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Abstract 

The aim of this PhD project is to develop a fuzzy knowledge-based approach 

in support of risk analysis in the Customs domain.  

Focusing upon risk management and risk analysis in the Customs domain, 

this thesis explores the relationship of risk with uncertainty, fuzziness, vagueness, 

and imprecise knowledge and it analyses state of the art detection techniques for 

fraud and risk. Special focus is given to fuzzy logic, ontological engineering, and 

semantic modelling considering aspects such as the importance of human 

knowledge and semantic knowledge in the context of risk analysis for the Customs 

domain. 

An approach is presented combining the fuzzy modelling and reasoning with 

semantic modelling and ontologies. Fuzzy modelling and reasoning is explored in the 

context of risk analysis and detection in order to examine approximate human 

reasoning based on human knowledge. Ontologies and semantic modelling are 

explored as an approach to represent domain knowledge and concepts. The purpose 

is to enable easier communication and understanding as well as interoperability. Risk 

management is broader, multi-dimensional process involving a number of task, 

activities, and practises. The presented approach is focused on examining the 

analysis and detection of the risk, based on the outputs of the risk management 

process with the use of ontologies and fuzzy rule-based reasoning.  

An ontological architecture is developed in the context of the presented 

approach. It is considered that such architecture is possible to enable modularity, 

maintainability, re-usability, and extensibility and can also be extended or integrated 

with other ontologies. In addition, examples are discussed to illustrate representation 

of concepts at various levels (generic or specific) and the modelling of various 

semantics. 
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Furthermore, fuzzy modelling and reasoning are investigated. This 

investigation consists of literature research and the use of a generic research 

prototype (examination of Mamdani and Sugeno model types). From theoretical 

research, fuzzy logic enables the expression of human knowledge with linguistic 

terms and it could simulate human reasoning in the context of risk analysis and 

detection. In addition, Hierarchical Fuzzy Systems (HFS) or Hybrid Hierarchical Fuzzy 

Controllers (HHFC) approaches can be used to manage complexity especially for 

complex domains. Linguistic fuzzy modelling (LFM) is an aspect that should be 

considered during fuzzy modelling. From the generic research prototype, fuzzy 

modelling with the use of ontologies is demonstrated together with their integration in 

the context of fuzzy rule-based reasoning. It is also considered that Mamdani type of 

fuzzy models is easier to express human knowledge since the output can be 

expressed with linguistic terms. However, Sugeno type of fuzzy model could be used 

from adaptive techniques for optimisation purposes.  
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Chapter 1. Introduction 

1.1 Overview 

In this chapter, it is provided an overview of the present research. The goal of 

this chapter is to present and clarify the research problems and areas of this project 

and integrate it to a general research context.  

1.2 Customs Domain 

The research is performed in the context of Customs. Therefore, some 

background information mainly for EU Customs is presented in the following 

paragraphs prior to the discussion of motivation and objectives of this research.  

Customs plays a vital role in the economy, environment, and security. 

Particularly for European Union (EU), the main role of EU Customs is to facilitate trade 

and at the same time to protect the interests of the European Union and its citizens. 

Currently, 28 customs administrations of the EU implement the community customs 

code (DGTAXUD 2014e). The Customs Union is an important element for the 

operation of the single market. In EU Customs Union, uniform handling of goods 

(import, export and transit) is performed by a number of countries and a common set 

of rules are implemented (DGTAXUD 2014f).  Those common rules cover aspects 

such as common tariff, health and environment controls, protection of economic 

interests, etc. (DGTAXUD 2014e).  

Nowadays, Customs are facing new challenges and in order to achieve these 

demands, modernization of customs procedures and controls is required as well as 

cooperation of various services (DGTAXUD 2014e). The Electronic Customs initiative 

started with the aim of creating a paperless environment in the context of Customs 
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modernisation (DGTAXUD 2014d). The interoperability of Customs IT systems and 

exchange of information is considered as an essential element so as the EU’s 

economy to continue to compete in a global context (DGTAXUD 2014e). 

Customs involves a number of Customs procedures such as release for free 

circulation, exportation, transit, etc. In EU, those Customs procedures are defined in 

the Customs legislation into force (DGTAXUD 2014c). The Customs declaration is 

used by a person to indicate the wish to place the goods under a specific Customs 

procedure (DGTAXUD 2014b; EEC 1992 Article 4(17); 2008b Article 4(10) ).  

As stated in (DGTAXUD 2014f), 261 million of customs declarations (Total 

Extra-EU Trade) performed in 2012, which means 8 declarations a second. This 

concerns 139 million of customs declarations for import, 105 million of customs 

declarations for export and 17 million of customs declarations for transit (DGTAXUD 

2014f).  

In order to ensure correct application of Customs rules and other legislation, 

Customs Authorities apply Customs Controls in a number of areas (DGTAXUD 2014a; 

EEC 1992 Article 4 (14)). As it is mentioned in (DGTAXUD 2014a), Customs 

Authorities must apply various controls in an environment with fast moving of goods 

and also consistently across the Community. Therefore, Customs controls must be 

fast, effective and based on risk management techniques. To this context, this 

research is performed to develop a fuzzy knowledge-based approach in support of 

risk analysis. 

Customs is a complex business domain due to the number and the nature of 

its processes, the number and complexity of business rules that govern the 

processes, the number of the actors involved, as well as the number of terms and the 

concepts that are used in the various procedures. In addition, common 

understanding of procedures and business rules is required for the performance of 

customs business. Various entities (e.g. declarations, authorisations, and 

guarantees) are required for the completion of a customs procedure. A number of 
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actors such as Economic Operators and Customs Authorities are involved in the 

completion of customs procedures. In the context of electronic customs, Information 

is exchanged among those actors and hence it is believed that everyone should share 

the same understanding about the various concepts.  

1.3 Motivation 

The risk management process has as purpose to identify, analyse and assess 

factors that may jeopardize the success, operation or function of the assessed 

context. The results from this analysis and assessment should be used for the 

establishment of preventive measures and the identification of countermeasures 

with aim to reduce the probability of these factors from occurring. Therefore, the risk 

management process has also to treat, monitor, and communicate the risks. The risk 

management is used in various domains. Another field on which the risk 

management plays an important role is the Customs domain.  

As stated in section 1.2, Customs plays a vital role in the economy, 

environment, and security. Application of risk management is an important element 

for modern Customs Administrations (WCO 2011). Risk management is a technique, 

which used by Customs for setting priorities more effectively and for allocating 

resources more efficiently with purpose to keep a proper balance between control 

and facilitation of legitimate trade (DGTAXUD 2013). Furthermore, the “Intelligence-

driven risk management” is also a concept where learning from past decisions is 

utilised in risk related activities. This concept is also enabled with the use and 

support of IT systems (WCO 2010). 

Knowledge is an understanding of information based on its perceived 

importance or relevance to problem domain (Awad 1996, p. 29). Knowledge can be 

classified into shallow or deep knowledge. Shallow knowledge is minimal 

understanding of problem domain. Deeper knowledge is required when decision-
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making is more complex requiring assessment of many parameters. Another way for 

further classifying knowledge is to procedural, declarative, semantic, or episodic. 

Semantic knowledge is considered as deeper type of knowledge. It is also indicated 

as “chunked” knowledge residing in long-term memory. Such knowledge requires 

understanding of various concepts and their interrelationships (Awad 1996).  

Apparently, this is not an easy task because various relationships exist among the 

concepts and information. Another important aspect is the concepts and their 

semantics. For instance, it is considered that Customs contains many concepts and 

there are complex relationships between the concepts. It is assumed that risk 

management and assessment is facilitated with the deep understanding of the 

domain and its concepts as well as the relationships between them. Therefore, the 

semantic modelling and ontologies would assist on that aspect and formally 

represent the concepts enabling understanding. 

Following literature review, Artificial Intelligence and Expert Systems 

(Digiampietri et al. 2008; Singh and Sahu 2004; Singh et al. 2003), Neural Networks 

(Feng et al. 2007; Ye et al. 2007) and Statistical methods (Geourjon et al. 2010; 

Geourjon and Laporte 2005; Laporte 2011) are some of the techniques that have 

been applied for detection and risk analysis in this domain.  

Human knowledge and expertise is also very important for “intelligence” in 

Customs. Singh and Sahu (2004) analyse the importance of human intelligence in 

crime prevention. It is stated that the IT systems are machines and hence devoid of 

human emotions. Therefore, the systems decide purely based on the data and 

according to the computer program. The nature of human mind has the capacity to 

invent ever-new methods to commit crime that cannot be predicted by any computer. 

Therefore, it is mentioned that “the emotions and creativity of human mind can be 

effectively countered only by the intelligence, emotions and creativity of another 

human mind” (Singh and Sahu 2004, p. 447). The human knowledge and 

intelligence must be considered and used effectively during the risk analysis process. 
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Fuzzy logic and fuzzy inference systems could facilitate this. Application of fuzzy logic 

enables approximate human reasoning to be applied to knowledge-based systems 

(Alavala 2008). 

The risk analysis shall also consider both the certainty and the uncertainty. 

The risk is closely related to the uncertainty. The uncertainty is related to the 

fuzziness since the fuzziness could be an uncertainty occurred from vagueness. 

Friedlob and Schleifer (1999, p. 127) mentions that L. Zadeh in his Law of 

Incompatibility states that “as complexity rises, precise statements lose meaning and 

meaningful statements lose precision”. The relationship between complexity and 

uncertainty is proportional i.e. as complexity increases, certainty decreases (Friedlob 

and Schleifer 1999). Fuzzy logic introduced by Zadeh in 1965 and it is a 

mathematical tool for dealing with uncertainty (Sivanandam et al. 2007). The 

concepts of fuzzy sets were used for describing dynamic systems that are too 

complex and/or ill-defined to synthesize controllers using conventional mathematical  

modelling  techniques  (Rao and Saraf 1996). 

At the inference engine level, this vagueness or fuzziness could be the reason 

of the recognised drawback of traditional Production systems, which is the partial 

matching. It is deemed that the partial matching is solved with the use of fuzzy logic 

during the inference process (Valdez et al. 2007). As far as the knowledge 

representation is concerned, the uncertainty should also be represented in the 

knowledge.  

1.4 Research Objectives 

The key points highlighted in previous section summarise the motivation for 

this research. The aim of this research is to investigate a fuzzy knowledge-based 

approach for supporting risk analysis and detection with application in Customs 

domain. The main characteristics of this will be the combination of fuzzy reasoning 
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and semantic modelling with ontologies. On one hand, fuzzy reasoning is examined 

for handling imprecise knowledge and vagueness in risk analysis in this complex 

domain. Also fuzzy inference systems can be used to express knowledge. On the 

other hand, the semantic modelling is used for representing knowledge and concepts 

of this domain improving both the communication and understanding. In addition, it 

offers the flexibility to map different elements with their semantics to ontology 

concepts. The research objectives are the following four: 

1. to develop a conceptual model for fuzzy knowledge-based approach 

to risk analysis; 

2. to develop a high-level ontological architecture for supporting the 

fuzzy knowledge-based approach to risk analysis, considering the 

complexity of the domain for knowledge representation and formal 

representation of concepts; 

3. to develop ontology models according to the presented architecture to 

represent concepts especially specific to the risk analysis with fuzzy 

logic technique; 

4. to investigate fuzzy modelling for risk analysis and assess application 

of fuzzy logic and approximate reasoning. 

1.5 Outline 

The structure of research thesis is the following: 

Chapter 1 provides an overview of the research motivation and the definition 

of the research objectives. 

Next chapter, Chapter 2, analyses the risk concept and explores risk 

management process. In addition, it describes the relationship of risk with vagueness 

and uncertainty. All these are analysed for better understanding of concepts required 

for this research and the challenges of risk analysis. 
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Chapter 3 reviews state of the art detection techniques for fraud and risk. It 

focuses more on fuzzy logic, fuzzy rule-based systems, and Adaptive Neuro-Fuzzy 

Inference System (ANFIS). In addition, ontologies and ontological engineering are 

analysed. This chapter gives a ground theoretical background for the practical part of 

this research.  

Chapter 4 presents one of the contributions of this research, which is to 

develop a conceptual model for fuzzy knowledge-based approach to risk analysis. 

This model combines semantic modelling with ontologies  and fuzzy reasoning. 

Chapter 5 presents the semantic modelling work and ontologies developed 

under this research in order to represent knowledge and concepts. It describes 

another contribution of this research, which is an architecture of ontologies 

considering the complexity of the domain for knowledge representation and formal 

representation of concepts. Finally, individual ontologies are described and discussed 

with examples as contribution of this research. 

Chapter 6 investigates the fuzzy modelling and reasoning following the 

information presented in the previous chapters. The approach and decisions for this 

assessment activity is described along with the constraints for that research. The 

various tools used for this assessment are also mentioned. Finally, the analysis of the 

results is presented. 

Finally, Chapter 7 presents the conclusions drawn from the research findings 

as well as discusses some ideas for future work. 
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Chapter 2. Background 

Information in Risk Analysis 

The purpose of this chapter is to analyse the risk concept and the risk 

management processes in order to gain better understanding of the risk analysis 

activity. Specifically, it provides the necessary background by unambiguously defining 

the risk in Customs, which is the domain under study. In addition, the various risk 

management processes are briefly explored by also making a brief analysis of various 

activities. Moreover, the relationship of risk with fuzziness, vagueness, and 

uncertainty is described in order to enable the better comprehension of the concept 

and the challenges of risk analysis. This background information is considered 

essential since this research examines a fuzzy knowledge-based approach in support 

of risk analysis in the Customs domain. Therefore, the various aspects of risk 

management and risk analysis should be studied. 

2.1 Risk 

This research examines risk analysis and hence, it is very important to 

understand what risk means. A number of definitions exist for risk. According to Miller 

(Miller 2004), “Risk is a combination of the frequency or probability of a specified 

hazardous event, and its consequence”. IEEE Standard 1540-2001 (IEEE 2001, p. 3) 

defines that the risk “is the likelihood of an event, hazard, threat, or situation 

occurring and its undesirable consequences”.  

In Customs, Customs risk for EU “means the likelihood that something will 

prevent the application of Community or national measures concerning the customs 

treatment of goods” (DGTAXUD 2004, p. 3). 
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Examining this non-compliancy with Customs Laws from business 

perspective, it is translated by Truel (2010) into the following three types of Customs 

risk: Regulatory Risk, Fiscal Risk and Security Risk. 

According to Pearl (1988), the primitive relationships of risk are Likelihood, 

Conditioning, Causation, and Relevance. Understanding of the qualitative 

relationships of probability language enables the better comprehension of risk. 

Probability of something or an event to occur is closely related to the risk.  

As far as the connection of fraud with risk is concerned, Phua et al. (2005) 

state in their work that the term fraud “refers to the abuse of a profit organisation’s 

system without necessarily leading to the direct legal consequences”. Laleh and 

Azgomi (2009) state that there are several types of fraud providing taxonomy of fraud 

types. According to this, the main types of fraud are web network fraud, internal fraud 

(in organisations), insurance fraud, credit fraud, computer intrusion fraud, 

telecommunication fraud and Customs fraud. Some of those frauds are further 

decomposed to sub-categories of fraud. It is worth mentioning that the  types of fraud 

mentioned above are only the main types (first level of taxonomy). 

In regards to Customs, it is stated by Shao et al. (2002, p. 1241) that “to 

avoid administrate regulation or the duties, some lawless persons take the cheating 

measures while their commodities pass the customs, such as hiding, declaring less 

or making false reports”. 

2.2 Risk Management  

2.2.1 Overview 

Nowadays, the risk management constitutes an important and integral 

component of management activities in several fields (e.g. organisational 

management, project management, etc.) with purpose to achieve the relevant 

objectives accurately and effectively (Tchankova 2002; Zhu 2008). The trend or 
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recommendation is for a more “risk-based” approach before appropriate decisions or 

actions have to be taken (Nota 2011).  

A number of risk management processes currently exist. For Customs, the 

WCO Risk Management Process (WCO 2011) is based on ISO 31000:2009. Another 

risk management process, which is described, is the Standardised Framework for 

Risk Management in the Customs Administrations of the EU (DGTAXUD 2004).  

In terms of definition, risk management for Customs is defined in the 

Standardised Framework for Risk Management in the Customs Administrations of the 

EU as follows: “a technique for the systematic identification and the implementation 

of all the measures necessary to limit the likelihood of risks occurring. International 

and national strategies can be effectively implemented by collecting data & 

information, analysing & assessing risk, prescribing action and monitoring 

outcomes” (DGTAXUD 2004, p. 3). 

2.2.2 Risk Management Activities 

A risk management process is an iterative approach enabling the continuous 

identification of risks and the improvement of decision-making. Typically, a risk 

management process consists of the following activities: 

 Context 

 Risk assessment 

o Risk identification 

o Risk analysis 

o Risk evaluation 

 Risk treatment 

 Risk monitoring and review 

 Risk communication 
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The various activities are briefly described in the following paragraphs with 

either generally applied information or specific to the Customs domain. More 

information can be found in the provided references. 

 Context of risk management 

The first activity of the risk management process is the context analysis and 

the definition of the objectives and risk areas of risk management (DGTAXUD 2004; 

WCO 2011).  

 Risk assessment 

o Risk identification 

The risk identification is considered an important activity of the risk 

management process. Since the next stages of risk management are based on the 

output of this activity, the effectiveness of the risk management process depends on 

whether this stage will achieve to identify all possible risks (Tchankova 2002). During 

the risk identification, a comprehensive list of sources of risks and events that might 

affect the risk management objectives are defined (Tchankova 2002). For instance, 

the sources of risks should cover all events that might affect (e.g. prevent or delay) 

the organisational objectives.  

For Customs, possible source of information for this activity could be trade 

flows, declarations rendered, payments made on time/debt on file and new or 

changed legislation. Moreover,  the experience of operational staff are considered in 

this activity (DGTAXUD 2004). The identification of risks should be performed with a 

top-down approach. Some more high-level risks are identified from upper 

management and then these are refined from the other levels (WCO 2011).  

Another important aspect, which must be considered during the risk 

identification, is the resources that are exposed in risk. Tchankova (2002) provides a 

categorisation of these resources as it is summarised in Figure 2-1. 
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Figure 2-1: Resources exposed to risk (Tchankova 2002) 

The risk identification requires well-structured techniques in order to ensure 

that all risks have been identified and nothing has been forgotten.  

Several methods can be used for the risk identification activity. A 

categorisation of risk identification techniques is based on the form of logic and is 

provided by Frosdick (1997) where they are classified into: 

 Intuitive: include brainstorming; 

 Inductive: include techniques such as checklists, preliminary hazard 

analysis, human error analysis, Event-Tree Analysis (ETA) and the 

most commonly used Hazard and Operability studies (HAZOP) and 

Failure Mode and Effects Analysis/ Failure Mode Effects and 

Criticality Analysis (FMEA/FMECA); 

 Deductive: are considered the Accident investigation and analysis 

technique and the Fault-Tree Analysis (FTA).  

Another categorisation of techniques is based on the type of technique, i.e. 

qualitative (e.g. Checklists, HAZOP), quantitative (Quantitative Risk Assessment 
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(QRA), and hybrid (e.g. FTA) (Marhavilas et al. 2011). However, this kind of 

categorisation will be further analysed in risk analysis section. It is worth noting at 

this point that the risk identification is a continuous activity.   

o Risk analysis 

During risk analysis, the identified risks are analysed. Standardised 

Framework for Risk Management in the Customs Administrations of the EU states 

that the following two main categories of risk Proven risks and Potential risks should 

be considered during the risk analysis. Proven risks are historical facts and have 

occurred in the past. During risk analysis, those risks can be examined based on 

current data and if the conditions for these risks do exist then their analysis should 

be performed by assessing the Likelihood and Consequence of the risk. Potential 

risks are risks that have not been revealed yet but are suspected. Similar to Proven 

risks, Potential risks should be examined based on current data and if the conditions 

for these risks do exist then as above, their analysis should be performed by 

assessing the Likelihood and Consequence of the risk (DGTAXUD 2004). 

Risk analysis considers the Likelihood and Consequence (or Seriousness) of 

the risk. The likelihood denotes the chances (probability) of risk occurring while the 

Consequence indicates the impact and the consequences of this risk when the risk 

takes effect. Risk analysis estimates the level of risk by assessing the 

aforementioned defined two factors i.e. the likelihood and the consequence 

(DGTAXUD 2004; WCO 2011).  

A number of techniques exist for risk analysis. Marhavilas et al. (2011) 

proposes a classification of techniques into qualitative, quantitative and hybrid. 

Qualitative techniques assess the likelihood and consequence and measure the risk 

based on descriptive scales. Quantitative techniques measure likelihood, 

consequence and level of risk with numerical values (quantify). The hybrid techniques 

include semi-qualitative techniques or a combination of qualitative-quantitative 

techniques. This classification is presented in Figure 2-2. 
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Figure 2-2: Classification of the main Risk Analysis and Assessment (RAA) Methodologies 

(Marhavilas et al. 2011) 

As it shown from Figure 2-2, some of them have already been mentioned in 

the context of risk identification (e.g. checklists, HAZOP, FTA, ETA, QRA, etc.). 

Similar techniques are also indicated by ISO (2009) (as cited in WCO 2011) in 

the context of Customs Risk Management. For instance, Bayesian statistics and 

Bayes nets, Decision tree, Markov analysis, and Multi-criteria decision analysis are 

some techniques indicated for risk analysis. Researches also have been conducted 

to apply fuzzy logic to FMEA (Braglia et al. 2003; Garcia et al. 2005; Gargama and 

Chaturvedi 2011; Kai Meng 2009; Tay and Lim 2006; Wang et al. 2009). In general, 

fuzzy logic has been used for risk analysis purposes (Cameron and Peloso 2005; de 

Ru and Eloff 1996; Deshmukh and Talluru 1997; Jinting et al. 2009; Liu and Yu 

2009). 

o Risk evaluation 

The outcomes of risk analysis are used to evaluate and prioritise risks.  

 Risk treatment 
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Having identified, analysed and evaluated the risks, plans should be 

developed and actions should be taken for the treatment of risks. As mentioned in 

Standardised Framework for Risk Management in the Customs Administrations of the 

EU (DGTAXUD 2004), physical or documentary control actions can be used. 

Moreover, posteriori control/audits could be performed. A common method for 

treating risks is to develop risk profiling and targeting (Iordache and Voiculet 2007). 

 Risk monitoring and review 

A clear distinction is made between the monitoring and the review. The 

monitoring refers to the evaluation of efficiency of risk management system whereas 

the review refers to the process, which is performed to assess the existing risk 

profiles and probably to update them accordingly (DGTAXUD 2004). 

 Risk communication 

All stakeholders involved in the risk management process shall be informed 

with the later developments on risk management and the taken measures. 

2.2.3 Risk Profiling 

A risk profile must be concrete and must target specific risk areas. WCO Risk 

Management Compendium (WCO 2011, p. x (Common Part)) defines the risk profile 

as “Description of any set of risks, including a predetermined combination of risk 

indicators, based on information which has been gathered, analyzed and 

categorized”. 

2.3 Vagueness and Uncertainty 

This research focuses on fuzzy knowledge-based approach for risk analysis 

rather than on using probabilistic theory. Therefore, the concepts such as vagueness 

and uncertainty are studied in relation to risk and risk analysis and are described in 

the subsequent paragraphs.  
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In case of certainty, there is no risk since the outcome of a process or event 

is predictable. On the contrary, the uncertainty creates the risk something to happen. 

Therefore, it is inferred that the risk is closely related to the uncertainty. This 

conclusion is also supported by Friedlob and Schleifer (1999). 

The reasoning in realistic domains it is not achieved without made some 

simplifications. Many exceptions are required in order to create rules to explain some 

behaviours of real life. Pearl (1988) proposes not to ignore these exceptions but to 

summarise them, otherwise the reasoning is not valid. All these exceptions prove why 

we need to bother with uncertainty (Pearl 1988).  

Kosko (1992) describes fuzziness versus probability and explores the use of 

fuzziness as an alternative approach to randomness for defining uncertainty. In this 

context, Kosko describes the relationship of fuzziness, randomness, and ambiguity. 

Fuzziness describes event ambiguity since it shows the degree to which an event 

occurs. On the other hand, whether an event occurs is the randomness because is 

random. Fuzzy is to what degree this event occurs (Kosko 1992).  

Fuzzy sets can be used to model uncertainty related to imprecise information 

and vagueness. Uncertainty is arisen due to ignorance, randomness, lack of 

knowledge and vagueness. The set membership concept has been proposed by 

Zadeh in order to perform appropriate decision making when uncertainty occurs 

(Sivanandam et al. 2007).  

Lukasiewicz and Straccia (2008) mention a misunderstanding that exists all 

these years in Artificial Intelligence in regards to the role of probability/possibility 

theory and vague/fuzzy theory. Similar to those definitions about fuzziness and 

randomness provided by Kosko (1992), Dubois and Prade (2001) highlight the 

difference between degrees of uncertainty and degrees of truth by explaining the 

example of “full” bottle. If someone says that “the bottle is half-full”, then full or half-

full is more a fuzzy predicate with some degree of truth. On the other hand, if we 

ignore that the bottle is full or empty, the statement “the probability that the bottle is 
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full is 0.5” does not mean that the bottle is half-full. In this case, we have degrees of 

uncertainty, which according to Dubois and Prade (2001) are clearly a higher level 

notion, higher than degrees of truth. Kosko (1992) claims that “fuzziness is a type of 

deterministic uncertainty” (Kosko 1992, p. 267) while Dubois and Prade (2001) 

emphasizes the distinction between the handling of vague propositions (vagueness) 

in the presence of complete information and the treatment of uncertainty for 

propositions which are either true or false.  

All approaches in which statements are true or false to some probability or 

possibility are fallen under the Uncertainty Theory. For instance, the example of “it 

will rain tomorrow” is used to explain this concept. Whether will rain or not tomorrow 

cannot be certain due to the incomplete knowledge, however, we can estimate the 

probability or possibility this to happen (degree of uncertainty). Both probability and 

possibility theories are used to quantify the degree of uncertainty, though, they have 

some conceptual differences because they represent different aspects of the 

uncertainty (Lukasiewicz and Straccia 2008). 

On the other hand, all statements that are true to some degree (taken from 

the truth space) are fallen under the vague/fuzzy theory. When some statements 

include vagueness (imprecise information), it cannot be exactly inferred that those 

statements are true or false. Another difference is that vague/fuzzy statements are 

“truth-functional” since the degree of truth of a statement can be calculated from the 

degree of truth (uncertainties) of its parts (Dubois and Prade 2001; Lukasiewicz and 

Straccia 2008). 

If the form of uncertainty happens to arise because of imprecision, ambiguity, 

or vagueness, then the variable is probably fuzzy and can be represented by a 

membership function (Virtanen and Helander 2010). Fuzziness, vagueness and 

imprecise knowledge are inherent to several real world domains (Bobillo and Straccia 

2009). This research investigates fuzzy logic and approximate reasoning for risk 

analysis. 
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2.4 Summary 

Risk concept and risk management processes are analysed in this chapter as 

background information. This is considered necessary for the better understanding 

on how a fuzzy knowledge-based approach could be applied in risk analysis. It is 

realised that fuzzy knowledge-based approach should be able to express the 

knowledge and to be able to analyse and detect the risk. In addition, this risk analysis 

should consider fuzziness, vagueness, and imprecise knowledge. Therefore, this 

research investigates fuzzy logic and approximate reasoning for risk analysis of a 

physical entity in the context of Customs domain. 
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Chapter 3. State of the Art 

Review of Detection Techniques 

and Ontologies 

This chapter reviews state of the art detection techniques for fraud and risk. 

The techniques are classified into the following categories: Supervised learning, 

Semi-supervised learning, Unsupervised learning and Meta-Learning or Combining 

Multiple Algorithm. Those categories are described for gaining an understanding of 

the characteristics of those techniques. However, this chapter provides special focus 

on fuzzy logic, fuzzy inference systems, and adaptive network-based fuzzy inference 

system (ANFIS). Fuzzy logic theory and fuzzy inference systems are examined in more 

detail since the fuzzy modelling and reasoning are investigated in this research as 

part of fuzzy knowledge-based approach to risk analysis and detection. Therefore, 

understanding of the fuzzy inference process is essential since certain decisions 

must be taken during the development of a fuzzy inference system. Furthermore, the 

ANFIS technique, which combines Artificial Neural Networks and Fuzzy Logic, is 

discussed. This technique could assist with fuzzy modelling and the construction or 

optimisation of adaptive fuzzy inference systems from a given data set for performing 

reasoning tasks. It is important to understand the ANFIS architecture in order to 

enable the use of this technique (e.g. select partitioning technique for the generation 

of a Sugeno type FIS). Finally, this chapter discusses ontological engineering and 

semantic modelling for knowledge representation in the context of fuzzy knowledge-

based approach to risk analysis. This chapter should be considered as a ground 

theoretical background for the practical part of this research. 
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3.1 Fraud Detection Systems 

Reviewing the literature, it is identified that various researches and works 

have been conducted for fraud detection systems in various areas (Deshmukh and 

Talluru 1997; Digiampietri et al. 2008; Farvaresh and Sepehri 2011; Fawcett and 

Provost 1997; Hilas 2009; Jianhong and Dezhao 2008; Laleh and Azgomi 2009; Ngai 

et al. 2011; Wei et al. 2008). Studies show that most of intelligent systems 

techniques are mainly applied in Telecommunications, Insurance, Medical Care, 

Auditing, Credit Card Transactions and to other areas (Pejic-Bach 2010; Yufeng et al. 

2004). Some techniques are Neural Networks, Bayesian Belief Networks, Decision 

Trees, Fuzzy Logic, Rule-based Systems and Data Mining techniques  (Fawcett and 

Provost 1997; Hilas 2009; Ngai et al. 2011; Pejic-Bach 2010; Roman et al. 2009; 

Yufeng et al. 2004). According to Pejic-Bach (2010) survey of research articles, 

Neural Networks are more often used as intelligent systems technique for fraud 

detection, while few cases are found for Fuzzy Rules and Genetic Algorithms. 

Considering this, the ANFIS technique is examined in section 3.7 and it is also 

considered in the fuzzy knowledge-based approach of Chapter 4. ANFIS combines 

Artificial Neural Networks and Fuzzy Logic and could assist in the construction or 

optimisation of adaptive fuzzy inference systems from a given data set for performing 

reasoning tasks. 

In general, the fraud detection systems has as purpose to identify or detect 

general trends of suspicious transactions for fraud (Phua et al. 2005). 

Following literature review, various works have been found also for the 

Customs domain (Digiampietri et al. 2008; Feng et al. 2007; Geourjon et al. 2010; 

Geourjon and Laporte 2005; Laporte 2011; Liu et al. 2009; Roman et al. 2009; Shao 

et al. 2002; Singh and Sahu 2004; Singh et al. 2003).  Those works mainly examine 

the application of  Neural Networks (Feng et al. 2007), Fuzzy Logic (Singh and Sahu 

2004; Singh et al. 2003), Data Mining (Shao et al. 2002), Outlier detection 
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(Digiampietri et al. 2008) and Statistical methods (Geourjon et al. 2010; Geourjon 

and Laporte 2005; Laporte 2011) as analysis and detection techniques. 

A brief description per category of techniques is provided in the subsequent 

sections after having examined various areas where researches and works have 

been conducted for application of fraud detection systems and techniques.  

3.2 Supervised Learning Techniques 

The supervised techniques are used in most data mining techniques. In 

supervised techniques a pre-specified target variable must exist and many datasets 

with the value of target variable must be provided to the supervised technique 

algorithm in order to be trained and be able to associate the target variable with the 

predictor variables (Larose 2005). The supervised techniques require both clear data 

(e.g. legitimate transaction) and fraudulent data for training purposes. The method is 

trained based on this data and develops models of fraudulent cases and these are 

used for classifying new cases. Therefore, it is important to ensure the correct 

classification of trained data (which data is fraudulent and which is legitimate). 

Moreover, supervised methods are trained with known frauds. They can only be used 

to detect frauds of the type that have occurred previously (Bolton and Hand 2002). 

They may fail to detect new strategies of fraud (Roman et al. 2009).   

Supervised techniques are mainly classification and regression methods. 

Neural Networks (Dorronsoro et al. 1997; Feng et al. 2007; Friedlob and Schleifer 

1999; Laleh and Azgomi 2009; Larose 2005; Roman et al. 2009), Bayesian Belief 

Networks (Laleh and Azgomi 2009; Roman et al. 2009), Decision Trees (Laleh and 

Azgomi 2009; Larose 2005), Statistical Outlier Methodologies of Type 2 (Hodge and 

Austin 2004), Neural Networks Outlier Methodologies of Type 2 (Hodge and Austin 

2004), k-nearest neighbors for classification (Larose 2005), Case-Based Reasoning 

(Laleh and Azgomi 2009) are some supervised techniques. 
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3.3 Unsupervised Learning Techniques 

In contrast to supervised techniques, the unsupervised techniques do not 

have a specific target variable. In fact, the algorithm searches the data (all variables) 

for identifying patterns. Unsupervised techniques include clustering methods (Larose 

2005) and unsupervised outlier detection methods (Hodge and Austin 2004) that do 

not require prior knowledge of data. 

3.4 Semi-Supervised Learning Techniques 

Traditional classifiers and supervised techniques use only labelled data for 

training purposes, whereas, unsupervised techniques use only unlabelled data. 

Labelled data is not easy to be collected or prepared and most of the times is difficult 

requiring significant effort and time, whereas, unlabelled data can be collected 

relatively easily. Semi-supervised classification use large amount of unlabelled data 

together with some labelled data to build the classifier. Semi-supervised techniques 

are of great interest because consume less effort and has higher accuracy. In case of 

semi-supervised clustering, clustering is performed with some labelled data in the 

form of must-links (two points must in the same cluster) and cannot-links (two points 

cannot in the same cluster) (Zhu 2008). 

3.5 Meta-Learning or Combining Multiple Algorithm 
technique 

An alternative technique is to take decision or predict after combining the 

output for multiple algorithms or models. This technique includes Bagging (Bootstrap 

Aggregating), Stacking (Stacked Generalization) and Stacking-Bagging. Normally, 

such approaches have better performance than using only one model (Laleh and 

Azgomi 2009). 
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3.5.1 Bagging (Bootstrap Aggregating) 

The technique is used to combine the classifiers or outcome of different 

models of the same type. In Bagging approach, several models or predictors of a 

common learning algorithm (e.g. decision trees) are used. All models have equal 

weight. Each model or predictors is trained with random data set of same size. At the 

end, the decision is taken by an aggregated predictor. In case of numerical 

prediction, the aggregation is performed with the average, while for class prediction, 

the aggregation is the plurality of the vote  (Breiman 1994, 1996; Witten and Frank 

2005).  

3.5.2 Stacking (Stacked Generalisation) 

In contrast to Bagging that combines the outcome of different predictors of 

the same algorithm, Stacking combines the outcomes/results of various algorithms 

or base learners/generalisers. For instance, Stacking can be used to combine C4.51, 

CART2, and RIPPER for developing classifiers for a specific data set. According to 

Wolpert (1992), when the Stacking approach is used to combine predictions of 

multiple generalizers, Stacking can be considered as a more sophisticated version of 

cross-validation. With Bagging approach the final decision is taken with voting 

approach, whereas, Stacking uses a meta-learner which tries to identify the most 

trustworthy classifier and use it for prediction (Witten and Frank 2005). Stacking 

combines the base generalisers possibly nonlinearly instead of applying “a winner-

takes-all” approach (Wolpert 1992). 

                                                      

 

 

 

1 C4.5 is an algorithm for generating decision trees 
2 CART is classification and regression trees (CART) method for decision trees. 
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3.5.3 Boosting 

Boosting techniques is also used to combine multiple models with purpose 

those models to complement one another considering that each model is better to 

particular case than the other is. Boosting has similarities with Bagging. First, 

Boosting performs the aggregated prediction (or combination of various outputs) also 

by using the voting method in case of classification and the average in case of 

numerical prediction. Boosting is also used for combining models of the same type 

(e.g. decision trees). The main difference is that Boosting follows the iterative 

approach meaning that models are built iteratively and new model is influenced by 

the previous model. With Bagging approach, all models of which will be combined are 

built individually. Finally, Boosting applies the weighted vote or contribution based on 

the performance of the model, while Bagging applies equal weight to all models 

(Witten and Frank 2005).   

3.6 Fuzzy Logic 

Fuzzy logic introduced by Zadeh in 1965 and it is a mathematical tool for 

dealing with uncertainty (Sivanandam et al. 2007). Fuzzy logic is recognised in 

various fields with various applications. Fuzzy logic is used with success for decision-

making and inference purposes. Application of fuzzy logic enables approximate 

human reasoning to be applied to knowledge-based systems (Alavala 2008). 

Section 2.3 provides information about the relationship of concepts such as 

risk, vagueness, fuzziness, and uncertainty. It is mentioned that if the form of 

uncertainty happens to arise because of imprecision, ambiguity, or vagueness, then 

the variable is probably fuzzy and can be represented by a membership function 

(Virtanen and Helander 2010). As stated by Alavala (2008), the two main 

characteristics of fuzzy systems that give them better performance in certain 

applications are (1) in case of uncertain or approximate reasoning and especially 
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where the mathematical model is difficult to be derived and (2) when decision 

making is performed with estimated values under incomplete or uncertain 

information. 

3.6.1 Fuzzy Sets, Operations and Properties 

In classical (crisp) sets, an element can have a membership value to either 0 

or 1. Therefore, an element either can be a member of the crisp set or not. On the 

contrary, according to fuzzy set theory, elements of a fuzzy set have a membership 

function from 0 to 1. Hence, the elements of a fuzzy set have various degrees of 

membership within a fuzzy set. In addition, the same element can also be a member 

of another fuzzy set with different degree of membership. 

If x is an element of the universe, which member of a fuzzy set A then the 

membership function is defined by the following expression (Sivanandam et al. 

2007): 

  ( )          (1) 

A fuzzy set is said to be normal when at least one element has membership 

value equal to one. The height of a fuzzy set can be used to estimate the maximum 

value of the membership function using the formula (2). If the height (A) is less than 

one then the fuzzy set is said to be subnormal (Ross 2010):  

      ( )     {  ( )} (2) 

In addition, a fuzzy set can be convex or non-convex. A fuzzy set is convex 

when any element x, y and z in a fuzzy set A with x<y<z (Ross 2010): 

   ( )        ( )   ( )  (3) 

An intersection of two convex fuzzy sets always results to a convex fuzzy set 

(Ross 2010). 

As happens with crisp sets, operations also exist for fuzzy sets. Below, some 

fuzzy sets operations are discussed: 
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Complement 

The complement of a fuzzy set contains all elements that are not in the set. 

The complement of a fuzzy set consists of elements that have degree of membership 

1 minus the degree of membership of the original fuzzy set (Negoita 1985). The 

complement of fuzzy set μA(χ) is given by the following equation (Alavala 2008; Klir 

and Yuan 1995): 

  ̅( )      ( ) (4) 

Union (OR operation) 

The union of two fuzzy sets μA(x) and μB(x) is given by the following equation 

where max is the maximum operator (Alavala 2008; Klir and Yuan 1995; Negoita 

1985): 

    ( )        ( )   ( )  (5) 

  

Intersection (AND operation) 

As happens with classical (crisp) sets, the intersection of two sets includes 

the elements of one set AND the elements of the other set. According to the fuzzy set 

theory, the intersection of two fuzzy sets μA(x) and μB(x) is given by the following 

equation where min is the minimum operator (Alavala 2008; Klir and Yuan 1995; 

Negoita 1985): 

    ( )        ( )   ( )   (6) 

It is also worth noting that from the fuzzy set theoretical point of view the 

intersection of complemented fuzzy sets is equal to the intersection of original fuzzy 

sets (Negoita 1985), though the resulted intersections represent different concepts. 

    ( )    ̅  ̅( ) (7) 

Finally, a number of fuzzy sets properties exist such as Commutativity, 

Associativity, Distributivity, Idempotency, Identity, Absorption, Involution and de 

Morgan’s Laws (Negoita 1985). 
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3.6.2 Fuzzy Rule-Based Systems 

A Fuzzy Inference System (FIS) or fuzzy rule-based system or fuzzy model or a 

fuzzy expert system is a rule-based system or expert system (Shapiro 2004), which 

uses the fuzzy set theory and fuzzy logic for reasoning tasks. A fuzzy rule-based 

system consists of a number of membership functions and a set of rules. The set of 

fuzzy rules constitutes the fuzzy knowledge base or the fuzzy rule base.  

A fuzzy rule is defined in the form of ‘if-then’. The ‘if’ part is the antecedent (or 

premise) of the rule and the ‘then’ part is the consequent (or conclusion) of the rule. 

An example of fuzzy rule is shown (8): 

                                  (8) 

Where x and y are fuzzy input variables, while, A and B represent linguistic 

values (membership functions) of x and y respectively used to express the 

antecedent part of the rule. On the consequent part, z is the fuzzy output variable and 

C indicates the linguistic value (membership function) of z output variable. Finally, the 

above example indicates a rule, which have two parts in the antecedent combined 

with the ‘AND’ fuzzy operator. 

A FIS can be a multiple-input single-output system (MISO) or multiple-input 

multiple-output system (MIMO). MISO systems returns a single output based on 

multiple inputs whereas a MIMO system returns more than one (multiple) outputs 

based on multiple inputs. However, a MIMO system can be considered as multiple 

MISO systems working in parallel (Khanmohammadi and Jassbi 2012). 

Fuzzy Inference is the method for interpreting the input values using Fuzzy 

Logic and based on the defined fuzzy rules in order to assign to an output. During this 

fuzzy inference process, concepts of fuzzy logic described before are used such as 

membership functions, fuzzy set operations, and rules. 

The Mamdani and Takagi–Sugeno are the most commonly seen fuzzy 

inference methods or fuzzy models (Iancu 2012; Sivanandam et al. 2007). Mamdani 
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is the most commonly used fuzzy inference technique. Mamdani fuzzy inference 

method was proposed initially by Mamdani and Assilian on 1975 attempting to 

control a steam engine and boiler combination by synthesizing a set of linguistic 

control rules obtained from experienced human operators (Iancu 2012; Sivanandam 

et al. 2007). 

The Mamdani fuzzy inference process includes four basic activities as 

depicted in Figure 3-1. This figure illustrates the process using Business Process 

Model and Notation (BPMN). The goal of the BPMN is to be a notation 

understandable by all business users including the business analysts who will create 

the business processes, the technical team who will implement the processes and 

the business people who will manage and monitor those processes (OMG 2011a). 

Using the BPMN terminology, the process of Figure 3-1 is a non-executable private 

process. This means that the process has been modelled to visualise the activities of 

fuzzy inference process and at modeller-defined level of details. The ADONIS 

Community Edition (ADONIS 2014) has been used as BPM tool. BPMN provides a 

number of elements for modelling processes. These elements are grouped mainly in 

five basic categories: Flow Objects, Data, Connecting Objects, Swimlanes and 

Artifacts (OMG 2011a). The following paragraphs describe the elements used in 

Figure 3-1 for modelling the specific process. 

At the beginning, the process starts and this is visualised with a start event 

named “Start of Inference Process”. Start events depicts where the process starts. 

The first step of fuzzy inference process is to fuzzify the inputs based on the defined 

membership functions per input variable (Klir and Yuan 1995; Ross 2010; 

Sivanandam et al. 2007). This step is named “Fuzzify Input” and is modelled using a 

task (atomic activity) in BPMN (OMG 2011a). This task is an automated task and 

hence it is modelled as “Service Task”. The Service Task is a special task in BPMN 

(OMG 2011a) and it is shown with a “Gear” marker in the upper left corner of the 

shape. Because the “Fuzzify Input” task shall be performed for each input, the task is 
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indicated as “multi-instance” with parallel execution. In BPMN, this is indicated with 

three vertical lines as a marker in the bottom middle of the shape. The number of 

instances of the task depends on the number of input items. For that purpose, the 

“Input value” is modelled as a data object. This data object represents a collection of 

data and hence it has three vertical lines as a marker in the bottom middle of the 

shape (OMG 2011a). Finally, the “Fuzzify Input” task requires to retrieve information 

such as membership functions in order to fuzzify the inputs. This information is 

retrieved from “Knowledge Base”, which is represented as Data Store. The Data 

Store represents a persistency, which can be used by activities or tasks to retrieve or 

update information (OMG 2011a). The retrieval is shown with an association having 

direction from the “Knowledge Base” Data Store to the “Fuzzify Input” task. 

After the completion of inputs fuzzification, an intermediate event 

(“Fuzzification completed”) is used to indicate that an important stage of the process 

completed. In BPMN (OMG 2011a), the intermediate event is shown in the diagram 

as a circle with double line. The process continues with the rule evaluation atomic 

activity. This is also modelled as a Service Task with name “Evaluate Rule”. During 

this activity, each rule is evaluated based on the fuzzified inputs. Rules have a form 

as the one describe in (8). When the antecedent has more than one parts then those 

parts are linked with fuzzy set operators (AND, OR, Complement). These fuzzy set 

operators are applied during the antecedent evaluation in order to conclude to a 

fuzzy value. The fuzzy value from the antecedent part is evaluated based on the 

consequent part of the rule (membership function) and by applying the implication 

method. In addition, the weight of rules affects the fuzzy output result for the rule 

evaluation (Klir and Yuan 1995; Ross 2010; Sivanandam et al. 2007). The “Evaluate 

Rule” task is executed for each fuzzified input. Therefore, the “Evaluate Rule” task is 

modelled as multi-instance parallel activity (three vertical lines as a marker in the 

bottom middle of the shape). The number of instances of the task depends on the 

input data. The “Fuzzified input” data collection is an output of the “Fuzzify Input” 
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task and input for “Evaluate Rule” task. In addition, the “Evaluate Rule” task requires 

information such as fuzzy rules, methods for fuzzy set operators (AND, OR) and 

implication method. The fuzzy rules are retrieved from the “Knowledge Base” Data 

Store. The methods for fuzzy set operators (AND, OR) and implication method are 

considered as configuration parameters of fuzzy inference system and therefore are 

modelled in this case as Data Store named “Configuration Parameters”. This Data 

Store is also used by the “Evaluate Rule” task in order to retrieve the required 

information for its execution. At the end of this activity, a fuzzy output for each rule 

occurs. The intermediate event (“Rule evaluated, one output per rule”) is used to 

indicate this as an important stage of the process.  

Data output of the “Evaluate Rule” task is the “Rule Fuzzy Output” data 

collection. This is an input for “Aggregate outputs” activity, which aggregates all 

individual results based on the selected aggregated method (Klir and Yuan 1995; 

Ross 2010; Sivanandam et al. 2007). This activity is also modelled as a Service Task. 

The “Aggregate outputs” task requires retrieving information for the aggregation 

method from the “Configuration Parameters” Data Store. After the completion of this 

activity, the result is an aggregated fuzzy output. This output is modelled as a data 

object named “Aggregated Fuzzy Output”. In addition, the intermediate event “Output 

Aggregated” is used to model this important stage of the process.  

The “Aggregated Fuzzy Output” is an input to the “Defuzzify Output” activity. 

This defuzzification activity is used to determine the output crisp number by applying 

the selected defuzzification method (Klir and Yuan 1995; Ross 2010; Sivanandam et 

al. 2007). The latter is considered that it is defined as a configuration parameter of 

the fuzzy inference system. The “Defuzzify Output” task retrieves this information 

from “Configuration Parameters” Data Store. Upon the completion of this activity, the 

defuzzified output value is produced. This is modelled as data output object with 

name “Output value”. Finally, the completion of the process is modelled as end event 

with name “Fuzzy Inference completed”. The end event is shown with a circle with 
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thick single line (OMG 2011a). The defuzzification methods are discussed in the 

following paragraphs. 

The most common used defuzzification method for Mamdani’s inference is 

the Centroid or Center of Area or Center of Gravity (COA). Considering the fuzzy 

conclusion of inference is that z is C then the output is given by the following 

equation (Bai and Wang 2006): 

   ( )  
∑   ( )    

∑   ( ) 
 

(9) 

If z is a continuous variable, this defuzzification result is 

   ( )  
∫  ( )   

∫   ( )  
 

(10) 

Another defuzzification method is the Mean value Of Maximum (MOM) (or 

Mean–max-membership or middle-of-maxima) which computes the average of those 

fuzzy outputs that have the higher (maximum) membership. As a limitation of this 

method could be that, only the maximum (highest) membership values are 

considered and hence the same result will be produced for membership functions 

that have different shapes but the same maximum membership values (Bai and 

Wang 2006). Other defuzzification methods are Bi-sector of area (BOA), Largest 

(absolute) value Of Maximum (LOM) and Smallest (absolute) value Of Maximum 

(SOM). BOA is the value at which a vertical line is placed dividing the region into two 

sub-regions of equal area. BOA is expressed as follows (Naaz et al. 2011): 

∫   ( )  
    

 

 ∫   ( )  
 

    

 
(11) 
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Figure 3-1: Fuzzy Inference Process 
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SOM and LOM are also referred as First of maxima and Last of maxima 

respectively. SOM uses the lowest bound of the maximum (highest) membership 

values in the aggregated membership function output while LOM uses the least 

upper bound of the maximum (highest) membership values in the aggregated 

membership function output. Some other defuzzification methods that are not 

explicitly discussed are Max membership principle (or height method), Center of 

Sums, Center of largest area (Ross 2010). 

The TSK or Sugeno fuzzy model was proposed by Takagi, Sugeno, and Kang 

(TSK) “in an effort to formalize a system approach to generating fuzzy rules from an 

input–output data set” (Sivanandam et al. 2007, p. 123). The main difference with 

Mamdani method is that the output of Sugeno model is either linear or constant and 

it is expressed as a function of the input. Therefore, the rules in a Sugeno model take 

the following form (Sivanandam et al. 2007): 

                                (   )  (12) 

As above, x and y are fuzzy input variables, while, A and B represent linguistic 

values (membership functions) of x and y respectively used to express the 

antecedent part of the rule. In addition, the fuzzy set operator AND is used to 

combine the two parts of the antecedent. On the consequent part, z is the fuzzy 

output variable and f(x,y) represents a function which is frequently polynomial or 

another function defining the relationship with inputs. If the output is a first order 

polynomial then the Sugeno model is called as first-order Sugeno model. The rule 

shown in (12) takes the following form (Sivanandam et al. 2007): 

                                     (13) 

Where a, b and c in the formula (13) are constants. In case the a and b are 

equal to zero (0) then, the output is defined with a constant crisp value c and the 

Sugeno model is called as zero-order Sugeno model. This case can be seen as a 

special case of Mamdani method where the output is defined as a fuzzy singleton 

(Ross 2010; Sivanandam et al. 2007).  
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In terms of fuzzy inference process, the Sugeno fuzzy inference method has 

similar activities to the Mamdani. One difference is that during rule evaluation, the 

output of each rule is weighted by the firing strength of the rule. The firing strength is 

calculated by applying the operator in the antecedent part of the rule (e.g. apply AND 

or OR operator appropriately). Therefore, an output (wi) is calculated for each rule 

weighted by the firing strength. For the rule presented in (13) where the AND operator 

is used to combine the antecedent parts then the is wi is calculated as follows 

(Sivanandam et al. 2007): 

      (  ( )   ( ))  (14) 

Where   ( ) is the membership function A for fuzzy input variable x and 

  ( ) is the membership function B for fuzzy input variable y. The AND function is 

applied depending on the selected method (e.g. minimum) 

The aggregation in Sugeno method is the sum of the individual rule outputs. 

Finally, the defuzzification process is performed by applying the Weighted Average 

method (WTAVER) as the sum of all weighted average rule outputs (Braglia et al. 

2003; Sivanandam et al. 2007): 

       
∑      

 
   

∑   
 
   

  
(15) 

Where: 

 WTAVER is the weighted average of the output result. 

 N indicates the number of output fuzzy sets; 

 zi symbols at which the i-th membership function reaches its 

maximum value. 

Considering all the above, the main difference between Mamdani and Sugeno 

methods is that Sugeno output membership functions are linear or constant. 

Therefore, the consequent part of fuzzy rules for Sugeno fuzzy inference systems are 

expressed using functions. This fact differentiates the inference process of the 
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Sugeno method in the aggregation and defuzzification activities as described above. 

Mamdani method is considered a better approach for expressing human knowledge 

considering that also outputs can be expressed with fuzzy sets. Therefore, Mamdani 

is easier for the experts to express knowledge and this is the reason of widely 

acceptance of this method for decision-making applications using fuzzy logic (Hamam 

and Georganas 2008; Sivanandam et al. 2007). Moreover, Mamdani method can be 

used for both MIMO and MISO systems (Hamam and Georganas 2008; Jassbi et al. 

2006). On the contrary, Sugeno method fits only for MISO systems (single output) 

according to Jassbi et al. (2006). Sugeno is considered more efficient 

computationally since Mamdani’s defuzzification process is more complex than 

Sugeno’s, which uses weighted average (Hamam and Georganas 2008; Jassbi et al. 

2006; Sivanandam et al. 2007). In addition, Sugeno method is used by adaptive 

techniques for constructing/optimising fuzzy models, which best models the data 

(Sivanandam et al. 2007). An example is Adaptive Neuro-Fuzzy Inference System 

(ANFIS) technique, which is used to construct fuzzy models based on data set 

(adaptive technique). More information for this technique is provided in section 3.7.  

A number of defuzzification methods mentioned previously for both Mamdani 

and Sugeno fuzzy inference systems. One common question is which method is the 

best or should be used. Hellendoorn and Thomas (1993)  (as cited in Ross 2010) 

have defined five criteria against which to measure defuzzification methods. These 

are continuity, disambiguity, plausibility, computational simplicity, and weighting 

method. Continuity refers to the fact that a small change in the input of the fuzzy 

process will not result a big change on the output. Disambiguity means that the 

defuzzification  method should always result to a unique defuzzified output value and 

hence no ambiguity for the output. Plausibility refers to whether the output 

defuzzified value is plausible and in order to be has to lie in the middle of output 

membership function and also with high membership value. For instance, there are 

cases where a centroid might result to a value that does not exhibit plausibility 



State of the Art Review of Detection Techniques and Ontologies Chapter 3 

 

 Page 36 

 

because might lie in the middle but not with high membership value. The 

computational simplicity measures how time consuming a method is because this 

affects a computation system. As an example, methods such as MOM and SOM are 

computationally simpler (faster) than centroid. Finally, weighting method criterion is 

used to weight the output fuzzy sets (Ross 2010). 

3.7 Adaptive Networked-Based Fuzzy Inference System 
(ANFIS) 

The Adaptive Network-Based Fuzzy Inference System (ANFIS) – also called 

Adaptive Neuro-Fuzzy Inference System – introduced by Jang (1993) by embedding 

FIS into the framework of Adaptive Networks. 

ANFIS consists of five layers each one implementing different node functions 

for learning and tuning FIS parameters using a hybrid-learning mode (Wei et al. 

2007). The output of each adaptive node depends on modifiable parameters applied 

to these nodes. Those parameters are updated to minimise error based on the 

learning rule. Figure 3-2 presents a typical ANFIS system with two inputs. The square 

nodes represent adaptive nodes (node function) whereas circle nodes denote fixed 

nodes (Güneri et al. 2011).  

Layer 1: Every node i in layer 1 is a square node with the following function 

(Jang 1993): 

  
     

( )  (16) 

Where: where x is the input to node i, Ai is the linguistic label, and Oi1 is the 

membership function of Ai. Parameters in this layer are defined as premise 

parameters. 

Layer 2: every node in this layer multiplies the inputs to that node and 

calculates the product (Jang 1993): 
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( )     

( )            (17) 

This node represents the firing strength of the rule. 

Layer 3: Every node i calculates the ratio of the i rule’s firing strength over the 

sum of all  rules’ firing strength (Jang 1993): 

    
  

     
           

(18) 

Layer 4: Every node i in layer 4 is a square node with the following function 

(Jang 1993): 

  
         (          )  (19) 

Where: where    is the output of layer 3. The   ,       are the parameters, 

which are defined in this layer as consequent parameters. 

Layer 5: this node calculates the overall output as the sum of all inputs to this 

node as follows (Jang 1993): 

  
  ∑       

∑      

∑    
  

(20) 

 

 
Figure 3-2: Adaptive Neuro-Fuzzy Inference System structure (Güneri et al. 2011) 

The identification of FIS (including fuzzy rule base and membership functions) 

is very important. Two partition techniques that could be used for the generation of a 
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FIS (Sugeno type) are the Grid Partitioning and Subtractive clustering techniques. 

These techniques could be used as the initial model for ANFIS training. 

The Grid Partitioning is used to generate a MISO Sugeno FIS. The Grid 

Partitioning technique divides the data space into rectangular sub-spaces using axis-

paralleled partition based on pre-defined number of membership functions and their 

types in each dimension. An issue is the so-called curse of dimensionality where the 

number of fuzzy rules is increased exponentially with the increase of the number of 

inputs (and increase of MF per input). Therefore, it is considered that Grid 

Partitioning is suitable for cases with less than 6 input variables  (Wei et al. 2007). 

The Subtractive clustering is proposed by Chiu (as cited in Wei et al. 2007) by 

extending the mountain clustering method. This method clusters data points in an 

unsupervised way by measuring the potential of data points in the feature space. The 

technique considers each data point as a potential cluster center and calculates the 

potential for each data point based on the density of surrounding data points. The 

first cluster center is the data point with highest potential and the data points near to 

the first cluster center (within the influential radius) are destroyed. Next cluster center 

is data points with the highest remaining potential and the data points near to the 

next “new” cluster center (within the influential radius) are destroyed. Therefore, the 

influential radius is very important for the number of clusters. The selection of small 

influential radius results many clusters and hence more rules are defined, and vice 

versa (Wei et al. 2007).  

Following the definition or generation of FIS, the optimisation and training of 

ANFIS is performed. The hybrid-optimisation algorithm can be used for that purpose 

by applying the least-squares method (forward pass) and back propagation method 

(backward pass). In the forward pass, the model is executed with fixed parameters 

until layer 4 and then the least-squares method is used to identify the consequent 

parameters. In the backward pass, the consequent parameters are fixed and the 

error rates propagate back and the premise parameters are updated by applying the 
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gradient descent method. Repeating forward and backward passes will enable the 

tuning and optimisation of the model. (Jang 1993; Wei et al. 2007).  

3.8 Ontologies 

Gruber (1993) states that ontology is an explicit specification of a 

conceptualisation. In the context of Artificial Intelligence (AI), the ontology of a 

program can be defined with a set of representational terms (Gruber 1995). 

According to Uschold and Gruninger (1996) Ontology is the term used to refer to the 

shared understanding of some domain of interest which may be used as a unifying 

framework to solve the above problems in the above described manner.  The 

ontologies have various usages. One of them is the communication between people, 

groups or roles with different needs so as ensuring that all parties share the same 

understanding. Finally, another usage of ontologies is for interoperability purposes 

(Uschold and Gruninger 1996). In reality, ontologies enable the consistent knowledge 

representation and enable all parties to have at the end the same perception for 

various concepts. 

Obrst (2010) distinguishes Ontological Architecture from Ontology 

Architecture. Briefly, Ontology Architecture concerns the ontology development, 

deployment, and maintenance as well as ontology application interaction. On the 

other hand, Ontological Architecture “is the architecture that is used to structure the 

ontologies that are employed by Ontology Architecture”. An Ontological Architecture 

consists mainly of three layers: upper ontologies, middle-level ontologies and domain 

ontologies. The first two layers are also called “foundational ontologies”. Upper 

ontologies describe more basic and general concepts that can be used from domain 

specific ontologies. Middle-level ontologies are used to make the bridge between the 

upper ontologies and the domain ontologies. Although it is stated that ontologies can 

be mapped at any level, the middle-level ontologies can facilitate the mapping of 

concepts by representing concepts that are more concrete. As an example, ontologies 
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for Time and Location are mentioned. Finally, domain ontologies define concepts and 

relationships specific for a domain. The domain ontologies might use/mapped to 

concepts of middle-level ontologies or upper ontologies. In addition, domain 

ontologies can extend middle-level ontologies.  This can enable the reusability of 

existing developed ontologies expressing relevant concepts. The ontologies, which 

are presented in Chapter 5, concern domain specific ontologies and the described 

ontological architecture focuses on the domain ontologies layer. 

Ontology technology has been used in various domains. Various researches 

and works have been performed. The development of ontology for modelling domain 

knowledge is a lengthy process involving a number of activities. Researches have 

examined the automation of ontology model development from existing data models 

(Albarrak and Sibley 2011).  

It is very important to choose the appropriate representation language for 

expressing the ontology of a specific domain (Shanks et al. 2003; Uschold and 

Gruninger 1996). The Ontology Web Language (OWL) is a language for representing 

ontologies. The OWL facilitates greater machine interpretability of the content, and 

therefore enables the processing of the content from computers. There is the need 

for an expressive language, which will be used for representing various information of 

the web. Such language will make feasible the processing of information from 

machines and the performance of reasoning tasks. The OWL provides the following 

three sub-languages: OWL-Lite, OWL-DL and OWL-Full. Each sub-language has 

different expressiveness. The OWL-Lite is the least expressing sub-language while the 

OWL-Full is the most expressive sub-language. On the other hand, the OWL-DL sub-

language is more expressive than OWL-Lite and less expressive than OWL-Full.  

There are domains that require representation and reasoning to handle 

imprecision or vagueness. In such domains, fuzzy or vague concepts are not 

expressed appropriately by conventional or crisp ontologies (Huang et al. 2011; Loia 

2011; Yaguinuma et al. 2013). This research investigates a fuzzy knowledge-based 
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approach to risk analysis in the Customs domain for handling imprecision and 

vagueness. Many researches and works have been performed on the area of fuzzy 

ontologies and reasoning. Bragaglia et al. (2010) state that various initiatives have 

been done in the last few years for implementing fuzzy reasoning either in the context 

of ontological reasoning or in the context of fuzzy rule-based reasoning. It is also 

mentioned that researches follow two approaches for the integration of ontological 

engineering with the fuzzy rule-based reasoning. One is the “tight integration” and the 

other is the “loose integration”. In case of “tight integration”, a single, unified 

framework is defined for reasoning tasks. On the contrary, the “loose integration” 

focuses on combining available technologies in order to satisfy specific requirements 

(Bragaglia et al. 2010). 

Description Logics (DL) is a family of logics for knowledge representation 

(Bobillo and Straccia 2011). DL defines concepts and role restrictions that can 

automatically derive classification taxonomies (Davies et al. 2003). Fuzzy DLs are 

extensions of classical DLs aiming to handle vague or fuzzy concepts. One of them, 

the fuzzyDL reasoner is proposed by Bobillo and Straccia (2008) aiming to implement 

fuzzy reasoning in the context of ontological reasoning. Nevertheless, it appears that 

fuzzyDL supports only LOM, SOM and MOM as defuzzification methods. Bobillo and 

Straccia (2011) state that there are several researches and implementations on 

Fuzzy DL reasoners and each one implements its own fuzzy DL language. They 

propose to represent fuzzy ontologies with the use of OWL2 annotation. This fuzzy 

ontology representation is integrated also with Fuzzy DL reasoners such as fuzzyDL 

(Bobillo and Straccia 2008).  

Guillaume and Charnomordic (2012) state that the most common types of 

fuzzy rules are the conjunctive rules and the implicative rules. The conjunctive rules 

are used in Mamdani and Sugeno FIS. Usually the minimum operator is used for the 

conjunction of rules. The conjunctive rules are combined disjunctively. The implicative 

rules use fuzzy implications and they are combined conjunctively (Guillaume and 
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Charnomordic 2012). According to Yaguinuma et al. (2013), fuzzy ontologies with 

Fuzzy DLs provide implication operators and hence, they use implicative rules for 

reasoning. As mentioned before, the implicative rules are combined conjunctively. 

On the other hand, there are proposals, which consider crisp ontologies 

integrated with fuzzy rule-based reasoning. Wlodarczyk et al. (2011) present the 

SWRL-F, a Fuzzy Logic extension of Semantic Rule Web Language (SWRL). The SWRL 

(W3C 2004) is syntax for expressing rules using the OWL Knowledge Base. It 

combines the OWL (DL and Lite) with Rule Markup Language (RuleML). The RuleML is 

the Rule Markup Language, which developed to express Web rules in XML. According 

to Wlodarczyk et al. (2011), one of the design decisions for proposing SWRL-F is to 

follow the principles of fuzzy control systems or fuzzy rule-based systems, i.e. 

fuzzification, inference and defuzzification. The fuzzy inference with SWRL-F is based 

only to the rules. The ontology is used for describing the fuzzy knowledge base only. A 

DL reasoner can be used but it can interpret the ontology based on crisp logic. Object 

properties have been used for defining the fuzzy assertions in SWRL, which can be 

interpreted by fuzzy rule reasoners but not from non-fuzzy rule reasoners. The 

implementation of fuzzy rule engine was based on FuzzyJess. Although the approach 

above used fuzzy rule-based inference, it is not clear whether the Mamdani inference 

was used. However, it is understood that FuzzyJess provides the Mean of Maximum 

(or Average of Maximum) and the Center of Gravity as defuzzification methods 

(Orchard 2001). 

In the context of fuzzy rule-based reasoning, better interoperability is 

achieved by using a more standardised way to represent fuzzy rules. For that 

purpose, there are some researches, which exploit the use of Fuzzy Markup 

Language (FML) and its integration with fuzzy ontologies (Huang et al. 2011; Lee et 

al. 2009; Yaguinuma et al. 2013). The Fuzzy Markup Language (FML) is an XML-

based language for representing Fuzzy Logic Controllers (FLC) or Fuzzy Rule-Based 

Systems (as defined in 3.6.2). The FML has been proposed by Acampora and Loia 
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(2005). The FML was initially designed as a middleware between the various 

platforms. For instance, it could be used to transform a FLC defined in MATLAB (as 

FIS format) into FML with appropriate transformation. In addition, a FLC defined in 

FML can be transformed to other platforms depending on the requirements. This 

transformation can be achieved using Extensible Stylesheet Language (XSL) and XSL 

Transformations (XSLT) (W3C 2001). 

Huang et al. (2011) presents a work for Malware Behaviour Analysis with the 

integration of fuzzy ontology with FML for knowledge modelling of Malware 

Behaviours and intelligent decision making for detecting computer anomalies. It is 

understood that this proposal also use fuzzy ontology for representation of FIS 

Knowledge Base and focuses on fuzzy rule-based reasoning. 

Yaguinuma et al. (2013) proposes an FML-based hybrid reasoner integrating 

fuzzy ontology and Mamdani reasoning. They mention that supporting the Mamdani 

FIS, an output value (defuzzified) can be inferred after assessing output of rules and 

using defuzzification method that consider the shape of the output fuzzy set. They 

also mention that some proposals use specific formats such as fuzzyDL, Jess and 

Drools, which are handled by their corresponding inference engines. On the other 

hand, FML can enable interoperability among platforms. As far as the Mamdani-FIS 

defuzzification methods, they mention that the Center of Area (COA) and Middle of 

Maxima (or Mean Value of Maximum) methods were used. In Yaguinuma et al. 

(2013) work, some interesting experiment comparison results are presented for a 

certain application scenario. The results from Mamdani FIS are compared with 

inferences obtained from fuzzyDL reasoner. However, Yaguinuma et al. (2013) 

mentions that two fuzzyDL approaches are compared with Mamdani-FIS results since 

fuzzyDL do not provide specific constructors for Mamdani rules representation and 

reasoning. The first approach is fuzzyDL implicative rules and the second using 

fuzzyDL concept definitions and defuzzification queries. Regarding the second 

fuzzyDL approach and as mentioned before in fuzzyDL discussion, it provides the 
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LOM, SOM, and MOM as defuzzification methods. One conclusion from the 

experiments of  Yaguinuma et al. (2013) work is that for some individuals or 

instances, the fuzzyDL implicative rules approach cannot conclude inferences. The 

reason given by the authors of this work is that for some rules consequents do not 

have intersection and are combined conjunctively (see information provided 

previously for conjunctive rules and the implicative rules). It is apparent that the 

Mamdani FIS is considered more appropriate because in most cases an answer or 

inference is expected. Comparing the second approach of fuzzyDL (using LOM, SOM, 

and MOM as defuzzification methods) with Mamdani-FIS (COA and MOM as 

defuzzification methods), Yaguinuma et al. (2013) mention that some instances 

cannot be distinguished  and hence ranked/classified (the same defuzzified output) 

with defuzzification methods using LOM, SOM, and MOM, however MOM has more 

appropriate ranking than LOM and SOM.  

Following a literature review, some work on ontologies relevant to the 

Customs under this work, are by Zang et al. (2008) and by Dimakopoulos and Kassis 

(2008). In the first research, a domain ontology for import and export procedures has 

been developed to acquire Harmonised System (HS) codes for given products. In fact, 

the ontology is used for reasoning and particularly for specifying intelligently the HS 

code of a given product based on its product name. According to the authors of this 

work, the ontology is intended to be used by the Customs and quarantine 

departments in order to automate and improve their inspections processes since the 

HS code can be used to identify the applied policies to the product. Hence, accurate 

assignment of an HS code to a product implies more efficient and effective 

inspection. The second work (Dimakopoulos and Kassis 2008) concerns a layered 

ontology, which includes Customs domain concepts (inward processing and to export 

customs procedures) and Risk Assessment Ontology. These ontologies developed 

under RACWeb project, which co-funded by the European Commission under the 

“Information Society Technology” Programme, Framework Programme 6. The purpose 
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of these ontologies is to store knowledge and then to query this knowledge in the 

context of risk assessment. Finally, the OWL-DL was used for expressing the ontology.  

This research examines the ontologies for modelling concepts at various 

levels starting from concepts that are more generic and going to more specific to risk 

analysis. The ontologies are domain specific. Architecture of ontologies is also 

presented. Ontologies of this project are analysed in Chapter 5. This research follows 

the approach of “loose integration”. It uses crisp ontologies for defining knowledge 

and focuses on fuzzy rule-based reasoning. For instance, ontology is used to define 

the concepts of fuzzy risk model, which is presented for risk analysis with fuzzy logic 

technique (5.5.2). This includes the definition of fuzzy variables, fuzzy sets, etc. as 

concepts. Moreover, it is used for representing the actual knowledge base of a fuzzy 

risk model (or FIS) such as fuzzy variables, membership functions, and fuzzy rules. 

Therefore, a FIS is constructed for fuzzy rule-based reasoning based on represented 

knowledge with ontologies. XML-based representation is used for representing this 

FIS for interoperability purposes. XML representation can also be transformed to 

FML. Nevertheless, the main reason for selecting in this work the aforementioned 

approach is the flexibility of using Mamdani-FIS with a number of defuzzification 

methods such as COA. However, some approaches presented previously used 

specific defuzzification methods. In this research, five defuzzification methods are 

examined for Mamdani FIS reasoning. In addition, the Sugeno FIS type can also be 

examined for fuzzy reasoning and inference. The fuzzy modelling and reasoning is 

one of the objectives of this study in the area of risk analysis in the Customs Domain. 

The fuzzy risk model should be able to infer an appropriate output depending on the 

input and based on the defined knowledge base. As discussed before in the review of 

other researches, this might not be the case for other approaches (e.g. use of 

implicative rules).  
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3.9 Summary 

A review of state of the art detection techniques for fraud and risk has been 

performed above. Fuzzy logic, fuzzy inference systems and ANFIS are also analysed 

taking into consideration that an aim of this research is to examine a fuzzy 

knowledge-based approach for risk analysis and detection purposes. Fuzzy reasoning 

is investigated for handling imprecise knowledge and vagueness in risk analysis. The 

details of inference process for fuzzy reasoning described above have been 

considered, assessed, and applied in the work performed in the context of this thesis. 

It is important to understand the various steps of the process because certain 

decisions must be taken for each step during the development of the model. For 

instance, a fuzzy inference model type, defuzzification method, aggregation method, 

etc. shall be selected since the fuzzy reasoning will be performed based on these 

configuration parameters. Finally, ANFIS technique, which combines Artificial Neural 

Networks and Fuzzy Logic, could assist in the construction or optimisation of adaptive 

fuzzy inference systems from a given data set for performing reasoning tasks. 

Understanding of ANFIS architecture is important for using the technique (e.g. 

selection of partitioning technique for the generation of a Sugeno type FIS). In this 

chapter, ontologies are also analysed in the context of fuzzy knowledge-based 

approach to risk analysis for semantic modelling and knowledge representation. The 

semantic modelling is used for representing knowledge and concepts of Customs 

domain enabling both the communication and understanding. 
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Chapter 4. Fuzzy Knowledge-

Based Approach to Risk Analysis 

This chapter presents one of the contributions of this research and particular 

to develop a conceptual model combining fuzzy modelling and reasoning and 

semantic modelling with ontologies in the context of risk analysis of a Physical Entity 

in Customs domain. At the beginning, the conceptual model is described that would 

support decision-making based on analysis of risk.  After, a high-level architecture of 

this fuzzy knowledge-based approach to risk analysis is presented and each 

component of this architecture is described. Finally, some abstract Use Cases and 

processes are also defined for elaborating this approach. 

4.1 Overview 

An approach is presented to support the analysis and detection of the risk of 

a physical entity (e.g. consignment) in Customs domain. This approach combines the 

fuzzy reasoning and the semantic modelling. At this point, it is considered that risk 

management is broader, multi-dimensional process and involves a number of tasks, 

activities, and practises. This chapter presents an approach focusing on the analysis 

of risk of a Customs domain-specific physical entity with the definition of fuzzy 

inference systems. This is based on the outputs of the risk management process. The 

risk analysis would support decision-making on whether further treatment and 

actions should be performed accordingly. For instance, a risk analysis of an import 

consignment can use the declaration data. The outcome of risk analysis of a 

consignment can be one of the criteria for selecting the consignment to perform 

inspection (EEC 2008b). 
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The presented conceptual model (Figure 4-1) uses the ontologies for defining 

various concepts and for modelling various semantics. Complex domains have many 

concepts, complex relationships, and semantics and hence such modelling is 

considered as useful. It enables the unambiguous definition of concepts and the 

common understanding. In this work, the ontology reasoner is used for checking the 

consistency of defined ontology definitions. In addition, the ontology reasoner could 

be used to interpret the ontology based on crisp logic. However, apart from domain 

specific knowledge, the ontologies are also used in this work to represent FIS related 

knowledge. For the needs of this research, the inference is investigated with 

Mamdani and Sugeno fuzzy inference systems. Having examined various approaches 

in section 3.8, this is a decision for this research with the rationale that it enables a 

more loosely couple way of integration and there are no restrictions mentioned in 

section 3.8 (e.g. only specific defuzzification methods can be used). Considering that 

different type of concepts should be represented with ontologies, an Ontological 

Architecture is presented. In addition to this, it is considered that this architecture 

offers modularity, extensibility, maintainability, and re-usability. This is further 

discussed in section 5.3.  

The conceptual model is based on fuzzy logic and fuzzy inference systems 

with purpose to consider imprecise knowledge and vagueness. This is also discussed 

in section 2.3. Therefore, the inference or risk analysis is performed based on 

defined fuzzy risk models. The semantics of those fuzzy risk models are defined with 

ontology model (more information can be found in Chapter 5). Fuzzy logic has been 

applied in various fields and is used with success for decision-making and inference 

purposes. Application of fuzzy logic enables approximate human reasoning to be 

applied to knowledge-based systems (Alavala 2008).  
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Figure 4-1: Conceptual model for risk analysis with fuzzy knowledge-based approach 

The conceptual model (Figure 4-1) is considered generic and it could be 

explored for other domains. The following sections aim to provide more information 

for the terms Physical Entity and fuzzy risk model. 

4.1.1 Physical Entity 

In this concept and work, the Physical Entity term is used to refer to a 

physical entity of the domain, which will be analysed for risk by applying the relevant 

fuzzy risk models. Physical entity could be for instance an import consignment. A 

Physical Entity is considered that has various attributes or elements. Some physical 

entities may use the attributes of another physical entity or include the definition of 

other physical entities. In this concept, a physical entity is defined with ontology, 

which might refer to the ontologies of other physical entities. This is further discussed 

in sections 5.3 and 5.5.2. 

4.1.2 Fuzzy Risk Models  

In this approach, a fuzzy risk model term is used to represent a fuzzy model 

or a fuzzy inference system consisting of fuzzy parameters, membership functions, 
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rules and other attributes of fuzzy inference system. Additionally, the fuzzy 

parameters or variables of a fuzzy risk model are mapped with the attributes of 

corresponding physical entity. The structure of a fuzzy risk model is defined by the 

“Fuzzy Risk Model Ontology”. A fuzzy risk model could be considered as a MISO FIS, 

however, depending on the domain needs fuzzy risk model could be a MIMO FIS. 

According to Torra (2001), two difficulties arise when the application domain of fuzzy 

knowledge-based systems is a complex system. These are related to the number of 

variables of the system and the application domain. Usually, the number of variables 

of the system is large in complex domains. Therefore, the number of required rules is 

increased exponentially. This is also called “curse of dimensionality”. In addition, the 

environment changes and hence, those changes cannot be modelled easily with the 

variables. The Hierarchical Fuzzy Systems (HFS) is a technique for handling the 

“curse of dimensionality” by decomposing the system into smaller more modular 

systems connected with input/output variables. The inference is chained among 

modules of rules. As far as the changing environment is concerned, adaptive 

intelligent control techniques can be used to handle this Torra (2001). In order to 

handle changing environment, this approach includes ANFIS as component for 

assistance/optimisation.  

Considering the above, a fuzzy risk model might concern a specific area or 

have specific purpose. If the final output of risk analysis should be estimated with the 

execution one or more fuzzy risk model then this is a matter of definition of risk 

analysis for the particular Physical Entity. It is considered that this definition should 

specify the hierarchy and the sequence of execution of various models considering 

that the definition of each fuzzy risk model shall describe the input and the output 

and other details such defuzzification method (Figure 4-2). This is the concept of 

Hierarchical Fuzzy Logic Controller (Horácek and Binder 1997; Singh et al. 2003) or 

cascade structure (Jurgutis and Simutis 2011) or stage-wise fuzzy reasoning 

structure (Dahal et al. 2005) or Hierarchical Hybrid Fuzzy Controllers (HHFC) 
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(Chiaberge et al. 1995). According to Chiaberge et al. (1995), HHFC differs from 

traditional HFS since it enables various combinations and can have arbitrary number 

of outputs. Input to an internal Fuzzy Controller of HHFC can be a state variable or 

output from other Fuzzy Controller or both. Outputs from Fuzzy Controller at any 

hierarchical level can coincide with control variables or can be inputs to Fuzzy 

Controllers of any successive hierarchical levels. 

Nevertheless, in the case where the risk analysis of a Physical Entity involves 

more than fuzzy risk model, it is necessary to consider and select the appropriate 

defuzzification method per fuzzy risk model otherwise the final output might not be 

the expected one. As stated by Jurgutis and Simutis (2011) in their work, while the 

cascade goes downwards, the fuzzy logic systems in the next layers converge towards 

to the ‘center’, which means reach to the same conclusion. As a solution in this 

specific issue, they used ‘LOM’ as defuzzification method and ‘Centroid’ in the last 

fuzzy logic system. Of course, this is also a matter of decision and evaluation of risk 

analysis of specific Physical Entity by also checking the outputs of individual fuzzy risk 

models.  

 

Figure 4-2: Example of concept of risk analysis definition of Physical Entity with more than one 

fuzzy risk model 
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Finally, a business process model for describing the concept of management 

or development a fuzzy risk model is discussed in section 4.3.1. Fuzzy modelling is 

further discussed in section 6.4. 

4.2 High-Level Architecture of the Fuzzy Knowledge-Based 
Approach for Risk Analysis 

A high-level architecture is depicted in Figure 4-3. This architecture is 

decomposed into three (3) main abstract components, which are described in the 

subsequent paragraphs: 

 Fuzzy Risk Analysis (Fuzzy RA) 

This component enables the creation and maintenance of fuzzy risk models 

(fuzzy models) with purpose the risk analysis of various physical entities. It is possible 

more than one model to exist. The final risk analysis result might concern more than 

one fuzzy risk models and according to the risk analysis definition for the particular 

Physical Entity. This component also executes the various fuzzy inference systems 

according to the risk analysis definition for the particular Physical Entity.  

 Physical Entity Manager/Editor 

The various fuzzy risk models have fuzzy variables as input and output. Those 

fuzzy variables are based on some attributes of the Physical Entity is analysed 

(4.1.1). Ontology is used to define concepts and attributes of each Physical Entity 

according to the approach described in Chapter 5. The purpose is that this 

component should enable the management of the ontologies of physical entities by 

allowing the addition of new Physical Entity or the maintenance of the existing 

physical entities. 

 Assistance/Optimisation 

This component is defined to assist in the construction or optimisation of 

fuzzy inference systems. In this work, ANFIS technique could be considered for that 
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purpose. As shown in section 3.7, ANFIS technique can assist in the construction of 

adaptive fuzzy inference systems from a given data set. ANFIS has the ability to be 

trained and to learn from the data. ANFIS generates Sugeno-type FIS and hence it is 

defined with fuzzy variables. Therefore, it could be considered that ANFIS can 

construct some fuzzy inference systems complementary to those representing human 

knowledge. Nevertheless, the application of this technique should be done following 

analysis. This includes selection of the appropriate parameters and consideration of 

issues such as the curse of dimensionality (Wei et al. 2007).   

Finally, Figure 4-3 depicts high-level communication links between the User 

and the various components of fuzzy knowledge-based approach for risk analysis and 

detection. A number is assigned to each communication link. This number is used in 

the subsequent paragraphs to explain the purpose of each communication link in the 

context of each Use Case described is section 4.3. 
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Figure 4-3: High-level (abstract) Architecture of fuzzy knowledge-based approach for risk analysis
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4.3 Abstract Use Cases, Processes and Interactions 

Main abstract use cases and business process diagrams follow with purpose to 

elaborate the conceptual model presented in Figure 4-3. In particular, a use case diagram 

is used to depict in high-level the interactions of various types of users with the 

components of fuzzy knowledge-based approach for risk analysis. The use case diagram is 

presented with Unified Modelling Language (UML) (OMG 2011b). UML is the de-facto 

language for modelling and specification of software systems. In addition, UML can also be 

used for business modelling and non-software systems. For instance, specific UML Profiles 

exist tailoring the language to specific areas (e.g. business modelling) (OMG 2013). 

However, BPMN (OMG 2011a) diagrams (or business process diagrams) are used in this 

thesis to visualise processes and particular activities in the context of a use case. BPMN 

notation discussed in section 3.6.2 where the standard fuzzy inference process is 

described. Finally, the ADONIS Community Edition (ADONIS 2014) has been used for 

developing the BPMN diagrams and the use case diagrams. 

  
Figure 4-4: Use Case Diagram for interactions of users in fuzzy knowledge-based approach to risk 

analysis  
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4.3.1 UC1 Manage Fuzzy Risk Models 

Typically, a Use Case defines functional needs and presents the interaction of a 

user with the system. This Use Case defines that functionally wise the Risk 

Expert/Knowledge Expert (user) shall be able to manage the fuzzy risk models. The Fuzzy 

Risk Analysis (Fuzzy RA) is the main component of fuzzy knowledge-based approach for 

risk analysis, which is involved for the realisation of this Use Case. The interaction of User 

with this component (activities) is described in the following paragraphs with the aid of 

Figure 4-5, which illustrates a non-executable private process for the management of fuzzy 

risk models. This designates that the process has been modelled to visualise abstract 

activities for the management of fuzzy risk models at modeller-defined level of details. 

The management of fuzzy risk models process is realised by the Fuzzy RA 

component. The process starts for either adding new model or modifying/deleting exsting 

fuzzy risk models (e.g. change fuzzy parameters, fuzzy rules). This is reflected with start 

events “Create new Fuzzy Risk Model” and “Re-assess/Update Fuzzy Risk Model” 

respectively. In the first case (“Create new Fuzzy Risk Model”), the start event is defined as 

conditional. In BPMN (OMG 2011a), conditional events denote that the event is triggered 

as soon as the guard condition of the event is true. In this specific case, the condition is 

that the related “Physical Entity Ontology” should exist. This also modelled in the process 

as note associated with the conditional start event. For the second case (“Re-

assess/Update Fuzzy Risk Model”), the start event is also defined as conditional requiring 

at least one model to exist before the update of fuzzy risk model.  

For the case of new model, it is considered that, the “Fuzzy Risk Model Ontology” 

should be loaded at the beginning from the Ontologies Repository and Semantic Models. 

The latter holds the definition of the ontology and the fuzzy risk models instances 

(Knowledge Base). The “Load Fuzzy Risk Model Ontology” activity is modelled using a 

BPMN task (atomic activity) (OMG 2011a). This task is an automated task and hence it is 

modelled as Service Task. As mentioned in section 3.6.2, the “Service Task” is a special 
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task in BPMN (OMG 2011a) and it is shown with a “Gear” marker in the upper left corner 

of the shape. In addition, the Ontologies Repository and Semantic Models repository is 

represented as Data Store with BPMN (OMG 2011a) notation. The retrieval of fuzzy risk 

models instances from the Ontologies Repository and Semantic Models repository is 

shown with a data association between the “Load Fuzzy Risk Model Ontology” Service 

Task and the Data Store representing the Ontologies Repository and Semantic Models 

repository. Having loaded the “Fuzzy Risk Model Ontology”, then User creates a fuzzy risk 

model instance. This is shown in the process with the “Create Fuzzy Risk Model instance” 

User Task. The “User Task” is a special task in BPMN (OMG 2011a) and it is shown with a 

“Human” marker in the upper left corner of the shape. The User Task denotes a task of a 

process, which is performed by a User with the assistance of a system (OMG 2011a). 

Hence, the User Tasks indicate the interaction of users with a process. The created fuzzy 

risk model instance is stored in the Ontologies Repository and Semantic Models 

repository. This is modelled in the process of Figure 4-5 with data association between the 

mentioned User Task and the Ontologies Repository and Semantic Models repository 

(Data Store).  

In case the process starts for the update or re-assessment of existing model, it is 

presented in the process (Figure 4-5) that the User shall select a fuzzy risk model (“Select 

Fuzzy Risk Model” User Task). For that task, retrieval of fuzzy risk models is required from 

the Ontologies Repository and Semantic Models repository (Data Store). This is modelled 

with data association between the task and the Ontologies Repository and Semantic 

Models repository (Data Store). Following the selection of particular fuzzy risk model, the 

process continues with the retrieval of details of selected fuzzy risk model (“Retrieve fuzzy 

risk model instance details”). 

In either case (new model or update of existing one), the process continues by 

updating or adding the fuzzy risk model details (parameters and rules) and/or the fuzzy 

risk model attributes (mapping with Physical Entity, main FIS attributes). This is illustrated 

in the process of Figure 4-5 with an Inclusive Gateway (decision point). The Inclusive 
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Gateway is used in BPMN as an OR Gateway and has the marker “O” inside the Gateway 

(diamond shape). This means that all outgoing flows might be executed based on the 

conditions assigned per path. If management of parameters and rules is selected, then 

the management of fuzzy variables is deemed as the first step. This is considered as a 

sub-process involving addition, modification or deletion of fuzzy variables instances 

(“Manage Fuzzy Variables instances” sub-process) and their mapping with the fuzzy risk 

model. This sub-process also includes addition or update of fuzzy variables’ attributes 

including mapping with physical entity attribute. This sub-process needs to communicate 

with Ontologies Repository and Semantic Models repository (Data Store) in order first for 

retrieving any existing fuzzy variable and second for creating, updating, or deleting fuzzy 

variables depending on the actions selected. This is shown in the process as data 

associations between the sub-process and the mentioned Data Stores.  

 Subsequently, the process continues with the management of membership 

functions, which is also considered as a sub-process (“Manage Membership Functions 

instances”). This sub-process needs to communicate with Ontologies Repository and 

Semantic Models repository (Data Store) in order first for retrieving any existing 

membership functions per fuzzy variable and second for creating, updating, or deleting 

membership functions of a fuzzy variable depending on the actions selected. Such 

interactions of Fuzzy RA component with Ontologies Repository and Semantic Models 

repository (Data Store) are modelled as data associations between the sub-process and 

the pertinent Data Store. Finally, the management of parameters and rules is completed 

with the management of Fuzzy Rules using the Fuzzy Variables and Membership Functions 

previously defined in the process. The management of Fuzzy Rules is also considered as a 

sub-process (“Manage Fuzzy Rules”). This sub-process also interacts with Ontologies 

Repository and Semantic Models repository (Data Store) for retrieving any existing Fuzzy 

Rules for the model and for creating, updating, or deleting Fuzzy Rules depending on the 

actions selected. Those interactions are modelled as data association between the sub-

process and the Ontologies Repository and Semantic Models repository (Data Store). 
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For the management of fuzzy risk model attributes, the “Manage Fuzzy Risk Model 

attributes” sub-process is triggered. This sub-process involves User interaction and also 

interacts with the Ontologies Repository and Semantic Models repository (Data Store) for 

retrieving existing fuzzy risk model attributes and for creating or updating existing fuzzy 

risk model attributes. This is modelled with Data Associations between the sub-process 

and the Data Store.  

As a final point, the process uses again an Inclusive Gateway for merging and 

synchronising the flow before the End Event, which is “Model creation/update completed”. 

It is worth noting that the process described above shall be considered as an iterative 

process. 

Finally, the purpose of communication links 1 and 4 in Figure 4-3 has been 

described in the context of UC1 Manage Fuzzy Risk Models. In particular, the 

communication link 1 in Figure 4-3 is depicted with the User Tasks analysed above for the 

management of fuzzy risk models process (Figure 4-5). The communication link 4 in Figure 

4-3 enables the interaction of Service Tasks of the process with the Ontologies Repository 

and Semantic Models repository (Data Store).  
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Figure 4-5: Manage Fuzzy Risk Models process 
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4.3.2 UC2 Perform Inference 

This Use Case describes the functional need for performing risk analysis and fuzzy 

inference by executing the applicable fuzzy models. In the example of an import 

consignment, this Use Case is executed for analysing the risk. The Actor interacting with 

that Use Case might be the Risk Expert / Knowledge Expert or any other Actor (Risk 

Analysis Requestor) requiring to analyse for risk a physical entity (e.g. import 

consignment). This is illustrated in Figure 4-4. 

The main component, which is involved for the realisation of this Use Case, is the 

Fuzzy Risk Analysis (Fuzzy RA). Figure 4-6 illustrates the interactions of Actors with this 

component as well as the various activities for the realisation of this Use Case. The User 

Tasks of the process indicates interactions of the Actor while Service Tasks denotes 

automated actions by the Fuzzy Risk Analysis (Fuzzy RA) component. Finally, the process 

of Figure 4-6 is a non-executable private process. This designates that the process has 

been modelled to visualise abstract activities for performing Inference or risk analysis at 

modeller-defined level of details. 

The process starts when there is the need to perform risk analysis. In  BPMN (OMG 

2011a), this is denoted with the start event “Risk Analysis for a specific Physical Entity has 

been selected”. As a first step in this process, it is considered that the Actor has to select 

the physical entity for inference (risk analysis). This interaction is modelled with a User 

Task named “Select Physical Entity for Inference”. Following that, the definition of risk 

analysis for the particular physical entity is retrieved from Ontologies Repository and 

Semantic Models repository (Data Store). As discussed in section 4.1.2, this might concern 

the execution of more than one fuzzy risk model. This activity is modelled with the Service 

Task “Retrieve the analysis definition” and the pull of information with a data association 

having direction from the Ontologies Repository and Semantic Models repository (Data 

Store) to the Service Task.  
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The process continues with two parallel activities (“Provide required inputs values” 

and “Transform Fuzzy Risk Model to FIS”). This is illustrated in the process of Figure 4-6 

with a Parallel Gateway. The Parallel Gateway is used in BPMN as an AND Gateway and 

has the marker “+” inside the Gateway (diamond shape). This means that all outgoing 

flows are executed in parallel. The Parallel Gateway can also be used for synchronising or 

joining flows. The outgoing flow from this Gateway is executed only if all incoming flows 

have been completed. The User Task “Provide required inputs values” illustrates that the 

User provides the required input values for the execution of fuzzy risk model(s). A 

collection of input values is an output of this task and input for the “Fuzzy Inference 

Process” sub-process. This sub-process follows for each fuzzy risk model that shall be 

executed according to the risk analysis definition. In the example of Figure 4-2, the Inputf-

RM11, Inputf-RM12, Inputf-RM21, Inputf-RM22, and Inputf-RM23 are the input values that are 

provided by the User. For the same example, the fuzzy risk model (f-RM1) and the fuzzy 

risk model (f-RM2) should be executed in parallel and the output of each fuzzy risk model 

should be input to fuzzy risk model (f-RM3), which is executed at the end. The “Fuzzy 

Inference Process” sub-process is used for the execution of each fuzzy risk model. This 

process discussed in section 3.6.2 and it is depicted in Figure 3-1. 

The second parallel activity is the Service Task “Transform Fuzzy Risk Model to 

FIS”. This task transforms the fuzzy risk model into the FIS format that will be executed. 

The “Transformed Fuzzy Risk Model to FIS” is an output of this task and it is stored in the 

Knowledge Base Data Store. This is modelled with the relevant data association. 

Both parallel activities are joined with a Parallel Gateway as shown in the process 

of Figure 4-6. After the execution of the fuzzy risk model(s), an output value is produced as 

the outcome of risk analysis (inference process). Then, this can be stored to Knowledge 

Base persistency. This is modelled with a data association having direction from “Fuzzy 

Inference Process” sub-process to Knowledge Base Data Store. The output of fuzzy 

inference is presented to the User. This is depicted in the process with User Task “Present 

results”. Possibly, the output of this process might lead to fine tune the fuzzy risk model if 
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this analysis is performed in the context of evaluation. If there is a need to update the 

fuzzy risk model parameters, then the User can do it as described in section 4.3.1. 

Finally, the need of communication link 1 in Figure 4-3 is depicted with the User 

Tasks of the process for performing inference (Figure 4-6). The communication link 3 in 

Figure 4-3 enables the interaction of Service Tasks of the process with Knowledge Base 

Data Store for accomplishing the inference process and the risk analysis. The 

communication link 4 in Figure 4-3 facilitates the interaction of Service Tasks of the 

process with the Ontologies Repository and Semantic Models repository (Data Store).
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Figure 4-6: Perform Inference Process 

 



Fuzzy Knowledge-Based Approach to Risk Analysis Chapter 4 

 

 Page 65 

 

4.3.3 UC3 Assistance 

This Use Case describes in abstract form, the interaction when the User wants to 

construct or optimise a model using adaptive techniques. This process is very complex. 

Depending on the selected technique, this process should be adapted accordingly. 

Attributes to be used as input for that process are already configured. Training, test, and 

checking data set should also be defined. In the context of fuzzy knowledge-based 

approach for risk analysis, the ANFIS technique could be considered for that purpose. The 

Actor (User) interacting with that Use Case is the Risk Expert / Knowledge Expert requiring 

to construct new fuzzy models or optimising fuzzy models using ANFIS technique. This is 

illustrated in Figure 4-4. However, it is considered that the Risk Expert / Knowledge Expert 

have the knowledge to apply the ANFIS technique.  

The main component of fuzzy knowledge-based approach for risk analysis, which is 

involved for the realisation of this Use Case, is the Assistance/Optimisation. 

The User interacts with the Assistance/Optimisation component for constructing 

new fuzzy models or optimising fuzzy models using advanced techniques (e.g. ANFIS). The 

process is complex and this is the reason for not providing specific process with 

interactions as happens for other Use Cases. The Assistance/Optimisation component will 

enable the User to develop new fuzzy risk models based on pre-selected advanced 

techniques (e.g. ANFIS). Input attributes and output are configured along with the training 

dataset. Therefore, it is considered that the Assistance/Optimisation component retrieves 

the definition of the concerned physical entity from Ontologies Repository and Semantic 

models and it could possibly retrieve information from Knowledge Base persistency. 

Following that, Assistance/Optimisation component constructs or optimises a fuzzy 

inference system based on the provided data sets and displays the output to the User. The 

User might select to evaluate the generated fuzzy model. This may happen via the UC2 

Perform Inference. Finally, the need of communication link 2 in Figure 4-3 is described 

above with the User interactions for the construction or optimisation of a model using 



Fuzzy Knowledge-Based Approach to Risk Analysis Chapter 4 

 

 Page 66 

 

adaptive techniques. The communication link 8 in Figure 4-3 enables the interaction of 

Assistance/Optimisation component with Knowledge Base Data Store as described before 

in the Use Case description. The communication link 6 in Figure 4-3 facilitates the 

interaction of Assistance/Optimisation component with the Ontologies Repository and 

Semantic Models repository (Data Store) for the tasks described previously in the Use 

Case description. 

4.3.4 UC4 Manage Physical Entities  

The Use Case “Manage Physical Entities” specifies the need for managing the 

ontologies and semantic models of physical entities. The term physical entity is described 

in section 4.1.1. The example of import consignment mentioned. The primary Actor of this 

Use Case is the Knowledge Expert. It is assumed that the Knowledge Expert has the 

knowledge to create/maintain ontologies based on the knowledge acquired. This is 

illustrated in Figure 4-4. 

The Physical Entity Manager/Editor is the component of fuzzy knowledge-based 

approach to risk analysis, which is involved for the realisation of this Use Case. The 

interactions of Actors with this component are depicted in Figure 4-7 using User Tasks of 

BPMN (OMG 2011a). In addition, BPMN’s (OMG 2011a) Service Tasks are used in Figure 

4-7 in order to model the automated activities. Finally, the process of Figure 4-7 is a non-

executable private process. This designates that the process has been modelled to 

visualise abstract activities for managing physical entities at modeller-defined level of 

details. 

The process starts when there is the need to create a new ontology or update an 

existing one. Those two events are modelled with BPMN (OMG 2011a) as “Create new 

Physical Entity ontology” and “Update a Physical Entity ontology” start events. In the case 

of new ontology, the User has to interact in order to create it. This is modelled with User 

Task “Create Physical Entity Ontology”. The latter shall also store the output from this task 

to Ontologies Repository and Semantic Models Data Store. In Figure 4-7, this is visualised 
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with data association having source the User Task and destination the concerned Data 

Store. If an update of existing ontology is selected, then the User first has to select the 

“Physical Entity Ontology” (“Select Physical Entity Ontology”). Then, the details of this 

“Physical Entity Ontology” are automatically retrieved. This is visualised with a Service Task 

“Retrieve Physical Entity Ontology details” and its association with Ontologies Repository 

and Semantic Models Data Store. 

In both cases (new or existing ontology), the process continues with the addition, 

modification or deletion of concepts/classes of “Physical Entity Ontology”. This is 

considered a separated Sub-process (“Manage Concepts/Classes of Ontology”). The 

classes of “Physical Entity Ontology” can model complex elements of represented Physical 

Entity. The “Manage Concepts/Classes of Ontology” Sub-process stores changes on 

Concepts/Classes to Ontologies Repository and Semantic Models Data Store.  

Then the “Physical Entity Ontology” is elaborated by defining Object Properties 

and/or Data Properties (and Data Types if required). Both activities are represented in 

process of Figure 4-7 as individual Sub-processes. Outputs from these sub-processes are 

stored in the Ontologies Repository and Semantic Models Data Store (e.g. new Data 

Properties). Moreover, it is depicted that one of the Sub-processes or both can be 

performed. This is modelled with an Inclusive Gateway (decision point) in the process of 

Figure 4-7. The Inclusive Gateway is used in BPMN (OMG 2011a) as an OR Gateway and 

has the marker “O” inside the Gateway (diamond shape). This means that all outgoing 

flows might be executed based on the conditions assigned per path.  

As a final point, the process uses again an Inclusive Gateway for merging and 

synchronising the flow. Following that, it modelled that a decision should be taken whether 

the ontology is considered as complete using Exclusive-OR Gateway. In BPMN (OMG 

2011a),  the Exclusive-OR Gateway has the marker “X” inside the Gateway (diamond 

shape). If the answer is “Yes”, then the process is completed with BPMN (OMG 2011a) 

End Event “Ontology defined”.   In the case that ontology needs more update, the flow 
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returns at the point the process of actual maintenance of “Physical Entity Ontology” starts 

(before the “Manage Concepts/Classes of Ontology” sub-process). It is worth noting that 

the process described above shall be considered as an iterative process. 

Changes on physical entities might have impact on models and fuzzy inference 

systems since the fuzzy parameters of the latter are based on the physical entities. 

Therefore, the user might need to manage the models as described in UC1 Manage Fuzzy 

Risk Models. It is also considered that similar process of Figure 4-7 is used to manage the 

other ontologies. 

Finally, the need of communication link 5 in Figure 4-3 is illustrated with the User 

Tasks of the process of Figure 4-7. The communication link 7 in Figure 4-3 allows the 

interaction of Service Tasks of the process with Ontologies Repository and Semantic 

Models Data Store for accomplishing the management of physical entities. 
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Figure 4-7: Manage Physical Entities process 
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4.4 Summary 

Having considered information presented in previous chapters, this chapter 

presented the conceptual model for risk analysis with fuzzy logic technique and using 

semantic modelling. It is considered that addresses the first objective of this research, 

which is the development of a conceptual model for supporting risk analysis with fuzzy 

knowledge-based approach. The two main parts for the presented concept is the use of 

fuzzy logic for expressing fuzzy risk models and performing inference tasks for risk analysis 

purposes and the use of ontologies for semantic modelling of generic and specific 

concepts related to risk analysis. This concept is elaborated with three components 

described above.  
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Chapter 5. Semantic Modelling and 

Ontologies 

This chapter presents the semantic modelling work and ontologies developed 

under this research in order to represent knowledge and concepts. At the beginning, the 

role of ontologies is mentioned in relation to the conceptual model presented in Chapter 4. 

Following that information about the development of ontologies is given. The chapter 

continues with the presentation of conceptual architecture of ontologies considering the 

complexity of the domain for knowledge representation and formal representation of 

concepts. Finally, individual ontologies are described and discussed through examples. 

It is worth noting that the scope of this activity is mainly to demonstrate the 

modelling of concepts with ontologies rather than to develop complete ontologies for 

Customs, etc. It can only be considered as a research activity to represent some concepts 

of this domain with formal representation and to model the complex relationships that 

exist in this domain. This activity also helps to examine the use of ontological engineering 

as a tool to represent and share various concepts and knowledge in this domain. 

Ontologies are used for modelling knowledge in the context of fuzzy knowledge-based 

approach to risk analysis in the Customs domain. Continuous refinement, review, and 

formal validation are very important for the ontology’s effectiveness. Such ontologies 

require a significant effort in order to fully represent the knowledge of such complex 

domain and consider the ontology complete. Generally, the Knowledge Acquisition phase 

is a challenging task for such complex business domains. Finally, formal validation of the 

ontology and continuous refinement is very important for the ontology’s effectiveness. 
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5.1 Role of Ontologies in this Concept 

As discussed in section 3.8, Ontologies can improve the communication and 

understanding as well as the interoperability. This work explored the domain of Customs, 

which is a complex domain. As mentioned in section 4.1, the ontologies are used in this 

work for defining various concepts and for modelling semantics. Therefore, the role of 

ontologies in this research is for representing semantics and modelling complex 

relationships. Some examples are provided in the next paragraphs during the discussion 

of ontologies. Ontologies have different levels of detail with more generic and more 

specific concepts. Finally, the ontology reasoner is used for consistency checks of the 

ontologies. In addition, the ontology reasoner can be used to interpret the ontology based 

on crisp logic. In fuzzy knowledge-based approach to risk analysis, the fuzzy reasoning is 

investigated to be performed with Mamdani and Sugeno type fuzzy inference systems as it 

is explained in section 4.1. The rationale of adopting this approach was discussed in 

section 3.8. 

5.2 Ontological Engineering Approach 

The approach towards ontological engineering proposed by Uschold and Gruninger 

(1996) has been used in this work.  The activities of ontological engineering approach are 

briefly described in the next paragraphs as applied in this work: 

 Ontology Capture   

The  concepts of ontology  were captured  using and assessing sources  of 

information (libraries, online resources, existing knowledge, etc.) such as (DGTAXUD 2004, 

2010; EEC 1992, 1993, 2008a, b; EUROSTAT 2005; ISO 2006). In addition, acquired 

knowledge from literature review presented in Chapter 3 has been used for the 

development of ontologies. During this step, a number of concepts were defined, a 

hierarchy of concepts was built, descriptions were added for concepts, and finally the 
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relationships among them were defined. As it is mentioned at the beginning, the ontology 

focuses more on risk analysis aspects in the Customs domain. 

 Ontology Coding 

It is very important to choose the appropriate representation language for 

expressing the ontology of a specific domain. (Shanks et al. 2003; Uschold and Gruninger 

1996). The Ontology Web Language (OWL) and particularly the OWL-DL sub-language has 

been used for coding the ontologies being discussed in this work. OWL facilitates greater 

machine interpretability of the content and therefore enables the processing of the 

content from computers as well as the performance of reasoning tasks (Smith et al. 10 

February 2004). The complex nature of the domain requires quite expressive language for 

describing the various concepts and the relationships among them. Therefore, the OWL-

Lite could not be used for the ontologies due to its simplicity in terms of expressiveness. 

On the other hand, the OWL-Full is very expressive sub-language; however, it is 

undecidable because it does not include restrictions on the use of transitive properties, 

which are required for decidability (Antoniou and Harmelen 2004; Horrocks and Patel-

Schneider 2004). As a conclusion, the OWL-DL has been selected for coding the 

ontologies. The ontologies are not used in this research for reasoning since the latter is 

performed with fuzzy rule-based reasoning. The motivation is to represent the knowledge 

with formal language with extensibility. Therefore, this version of the ontology could be 

considered as starting point for further work. Nevertheless, the ontology reasoner is mainly 

used for consistency checks.  

The ontology coding was performed using the Protégé v4.3.0 (build 304) (Protégé). 

The generated OWL code is compliant to OWL 2.0 and has been generated with OWL API 

(version 3.4.2) provided with Protégé tool. Moreover, the HermiT (v 1.3.8) has been used 

as ontology reasoner. 

The Protégé tool visualises the ontologies with specific forms. The OntoGraf plugin 

(Falconer 2010) of the Protégé tool has been mainly used for visualising the ontology 
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classes and their relationships. In order to visualise also some constraints and data 

properties of concepts, the  OWLGrEd Protégé Plugin have been used, which integrates 

with OWLGrEd tool (OWLGrEd 2013).  

 Integrating existing ontologies 

Integration of ontologies is discussed in the architecture of ontologies (section 

5.3). Nevertheless, the ontologies of this work could be integrated or mapped with more 

generic ontologies (upper ontologies and/or middle-level ontologies) as discussed in 

section 3.8 in order to use already defined concepts. This could be considered in a future 

work. 

5.3 Architecture of Ontologies 

Considering that different type of concepts (e.g. generic or specific) should be 

represented with ontologies, an architecture of ontologies is presented in Figure 5-1 based 

on the Ontological Architecture principles discussed in section 3.8. However, this 

architecture focuses on the domain ontology layer. 

A modular architecture is followed for developing the pertinent ontologies under 

this project. The architecture is currently decomposed into three main 

components/ontologies. The first one is a “Generic Customs Ontology” defining the 

various Customs concepts focusing more to risk management and risk analysis concepts. 

The second component is the “Ontologies of Physical Entities”. In fact, this contains one or 

more ontologies each one modelling a physical entity (4.1.1). Physical entities could be a 

document or any other entity. An example is mentioned in section 4.1.1 and it is further 

discussed in section 5.5.2. It is considered that a physical entity might re-use concepts of 

other physical entity(ies) enabling re-usability and manageability. Therefore, it might be a 

dependency between the various ontologies of physical entities in terms of concepts and 

attributes. Concepts of the “Physical Entity Ontology” might refer to or associate with 

concepts of an ontology modelling another physical entity. This can be achieved with one 
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ontology importing another ontology using the “import” statement of OWL. However, the 

OWL principles for import of ontologies should be considered for that. 

The third component is the “Fuzzy Risk Model Ontology” defining the main 

concepts of fuzzy risk model (4.1.2). The architecture of the ontology is illustrated in Figure 

5-1. 

 
Figure 5-1: Conceptual Architecture of Ontologies 

The following benefits are considered having such architecture: 

 Modularity: Instead of having a single unmanageable Ontology, this is 

decomposed in other ontologies with concrete purpose and concepts. The 

decomposition is a matter of decision and organising the ontologies. The 

current decomposition is described above although some further 

decomposition could have been performed for “Generic Customs Ontology” 

or integration with other upper ontologies and/or middle-level ontologies. 

 Maintainability: Having smaller ontologies it is considered that they can be 

maintained easier. This facilitates the change management especially if 

such ontologies are used by systems. Normally, other linked ontologies 

might be impacted from a change of an Ontology, however, this change is 
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considered more controllable. Moreover, it is considered that makes easier 

and consistent the maintenance of ontologies of physical entities because 

changes on the ‘imported’ ontologies are automatically propagated to the 

‘importing’ ontologies when the latter use concepts that changed in the 

‘imported’ Ontology. Nevertheless, maintenance requires a concrete 

change management procedure. 

 Re-usability: Ontologies are re-used in order to construct ontologies of 

physical entities instead of replicating the concepts. Moreover, concepts 

from other ontologies are used to create relationships and model 

information. For instance, a concept from “Generic Customs Ontology” 

might be used from a “Physical Entity Ontology” or concepts from “Physical 

Entity Ontology” are used to the “Fuzzy Risk Model Ontology”. Finally, as an 

improvement more re-usability could be achieved by integrated those 

ontologies with other upper ontologies and/or middle-level ontologies.  

 Extensibility: More ontologies of physical entities can be added or existing 

ontologies can be extended with more concepts. For instance, another 

ontology of physical entity could be added with new concepts without 

affecting the other relationships. 

5.4 Ontology Evaluation 

The development of Ontology is an iterative process. Therefore, the Ontology is 

continuously updated and verified. According to Gomez-Perez (1995), Ontology can be 

evaluated by the development team, by other development teams, and by end users or 

experts. Each actor validates it from different perspective. Normally, the development 

team focus the evaluation on the technical properties of the concepts whereas end users 

evaluate the actual value and correctness of defined concepts within a given organization 

or domain. Some technical validation has been performed. The HermiT reasoner has also 
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been used for consistency check of the Ontology. However, it is worth noting that the 

ontologies have not been validated from any official body or any organisation. They have 

been developed based on available sources mentioned previously. Hence, this is the 

frame of reference for the technical evaluation. As mentioned previously, the purpose of 

the development of ontologies is for research purposes and for exploring their benefits for 

communication, common understanding, and interoperability in complex domains. The 

ontologies cannot be considered as complete or validated by end-users. It includes some 

indicative concepts to indicate the above benefits. Besides, the ontologies must always be 

enriched which implies that the continuous evaluation and formal validation of the 

ontologies is required.  

5.5 Knowledge Modelling 

5.5.1 Generic Customs Ontology 

The Generic Customs Ontology has taken advantage of all OWL components for 

representing various concepts of Customs business with special focus on the risk 

management and risk analysis. The modelled information in this Ontology has been 

captured from the knowledge sources indicated in section 5.2. 

Before discussing the Ontology, it is mentioned that the Protégé tool (Protégé) has 

been used as the Ontology editor for this Generic Customs Ontology. The OntoGraf plugin 

(Falconer 2010) of the Protégé tool has been used for visualising the Ontology and 

presenting some graphs in the subsequent sections. In an OntoGraf graph, the rectangles 

with yellow circle in the top left corner represent the classes of the ontology. The 

rectangles with purple diamond shape in the top left corner represent the individuals of 

the ontology. The solid purple line between two classes indicate hierarchy relationship (has 

subclass) while the dashed line between two classes indicate relationship due to the 

existence of object property. 
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A number of classes have been defined to represent various Customs concepts or 

entities. Three annotation types have been used as attributes for the definition of classes. 

These are the label, comment and source attributes. The comment annotation has been 

used to provide a small description about the specific class and hence the user of the 

Ontology to be able to understand the various business concepts. An example for the 

“Customs Declaration” class (Figure 5-2) is the comment annotation ‘means the act 

whereby a person indicates in the prescribed form and manner a wish to place goods 

under a given customs procedure, with an indication, where appropriate, of any specific 

arrangements to be applied’”. The source annotation mainly indicates the knowledge 

source from which this class captured. For the specific example, the ‘Article 4(10) of 

Modernised Customs Code No 450/2008’ was the source for the “Customs Declaration” 

class. Some illustrative examples from the developed Ontology are presented and 

discussed in the following paragraphs. 

<AnnotationAssertion> 

   <AnnotationProperty abbreviatedIRI="rdfs:comment"/> 

   <IRI>#Customs_declaration</IRI> 

   <Literal datatypeIRI="&xsd;string">means the act whereby a person 

indicates in the prescribed form and manner a wish to place goods 

under a given customs procedure, with an indication, where 

appropriate, of any specific arrangements to be applied</Literal> 

</AnnotationAssertion> 

Figure 5-2: Example of OWL syntax for comment annotation on “Customs Declaration” class 

The ontology can be used to present the hierarchical structure of various entities. 

Focusing on the “Risk Management Framework” and specifically on the “EU Risk 

Management Framework” class, it is shown that the “EU Risk Management Framework” 

(DGTAXUD 2004) consists of some activities and that manages the Customs Risk by using 

the OWL component object property. The object properties are used to express the various 

relationships between the concepts/classes of the Ontology. In this case, the “EU Risk 

Management Framework” class has the object properties ‘consists_of_activities’ and 

‘is_used_to_manage_risks’. The first one specifies that the “EU Risk Management 
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Framework” consist of a number of activities, which are defined by the entity “Risk 

Management activities”. The second object property defines that the “EU Risk 

Management Framework” is used to manage the “Customs Risk” entity (see Figure 5-3). In 

addition to the above, the “Risk Management Framework” is a disjoint class with “Risk 

Management Activities” class. The latter class aims to represent the various activities that 

shall be performed in the context of a risk management.  

 
Figure 5-3: Example with Relationships of “EU Risk Management Framework” class with other 

concepts (OntoGraf Graph) 

As it is shown in Figure 5-4, the ontology models the main activities of risk 

management as defined in (DGTAXUD 2004). The “Risk Analysis” activity consists of the 

“Identify Risk Data”, “Analyse Risks”, and “Weigh Risks” sub-activities. As it is stated in 

(DGTAXUD 2004), ranking of assessment of risk into “High”, “Medium” and “Low” is 

widespread. Therefore, the example of Figure 5-5 depicts that the “Weigh Risks” sub-class 

has been defined as a value partition of “High Risk”, “Medium Risk” and “Low Risk” 

aiming to model this. The value partition is considered as a design pattern (Jupp et al. 

2007). This pattern has been used to restrict the values of “Weigh Risks” and indicate that 

it has equivalent class the “High Risk or Low Risk or Medium Risk”. 
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Figure 5-4: “Risk Management Activities” class hierarchy with two levels of children (OntoGraf 

Graph) 
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Figure 5-5: “Weigh Risks” class hierarchy (OntoGraf Graph) 

Moreover, the hierarchy of “Analyse Risks” class depicts that there are two types of 

analysis; analysis on proven risks and on potential risks (Figure 5-6). This is also reflected 

by looking at the “Customs Risk” concept, which classifies the risks into potential and 

proven risks (DGTAXUD 2004) (Figure 5-6). The Ontology presents the fact that the 

“Analyse Proven Risks” and “Analyse Potential Risks” activities are used to analyse the 

“Proven Risks” and “Potential Risks” respectively through OWL object properties. In this 

particular case, the object property ‘is_used_to_analyse_potential_risk’ relates the 

“Analyse Potential Risks” class with the “Potential Risk” class. The same applies for the 

object property ‘is_used_to_analyse_proven_risks’, which links the “Analyse Proven Risks” 

class with the “Proven Risk” class. 

 
Figure 5-6: Relationships between “Analyse Risks” and “Customs Risk” classes (OntoGraf Graph) 
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The “Analyse Risk of consignment” class denotes the activity, which is performed 

for analyzing the risk of a consignment using the declaration data (DGTAXUD 2004; EEC 

1993). This is modelled in the Ontology with two object properties. The first one 

(‘analyse_risk_of_consignment’) relates the “Analyse Risk of consignment” class with the 

“Consignment” class while the second one 

(‘is_based_for_analysing_the_risk_of_consignment_on’) relates the “Analyse Risk of 

consignment” class to “Customs Declaration” or “Summary Declaration” classes. Finally, 

the object property ‘is_considered_for_the_control_decision’ between the “Analyse Risk of 

consignment” class and the “Control consignment” class verifies the fact that outcome of 

risk analysis of consignment will be one of the criteria for selecting to perform movement 

inspection (EEC 2008b). The “Control consignment” activity is related to the Treatment 

activity of risk management (DGTAXUD 2004). This has been modelled in the Ontology 

with the object property ‘is_part_of_treatment’ between the “Control consignment” class 

and the “Treatment” class (Figure 5-7). 
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Figure 5-7: Relationships of Analyse Risk of Consignment class with other concepts (OntoGraf 

Graph) 

5.5.2 Physical Entity Ontologies 

UC4 Manage Physical Entities describes in high-level the management of the 

ontologies of physical entities. It is considered that a “Physical Entity Ontology” defines the 

attributes of the physical entity using object and data properties. Figure 5-8 depicts an 

example of such Ontology for the “Physical Entity 1”. The “Physical Entity 1” could 

represent the import consignment considering the example mentioned in section 4.1.1. 

The “Import Consignment” can be considered a sub-class of “Consignment” class 

presented in Figure 5-7 (Generic Customs Ontology).  

The Protégé tool (Protégé) has been used as the Ontology editor for this “Physical 

Entity Ontology”. The model of Figure 5-8 has been generated by OWLGrEd tool (OWLGrEd 

2013) via the OWLGrEd Protégé Plugin. The OWLGrEd tool uses a specific notation for 
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representation of an OWL Ontology. This representation has been used because it 

visualises various constraints of the Ontology, including data properties and object 

properties. The rectangles of Figure 5-8 represent the classes of the Ontology. The 

relationships of sub classes with super class are presented in Figure 5-8 with purple 

colour ending with an arrow. The object properties along with cardinality restrictions 

between two classes are shown with red associations in Figure 5-8. Finally, complex or 

equivalent classes are also shown as rectangles starting with equal symbol. 

 
Figure 5-8: Example of “Physical Entity Ontology” (with OWLGrEd notation) 

The “Physical Entity 1” class of Figure 5-8 models the root concept of Physical 

Entity. As it is shown in the example, this Physical Entity has four data properties and two 

object properties. Classes “Group of Attributes 1” and “Group of Attributes 2” models the 

grouping of some data properties. The ‘has_attributes’ object property has been used to 

relate the “Physical Entity 1” class with “Group of Attributes 1” and “Group of Attributes 2” 

classes. Therefore, the object property ‘has_attributes’ is used to relate a Physical Entity 

class with the classes representing a group of attributes. In the “Physical Entity Ontology”, 

the domain of the object property ‘has_attributes’ is the “Physical Entity 1” class and the 

ranges are defined as “Group of Attributes 1” or “Group of Attributes 2”. Figure 5-8 

presents this as a complex or equivalent class “=Group of Attributes 1 or Group of 

Attributes 2”, which is linked with the “Physical Entity 1” class though the object property 
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‘has_attributes’. The definition of object property ‘has_attributes’ with OWL syntax is 

shown in Figure 5-9. 

    <ObjectPropertyDomain> 

        <ObjectProperty IRI="#has_Attributes"/> 

        <Class IRI="#Physical_Entity_1"/> 

    </ObjectPropertyDomain> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#has_Attributes"/> 

        <Class IRI="#Group_of_Attributes_1"/> 

    </ObjectPropertyRange> 

    <ObjectPropertyRange> 

        <ObjectProperty IRI="#has_Attributes"/> 

        <Class IRI="#Group_of_Attributes_2"/> 

    </ObjectPropertyRange> 

Figure 5-9: Definition of object property ‘has_attributes’ with OWL syntax 

The group of attributes represent a group of information for the Physical Entity. 

One group of attributes might have more than one instance in a Physical Entity (repetition) 

or might be optional. Such cases can be modelled with cardinality restrictions of the object 

property ‘has_attributes’. For instance, the example of Figure 5-8 defines that the 

“Physical Entity 1” class might have maximum 1 “Group of Attributes 1” and exactly 1 

“Group of Attributes 2”. The first means that “Group of Attributes 1” might be present in 

the “Physical Entity 1”, while the second denotes that “Physical Entity 1” must have one 

instance of “Group of Attributes 2”. The OWL syntax for such cardinality restrictions of 

object properties is shown in Figure 5-10. 

Attribute 1, Attribute 2, Attribute 3 and Attribute 4 can be considered as the main 

attributes of “Physical Entity 1” and they are modelled as data properties of the class 

(‘Attribute_1’, ‘Attribute_2’, ‘Attribute_3’ and ‘Attribute_4’ respectively). Figure 5-8 shows 

that all data properties are required. Moreover, the format or data type of each data 

property is shown in Figure 5-8 after the attribute name followed by the symbol “:”. The 

OWL syntax for cardinality restrictions of data properties of “Physical Entity 1” is shown in 

Figure 5-10. 

    <SubClassOf> 

        <Class IRI="#Physical_Entity_1"/> 

        <ObjectExactCardinality cardinality="1"> 

            <ObjectProperty IRI="#has_Attributes"/> 

            <Class IRI="#Group_of_Attributes_2"/> 
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        </ObjectExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Physical_Entity_1"/> 

        <ObjectMaxCardinality cardinality="1"> 

            <ObjectProperty IRI="#has_Attributes"/> 

            <Class IRI="#Group_of_Attributes_1"/> 

        </ObjectMaxCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Physical_Entity_1"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#Attribute_1"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Physical_Entity_1"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#Attribute_2"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Physical_Entity_1"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#Attribute_3"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Physical_Entity_1"/> 

        <DataExactCardinality cardinality="1"> 

            <DataProperty IRI="#Attribute_4"/> 

            <Datatype abbreviatedIRI="xsd:integer"/> 

        </DataExactCardinality> 

    </SubClassOf> 

     

Figure 5-10: OWL syntax for object properties restrictions on Physical Entity 1 class 

An ontology and its elements (e.g. classes, object properties, data properties) are 

identified with the  Internationalized Resource Identifiers (IRIs) (W3C 2012). The IRIs of 

classes and data properties of “Physical Entity Ontology” are used in “Fuzzy Risk Model 

Ontology” (section 5.5.2) in order to refer to those classes and data properties depending 

on the need. The IRIs are used to uniquely identify the referenced resources. 

The example of “Physical Entity Ontology” in Figure 5-8 is also used in the “Fuzzy 

Risk Model Ontology” (section 5.5.3) and in the example presented in Chapter 6. 
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5.5.3 Fuzzy Risk Model Ontology 

The “Fuzzy Risk Model Ontology” defines concepts of fuzzy risk model, which is 

used for risk analysis with fuzzy logic technique (please see section 4.1.2). UC1 Manage 

Fuzzy Risk Models (4.3.1) described in high-level the management of fuzzy risk models. 

These models are based on the “Fuzzy Risk Model Ontology”. Various OWL components 

have been used for representing concepts and relationships of “Fuzzy Risk Model 

Ontology”. The modelling of concepts has been based on the fuzzy logic principles and 

fuzzy inference systems discussed in section 3.6. 

Figure 5-13 illustrates the main class of the ontology, which is the “Fuzzy Risk 

Model”. As it is shown, the fuzzy risk model is related to a number of classes of the 

ontology, which represent some concepts. The fuzzy risk model analyses a specific 

physical entity (section 4.1.1). This logical relationship is modelled with the object property 

‘analyse_Physical_Entity’ between the “Fuzzy Risk Model” class and the “Physical Entity” 

class. The constraint ‘analyse_Physical_Entity exactly 1 Physical Entity’ is added in the 

class definition in order to restrict and specify that the fuzzy risk model concern only one 

physical entity. The OWL syntax of this restriction is shown in Figure 5-11.  

In section 5.5.2, it was described that a Physical Entity is defined with a “Physical 

Entity Ontology”. As mentioned before, a fuzzy risk model is mapped to a specific physical 

entity class definition (e.g. “Physical Entity 1”) of a particular “Physical Entity Ontology”. In 

that example, the “Physical Entity 1” class (Figure 5-8) is the root concept of “Physical 

Entity Ontology”. The data property ‘Analyse_Physical_Enity_IRI’ of “Fuzzy Risk Model” 

class is used for mapping the fuzzy risk model with a specific physical entity class 

definition (e.g. “Physical Entity 1”) of a particular “Physical Entity Ontology”. This data 

property (‘Analyse_Physical_Enity_IRI’) must have 1 Physical Entity IRI 

(‘Analyse_Physical_Enity_IRI exactly 1 anyURI’). Therefore, the value of this data property 

is the corresponding Physical Entity IRI as stated in section 5.5.2. This is also shown in 
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Figure 5-19. An example is also presented in section 6.4 when fuzzy modelling is further 

discussed.  

    

    <SubClassOf> 

        <Class IRI="#Fuzzy_Risk_Model"/> 

        <ObjectMinCardinality cardinality="2"> 

            <ObjectProperty IRI="#has_Input_variables"/> 

            <Class IRI="#Fuzzy_Input_Variable"/> 

        </ObjectMinCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Fuzzy_Risk_Model"/> 

        <ObjectExactCardinality cardinality="1"> 

            <ObjectProperty IRI="#analyse_Physical_Entity"/> 

            <Class IRI="#Physical_Entity"/> 

        </ObjectExactCardinality> 

    </SubClassOf> 

    <SubClassOf> 

        <Class IRI="#Fuzzy_Risk_Model"/> 

        <ObjectExactCardinality cardinality="1"> 

            <ObjectProperty IRI="#has_Output_variables"/> 

            <Class IRI="#Fuzzy_Output_Variable"/> 

        </ObjectExactCardinality> 

    </SubClassOf>  

Figure 5-11: OWL syntax for some restrictions on “Fuzzy Risk Model” class 

Figure 5-13 shows that a fuzzy risk model has fuzzy rules with the object property 

‘has_Fuzzy_Rules’ between the class “Fuzzy Risk Model” and “Fuzzy Rule”. It is also 

depicted that the “Fuzzy Risk Model” has “Fuzzy Input Variable” and “Fuzzy Output 

Variable” and these are modelled with object properties: ‘has_Input_variable’ and 

‘has_Output_variable’ respectively. However, it is considered that the “Fuzzy Risk Model” 

has minimum 2 “Fuzzy Input Variables” and 1 “Fuzzy Output Variables” (MISO). In the 

“Fuzzy Risk Model Ontology”, this is specified with cardinality restrictions “min” and 

“exactly” accordingly. This is not visible in Figure 5-13 but it can be seen with OWL syntax 

in Figure 5-11. 

In addition, Figure 5-13 shows that “Fuzzy Input Variable” and “Fuzzy Output 

Variable” are both “Fuzzy variable” using the ‘has subclass’ relationship. Moreover, it is 

modelled that “Fuzzy variable” has “Membership Function” with the ‘has_MF’ object 

property. In addition, the restriction that “Fuzzy variable” has minimum 1 membership 

function (‘has_MF min 1 Membership_Function’) is defined in the “Fuzzy variable” class 
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definition. The cardinality restriction of minimum 1 membership function is inherited by 

both “Fuzzy Input Variable” and “Fuzzy Output Variable” classes because they are sub-

classes of the “Fuzzy variable”. This is also visualised in Figure 5-12. 

 
Figure 5-12: Relationships between Fuzzy Variable, Membership Function, Fuzzy Input Variable and 

Fuzzy Output Variable (with OWLGrEd notation) 

Moreover, Figure 5-12 indicates that the “Fuzzy Input Variable” class has a data 

property ‘is_based_on_attribute_IRI’ with cardinality restriction exactly 1. This data 

property can be used to indicate the mapping of “Fuzzy Input Variable” of the fuzzy risk 

model with a specific attribute of Physical Entity (e.g. ‘Attribute_1’ of “Physical Entity 

Ontology” discussed in 5.5.2). A “Fuzzy Input Variable” applies to an attribute of physical 

entity so the mapping is necessary for the risk analysis of an instance of the particular 

physical entity. The value of this data property is the IRI of the relevant physical entity data 

property (attribute). An example is also presented in section 6.4 when fuzzy modelling is 

further discussed. This is also shown in Figure 5-19. 

 Finally, the concept “Fuzzy Parameter” it is defined as equivalent to “Fuzzy 

Variable” in this Ontology. The equivalent class feature has been used to indicate whether 

one concept is the same with another although they have different names.   

Figure 5-13 depicts the relationship (‘has_Fuzzy_Rules’ object property) between 

the “Fuzzy Risk Model” and the “Fuzzy Rule”. In this Ontology, the various parts of a rule 

antecedent and consequence have been defined as concepts. Figure 5-15 visualises how 
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the Ontology specifies that a “Fuzzy Rule” has antecedent and has consequent. This is 

done through the corresponding object properties ‘has_antecedent’ and ‘has_consequent’ 

of “Fuzzy Rule” class with “Fuzzy Rule Antecedent” and “Fuzzy Rule Consequent” classes 

respectively. However, it is defined that a “Fuzzy Rule” has exactly 1 “Fuzzy Rule 

Antecedent” and exactly 1 “Fuzzy Rule Consequent”. The antecedent of a rule might have 

various parts combined with fuzzy operators. For that purpose, the object property 

‘antecedent_consists_of’ is defined to indicate that the “Fuzzy Rule Antecedent” consists 

of “Fuzzy Rule Antecedent Component”. However, the definition is more specific and the 

class definition contains that the “Fuzzy Rule Antecedent” consists of either exactly 1 

“Fuzzy Rule Antecedent Component” or minimum 2 “Fuzzy Rule Antecedent Component” 

and a fuzzy operator (AND or OR). The expression defined in the ontology is the following:  

“((antecedent_consists_of min 2 Fuzzy_Rule_Antecedent_Component) and 

(Fuzzy_Operator exactly 1 {"AND" , "OR"})) or (antecedent_consists_of exactly 1 

Fuzzy_Rule_Antecedent_Component). Finally, the OWL syntax of the “Fuzzy Rule 

Antecedent” class definition is shown in Figure 5-14. 
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Figure 5-13: Top Level Diagram for “Fuzzy Risk Model Ontology” (OntoGraf Graph) 
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    <SubClassOf> 

        <Class IRI="#Fuzzy_Rule_Antecedent"/> 

        <ObjectUnionOf> 

            <ObjectIntersectionOf> 

                <ObjectMinCardinality cardinality="2"> 

                    <ObjectProperty IRI="#antecedent_consists_of"/> 

                    <Class IRI="#Fuzzy_Rule_Antecedent_Component"/> 

                </ObjectMinCardinality> 

                <DataExactCardinality cardinality="1"> 

                    <DataProperty IRI="#Fuzzy_Operator"/> 

                    <DataOneOf> 

                        <Literal 

datatypeIRI="&rdf;PlainLiteral">AND</Literal> 

                        <Literal 

datatypeIRI="&rdf;PlainLiteral">OR</Literal> 

                    </DataOneOf> 

                </DataExactCardinality> 

            </ObjectIntersectionOf> 

            <ObjectExactCardinality cardinality="1"> 

                <ObjectProperty IRI="#antecedent_consists_of"/> 

                <Class IRI="#Fuzzy_Rule_Antecedent_Component"/> 

            </ObjectExactCardinality> 

        </ObjectUnionOf> 

    </SubClassOf> 

 

Figure 5-14: OWL syntax for restrictions in “Fuzzy Rule Antecedent” class 

It is specified that the “Fuzzy Rule Antecedent Component” is based on a “Fuzzy 

Input Variable” (object property ‘antecedent_is_based_on’) and is defined with a 

“Membership Function” (linguistic variable) (object property ‘is_defined_with_MF’). 

However, in order to be more specific on the definition of the “Fuzzy Rule Antecedent 

Component”, the definition contains that the “Fuzzy Rule Antecedent Component” consist 

of exactly 1 “Fuzzy Input Variable”, exactly 1 membership function (“Membership 

Function” class) and whether the complement of membership function (data property of 

“Fuzzy Rule Antecedent Component”) is applicable. This is illustrated in the example of 

OWL syntax of the “Fuzzy Rule Antecedent Component” class definition (Figure 5-16). 
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Figure 5-15: Relationships of “Fuzzy Rule” concept with other concepts (OntoGraf Graph) 
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    <SubClassOf> 

        <Class IRI="#Fuzzy_Rule_Antecedent_Component"/> 

        <ObjectIntersectionOf> 

            <ObjectIntersectionOf> 

                <ObjectExactCardinality cardinality="1"> 

                    <ObjectProperty IRI="#is_defined_with_MF"/> 

                    <Class IRI="#Membership_Function"/> 

                </ObjectExactCardinality> 

                <DataExactCardinality cardinality="1"> 

                    <DataProperty IRI="#Complement_MF"/> 

                    <Datatype abbreviatedIRI="xsd:boolean"/> 

                </DataExactCardinality> 

            </ObjectIntersectionOf> 

            <ObjectExactCardinality cardinality="1"> 

                <ObjectProperty IRI="#antecedent_is_based_on"/> 

                <Class IRI="#Fuzzy_Input_Variable"/> 

            </ObjectExactCardinality> 

        </ObjectIntersectionOf> 

    </SubClassOf> 

 

Figure 5-16: OWL syntax of definition of “Fuzzy Rule Antecedent Component” class 

Similarly, the Ontology expresses that the “Fuzzy Rule Consequent” of a “Fuzzy 

Rule” is based on a “Fuzzy Output Variable” with the object property 

‘consequent_is_based_on’ (Figure 5-17) and that is defined with a membership function 

(linguistic variable) with the object property ‘is_defined_with_MF’. 

 

<Declaration> 

        <ObjectProperty IRI="#consequent_is_based_on"/> 

</Declaration> 

 

<ObjectPropertyDomain> 

    <ObjectProperty IRI="#consequent_is_based_on"/> 

    <Class IRI="#Fuzzy_Rule_Consequent"/> 

</ObjectPropertyDomain>  

 

<ObjectPropertyRange> 

    <ObjectProperty IRI="#consequent_is_based_on"/> 

    <Class IRI="#Fuzzy_Output_Variable"/> 

</ObjectPropertyRange> 

 

Figure 5-17: OWL code with parts of definition of ‘consequent_is_based_on’ object property 

More specifically, it is specified that the “Fuzzy Rule Consequent” consists of 

exactly 1 “Fuzzy Output Variable”, exactly 1 membership function (“Membership Function” 

class) and whether the complement of membership function (data property of “Fuzzy Rule 
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Consequent”) is applicable. This is visible in the example of OWL syntax of the “Fuzzy Rule 

Consequent” class definition shown in Figure 5-18.  

     

    <SubClassOf> 

        <Class IRI="#Fuzzy_Rule_Consequent"/> 

        <ObjectIntersectionOf> 

            <ObjectExactCardinality cardinality="1"> 

                <ObjectProperty IRI="#consequent_is_based_on"/> 

                <Class IRI="#Fuzzy_Output_Variable"/> 

            </ObjectExactCardinality> 

            <ObjectExactCardinality cardinality="1"> 

                <ObjectProperty IRI="#is_defined_with_MF"/> 

                <Class IRI="#Membership_Function"/> 

            </ObjectExactCardinality> 

            <DataExactCardinality cardinality="1"> 

                <DataProperty IRI="#Complement_MF"/> 

                <Datatype abbreviatedIRI="xsd:boolean"/> 

            </DataExactCardinality> 

        </ObjectIntersectionOf> 

    </SubClassOf> 

 

Figure 5-18: OWL syntax of definition of “Fuzzy Rule Consequent” class 

Apart from classes and object properties, which indicate the various concepts of 

fuzzy risk model as well as their complex relationships, various data properties have also 

been defined in various Ontology classes. These data properties indicate attributes of the 

classes but also they can be used in various restrictions as described in the examples 

above. Some other examples of data properties usages follow. 

For instance, the “Fuzzy Risk Model” class has data properties such as Fuzzy 

Model Name (‘Fuzzy_Model_Name’), FIS type (‘FIS_Type’), Aggregation Method 

(‘Aggregation_Method’), Implication Method (‘Implication_Method’), method for AND 

operator (‘And_Method’), method for OR operator (‘Or_Method’), etc. Some of them are 

required for the execution of the model and the fuzzy reasoning according to the fuzzy 

logic principles. In addition, restrictions to the value of some data properties have been 

defined. An example is FIS type (‘FIS_Type’) data property, which can take only the 

following two values: (Mamdani or Sugeno). The Data Property Range of this data property 

is defined with exact (DataOneOf) literal values {"Mamdani" , "Sugeno"}. 

Below, an overview of the Fuzzy Risk Ontology is provided (Figure 5-19): 
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Figure 5-19: “Fuzzy Risk Model Ontology” – Class Diagram View (with OWLGrEd notation) 
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5.6 Summary 

Following the description of the concept in Chapter 4, the semantic modelling and 

ontologies part discussed in this chapter. The role of ontologies in this concept clarified in 

5.1. Due to the complexity of the domain, an architecture of ontologies presented with aim 

to manage better the various concepts. Benefits such modularity, maintainability, re-

usability and extensibility discussed. In addition, the linking of ontologies mentioned for 

cases where there is the need to elaborate to concepts or to re-use concepts. It is worth 

noting that the decomposition is a matter of decision for organising the ontologies. The 

current decomposition described in detail, however, some further decomposition could 

have been performed for “Generic Customs Ontology” or integration with other upper 

ontologies and/or middle-level ontologies for re-using existing concepts from existing 

published ontologies. 

Some illustrative examples presented above to demonstrate the representation of 

concepts at various levels (e.g. domain concepts or concepts related to Fuzzy Risk 

Ontology based on the principles of the fuzzy logic). In these examples, various OWL 

components were used. They used to depict the hierarchical structure of entities and the 

modelling of equality between concepts using equivalent classes (modelling same 

concepts (synonymous) with different names). Examples presented the usage of 

ontologies syntax for the definition of enumeration in data properties restricting the 

allowed data (e.g. fuzzy operator data property). In addition, object properties used for 

modelling the complex relationships among concepts. Property restrictions (e.g. cardinality 

restrictions) added in object properties to enrich definitions. The example of value partition 

presented for modelling specific concepts (e.g. example of Weigh Risk defined as the 

union of “High Risk”, “Medium Risk”, and “Low Risk”). As a conclusion, it is considered 

that this chapter addresses the second and third objectives of this research as expressed 

in section 1.4. A conceptual architecture of ontologies developed supporting the concept 
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presented in Chapter 4. In addition, ontology models developed based on this architecture 

to represent concepts especially specific to the risk analysis with fuzzy logic technique. 

Those ontologies will be further used for fuzzy rule-based reasoning. Both fuzzy modelling 

and fuzzy reasoning are discussed in Chapter 6. 

Finally, it is emphasized once more that this is a research activity for examining the 

use of ontologies in the Customs domain as a tool for modelling concepts and semantics 

in order to facilitate the communication, understanding, and interoperability in the context 

of risk analysis. This is also discussed in section 5.4. 
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Chapter 6. Fuzzy Modelling and 

Reasoning  

This chapter investigates the fuzzy modelling and reasoning following the 

information presented in the previous chapters. For that purpose, fuzzy inference systems 

MAMDANI and SUGENO are analysed. The assessment approach is described along with 

the constraints for that research. Integration of ontologies (fuzzy risk model) with fuzzy 

rule-based reasoning is also presented. In addition, it is specified which types of FIS are 

used in this investigation and various decisions. The Linguistic Fuzzy Modelling (LFM) 

practises and other principles are discussed during this assessment. The various tools 

used for this assessment are also mentioned. At the end, analysis of the results is 

presented.  

6.1 Overview 

The fuzzy modelling and reasoning investigated through literature research and 

the development of generic research prototype. This prototype consists of six MISO fuzzy 

inference systems. Five of the fuzzy models are of Mamdani type and one is of Sugeno 

type. Those types of fuzzy inference systems have been discussed in section 3.6. In 

addition, the five Mamdani type fuzzy inference systems have different defuzzification 

methods.  

The assessment focuses in the fuzzy reasoning. In the context of this generic 

research prototype, the ontologies are used for specifying the knowledge base with fuzzy 

risk models (e.g. fuzzy variables and membership functions). All fuzzy risk models are 

based on the principles of “Fuzzy Risk Model Ontology” discussed in section 5.5.3. In 

addition, it is considered that in this hypothetical scenario the fuzzy risk models created in 

the context of Physical Entity described in “Physical Entity Ontology” of section 5.5.2. 
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It is worth noting that one of the constraints of this research, and which had to be 

addressed for the development of the research prototype and the development of those 

fuzzy inference systems, was the approach and data to be used for that activity. 

Considering that previous sections focus on Customs domain, it is clarified that for the 

purpose of this activity no information and knowledge for real scenarios and real data are 

available, known, or found in order to be used for the development of fuzzy inference 

system and for evaluation purposes, due to the sensitive nature of such information. 

Therefore, this research has not access to such kind of information.  

Consequently, the above constraint was an important factor for deciding to 

investigate fuzzy modelling and fuzzy reasoning (apart from bibliographic research) 

through the development of the aforementioned fuzzy inference systems based on 

randomly machine-generated evaluation data and not real classes of data. The evaluation 

data is randomly generated data, is not real and not specific to a real scenario. In fact, this 

fuzzy inference system is considered a generic FIS and it examines fuzzy reasoning from 

engineering point of view. Classes of data prepared for this testing and considering the 

constraints of this research described above. This data is designed in such a way to expect 

a specific output result based on the input vector in order to be able to compare the 

expected result and the actual result from fuzzy reasoning. The membership functions and 

fuzzy rules have been designed based on the classes of data and the evaluation data set 

in order to check the output of fuzzy inference per model. A set of evaluation data is 

randomly generated based on the classes of data defined in Table 6-2. The purpose is to 

evaluate the developed prototype. The research prototype FIS is evaluated against this 

randomly generated evaluation data set in order to analyse the various outputs of the 

system. More information about evaluation data used in this prototype is provided in 

section 6.2.  

The fuzzy modelling and reasoning are discussed in the subsequent sections 

following literature research and by including information from the research prototype 

activity. 
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Finally, the activities described in the Use Cases UC1 Manage Fuzzy Risk Models 

(4.3.1), UC2 Perform Inference(4.3.2) and UC4 Manage Physical Entities(4.3.4) are 

required and performed for this prototype.  

6.2 Dataset preparation for Research Prototype 

For investigating the fuzzy modelling and fuzzy reasoning, evaluation data is used 

for testing and evaluation purposes of the research prototype. As stated in section 6.1, the 

evaluation data used in this research prototype is randomly generated data and is not real 

as discussed in the constraints of this research. A set of evaluation data is randomly 

generated based on the classes of data as shown in Table 6-2. Similarly, the classes of 

data shown in Table 6-2 have also been prepared for this testing and considering the 

constraints described in section 6.1. The classes are designed in such a way that based 

on specific input vector to expect a specific output result within the expected output range. 

Hence, this enables the comparison of the expected result with the actual result following 

the execution of the models (inference process). Each parameter or variable can take a 

specific range of values per class. The input values are generated randomly based on the 

defined range per class. The classes are built with the two-value logic and will be 

represented with fuzzy logic. For instance, the input parameter 4 (P4) is defined for Class A 

that takes values between ‘0’ to ‘9’. The value ‘10’ for P4 does not belong to Class A. The 

number of evaluation data records generated per Class for this prototype is shown in Table 

6-1. The 61% of data represents class A as it is illustrated in the table. The 92% of data is 

of basic classes A, B, C, and D. As it is shown in Table 6-2, the remaining 8% is distributed 

to the classes that group set of data, which cannot be mapped to the basic classes A, B, C, 

and D based on the two-value logic. For instance, the class indicated as ‘P4 NOT Class A 

and NOT Class B’ cannot be considered neither as Class A nor as Class B because values 

for P4 are not in the range of those classes with the two-value logic. For the example of 

class ‘P4 NOT Class A and NOT Class B’, the input parameter 4 (P4) takes values ‘20’ to 
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‘30’. As stated above, the values of P4 in class A are between ‘0’ to ‘9’; this range of data 

cannot be indicated as Class A with two-value logic. For the example of class ‘P4 NOT 

Class A and NOT Class B’, it means that members of this class cannot belong in either 

Class A or Class B. However, this can be considered in fuzzy logic with the definition of 

fuzzy sets accordingly. As it shown in Figure 6-10, values of this range have different 

degree of membership in the membership functions of P4. 

Table 6-1: Number of evaluation data records generated per Class 

Classes of Data % of Total 

Records 

# of 

Records 

Class A 61,00% 1220 

Class B 17,00% 340 

Class C 10,00% 200 

Class D 4,00% 80 

P4 NOT Class A and NOT Class B  

(with P4 neither fully MF_1 nor fully MF_2) 
2,00% 40 

P3 NOT Class A and NOT Class C  

(with P3 neither fully MF_1 nor fully MF_2) 
2,00% 40 

P3 NOT Class B and NOT Class C  

(with P3 neither fully MF_1 nor fully MF_2) 
2,00% 20 

P4 NOT Class C and NOT Class D  

(with P4 neither fully MF_2 nor fully MF_3) 
1,00% 40 

P3 NOT Class C and NOT Class D  

(with P3 neither fully MF_2 nor fully MF_3) 
1,00% 20 

Total 100% 2000 

 

 
Finally, the Expected Output MIN and the Expected Output MAX should be defined 

for the classes other than A, B, C, and D in order to be able to compare the actual output 

for those classes. Therefore, for this research prototype, the Expected Output MIN for the 

classes other than A, B, C, and D is defined as the midrange of Class with lowest values. 

The Expected Output MAX for the classes other than A, B, C, and D is defined as the 

midrange of the class with highest values. Therefore, in the case of ‘P4 NOT Class A and 

NOT Class B’ the Expected Output MIN and Expected Output MAX are calculated for this 

research prototype as shown in Figure 6-1. In this particular example, Class A has the 

lowest values and hence the Expected Output MIN is calculated based on the midrange of 

this class. 
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Figure 6-1: Example of MIN and MAX calculation of ‘P4 NOT Class A and NOT Class B’ class 

Table 6-2: Classes of evaluation data3 

 Expected Output 

Class Name Expected 

Output MIN 

Expected 

Output MAX 

Midrange 

Class A 0 15 7.5 

Class B 25 45 35 

Class C 55 75 65 

Class D 85 100 92.5 

P4 NOT Class A and NOT Class B (with 

P4 neither fully MF_1 nor fully MF_2) 

7.5 35 21.25 

P3 NOT Class A and NOT Class C (with 

P3 neither fully MF_1 nor fully MF_2) 

7.5 65 36.25 

P3 NOT Class B and NOT Class C (with 

P3 neither fully MF_1 nor fully MF_2) 

35 65 50 

P4 NOT Class C and NOT Class D (with 

P4 neither fully MF_2 nor fully MF_3) 

65 92.5 78.75 

P3 NOT Class C and NOT Class D (with 

P3 neither fully MF_2 nor fully MF_3) 

65 92.5 78.75 

6.3 Tools 

Two tools have been primarily used for the purposes of this research prototype. 

These are the Protégé and the MATLAB software. In this prototype, the Protégé tool 

(Protégé) has been used as the Physical Entity Manager/Editor component and also as 

part of Fuzzy Risk Analysis (Fuzzy RA) component for the management of fuzzy risk models 

(section 4.2). Therefore, the Protégé has been used as a tool to define the fuzzy risk 

models (FIS) in the “Fuzzy Risk Model Ontology” (UC1 Manage Fuzzy Risk Models). In 

particular, the “Fuzzy Risk Model Ontology” defines the main parameters of fuzzy risk 

                                                      

 

 

 

3 Classes of evaluation data have been prepared for this testing and considering the 

constraints. Please refer to section 6.1. 
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models (e.g. Defuzzification method), the fuzzy variables of each fuzzy model, the 

membership functions per fuzzy variable and the fuzzy rules. This is further elaborated in 

section 6.5.  

The MATLAB Fuzzy Toolbox has been used in this prototype for performing 

inference as part of Fuzzy Risk Analysis (Fuzzy RA) component. The defined fuzzy risk 

models of the “Fuzzy Risk Model Ontology” are imported to MATLAB. This import is 

performed following a transformation of instances of the “Fuzzy Risk Model Ontology” 

(rendered in RDF) to the specific FIS format of MATLAB. The MATLAB Fuzzy Logic Toolbox 

Graphical User Interface (GUI) Tools can be used for visualising the membership functions 

and the rules (Rule Base) of the fuzzy risk models defined in the “Fuzzy Risk Model 

Ontology”. Moreover, the evaluation data is generated based on classes of data shown in 

Table 6-2 (please see more information in section 6.2). The generated evaluated data is 

imported to MATLAB software as data input for analysis. The analysis is executed once and 

all individual results per model of Table 6-3 are recorded. This has been achieved by 

writing M-files with commands or functions for executing the analysis via the command 

line of MATLAB Fuzzy Toolbox. Inference and execution is discussed in section 6.5. 

Figure 6-2 illustrates diagrammatically in high-level the tools used for this research 

prototype. 

 
Figure 6-2: Overview of Environment – Research Prototype 



Fuzzy Modelling and Reasoning Chapter 6 

 

 Page 105 

 

6.4 Fuzzy Modelling 

This section discusses the fuzzy modelling performed in the context of this 

research prototype. This activity is performed in the context of UC1 Manage Fuzzy Risk 

Models (4.3.1). It discusses the fuzzy modelling with the use of ontologies analysed in 

section 5.5. Particularly, it presents the use of “Fuzzy Risk Model Ontology” for modelling 

fuzzy risk models. Those fuzzy risk models will be used for fuzzy rule-based reasoning. In 

addition, it provides examples of fuzzy modelling for Customs domain and best practises 

from research that can be applied in this activity (e.g. LFM). 

As mentioned before, six fuzzy risk models of two FIS types developed and 

assessed in the context of the research prototype. One fuzzy risk model is based on 

Sugeno FIS and five fuzzy risk models are Mamdani FIS. The main difference among the 

Mamdani FIS models is the defuzzification method. In fact, the following defuzzification 

methods were used: 

1. Centroid: centroid of area 

2. Bisector: bisector of area 

3. MOM: mean value of maximum 

4. SOM: smallest (absolute) value of maximum 

5. LOM: largest (absolute) value of maximum 

The above defuzzification methods have been described in section 3.6.2.  

The same fuzzy inputs (including membership functions), same rule base (Fuzzy 

rules) and same evaluation dataset were used in order the models of this prototype to be 

comparable. The following table (Table 6-3) summarises the fuzzy risk models assessed 

under this research prototype. 

Table 6-3: Fuzzy Models used for Research Prototype 

Model Type # Input # Output Defuzzification Method 

1 MAMDANI 4 1 centroid of area (centroid) 
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2 MAMDANI 4 1 bisector of area (bisector) 

3 MAMDANI 4 1 mean value of maximum (MOM) 

4 MAMDANI 4 1 smallest (absolute) value of 

maximum (SOM) 

5 MAMDANI 4 1 Largest (absolute) value of maximum 

(LOM) 

6 SUGENO 4 1 weighted average (wtaver) 

 

Initially, the fuzzy variables of the models are defined. Apparently, the selection of 

correct input affects also the expected output of the FIS. The fuzzy variables of the model 

are stored in the “Knowledge Base”. Gacto et al. (2011) present an overview of 

interpretability measures and techniques with purpose to have more interpretable 

linguistic fuzzy rule-based systems. Their work focuses on Linguistic fuzzy modelling (LFM). 

The number of features or variables is stated as one measure, which is used for 

controlling the complexity at the level of fuzzy partitions. The readability of knowledge base 

is improved with the reduction of the number of features. Finally, Gacto et al. (2011) 

discusses methods and works related to feature reduction. Torra (2001) states one of the 

two difficulties in complex domains is the fact that the number of variables is many. 

Therefore, this increases exponentially the required rules (it is also called ‘curse of 

dimensionality’). The Hierarchical Fuzzy Systems are mentioned as a technique to handle 

this ‘curse of dimensionality’. This is also discussed in section 4.1.2 to address such 

issues.  

Singh and Sahu (2004) presents a decision support system for Customs 

examination, which incorporates human intelligence and experience of officers using 

linguistic terms and fuzzy logic based expert system. It is stated that fuzzy logic enables 

the use of linguistic variables for risk analysis. It is also mentioned that in reality, several 

factors affect the risk and therefore the overall risk is calculated from all risk factors. An 

example is provided in their work for the risk analysis of an import consignment.  

In addition, Singh et al. (2003) presents an decision support system for Customs 

assessment to detect Valuation frauds. This system uses the expertise of officers to 

determine the sensitivity of the import. As stated by Singh et al. (2003), the sensitivity 
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refers to the belief of import being sensitive to under-valuation. Moreover, it is mentioned 

by Singh et al. (2003) that the number of variables is very high and therefore the HHFC 

was used to reduce the rule base. The sensitivity of each input is given after 

defuzzification and based on expert rules. As stated by Singh et al. (2003), the Mamdani 

FIS has been used with “Centroid” defuzzification method. Four modules are defined with 

different input variables depending on the type. The sensitivity per type and the overall 

sensitivity are calculated based on an algorithm (Singh et al. 2003).  

In this research prototype, all fuzzy models are defined with four (4) input 

parameters (P1, P2, P3, and P4) and a single output (MISO). Figure 6-3 illustrates the 

generic structure of fuzzy inference system for this research prototype, which is either 

Mamdani or Sugeno type as defined in Table 6-3 above. The number of inputs has been 

selected to have a moderate number of variables for the purposes of this research 

prototype requiring less number of rules for fuzzy reasoning.  

 
Figure 6-3: Structure of Fuzzy Inference System 

In this research prototype, all models (Table 6-3) have the same four fuzzy input 

parameters. The membership functions and fuzzy rules of this model are built on those 

fuzzy parameters or variables and based on the classes of Table 6-2. The output of the 

fuzzy model indicates the risk analysis result. Therefore, all models have one output 
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parameter (MISO) as shown in Figure 6-3. The “Fuzzy Risk Model Ontology” defines the 

fuzzy risk models of this research prototype mentioned above. This is visualised in Figure 

6-4. The OntoGraf graph notation is explained in section 5.5.1. As it is shown in Figure 6-4, 

six individuals are defined in the ontology representing the fuzzy risk models. These are 

individuals of “Fuzzy Risk Model” class. In addition, four individuals are defined as 

individuals of “Fuzzy Input Variable” class representing the input parameters of the 

models for this prototype. Finally, two individuals of type “Fuzzy Output Variable” are 

defined to denote the output of the fuzzy model (risk analysis result). 

 
Figure 6-4: Fuzzy risk models of prototype in the “Fuzzy Risk Model Ontology” (OntoGraf Graph) 

Nevertheless, Figure 6-4 do not show the relationships between individuals, which 

are inherited from their classes. The relationships are shown in the examples of Figure 6-5 

and Figure 6-6. Those figures present the input parameters and output parameters of 

“Model 1” and “Model 6” respectively. These are defined using the object properties 
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‘has_Input_variables’ and ‘has_Output_variables’, which discussed in section 5.5.3. It is 

apparent that the same individuals of “Fuzzy Input Variable” type are used to specify the 

input parameters of “Model 1” and “Model 6” fuzzy risk models. This enables the re-

usability if a parameter is the same in more than one model. Finally, Figure 6-5 shows that 

“Model 1” has output parameter the Mamdani fuzzy output (FO_MAM). While Figure 6-6 

depicts that “Model 6” has a Sugeno fuzzy output (FO_SUG). This is in line with Table 6-3. 

 
Figure 6-5: Relationships of “Model 1” with Fuzzy Input and Fuzzy Output variables individuals 

(OntoGraf Graph) 
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Figure 6-6: Relationships of “Model 6” with Fuzzy Input and Fuzzy Output variables individuals 

(OntoGraf Graph) 

The membership functions are defined for each fuzzy parameter (input and output) 

in order to define how the values should be interpreted by the fuzzy model and how the 

output result should be inferred. In fact, the membership function of input fuzzy parameter 

is used to identify the degree of membership of crisp values to each fuzzy set. The latter is 

part of the fuzzification activity of the fuzzy inference process. The membership functions 

of output parameter defines the fuzzy sets that will be used for the expressing the 

consequent part of fuzzy rules. Those membership functions are also used during the 

implication method or rule evaluation for evaluating each fuzzy rule.  

The number of membership functions is mentioned by Gacto et al. (2011) as 

another measure used for controlling the complexity at the level of fuzzy partitions. As 

stated, the number of membership functions should be moderate. An increase on the 

number of membership functions may increase precision of the system but also decrease 

its relevance. In addition, the number of membership functions should not exceed the 

principle     since it is the number of conceptual entities a human being can handle 
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Gacto et al. (2011). Finally, Gacto et al. (2011) discusses methods and works related for 

decreasing number of membership functions.  

A membership function has a linguistic term such as “low”, “medium”, “high”, 

“few”, “some”, etc. representing the fuzzy variable. The fuzzy logic enables to use fuzzy 

sets and express information with linguistic terms. Additionally, the same element can also 

have different degree of membership to different fuzzy sets in contrast to classical (crisp) 

sets. Therefore, the linguistic terms can be used to express information for the input 

variables and the output of the risk analysis. Nevertheless, the relationship of input and 

output is defined with fuzzy rules. In the context of Decision Support System for Customs, 

some examples are also provided by Singh and Sahu (2004) indicating the use of fuzzy 

sets for risk analysis in this domain.  

Analysing the aspect of semantics interpretability at fuzzy partition level, Gacto et 

al. (2011) state that complex fuzzy partitions (huge overlapping between membership 

functions) reduces the semantic interpretability. Some of the properties that are 

mentioned regarding semantics interpretability at fuzzy partition level are completeness or 

coverage, normalisation, distinguishability and complementarity. For instance, 

distinguishability requires that a membership function should represent a linguistic term 

with clear semantics and distinguishable from the other membership functions of this 

fuzzy variable. In addition, normalisation specifies that at least one data point in the 

membership function with membership value equal to one (1).  

The membership functions for this research prototype defined in order to model 

the classes of data shown in Table 6-2. Input1 (P1), Input2 (P2), Input3 (P3) and Input4 

(P4) have 4, 3, 4 and 3 membership functions respectively (Figure 6-10). These 

membership functions are defined in the “Fuzzy Risk Model Ontology” as individuals of 

type “Membership Function”. Figure 6-7 depicts those individuals. In addition, the 

‘has_MF’ object property is used in order to define in the “Fuzzy Risk Model Ontology” the 

membership functions, which belong to each fuzzy parameter. Figure 6-8 presents an 
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example for “Model 1” and “Model 6” of this prototype. Some of the properties at fuzzy 

partition level discussed in the paragraph above are shown in Figure 6-10 and Figure 

6-11. Nevertheless, Gacto et al. (2011) mentions that it is not always possible to have or 

impose strong fuzzy partitions (satisfy the properties mentioned before) because if the 

system is based on experts knowledge then different fuzzy partition might be applied 

appropriate to the problem. Such properties could be considered during the definition of 

fuzzy partitions as semantic interpretability measures by also taking into consideration the 

particular problem. 

Methods for assigning the membership values are intuition, inference, rank 

ordering, angular fuzzy sets, neural networks, genetic algorithms and inductive reasoning. 

Briefly, intuition concerns definition of membership functions based on human intelligence 

and understanding. It is also stated that this involves contextual and semantic modelling 

about an issue. In addition, it is stated for inductive reasoning that the entropy 

minimisation principle is used for the induction, which clusters the parameters 

corresponding to the output classes. It is also mentioned that a well-defined database for 

input-output relationships is needed for inductive reasoning method. However, it is 

mentioned that this method suites for complex systems with plenty and static data but not 

for cases with dynamic data. In the latter case, it does not suit because the membership 

functions changes continuously with time (Ross 2010; Sivanandam et al. 2007).  

The membership functions of input fuzzy parameters of both Mamdani and 

Sugeno type models are shown in Figure 6-10. In this research prototype, the membership 

functions of input fuzzy parameters are the same of all six models defined in Table 6-3. 

Furthermore, the example of Figure 6-8 shows the re-usability of fuzzy parameters and 

membership functions by the fuzzy risk models.  
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Figure 6-7:Fuzzy Variables and Membership Functions (OntoGraf Graph) 
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Figure 6-8: Example with “Model 1” and “Model 6” Fuzzy Variables and Membership Functions (OntoGraf Graph)
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The membership functions of output fuzzy parameter are four for the fuzzy models 

of Mamdani type (please see example in Figure 6-8). In this particular example of research 

prototype, four fuzzy sets are defined for the output. The linguistic term class A, class B, 

class C and class D have been given in this example based on Table 6-2. The consequent 

part of fuzzy rules is constructed based on the aforementioned membership functions. The 

individuals FO_MAM_MF1, FO_MAM_MF2, FO_MAM_MF3 and FO_MAM_MF4 represents 

the linguistic terms class A, class B, class C and class D respectively in the “Fuzzy Risk 

Model Ontology”. Figure 6-9 presents an example for defining the membership function 

name (linguistic term) of FO_MAM_MF1 as class A. A Data Property Assertion is used for 

the data property ‘MF_Name’. 

    <DataPropertyAssertion> 

        <DataProperty IRI="#MF_Name"/> 

        <NamedIndividual IRI="#FO_MAM_MF1"/> 

        <Literal datatypeIRI="&xsd;string">A</Literal> 

    </DataPropertyAssertion> 

Figure 6-9: OWL syntax for MF Name (linguistic term) of FO_MAM_MF1 in the “Fuzzy Risk Model 

Ontology” 

 
Figure 6-10: Fuzzy Input Variables (MATLAB) 
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Figure 6-11: Membership Functions of Mamdani type Fuzzy Output Variable (MATLAB) 

 In Sugeno fuzzy inference system, the output membership functions can be either 

linear or constant. In this research prototype, the Model 6 is Sugeno type and the output 

membership functions are defined as constant. Therefore, the fuzzy model of Sugeno type 

(Model 6) is a zero-order Sugeno model as discussed in section 3.6.2. The definition of 

output for Sugeno requires to knowing the relationship with output. For this research 

prototype, the membership functions of output fuzzy parameter of Model 6 (Sugeno-type) 

have been constructed based on membership functions of output fuzzy parameter of 

models of Mamdani-type (models 1-5). It is also considered that this will enable to have 

outputs of fuzzy models comparable to the maximum extent. In particularly, four 

membership functions were defined for Model 6 (Sugeno type) with type constant. The 

constant value of each membership function is calculated from the Center of Gravity 

(centroid) of the corresponding membership function of Mamdani-type models (similar to 

Jassbi et al. (2006)). The membership functions of Mamdani type models are of 

trapezoidal form. The MATLAB Fuzzy Toolbox has been used for this research prototype as 

it is mentioned in section 6.3. Functions of MATLAB Fuzzy Toolbox are used as follows for 

defining the membership functions of (constant) output variable of Sugeno model. The 

trapezoidal membership function in Mamdani system is defined in MATLAB Fuzzy Toolbox 
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as a vector with four scalar parameters MFp(1), MFp(2), MFp(3) and MFp(4), which are 

used to draw trapezoidal curve as depicted in Figure 6-12. Those scalar parameters of 

vector of trapezoidal membership function are used to estimate the centroid. The 

procedure is automated based on the definition of Mamdani fuzzy system. Initially, the 

output membership functions of Mamdani model are retrieved. Then, a trapezoid curve is 

defined per membership function based on the above four scalar parameters MFp(1), 

MFp(2), MFp(3) and MFp(4). For each output MF, the ‘defuzz’ function is used to find the 

centroid of the specific trapezoid MF as described in Figure 6-13. The procedure is 

performed for each of the four membership functions. It is worth noting that the definition 

of output membership functions of Sugeno model based on the Mamdani fuzzy model is 

an approach selected for the purpose of this research prototype. For instance, the output 

membership functions (constant) could be defined with intuition or other logic.  

 
Figure 6-12: Example of trapezoidal membership function 

… 

  

% Read output membership function A of Mamdani model 

out_mf_A = getfis (RA_FIS_MAMDANI, 'output', 1, 'mf', 1, 'params'); 

 

… 

 

% Define range 
x = 0:10:100; 
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% Calculate Centroid for Class A 

 

mf_A = trapmf(x,[out_mf_A(1) out_mf_A(2) out_mf_A(3) out_mf_A(4)]); 

Cx_mf_A = defuzz(x, mf_A,'centroid') 

 

 

… 

 

  

Figure 6-13: Example of Code for generation of Output MF 1 of Sugeno model from Output MFs of 

Mamdani type – MATLAB file 

Subsequently, the fuzzy rules of the model are specified for the identified fuzzy 

parameters or variables and based on the defined membership functions. The fuzzy rules 

are used in this approach as the knowledge for risk analysing a particular instance of a 

physical entity and define the relationship of the input with the output using linguistic 

terms. This is very useful for expressing human knowledge especially for Mamdani 

systems where the outputs are also defined with membership functions. 

 For this research prototype, the fuzzy rules defined based on the classes shown in 

Table 6-2. The fuzzy rules of Mamdani fuzzy inference systems have the form shown in 

equation (8). The fuzzy rules of Sugeno fuzzy inference systems have the form shown in 

equation (13) where a and b are equal to zero (0) since it is a zero-order Sugeno model. 

The fuzzy operators ‘AND’ and ‘OR’ are used to combine the various input fuzzy 

parameters in case the antecedent of fuzzy rule is defined with more than one input fuzzy 

parameter. As an example, the antecedent of the following fuzzy rule uses the ‘AND’ fuzzy 

operator to combine the input fuzzy parameters P3 and P4: “IF (P3 is MF3) and (P4 is 

MF3) THEN..”. This example is visualised in Figure 6-16 using the “Fuzzy Risk Model 

Ontology”. The fuzzy rules of various models of this prototype modelled using the structure 

of “Fuzzy Risk Model Ontology” (section 5.5.3). As explained in that section, each rule has 

an antecedent and a consequent. For “Rule_1” (first rule in Table 6-4), this is defined with 

the “FRA_1” individual representing the “Fuzzy Rule Antecedent” and the 

“FRC_FO_MAM_MF4” individual representing the “Fuzzy Rule Consequent”. The 
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definitions of “FRA_1” and “FRC_FO_MAM_MF4” individuals with RDF syntax are shown in 

Figure 6-14 and Figure 6-15 respectively. 

<!-- http://www.myontology.org/ontologies/FRO.owl#FRA_1 --> 

 

    <NamedIndividual rdf:about="&FRO;FRA_1"> 

        <rdf:type rdf:resource="&FRO;Fuzzy_Rule_Antecedent"/> 

        <FRO:Fuzzy_Operator>AND</FRO:Fuzzy_Operator> 

        <FRO:antecedent_consists_of 

rdf:resource="&FRO;FRA_P3_MF3_COMPL_FALSE"/> 

        <FRO:antecedent_consists_of 

rdf:resource="&FRO;FRA_P4_MF3_COMPL_FALSE"/> 

    </NamedIndividual> 

Figure 6-14: RDF syntax for FRA_1 Individual (Fuzzy Rule Antecedent) in the “Fuzzy Risk Model 

Ontology” 

As it is defined in the “Fuzzy Risk Model Ontology”, a “Fuzzy Rule Antecedent” 

consists of one or more “Fuzzy_Rule_Antecedent_Component”. In this example of 

“Rule_1”, the “FRA_1” (Figure 6-14) consists of the antecedent components 

“FRA_P3_MF3_COMPL_FALSE” and “FRA_P4_MF3_COMPL_FALSE”. Those relationships 

are illustrated in Figure 6-16. Finally, the data property ‘Fuzzy_Operator’ of “FRA_1” 

defines that the ‘AND’ fuzzy operator is used to combine the input fuzzy parameters P3 

and P4 in the antecedent part of the rule (Figure 6-14). 

Figure 6-15 shows that the “FRC_FO_MAM_MF4” rule consequent applies to 

output variable “FO_MAM” of “Model_1” and it is defined with membership function 

“FO_MAM_MF4”. Those relationships are also visualised in Figure 6-16. 

    <!-- http://www.myontology.org/ontologies/FRO.owl#FRC_FO_MAM_MF4 -

-> 

 

    <NamedIndividual rdf:about="&FRO;FRC_FO_MAM_MF4"> 

        <rdf:type rdf:resource="&FRO;Fuzzy_Rule_Consequent"/> 

        <FRO:Complement_MF 

rdf:datatype="&xsd;boolean">false</FRO:Complement_MF> 

        <FRO:consequent_is_based_on rdf:resource="&FRO;FO_MAM"/> 

        <FRO:is_defined_with_MF rdf:resource="&FRO;FO_MAM_MF4"/> 

    </NamedIndividual> 

Figure 6-15: RDF syntax for FRC_FO_MAM_MF4 Individual (Fuzzy Rule Consequent) in the “Fuzzy 

Risk Model Ontology” 

The number of rules and the number of conditions are measures, which is used for 

controlling the complexity at the level of rule base. The number of fuzzy rules should be 

reduced but without affecting the system performance, which shall remain at satisfactory 
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level. Similarly, the number of conditions in the antecedent part of the rule should be 

reduced and consider the principle     (referring to the number of conceptual entities a 

human being can handle), but also without affecting the system performance, which shall 

remain at satisfactory level (Gacto et al. 2011). In addition, the “don’t care” approach 

(Ishibuchi et al. 1998) reduces the “conditions” in the antecedent part  and the complexity 

at rule base. The example mentioned above of the following fuzzy rule of this prototype “IF 

(P3 is MF3) and (P4 is MF3) THEN…” considers the “don’t care” approach since P1 and P2 

are “don’t care” conditions. Some indicative rules of the rule base of this prototype are 

presented in Table 6-4. 

Table 6-4: Indicative rules of the Rule Base of this Prototype 

 If (P3 is MF_3) and (P4 is MF_3) then (output1 is D) (1)                                    

… 

 If (P3 is MF_1) and (P4 is MF_1) then (output1 is A) (1)                                    

… 

 If (P1 is MF_3) and (P3 is MF_1) and (P4 is MF_2) then (output1 is B) (1)                   

… 

 If (P1 is MF_3) and (P3 is MF_2) and (P4 is MF_2) then (output1 is C) (1)                  

… 

 If (P1 is MF_4) and (P2 is MF_2) and (P3 is MF_2) and (P4 is MF_1) then (output1 is B) (1) 

… 

 If (P1 is MF_4) and (P2 is MF_2) and (P3 is MF_1) and (P4 is MF_3) then (output1 is B) (1) 

 

During the inference process, the fuzzy operators are applied after the fuzzification 

of input parameters in order to combine the individual inputs of the antecedent and 

determine one number, which is used in the next step of the inference process where the 

implication method is applied. For the fuzzy models of Table 6-3, the Minimum (min) 

method is used for ‘AND’ operator and the Maximum (max) for ‘OR’ operator. Please refer 

to fuzzy operations in section 3.6.1 and specifically to equations (6) and (5) respectively. 
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Figure 6-16: Example of “Rule_1” for “Model_1” (OntoGraf Graph)
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Finally, an activity parallel to the definition of fuzzy parameters, membership 

functions, and fuzzy rules is to specify the global parameters or attributes of fuzzy risk 

model (e.g. Defuzzification Method). However, these parameters or attributes are used in 

specific steps of the inference process. For instance, it is stated above that the ‘AND’ and 

‘OR’ fuzzy operators are used for combining (evaluating) the antecedents of a fuzzy rule. 

Table 6-3 summarises the various methods used per model for ‘AND’ and ‘OR’ fuzzy 

operators. It is noted that for Sugeno type model, the Algebraic Product (prod) (21) and 

the Algebraic Sum or Probabilistic OR (22) were used as methods for ‘AND’ and ‘OR’ fuzzy 

operators respectively. 

    ( )    ( )   ( ) (21) 

    ( )    ( )     ( )     ( )   ( ) (22) 

In addition, the Mamdani type fuzzy models of Table 6-3 use the Product method 

as implication method, which scales the output fuzzy set based on the number of fuzzy 

rule antecedent. For Sugeno model, the output of each rule is weighted by the firing 

strength of the rule (see equation (14)). Another parameter of fuzzy inference system is 

the Aggregation method, which is used for aggregating all the results from individual rule 

evaluation and produces the aggregated output fuzzy set. The fuzzy models of Mamdani 

type use the Maximum (max) method for that purpose. In Sugeno model, the aggregation 

is the sum of the individual rule outputs as mentioned in section 3.6.2. Finally, the 

defuzzification method takes as input the aggregated output fuzzy set and based on the 

method, the output is defuzzified into a crisp number. As it was discussed, different 

defuzzification method is applied to each model of Table 6-3. The various defuzzification 

methods used for the fuzzy models are discussed in section 3.6.2. Table 6-5 summarises 

the parameters of fuzzy risk models used in this particular prototype. 

Table 6-5: Global parameters per model 

Model Type 
# 

Input 

# 

Output 

‘AND’ 

method 

‘OR’ 

method 

Implication 

Method 

Aggregartion 

Method 

Defuzzification 

Method 

1 MAMDANI 4 1 min max prod max COA 

2 MAMDANI 4 1 min max prod max BOA 



Fuzzy Modelling and Reasoning Chapter 6 

 

 Page 123 

 

Model Type 
# 

Input 

# 

Output 

‘AND’ 

method 

‘OR’ 

method 

Implication 

Method 

Aggregartion 

Method 

Defuzzification 

Method 

3 MAMDANI 4 1 min max prod max MOM 

4 MAMDANI 4 1 min max prod max SOM 

5 MAMDANI 4 1 min max prod max LOM 

6 SUGENO 4 1 prod probor   Wtaver 

 

Figure 6-17 and Figure 6-18 illustrate part of the definition of “Model_1” and “Model_6” 

individuals respectively in the “Fuzzy Risk Model Ontology”. These definitions presents how 

the global parameters or attributes per fuzzy risk model, which described in Table 6-5, are 

defined in the ontology. As mentioned in section 5.5.3, the data properties of “Fuzzy Risk 

Model” class are used for that purpose. “Model_1” and “Model_6” are individuals of type 

“Fuzzy Risk Model”. For instance, the data property ‘FIS_Type’ specifies that “Model_1” is 

‘Mamdani’ (Figure 6-17) while ‘Model_6’ is ‘Sugeno’ (Figure 6-18). 

 

<!-- http://www.myontology.org/ontologies/FRO.owl#Model_1 --> 

 

    <NamedIndividual rdf:about="&FRO;Model_1"> 

        <rdf:type rdf:resource="&FRO;Fuzzy_Risk_Model"/> 

        <FRO:Fuzzy_Model_ID 

rdf:datatype="&xsd;integer">1</FRO:Fuzzy_Model_ID> 

        <FRO:FIS_Version 

rdf:datatype="&xsd;decimal">2.0</FRO:FIS_Version> 

        <FRO:Number_of_Input_Variables 

rdf:datatype="&xsd;integer">4</FRO:Number_of_Input_Variables> 

        <FRO:FIS_Type 

rdf:datatype="&xsd;string">Mamdani</FRO:FIS_Type> 

        <FRO:Fuzzy_Model_Name rdf:datatype="&xsd;string">Model 1 - 

Mamdani - COA</FRO:Fuzzy_Model_Name> 

        <FRO:Defuzzification_Method 

rdf:datatype="&xsd;string">centroid</FRO:Defuzzification_Meth

od> 

        <FRO:Analyse_Physical_Enity_IRI 

rdf:datatype="&xsd;anyURI">http://www.myontology.org/ontologi

es/PE_1.owl#Physical_Entity_1</FRO:Analyse_Physical_Enity_IRI

> 

        <FRO:Aggregation_Method 

rdf:datatype="&xsd;string">max</FRO:Aggregation_Method> 

        <FRO:Or_Method rdf:datatype="&xsd;string">max</FRO:Or_Method> 

        <FRO:And_Method 

rdf:datatype="&xsd;string">min</FRO:And_Method> 

        <FRO:Implication_Method 

rdf:datatype="&xsd;string">prod</FRO:Implication_Method> 

 

    ......... 

 

    </NamedIndividual> 

Figure 6-17: RDF syntax with part of definition of “Model_1” in the “Fuzzy Risk Model Ontology” 
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<NamedIndividual rdf:about="&FRO;Model_6"> 

        <rdf:type rdf:resource="&FRO;Fuzzy_Risk_Model"/> 

        <FRO:FIS_Version 

rdf:datatype="&xsd;decimal">2.0</FRO:FIS_Version> 

        <FRO:Number_of_Input_Variables 

rdf:datatype="&xsd;integer">4</FRO:Number_of_Input_Variables> 

        <FRO:Fuzzy_Model_ID 

rdf:datatype="&xsd;integer">6</FRO:Fuzzy_Model_ID> 

        <FRO:Fuzzy_Model_Name rdf:datatype="&xsd;string">Model 6 - 

Sugeno</FRO:Fuzzy_Model_Name> 

        <FRO:FIS_Type rdf:datatype="&xsd;string">Sugeno</FRO:FIS_Type> 

        <FRO:Or_Method 

rdf:datatype="&xsd;string">probor</FRO:Or_Method> 

        <FRO:And_Method 

rdf:datatype="&xsd;string">prod</FRO:And_Method> 

        <FRO:Aggregation_Method 

rdf:datatype="&xsd;string">sum</FRO:Aggregation_Method> 

        <FRO:Defuzzification_Method 

rdf:datatype="&xsd;string">wtaver</FRO:Defuzzification_Method

> 

 

    ......... 

 

    </NamedIndividual> 

Figure 6-18: RDF syntax with part of definition of “Model_6” in the “Fuzzy Risk Model Ontology” 

6.5 Fuzzy Inference 

During this activity, the various fuzzy models (section 6.4) of research prototype 

are executed against the prepared datasets (section 6.2). This refers to the UC2 Perform 

Inference described in section 4.3.2. 

In section 6.3, the tools for this research prototype are described. As it is 

explained, the MATLAB is used in this prototype for performing inference. The fuzzy risk 

models defined during fuzzy modelling are imported to MATLAB. A necessary task for this 

is the transformation of fuzzy risk models individuals defined in “Fuzzy Risk Model 

Ontology” (rendered in RDF syntax) to the specific FIS format of MATLAB. This performed 

mainly in two stages. The first stage is to transform the fuzzy risk models expressed in RDF 

into XML format. The second stage is to transform the fuzzy risk models in XML syntax to 

FIS format of MATLAB. 

 Figure 6-19 presents an example of extracting the basic details of fuzzy risk 

model. It includes the fuzzy variables list and fuzzy rule list of the specific model. The 

‘FuzzyVariableIRI’ element refers to the IRI of the specific individual of the “Fuzzy Risk 
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Model Ontology”. The list of variables and rules per fuzzy risk model are transformed in 

XML by combining the various object properties of individuals (e.g. ‘has_Input_variables’ 

and ‘has_Output_variables’) in “Fuzzy Risk Model Ontology”. For instance, the 

relationships of “Model 1” with Fuzzy Input and Fuzzy Output variables individuals 

illustrated in Figure 6-5 are expressed in transformed XML as shown in the example of 

Figure 6-19 (Fuzzy Variable List). 

<?xml version="1.0" encoding="UTF-8"?> 

<FuzzyRiskModel xsi:noNamespaceSchemaLocation="FuzzyRiskModel.xsd" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

 <ModelName>http://www.myontology.org/ontologies/FRO.owl#Model_1<

/ModelName> 

 <FuzzyVariableList> 

 

 <FuzzyVariableIRI>http://www.myontology.org/ontologies/FRO.owl#P

1</FuzzyVariableIRI> 

 </FuzzyVariableList> 

 <FuzzyVariableList> 

 

 <FuzzyVariableIRI>http://www.myontology.org/ontologies/FRO.owl#P

2</FuzzyVariableIRI> 

 </FuzzyVariableList> 

 <FuzzyVariableList> 

 

 <FuzzyVariableIRI>http://www.myontology.org/ontologies/FRO.owl#P

3</FuzzyVariableIRI> 

 </FuzzyVariableList> 

 <FuzzyVariableList> 

 

 <FuzzyVariableIRI>http://www.myontology.org/ontologies/FRO.owl#P

4</FuzzyVariableIRI> 

 </FuzzyVariableList> 

 <FuzzyVariableList> 

 

 <FuzzyVariableIRI>http://www.myontology.org/ontologies/FRO.owl#F

O_MAM</FuzzyVariableIRI> 

 </FuzzyVariableList> 

 <FuzzyRuleList> 

 

 <FuzzyRuleIRI>http://www.myontology.org/ontologies/FRO.owl#Rule_

1</FuzzyRuleIRI> 

 </FuzzyRuleList> 

 <FuzzyRuleList> 

 

 <FuzzyRuleIRI>http://www.myontology.org/ontologies/FRO.owl#Rule_

2</FuzzyRuleIRI> 

 </FuzzyRuleList> 

 

......... 

 

 

</FuzzyRiskModel> 

Figure 6-19: Example of XML syntax for Model_1 (list of fuzzy variables and rules) 
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The rules per fuzzy risk model also transformed in XML syntax (Rule Base) based 

on the “Fuzzy Risk Model Ontology”. Figure 6-20 presents an example for fuzzy rule list for 

“Model_1”. This example shows the “Rule_1”, which also presented in Figure 6-16. Again 

the relevant object properties where used for this transformation. 

<?xml version="1.0" encoding="UTF-8"?> 

<FuzzyRulesBase xsi:noNamespaceSchemaLocation="FuzzyRules.xsd" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

 <FuzzyRulesList> 

 <FuzzyRuleIRI>http://www.myontology.org/ontologies/FRO.owl#Rule_

1</FuzzyRuleIRI> 

 <FuzzyModel>http://www.myontology.org/ontologies/FRO.owl#Model_1

</FuzzyModel> 

  <FuzzyRuleID>1</FuzzyRuleID> 

  <FuzzyRuleAntecedent> 

 <FuzzyRuleAntecedentIRI>http://www.myontology.org/ontologies/FRO

.owl#FRA_1</FuzzyRuleAntecedentIRI> 

   <FuzzyRuleAntecedentComponent> 

 <FuzzyInputVariableIRI>http://www.myontology.org/ontologies/FRO.

owl#P1</FuzzyInputVariableIRI> 

   <FuzzyInputVariableID>1</FuzzyInputVariableID> 

   <FuzzyInputMFID>0</FuzzyInputMFID> 

   </FuzzyRuleAntecedentComponent> 

   <FuzzyRuleAntecedentComponent> 

 <FuzzyInputVariableIRI>http://www.myontology.org/ontologies/FRO.

owl#P2</FuzzyInputVariableIRI> 

    <FuzzyInputVariableID>2</FuzzyInputVariableID> 

    <FuzzyInputMFID>0</FuzzyInputMFID> 

   </FuzzyRuleAntecedentComponent> 

   <FuzzyRuleAntecedentComponent> 

   

 <FuzzyInputVariableIRI>http://www.myontology.org/ontologies/FRO.

owl#P3</FuzzyInputVariableIRI> 

    <FuzzyInputVariableID>3</FuzzyInputVariableID> 

    <FuzzyInputMFID>3</FuzzyInputMFID> 

   </FuzzyRuleAntecedentComponent> 

   <FuzzyRuleAntecedentComponent> 

   

 <FuzzyInputVariableIRI>http://www.myontology.org/ontologies/FRO.

owl#P4</FuzzyInputVariableIRI> 

    <FuzzyInputVariableID>4</FuzzyInputVariableID> 

    <FuzzyInputMFID>3</FuzzyInputMFID> 

   </FuzzyRuleAntecedentComponent> 

   <FuzzyOperator>AND</FuzzyOperator> 

  </FuzzyRuleAntecedent> 

  <FuzzyRuleConsequent> 

  

 <FuzzyRuleConsequentIRI>http://www.myontology.org/ontologies/FRO

.owl#FRC_FO_MAM_MF4</FuzzyRuleConsequentIRI> 

  

 <FuzzyOutputVariableIRI>http://www.myontology.org/ontologies/FRO

.owl#FO_MAM</FuzzyOutputVariableIRI> 

   <FuzzyOutputVariableID>1</FuzzyOutputVariableID> 

  

 <FuzzyOutputMFIRI>http://www.myontology.org/ontologies/FRO.owl#F

O_MAM_MF4</FuzzyOutputMFIRI> 

   <FuzzyOutputMFID>4</FuzzyOutputMFID> 
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   <ComplementMF>false</ComplementMF> 

  </FuzzyRuleConsequent> 

 </FuzzyRulesList> 

 

. . . . . 

</FuzzyRulesBase> 

Figure 6-20: Example of XML syntax for of Rule 1 for Model 1 

The examples of Figure 6-19 and Figure 6-20 presents some of the information 

transformed from the “Fuzzy Risk Model Ontology” (rendered in RDF) into XML. The  

Extensible Stylesheet Language (XSL) and XSL Transformations (XSLT) (W3C 2001) can be 

used for the transformations. In addition, fuzzy risk models in XML could be transformed 

similarly into FML syntax if there is the need. FML is discussed in section 3.8. Such 

transformation would enable interoperability.  

Following the final transformation of fuzzy risk model into FIS format of MATLAB, 

the fuzzy inference can be executed. This execution of models in MATLAB performed as 

follows. For Mamdani type fuzzy models, a MATLAB file defined for the execution of the 

models with instructions, functions, and commands. The definition of Mamdani type fuzzy 

models has been analysed in section 6.4. An example is shown in Figure 6-21 with a 

MATLAB file used for the evaluation of “Model_1”. Similarly, Sugeno fuzzy model is defined 

and executed. A MATLAB file defined for the execution of the model with instructions, 

functions, and commands. This execution file also includes the estimation of four output 

membership functions of Sugeno type as described in 6.4 and shown in Figure 6-13. The 

output results of fuzzy inference are analysed in section 6.6. 

 

% *** ANALYSIS MAMDANI (Defuzz Method CENTROID) *** 

  

......... 

  

%setfis(FIS_MAMDANI,'defuzzmethod','newfisprop') 

RA_FIS_MAMDANI_CENTROID = setfis 

(RA_FIS_MAMDANI,'defuzzmethod','centroid'); 

display (RA_FIS_MAMDANI_CENTROID) 

  

display (' ** MAMDANI Analysis of input data started **') 

  

%Evaluate Fuzzy Inference System again Input Data 

RA_FIS_MAMDANI_CENTROID_Result = 

evalfis(ANALYSIS_DATA_INPUT,RA_FIS_MAMDANI_CENTROID); 
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......... 

 

Figure 6-21: Code example of Mamdani type Fuzzy Model evaluation with ‘centroid’ (COA) 

Defuzzification method (Model 1 of Table 6-5) 

6.6 Analysis of Results from Research Prototype 

This section presents an analysis of results following the evaluation or execution of 

various fuzzy models of this research prototype. All output of analysis have been assessed 

and classified as “OK” or “NOK” by comparing the actual output of analysis and the 

expected output as defined per class in Table 6-2. In particular, if the actual output of 

analysis is within the range of class expected minimum and maximum, then the result is 

considered as “OK”. Else, the result is considered as “NOK”.  

As it is shown in Table 6-6, all evaluation data of classes A, B, C and D are 

indicated as “OK” (100%) from all models. In regards to evaluation data belonging to 

classes other than A, B, C or D, it is shown that Model 2 and Model 3 have better results 

with 99.38% evaluation data classified as “OK”. In addition, the 92.5% of evaluation data 

indicated as “OK” with Model 6. While, the 90.63% of evaluation data indicated as “OK” 

with Model 1.  

Checking Table 6-7, it is observed that both models (1 and 6) have most of 

evaluation data as “NOK” in class “P3 NOT Class B and NOT Class C (with P3 neither fully 

MF_1 nor fully MF_2)”. Further analysing the results for this, it is shown that with  Model 1, 

the 14 instances of vector input data indicated as “NOK” for this class, has output very 

close to the expected MIN of this class (the average percentage difference of Model 1 

output from the expected MIN of the class is 0.04%). Similarly for Model 6, the data 

indicated as “NOK” are 11 and the average percentage difference of Model 6 output from 

expected MIN of the class is 0.18%. The difference is considered as marginal for both 

models. Although bigger percentage of data are indicated as “NOK” (not within the range) 

for Model 1 (35.00%) compared to Model 6 (27.50%), the  average percentage difference 
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of Model 1 output from expected MIN of the class (0.04%) is less than the average 

percentage difference of Model 6 output from expected MIN of the class (0.18%). 

Table 6-6: Output results summary – Group of Classes 

Class 
MAMDANI - 

CENTROID 

MAMDANI - 

Bisector 

MAMDANI 

MOM 

MAMDANI 

SOM 

MAMDANI 

LOM SUGENO 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Total (Class 

A+B+C+D) 

OK 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 

NOK 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Total (Other - 

Not Class A, 

B, C or D) 

OK 90.63% 99.38% 99.38% 31.25% 71.88% 92.50% 

NOK 9.38% 0.63% 0.63% 68.75% 28.13% 7.50% 

 

Table 6-7: Output results – Other Classes - Not Class A, B, C or D 

Class 
MAMDANI - 

CENTROID 

MAMDANI - 

Bisector 

MAMDANI 

MOM 

MAMDANI 

SOM 

MAMDANI 

LOM SUGENO 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

P3 NOT Class A 

and NOT Class C 

(with P3 neither 

fully MF_1 nor fully 

MF_2) 

OK 100.00% 100.00% 100.00% 37.50% 77.50% 100.00% 

NOK 0.00% 0.00% 0.00% 62.50% 22.50% 0.00% 

P3 NOT Class B 

and NOT Class C 

(with P3 neither 

fully MF_1 nor fully 

MF_2) 

OK 65.00% 100.00% 100.00% 7.50% 92.50% 72.50% 

NOK 35.00% 0.00% 0.00% 92.50% 7.50% 27.50% 

P3 NOT Class C 

and NOT Class D 

(with P3 neither 

fully MF_2 nor fully 

MF_3) 

OK 100.00% 100.00% 100.00% 80.00% 20.00% 100.00% 

NOK 0.00% 0.00% 0.00% 20.00% 80.00% 0.00% 

P4 NOT Class A 

and NOT Class B 

(with P4 neither 

fully MF_1 nor fully 

MF_2) 

OK 97.50% 97.50% 97.50% 40.00% 57.50% 97.50% 

NOK 2.50% 2.50% 2.50% 60.00% 42.50% 2.50% 

P4 NOT Class C 

and NOT Class D 

(with P4 neither 

fully MF_2 nor fully 

MF_3) 

OK 100.00% 100.00% 100.00% 0.00% 100.00% 100.00% 

NOK 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 

 

Another observation of the analysis results for Class A, B, C and D is that Model 3 

has output results equals to the midrange value of the class (e.g. for Class D the midrange 

is 92.5 and the output is 92.5). This could be justified since Model 3 uses mean value of 

maximum (MOM) defuzzification method. Similarly, it is observed that the output for Model 

4 and Model 5 is equal to the Expected MIN and to the Expected MAX of the class 

respectively. This could be explained considering that Model 4 uses the defuzzification 

method smallest (absolute) value of maximum (SOM) and the Model 5 the defuzzification 
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method largest (absolute) value of maximum (LOM). Finally, it is also observed that the 

output of Model 2 is almost always constant per class for classes A, B, C and D.   

In addition, the analysis shows that the average Sugeno fuzzy model output results 

are relative close to the midrange of the classes A, B, C and D above (see Table 6-8). 

Table 6-8: Output results – Percentage (%) difference (Model 1 and 6) 

Class 

Percentage (%) 

difference 

between 

Model 1 and 

Model 6 

Percentage 

(%) difference 

between 

Midrange and 

Average 

output of 

Model 6 

Percentage 

(%) difference 

between 

Midrange and 

Average 

output of 

Model 1 

Name Min Max Midrange 

Class A 0.00 15.00 7.50 21.97% 7.11% 28.97% 

Class B 25.00 45.00 35.00 0.16% 0.09% 0.07% 

Class C 55.00 75.00 65.00 0.08% 0.08% 0.00% 

Class D 85.00 100.00 92.50 2.14% 0.54% 2.69% 

P3 NOT Class A 

and NOT Class C 

(with P3 neither 

fully MF_1 nor fully 

MF_2) 

7.50 65.00 36.25 25.54% 59.97% 35.79% 

P3 NOT Class B 

and NOT Class C 

(with P3 neither 

fully MF_1 nor fully 

MF_2) 

35.00 65.00 50.00 0.42% 28.60% 28.20% 

P3 NOT Class C 

and NOT Class D 

(with P3 neither 

fully MF_2 nor fully 

MF_3) 

65.00 92.50 78.75 4.41% 7.87% 3.46% 

P4 NOT Class A 

and NOT Class B 

(with P4 neither 

fully MF_1 nor fully 

MF_2) 

7.50 35.00 21.25 12.05% 3.38% 8.68% 

P4 NOT Class C 

and NOT Class D 

(with P4 neither 

fully MF_2 nor fully 

MF_3) 

65.00 92.50 78.75 3.23% 13.62% 16.83% 

 

In general, the selection of defuzzification method is context and problem 

dependent (Ross 2010). As stated in section 3.6.2, Hellendoorn and Thomas (1993)  (as 

cited in Ross 2010) have defined five criteria against which to measure defuzzification 

methods. These are continuity, disambiguity, plausibility, computational simplicity, and 

weighting method. 
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In this generic research prototype with the specific not real evaluation data, 

classes, fuzzy models, etc., it is shown that all models have outputs within the range for 

classes A, B, C and D. For other classes (Not Class A, B, C or D), in total, Model 2 and 3 

have more output results within the expected range (Table 6-6). However, as discussed 

before, although Model 1 and Model 6 have some outputs results as “NOK”, they are very 

close to expected MIN (difference is considered as marginal) and hence they could be 

considered within the range. In addition, the output of Models 1 and 6 (for classes A, B, C 

or D) is not constant  (see description of disambiguity in section 3.6.2) like the behaviour 

mentioned above for Models 2, 3, 4 and 5 and the output is adjusted depending on the 

input data. 

Finally, the results and estimation of outputs performed based on the defined 

fuzzy models of this generic research prototype and with the constraints mentioned in 

section 6.1. Any change or tuning of the fuzzy models (e.g. membership functions, rules, 

etc.) or data could also change some output results. Therefore, some of the results 

indicated as “NOK” might be due to the need of fuzzy model tuning.  

According to Ross (2010, p. 111) “as with many issues in fuzzy logic, the method 

of defuzzification should be assessed in terms of the goodness of the answer in the 

context of the data available.”  

In general, Mamdani-type fuzzy models enable to express better human knowledge 

by also expressing the output with fuzzy sets. Hence, it is easier for the experts to express 

knowledge and this is the reason of the widely acceptance of this method for decision-

making applications using fuzzy logic (Hamam and Georganas 2008; Sivanandam et al. 

2007). Sugeno-type fuzzy models are considered more computationally efficient using 

weighted average (Jassbi et al. 2006; Sivanandam et al. 2007). In the fuzzy inference 

presented in this chapter, no performance issues identified. However, it is noted that the 

data vector is small. Possibly, for bigger data vectors and for cases that are more complex 

this computation efficiency might be concerned. Finally, Sugeno model can be used by 
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adaptive techniques for optimisation of fuzzy model, which best models the data (e.g. 

ANFIS) (Hamam and Georganas 2008; Kaur and Kaur 2012; Sivanandam et al. 2007). 

6.7 Summary 

This chapter examined fuzzy modelling and reasoning. This performed with 

literature research and the development of generic research prototype. The research 

prototype consists of six (6) MISO fuzzy inference systems as a prototype. Five fuzzy 

models are of Mamdani type and one is of Sugeno type. In addition, variations of the five 

fuzzy inference systems of Mamdani type examined with different defuzzification methods. 

Information about decisions and constraints of this research prototype is described in 

section 6.1. During the assessment, various aspects examined such as Linguistic fuzzy 

modelling and interpretability as presented by Gacto et al. (2011). In addition, an analysis 

of results performed based on the outputs of various models. Mamdani is considered 

easier for the experts to express knowledge with linguistic terms and fuzzy sets. This is 

also supported by the bibliography since it is a widely accepted method for decision-

making applications using fuzzy logic (Hamam and Georganas 2008; Sivanandam et al. 

2007). The output of Mamdani models can be expressed with fuzzy sets and using 

linguistic terms. On the contrary, the membership functions of output of Sugeno fuzzy 

model are defined as function of input variables. In this prototype, the output of Sugeno 

fuzzy model is constant (zero-order Sugeno model) and the membership functions defined 

based on the corresponding membership functions of output of the Mamdani fuzzy 

inference system (using the centroid). The output of Sugeno fuzzy model is a function of 

the input so it is considered that it not easy to estimate it. On the other hand, Sugeno fuzzy 

models are more computational efficient according to the literature research (Hamam and 

Georganas 2008; Jassbi et al. 2006; Sivanandam et al. 2007). Nevertheless, no 

performance issues identified for Mamdani fuzzy modes of this particular research 

prototype. However, it is noted that the data vector is small. Possibly, for bigger data 

vectors and for cases that are more complex this computation efficiency might be 
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concerned. Finally, adaptive techniques can be used for constructing or optimising 

Sugeno-type fuzzy models, which best models the data (Sivanandam et al. 2007). ANFIS 

technique could be used for optimising Sugeno model. This technique is discussed in 

section 3.7 but it has not been examined in the context of this prototype.  
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Chapter 7. Conclusions 

Previous chapters presented how this research conducted and what activities 

performed. The purpose of this chapter is to provide some conclusions from this research. 

In addition, it examines whether this research achieved to accomplish the research 

objectives. Finally, it provides some ideas for future work.  

7.1 General Conclusions 

An approach presented in this thesis for fuzzy knowledge-based approach to risk 

analysis and in particular for the analysis and detection of the risk of a physical entity by 

utilising fuzzy reasoning and semantic modelling. Particularly, this was examined for the 

Customs domain. As mentioned, importance of human knowledge and modelling of 

knowledge and semantics in the context of risk analysis for this domain are some of the 

motivations for this thesis. This risk analysis would support decision-making for further 

treatment and actions accordingly. 

A bibliographic research performed under this thesis showing that there are 

several researches and works conducted for fraud detection systems and risk analysis in 

various areas. Several techniques have been used including fuzzy logic. Some of the works 

refers to fraud detection and risk analysis in Customs domain. Those works mainly 

examine the application of Neural Networks, Fuzzy Logic, Data Mining, Outlier detection 

and Statistical methods as detection techniques. 

As presented also from the literature review, the risk is closely related to 

uncertainty. Fuzzy logic and fuzzy sets can be used for modelling uncertainty related to 

imprecise information and vagueness.  

As extensively discussed in previous chapters, fuzzy modelling and fuzzy reasoning 

can consider imprecise knowledge and vagueness. Fuzzy logic is a technique, which has 
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been applied in various fields and is used with success for decision-making and inference 

purposes. Fuzzy models and fuzzy inference systems could be used for expressing human 

knowledge using linguistic terms. As mentioned before, human knowledge and expertise 

are very important for that process. Therefore, it is considered that fuzzy logic could be 

used for supporting risk analysis by using linguistic terms. Bibliographic research shows 

that fuzzy logic has been examined for supporting decision-making for risk analysis and 

detection in customs (Singh and Sahu 2004; Singh et al. 2003). In the work of Singh and 

Sahu (2004) it is stated among others that the proposed system using fuzzy logic 

considers the human intelligence and also suggestions of the systems are more closely to 

decision-making ability of customs officers. 

Another important element of the fuzzy knowledge-based approach presented in 

this thesis is the use of ontologies for semantic modelling with purpose to improve the 

communication, understanding, and interoperability in the context of risk analysis. As 

mentioned at the beginning of the thesis, when decision-making is complex including 

assessment of many parameters, deep knowledge is required. Therefore, semantic 

knowledge should be acquired, which needs deep understanding of various concepts and 

their relationships in the domain. Consequently, it is considered that semantic modelling 

can enable the unambiguous definition of concepts and the modelling of complex 

relationships. The role of ontologies in this research is the one mentioned previously, i.e. 

for representing semantics and modelling complex relationships related to risk analysis. In 

addition, ontologies are integrated with fuzzy rule-based reasoning. This would improve the 

communication and understanding. As described previously, semantic modelling is one of 

the elements of the presented approach. The following could be summarised for the 

presented work in this area: 

 an architecture of ontologies assists to define ontologies with concepts at 

various levels and enables modularity, maintainability, re-usability and 

extensibility, especially for complex domains such as Customs. 
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 Ontologies that are more generic can model high-level or abstract 

concepts. Ontologies that are more specific have particular purpose. For 

instance, “Physical Entity Ontology” models the semantics and attributes of 

the particular physical entity enabling better understanding of the physical 

entity’s attributes. On the other hand, the “Fuzzy Risk Model Ontology” 

defines specific concepts of fuzzy risk model for risk analysis with fuzzy 

logic technique. 

 decomposition of Ontologies is considered as a matter of decision for 

organising the ontologies. However, it is considered that the “Generic 

Customs Ontology” presented above could be further decomposed or 

integrated with other upper Ontologies and/or middle-level Ontologies for 

re-using existing concepts from existing published ontologies. 

 representation of concepts at various levels illustrated with examples (e.g. 

domain concepts or concepts related to “Fuzzy Risk Model Ontology” 

based on the principles of the fuzzy logic). As a summary, this enables the 

clear definition of concepts: 

 hierarchical structure of concepts; 

 modelling of equality between concepts using equivalent classes 

(modelling same concepts (synonymous) with different names); 

 defining enumeration in data properties and restricting the allowed 

data (e.g. fuzzy operator data property); 

 using object properties for visualizing the various complex 

relationships between concepts; 

 defining property restrictions (e.g. cardinality restrictions) through 

object properties in order to enrich the definition of relationships; 
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 using value partition (e.g. example of Weigh Risk defined as the 

union  of “High Risk”, “Medium Risk” and “Low Risk”). 

 loose integration of “Fuzzy Risk Model Ontology” with fuzzy rule-based 

reasoning. 

 Finally, ontology evaluation is very important. Ontology evaluation is also 

discussed in section 5.4. As mentioned, the ontologies of this work have 

not been validated from any domain expert, official body or any 

organisation. The development of ontologies is for research purposes and 

for exploring their benefits for communication, common understanding, 

and interoperability in complex domains as mentioned previously. Besides, 

the Ontologies must always be enriched which implies that the continuous 

evaluation and formal validation of the Ontologies is required. However, it 

is considered that similar OWL components and approaches would be 

used to model other concepts and their relationships. 

The second main element of the presented concept is the use of fuzzy modelling 

and fuzzy reasoning. The fuzzy modelling and fuzzy reasoning are examined with 

bibliographic research on the domain and on the application of fuzzy logic. In addition, 

they examined with a research prototype. Information about decisions and constraints of 

this research prototype is described in Chapter 6. Following fuzzy modelling and fuzzy 

reasoning investigation, some main points are highlighted in the next paragraphs: 

 It has been extensively discussed that HHFC of HFS techniques can be 

used in complex domains. In such case, there are many variables and 

hence the number of required rules is increased exponentially. Therefore, 

this depends on the number of variables of the particular risk analysis of 

the physical entity. More modular fuzzy risk models can be defined with 

HHFC/HFS approach. However, their relationships and execution as well as 
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other parameters should be defined as part of the risk analysis definition 

of a particular physical entity. This is also discussed in section 4.1.2.  

 Principles and techniques for defining a fuzzy model have been discussed 

and should be considered in fuzzy modelling activity. Linguistic fuzzy 

modelling (LFM) and interpretability (Gacto et al. 2011) discussed in 

Chapter 6. This examined in relation to complexity at the level of fuzzy 

partitions, semantics interpretability at fuzzy partition and complexity at the 

level of rule base. Therefore, it is believed that the interpretability of 

linguistic fuzzy rule-based systems as discussed in the literature should 

also be considered in the definition of fuzzy models apart from accuracy,  

 Following the assessment of six MISO fuzzy inference systems developed 

in the context of prototype (Chapter 6), it is considered that a Human can 

express easier the fuzzy rules or define linguistic terms for both input and 

output with Mamdani type. Human knowledge is important in the risk 

analysis activity as described in the motivations of this thesis. On the 

contrary, the output (constant) membership functions of Sugeno fuzzy 

model is defined in this research prototype based on the corresponding 

membership functions of output of the Mamdani fuzzy inference system 

(using the centroid). This happened because relationship between input 

and output should be known as a function for defining Sugeno fuzzy model 

outputs. 

 On the other hand, Sugeno fuzzy models are more computational efficient 

according to the literature research described in section 3.6.2. 

Nevertheless, no performance issues identified for fuzzy models of this 

particular research prototype. However, it is noted that the data vector is 

small. Possibly, for bigger data vectors and for cases that are more 

complex this computation efficiency might be concerned.  
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 Changing environments require adaptive techniques (Torra 2001). This is 

also presented in the approach of Chapter 4 with the 

Assistance/Optimisation. ANFIS technique could be used for optimising 

Sugeno model. This technique is also discussed in section 3.7 but it has 

not been examined in the context of this prototype. Nevertheless, this 

technique could be examined and applied by selecting the appropriate 

parameters and by considering issues such as the curse of dimensionality 

(Wei et al. 2007).   

 From the assessment of six MISO fuzzy inference systems developed in the 

context of this research prototype (Chapter 6), it shown that all models 

estimate the output within the range for classes A, B, C and D. For other 

classes (Not Class A, B, C or D), Model 2 and 3 have more output results 

within the expected range (Table 6-6). However, as stated during the 

analysis,  the output results of Model 1 and Model 6 indicated as “NOK”  

are very close to expected MIN (difference is considered as marginal). 

Therefore, they could be considered within the range. Another observation 

is that the output of Models 1 and 6 (for classes A, B, C or D) is not 

constant (see description of disambiguity in section 3.6.2) and hence there 

is no ambiguity in the output value and it is adjusted depending on the 

input data. This is in contrast to the behaviour mentioned above for Models 

2, 3, 4 and 5. Therefore, it could be considered that Mamdani with 

Centroid defuzzification method (Model 1) and Sugeno (Model 6) have 

better outputs (more output results within the expected range) and 

disambiguity in the results. This includes the classes other than A, B, C or 

D, which it is considered that have some fuzziness. 

 Considering the constraints of this research discussed in Chapter 6, it is 

deemed that the application of fuzzy modelling and reasoning on real 

scenarios need further analysis and investigation.  
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Finally, it is considered that Risk management is broader, multi-dimensional 

process involving a number of task, activities, and practises. The presented approach is 

focused on the analysis and detection of the risk for a physical entity based on the outputs 

of the risk management process. Therefore, the discussion focuses on this and it might be 

possible this approach to be combined or complemented with other approaches or 

techniques if necessary and following assessment. 

7.2 Future Work 

The Optimisation/Assistance has been discussed in the approach presented in 

Chapter 4. The ANFIS technique is mentioned in previous sections as a technique for 

constructing or optimising Sugeno-type fuzzy inference systems. Hence, it will be 

interesting to examine deeper the use of this technique in a future research for the 

purpose of risk analysis.  

Due to the constraints mentioned in Chapter 6, it is considered that fuzzy 

modelling and fuzzy reasoning needs further analysis and investigation with possibly real 

scenarios in order to be able to have more results for analysis and evaluation.  
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