
Local Search Methods for the Post Enrolment-based

Course Timetabling Problem

Lisa Ann Taylor

School of Mathematics

Cardiff University

A thesis submitted for the degree of

Master of Philosophy

September 2013

Summary

The work presented in this thesis concerns the problem of post enrolment-based course time-

tabling. The motivation for this is the increasing importance of the automation of timetabling

due to the growth in popularity of Higher Education in recent years. There were 464,910

accepted applicants to universities in the United Kingdom in 2012 which is a 12% rise in

five years1. This will inevitably lead to an expansion in the number of courses, modules and

teachers. As a result, the ability to manually construct timetables has become increasingly

impractical.

A two-stage approach is investigated that aims to use heuristic and metaheuristic approaches

to obtain a satisfactory timetable that suits the needs of the staff and students at educational

institutions. The first stage consists of using selection heuristics to construct an initial solution.

Two approaches that then attempt to find feasibility are presented. The first applies a tabu

search algorithm with a number of neighbourhood operators that navigate the search space for

feasible solutions. The second approach implements a PartialCol algorithm.

The second stage aims to improve the solution quality by minimising the number of soft con-

straint violations. The feasibility ratio could be an indicator of the connectivity of the search

space, so methods of increasing the feasibility ratio are presented. If the feasibility ratio can

be increased then the number of soft constraint violations would be expected to decrease.

These techniques were applied to the 24 instances provided for track two of the International

Timetabling Competition 2007. The conclusions of the experimentation and investigative pro-

cesses show that the PartialCol algorithm was more successful, in terms of finding feasible

solutions, than the method that employs the neighbourhood operators. However, improvements

to the soft constraint penalty were achieved using these neighbourhood operators.

1http://www.ucas.com/data-analysis/data-resources/data-tables/data-summary

i

Declaration

This work has not previously been submitted in substance for any other degree or award at

this or any other university or place of learning, nor is it being submitted concurrently in

candidature for any other degree or other award.

Signed .. (candidate) Date .

Statement 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of MPhil.

Signed .. (candidate) Date .

Statement 2

This thesis is the result of my own independent work/investigations, except where otherwise

stated. Other sources are acknowledged by explicit references. The views expressed are my

own.

Signed .. (candidate) Date .

Statement 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-

library loan, and for the title and summary to be made available to outside organisations.

Signed .. (candidate) Date .

ii

Acknowledgements

I would like to thank the many people without whom this research project would not have been

possible. Firstly, my supervisors, Dr. Jonathan Thompson and Dr. Rhyd Lewis, thank you for

your guidance, support and patience; I know it cant have been easy at times.

I would also like to extend my gratitude to the Cardiff University School of Mathematics for

making this research nancially possible.

I express my appreciation to my thesis examiners, Professor Sanja Petrovic and Dr. Iskander

Aliev. Your thoughtful and detailed comments were valued greatly.

I am deeply grateful to all of my good friends at Cardiff University, I truly believe I have made

friends for life. Thank you for your support throughout good and bad times, for making my

days bearable with numerous tea breaks, doughnut Thursdays and endless laughter. I would

particularly like to thank Cheryl Voake-Jones for proof reading every single page of my thesis

and inserting all the commas.

A special thank you needs to go to Stuart for his personal support, patience and culinary skills!

Thank you for always putting a smile back on my face. Your faith in me never waivered even

when I didnt have faith in myself.

I cannot find the words to express my gratitude to my family; my brother, sister, the stuck-ons

and my perfect nieces and nephews who have become such a big part of my life for such little

people! Most of all, I would like to thank my Mum and Dad. You have encouraged me to

pursue my interests and have supported any decisions I have made in my life. You have offered

unconditional support both financially and emotionally. I consider myself extremely lucky to

have such a loving family around me and I love you all so much.

iii

Contents

Summary i

Declaration ii

Acknowledgements iii

1 Introduction 1

1.1 Timetabling in education . 3

1.2 Aims and structure of this thesis . 4

1.3 A note on implementation and computational experimentation 5

2 Literature review 6

2.1 Variants of educational timetabling problems . 7

2.2 Graph colouring models . 8

2.3 Problem instances . 15

2.3.1 Constraints . 18

2.4 Optimisation . 20

2.4.1 One-stage optimisation . 20

2.4.2 Multi-stage optimisation . 22

2.4.3 Algorithms that allow relaxations . 23

2.5 Local search . 24

2.6 Metaheuristics . 25

2.6.1 Local search-based metaheuristics . 26

2.6.1.1 Tabu search . 26

iv

CONTENTS

2.6.1.1.1 The TabuCol algorithm 27

2.6.1.1.2 The PartialCol algorithm 28

2.6.1.2 Simulated annealing . 28

2.6.1.3 The great deluge . 30

2.6.2 Population-based metaheuristics . 30

2.6.2.1 Genetic algorithms . 31

2.6.2.2 Hybrid genetic algorithms . 32

2.6.2.3 Ant colony optimisation . 33

2.7 Submissions to track two of the ITC 2007 . 34

2.8 Highly constrained problems . 37

2.9 Chapter summary . 39

3 Stage one of a two-stage approach: Finding a feasible solution to the Uni-
versity Course Timetabling Problem 41

3.1 International Timetabling Competition . 44

3.2 Initial construction and neighbourhood operators 51

3.2.1 Initial solution construction . 51

3.2.2 Optimisation strategy . 55

3.2.2.1 The move operator . 56

3.2.2.2 The swap operator . 62

3.2.2.3 Timeslot swap operator . 62

3.2.3 Further optimisation using more complex operators 64

3.2.3.1 The Hungarian method . 64

3.2.3.2 Kempe chains . 66

3.3 Partial solution method . 73

3.3.1 Comparison of feasible timetables . 77

3.4 Conclusions . 79

4 Stage two of a two-stage approach: Improve solution by minimising soft
constraint violations 82

4.1 Disallow SC1 and SC3 violations . 84

v

CONTENTS

4.2 Improving the feasible solution . 86

4.2.1 Move and swap operators . 87

4.2.2 Kempe chains and non-clashing swaps 87

4.3 Feasibility ratio . 93

4.3.1 Remove events . 94

4.3.2 Remove constraints . 96

4.3.3 Adding constraints . 98

4.4 Conclusions . 99

5 Conclusions and future research 101

5.1 Conclusions . 101

5.2 Future research . 103

References 107

vi

List of Figures

2.1 A list of possible constraints that educational institutions may impose. 19

3.1 An example of a Graph Colouring assignment using three colours (timeslots). . . 43

3.2 An example of an assignment. 50

3.3 An example of how the Maximum Matching Algorithm is applied to insert an
event into a timeslot . 58

3.4 An example of two timeslots before a Kempe chain move has been performed. . 68

3.5 An example of two timeslots once a Kempe chain move has been performed. . . 68

3.6 An example of the Kempe chain move with an infeasible solution. 69

3.7 A boxplot to show the minimum, maximum and average improvement made to
the cost by moves, swaps and Kempe chains in each instance. 71

3.8 A flow chart outlining the process of the neighbourhood operators. 72

3.9 A scatter plot of the relationship between the similarity of the feasible solutions
and the density of each instance . 80

4.1 An example of how the search space could appear. 83

4.2 Comparison of our results with two of the competition entrants and the compe-
tition organiser. 90

4.3 A scatter plot of the relationship between the number of times an event was
moved and the contribution to the SCP. 92

4.4 A scatter plot of the relationship between the number of times an event was
moved and the size of the event. 92

4.5 A scatter plot of the relationship between the size of the event and the final
contribution to the SCP. 93

vii

LIST OF FIGURES

4.6 A scatter plot of the relationship between the average neighbourhood feasibility
ratio and the average proportion of the reduction in cost over 20 runs for each
instance. 94

4.7 A line chart showing the change in feasibility ratio of the problem at each point
after events have been removed and the timetable has been optimised. 96

4.8 A line chart showing the change in SCP of the problem at each point after events
have been removed and the timetable has been optimised. 97

5.1 A flow chart outlining how a version of a variable neighbourhood search could
be implemented using the neighbourhood operators described in Section 3.2. . . 105

viii

List of Tables

3.1 Statistics of each instance in the ITC 2007. 46

3.2 The average distance to feasibility of the initial timetables constructed using
different heuristics. The value shown in brackets is the distance to feasibility in
terms of the number of events that need to be left unplaced to produce a feasible
timetable. The values shown in bold text are the lowest values of the distance
to feasibility generated by the selection heuristics. 54

3.3 The average value of the two cost functions for the initial timetables in each
instance. 56

3.4 The average value of the cost functions of the timetables and the percentage of
improvement from the initial costs once the move operator has been performed
using a steepest descent method. The distance to feasibility is shown in brackets. 59

3.5 The value of the cost functions and the percentage of improvement made from
the initial cost once the move operator has been performed using a tabu search.
The distance to feasibility is shown in brackets. 61

3.6 The value of the cost functions and the percentage improvement from the initial
costs once the move and swap operators have been performed using a tabu search.
The distance to feasibility is shown in brackets. 63

3.7 Example of an assignment problem with five events. 65

3.8 The optimal assignment of an assignment problem with five events. 66

3.9 The value of the cost functions and the percentage improvement from the initial
costs once the move and swap operators have been performed followed by Kempe
chains. The distance to feasibility is shown in brackets. 70

3.10 The average distance to feasibility (DTF) of the initial timetables constructed
using five different heuristics. (The number of events left unscheduled). 74

3.11 Results using Colour degree with TabuCol . 77

3.12 Results using Saturation degree with TabuCol 78

ix

LIST OF TABLES

3.13 The comparison of pairs of timetables to determine how similar the feasible
timetables are. 79

4.1 The average number of soft constraint violations in the feasible timetables for
each instance. 84

4.2 Results from disallowing violations of SC1 and SC3 from the beginning of Stage
one. 86

4.3 SCP after move and swap operator has been used for optimisation. 88

4.4 The best and median results (DTF/SCP) of ten runs obtained by algorithms
submitted to the competition. The best scores are shown in bold text. 91

4.5 The change in feasibility ratio (FR) and SCP after 0.5% of the constraints are
removed on each of the ten iterations. 98

4.6 The change in feasibility ratio and SCP when 0.5% of the total constraints are
added on each of the ten iterations. 99

x

Chapter 1

Introduction

Combinatorial optimisation problems involve finding a grouping, ordering, or assignment of a

discrete, finite set of objects that satisfies given conditions. Examples of this type of problem

include but are not limited to; vehicle routing, job scheduling, knapsack problem, and travelling

salesman. All of these problems arise in situations where discrete choices must be made, and

solving them amounts to finding an optimal solution among a finite number of alternatives.

This thesis focusses on methods for solving a combinatorial optimisation problem, specifically,

the post enrolment-based course timetabling problem.

Optimality relates to some benefit/cost criterion, which provides a quantitative measure of

the quality of each solution. This area of discrete mathematics is of great practical use and

has attracted much attention over the years. Many combinatorial optimisation problems are

NP-hard. It is generally believed that NP-hard problems cannot be solved to optimality within

polynomially bounded computation times. Consequently, there is much interest in approxi-

mation algorithms that can find near-optimal solutions of provable quality within reasonable

running times.

It is worth noting here that a search space is defined as a space containing all possible solutions

to a problem. If one solution can be transformed to another solution by some operation then

1

CHAPTER 1. INTRODUCTION

these solutions are neighbours. The constraints of a problem can vary the shape and size of the

landscape. A fitness landscape is a way of visualising a problem and represents the relationship

of the costs between neighbouring problems. The landscape can be spiky, meaning there are

many peaks and troughs, with the troughs representing the local minima. Conversely, the

landscape can be flat so there are not many local minima and it can mean that there is a strong

relationship between neighbouring solutions. There have been methods presented that measure

the landscape ruggedness (Angel and Zissimopoulos [2001]) but generally the number of peaks

cannot be determined.

The automation of timetabling can be applied to many different areas, such as; sporting event

scheduling (Kendall [2008]), transportation (Atkin et al. [2007]) and employee management

(Ernst et al. [2004]). For assistance, there are specialist timetabling software available to

use. However, these can be costly and it is very difficult to create a system that can cater

for everybody’s needs and take into account all requirements. These requirements are called

‘constraints’.

The necessity of these constraints can vary, the most important constraint for one institution

may be the least important for another. Many problems do have common constraints but

the need for the constraint to be satisfied can vary. They can be split into two categories;

hard and soft constraints. Hard constraints are requirements that must be satisfied in order

for the timetable to be acceptable. If they are not satisfied the timetable will be rejected.

Soft constraints are secondary constraints that will make the timetable more desirable. If

a constraint is not adhered to we call it a violation. There must be no violations of hard

constraints whereas there may be violations of soft constraints, but the fewer of these implies

a more appealing timetable. The number of constraints in a problem can vary from relatively

easy to solve problems with a low number of constraints to highly constrained problems. A

feasible solution is one where all hard constraints are satisfied and all events are placed. A valid

timetable is where no hard constraints are violated, however some events may be unplaced if

it is not possible to insert them into a feasible period.

2

CHAPTER 1. INTRODUCTION

1.1 Timetabling in education

Timetabling is a problem commonly found in all types of educational institutions. The ability

to construct a satisfactory timetable varies in difficulty according to many different factors,

such as the number of students, teachers and courses. Furthermore, each problem is unique

to the institution and can even vary for each department in each institution. Timetables are

often created by hand, which can take many tedious and gruelling hours and can be reproduced

several times a year as conditions change.

The reason why problems differ can be explained by fully understanding what institutions are

trying to schedule. There are three main types of educational timetabling that are currently

popular areas of study in Operational Research; exam timetabling, university course timetabling

and school timetabling. Although they are similar in many ways, they have different constraints.

For exam timetabling the number of students required to attend each exam is already known.

This means one constraint may be that the exam hall needs to be suitable for that number of

students. Sometimes there is a set length of time in which to timetable the exams e.g. two

weeks. Alternatively, the problem can be to timetable the exams in the shortest length of time

possible.

University course timetabling can either be done before or after enrolment (post-enrolment). If

a problem is post-enrolment, the number of students required to attend is known and therefore

a constraint will be that no student can be required to attend two or more courses at the same

time. However, if the number of students is unknown, i.e. before they enrol, then this cannot be

a constraint. In the curriculum-based problem, conflicts between courses are set according to

the curricula instead of the students that attend them. Teachers schedules and time constraints

can also take precedence e.g. teacher five cannot take classes on a Wednesday.

School timetabling in many ways is similar to university course timetabling but the constraints

and their importance differ. The main difference from the university course problem is that

3

CHAPTER 1. INTRODUCTION

university courses can have common students, whereas school classes are disjoint sets of stu-

dents. If two courses have common students then they conflict, and they cannot be scheduled

in the same period. Moreover, in the university problem, availability of rooms (and their size)

plays an important role, whereas in the school problem they are often neglected because, in

most cases, we can assume that each class has its own room and class sizes are uniform.

1.2 Aims and structure of this thesis

We will be giving a detailed description of the work we have completed on the post enrolment-

based course timetabling problem. We investigate multi-stage techniques for solving highly

constrained problems and post enrolment-based course timetabling in particular.

Stage one investigates the best ways of implementing local search to find a feasible solution. We

will also investigate algorithms using both heuristic and metaheuristic methods. We begin by

comparing selection heuristics for producing initial solutions. Two different methods are then

compared that search for feasible timetables. Method one relaxes constraints that are difficult

to satisfy, and presents methods that attempt to eliminating these relaxations. Method two

leaves events unplaced and strives to find positions that do not violate any hard constraints.

Further phases extend the investigation to finding an improved solution by minimising the

number of soft constraint violations. We experiment with a range of heuristics to reduce the

soft constraint penalty. We aim to investigate ways of increasing the feasibility ratio which is

the ratio of the number of moves that would maintain feasibility and the number of possible

neighbourhood moves in the search space. It is hoped that by increasing this ratio we will

increase the connectivity of the search space. We investigate the effects on the feasibility ratio

when changes are made to the problem. These algorithms are applied to well-known instances

presented by the international timetabling competition in 20071 and the results are compared

with those from the literature.

1http://www.cs.qub.ac.uk/itc2007/

4

CHAPTER 1. INTRODUCTION

This thesis consists of a further four chapters; the following chapter provides an overview of

the work previously completed on educational timetabling, the third chapter describes the two

approaches to solving a post enrolment-based course timetabling problem, while the fourth

chapter focusses on minimising the number of violations of the soft constraints. Chapter five

covers the conclusions made.

1.3 A note on implementation and computational exper-

imentation

All algorithm implementations presented in this thesis are programmed in C++, using Microsoft

Visual Studio 2010 and code optimisation set to maximise speed (/O2). The computational

experiments were executed on a PC under Windows 7 with a 3.00GHz processor.

5

Chapter 2

Literature review

Producing a suitable timetable is often tackled by universities every semester and can take a lot

of administrative effort. Current approaches typically involve slight automated computer input

and a large amount of manual input, if automation is used at all. This chapter will give an

outline of the literature on these automated processes. Many surveys and reviews are available

which give an overview of timetabling and the literature (Bardadym [1996], Burke et al. [1997],

Burke and Petrovic [2002], Carter and Laporte [1996], Carter [1986], de Werra [1985], Petrovic

and Burke [2004], Schaerf [1999]).

Virtually every school, college and university throughout the world will encounter the important

task of timetabling. The previous United Kingdom (UK) Government pledged their commit-

ment to Further Education and set a target of 50% of people under the age of 30 to undertake

some form of Higher Education1. The present UK Government removed the target but states, in

their widening participation policy2, that all those with the potential to benefit from successful

participation in Higher Education should have the opportunity to do so. This will inevitably

lead to an expansion in diversity and, as a result, the ability to manually construct timetables

suitable for the increasing number of courses, modules, teachers and students will progressively

1http://www.bis.gov.uk/assets/BISCore/corporate/MigratedD/publications/F/future of he.pdf
2https://www.gov.uk/government/policies/widening-participation-in-higher-education–4

6

CHAPTER 2. LITERATURE REVIEW

become impractical. Automated timetabling is therefore currently a popular research area.

To introduce the problem of timetabling, a thorough literature search has been undertaken.

We provide briefly the history of this field, by listing the key contributors which have had the

most influence on this thesis. This chapter can be used as a helpful resource, as it provides

many important references for anyone who wishes to study this topic.

2.1 Variants of educational timetabling problems

In education we can distinguish three types of timetabling problem: examination (Carter et al.

[1996]), university (Arntzen and Løkketangen [2005]) and school (Colorni et al. [1998]). Each

of these three problems has a slightly different focus and so different techniques are necessary

for solving them.

Examination scheduling is the task of scheduling the exams of a set of university courses,

avoiding overlaps of exams for students and spreading out the exams for students as much

as possible. Generally, multiple exams can be scheduled in the same room at the same time

providing seating capacity constraints are not exceeded. Also, there is usually more flexibility

in the number of timeslots used.

University timetabling requires scheduling all the lectures of a set of university courses, avoiding

overlaps of lectures containing common students. Generally, only one event per room is allowed

and it will be over a fixed time period, such as a week or a fortnight.

The school timetabling problem consists of producing a schedule for all the classes required by a

school, perhaps over a weekly time scale. The school timetable is affected by many parameters

and must satisfy a large number of constraints. A possible constraint could be to avoid teachers

being required to teach two classes simultaneously.

7

CHAPTER 2. LITERATURE REVIEW

2.2 Graph colouring models

The nature of the timetabling problem is closely related to other combinatorial optimisation

problems such as graph colouring.

Arguably the most common hard constraint in timetabling is to ensure staff, students and

resources are not expected to be present at two or more events simultaneously. This is known

as a ‘first-order conflict’ or, more informally, as a ‘clash’. If this is the only constraint to be

considered then the problem can easily be represented by graph colouring.

Graph colouring arises naturally in a variety of real-world applications, such as; timetabling

(Sabar et al. [2009], Burke et al. [2007]), register allocation (Chaitin et al. [1981]), frequency

assignment (Gamst [1986]), round-robin sports scheduling (Lewis and Thompson [2011]), crew

scheduling (Gamache et al. [2007]), printed circuit testing (Garey et al. [1976]), satellite range

scheduling (Zufferey et al. [2008]) and manufacturing (Glass [2002]). Note that this list is not

exhaustive.

Graph-based techniques are often used to construct solutions to problems in a step-by-step

manner. Improvement techniques are then employed to obtain a higher quality solution. The

descriptions of some of these improvement techniques appear later in this chapter.

To convert a simple timetabling problem to a graph colouring problem, we first consider a simple

and undirected graph, G = (V,E). G comprises a set of n vertices V = {v1, ..., vn} (representing

the events) and a set of edges E, which join various pairs of different vertices representing the

events that should not be scheduled in the same timeslot. The vertices are allocated to timeslots

by means of colouring the vertices so that each colour represents a timeslot that is available

in the timetabling problem. The task is to colour the vertices so no two adjacent vertices

are assigned the same colour (timeslot) and the number of colours used does not exceed the

number of timeslots available. A common objective is to minimise the number of timeslots

used and therefore find the smallest number of colours k for a given graph G (its chromatic

8

CHAPTER 2. LITERATURE REVIEW

number χ(G)), such that G has a legal k-colouring. Identifying χ(G) is well known to be an

NP-complete problem (Karp [1972]).

Perhaps the simplest approach to solve a graph colouring problem is a greedy heuristic. An

example of this may be colouring each vertex in turn with the lowest indexed colour such that

no violations are incurred, introducing new colours when necessary. The number of colours

can differ depending on how the vertices are ordered however, there will always be at least one

ordering that results in an optimal solution. Greedy heuristics tend to give worse solutions

than some more complex heuristics.

The first comparison of timetabling and graph colouring occurred in 1966 where Peck and

Williams [1966] presented the first colouring heuristic, ‘Largest Degree First’. In this method,

the vertex with the largest degree is coloured first. The degree of a vertex v in a graph G is

the number of edges in G which have v as an endpoint. In terms of timetabling, this means

first scheduling the event that has clashes with the largest amount of events. The first colour

is selected and is assigned to as many vertices as possible by scanning down an ordered list of

vertices (assigning as many events as possible to the first timeslot). Another colour is introduced

and assigned to as many vertices as possible and so on using as many colours as needed until

all vertices are assigned a colour. It may be possible to reduce the number of colours by using

optimisation techniques, discussed later in this chapter. In 1967, Welsh and Powell [1967] also

used this heuristic. However, the vertices were chosen to be coloured in index order, one-by-one,

rather than scanning down an ordered list. This approach produced worse results.

Carter et al. [1996] considered five construction heuristics, as listed below. These were used to

decide which event is next to be scheduled (vertex to be coloured). The authors assigned each

event a value, calculated using one of the following criteria:

• Largest Degree (LD): chooses the next event to be scheduled by ranking the events in

descending order by the number of clashes with all other events. Priority is given to the

event with the greatest number of conflicts. The rationale behind this rule is that events

9

CHAPTER 2. LITERATURE REVIEW

conflicting with many others are harder to schedule and so should be assigned first.

• Saturation Degree (SD): events are ordered, in ascending order, by the number of remain-

ing feasible timeslots. This is a dynamic method that has to be recalculated after each

iteration. This rule was originally proposed by Brélaz [1979]. It is argued that the most

difficult event to schedule is the one that has the least flexibility in terms of choice of

period. Ties are broken using the largest degree.

• Largest Weighted Degree (LWD): ranks the events in descending order by the number of

students involved in clashes with all other events. Priority is given to the event with the

largest degree. We might expect that this rule would give priority to core courses where

large numbers of students have identical clashes.

• Largest Enrolment (LE): schedules the event next that has the largest number of students

registered for the event. It is often the case that events with a large enrolment are difficult

to schedule as they create more clashes.

• Random Ordering (RO): this rule is mainly considered for benchmark comparisons. If

the above strategies have a significant impact on solution quality, then they should be

better than just randomly selecting the next event.

Colour degree was also proposed by Brélaz [1979].

• Colour Degree (CD): prioritises those events that have the largest number of clashes with

the events that have already been scheduled. This is a dynamic method that has to

recalculate the number of clashes each time an event is scheduled.

It was observed in the literature that when being employed on its own, SD performs the best

in most cases (Burke et al. [2007], Burke and Newall [2004], Carter et al. [1996]). This can be

explained by its ability to dynamically order the events according to the number of remaining

valid timeslots.

10

CHAPTER 2. LITERATURE REVIEW

Lewis et al. [2012] reviewed the literature surrounding methods for the general graph colouring

problem and presented a broad comparison of six high-performance algorithms. These included

a TabuCol algorithm (Galinier and Hao [1997]), PartialCol algorithm (Blöchliger and

Zufferey [2008]), Hybrid Evolutionary algorithm (HEA) (Galinier and Hao [1999]), AntCol

algorithm (Dowsland and Thompson [2008]), Hill-climbing algorithm (Lewis [2009]) and back-

tracking DSATUR algorithm (Culberson and Luo [1996]), which will be discussed further later

in this chapter. A number of trials were conducted as a comparison on artificially generated

graphs and also graphs from real-world problems. The real-world problems were namely, exam

timetabling, social networks and round-robin scheduling. The results showed each algorithm

out-performed all others on at least one occasion. Methods that relied solely upon local search

methods, TabuCol and PartialCol, perform badly on spiky landscapes but fare better on

flatter landscapes. These algorithms perform poorly in isolation but can perform better when

used in conjunction with other search operators. The HEA was the most consistent algorithm

and also relatively quick to run.

The graph colouring heuristics discussed above were widely studied in early timetabling research

and are still being employed today as either; the initialisation method for metaheuristics, or

through fully integrating them with metaheuristics in different ways. For instance, TabuCol

(Hertz and de Werra [1987]) was the first application of tabu search to graph colouring in 1987.

TabuCol has since been improved by several researchers and used as part of more elaborate

colouring algorithms (Dorne and Hao [1999], Fleurent and Ferland [1996], Galinier and Hao

[1999]).

Burke et al. [2007] present a hyper-heuristic approach using all six of the low-level heuristics

described above in both exam and university course timetabling. A list of these heuristics

is produced to determine the order in which the events should be scheduled. Tabu search is

employed to search for the list of low level heuristics which are used to construct the complete

solutions. A move in tabu search involves randomly changing two heuristics in the heuristic

list. This new heuristics list is then checked against the tabu list and a ‘failed list’, which

11

CHAPTER 2. LITERATURE REVIEW

is updated with the heuristic list if it cannot produce a feasible solution. Events are ordered

using the current heuristic in the list and the first two events are scheduled. A steepest descent

method is then used on the timetable in each iteration to improve the quality of the solution

as quickly as possible. The steepest descent method tries to move events to different timeslots

and terminates when no events can be moved that improve the quality of the timetable.

Qu et al. [2009] developed an adaptive hybridisation of these heuristics. The authors randomly

generate a heuristic sequence of length n (n being the number of events). This sequence is

initialised with all elements set to SD, since SD has been shown to provide good solutions.

LWD, LE or LD are randomly hybridised into the sequence. Different rates (each with even

chance) of hybridisation are tested. The ith heuristic is used to order the remaining events and

the event at the top of the list is scheduled first. A number (e.g. n×50) of sequences are tested

and the soft constraint penalty is calculated and saved. If a feasible solution is not produced

then the sequence is discarded. The results of these runs are then observed to develop an

adaptive approach. The sequences are categorised into three groups; the best 5%, the worst 5%

and the remaining sequences. The average appearances of LD, LWD and LE at each position

are calculated and regression analysis is used to plot the trendlines. This analysis can then be

used to intelligently hybridise the heuristics in the sequence.

Sabar et al. [2009] presented a constructive heuristic that the authors claim outperforms the

early heuristics described above as well as several others, such as, fuzzy techniques (Asmuni

et al. [2005]), neural networks (Corr et al. [2006]) and ant algorithms (Eley [2007]). The vertices

are ordered in decreasing order of the number of clashes with other events. A ‘roulette wheel’

is then divided up into segments that represent the fitness of the event. Each event’s fitness

is calculated by the number of events it clashes with divided by the total number of overall

clashes. These segments are positioned one after each other in the roulette wheel. A random

number is then generated to determine which event should be scheduled next. The number

of available clash-free timeslots for the event is calculated and, if it is greater than zero, it is

scheduled in the timeslot contributing the minimum penalty. If there is more than one timeslot

12

CHAPTER 2. LITERATURE REVIEW

with the same minimum penalty, one is chosen randomly. It is removed from the roulette wheel

and the probabilities are re-calculated.

Lü and Hao [2010b] present a macol algorithm - a memetic algorithm for graph colouring. It

consists of four main components:

1. Initial population generator - uses a randomised version of the danger colouring heuristic

proposed by Glover et al. [1996]. In order to decide which uncoloured vertex should be

coloured next the degree of danger for each uncoloured vertex is calculated. This gives

an idea of how dangerous it is if vertex i is not coloured next and is defined by:

danger(i) = F (different colour(i)) + ku · uncoloured(i) + ka ·
share(i)

avail(i)
(2.1)

where different colour(i) is the number of different colours assigned to neighbours of vertex

i; uncoloured(i) is the number of neighbours of vertex i that are uncoloured; avail(i) is

the number of colours available to vertex i; share(i) is the number of colours available to

vertex i that are also available to its uncoloured neighbours; F is the monotonic increasing

function F (y) = C
(max colour−y)k

; ku, where max colour 6= y, ka and k are non-negative

constants; max colour is the largest colour index allowed and C is an arbitrary positive

constant. However, Lü and Hao chose the next vertex and colour using a probabilistic

version of their heuristic rather than based upon the ‘dynamic vertex dangers measure’.

If a solution is too similar to another in the population it will be discarded in order to

build a diversified population.

2. Tabu search procedure - a conflicting vertex is moved from its original colour class to

another. It is forbidden to move back for l iterations where l = µ · f(S) + r(10). In

this case, µ = 1, f(S) is the cost of solution S and r(10) is a random number in the set

{1, ..., 10}.

3. Multi-parent crossover operator - An adaptive multi-parent crossover operator (AMPaX)

13

CHAPTER 2. LITERATURE REVIEW

is used. A legal k-colouring is a collection of k independent sets and the general idea is to

maximise the size of the sets coloured k by a crossover operator, therefore, less vertices

are left unassigned. Colour classes of offspring are built one by one resulting in k steps.

AMPaX builds a colour class by considering the colour class with maximal cardinality of

all parents ≥ 2. Vertices in that colour class are then removed from parents for the next

step. Once a parent has been used to build a colour class it cannot be considered for a

number of steps. This is repeated k times; if any vertices are left unassigned then they

are assigned to a random colour class. Offspring are then improved by the tabu search

algorithm described in step 2.

4. Population updating rule - the decision of updating the population, P , with an offspring

colouring is based upon two factors: the diversity of the solutions and the solution quality.

The distance, Di,P , between a k-colouring, Si, and a population member is calculated as

the least number of ‘moves’ needed to transform the k-colouring to any other k-colouring

in the population. The solution quality is hi,P = f(Si) + eβ/Di,P where λ = 0.08 (in this

case) and β = λn, n is the maximal value of Di,P . A good quality solution will have a

small value of hi,P and a poor quality solution will have a large value. If the quality of

the offspring is worse than all parents, it is still accepted with probability of 0.2.

This method was compared with four local search algorithms and seven hybrid algorithms which

cover the best known results for the 24 instances tested. The macol algorithm presented in

this paper obtained better or equivalent results in all but two of the instances tested compared

with the other algorithms.

Evolutionary algorithms have also been a popular approach for graph colouring in recent years.

These include memetic algorithms (Burke et al. [1996b], Özcan and Ersoy [2005]), genetic

algorithms (Dorne and Hao [1998], Ross et al. [1998]), multi-objective evolutionary algorithms

(Côté et al. [2005], Paquete and Fonseca [2001]) and ant colony optimisation (Eley [2007]).

This conversion to a pure graph colouring problem only exists when considering first-order

14

CHAPTER 2. LITERATURE REVIEW

conflict constraints. When other constraints are involved then this will add extra complications.

However, it is still the case that nearly all timetabling problems will still feature this underlying

graph colouring problem in their definition.

2.3 Problem instances

Problems vary between institutions but may also vary from one year to another, making it

a difficult task for researchers to compare the performance of algorithms. Random datasets

have been made available in the past that are useful in testing individual aspects of systems.

However, they do not provide the complexity of real-life data so may not provide a good basis for

deciding the methods that would perform best at a specific institution. Several generic problem

models have been developed with publicly available instances over recent years, meaning that

researchers have real-world models on which they can test and compare the performance of

algorithms.

The first International Timetabling Competition took place in 2002. This is a competition based

upon a reduction of a typical university timetabling problem in which a set of events need to

be scheduled in 45 timeslots, subject to three hard constraints. The competition entrants were

judged on firstly having a feasible solution and then penalised for violating any of the three

soft constraints. The datasets were made available for competition entrants and have been

publicly available online since the beginning of the competition3, and have since been used by

Chiarandini et al. [2003], Kostuch [2005], Lewis and Paechter [2004], Rossi-Doria and Paechter

[2004], Socha et al. [2003], Yang and Jat [2011]. For instance, Lewis and Paechter [2004] present

an evolutionary algorithm using a number of different problem-specific crossover operators that

produce feasible offspring. The authors use saturation degree to form an initial solution. They

then experiment with four crossover operators which encourage the useful groups of genes to

produce fitter offspring and a genetic repair function is used to deal with unplaced events in

3http://www.idsia.ch/Files/ttcomp2002/

15

CHAPTER 2. LITERATURE REVIEW

the gene transfer. A mutation operator is also implemented which swaps two genes provided

no hard constraints are violated.

Bosquez et al. [2010] present a family of 29 sort then fix algorithms which schedule events be-

ginning with the most constrained. Each algorithm defines the most constrained using different

criteria. These algorithms ignore soft constraints but produce promising results for finding

feasibility and could be used as a pre-processing step before other optimisation algorithms.

The second International Timetabling Competition was held in 20074. The instances presented

for this competition have since been widely used in research (Abdullah and Turabieh [2012],

Lü and Hao [2010a], Nothegger et al. [2012], Turabieh and Abdullah [2011]). For example,

Abdullah and Turabieh [2012] propose a memetic algorithm hybridising a tabu search algorithm

and a genetic algorithm used for solving the instances from track one and track three of the

competition.

The third International Timetabling Competition was help in 20115. The purpose of this

competition was to further research solely in High School Timetabling (Post et al. [2013]). There

were four finalists in this competition, and they each used different techniques. Domrös and

Homberger presented an evolutionary algorithm whilst Fonseca et al. presented an algorithm

based on an Adaptive Large Neighbourhood Search. Kheiri at al. used Simulated Annealing

and Iterated Local Search and finally, Sørenson et al. presented a hyper-heuristic to effectively

exploit a suite of neighbourhood move operators. These methods were all described in short

papers included in the conference proceedings from PATAT 20126

Carter et al. [1996] introduced problem instances for examination timetabling that are publicly

available7,8. These are often referred to as the Carter instances and have been utilised in a

large number of research papers (Asmuni et al. [2005], Burke et al. [2007], Burke and Newall

4http://www.cs.qub.ac.uk/itc2007/
5http://www.utwente.nl/ctit/hstt/itc2011/welcome/
6http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.4488&rep=rep1&type=pdf
7http://www.cs.nott.ac.uk/ rxq/data.htm
8ftp://ftp.mie.utoronto.ca/pub/carter/testprob/

16

CHAPTER 2. LITERATURE REVIEW

[2004], Casey and Thompson [2003b], Di Gaspero and Schaerf [2001], Qu et al. [2009], Sabar

et al. [2009]).

Benchmark datasets for graph colouring from The Centre for Discrete Mathematics and Theo-

retical Computer Science (DIMACS) Implementation Challenges are publicly available9. There

have been ten DIMACS Implementation Challenges since 1993 that relate to graph theory.

For instance, the tenth challenge focussed on the two related problems of graph partitioning

and graph clustering, and the ninth challenge focussed on shortest path problems. A large

amount of research has been conducted on graph colouring using these benchmark datasets

(Blöchliger and Zufferey [2008], Dorne and Hao [1998], Galinier and Hao [1999], Lü and Hao

[2010b], Malaguti et al. [2008], Porumbel et al. [2009]).

Problem instances relating to real-life data collected from Purdue University were introduced

by Rudová and Murray [2003] and are now publicly available10. Much work has taken place to

design and develop an intelligent system for timetabling at Purdue University (Murray et al.

[2007], Rudová et al. [2011]).

Other datasets have been used over the years that are publicly available, such as, the University

of Nottingham Benchmark Data, the University of Melbourne Benchmark Data and a Random

Exam Timetabling Problem Generator, which are all available online11.

Extensive work has also been carried out to study and compare different heuristics on specific

timetabling instances. Colorni et al. [1998] construct a timetable of classes for an Italian high

school as a benchmark for their investigation. Dowsland [1998] examines solutions to three real

life scheduling problems in Swansea, Wales; a laboratory scheduling problem at the Business

Management School, the problem of examination scheduling at Swansea University and the

problem of nurse rostering at a local hospital.

9http://dimacs.rutgers.edu/Challenges/
10http://fi.muni.cz/ hanka/purdue data/
11http://www.cs.nott.ac.uk/ rxq/data.htm

17

CHAPTER 2. LITERATURE REVIEW

2.3.1 Constraints

This section will outline some of the main constraints that educational institutions may face.

A common hard constraint amongst all institutions is the requirement to avoid any student

being required to attend two or more different events at the same time. It is often the case

that additional constraints to the ‘clash’ constraint are imposed by an institution. These are

categorised as either hard or soft constraints. Hard constraints must be satisfied to provide

a valid solution. For example, the room allocated for an event needs to be big enough to

accommodate all students expected to attend. Soft constraints can be violated but should be

obeyed wherever possible to provide a more desirable solution. An example of a soft constraint

may be to minimise the number of students attending events in consecutive timeslots. A

constraint that specifies that a student cannot attend events that are ‘close’ to each other is

known as a ‘second-order conflict’ and is usually considered a soft constraint.

In general, the problem of educational timetabling is NP-complete (Asratian and de Werra

[2002]). To obtain a practical timetable in reasonable time depends on the nature of the problem

instance being tackled. Requirements and resources vary between universities, therefore some

problems are inevitably easier to solve than others. For example, some universities may have

an abundance of rooms or a small number of events to schedule. In the case of problems that

are more difficult to solve, it is possible that only a small proportion of the search space will be

occupied by feasible timetables. It is even possible that a feasible timetable is impossible due

to the combination of constraints, resulting in the need for the relaxation of some constraints.

Thus, there seems an implicit need for powerful and robust methods for tackling these sorts of

problems.

Although some timetabling considerations are common across most universities, specific re-

quirements vary from one to another as typically constraints are unique to each institution.

Burke et al. [1996a] carried out a survey on examination scheduling in British universities,

focussing on the constraints of examination scheduling. Many of the constraints discussed are

18

CHAPTER 2. LITERATURE REVIEW

also relevant in university course timetabling. Of the 95 surveys distributed, 56 institutions

replied. Figure 2.1 lists 18 constraints that the institutions gave importance to. Although some

of them may not be relevant in university course timetabling, the diversity and complexity of

the problem is evident. These constraints can vary in importance between institutions and

could be categorised as a hard constraint for one institution and a soft constraint for another.

Figure 2.1: A list of possible constraints that educational institutions may impose.

There must not be more students scheduled to a room than there are seats.
Some events may only be scheduled within a particular set of timeslots.
Events with the most students must be scheduled early in the timetable.
Some events must only take place in particular rooms.
Large rooms must be scheduled in preference to smaller ones.
Event A must be scheduled before event B.
No student is scheduled events in two consecutive timeslots.
No student is scheduled more than one event in any particular day.
Each students events must be evenly spread throughout the timetable.
No student is scheduled events in two consecutive days.
Events must be scheduled to rooms in the relevant department.
Specific rooms must be provided for disabled students.
Religious convictions must be respected.
Time must be provided for students to travel between sites.
Availability of part time students should be respected.
One event must precede all others in a group.
One event must be the last in a group.
Other specific departments preferences.

In the early years of researching automated timetabling, the computational capacity did not

exist to consider great numbers of constraints. For instance, in the case of Broder [1964] only

first-order conflicts are considered. Cole [1964] proposes an algorithm for producing a solution

to a problem consisting of four constraints:

1. The events corresponding to a certain subject either must or must not occur in consecutive

time periods.

2. No event of subject A must precede any event of subject B.

19

CHAPTER 2. LITERATURE REVIEW

3. The events of subject C must all appear in odd (morning) time periods unless they are

also required to be consecutive, in which case the first event must be in an odd period.

4. The total number of students sitting events in any one period is either bounded above

or is restricted by the accommodation available and all students sitting the same event

must be in the same room.

Since then, with the progression of computer capability, many authors have considered more

constraints that apply to real-life problems, while also making the timetable ‘nicer’ by consid-

ering soft constraints.

2.4 Optimisation

Lewis [2008] suggests that metaheuristic algorithms for timetabling can be loosely separated

into three main classes: one-stage optimisation algorithms, multi-stage optimisation algorithms,

and algorithms that allow relaxations. The author conducted a comprehensive survey of the

field of metaheuristics and timetabling using these three categories.

2.4.1 One-stage optimisation

In general, single stage approaches allow the violation of both hard and soft constraints, and

searches for a solution that can adequately satisfy both. This is usually achieved through

weighting the constraints in order to give the hard constraints much higher penalties when

violated than soft constraints. The search will be attempting to find feasibility and optimality

at the same time.

Carter et al. [1996] developed one of the most prominent one-stage algorithms. The authors

developed EXAMINE, a computerised examination scheduling system. Their paper describes

how EXAMINE is used to carry out many experiments, on both real life and randomly gener-

20

CHAPTER 2. LITERATURE REVIEW

ated problems, to determine the best algorithm for solving timetabling problems by considering

only first-order conflicts. They first find the largest clique in the underlying graph colouring

model, using the Carter and Gendreau algorithm (Carter and Gendreau [1984]), since the length

of the schedule is at least as large as the size of any clique. They schedule this clique first and

then use five sorting criteria to schedule the remaining events. This method of finding the

largest clique first works well for real problems but was not as successful for random problem

instances because they have no structure and usually have a small maximal clique. Generally,

fewer timeslots were needed on most instances, particularly harder problems. Backtracking

was used, which removes events already scheduled in order to schedule an event that is in

conflict with every timeslot. This reduces the overall length of the schedule by an average of

50%. Proximity costs ws were then introduced, which are incurred whenever a student has to

attend two examinations scheduled s time periods apart. The weights imposed are as follows:

w1 = 16, w2 = 8, w3 = 4, w4 = 2 and w5 = 1. Using these weights, cost values are evaluated

for each student and then summed to give a total cost accumulated for all students. When the

proximity cost is used, the number of time periods increased significantly; ‘spreading out’ the

events has a detrimental impact on the solution quality. SD used the minimum number of time

periods in most cases. For comparison, the authors also ran tests to minimise the (proximity)

cost per student using backtracking, having fixed the length of the schedule to the minimum

value for which each strategy was able to find a feasible solution. Again, SD was superior in

terms of solution quality and computing time.

Di Gaspero and Schaerf [2003] also use weightings in the objective function to penalise vio-

lations of hard constraints. The one-stage algorithm begins with a random initial timetable

with some hard constraints relaxed. They experiment with various combinations of different

neighbourhood operators. These combinations can be; a neighbourhood union which selects

moves from any neighbourhood considered in the union, a neighbourhood composition which

performs an ordered sequence of moves from different neighbourhoods, or a token-ring search

which performs each neighbourhood in turn starting from the best solution found by the previ-

21

CHAPTER 2. LITERATURE REVIEW

ous neighbourhood. A kick operator is used to avoid the search getting stuck at a local optima.

The authors apply this approach to the course timetabling problem.

2.4.2 Multi-stage optimisation

Multi-stage approaches were introduced later, an early example was provided by Thompson

and Dowsland [1998] in 1998. The first stage aims to produce a timetable that obeys all hard

constraints, therefore producing a feasible timetable. The further stages then aim to minimise

any soft constraint violations.

Kostuch [2005] describes an algorithm, submitted to the first International Timetabling Compe-

tition, that consists of three stages. Stage one attempts to construct a feasible initial timetable

using graph colouring and a maximum matching algorithm. The solution is penalised if a stu-

dent has an event in the last slot of the day, therefore the five penalised end-of-day slots were

left empty. Stage two uses simulated annealing, see Section 2.6.1.2, to sequence the timeslots

created in stage one to reduce soft constraint violations and optimise the schedule. All possible

timeslot swaps are tested in a deterministic order and feasibility is maintained at all times

throughout this stage. Finally, stage three uses simulated annealing to swap individual events

between timeslots whilst maintaining feasibility. This stage takes the majority of computational

time but has the most significant impact on the objective function.

Gunawan et al. [2012] also presents a three phase approach to solving the university course

timetabling problem that consists of a pre-processing stage, a construction phase and an im-

provement phase. The pre-processing phase produces a set of teachers willing to teach each

course and a set of time period preferences for each teacher. The construction phase employs a

Lagrangian relaxation approach to produce an initial feasible solution. The improvement phase

uses simulated annealing with the concept of a tabu list to re-allocate teachers and find a new

set of days and timeslots to improve the initial solution.

Other examples include Arntzen and Løkketangen [2005], Casey and Thompson [2003a] and

22

CHAPTER 2. LITERATURE REVIEW

Socha et al. [2003].

2.4.3 Algorithms that allow relaxations

In order to temporarily simplify a problem, some aspects of it may be relaxed whilst ensur-

ing that hard constraints are never violated. Attempts are made to minimise the number of

soft constraint violations, whilst also giving consideration to the task of eliminating these re-

laxations. A typical relaxation is to include additional timeslots to schedule events and then

attempt to reduce the number of timeslots at a later stage.

For example, Paechter et al. [1998] successfully investigate a university course timetabling

problem using an evolutionary algorithm. An indirect representation can be described in two

parts. The first is a permutation that determines the order in which the events should be

scheduled. The second specifies a number of suggested timeslots for each event. An attempt is

made to schedule the first event in the first suggested timeslot. If this is an unsuitable timeslot

because it violates some hard constraints, then the next suggested timeslot is used, and so on.

If there are no suitable suggested timeslots then a problem-specific heuristic is used to specify

extra timeslots which do not incur a penalty. If the event is placed then the timeslot used is

written back into the chromosome as the primary suggested timeslot. If the event still cannot

be scheduled whilst obeying all hard constraints then it is considered unplaced. To reduce the

number of unplaced events, the rule ‘all events must be placed’ is treated as a soft constraint.

The soft constraints can then be weighted by the user and changed throughout a run. Targets

can be set for each soft constraint to an acceptable level so that improvements are made in the

appropriate areas once a target has been reached.

Another example of an algorithm that allows relaxations is proposed by Ceschia et al. [2012]

for solving the post enrolment-based course timetabling problem. The hard constraints that

must be satisfied are; the rooms must be compatible for the scheduled event and only one event

is scheduled per pair of rooms and timeslots. The constraints that are relaxed are; conflicts

23

CHAPTER 2. LITERATURE REVIEW

between events, the precedence constraint and events may be left unscheduled. The algorithm

begins by creating an initial solution using a greedy algorithm. The greedy algorithm attempts

to schedule events in a randomly selected timeslot and room. If this combination of room and

timeslot violated any of the constraints (excluding the relaxations), then another pair is chosen

and so on for a finite number of iterations. If this is unsuccessful then the event will remain

unscheduled. Simulated annealing is used with neighbourhood operators, moves and swaps, to

improve the solution quality and minimise the number of violations of the relaxed constraints.

There have been many different algorithms developed in order to attempt to minimise the

number of soft constraint violations. In the next section we will outline some of the key

approaches.

2.5 Local search

Local search is a method for producing good, but not necessarily optimal, solutions to combi-

natorial problems. In general, a combinatorial optimisation problem has a discrete finite search

space S, and the quality of each solution contained in the search space can be measured by

some function f . The solution with the best quality is called the global optimum. The neigh-

bourhood N(s) of a solution s in S is defined as the set of solutions which can be obtained

from s by a move. Each solution s′ ∈ N(s) is called a neighbour of s.

Local search commences from some starting solution and selects a neighbour. The two solutions

are compared and the new solution is accepted if it improves the cost function.

Two simple neighbourhoods that are frequently used are the move neighbourhood and the

swap neighbourhood (Cambazard et al. [2012], Chiarandini et al. [2008], Kostuch [2005]). The

move neighbourhood consists of moving events one at a time to different timeslots. The swap

neighbourhood involves swapping the timeslots of two events. In minimisation problems, these

moves and swaps are accepted if the value of the cost function is reduced and no hard constraints

24

CHAPTER 2. LITERATURE REVIEW

are violated. The swaps neighbourhood can be extended to a timeslot swap neighbourhood,

where the contents of two timeslots are swapped.

The Kempe chain neighbourhood was proposed by Morgenstern and Shapiro [1986] as a suit-

able neighbourhood for graph colouring. It has since been a popular local search method for

timetabling problems. Kempe chains are sets of mutually conflicting events between two times-

lots, these events timeslots can be interchanged without introducing conflict. Thompson and

Dowsland [1998] use the Kempe chain neighbourhood in a simulated annealing implementation

and showed that it achieved superior results over other neighbourhoods for the timetabling

problem under consideration. The Kempe chain neighbourhood increases the connectivity of a

search space and can therefore move large events with many clashes to attempt to reduce the

cost function.

2.6 Metaheuristics

The Metaheuristics Network defines a metaheuristic as:

‘A set of concepts that can be used to define heuristic methods that can be ap-

plied to a wide set of different problems. In other words, a metaheuristic can be

seen as a general algorithmic framework which can be applied to different optimiza-

tion problems with relatively few modifications to make them adapted to a specific

problem.’12

Metaheuristics are widely used to solve important practical combinatorial optimisation prob-

lems. This section will discuss some of the applications of these metaheuristics.

12http://www.metaheuristics.net/index.php?main=1

25

CHAPTER 2. LITERATURE REVIEW

2.6.1 Local search-based metaheuristics

Local search-based metaheuristics find good solutions by iteratively making changes to a single

solution. These include tabu search, tabu threshold, simulated annealing and variable neigh-

bourhood search. Some of these are explained in this section.

2.6.1.1 Tabu search

Tabu search was introduced by Glover [1986, 1989]. It uses a memory property so that when

a move is performed its inverse is considered tabu for a number of iterations. This ensures

that the search explores new areas of the search space and avoids revisiting solutions. This is

usually done in the form of a tabu list of length l. After each move, the inverse of that move is

added to the end of the tabu list and is a forbidden move for l iterations. In addition to this,

an aspiration criterion is used whereby the search can override the tabu list if the move would

obtain a new best solution. Tabu search also considers the best current move that is not on

the tabu list regardless of whether it is improving or not. Therefore, once a local optimum has

been reached only moves that degrade the solution are in the immediate neighbourhood, and

the solution moves away from the local optimum.

The tabu list is a short term memory that remembers forbidden moves for a certain amount

of iterations. The number of iterations for which these moves remain on the list is called the

tenure. It is a critical parameter that greatly influences the performance of the method. If the

tenure is too large it can restrict the search and if the tenure is too small there is a risk of

the search cycling. The tabu tenure can be either static or dynamic. When the tabu tenure

is static, the number of iterations for which a move is prohibited is fixed, as in Galinier and

Hao [1997]. Dynamic tabu tenure varies throughout the search. A study by Montemanni and

Smith [2001] compares a dynamic tenure with a static tenure and concludes that a dynamic

tenure produces better results. The dynamic tenure that they present reduces the length of the

tabu list in the same way as it is done for the temperature parameter in a simulated annealing

26

CHAPTER 2. LITERATURE REVIEW

algorithm. After a number of iterations the tenure T is reduced by calculating T = βT where

0 < β < 1 and is defined by the user, as is the initial value of T. When T is reduced, the oldest

moves which exceed the new length of the list become feasible.

Di Gaspero and Schaerf [2001] propose a tabu search for the examination timetabling problem.

The algorithm is similar to the TabuCol algorithm proposed by Hertz and de Werra [1987]

but with additional constraints represented with an edge-weight function that represents the

number of students involved in a ‘clash’ and a node-weight function that indicates the number

of students enrolled in each examination. The results are compared against existing literature

on the Carter instances and are considered encouraging.

2.6.1.1.1 The TabuCol algorithm

TabuCol was proposed by Hertz and de Werra [1987] for graph colouring. Since then it has

frequently been used as a local search operator in hybrid algorithms (Dorne and Hao [1998],

Galinier and Hao [1999], Galinier et al. [2008]), although experiments reported by Blöchliger and

Zufferey [2008] suggest that this method can obtain successful results when used independently.

TabuCol operates in a search space of complete improper k-colourings (solutions with all

events scheduled but may include clashes). It involves moving events that are involved in

clashes to other timeslots using a neighbourhood operator. A ‘tabu list’ is maintained which

forbids reassigning the events to the timeslots they have just left; they remain on the list for

a number of iterations. The number of iterations is called the tenure. This avoids cycling and

helps to escape from local optima. Moves are considered deterministically. An event is moved

to the timeslot that is not tabu, that is, not on the tabu list, and makes the best improvement

to the cost function. If the cost cannot be improved then the move incurring the smallest

increase is accepted and any ties are broken randomly. A move that is tabu is accepted if it

achieves the best solution found so far.

27

CHAPTER 2. LITERATURE REVIEW

2.6.1.1.2 The PartialCol algorithm

PartialCol (Blöchliger and Zufferey [2008]) operates in a similar fashion to TabuCol but

considers partial solutions where some events are unscheduled rather than improper solutions

where all events are scheduled but may include clashes. The aim is to schedule any unplaced

events whilst maintaining feasibility and minimising the number of soft constraint violations.

Blöchliger and Zufferey [2008] proposed Foo-PartialCol, a local search approach to the

graph colouring problem. The Foo-scheme is a reactive tabu tenure based on the fluctuation

of the objective function. The tenure is increased if little improvement has been made over

a period of time as it is assumed that the search has stagnated in a particular region of the

search space. To counterbalance this, the tenure is reduced slowly along the search process.

If a large change to the objective function has been made over a certain time period then the

tenure is decreased by one (but is forbidden to be negative). PartialCol is a local search

method with a search space that consists of partial k-colourings. An initial partial colouring

is created by a greedy algorithm. A vertex is inserted into a colour group with the lowest

given number, provided that there are no clashes. If this is not possible, it is inserted into

an uncoloured list. The cost function is defined as the number of vertices in the uncoloured

list. Once an attempt has been made to colour all vertices without conflict, the vertices on the

uncoloured list are inserted into the colour group that causes the least amount of clashes. Any

other vertices that are then causing a clash will be removed and placed on the uncoloured list.

This is a very simple and efficient algorithm and obtained competitive results on a large sample

of benchmark graphs.

2.6.1.2 Simulated annealing

The idea of Simulated Annealing (SA) comes from a paper published by Metropolis et al. [1953].

The authors present an algorithm which simulates the cooling of material in a heat bath. This

is a process known as annealing. The algorithm simulates the cooling process by gradually

28

CHAPTER 2. LITERATURE REVIEW

lowering the temperature of the system until it converges to a steady state. Kirkpatrick [1984]

took the idea of this algorithm and applied it to optimisation problems. The idea is to use SA

to investigate feasible solutions and converge to an optimal solution.

SA accepts all moves that improve the quality of the solution, it also accepts some worsening

moves to avoid being trapped in a local optimum. It accepts these worsening moves with a

probability of:

e−∆D/T (2.2)

where ∆D is the change in solution quality. This will be negative for an improving move and

positive for a worsening move. T is the temperature, if T is large then many worsening moves

are accepted and a large part of the search space is accessed. Usually, the temperature is

lowered after every z iterations. The search stops when equilibrium has been reached and no

worsening moves are accepted.

This method was successfully used by competition entrants. The winner of the first Inter-

national Timetabling Competition, Kostuch [2005], used simulated annealing after the initial

solution has been constructed. Timeslot swaps and swaps were used to optimise the solution

whilst maintaining feasibility. The winner of the second International Timetabling Competi-

tion, Cambazard et al. [2012], also used simulated annealing with a number of neighbourhood

operators to optimise the solution, see Section 2.7 for a more detailed description.

A two-stage approach was proposed by Thompson and Dowsland [1998] who used simulated

annealing to produce a feasible schedule, and then used the same method to minimise second-

order conflict, while maintaining feasibility. A neighbourhood based on Kempe chains was

shown to improve solution quality. A similar method was employed by Merlot et al. [2003] who

produced high quality results by using a slower cooling schedule.

Tarawneh et al. [2013] present an algorithm for solving the curriculum-based course timetabling

problem. An initial solution is constructed using a sequential greedy heuristic having relaxed

HC5. A steepest descent method is then used to find feasibility. To minimise the number of

29

CHAPTER 2. LITERATURE REVIEW

soft constraint violations the authors use simulated annealing with memory. The memory saves

moves that are not accepted and once simulated annealing has reached a local optimum the

search employs one of the saved solutions to escape.

2.6.1.3 The great deluge

The great deluge algorithm was first introduced by Dueck [1993] and is similar to simulated

annealing described in Section 2.6.1.2. McMullan and McCollum [2007] believe that the great

deluge algorithm is more effective than a simulated annealing algorithm to avoid being trapped

in local optima. The great deluge algorithm uses a boundary condition rather than a probability

measure with which to accept worse solutions. For a minimisation problem, the boundary is

initially set to a value higher that the expected penalty of the best solution. Then, the boundary

is gradually decreased throughout the improvement process.

Abdullah et al. [2012] present an algorithm for solving the post enrolment-based course timetabling

and curriculum-based course timetabling. Three phases are used to construct an initial solu-

tion; firstly, largest degree as described in Section 2.2 is used, phase two consists of the move

and swap neighbourhood operators and phase three uses tabu search if a feasible solution

has not yet been generated. To optimise the solution the authors present a hybridisation of

an electromagnetic-like mechanism and the great deluge algorithm. The electromagnetic-like

mechanism is used within the great deluge to calculate the decreasing rate.

2.6.2 Population-based metaheuristics

Evolutionary algorithms such as memetic algorithms, genetic algorithms, multi-objective evo-

lutionary algorithms and ant colony optimisation are detailed in this section.

30

CHAPTER 2. LITERATURE REVIEW

2.6.2.1 Genetic algorithms

Genetic algorithms are inspired by Darwin’s theory of evolution. They are a popular method

for solving timetabling problems (Burke et al. [1995], Safaai et al. [1999], Dorne and Hao [1998],

Ross et al. [1998]). An initial set of solutions called the (parent) population are created. These

solutions are then used to form a new population (the offspring). The solutions chosen for

reproduction are chosen using a fitness criteria. The higher the fitness, the more chance they

have of being chosen to reproduce. The offspring are produced using a crossover operator

which select the chromosomes of each parent to use to create the offspring. The offspring

can then be mutated which should allow the algorithm to avoid local minima by preventing

the population of chromosomes from becoming too similar to each other, thus slowing or even

stopping evolution.

Pillay and Banzhaf [2010] present the results of an informed genetic algorithm. Their approach

involves two stages; stage one consists of applying a genetic algorithm (GA) to find a feasible

solution and then applying a GA to minimise the soft constraint cost in stage two. In stage

one, three ways of constructing the timetables for the initial population were tested:

1. Choose a random event and schedule it in a random timeslot;

2. Choose a random event and allocate it to the period that would incur the minimum cost;

3. Choose the most difficult event to schedule (determined using heuristics) and allocate it

to the minimum cost period.

Method 2 produced timetables with lower cost than method 1, however, method 3 was the

quickest to converge to a feasible timetable and most heuristics tested also produced timetables

with lower soft constraint costs. Using SD gave the lowest run times and using Highest Cost

(HC) gave the lowest soft constraint cost. HC is defined as the cost of scheduling an event in

terms of its distance from events that it has students in common with. The authors decided

to use a combination of SD and HC and to break ties using other low level heuristics of which

31

CHAPTER 2. LITERATURE REVIEW

LWD and LE were shown to be the best. Tournament selection chooses the parents of the

next generation. This randomly selects n elements, called the tournament, from the population

and returns the timetable with the fewest number of clashes, if more than one then the soft

constraint cost is used to break ties. The mutation operator then reschedules one or more

events involved in clashes to the minimum cost period. Stage two parents are again chosen

using tournament selection and a similar mutation operator is used. One or more events are

rescheduled to ensure a feasible timetable is produced. This is repeated until the timetable

is at least as fit as the parent timetable. The number of events to be rescheduled is chosen

randomly between one and the maximum number of changes allowed. The results show that

this algorithm is not only comparable to other evolutionary algorithms but also to different

techniques applied to the Carter instances.

Although pure GAs such as this have shown some promise, most researchers have found that

combining them with some form of descent method gives significant improvement. This com-

bination is known as a hybrid algorithm or a memetic algorithm.

2.6.2.2 Hybrid genetic algorithms

Hybrid methods combine good characteristics of different metaheuristics e.g. a memetic algo-

rithm (Moscato [1989]) that combines a GA with local search.

Abdullah et al. [2007] present an evolutionary algorithm together with local search called a

memetic algorithm (Burke et al. [1996b], Özcan and Ersoy [2005]). A random graph colouring

method is used to create an initial population of size 100. Roulette wheel selection, as described

in Section 2.2, is used to select individuals for the next generation and a random light mutation

(small alteration) is employed on 20% of the courses from 20% of the selected individuals. Local

search is then applied to these solutions and added to the population and may be used in the

next generation. This is repeated until there is zero cost or after 30 generations. This produces

the best known results in the literature at the time of publishing for all but three of the datasets

32

CHAPTER 2. LITERATURE REVIEW

from the first International Timetabling Competition.

Jat and Yang [2011] propose a two-phase approach. The first phase applies a guided search

genetic algorithm followed by a second phase which uses a tabu search with local search to

optimise the solution.

An overview of memetic algorithms for scheduling and timetabling problems can be seen in

Burke and Landa Silva [2005].

2.6.2.3 Ant colony optimisation

Ant colony optimisation was first proposed by Dorigo et al. [1991b] and is used for solving

hard combinatorial optimisation problems. It has been used for solving problems such as the

travelling salesman problem (Dorigo et al. [1991a]), vehicle routing (Gambardella et al. [1999])

and scheduling (Merkle et al. [2002]) and many others.

Ant colony optimisation takes inspiration from ants finding the shortest route to a food source.

When ants are walking to and from the food source they deposit pheromones that gradually

evaporate over time. Ants have a probability of following the pheromone trail proportional to

the strength of it. Initially, each ant randomly chooses a route to a food source. Due to random

fluctuations one route will develop a stronger pheromone trail than the others and therefore

attracts more ants. If the routes are not an identical distance to a food source then there

is another factor to consider. The ants that randomly choose the shortest route will be the

quickest to return to the nest and therefore this route receives pheromones earlier than other

routes and it is then more likely that ants will choose this route over others. As more ants

follow the shorter path the pheromone trail strengthens until no ants follow the longer route.

Deneubourg et al. [1990] investigated the behaviour of Argentine ants. The nest and a food

source were joined by two paths identical in length. The ants initially chose a path at random.

However, due to random fluctuation, one path eventually had a stronger pheromone trail than

the other so all ants chose that path. This experiment was repeated many times with each of

33

CHAPTER 2. LITERATURE REVIEW

the paths being used roughly 50% of the time.

An ant colony optimisation algorithm called AntCol, proposed by Costa and Hertz [1997],

for colouring graphs was first introduced in 1997. Dowsland and Thompson [2004] successfully

applied an algorithm based on AntCol to the examination scheduling problem. It is modified

to deal with conflicting constraints and secondary objectives such as time windows and seating

capacities. This adapted algorithm was able to find the best-known colourings quickly and

consistently over a wide range of examination timetabling graphs. The algorithm was again

improved in 2008 by Dowsland and Thompson [2008] by introducing two new evaluation func-

tions based on the chromatic number. The authors show that the improved version of AntCol

can be generalised successfully to give enhanced performance on arbitrary graphs. They obtain

further improvement in solution quality by strengthening the diversification strategy previously

suggested.

2.7 Submissions to track two of the ITC 2007

The research undertaken for this thesis focusses on Track two: Post enrolment-based course

timetabling of the International Timetabling Competition 2007. The submission by Cambazard

et al. [2012] was the winning entry from thirteen submitted entries.

Two approaches were studied by Cambazard et al., both comprising two stages. The first

approach used local search to obtain a feasible solution from a randomly generated solution.

The neighbourhood consisted of:

• moving an event to an empty position in the timetable;

• swapping the position of two events;

• swapping the positions of all events contained in two timeslots;

34

CHAPTER 2. LITERATURE REVIEW

• a matching algorithm which reassigns the rooms to the events in a timeslot to minimise

the number of unsuitable rooms allocated to events;

• a combination of moving an event to a different timeslot and the matching algorithm to

insert it without violating the room constraints.

A more complex move based on the Hungarian method for solving assignment problems is used

as a greedy intensification procedure. Cycling is avoided by maintaining a simple tabu list. The

second stage begins once feasibility is established. Moves and the matching algorithm are used,

whilst preserving feasibility, to minimise the number of soft constraint violations. Simulated

annealing was introduced to obtain better results. The second approach also uses local search

but on a colouring relaxation problem. The room constraints are relaxed to provide a list-

colouring problem. Moves, swaps, timeslot swaps and the Hungarian-based method are used to

eliminate the remaining hard constraint violations. Moves are used at this point to minimise the

number of soft constraint violations. The local search solver described above is used to attempt

to eliminate any room violations. The soft constraint violations are then minimised using the

soft constraint solver, also described above. The authors concluded that local search-colouring

was best for finding a feasible solution. If the problem was highly constrained, simulated

annealing-colouring was best for optimising the soft constraint violations, otherwise simple

simulated annealing worked best.

The solver submitted by Atsuta et al. [2007] was ranked second in track two of the competition.

This general problem solver consists of a hybrid algorithm of tabu search and iterated local

search using the shift neighbourhood. Constraints are weighted and the weight are dynamically

controlled to improve performance.

A modular multi-stage heuristic solver by Chiarandini et al. [2008] was ranked third in the com-

petition. It consisted of two stages, the hard constraint solver and the soft constraint minimiser.

The hard constraint solver attempts to find a feasible solution by scheduling the event with the

smallest number of possible time periods; if there is more than one event with this minimum

35

CHAPTER 2. LITERATURE REVIEW

then one is chosen at random. The event is scheduled in the timeslot that can accommodate

the fewest unscheduled events. An exact matching of the lectures and rooms is solved to make

a feasible insertion; if it cannot be solved then the event is left unscheduled. If any events

remain unscheduled after a sufficient number of repetitions, a tabu search procedure is used

based on the PartialCol algorithm proposed by Blöchliger and Zufferey [2008] described in

Section 2.6.1.1.2. An unscheduled event with the largest number of students attending it is

chosen to be scheduled next. It is scheduled in the best timeslot and any events that then result

in a hard constraint being violated are removed. The tabu search on the unscheduled events

and a soft constraint optimiser are alternated until a feasible solution is found or a given time

limit is reached. The soft constraint minimiser consists of a variable neighbourhood descent in

which moves, swaps, timeslot swaps and Kempe chains are run until no further improvements

to the number of soft constraint violations can be made. An exact matching is used wherever

needed. Moves and swaps with the exact matching are used with simulated annealing until a

given time limit is reached.

Nothegger et al. [2012] were ranked fourth in the competition using ant colony optimisation.

The solver submitted by Nothegger et al. also contains two stages, an initial solution construc-

tion and an improvement stage. The initial solution construction procedure considers events

in a uniform random order. It assigns them to a feasible period in a greedy randomised way

taking pheromones into consideration. The improvement stage attempts to move the most

costly event (in terms of the number of soft constraint violations) to a different timeslot, whilst

removing at most one event to maintain feasibility. This improvement heuristic is applied to

all events which violate soft constraints.

The solver submitted by Müller [2009] to the competition was submitted to all tracks; ex-

amination timetabling, post enrolment-based course timetabling and curriculum-based course

timetabling. It was ranked fifth for track two and was the winning submission for tracks one

and three. The construction stage uses an iterated forward search algorithm (Müller et al.

[2005]). Each iteration consists of randomly choosing an event among the unassigned variables

36

CHAPTER 2. LITERATURE REVIEW

with the smallest ratio of the number of possible timeslots to the number of hard constraints.

It is then assigned to a timeslot that increases the cost function the least and violates the

smallest number of hard constraints, any ties are broken randomly. If clashes do occur then

the scheduled events are removed. Once a complete solution has been found, hill climbing is

used to find a local optimum. A problem specific neighbourhood is randomly selected and is

used to generate a random change in the current solution. Once at a local optimum, the great

deluge technique is used to widen the search and try to improve the solution further. When the

bound has reached its lower limit, simulated annealing is then employed and the temperature

is increased when no improvement has been made for a number of iterations. Then the hill

climbing stage is restarted. This continues until a given time limit is reached.

2.8 Highly constrained problems

If a problem is highly constrained, then the problem has relatively few, if any feasible solutions.

As a result, when exploring the space of feasible solutions the search space is likely to be poorly

connected or even disconnected. We will therefore need to consider such a problem differently

and the heuristics used will need to be suitable. This chapter will cover some of the methods

that have been used to solve a range of highly constrained problems. Although these problems

might not be university course timetabling it is often the case that methods can be adapted to

also solve timetabling problems.

Local search heuristics operate in a search space, S, and the landscape of this space for a local

search method will depend on the particular neighbourhood and cost function being used. For

every solution s ∈ S, a neighbourhood N(s) ⊂ S is defined. A local search method starts at

an initial solution and then moves repeatedly from the current solution to a neighbour solution

in order to try to find better solutions. The quality is measured by an appropriate objective

function. In highly constrained problems the feasible areas of the search space may be very

small and few and far between.

37

CHAPTER 2. LITERATURE REVIEW

Burke et al. [1996b] use a memetic algorithm to solve the exam timetabling problem. They

found that the initial results were promising but it transpired that the algorithm does not

perform quite as well on more highly constrained problems as some other methods such as

Burke et al. [1995]. Burke et al. use a hybrid genetic algorithm for solving highly constrained

timetabling problems. A random sequential graph colouring algorithm is used to produce

a starting population. This may use more timeslots than the optimal amount. A genetic

algorithm then evolves new timetables and can reduce the length of the timetable if possible.

This approach guarantees a feasible timetable and there is no risk of creating a search space

that only contains infeasible solutions.

Burke et al. [2010] combine integer programming (IP) and variable neighbourhood search for

the nurse rostering problem. The problem can be formulated as an IP model introducing

slack and surplus variables in the soft constraints. The multi-objective heuristic model can

reduce the number of constraints by summing some of the slack/surplus variables so that the

objective function can consist of sub-functions. Once the IP model has been solved variable

neighbourhood search is used to refine the solution by swapping groups of consecutive shifts.

The authors believe this method can be applied to other resource allocation problems, not only

nurse rostering.

Xu and Qu [2012] present the first fitness landscape analysis on the delay-constrained least-

cost multicast routing problem, a well-known NP-hard problem. To analyse the landscape the

authors used two widely used landscape analysis measures; the fitness distance correlation and

the autocorrelation analysis. Different delay bounds were added to a benchmark instance so

that large amounts of simulations could be carried out. The landscape analysis reveals that

the landscape is instance dependent and tailored algorithms may not work well on different

instances. Therefore, adaptive and robust search methodologies are needed to obtain reliable

and good results across instances.

Many authors describe the benefits of using evolutionary algorithms for solving a range of

highly constrained problems. Colorni et al. [1991] also present a general methodology to apply

38

CHAPTER 2. LITERATURE REVIEW

genetic algorithms (GA) to highly constrained combinatorial optimisation problems, and the

timetabling problem in particular. The authors state ‘The main goal of our research is to

understand GA’s limits and potentialities in addressing highly constrained problems’. The

authors present sample results as they are still to be validated at time of publication however,

they are said to be promising results.

Bufé et al. [2001] use a hybrid approach of an evolutionary algorithm and local search using

specific mutation operators as both of these approaches have shown to be successful individually

in the past. Genotype operations are used followed by replacing the genotype mutation with

the phenotype mutation. This algorithm provided encouraging results.

Ray et al. [2000] present strategies to handle highly constrained problems. An evolutionary

algorithm is used for a constrained multi-objective optimisation problem. It was shown that a

constraint-constraint-mating scheme is effective for highly constrained problems. The algorithm

was shown to be encouraging on both single and multi-objective problems.

2.9 Chapter summary

In this chapter, the literature on the various timetabling problems was introduced which in-

cluded a brief history of the progress and expansion over the last 50 years. It has outlined the

challenges of the problem and the methods which have been used to attempt to solve a range

of optimisation problems.

It is shown that the early research into timetabling problems and its variants centred on exact

methods; however their limitations with regards to problem size and the complexity of real-life

problems quickly became apparent. The methods then evolved to include local search methods

and metaheuristic approaches. In this thesis we will be investigating the best means of applying

local search-based methods to the post enrolment-based course timetabling problem.

This chapter has highlighted the main heuristic approaches taken to solving the post enrolment-

39

CHAPTER 2. LITERATURE REVIEW

based course timetabling problem. It has been shown that many techniques involve multiple

stages which usually consist of a construction phase followed by optimisation stages. This

approach will be followed within this research.

40

Chapter 3

Stage one of a two-stage approach:

Finding a feasible solution to the

University Course Timetabling

Problem

This thesis investigates how university timetables can be constructed in an automated way,

relating specifically to the complex and difficult task of university course timetabling. The

problem is exacerbated by the fact that each university will have unique constraints; for ex-

ample, part-time lecturers and the availability of resources and equipment. It is desirable to

determine an algorithm that could be used in all cases, however this is a very difficult task as

all problems are unique.

The aim of the thesis is to investigate a range of heuristic and metaheuristic approaches for

solving the course timetabling problem. We investigate the best means of applying local search

to attempt to find a successful method that can be adapted to fit other criteria.

When dealing with timetabling problems that are subject to both hard and soft constraints,

41

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

a common strategy is to make use of a two-stage (or even multi-stage) optimisation process

(Chiarandini et al. [2008], Gogos et al. [2010]). An initial stage constructs a feasible solution,

followed later by stage(s) that further improve the timetable. This approach can be regarded

as a variation of the Greedy Random Adaptive Search Procedure (GRASP) metaheuristic

(Feo and Resende [1995]). GRASP is an iterative process in which each iteration consists of

two stages: construction and local search. The construction stage builds a feasible solution

whose neighbourhood is subsequently investigated until a local minimum is found using the

local search stage.

The work carried out for this thesis consists of an initial stage which attempts to satisfy the

hard constraints, whilst stage two involves eliminating as many soft constraint violations as

possible subject to the hard constraints remaining satisfied. This method is attractive because

solely focussing on satisfying the hard constraints in stage one increases the likelihood of finding

a feasible solution. Moreover, if feasibility is established in stage one, then it will be guaranteed

after completion of stage two. However, in stage two, the connectivity of the feasible solutions

within the search space is reduced, perhaps even to the point at which it may be disconnected.

In this chapter we will consider and compare two approaches to stage one of solving the problem.

The first uses selection heuristics and neighbourhood operators to attempt to place all events

in the timetable, but as a result, two hard constraints have to be relaxed and the requirement

is to minimise the number of these constraint violations. The second approach uses a partial

solution method which temporarily leaves events unplaced if no feasible period is available. In

the latter method, no hard constraints are relaxed. We consider the issue of searching a highly

constrained search space and the means of increasing its connectivity, in order to improve the

solution quality.

The fundamental idea of timetabling is to assign ‘events’ to ‘timeslots’ and ‘rooms’ whilst

obeying various constraints. A constraint that is usually common to all problems is, ‘event A

must not be assigned to the same timeslot as event B’, which can be represented as a graph

colouring problem (de Werra [1985]).

42

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Figure 3.1: An example of a Graph Colouring assignment using three colours (timeslots).

In Figure 3.1 the nodes represent events (such as a course). An edge appears between two nodes

when any student from the population attends both events. A ‘clash’ is when a student would

be scheduled to attend more than one event at any time. In order to avoid clashes, events joined

by edges must be coloured differently and the colours represent different timeslots. Thus an

edge between two nodes corresponds to the events that cannot be placed in the same timeslot.

Real world problems usually involve additional constraints, such as room sizes and equipment

availability. Some of these constraints can be included in the graph colouring technique however,

we will investigate further methods of solving multi-constraint problems.

The objective for a successful timetable solution may vary from case to case. For example,

one university may wish to minimise the number of timeslots (Bullnheimer [1998]), whereas

the priority for another university may be to minimise the disruption to students (Cambazard

et al. [2012]). The timetable produced needs to be practical both for the university and for the

participants whilst using resources effectively and efficiently. Resources generally relate to the

availability of suitable rooms and equipment.

Timetabling is a problem common to all universities; however, it is difficult to compare algo-

rithms as the problem varies between each university. Typically constraints are individual to a

university and each problem is unique.

43

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

3.1 International Timetabling Competition

This thesis utilises the data provided by the International Timetabling Competition 2007 (ITC

2007)1 (McCollum et al. [2010]). Over the past few years generic problem models and instances

have become publicly available, the ITC 2007 for example. This was introduced to give re-

searchers real-world problems on which they can compare their methods and test emerging

techniques. The ITC 2007 was built on the success of the first International Timetabling Com-

petition which was conducted in 20022. The aim of the competition was to narrow the gap

that exists between research and practice. The organisers believe that by attracting a more

multi-disciplined approach, more significant advances in research were made (McCollum et al.

[2010]).

In the first International Timetabling Competition, finding a feasible solution was reasonably

straightforward so submissions focussed on minimising the number of soft constraint violations

(Cambazard et al. [2012]). Therefore, ITC 2007 introduced more hard constraints to move

further in the direction of real-world timetabling and to generate new approaches to the task.

This made the problem of finding a feasible solution more complex and algorithms had to take

account of this accordingly.

The competition was split into three tracks. The first track, examination timetabling (Gogos

et al. [2010]), can be thought of as post-enrolment, as a student that is enrolled on a course

with an associated exam is also expected to sit the exam. The second track is post enrolment-

based course timetabling (Cambazard et al. [2012]), where the number of students enrolled on

a course is already known at the time of the timetable construction. The timetable needs to be

created in such a way that every student can attend all the courses on which they are enrolled.

Finally, the third track is curriculum-based course timetabling (Lü and Hao [2010a]), which

forms a weekly schedule that complies with criteria set by the institution rather than enrolment

data. Although these tracks overlap in many ways they have very different constraints.

1http://www.cs.qub.ac.uk/itc2007/
2http://www.idsia.ch/Files/ttcomp2002/

44

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Our research focusses on track two: post enrolment-based course timetabling (Lewis et al.

[2007]). Track two consists of 24 instances in total. There were eight ‘early’ instances released

at the start of the competition, eight ‘late’ instances released two weeks before the deadline

of the competition and eight ‘hidden’ instances that were not released to the competition

entrants but were used to help the judges determine a winner. In each instance, there are 45

non-overlapping timeslots of uniform length available (five days with nine timeslots in each).

Each of the 24 datasets comprises; a set of rooms in which events can take place, a set of

students who attend the events, and a set of features in certain rooms that are required by

events. The sizes of these sets varies between each dataset as shown in Table 3.1. This table

also shows the density of each problem instance. This is calculated by:

Problemdensity =
n

45 ∗m
(3.1)

where n is the number of events, m is the number of rooms and 45 is the constant number

of timeslots. This does not take into account how constrained the problem is in terms of the

multiple other constraints, however it does give an indication of how much room there is for

the events to be reassigned to different timeslots and rooms, thus, demonstrating how difficult

it may be in some instances to find a suitable assignment for all events when the timetable is

so dense.

A time limit was imposed on the algorithm run time; although a time limit may not be necessary

in the ‘real world’, it was essential for a fair competition. A benchmarking program was created

which competitors could execute on their own machines. When executed the program would

perform a number of computational operations involved in timetabling. The time taken to

execute this program would be used to calculate the time limit for this machine. We have not

considered this time limit in the results presented in this thesis.

Track two incorporates five hard constraints:

45

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

T
ab

le
3.

1:
S
ta

ti
st

ic
s

of
ea

ch
in

st
an

ce
in

th
e

IT
C

20
07

.

In
st

an
ce

N
u
m

b
er

of
ev

en
ts

N
u
m

b
er

of
ro

om
s

N
u
m

b
er

of
fe

at
u
re

s
N

u
m

b
er

of
st

u
d
en

ts
D

en
si

ty
of

p
ro

b
le

m
E

ar
ly

1
40

0
10

10
50

0
89

%
E

ar
ly

2
40

0
10

10
50

0
89

%
E

ar
ly

3
20

0
20

10
10

00
22

%
E

ar
ly

4
20

0
20

10
10

00
22

%
E

ar
ly

5
40

0
20

20
30

0
44

%
E

ar
ly

6
40

0
20

20
30

0
44

%
E

ar
ly

7
20

0
20

20
50

0
22

%
E

ar
ly

8
20

0
20

20
50

0
22

%
L

at
e1

40
0

10
20

50
0

89
%

L
at

e2
40

0
10

20
50

0
89

%
L

at
e3

20
0

10
10

10
00

44
%

L
at

e4
20

0
10

10
10

00
44

%
L

at
e5

40
0

20
10

30
0

44
%

L
at

e6
40

0
20

10
30

0
44

%
L

at
e7

20
0

10
20

50
0

44
%

L
at

e8
20

0
10

20
50

0
44

%
H

id
d
en

1
10

0
10

10
50

0
22

%
H

id
d
en

2
20

0
10

10
50

0
44

%
H

id
d
en

3
30

0
10

10
10

00
67

%
H

id
d
en

4
40

0
10

10
10

00
89

%
H

id
d
en

5
50

0
20

20
30

0
56

%
H

id
d
en

6
60

0
20

30
10

00
67

%
H

id
d
en

7
40

0
20

30
10

00
44

%
H

id
d
en

8
40

0
20

30
10

00
44

%

46

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

HC1 - No student attends more than one event at the same time;

HC2 - The room is big enough for all the attending students and satisfies all the features

required by the event;

HC3 - Only one event is put into each room in any timeslot;

HC4 - Events are only assigned to timeslots that are pre-defined as available for those events;

HC5 - Where specified, events are scheduled to occur in the correct order in the week.

HC1, HC2 and HC3 were included in the 2002 competition. HC4 and HC5 were added to these

and included in the 2007 competition. There were also three soft constraints:

SC1 - a student has a class in the last slot of the day;

SC2 - a student has more than two classes consecutively;

SC3 - a student has a single class on a day.

A timetable is judged by its ‘Distance to Feasibility’ which is the sum of the number of students

enrolled on the unplaced events. The soft constraints contribute towards the ‘Soft Cost’ which

is the sum of all students affected by any of the soft constraints being violated. The quality of

the timetable is determined by the soft cost. This problem can be more formally represented

by the following mathematical model.

Parameters:

n the number of events

p the number of features

q the number of students

m the number of rooms

bi the size of event i where i = 1, ..., n

47

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

E set of events = {e1, ..., en}

S set of students = {s1, ..., sq}

R set of rooms = {r1, ..., rm}

T set of timeslots = {t1, ..., t45}

F set of room features = {f1, ..., fp}

D set of days = {d1, ..., d5}

G set of pairs of events where the precedence constraint applies = {(e1, e2), (e1, e4)...}

Variables:

xetr =

1 if event e is scheduled in timeslot t and room r

0 otherwise

ys,t =
∑
t∈T

xet · zse ∀e ∈ E, s ∈ S

i.e. ys,t = 1 if student s attends an event in timeslot t, ys,t = 0 otherwise.

ws,d =

1 if

(d×9)∑
t=(d−1)×9+1

ys,t = 1 ∀s ∈ S, d ∈ {1, ..., 5}

0 otherwise

i.e. ws,d = 1 if the student s attends only one event on the day d and ws,d = 0 otherwise.

Constants:

aet =

1 if event e is pre-defined as available for timeslot t

0 otherwise

cer =

1 if room r is ≥ the size of event e and contains the features needed by event e

0 otherwise

48

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

zse =

1 if student s is required to attend event e

0 otherwise

veiej = number of common students between event ei and event ej

The objective function is,

minimise
3∑
i=1

SC(i)

Where,

A student has a class in the last slot of the day

SC(1),

q∑
s=1

∑
t∈{9,18,...,45}

ys,t

A student has more than two classes consecutively

SC(2),

q∑
s=1

5∑
d=1

d×9−2∑
t=(d−1)×9+1

ys,t · ys,(t+1) · ys,(t+2)

A student has a single class on a day

SC(3),

q∑
s=1

5∑
d=1

ws,d

Subject to,

No student attends more than one event at the same time,

HC1,
∑

r1,r2∈R:r1 6=r2

xeitr1 · xejtr2 · veiej = 0 ∀ t ∈ T, ei, ej ∈ E, r1 6= r2

The room is big enough for all the attending students and satisfies all the features

required for the event,

49

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

HC2,
∑
r∈R

∑
t∈T

cer · xetr = 1 ∀ e ∈ E

Only one event is put into each room in any timeslot,

HC3,
∑
e∈E

xetr ≤ 1 ∀ t ∈ T, r ∈ R

Events are only assigned to timeslots that are pre-defined as available for those events,

HC4,
∑
r∈R

∑
t∈T

xetr · aet = 1 ∀ e ∈ E

Where specified, events are scheduled to occur in the correct order in the week,

HC5,
∑
r∈R

∑
t∈T

t · xeitr <
∑
r∈R

∑
t∈T

t · xejtr ∀ ei, ej ∈ G

An assignment of events to timeslots and rooms can be defined by a rectangular matrix Xm×45

where the rows represent the rooms and the columns represent the timeslots. If Xr,t = e (where

0 ≤ e ≤ n − 1) then event e is assigned to room r and timeslot t. If Xr,t = −1 then the

cell representing room r and timeslot t in the timetable matrix is not assigned an event. An

example of an assignment is given in Figure 3.2.

Figure 3.2: An example of an assignment.

t1 t2 t45

r1 −1 e7 en−4

r2 en−2 −1 en−1

...

...
rm e2 −1 e10

Before any assignments to the timetable matrix are made, the data provided for each instance

is processed and stored in matrices. The size and features of each room can then be used to

determine which rooms are suitable for which events and are stored in a binary matrix, REm×n,

where the rows represent the rooms and the columns represent the events. If REr,e = 1 then

50

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

event e can be placed in room r without exceeding the size and also the features needed for the

event are satisfied. If REr,e = 0 then event e cannot be placed in room r.

A binary matrix, SEq×n, was constructed to represent the students that are required to attend

each event. SEs,e = 1 if the student s has to attend event e and SEs,e = 0 otherwise.

The binary matrix, ETn×45, was constructed to represent the timeslots that are predefined as

available for each event. ETe,t = 1 if event e can be placed in timeslot t according to the criteria

set by HC4.

The data provided for HC5 is stored in a matrix, EEn×n, which shows any precedence between

two events. For example if EEei,ej = 1 then event ei needs to scheduled before event ej. If

EEei,ej = −1 then event ej needs to be scheduled before event ei. If EEei,ej = 0 then event ei

and event ej share no precedence.

Finally, a matrix, CLn×n, represents the conflicts between two events i.e. a graph where the

nodes represent the events and the edges between the nodes show that the events share at least

one student. CLn×n stores in each cell, the number of students shared by two events.

3.2 Initial construction and neighbourhood operators

The two key components of a local search method are the initial solution and the neighbourhood

operators, these will both be described in this chapter. The neighbourhood operators explained

have been used in stage one of the two-stage process.

3.2.1 Initial solution construction

In this section we compare techniques for producing an initial solution to the timetabling

problem. The aim is to identify the best solution from the heuristics examined, and then we

will go on to improve that solution in accordance with a set of constraints.

51

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

When constructing a solution, events should be scheduled beginning with the most difficult

event to place. There are many different ways of determining the difficulty of placing an event,

all of which relate to the feasibility of satisfying each constraint. The order in which the events

are selected for placement into the timetable can be critical to the outcome achieved.

We tested five different methods of determining the order of selecting events using the following

heuristics which were proposed by Carter et al. [1996].

• ‘Largest Degree’ ranks the events in descending order by the number of conflicts with all

other events, and priority is given to events with the greatest number of conflicts.

• ‘Largest Weighted Degree’ is similar to ‘Largest Degree’, however it weights each conflict,

by the amount of students involved in the conflict and places the event with the largest

amount first.

• ‘Colour Degree’ places the events in order of which one has the largest amount of conflicts

with the events that are already scheduled. This is a dynamic method as the number of

conflicts gets recalculated after each iteration.

• ‘Largest Enrolment’ ranks events in descending order of the number of students enrolled

on the event. Priority is given to the event with the highest number of students enrolled.

• ‘Saturation Degree’ ranks the events in ascending order by the number of feasible timeslots

remaining in the timetable. Priority is given to the event with the least amount of

available timeslots. The number of feasible timeslots remaining for each event needs to be

recalculated after each iteration. Saturation degree can be compared with the DSATUR

algorithm for graph colouring (Brélaz [1979]), where the next node to be coloured is

chosen among those with the largest number of already differently coloured neighbours

i.e. the nodes with the minimum saturation degree.

The selection heuristics Largest Degree, Largest Weighted Degree and Largest Enrolment are

examples of static heuristic ordering which has the order of the events to be placed predeter-

52

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

mined before the process has begun. Colour Degree and Saturation Degree are examples of

dynamic heuristic ordering which recalculates the next event to be placed after every insertion

into the timetable.

For each of the selection heuristics, the chosen events are placed in the timeslot that is hardest

to fill. That is, all timeslots and rooms are ranked in ascending order of the number of events

that can feasibly be inserted into that period that have not already been placed. In the case

of a tie the earliest period is chosen. This method attempts to fill more difficult timeslots

earlier in the process, leaving easier timeslots available for events later on when the timetable

is more constrained. We conducted some initial experiments in which we tested the above five

heuristics. These showed that they were not successful in placing all events into the timetable

for any of the 24 datasets, and were forced to leave many events unplaced to ensure a valid

timetable. In order to place all the events, HC1 and HC5 were relaxed (see Section 3.1 for

definition). These constraints were chosen to be relaxed because during initial experiments it

was noted that as each run progressed, otherwise feasible timeslots were being rejected due to

these constraints. To measure the effectiveness of these solutions, the ‘distance to feasibility’

was determined in each case. The distance to feasibility is the total number of students that

are due to attend unscheduled events. Due to the relaxation of HC1 and HC5 we were able to

schedule all the events in all datasets. The focus of this method is to schedule all events and

minimise any violations of the relaxed constraints. However, to find the distance to feasibility

we need to find which events are causing the constraint violations and therefore would not

have been scheduled had we not relaxed the constraints. To do this, the events are listed in

descending order of the total number of clashes and ordering violations that they are involved in.

The event at the top of the list is removed from the timetable and the list is then recalculated.

This process continues until there are no further constraint violations.

Using the above methods the average distance to feasibility, expressed in terms of the total

number of students, is shown in Table 3.2. The distance to feasibility in terms of the number

of events is shown in brackets.

53

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

T
ab

le
3.

2:
T

h
e

av
er

ag
e

d
is

ta
n
ce

to
fe

as
ib

il
it

y
of

th
e

in
it

ia
l

ti
m

et
ab

le
s

co
n
st

ru
ct

ed
u
si

n
g

d
iff

er
en

t
h
eu

ri
st

ic
s.

T
h
e

va
lu

e
sh

ow
n

in
b
ra

ck
et

s
is

th
e

d
is

ta
n
ce

to
fe

as
ib

il
it

y
in

te
rm

s
of

th
e

n
u
m

b
er

of
ev

en
ts

th
at

n
ee

d
to

b
e

le
ft

u
n
p
la

ce
d

to
p
ro

d
u
ce

a
fe

as
ib

le
ti

m
et

ab
le

.
T

h
e

va
lu

es
sh

ow
n

in
b

ol
d

te
x
t

ar
e

th
e

lo
w

es
t

va
lu

es
of

th
e

d
is

ta
n
ce

to
fe

as
ib

il
it

y
ge

n
er

at
ed

b
y

th
e

se
le

ct
io

n
h
eu

ri
st

ic
s.

In
st

an
ce

L
ar

ge
st

en
ro

lm
en

t
L

ar
ge

st
d
eg

re
e

L
ar

ge
st

w
ei

gh
te

d
d
eg

re
e

S
at

u
ra

ti
on

d
eg

re
e

C
ol

ou
r

d
eg

re
e

E
ar

ly
1

61
33

(2
22

)
60

95
(2

19
)

63
20

(2
43

)
5
7
4
8
(2

0
6
)

73
97

(2
69

)
E

ar
ly

2
61

66
(2

27
)

61
16

(2
26

)
60

85
(2

23
)

5
9
7
6
(2

1
9
)

72
60

(2
63

)
E

ar
ly

3
10

10
1

(1
32

)
99

87
(1

33
)

98
99

(1
35

)
9
1
0
4
(1

2
1
)

93
77

(1
25

)
E

ar
ly

4
10

05
5

(1
39

)
10

36
5

(1
46

)
10

19
8

(1
50

)
9
2
3
0
(1

3
4
)

99
78

(1
43

)
E

ar
ly

5
41

18
(2

52
)

43
50

(2
64

)
44

06
(2

79
)

3
8
8
7
(2

4
3
)

47
39

(2
90

)
E

ar
ly

6
42

47
(2

51
)

42
99

(2
55

)
42

84
(2

59
)

3
9
4
5
(2

3
0
)

46
31

(2
70

)
E

ar
ly

7
46

87
(1

25
)

47
78

(1
27

)
47

34
(1

31
)

4
1
7
9
(1

1
3
)

46
97

(1
28

)
E

ar
ly

8
48

70
(1

36
)

48
98

(1
40

)
49

65
(1

44
)

4
4
3
4
(1

2
6
)

46
06

(1
31

)
L

at
e1

61
03

(2
12

)
5
8
4
9

(2
13

)
61

29
(2

14
)

59
95

(2
1
1
)

71
76

(2
49

)
L

at
e2

61
95

(2
24

)
6
0
6
3
(2

2
0
)

61
50

(2
29

)
64

22
(2

34
)

74
76

(2
69

)
L

at
e3

92
77

(1
23

)
87

46
(1

16
)

87
77

(1
22

)
7
9
0
2
(1

0
8
)

90
56

(1
23

)
L

at
e4

92
13

(1
31

)
88

47
(1

25
)

89
77

(1
28

)
8
6
0
5
(1

2
1
)

87
56

(1
26

)
L

at
e5

42
02

(2
51

)
43

22
(2

56
)

44
22

(2
68

)
4
1
4
4
(2

4
2
)

47
02

(2
82

)
L

at
e6

43
03

(2
62

)
43

64
(2

66
)

45
00

(2
77

)
4
2
2
3
(2

5
4
)

47
02

(2
83

)
L

at
e7

40
12

(1
14

)
41

79
(1

21
)

42
22

(1
23

)
3
8
2
5
(1

1
0
)

39
35

(1
12

)
L

at
e8

38
27

(1
08

)
38

13
(1

10
)

42
02

(1
22

)
3
5
3
3
(1

0
1
)

40
53

(1
16

)
H

id
d
en

1
71

10
(6

3)
69

44
(6

5)
69

11
(6

6)
6
1
6
6
(5

4
)

66
94

(6
5)

H
id

d
en

2
69

67
(1

31
)

70
45

(1
30

)
71

36
(1

39
)

6
8
2
0
(1

2
6
)

71
53

(1
31

)
H

id
d
en

3
82

87
(1

74
)

82
57

(1
78

)
84

61
(1

87
)

8
2
3
1
(1

7
0
)

89
64

(1
88

)
H

id
d
en

4
71

46
(2

02
)

68
30

(1
94

)
69

93
(2

08
)

6
7
4
0
(1

9
2
)

79
72

(2
30

)
H

id
d
en

5
38

75
(2

95
)

38
46

(3
01

)
39

87
(3

06
)

3
7
7
1
(2

8
9
)

45
78

(3
49

)
H

id
d
en

6
68

04
(3

73
)

68
58

(3
76

)
67

09
(3

76
)

6
5
1
2
(3

5
8
)

76
46

(4
19

)
H

id
d
en

7
15

39
1

(2
64

)
16

27
1

(2
74

)
15

91
6

(2
78

)
1
5
0
0
3
(2

5
5
)

16
05

9
(2

77
)

H
id

d
en

8
83

14
(2

37
)

86
79

(2
53

)
87

01
(2

54
)

7
8
1
3
(2

2
8
)

86
09

(2
47

)
A

ve
ra

ge
67

25
(1

93
)

67
41

(1
96

)
67

95
(2

02
)

6
3
4
2
(1

8
5
)

70
92

(2
11

)

54

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Inspection of Table 3.2 shows that the lowest distance to feasibility was achieved by using

saturation degree in all but two instances (Late1 and Late2). Therefore, Saturation Degree

was chosen as the best option for producing an initial solution. This is also supported in the

literature (Carter et al. [1996], Casey and Thompson [2003b], Burke et al. [2007]).

The results also show how difficult it will be to eliminate any hard constraint violations. In all

but two of the results more than half of the events need to be removed for the timetable to be

valid.

The following sections will investigate improving the initial solution using local search methods.

Local search methods are used for solving optimisation problems. The search is called ‘local’

because it can only move from one solution to a neighbouring solution. Solutions are neighbours

if there is a relation defined by the search space of the neighbourhood operator being used.

Typically, a solution will have more than one neighbouring solution.

3.2.2 Optimisation strategy

In order to achieve an acceptable initial solution it was necessary to relax constraints HC1 and

HC5. Our focus is now to minimise the number of violations arising from the relaxation of these

constraints. This section examines the search operators which can be used to try to minimise

the HC1 and HC5 violations that occur. During the optimisation process, HC2, HC3 and HC4

violations are forbidden.

To compare a solution to its neighbour it is necessary to define a cost function. We used two

different cost functions for comparison.

Cost1 is the total number of students that are required to attend more than one event at any

time, plus the total number of students that are required to attend the events that violate the

precedence constraint.

Cost2 is the total number of the events that contain common students that are scheduled at the

55

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

same time, plus the total number of events that violate the precedence constraint. Table 3.3

shows the value of cost1 and cost2 for each instance using the initial solution (produced using

Saturation Degree).

Table 3.3: The average value of the two cost functions for the initial timetables in each instance.

Instance Cost1 Cost2
Early1 2839 564
Early2 2676 629
Early3 6723 667
Early4 6476 725
Early5 3219 947
Early6 3170 947
Early7 2348 550
Early8 2666 530
Late1 3030 597
Late2 2877 685
Late3 3669 344
Late4 3713 454
Late5 3322 998
Late6 3473 1101
Late7 1845 359
Late8 1627 254

Hidden1 5669 194
Hidden2 4051 460
Hidden3 3154 586
Hidden4 2939 510
Hidden5 2852 1020
Hidden6 4572 1325
Hidden7 10259 1258
Hidden8 6622 922
Average 3908 693

3.2.2.1 The move operator

In an attempt to reduce the cost incurred, a simple neighbourhood operator was employed.

This attempts to move a randomly chosen event, from those currently causing a violation to an

alternative random timeslot, if this can be achieved without violating HC2, HC3 or HC4. We

will call this a ‘move operator’. We developed the code from scratch for a maximum matching

56

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

algorithm for bipartite graphs to be used once an event has been moved to a new timeslot to

maintain feasibility of HC2, HC3 and HC4, and maximise the possibility of a successful move.

There are two groups of vertices/nodes: V1 are the events and V2 are the rooms forming a

bipartite graph. The connecting lines between the groups of nodes represent that the event can

feasibly be placed in that room. Connecting lines cannot be formed between two nodes in the

same group. Therefore, if the vertices encountered on the ith step of the search, Li, is an event,

then Li+1 must be a room adjacent to the event in Li which did not appear in previous steps

of the search. Similarly if Li is a room, then Li+1 is an adjacent event.

Figure 3.3 shows an example of a successful insertion of an event to a timeslot using the

maximum matching algorithm. The example shows the two groups V1, representing the events,

and V2, representing the rooms.

The maximum matching algorithm uses a ‘First in First Out’ queue data structure. An event

is chosen and all adjacent nodes are added to the queue. The vertex at the front of the queue

is deleted, and all nodes connected to it that have not been discovered in previous steps are

added to the end of the queue. This process is repeated until the queue is empty, and the

nodes predecessor are recorded at each step. Nodes are added to the queue in an arbitrary

order. However, a heuristic could be added to control the order in which they are added. Once

the search is complete, the results of the search can be traced and the events can be placed

in the appropriate rooms. If all events cannot be placed then the move is rejected and the

next timeslot is considered. A descent technique is used where a comparison is made between

the old cost and the new cost, and provided that the cost is reduced and that HC2, HC3 and

HC4 are not violated, the move is accepted. A move that does not change the cost (a sideways

move) is always accepted as this can lead to other areas in the search space that have not yet

been explored.

Two programs have been constructed; one program uses cost1 and the other uses cost2. On

each iteration, the move operator is performed followed by the maximum matching algorithm.

The process ended when 1,000 iterations had passed or until the cost function equalled zero.

57

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Figure 3.3: An example of how the Maximum Matching Algorithm is applied to insert an event
into a timeslot

(a) An event, e1, needs to be placed into the times-
lot so it is added to the queue (Q)

(b) e1 can be inserted into r1 so r1 is added to the
Q. We discover e2 is occupying r1 therefore e2 is
also added to the Q

(c) e2 can be moved to r4 which is occupied by e4

so these are also added to the Q

(d) e4 can be scheduled in r2 which is added to the
Q. This room is currently empty so the process is
complete. We can then follow the Q back to move
the events to their amended rooms and successfully
insert e1 into the timeslot.

The decision to end the run after 1,000 iterations was made by observing when the cost function

was reaching a steady state. This method showed some reduction in the cost functions. Clearly

the more times the method is applied (number of runs undertaken), the more rigorous the

results will be.

Further work was undertaken using a steepest descent method which explores all the neighbour

solutions before selecting the one that makes the best improvement to the cost function without

violating HC2, HC3 or HC4. Moves that incur an equal cost are accepted so that we can explore

other areas of the search space. This was repeated until the stopping criteria was reached,

either; 1,000 iterations were completed, the cost function had not improved in the preceding

58

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

100 iterations or the cost function had reached zero. The values of the cost functions using the

steepest descent method are contained in Table 3.4.

Table 3.4: The average value of the cost functions of the timetables and the percentage of
improvement from the initial costs once the move operator has been performed using a steepest
descent method. The distance to feasibility is shown in brackets.

Instance Cost1 (DTF) % improvement Cost2 (DTF) % improvement
Early1 1470 (3419) 48% 265 (3375) 53%
Early2 1666 (4212) 38% 374 (4117) 41%
Early3 905 (1538) 87% 29 (1518) 96%
Early4 717 (1264) 89% 26 (1258) 96%
Early5 934 (803) 71% 74 (798) 92%
Early6 1037 (1007) 67% 91 (1000) 90%
Early7 429 (863) 82% 45 (846) 92%
Early8 385 (537) 86% 20 (537) 96%
Late1 1723 (3802) 43% 301 (3777) 50%
Late2 1946 (4715) 32% 423 (4610) 38%
Late3 925 (2034) 75% 40 (2023) 88%
Late4 829 (2026) 78% 44 (2015) 90%
Late5 978 (1035) 71% 101 (1040) 90%
Late6 985 (1032) 72% 101 (1024) 91%
Late7 389 (518) 79% 21 (525) 94%
Late8 361 (328) 78% 11 (325) 96%

Hidden1 624 (623) 89% 5 (628) 97%
Hidden2 929 (1995) 77% 72 (1998) 84%
Hidden3 1353 (3561) 57% 169 (3548) 71%
Hidden4 735 (898) 75% 30 (899) 94%
Hidden5 907 (755) 68% 91 (761) 91%
Hidden6 2623 (3722) 43% 541 (3677) 59%
Hidden7 3580 (7166) 65% 388 (7006) 69%
Hidden8 3797 (2939) 43% 155 (2933) 83%
Average 1260 (2116) 67% 142 (2093) 81%

Table 3.4 shows us that using a simple move operator and a steepest descent method can make

significant improvements. On average, cost1 decreased by 67% and cost2 by 80% from the

initial positions. It was felt that the run times could be improved upon as the computational

time was approximately 70 seconds.

Tabu search (Glover [1987]) is an extension of the steepest descent method, and as such, should

59

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

achieve better results. Tabu Search accepts new inferior solutions when no more moves can

be found to decrease the cost function value. This is used to ensure the search can continue

after finding a local minimum. The search continues once a local minimum has been reached,

whereas the steepest descent method would have stopped because there are no remaining moves

that can be performed to improve the cost function. Tabu search will explore new regions of

the search space and may achieve a lower cost than the local minimum obtained before. When

a move is performed the reverse of the move is added to a list and is then considered ”tabu”

for the next T iterations, where T is the tabu list length. The reverse move will remain on the

list for T iterations and whilst it remains on the list, it is forbidden to perform this move in

order to avoid paths already investigated in the search space. Aspiration criteria are employed

which allows the search to accept a tabu move if the move results in a better solution than

the best solution found so far, this is usually measured by the cost function. An appropriate

tabu list length will vary between problems, so we tested many different tabu list lengths such

as; different constants and a variable length. When a tabu list length is too small, cycling can

occur. If it is too large, the solution quality will deteriorate because too many moves would be

refused. The variable tabu list length that was tested depends on the number of event clashes.

T = Random{0, 9}+ α ∗ Event Clashes (3.2)

where α is a variable (Blöchliger and Zufferey [2008]) which literature suggests 0.6 to be a

popular value for graph colouring (Galinier and Hao [1999]). The search continues until either;

1,000,000 iterations have passed, the cost function has not improved in 1,000 iterations or the

cost function reaches zero. The maximum number of iterations has significantly increased from

the steepest descent method but this is because it needs longer to explore the solution space

given that the cost function can increase as well as decrease.

There are many metaheuristics that could be used in this situation for example, Simulated

Annealing (Kostuch [2005]), Genetic Algorithms (Burke et al. [1994]) or Ant Colony Optimi-

sation (Socha et al. [2002]). Tabu Search was chosen because it requires less parameters to be

60

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

tuned which facilitates a quicker result. Table 3.5 shows the results of the move operator using

a tabu search. As anticipated, these results show significant improvement over those achieved

using previous methods. On average, cost1 reduced by a further 4% and cost2 by 5% than the

steepest descent method.

Table 3.5: The value of the cost functions and the percentage of improvement made from the
initial cost once the move operator has been performed using a tabu search. The distance to
feasibility is shown in brackets.

Instance Cost1 (DTF) % improvement Cost2 (DTF) % improvement
Early1 1193 (2886) 58% 208 (2895) 63%
Early2 729 (2172) 73% 129 (2061) 79%
Early3 905 (1538) 87% 29 (1519) 96%
Early4 717 (1264) 89% 26 (1259) 96%
Early5 934 (803) 71% 74 (798) 92%
Early6 1037 (1008) 67% 91 (1001) 90%
Early7 429 (863) 82% 45 (847) 92%
Early8 385 (538) 86% 20 (537) 96%
Late1 1378 (3253) 55% 230 (3179) 61%
Late2 895 (2464) 69% 148 (2400) 78%
Late3 925 (2034) 75% 40 (2024) 88%
Late4 829 (2026) 78% 44 (2015) 90%
Late5 978 (1035) 71% 101 (1040) 90%
Late6 985 (1032) 72% 101 (1025) 91%
Late7 389 (519) 79% 21 (525) 94%
Late8 361 (329) 78% 11 (325) 96%

Hidden1 624 (623) 89% 6 (629) 97%
Hidden2 801 (1716) 80% 52 (1621) 89%
Hidden3 1353 (3561) 57% 170 (3549) 71%
Hidden4 735 (899) 75% 30 (899) 94%
Hidden5 907 (756) 68% 91 (761) 91%
Hidden6 2265 (3077) 50% 408 (3103) 69%
Hidden7 3580 (7166) 65% 388 (7007) 69%
Hidden8 3797 (2940) 43% 155 (2934) 83%
Average 1131 (1854) 71% 109 (1831) 86%

61

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

3.2.2.2 The swap operator

The swap operator was then introduced and used alongside the move operator to further improve

the cost functions. The swap operator simply tries to swap the timeslots of two events scheduled

in the timetable whilst maintaining feasibility of HC2, HC3 and HC4. This was incorporated

into the tabu search described in Section 3.2.2.1. A move is a specific type of swap between an

event and an empty timeslot and room. The search compared the change in the cost function

of all possible moves and swaps. The operation, either a move or a swap, that incurred the

biggest reduction in the cost function would be performed. The maximum matching algorithm

was used to place the events in the new timeslots as before. Once it reached a local minimum,

it again would perform worsening moves or swaps to search alternative areas of the search

space. This process is continued either; for 1,000,000 iterations, until the solution has not been

improved for 1,000 iterations or if the cost function equals zero.

Results are shown in Table 3.6 of the two cost functions. On average, cost1 decreased by a

further 6% from moves with tabu, and cost2 decreased by a further 10%. Cost2 has decreased

by 96% compared with the initial cost function. It is unclear why cost2 should perform better

than cost1 but one hypothesis is that cost2s cost landscape is likely to be less spiky than cost1s,

making the tabu search algorithm less susceptible to getting stuck in local optima.

3.2.2.3 Timeslot swap operator

At this point, having employed moves and swaps, HC2, HC3 and HC4 have no violations by

definition, and HC1 is only violated in two of the 24 instances. It is therefore appropriate

to focus on HC5 which relates to the ordering of events. To facilitate this, we employed the

timeslot swap operator, which preserves the allocated room, after the move and swap operators

to rearrange the order of events in the timetable.

Again, using a tabu search, all pairs of timeslots were considered for a swap, and the swap

that made the best improvements to the number of HC5 violations were performed. Worsening

62

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Table 3.6: The value of the cost functions and the percentage improvement from the initial
costs once the move and swap operators have been performed using a tabu search. The distance
to feasibility is shown in brackets.

Instance Cost1 (DTF) % improvement Cost2 (DTF) % improvement
Early1 529 (814) 81% 21 (515) 96%
Early2 499 (902) 81% 21 (515) 97%
Early3 678 (921) 90% 10 (543) 99%
Early4 646 (909) 90% 11 (652) 98%
Early5 932 (718) 71% 63 (717) 93%
Early6 902 (749) 72% 63 (763) 93%
Early7 286 (545) 88% 9 (230) 98%
Early8 328 (378) 88% 10 (313) 98%
Late1 605 (1210) 80% 21 (536) 96%
Late2 575 (1251) 80% 27 (633) 96%
Late3 669 (1140) 82% 10 (612) 97%
Late4 753 (1392) 80% 11 (671) 98%
Late5 861 (738) 74% 55 (680) 94%
Late6 862 (720) 75% 61 (695) 94%
Late7 301 (363) 84% 9 (252) 97%
Late8 361 (420) 78% 10 (299) 96%

Hidden1 566 (739) 90% 5 (550) 97%
Hidden2 531 (853) 87% 10 (470) 98%
Hidden3 606 (1614) 81% 22 (902) 96%
Hidden4 718 (824) 76% 19 (605) 96%
Hidden5 870 (690) 69% 71 (628) 93%
Hidden6 1481 (1576) 68% 92 (1178) 93%
Hidden7 1093 (2599) 89% 20 (969) 98%
Hidden8 3287 (2345) 50% 101 (2295) 89%
Average 793 (1017) 79% 31 (676) 96%

swaps may be performed once the search has reached a local minimum. The events contained in

the timeslots can be swapped directly, as the rooms they are already placed in will not violate

HC2 since that is forbidden in the solution construction, therefore the maximum matching

algorithm does not need to be used. These timeslot moves do not affect HC1 since all events

in the timeslot are swapped, so no extra student clashes will occur.

The timeslot swap made little or no improvement in most cases. This is due to the constraint

HC4 which states all events have predefined timeslots into which they can be placed. Up to

63

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

20 events are being moved in the timeslot swap, so it is highly likely that one of them would

violate HC4 if the swap were to take place, therefore, the swap would be disregarded and the

next swap would be attempted, and so on. Consequently, the timeslot swap will not be used

in further investigations.

3.2.3 Further optimisation using more complex operators

In this section we will consider further move operators which typically involve making much

larger alterations to a timetable.

3.2.3.1 The Hungarian method

A further, more disruptive neighbourhood is now considered. Assignment problems can be

formed by choosing a set of k events from different timeslots that share no precedence violations.

The neighbourhood involves determining whether these events can be re-arranged in a way that

maintains feasibility and reduces the SCP.

The Hungarian method is often used for assignment problems (Mills-Tettey et al. [2007], Bert-

sekas and Castañon [1993], Vizuete Luciano et al. [2012]) and was used in the winning algorithm

of ITC 2007, Cambazard et al. [2012]. In the case of our timetabling problem, the Hungarian

method (Kuhn [1955]) chooses a set of n events from different timeslots that share no prece-

dence constraints. A non-negative matrix is formed where the element in the ith row and jth

column represents the cost, if the ith event was to be placed in the timeslot that the jth event

was removed from. The matrix is square so each event can only be assigned to one timeslot.

The Hungarian method will iterate several times, until an optimal solution is obtained where all

events are assigned into timeslots and required rooms minimising the hard constraint violations.

The cost of the events in each timeslot is known, they do not affect each other since they share

no precedence. This method returns the optimal assignment of the randomly chosen k events

64

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

into the timeslots. Different values of k were tested, k = 3, k = 4 and k = 5. These small

values of k were chosen due to the computational time that this method can take; since k is

small this method is sufficiently efficient for our needs.

For example assume k = 5 and the matrix demonstrated in Figure 3.7 is formed.

Table 3.7: Example of an assignment problem with five events.

Event Current timeslot 4 9 32 24 11
12 4 11 X 9 20 5
45 9 8 7 15 30 7
73 32 3 9 0 12 23
123 24 8 17 X 4 16
320 11 24 8 13 9 22

The current cost incurred by these five events is 44. Note that it is not feasible for event 12 to

be allocated to timeslot nine, or for event 123 to be allocated to timeslot 32; these allocations

are marked by an X. This neighbourhood allocates each event to a distinct timeslot such that

the total cost is minimised. These assignment problems can be solved efficiently in a number

of ways. We use the Hungarian Algorithm introduced by Kuhn [1955]. This method works as

follows:

1. Set up an k x k cost matrix.

2. Subtract from each row the minimum value in that row.

3. Subtract from each column the minimum value in that column.

4. To do this, select a row (or column) containing at least one zero and draw a line through

or cover the corresponding column (or row). The aim is to use the minimum number of

lines to cover all the zeros in the matrix.

5. Suppose you use l lines. If l = k then stop as the solution is optimal. If l 6= k then let v =

the minimum value of the uncovered elements, subtract v from all uncovered elements

and add v to any elements covered by two lines.

65

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

6. Return to step 4.

The optimal assignment of the matrix in Figure 3.7 is given in Figure 3.8.

Table 3.8: The optimal assignment of an assignment problem with five events.

Event Current timeslot 4 9 32 24 11
12 4 11 X 9 20 5
45 9 8 7 15 30 7
73 32 3 9 0 12 23
123 24 8 17 X 4 16
320 11 24 8 13 9 22

The cost is reduced from 44 to 25. Events 12, 45 and 320 are re-allocated whereas 73 and 123

stay in the same timeslot.

Due to the computational time that this method takes, a steepest descent method would not

be appropriate and was not used.

Since this is a highly constrained problem and events cannot easily be rescheduled, the events

are regularly returned to their original positions and no improvement is made to the cost

function. This was subsequently taken into account when choosing events for each iteration.

The first event is chosen randomly, the following three events are then chosen so that they can

be swapped with the first event and each other without violating HC4. However, this did not

greatly improve the success of the Hungarian method, and it made little improvement with a

high computational time.

3.2.3.2 Kempe chains

Kempe [1879] published a proof of the Four Colour Conjecture in 1879. This stated that a

map in a plane can be coloured by four colours, so that no adjacent regions have the same

colour. Eleven years later Heawood [1890] found the proof contained errors that could not be

corrected. However, Kempe chains as they were known thereafter, could be used to prove that

66

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

it is possible for every map to be coloured using five colours. They can also be used to test for

reducibility of a map (Birkhoff [1913]).

A Kempe chain neighbourhood represents a sub-graph of a graph. The sub-graph must be

connected and contain exactly two colours; connected components of the sub-graph are then

swapped producing an alternative feasible graph using the same number of colours as the

original.

The Kempe chain neighbourhood involves swapping a subset of events in two distinct timeslots.

Two timeslots are chosen at random, and a room within either timeslot is chosen randomly

only from those that contain an event. The other timeslot is then considered, and any events

that have students in common with this initial event are added to the chain. Further iterations

of this process are undertaken until all events that have students in common are part of the

chain. The events in the chain are then swapped to their respective alternative timeslot, with

the room allocation for each event being made by the maximum matching algorithm described

in Section 3.2.2.1. If a Kempe chain move is found to break HC4 it is automatically rejected.

Let ni be the number of events to be swapped in the first timeslot, and nj be the number of

events to be swapped in the second timeslot. If ni > nj, there must be at least ni − nj empty

rooms in the second timeslot for a feasible solution to be possible and vice versa.

An example of a Kempe chain swap is illustrated in Figure 3.4. Edges exist between the

vertices (representing events) that have students in common and therefore, would cause a

clash if scheduled in the same timeslot. The figure shows two Kempe chains. One contains

events {e1, e2, e3, e7, e8} and the other contains {e6, e10, e11}. Note that this neighbourhood also

contains moves (e.g. event e5 can move to timeslot tj, event e4 may also be able to move to

timeslot tj depending on room suitability). The neighbourhood will also contain feasible swaps

between clashing pairs of events.

If we consider Kempe chain {e1, e2, e3, e7, e8} then if the move is accepted, the solution shown

in Figure 3.5 may be the result. Note that the room allocation is determined via a matching

67

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Figure 3.4: An example of two timeslots before a Kempe chain move has been performed.

algorithm.

Figure 3.5: An example of two timeslots once a Kempe chain move has been performed.

Each Kempe chain move may not preserve the satisfaction of the remaining hard constraints.

For example, the Kempe chain that was not used in this example {e6, e10, e11} cannot lead to a

feasible solution, because if event {e6} is exchanged with events {e10, e11}, there will be seven

events assigned to timeslot ti.

It is also possible that the Kempe chain neighbourhood can be used to reduce the number of

68

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

HC1 violations. Consider the Figure 3.6.

Figure 3.6: An example of the Kempe chain move with an infeasible solution.

The way our Kempe chains are generated means the chain will still consist of {e1, e2, e3, e7, e8}.

The blue events, e1, e2 and e3, from ti will be moved to tj provided that feasible rooms can

be assigned and the white events, e7 and e8, from tj will be moved to ti. The clash occurred

between events, e3 and e4, since e3 was part of the Kempe chain and was moved to the other

timeslot and e4 was not included in the chain the events are now scheduled in different timeslots

and the clash no longer exists.

Tabu search was again employed for this neighbourhood, and the results are shown in Table 3.9.

At this stage in the process, and with fewer violations to try and eliminate, it is even more

difficult to move events around and try to further reduce the number of violations. It is

therefore promising that the Kempe chains have made a small improvement to the move and

swap neighbourhoods.

Figure 3.7 is a boxplot that represents the minimum, median and maximum improvement made

to the cost function by Kempe chains. Cost2 was used as this has made better improvements

on average than cost1. The maximum improvement to the cost function in three instances was

100% and the lowest was 71%. Many of the instances were reduced, on average, by over 90%

69

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Table 3.9: The value of the cost functions and the percentage improvement from the initial
costs once the move and swap operators have been performed followed by Kempe chains. The
distance to feasibility is shown in brackets.

Instance Cost1 (DTF) % improvement Cost2 (DTF) % improvement
Early1 446 (686) 84% 18 (366) 97%
Early2 467 (844) 83% 21 (490) 97%
Early3 588 (798) 91% 10 (207) 99%
Early4 537 (755) 92% 8 (277) 99%
Early5 879 (677) 73% 59 (577) 94%
Early6 890 (739) 72% 60 (640) 94%
Early7 193 (367) 92% 7 (80) 99%
Early8 240 (276) 91% 7 (122) 99%
Late1 541 (1081) 82% 21 (490) 96%
Late2 536 (1166) 81% 27 (547) 96%
Late3 449 (766) 88% 8 (150) 98%
Late4 568 (1049) 85% 8 (158) 98%
Late5 810 (694) 76% 55 (580) 94%
Late6 827 (690) 76% 57 (615) 95%
Late7 193 (232) 90% 7 (108) 98%
Late8 288 (334) 82% 9 (129) 96%

Hidden1 451 (589) 92% 5 (241) 97%
Hidden2 452 (726) 89% 10 (134) 98%
Hidden3 595 (1585) 81% 21 (655) 96%
Hidden4 571 (655) 81% 19 (384) 96%
Hidden5 824 (653) 71% 71 (537) 93%
Hidden6 1444 (1537) 68% 92 (1152) 93%
Hidden7 928 (2207) 91% 18 (459) 99%
Hidden8 3268 (2331) 51% 101 (2055) 89%
Average 708 (893) 82% 30 (465) 96%

demonstrating how successful Kempe chains can be.

The order in which the operators are run can have a big impact on the results (Hansen and

Mladenović [1999]). Tests were completed to determine what order the operators should be

called upon. From the results it was shown that the ordering had little impact on the cost

function but did affect the computational time. It was decided that the operators were best

run in ascending order of size. Smaller operators are best used earlier in the process, as they take

less computational time to make reasonable progress in reducing the cost function, followed by

70

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

F
ig

u
re

3.
7:

A
b

ox
p
lo

t
to

sh
ow

th
e

m
in

im
u
m

,
m

ax
im

u
m

an
d

av
er

ag
e

im
p
ro

ve
m

en
t

m
ad

e
to

th
e

co
st

b
y

m
ov

es
,

sw
ap

s
an

d
K

em
p

e
ch

ai
n
s

in
ea

ch
in

st
an

ce
.

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Improvement

In
st

an
ce

71

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

the larger operators that will perform less iterations before reaching a local minimum thus taking

less time. Refer to Figure 3.8 for a flow chart of the the final ordering of the neighbourhood

operators presented in this section.

Figure 3.8: A flow chart outlining the process of the neighbourhood operators.

72

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

3.3 Partial solution method

The method described in Section 3.2 schedules all events in the timetable which can poten-

tially ‘block’ positions, thus making it more difficult to find periods that can satisfy the hard

constraints. The rationale for using the partial solution method is that it initially leaves events

out to reduce the risk of blocking. For this approach HC1 and HC5 will not be relaxed, and

events will be left unplaced if there is no feasible position to insert them. The five selection

criteria; Largest Enrolment, Largest Degree, Largest Weighted Degree, Saturation Degree and

Colour Degree described in Section 3.2.1 are tested. However, the difference is that no hard

constraints are violated, and events are left unplaced if necessary. Results from testing the

five selection criteria methods to produce an initial solution are presented in Table 3.10. The

numbers shown is the final distance to feasibility as defined in Section 3.1 and the numbers

shown in brackets are the number of events left unscheduled.

Colour degree has been shown to provide the best starting solution as it had the lowest DTF in

the highest number of instances (nine of 24 instances highlighted in bold in Table 3.10). Colour

degree selects the order of the events to be placed by prioritising the events that have the largest

number of conflicts with the events that have already been scheduled. This is recalculated at

each stage. The next event to be scheduled is placed into the timeslot with the lowest number

of events that can be feasibly scheduled in it. If no feasible timeslots are available for the next

event to be scheduled, then the event is added to an ‘unplaced event’ list to be input into the

timetable later in the process. This is where this method differs from the method described

in the previous section, where all events were inserted in the timetable, and to achieve this

HC1 and HC5 were relaxed. In this method, no constraints are relaxed and the timetable

remains valid at all times, and as a consequence some events may need to be left unplaced. As

before, saturation degree was also shown to be a useful selection criterion. Saturation degree

ranks events in ascending order of the number of feasible timeslots that remain in the timetable

for each event, that is, the number of timeslots that are feasible and empty. The event with

73

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

T
ab

le
3.

10
:

T
h
e

av
er

ag
e

d
is

ta
n
ce

to
fe

as
ib

il
it

y
(D

T
F

)
of

th
e

in
it

ia
l

ti
m

et
ab

le
s

co
n
st

ru
ct

ed
u
si

n
g

fi
ve

d
iff

er
en

t
h
eu

ri
st

ic
s.

(T
h
e

n
u
m

b
er

of
ev

en
ts

le
ft

u
n
sc

h
ed

u
le

d
).

In
st

an
ce

L
ar

ge
st

E
n
ro

lm
en

t
L

ar
ge

st
D

eg
re

e
L

ar
ge

st
W

ei
gh

te
d

D
eg

re
e

S
at

u
ra

ti
on

D
eg

re
e

C
ol

ou
r

D
eg

re
e

E
ar

ly
1

1
3
6
9

(6
6)

14
52

(5
9)

17
11

(9
1)

16
78

(6
2)

13
77

(5
0
)

E
ar

ly
2

19
88

(8
9)

19
81

(7
6)

19
59

(9
0)

20
17

(7
4)

1
7
1
0
(7

0
)

E
ar

ly
3

3
4
9

(7
)

70
2

(1
1)

54
7

(1
7)

77
9

(9
)

35
4
(6

)
E

ar
ly

4
97

6
(1

8)
10

45
(1

5)
13

57
(3

1)
12

25
(1

8)
9
1
1
(1

4
)

E
ar

ly
5

6
2
5

(4
9)

64
7

(4
3)

95
7

(8
3)

69
6
(4

2
)

67
2

(4
3)

E
ar

ly
6

5
4
2

(4
4)

65
0

(4
3)

82
5

(6
4)

84
3

(4
9)

54
5
(3

5
)

E
ar

ly
7

70
7

(2
4)

56
0

(1
8)

85
7

(3
0)

69
8

(2
0)

5
0
1
(1

4
)

E
ar

ly
8

95
4

(3
0)

74
2

(2
1)

91
6

(3
1)

4
2
7
(1

2
)

72
5

(2
1)

L
at

e1
18

20
(8

3)
18

81
(7

1)
1
7
5
4

(7
1)

18
13

(6
4
)

18
67

(6
9)

L
at

e2
21

92
(9

6)
24

63
(1

00
)

23
20

(1
06

)
22

22
(7

8)
1
9
6
8
(7

7
)

L
at

e3
11

74
(2

1)
11

10
(1

6)
14

04
(3

1)
13

78
(1

9)
4
3
6
(7

)
L

at
e4

17
71

(2
9)

1
0
6
7
(1

6
)

18
43

(3
2)

16
09

(2
3)

11
36

(1
6
)

L
at

e5
72

6
(5

6)
6
2
0
(4

3
)

68
3

(5
7)

10
27

(6
1)

74
5

(4
8)

L
at

e6
6
0
9
(4

9
)

85
6

(5
7)

68
0

(5
7)

88
3

(5
3)

86
9

(6
0)

L
at

e7
84

7
(2

7)
83

9
(2

6)
79

8
(3

0)
6
9
4
(1

9
)

81
5

(2
5)

L
at

e8
47

4
(1

7)
20

2
(7

)
52

5
(2

0)
18

3
(5

)
1
6
9
(5

)
H

id
d
en

1
0
(0

)
17

7
(1

)
27

3
(8

)
0
(0

)
27

0
(3

)
H

id
d
en

2
13

37
(3

7)
12

78
(2

5
)

1
2
0
8

(4
0)

14
52

(2
8)

15
73

(3
1)

H
id

d
en

3
22

36
(5

5)
20

48
(4

7)
26

86
(7

1)
21

29
(4

5)
1
8
0
5
(3

9
)

H
id

d
en

4
68

6
(2

6)
36

6
(1

2)
93

1
(4

2)
3
3
7
(1

0
)

36
8

(1
1)

H
id

d
en

5
54

8
(5

8)
48

1
(4

2)
59

2
(6

2)
57

6
(4

4)
3
5
3
(3

1
)

H
id

d
en

6
18

54
(1

27
)

19
90

(1
23

)
19

28
(1

30
)

22
57

(1
20

)
1
6
3
2
(9

5
)

H
id

d
en

7
44

02
(8

7)
41

34
(7

5)
45

98
(9

6)
4
0
7
4
(6

7
)

41
64

(7
4)

H
id

d
en

8
14

06
(5

1)
13

70
(4

6)
20

44
(6

8)
8
7
2
(2

8
)

14
94

(4
6)

A
ve

ra
ge

12
33

(4
8)

11
94

(4
1)

13
92

(5
7)

12
45

(4
0)

11
02

(3
7)

74

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

the least amount of available feasible timeslots is placed in the timetable first. Table 3.10

shows that saturation degree, as well as largest enrolment, found a feasible solution to the

‘Hidden1’ instance. Therefore, saturation degree will also be used for the following method as

a comparison.

Once the initial timetable has been produced and we have a list of unplaced events the main

objective is to then find a period for all the unplaced events whilst retaining a feasible timetable.

A combination of tabu search and the maximum matching algorithm is used.

The cost function for this process is the number of students required to attend the events on

the unplaced list. We assess the cost of each event on the unplaced list, in every timeslot to

find the best feasible timeslot to insert them. The maximum matching algorithm, as explained

in Section 3.2.2.1, is used to rearrange the events in the timeslot to accommodate the unplaced

event. The timetable must remain feasible at all times, so any timeslots that would violate

HC4 would not be considered. Any events that contain common students, or have a precedence

with the event to be placed, would need to be removed from the timetable and added to the

end of the unscheduled list of events. A record is kept of the students required to attend

the events that would need to be removed if the unscheduled event were to be placed in that

timeslot. The timeslots are ranked in ascending order of the number of students attending the

events that would need to be replaced. Priority is given to the timeslot that when the event

is inserted, the events that need to be removed result in the least number of students having

events unscheduled. Any events that need to be removed from the timetable to keep it free

of hard constraint violations are then transferred to the end of the unplaced event list. This

process is repeated for all the events in the unplaced event list until either; they are all placed

or it reaches a maximum number of iterations.

Similar to the previous method, tabu search (Glover [1987]) was used to avoid being trapped

in local minima. When an unplaced event is being inserted into a timeslot, and consequently

another event needs to be removed to retain a feasible timetable, placing the removed event

back into the same timeslot would be tabu for T iterations, where T is the tabu list length. This

75

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

method was tested with many constant tabu list lengths, and also a variation of the variable

tabu list length as described in the previous chapter. The tabu list length has been adapted

here to depend on the number of unplaced events, as clashes do not exist in this version.

T = Random{0, 9}+ α ∗ number of unplaced events (3.3)

(Blöchliger and Zufferey [2008]) where α = 0.6 (Galinier and Hao [1999]).

Table 3.11 shows the results with each instance using colour degree to produce the initial solu-

tion. Table 3.12 shows the results using saturation degree. The success rate is the percentage

of times the algorithm achieved a feasible timetable. If a feasible solution had not been found

by 1,000,000 iterations the algorithm ended. The average time is the average computational

time the algorithm took to finish either; by reaching 1,000,000 iterations or by finding a feasible

solution. These averages were calculated using successful and unsuccessful runs. The average

iterations shows the average number of iterations the algorithm took before finding a feasible

solution or ending.

Colour degree produced feasible solutions in 100% of the 20 runs in all but two of the instances.

Saturation degree also found feasible solutions in all instances however failed to find them 100%

of the time in six instances.

Colour degree was more computationally efficient as it was significantly quicker than saturation

degree in all of the runs. Saturation degree on average required many more iterations in 15 of the

24 instances however, even when colour degree needed more iterations it was still substantially

quicker.

The results conclude that both selection heuristics performed well and achieved a feasible

timetable at least 80% of the time in all instances.

In comparison with the neighbourhood operators method described in Chapter 3, which found

feasible solutions in three instances, this method has clearly proven to be a superior method

76

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Table 3.11: Results using Colour degree with TabuCol

Instance Success rate Avg iterations Avg time (secs)
Early1 100% 63932 0.92
Early2 100% 237406 0.92
Early3 100% 1072 0.41
Early4 100% 3545 0.41
Early5 100% 10047 1.03
Early6 100% 15765 1.06
Early7 100% 4986 0.32
Early8 100% 1780 0.32
Late1 100% 220759 0.94
Late2 85% 551928 0.94
Late3 100% 154 0.36
Late4 100% 20403 0.36
Late5 100% 11329 1.02
Late6 100% 21442 1.01
Late7 100% 965 0.25
Late8 100% 1556 0.25
Hidden1 100% 25 0.08
Hidden2 100% 3020 0.25
Hidden3 100% 128323 0.73
Hidden4 100% 478 1.23
Hidden5 100% 20109 1.63
Hidden6 80% 622655 2.72
Hidden7 100% 218403 1.53
Hidden8 100% 215688 1.56

for solving this particular problem. The partial solution method produced feasible solutions in

all instances and needed far less computational time.

3.3.1 Comparison of feasible timetables

We have used 20 different random seeds for each instance to determine different solutions. The

partial solution method described in Section 3.3 produced feasible solutions in 98.5% of these

final solutions. To determine how similar our feasible solutions are in each instance we have

compared all pairs of the feasible solutions. The comparison can give us an idea of how many

feasible solutions we have found. We found that, generally, the average percentage of events that

77

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Table 3.12: Results using Saturation degree with TabuCol

Instance Success rate Avg iterations Avg time (secs)
Early1 100% 137971 12.07
Early2 90% 345879 12.08
Early3 100% 1050 3.87
Early4 100% 1279 3.91
Early5 100% 11174 18.38
Early6 100% 16189 18.42
Early7 100% 4487 2.82
Early8 100% 3203 2.76
Late1 100% 264610 12.06
Late2 90% 494491 11.79
Late3 95% 59661 2.53
Late4 100% 6977 2.62
Late5 100% 11993 18.56
Late6 100% 24504 18.38
Late7 100% 1419 1.82
Late8 100% 1073 1.86
Hidden1 100% 3 0.54
Hidden2 100% 3869 2.47
Hidden3 95% 175647 6.32
Hidden4 100% 696 12.71
Hidden5 100% 75004 32.09
Hidden6 100% 419403 47.05
Hidden7 95% 209648 24.44
Hidden8 80% 305781 19.29

were in the same timeslot in both timetables being compared were higher on timetables with

lower density and lower on high densities. There was a moderate negative correlation between

the two variables with a Spearman’s rank correlation coefficient of −0.536. The results are

shown in Table 3.13 and the corresponding scatter plot in Figure 3.9. The majority of the

percentages are low, we therefore have fairly different feasible timetables in each instance. This

means we have many different starting points for the optimisation of these timetables and it

encourages us to think that improvement methods may work in the following chapter. There is

a clear outlier in Figure 3.9 where even though the instance has a high density it seems to have

found many different feasible solutions as similarity is also high. It is also interesting to note

that we have shown in this chapter that some local search approaches have struggled to find

78

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

a feasible solution so it is interesting to find that the partial solution method found mulitple

different feasible solutions in each instance.

Table 3.13: The comparison of pairs of timetables to determine how similar the feasible timeta-
bles are.

Instance Average similarity Timetable density
Early1 17% 89%
Early2 11% 89%
Early3 70% 22%
Early4 48% 22%
Early5 18% 44%
Early6 13% 44%
Early7 40% 22%
Early8 52% 22%
Late1 11% 89%
Late2 12% 89%
Late3 84% 44%
Late4 30% 44%
Late5 18% 44%
Late6 12% 44%
Late7 45% 44%
Late8 65% 44%
Hidden1 93% 22%
Hidden2 42% 44%
Hidden3 19% 67%
Hidden4 86% 89%
Hidden5 16% 56%
Hidden6 22% 56%
Hidden7 23% 44%
Hidden8 11% 44%

3.4 Conclusions

In this chapter we have presented two approaches for finding feasibility with the post enrolment-

based course timetabling problem.

The first approach relaxed HC1 and HC5 to enable all events to be scheduled. The focus was

then to attempt to eliminate any violations of HC1 and HC5 using various neighbourhood

79

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

Figure 3.9: A scatter plot of the relationship between the similarity of the feasible solutions
and the density of each instance

20 40 60 80 100

20

30

40

50

60

70

80

90

Similarity

D
en

si
ty

operators. The number of violations was significantly reduced mainly by the move and swap

operators and the more complex Kempe chains. This method found feasible solutions in three

of the 24 instances.

We used two cost functions in the first approach based upon the two relaxed constraints, HC1

and HC5. The first cost function, cost1, was the sum of all students that are required to attend

more than one event at any time, plus the sum of all students that are required to attend the

events that violate the precedence constraint. The second cost function used, cost2, was the

sum of all the events that contain common students that are scheduled at the same time, plus

the sum of all events that violate the precedence constraint.

We found that using cost2 produced higher reduction in the cost function so this could be seen as

a more successful cost function to use. Throughout the first method of adding neighbourhood

operators, cost2 had made a higher percentage of improvement to the cost function. For

instance, after moves, swaps and Kempe chains had been applied cost1 had reduced the initial

80

CHAPTER 3. STAGE ONE OF A TWO-STAGE APPROACH: FINDING A FEASIBLE
SOLUTION TO THE UNIVERSITY COURSE TIMETABLING PROBLEM

cost by 82% and cost2 had reduced the initial cost by 96%.

The second approach did not relax any constraints and as a result was forced to leave some

events unscheduled to maintain a valid timetable. The events are then scheduled in the least

disruptive timeslot. The least disruptive timeslot is the one where no clashes exist once the

event is scheduled. If this scenario does not exist it is scheduled in the timeslot that results

in the least number of events being removed to ensure no clashes are present. This method

produced a feasible solution in 98.5% of the runs (20 random seeds on 24 instances). We have

also seen that many of the 20 solutions found for each instance vary significantly from each

other which gives us a strong starting point for the next chapter which will try to optimise

these feasible solutions in terms of the number of soft constraint violations. It is also worth

noting that although we were not considering the time limit imposed by the competition, as

outlined in Section 3.1, our run times were within the limit with an average run time of 0.55

seconds.

It is obvious to conclude from this chapter that leaving events unscheduled, to later place them

in the timetable, whilst at all times maintaining a feasible solution is far superior to relaxing

constraints and trying to move around a highly constrained solution space to find a feasible

solution.

81

Chapter 4

Stage two of a two-stage approach:

Improve solution by minimising soft

constraint violations

The post enrolment-based course timetabling problem is represented by a search space contain-

ing all possible (feasible and infeasible) timetables. The current timetable is contained within

a feasible region of this search space and we now need to search for a higher quality solution.

The aim of stage two is to minimise the number of soft constraint violations whilst maintaining

feasibility.

A basic condition of a search method is that the solution space is connected. Two solutions

within a solution space are connected if and only if there exists a sequence of neighbourhood

moves that can transform one into the other. In highly constrained problems, such as the

one we are studying, regions where feasible solutions exist may be poorly connected or even

disconnected in the search space. The search process may not be able to move from one feasible

solution to another unless infeasible solutions or solutions with a higher cost function value are

permitted; see Figure 4.1. In this chapter, we will investigate methods that may improve the

82

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

connectivity which should enable a broader search to take place.

Figure 4.1: An example of how the search space could appear.

A solution is penalised equally for each occurrence of the following soft constraint violations:

SC1 - a student has a class in the last slot of the day;

SC2 - a student has more than two classes consecutively;

SC3 - a student has a single class on a day.

The sum of the number of violations of these constraints is called the Soft Constraint Penalty

(SCP), this is the measure of the quality of the solution. The objective of this chapter is to

minimise SCP whilst maintaining feasibility. The mathematical formulation can be seen in

Chapter 3. The average SCP for each instance at the end of stage one is shown in Table 4.1.

83

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Table 4.1: The average number of soft constraint violations in the feasible timetables for each
instance.

Instance Average SC1 Average SC2 Average SC3 Average SCP
Early1 1220 1526 155 2901
Early2 1302 1267 205 2774
Early3 1376 1139 888 3403
Early4 1080 672 1024 2776
Early5 593 1061 96 1750
Early6 576 1037 84 1697
Early7 732 336 511 1579
Early8 670 419 504 1593
Late1 1316 1528 219 3063
Late2 1260 1239 261 2760
Late3 1100 1008 853 2961
Late4 1333 758 1086 3177
Late5 562 1176 92 1830
Late6 694 994 120 1808
Late7 700 325 599 1624
Late8 637 559 409 1605
Hidden1 325 1943 120 2388
Hidden2 1252 1282 187 2721
Hidden3 1130 713 1289 3132
Hidden4 999 1029 843 2871
Hidden5 567 1214 59 1840
Hidden6 1225 1324 191 2740
Hidden7 2557 3184 701 6442
Hidden8 964 862 1237 3063
Average 1007 1108 489 2604

4.1 Disallow SC1 and SC3 violations

It is known that at least one feasible solution exists in all instances (McCollum et al. [2010]),

it is also known that the optimal solution has been found for at least four of the 24 instances.

Since we know that optimal solutions exist, this section focusses on treating soft constraints

as hard constraints in order to eliminate the SCP and find an optimal solution. This experi-

ment is actually run independently and does not begin with a feasible solution from the first

stage. However, it does follow the same method as the method described in Section 3.3. Since

the partial solution method was successful in finding feasible solutions with the five specified

84

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

hard constraints, we first experimented with classing SC1 and SC3 also as hard constraints.

Therefore, violations of SC1 and SC3 were forbidden from the beginning of stage one.

Events are ordered dynamically, using colour degree, which prioritises the events that have the

largest amount of conflicts with events that have already been scheduled. The timeslots are

listed in ascending order of the number of events that can be feasibly scheduled in them. We

then attempt to systematically schedule each event in the timeslots in order. The event is

scheduled in the first one that maintains feasibility of the timetable. If there are no timeslots

that maintain feasibility then the event would remain unscheduled. Also, in this case, for the

timetable to remain feasible, SC1 and SC3 cannot be violated.

Next, we attempt to schedule the events on the unplaced list and remove the smallest number of

events as possible from the timetable to maintain feasibility. When events have to be removed

from the timetable they are added to the end of the unplaced list and the process continues

until either; a (complete) feasible solution is found or 1,000,000 iterations have been performed.

Table 4.2 shows the average number of events that had to remain unscheduled, the average

distance to feasibility (defined in Chapter 3) and the average number of SC2 violations that

were present in the incomplete timetable. Unfortunately, including SC1 and SC3 with the hard

constraints made the problem impractical to solve and we did not manage to find a feasible

solution in any of the 24 instances with, on average, 30% of the events remaining unscheduled.

The same experiment could be repeated with only classifying SC2 or SC3 as hard constraints

for example. Classifying SC1 as a hard constraint means that no event can be scheduled in the

last timeslot of each day which could be too restrictive. In another experiment we could count

the number of students who have an event in the last timeslot of the day instead of forbidding

this.

85

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Table 4.2: Results from disallowing violations of SC1 and SC3 from the beginning of Stage one.

Instance Average number of Average DTF Average SC2 violations
events left unplaced

Early1 138 3980 456
Early2 147 4078 579
Early3 41 3414 1597
Early4 52 3676 1729
Early5 130 2192 196
Early6 130 2226 254
Early7 54 2007 801
Early8 57 2021 901
Late1 142 4201 553
Late2 154 4426 628
Late3 49 3916 1646
Late4 56 4024 1720
Late5 142 2395 282
Late6 136 2302 269
Late7 52 1810 940
Late8 47 1622 777
Hidden1 16 2052 318
Hidden2 67 3719 473
Hidden3 90 4415 1814
Hidden4 89 3217 1568
Hidden5 155 2044 223
Hidden6 231 4313 561
Hidden7 146 9014 985
Hidden8 126 4337 1557
Average 102 3392 868

4.2 Improving the feasible solution

Different neighbourhood operators produce different landscapes. Therefore, we investigated

how the solution quality changed with each of the neighbourhood operators described in Sec-

tion 3.2, namely; moves, swaps, timeslot swaps, the Hungarian method and Kempe chains.

In this section we will discuss the operators that were the most successful for optimising the

feasible solutions in terms of the SCP for stage two.

86

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

4.2.1 Move and swap operators

As concluded in Chapter 3, the move and swap operators can make quick improvements to

the cost function. All possible moves and swaps were considered and the move or swap that

makes the biggest improvement to the cost function was performed, provided it maintained

feasibility. Tabu search (as described in Section 3.2.2.1) was used, so we also ensured that the

move or swap was not considered tabu. Table 4.3 shows the average SCP of each instance

once moves and swaps have been implemented, the percentage of improvement from the initial

SCP and the average computational time. The move and swap operators were repeated until

either; 1,000,000 iterations have passed, the SCP has not improved in 1,000 iterations or the

SCP reaches zero. The SCP on average decreased by 36% in 0.85 seconds over the 24 instances.

This reinforces the point that the simple move and swap operators are easy to implement and

quick to improve the cost function.

4.2.2 Kempe chains and non-clashing swaps

Initial experiments showed that Kempe chains are an effective way of successfully searching

the search space and decreasing the SCP. The Kempe chains neighbourhood takes two sets of

mutually conflicting events from two different timeslots. These sets are then swapped without

causing any further conflicts. All Kempe chains are considered and tabu search is used to ensure

that we are capable of escaping from a local optimum. Tabu search accepts worsening moves

when there are no further moves that can improve the solution quality. The reverse of any

moves in the chain that are performed are saved on a tabu list for a set number of iterations so

that any event in the chain cannot move back to its previous position. The number of iterations

that the move remains on the tabu list is called the tabu tenure. This is usually unique for

each problem. We performed some tests on different tabu tenures such as; constant, random

and variable. These tests showed that a random tabu tenure performed well on this problem.

Specifically, a random number between 150 and 200 iterations, so that a new random number

87

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Table 4.3: SCP after move and swap operator has been used for optimisation.

Instance Initial SCP Average SCP % improvement Average computational
time (sec)

Early1 2901 1923 34% 0.94
Early2 2774 1916 31% 0.93
Early3 3403 1823 46% 0.51
Early4 2776 1893 32% 0.50
Early5 1750 1154 34% 0.88
Early6 1697 1096 35% 0.90
Early7 1579 1116 29% 0.33
Early8 1593 1101 31% 0.34
Late1 3063 1986 35% 1.08
Late2 2760 1871 32% 0.95
Late3 2961 1899 36% 0.48
Late4 3177 1977 38% 0.47
Late5 1830 1247 32% 0.93
Late6 1808 1209 33% 0.92
Late7 1624 1087 33% 0.33
Late8 1605 923 42% 0.33
Hidden1 2388 843 65% 0.13
Hidden2 2721 1697 38% 0.33
Hidden3 3132 2290 27% 0.91
Hidden4 2871 1696 41% 1.37
Hidden5 1840 921 50% 1.41
Hidden6 2740 2508 8% 2.32
Hidden7 6442 3190 50% 1.5
Hidden8 3063 1920 37% 1.52
Average 2604 1637 36% 0.85

in this range is chosen on every iteration. The maximum matching algorithm, as described in

Chapter 3, is used to allocate events to suitable rooms in order to maintain feasibility.

Clearly, sets of mutually conflicting events exclude pairs of events that do not clash with each

other. Therefore, once all Kempe chains have been considered, all pairs of events that do not

clash are then examined to see if they can improve the cost function further. This is repeated

until; no soft constraints are violated (SCP = 0), no improvement has been made for 500

iterations, or the number of iterations reaches 100,000. These stopping conditions were chosen

by observation of the program.

88

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

The results from these experiments are shown in Table 4.4, and Figure 4.2, for the eight early

and eight late instances. Also shown are the results from Cambazard et al. [2012] who came

first in track two of the ITC 2007, along with Chiarandini et al. [2008] who came third and

Lewis [2012] who was a competition organiser but did publish his own algorithm. Cambazard

et al. present a hybridisation of local search with constraint programming techniques. They

found an optimal solution in four of the 16 instances tested. Chiarandini et al. submitted a

two phase algorithm using local search to initially schedule events and PartialCol for any

unscheduled events followed by a second phase which uses local search methods to minimise the

soft constraint violations. This algorithm produced very competitive results. Lewis’ algorithm

consisted of three phases. The initial phase relaxes HC5 and inserts as many events as possible,

simulated annealing is then used to satisfy HC5 and minimise the soft constraint violations

in the third phase. In many of the instances it is clear that Cambazard et al. have the most

successful method. This could be due to a number of reasons such as parameter settings,

the way it was programmed, the connectivity of the search space due to the neighbourhood

operators or the choice of search algorithm (simulated annealing versus our tabu search). More

research would be required here to provide a definitive reason.

The technique presented in this thesis can clearly compete with the winning algorithms, out-

performing them all in three instances (highlighted bold in the table) and coming second or

third in many others. However, it is still the worst performing algorithm in seven of the 24

instances so there is still room for improvement.

Figures 4.3, 4.4 and 4.5 illustrate the relationship between the event size, the number of times

the event was moved during the Kempe chain moves and swaps and how much the event

contributes to the final SCP. The relationship was significant between all of the variables. We

have used the Spearman’s rank correlation to determine the relationship between the variables

as the data lends itself to non-parametric statistics.

There was a weak negative correlation between the number of times an event was moved and

the final contribution of that event to the SCP, with a Spearman’s rank correlation coefficient

89

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

F
ig

u
re

4.
2:

C
om

p
ar

is
on

of
ou

r
re

su
lt

s
w

it
h

tw
o

of
th

e
co

m
p

et
it

io
n

en
tr

an
ts

an
d

th
e

co
m

p
et

it
io

n
or

ga
n
is

er
.

90

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Table 4.4: The best and median results (DTF/SCP) of ten runs obtained by algorithms sub-
mitted to the competition. The best scores are shown in bold text.

Cambazard et al. Chiarandini et al. Lewis Our results
Instance Best Median Best Median Best Median Best Median
Early1 0/571 0/877 0/1482 0/1696 0/1166 0/1819 0/1088 0/1434
Early2 0/993 0/1523 0/1635 0/1896 0/1665 42/1866 0/778 0/1458
Early3 0/164 0/236 0/288 0/374 0/251 0/436 0/556 0/685
Early4 0/310 0/372 0/385 0/463 0/424 0/552 0/592 0/768
Early5 0/5 0/7 0/559 0/681 0/47 0/190 0/351 0/553
Early6 0/0 0/0 0/851 0/985 0/412 0/621 0/859 0/1012
Early7 0/6 0/8 0/10 0/403 0/6 0/383 0/654 0/823
Early8 0/0 0/0 0/0 0/1 0/85 0/215 0/11 0/142
Late1 0/1560 0/1823 0/1947 0/2081 0/1819 67/2095 0/1246 0/1610
Late2 0/1650 0/1737 0/1741 0/2288 0/2091 110/2293 0/1390 0/1621
Late3 0/178 0/286 0/240 0/365 0/288 0/496 0/473 0/648
Late4 0/146 0/349 0/475 0/593 0/474 0/744 0/368 0/650
Late5 0/0 0/160 0/675 0/926 0/298 0/592 0/524 0/731
Late6 0/1 0/2 0/864 0/958 0/127 0/690 0/557 0/793
Late7 0/0 0/0 0/0 0/320 0/108 0/319 0/271 0/375
Late8 0/2 0/11 0/1 0/6 0/138 0/192 0/191 0/276

of −0.126.

There was a moderate negative correlation between the size of an event and the number of

times it was moved, with a Spearman’s rank correlation coefficient of −0.509.

Finally, there was a weak positive correlation between the size of event and the final amount it

contributed to the SCP with a Spearman’s rank correlation coefficient of 0.12.

Smaller events are moved a large number of times, whereas larger events are not moved many

times throughout the run. This is due to smaller events having more available timeslots to move

to as the room size is less of a restriction. They are also less likely to clash with other events in

a timeslot. Since smaller events have more options of timeslots it is more likely that they can

find a timeslot that will incur no hard or soft constraint violations and therefore contribute less

to the SCP.

The rest of this chapter will explore ways to further improve these results.

91

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Figure 4.3: A scatter plot of the relationship between the number of times an event was moved
and the contribution to the SCP.

0
20

0
40

0
60

0
80

0
1,
00

0
1,
20

0
1,
40

0

0

10

20

30

40

Number of times the event was moved

F
in

al
co

n
tr

ib
u

ti
on

to
th

e
S

C
P

Figure 4.4: A scatter plot of the relationship between the number of times an event was moved
and the size of the event.

0 10 20 30

0

500

1,000

1,500

Size of the event

N
u

m
b

er
of

ti
m

es
th

e
ev

en
t

w
as

m
ov

ed

92

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Figure 4.5: A scatter plot of the relationship between the size of the event and the final
contribution to the SCP.

0 10 20 30

0

10

20

30

40

Size of the event

F
in

al
co

n
tr

ib
u

ti
on

to
th

e
S

C
P

4.3 Feasibility ratio

We gauge the connectivity of the search space by comparing the number of moves considered

with the number of moves that maintain feasibility. We call this the ‘neighbourhood feasibility

ratio’. By testing the relationship between the neighbourhood feasibility ratio and the propor-

tion of the reduction in cost, we found that there was a strong positive correlation between the

two variables with a Spearman’s rank correlation coefficient of 0.86. Therefore, as the percent-

age of moves that maintain feasibility increases, so does the percentage of the reduction in cost,

see Figure 4.6. This suggests that if we can increase the feasibility ratio then we can decrease

the SCP.

The remainder of this section will contain methods we have considered to improve the neigh-

bourhood feasibility ratio (and, by implication, the connectivity).

Improvements can be made via the application of a wide range of more flexible operators or by

the temporary relaxation of certain problem constraints.

93

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Figure 4.6: A scatter plot of the relationship between the average neighbourhood feasibility
ratio and the average proportion of the reduction in cost over 20 runs for each instance.

0 5 10 15 20

40

60

80

100

% moves maintaining feasibility

%
re

d
u

ct
io

n
in

co
st

4.3.1 Remove events

To improve the feasibility ratio we considered temporarily removing some events from the

problem. This will free up more timeslots and rooms for the remaining events to move to

and therefore could improve the ratio between the number of possible moves and the number

of them that maintain feasibility. This will enable the search to explore more regions of the

search space and potentially decrease the SCP for us to then reinsert the removed events for a

complete solution.

Our process of choosing which events should be removed involves multiple steps. Firstly, we

calculate the proportion of the SCP that each event contributes and sort the events in ascending

order by this proportion. We have retained a list of the number of times each event was moved

in the optimisation process of Kempe chains and swaps described in Section 4.2.2. This list

is arranged in descending order so the event first on the list was moved the most amount of

times. Both lists are assigned a rank. These ranks are then combined so that we have an

overall ranking of events, the lowest rank being the events that contributes a low percentage

94

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

of the SCP and were moved many times. The removed event should, in theory, be one of the

easiest to reschedule. It has been moved between timeslots many times, and thus it must have

a large number of timeslots where it can be scheduled. The low cost could mean that it does

not conflict with many other events and therefore will be easier to schedule.

We remove 2.5% of the events and then optimise the solution using the optimisation process of

Kempe chains and non-clashing swaps described in Section 4.2.2. We then attempt to feasibly

reschedule the events and optimise again. The decision of removing 2.5% of the events was

based on observation of the program and found a good balance between not disrupting the

timetable too much and removing enough to make a difference to the search.

The maximum matching algorithm is used when we are trying to schedule an event in a timeslot.

The algorithm finds in which rooms the event can be scheduled. If one is empty in the timetable

then it schedules the event and finishes. If the feasible rooms have events scheduled in them,

then these events are added to a queue. For all events in the queue, we find other rooms that

they could be moved to. If any of these are empty the events are moved and the algorithm

finishes, otherwise the events in these timeslots are again added to the queue. This process is

repeated until there is a feasible allocation of events to rooms within the timeslot that does not

violate any hard constraints.

It was clear from our experiments that reinserting the events once optimisation has taken place

with fewer events only makes small improvements to the feasibility ratio or the SCP. The

search will have moved to another area of the search space and therefore be a different solution.

However, there were only small changes to the feasibility ratio due to the highly constrained

nature of this problem. Following this conclusion we tested this method without reinserting the

events therefore continuing the search with an incomplete solution. This obviously makes an

easier problem so is not comparable to previous results, but is an indicator of how the method

performs on simpler problems. See Figure 4.7 and Figure 4.8 for effects on the feasibility ratio

and SCP when the removed events are not reinserted. The figures show all instances for one

random seed as an example. It is clear there is a trend of the feasibility ratio increasing and

95

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

the SCP decreasing as was expected. On average, the feasibility ratio increased by 201% and

the SCP reduced by 51% after the ten iterations each removing 2.5%.

Figure 4.7: A line chart showing the change in feasibility ratio of the problem at each point
after events have been removed and the timetable has been optimised.

4.3.2 Remove constraints

We also considered removing constraints to test our techniques on easier problems with fewer

constraints. This will make more timeslots available to the events and allow them to move

more easily within the timetable during the optimisation process and enable us to explore more

of the search space. Keeping track of the feasibility ratio will enable us to see how it changes

as the problem gets easier.

We begin with the feasible solutions constructed by the partial solution method presented in

Section 3.3. We then randomly remove a total of 0.5% from the sets of room, timeslot and

clash constraints. This is done proportionally according to the size of these sets. The number of

constraints to remove was based upon observation of the program; if too many were removed the

problem would become too simple and conversely, if too small a number were removed then the

96

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Figure 4.8: A line chart showing the change in SCP of the problem at each point after events
have been removed and the timetable has been optimised.

timetable would not differ enough from the initial solution. The solution is optimised with the

smaller set of constraints using the Kempe chains and swap method described in Section 4.2.2.

This process is repeated ten times to get an idea of how these neighbourhood operators work.

The results are shown in Table 4.5. Removing constraints had the same effect on the feasibility

ratio and SCP as removing events did however, the changes were not quite as large as when

events were removed. If we have removed a larger proportion of events on each iteration or

performed more iterations we may have seen similar results. Over ten iterations of removing

0.5% of the constraints the feasibility ratio increased, on average, by 38% and the SCP decreased

by 24%. This was to be expected as the problem would had a higher ratio of number of moves

to the amount of those that maintain feasibility when the problem is less constrained.

97

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Table 4.5: The change in feasibility ratio (FR) and SCP after 0.5% of the constraints are
removed on each of the ten iterations.

Instance Average Average improvement
increase in FR to the SCP

Early1 56% 33%
Early2 53% 26%
Early3 15% 9%
Early4 43% 36%
Early5 20% 4%
Early6 19% 15%
Early7 6% 4%
Early8 31% 6%
Late1 66% 34%
Late2 43% 13%
Late3 41% 54%
Late4 49% 30%
Late5 43% 29%
Late6 43% 16%
Late7 32% 24%
Late8 58% 35%
Hidden1 11% 17%
Hidden2 55% 31%
Hidden3 21% 21%
Hidden4 63% 50%
Hidden5 44% 27%
Hidden6 32% 11%
Hidden7 35% 31%
Hidden8 33% 17%
Average 38% 24%

4.3.3 Adding constraints

This section describes a similar process to Section 4.3.2 where constraints are removed. In

this section, we will add constraints to test our techniques on more difficult highly constrained

problems.

The process begins with the feasible solutions produced in Section 3.3. The solutions are

optimised focussing on the SCP using the Kempe chains and non-clashing swaps described in

Section 4.2.2. We then randomly add a total of 0.5% of the constraints to the sets of room,

98

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

timeslot and clash constraints. This is done proportionally according to the size of these sets.

We add the constraints in such a way that the solution remains feasible but also an optimal

solution is still achievable. We were provided with four optimal solutions so that we can ensure

it is still possible to eliminate all soft constraint violations even after the constraints have been

added. These four optimal solutions were for the instances; Early1, Early8, Late6 and Hidden1.

This process is repeated ten times to get an idea of how these neighbourhood operators work.

We kept track of the feasibility ratio to see how it changed as the problem gets more difficult.

The results are shown in Table 4.6. On average, the feasibility ratio decreased by 43% and the

run ended with a feasibility ratio of 0.06, representing the ratio between the number of possible

moves and the number of those that maintain feasibility. With a feasibility ratio of 0.06 it is

easy to understand how constrained the problem has become. The solution quality deteriorates

when constraints are added at approximately the same rate as it improves when constraints are

removed.

Table 4.6: The change in feasibility ratio and SCP when 0.5% of the total constraints are added
on each of the ten iterations.

Instance Average Average increase
decrease in FR to the SCP

Early5 54% 26%
Early8 62% 71%
Late6 45% 14%
Hidden1 10% 11%
Average 43% 31%

4.4 Conclusions

In Chapter 3 we found a feasible solution in each instance. This chapter has focussed on min-

imising the number of soft constraint violations to improve the solution quality. We examined

the effects of some of the more successful neighbourhood operators that were presented in

99

CHAPTER 4. STAGE TWO OF A TWO-STAGE APPROACH: IMPROVE SOLUTION
BY MINIMISING SOFT CONSTRAINT VIOLATIONS

Chapter 3.

The move and swap operators were effective in making a quick and significant improvement to

the SCP. On average, they managed to reduce the SCP by 36% from the initial cost.

Employing Kempe chains and non-clashing swaps after the move and swap operators decreased

the SCP on average by 74% overall. Although these operators have proven again to be very

effective, further work still needs to be done to achieve optimal solutions.

The feasibility ratio was explored, which is the relationship between the number of possible

moves and the number of moves that maintain feasibility. This was done by removing events

from the timetable. Once removed the timetable was optimised again to see how the feasibility

ratio changed. The events were reinserted after each iteration to gauge if the feasibility ratio

had improved for the complete solution. This did not have much effect on the feasibility ratio

for the complete problem.

Following these results we tested the effects on the feasibility ratio on less dense problems by

removing the events and not rescheduling them as before but leaving them unscheduled. As

would be expected, the feasibility ratio significantly increased by, on average, 201% and the

SCP decreased by 51% from the initial solution with less events included in the problem.

The performance of these methods was also tested on simpler and more difficult problems by

removing and adding constraints. We removed constraints to make the problem simpler and,

as expected, the feasibility ratio increased and the SCP decreased. We found that when adding

constraints the method quickly deteriorated in finding improvements to the cost function as

the problem was already very highly constrained.

100

Chapter 5

Conclusions and future research

The research presented in this thesis has investigated ways of solving the post-enrolment based

course timetabling problem. In particular, it has explored ways of applying local search. This

chapter will present a summary of the main conclusions that can be drawn from this research,

highlighting the contributions made to the field. Areas are then identified for future work.

5.1 Conclusions

Chapter 2 summarised the existing research into post enrolment-based course timetabling and

related topics. It also highlighted the importance of automating the process of timetabling

in educational institutions. We have suggested that the problem size and the complexity of

real-world problems are not appropriate for exact method approaches, and that local search

techniques and metaheuristics are more suited to the problem. The chapter also outlined the

methods that have been previously used and due to the level of their success we have chosen

to utilise these techniques in this thesis. This chapter can be used as a handy resource, as it

provides many important references for anyone who wishes to study this topic.

Chapter 3 described two methods for solving the post enrolment-based course timetabling.

101

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

The method described in Section 3.2 searches for a feasible solution whilst relaxing two hard

constraints, HC1 and HC5. Neighbourhood operators and tabu search are used to attempt to

satisfy the relaxed constraints. The smaller operators, such as the move and swap operators

(Sections 3.2.2.1, 3.2.2.2), were very effective methods for making quick improvements to the

cost function. However, the timeslot swap operator (Section 3.2.2.3) was not effective in making

any improvements to the cost function. This was due to the events having predefined timeslots

into which they can be placed (HC4) and it was likely that they could not all be scheduled

in the timeslot that they were moving to. The Hungarian method (Section 3.2.3.1) made

small improvements to the cost function but with a high computational time. Since this is a

highly constrained problem, the events are regularly returned to their original positions and

no improvement is made to the cost function. Kempe chains (Section 3.9) were much more

successful in improving the value of the cost function. Feasible solutions were found in three

of the 24 instances when Kempe chains were used in conjunction with the move and swap

operators.

The method described in Section 3.3 searches for a feasible solution without relaxing any

constraints. This method uses colour degree and saturation degree to schedule events to form an

initial solution. If feasible timeslots are not available for an event then that event is temporarily

left unplaced. To insert the unscheduled events, some events that would cause hard constraint

violations would need to be removed. If events are removed then they are added on the end of

the list of unscheduled events to be inserted later. The unscheduled events are inserted in the

least disruptive timeslot. By the least disruptive, we mean the timeslot which would require

the least amount of events to be removed. Using this method we obtained feasible solutions in

all instances. This method was much more efficient than the neighbourhood operators method

and produced feasible solutions in all of the 24 instances.

Chapter 4 focussed on minimising the number of soft constraint violations. To do this, we used

the move and swap operators and Kempe chains with non-clashing swaps. These were again

successful in making improvements to the cost function, with an average reduction of 74% over

102

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

the 24 instances.

In Section 4.3 we investigated ways of increasing the feasibility ratio, which is a comparison

between the number of moves considered with the number of moves that maintain feasibility.

We considered temporarily removing events and optimising the reduced timetable to then re-

schedule the events in feasible positions. It was hoped that this may improve the feasibility

ratio by having the ability to explore more of the solution space whilst the events are removed.

Small improvements were made to the feasibility ratio and SCP, however, it was encouraging

that the search found a different feasible solution. Further investigation may be required to

understand the landscape of the search space and how this method can be improved.

We considered this approach without re-inserting the events to determine how it could perform

on less dense timetables. Significant improvements were made to the feasibility ratio and the

SCP. The feasibility ratio increased, on average, by 201% and the SCP decreased by 51% after

ten iterations each removing 2.5% of the events. When the events were removed the feasibility

ratio quickly increased. This suggests that how constrained the problem is and the feasibility

ratio are inversely proportional, in that, the less constrained the problem, the easier it can be

to solve.

We tested our optimisation method on simpler and more complex problems by removing and

adding constraints. When constraints had been removed the feasibility ratio increased which

implies there is more freedom to explore the search space. Conversely, when constraints were

added the feasibility ratio decreased and the SCP increased at approximately the same rate

that they improved when constraints were removed.

5.2 Future research

In this section we will discuss ways in which the research presented in this thesis can be

continued.

103

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

It would be interesting to continue exploring neighbourhood operators to further the research

carried out in Section 3.2 to expand on the number of feasible solutions found using this method.

We produced feasible solutions in three of the 24 instances and it may be possible to find more

feasible solutions in this way had more neighbourhood operators been added.

The operators described in Section 3.2 were performed until the stopping criteria was reached

and the next neighbourhood operator would begin. Each neighbourhood operator was only

initiated once. A version of Variable Neighbourhood Search (Mladenovic and Hansen [1997])

could be introduced, so at the end of the process all the operators are repeated. This could

continue until no further improvement could be made to the cost function. This final solution

would then be a local optimum. Refer to the flow diagram shown in Figure 5.1 for an example

of how this could be implemented.

In Section 4.2 we included SC1 and SC3 in the set of hard constraints which made the problem

even more highly constrained. We could further investigate how the algorithm performs with

larger or more highly constrained problem instances. The research conducted for this thesis

was carried out on the track two of the ITC 2007 which has 24 instances and, of which, the

largest includes 600 events. There exists many other problem instances that are available to

test techniques on. For example, the partial solution method could be applied to any of the

instances described in Section 2.3.

The partial solution method presented in Chapter 3 and optimisation techniques presented

in Chapter 4 could be applied to other scheduling problems, including transport scheduling

or sports scheduling. In addition, they could also be employed to solve other optimisation

problems, such as the bin-packing problem or vehicle routing.

To achieve further improvements to the SCP in Chapter 4 further neighbourhood operators

could be added to the process. However, this could have a detrimental effect on the feasibility

ratio.

In Chapter 4 we have explored removing events and constraints. We could have extended the

104

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

Figure 5.1: A flow chart outlining how a version of a variable neighbourhood search could be
implemented using the neighbourhood operators described in Section 3.2.

experiments on removing constraints to see how many constraints would need to be removed

before an optimal solution was found. We could also relax the problem by adding rooms and

timeslots to give more freedom for search methods.

In Section 4.2 we disallowed violations of SC1 and SC3 because they had fewer violations than

SC2. This could be investigated further by only classing SC1, SC2 or SC3 as hard constraints

and disallowing them from the beginning of stage one. If only one soft constraint is classed as

a hard constraint the problem would not be as constrained as when we attempted to find a

solution with two classed as hard constraints. If a feasible solution was achieved it would leave

105

CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

then only two soft constraints to be minimised in further stages.

When we remove constraints in Section 4.3.2, we remove constraints at random. Alternatively,

we could use heuristics to choose which constraints to remove and in which order.

It would be interesting to explore how the methods presented in this thesis would perform

on real-world variants of the problem. It is vital for many industries to have a method for

efficient scheduling in place. For instance, in healthcare, the National Health Service (NHS)

are frequently under great scrutiny to achieve targets in terms of the time in which patients

are seen or arrival times of ambulances. They could benefit from some of our methods being

applied to minimise these times. As an indication of how large the problem is the NHS employed

369,868 qualified nursing staff in 20121, which had increased by 34,006 over the previous ten

years. Hospitals either try to produce adequate solutions by hand or use a number of programs

available to purchase such as SMART Workforce Management2. The techniques used in this

thesis could be adapted to find feasible solutions to a problem such as nurse rostering.

1http://www.nhsconfed.org/priorities/political-engagement/Pages/NHS-statistics.aspx#staff
2http://www.smart-rostering.co.uk/resource/uploads/documents/Product-Sheets/SMART-RPC-

eBrochure.pdf

106

Bibliography

S. Abdullah and H. Turabieh. On the use of multi neighbourhood structures within a tabu-

based memetic approach to university timetabling problems. Information Sciences, 191(0):

146 – 168, 2012.

S. Abdullah, E. K. Burke, and B. McCollum. A hybrid evolutionary approach to the university

course timetabling problem. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress

on, pages 1764 –1768, 2007.

S. Abdullah, H. Turabieh, B. McCollum, and P. McMullan. A hybrid metaheuristic approach

to the university course timetabling problem. Journal of Heuristics, 18(1):1–23, 2012.

E. Angel and V. Zissimopoulos. On the landscape ruggedness of the quadratic assignment

problem. Theoretical computer science, 263(1):159–172, 2001.

H. Arntzen and A. Løkketangen. A tabu search heuristic for a university timetabling problem.

In Metaheuristics: Progress as Real Problem Solvers, Operations Research/Computer Science

Interfaces Series, pages 65–86. 2005.

H. Asmuni, E. K. Burke, J. Garibaldi, and B. McCollum. Fuzzy multiple heuristic orderings

for examination timetabling. In Practice and Theory of Automated Timetabling V, volume

3616 of Lecture Notes in Computer Science, pages 334–353. 2005.

A. S. Asratian and D. de Werra. A generalized class-teacher model for some timetabling

problems. European Journal of Operational Research, 143(3):531 – 542, 2002.

107

BIBLIOGRAPHY

J. A. D. Atkin, E. K. Burke, J. Greenwood, and D. Reeson. Hybrid metaheuristics to aid

runway scheduling at London Heathrow airport. Transportation Science, 41(1):90–106, 2007.

M. Atsuta, K. Nonobe, and T. Ibaraki. ITC-2007 track 2: An approach using general CSP

solver. http://www.cs.qub.ac.uk/itc2007/winner/bestcoursesolutions/Atsuta et al.pdf, 2007.

V. Bardadym. Computer-aided school and university timetabling: The new wave. In Practice

and Theory of Automated Timetabling, volume 1153 of Lecture Notes in Computer Science,

pages 22–45. 1996.

D. P. Bertsekas and D. A. Castañon. Parallel asynchronous hungarian methods for the assign-

ment problem. ORSA Journal on Computing, 5(3):261–274, 1993.

G. D. Birkhoff. The reducibility of maps. American Journal of Mathematics, 35(2):115–128,

1913.

I. Blöchliger and N. Zufferey. A graph coloring heuristic using partial solutions and a reactive

tabu scheme. Computers & Operations Research, 35(3):960–975, 2008.

O. C. Bosquez, P. P. Parra, and F. Lengyel. Towards a deterministic algorithm for the inter-

national timetabling competition. Proceedings of the 17th RCRA workshop on Experimental

Evaluation of Algorithms for Solving Problems with Combinatorial Explosion, 2010.

D. Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256, 1979.

S. Broder. Final examination scheduling. Commun. ACM, 7(8):494–498, 1964.

M. Bufé, T. Fischer, H. Gubbels, C. Häcker, O. Hasprich, C. Scheibel, K. Weicker, N. Weicker,

M. Wenig, and C. Wolfangel. Automated solution of a highly constrained school timetabling

problem - preliminary results. In Applications of Evolutionary Computing, volume 2037 of

Lecture Notes in Computer Science, pages 431–440. 2001.

108

BIBLIOGRAPHY

B. Bullnheimer. An examination scheduling model to maximize students’ study time. In

Practice and Theory of Automated Timetabling II, volume 1408 of Lecture Notes in Computer

Science, pages 78–91. 1998.

E. K. Burke and J. Landa Silva. The design of memetic algorithms for scheduling and

timetabling problems. In Recent Advances in Memetic Algorithms, volume 166 of Studies

in Fuzziness and Soft Computing, pages 289–311. 2005.

E. K. Burke and J. P. Newall. Solving examination timetabling problems through adaption of

heuristic orderings. Annals of Operations Research, 129:107–134, 2004.

E. K. Burke and S. Petrovic. Recent research directions in automated timetabling. European

Journal of Operational Research, 140(2):266 – 280, 2002.

E. K. Burke, D. Elliman, and R. Weare. A genetic algorithm based university timetabling

system. 2nd East-West International Conference on Computer Technologies in Education,

pages 35 – 40, 1994.

E. K. Burke, D. G. Elliman, and R. F. Weare. A hybrid genetic algorithm for highly con-

strained timetabling problems. Proceedings of the 6th International Conference on Genetic

Algorithms, pages 605–610, 1995.

E. K. Burke, D. Elliman, P Ford, and R. Weare. Examination timetabling in British universities:

A survey. In Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes

in Computer Science, pages 76–90. 1996a.

E. K. Burke, J. Newall, and R. Weare. A memetic algorithm for university exam timetabling. In

Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes in Computer

Science, pages 241–250. 1996b.

E. K. Burke, K. Jackson, J. H. Kingston, and R. Weare. Automated university timetabling:

The state of the art. The Computer Journal, 40(9):565–571, 1997.

109

BIBLIOGRAPHY

E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic

for educational timetabling problems. European Journal of Operational Research, 176(1):177

– 192, 2007.

E. K. Burke, J. Li, and R. Qu. A hybrid model of integer programming and variable neighbour-

hood search for highly-constrained nurse rostering problems. European Journal of Operational

Research, 203(2):484–493, 2010.

H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos. Local search and constraint

programming for the post enrolment-based course timetabling problem. Annals of Operations

Research, 194(1):111–135, 2012.

M. W. Carter. A survey of practical applications of examination timetabling algorithms. Op-

erations Research, 34(2):193 – 202, 1986.

M. W. Carter and M. Gendreau. A practical algorithm for finding the largest clique in a graph.

Technical Report 84-08, University of Toronto, Canada, 1984.

M. W. Carter and G. Laporte. Recent developments in practical examination timetabling. In

Practice and Theory of Automated Timetabling, volume 1153 of Lecture Notes in Computer

Science, pages 1–21. 1996.

M. W. Carter, G. Laporte, and S. Y. Lee. Examination timetabling: Algorithmic strategies

and applications. The Journal of the Operational Research Society, 47(3):373–383, 1996.

S. Casey and J. M. Thompson. Grasping the examination scheduling problem. In Practice and

Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in Computer Science,

pages 232–244. 2003a.

S. Casey and J. M. Thompson. Grasping the examination scheduling problem. In Practice and

Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in Computer Science,

pages 232–244. 2003b.

110

BIBLIOGRAPHY

S. Ceschia, L. Di Gaspero, and A. Schaerf. Design, engineering, and experimental analysis of a

simulated annealing approach to the post-enrolment course timetabling problem. Computers

& Operations Research, 39(7):1615 – 1624, 2012.

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W. Markstein.

Register allocation via coloring. Computer Languages, 6(1):47 – 57, 1981.

M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria. International timetabling com-

petition. A hybrid approach. Technical Report AIDA-03-049, Intellectics Group, Computer

Science Department, Darmstadt University of Technology, Darmstadt, Germany, 2003.

M. Chiarandini, C. Fawcett, and H. H. Hoos. A multiphase modular heuristic solver for post

enrollment course timetabling. Journal of Scheduling, pages 2–3, 2008.

A. J. Cole. The preparation of examination time-tables using a small-store computer. The

Computer Journal, 7(2):117–121, 1964.

A. Colorni, M. Dorigo, and V. Maniezzo. Genetic algorithms and highly constrained problems:

The time-table case. In Parallel Problem Solving from Nature, volume 496 of Lecture Notes

in Computer Science, pages 55–59. 1991.

A. Colorni, M. Dorigo, and V. Maniezzo. Metaheuristics for high school timetabling. Compu-

tational Optimization and Applications, 9:275–298, 1998.

P. Corr, B. McCollum, M. McGreevy, and P. McMullan. A new neural network based construc-

tion heuristic for the examination timetabling problem. In Parallel Problem Solving from

Nature - PPSN IX, volume 4193 of Lecture Notes in Computer Science, pages 392–401. 2006.

D. Costa and A. Hertz. Ants can colour graphs. Journal of the Operational Research Society,

48(3):295–305, 1997.

P. Côté, T. Wong, and R. Sabourin. A hybrid multi-objective evolutionary algorithm for the

uncapacitated exam proximity problem. In Practice and Theory of Automated Timetabling

V, volume 3616 of Lecture Notes in Computer Science, pages 294–312. 2005.

111

BIBLIOGRAPHY

J. C. Culberson and F. Luo. Exploring the k-colorable landscape with iterated greedy. Cliques,

coloring, and satisfiability: second DIMACS implementation challenge, 26:245–284, 1996.

D. de Werra. An introduction to timetabling. European Journal of Operational Research, 19

(2):151 – 162, 1985.

J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing exploratory pattern

of the argentine ant. Journal of Insect Behavior, 3:159–168, 1990.

L. Di Gaspero and A. Schaerf. Tabu search techniques for examination timetabling. In Practice

and Theory of Automated Timetabling III, volume 2079 of Lecture Notes in Computer Science,

pages 104–117. 2001.

L. Di Gaspero and A. Schaerf. Multi-neighbourhood local search with application to course

timetabling. In Practice and Theory of Automated Timetabling IV, pages 262–275. 2003.

M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: An autocatalytic optimizing process.

Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Milano, Italy,

1991a.

M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Technical

Report 91-016, Dip. Elettronica, Politecnico di Milano, Italy, 1991b.

R. Dorne and J. K. Hao. A new genetic local search algorithm for graph coloring. In Parallel

Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes in Computer Science,

pages 745–754. 1998.

R. Dorne and J. K. Hao. Tabu search for graph coloring, t-coloring and set t-colorings. In

Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pages

77–92. 1999.

K. A. Dowsland. Off-the-peg or made-to-measure? timetabling and scheduling with sa and

ts. In Practice and Theory of Automated Timetabling II, volume 1408 of Lecture Notes in

Computer Science, pages 37–52. 1998.

112

BIBLIOGRAPHY

K. A. Dowsland and J. M. Thompson. Ant colony optimization for the examination scheduling

problem. Journal of the Operational Research Society, 56:426–438, 2004.

K. A. Dowsland and J. M. Thompson. An improved ant colony optimisation heuristic for graph

colouring. Discrete Applied Mathematics, 156(3):313 – 324, 2008.

G. Dueck. New optimization heuristic: The great deluge algorithm and the record-to-record

travel. Journal of Computational Physics, 104:86–92, 1993.

M. Eley. Ant algorithms for the exam timetabling problem. In Proceedings of the 6th inter-

national conference on Practice and theory of automated timetabling VI, PATAT’06, pages

364–382, 2007.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A

review of applications, methods and models. European Journal of Operational Research, 153

(1):3 – 27, 2004.

T. A. Feo and M. G. C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6(2):109–133, 1995.

C. Fleurent and J. Ferland. Genetic and hybrid algorithms for graph coloring. Annals of

Operations Research, 63:437–461, 1996.

P. Galinier and J. K. Hao. Tabu search for maximal constraint satisfaction problems. In

Principles and Practice of Constraint Programming-CP97, pages 196–208. 1997.

P. Galinier and J. K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal of

Combinatorial Optimization, 3:379–397, 1999.

P. Galinier, A. Hertz, and N. Zufferey. An adaptive memory algorithm for the k-coloring

problem. Discrete Applied Mathematics, 156(2):267 – 279, 2008.

113

BIBLIOGRAPHY

M. Gamache, A. Hertz, and J. O. Ouellet. A graph coloring model for a feasibility problem in

monthly crew scheduling with preferential bidding. Computers & Operations Research, 34

(8):2384 – 2395, 2007.

L. M. Gambardella, É. Taillard, and G. Agazzi. MACS-VRPTW: A multiple colony system

for vehicle routing problems with time windows. In New Ideas in Optimization, pages 63–76,

1999.

A. Gamst. Some lower bounds for a class of frequency assignment problems. IEEE Transactions

on Vehicular Technology, 35(1):8 – 14, 1986.

M. Garey, D. Johnson, and H. So. An application of graph coloring to printed circuit testing.

IEEE Transactions on Circuits and Systems, 23(10):591 – 599, 1976.

C. A. Glass. Bag rationalisation for a food manufacturer. Journal of the Operational Research

Society, 53(5):544–551, 2002.

F. Glover. Future paths for integer programming and links to artificial intelligence. Computers

& Operations Research, 13(5):533 – 549, 1986.

F. Glover. Tabu search methods in artificial intelligence and operations research. ORSA

Artificial Intelligence Newsletter, 1987.

F. Glover. Tabu search - part i. ORSA Journal on Computing, 1(3):190–206, 1989.

F. Glover, M. Parker, and J. Ryan. Coloring by tabu branch and bound. In Cliques, Coloring

and Satisfiability, volume 26 of DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, pages 76–90. 1996.

C. Gogos, P. Alefragis, and E. Housos. An improved multi-staged algorithmic process for the

solution of the examination timetabling problem. Annals of Operations Research, pages 1–19,

2010.

114

BIBLIOGRAPHY

A. Gunawan, K. M. Ng, and K. L. Poh. A hybridized lagrangian relaxation and simulated

annealing method for the course timetabling problem. Computers & Operations Research,

39(12):3074 – 3088, 2012.

P. Hansen and N. Mladenović. An introduction to variable neighborhood search. In Meta-

Heuristics, pages 433–458. Springer, 1999.

P. J. Heawood. Map-colour theorem. Quarterly Journal of Mathematics, 24:332–338, 1890.

A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing, 39:

345–351, 1987.

S. N. Jat and S. Yang. A hybrid genetic algorithm and tabu search approach for post enrolment

course timetabling. Journal of Scheduling, 14(6):617–637, 2011.

R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computa-

tions, 43(4):85–103, 1972.

A. B. Kempe. On the geographical problem of the four colours. American Journal of Mathe-

matics, 2(3):193–200, 1879.

G. Kendall. Scheduling English football fixtures over holiday periods. Journal of the Operational

Research Society, 59:743 – 755, 2008.

S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of Statis-

tical Physics, 34(5-6):975–986, 1984.

P. Kostuch. The university course timetabling problem with a three-phase approach. In Practice

and Theory of Automated Timetabling V, volume 3616 of Lecture Notes in Computer Science,

pages 109–125. 2005.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics

Quarterly, 2(1-2):83–97, 1955.

115

BIBLIOGRAPHY

R. Lewis. A survey of metaheuristic-based techniques for university timetabling problems. OR

Spectrum, 30:167–190, 2008.

R. Lewis. A general-purpose hill-climbing method for order independent minimum grouping

problems: A case study in graph colouring and bin packing. Computers & Operations Re-

search, 36(7):2295 – 2310, 2009.

R. Lewis. A time-dependent metaheuristic algorithm for post enrolment-based course

timetabling. Annals of Operations Research, 194(1):273 – 289, 2012.

R. Lewis and B. Paechter. New crossover operators for timetabling with evolutionary algo-

rithms. 5th International Conference on Recent Advances in Soft Computing, 5:189–195,

2004.

R. Lewis and J. M. Thompson. On the application of graph colouring techniques in round-robin

sports scheduling. Computers & Operations Research, 38(1):190 – 204, 2011.

R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A de-

scription of the problem model used for track two of the second international timetabling

competition. Cardiff accounting and finance working papers, 2007.

R. Lewis, J. M. Thompson, C. Mumford, and J. Gillard. A wide-ranging computational com-

parison of high-performance graph colouring algorithms. Computers & Operations Research,

39(9):1933 – 1950, 2012.

Z. Lü and J. K. Hao. Adaptive tabu search for course timetabling. European Journal of

Operational Research, 200(1):235 – 244, 2010a.

Z. Lü and J. K. Hao. A memetic algorithm for graph coloring. European Journal of Operational

Research, 203(1):241 – 250, 2010b.

E. Malaguti, M. Monaci, and P. Toth. A metaheuristic approach for the vertex coloring problem.

INFORMS Journal on Computing, 20(2):302 – 316, 2008.

116

BIBLIOGRAPHY

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D. Gaspero,

R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second

international timetabling competition. INFORMS Journal on Computing, 22:120–130, 2010.

P. McMullan and B. McCollum. Dynamic job scheduling on the grid environment using the

great deluge algorithm. In Parallel Computing Technologies, volume 4671 of Lecture Notes

in Computer Science, pages 283–292. 2007.

D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for resource-constrained

project scheduling. IEEE Transactions on Evolutionary Computation, 6(4):333 – 346, 2002.

L. Merlot, N. Boland, B. Hughes, and P. Stuckey. A hybrid algorithm for the examination

timetabling problem. In Practice and Theory of Automated Timetabling IV, volume 2740 of

Lecture Notes in Computer Science, pages 207–231. 2003.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of

state calculations by fast computing machines. The Journal of Chemical Physics, 21:1087,

1953.

G. A. Mills-Tettey, A. Stentz, and M. B. Dias. The dynamic hungarian algorithm for the

assignment problem with changing costs. Technical Report CMU-RI-TR-07-27, Carnegie

Mellon University, 2007.

N. Mladenovic and P. Hansen. Variable neighborhood search. Computers & Operations Re-

search, 24(11):1097 – 1100, 1997.

R. Montemanni and D. H. Smith. A tabu search algorithm with a dynamic tabu list for the

frequency assignment problem. Technical Report UG-01-01, University of Glamorgan, 2001.

C. Morgenstern and H Shapiro. Chromatic number approximation using simulated annealing.

Unpublished, 1986.

P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts: Towards

memetic algorithms. Caltech concurrent computation program, Report 826, 1989.

117

BIBLIOGRAPHY

T. Müller. ITC2007 solver description: a hybrid approach. Annals of Operations Research, 172

(1):429–446, October 2009.

T. Müller, H. Rudová, and R. Barták. Minimal perturbation problem in course timetabling. In

Practice and Theory of Automated Timetabling V, volume 3616 of Lecture Notes in Computer

Science, pages 126–146. 2005.

K. Murray, T. Müller, and H. Rudová. Modeling and solution of a complex university course

timetabling problem. In Practice and Theory of Automated Timetabling VI, volume 3867 of

Lecture Notes in Computer Science, pages 189–209. 2007.

C. Nothegger, A. Mayer, A. Chwatal, and G. Raidl. Solving the post enrolment course

timetabling problem by ant colony optimization. Annals of Operations Research, 194:325–

339, 2012.

E. Özcan and E. Ersoy. Final exam scheduler - FES. In Evolutionary Computation, 2005. The

2005 IEEE Congress on, volume 2, pages 1356 – 1363 Vol. 2, 2005.

B. Paechter, R. Rankin, A. Cumming, and T. Fogarty. Timetabling the classes of an entire

university with an evolutionary algorithm. In Parallel Problem Solving from Nature PPSN

V, volume 1498 of Lecture Notes in Computer Science, pages 865–874. 1998.

L. Paquete and C. Fonseca. A study of examination timetabling with multiobjective evolu-

tionary algorithms. Proceedings of the 4th Metaheuristics International Conference, pages

149–154, 2001.

J. E. L. Peck and M. R. Williams. Algorithm 286: Examination scheduling. Commun. ACM,

9(6):433–434, 1966.

S. Petrovic and E. K. Burke. University Timetabling, chapter 45. CRC Press, 2004.

N. Pillay and W. Banzhaf. An informed genetic algorithm for the examination timetabling

problem. Applied Soft Computing, 10(2):457 – 467, 2010.

118

BIBLIOGRAPHY

D. Porumbel, J. K. Hao, and P. Kuntz. Diversity control and multi-parent recombination

for evolutionary graph coloring algorithms. In Evolutionary Computation in Combinatorial

Optimization, volume 5482 of Lecture Notes in Computer Science, pages 121–132. 2009.

G. Post, L. Gaspero, J. H. Kingston, B. McCollum, and A. Schaerf. The third international

timetabling competition. Annals of Operations Research, pages 1–7, 2013.

R. Qu, E. K. Burke, and B. McCollum. Adaptive automated construction of hybrid heuristics for

exam timetabling and graph colouring problems. European Journal of Operational Research,

198(2):392 – 404, 2009.

T. Ray, T. Kang, and S. K. Chye. An evolutionary algorithm for constrained optimization.

Proceedings of the Genetic and Evolutionary Computation Conference, pages 771–777, 2000.

P. Ross, E. Hart, and D. Corne. Some observations about GA-based exam timetabling. In

Practice and Theory of Automated Timetabling II, volume 1408 of Lecture Notes in Computer

Science, pages 115–129. 1998.

O. Rossi-Doria and B. Paechter. A memetic algorithm for university course timetabling. Pro-

ceedings of Combinatorial Optimization, page 56, 2004.

H. Rudová and K. Murray. University course timetabling with soft constraints. In Practice and

Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in Computer Science,

pages 310–328. 2003.

H. Rudová, T. Müller, and K. Murray. Complex university course timetabling. Journal of

Scheduling, 14(2):187–207, 2011.

N. Sabar, M. Ayob, G. Kendall, and R. Qu. Roulette wheel graph colouring for solving exami-

nation timetabling problems. In Combinatorial Optimization and Applications, volume 5573

of Lecture Notes in Computer Science, pages 463–470. 2009.

119

BIBLIOGRAPHY

D. Safaai, O. Sigeru, O. Hiroshi, and S. Puteh. Incorporating constraint propagation in genetic

algorithm for university timetable planning. Engineering Applications of Artificial Intelli-

gence, 12(3):241 – 253, 1999.

A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13:87–127, 1999.

K. Socha, J. Knowles, and M. Sampels. A max-min ant system for the university course

timetabling problem. In Ant Algorithms, volume 2463 of Lecture Notes in Computer Science,

pages 63–77. 2002.

K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university course timetabling

problem with regard to the state-of-the-art. In Applications of Evolutionary Computing,

volume 2611 of Lecture Notes in Computer Science, pages 334–345. 2003.

H.Y. Tarawneh, M. Ayob, and Z. Ahmad. A hybrid simulated annealing with solutions memory

for curriculum-based course timetabling problem. Journal of Applied Sciences, 13(2):262–269,

2013.

J. M. Thompson and K. A. Dowsland. A robust simulated annealing based examination

timetabling system. Computers & Operations Research, 25(78):637 – 648, 1998.

H. Turabieh and S. Abdullah. An integrated hybrid approach to the examination timetabling

problem. Omega, 39(6):598 – 607, 2011.

E. Vizuete Luciano, J. M. Merigó, A. M. Gil-Lafuente, and S. Boria Reverté. OWA operators

in the assignment process: The case of the hungarian algorithm. In Modeling and Simula-

tion in Engineering, Economics and Management, volume 115 of Lecture Notes in Business

Information Processing, pages 166–177. 2012.

D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a graph and

its application to timetabling problems. The Computer Journal, 10(1):85–86, 1967.

120

BIBLIOGRAPHY

Y. Xu and R. Qu. An iterative local search approach based on fitness landscapes analysis for

the delay-constrained multicast routing problem. Computer Communications, 35(3):352 –

365, 2012.

S. Yang and S. N. Jat. Genetic algorithms with guided and local search strategies for university

course timetabling. IEEE TSMC, 41(1):93 –106, 2011.

N. Zufferey, P. Amstutz, and P. Giaccari. Graph colouring approaches for a satellite range

scheduling problem. Journal of Scheduling, 11:263–277, 2008.

121

	Summary
	Declaration
	Acknowledgements
	Introduction
	Timetabling in education
	Aims and structure of this thesis
	A note on implementation and computational experimentation

	Literature review
	Variants of educational timetabling problems
	Graph colouring models
	Problem instances
	Constraints

	Optimisation
	One-stage optimisation
	Multi-stage optimisation
	Algorithms that allow relaxations

	Local search
	Metaheuristics
	Local search-based metaheuristics
	Tabu search
	The TabuCol algorithm
	The PartialCol algorithm

	Simulated annealing
	The great deluge

	Population-based metaheuristics
	Genetic algorithms
	Hybrid genetic algorithms
	Ant colony optimisation

	Submissions to track two of the ITC 2007
	Highly constrained problems
	Chapter summary

	Stage one of a two-stage approach: Finding a feasible solution to the University Course Timetabling Problem
	International Timetabling Competition
	 Initial construction and neighbourhood operators
	Initial solution construction
	Optimisation strategy
	The move operator
	The swap operator
	Timeslot swap operator

	Further optimisation using more complex operators
	The Hungarian method
	Kempe chains

	Partial solution method
	Comparison of feasible timetables

	Conclusions

	Stage two of a two-stage approach: Improve solution by minimising soft constraint violations
	Disallow SC1 and SC3 violations
	Improving the feasible solution
	Move and swap operators
	Kempe chains and non-clashing swaps

	Feasibility ratio
	Remove events
	Remove constraints
	Adding constraints

	Conclusions

	Conclusions and future research
	Conclusions
	Future research

	References

