthood 

P value 
0.0133 

(0.200) 

0.000867 

(0.0130) 
0.215 0.491 

Correlation 
Coeff. 

-0.0217 -0.0292 -0.0107 -0.00607 

- - - - 

Table 8.6: Linear regression results and correlation coefficients testing development stage 
characteristic scores calculated in the Kang microarray dataset without PMI covariate with gene-wide 
logP, excluding MHC genes.  
P values in brackets corrected for 15 development stages, where missing corrected p value was 1.
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

Early foetal A 
P value 0.248 0.511 0.705 

0.0644 

(0.772) 
0.0773 0.118 0.981 0.692 0.166 

Coeff. + + - + + + + - - 

Early foetal B 
P value 0.329 0.462 0.510 0.434 0.571 0.783 0.455 0.729 0.882 

Coeff. - - - - - - - - - 

Early mid-

foetal A 

P value 0.945 0.864 0.381 0.651 0.815 0.669 0.895 0.581 0.201 

Coeff. - + + - - + + + + 

Early mid-

foetal B 

P value 0.513 0.932 0.828 0.089 0.204 0.501 0.617 0.237 0.176 

Coeff. - - + - - - + + + 

Late mid-foetal 
P value 0.269 0.357 0.445 

0.052 

(0.628) 

0.072 

(0.868) 
0.133 0.910 0.627 0.512 

Coeff. - - - - - - + + + 

Late foetal 
P value 0.437 0.169 0.170 0.282 0.197 0.278 0.725 0.650 0.349 

Coeff. + + + + + + - + + 

Neonatal and 

early infancy 

P value 0.475 0.306 0.216 0.433 0.178 0.036 0.918 0.795 0.900 

Coeff. + + + + + + + + + 

Late infancy 
P value 0.529 0.938 0.712 0.308 0.626 0.879 0.727 0.618 0.473 

Coeff. - + + - - + - + + 

Early childhood 
P value 0.780 0.771 0.554 0.662 0.865 0.235 0.794 0.852 0.997 

Coeff. + + + - + + + + + 
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Middle and 

late childhood 

P value 0.691 0.857 0.539 0.569 0.184 0.099 0.517 0.213 0.832 

Coeff. + + + + + + - - - 

Adolescence 
P value 0.530 0.695 0.850 0.647 0.826 0.993 0.382 0.612 0.958 

Coeff. - - - - - - - - + 

Young 

adulthood 

P value 0.606 0.578 0.912 0.736 0.660 0.781 0.329 0.513 0.895 

Coeff. - - - - - - - - + 

Table 8.7: Logistic regression results testing CNV case control status on development stage characteristic score calculated in the BrainSpan RNA-Seq dataset.  
P values in brackets corrected for 12 development stages, where missing corrected p value was 1.  
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All CNVs Deletions Duplications 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

Early foetal A 
P value 

0.00986 

(0.118) 

0.00121 

(0.0145) 

6.56 x 10-5 

(0.000788) 

0.000287 

(0.00344) 

0.000263 

(0.00315) 

0.000506 

(0.00608) 
0.748 0.231 

0.0149 

(0.179) 

Coeff. + + + + + + + + + 

Early foetal B 
P value 0.916 0.808 0.763 0.589 0.444 0.296 0.793 0.754 0.623 

Coeff. + + + + + + - - - 

Early mid-

foetal A 

P value 0.265 0.148 
0.0127 

(0.152) 
0.100 0.0818 0.0141 0.883 0.655 0.218 

Coeff. + + + + + + + + + 

Early mid-

foetal B 

P value 0.163 0.314 0.329 0.866 0.864 0.925 0.117 0.163 0.233 

Coeff. - - - - + - - - - 

Late mid-foetal 
P value 0.200 0.145 0.149 0.701 0.799 0.853 0.190 0.0895 

0.0714 

(0.857) 

Coeff. - - - - - - - - - 

Late foetal 
P value 0.885 0.541 0.355 0.600 0.402 0.206 0.783 0.943 0.757 

Coeff. + + + + + + - + + 

Neonatal and 

early infancy 

P value 0.989 0.310 
0.00198 

(0.0238) 
0.644 0.979 0.121 0.688 0.198 

0.00573 

(0.0687) 

Coeff. + + + - + + + + + 

Late infancy 
P value 0.968 0.151 0.0851 0.373 0.779 0.796 0.427 

0.0314 

(0.376) 
0.0679 

Coeff. + + + - - + + + + 

Early childhood 
P value 0.987 0.494 0.561 0.937 0.777 0.364 0.970 0.561 0.958 

Coeff. - + + - + + + + - 

Middle and 

late childhood 

P value 0.369 0.0512 
0.00132 

(0.0158) 
0.609 0.209 0.0214 0.444 0.143 0.0381 

Coeff. + + + + + + + + + 
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Adolescence 
P value 0.216 0.580 0.907 0.553 0.717 0.996 0.281 0.680 0.978 

Coeff. - - + - - + - - - 

Young 

adulthood 

P value 0.083 0.182 0.346 
0.0489 

(0.587) 

0.0620 

(0.744) 

0.0675 

(0.809) 
0.685 0.969 0.775 

Coeff. - - - - - - - + + 

Table 8.8: Logistic regression results testing CNV singleton status on development stage characteristic scores calculated in the BrainSpan RNA-Seq dataset.  
P values in brackets corrected for 12 development stages, where missing corrected p value was 1.  
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All CNVs Deletion CNVs Duplication CNVs 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

Embryonic 
P value 0.982 0.874 0.409 0.638 0.923 0.979 0.357 0.417 0.523 

Coeff. + + - - - - + + - 

Early foetal A 
P value 0.532 0.495 0.721 0.704 0.536 0.519 0.605 0.576 0.897 

Coeff. + + + + + + + + + 

Early foetal B 
P value 0.465 0.746 0.855 0.947 0.719 0.708 0.321 0.673 0.688 

Coeff. + + + - + + + + + 

Early mid-

foetal A 

P value 0.514 0.257 0.487 0.426 0.613 0.887 0.934 0.444 0.748 

Coeff. - - - - - - - - - 

Early mid-

foetal B 

P value 0.676 0.457 0.834 0.304 0.382 0.806 0.864 0.646 0.993 

Coeff. - - - - - - - - + 

Late mid-foetal 
P value 0.835 0.914 0.650 0.424 0.513 0.838 0.601 0.533 0.605 

Coeff. + + + - - + + + + 

Late foetal 
P value 0.806 0.495 0.746 0.341 0.801 0.673 0.738 0.185 0.224 

Coeff. - + + - - - + + + 

Neonatal and 

early infancy 

P value 0.131 0.0869 
0.0221 

(0.332) 
0.989 0.507 0.138 0.111 0.100 0.0815 

Coeff. + + + + + + + + + 

Late infancy 
P value 0.342 0.393 0.778 0.764 0.576 0.178 0.181 0.487 0.618 

Coeff. + + + - + + + + - 

Early childhood 
P value 0.816 0.682 0.748 0.966 0.593 0.263 0.984 0.920 0.937 

Coeff. + + + - + + + + - 

Middle and 

late childhood 

P value 0.584 0.456 0.475 0.849 0.587 0.366 0.384 0.132 0.191 

Coeff. - - - - + + - - - 
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Adolescence 
P value 0.254 0.646 0.780 0.683 0.457 0.202 

0.0457 

(0.686) 
0.210 0.338 

Coeff. - - - + + + - - - 

Young 

adulthood 

P value 0.294 0.134 0.123 0.425 0.362 0.889 0.267 0.179 
0.0578 

(0.867) 

Coeff. - - - - - + - - - 

Middle 

adulthood 

P value 0.484 0.434 0.745 0.160 0.489 0.830 0.755 0.671 0.889 

Coeff. - - - - - - + - + 

Late adulthood 
P value 0.712 0.614 0.623 0.780 0.472 0.125 0.522 0.121 0.544 

Coeff. - - + - + + - - - 

Table 8.9: Logistic regression results testing CNV case control status on development stage characteristic scores calculated in the Kang microarray dataset. 
 P values in brackets corrected for 15 development stages.  
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All CNVs Deletion CNVs Duplication CNVs 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

Embryonic 
P value 0.371 0.160 0.353 0.303 0.310 0.329 0.880 0.257 0.631 

Coeff. + + + + + + + + + 

Early foetal A 
P value 

0.0351 

(0.527) 

0.00218 

(0.0327) 

0.000724 

(0.0109) 

0.00113 

(0.0170) 

0.000446 

(0.00669) 

0.000648 

(0.00972) 
0.965 0.287 0.0896 

Coeff. + + + + + + + + + 

Early foetal B 
P value 0.121 0.0722 

0.0262 

(0.393) 

0.0361 

(0.541) 

0.0205 

(0.308) 

0.0540 

(0.810) 
0.726 0.634 0.155 

Coeff. + + + + + + + + + 

Early mid-

foetal A 

P value 0.253 0.264 0.487 0.186 0.290 0.478 0.738 0.572 0.713 

Coeff. + + + + + + + + + 

Early mid-

foetal B 

P value 
0.000133 

(0.00200) 

6.24 x 10-5 

(0.000937) 

0.000750 

(0.0113) 

0.000382 

(0.00573) 

0.000524 

(0.00785) 

0.00483 

(0.0725) 

0.0581 

(0.871) 

0.0278 

(0.416) 

0.0394 

(0.591) 

Coeff. - - - - - - - - - 

Late mid-foetal 
P value 0.112 0.454 0.684 0.459 0.404 0.300 0.141 0.799 0.676 

Coeff. - - - - - - - - + 

Late foetal 
P value 0.397 0.242 0.207 0.719 0.371 0.547 0.183 0.410 0.262 

Coeff. - + + + + + - + + 

Neonatal and 

early infancy 

P value 0.0735 0.159 0.825 0.367 0.636 0.803 0.122 0.146 0.562 

Coeff. + + + + + - + + + 

Late infancy 
P value 0.991 0.740 0.616 0.517 0.473 0.753 0.517 0.266 0.394 

Coeff. - - - + + + - - - 
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Early childhood 
P value 0.408 0.135 

0.00181 

(0.0272) 
0.351 0.189 

0.0636 

(0.953) 
0.739 0.395 

0.0132 

(0.198) 

Coeff. + + + + + + + + + 

Middle and 

late childhood 

P value 
0.0111 

(0.166) 
0.114 0.0703 0.302 0.753 0.514 

0.0163 

(0.244) 
0.0777 0.0913 

Coeff. - - - - - - - - - 

Adolescence 
P value 0.947 0.353 

0.0114 

(0.171) 
0.481 0.349 

0.0477 

(0.715) 
0.532 0.681 0.100 

Coeff. - + + + + + - + + 

Young 

adulthood 

P value 0.196 0.122 0.419 0.361 0.118 0.116 0.340 0.480 0.828 

Coeff. - - - - - - - - + 

Middle 

adulthood 

P value 0.447 0.515 0.745 0.464 0.563 0.664 0.846 0.750 0.908 

Coeff. + - - + - - + - - 

Late adulthood 
P value 0.136 0.184 0.151 0.999 0.891 0.550 

0.0289 

(0.434) 
0.0726 0.177 

Coeff. - - - + - - - - - 

Table 8.10: Logistic regression results testing CNV singleton status on development stage characteristic scores calculated in the Kang microarray dataset.  
P values in brackets corrected for 15 development stages, where missing corrected p value was 1.  



262 
 

 
All CNVs Deletion CNVs Duplication CNVs 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

Embryonic 
P value 0.945 0.869 0.400 0.506 0.768 0.816 0.271 0.249 0.583 

Coeff. - + - - - - + + - 

Early foetal A 
P value 0.486 0.392 0.910 0.652 0.470 0.473 0.516 0.435 0.811 

Coeff. + + + + + + + + - 

Early foetal B 
P value 0.894 0.876 0.784 0.356 0.538 0.601 0.352 0.510 0.545 

Coeff. + - + - - - + + + 

Early mid-

foetal A 

P value 0.839 0.686 0.678 0.295 0.505 0.861 0.583 0.719 0.879 

Coeff. - - - - - - + + + 

Early mid-

foetal B 

P value 0.863 0.789 0.651 0.350 0.583 0.886 0.330 0.223 0.239 

Coeff. + + + - - - + + + 

Late mid-foetal 
P value 0.936 0.903 0.850 0.279 0.444 0.821 0.465 0.597 0.841 

Coeff. + - - - - - + + + 

Late foetal 
P value 0.927 0.813 0.987 0.436 0.672 0.786 0.771 0.388 0.473 

Coeff. - + - - - - + + + 

Neonatal and 

early infancy 

P value 0.219 0.128 0.178 0.979 0.410 0.118 0.309 0.273 0.678 

Coeff. + + + - + + + + + 

Late infancy 
P value 0.999 0.941 0.944 0.755 0.655 0.323 0.845 0.698 0.565 

Coeff. + + - - + + - - - 

Early childhood 
P value 0.822 0.245 0.436 0.811 0.426 0.401 0.987 0.258 0.369 

Coeff. + + + + + + + + + 
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Middle and 

late childhood 

P value 0.282 0.368 0.301 0.176 0.0581 0.0146 0.758 0.402 0.562 

Coeff. + + + + + + - - - 

Adolescence 
P value 0.421 0.646 0.908 0.590 0.525 0.462 0.998 0.782 0.553 

Coeff. + + - + + + + - - 

Young 

adulthood 

P value 0.983 0.392 0.455 0.680 0.996 0.394 0.374 0.150 0.116 

Coeff. + - - + - + - - - 

Middle 

adulthood 

P value 0.767 0.482 0.320 0.335 0.798 0.845 0.923 0.327 0.164 

Coeff. - - - - - + + - - 

Late adulthood 
P value 0.310 0.310 0.958 0.447 0.965 0.304 0.303 0.097 0.397 

Coeff. - - + - + + - - - 

Table 8.11: Logistic regression results testing CNV case control status on development stage characteristic scores calculated in the Kang microarray dataset without PMI 
covariate. 
 P values in brackets corrected for 15 development stages, where missing corrected p value was 1.  
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All CNVs Deletion CNVs Duplication CNVs 

Min. Med. Max. Min. Med. Max. Min. Med. Max. 

Embryonic 
P value 0.374 0.156 0.443 0.354 0.352 0.374 0.792 0.184 0.704 

Coeff. + + + + + + + + + 

Early foetal A 
P value 

0.0129 

(0.194) 

0.000358 

(0.00537) 

0.000153 

(0.00229) 

0.000292 

(0.00438) 

0.000426 

(0.00640) 

0.00152 

(0.0228) 
0.867 0.089 

0.0136 

(0.204) 

Coeff. + + + + + + + + + 

Early foetal B 
P value 0.0713 

0.0358 

(0.537) 
0.0953 

0.0137 

(0.0228) 

0.0161 

(0.242) 
0.0850 0.686 0.410 0.367 

Coeff. + + + + + + + + + 

Early mid-

foetal A 

P value 0.562 0.174 0.442 
0.0505 

(0.758) 

0.0592 

(0.887) 
0.173 0.423 0.823 0.998 

Coeff. + + + + + + - - - 

Early mid-

foetal B 

P value 0.344 0.518 0.932 0.904 0.947 0.865 0.265 0.416 0.971 

Coeff. - - + - - + - - - 

Late mid-foetal 
P value 0.107 0.294 0.377 0.416 0.277 0.223 0.143 0.681 0.939 

Coeff. - - - - - - - - - 

Late foetal 
P value 0.0750 0.737 0.867 0.580 0.989 0.650 0.0706 0.622 0.587 

Coeff. - + + - - - - + + 

Neonatal and 

early infancy 

P value 0.165 0.283 0.0808 0.111 0.302 
0.0417 

(0.626) 
0.531 0.562 0.578 

Coeff. - - - - - - - - - 

Late infancy 
P value 

0.0177 

(0.266) 
0.0841 0.326 0.207 0.303 0.475 

0.0396 

(0.593) 
0.172 0.513 

Coeff. - - - - - - - - - 

Early childhood 
P value 

6.89 x 10-6 

(0.000103) 

1.17 x 10-5 

(0.000175) 

5.93 x 10-5 

(0.000890) 

1.24 x 10-5 

(0.000186) 

6.05 x 10-6 

(9.08 x 10-5) 

4.80 x 10-7 

(7.20 x 10-6) 

0.0193 

(0.289) 

0.0652 

(0.978) 
0.337 

Coeff. + + + + + + + + + 
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Middle and 

late childhood 

P value 0.0874 0.698 0.495 0.586 0.938 0.517 
0.0590 

(0.884) 
0.592 0.162 

Coeff. - - + - - - - - + 

Adolescence 
P value 0.857 0.814 0.534 0.588 0.727 0.734 0.534 0.557 0.329 

Coeff. - - - - - - + + + 

Young 

adulthood 

P value 0.163 0.183 0.450 0.208 0.197 0.0720 0.467 0.515 0.594 

Coeff. - - - - - - - - + 

Middle 

adulthood 

P value 0.368 0.551 0.812 0.136 0.531 0.808 0.701 0.878 0.573 

Coeff. + + - + + + - + - 

Late adulthood 
P value 0.116 0.214 

0.0343 

(0.514) 
0.694 0.540 0.129 

0.0451 

(0.677) 
0.214 0.154 

Coeff. - - - - - - - - - 

Table 8.12: Logistic regression results testing CNV singleton status on development stage characteristic scores calculated in the Kang microarray dataset without PMI 
covariate. 
P values in brackets corrected for 15 development stages, where missing corrected p value was 1. 



266 
 

8.2 Additional figures for Chapter 3 

 
Figure 8.1: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the  BrainSpan RNA-Seq dataset and Brown’s p values. 
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.1 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panel A tested positive subset; panels B & C tested negative 
subset.  Panels A & B tested for smaller SCZ Brown’s p values; panel C tested for smaller BPD Brown’s p values. 
Black dashed line is p = 0.05. 

 
Figure 8.2: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the BrainSpan RNA-Seq dataset and SCZ Simes’ p values.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.1 was tested in a one-
sided Mann-Whitney test against the bottom 50% for smaller SCZ Simes’ p values, panel A tested positive 
subset; panel B tested negative subset. Black dashed line is p = 0.05. 
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Figure 8.3: Results from linear regression of development stage characteristic scores calculated in the 
BrainSpan RNA-Seq dataset, excluding MHC genes.  
P values were –log10 transformed and multiplied by the sign of the coefficient, therefore bars above the origin 
indicate positive regression coefficients; bars below the origin indicate negative regression coefficients.  Panel 
A tested Brown’s logP; panel B tested Simes’ logP. All p values were corrected for 12 development stages using 
Bonferroni’s method. Black dashed line is p = 0.05. 
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Figure 8.4: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the BrainSpan RNA-Seq dataset and Brown’s p values, excluding MHC 
genes. 
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 8.3 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panel A tested positive subset; panels B & C tested negative 
subset. Panels A & B tested SCZ Brown’s p values; panel C tested BPD Brown’s p values. Black dashed line is p = 
0.05.  
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Figure 8.5: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the BrainSpan RNA-Seq dataset and SCZ Simes’ p values, excluding 
MHC genes.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 8.3 was tested in a one-
sided Mann-Whitney test against the bottom 50% for smaller SCZ Simes’ p values, panel A tested positive 
subset; panel B tested negative subset. Black dashed line is p = 0.05. 

 
Figure 8.6: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset and Brown’s p values.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.2 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panel A test positive subset; panels B & C tested negative 
subset. Panels A & B tested SCZ Brown’s p values; panel C tested BPD Brown’s p values. Black dashed line is p = 
0.05. 
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Figure 8.7: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset and Simes’ p values. 
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.2 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panels A & C tested positive subsets; panels B & D tested 
negative subsets. Panels A & B tested SCZ Simes’ p values; panels C & D tested BPD Simes’ p values. Black 
dashed line is p = 0.05. 
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Figure 8.8: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset and Brown’s p values, excluding MHC 
genes.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.3 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panel A tested positive subset; panels B & C tested negative 
subset. Panels A & B tested SCZ Brown’s p values; panel C tested BPD Brown’s p values. Black dashed line is p = 
0.05. 



272 
 

 

Figure 8.9: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset and Simes’ p values, excluding MHC 
genes. 
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.3 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panel A tested positive subset; panels B & C tested negative 
subset. Panels A & B tested SCZ Simes’ p values; panel C tested BPD Simes’ p values. Black dashed line is p = 
0.05. 
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Figure 8.10: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the  Kang microarray dataset without PMI covariate  and Brown’s p 
values. 
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.4 was tested in a one-
sided Mann-Whitney test against the bottom 50%, panels A & C tested positive subset; panels B & D tested 
negative subset. Panels A & B tested SCZ Brown’s p values; panels C & D tested BPD Brown’s p values. Black 
dashed line is p = 0.05. 

 
Figure 8.11: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset without PMI covariate and SCZ Simes’ p 
values.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 3.4 was tested in a one-
sided Mann-Whitney test against the bottom 50% for smaller SCZ Simes’ p values, panel A tested positive 
subset; panel B tested negative subset. Black dashed line is p = 0.05. 
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Figure 8.12: Results from linear regression of development stage characteristic scores calculated in the Kang 
microarray dataset without PMI covariate, excluding MHC genes. 
P values were –log10 transformed and multiplied by the sign of the coefficient, therefore bars above the origin 
indicate positive regression coefficients; bars below the origin indicate negative regression coefficients. Panel 
A tested Brown’s logP; panel B tested Simes’ logP. All P values were corrected for 15 development stages using 
Bonferroni’s method. Black dashed line is p = 0.05. 
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Figure 8.13: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset without PMI covariate and SCZ Brown’s p 
values, excluding MHC genes.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 8.12 was tested in a one-
sided Mann-Whitney test against the bottom 50% for smaller SCZ Brown’s p values, panel A tested positive 
subset; panel B tested negative subset. Black dashed line is p = 0.05. 

 

 

Figure 8.14: Results from Mann-Whitney tests to verify significant regression models between development 
stage characteristic scores calculated in the Kang microarray dataset without PMI covariate and SCZ Simes’ p 
values, excluding MHC genes.  
Genes were ranked by absolute characteristic scores and the top n% split into positive and negative subsets. 
The subset consistent with the direction of the significant regression model in Figure 8.12 was tested in a one-
sided Mann-Whitney test against the bottom 50% for smaller SCZ Brown’s p values, panel A tested positive 
subset; panel B tested negative subset. Black dashed line is p = 0.05. 
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Figure 8.15: Results from Mann-Whitney tests for genes ranked by SCZ risk genes co-expression model p values 
calculated in the BrainSpan RNA-Seq dataset. 
Genes ranked by co-expression model p values and top n% tested against bottom 50%. Panels A & B tested for 
smaller SCZ p values; panels C & D tested for smaller BPD p values. Panels A & C tested all genes, panels B & D 
excluded MHC genes. Black dashed line is 0.05. 
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Figure 8.16: Results from Mann-Whitney tests for genes ranked by BPD risk genes co-expression model p 
values calculated in the BrainSpan RNA-Seq dataset. 
Genes ranked by co-expression model p values and top n% tested against bottom 50%. Panels A & B tested for 
smaller SCZ p values; panels C & D tested for smaller BPD p values. Panels A & C tested all genes; panels B & D 
excluded MHC genes. Black dashed line is 0.05. 
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Figure 8.17: BPD risk genes comparing microarray and RNA-Seq expression values.   
Risk genes identified from PGC GWAS whose co-expression indexed association in the RNA-Seq dataset and 
were present in the microarray dataset. Median expression values calculated for each development stage, 
scale on left for RNA-Seq data, scale on right for microarray data. 
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Figure 8.18: Logistic regression results testing CNV singleton status on development stage characteristic scores 
calculated in the Kang microarray dataset without PMI covariate. 
Panel A is all CNVs, panel B deletions, and panel C duplications. P values were corrected for 15 development 
stages using Bonferroni’s method. Black dashed line is 0.05. 

 

 


