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THE FINITE SECTION METHOD FOR DISSIPATIVE OPERATORS

MARCO MARLETTA AND SERGEY NABOKO

Abstract. We show that for self-adjoint Jacobi matrices and Schrödinger operators, peturbed by dissipative

potentials in ℓ1(N) and L1(0,∞) respectively, the finite section method does not omit any points of the
spectrum. In the Schrödinger case two different approaches are presented. Many aspects of the proofs can

be expected to carry over to higher dimensions, particularly for a.c. spectrum.

This is the authors’ post-print version of the article published by Cambridge University Press in the

London Mathematical Society journal Mathematika.

1. Introduction

In this paper we consider the finite section method for two classes of operator: dissipative Schrödinger
operators on (0,∞) and dissipative Jacobi matrices in ℓ2(N). More precisely, in the Schrödinger case, we
start with a self-adjoint operator L0 given by an expression

L0u = −u′′ + q(x)u,

in which the potential q is in the limit-point case at infinity and integrable at 0; at 0 we impose, without loss
of generality, a Dirichlet boundary condition. The domain of L0 is thus

D(L0) = {u ∈ L2(0,∞) | − u′′ + qu ∈ L2(0,∞), u(0) = 0}
and L0 is self-adjoint. We are interested in the dissipative operator

L = L0 + is(x)·,
in which s is an essentially bounded, non-negative element of L1(0,∞). In applications using dissipative
barrier methods s usually has compact support - say, supp(s) ⊆ [0, N ] for some N > 0 - and is often
the characteristic function of some finite interval. The finite section method involves considering the same
differential expression but on a finite interval [0,M ] for some large values of M , with an artificial boundary
condition at M .

In the case of Jacobi operators we start with a self-adjoint operator in ℓ2(N) given formally by an infinite
matrix

J0 =

















b1 a1 0 0 0 · · ·
a1 b2 a2 0 0 · · ·
0 a2 b3 a3 0 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
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in which (an) is a sequence of non-zero reals and (bn) are is a real sequence. and we consider the spectra of
the leading, large-but-finite square sub-matrices of

J = J0 + idiag(s1, s2, . . .),

in which s = (sj)j∈N ∈ ℓ1(N). In applications s is often finitely supported with, say, sN−1 > 0 and sj = 0
for j ≥ N . Very good reviews of the finite section method for infinite matrices may be found in [6, 14].

Already for the case in which there is no dissipative perturbation added to the self-adjoint part, we know
that the finite section method will generally be responsible for spectral pollution. However using the results in
Stolz and Weidmann [21] there is a simple argument, given in [1], which shows that for these one-dimensional
operators there is at most one point of spectral pollution in each spectral gap1. Again for the self-adjoint case
we know that, under the assumption that compactly supported functions form a core of the full operator, the
finite section method will also approximate every point of the essential spectrum. This argument relies on the
fact that if A is a self-adjoint operator and u is an element of its domain with norm 1, and if λ ∈ C, then
dist(Spec(A), λ) ≤ ‖(A− λI)u‖; it is well known that this can fail spectacularly in the non-self-adjoint case.

Despite this, it remains relatively straightforward in the non-self-adjoint case (using, e.g., the arguments in
[17] and [18]) to show that the finite section method will always manage to approximate isolated eigenvalues
of the original operator, under fairly mild hypotheses. The question we address here is therefore a seemingly
trivial one: can we be sure that the finite section method manages to approximate the essential spectrum,
when it is applied directly to the dissipative operators rather than to the underlying self-adjoint one?

For certain classes of pseudo-ergodic Jacobi matrices, the results of Chandler-Wilde and Davies [5], using
work of Lindner and Roch [15], show that the finite section method does not cause spectral pollution. At a
talk in Cardiff University in January 2013 Lindner announced that, in collaboration with Chandler-Wilde, he
has now established that for pseudo-ergodic random matrices the finite section method in fact approximates
the whole spectrum, without pollution; hence, for samples from a distribution of random matrices, it generates
approximations to the spectrum and nothing else, with probability 1.

We are dealing in this paper with operators which do not have the pseudo-ergodicity properties required
to avoid spectral pollution. However we shall be able to show that spectral inclusion is indeed achieved under
mild hypotheses: no spectral points are omitted by the finite section method.

The structure of the paper is as follows. Section 2 treats the case of Jacobi matrices; essential ingredients
here are the Titchmarsh-Weyl m-functions for the truncated matrices and a simple trace formula which is valid
uniformly for all the truncated operators. Section 3 treats the case of Schroödinger operators with compactly
supported s, by a different method which comes close to an inverse moment problem approach; it assumes,
in addition to the minimal hypotheses already introduced on the real potential q, that q is square integrable
over finite intervals. Section 4 treats Schrödinger operators, now with essentially bounded s ∈ L1(0,∞)
and limx→∞ s(x) = 0, using what we call the ‘Jacobi matrix method’: in other words, Titchmarsh-Weyl
m-functions and a uniform trace inequality. We assume in this section that, in addition to the minimal
hypotheses already mentioned, the real potential q is essentially bounded below and square integrable over
finite intervals. The reason for the lower-bound hypothesis on q is that the operator of multiplication by s,
and its natural finite sections, are no longer trace class. We need to show that they are instead uniformly
relatively trace class with respect to a family of finite sections of Schrödinger operators. The essential lower
bound on q describes one convenient class of potentials for which this is true. There are certainly others, but
they are not immediately amenable to the technique of [4] which we adopt, and a totally different approach
would then be needed to establish Lemma 10.

We conclude our introduction with a caveat: this is not a paper about numerical methods. We avoid all
discussion of the extensive literature on spectral pollution and quadratic relative spectra [13, 8, 22] and of

1The essence of the argument is that the finite section operators on any given interval are all self-adjoint extensions of one

symmetric operator with deficiency indices (1,1)
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methods based on generalizations of pseudospectra [10, 11]. Our interest in the problem treated stems from
the fact that it arises when using the most näıve numerical approaches, yet appears to require a surprisingly
elaborate analysis, compared to the self-adjoint case, for its solution.

2. Jacobi matrices

We start by considering the Jacobi operator J . Our main theorem is the following.

Theorem 1. Suppose that s ∈ ℓ1(N) and sj ≥ 0 for all j. Suppose that λess is a point of essential spectrum
of J . Then every open neighbourhood of λess in C contains eigenvalues of the leading K ×K submatrix of
J , for all sufficiently large K.

The proof of this result will be in several stages. The first case involves studying the zeros of a family of
functions of the form m(λ) − z, where m is a Titchmarsh-Weyl coefficient of a self-adjoint Jacobi operator
and z ∈ C

+ is fixed. This reveals the simplicity of the underlying strategy and reveals the main features of
the problem without the technical complications of the general cases. We then treat the case in which s is
finitely supported: sN−1 > 0 and sj = 0 for j ≥ N . Finally we shall observe that the case of infinitely many
sites with s ∈ ℓ1(N) introduces no additional difficulties compared to the N -site case: indeed the crucial
inequalities actually hold a fortiori.

We start with some preliminaries which establish our notation and review standard techniques. A point
λ ∈ C is an eigenvalue of J if and only if there exists a corresponding eigenvector u ∈ ℓ2(N) such that

(1) an−1un−1 + (bn + isn)un + anun+1 = λun, n = 1, 2, . . . ,

in which we interpret the n = 1 equation by putting u0 = 0 formally. Thus we can tell whether or not λ ∈ C

is an eigenvalue by the Glazman decomposition trick [2, §126, p. 485]. Let N ≥ 2 be fixed.

(1) Solve the equation

(2) an−1vn−1 + (bn + isn)vn + anvn+1 = λvn, n = 1, 2, . . . , N − 1,

starting with the initial condition v0 = 0 and v1 = 1.
(2) Solve the equation

an−1ψn−1 + (bn + isn)ψn + anψn+1 = λψn, n ≥ N,

with the condition
∑

n≥N |ψn|2 < ∞. For λ outside the essential spectrum there is (up to scalar

multiples) just one such solution, by the limit-point hypothesis.
(3) Check the matching condition ψN−1vN − ψNvN−1 = 0.

If we let

JRN =

















bN + isN aN 0 0 0 · · ·
aN bN+1 + isN+1 aN+1 0 0 · · ·
0 aN+1 bN+2 + isN+2 aN+2 0 · · ·
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

















and

JLN =

















b1 + is1 a1 0 0 0 · · ·
a1 b2 + is2 a2 0 0 · · ·
0 a2 b3 + is3 a3 0 · · ·
· · · · · · · ·
· · · · · aN−2

· · · · aN−2 bN−1 + isN−1
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and define eLN−1 = (0, 0, . . . , 0, 1)T ∈ R
N−1, eR1 = (1, 0, 0, . . .)T ∈ ℓ2(N) then a simple calculation shows

that
vN−1

vN
= −aN−1〈(JLN − λ)−1eLN−1, e

L
N−1〉,

ψN
ψN−1

= −aN−1〈(JRN − λ)−1eR1 , e
R
1 〉;

our matching condition is therefore satisfied if

1 = aN−1〈(JLN − λ)−1eLN−1, e
L
N−1〉aN−1〈(JRN − λ)−1eR1 , e

R
1 〉.

Recalling that the an are all non-zero, we define

(3) m(λ) =
−1

aN−1

ψN
ψN−1

= 〈(JRN − λ)−1eR1 , e
R
1 〉,

(4) f(λ) =
−1

aN−1

vN
vN−1

=
1

a2
N−1〈(JLN − λ)−1eLN−1, e

L
N−1〉

,

and we have the following lemma.

Lemma 1. If λ ∈ C is a point at which m(·) and f are analytic and is such that

m(λ) = f(λ),

then λ is an eigenvalue of J .

Remark 1. The function m(·) is the usual Titchmarsh-Weyl m-function for the infinite Jacobi matrix JRN .

When the finite section method is employed, the matrix JRN is truncated to become

JMN =

















bN + isN aN 0 0 0 · · ·
aN bN+1 + isN+1 aN+1 0 0 · · ·
0 aN+1 bN+2 + isN+2 aN+2 0 · · ·
· · · · · · · ·
· · · · · aN+M−1

· · · · aN+M−1 bN+M + isN+M

















The function m(λ) is correspondingly approximated by a new function

(5) mM (λ) = 〈(JMN − λ)−1e1, e1〉,
in which e1 = (1, 0, 0, . . . , 0) ∈ R

M ; and Lemma 1 becomes:

Lemma 2. If λ ∈ C is a point at which mM (·) and f(·) are analytic and if

(6) mM (λ) = f(λ),

then λ is an eigenvalue of the leading (N +M) × (N +M) finite section of J .

Remark 2. Observe the following Nevanlinna properties of mM , m and f , which follow from their definitions
in terms of resolvents, (3) and (5).

(1) ℑ(f(λ)) ≥ 0 for ℑλ ≤ 0;
(2) if sj = 0 for j ≥ N then ℑ(m(λ)) and ℑ(mM (λ)) have the same sign as ℑ(λ);
(3) if sj ≥ 0 for j ≥ N then ℑ(mM (λ)) ≤ 0 and ℑ(mM (λ)) ≤ 0 for ℑ(λ) ≤ 0.

Our question is: do the roots of the equation (6) approximate every point of σess(J) = σess(J0)?
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Proposition 1. Suppose that sj = 0 for j ≥ N . Let z ∈ C
+ be fixed. Then the roots of the equation

mM (λ) = z cannot accummulate, as M → ∞, at any point off the real axis, unless that point is a root of
the equation m(λ) = z. As a consequence there are only finitely many such accummulation points in any
strip a ≤ ℜ(λ) ≤ b.

Proof. Off the real axis, since our operators JRN and JMN are self-adjoint, Titchmarsh-Weyl nesting analysis
(see Gesztesy and Clarke [7]) shows that mM (λ) → m(λ) locally uniformly, where m(λ) is the Titchmarsh-
Weyl function for the self-adjoint Jacobi operator JRN . Any zeros of mM (λ) − z which converge to a point
off the real axis therefore converge to a zero of m(λ) − z. �

Proposition 2. Denote the zeros of mM (λ) − z explicitly in terms of their real and imaginary parts by
(µk + iνk). Then

∑

k

νk = −ℑ(1/z).

Proof. Using the formula for mM (λ) we expand the resolvent (JMN − λ)−1 in eigenvectors (wk) of the
Hermitian matrix JMN ,

(JMN − λ)−1e1 =

M+1
∑

k=1

〈e1, wk〉
λk − λ

wk,

and deduce that

(7) mM (λ) =
M+1
∑

k=1

|〈e1, wk〉|2
λk − λ

.

The equation mM (λ) = z can be rearranged as a polynomial equation of order M + 1 in λ:

M+1
∏

k=1

(λk − λ) =
1

z

M+1
∑

k=1

|〈e1, uk〉|2
∏

j 6=k
(λj − λ).

The sum of the roots is given by the coefficient of (−λ)M in this equation:

M+1
∑

k=1

(µk + iνk) =

M+1
∑

k=1

λk −
1

z
.

The result follows upon taking imaginary parts. �

Proposition 3. Let z ∈ C
+ be fixed. Then the roots of the equation mM (λ) = z approximate every point

of σess(J) = σess(J0).

Proof. Suppose for a contradiction that there is some point λess ∈ σess(J) which has an open neighbourhood
U containing no zeros of mM (λ)−z for some subsequence of integers M tending to infinity. Choose an open
interval (a, b) ∋ λess such that U ⊃ [a, b]. Let µk + iνk be the zeros of mM (λ)− z; these all lie strictly in C

+

since m(λ) is real-valued for real λ and ℑ(z) > 0, and there are precisely M + 1 of them since they are the
zeros of a degree M + 1 polynomial equation. We may assume that they all lie at a distance at least δ > 0
from the line segment [a, b]. Consider the function

(8) gM (λ) =
1

mM (λ) − z
PM (λ)

in which PM the given by the Blaschke product

PM (λ) =

M+1
∏

k=1

(

λ− (µk + iνk)

λ− (µk − iνk)

)

=

M+1
∏

k=1

(

1 − 2iνk
λ− (µk − iνk)

)

.
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Evidently gM (λ) is analytic in the semi-strip a ≤ ℜ(λ) ≤ b, ℑ(λ) > −δ.
We know that among the zeros of mM (λ) − z there are those which converge to zeros of m(λ) − z, and

others. In the strip a ≤ ℜ(λ) ≤ b there are only finitely many zeros of m(λ) − z, by Proposition 1. We
may therefore surround the zeros of m(λ) − z in the strip by an open set V which is sufficiently small to
ensure that it contains, for all sufficiently large M , only those zeros of mM (λ) − z which converge to zeros
of m(λ)− z, and the number of these will be fixed for all sufficiently large M . By re-numbering the zeros of
mM (λ) − z if necessary we may suppose that it is precisely the zeros µk + iνk, k = 1, . . . , ν, of mM (λ) − z
which lie in V , and hence converge to zeros of m(λ) − z. We separate the product for PM correspondingly:

PM (λ) = pM (λ)P̃M (λ), pM (λ) =

ν
∏

k=1

(

1 − 2iνk
λ− (µk − iνk)

)

; P̃M (λ) =

M+1
∏

k=ν+1

(

1 − 2iνk
λ− (µk − iνk)

)

.

We consider the behaviour of P̃M in the strip a ≤ ℜ(λ) ≤ b. Firstly, P̃M has no zeros at all here, for sufficiently
large M , because of the way we have sub-divided our set of zeros of mM (λ)− z: those which remain outside
a neighbourhood of the real axis necessarily converge to infinity or to zeros of m(λ)− z off the real axis, and
we have assumed that no zeros of mM (λ)−z converge to a neighbourhood of [a, b], so all zeros of mM (λ)−z
in the strip a ≤ ℜ(λ) ≤ b are enumerated among µk + iνk, k = 1, . . . , ν. Thus in the strip a ≤ ℜ(λ) ≤ b we
have, for all sufficiently large M , the inequality |λ− (µk + iνk)| ≥ δ > 0, k = ν + 1, . . . ,M + 1, where δ is

independent of M , whence also |λ − (µk − iνk)| ≥ δ > 0, k = ν + 1, . . . ,M + 1. Hence P̃M has no poles
either, for a ≤ ℜ(λ) ≤ b. From Proposition 2 we have, a fortiori,

M+1
∑

k=ν+1

νk ≤ −ℑ(1/z).

It follows that for all a ≤ ℜ(λ) ≤ b,

(9) exp(2δ−1ℑ(1/z)) ≤ |P̃M (λ)| ≤ exp(−2δ−1ℑ(1/z)).

The behaviour of pM (λ) for large M is simple: since the number of factors is constant for sufficiently large
M and since each factor converges, there exists a rational function p(z) having ν zeros and ν poles in the
strip a ≤ ℜ(λ) ≤ b, all off the real axis, such that pM (λ) → p(λ) locally uniformly away from the poles of p.

Considering the function gM (λ) we observe that, for real λ,mM (λ) is real or infinite, and hence
∣

∣

∣

1
mM (λ)−z

∣

∣

∣ ≤
1

ℑ(z) for λ ∈ R. This bound holds trivially for λ ∈ C
− as there ℑ(mM (λ)) and ℑ(z) are of opposite signs, so

(10)

∣

∣

∣

∣

1

mM (λ) − z

∣

∣

∣

∣

≤ 1

ℑ(z)
, ℑ(λ) ≤ 0.

The function gM (λ) is rational with no poles in C
+ and, on the real axis, it is also bounded above by 1/ℑ(z)

since |PM (λ)| = 1 for real λ. By the Phragmen-Lindelöf Theorem, it follows that

(11) |gM (λ)| ≤ 1

ℑ(z)
, ℑ(λ) ≥ 0.

The term P̃M (λ) has absolute value 1 on the real axis and, off the real axis, is bounded in modulus for
a ≤ ℜ(λ) ≤ b by (9). The term pM (λ) has absolute value 1 on the real axis and is bounded in a neighbourhood
of the real axis, since all its poles, of which there are boundedly many, lie in the lower half-plane and converge
to points with ℑ(λ) ≤ −δ. Combining this with the bound (10) we see that the functions gM (λ) are uniformly

bounded in the half-strip a ≤ ℜ(λ) ≤ b, ℑ(λ) ≥ −δ/2. Since the P̃M have bounded inverses by (9) it follows
that the family of analytic functions given by pM (λ)/(mM (λ) − z), as M tends to infinity on the chosen
subsequence, is uniformly bounded in the half-strip a ≤ ℜ(λ) ≤ b, ℑ(λ) ≥ −δ/2, and analytic in its interior.
This means that its limit as M → ∞ on the subsequence is analytic in a neighbourhood of [a, b], which



M. Marletta, S. Naboko Finite section method for dissipative operators page 7

means that 1/(m(λ) − z) is analytic in a neighbourhood of [a, b] and hence that m(λ) is holomorphic in a
neighbourhood of [a, b]. However (a, b) contains essential spectrum of JRN , so this is impossible by Weyl’s
Theorem. �

In order to generalize this result we need to replace m(λ)− z by m(λ)− f(λ), which means we shall need
a bound away from zero for ℑ(f(λ)), valid on the real axis. For large |λ| we can write (4) as

f(λ) =
−λ

a2
N−1

〈(

I + 1
λJ

L
N + 1

λ

2
(JLN )2 + · · ·

)

eLN−1, e
L
N−1

〉

from which, for large real λ,

(12) ℑ(f(λ)) =
1

a2
N−1

ℑ〈JLNeLN−1, e
L
N−1〉 +O(λ−1) =

sN−1

a2
N−1

+O(λ−1).

Here we assume without loss of generality that sN−1 > 0. If we also know that sN−2 6= 0 then it may be
shown that ℑ(f(λ)) > const. > 0 for all real λ, though in general ℑ(f(λ)) may have zeros on the real axis.
However we do know that for real λ, the function ℑ(f(λ)) is a rational function of λ. Equation (12) implies
that ℑ(f(λ)) is a quotient of two polynomials of equal order:

Lemma 3. Suppose sN−1 > 0. Then there exist polynomials q(λ) and q̃(λ) of equal order such that

ℑ(f(λ)) =
q(λ)

q̃(λ)
, λ ∈ R.

We are now in a position to prove our main result for Jacobi matrices with finitely supported dissipative
perturbation s.

Theorem 2. Suppose that sj ≥ 0 for all j, that sN−1 > 0 and that sj = 0 for j ≥ N . Let f be as in (4).
Then every point of σess(J) is approximated, for large M , by roots of the equation mM (λ) = f(λ). In view
of Lemmas 1 and 2 this means that every point of σess(J) is approximated by eigenvalues of finite section
truncations of J .

Proof. The proof is very similar to that of Proposition 3 in strategy; however the details are slightly more
involved. Suppose that the result is false: there exists an interval (a, b) containing points of essential spectrum
of J0 such that the functions mM (λ) − f(λ) fail to have zeros in a neighbourhood of the line segment [a, b]
in C for some sequence of integers M tending to infinity. This means that the function 1/(mM (λ) − f(λ))
has no singularities in a neighbourhood of the line segment [a, b]. The first departure from the method of
proof used for Proposition 3 is that we shall re-define the function gM previously given by (8). Using the
polynomial q from Lemma 3 we consider

(13) gM (λ) =
q(λ)

(λ+ i)d(mM (λ) − f(λ))
PM (λ),

in which d is the degree of q(λ) and PM (λ) is the Blaschke product associated with non-real zeros of the
denominator mM (λ) − f(λ), which all lie in the upper half-plane. The term (λ + i)d in the denominator
cancels the growth of q(λ) at infinity. The inclusion of the polynomial q(λ) in the numerator, which cancels
any real zeros of the denominator, together with the result of Lemma 3, imply that on the real axis, where
mM (λ) is real-valued, gM is uniformly bounded: there exists a constant C independent of M such that

(14) |gM (λ)| ≤ C, λ ∈ R.

This replaces the bound (10) which we used before.
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In order to estimate the behaviour of the Blaschke factors PM in the upper half plane we re-write the
expression for gM in the form

gM (λ) =
q(λ)

(λ+ i)d

{

aN−1vN−1(λ)

aN−1vN−1(λ)mM (λ) + vN (λ)

}

PM (λ)

and observe that the Blaschke factors will involve the non-real zeros µk + iνk, µk ∈ R, νk > 0, of the
denominator

dM (λ) := aN−1vN−1(λ)mM (λ) + vN (λ).

We seek bounds similar to those in Proposition 2. Recall that vj(λ) is a polynomial of degree j − 1 in λ,
independent of M . Writing the equation dM (λ) = 0 using (7) as

1

c
aN−1vN−1(λ)

∑

k

|〈e1, wk〉|2
∏

j 6=k
(λj − λ) +

N−1
∏

k=1

(αk − λ)

M+1
∏

k=1

(λk − λ) = 0,

in which vN (λ) = c
∏N−1
k=1 (αk − λ), c 6= 0, we see that dM has M +N zeros µk + iνk and they satisfy

(15)
M+N
∑

k=1

(µk + iνk) =
M+1
∑

k=1

λk +
N−1
∑

k=1

αk,

whence, since the λk are all real,

(16)
M+N
∑

k=1

νk =
N−1
∑

k=1

ℑ(αk),

independently ofM – despite the fact that the λk do, generally, depend onM – because the αk are determined
completely by vN (λ).

Factoring PM (λ) = pM (λ)P̃M (λ) into the part pM involving those zeros which converge to the (finitely

many, say ν) eigenvalues off the real axis in the strip a ≤ ℜ(λ) ≤ b and the remaining term P̃M (λ) which
has no zeros in the strip a ≤ ℜ(λ) ≤ b, say

P̃M (λ) =

MN
∏

k=ν+1

(

1 − 2iνk
λ− (µk − iνk)

)

,

we obtain for P̃M the uniform bounds

(17) exp(−2Aδ−1) ≤ |P̃M (λ)| ≤ exp(2Aδ−1), A =
∑

k

αk <∞,

where δ > 0 is chosen so that |λ − (µk + iνk)| > δ for k = ν + 1, . . . ,M + N and a ≤ ℜ(λ) ≤ b. This
replaces (9). Note that we also have, trivially,

(18) |PM (λ)| ≤ 1, |P̃M (λ)| ≤ 1, ℑ(λ) ≥ 0.

We can now deduce that the functions gM (λ) are rational and analytic in the upper half-plane where, by
the Phragmen-Lindelöf Principle and (14,18), they are uniformly bounded; moreover for a ≤ ℜ(λ) ≤ b they
are bounded away from zero except at a bounded number of isolated points (the zeros of q(λ)pM (λ)). In
the lower half-plane, since the singularities of the Blaschke factors do not approach the real axis in the strip
a ≤ ℜ(λ) ≤ b, we have similar properties in some M -independent rectangle with top [a, b], bounded below
by ℑ(λ) ≥ max(−1,−δ).
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On a subsequence of M tending to infinity the Blaschke factors, being a normal family thanks to (17),
converge to non-trivial functions analytic in an open neighbourhood of the line segment [a, b]. The same is
true of the gM . Thus their quotient

q(λ)

(λ+ i)d(m(λ) − f(λ))

is analytic in an open neighbourhood of [a, b], which means that m is meromorphic in a neighbourhood of
[a, b]. However (a, b) contains essential spectrum, so the Titchmarsh-Weyl function m of the self-adjoint
operator JRN cannot have this property. The proof is complete. �

Remark 3. The result (15) is, in fact, nothing more than the obvious statement that the trace of the
(N +M)× (N +M) finite section of J is equal to trace(JLN ) + trace(JMN ). To see this one needs only note

that trace(JMN ) =
∑M+1
k=1 λk and that the αk, k = 1, . . . , N − 1, which are the zeros of vN (λ), are precisely

the eigenvalues of the (N − 1) × (N − 1) matrix JLN .

We are now ready to prove Theorem 1, which was stated at the start of this section.

Proof of Theorem 1. If s = 0 then there is nothing to prove as the result follows in this self-adjoint case by
using discrete versions of the approach of Stolz and Weidmann [21]. Suppose then that there exists some
N ≥ 2 such that sN−1 > 0. The only question which remains to be answered is whether or not the proof of
Theorem 2 still works in this case. In fact a careful examination of the proof shows that there are only three
points to check.

First, observe that the bound (14) is valid a fortiori because, by Remark 2, ℑ(mM (λ)) and ℑ(f(λ)) have
opposite signs for real λ. The bound (14) was obtained by throwing away the contribution of mM on the real
axis; including this term only improves the bound.

Secondly, in view of Remark 3, the trace formulae (15,16) become

M+N
∑

k=1

(µk + iνk) =
M+N
∑

k=1

(ak + isk); 0 ≤
M+N
∑

k=1

νk =
M+N
∑

k=1

sk ≤ ‖s‖ℓ1(N).

Thirdly (and finally) we need to examine whether or not it is still true that in the case s ∈ ℓ1(N) the
Titchmarsh-Weyl functions mM converge locally uniformly to m off the real axis, at points of analyticity of
m. (The reader should bear in mind that m corresponds to a dissipative operator now.) One way to do this
is to follow through the analysis in [7] and observe that since sk → 0 as k → ∞ the important points in all
the proofs still work. More formally, we invoke the work of Monaquel and Schmidt [19]. Since s ∈ ℓ1(N) we
know that sk → 0 as k → ∞. Given ǫ > 0 we may choose a Glazman decomposition point Nǫ such that
sk < ǫ for all k ≥ Nǫ. We indicate explicitly the dependence of the Titchmarsh-Weyl coefficients on Nǫ with
the notations mNǫ

M for those arising from the finite matrices and and mNǫ for those arising from the infinite
matrix. Inspecting equations (33) and (34) in [19] we see that invoking Theorem 4.1 of that paper shows
that

mNǫ

M (λ) → mNǫ(λ), M → ∞; loc. unif. w.r.t. |ℑλ| ≥ 2ǫ.

We next observe the well known fact that our original ǫ-independent Titchmarsh-Weyl coefficients with N
fixed can be expressed in terms of the new coefficients by the same fractional linear transformation whose
coefficients do not depend on M :

(19) mM (λ) =
−1

aN−1

(

aNǫ−1m
Nǫ

M (λ)φNǫ

N (λ) + θNǫ

N (λ)

aNǫ−1m
Nǫ

M (λ)φNǫ

N−1(λ) + θNǫ

N−1(λ)

)

,

(20) m(λ) =
−1

aN−1

(

aNǫ−1m
Nǫ(λ)φNǫ

N (λ) + θNǫ

N (λ)

aNǫ−1mNǫ(λ)φNǫ

N−1(λ) + θNǫ

N−1(λ)

)

,
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where φNǫ and θNǫ are solutions of the three-term recurrence relation (1) with initial conditions

φNǫ

j =

{

1 (j = Nǫ)
0 (j = Nǫ − 1)

; θNǫ

j =

{

0 (j = Nǫ)
1 (j = Nǫ − 1)

.

The fractional linear transformations allow us to deduce that mM (λ) → m(λ) locally uniformly for |ℑλ| ≥ 2ǫ,
away from the poles of m. However since the mM and m do not depend on λ, we obtain the desired
convergence of mM to m locally uniformly for ℑλ 6= 0, away from the poles of m.

Every other element of the proof carries over from the case of finitely supported s without change. �

3. Schrödinger operators on the half-line

In this section we treat Schrödinger operators for which the imaginary part of the potential is compactly
supported and has one sign. The case in which the imaginary part of the potential need not be compactly
supported will be treated in Section 4. The method which we develop in the present section could be applied
equally well to the Jacobi operator case of Section 2. However the results which it yields would not improve
those of Section 2. Throughout this section q is assumed to be square integrable over finite intervals.

We consider truncations of the operators L and L0 of Section 1. L0 will be replaced by the family of
operators LM0 in L2(0,M), M ≫ 1, given by

D(LM0 ) = {u ∈ L2(0,M) − u′′ + qu ∈ L2(0,M); u(0) = 0 = u(M)},
and we take LM = LM0 + is(x)·, for M > N := sup(supp(s)); since s ∈ L∞ we choose D(LM ) = D(LM0 ).

We shall require corresponding Titchmarsh-Weyl functions. For ℑ(λ) 6= 0 there is, up to scalar multiples,
a unique non-trivial solution of the differential equation −u′′ + qu = λu, which we denote ψ(x;λ); the
corresponding Weyl-Titchmarsh function is

(21) m(λ) =
ψ′(N ;λ)

ψ(N ;λ)
.

There is also a unique-up-to scalar multiples non-zero solution of −u′′ + qu = λu in the interval [N,M ]
which satisfies u(M) = 0; denoting this solution by ψM (x;λ) we define the corresponding Weyl-Titchmarsh
coefficient by

(22) mM (λ) =
ψ′
M (N ;λ)

ψM (N ;λ)
.

Finally we define a solution v(x;λ) of −v′′ +(q+ is)v = λv on (0,∞) by the initial condition v(0;λ) = 0,
v′(0;λ) = 1. By a standard Glazman decomposition argument a point λ is an eigenvalue of L if and only if

(23) m(λ) − v′(N ;λ)

v(N ;λ)
= 0;

similarly, a point λ is an eigenvalue of LM if and only if

(24) mM (λ) − v′(N ;λ)

v(N ;λ)
= 0.

Note that any eigenvalue λ of L or LM lies in C
+ since, if u is the corresponding normalized eigenfunction,

then ℑ(λ) =
∫ N

0
s|u|2.

We wish to prove that for large M , every point of σess(L) can be approximated to arbitrary accuracy by

eigenvalues of LM , i.e. by zeros of the function mM (λ) − v′(N ;λ)
v(N ;λ) .

Our first step is to obtain a bound on the mM (λ), in terms of the resolvents of the self-adjoint operators
LMN defined by:

(25) D(LMN ) = {u ∈ L2(N,M) | − u′′ + qu ∈ L2(N,M), u(N) = 0 = u(M)},
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(26) LMN u = −u′′ + qu.

To this end we express the solution ψM (x;λ) in terms of the resolvent of LMN . Let w be a compactly supported
smooth function with w(N) = 1, w′(N) = 0 and −w′′ + qw ∈ L2(0,∞), the last of these conditions holding
since q is square integrable over finite intervals. Evidently w does not depend on M . We assume without loss
of generality that M ≥ sup(supp(w)), so in particular ‖(−D2 + (q − λ))w‖L2(N,M) does not depend on M .
An elementary calculation shows that the function φM (x;λ) = ψM (x;λ)/ψ(N ;λ)−w(x) lies in the domain
of LMN and satisfies

(27) (LMN − λ)φM = −(−D2 + (q − λ))w ∈ L2(N,M).

Consequently for λ in the resolvent set of LMN ,

(28) φM = −(LMN − λ)−1(−D2 + (q − λ))w.

Moreover φ′(N ;λ) = ψ′(N ;λ)/ψ(N ;λ) since w′(N) = 0, and so

(29) mM (λ) = φ′(N ;λ).

Lemma 4. Suppose q is square integrable over finite intervals. Then for λ in any compact set there exists a
constant C > 0 independent of M such that

|mM (λ)| ≤ C

dist(λ, σ(LMN ))
.

Proof. From eqn. (28) and the M -independent bound on ‖(−D2+(q−λ))w‖L2(N,M) we obtain immediately
a bound of the form

(30) ‖φM (·;λ)‖L2(N,M) ≤
C

dist(λ, σ(LMN ))
.

Since w(N) = 1 and w′(N) = 0, two integrations by parts together with (27) and (29) yield

mM (λ) = φ′M (N ;λ)w(N) − φM (N ;λ)w′(N) =

∫ M

N

{

w(−D2 + (q − λ))φM − φM (−D2 + (q − λ)w)
}

= −
∫ M

N

(φM + w)(−D2 + (q − λ))w,

whence the required bound on mM (λ), for λ in any compact set, follows from (30). �

Lemma 5. Under the conditions of Lemma 4,

|m′
M (λ)| ≤ C

|dist(λ, σ(LMN ))|2 .

Proof. Define υM (x;λ) = ∂
∂λφM (x;λ). From the expression (28) we have

υM = −(LMN − λ)−2(−D2 + (q − λ))w + (LMN − λ)−1w.

This immediately yields, for λ in any compact set, a bound of the form

(31) ‖υM (·;λ)‖L2(N,M) ≤
C

|dist(λ, σ(LMN ))|2 ,

and the rest of the proof is similar to Lemma 4. �
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Remark 4. The fact that bounds of the forms in Lemma 4 and Lemma 5 must hold with some constants
C which may depend on M follows straightforwardly from the Riesz-Herglotz representation theorem for
the Nevanlinna function mM in the upper half-plane and the fact that the representing measure therein is
supported on the spectrum of the corresponding operator LMN . The important point in these lemmata is that
the constant C can be chosen to be independently of M under the additional hypotheses used here.

Lemma 6. Let f(λ) = v′(N ;λ)/v(N ;λ) where v is as in (23,24). Suppose that I1 and I2 are two disjoint
finite intervals on the real axis neither of which intersects σess(L) (i.e. both are contained in gaps in the essen-
tial spectrum). Then for each sufficiently large M there exists a closed rectangular contour ΓM intersecting
the real axis twice, once in I1 and once in I2, with length bounded independently of M , such that

sup
z∈ΓM

∣

∣

∣

∣

1

mM (λ) − f(λ)

∣

∣

∣

∣

is bounded uniformly in M , and such that there are no poles of f on or inside ΓM .

Proof. The first essential observation is that f is a meromorphic function with the property that ℑ(f(λ)) > 0
for ℑ(λ) ≤ 0 and all its poles in C

+. To see this we first observe that the poles of f are the zeros of v(N ;λ),
which in turn are the eigenvalues of the differential expression −v′′ + (q+ is)v = λv on [0, N ] equipped with
Dirichlet boundary conditions. These eigenvalues satisfy

ℑ(λ) =

∫ N

0
s|v|2

∫ N

0
|v|2

;

since s is positive on a set of positive measure and since non-trivial solutions of a second order linear equation
cannot vanish on a set of positive measure, this means that the poles of f satisfy ℑ(λ) > 0. For ℑ(λ) ≤ 0
we use a simple integration by parts to show that

v′(N ;λ)

v(N ;λ)
|v(N ;λ)|2 =

∫ N

0

{|v′(x;λ)|2 + (q(x) + is(x) − λ)|v(x;λ)|2}dx,

which immediately yields ℑ(f(λ)) > 0 for ℑ(λ) ≤ 0.
For the rest of the proof we use the locally uniform convergence mM (λ) → m(λ) in the upper half plane;

since f is meromorphic in the upper half-plane the zeros of m(λ)− f(λ) can only accummulate at infinity or
on the real axis. In the lower half-plane there are no zeros since ℑmM (λ) < 0 there while ℑf(λ) > 0 there.
Thus for a.e. r > 0 we can choose two finite horizontal line-segments, one in C

+ and one in C
−, at distance

r > 0 from the real line, which extend past I1 and I2 in both directions and on which mM (λ) − f(λ) is
bounded away from zero for all sufficiently large M . Moreover since all the poles of f lie strictly in C

+ we can
choose the two line segments such that there are no poles of f on them or in the rectangle between them.

To form our closed contour ΓM we connect the two horizontal line segments by vertical line-segments
passing through I1 and I2 respectively. In each interval I1, I2 there is at most one spectral point of LNM because
each spectral gap contains at most one point of spectral pollution, as we mentioned in the introduction (Section
1). Thus we can always choose, for each M , the vertical line segments to be such that dist(λ, σ(LMN )) ≥ δ > 0
there, for some small δ independent of M , and hence on those vertical line segments we have from Lemma
5 the bound

|m′
M (λ)| ≤ C/δ2

for some C > 0 independent of M . At the points where the vertical segments cut the real line, because
mM (·) takes values in R ∪ {∞}, we have the bound

|mM (λ) − f(λ)| ≥ |ℑ(f(λ))| > c > 0,
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for some constant c. Combining this with the bound on m′
M we see that if

(32) |ℑ(λ)| < c

2C
δ2

on the vertical line segments, then we shall have |ℑ(mM (λ))| < c
2 on those segments and hence

|mM (λ) − f(λ)| ≥ c

2
.

The inequality (32) will clearly be satisfied provided r < c
2C δ

2, which completes the proof. �

We introduce the self-adjoint operator LN defined by

(33) D(LN ) = {u ∈ L2(N,∞) | − u′′ + qu ∈ L2(N,∞), u(N) = 0},

(34) LNu = −u′′ + qu.

Let I be an open interval containing a point of σess(L0) = σess(LN ), which is such that there are gaps in
the essential spectrum immediately to the left and immediately to the right of I. We shall see below that
every neighbourhood of I must contain an an arbitrarily large number of eigenvalues of LM as M increases.
However we would also like to know how these eigenvalues are distributed. If Ĩ is any open sub-interval of I
containing a point of σess(L0) and if the integrated density of states

ρN (Ĩ) = lim
M→∞

1√
M −N

{number of eigenvalues of LMN in Ĩ}

of the underlying self-adjoint operator LN , exists and is non-zero, then the number of eigenvalues of LMN in

Ĩ will be O(
√
M) for large M . We shall use this fact below to obtain information about the distribution of

eigenvalues of LM in a neighbourhood of Ĩ. In fact we shall not even need as strong a hypothesis as the
existence of the integrated density of states for LN to prove our result.

Proposition 4. Let I be an open interval containing points of σess(L0) = σess(LN ) and suppose that there
are gaps I1 and I2 in the essential spectrum, immediately to the left and to the right of I respectively. Let
f be as in Lemma 6 and let ΓM be, for each M , a rectangular closed contour chosen to satisfy the outcome
of Lemma 6. Let g be any function which is analytic in an open set containing all the curves ΓM and the
regions they enclose. Then there exists a constant C independent of M and g such that

(35)

∣

∣

∣

∣

∣

∣

∑

j

g(nj) −
∑

j

g(pj)

∣

∣

∣

∣

∣

∣

≤ C‖g‖L2(ΓM ),

where {nj} are the zeros of mM (λ) − f(λ) inside ΓM (i.e. the eigenvalues of LMN inside ΓM ) and {pj} are
the poles of mM inside ΓM (i.e. the eigenvalues inside ΓM of the Hermitian problem with Dirichlet boundary
conditions at N and M).

Proof. This proof follows immediately by applying the results of Lemmata 5 and 6 to the identity

∑

j

g(nj) −
∑

j

g(pj) =
1

2πi

∫

ΓM

g(λ)
m′
M (λ) − f ′(λ)

mM (λ) − f(λ)
dλ,

noting that the ΓM are chosen not to enclose or pass through any poles of f . �

Before proceeding with the rest of this section we make a brief digression which yields an interesting aside.
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Corollary 1. Under the conditions of Proposition 4 we have

(36)

∞
∑

k=0

R−2k

∣

∣

∣

∣

∣

∣

∑

j

(nj)
k −

∑

j

(pj)
k

∣

∣

∣

∣

∣

∣

2

≤ 2πRC2,

uniformly in M . Here we assume without loss of generality that the contour ΓM is replaced by a circle CR
of radius R with centre at some real point.

Proof. The estimate (35) can be rewritten in the form

(37)

〈

g,





∑

j

1

λ− nj
−
∑

j

1

λ− pj





〉

L2(CR)

≤ 2πC‖g‖L2(CR).

Let DR be the interior of CR and let H2(DR) be the Hardy class of functions analytic in DR. Then (37)
means that

∥

∥

∥

∥

∥

∥

P+





∑

j

1

λ− nj
−
∑

j

1

λ− pj





∥

∥

∥

∥

∥

∥

H2(DR)

≤ 2πC,

where P+ denotes the Riesz projection onto H2(DR). By a change of variables if necessary we may assume
without loss of generality that CR has centre at 0. Making the change of variable z = λ/R so |z| = 1 and
λ = R/z on CR we obtain, by direct calculation,

∥

∥

∥

∥

∥

∥

P+





∑

j

z

1 − znj/R
−
∑

j

z

1 − zpj/R





∥

∥

∥

∥

∥

∥

H2

≤ 2πCR1/2,

where P+ now denotes the canonical Riesz projection onto the Hardy space in the unit disc. This projection
can be omitted since the poles of z/(1− znj/R) and of z/(1− zpj/R) lie outside the unit disc. We can now
calculate the L2 norm on the unit circle using the Fourier coefficients and obtain

∞
∑

k=0

∣

∣

∣

∣

∣

∣

∑

j

(

nj
R

)k

−
∑

j

(

pj
R

)k
∣

∣

∣

∣

∣

∣

2

≤ 2πC2R,

which is equivalent to the required result. �

Remark 5. The {nj} are the eigenvalues of LM inside ΓM and the {pj} are the eigenvalues of the (self-

adjoint) Dirichlet problem on (N,M) inside ΓM . The number of {pj} in a fixed interval grows like
√
M

as M → ∞ if the problem has an integrated density of states. Taking just the k = 0 term in (36) shows
that the difference between the number of {nj} and the number of {pj} inside ΓM remains bounded, so the

number of {nj} also grows like
√
M for large M . More generally, we can deduce a high level of closeness in

average of the eigenvalue spacings for two ’cut’ problems, one self-adjoint and the other not. We could apply
self-adjoint techniques to analyze the spacing behaviour for the eigenvalues of the non-self-adjoint problem,
in average.

Returning to our main theme, we wish to show that if I is as in Proposition 4 and if Ĩ is any open sub-
interval of I containing a point of σess(L0) = σess(LN ) then there will be arbitrarily many eigenvalues of LM

in a neighbourhood of Ĩ, for sufficiently large M . To this end we need an appropriate choice of g.
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By a suitable change of spectral variable, if necessary, we may assume that the interval Ĩ has endpoints
±1. We choose

(38) g(λ) =

∫ 1−δ

−1+δ

exp(−α(λ− k)2)dk,

in which the parameter α > 0 and δ ∈ (0, 1) will be chosen for convenience.

Lemma 7. For −1 + δ ≤ µ ≤ 1 − δ, g(µ) ≥
√

π/(4α) for all sufficiently large α, for δ ∈ (0, 1/4).

Proof. We observe that

g(µ) =

∫ 1−δ

−1+δ

exp(−α(µ− k)2)dk ≥
∫ 2−2δ

0

exp(−αt2)dt

=
1√
α

∫

√
α(2−2δ)

0

exp(−t2)dt ≥
√

π

4α
,

for all sufficiently large α. �

Lemma 8. Suppose |ℜ(λ)| ≥ 1 and |ℑ(λ)| ≤ ν, where ν > 0 is fixed. Then

|g(λ)| ≤ exp(α(ν2 − δ2))

2αδ
.

Proof. Writing λ in terms of its real and imaginary parts as λ = µ + it, we have | exp(−α(λ − k)2)| =
exp(−α(µ− k)2) exp(αt2) and hence, for |t| ≤ ν,

|g(λ)| ≤ exp(αν2)

∫ 1−δ

−1+δ

exp(−α(µ− k)2)dk ≤ exp(αν2)

∫ ∞

δ

exp(−αx2)dx

=
exp(αν2)√

α

∫ ∞

δ
√
α

1

2x
2x exp(−x2)dx =

exp(αν2)√
α

{

[

exp(−x2)

2x

]δ
√
α

∞
−
∫ ∞

δ
√
α

1

4x2
exp(−x2)dx

}

≤ exp(α(ν2 − δ2))

2αδ
.

�

Lemma 9. For |ℑ(λ)| ≤ ν,

|g(λ)| ≤
√
π exp(αν2)√

α
.

Proof. Using the fact that if λ = µ+ it then | exp(−α(λ− k)2)| = exp(−α(µ− k)2) exp(αt2) we obtain

|g(λ)| ≤ exp(αν2)

∫ 1−δ

−1+δ

exp(−α(µ− k)2)dk ≤ exp(αν2)

∫ ∞

−∞
exp(−αx2)dx =

√
π exp(αν2)√

α
.

�

We now use (35) with the bounds just proved. Suppose that mM (λ) − f(λ) has no zeros in the strip

−1 ≤ ℜ(λ) ≤ 1 containing Ĩ. Then taking ν to be the maximum distance of the contour ΓM from the real
axis we obtain, due to the positivity of g and Lemma 9,

∑

−1+δ≤pj≤1−δ
g(pj) ≤

∑

j

g(nj) +
Cν exp(αν2)√

α
,
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in which we have indicated that the constant C in (35) certainly depends on ν. Define Ĩδ to be the interval
[−1 + δ, 1 − δ] and let

NP (M ; Ĩδ) = #{−1 + δ ≤ pj ≤ 1 − δ}; NZ(M) = #{nj inside ΓM}.
Using the lower bounds on the g(pj) provided by Lemma 7 and the upper bounds on the g(nj) provided by
Lemma 8 we obtain

√

π

4α
NP (M ; Ĩδ) ≤

exp(α(ν2 − δ2))

2αδ
NZ(M) +

Cν exp(αν2)√
α

.

We now choose

α ∼ 1

2ν2
logNP (M ; Ĩδ).

Note that for sufficiently small δ > 0, NP (M ; Ĩδ) → ∞ as M → ∞, by the self-adjoint theory of finite

sections and the fact that Ĩδ contains a point of essential spectrum. Thus there exists a new constant C̃ν
such that, for all sufficiently large M ,

NP (M ; Ĩδ) ≤

√

NP (M ; Ĩδ)(NP (M ; Ĩδ))
−δ2/(2ν2)NZ(M)

δ
√
πα

+ C̃ν

√

NP (M ; Ĩδ),

whence

(39) (

√

NP (M ; Ĩδ) − C̃ν)
1+δ2/(2ν2)

√

log(NP (M)) ≤
√

2νNZ(M)

δ
.

Theorem 3. Suppose that q is square integrable over compact intervals and that s is compactly supported,
essentially bounded and non-negative. Let I be any open interval containing a point of σess(L0) = σess(LN ),

such that there are gaps in the essential spectrum immediately to the left and to the right of I. Let Ĩ be any
open sub-interval of I containing a point of essential spectrum. If there is a neighbourhood of the closure
of Ĩ which contains no zeros of mM (λ) − f(λ) (i.e. no eigenvalues of LM ) for some sequence of values of
M tending to infinity, then the self-adjoint Dirichlet problems on the intervals [N,M ] have eigenvalue counts
which satisfy the following inequality: for all sufficiently small δ > 0, for all sufficiently small ν > 0 there
exists a constant C̃ν > 0 such that for all sufficiently large M in the sequence,

(40) (

√

NP (M ; Ĩδ) − C̃ν)
1+δ2/(2ν2)

√

log(NP (M ; Ĩδ)) ≤
√

2νNP (M ; I)

δ
;

here NP (M ; I) is the number of eigenvalues of LMN in I.

Proof. The proof follows from (39) by noting that in view of (35), NP (M ; I) differs from NZ(M) by at most
a ν-dependent constant, which is therefore negligible for large M . �

Corollary 2. 1) Let I, Ĩ and Ĩδ be as in Theorem 3. Suppose that the self-adjoint operator LN has a

non-zero integrated density of states on Ĩδ for some δ > 0 and a finite integrated density of states on I. Then
the situation of Theorem 3 is impossible; consequently there must be, for all sufficiently large M , zeros of
mM (λ)−f(λ) (i.e. eigenvalues of LM ) in every neighbourhood of every interval Ĩ ⊆ I of σess(L0) = σess(LN )
whose interior contains an interval with non-trivial integrated density of states.

2) The same conclusion holds if, instead of the integrated-density-of-states hypothesis, we assume merely

that lim inf
M→∞

{NP (M ; Ĩδ)/NP (M, I)} is non-zero.

Proof. 1) If the hypotheses of the Corollary are satisfied then NP (M ; Ĩδ) and NP (M ; I) can be estimated
for large M in terms of the integrated densities of states:

NP (M ; Ĩδ) ∼
√
M −NρN (Ĩδ), NP (M ; I) ∼

√
M −NρN (I),
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in which ρN (Ĩδ) and ρN (I) are non-zero constants. This means that the inequality (40) cannot hold since

one can choose δ ≥ ν
√

2. Consequently every neighbourhood of Ĩ must contain a zero of mM (λ) − f(λ).
2) This follows by a very similar argument. �

4. Schrödinger operators by Jacobi matrix methods

In the previous section we used a different approach from that taken for Jacobi operators, and obtained
the spectral approximation result, Corollary 2, which uses a weak but technical hypothesis on the integrated
density of states for the underlying self-adjoint operator. We now adapt the Jacobi matrix approach and prove
the following result.

Theorem 4. Suppose that L is the operator of Section 1, that q is essentially bounded below and square
integrable over finite intervals, and that s ∈ L1(0,∞) ∩ L∞(0,∞) satisfies s(x) → 0 as x → ∞. Let LM

be the operators introduced in Section 3. Let λess be a point of σess(L). Then every open neighbourhood of
λess in C contains, for all sufficiently large M , an eigenvalue of LM .

Our first step towards a proof of this result requires a trace estimate to replace the trace formula (15) for
the zeros of the function mM (λ) − f(λ), which are the eigenvalues of LM . The proof of this result is based
on estimates of a Green’s function on the diagonal, adapted from [4].

Lemma 10. Suppose that s and q satisfy the hyptheses of Theorem 4. Let (λMk )k∈N be the eigenvalues of
LM . Suppose that there is a point λess of σess(L) and an open set U containing λess such that, on some

subsequence of integers M tending to infinity, none of the λMk or λMk lie in U . Then for every set V with

V ⊂ U , there exists a constant C independent of M and a constant δ ∈ R such that for all sufficiently large
M in the subsequence and all λ ∈ V ,

∣

∣

∣

∣

∣

∣

∑

k∈N

ℑ
(

−1
λM

k
+δ

)

(λ+ δ)−1 − (λMk + δ)−1

∣

∣

∣

∣

∣

∣

≤ C,

∣

∣

∣

∣

∣

∣

∑

k∈N

ℑ
(

−1
λM

k
+δ

)

(λ+ δ)−1 − (λMk + δ)−1

∣

∣

∣

∣

∣

∣

≤ C.

Proof. Since the λMk −λ and λMk −λ are uniformly bounded away from 0 for λ ∈ V , an elementary calculation
shows that it suffices to prove that for some δ > 0,

∑

k∈N

ℑ
( −1

λMK + δ

)

is bounded independently of M . Since the operators LM are all dissipative with trace-class resolvents and
since the real axis lies in the resolvent set of LM for s 6≡ 0 we can invoke Lidskii’s Theorem [9, Thm. 8.4, p.
101]:

(41)
∑

k∈N

ℑ
( −1

λMK + δ

)

= trace(−ℑ(LM + δI)−1).

We must therefore obtain an M -independent bound on the right hand side of (41). We use the Hilbert
identity to write

−ℑ(LM + δI)−1 =
1

2i

{

((LM )∗ + δI)−1 − (LM + δI)−1
}

= ((LM )∗ + δI)−1s(LM + δI)−1

= (
√
s(LM + δI)−1)∗(

√
s(LM + δI)−1),

whence we see that

trace(−ℑ(LM + δI)−1) = ‖
√
s(LM + δI)−1‖2

2,
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in which ‖ · ‖2 denotes the Hilbert-Schmidt norm. Thus it suffices to obtain a bound

(42) ‖
√
s(LM + δI)−1‖2 ≤ C,

in which C does not depend on M .
In order to simplify the estimates, we would like to replace

√
s(LM + δI)−1 by

√
s(LM0 + δI)−1, in which

LM0 = LM − is is the self-adjoint Schrödinger operator on (0,M) with Dirichlet boundary conditions and
potential q which was introduced in Section 3. To this end we again use the Hilbert identity to write

√
s(LM + δI)−1 −

√
s(LM0 + δI)−1 = −

√
s(LM0 + δI)−1(is)(LM + δI)−1,

whence, using the inequality ‖AB‖2 ≤ ‖A‖2‖B‖, with ‖ · ‖ denoting the natural operator norm,

‖
√
s(LM + δI)−1‖2 ≤ ‖

√
s(LM0 + δI)−1‖2(1 + ‖s‖∞‖(LM + δI)−1‖).

Since q is assumed to be essentially bounded below, the numerical ranges of the operators LM are bounded
below in real part, so there exists a choice of δ > 0 such that the norms ‖(LM + δI)−1‖ are bounded
independently of M . Thus to obtain the bound (42) it is enough to obtain a bound

(43) ‖
√
s(LM0 + δI)−1‖2 ≤ C.

Let (φMk )∞k=1 be the orthonormal eigenfunctions of LM0 , with eigenvalues (λMk )∞k=1. Since q is essentially
bounded below we may assume that δ > 0 is sufficiently large to ensure λMk + δ ≥ 1 for all k and M : for
instance, if we choose δ so that q(x) + δ ≥ 1 a.e. then this result will hold. Now

‖
√
s(LM0 + δI)−1‖2

2 =

∞
∑

k=1

‖
√
s(LM0 + δI)−1φMk ‖2 =

∞
∑

k=1

∫ M

0

s(x)(φMk (x))2dx
(

λMk + δ
)2

≤
∞
∑

k=1

∫ M

0

s(x)(φMk (x))2dx

λMk + δ
=

∫ M

0

s(x)GM (x, x)dx,

where GM is the Green’s kernel of the resolvent (LM0 + δI)−1 The proof will therefore be complete if we can
bound GM (x, x) uniformly in x and M .

To do this we shall invoke the results of Chernyavskaya and Shuster [4]. A small amount of additional work
is required since the results there are for problems posed on the whole of R rather than on a finite interval or
on a semi-axis.

We have already assumed that q + δ ≥ 1 a.e. on [0,∞). Extend q to the negative semi-axis in such a
way that this inequality continues to hold there. Let ψL and ψR be the solutions2 of −y′′ + (q + δ)y = 0
which are square summable in (−∞, 0) and (0,∞) respectively; these are unique up to scalar multiples and
we normalize them so that their Wronskian W (ψR, ψL) is 1. Define

φ(x) =
ψR(x)

ψR(0)
− ψL(x)

ψL(0)
.

A standard calculation now shows that the Green’s function GM for our problem is given for t ≤ x by

GM (x, t) = ψL(0)φ(t)

(

ψR(x) − ψR(M)

φ(M)
φ(x)

)

.

To show that this is bounded we invoke the expressions for ψL and ψR in [4, Theorem 1]:

ψL(x) =
√

ρ(x) exp

(

1

2

∫ x

x0

dξ

ρ(ξ)

)

, ψR(x) =
√

ρ(x) exp

(

−1

2

∫ x

x0

dξ

ρ(ξ)

)

,

2Chernyavskaya and Shuster denote ψL by v and ψR by u.
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in which the function ρ(x) > 0 is G(x, x), where G is the Green’s kernel for the problem on (−∞,∞). Using
these formulae we find that

φ(x) = −2

√

ρ(x)

ρ(0)
sinh

(

1

2

∫ x

0

dξ

ρ(ξ)

)

,

φ(x)ψR(x) = −
√

ρ(x)

ρ(0)

[

1 − exp

(

−
∫ x

0

dξ

ρ(ξ)

)]

exp

(

−1

2

∫ x0

0

dξ

ρ(ξ)

)

,

and

φ(x)2
ψR(M)

φ(M)
= −2

ρ(x)

ρ(0)





sinh2
(

1
2

∫ x

0
dξ
ρ(ξ)

)

sinh
(

1
2

∫M

0
dξ
ρ(ξ)

)



 exp

(

−1

2

∫ M

x0

dξ

ρ(ξ)

)

.

It is therefore clear that GM (x, x) is uniformly bounded in x ≥ 0 and M ≫ 1 if ρ(x) > 0 is uniformly bounded

in x. However by [4, Theorem 2] we have d(x)
4 < ρ(x) < 3d(x)

2 , where d(x) is, for each x, the solution of

2 = d

∫ x+d

x−d
(q(t) + δ)dt.

As we have chosen δ such that q(t)+δ ≥ 1, we have 2 ≥ 2d2, so 0 < d(x) ≤ 1. This completes the proof. �

Let δ > 0 be as in Lemma 10. Define the convergent Blaschke product

(44) PM (λ) =
∏

k∈N

(

(λ+ δ)−1 − (λMk + δ)−1

(λ+ δ)−1 − (λMk + δ)−1

)

=
∏

k∈N

(

λMk − λ

λMk − λ

)(

λMk + δ

λMk + δ

)

.

Corollary 3. Each function PM is well defined for ℑ(λ) ≥ 0, and for ℑλ < 0 provided λ 6∈ ⋃k∈N
{λMk }.

More generally, given any compact set K ⊆ C \⋂P∈N

⋃

M>P

⋃

k∈N
{λMk }, the functions 1/PM are uniformly

bounded in K while the PM are uniformly bounded in K∗ (the complex conjugates of elements of K).

Proof. A typical term in the Blaschke product (44) has the form

(λ+ δ)−1 − (λMk + δ)−1

(λ+ δ)−1 − (λMk + δ)−1
= 1 +

2iℑ
(

−1
λM

k
+δ

)

(λ+ δ)−1 − (λMk + δ)−1
.

The required upper bound on PM therefore follows using the standard exponential bounds for each term, as
in the proofs of (9,17), together with the result of Lemma 10. The bound from below follows by considering

the reciprocal terms, which involves swapping λMk and λMk in all the calculations. �

Lemma 11. Let f(λ) = v′(N ;λ)/v(N ;λ) be as in Lemma 6. Then ℑ(f(λ)) is nonzero for all real λ;
moreover,

(45) ℑ(f(λ)) ≥ 1

2

∫ N

0

s(t)dt− o(λ−1), λ→ +∞;

(46) ℑ(f(λ)) ≥ C exp(−2(N − σ)
√
−λ), λ→ −∞,

where C is a positive constant and σ ∈ (0, N) is chosen such that
∫ N

σ
s(t)dt > 0.
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Proof. We use transformator kernels (see, e.g., [12]) to represent v in terms of the solution of the free problem:

v(x;λ) =
sin(x

√
λ)√

λ
+

∫ x

0

K(x, t)
sin(t

√
λ)√

λ
dt;

the kernel K is bounded and has bounded derivatives since q + is ∈ L2(0, N). Using an integration by parts

to gain an extra power of
√
λ in the denominator of the integrand we obtain

(47) v(x;λ) =
sin(x

√
λ)√

λ
+ r1(x;λ), v′(x;λ) = cos(x

√
λ) + r2(x;λ),

in which

(48) |r1(x;λ)| ≤ C|λ|−1 exp(xℑ(
√
λ)), |r2(x;λ)| ≤ C|λ|−1/2 exp(xℑ(

√
λ)),

for some positive constant C. Now an integration by parts shows that for real λ,

ℑ(f(λ)) = ℑ
(

v′(N ;λ)

v(N ;λ)

)

=
1

|v(N ;λ)|2
∫ N

0

s(t)|v(t;λ)|2dt.

Using the asymptotic formula (47) we obtain, when λ→ −∞,

ℑ(f(λ)) ∼ exp(−2N
√
−λ)

∫ N

0

s(t) exp(2t
√
−λ)dt ≥ exp(−2(N − σ)

√
−λ)

∫ N

σ

s(t)dt,

which proves (46). To obtain (45) we observe from (47) that |v(N ; λ)|2 ≤ λ−1(1 + O(λ−1/2)) for all
sufficiently large, positive λ, and hence

ℑ(f(λ)) ≥ λ(1 +O(λ−1/2))

∫ N

0

s(t)|v(t;λ)|2dt = (1 +O(λ−1/2))

{

∫ N

0

s(t) sin2(t
√
λ)dt+O(λ−1/2)

}

→ 1

2

∫ N

0

s(t)dt, λ→ +∞,

by a trigonometric identity and the Riemann-Lebesgue lemma. This completes the proof. �

Let σ ∈ (0, N) be as in Lemma 11; let PM be the Blaschke product (44) and let

(49) gM (λ) =
exp(−2(N − σ)

√
−λ)

mM (λ) − f(λ)
PM (λ),

in which the square root is chosen which has positive imaginary part for λ in the upper half plane. We wish
to examine the large-M behaviour of the functions gM . First, however, we wish to examine these functions
for fixed M ; in particular we wish to show that they take their maximum values on the real axis. This will
follow from the strong form of the Phragmen-Lindelöf Principle [16, Theorem 7.6] due to the following result.

Lemma 12. There exists a sequence of positive reals (rn)n∈N such that rn ր ∞ as nր ∞ and a constant
CM > 0 such that

(50) sup
|λ|=rn,ℑλ≥0

|gM (λ)| ≤ CMr
−1/2
n .

In fact, rn = (n+ 1/4)2π2/M2.

Proof. We recall the formula for the Titchmarsh-Weyl function (22). In this formula we shall use asymptotic
formulae for ψM (x;λ) and ψ′

M (x;λ) similar to (47):

(51) ψM (x;λ) =
sin((x−M)

√
λ)√

λ
+ r1,M (x;λ), ψ′

M (x;λ) = cos((x−M)
√
λ) + r2,M (x;λ),
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in which

(52) |r1,M (x;λ)| ≤ C|λ|−1 exp((M − x)ℑ(
√
λ)), |r2,M (x;λ)| ≤ C|λ|−1/2 exp((M − x)ℑ(

√
λ)).

Since the Blaschke factor PM and the exponential term have modulus ≤ 1 in the upper half plane, we need
only consider the term

1

mM (λ) − f(λ)
=

v(N ;λ)ψM (N ;λ)

ψ′
M (N ;λ)v(N ;λ) − ψM (N ;λ)v′(N ;λ)

,

which, upon use of the asymptotic formulae, admits a bound

(53)

∣

∣

∣

∣

1

mM (λ) − f(λ)

∣

∣

∣

∣

≤ |λ|−1 exp(Mℑ
√
λ)(1/4 +O(λ−1/2))

|λ−1/2 sin(M
√
λ)| − C exp(Mℑ

√
λ)|λ|−1

,

provided the denominator is positive. We examine the term |λ|−1/2 sin(M
√
λ) in the denominator, on the

semi-circle λ = (n+ 1/4)2π2 exp(2iθ)/M2, θ ∈ [0, π/2]. An elementary calculation shows that

| sin(M
√
λ)| =

√

cosh2((n+ 1/4)π sin θ) − cos2((n+ 1/4)π cos θ) ≥ 1

2
cosh((n+ 1/4)π sin θ)

for all θ ∈ [0, π/2], for all sufficiently large n. The other term in the denominator of the right hand side of
(53) admits the bound

|λ|−1 exp(Mℑ
√
λ) ≤ 2M2

(n+ 1/4)2π2
cosh((n+ 1/4)π sin(θ)),

and is therefore of lower order, for large n. Thus the denominator in (53) is of order λ−1/2 exp(Mℑ
√
λ) on

the chosen semi-circles, and gives us the bound we seek. �

Proposition 5. The functions gM defined in (49) admit a uniform-in-M bound

(54) sup
ℑλ≥0

|gM (λ)| ≤ C.

Proof. The Blaschke factors PM remove the singularities due to the zeros of m(λ) − f(λ) in the upper half
plane. This, together with Lemma 12, shows that the Strong Phragmen-Lindelöf Principle is applicable to the
gM , so we need only check that the required bound holds for λ ∈ R. On the real axis we have |PM (λ)| = 1,
ℑf(λ) > 0 and ℑmM (λ) ≤ 0 so it suffices to have a bound on

| exp(−2(N − σ)
√
−λ)|

ℑ(f(λ))
.

This is immediate from Lemma 11, eqns. (45,46). �

We are now ready to prove Theorem 4.

Proof of Theorem 4. Suppose that the result is false: there exists an open neighbourhood U of λess in C

which does not contain eigenvalues of LM for some sequence of values of M which tends to infinity. By
re-labelling the operators of this subsequence if necessary, we may assume without loss of generality that
U does not contain an eigenvalue of LM for any M . Let K be any compact subset of U with non-empty
interior which contains λess in its interior. In particular, the interior of K intersects both the upper and lower
half-planes in C. Without loss of generality we can choose K to be symmetric across the real line, so that
K = K∗. Corollary 3 can now be invoked to show that both PM and 1/PM are uniformly bounded on K.
From Proposition 5 it now follows that the functions 1/(mM (λ) − f(λ)), M ∈ N, are uniformly bounded on
K. Being a normal family they have a convergent subsequence whose limit is analytic in the interior of K,
and in particular at a point of σess(L).
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We now require a dissipative version of the classical Titchmarsh-Weyl nesting analysis in order to assert
that limM→∞mM (λ) = m(λ). In the lower half-plane ℑλ < 0 the functions mM have no poles and this
result is proved by Sims [20], see also Brown et al. [3]. For λ ∈ K

⋂

C
+, recall the Weyl solutions ψ(x;λ)

and ψM (x;λ) used to define m(λ) and m(λ) in (21,22). Choose X such that for all x ≥ X, s(x) < 1
2ℑλ.

Then applying the Sims nesting analysis on the intervals [X,M ], M → ∞, we deduce that

lim
M→∞

ψ′
M (X;λ)

ψM (X;λ)
=
ψ′(X;λ)

ψ(X;λ)
.

Since mM (λ) and m(λ) can be written in terms of
ψ′

M (X;λ)
ψM (X;λ) and ψ′(X;λ)

ψ(X;λ) by means of fractional linear

transformations similar to (19,20), it follows that provided λ ∈ K
⋂

C
+ is not a pole of m then mM (λ) →

m(λ) as M → ∞. We thus have

(55)
1

mM (λ) − f(λ)
→ 1

m(λ) − f(λ)
a.e. in K.

However we have already shown that the limit of the quantity on the left of (55) is analytic in K, and we know
that f is meromorphic. Thus m is meromorphic in K. However this is impossible as K contains essential
spectrum of L. The proof is complete. �

Remark 6. The hypothesis that s(x) → 0 as x → ∞ can almost certainly be removed by a careful re-
examination of the convergence analysis for the Titchmarsh-Weyl coefficients.

Acknowledgement The authors are very grateful to the referee whose constructive criticism motivated us
to improve the presentation of this article and to weaken the hypotheses on q in Section 4.
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[9] I.C. Gohberg and M.G. Krĕın, Introduction to the theory of linear nonself-adjoint operators. Translated from the Russian by

A. Feinstein. Translations of Mathematical Monographs, Vol. 18 American Mathematical Society, Providence, R.I. 1969.
[10] Mark Embree and Lloyd N. Trefethen, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators,

Princeton University Press, 2005.
[11] Anders Hansen, On the Solvability Complexity Index, the n-Pseudospectrum and Approximations of Spectra of Operators,

J. Amer. Math. Soc. 24, 2011, 81–124.
[12] B.M Levitan, Inverse Sturm-Liouville problems. Translated from the Russian by O. Efimov. VSP, Zeist, 1987.

[13] M. Levitin and E. Shargorodsky, Spectral pollution and second order relative spectra for self-adjoint operators. IMA J.
Numer. Analysis 24, 2004, 393–416.

[14] Marko Lindner, Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method, Birkhäuser,
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