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Summary 
 
 

This thesis investigates the combustion of fuel compositions representative of 

those produced by the integrated steelmaking process. As organisations strive for 

improvements in utilisation efficiency with increasingly complex technologies, more 

detailed understanding is required to accurately simulate combustion of the 

potentially weak and dilute fuels, and thereby aid design processes. Dynamic fuel 

properties have been characterised through experimentation, in addition to a 

comparison of numerically simulated results obtained from chemical kinetics. The 

parameters identified to investigate fuel behaviour were laminar burning velocity and 

Markstein Length, and characterised with regard to operational instability in practical 

combustion systems. The design and construction of a suitable experimental rig is 

detailed, as required to facilitate the accurate determination of burning velocities by 

quantifying the outward propagation of spherical flames. A regressive analytical 

technique was developed based on previous studies, nonlinearly relating propagation 

to change in stretch rate. The developed solution was benchmarked against analogous 

studies in literature, and ensured experimental performance was accurate and 

repeatable for the well documented combustion of methane. 

Steelworks gases were tested to attain representative burning velocities, with 

significant attention paid to the change resulting from fluctuation in blast furnace gas 

H2 fraction. The study characterised the observed sensitivity to change in flame speed 

and discussed the implications with regard to practical combustion systems. Several 

methods of reducing the measured fluctuation are subsequently quantified, including 

change in ambient condition, and relative humidity. Non-monotonic behaviour was 

observed for the latter effect, with a suggested trade-off between a chemically 

catalytic influence on intermediate species, and lowering of flame temperature. 

Consequently this suggested water addition could be an effective mechanism for the 

reduction of H2 induced flame speed variation for blast furnace gas, and influence 

other synthesised fuels comprising large quantities of CO, including BOS gas. Additional 

steelworks gases were blended in different ratios to assess dynamic combustive 

properties relating to fuel flexibility, and the effectiveness of minimising fluctuation in 

combustion behaviour.  
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Nomenclature  

 
 

 

A  - Area  

Aa  - Pre-exponential factor 

AFRact  - Actual air-fuel ratio 

AFRst  - Stoichiometric air-fuel ratio 

BSu  - Total bias uncertainty 

c  - Burner constant 

cp  - Isobaric heat capacity  

cv  - Isochoric heat capacity  

C  - Capacitance 

CVG  - Gross calorific value 

dq  - Quenching distance 

dt  - Flame thickness 

D  -  Mass diffusivity 

e  - Ignition energy 

Ea  - Activation energy 

gf  - Critical boundary velocity gradient 

h  - specific enthalpy 

k  - Thermal diffusivity 

kf  - Rate constant 

Ka  - Karlovitz number 

Lb  - Markstein length 

Le  - Lewis number 

mf  - Mass of fuel 

mo  - Mass of oxidiser 

Ma  - Markstein number 

M  - Degrees of freedom  

Mf  - Molar mass of fuel 

Mo  - Molar mass of oxidiser 

Ṁ   - Mass flow rate 

n  - Number of moles 

nf  - Number of moles fuel 

no  - Number of moles oxidiser 

nT  - Total number of moles 

N  - Number of repeats 

P  - Initial pressure 

Pe  - End pressure 

Pi  - Initial pressure 

Pf  - Fuel partial-pressure 

Po  - Oxidiser partial-pressure 

PT  - Total pressure 

rf  - Flame radius 

rpoly  - Polynomial fitted flame radius 
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rsch  - Schlieren flame radius 

rerror  - Error in fitted radius 

R  - Universal gas constant 

Rc  - Chamber radius 

Su  - Unstretched flame speed 

Sn  - Stretched flame speed 

SEE  - Standard error in the estimate 

SGair  - Specific gravity in relation to air 

S   - Stretch normalised flame speed 

t  - Time 

tM-1,95  - Student t value at 95 % confidence level 

T  - Temperature 

To   - Initial temperature 

Tf  - Adiabatic flame temperature 

u  - Velocity 

uL  - Laminar burning velocity 

uLCHEMKIN  - Modelled laminar burning velocity 

USu  - Uncertainty in unstretched flame speed 

Vk  - Diffusion velocity 

WIG  - Gross Wobbe index 

W   - Mixture average molecular weight 

x  - Axial distance 

xi  - mole fraction 

xm   - Burned mass fraction 

yi  - Fixed error in variable 

Yk  - Mass fraction 

αT  - Temperature exponent  

αP  - Pressure exponent  

α  - Flame stretch-rate  

β  - Temperature factor 

γu   - Isentropic exponent of unburned gas 

λ  - Thermal Conductivity 

ρ  - Density 

ρb  - Density of the burned gas 

ρu  - Density of the unburned gas 

vi  - Independent variable 

σ  -  Loss parameter  

σSu  -  Standard deviation in Su  

φ  - Equivalence ratio 
.

k
ω   - Net chemical production rate 
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Chapter 1. Introduction  
 
 

 

1.1    Thesis Context 
 
 

1.1.1 - Emissions and Climate Change 

The Earth’s climate is warming, creating severe potential threats to the natural 

environmental ecosystem. The 2007 fourth synthesis report produced by the 

Intergovernmental Panel on Climate Change [1] stated: “Most of the observed increase in 

global average temperatures since the mid-20th century is very likely due to the observed 

increase in anthropogenic greenhouse gas concentrations”. Natural greenhouse gases such 

as N2O, O3, CO2, and CH4 participate to the warming of Earth’s atmosphere by 

absorbing and emitting infrared radiation. The concentrations of the latter two 

examples have increased significantly over the last 250 years [2], and are still rising. 

The plot given in Fig. 1.1 is a representation of the Keeling curve [3]; showing averaged 

monthly atmospheric CO2 concentrations from four remote stations of the ESRL, and 

NOAA observatory network [4]. 
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Fig. 1.1 - Atmospheric CO2 concentration change since 1976. [4]  
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Data obtained from: 
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The threat is not limited simply to a potential rise in sea levels from global warming; 

with additional adverse effects such as oceanic acidification attributed to atmospheric 

CO2 increase [5].  The preponderant reason for the rise in manmade CO2 production is 

the increasing demand for energy. It is produced as a by-product from the use of many 

non-renewable fuels, widely employed to meet a variety of significant requirements 

such as; domestic heat and power, transportation, and industry [6]. Fig. 1.2 provides 

breakdowns of (a) global anthropogenic greenhouse gas emission sources (from, 2004 

[1]) by sector, in addition to (b) ratios of the CO2 equivalent warming potential of the 

gases produced [1].  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2 - (a) Percentage share of global anthropogenic greenhouse gas emission sources (2004 [1]).  

(b) Breakdown of greenhouse gases produced in terms of equivalent CO2 global warming potential [1]. 

 

 

1.1.2 - The Steel Industry Perspective 

The steel producing sector of industry is estimated to emit 1,500-1,600 Mt of CO2 per 

year, thereby accounting for 6-7 percent of global anthropogenic emissions [1,7]. Thus, 

according to the World Steel Association, climate change is the “biggest issue facing the 

steel industry in the 21st century” [8]. The quantity of CO2 emissions generated per tonne 

of steel produced varies by country (for example; 1.25t and 3.8 t from Brazil and China 

respectively [1]), as different techniques are used throughout the world.  
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The primary method of steelmaking is to reduce iron within a blast furnace using coke, 

followed by decarburisation as a separate process. This usually happens in one 

integrated works, and accounts for over 60 percent of global steel production [1].  

Other techniques include using an electric arc furnace to process scrap, or employing 

different materials to directly reduce iron. Although these techniques can lower the 

amount of CO2 emissions produced by up to 50 percent, there are limitations on how 

much they can be currently employed to meet global steel demand [1, 9]. Fig. 1.3 

demonstrates the trend for international steel production over the last decade, with 

annual tonnages plotted alongside quantities of iron produced by the primary 

integrated works method [10].  

 

 

 

 

 

 

 

 

 

 

There are parallel trends in growth for production of both steel and blast furnace iron, 

together with a drop to coincide with the global recession of 2008/9. An overall 

tendency for increasing manufacture is evident, with a total global steel production 

figure of 1,490 Mt in 2011. If the world steel statistics are examined closely, the steady 

rise in values appears largely a result of increasing production in Asia, where the more 

traditional integrated works have higher relative market share [10]. With global 

production figures of blast furnace iron surpassing 1,000 Mt for the first time in 2010, 

it is important that efforts are made to continuously strive for efficiency improvements 

in the integrated process, with savings available for both fuel cost and emissions [1]. 
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Fig. 1.3 - Global tonnages of steel and blast furnace iron produced annually from 2001 to 2011.  

Statistics from World Steel Association [10] 

 



1. Introduction 

 

 

                                                               - 4 - 

Fig. 1.4 - Overview of the typical integrated steelmaking process. [12] 

 

The IPCC recommended approach to improving steelworks efficiency is to utilise a 

series of options, centred around best available technologies and maximising use of 

by-products indigenous to the integrated process [1, 11, 12]. Chief amongst these are 

three gases that form the subject of this research dissertation and are introduced in 

this chapter, following a steelworks overview.  

 

1.2    Operation of an Integrated Steelworks 
 

 

1.2.1 - Overview 

The function of an integrated steelworks is to utilise raw materials for the multi-stage 

process of primary steel production at one facility. This practise nominally consists of 

cokemaking, sintering, ironmkaing, steelmaking, casting, and then product rolling. Fig. 

1.4 shows the sequential chart for production employed at a typical integrated works, 

with material flows indicated (adapted from [12]). There can be technological 

substitutions made to the process, such as pelletising iron ore opposed to sintering, 

however the raw and produced materials remain largely the same [13]. 

 

 

 

 

 

 

 

 

What follows is a brief sequential guide through each major stage in this typical 

process, to broadly establish how rolled steel and any subsequent by-products are 

made. This section will also outline some of the significant energy demands, 

particularly in the form of heat, required by the process. 



1. Introduction 

 

 

                                                               - 5 - 

1.2.2 - Coke Ovens and By-Product Plant 

Metallurgical coke is produced through the carbonisation of coal, a process that 

requires pyrolysis at elevated temperatures (over 1,250 K) for extended periods of 

time. The aim of this is to drive off any volatiles within the coal, leaving a permeable 

carbonaceous material that is utilised by the blast furnaces in three ways; firstly as a 

fuel to provide additional heat, secondly as a reducing agent in the production of pig 

iron, and finally as physical support for the burden (the bulk of material within the 

furnace) [14]. As a result of these requirements, metallurgical coke must have a 

specified composition with adequate physical and reactive properties. These 

properties are controlled not only by the coking time and temperature, but also by the 

characteristics of the coals charged into the ovens, typically requiring a low sulphur 

and ash content.  Following carbonisation, a proximate analysis of coke composition 

would typically yield 94 % fixed carbon, 4 % ash and 1 % volatiles [12]. 

 

Volatilised mass released from the coal is normally collected and treated in an 

adjoining by-product plant. The primary material treated is coke oven gas, which can 

be cleaned and distributed for use as a gaseous fuel. Additional contaminants can also 

be sequestered within the plant, and sold as individual products including; benzene, 

tar, ammonia, naphthalene, and other liquors. Alternatively, non-recovery coke ovens 

utilise all by-products in situ to generate the heat used to drive the process, with any 

excess used to power ancillary boilers [15].  

 

Following carbonisation, incandescent coke is transported from the ovens, quenched 

and sized. Any coke fragments diametrically smaller than ~5 mm are treated as ‘coke 

breeze’ and are transferred to the sinter plant for use as a fuel [16]. All other 

remaining coke is conveyed in bulk, for use as a charge material within the blast 

furnace. 
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1.2.3 - Sinter Plant  

Iron ore is required by the steelworks as a raw material, however it does not have 

suitable properties to support the burden of matter within a blast furnace, or maintain 

physical integrity from the blast (section 1.2.4) itself. Therefore, the purpose of this 

stage in the process is to agglomerate this raw material to into a solid, permeable mass 

[12, 14].  

 

Within a sinter plant this is achieved by blending the fine ores with limestone, coke 

breeze and recycled iron bearing material. The mixture is typically layered atop a 

moving grate, with the coke breeze then ignited as it passes under a canopy of 

burners. Negative pressure is created under the mixture using fans, and draws the 

combustion front downward through the raw material as the grate travels along. The 

heat of combustion fuses the mixture together into a porous iron bearing clinker. 

Typically, as the solidified sinter cake reaches the end of the conveyed grate, it 

overhangs, and then crumbles onto the crash desk, before being cooled and sized. Any 

sinter fragments that are too fine are recycled back into the mixture before being 

reprocessed. All useable sinter is then employed in a blast furnace as charge material 

[14].  

 

Pelletisation plants exist as an alternative method of agglomerating raw material, with 

both methodologies having their respective advantages. Sintering allows continuous 

recycling of solid wastes, where as pellets tend to degrade slower, and therefore allow 

discrete sites to be located away from the integrated works. In Europe volumes of 

sinter produced typically outnumber pellets three to one [12]. 
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1.2.4 - Blast Furnaces  

Blast furnaces operate as closed reactors to which porous quantities of coke, sinter, 

and limestone are continuously added to produce carbon-saturated pig-iron. These 

components are disseminated in layers at the furnace top to form the burden. 

Pressurised air, potentially supplemented with additional oxygen and reductants, is 

preheated to over 1,450 K prior to being blown into the furnace through base-level 

tuyeres. This is referred to as the blast, and is preheated using a series of stoves that 

behave as reversing regenerators, operating in a periodic shift pattern. Whilst one 

stove is used to preheat the blast air, others are reheated until the temperature in the 

stove on-blast drops below a set threshold, when functions are then cycled. The 

gaseous rise of the blast heats the burden, and the subsequent chemical reactions 

produce vast quantities of gaseous by-product available from atop the furnace. This is 

a continuous process, with raw materials and blast air interminably supplied to the 

system [14, 17]. 

 

The blast catalyses reactions to reduce iron oxides within the sinter to form molten pig 

iron alloy, with a typical carbon content of around four percent. The predominant 

reductant is coke; however additional alternative materials can be used provided the 

burden temperature, integrity, and porosity are maintained. The added limestone 

reacts as a flux, removing impurities from the alloy and forming a slag [12].  

 

The overriding result is for stratified pig iron and slag to amalgamate in the section of 

the furnace below the tuyeres, referred to as the hearth. This molten mixture is over 

1,700 K, and is periodically withdrawn from the hearth and collected in insulated 

torpedo ladles, with slag separately cooled and collected for use as a by-product [14, 

17].  
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1.2.5 - Basic Oxygen Steelmaking and Continuous Casting 

Basic Oxygen Steelmaking (BOS) is the term used to describe a discontinuous method 

of primary steelmaking, whereby carbon rich pig-iron is decarburised into steel. Pig-

iron, transported from the blast furnaces in torpedo ladles, is charged into an LD (Linz-

Donawitz) converter; a form of Basic oxygen furnace, or BOF. Prior to this stage, a 

quantity of recyclable scrap steel may have been loaded to the converter to increase 

yield. A water-cooled lance is then lowered to hover above the surface of the hot 

metal, before oxygen is blown though at high velocity [17]. The purpose of this is to 

decarburise the hot metal by oxidising the carbon, together with any other undesirable 

impurities within the feedstock, such as sulphur or phosphorus. Fluxes, such as Burnt 

Lime and Dolomite, are added to the vessel to help remove any unwanted constituents 

by forming an impurity-absorbing slag. Carbon is released and creates an additional 

gaseous by-product that can be used as a fuel, referred to as BOS gas. The overall 

reaction is highly exothermic, and increases the temperature within the vessel to over 

1,950 K, giving the previously added scrap additional purpose as coolant [12].  The 

oxygen content within the off-gas is monitored, with a rise taken to be indicative of 

process completion, leaving the carbon concentration within the steel at 0.01 - 0.4 

percent [12].  

 

Samples are taken to ensure the appropriate quality standard is met, prior to which 

steel is poured from the converter to another refractory lined ladle in a process known 

as tapping. The slag forms an emulsion with the molten steel, which is then scoured 

from the surface and taken to cool. Further additions can be made for the formation of 

alloys, and nitrogen potentially used for agitation as required. This stage is referred to 

as secondary metallurgy, and typically occurs in smaller batches [18].   

 

The final stage is cooling and casting the steel in a continuous-caster. Initially the 

molten steel is transferred from a transportation ladle into a refractory lined Tundish 

[17]. The Tundish has a controllable outlet that feeds into a vertical water-cooled 

copper mould, which oscillates up and down, and is lubricated with powders or oils to  
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prevent the material from sticking.  Steel is cast into a strand guide that curves it 

through 90 degrees as it hardens under cooling sprays to form horizontal slabs. The 

steel is then cut to appropriate slab lengths using torches, and stored prior to further 

processing [12].  

 

1.2.6 - Hot Rolling Mill and Reheat Furnaces 

The job of the rolling mill is to reduce the cast steel slab to the required width and 

gauge, whilst improving the metallurgical structure and surface quality. Reheat 

furnaces can be used to uniformly increase slab temperature to over 1,500 K [12] in a 

reducing atmosphere, thereby controlling surface oxidation or slag formation. Typically 

the slab then oscillates through the reversing roughing mill, reducing the gauge whilst 

maintaining strip width.  

 

The strand finishing mill is then used to reduce the final thickness, giving the strip the 

desired shape and metallurgical structure as required. A coil-box may be used to 

ensure temperature uniformity in the product, before the heated strip is passed onto a 

run-out table, where coolant sprays are used to reduce the product temperature. 

When the slabs leave the reheat furnace oxidation is rapid, and the mills have a 

secondary task of cracking the scale which forms on the surface of the product [17]. 

 

Having outlined some of the major stages in the integrated steelmaking process, and 

resultant energy demands, production of the aforementioned gaseous by-products are 

now discussed in further detail. 
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1.3    Indigenous By-Product Steelworks Gases 

 

 

1.3.1 – Coke Oven Gas 

Coke oven gas (COG) is generated through destructive distillation, as a by-product of 

the carbonisation process undertaken for the production of metallurgical coke (section 

1.2.2). The process requires the pyrolysis of a bituminous coal mixture at high 

temperatures for extended periods, and must meet the requirements as defined by 

the Blast Furnaces (section 1.2.4). COG is therefore produced as part of a batch 

process with volatiles released at different rates as the coal is heated. The mass yield 

of COG recovery to total coal used is typically 18-19 percent, however this is highly 

dependent on the employed coal specification. Consequently the composition of COG 

is also dependent on the raw material, but will typically be a mixture of principally 

combustible constituents [12, 16, 17]. A representative volumetric COG composition is 

shown in Fig. 1.5 [12]. 

 

 

 

 

 

 

 

 

 

In the region of 40 MJ·kg
-1

, the calorific value of COG is the highest of all steelworks 

gases, making it an attractive fuel to use. However, there are problems with residual 

concentrations of aromatic light oils and tars such as Benzole and Naphthalene, 

together with traces of contaminants like H2S. This also leads to deposition problems 

within pipelines if the fuel is supplied over long distances [19]. 
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Fig. 1.5 – Volumetric breakdown of a typical representative COG composition. [12] 
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1.3.2 - Blast Furnace Gas 

Blast furnace gas (BFG) is the name given to the by-product continuously produced 

from the upward gaseous rise of blast air through the burden (see section 1.2.4).  

Fig. 1.6 shows an illustrative view of blast furnace operation, followed by a simplified 

analysis of the overriding chemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oxygen contained within the preheated blast air reacts with carbon (in the form of 

coke) to produce CO2 and CO, thus:  

 

C + O2 → CO2       (1.1) 

CO2 + C → 2CO      (1.2) 

 

Both coke and CO are reducing agents of sintered Fe(II) and Fe(III) oxides within the 

burden. These include species such as hematite (Fe2O3), wüstite (FeO), and magnetite 

(Fe3O4), and are reduced to form Fe and CO2.  Example reduction mechanisms of 

hematite are given so; 

N2 + O2 

1450 K  

CxHy + H2O 

FexOy C (Coke) 

CaCO3 

Fe + C 

Impurities 

 

N2 + CO + CO2 + H2 + H2O 

 

Fig. 1.6 – Diagrammatic overview of material flows in blast furnace operation 

 

Blast furnace gas 
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Fe2O3 + 2C → 2Fe + CO + CO2       (1.3) 

Fe2O3 + 3CO → 2Fe + 3CO2     (1.4) 

 

A further source of gaseous release results from decomposition of limestone as a basic 

flux to remove impurities, for example CO2 is generated in silica removal through 

reaction with calcium oxide [17]; 

 

CaCO3 → CaO + CO2       (1.5) 

CaO + SiO2 → CaSiO3      (1.6) 

 

All of these changes are happening in the reaction zone of the furnace, and 

importantly from the perspective of BFG composition, chemical equilibrium for the 

gases released is governed by the Boudouard reaction as a set ratio is reached 

between CO and CO2 for a given temperature [20]; 

 

2CO ↔ CO2 + C      (1.7) 

 

The operational result is for large quantities of hot CO2, CO, and N2 to ascend through 

the furnace as fresh burden travels down into the reaction zone. However, there can 

be further constituents added to the gaseous composition depending on systematic 

variables. For example, additional reductants can be added in order to reduce coke 

demand in the burden, such as granulated coal, oil, natural gas, or recycled plastics 

[12, 21], and thereby improve furnace efficiency. However, burden integrity must be 

maintained, necessitating the injection of steam or oxygen alongside any additional 

reductants. These additions lead to fluctuating levels of H2 and H2O in the blast, and 

subsequently affect the water-gas shift reaction chemistry [22]; 

  

C + H2O ↔ CO + H2      (1.8) 

CO + H2O ↔ CO2 + H2      (1.9) 

 

The overall chemical composition of BFG is therefore dynamic and dependent on 

furnace specifications, with a dry volumetric breakdown representative of typical 

operation given in Fig. 1.7 [12, 14, 17]. 
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Prior to utilisation as a fuel, the warm by-product will typically be cleaned by wet-

scrubbers, or electrostatic precipitators. The former can lower the temperature and 

saturate the gas with water vapour. This moisture condenses as the temperature of 

the gas drops, meaning the absolute humidity depends on the where the gas is used, 

and how much opportunity there is for it to cool [23].  

 

The relatively high proportion of diluent components leads to BFG having a weak 

calorific value, in the order of 2-3 MJ·kg
-1

 [12]. However, its value as fuel results from 

constant production in large volumes through continuous operation of the furnace. 

 

1.3.3 - Basic Oxygen Steelmaking Gas 

Basic oxygen steelmaking gas, (sometimes referred to as BOS, BOF or converter gas) is 

produced as a result of the basic decarburisation process, whereby carbon rich pig-iron 

is made into steel. High velocity oxygen agitates the molten blast furnace product, 

ultimately resulting in carbon oxidation within the alloy. This produces large quantities 

of CO, and CO2, with a water-cooled hood lowered over the converter to collect the 

gas as it is generated [12]. This process is periodic and controlled by both CO and O2 

concentrations, with fuel only collected with enough combustible gas in the mixture, 

and little enough O2 to allow for safe transportation and storage. Collection of BOS gas 
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40-60 % 
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Fig. 1.7 – Dry volumetric breakdown of typical representative BFG composition [12, 14, 17]. 
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as a distinct fuel is not universally employed, with the possibility of partial or full 

combustion in the collection duct, for sensible heat recovery in boilers [24]. 

 

The temporal degree of variation in BOS gas composition is significant, with ratio of CO 

to CO2 once again governed by the Boudouard reaction (Eqn. 1.7) [12]. As the 

converter scrap is melted and vessel temperature intensifies, CO fraction will increase 

in relation to the decrease in CO2. When carbon oxidation eventually decreases, so 

does temperature within the converter and the carbonaceous gas fractions again begin 

to converge [20]. The hood lowered onto the converter is maintained under negative 

pressure, leading to entrainment of atmospheric N2 in the collection flow. 

Furthermore, diminutive quantities of H2 can also be collected within the gas. This can 

result from atmospheric H2O and its further influence on stored fluxes and scrap, with 

an example being the hydration of lime to form calcium hydroxide (Ca(OH)2) [25]. 

However, such fractions are small, and a representative average BOS gas composition 

is shown in Fig. 1.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

With a higher proportion of CO compared to BFG, BOS gas has a resultant calorific 

value of approximately 6-7 MJ·kg
-1

 [12, 17]. However, BOS gas does require extensive 

cleaning as a result of the significant amount of particulate matter generated during 

production. Ventrui scrubbers or electrostatic precipitators will typically be employed 

to reduce the amount of particulate matter to around 5-10 mg, per kilogram of gas 

produced [12].  
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Fig. 1.8 – Volumetric breakdown of typical BOS Gas composition [12, 17]. 
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1.4    Aim of this Work 

 
To facilitate the flexible use of synthesised fuels with increasingly complex and 

efficient technologies such as gas turbines, extensive research is being performed in 

connection with fundamental fuel combustion properties, and the development of 

numerical models to aid in design processes. Such work enables engineers to develop 

flexible combustors capable of utilising a wide range of fuel mixtures, with high 

conversion efficiencies, whilst maintaining low emission levels [26]. This research 

dissertation aims to perform an investigation concerning the production of indigenous 

steelworks gases, characterising dynamic combustion performance in relation to fuel 

compositional change, representative of any variation experienced in generation and 

distribution.  

 

One of the most important fundamental physicochemical properties of any fuel is the 

laminar burning velocity, and has been chosen as the focus of concentration for this 

study. This characteristic typifies combustive behaviour, influencing premixed 

operational instabilities such as blowoff or flashback, and can be employed to validate 

chemical reaction mechanisms used in numerically simulating combustion processes 

[27, 28, 29]. The following chapter details a review of prior work undertaken with 

steelworks gases, following a case study at the Tata Port Talbot steelworks. Further 

specification of investigative objectives could be made as opportunities were identified 

from the relevant research literature. 
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Chapter 2. Background Research and  

   Literature Review 
 
 

This chapter outlines the background research performed as a foundation for the work 

presented in this dissertation. A case study is employed to analyse the practical 

generation and usage of indigenous steelworks gases, before an outline of relevant 

research is provided. With potential opportunities identified, the objectives of this 

work are then defined. 

 

2.1    Case Study- Tata Steel Strip Products UK Port  

 Talbot Works 

 
2.1.1 - Historical Works Overview 

Production of steel in the Port Talbot area began early in the twentieth century, 

however the modern day Abbey works located in Margam, was first opened in 1951 as 

part of the Steel Company of Wales [30].  Following the 1967 Iron and Steel Act of 

Nationalisation, where Britain’s fourteen largest steelmaking companies were 

combined to form the British Steel Corporation (BSC), the Steel Company of Wales 

became the South Wales group of BSC. The company was reorganised on a product 

basis, with Port Talbot linked to the Llanwern and Ravenscraig works for the 

production of steel strip. 1988 saw the privatisation of BSC, and a merger in 1999 with 

the Dutch Manufacturer Koninklijke Hoogovens led to the formation of Corus Group 

[30]. 

 

Today the Tata Steel Strip Products UK Port Talbot Works is owned by the Indian 

manufacturer Tata Steel, following acquisition of the Corus Group in 2007. The modern 

day works is a large integrated site, employing the process operations outlined in 

Chapter 1. for the production of hot and cold rolled annealed steel coils. The works is 

capable of producing up to four million tonnes of steel per year, thereby accounting 



2. Background Research and Literature Review 

 

                                                               - 17 - 

for over one-third of steel production in the UK [31]. The site currently operates in 

partnership with the Llanwern works, employing around five thousand members of 

staff to provide steel for various industry sectors including automotive and 

construction [30]. The following section outlines the current production of indigenous 

by-product gases at the Port Talbot site*.  

 

2.1.2 – Generation of Coke Oven Gas at the Port Talbot Works 

Commissioned in 1981, and refitted in 2005, the Port Talbot works currently employs 

the Morfa coke ovens to partially meet the coking requirements of two on-site blast 

furnaces, with any surplus demand met through import. Cokemaking within the Morfa 

ovens is a batch process, whereby two batteries of 42 Otto Simon Carves ovens are 

sequentially charged with blended coal, and heated to over 1,300°C for approximately 

seventeen hours [16].  Each oven converts around 33,500 kg of coal to 22,000 kg of 

coke, and at full capacity an oven is pushed (emptied) every 12-13 minutes to produce 

around 18,000,000 kg of coke per week (based on 2007 figures [32]). The volatilised 

mass released from the process is collected and cleaned of contaminant condensates 

(such as tar, Benzole and Naphthalene), and the remaining gaseous by-product is 

distributed as COG. On-site production figures suggest over 15,000 kg of COG are 

produced every hour [33].  

 

Gas composition is analysed twice a week by chromatograph, with samples obtained 

from the last stage in the by-product cleaning process, after the output of the 

Naphthalene washer. Each of these analyses has a report certificate (example provided 

in Appendix A.1), provided by chemical technologists from Tata Steel Central Labs (Carl 

Greenslade and Andrew Jones). Fig. 2.1 shows an area chart for the gaseous COG 

composition of 122 chromatograph analyses performed between February 2009 and 

July 2010, with the numerical average and standard deviation provided in Table 2.1.  

* Many of the values presented in this section were obtained from the OSIsoft PI Historian data storage 

system employed on site, where the accuracy and precision of values could not be quantified. 

Consequently, some values herein should be analysed only for broad trends, and references have been 

provided where possible that vindicate any observations made. 
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Fig. 2.1 – COG compositions attained from analyses performed by Tata Steel central laboratories 

 

Table. 2.1 – Average and Standard deviation of analysed COG composition 

 H2 O2 N2 CO2 C2H4 C2H6 CO CH4 

Average (% Mol): 62.12 0.49 3.95 1.63 1.7 0.5 6.67 22.94 

Standard Deviation (%): 2.07 0.36 1.87 0.21 0.18 0.12 0.47 1.09 

 

The gross calorific value of this average composition is approximately 45 MJ·kg-1, or 19 

MJ·Nm-3, if conditions are normalised to STP (273.15 K and 100 kPa, with reference 

energy density values in appendix A.2). The portions of N2 and O2 demonstrate the 

most significant relative fluctuation of all the constituent fractions, and upon 

consultation with Tata Steel engineers, the suggested mechanism responsible is 

infusion of air when the ovens are emptied. This means that sample time is significant 

with respect to the last oven push, when analysing a representative composition. An 

additional parameter that will influence gas composition is the quality of coal used in 

the process [12], and is likely to be responsible for some of the other minor fluctuation 

in evidence.  
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2.1.3 – Generation of Blast Furnace Gas on the Port Talbot Site 

The Port Talbot works employs two blast furnaces, referred to as numbers 4 and 5, 

with the former undergoing a 6-month £185m recommission in the second half of 

2012, and the latter rebuilt in 2003 following a catastrophic explosion [34, 35]. At full 

capacity, operation of the two furnaces should allow for steel production to increase 

towards five million tonnes per year. Furthermore, each furnace, when fully 

operational, is capable of producing over 400,000 Nm3·hr-1 of BFG as a by-product of 

the process. Three of the main constituents of BFG composition are quantified at the 

furnace top using duplicate sensors for each gas. The measured gases are CO, CO2 and 

H2, with the remaining dry molar fraction assumed to be N2. The top gas analysis data 

from furnace number 4 was sampled every five minutes for several months (whenever 

the system was online) in 2010, and averaged to give dry composition as shown in 

Table 2.2.  

 

Table. 2.2 – Average and Standard Deviation of BFG composition  

 H2 CO CO2 Calculated N2 

Average (% Mol): 2.57 23.16 22.77 51.51 

Standard Deviation (%): 1.12 1.47 1.37 2.80 

 

The H2 fraction gives the most significant amount of relative fluctuation, influenced by 

the use of additional reductants within the furnace (see section 1.3.1) [12, 21]. In the 

case of blast furnace number 4 at Port Talbot, Granulated Coal Injection (GCI) is 

frequently employed to reduce coke demand, whilst simultaneously increasing the 

required amount of injected steam for the management of burden porosity and 

temperature [21]. Fig 2.2 shows an example of H2 fluctuation within the measured gas 

composition, plotted against the GCI injection rate over a 10-hour period on 

11/04/2011 (data points sampled every minute).  
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Fig. 2.2 – BFG H2 fraction and GCI injection rate from furnace 4 at the Port Talbot works  

(taken 11/04/2011) 
 

A correlation is evident between the reduction in GCI injection rate and H2 fraction of 

the gas (note how quickly the stoppage in GCI results in a change in gas composition). 

As the remainder of BFG composition contains predominantly inert diluents, this H2 

fluctuation is significant in characterising the behaviour of BFG as a fuel. If influence of 

BFG composition was to be investigated further, it was important to ensure the 

remaining unmeasured fraction of the gas comprised N2, as assumed [12].  

 

A simple sampling circuit was connected to an access point in the BFG pipeline 

approximately 1.5 km from where the gas is generated in the furnaces. BFG was drawn 

through a vacuum pump, and exhausted out of the system by manually loading 

bespoke cylinders using a Gresham portable gas sampling kit.  Fig. 2.3 gives a simple 

schematic of some significant components in the gas sampling system [36]. Each 100 

ml cylinder was connected at both ends, purged with BFG by opening flow from the 

sampling circuit, then sealed and pumped up to 20 bar. Five sampling cylinders were 

available for each day of testing, with analyses performed in the university laboratories 

using a Varian CP-3800 gas chromatograph.  Linear response factors were calculated 

using a calibration gas standard made to the equivalent representative composition as 
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provided in Table 2.2.  The dry molar compositions chromatographically attained from 

three days of testing are showing in Table 2.3. The results show good agreement with 

theoretical BFG compositions, and also changes in the level of fluctuation on different 

days. For instance, the results on 16/02/2011 show significantly more variation than 

tests performed on either of the first two days.  
 

 

Table. 2.3 – BFG composition obtained by chromatographic analysis [36]. 

Composition (% Mol) 

Date  –  Time 

N2 H2 CO CO2 

01/02/11 – 11:45 48.3 2.7 25.6 23.3 

01/02/11 – 12:25 46.7 2.6 26.7 23.9 

01/02/11 – 13:35 48.3 2.7 25.4 23.4 

01/02/11 – 14:14 48.6 2.6 25.5 23.2 

01/02/11 – 14:16 48.3 2.7 25.4 23.5 

     

10/02/11 – 11:00 49.6 2.8 25 22.4 

10/02/11 – 11:40 49.3 2.8 25.2 22.5 

10/02/11 – 13:00 49.3 2.8 25.5 22.3 

10/02/11 – 13:50 50 2.7 25 22.2 

10/02/11 – 14:45 49.3 2.9 25.5 22.2 

     

16/02/11 – 11:00 53.1 2.2 23.4 21.2 

16/02/11 – 12:00 52.9 2.5 26.2 18.2 

16/02/11 – 13:25 49.4 2.8 27 20.7 

16/02/11 – 14:50 53.2 2.3 24.4 19.9 

 

 

A final consideration for practical BFG composition is the effect of humidity. Plant 

sensors suggest that as gas is processed through wet scrubbers in the cleaning system, 

it cools from over 140°C, to around 35-40°C [24]. This process saturates the vapour 

pressure of BFG at these conditions, and consequently condensate forms as the gas is 

distributed and cooled around the works. Therefore unless it has been heated after 

initially cooling, BFG composition will have a vaporised H2O fraction equivalent to the 

maximum relative humidity. This implies the possibility for characteristics of BFG to be 

altered by location and change in ambient condition [36]. Taking fluctuation of 

composition into account, BFG on the Port Talbot site has a typical gross calorific value 

in the range of 2-3 MJ·kg-1, or 3-4 MJ·Nm-3. 
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Fig. 2.3 – Components of BFG sampling system 
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2.1.4 – Generation of BOS Gas on the Port Talbot Site 

In 2010 the Port Talbot works completed a ~£60m project for the collection and 

utilisation of BOS gas, from the two 300 tonne LD converters employed on site [37]. 

Steelmaking in each vessel is a batch decarburisation process whereby O2 is propelled 

into molten blast furnace iron at a flow rate of over 17 Nm3·s-1 for approximately 20 

minutes.  The composition of the produced BOS gas is monitored, and collected from 

hoods lowered over the converters when the following criteria are met [38]:  

 

− The molar CO fraction of the gas must be above 35% vol.  

− O2 concentration is required to drop to below 2% vol.  

 

Gas is typically collected for around 14 minutes, with Fig. 2.4 showing an example of 

the relative change in constituent molar fractions throughout a blow cycle. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 – Change in composition of BOS gas throughout blow cycle 

(Data obtained from Vessel 1, commencing 23:39 22/08/2010) 

 

These example data shown in Fig. 2.4 were obtained from the six gas analysers 

employed on vessel 1 (H2, CO2, and duplicate CO and O2 sensors that were averaged), 

with the negligible H2 data omitted. It is evident from Fig. 2.4 that CO and CO2 are 
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simultaneously generated throughout the blow, with atmospheric O2 concentration 

decreasing with commencement of the highly exothermic process. Again the surplus 

fraction of the gas is assumed to be N2 entrained in the system, (together with the 

small amounts of H2) [12, 38]. Data for over 300 blow cycles were collected from a 

combination of these sensors, and the analogous set employed on vessel 2, between 

9/8/2010, and 22/8/2010. These data were filtered according to the conditions for gas 

collection, and averaged to give the composition provided in Table 2.4. 

 

Table. 2.4 – Average collected BOS gas composition from two vessels (9/8/2010 - 22/8/2010) 

 H2 CO CO2 O2 Calculated N2 

Vessel 1 (% Mol) 0.47 66.41 14.02 0.10 19.00 

Vessel 2 (% Mol) 0.80 64.85 14.39 0.06 19.91 

 

The composition shown in table 2.4 gives BOS gas at the Port Talbot works an average 

gross calorific value of ~6.5 MJ·kg-1, or ~8 MJ·Nm-3, with the system typically collecting 

around 30,000 Nm3 per cycle [38]. The BOS gas collection system had recently been 

commissioned when this research began, and therefore the steelworks did not have 

the opportunity to commit staff and designate a safe point in the system for separate 

penetration and chromatographic analysis. This meant initially BOS gas composition 

could only be studied through the recently employed gas sensors, and research 

literature [38]. 

 

2.1.5 – Gas Usage at the Port Talbot Works 

BFG and COG pipelines distributed across the Port Talbot works allow for flexibility in 

the employed usage strategy, with an overall approach change following the 

introduction of BOS gas collection in 2010. Typically, the coke ovens and blast furnace 

stoves are powered by a combination of BFG, COG and natural gas, with ratios dictated 

by calorific value of the mixed fuel. Any surplus gas was traditionally used in power 

plant boilers for the generation of electricity and steam, which is also piped around the 

site to feed various individual work area processes. With the introduction of BOS gas to 

the system, atmospheric boilers in the power plant run more predominantly on an 
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amalgamation of BFG and BOS gas. The excess COG is distributed to reheat furnaces 

used in the rolling mill, thereby reducing the site’s demand for natural gas. Additional 

ways in which fuel gases are consumed include the BOS plant, service boilers (used to 

supplement pressure in the steam circuit) and flaring when the system produces more 

gas than can be used or stored. Monthly site consumption data was averaged for one 

year after BOS gas collection was introduced in 2010, with Fig. 2.5 – Fig. 2.8 showing 

the respective areas in which COG, BFG, BOS gas and natural gas were consumed (the 

plots show the distribution of energy within the gases, see note below for more 

information). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Fig. 2.5 – Average monthly COG distribution at Port Talbot works. 

 

 

Note - Data in Fig. 2.5 – Fig. 2.8 represent energy consumption figures, taken from April 

2010 – Mach 2011. The energy in each gas been normalised using a calculated calorific 

value (for example ~3.4 MJ·Nm
3
 for BFG), based on live composition measurements, or 

chromatographic analysis. This energy content was summated for each of the twelve 

sampled months. * Misc denotes additional operations unnecessary for the direct 

steelmaking process such office heating. 
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Fig. 2.6 – Average monthly BFG energy distribution at Port Talbot works. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.7 – Average monthly BOS gas energy distribution at Port Talbot works. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  
Fig. 2.8 – Average monthly natural gas energy distribution at Port Talbot works. 
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It is apparent from Fig. 2.5 – Fig. 2.8 that significant amounts of gaseous by-product 

are flared, whilst natural gas is still consumed for many additional process operations. 

It was observable from conversations with plant operational engineers, that work 

areas requiring consistent performance preferred using clean, stable, and relatively 

energetic natural gas, opposed to the indigenous process gases generated on site. 

However, if the quantity of available energy in each of the four gases is compared from 

the amounts consumed (as shown in Fig. 2.8, for the same period), it is possible that 

more efficient and complete usage of by-product gases could drastically reduce the 

requirement for natural gas consumption [1, 12, 15].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9 – Average monthly quantities of gaseous energy consumed at the Port Talbot works. 

(From same data as Fig. 2.5 – Fig. 2.8) 

 
 

It is also evident from Fig. 2.8 that more energy is consumed in the form of BFG than 

the other three fuel gases combined, with proportionately vaster quantities wasted in 

flares. The weak and compositionally dynamic nature of BFG also necessitates the 

need for natural gas consumption in operationally unnecessary by-product functions 

(like operation of the power plant), to supplement the energy available and stabilise 

combustion performance [1, 12, 15].  
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2.2  Overview of Steelworks Gases in Research  

Literature 
 

2.2.1 – Steelworks Gas Distribution and Usage Optimisation 

Researchers have been interminably investigating ways to improve efficiency in the 

steelmaking process through enhanced utilisation and distribution of steelworks gases. 

One way of approaching this is to adapt usage strategies to try and minimise the 

amounts of by-products flared. The comparatively older work of Markland [39] 

analysed how improvements in fuel usage efficiency could be achieved using 

traditional methods of linear programming, with the field advancing through the use of 

computational modelling. Mixed Integer Linear Programming (MILP) has been used by 

several authors [40, 41] to develop optimisation techniques for improved gas holder 

control, thereby minimising temporal excesses or shortages in gas supply. An example 

of more contemporary work in this field is that of Zhang et al. [42] where a distribution 

model has been employed to investigate the optimal relationship between blast 

furnaces, power plant and gas holder, whilst also accounting for cost of supplementary 

fuels. Furthermore, an alternative linear Petri net technique has also been employed 

by Zhu et al. [43] to simulate gas energy flows, again aiming to optimise fuel 

distribution. This approach to improvement is limited and works operation often 

dynamic, therefore more potential may result from specifically how the by-products 

are utilised, particularly from the perspective of minimising supplementary fuels.  

 

2.2.2 –Steelworks Gas Usage in Boilers and Furnaces 

With regard to traditional steelworks gas utilisation, there is work investigating usage 

in boilers and furnaces without the need for supplementary materials. Numerous 

manufacturers such as Babcock and Wilcox, ANDRITZ, and Western Power [44, 45, 46] 

all provide boiler solutions capable of utilising steelworks gases, with flexibility in the 

fuels employed. Contemporary research by Shieh et al. [47] detailed an optimisation 

control model for gas blends, aiming for improvements in thermal efficiency of large 

scale multi-fuel boilers, based on residual oxygen in the system flue gas. The work 
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highlights problems with efficiently controlling boilers due to fluctuations in supply and 

composition of the gases, and employs multiple systems from a Taiwanese steelworks 

as the case study for model validation. The work presented by Hou et al. [48] 

enhanced this area, demonstrating theoretical and stable experimental combustion of 

BFG, with variable rates of supplementary COG, and lower flame temperatures shown 

to decrease NOx production. However, some parts of this study are vague, and few 

details are provided regarding absolute change in fuel gas composition, giving only two 

stable operational case studies.  

 

Although not desirable, traditionally steelworks gases are blended with alternative 

fuels for more stabilised combustion [1, 12, 15]. The detail presented by Green et al. 

[44] delivers practical insight to the designed versatility in boilers for the combustion 

of mixed steelworks fuels, including potential addition of natural gas and heavy fuel oil.   

The work of Bojic and Mourdoukoutas [49] and earlier Bojic and Tomic [50] 

investigated the relationship between combustion of a constant BFG composition, with 

supplementary natural gas and oxygen, quantifying how fluctuations in blended ratios 

influence CO2 production. This study emphasised absolute change in CO2 output from 

the system, opposed to analysing the influence of oxygen on fundamental combustion 

performance.   Alternatively, case studies have been undertaken by various institutions 

[51] investigating boilers employing two-phase combustion of BFG and coal. Ma and 

Wu [52] presented more specified research analysing the burnout problems 

experienced when blending coal with BFG, and validated simulations of change in 

furnace parameters, such as residence time and temperature.  

 

2.2.3 – Steelworks Gas Usage in Alternative Technologies 

A different possibility for improving the efficiency of steelworks gas usage is the 

application of alternative technologies. Internal combustion (IC) engines offer potential 

improvements when used with combined cycles [53, 54]. Research investigating the 

use of BFG in IC engines dates back over a century [55], and more contemporary work 

by Lawton [56] reviews the historic use of steelworks gases in this manner. The 

traditional problem for IC engines related the large volumes of low quality gas 
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available, to the relatively small capacity of systems to date. Application in this way is 

becoming more financially viable to engineer by employing larger numbers of 

cylinders, with manufacturers providing potentially applicable solutions [57]. However, 

technical limitations are stipulated for stable operation, and restrict parameters such 

as change in fuel composition, resultant energy density fluctuation, moisture content, 

and contaminant matter [58]. Thus, more specified papers are being released, such as 

the work of Lieu et al. [59] where the combustion of BFG in IC engines has been 

modelled using GT-POWER, developed by Gamma technologies. Operational 

characteristics, such as ignition timing angle have been optimised for change in 

modelled flame speed, but this depends highly on the hydrogen content of the fuel. 

This topic also arises in the work of Ando et al. [60], who utilised low energy gases in 

an IC engine, and found that variability in combustion characteristics was far more 

influential to stable operation, compared with power output. Work has also been done 

utilising COG, for example Roy et al. [61] presented the output optimised operation of 

a dual-fuel supercharged IC engine, employing diesel as a pilot. This differed from 

other analogous work [62] by increasing the hydrogen fraction to be representative of 

COG (~60%), with exhaust gas recirculation simulated for thermal efficiency and NOx 

improvements. However, the system was shown to experience problems with two 

stage combustion under certain conditions, leading to engine knocking.  

 

The viability of using steelworks gases in combined cycle-gas turbines is also a good 

possibility, and although proven as a concept, is not currently employed as a 

widespread option in Europe due to issues arising from fuel operability and 

contamination [12]. However, turbine manufacturers are increasingly offering 

solutions capable of working with steelworks gases, with GE having provided 47 low 

energy units currently in operation worldwide [63], and others offering similar 

solutions (Siemens [64], Alstom [65], Mitsubishi [66 ]). Most of these turbines operate 

predominantly using BFG, blended with additional fuels, typically natural gas or COG, 

and burnt using highly resilient and flexible combustors. However, use of these fuels, 

particularly COG, requires significant pre-processing and cleaning, with manufacturers 

again stipulating limitations on the quality of fuel necessary for stable operation [26]. 

Bonzani et al. [67], present a case study where performance of an Alstom V94.2 
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turbine was evaluated for operation with a mixture of BFG, COG, and natural gas. 

Although stable operation was achieved, natural gas was mixed in significant 

proportions (~50%), together with being used for start-up. The study initially presented 

Lee et al. [68, 69], investigated the use of syngases containing the same combustible 

components as BFG, with performance shown to depend heavily on ratio of H2 to CO. 

Pulsation instability experienced in the combustor was shown to compare favourably 

with diluted CH4, though NOx production was shown to be highly variable. Additional 

work by the authors then expanded on this with the addition of CO2, N2 and H2O as 

diluents, demonstrating a detrimental influence on CO emission. Analogous work with 

different fuels blends by Chacartegui et al. [70] showed that compositional change 

between syngases led to increased problems with stability, particularly blow-off. 

Where as the work of Khalil et al. [71] attempted to relate diluted CH4 to equivalent 

low calorific fuels from the perspective of laminar burning velocity and adiabatic 

temperature.   

 

2.2.4 – Steelworks Gas Combustion 

It appears one of the more significant contributory factors limiting the use of 

steelworks gases is the variable and potentially weak nature of combustion, 

particularly as operational instabilities are expierienced. The numerical study 

performed by Gicquel et al. [72] varied the ratios of BFG, COG and oxidiser in 

simulations performed by EQUIL and PREMIX codes. The authors also vary the oxidiser, 

from standard air to a vitiated composition representative of the output exhausted 

from a gas turbine, and determine temperature and flame speed profiles, together 

with variation in extinction strain rate. The extinction limits of COG are shown to be 

much larger than the slow burning BFG, before the paper presents some Reynolds 

Averaged Navier Stokes (RANS) diffusion flamelet models. Covering a large area, the 

work appears to suffer from several weaknesses. Firstly, a constant composition of 

COG and BFG are assumed, and only one chemical reaction mechanism (referencing 

Lindstedt et al. [73], the performance of which has not been benchmarked for these 

types of fuels) is tested. The investigation also presents significant amounts of 

modelled work, with only the RANS simulation compared to an experimental burner.  
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The study presented by Abdulsada et al. [74] investigates the flashback and blowoff 

performance of several fuels, including a representative COG composition. Different 

swirl configurations are used with open and confined flames to characterise the 

practical combustion of COG on a burner, with greater instabilities experienced for 

lower mass flow rates. Furthermore, the work of Lewis et al. [75] demonstrated a 

correlation between a change in H2 content of a representative syngas, the 

consequential change in burning velocity, and blowoff from swirl stabilised 

combustion. Paubel et al. [76] attempted to characterise BFG oxy-flame stability using 

a quadricoaxial burner, with CH4 as a pilot. The work suffers from a similar weakness to 

others in that a constant BFG composition is assumed, and the burner requires the CH4 

pilot for stable operation.  

 

2.2.5 – Summarising Steelworks Gas Background Research 

Several conclusions are observable from the preliminary review of steelworks gas 

research and case study undertaken at the Tata Steel Port Talbot works, thus; 

 

− Of the three steelworks gases, typically the most abundant is BFG, both in 

terms of volume produced and available thermal energy. However, it is also the 

most variable, least calorific and consequently the most unstable to burn, often 

requiring the addition of supplementary material. The most widespread 

application of BFG appears to be either in furnaces fuelling process operations, 

or in boilers used for the auxiliary generation of electricity and steam.  

 

− There is contemporary research analysing the usage of blended steelworks 

gases in increasingly efficient technologies, such as IC engines and gas turbines. 

A frequent weakness in these works is the assumption of one representative 

fuel composition for each gas, which often varies between studies. 
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− Several practical analyses attempt to characterise operational instabilities 

resulting from the application of steelworks gases, however do this under 

specified conditions without necessarily quantifying variation in the 

fundamental properties of combustion. Furthermore, when computational 

models are applied to potentially optimise performance, there is little or no 

validation regarding the applicability of the technique.  

 

There is a need for a more elementary understanding of inherent variation in the 

combustive properties of steelworks gases, and relating these characteristics to the 

validation of applicable chemical models. Such work would also relate directly to the 

combustion of analogous heavily diluted syngases, giving the investigation a wider field 

of interest. The property employed for characterising fuel behaviour in this 

investigation is the laminar burning velocity. 

 

2.3    Fuel Combustion Properties 

2.3.1 – Definition of Laminar Burning Velocity and Flame stretch 

Under given ambient conditions of temperature and pressure, a one-dimensional 

planar adiabatic flame will propagate through a premixed combustible mixture at a 

constant rate, as a result of the thermal and mass diffusion of reactants. This is a 

fundamental physiochemical property of a fuel called the laminar burning velocity 

(sometimes termed laminar flame speed, or laminar burning rate), designated herein 

as uL. It is one of the most significant parameters for defining fuel behaviour, relating 

to premixed operational instabilities such as extinction, flashback and blow off (section 

2.3.3), whilst also used for characterising turbulent flame propagation [27-29].  In 

practise uL is seen as idealistic, due to difficulties achieving an upstream quiescent 

mixture necessary for planar propagation, together with potential for heat loss.  

 

Initial experimental investigation of flame speeds began with the early work of Bunsen 

and Roscoe [77] using a cylindrical burner (configuration detailed in section 2.3.2a), 

eventually enhanced with the propagation theory of Mallard and Le Chatlier [78]. 
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Further advancements were made in measurement techniques, including the 

transparent observation of optical flame growth by Chamberlin and Clarke [79], and 

the soap-bubble method introduced by Stevens [80]. In the latter technique the 

combustible mixture is ignited within a bubble film, which is optically measured and 

experiences negligible external pressure increase. However, much of the early work 

with constant volume chambers used internal pressure rise to evaluate propagation 

rate. Wheeler [81] observed that values obtained using this technique with CH4 were 

dependent on the chamber shape, the intensity and point of ignition, and ambient 

condition of the combustible mixture. Payman [82] attempted to correlate the 

propagation of many different fuels, and also noted the potential for change in 

obtained speeds from different conditions.  

 

At the second international symposium on combustion in 1937, Payman presented 

continued work with Coward [83], and qualified the experimental influences on flame 

propagation further, namely motion of combustible mixture and flame speed relative 

to it, and size of the flame in relation to the confining area. Consequently, an attempt 

was made at a unified definition of linear flame speed normal to the surface of 

propagation. The initial theoretical work of Mallard and Le Chatlier was then also 

advanced by Lewis and Von Elbe [84], who achieved good correlations between 

experimental and calculated flame speed, after accounting for the combined effects of 

heat flow and diffusion.  At the same symposium Fiock and Marvin [85] reviewed the 

various employed experimental methodologies, and presented a combination of the 

soap bubble and confined chamber methods, where optical measurements could be 

directly correlated against pressure rise. The work also highlighted a significant 

limitation of the soap bubble technique, namely water vapour from the bubble 

interacting with confined reactants. Von Elbe and Lewis [86] advanced the field further 

by introducing particle tracking to flame measurement. Later Powling [87] developed a 

burner that employed glass beads, wire mesh and small diameter tubes to enable 

combustion of a quasi-laminar flat flame. This technique was eventually adapted with 

water cooling [88], to become the flat flame heat flux method (section 2.3.2b).  
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In practise flame propagation is ordinarily influenced by aerodynamic strain, reactant 

motion or surface curvature, several influences encompassed by the term stretching. 

The origins of this concept relate back to the work of Karlovitz et al. [89], who first 

presented the comprehension that changes in surface velocity gradients influence 

flame propagation, inasmuch that local speed relates to the change of surface area (A) 

production. This concept introduces a parameter identified as the stretch rate (α), and 

is defined in relation to temporal change in A: 

 

dt

dA

A

1
α ⋅=       (2.1) 

 

At a similar time, initial work undertaken by Markstein [90] also matched flame speed 

to the influence of curvature, and linearly characterised this relationship. The work 

was eventually expanded by Markstein [91] to account for diffusive effects, as 

characterised by an important parameter called the Lewis number (Le), or ratio of 

thermal to mass diffusivity: 

 

D

k

Dcρ

λ
Le

p

=

⋅⋅

=      (2.2) 

 

where λ represents thermal conductivity, ρ the density, cp specific heat (combined to 

define the thermal diffusivity k), and D; the mass diffusivity. If an outwardly 

propagating flame is taken as an example, it is termed positively stretched. This means 

when Le> 1, thermal diffusion is more dominant and the flame loses heat in proportion 

to the surrounding reactant, and consequently accelerates as it expands. This is 

because stretch effects are more influential when the flame is small, and in relation 

curvature is large. This also means that flames become weakened, and burn slower in 

highly turbulent stretched environments. Conversely the opposite holds for flames 

with Le<1.  The parameter used by Markstein to characterise this effect of flame 

stretch is the burned gas Markstein Length (Lb), with further detail provided in chapter 

3. When experimentally attaining values for uL, the change is α must be obtained and 

accounted for in the observed propagation rate. This was suggested by Wu and Law 

[92] as a reason for the observed scatter in experimental data, and summarised by 

Andrews and Bradley [93].  
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2.3.2 – Importance of uL in Characterising Operational Fuel Stability 

 

Of the issues involved with premixed burner operability, the most significant relate to 

flame positioning and constancy, together with instabilities that arise from oscillations 

in pressure [94]. uL directly characterises these parameters, and is therefore of 

significant importance for the prediction of flame behaviour (hence why there are 

extensive continued research activities surrounding this topic [95-97]). Simplistically, 

any operability issues that relate to flame position are a result of an imbalance 

between the velocities of premixed reactants reaching the burner, and the flame. Fig 

2.10 helps explain this further (adapted from [29]), with a simplified example of a 

generic flame configuration positioned on a rim. 

 

 

 

 

 

 

 

Fig. 2.10 – Diagrammatic representation of fuel velocity gradients for a simple rim burner (from [29]). 

 

 

The left side of the image in Fig 2.10 shows flame position together with the fuel 

velocity profile as it reaches the burner (note - extinction due to heat loss at the edge, 

equivalent to the quenching distance (dq)), with flow velocity increasing from zero at 

the wall. The three lines labelled 1, 2, and 3 on the right represent flow velocity 

gradients from the boundary, with the dotted step change equivalent uL. Gradient 1 

signifies a sharp rise in speed, for a large flow rate. At this condition the fuel velocity is 

entirely larger than uL, and the flame is physically blown from the burner (blowoff). For 

gradient 3, the fuel velocity is slower than uL, leading to upstream propagation of the 

flame into the reactant flow, and potential flashback. Gradient 2 represents a 

stabilised flame, where flow is balanced with burning velocity. This is a simplified ideal 

representation of a premixed combustion system, and in practise stabilising 

mechanisms exist (for instance change in wall quenching effects with axial position, 
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and swirl) to enable a region of stable flow between flashback and blowoff. In addition 

these characteristics will be further influenced with how the burning velocity is 

affected by flame stretch. This concept of a stable burning region is depicted 

graphically for the combustion of natural gas in Fig. 2.11 (from [28] and [29]). 
 

 

 

 

 

 

 

 

 

Fig. 2.11 – Flashback and blowoff profiles for the combustion of natural gas (from [28, 29]). 

 

A critical velocity gradient (gf) resulting in boundary layer flashback can be 

approximated directly from knowledge of uL, the quenching distance, and thermal 

diffusivity of the flame (k) thus [94]; 

 

k

u
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f
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⋅=⋅=      (2.3) 

where c is a constant of the employed burner. Whilst this classical relationship 

provides a good approximation for boundary layer velocity gradients, complete 

flashback behaviour is fully characterised by further effects from stretch, pressure 

pulsation or vortex breakdown in a swirling flow [94]. Similarly lean blowoff behaviour 

can be characterised by k and uL, with a Damkӧhler number relating thermo-chemical 

reaction time (k/uL
2), to residence time [94]. This association is also simplified, with the 

additional influences such as turbulent flow and stretch influential in characterising 

burner velocity gradients and critical Karlovitz numbers [29]. Nevertheless accurate 

knowledge of uL for a given fuel type is a necessary requirement for engineers to 

model and predict system behaviour, in addition to influences such as flame stretch. 

Consequently, whilst fluctuation in parameters such as equivalence ratio and uL are 

inevitable in practical combustion systems, it is desirable to minimise any inherent 

variation to improve system stability.   

F
lo

w
 v

e
lo

ci
ty

 (
cm

·s
-1

) 

Equivalence Ratio 



2. Background Research and Literature Review 

 

                                                               - 37 - 

There are typically four flame configurations that are applicable for experimental 

determination of uL, and the influence of stretch is dependent on which is employed. 

The configurations have been presented in the following section, with the operation, 

merits, and limitations of each discussed before one is detailed for specified use in this 

investigation. 

 

2.3.3 – Selecting an Experimental Flame Configuration 

Fig. 2.12 provides representative schematics of four flame configurations that can be 

employed for determination of uL. 

 

 

 

 

 

 

Fig. 2.12 – Schematic representation of four experimental flame configurations for determination of uL: 

a) Bunsen burner flame. b) Flat flame. c) Outwardly propagating spherical flame. d) Counterflow flame. 

 

2.3.3a – Stabilised Bunsen Flame  

This simple method uses a negatively stretched conical flame fixed on the rim of a 

cylindrical (or typically Bunsen) burner, as represented in Fig. 2.12a. If the gas exit 

velocity profile is taken to be uniform, then the localised laminar burning velocity can 

be related to the half cone angle (denoted β in Fig. 2.12a) of the flame, the gaseous 

mass flow, and dimensions of the burner. The flame surface is identified using either 

Schlieren or chemiluminescent visualisation techniques, or even seeded for 

velocimetric determination of local speeds [86]. Issues arise from a combination of 

heat loss, change in flame intensity at the tip of the cone, and defining the exact 

location of the flame front [93].  

β 

a) b) c) d) 
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2.3.3b – Flat Flame with Heat Flux Correction  

This technique is similar to the stabilised Bunsen flame, and is depicted schematically 

in Fig. 2.12b. The flame is fixed onto a porous plug, and the flow rate of the gas 

adjusted until a flat combustion front is achieved, with burning velocity attained from 

the geometry of the system. The flame stabilises due to heat loss in the porous plug, so 

the measurement is inherently non-adiabatic, and not representative of the desired 

value. An adaptation suggested by Bootha and Spalding [88] involved measuring 

different values of heat loss to the plug by cooling to distinct temperatures. If the 

attained flow values are plotted and extrapolated to adiabatic conditions, the laminar 

burning velocity can be attained. One characteristic of using this method is that the 

flame is subjected to minimal stretch, so a quasi-direct measurement can be made. 

However, the technique does require a relatively complex experimental setup, and a 

steady accurate gas supply flow rate. Further adaptations have been presented for 

more precise measurement of heat loss [98].  

 

2.3.3c – Spherically Expanding Flame with Stretch Correlation 

This is the most direct of the employed measurement techniques, and requires 

extensive numerical processing of the attained data. The method involves filling a 

constant volume chamber with a quiescent mixture which is centrally ignited, and the 

rate of outward, positively stretched, flame propagation measured (as shown 

schematically in Fig. 2.12c) [27]. Expansion of the combusted gases must be accounted 

for, and the influence of flame stretch on burning velocity can be quantified as a 

property of the mixture with determination of Lb, with extrapolation required for 

representative unstretched conditions. Another significant advantage of using the 

technique is that ambient conditions of pressure and temperature can be easily varied 

and controlled, with a comparable burning velocity also attainable using the pressure 

rise technique.  Disadvantages include the influence of heat loss to ignition electrodes, 

and the buoyancy of combustion products distorting the flame [27].  
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2.3.3d – Counterflow Flame with Stagnation Zone 

This method was developed by Wu and Law [92], and requires the creation of a 

divergent stagnation field, by directing two combustible flows symmetrically into each 

other. Following measurement of the flow velocity profile through the flame toward 

the stagnation plane (represented by the dashed line in Fig 2.12d), numerical 

processing of a specified reference velocity is required [96]. Like the spherical method, 

extrapolation of plotted velocities against stretch rate (generated through the non 

uniform flow, and varied through change in mass flow rate or separation distance) 

yields the desired value of uL. Position of the flames relative to the burner head mean 

conditions can be assumed to be quasi-adiabatic, with the method well suited to laser 

based velocimetry. Similar to the first two methods, this technique requires a constant 

gas and tracing seed supply, and is also comparatively complex [27].   

 

For the purposes of this work, the spherically expanding flame configuration was 

chosen, with a methodology developed for quantifying outward rates of flame 

propagation. This technique was selected as a result of several factors; firstly due to 

the accuracy, simplicity, and resultant flexibility of the approach. An investigation of 

this nature requires the mixture of several gases in different ratios, with all other 

techniques requiring continuous gas streams, hence potentially necessitating several 

mass flow controllers. Consequently, it would be more difficult and expensive to attain 

high accuracy in blending, together with larger amounts of wasted gas [96]. The 

technique is also more adaptable for defining ambient condition of the reactants, and 

particularly more suited to pressure variation. In addition, a constant volume chamber 

is apposite to the use of simultaneous analytical techniques, with uL measurable from 

internal pressure rise, together with the quantified optical propagation of the flame. 

There is also flexibility for future use, with ancillary studies also possible for systematic 

investigation of parameters such as ignition energy [99] and turbulence intensity [100].  

 

Prior to outlining the objectives of this research dissertation further, it was first 

necessary to investigate relevant fuel characteristics already published in literature, 

and how these relate to the steelworks gases under investigation. 
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2.4    Analogous Research with Alternative Fuels 

 

2.4.1 – Flame Speed Research with Methane 

Early studies in the area of laminar flame speeds were largely performed for the 

combustion of CH4-air, (section 2.3.1), with the fuel widely-applied in literature for 

benchmarking methodologies and critical review [92, 93, 101].  With regard to 

spherical CH4 flames and the extrapolation technique employed in this study, Bradley 

et al. [99] presented a computational investigation for combustion of CH4 with air at 

atmospheric ambient conditions.  The impact of variation in ignition energy was 

investigated (Fig. 2.13a), with stretch influence also separated to individual parameters 

of flow field strain and curvature. Further work by Gu et al. [102] expanded upon this 

by changing ambient conditions of temperature and pressure with equivalence ratio, 

and presenting power law correlations for the data (example given in Fig 2.13b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.13 – Examples of the variation in work undertaken by a) Bradley et al. [99] and b) Gu et al. [102] 
 

With vast quantities of information available on CH4 flame speeds, it is frequently 

employed whenever modifications or adaptations to analytical techniques are 

presented. Examples of this include the more contemporary works of Tahtouh et al. 

[103], Kelley and Law [104], Halter et al. [105] and Varea et al. [106], with these 

respective works discussed further in section 3.1. Furthermore, there are also 

a) b) 
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significant quantities of CH4 data available from the application of alternative 

techniques, often demonstrating good agreement between comparative works [92, 

107, 108]. It was therefore deemed appropriate that CH4 be used for benchmarking 

performance of the experimental technique developed for this study. 

 

As alternative fuel blends have become more prevalent, the broad direction of 

research has shifted to investigate the flame speed characterisation of CH4 when 

blended with different gases.  Ilbas et al. [109] investigated the change in observed 

flame speed for the addition of H2, with further instances of analogous works by Halter 

et al. [110] and Hu et al. [111]. H2 is shown to increase uL for CH4 combustion, whilst 

simultaneously lowering Lb. Fig. 2.14 demonstrates these trends at different H2 

fractions, for uL (a) and Lb (b) with equivalence ratio - Ø (taken from Hu et al. [111]). 

 

 

 

 

 

 

 

 

 

 

Fig. 2.14 – Variation in uL (a) and Lb (b) with equivalence ratio (Ø) for CH4 with increasing H2 fraction (X),  

taken from Hu et al.[111] 
 

There is further work by numerous authors investigating the addition of diluents. 

Boushaki et al. [112] investigated the change in uL characteristics of CH4-H2 blends with 

steam addition, and an alternative slot burner technique. Taylor [113], Tahtouh et al. 

[114] and later Miao et al. [115] similarly investigated the influence of N2 dilution and 

change in ambient pressure, together with CO2 dilution in different work [116]. All of 

these diluents are shown to suppress CH4 combustion and slow uL by differing 

amounts. Whilst there are several tested compositions that comprise diluted CH4 and 

H2 combustion, there are no published works analysing of an approximate COG 

composition. 

a) b) 

Ø Ø 
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2.4.2 – Research with Hydrogen and Carbon Monoxide Syngases 

As interest in the use of alternative fuels increase, significant amounts of data are now 

being published for diluted syngases and biomass derived fuels containing H2 and CO. 

These fuels are pertinent as they comprise the same constituents as BFG and BOS gas. 

Independent H2 combustion with air was characterised using spherical flames by 

Dowdy et al. [117]. However, the use of expanding flames in this way for independent 

H2 characterisation is troublesome due to the onset of instabilities with pressure rise, 

that increase flame surface area and consequently influence flame speed. This vast 

research area has been investigated by several authors, including; Bradley et al. [118], 

and Law et al. [119], and applicable for spherical flames by obtaining data up to a 

defined critical radius (related to Péclet number) from which the flame becomes 

unstable. Alternatively, Helium can be employed as a diluent to minimise diffusive 

instabilities [120], or a different measurement technique can be used. Egolfopoulos 

and Law [121] investigated H2 flames on a counterflow burner, with changing oxidiser 

N2/O2 ratio, and effectively demonstrated how positive stretching decreased the 

inception of cellular instabilities. Similarly Vagelopoulos and Egolfopoulos [107] 

employed the same counterflow technique to investigate how flame speed of CO is 

increased with the addition of H2 and CH4. Fig. 2.15 highlights the trend of change in uL 

for CO blended with increasing quantities of H2, taken from the work of Bouvet et al. 

[122]. 
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Fig. 2.15 – Variation in uL with equivalence ratio for CO 

with increasing H2 fraction. (Bouvet et al.[122]) 

 

Fig. 2.16 – Variation in uL with equivalence ratio for an 

equal H2-CO blend with N2 addition. (Prathap et al.[123]) 
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The disparate effects of CO2 and N2 (Fig. 2.16) dilution on an equal volumetric H2-CO 

mixture was detailed by Prathap et al. [123] and [124] for atmospheric ambient 

conditions using spherically expanding flames. Diluent addition was shown to shift the 

peak uL toward stoichiometric conditions, together with negative Lb experienced with 

leaner mixtures. CO2 was also shown to be more influential to suppression of uL 

compared with N2, with potential for increased involvement with intermediate 

chemical reactions highlighted as a potential cause. Das et al. [125] analysed the 

change in uL resulting from addition of water vapour to syngas blends of different H2-

CO ratios, with the result shown to be dependent on a complex relationship between 

chemical effect in the generation of intermediate species, and heat loss. This work 

highlights a pertinent area of investigation for humid steelworks gas combustion, 

without quantifying the influence of diluents.  

 

Other syngas mixtures have been analysed by various authors for a range of ambient 

conditions, for instance the work of Monteiro et al. [126] employed three 

compositions representative of producer fuel from wood gasification. Characteristics 

of the three tested compositions were shown to be most sensitive to fluctuation in H2 

fraction, with peak burning velocities experienced at near stoichiometric air-fuel ratios. 

The study presented by Burbano et al. [127] gave details of a syngas mixture tested for 

variation in diluent content using a slot burner at atmospheric ambient conditions. 

Data were generated and compared to numerical models. Further work by Burbano et 

al. [128], and Liu et al.[129] looked at similar syngas compositions, but varied ambient 

pressure away from atmospheric conditions.  
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2.5    Investigation Objectives 

 

After undertaking the research presented in this chapter several objectives were 

identified to fulfil the aim of this research dissertation. These are as follows; 

 

− Firstly, an experimental rig is required to facilitate the accurate determination 

of flame speeds and the inherent influence of stretch effects, by quantifying 

the outward propagation of spherical flames. Furthermore, a computational 

analytical technique needs to be subsequently developed that allows for rapid 

and precise measurement of temporal changes in flame radius. The developed 

solution needs to be benchmarked against analogous studies in literature to 

ensure experimental performance is accurate and repeatable with respect to 

other works. 

 

 

− Steelworks gases then must be tested to attain representative burning 

velocities, however opposed to attaining values for a single gaseous 

composition, attention will be given to the inherent variability in flame speed 

that results from compositional change. Being both the most abundant, and 

difficult to utilise, considerable focus will be on the combustion of BFG with air. 

This part of the study will investigate the sensitivity to changes in hydrogen 

fraction, as this is the most significant contributory factors to fuel performance, 

and offers the largest amount of relative variation as the gas is produced. 

 

 

 

− Together with variation in composition, the influence of changes in ambient 

condition will also be quantified. The aim of this is to investigate the extent to 

which fluctuation in uL from hydrogen fraction can be dampened by altering the 

physical characteristics of the gas. This will include independent changes in 

temperature and pressure to limits specified by the mechanical properties of 

the equipment. 
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− A further area of interest is change in relative humidity of the fuel, again with 

particular attention paid to BFG. The moisture content of BFG is potentially 

variable depending on the cleaning methods employed, and a function of the 

gas temperature. However, even if BFG is assumed to be dry there can still be 

changes in the relative humidity of atmospheric air used for combustion. It is 

estimated that due to the high levels of diluents in BFG composition, the tested 

characteristics will be particularly sensitive to changes in relative humidity. 

Again BFG composition will have to be varied to attain data representative of 

fluctuation experienced in practise. 

 

 

− Having investigated the performance of individual steelworks gases, the fuels 

will then be blended in different ratios to fundamentally characterise dynamic 

combustive properties relating to fuel flexibility. In this regard some fuel 

properties will be benchmarked with respect to combustion of widely utilised 

natural gas. Attention will primarily be given to analysing the effectiveness of 

blending gases to minimise inherent fluctuation in BFG combustion.  

 

 

− Whilst attaining experimental data for the combustion of various steelworks 

gases and blends, significant attention will be given to computational chemical 

kinetics modelling. The performance of several reaction mechanisms will be 

evaluated with respect to accuracy of modelling steelworks gas combustion. If 

models are shown to be capable of accurately predicting fuel behaviours, then 

simulated data can be applied to reduce the number of points in the 

experimental testing matrices, and subsequently accommodate further 

parameters of study in the time available.  
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Chapter 3. Theory and Experimental  

Method  
 
 

 

3.1    Theory 

 
 

3.1.1 - Flame Configuration and Analysis 

The technique presented herein is an adaptation of the contemporary method 

developed by Dowdy et al. [117] and Taylor [113] for an outwardly propagating 

spherical flame. In order to quantify flame speeds in this way, a constant volume is 

filled with combustible mixture at a specified air-fuel ratio, under defined ambient 

conditions of temperature and pressure. The mixture is then centrally ignited, and the 

size of the spherical flame measured as it propagates outward toward the chamber 

walls.  

 

When employing this method several factors must be taken into consideration: The 

expansion of combusted products leads to an increase in the observed flame 

propagation rate, and also raises pressure within the chamber. This reactant 

compression can inhibit the flame, whilst simultaneously increasing the temperature 

of the unburned mixture. In addition, early flame development can be influenced by 

the stored energy discharge from spark ignition, and buoyancy affects observed if 

propagation is slow. Therefore, detailed care must be taken when selecting and 

analysing appropriate measured data [27].  

 

These factors are discussed further in this chapter, where the design of an operational 

experimental rig is considered, but first follows a derivative analysis for measuring uL in 

this way. Fig. 3.1 gives a diagrammatic representation of the employed flame 

configuration. 
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The observed flame speed (Sn) is measured as the first order derivative of radius (rf) 

with respect to time, and for an outwardly propagating flame is always greater than 

zero, as follows: 

dt

dr
S

f

n =        (3.1) 

It is important to emphasise the discrepancy in the used definition between the 

desired value of laminar burning velocity (uL), and this observed speed, which has been 

accelerated by the expansion of hot combustion products. Sn is also influenced by 

flame stretch (as discussed in section 2.3.2), and therefore shall be recognised in text 

as the stretched flame speed. In order to attain experimental values of uL, both 

expansion and the effects of stretch must be negated. 

 

3.1.2 - Defining Stretch Rate for Spherical Flames 

The stretch rate (α) was earlier expressed in relation to the change in area gradient of 

the flame (Eqn. 2.1 in section 2.3.1, and for the employed configuration is defined as 

follows [113, 117, 27, 99]. 

 

Firstly, the surface area (A) of a spherical flame is given by: 

2
frπ4A ⋅⋅=        (3.2) 
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Fig. 3.1 – Outwardly propagating spherical flame configuration [27]. 
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and substituting Eqn. (3.2) into (2.1) for stretch rate, expands to give: 
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substituting Eqn. (3.1) therefore gives: 

 

n

f

S
r

2
⋅=α        (3.4) 

 

Bradley et al. [99] derived expressions to show total stretch rate defined for this flame 

configuration encompasses the cumulated influences of flow-field strain (αs), and 

flame curvature (αc), or:  

 

cs
ααα +=        (3.5) 

 

Calculated values of α can therefore be applied with measured Sn to negate the effects 

of stretch and attain the unstretched flame speed (Su). In this thesis, two methods of 

optically obtaining Su from changes in Sn and α have been employed. 

 

 

3.1.3 - Linear Extrapolation Methodology  

The aforementioned work of Wu and Law [92] with the counter-flow stagnation burner 

was the first methodology presented that extrapolated different attained flame speeds 

with α to representative unstretched conditions. The method employed by Dowdy et 

al. [117] and Taylor [113] developed based on the work of Markstein [90, 91], utilised 

this rationale, suggesting a linear relationship between α and flame speed as follows: 

 

 

αLSS bnu ⋅=−         (3.6) 
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where Lb (the burned gas Markstein Length) is the parameter used to characterise the 

influence of stretch of flame speed. Lb is directly related to the earlier defined Lewis 

number (Le), with this diffusivity ratio influencing both sign and magnitude of the 

influence of stretch. This relationship was derived to be sufficiently accurate when the 

stretch effects, and any subsequent losses, are small. It follows from Eqn. (3.6) that 

having experimentally measured Sn, and calculated the corresponding values of α, the 

two can be plotted with a gradient of Lb. That data can then be used to extrapolate the 

relationship to a corresponding intercept value, equivalent to a rate of zero stretch, 

thereby attaining Su for a theoretical spherical flame with infinite radius.  

 

Eqn. (3.6) can also be expressed in the following form [27]: 

 

KaMa-1
S

S

u

n ⋅=        (3.7) 

 

where Ma and Ka are the respective Markstein and Karlovitz numbers defined thus: 

 

   
t

b

d

L
Ma =        (3.8) 

   α⋅=
u

t

S

d
Ka        (3.9) 

 

with dt representing the unstretched flame thickness, defined as the quotient of 

thermal diffusivity (k) to the laminar burning velocity.  

 

The linear methodology has been widely applied in literature for combustion 

characterisation (for example [99], [102], and [115]). Alternative ways of applying this 

linear methodology have been proposed by different institutions, for instance, utilising 

Lambert’s W-function to avoid the use of regression in obtaining Sn, by Tahtouh et al. 

[103], or combining and integrating equations (3.1) and (3.6) [120]. These 

methodologies however, do not account for the observable nonlinearity of Sn against α 

when propagation is heavily influenced by stretch [104, 105]. 
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3.1.4 - Nonlinear Extrapolation Methodology  

A methodology was presented by Kelley and Law [104] that utilises a separate 

nonlinear relationship between Sn and α, developed from the work of Ronney and 

Sivashinsky [130] and Clavin [131]. This nonlinear relationship is derived to account for 

deviation from adiabatic and planar assumptions that are more prominent when the 

flame experiences losses from the heavy influence of stretch, and is expressed: 
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Relationships of the same form have been derived to express other similar parameters, 

such as the upstream flame speed of a counterflow flame, and can be generalised in 

the form [104]: 

 

σSlnS
22
=⋅        (3.11) 

 

with S  representing stretch normalised flame speed (Sn/Su), and σ a separate loss 

parameter. It has been shown [105] from simplifying the detailed model given by Chen 

et al. [132], that for weakly stretched flames ( S  → 1), Eqn. (3.10) tends towards the 

linear relationship given in Eqn. (3.6).  

 

Contemporary literature [104, 105] proposes improvements in accuracy that can be 

achieved by using this relationship. However, the numerical processing of 

experimental data necessary to obtain values for Su and Lb is more complex. Detailed 

examples of the procedures undertaken to obtain values from both optical 

methodologies are provided in the next chapter, where experimental performance is 

benchmarked against other research. Regardless of which methodology is employed, 

the attained values of unstretched flame speed are still influenced by the expansion of 

combusted gas, which must be numerically accounted for in the derivation. 
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3.1.5 – Accounting for Expansion of Combustion Products 

At constant pressure, the adiabatic expansion can be expressed as the ratio between 

the burned (ρb) and unburned (ρu) densities of the products and reactants [99]. Su is 

therefore related to uL as follows: 
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This relationship is widely utilised in the relevant literature (e.g. [99] [102] [115]), and 

whilst ρu can be calculated with relative ease, the method still requires precise 

knowledge of ρb. For the purposes of this work, it was established computationally 

using chemical kinetics modelling. The package chosen to determine these parameters 

was CHEMKIN-PRO, with section 3.4 providing further detail regarding numerical use 

of this software.  

 

3.1.6 – Dynamic Pressure Measurement Approach 

The need to computationally determine the burned gas density is the most significant 

limitation of employing the specified configuration. However, a direct comparison can 

be made between the calculated expansion ratio and pressure rise within the 

chamber. These values cannot be used directly due to heat loss in measurement, but 

variation from change in equivalence ratio and ambient condition can be used for a 

comparison in trends. Furthermore, it is also possible to observe a direct relationship 

for the determination of uL from analysing the temporal pressure transients resulting 

from combustion.  Dahoe et al. [133] [134] recently presented work using this 

relationship, with the equation derived from the work of O’Donovan and Rallis [135] as 

follows: 
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where Pi represents the initial pressure prior to combustion, R the chamber radius, and 

γu isentropic exponent of the unburned gas, otherwise defined as the ratio between 

isobaric and isochoric specific heats: 
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xm corresponds to the burned mass fraction, originally proposed by Lewis and Von Elbe 

[28] to be linearly related to the final or end pressure (Pe) as follows: 
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There have been several other models proposed by Dahoe et al. [133] for the 

determination of xm to be used in this way [134].  

 

The accuracy of the pressure method relies on several significant assumptions; firstly a 

uniform pressure within the vessel, together with negligible heat loss or gain (from 

ignition), isentropic compression of the unburned reactants, and finally a buoyancy-

free, infinitely thin spherical flame front.  

 

The experimental rig was developed to allow data acquisition for both the optical and 

pressure analytical techniques. A direct comparison of each method is made in the 

following chapter where the experimental performance is benchmarked against 

analogous results from literature. First follows the design setup, and operational 

methodology of the system employed.  
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3.2    Experimental Apparatus 

 

3.2.1 - Components of the Experimental Rig 

A constant-volume combustion bomb (herein referred to as CVCB) was built and 

developed into an experimental rig for the determination of uL for this study. A 

simplified schematic layout of the CVCB rig is shown with labelled additional 

components in Fig. 3.2, with a photograph of the assembled system is provided in 

appendix A.3. The first section of this work describes the individual specification of 

these major rig components to provide an overview of system design, functionality and 

operation, before moving on to discuss the employed experimental procedure.  

 

Fig. 3.2 – Experimental rig schematic. 
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3.2.2 - CVCB Design Overview 

The CVCB was constructed from grade 316 stainless steel, and designed to allow for a 

sufficiently long experimental time window in the pressure unaffected region of flame 

expansion. As introduced in section 3.1.1, the observed flame speed is increasingly 

influenced by reactant pressure building as the flame propagates, with Burke et al. 

[136] recommending that for a cylindrical bomb, the maximum usable flame radius is 

approximately 30 percent of the overall chamber dimension.  The CVCB developed in 

this study has a cylindrical volume of approximately 36 L with an internal diameter of 

260 mm, thereby giving a maximum usable flame radius of 39 mm. Four diametrically-

opposed ports were added to allow perpendicular line of sight through the centre of 

the chamber. These ports house quartz windows, 100 mm in diameter, thereby 

allowing optical access to the maximum usable flame radius. The significant chamber 

dimensions are outlined in Fig. 3.3. 

 

 

 

 

 

 

 

 

The chamber was designed to withstand an internal pressure rise of 14 bar, and was 

hydrostatically tested prior to fitting an over-pressure valve in the exhaust line, 

thereby fixing the overall limit to a maximum of 9 bar (60% of the design pressure).  

This value was specified to be in the order of the maximum pressure increase 

anticipated from the preliminary test specification. However, the system was designed 

with a large safety factor of seven, and by modifying the size or number of bolts used 

Fig. 3.3 – CVCB dimensions. 
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(calculated to be the most significant limiting factor, with welds and quartz windows 

much stronger); this value could be significantly increased for further testing.  

 

A total of twelve ports were included in the CVCB wall to allow access for the various 

sensors and pipes necessary for system operation. Four ports were used by k-type 

thermocouples, two by ignition electrodes, and two had pressure transducers 

attached; one vacuum gauge readout, and the other a high frequency sensor (sections 

3.2.4 and 3.2.7 respectively). The remaining four lines were independently connected 

to the vacuum pump, exhaust, fuel supply manifold, and oxidant feed, with isolation 

valves used to separate the ports from the chamber when necessary. 

 

3.2.3 - Schlieren Imaging Setup 

High-speed capture of flame propagation was achieved through use of Schlieren 

cinematography, widely employed in the relevant literature (e.g. [99] [104] [122]). The 

technique utilises the change in refractive index resulting from variation in gas density 

[137], with Fig. 3.4 showing a schematic of the employed principle. 

 

 

 

 

 

 

 

Fig. 3.4 – Outline of the Schlieren imaging principle used in this study. 
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A converging mirror (Fig. 3.4 – (1)) is initially used to collimate a filament light source 

(Fig. 3.4 – (2)) through two of the diametrically opposed viewing windows. The region 

in the path of the light beam is the working area under study, which passes through 

the centre of the chamber and gases contained within (Fig. 3.4 – (3)).  A secondary 

reflection (Fig. 3.4 – (4)) is then used to focus the light beam onto an aperture (Fig. 3.4 

– (5)), where the refracted portion of the beam, unblocked by the knife-edge, focuses 

imperfectly prior capture by a high-speed camera (Fig. 3.4 – (6)).  

 

This process creates light intensity gradients influenced by variation in refractive index 

that result from changes in working gas density. Consequently, any shadowed or 

brightened edges resulting from combustion are isotherms indicative of a significant 

change in density, and therefore taken to be representative of the flame front 

boundary [99]. Fig. 3.5 gives some examples of Schlieren images. Firstly refracting light 

through the gases of a small butane torch, with (a), and without (b) the fuel burning 

(visible through the disparity in fluid densities between the fuel, and air it is released 

into), and secondly a typical spherical flame ignited from electrodes within the CVCB. 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 – Schlieren images of:   a) Burning butane.   b) Butane release.    

c) Spherically propagating flame 

a) c) b) 
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The light is focussed through a lens and captured by a charge-coupled device used in a 

Photron FASTCAM APX-RS high-speed camera. The specified filming rate was 

dependent on the fuel under investigation, and altered to pragmatically capture as 

many usable frames (effective data points) as possible. For slower flames the filming 

rate was adjusted to avoid excessively large video files. The increase in frame-rate is 

also limited by the image size, shutter speed, and in turn, the power and intensity of 

the light in the system [138]. Independent camera specifications are therefore 

discussed for the different results presented. The output from each test was a series of 

frames recorded in the form of a video file which were computationally scaled and 

processed, (described further in section 3.3.3 and 3.3.4). The timing of frame capture 

rate is controlled from the internal processor within the camera, and has a specified 

full scale accuracy of 0.005 percent. 

 

3.2.4 - Vacuum System 

A SCROLLVAC SC15D dry-scroll vacuum pump was used to evacuate the contents of 

the CVCB between each test at a nominal rate of 15 m
3
·h

-1
. The use of a dry scroll 

pumping mechanism was specified to avoid potential contamination resulting from the 

migration of oil vapour into the evacuated chamber, which can be experienced when 

using high-performance rotary vane alternatives [139]. The pump was sized to allow 

maximum pumping rate for available expenditure. A real-time value of the internal 

chamber pressure was given by an Edwards D35727000 ASG 0-2000 mbar sensor with 

a resolution of 0.1 mbar, and a full scale accuracy of ±0.2 percent. The pressure was 

read from a real-time Edwards D39700000 TIC instrument controller 3 head readout. 

This allowed use of internal partial pressure for control of fuel composition and air-fuel 

ratio, which is discussed further in section 3.3.2. The vacuum output and exhaust line 

were both connected to the laboratory extract ventilation system, mitigating risk of 

exposure to gaseous products or reactants. 
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3.2.5 - Gas Delivery and Mixing System  

Fuel and oxidiser were independently introduced to the chamber by means of needle 

valve control, allowing for fine adjustment of the internal partial pressures to the 

resolution of the gauge readout (0.1 mbar). Fuel valves were connected into a 

manifold using 1/4 inch stainless steel tubing, and attached to all specified cylinders. 

This meant multiple feeds could be used in a test, whilst occupying a single chamber 

port. The fuel manifold was also connected to a nitrogen supply that was employed to 

purge the system when necessary. Cylinder and gas quality specifications are described 

for each of the results presented. 

 

Adjacent internal fans were employed to blend the gases after filling to the required 

partial pressure mixture ratio. Fans were actuated by high temperature Portescap 

426SP 102 W motors installed externally to the chamber, and connected to a variable 

voltage supply. Rotary Viton fluoroelastomer o-ring seals were employed to maintain 

the vacuum seal on the motor shafts. These seals remain functional up to ~500 K; 

however require frequent replacement to ensure vacuum integrity is maintained as 

they deteriorate, particularly as chamber temperature is increased. Prior to each test, 

vacuum integrity was ensured by observing the sealed internal pressure readout for 

one minute, with any rise indicative of a leak, hence requiring necessary maintenance.  

Advent A2108 optical tachometers were installed and connected to the data 

acquisition system (section 3.2.7), so shaft rotational velocity could be monitored and 

controlled.  

 

3.2.6 - Temperature control system 

Reactant temperature was regulated by dual control through the utilisation of two 

monitoring systems. Firstly, eight external band-heaters and two k-type thermocouples 

were employed in a hardware PID control system, and enabled approximate regulation 

of the chamber temperature up to 400 K. Four larger bands were used to heat the bulk 

of the CVCB, with localised smaller heaters employed to avoid cold-spot formation on 

the viewing windows. The control system hardware employed two separate operating 
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circuits for each heater band size. A watlow EC12RG controller is used to specify the 

set point, with a Watlow HTLV-1LV used as an over-temperature alarm to cease heat 

provision in the event of failure. The alarm temperature was maintained at a set point 

of the system maximum: 400 K. The temperature readout from this primary system 

offers a resolution of ±1 K, and was not calibrated with sufficient accuracy. Therefore a 

second more accurate temperature monitoring system was developed, directly feeding 

two further thermocouples into the data acquisition system discussed in section 3.2.7. 

This system was calibrated using a combination of a high precision thermocouple with 

a Hart Scientific 9100 HDRC Dry Block Calibrator. The system software was developed 

to allow for precise live readout of chamber temperature, and was used to highlight 

when small manual adjustments to the primary system were necessary. The software 

also allowed real-time plotting of trends, and data to be logged for each test.  Analyses 

were performed to quantify any convective differential in temperature from the top 

and bottom of the viewing window, and were shown to be negligible. Considering the 

precision of the equipment used, an overall conservative estimate of the system 

accuracy was taken to be ±2 K. 

 

3.2.7 - Data Logging System 

The data logging system used on the CVCB rig is a National Instruments (NI) cRIO-9012, 

employing multiple series modules for several types of data input. The NI 9213 is a 16-

channel thermocouple module with built in cold-junction compensation. The two 

calibrated thermocouples of the secondary monitoring system discussed in section 

3.2.6 were connected here. A program was written in NI LabVIEW, to give real-time 

numerical and plotted data from the system. The program was specified to run using 

scan-interface architecture. This meant the software could be updated and asked to 

run without having to compile on the cRIO. The downside of employing this type of 

programming is that data capture rates are slower (specified at 10 Hz) than the 

alternative, but still sufficient for this application. Fig. 3.6 shows a snippet of the 

graphical programming code, and front panel; the output screen for control and data 

display. Full details of written programs are provided in Appendix A.4.1.  
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Fig. 3.6 – Code from temperature data capture system, with live readout expressed on the front panel. 
 

The second module used in the data acquisition system is a NI 9205 32 channel, ±10 V, 

analogue input block. Four channels were used by this unit; one for a high frequency 

pressure transducer, two for optical tachometers, and finally one from the output of a 

TTL pulse generator used for ignition timing. High-frequency data capture was required 

from this module and therefore a separate alternative piece of code was written. This 

time NI LabVIEW was programmed to access the Field-Programmable Gate Array or 

‘FPGA’. This system interrogates desired channels at specified higher frequencies, but 

requires compiling before operation, taking approximately 20 minutes. The program 

was written so data capture rates could be modified as required without the need for 

recompiling, however for the purposes of this work, capture rates were maintained at 

2 kHz.  The use of the two different programming methodologies (scan-interface and 

FPGA) in this way meant the cRIO could instantaneously switch between programs as 

required. Fig. 3.7 provides a snippet of graphical programming code and front-panel 

readout, this time for the FPGA code with full details provided in Appendix A.4.2. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.7 – Code from temperature data capture system, with live readout expressed on the front panel. 
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The employed pressure transducer was a 0-12 bar GE Unik-5000 0-10 V voltage output 

unit, integrated within the system to capture the pressure transients resulting from 

combustion. The transducer was calibrated using a DRUCK DPI 610 unit (details in 

Appendix A.7), and has a full scale accuracy of ±0.04 percent. The 0-6000rpm A2108 

optical tachometers were 0-6 V output, with a full scale accuracy of 0.5%. The real-

time display of fan speed was used when mixing the reactants prior to combustion. 

Finally the output from the 5 V TTL pulse generator, used to trigger a test, (see section 

3.2.8) was captured. This was to ensure the ignition point could be specified when 

analysing data streams.  

 

3.2.8 - Ignition system 

Capacitor discharge ignition was achieved through use of a variable voltage supply and 

auto-ignition coil. The system was developed from a similar process previously 

employed by Crayford [140] and Cameron [141], and is depicted schematically in Fig. 

3.8. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 – Schematic of the ignition system employed on the CVCB rig. 
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A total of seven capacitors were connected in parallel to give a summated theoretical 

capacitance of 2.79 µF, with the variable (0-350 V) supply held primarily at 250 V. 

Applying the equation shown in 3.16 gives an employed ignition energy of 

approximately 87 mJ. Use of a variable supply however, meant this value could be 

reduced for bespoke applications, or increased to a theoretical maximum of over  

170 mJ.   

 

2

VC
e

2⋅
=        (3.16) 

 

Ignition was triggered by a 5 V pulse from a Farnell PG102 TTL generator facilitating 

conduction of the system Thyristor, with voltage stepped up using an auto-ignition coil 

(ratio of 100:1) and ensuring the supply is large enough to break down the 2 mm spark 

gap. Energy stored in the system is rapidly discharged from the capacitors to the 

primary side of the coil, where it is stepped-up to a theoretical maximum of 35,000 V. 

This breakdown voltage is large enough to ionise the reactant gas contained within the 

gap, allowing for a spark to generate between the two electrodes.  

 

Fine, 1.5 mm diameter stainless steel electrodes were designed to have minimal 

influence on flame propagation, and were installed in the chamber at 45° to the plane 

of Schlieren image measurement. Electrode tips were ground to points in order to try 

and achieve more repeatable spark formation, with specially designed PEEK (Polyether 

ether ketone) shrouds included to insulate the electrodes from chamber walls, and 

allow for a compression vacuum seal to be maintained.  

 

The pulse generator was also connected to the high-speed camera and logging systems 

so video and data capture were also sequenced to the point of ignition. 
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3.3    Experimental Procedure and Data Acquisition 

 

3.3.1 - Step-by-step test methodology 

The initial detail in this section describes the employed experimental procedure, with 

further information regarding specific aspects of the methodology provided thereafter.  

 

1. Firstly, the CVCB rig and laboratory had to be set up according to the health 

and safety requirements as specified in the risk assessment and method 

statement. 

 

2. Once all necessary checks had been performed, the equipment was ready to 

establish the ambient condition of temperature required for the test. The 

primary heating control system was used to warm the CVCB to the approximate 

desired temperature. The secondary calibrated system was then employed to 

make any minor necessary adjustments to chamber temperature, and log the 

values recorded. At the start of a new testing regime the equipment was left on 

condition at the desired temperature for at least 30 minutes to ensure 

uniformity by overcoming the significant thermal inertia of the CVCB mass.  

 

3. Meanwhile the Schlieren optical system was initialised, with the camera set to 

the required specification of image size, frame capture rate, and shutter speed. 

The effective image darkness would be standardised against these 

specifications and light supply. A set of Vernier calipers were then used to scale 

the image generated by the camera, with section 3.3.4 providing more detail.  

 

4. At this time all other ancillary components of the rig were activated and tested, 

such as the ignition and mixing systems. 

 

5. The contents of the CVCB were then displaced by opening the isolation valve to 

the vacuum pump. Between each test, the CVCB was evacuated twice to 

remove the products of combustion from the previous experiment. The aim of 
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this was to minimise errors arising from an imperfect vacuum. The evacuation 

rate of the pump underwent exponential decay as chamber pressure 

decreased, meaning it took increasingly longer to reach lower values of 

pressure. Consequently, a compromise was reached whereby the chamber was 

evacuated to a minimum pressure of 15 mbar, which still allowed for at least 15 

tests to be performed per day. After removing the combustion products down 

to this value, the chamber would be filled to atmospheric pressure with 

compressed air, and then evacuated again. This meant that, assuming perfect 

mixing, the residual pressure remaining after the second evacuation could be 

added to the air fraction of the partial pressure calculation, with a resultant 

contamination error in the order of  0.225 mbar (or 0.02 percent for a 1 bar 

test).   

 

6. Once at the appropriate starting evacuated pressure, the chamber was ready to 

be filled with reactants and the gas cylinders were opened. The amount of fuel 

required for the corresponding equivalence ratio and starting conditions were 

controlled by filling to the appropriate values of partial pressure, with more 

detail of these calculations provided in section 3.3.2.  Firstly the required 

amount of Fuel was slowly introduced by fine needle valve control, allowing 

time for the vacuum gauge to settle out at a given value as the gas responded 

to chamber temperature. After the appropriate fuel pressure was achieved, 

oxidiser would be infused (again with fine needle valve control) into the 

chamber, to the total value required for the specified ambient condition.   

 

7. The reactants in the chamber were now mixed. The rotational speed of both 

fans was increased to approximately 1000 rpm, and operated at the speed for 

one minute. The faster and longer the fans were used, the sooner the 

rotational seals needed replacing. It was assumed that one minute of this 

intense operation combined with the high diffusive coefficients of the gases, 

would leave the reactants suitably well mixed. After the fans were stopped the 

reactants were left for a further 30 seconds to allow any residual turbulence to 

dissipate. When benchmarking the chamber, simple efforts were made to 
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determine the influence of mixing and settlement time by analysing the 

sphericity of an ignited flame. While it appeared that at 303 K approximately 15 

seconds of mixing appeared to suitably blend the reactants, this was increased 

to add in a large compensation factor. 

 

8. Prior to ignition, the FPGA data logging module would be engaged to capture 

the pressure transients from combustion and the camera primed to record. The 

chosen trigger mechanism in the camera software was specified as Random-

Centre; whereby the system would continuously record in a loop, and the 

eventual trigger point used to designate the centre frame. The initial rationale 

for this choice was to ensure none of the first frames in the video were missed 

from the point of ignition, however it transpired that this was an unnecessary 

precaution.  

 

9. With one final check that adequate safety regulations were being adhered to, 

and all isolation valves and gas cylinders closed, the pulse generator was 

triggered and the reactants ignited. Ensuring combustion had taken place (from 

live temperature readout), the exhaust valve would be initially opened to 

relieve any residual pressure, and then the vacuum pump activated to begin 

removing the hot gaseous products. 

 

10. With the contents of the chamber now evacuating in preparation for the next 

test, results in the form of the video file, temperature and pressure data were 

stored and replicated. The processing of results is covered in further detail in 

section 3.3.3. 

 

Minor modifications to the overall methodology were necessary as different tests were 

performed. These variations are detailed in the appropriate results chambers. 
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3.3.2 - Equivalence Ratio Calculation  

The employed method of controlling fuel to oxidiser ratio was by filling to equivalent 

values of partial pressure. The following is a simple derivation of the undertaken 

numerical process. The overall aim is to calculate the necessary values of partial 

pressure in terms of a specified total pressure (PT) and air-fuel ratio (AFRact), defined as 

the fraction of air (or oxidiser- o) to fuel (f  - mixture of all components within 

representative blend, including diluents) mass [27]: 
 

f

o
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m

m
AFR =        (3.17) 

 

Dalton’s Law of partial pressure states that the total pressure exerted by a mixture of 

constituent non-reactive gases is equal to the sum of the partial pressure exerted by 

each individual gas [143], or 
 

...kjiT PPPP ++=       (3.18) 

 

Gases in this derivation are treated as ideal, and therefore the partial pressure fraction 

for a gas mixture is the equivalent of the mole fraction (xi), viz: 
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Rearranging Eqn. 3.19 gives: 
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The mixture for the consideration of air-fuel ratio comprises fractions of fuel and 

oxidiser, so the total pressure equates to: 
 

ofT PPP +=        (3.21) 

 

Therefore, applying the relationship shown in Eqn. 3.20 gives Eqns. 3.22 and 3.23 for 

the respective fuel and oxidiser partial pressures. 
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The number of moles of fuel is equivalent to the fraction of fuel over molar mass (M), 

or: 
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So therefore, taking the example of fuel partial pressure and applying Eqn. 3.24, 3.22 

becomes: 
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substituting Eqn 3.17 gives: 
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which simplifies to give: 
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Similarly, applying the same derivation for the partial pressure of the oxidiser gives: 
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The solutions provided above are given in terms of a total required pressure, and 

perhaps counter-intuitively, do not require specification of the internal volume of the 

CVCB or gas temperature.  A comprehensive derivation of this process from first 

principles of the ideal gas law is provided in Appendix A.5 to mathematically 

demonstrate how these terms are negated. 

 

For the purposes of presenting work in this thesis, air-fuel ratios are normalised to an 

equivalence ratio [27], as shown in Eqn. 3.27: 
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where AFRstoich represents the air-fuel ratio required for stoichiometric combustion. A 

spreadsheet was created that calculated the required amount of oxidiser necessary for 

stoichiometric combustion of a given fuel mixture. With consideration to the 

investigated fuel mixtures, the sheet was initially designed for specification of blends 

comprising amounts of H2, CH4, CO, CO2, N2 and O2. The constituent mole fractions of 

the fuel mixture are provided by the user; with AFRstoich and the equivalent fuel molar 

mass calculated using Eqn. 3.28.   

 

∑
=

⋅=
n

1i

iif MxM        (3.28) 

 

The average fuel and oxidiser molar masses (specific values will be provided with each 

data set) were used with Eqn.s 3.25 and 3.26 to give an output of partial pressures 

necessary to meet a series of equivalence ratios, for a user-defined total pressure. As 

the testing regimes changed to investigate different fuel blends or pressures, the sheet 

was adapted accordingly. A list of all the coefficients and constants used in these 

calculations is provided in appendix A.2. 
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3.3.3 - Video Processing  

 

The high-speed video files recorded for each test were saved as a series of greyscale 

frames in .tif format. These frames were sequentially processed in order to measure 

the temporal rate of spherical flame growth. A code was written using MATLAB 

software to computationally analyse the video files, facilitating the rapid sequential 

processing of each large video file. Fig. 3.9 shows a screenshot example of the 

operational code. 

 

 

 

 

 

 

 

 

 

 

 

 

The script was continuously adjusted in accordance with several factors, including; 

slight adjustments in position, or the number of images being processed. However, the 

general operating algorithm remained the same. This algorithm has been illustrated on 

the following page in the form of a flow chart (Fig. 3.10), with a more comprehensive 

description of each step provided thereafter.    

Fig. 3.9 – Screenshot of the employed MATLB code. 
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Fig. 3.10 – Flow chart of employed MATLAB algorithm. 

1. Open video file 

directory, and load 

first image into 

program memory 

Is image the last in the 

video file? 

2. Run edge detection 

algorithm and store 

.  

3. Start loop and 

process next image 

with edge detection 

6a. Run vertical edge 

calculation 

 

6b. Run horizontal 

edge calculation 

 

7. Store value  

in data array 

8. Store data array  

as spreadsheet  

output 

4. Subtract image 

array from first 

5. Crop remaining 

pixel array 

YES 

NO 

START 

END 



3. Theory and Experimental Method 

 

 
                                                               - 71 - 

1. All program memory was cleared prior to opening the image file directory; allowing 

the software to now consecutively read each frame in the video folder from the 

beginning. Image filenames were saved with ascending numbers by the camera 

software, facilitating the sequential processing performed by the MATLAB code. The 

first, flameless image was accessed by the program memory, and served as the 

effective blank for the remainder of the frames processed in the loop.  

 

2. The system converted the greyscale intensity value of each pixel from the first image 

into a numerical array. Pixels were valued between zero (black) and one (white), and 

the Canny edge-detection algorithm was then employed by the software thus: Firstly, a 

Gaussian filter was passed over the image to remove any minor noise, represented by 

significant increases in pixel intensity over a small area. Practically this may materialise 

from dust settling on the camera lens or mirrors. The standard deviation of the 

Gaussian filter was kept at 1.4, although it was still possible for some noise to be 

retained in the image. The Canny algorithm then utilised the Sobel operator, whereby 

the horizontal, vertical and diagonal pixels are numerically compared. If the difference 

in pixel intensity exceeded a specified threshold value, an edge was assigned to that 

point. This threshold was typically in the range 0.08 - 0.15, depending on the image 

brightness and early strength of the flame front.  Edges were assigned in the numerical 

array as one, with all other pixels set to zero, converting the collection into a binary 

image. Fig. 3.11 gives examples of actual (a) and binary (b) images of a spherical flame, 

and demonstrates the effectiveness of the canny algorithm in designating edges.  

Fig. 3.11 – Schlieren and binary images of a spherical flame. 

 

a)  b)  
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Although requiring more light, the advantage of employing rapid shutter speeds meant 

clearly defined edges were generated by the Schlieren system, and therefore any 

changes to the sensitivity threshold were shown to not adjust the position of a well 

defined flame edge. This was tested, with the only significant impact seen on the first 

frames where edges were more indistinct, and these data was not used for the 

measurement process regardless due to the influence of ignition energy (chapter 3). 

Once the first entire binary image had been generated, it was stored in a separate 

array in the program memory for further processing. 

 

3. A loop was now started for the sequential processing of the remaining frames in the 

video file. The next frame in the sequence was loaded into a new memory array, and 

once again the edge detection algorithm applied. 

 

4. The first binary image was now numerically subtracted from the newly processed 

array, and stored again in the program memory under a different name. At any point 

where two corresponding pixels read one, the value reverted to zero, effectively 

removing any common edges such as those of the electrodes, or remaining image 

noise. Assuming the flame was moving fast enough, this theoretically leaves only the 

spherical outline in the stored array.  

 

5. The binary image of the spherical flame was now cropped to minimise the number 

of pixels to be subsequently processed by the program. The size of the cropped section 

was dependent on whether a horizontal or vertical diameter is processed.  

 

6. Measuring the diameter of the flame: The code exploited the find operator in 

MATLAB to search for any nonzero elements within a specified array. In the binary 

images these elements were pixels identified as flame edges and set to one in the 

cropped array produced in step 5. The indices of the first and last pixels were found 

using this operator, by counting sequentially downwards through each pixel column of 

the cropped section. If analysing a vertical diameter, the attained values were 

subtracted to return the difference between the two, giving a representative 

equivalent number of pixels. The numerical processing of horizontal edges was more 
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numerically complex, with the entire upper hemisphere analysed. In this instance the 

first and last indices were divided into the number of pixels in each column, and 

rounded up, thereby giving integers equivalent to the column number they appear in. 

These column numbers were then subtracted from each other to attain the number of 

pixels equivalent to the horizontal diameter.  

 

Both vertical and horizontal processing techniques were employed when analysing the 

data, with each having advantages. A minor limitation of using the vertical technique is 

that the cropped image has to be run through the flame centre, to ensure the 

maximum diameter was measured.  This meant fine adjustments and checks were 

necessary between processing each file. The technique was more limited when 

propagation was slow and therefore influenced by buoyancy, meaning the flame could 

begin to rise as it propagated. It is in these circumstances, the upper-hemisphere 

horizontally attained data were preponderant [143, 144]. However, the immediate 

limitation of this technique is that the diametric flame centre needs to be monitored 

to ensure it has risen above the electrodes, together with being more computationally 

intensive, and therefore taking longer. This is specified with the employed technique 

detailed in the apt results chapters. 

 

7. Whichever technique was used, the value attained for the number of diametric 

pixels in the flame was stored in a new dataset. As each new frame was processed, this 

dataset grew to give increasing values of diameter. This is in contrast to most of the 

other data stored in the program memory, which would be overwritten for each new 

frame. 

 

8. Once the final frame in the video was processed, the loop ceased and the diametric 

data set was exported from the software and saved into a spreadsheet. A sample of 

the working MATLAB code is provided in Appendix A.6. 
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3.3.4 – Image Scaling 

In order to accurately analyse the results of each high speed video file, a calibrated 

datum of scale had to be attained.  This was achieved by capturing individual frames of 

a calibrated distance, and computationally measuring the number of pixels. 

 

A digital set of Vernier callipers were used to prepare a range of distances, and 

photographed in the collimated beam of the Schlieren setup. Five different widths 

were prepared in the range of 5-25 mm, and five separate images captured at different 

positions in the viewing window. These positions were top, bottom, left, right and 

centre. This was completed for both horizontal and vertical scales, and repeated each 

time a new testing regime was started (any time equipment could have been moved or 

repositioned). The number of pixels per distance was attained by processing the 

individual images in the MATLAB program described in section 3.3.3. Photographs 

were transformed to binary images, following edge detection processing. This is 

demonstrated with an example image in Fig. 3.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.12 – Schlieren and binary scaling images. 

 

a)  b)  
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The configuration afforded a spatial resolution in the order of 0.14 mm per pixel. This 

meant the accuracy and resolution of the calibrated callipers was one order of 

magnitude greater than the pixel resolution of the camera, and therefore deemed to 

give a satisfactorily accurate measure of scale. The Schlieren equipment positioning 

was marked and always returned to the same approximate point, and consequently 

the measured scale, and order of variance in the values attained did not change at any 

point this calibration procedure was performed. Also, the callipers could be held at any 

spatial position within the collimated section of light and the recorded distance would 

not change. This provided an effective indicator that the light was suitably collimated 

in the Schlieren system. The exact scaling resolution is provided with apt results. 
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3.4    Chemical Kinetics Modelling 

 

3.4.1 – Software Operation Overview 

Computational models of chemical kinetics were employed to predict values of laminar 

burning velocity, and obtain the burned gas density necessary for the numerical 

processing described in section 3.1.5. The software package chosen to perform this 

task was CHEMKIN-PRO, developed by Sandia National Laboratories. This software is 

widely employed in analogous fields of research (e.g. [96] [102], [105]), and was 

programmed to perform one-dimensional premixed laminar calculations for the 

determination of flame speed. This employed configuration utilises PREMIX [145], a 

code for modelling the spatial profiles of temperature and chemical species 

throughout a steady-state laminar flame front.  

 

The employed operational algorithm uses a combination of the modified Newton 

method, and time integration to converge finite difference approximations of a given 

set of continuity and boundary equations. If the Newton method fails to converge, the 

solution estimate is integrated in time to provide a new datum, potentially within the 

field of convergence for the algorithm [146]. The conservation and state equations 

solved using this configuration are summarised below [96, 146].   
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In the continuity equation, 
.

M  represents the mass flow rate, ρ and u the respective 

mixture density and velocity, and A the stream cross sectional area, which by default is 

equal to unity. The energy equation introduces x, the spatial co-ordinate of the flame, 

together with thermodynamic properties such as; thermal conductivity (λ), isobaric 

heat capacity (CP), specific enthalpy (h), and the universal gas constant (R).  Many 

properties are defined in relation to a specific chemical species (k=1…K), for instance 

the mass fraction (Yk) or the diffusion velocity (Vk), with molecular weight defined for 

both individual constituents, and the mixture average (W ). 
.

k
ω represents the net 

chemical production rate resulting from the competition of all chemical reactions 

involving that species. The law of mass action is followed, and forward rate coefficients 

are obtained in the following Arrhenius form: 

 









⋅

−

⋅= TR

E

β
af

a

expTAk       (3.33) 

 

 

where Ea is the activation energy. Aa and β are the respective pre-exponential, and 

temperature factors defined for each chemical reaction [146a]. The flow chart in Fig. 

3.13 provides a graphic representation of the CHEMKIN PREMIX operational algorithm 

[146b]. 

 

Fig. 3.13 – CHEMKIN PREMIX operational flow chart. 
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3.4.2 – Reaction Mechanisms Overview 

PREMIX only provides the methodology to obtain a numerical solution, meaning all of 

the thermo-chemical properties described above have to be pre-processed by the 

software as a separate input. The data files used to do this typically list most of the 

known reactions leading to generation of intermediate species for the complete 

combustion of a given fuel. These reaction mechanisms are usually broken into three 

components; the first of which is the CHEMKIN interpreter input, which lists the 

elements and chemical species associated with all of the indentified reactions [147]. 

More significantly, the file also provides the Arrhenius factors defined above (Eqn. 

3.33) for each reaction. The second file can also form part of the interpreter, and 

contains the coefficients necessary to calculate most of the species’ thermodynamic 

properties from the form of NASA polynomials [148]. The final part of the reaction 

mechanism provides data on chemical transport properties, which are used to 

calculate the thermal conductivities and diffusion velocities of each species. For the 

premixed freely propagating configuration, the flame is modelled in one direction with 

no heat loss. Therefore, by applying attained values of burned gas density to Eqn. 3.12, 

adiabatic conditions must be assumed for the data, with a total spatial distance of 10 

cm maintained for designation of end point density for all models. 

 

Each reaction mechanism will be typically optimised to model combustion of a given 

fuel under specified ambient conditions, where the parameters defined above have 

usually been determined experimentally by different research institutions. An example 

of this is the GRI Mech 3.0 mechanism developed for chemically modelling the 

combustion of natural gas [149]. Details of the reaction mechanisms utilised in this 

study are supplied alongside appropriate results. The software could also be modified 

to run different specifications in the calculation procedure, for example using mixture-

averaged or multi-component transport properties, or numerically accounting for the 

Soret affect. Again, full details are provided with each model specification with the 

appropriate results.  
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Chapter 4. Benchmarking Experimental  

   Performance  
 

 

 
This chapter outlines the numerical process undertaken for analysing experimental 

results, employing CH4 to benchmark the attained values against data from analogous 

research literature. Results are evaluated for both linear and nonlinear optical 

methodologies, together with a comparison of the dynamic pressure measurement 

approach. The purpose of this work was to ensure the experimental procedure was 

precise and repeatable with respect to published data. Experimental and statistical 

uncertainties are then more comprehensively explored. 

 

 

4.1    Numerically Processing Experimental Data 

 
 

For this section, the numerical processing of a single test is described in detail.  This 

test was performed for the stoichiometric combustion of CH4 with air at ambient 

conditions of 303 K, and 0.1 MPa. Having computationally processed the test video file 

(recorded at 5,000 fps), the returned output is a series of growing pixel counts, which 

are then scaled to give a propagating Schlieren flame radius (rsch), as plotted in Fig. 4.1. 

 

Data up to a radius of 8 mm are neglected to mitigate the influence of ignition energy 

discharge, during initial stages of propagation. This follows the addition of a further 

safety factor to the 6 mm minimum suggested by Bradley et al. [99] (see Fig. 2.11a). 

Similarly data are only obtained up to a maximum radius of 39 mm (see section 3.2.2), 

to minimise the influence of confined reactant pressure rise. 
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Fig. 4.1 – Plotted radii of CH4/air spherical flame propagation.  
 

Third order polynomial regression is then used to fit a relationship to this plotted 

curve. The accuracy of fitting an association in this way can be evaluated by 

quantifying the root-square error between the returned temporal polynomial (rpoly) 

value, and each corresponding flame radius; 
 

 

( )2polyscherror rrr −=       (4.1) 

 

 

If these error data are plotted (as shown in Fig. 4.2 for the example), then it is evident 

that most discrepancies are smaller than the spatial resolution of the optical system 

(~0.14 mm), and the larger errors occur near the end points of the curve. Tahtouh et 

al. [103] also showed how the accuracy of applying polynomial regression in this way 

diminishes near the end points of the relationship. It should be noted that in the 

example presented here, the polynomial coefficients are obtained up to a minimum of 

ten significant figures [150], which was maintained for all tests performed. The 

coefficient of determination (R2 value) for this fit is 0.99998, and all corresponding 

values are provided with presented results. 
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Fig. 4.2 – Plotted error in obtained polynomial radius. 

 

As a consequence of the end point errors, the dataset is trimmed to encompass values 

only in the range 10 - 35 mm after the initial fit. For each flame radius a value of 

stretched flame speed (Sn) and corresponding stretch rate (α) are respectively 

obtained through differentiating the polynomial and applying Eqns. 3.1 and 3.4. The 

calculated changes in these parameters with flame growth are plotted in Fig. 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.3 – Plotted change in CH4/air (a) Sn and (b) α with time as the flame propagates. 
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It is evident from the plots shown in Fig. 4.3 that the positively stretched CH4 flame in 

this example accelerates as the flame grows, and the influence of stretch is reduced. In 

order to attain a representative unstretched flame speed, the relationship between Sn 

and α must be analysed further. Fig. 4.4 shows the two parameters plotted against 

each other. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.4 – Plotted CH4/air values of Sn against α. 

 

The two proposed theoretical relationships discussed in sections 3.1.3 and 3.1.4 can 

now be used with this dataset, in order to attain a representative flame speed 

uninfluenced by stretch (Su).  

 

 

4.1.1 - Linear Extrapolation Technique 

This technique uses the relationship presented in Eqn. 3.6 ( αLSS bnu ⋅=− ) in attributing 

a linear trend to the data, and extrapolating to conditions of zero stretch rate; 

inasmuch that the intercept corresponds to Su, and the gradient of the data -Lb. Thus, 

the method is simple to employ, by regressing a linear fit to the plotted data, and 

obtaining the required coefficients. Fig 4.4 shows the data previously presented with 

this linear relationship superimposed, and forecast to conditions of zero stretch. 
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Fig. 4.5 – Stoichiometric CH4/air values of Sn against α with linear relationship (Eq. 3.6)  

superimposed. 

 
 

Therefore the result of this sample test would yield a stoichiometric unstretched flame 

speed of 2778.1 mm·s-1 and a Markstein Length of 1.21 mm. In order to attain a value 

for the laminar burning velocity (uL) the adiabatic density ratio of products to reactants 

must be applied, as in Eqn. 3.12.  For this test the reaction mechanism employed to 

calculate the respective densities was the GRI-Mech 3.0 dataset [149], designed to 

model the combustion of natural gas.  Further details of the model specifications are 

provided in section 4.2.2.   

 

The obtained density ratio is equal to: 0.13493 

thereby giving a resultant uL of: 37.4 cm·s-1. 
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regression was used to fit the association to the plotted points. Ergo, Eqn. 3.10 was 

rearranged thus; 
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with any divergence from zero, summated as the dependent error used for regression. 

Consequently, the relationship was fitted to the dataset for the resolution of Su and Lb 

as variables, with the superimposed result shown in Fig. 4.6. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.6 – Stoichiometric CH4/air values of Sn against α with nonlinear relationship (Eq. 3.10) 

superimposed. 

 
 

This association yields an Su equal to 2730.3 mm·s-1 and an Lb of 0.86 mm.  

Applying the same density ratio as the linear method gives a resultant uL of 36.8 cm·s-1. 
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The improved accuracy of applying the nonlinear technique has been discussed by 

several authors for different fuels [104, 105], and its use has been ostensibly 

vindicated with obtained data that follows the curve of the suggested relationship. Fig. 

4.7a below is adapted from Kelley and Law [104], and shows n-butane data exhibiting 

this behaviour. The two different plots are shown for the same fuel to emphasise the 

influence of ignition energy during early flame growth, and confinement from the 

chamber walls. 

 

 

 

  

 

 

 

 

 

 

Fig. 4.7 – Plotted data to emphasise the curvature accounted for by the nonlinear relationship for both; 

(a) n-butane/air From Kelley and Law [104], and (b) CH4/air experimental results obtained for the Cardiff 

CVCB. 

 

In order for data to exhibit this trend, the flame must be heavily influenced by stretch 

(for greater curvature), with a low enough ignition energy to ensure the early stages of 

propagation are not overdriven by spark energy discharge. For the purposes of this 

work, the theory was tested with a rich CH4 mixture, and approximate ignition energy 
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4.1.3 - Pressure Measurement Technique 

High frequency pressure data were also obtained for the specified test, facilitating 

employment of the technique theoretically described in section 3.1.6. A methodology 

utilising chamber pressure differential has been adapted based on the work published 

by Dahoe and de Goey [133]. An overview of the temporal change in pressure resulting 

from the specified CH4/air test is plotted in Fig. 4.8. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.8 – Internal chamber pressure trace for the specified test. 

 

The employed methodology required trimming of this dataset to encompass values 

only in the range of 0.12 – 0.30 MPa, for initial change in pressure differential. This 

results from the estimated inapplicability of the governing equation outside this range, 

in addition to mitigating the influence of ignition energy and confinement effects. The 

trimmed dataset is plotted in Fig. 4.9. 
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Fig. 4.9 – Internal chamber pressure rise in the range 0.12 to 0.3 MPa. 
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The first pressure differential term was again obtained from the regressed polynomial 

of a curve fitted to the dataset shown in Fig. 4.9. The second term (encompassed in the 

large brackets) was calculated for each plotted data point, with change in mass 

fraction (xm) attained using Eqn. 3.15 and the maximum observed pressure reading 

(Pe).  The ideal isentropic expansion factor (γu) was calculated using the molar fractions 

of the entire reactant mixture, with reference values obtained from polynomials 

available from the NIST database [151] (all reference values are available in Appendix 

A.2). A value for uL was then attained through nonlinear regression, minimising the 

squared error between terms and summated for the entire dataset. This resulted in a 

regressed uL of 34.99kcm·s-1. This value is lower than the corresponding figures 

obtained from the employed optical methodologies, with possible explanations 

resulting from heat loss in measurement, or the methodology not accounting for the 

influence of stretch on flame speed. 
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Table 4.1 summarises the values (Ø = 1) obtained from each methodology, and 

compares them to analogous published CH4/air data obtained from a range of 

experimental configurations. 

 

Table 4.1 – Stoichiometric laminar burning velocities from this work and published values (cm·s
-1

). 
 

L NL P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 M 

37.4 36.8 34.9 37.8 36.8 35.0 35.0 36.2 36.3 38.8 36.0 36.3 36.7 34.5 41.1 37.6 40.0 37.7 

 

Table Key 

 
This work: 

 L – Linear optical method, NL – Nonlinear optical method, P – Pressure method. 

 

Bomb measurements: 

1 – Bradley et al. [99] 300 K, 0.1 MPa, linear optical technique. 

2 – Gu et al. [102] 301 K, 0.1 MPa, linear optical technique. 

3 – Halter et al. [105] 300 K, 0.1 MPa, nonlinear optical technique. 

4 – Hassan et al. [152] 298 K, 0.1 MPa, linear optical technique. 

5 – Hu [153] 303 K, 0.1 MPa, linear optical technique. 

6 – Taylor [113] 298 K, 0.1 MPa 

 

Counter flow flame technique:     Heat flux technique: 

7 – Vagelopoulos and Egolfopoulos [107] 300 K, 0.1 MPa.  9 – Hermans [154] 298 K, 0.1 MPa. 

8 – El-Sherif [155] 300 K, 1 atm.     10 – Coppens et al. [156] 298 K, 0.1 MPa. 

 

Bunsen burner technique:     Flat flame technique: 

11 – Kurata et al. [108] 303 K, 0.1 MPa.    12 – Haniff et al. [157] 298 K, 0.1 MPa. 

 

Pressure measurement technique: 

13 – Stone et al. [158] 298 K, 0.1MPa  14–Dahoe and de Goey [133] 298 K, 0.1 MPa. 

 

Model: 

M – CHMEKIN-PRO: GRI -Mech 3.0 reaction mechanism. 303K, 0.1 MPa (see section 4.2.2) [149] 

 

 
 

Data from the three tested methodologies all sit within the range of published values 

shown in table 4.1. However, if the chamber performance was to be more 

comprehensively benchmarked, then experimental repeatability and variation in 

equivalence ratio needed to be analysed further. 
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4.2    Fully Benchmarking CH4 Combustion  

A detailed study was undertaken to further validate the performance and repeatability 

of the experimental method, and subsequent data processing techniques. Three 

repetitions of eleven equivalence ratios in the range 0.75 - 1.25 were tested for CH4/air 

combustion, under initial ambient conditions of 303 K and 0.1 MPa, and frame capture 

rate of the optical system maintained at 5,000 fps. Fig. 4.10 provides an illustrative 

comparison of the difference in radial propagation rates for four samples of tested 

equivalence ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.10 – Comparison of radial propagation rates for different equivalence ratios. 

 

Figs. 4.11 and 4.12 show typical plotted Sn against α data for respective lean to 

stoichiometric, and stoichiometric to rich conditions (separated for clarity). The linear 

and nonlinear optical relationships of sections 4.1.1 and 4.1.2 have been applied, and 

superimposed onto each curve. 
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Fig. 4.11 – Samples of plotted CH4/air Sn against α data, for lean to stoichiometric equivalence ratios. 

 

Fig. 4.12 – Samples of plotted CH4/air Sn against α data, for rich equivalence ratios. 
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At lower equivalence ratios in Fig. 4.11 only a small difference in intercept points (or 

equivalent Su) is evident using either the linear or nonlinear techniques. The 

propagation of richer flames becomes increasingly influenced by stretch (as 

highlighted by a steepening of the data gradient), and the difference in representative 

Su between each methodology widens, as nonlinear effects become more influential. 

This is seen to continue in Fig. 4.12, and suggests a tendency of increasing Lb with 

equivalence ratio, consistent with previously observed trends (e.g. [99], [102], [105]). 

Fig. 4.13 shows the experimental scatter seen in obtained values of Su (for both 

methodologies) for each of the three performed repetitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.13 – Experimental scatter seen in obtained values of Su for each of the optical methodologies. 
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averaged, then the entire Su dataset has dispersion in the order of one percent for 

either optical technique.   

 

4.2.1 - CH4/air Markstein Length 

Fig. 4.14 shows the equivalent scatter observed for values of Lb attained from both 

optical methodologies. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.14 – Experimental scatter seen in obtained values of Lb for each of the optical methodologies. 

 

The aforementioned (section 4.1.2) difference in Lb measured between each 

methodology is shown to increase with richness, and is in agreement with previous 

work [105]. Again, this is attributed to overestimation of the stretch influence induced 

by the linear methodology. There also appears to be a higher relative dispersion in the 

Lb data, with a respective averaged standard deviation of four and five percent, for the 

linear and nonlinear techniques. Fig. 4.15 shows a comparison of averaged Lb data 

obtained from this work, with those published by other researchers. Details of the 

ambient temperature and specified technique are provided for each dataset.  
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Fig. 4.15 – Comparison of average Lb values from each optical technique with data from literature. 

 
There appears to be a relatively poor correlation between any of the published Lb data 

from different institutions, with the work conducted for this study enclosed within the 

scatter of the displayed values.  Nevertheless, data attained using the nonlinear 

methodology display a closer correlation to equivalent tests.  

 

All data exhibit the same trend for rising Lb with equivalence ratio, indicative of an 
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4.2.2 - CH4/air Laminar Burning Velocity 

In order to convert the optically measured unstretched flame speed to a 

corresponding value of uL, it was first necessary to attain values of adiabatic density 

ratio for the entire dataset.  As with the stoichiometric case (section 4.1.1 - 4.1.2), 

these were obtained by employing the GRI-Mech 3.0 [149] reaction mechanism in 

CHEMKIN-PRO. GRI-Mech 3.0 employs 53 chemical species with 325 reactions, and has 

been similarly used in many of the studies benchmarked for experimental comparison 

[102]. Solutions were based on an adaptive grid of 1000 points, with mixture averaged 

transport properties and trace series approximation. The oxidiser specified for the 

model was a simple 79/21-N2/O2 air composition. The obtained density ratios are 

plotted in Fig. 4.16.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.16 – Values of adiabatic density ratio obtained from GRI-Mech 3.0 in CHEMKIN-PRO. 

 
 

Where published data was available, a direct comparison was made between average 

measured Su values from the Cardiff CVCB, shown in Fig. 4.17. A corresponding 
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Fig. 4.17 – Comparison of attained Su data with selected values published in literature. 
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Fig. 4.18 – Comparison of attained uL data with selected values published in literature. 
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Where necessary, some values displayed in Fig. 4.17 have been calculated using the uL 

and density ratio data presented by the stated authors. There appears to be a good 

correlation between the data measured in the Cardiff CVCB and those previously 

published, particularly around peak flame speeds. This trend is continued in Fig. 4.18 

where the spread of the faster published data is smaller than under the leanest and 

richest conditions. The values returned from the use of either optical methodology are 

in very good agreement with numerical results given by the chemical model, and show 

a peak uL at an approximate equivalence ratio of 1.05.  This is also in agreement with 

the majority of analogous data, some of which has been obtained using alternative 

flame configurations. For example, close correlation is shown with the heat flux 

(section 2.3.3b) work of Hermanns [154] and similarly data presented by Vagelopoulos 

and Egolfopoulos [107] who utilised a counterflow technique (section 2.3.3d).  

 

The biggest disparities in the presented data result from the use of lesser employed 

techniques, such as the pressure method of Dahoe et al. [133], or the Bunsen flame 

used by Kurata et al. [108] where uL is presented to peak under richer conditions. 

There is also a negative offset between the Cardiff optical data, and those obtained 

using the stated pressure method. Interestingly this appears to worsen under the 

richest conditions, and therefore could result from an underestimation induced by not 

accounting for the heavier influence of flame stretch. This argument is strengthened 

by the deceleration that results from increasing stretch rates for the presented data, 

however contrary to this, the work of Dahoe et al. [133] appears to provide an 

overestimation of the representative values. The authors suggest the stated 

methodology is useful for providing an approximate depiction of trends, opposed to 

exact quantification of desired values, particularly when use of the optical 

methodology is not possible (studying dust explosions for example). Consequently, 

data presented herein will only result from the vindicated use of either optical 

method. 
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4.2.3 - Change in Ambient Temperature 

The benchmarking work undertaken thus far has demonstrated good overall 

agreement between published, modelled, and attained experimental data, potentially 

vindicating use of the employed methodology. However, a further significant 

contributory parameter in the determination of uL is ambient temperature (T) of the 

unburned reactants. The author deemed it necessary to investigate change in initial T 

to ensure control of this parameter was accurate enough to be in comparable 

agreement with corresponding data. Three repetitions of five equivalence ratios were 

tested in the range 0.8 - 1.2, at ambient conditions of 358 K, and 0.1 MPa. Fig. 4.19a 

gives examples of the measured relationship between stretch rate and flame speed, 

with 4.19b providing average Lb plotted for the dataset. It should be noted that only 

the linear optical methodology is shown for this regime, as was the same in the small 

amount of comparable literature data. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19 - CH4/air experimental parameters of Sn against α (a), and resultant change in Lb (b) at elevated 

temperature. 
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uL. Fig. 4.20 shows the average experimental values plotted against comparable data 

from research literature, and the chemical model output.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.20 – Comparison of average uL values for CH4/air experiments at elevated temperature. 

 
There is once again favourable agreement between the attained experimental values, 

model and the limited dataset. The most significant difference is shown between the 

data and values presented by Liao et al. [159], however it should be noted that this 

work was performed for a natural gas composition comprising 97 percent CH4 with a 

balance of higher hydrocarbons and nitrogen.  
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4.3    Exploring Experimental Uncertainties  
 

The approach made to quantifying experimental uncertainty was developed from the 

method outlined by Moffat [160]. Parametric fluctuations are combined with statistical 

ambiguity to form a total uncertainty estimate for each unstretched flame speed (USu), 

as defined in Eqn. 4.4. Where BSu represents the total bias uncertainty, tM-1,95 Student’s 

t value at a 95 percent confidence level [161] for M-1 degrees of freedom, and M the 

number of experimental repeats. This is combined with the corresponding 

experimental standard deviation (σSu). 
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+= −         (4.4) 

 

Uncertainty has been quantified for Su opposed to uL, because this is the parameter 

that is experimentally measured. The uncertainty associated with computationally 

determining an applicable density ratio is discussed separately with apt results.  

 

4.3.1 - Influences On Total Bias Uncertainty 

BSu quantifies systematic influences by combining the relationship between changes in 

Su for an independent variable (vi, for example temperature), and the fixed error in 

that variable (yi), as shown in Eqn. 4.5: 
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So if the influence of temperature on stoichiometric unstretched flame speed is taken 

for example:  With a change of 1 K in ambient reactant temperature, obtained results 

suggest a difference in Su of approximately 8.4 mm·s-1. The level of accuracy outlined 

for the temperature control system is ±2 K (see section 3.2.6), leading to a systematic 

uncertainty of approximately ±16.8 mm·s-1. In this example the relationship between 

Su and temperature was established from experimental data, however whenever this 

was not possible (for instance; change in ambient pressure), then estimations were 

made from apt chemical models.  
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The following systematic uncertainties were included for calculation of the total bias, 

with example values outlined for the case of stoichiometric CH4/air combustion. 

 

Ambient Temperature: 

 

As stated above, experimental data were used where possible to obtain this value, and 

applied with the specified error in the thermal system (±2 K). The stoichiometric CH4 

case has an estimated uncertainty in Su of ±16.8 mm·s-1. 

 

Ambient Pressure: 

 

Experimental (when available), or modelled data were used to give an estimated 

influence of ambient pressure. For the CH4 case this was equivalent to ~1 mm·s-1 per 

0.1 kPa fluctuation. The accuracy of initial pressure measurement was also specified as 

±0.05 kPa. This value is conservative, with the system regulated to 0.01 kPa, but 

engrossed to compensate for the manual control of needle valves and applicability of 

the applied model. Nevertheless, the influence of pressure is small, introducing an 

example uncertainty of ±0.5 mm·s-1. 

 

Equivalence Ratio: 

 

A relationship was fitted with the attained experimental data to numerically quantify 

the influence of uncertainty from specified equivalence ratio. As the mixing system 

was controlled by partial pressure, the same order of error was applied (±0.05 kPa). 

For the case of stoichiometric CH4, the required fuel partial pressure for a 0.1 MPa test 

was 9.5 kPa, and applying the error factor gives a resultant range in specified 

equivalence ratio of ~0.994-1.006. This results in an Su uncertainty of either ~2715-

2746 mm·s-1, or ~2757-2788 mm·s-1, for respective use of nonlinear and linear optical 

methodologies. Because the order of difference is the same (~30.8 mm·s-1), only 

specification of one methodology was required with each equivalence ratio, giving an 

example resultant uncertainty of ±15.4 mm·s-1. As this error has been significantly 

increased from the overcompensated pressure inaccuracy, it is also specified to 

encompass uncertainties resulting from the compressibility of gases used, and the 
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ideal assumption employed in the mixture calculation. The quantity of this uncertainty 

is heavily influenced by the specified equivalence ratio, with errors minimised at near 

peak conditions. 

 

System Optics: 

 

The spatial resolution of the produced digital image is ~0.14 mm per pixel, giving 

potential for fluctuation in the order of ±0.07 mm for every time step. The error 

induced from polynomial fitting, was also of this order, so to introduce a compensative 

factor, the fluctuation was doubled back to 0.14 mm. Applying this value with the 

filming rate of the camera (5,000 fps for this study), gives an initial uncertainty of: 

0.14/0.0002 = 700 mm·s-1. As this uncertainty is applied to the entire dataset, the value 

is averaged across the number frames used for measurement (in this instance 64, 

giving ~11 mm·s-1).   

 

This uncertainty is increased by twenty percent to account for any error induced 

through calliper calibration (to give ±13.2 mm·s-1 for the CH4 example). Although the 

callipers have a resolution and accuracy of better than an order of magnitude when 

compared with the system optics, this value was doubled to introduce a further factor 

of compensation. Taking the CH4 test as an example, the inaccuracy in filming rate was 

specified as 5,000 ±0.25 fps, and when applying this factor to the approximate 

measured flame speeds, there was a resultant error in the order of 0.01 percent. 

Consequently, this part of the optical error was deemed negligible enough to ignore 

for the purposes of uncertainty calculation. Optical uncertainty was derived to each 

test for individual specifications of filming rate, and number of frames obtained. 

 

Gas Mixture Quality: 

This uncertainty is specified to account for the errors resulting from imperfect vacuum, 

and purity of the employed fuel. An effective worst case flame speed of zero is 

assumed from the gaseous impurity, and applied in proportion with the corresponding 

fraction. So for example, the employed CH4 purity was 99.9 percent [162], and 

therefore the resultant uncertainty in flame speed (approximate Su rounded up from 
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the average of the linear and nonlinear methodologies) is approximately ±2.8 mm·s-1. 

The error resulting from imperfect vacuum (0.02 percent, section 3.3.1) is added to this 

to give a mixture uncertainty of 0.12 percent:  ±3.3 mm·s-1. (Note: application of the 

error calculation in this way assumes an impurity that will not accelerate flame speed 

by a greater quantity than the opposing zero assumption). 

 

4.3.2 - Example Uncertainty Calculation For Stoichiometric CH4 

Calculating the rms of all of the systematic uncertainties in section 4.3.1 gives an 

example total bias uncertainty, and is applied to data obtained from either 

methodology: 

 

 

22222
Su 3.3213.215.40.516.8B ++++=  = ±26.5 mm·s-1 

 

 

The standard deviation of the stoichiometric CH4 data (M=3) was 13.8, and 11.3 mm·s-1 

for the respective linear and nonlinear data. The t value at a 95 percent confidence 

level for M-1 repeats is 4.303 [161], giving stoichiometric USu values of: 
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or the approximate equivalent of ±1.5%. 

 

 

4.3.3 - CH4 Dataset Uncertainty 

The calculative procedure undertaken in section 4.3.2 has been employed for the 

entire CH4/air dataset, with resultant uncertainty shown with error bars in Fig. 4.21. 

The spread of data obtained using the linear technique is shown, with ±USu shown 

from the average value. 
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It is evident from Fig 4.21, that as peak conditions are approached and the 

corresponding BSu values reduce, there is an overall trend for the USu range to 

compress. This is approximately shown with the spread of data, and more variation 

present at leanest and richest conditions. Consequently, the order of uncertainty 

increases from 1-2 percent at peak conditions, to 5-6 percent of the corresponding Su 

values at the extremities of the curve. There are exceptions to this overall trend 

shown, for example with data at Ø = 0.95, and 1.1, where some comparatively 

spurious points have increased the standard deviation of the data, and consequently 

the calculated values of USu.  It should be noted that whilst uncertainty values are 

presented for Su, a corresponding value in Lb has not been determined. This was 

because the calculations required to determine the effect of the systematic influences 

on BSu were deemed potentially too inaccurate to give worthwhile values. As a 

consequence, Lb data presented in the rest of this research dissertation have 

superimposed error bars to represent only standard deviation of the data.  
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Fig. 4.21 – Linear unstretched flame speed of CH4/air experiments with superimposed uncertainty. 
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Fig. 4.22 shows the corresponding uncertainty values for the higher temperature CH4 

tests. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.22 – Linear unstretched flame speed of CH4/air experiments with superimposed uncertainty at  

358 K. 

 

4.4    Summary 

 
The benchmarking work presented in this chapter demonstrates that optical results 

obtained from the Cardiff CVCB are in sufficient agreement with corresponding data in 

the research literature, particularly with esteemed and well referenced works 

employing similar methodologies. Use of the system for the designated 

characterisation of steelworks gases was therefore deemed by the author to be 

satisfactorily vindicated on the basis of produced result quality. 

 

Variation in the values obtained from either optical methodology was shown to be of 

the same order as quantified systematic and statistical uncertainties. Therefore, in 

order to avoid confusion, plotted results herein will be presented predominantly using 

the nonlinear technique, because of the perceived accuracy increase when employing 

this relationship with highly stretched flames. Full linear datasets will however; be 
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provided for all experimental tests. Furthermore, because of the spread in obtained Lb 

values between each methodology, and corresponding data presented in the relevant 

literature (section 4.2.1), results will be primarily analysed for overall trend of stretch 

influence, opposed to exact quantification of precise values. 

 

Appendices B.1 and B.2 provide details of the experimental results obtained and 

described in this chapter. Full test specifications are provided, together with returned 

individual and averaged values. Furthermore, the employed fuel partial pressure is 

tabulated for each equivalence ratio, together with the coefficient of determination 

for each specified polynomial fit.  Results from the three employed methodologies are 

distinguished, together with the modelled values, and coefficients obtained for 

quantifying the apt levels of uncertainty (total bias, and standard deviation). 

Therefore, with chamber use benchmarked in this way, one fundamental objective 

body of work was completed. 
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Chapter 5. BFG H2 Variation -  

Atmospheric Conditions 
 
 

 

Having benchmarked CVCB experimental performance with CH4, work was now 

undertaken to characterise the specified steelworks gases.  This chapter focuses on 

potential variability in the combustion of BFG resulting from compositional variation.   

 

5.1    Chapter Introduction 

 

 
As discussed in Chapter 2. BFG is the most abundant of the steelworks gases, with an 

inherently variable composition that is dependent on operational specifications 

employed by the furnace. The heavily dilute makeup of the fuel suggests the relative 

influence of changes in composition will be exaggerated depending on the fluctuation 

of specific constituents. For instance, a proportional decrease and increase of 

respective preponderant CO2 and N2 levels would potentially not influence 

performance as much as other constituents. Conversely, small changes in H2 fraction 

could not only influence fuel calorific value, but potentially provide a higher relative 

fluctuation in combustive properties such as laminar burning velocity.  The aim of this 

section of work was to investigate this fluctuation to values representative of those 

experienced in production. 

 

Research literature suggests that the most influential of the relevant fuel components 

on flame speed is H2 [94], and was therefore investigated to effective worst case 

conditions: Inasmuch that H2 fraction of the fuel was increased, with the other 

constituents displaced in proportion. This is ostensibly representative of the behaviour 

between H2 and diluent fractions when changes are made to GCI rates (see section 

2.1.3 [163]). It was important to quantify the effect of this compositional fluctuation 

over a small range, as it has been shown by other works [109, 111] that the influence 
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on flame speed exponentially increases with H2 addition (Fig. 2.12). Mixture laminar 

burning velocities, and Markstein lengths were characterised with changes in both 

composition and equivalence ratio, for combustion with air.  

 

5.1.1 – Defining Experimental Parameters 

A certified molar composition of CO-23.07%, CO2-23.35%, and N2-53.58% was used as 

the foundation BFG composition employed for this section of the study. H2 was 

introduced in the range of 1-7 % to test four effective BFG mixtures, with the makeup 

of each individual blend detailed in table 5.1. 

 

Table 5.1 – Dry BFG compositions employed in this part of the study. 
 

 

 

 

 

 

 

Three repetitions of nine equivalence ratios in the range 0.7 – 1.5 were tested for 

ambient conditions of 303 K and 0.1 MPa. It was estimated from chemical models that 

this range should provide a characteristic peak in uL for the given mixtures. The purity 

of the specified H2 grade was >99.995%, and was employed with compressed air 

having a volumetric moisture content of <0.02 percent. Camera filming-rate was also 

reduced to 3,000 fps.  This was a pragmatic decision taken to avoid the storage of 

excessively large video files (at 3,000 fps videos were up to 400 MB, with over 100 

tests performed for this experimental phase alone). Even with this reduction in filming 

rate, the associated uncertainty is improved relative to the CH4 work, with the number 

of usable frames processed increased by a factor of around four (see section 4.3.1 for 

further details).   

FUEL BLEND (Molar Fraction) 

Blend 1 2 3 4 

H2 0.01 0.03 0.05 0.07 

CO 0.2284 0.2238 0.2192 0.2145 

CO2 0.2312 0.2265 0.2218 0.2172 

N2 0.5304 0.5197 0.5090 0.4983 
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5.1.2 – Adaptations to the Experimental Methodology 

The methodology for filling the chamber with fuel had to be adapted to ensure that 

the specified mixture and equivalence ratio were both correct. For this, the previously 

employed partial pressure methodology was slightly adapted: 

 

− Firstly, the necessary values of fuel and oxidiser partial pressure were 

calculated for each required equivalence ratio of the four compositions 

specified in Table 4.1. If stoichiometric combustion of the 1% H2 mixture is 

taken as an example, the respective pressures for fuel and oxidiser are 63.8 and 

36.2 kPa.  

 

− The H2 partial pressure was then calculated as a fraction of the full fuel value, 

so in the example this equates to 0.638 kPa. H2 was subsequently released into 

the chamber until this value was met.  

 

− The chamber was then filled with the foundation BFG mixture to the required 

fuel partial pressure (63.8 kPa in the example), with oxidiser subsequently 

charged to the specified ambient condition (100 kPa). This method introduced 

further experimental uncertainty, and is discussed further in Section 5.2.3, with 

specified partial pressure values provided with tabulated results in Appendix 

B.3 

 

5.2    Results 
 

Results were again obtained in the form of Schlieren greyscale video files, with a series 

of example frames shown for a stoichiometric 7% H2 mixture in Fig. 5.1. In an attempt 

to minimise the influence of buoyancy on attained results, radial flame growth was 

quantified from only the rate of horizontal propagation [143, 144]. 
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Fig. 5.1 – Example Schlieren images of BFG flame growth (time-step = 0.01333 s). 
 

Fig. 5.2a shows examples of the difference between stoichiometric flame propagation 

rates for each of the tested BFG mixtures. The 7% H2 composition has been used to 

provide a further illustrative comparison of radial growth between two equivalence 

ratios in Fig. 5.2b. This is shown with two mixtures of similar flame speeds to highlight 

the subtle influence of flame stretch on propagation, which is more prominent when 

flame radii are small. There are contrasting inflections near the base of each curve, 

suggesting Markstein lengths of opposing signs.   

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.2– Examples of BFG radial flame growth. 

 

 

5.2.1 – Relationship between Flame Speeds, Stretch Rates and Markstein  

   Lengths 
 

Having fully processed the dataset, Fig. 5.3 – Fig. 510 show examples of the plotted 

relationships between Sn and α, with superimposed nonlinear associations for each 

equivalence ratio of the four tested compositions. 
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Fig. 5.3 – Samples of plotted 1% H2 BFG/air Sn against α data, for Ø = 0.7 - 1.1. 
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Fig. 5.4 – Samples of plotted 1% H2 BFG/air Sn against α data, for Ø = 1.2 - 1.5. 
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Fig. 5.5 – Samples of plotted 3% H2 BFG/air Sn against α data, for Ø = 0.7 - 1.1. 
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Fig. 5.6 – Samples of plotted 3% H2 BFG/air Sn against α data, for Ø = 1.2 - 1.5. 
 



5. BFG H2 Variation – Atmospheric Conditions 

 

 

                                                               - 112 - 

0 20 40 60 80 100 120 140 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

Ø = 1.1 

Ø =  1 

Ø = 0.9 

Ø = 0.8 

Ø = 0.7 

 

5% H2 

T = 303 K 

P = 0.1 MPa 

 

0 20 40 60 80 100 120 140 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

Ø = 1.2 

Ø = 1.3 

Ø = 1.4 

Ø = 1.5 

 

5% H2 

T = 303 K 

P = 0.1 MPa 

 

S
tr

e
tc

h
e

d
 F

la
m

e
 S

p
e

e
d

 -
 S

n
 (

m
·s

-1
) 

 

S
tr

e
tc

h
e

d
 F

la
m

e
 S

p
e

e
d

 -
 S

n
 (

m
·s

-1
) 

 

 
Stretch Rate - α (s

-1
) 

 

 
Stretch Rate - α (s

-1
) 

 

Fig. 5.8 – Samples of plotted 5% H2 BFG/air Sn against α data, for Ø = 1.2 - 1.5. 
 

Fig. 5.7 – Samples of plotted 5% H2 BFG/air Sn against α data, for Ø = 0.7 - 1.1. 
 



5. BFG H2 Variation – Atmospheric Conditions 

 

 

                                                               - 113 - 

0 20 40 60 80 100 120 140 160 180 200 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Ø = 1.2 

Ø = 1.3 

Ø = 1.4 

Ø = 1.5 

 

7% H2 

T = 303 K 

P = 0.1 MPa 

 

0 20 40 60 80 100 120 140 160 180 200 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

Ø = 1.1 

Ø =  1 

Ø = 0.9 

Ø = 0.8 

Ø = 0.7 

 

7% H2 

T = 303 K 

P = 0.1 MPa 

 

 
Stretch Rate - α (s

-1
) 

 

 
Stretch Rate - α (s

-1
) 

 

S
tr

e
tc

h
e

d
 F

la
m

e
 S

p
e

e
d

 -
 S

n
 (

m
·s

-1
) 

 

S
tr

e
tc

h
e

d
 F

la
m

e
 S

p
e

e
d

 -
 S

n
 (

m
·s

-1
) 

 

Fig. 5.9 – Samples of plotted 7% H2 BFG/air Sn against α data, for Ø = 0.7 - 1.1. 

Fig. 5.10 – Samples of plotted 7% H2 BFG/air Sn against α data, for Ø = 1.2 - 1.5. 
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Similar trends are evident across all of the presented datasets. A positive gradient 

demonstrates acceleration in flame speed with stretch rate and corresponds to a 

negative value of Lb; it is apparent that as mixture equivalence ratios increase, 

gradients level out before eventually turning negative. This indicates that under richest 

conditions the most heavily stretched flames lose more heat to the surrounding 

reactants in proportion to mass diffusion, and corresponds to Lewis numbers greater 

than one [27]. This characteristic is evident in the plotted values of Lb, as shown in Fig. 

5.11 (hollow grey points representing results of individual tests, with the averages 

larger and coloured). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.11 – Changes in Markstein length with equivalence ratio for each of the tested BFG compositions. 
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conduction, and Lewis numbers of less than one, particularly with heavy diluent 

addition [123]. Nevertheless, the influence of flame stretch on propagation is 

marginally less significant when compared with CH4 (section 4.2.1), and more so, other 

hydrocarbons [104, 119], with BFG near equidiffusive around stoichiometric conditions 

for all tested compositions.  

 

The average observed standard deviation of Lb in experimental data is of the same 

order for all compositions: ~0.06–0.08 mm for the nonlinear relationship. Whilst not 

presented in the figure, the difference in Lb between the linear and nonlinear 

relationship is smaller than with CH4 (as stretch effects are weaker), but nevertheless 

still significant under leanest and richest conditions. It can be seen that whilst the 

magnitude of nonlinear Lb is always smaller for positive values, data become more 

negative for values < 0, and the gradient effectively increased. This is the opposing 

effect evident for the increasingly positive values of Lb in section 4.2.1, and should be 

expected given the curvature of the data. To emphasise this, the two illustrative 

relationships are shown for example datasets in Fig. 5.12. 

 

 

 

 

 

Fig. 5.12 – Illustrative example of the difference in slope between linear and nonlinear relationships with 

positive and negative Lb.  
 

It should however be emphasised that the observed effect was minimal, as the 

influence of stretch on flame speed was small for the given mixtures, with all apt linear 

and nonlinear values provided in Appendix B.3. More significantly, change in fuel H2 

demonstrates the possibility for opposing influences on burning velocity (either 

acceleration, or deceleration resulting from flame stretch), depending on the 

equivalence ratio employed, and with increased propensity for thermo-diffusive 

instability under leanest conditions.  
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5.2.2 – Unstretched Flame Speeds, Laminar Burning Velocity and Other  

   Properties 
 

Fig. 5.13 shows the scatter in all attained values of nonlinear unstretched flame speed, 

again with hollow grey data corresponding to individual tests, and the average overlaid 

in colour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.13 – Changes in Su with equivalence ratio for each of the tested BFG compositions. 
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decreasing from approximately 3% for the lowest H2 fraction, to <1% for the fastest 

burning fuel. This is discussed further with experimental uncertainties in section 5.2.3.  

Again, only data attained using the nonlinear relationship are presented to avoid 

confusion, however with the small stretch influence highlighted in section 5.2.1, the 

difference in average speeds attained using either methodology was less than one 

percent.  

 

Adiabatic density ratios were required in order to convert the values of unstretched 

flame speed to a corresponding laminar burning velocity. However, a significant issue 

was the need to select the most suitable reaction mechanism to work with. Three 

mechanisms were initially tested; the previously employed (section 4.2.2), and 

potentially unsuited GRI-Mech 3.0 [149] (not designed for work with this type of fuel), 

the mechanism presented by Li et al. [164] for the oxidation of H2/CO/CH2O and other 

C1 species, and finally the interactions given by Davis et al. [165] optimised for H2 and 

CO reaction paths. These three were initially chosen to assess the scope of variation in 

attained results from different reactions. Further details of model specifications are 

provided in section 5.3, with the resultant density ratios provided in Table 5.2. 

 

Table 5.2 – Adiabatic density ratios obtained from three reaction mechanisms.  
 

 

 1% H2    (ρb/ρu) 3% H2   (ρb/ρu) 5% H2   (ρb/ρu) 7% H2   (ρb/ρu) 

Ø 

Li 

et al. 

[164] 

Davies 

et al. 

[165] 

GRI–

Mech 

3.0 

[149] 

Li 

et al. 

[164] 

Davies 

et al. 

[165] 

GRI–

Mech 

3.0 

[149] 

Li 

et al. 

[164] 

Davies 

et al. 

[165] 

GRI–

Mech 

3.0 

[149] 

Li 

et al. 

[164] 

Davies 

et al. 

[165] 

GRI–

Mech 

3.0 

[149] 

0.7 0.23587 0.23586 0.23563 0.23156 0.23157 0.23159 0.22764 0.22767 0.22764 0.22407 0.22407 0.22409 

0.8 0.22800 0.22803 0.22803 0.22356 0.22359 0.22357 0.21950 0.21965 0.21957 0.21578 0.21581 0.21579 

0.9 0.22187 0.22191 0.22188 0.21727 0.21731 0.21727 0.21309 0.21313 0.21308 0.20925 0.20928 0.20923 

1 0.21816 0.21827 0.21817 0.21343 0.21348 0.21344 0.20914 0.20917 0.20915 0.20520 0.20523 0.20523 

1.1 0.22597 0.22594 0.22606 0.22092 0.22096 0.22097 0.21638 0.21642 0.21641 0.21215 0.21221 0.21222 

1.2 0.23479 0.23481 0.23481 0.22957 0.22960 0.22960 0.22479 0.22483 0.22484 0.22035 0.22040 0.22038 

1.3 0.24336 0.24349 0.24350 0.23800 0.23794 0.23801 0.23300 0.23304 0.23303 0.22836 0.22840 0.22839 

1.4 0.25186 0.25202 0.25186 0.24621 0.24623 0.24623 0.24103 0.24105 0.24104 0.23620 0.23623 0.23621 

1.5 0.26006 0.26005 0.26008 0.25423 0.25424 0.25423 0.24884 0.24886 0.24886 0.24384 0.24387 0.24385 
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It is apparent from the tabulated data that the difference in attained ratios was 

typically less than 0.05 percent (average ~0.016%), and therefore the selection of a 

single mechanism was not critical with respect to the influence of other experimental 

uncertainties. Consequently, the density ratios given by the Li et al. [164] mechanism 

were arbitrarily chosen for the determination of uL. The specified values are plotted in 

Fig. 5.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.14 – Adiabatic density ratios attained using the Li et al. [164] mechanism. 

 

Laminar burning velocities were calculated using the average values attained for Su and 
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visualised in Fig. 5.15 with the peak of each representative curve becoming marginally 
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richer with H2 addition, eventually resulting in a maximum at an equivalence ratio of 

approximately 1.3 for the 7% H2 mixture. The trend would also continue if H2 was 

increased to 100 percent, where the peak value of uL is reached at an equivalence ratio 

of approximately 1.95 (Fig. 2.12 [111]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5.15 – Variation in average uL with equivalence ratio for each of the four tested compositions. 
 

These tendencies have been further visualised with the data gradients in Fig. 5.16, 

where change in average uL is plotted against increasing H2 fraction. There is a 

divergence in speed increase between the Ø=1 and Ø=1.2 data, in approximate relative 

proportion to the difference in quantity (i.e. a steady offset of ~12 % between the Ø=1 

and 1.2 values for every composition). However, when the richest data is compared, 

the difference in values between Ø=1.2 and 1.5 to drops from approximately 20 to 6 % 

for the respective 1 to 7 percent compositions.  
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5.2.3 – Practical Implication of Obtained Results 

 

The exaggerated difference between the characteristics of the 1 and 7% H2 BFG 

mixtures can be analysed for from several practical perspectives. The sensitivity to 

change in flame speed and stretch characteristic underlines the propensity for 

potential premixed operational combustion instabilities. The level of relative 

fluctuation is exacerbated by the heavily dilute nature of the syngas, and slow burning 

velocities with lower levels of H2. In addition there is potential for contrasting influence 

from flame stretch on propagation as Le decreases through unity with H2 addition. The 

influence from variation in velocity has been emphasised further by attempting to 

further characterise flame behaviour. 

 

An approximation of the effective thickness of the reaction zone, or laminar flame 

thickness (dt) can be obtained from the temperature profile with axial distance 

through the flame [27]. A linear gradient is applied as the tangent of the inflection 

(corresponding to maximum dT/dx) in modelled temperature change from ambient 

(To) to burned (Tf) conditions, as depicted in Fig. 5.17 [27, 97]. The reaction mechanism 

created by Li et al. [164] (see section 5.3 for further details) was used to calculate the 

laminar flame thicknesses for the 1 and 7% H2 BFG mixtures, and are plotted against 

equivalence ratio in Fig. 5.18.  
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Fig. 5.16 – Growth in average BFG uL with H2 fraction for  

Ø = 1, 1.2 and 1.5. 
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Fig. 5.17 – Theoretical use of temperature profile to 

obtain flame thickness [27, 97]. 
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Fig. 5.18 – Calculated flame thicknesses of the 1 and 7% H2 BFG mixtures. 

 

If these modelled values of dt are equated to the approximate magnitude of the 

quenching distance (dq) [29, 94], then through the application of Eqn. (2.3), burner-

independent critical velocity gradients (gf/c) can be estimated to prevent flashback in 

the boundary layer.  The profiles for change in these velocity gradients are plotted in 

Fig. 5.19, with almost an order of magnitude difference between the critical values 

calculated for each fuel mixture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 5.19 – Calculated burner independent critical velocity gradients of the 1 and 7% H2 BFG 

mixtures. 
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This simplistic approximation relates to only one aspect of operational flame 

behaviour, nevertheless the significant order of variation highlights a propensity for 

instability with the given mixtures. This is further exacerbated by a similar order of 

difference (by definition see section 2.3.3) in chemical residence time, thereby 

suggesting that whilst flashback issues are easily resolved by high flow rates, then 

blowoff could be a significant problem when gas is produced comprising low quantities 

of H2. Furthermore the contrasting trends in uL and Lb for compositional H2 change 

mean that small fluctuations cannot be fully countered by simply a change in Ø. For 

instance; lowering BFG H2 reduces uL but increases Lb, and if the mixture was made 

richer to burn faster, this could enhance the influence of stretch and hence flame 

stability. Work in the following chapters therefore investigates potential influences to 

reduce this variation in BFG uL and Lb. 

 

The inherent change in operational fuel characteristics can also be analysed from the 

perspective of energy delivery. Consequently the gross calorific value (CVG) of each 

composition was calculated for ideal mass fractions, and normalised to the tested 

conditions of temperature and pressure (303 K, 0.1 MPa). This value was then used to 

calculate gross Wobbe Index (interchangeability indicator relating energy output to 

fuel density, and commonly employed by operational engineers - WIG) for that 

composition [166]: 

 

 

air

G
G

SG

CV
WI =                        (5.1) 

 

With SGair, corresponding to the specific gravity of the mixture in relation to the 

density of air (ideally calculated [142] to be 1.1452 kg·Nm-3). The obtained values are 

provided in Table 5.3. 

 

Table 5.3 – CVG and WIG values for each tested composition 
 

 

 

 

 

FUEL BLEND 

H2 fraction (%) 1 3 5 7 

CVG 2.679 2.854 3.028 3.202 

WIG 2.566 2.759 2.957 3.158 
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The 1-7 % proportional rise in H2 fraction yields respective increases of 19.5 and 23.1 % 

in gross fuel calorific value and Wobbe Index. This further highlights the weakness and 

potential inherent variability in the performance of BFG as a fuel, and further 

emphasises why it is frequently blended with other materials in practical operation.  

 

Fig. 5.20 demonstrates the relative difference in initial measured pressure rise 

resulting from stoichiometric combustion of both mixtures. As would be expected, 

there is a factor in time difference of over three for pressure to increase to the same 

value. Together with the resultant change in flammability limits [28], this highlights the 

additional potential for variation in explosive characteristics from the perspective of 

operational health and safety [28], with there having been several industrial incidents 

involving accidental ignition of BFG mixtures [35].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.2.4 – Quantifying Experimental Uncertainty 

Experimental uncertainties were principally calculated using the same methodology as 

employed with the CH4 benchmarking work, outlined in section 4.3. However, the need 

to blend in the H2 fraction by partial pressure introduced a further possible area of 
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Fig. 5.20 – Example stoichiometric pressure/time curves for two of the 

tested BFG compositions. 
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uncertainty. This was accounted for as an additional factor in the calculation of the 

total bias uncertainty (BSu). Using the attained results, an approximate relationship was 

fitted to Su against H2 partial pressure for each equivalence ratio, and then possible 

fluctuation calculated in relation to the resolution of the readout (± 0.01 kPa). This 

value represented the third largest possible source of error behind the temperature 

and optical systems, and was proportionally more significant for the slower mixtures. 

This was balanced with the uncertainty of faster mixtures being more influenced by 

system optics (having processed fewer frames), and experiencing larger absolute 

variation in relation to temperature and equivalence ratio.   

 

Having again performed three repetitions the specified t-value at a 95 % confidence 

level (for M-1) was 4.303, and used with values of standard deviation to calculate the 

total uncertainty. Fig. 5.21 shows plotted data with ± Usu, together with hollow grey 

individual data points.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Fig. 5.21 – Plotted BFG Su data with superimposed ± Usu and individual data points 

 

0 

100 

200 

300 

400 

500 

600 

700 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 

1% H2 

3% H2 

5% H2 

7% H2 

 

T = 303 K 

P = 0.1 MPa 

Equivalence Ratio 

U
n

st
re

tc
h

e
d

 F
la

m
e

 S
p

e
e

d
 -

 S
u
 (

m
m

·s
-1

) 

 



5. BFG H2 Variation – Atmospheric Conditions 

 

 

                                                               - 125 - 

It is clear from Fig. 5.21 that calculated uncertainty values are heavily influenced by the 

standard deviation in each measured dataset. Furthermore, if uncertainties are 

averaged for each mixture, then as expected absolute values increase in parallel with 

flame speed. Nonetheless relative uncertainties are greater for slower mixtures, 

ranging from around 7-2 % of the average speeds for the respective 1-7 % H2 

compositions. Fig. 5.22 shows plotted values of Lb, with superimposed ± σsu error bars.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.22 – Plotted BFG Lb data with superimposed ± σSu  

 

Similar to the benchmarking work undertaken with CH4, the relative standard deviation 

in Lb is again larger than with the Su dataset. There also appears to be higher amount of 

scatter for the data of a greater magnitude (either positive or negative) at the leanest 

and richest conditions.  
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5.3    Comparison with Chemical Models 

In order for designers to accurately predict the behaviour of BFG combustion, it is 

important that chemical kinetic mechanisms provide the best representative detail in 

numerically modelling reaction kinetics and resultant fuel performance. Therefore the 

next stage of this work was to undertake a comparative study between modelled 

values and those attained experimentally. In doing so a preferential mechanism could 

be identified that best represents not only the combustion of BFG, but potentially 

other increasingly prominent dilute syngases containing H2 and CO.  

 

A freely propagating flame configuration was used in CHEMKIN-PRO to compare flame 

speeds predicted by various proposed reaction mechanisms against the new 

experimental data presented in this study. The utilised PREMIX code solves one-

dimensional conservation equations based on an estimate of initial temperature 

profile, and the fuel conditions specified. The mechanisms evaluated were those 

developed by Li et al. [164] and Davis et al. [165] for combustion of H2 and CO 

mixtures, and these were compared with the GRI-Mech 3.0 mechanism [149], 

considered likely to be unsuitable at the onset. The Li model employs 18 chemical 

species and 93 reactions, compared with 14 species and 43 reactions used in the Davis 

mechanism. GRI-Mech 3.0 employs 53 chemical species and 325 reactions; however 

the mechanism has been optimised for natural gas combustion, and hence was most 

usefully employed in the benchmarking work with CH4 in Section 4. Solutions were 

based on an adaptive grid of 1000 points with mixture-averaged transport properties 

and trace series approximation. Fig. 5.23 provides a visual comparison between the 

experimental values, and numerically modelled datasets, with upper and lower bounds 

of 1% and 7% H2 fuel fraction under conditions of 303 K and 0.1 MPa presented. 
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Fig. 5.23 – BFG uL data with superimposed data from chemical models. 

 

The difference in results obtained from the Li and Davis mechanisms for the 1% H2 

fraction appear negligible, with both reaction sets ostensibly providing good 

agreement with experimental data. As the BFG H2 fraction increases, the modelled 

values from the Li and Davis mechanisms begin to diverge, with relative performance 

dependent on the equivalence ratio under consideration. Overall there is tendency for 

the more contemporary Li mechanism to return marginally higher values, with revised 

parameters for the CO + OH = CO2 + H and HCO + M = H + CO + M reactions [164]. The 

GRI-Mech 3.0 mechanism is notably different to the other two as anticipated, and 

generally under-predicts the data particularly at leaner conditions for the 7% case. 

However, the reason the mechanism has been included is for when it is used in a 

comparative analysis in subsequent chapters. The reason other apt mechanisms (such 

as Mueller et al. [167]) have not been included in the comparison is because two of the 

more contemporary and representative H2/CO datasets have been employed. The 

others are mostly modifications or variations of these sets.  
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A standard error of the estimate (SEE) is introduced to quantify the variation in 

performance of the different mechanisms relative to experimental data. The SEE was 

calculated for averages of all equivalence ratios, for each fuel fraction as derived in 

Eqn. (5.2), where N is the number of tests.  

 

( )

N

uu

SEE

n

1i

2
LCHEMKINL

uL

∑
=

−

=      (5.2) 

 

The assumption made when evaluating the reaction mechanisms in this way is that the 

density ratio provided by the Li mechanism derives the most accurate values for 

experimental uL, as it was used in the determination of the assessment criterion. 

However, as has been stated, the difference in density ratios obtained from all 

mechanisms was negligible, and inconsequential relative to the significant figures for 

the values of SEE provided. The calculated values are given in Table 5.4.  

 

Table 5.4 – Calculated SEE values for each tested BFG mixture and three chemical reaction mechanisms.  
 

 

 

 

 

 

 
 

It is clear from the values presented that the standard error increases with a rise in 

BFG H2 fraction, and consequential change in burning velocity. However, if these errors 

are presented as percentages of average mixture burning velocity, then a proportional 

decrease is observed. For example the standard error of 0.162 cm·s-1 for the 1% H2 Li 

mechanism translates to a difference of 4.6% for the average mixture velocity, which in 

turn reduces down to 3.4% for the 7% H2 blend. When compared this way the Davis 

mechanism provides marginally favourable results, with an average percentage error 

for all mixtures of 3.3% compared to the 3.7% for the Li dataset. Whereas the average 

error for the GRI-Mech 3.0 mechanism is almost doubled at 6.4%. The results therefore 

suggest that careful consideration should be given when selecting a mechanism to 

most accurately model BFG, concerning the preponderant composition and 

equivalence ratio of interest. 

SEE   (cm·s-1)    ( italic - % of average uL) 

BFG H2 Fraction (%) 1 3 5 7 

Li et al. [164] 0.162 4.65 0.236 3.72 0.290 3.26 0.394 3.42 

Davis et al. [165] 0.196 5.62 0.158 2.49 0.209 2.35 0.333 2.89 

GRI-Mech 3.0 [149] 0.225 6.45 0.431 6.79 0.561 6.30 0.671 5.83 
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5.4    Summary and Conclusions 

 
 

Variation in the combustive behaviour of BFG has been characterised for small changes 

in volumetric H2 concentration, representative of fluctuation experienced during 

production. H2 fraction within the BFG makeup was increased in the molar range of 1-

7% for the equalised displacement of all other constituents.  Results were obtained for 

unstretched flame speed and equivalent laminar burning velocity, with values shown 

to increase by more than a factor of three for each equivalence ratio across the tested 

range, thus highlighting the potential for significant variation in combustion 

performance. The influence of flame stretch was also quantified using measured 

values of Markstein length, with an increasing tendency evident for a rise in 

equivalence ratio. This was offset by a decrease in values as the H2 fraction within the 

fuel rose, with both positive and negative quantities measured. Resultant changes in 

additional fuel properties were also considered, with an equivalent change in fuel 

calorific value of up to 20% in evidence across the tested range. Finally, experimental 

values of burning velocity were compared to those obtained using computational 

models, employing several chemical reaction mechanisms. The two suitable 

mechanisms demonstrated favourable correlation (<5%), with the Davis H2/CO dataset 

providing marginally superior results, and careful consideration of fuel composition 

necessary when selecting the most suitable model. 
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Chapter 6. BFG H2 Fluctuation -  

Variation in Ambient Conditions 
 

 
Having initially demonstrated the fluctuation in laminar burning velocity that results 

from small changes in BFG H2 concentration, work was undertaken to expand the 

testing matrix and investigate the influence of variation in ambient condition.   

 

6.1    Chapter Introduction 

 

The levels of uL and Lb fluctuation quantified for BFG combustion in the previous 

chapter were large considering the small absolute changes in fuel composition, and 

represent a potential source of practical instability. Hence this study was expanded to 

investigate the impact of changes in ambient condition, quantifying any extent to 

which the relative fluctuation is mitigated. This is chiefly practical with regard to 

temperature as steelworks tend to have plenty of low grade waste heat [12]. 

Therefore, mixture laminar burning velocities and Markstein lengths were 

characterised for changes in composition and equivalence ratio, together with ambient 

temperature and pressure, for combustion with air. The accuracy of chemical models 

in predicting this behaviour could then also be evaluated to identify the optimal 

mechanism for modelling combustion at these conditions. 

 

6.1.1 – Defining Experimental Parameters 

The remaining certified molar composition of CO - 23.07 %, CO2 - 23.35 %, and  

N2 - 53.58 % employed in Chapter 5. was again used as the foundation BFG mixture. 

Similarly the same four levels of H2 were introduced in the range of 1-7 %, (with the 

makeup of each individual blend detailed in table 4.1). The results produced thus far 

demonstrated favourable repeatability, hence only two repetitions of four equivalence 

ratios in the range 0.8-1.4 were tested. These values were selected following an 

estimation that the characteristic peak in the profile of uL against Ø would be in 

evidence.   
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The changes in ambient condition were specified in accordance with the limits of the 

CVCB rig design. The temperature control system facilitated operation up to 400 K, 

leading to the specification of four test points with step changes of 30 K in the range of 

303-393 K. Control of ambient pressure was restricted by the specified upper limit of 

the vacuum pressure gauge and readout (0.2 MPa) used for partial pressure regulation. 

The maximum pressure rise recorded from testing undertaken in Chapter 5. was 

approximately 0.45 MPa, and this could be more than doubled safely with the current 

CVCB configuration. Consequently three test points were outlined, and encompassed 

by the initial pressure range of 0.1-0.2 MPa. The purity of the specified H2 grade was 

again >99.995 %, and employed with compressed air having a volumetric moisture 

content of <0.02 %. The camera filming rate was also maintained at 3,000 fps, in order 

to maintain the same level of optical uncertainty as with the original BFG data (see 

section 5.1.1). 

 

6.1.2 – Considerations for the Experimental Methodology 

The same partial pressure methodology outlined in section 5.1.2 was again used for 

filling the chamber with the specified mixture at the required equivalence ratio. An 

increase in ambient pressure meant calculations were performed with a modified PT 

value, leading a proportional rise in each required partial pressure. In addition, the 

system was always given at least 30 minutes to soak at the specified temperature, with 

reactants introduced slowly, thereby allowing partial pressure readings to stabilise as 

the gases were heated.  
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6.2    Results for Variation in Ambient Pressure 

 

Schlieren video files were again obtained, with radial flame growth quantified from the 

rate of horizontal propagation analogous to previously processed results. Fig. 6.1 gives 

examples of the difference between obtained stoichiometric flame propagation rates 

for the 7% H2 BFG mixture, with changes in initial ambient pressure. From preliminary 

observations of the raw data, it is apparent that an increase in pressure appears to 

slow the rate of flame propagation, with numerical processing required to quantify this 

change. 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1 – Examples of stoichiometric flame growth for the 7% H2 BFG mixtures at different initial 

ambient pressures. 
 

 6.2.1 – Relationship between Flame Speeds, Stretch Rates and Markstein  

  Lengths 
 

Data was processed to examine the association between propagation rate, and flame 

stretch using the same numerical methods previously employed. Fig. 6.2 – Fig. 6.9 

show examples of the plotted relationships between Sn and α, with the superimposed 

nonlinear association for each equivalence ratio of the four tested compositions, and 

data separated for each initial ambient pressure. 
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There appear to be similar trends for all analysed datasets, with gradients of lean 

associations becoming increasingly negative with richness subsequent to levelling out. 

These trends are analogous to those seen with other BFG data presented in the 

previous chapter. Furthermore, there also appears to be increasing negative tendency 

with a rise in H2 fraction, suggesting an equivalent offset to associations previously 

observed. These trends can be visualised with plotted values of Lb, shown for all 

obtained and averaged data in Fig. 6.10 (0.15 MPa data), and Fig. 6.11 (0.2 MPa data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
These plots suggest a tendency for thermal diffusivity to become more dominant with 

respect to mass diffusion for the observed increase in richness [27]. Similarly the 

increase in highly diffusive H2 is again shown to negatively offset observed Lb, as 

propagation begins to accelerate under the influence of stretch, particularly at lean 

conditions. Ostensibly these behavioural trends are the same as those previously 

observed, however when the data are analysed with respect to pressure a distinct 
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Fig. 6.10 – Plotted values of Markstein length against equivalence ratio for each of the tested BFG  

compositions at 0.15 MPa. 
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association is identified. The average Lb values have been rearranged in Fig. 6.12 for 

each representative BFG mixture, and plotted against initial ambient condition. There 

is an observable tendency for values to decrease with a rise in pressure (consistent 

with other works [102, 115]). This suggests that relative to thermal conduction, 

reactant diffusion becomes increasingly prominent with an increase in pressure, and 

consequently results in a decrease of mixture Le. Ergo BFG flames will accelerate more 

when highly stretched at conditions of higher pressure, such as those experienced in a 

gas turbine combustion system [29]. This is particularly prominent when the mixtures 

containing higher fractions of H2 are burned under leaner conditions.  

 

Overall experimental repeatability was reasonably good with average standard 

deviation of ~0.1 mm for all mixtures and pressures, and therefore of a similar order to 

those previously observed, with more repetitions performed. The magnitude of 

 

Fig. 6.11 – Plotted values of Markstein length against equivalence ratio for each of the tested BFG  

compositions at 0.2 MPa. 
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Fig. 6.12 – Plotted values of Lb against initial ambient pressure for each tested BFG composition. 

a) 1, b) 3, c) 5, d) 7 % H2. 

 

difference evident between nonlinear and linear derived Lb was again small (< 10%) for 

most values, and only increased as the mixtures became less equidiffusive and the 

influence of stretch enhanced. Again increased negativity (as discussed in section 

5.2.1) was evident from values provided by the nonlinear method. 
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6.2.2 – Unstretched Flame Speeds, and Laminar Burning Velocity 

 

The values attained for unstretched flame speed are plotted for respective 0.15 and 

0.2 MPa ambient conditions in Fig. 6.13 and Fig. 6.14. Again hollow grey points 

represent the results from individual tests, with the average points coloured. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 6.13 – Experimental values of Su against Ø for each BFG composition at 0.15 MPa 
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ambient pressure, equivalent to previous results. Furthermore the relative levels of 

experimental scatter in the plotted results are small when compared with the attained 
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representative values of uL from the measured Su, again an apt reaction mechanism 
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Fig. 6.14 – Experimental values of Su against Ø for each BFG composition at 0.2 MPa 

 
 

mechanism was selected once more to maintain consistency with respect to previous 

results, although as previously demonstrated (Table 5.2) there is negligible difference 

to resultant values of uL. As calculations are ideal, adiabatic and isobaric there is also 

negligible difference in the attained density ratio from change in ambient pressure as 

demonstrated in Table 6.1.  
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 1% H2 3% H2 5% H2 7% H2 

Ø 
ρu 

(g/cm
3
) 

ρb 

(g/cm
3
) 

(ρb/ρu) 
ρu 

(g/cm
3
) 

ρb 

(g/cm
3
) 

(ρb/ρu) 
ρu 

(g/cm
3
) 

ρb 

(g/cm
3
) 

(ρb/ρu) 
ρu 

(g/cm
3
) 

ρb 

(g/cm
3
) 

(ρb/ρu) 

0.15 MPa 

0.8 0.00181 0.00041 0.2280 0.00179 0.00040 0.2236 0.00176 0.00039 0.2195 0.00174 0.00038 0.2158 

1 0.00182 0.00040 0.2180 0.00179 0.00038 0.2130 0.00177 0.00037 0.2087 0.00175 0.00036 0.2047 

1.2 0.00182 0.00043 0.2348 0.00180 0.00041 0.2296 0.00177 0.00040 0.2248 0.00175 0.00039 0.2204 

1.4 0.00183 0.00046 0.2519 0.00180 0.00044 0.2462 0.00178 0.00043 0.2411 0.00175 0.00041 0.2362 

0.2 MPa 

0.8 0.00241 0.00055 0.2280 0.00238 0.00053 0.2236 0.00235 0.00052 0.2195 0.00233 0.00050 0.2158 

1 0.00242 0.00053 0.2177 0.00239 0.00051 0.2127 0.00236 0.00049 0.2084 0.00233 0.00048 0.2045 

1.2 0.00243 0.00057 0.2348 0.00240 0.00055 0.2296 0.00236 0.00053 0.2248 0.00233 0.00051 0.2204 

1.4 0.00244 0.00061 0.2519 0.00240 0.00059 0.2462 0.00237 0.00057 0.2411 0.00233 0.00055 0.2362 
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The ratios provided in Table 6.1 were used with the measured values of Su to give 

average laminar burning velocities as plotted in Fig. 6.15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.15 – Experimental values of uL against Ø for each BFG composition at 0.15 and 0.2 MPa 

 

It is clear from the Fig. 6.15 that an increase in pressure leads to a corresponding 

decrease in uL, resulting from a change in the combination of chemical kinetics and 

reactant density; with an increase in pressure leading to a corresponding rise in chain 

terminating reactions, working to slow the rate of propagation [28, 102]. From the 

perspective of BFG combustion, it was important to quantify if this change reduces the 

relative fluctuation experienced as a result of compositional H2 variation. If the 

percentage change in uL for peak values is calculated for the 1-7% compositional H2 

change, an increase in the order of 211 % is seen. This value respectively increases and 

decreases by small amounts for initial ambient pressures of 0.15 and 0.2 MPa, 

suggesting the quantity of any relative change is encompassed by experimental 

scatter. Interestingly, chemical models predict a small increase in this sensitivity, as is 

evidenced in the following section. 
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6.2.3 – Experimental and Modelled values of Laminar Burning Velocity 

Experimental uL values have been re-plotted for change in ambient pressure, with 

equivalent modelled values from three chemical reaction mechanisms (Li et al. [164], 

Davis et al. [165], and GRI-Mech 3.0 [149]) superimposed in Fig. 6.16. The mechanism 

and model specifications are the same as those detailed in section 5.3.  
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Fig. 6.16 – Plotted values of uL against initial ambient pressure for each tested BFG composition, at Ø = 0.8 (a),  

Ø = 1 (b), Ø = 1.2 (c), Ø = 1.4 (d), with modelled values superimposed 
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The plots are separated on the basis of equivalence ratio in order to improve clarity 

and avoid data overlap. Several trends can be outlined from the plotted results; firstly 

the values modelled by the Li and Davis mechanisms are in closer agreement than the 

unsuited GRI-Mech 3.0 dataset, particularly at low concentrations of H2 and lean 

equivalence ratios. As the mixtures begin to burn faster with more H2 the results from 

the two aforementioned models then begin to diverge, and there is variation in which 

mechanism provides the best representative results. The GRI-Mech 3.0 mechanism 

also begins to perform better as equivalence ratios increase. With a rise in pressure 

there is an observable tendency for modelled values to under-predict the measured 

speed for all conditions of BFG H2, and relative performance begins to drop. The 

accuracy of each set of results has been numerically quantified in the same way as 

section 5.3, with a calculation of standard error in the estimate (SEE - Eqn. 5.2).  The 

calculated values of SEE are provided in Table 6.2, with values averaged for all 

equivalence ratios of each data set (for corresponding Ø at 0.1 MPa). 

 

Table 6.2 – Calculated model SEE values with increasing pressure 
 

Ambient Pressure SEE - (cm·s-1) 

3% H  
 Li et al. [164] Davis et al. [165] GRI-Mech 3.0 [149] 

BFG H2 

(%) 

0.1 

MPa 

0.15 

MPa 

0.2 

MPa 

0.1 

MPa 

0.15 

MPa 

0.2 

MPa 

0.1 

MPa 

0.15 

MPa 

0.2 

MPa 

1 0.21 0.26 0.47 0.24 0.21 0.37 0.22 0.45 0.64 

3 0.27 0.36 0.41 0.16 0.43 0.40 0.36 0.68 0.73 

5 0.29 0.23 0.22 0.07 0.42 0.34 0.43 0.69 0.67 

7 0.47 0.24 0.31 0.36 0.50 0.53 0.61 0.82 0.82 

 

The values shown in the table vindicate the observations in trends made above, and 

the Li mechanism provides marginally lower overall SEE values compared with the 

Davis set. However, if the correlated values off SEE are expressed as a percentage of 

overall burning velocity then the Davis mechanism performs better: With an increase 

in the Li percentage difference from 8 to 12 % with pressure rise, compared with 4 to 

12 % for the Davis set. In this regard GRI-Mech 3.0 is inferior with a relative SEE 

variation of 8 to 18 %. All experimental and modelled values are tabulated in Appendix 

B.4. 
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6.3    Results for Change in Temperature 

Fig. 6.17 demonstrates the difference in measured propagation rates resulting from 

change in ambient temperature, for sample 7% H2 BFG mixtures. There is a clear 

increase in gradient resulting from temperature rise, and hence and acceleration in 

flame speed. The following sections provide detail of analyses performed using the 

nonlinear optical technique to numerically characterise this behaviour.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.17 – Examples of stoichiometric flame growth for 7% H2 BFG at different initial ambient 

temperatures. 
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Fig. 6.18 – Examples of plotted 7% H2 BFG /air Sn against α, for Ø = 0.8-1.4, 

 a) T = 333 K and b) T = 393 K (b). 
 
 

heavily stretched rich mixtures (3 % H2(a), and 5 % H2(b) BFG) are plotted with 

increasing temperature, and the nonlinear association superimposed.  There are 

parallel offsets between each plot equivalent to a change in flame speed; however the 

gradients of each relationship are ostensibly similar. The trend is once again more 

easily visualised with plotted values of Lb, shown for the average values of all tested 

conditions in Fig. 6.20 on the following page.   

 

 

 

 

 

 

  

 

 

 

 

 

 
 

Fig. 6.19 – Examples of plotted BFG /air Sn against α, for a) 3%, and b) 5% H2BFG and variation in 

Temperature. 
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Fig. 6.20 – Examples of plotted BFG /air Sn against α, for 3% (a), and 5% (b) H2 and variation in T. 

 

It is clear from the plot that experimental repeatability is too poor (from two tests per 

condition) to discern any apparent trend in relation to initial temperature. Inasmuch 

that there is moderate grouping for each equivalence ratio (colour), but no repeatable 

change in the height of each marker. This has been seen with other similar works 

[102], where temperature increase hasn’t provided significant change in measured Lb, 

and consistent with the high temperature benchmarking study in Chapter 4. This 

suggests mixture Le is not heavily influenced by temperature (across the tested range), 

with any change is mass diffusivity balanced by a proportional adjustment in thermal 

conduction.  

 

6.3.2 – Change in Unstretched flame speed 

Fig. 6.21 on the following page gives separate plots for change in unstretched flame 
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Fig. 6.21 – BFG /air Su against Ø, for a) 333 K, b) 363 K, and c) 393 K. 
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The plots demonstrate analogous profiles for change in Ø to those seen for 

atmospheric conditions, and changes in elevated pressure. Furthermore, there are also 

anticipated proportional increases in Su for each level of temperature rise. This 

acceleration results from a combination of influences; firstly an increase in adiabatic 

flame temperature, and the resultant rise in reaction rates of the intermediate 

chemistry. In addition, changes to reactant temperature will also modify the mixture 

transport properties, and overall gas density; both of which will further influence a 

fluctuation in observed flame speed [27]. The result for BFG is for respective peak Su to 

increase by ~60 mm·s-1 (~34 %) and 245 mm·s-1 (~42%) for the 1 and 7 % H2 mixtures 

across the tested 120 K range. The order of scatter in Su measurements was similar to 

those previously seen, with only two repetitions performed, and standard deviations 

scaling with overall rise in speed. This is discussed further in Section 6.4 

 

6.3.3 – Experimental and modelled values of Laminar Burning velocity  

The Li et al. [164] mechanism was used once more to obtain values of adiabatic density 

ratio for application in Eqn. 3.12. Fig. 6.22 shows the shift in stoichiometric ratio 

resulting from a change in initial temperature, with the full set of applied values given 

in Appendix B.5. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 6.22 – Change in density ratio with initial ambient temperature for each BFG mixture. 
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The increase in initial temperature lowers the density of the reactant mixture, and 

consequently causes the rise of plotted ratios observed in Fig. 6.22. Average 

experimental uL values are plotted against corresponding modelled data in Fig. 6.23, 

with plots separated for each equivalence ratio in order to improve clarity. The three 

reaction mechanisms applied with the pressure dataset in 6.2.3 were employed with 

identical specifications.  
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Fig. 6.23 – Plotted values of uL against initial ambient temperature for each tested BFG composition,  

at a)Ø = 0.8, b) Ø = 1, c) Ø = 1.2, d) Ø = 1.4, with modelled values superimposed. 
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A rise in temperature appears to yield a corresponding proportional increase in uL for 

all compositions and equivalence ratios. The plots also suggest that relative 

mechanism performance changes with equivalence ratio. If the Ø=1.4 dataset is taken 

as an example (Fig. 6.23d), there appears to be closer a correlation between the values 

returned from each chemistry set, and the experimental data. Furthermore this 

agreement seems to hold with an increase in reactant temperature. Conversely, if the 

leanest (Fig. 6.23a) equivalence ratio is considered, there is a significant offset 

between GRI-Mech 3.0, and the other two mechanisms, which themselves begin to 

diverge with an increase in BFG H2. The Li mechanism appears to provide an 

overestimation at these conditions, compared to the small values given by GRI-Mech 

3.0. The Davis mechanism was optimised for performance at higher temperatures, and 

it therefore fits that this dataset is in closest agreement with measured values. This 

relative model performance has again been indexed using a SEE, with values averaged 

for all equivalence ratios in Table 6.3.  

 

Table 6.3 – Calculated model SEE values with increasing temperature. 
 

Ambient Temperature SEE - (cm·s-1) 

3% H  
 Li et al. [164] Davis et al. [165] GRI-Mech 3.0 [149] 

BFG H2 

(%) 

333 

K 

363 

K 

393 

K 

333 

K 

363 

K 

393 

K 

333 

K 

363 

K 

393 

K 

1 0.31 0.31 0.65 0.34 0.30 0.59 0.53 0.34 0.26 

3 0.55 0.59 0.26 0.40 0.36 0.19 0.42 0.34 0.69 

5 0.64 0.22 0.62 0.46 0.47 0.41 0.51 0.81 0.57 

7 0.42 0.80 1.15 0.30 0.49 0.47 0.67 0.51 0.51 

 

The performance of the Li mechanism is shown to deteriorate with a rise in H2 fraction, 

or elevation in temperature. GRI-Mech 3.0 performance is reasonably consistent, and 

better at low H2 concentrations. However, as expected the values calculated for the 

Davis dataset are superior, particularly relative to the highest tested temperature.  

 

6.3.4 – Practical significance of temperature change 

With regard to dampening fluctuation resulting from H2 variation, temperature does 

not provide an overall solution if applied to all tested BFG blends. Firstly, there is 
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negligible influence demonstrated in altering the influence of stretch on propagation. 

Furthermore, a proportional rise in uL is experienced relative to the initial values, 

together with effective divergence seen with each plot in Fig. 6.23. If step changes 

were achieved, the relative fluctuation in uL would decrease, however the percentage 

change for 1-7 % H2 at 393 K is around 16.3 cm·s-1, or 236 % increase from the lowest 

value, and this compares with a corresponding value of 211 % for the atmospheric 

dataset. 

 

Some fuel preheating control could be employed to increase flame speeds of the lower 

H2 BFG mixtures by a small amount, and raise the speeds towards equivalent higher H2 

blends. In order to more accurately quantify and characterise this, a power law 

association can be fitted for each fuel, and used to model flame speed change with 

ambient condition. This has been undertaken in the following section (6.4.2). 

   

 6.4    Quantifying Uncertainty and Power Law  

 Correlation 
 

6.4.1 – Experimental Uncertainty 

Experimental uncertainties were quantified using the same method as previously 

employed in Chapter 5.  Adjustments were made in the calculation of total bias, 

adjusted on the basis of changed ambient condition. Errors in the calculated influence 

of equivalence ratio, H2 fraction, and variation in optical properties, were all scaled 

with change in condition for each specified test case. However, with only two 

repetitions per condition performed, resultant uncertainty values were larger than 

those previously calculated due to a rise in the standard deviation of each test, and 

corresponding t-value (see Eqn. 4.4). The latter parameter increased from 4.303 for 

three repetitions at a 95 % confidence level, to 12.71 [161]. As a consequence of this, 

uncertainty increased to values above ten percent, regardless of the reasonable 

repeatability of observed for Su data (Fig.  6.13, Fig. 6.14, and Fig. 6.21). All calculated 

estimations of experimental uncertainty in Su, BSu, and σSu are provided with the full 

numerical dataset given in Appendices B.4 and B.5.  
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6.4.2 – Power Law Association 

Independent power law correlations have been made to characterise change in uL with 

ambient condition, employing an empirically derived association similar to that utilised 

by analogous research [102, 154]. 

 

αT

0

L0L
T

T
uu 








=         (6.1) 

 

An example of this relationship is shown above in Eqn. (6.1), with uL expressed relative 

to the datum burning velocity (uL0) for an initial temperature of 303 K (T0) and a 

condition dependent exponent (αT). The same relationship was applied for change in 

pressure, with a datum value (P0) of 0.1 Mpa and an alternative constant (αP). The 

magnitude of each exponent is indicative of the sensitivity to change in burning 

velocity for that condition, and has been calculated across the entire tested range for 

each independent composition and equivalence ratio. These exponents are provided in 

Table 6.4, together with comparative values for CH4 and H2 obtained from the 

literature [102, 154].  

 
Table 6.4 – Calculated conditional BFG exponents, benchmarked against CH4 and H2 values from 

literature. 
 

 Temperature exponent (αT) Pressure exponent (αP) 

 BFG 

φ 1% H2 3% H2 5% H2 7% H2 1% H2 3% H2 5% H2 7% H2 

0.8 2.60 2.53 2.21 2.11 -0.398 -0.333 -0.451 -0.452 

1 2.08 2.04 2.09 1.92 -0.270 -0.348 -0.410 -0.383 

1.2 1.95 2.09 2.19 2.00 -0.354 -0.377 -0.393 -0.407 

1.4 2.38 2.29 2.35 2.13 -0.470 -0.422 -0.477 -0.479 

Literature Values 

φ 
Gu et al [102]  

300 K CH4 (αT)  

Han et al. 

 [168]  

298 K CH4 (αT)  

(αT) Liao et al. [159] 300 K 

CH4 (αP) 

Gu et al [102]  

300 K CH4 (αP) 

Heimel  et al. 

[169]  

H2 (αT) 

0.8 2.105 - 1.98 -0.465 -0.504 - 

1 1.612 1.653 1.58 -0.398 -0.374 1.712 

1.2 2.000 - 1.68 -0.405 -0.438 - 
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There is limited accuracy in fitting associated relationships to plots consisting of 3 (αP) 

or 4 (αT) points, and consequently the obtained values should only be regarded for 

approximate analysis in overall trends. In doing so several tendencies can be observed 

in the tabulated points, firstly that the αT values are mostly larger than the 

corresponding data supplied for CH4 and H2, suggesting BFG is more sensitive to a 

relative change in temperature, compared with the other benchmarked fuels. 

Furthermore, the temperature exponents are shown to decrease with an overall 

elevation in BFG H2 concentration, as values tend towards other corresponding data. 

These benchmarked datasets also suggest a decrease in exponent magnitude near the 

peak stoichiometric values. For BFG, the lowest values appear to potentially shift from 

equivalence ratios of 1 towards 1.2, nearer the position where peak uL was measured. 

From a practical perspective these associations allow for the prediction of fuel 

behaviour based on experimental data. For example, using the fitted exponents with a 

stoichiometric case, the temperature of 1% H2 BFG would need to be increased to 

~520 K in order to reach an equivalent burning velocity measured for the 7% mixture 

(It is however difficult from the results obtained, to predict any change in the influence 

in stretch).  

 

Characterising trends in the obtained pressure exponents is more difficult, with smaller 

changes observed overall. It can be seen that there is a general tendency for exponent 

magnitude to further decrease as H2 concentration is elevated in the BFG mixtures. 

This suggests that elevated pressure influences mixtures containing larger H2 fraction 

more, however the quantified change is small, and not conspicuous with a comparison 

of plotted uL data. The fitted pressure exponents are also closer to values observed for 

the benchmarked fuels, and agree with the increased influence observed with leaner 

and richer conditions.   

 

Fig. 6.24 gives example power law correlations made for mixtures with the most 

extreme exponents. The fitted relationships are plotted against the normalised 

experimental data, with a reasonable fit observed. All coefficients of determination 

(R2) values attained from this analysis were above 0.99, and are given with the full 

dataset in Appendices B.4 and B.5.  



6. BFG H2 Fluctuation – Variation in Ambient Conditions 

 

 

                                                               - 153 - 

 

  

 

 

 

 

 

 
Fig. 6.24 – Power law correlations for sample mixtures of αT (a) and αP (b). 

 

6.5    Summary and Conclusions 

 

The changes observed in laminar burning velocity and Markstein length for fluctuation 

in concentration of BFG H2 (Chapter 4.) were investigated further to quantify the 

influence of variation in ambient condition. Relative change in values were analysed 

for three disparate pressures and four temperatures across the respective ranges of 

303-393 K and 0.1-0.2 MPa, as specified by the designed physical characteristics of the 

experimental setup. Change in mixture equivalence ratio was also investigated for 

each parameter with four specified points in the range 0.8-1.4. 

 

Increase in ambient pressure demonstrated a drop in measured values of laminar 

burning velocity for each tested BFG composition. The change in pressure also 

demonstrated a tendency for decrease in observed values of Markstein length, 

suggesting a drop in mixture Lewis number and therefore a proportional rise in the 

influence of mass diffusion on propagation. This change was quantified as a 

proportional offset for all tested mixtures and equivalence ratios, and was observed 

alongside the increase induced by a rise in equivalence ratio or drop in H2 

concentration.   Obtained values of laminar burning velocity were then compared 
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against data obtained from chemical models employing three kinetic reaction 

mechanisms. The Li and Davis datasets offer equivalent correlations for experimental 

data, with superior performance dependent on the mixture and equivalence ratio 

employed. This performance was again quantified using a measurement in standard 

error.  

 

An increase in ambient temperature was shown to induce a rise in laminar burning 

velocity, observed for all mixtures and equivalence ratios. However, variation in the 

specified condition provided little demonstrable change in the analysed influence of 

flame stretch, with relative levels of experimental scatter too high. Nevertheless the 

same tendencies for change in Lb with equivalence ratio and composition were 

observed, compared to atmospheric tests. The same three reaction mechanisms 

employed with the pressure dataset were used to computationally model values of 

laminar burning velocity for comparison with measured data. The Davis mechanism 

was shown to provide superior performance, with lower overall values of standard 

error in the estimate. However, performance was shown to depend on composition 

and equivalence ratio, together with the ambient condition, and therefore due 

consideration should be given when selecting a mechanism to best model combustion 

of BFG in this way. 

 

Power law correlations were made with the experimental data to quantify the relative 

change in each condition, with exponent magnitude benchmarked against analogous 

values from research literature. BFG was shown to be more heavily influenced by 

change in temperature compared to CH4 and H2, with similar magnitudes observed in 

the exponents fitted for pressure. The results suggest some form of preheating control 

(based on the fitted correlations) could be used to raise the burning velocity of low H2 

BFG, however influence of temperature was small across the tested range when 

compared with Hydrogen, and a typical temperature differential of over 200 K would 

be required for the slowest mixtures to approximate the 7% H2 velocities. Furthermore 

this increase in temperature would have little effect in reducing variation in the 

influence of flame stretch. 
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Chapter 7. BFG H2 Fluctuation -  

Variation in H2O Concentration 
 

 

 

7.1    Chapter Introduction 

 
With characterisation studies undertaken to evaluate the potential for inherent 

variability in BFG combustion, further work was outlined to investigate the change in 

relative humidity of the fuel. It was hypothesised by the author that the slow and 

variable nature of the results obtained thus far would be significantly influenced by 

small increases in gaseous water fraction, ostensibly representative of those 

experienced during production. As introduced in section 1.3.2, and demonstrated with 

the case study in section 2.1.3, there is potential for BFG that has been wet-scrubbed 

to have a variable water fraction, fluctuating as a function of temperature. 

Furthermore change in the relative humidity of atmospheric air could also lead to a 

variation in combustive properties of the reactant mixture.  

 

Again laminar burning velocities were characterised for changes in composition, this 

time with variation in the H2 and H2O fraction of the fuel, together with equivalence 

ratio. Markstein lengths were also used to characterise the effect water has on flame 

stretch, and the corresponding influence on propagation. It is important to 

characterise this behaviour as water can be used as an additive in practical combustion 

systems, for example in gas turbine operation [29].  The accuracy of models in 

predicting this behaviour was again evaluated to identify optimal reaction mechanism 

performance, and further investigate chemical kinetics of combustion at these 

conditions. 
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7.1.1 – Defining Experimental Parameters 

As a result of the number of tests performed with the old mixture, a new foundation 

BFG blend was required for this study, comprised of a marginally different certified 

molar composition; CO - 23 %, CO2 - 23.5 %, and N2 - 53.5 %. This change necessitated 

new baseline tests to be undertaken with no variation in H2O content. Similar to 

previous work, four concentrations of H2 were introduced in the range of 1-7 %, with 

four disparate quantities of water vapour added to the overall reactant mixture (exact 

blending details are outlined in section 7.1.2). The tests were conducted at quasi-

atmospheric (303 K and 0.1 MPa) ambient conditions and thus calculations were 

required to determine the vapour pressure, and corresponding mass of water to be 

introduced to the system. The Antoine equation (as given in Eqn. 7.1) was employed to 

calculate the H2O vapour pressure (Pv) utilising the following coefficients; AA = 5.40221, 

BA = 1838.675, and CA = -31.737 (NIST database [151]), for conditions of 303 K [170].   

 

 

TC

B
 -A

v
A

A

A

10P
+

=        (7.1) 

 

 

This gives a resultant vapour pressure equal to 4.207 kPa. In order to calculate a 

corresponding mass to be introduced to the system, an accurate measure of the CVCB 

internal volume was required. This could not be obtained from simple engineering 

drawings of the rig, due to the introduction of additional pipe work and internal 

objects such as mixing fans and thermocouple probes. Instead a method was outlined 

based on mass displacement: Pipes were isolated at the chamber, with all other 

internal objects left in place, and the CVCB then filled with water. The mass was 

measured as water was introduced to the system, and when the chamber was full the 

temperature was recorded. A corresponding water density was obtained (from NIST 

database [151]), and used to give an internal volume measurement of the rig. This was 

repeated four times (giving a standard deviation of < 0.1 %), with the average taken as 

the representative rig volume. The obtained values are given in Table. 7.1.   
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Table. 7.1 – Calculated values of CVCB internal volume. 

 

Introduced Mass of water (g) Volume (m3) 

34817.06 0.03486 

34832.47 0.034875 

34800.85 0.034856 

34804.14 0.03486 

Average: 0.034863 

Standard Deviation: 1.437 x 10
-5 
(~0.04%) 

 

This average chamber volume was used with the ideal gas equation [142] and 

calculated vapour pressure to give a maximum mass of gaseous water equal to 1.0488 

g at 303 K.  The designated increments of water addition were therefore specified at 

0.25 g, in the range 0 - 0.75 g, and hence reaching a relative humidity in the reactant 

mixture of approximately 72 %. Full vapour pressure was not realised to mitigate any 

inaccuracies in the employed calculations, or reduce the chance of condensate 

formation from any potential cold spots. It was reasoned that the specified range 

should provide characteristic trends for water addition, with potential for 

extrapolation to fully saturated conditions.  

 

In order to reduce potential uncertainty, the number of experimental repetitions was 

increased to five for the initial experiments performed at stoichiometric conditions. 

Further testing was completed at leaner (Ø = 0.8) and richer (Ø = 1.4) air-fuel ratios, 

with the number of repeats reduced to three to save fuel for additional testing with 

other steelworks gas blends. These equivalence ratios were selected as any increased 

influence in the addition of H2O for leaner or richer conditions could be more easily 

quantified.   

 

The purity of the specified H2 grade was again >99.995 %, and employed with dry zero-

grade compressed air. The camera filming rate was maintained at 3,000 fps, to remain 

consistent with the previously undertaken BFG testing in Chapters 5 and 6.  
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7.1.2 – Considerations for the Experimental Methodology 

Liquid water was introduced to the gas for this testing, and was vaporised prior to the 

addition of further reactants. This was to allow for finer control of the small masses 

required for infusion within the chamber. The CVCB was modified with the addition of 

a self-sealing septa, and a fine-needle syringe was required to facilitate injection of 

water to the system. The employed deionised water was obtained from a Millipore 

synergy 185 system, with the required mass measured on a Mettler Toledo AE50 high-

precision balance. The experimental methodology was modified thus: 

 

− Firstly the system was evacuated twice to the required residual pressure (1.5 

kPa), and the specified mass of water (0.25 - 0.75 g) measured on the equalised 

balance. The designated precision of the measurement was to within ± 0.0005 

g, with water then injected through the septa. 

 

− The system was then monitored to ascertain when the injected water had fully 

evaporated. This was identified by a combination of visual checks through the 

chamber windows, and a monitored increase of internal pressure rise, 

approximately equivalent to the anticipated vapour pressure.  

 

− This measured vapour pressure within the chamber would then be negated 

from the desired PT value of 0.1 MPa, for the necessary partial pressure 

calculations. Having established each new pressure fraction, the individual 

reactants were introduced to the system, as before beginning with H2.   

 

− With each gas fraction added, the reactants were then mixed in preparation for 

ignition and testing.  
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7.2   Stoichiometric BFG/H2O Mixtures 

As with studies provided in previous chapters, results will be presented from use of the 

nonlinear method of numerical processing, which was performed subsequent to the 

computational evaluation of growing flame radii.  Corresponding results obtained 

using the linear technique are provided with all tabulated data in Appendix B.6. Fig. 7.1 

shows examples of the plotted change in radial growth for each of the four tested BFG 

mixtures with the addition of H2O. 
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Fig.7.1 – Plotted growth of flame radii for the 1 % (a), 3 % (b), 5 % (c), and 7 % (d) H2 BFG mixtures, with the four 

injected masses of H2O. 

 



7. BFG H2 Fluctuation - Variation in H2O Concentration 

 

 
                                                               - 160 - 

Initial trends evident in Fig. 7.1 suggest contrasting behaviour exhibited by the flame 

resulting from addition of H2O, as the H2 fraction within the fuel is increased: Inasmuch 

that propagation rate is perceived to increase with water content for the 1 % H2 

mixture, and conversely the flame inhibited for the corresponding 7% H2 tests.  

 

7.2.1 – Relationship between Stretch and Flame Speed  

These trends can be analysed further when evaluating the relationship between 

stretch rate and flame speed. Fig. 7.2 – Fig. 7.5 give examples of the association of Sn 

plotted against α for each of the tested BFG mixtures, and increasing masses of 

injected water (with evaluated nonlinear relationships superimposed). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2 – Samples of stoichiometric 1% H2 BFG/air Sn against α data with increasing  

water fraction. 
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Fig. 7.3 – Samples of  stoichiometric 3% H2 BFG/air Sn against α data with increasing water fraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 – Samples of stoichiometric 5% H2 BFG/air Sn against α data with increasing water fraction. 

0 10 20 30 40 50 60 70 80 90 100 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0 g 

0.25 g  

0.5 g  

0.75 g  

 

Injected H2O 

T = 303 K 

P = 0.1 Mpa 

3% H2 

Ø = 1 

 

S
tr

e
tc

h
e

d
 F

la
m

e
 S

p
e

e
d

 -
 S

n
 (

m
·s

-1
) 

 

 
Stretch Rate - α (s

-1
) 

 

0 20 40 60 80 100 120 140 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0 g 

0.25 g  

0.5 g  

0.75 g  

 

Injected H2O 

T = 303 K 

P = 0.1 Mpa 

5% H2 

Ø = 1 

 

S
tr

e
tc

h
e

d
 F

la
m

e
 S

p
e

e
d

 -
 S

n
 (

m
·s

-1
) 

 

 
Stretch Rate - α (s

-1
) 

 



7. BFG H2 Fluctuation - Variation in H2O Concentration 

 

 
                                                               - 162 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 7.5 – Samples of stoichiometric 7% H2 BFG/air Sn against α data with increasing water fraction. 
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addition of water, as gradients of plotted data become increasingly steep in either the 

positive or negative direction. This trend is further visualised in Fig. 7.6 where the 

obtained values of Lb are plotted for all mixtures against increasing H2O fraction. 

Ostensibly the plotted values of Lb for the 1 and 7% H2 mixtures diverge with an 

increase in water fraction, however if the positive values are examined further (for the 

1 and 3% mixtures), the influence of stretch appears to peak before beginning to fall. 

Plotted values of measured Su, suggest a trend of initial convergence as shown in Fig. 

7.7. Inasmuch that the 1% H2 mixture is shown to initially accelerate with water 

addition, compared to the 7% flame which is only quelled. 
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Fig. 7.6 – Measured individual (grey), and averaged (coloured) values of Lb for all BFG mixtures with 

increasing H2O. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Fig. 7.7 – Measured individual (grey), and averaged (coloured) values of Su for all BFG mixtures with 

increasing H2O. 
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The non-monotonic behaviour exhibited by the tested BFG blends for change in H2O 

fraction suggests two competing influences on propagation: Firstly a predictable 

suppressive effect whereby water acts as a diluent, and speed is slowed by a reduction 

in flame temperature. The second proposed influence is more subtle, and results from 

changes in flame thermochemistry and an increase in the overall reaction rate, due to 

changes in production of intermediate chemical species. For BFG blends containing low 

concentrations of H2, the addition, and subsequent disassociation of H2O results in the 

production of more reactive intermediate radicals such as H, OH, and HCO, and 

subsequent reaction pathways, for instance; H2O + O ↔ 2OH, H2O + H ↔ H2 + OH, CO 

+ H2O ↔ HCO + OH, and CO + OH ↔ CO2 + H [125]. Furthermore the catalysing effect 

of these radicals on CO consumption reactions have been shown to reduce the slow 

terminating reaction CO + O = CO2 [125].  The suppressive effect of H2O as a diluent is 

counteracting this, and appears to become more dominant as the water fraction 

increases, flame temperature decreases, and subsequently propagation begins to slow. 

Furthermore, if the fuel blend contains higher fractions of H2, larger quantities of 

intermediate radicals are inherently produced from a proportionate increase in 

reactions such as CO + H2 ↔ H + HCO anyway, hence the catalytic influence of H2O is 

lost, and the flame suppression effect is consistently dominant.  

 

Chemical kinetic computations have been performed to try and vindicate this 

explanation. CHEMKIN-PRO was utilised together with the reaction mechanism 

developed by Li et al. [164] to model combustion of the tested BFG blends, with Fig. 

7.8a and Fig. 7.8b showing the respective maximum modelled molar fractions of H and 

OH radicals for each test. The plots demonstrate similar trends to the values obtained 

for unstretched flame speed, whereby the influence of H2O increase is more 

substantial for BFG blends containing 1% H2. Although not shown, the modelled data 

suggest analogous trends for other intermediate species such as HCO. The maximum H 

fraction is also shown to decrease for the 7% H2 mixture as the production rate drops 

with heat release. 
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Fig. 7.8c shows a plot of the modelled maximum net heat release rate from the gas 

phase reactions, with results again following analogous trends to those previously 

observed. This plot is distinctive however, as it ties directly to observed changes in the 

behaviour of flame stretch influence. For the 1% H2 mixture, the maximum heat 

release rate is shown to rise to a plateau in the same way as observed values of Lb. This 

suggests maximum net heat release rate increases together with thermal diffusivity in 

the reaction zone in relation to mass diffusion, resulting in an overall increase in Le. 

However, the parallel lowering of adiabatic flame temperature (Fig. 7.8d) and 

suppression of the flame induced by an increase in H2O fraction will apparently 

become more dominant eventually leading to acceleration of the flame with stretch 

rate. This is significant because the non-monotonic behaviour in evidence could lead to 

operational instability of highly stretched flames not only as a result of compositional 

fuel variation, but also mixture moisture content. 

 

7.2.2 – Measured and Computational Values of Laminar Burning Velocity 

Analagous chemical models performed using the Li et al. [164] mechanism were used 

to obtain values for the burned/unburned gas density ratio, as necessary for the 

conversion of Su to uL. Fig. 7.9 shows the plotted values obtained for each mixture 

(further details in 7.3.2). 
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The average values of Su were combined with the obtained density ratios to give 

equivalent values of uL, as plotted in Fig. 7.10, together with speeds modelled by the Li 

et al. [164] and Davis et al. [165] reaction mechanisms in CHEMKIN-PRO. The apparent 

trends are similar to those evident with Su and Lb data, where change in burning 

velocity for each mixture is non-monotonic with respect to water addition. The 

addition of 0.75 g of water to the 1 % H2 blend (equivalent to an overall mole fraction 

change of 0 to ~5 percent), can be seen to increase uL by 1.1 cm·s-1 or ~30 %. In 

comparison, introducing the equivalent quantity of water to the 7 % H2 mixture results 

in a reduction in flame speed of 0.86 cm·s-1 or ~8 %. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7.10 – Experimental and modelled values of uL for each stoichiometric BFG mixture against water 

addition.  
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Analogous trends of respective acceleration and declaration for the 1 and 7 % H2 

mixtures are also seen for the modelled values of uL with water addition, plotted in fig 

7.10. An increased overestimation in modelled flame speed is evident as the H2 

percentage increases, as was the case with stoichiometric data presented in section 

5.3. The Davis et al. mechanism [165] appears to provide closer representative values 

to experimental results. However, a better standard error of the estimate could be 

made once further data at different equivalent ratios were obtained. 

 

7.3    Variation in Equivalence Ratio of BFG/H2O 

 Mixtures 
 

Further testing was undertaken at lean and rich conditions to investigate the change in 

relative influence of moisture addition to variable BFG mixtures. Fig. 7.11 

demonstrates the change in spherical propagation rates at the extreme tested 

conditions: 1 and 7% H2, with 0 and 0.75 g of H2O addition. Water is again shown to 

have opposing influences on each mixture. 

 

 

 

 

 

 

 

Fig. 7.11 – Examples of propagating flame radii for 1 and 7 % H2 BFG mixtures, for a) Ø = 0.8,  b) Ø = 1.4. 
 

7.3.1 – Relationship between Stretch and Flame Speed  

The analysed flame radii were again processed using the nonlinear methodology, with 

Fig. 7.12 and Fig. 7.13 giving examples of the obtained relationships between Sn and α, 

for each tested mixture. 
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Trends similar to the stoichiometric dataset are observed, with water addition shown 

to increase gradients in the 1% H2 plot, and the inverse tendency demonstrated to a 

lesser extent with the 7 % H2 mixture. However H2O addition does appear to have a 

more significant influence on the leaner mixture with respect to flame stretch, a 

tendency more easily visualised in Fig. 7.14 and Fig. 7.15 where the obtained values of 

Lb are plotted (grey points representing individual tests). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The positive values of Lb for the 1 % H2 Ø = 0.8 mixture are shown to increase 

appreciably with water addition compared to data for the other BFG mixtures. In 

comparison, the richer data (in Fig. 7.15) for the 1% H2 mixture, does not demonstrate 

such a significant increase. This suggests that the enhanced thermal diffusivity induced 

by chemical heat release (discussed in section 7.2.1) is lessened for rich conditions.  

Furthermore, all initial values of Lb for the rich mixture are initially positive, with the 

higher H2 fuel Lb decreasing by a smaller magnitude than the corresponding lean 

blends. This leads to a difference in the 1 and 7% H2 Lb values that is approximately 

doubled for the Ø = 0.8 mixture at 0.75 g H2O when compared with the rich, and 

therefore suggests wet lean mixtures are more heavily influenced when highly  
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Fig. 7.14 – Values of Lb for BFG mixtures with increasing H2O addition, for Ø = 0.8. 
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stretched in turbulent operational combustion systems [29]. The 3% H2 mixture 

appears to be least influenced by the change in moisture addition, with an apparent 

balance in the induced chemical and diluent effects across the tested range. 

 

The obtained values of unstretched flame speed have been plotted in Fig. 7.16 (Ø = 

0.8) and Fig. 7.17 (Ø = 1.4) with grey individual tests, and the average coloured. The 

results demonstrate similar tendencies to the stoichiometric dataset, with opposing 

influences on the 1 and 7% H2 mixtures. The effective compression of values resulting 

from water addition means the factor of increase in Su between the 1 and 7% blends 

decreases from ~3.1 to 2.2 for the lean mixtures, and from ~3.6 to 2.6 for the rich. 

There is a greater difference between the rich mixtures as a result of the shift in peak 

flame speed, caused by the increase in H2 (as discussed in section 5.2.2) in the BFG fuel 

fraction.  

-0.5 

-0.3 

-0.1 

0.1 

0.3 

0.5 

0.7 

0.9 

1.1 

1.3 

1.5 

0 0.25 0.5 0.75 

Equivalent Mass of H2O in Mixture (g) 

M
a

rk
st

e
in

 L
e

n
g

th
 -

 L
b
 (

m
m

) 

 

7% H2 

5% H2 

3% H2 

1% H2 

 

T = 303 K 

P = 0.1 MPa 

Ø = 1.4 

Fig. 7.15 – Values of Lb for BFG mixtures with increasing H2O addition, for Ø = 1.4. 
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Fig. 7.16 – Plotted values of Su for BFG mixtures with increasing H2O addition, for Ø = 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 7.17 – Plotted values of Su for BFG mixtures with increasing H2O addition, for Ø = 1.4. 
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7.3.2 – Measured and Computational Values of Laminar Burning Velocity 

Density ratios were again obtained with CHEMKIN-PRO using the Li et al. [164] reaction 

mechanism, and are plotted in Fig. 7.18. A comparative analysis was again performed 

to check the difference in returned density values from multiple reaction mechanisms, 

with a disparity of <0.1%. Consequently the Li et al. [164] reaction mechanism was 

arbitrarily chosen to be consistent with previous chapters. The decrease in reactant 

density, drop in adiabatic flame temperature, and increase in burned product density 

leads to ratios rising as H2O is added to each mixture. 

 

 

 

 

 

 

 

 

 

Fig. 7.18 – Plotted values of density ratio with increasing H2O addition, for Ø = 1.4, and Ø = 0.8. 
 

The obtained values of density ratio were combined with the average unstretched 

flame speed for each tested condition to give equivalent values of uL, and are plotted 

in Fig. 7.19 (Ø = 0.8), and Fig. 7.20 (Ø = 1.4). Parallel trends are evident between the 

two presented datasets, and the ones shown for the stoichiometric case; with speeds 

increasing for the 1% H2 mixture, and the trend inverting for the 7% H2 case. The 1% H2 

mixture uL increases by 0.7 cm·s-1, (22.1 %) for the lean mixture, and by 0.79 cm·s-1 

(21.1 %) for the rich. In comparison respective drops of 1.16 (13%) and 1.3 cm·s-1 (10%) 

are seen for 7% H2 BFG, suggesting a higher relative influence on the lean mix.
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Fig. 7.19 – Average experimental and modelled BFG uL with increasing H2O addition for Ø = 0.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 7.20 – Average experimental and modelled BFG uL with increasing H2O addition for Ø = 1.4. 
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Superimposed onto each plot are relationships modelled using the freely propagating 

flame configuration in CHEMKIN-PRO, and the Li et al. [164] and Davis et al.  [165] 

reaction mechanisms. A full specification of the employed kinetic mechanisms is 

provided in section 5.3. Closer associations between the experimental data and 

modelled values are evident when compared with the stoichiometric values, 

particularly at rich conditions. The Davis et al. mechanism especially demonstrates 

favourable performance when modelling BFG combustion with small quantities of 

water vapour. A standard error of the estimate (SEE - Eqn. (5.2)) was again used to 

quantify the respective performance of the two employed reaction mechanisms, with 

comparative results provided in table 7.2 for all tested equivalence ratios.  

 

Table. 7.2 – SEE values averaged for each H2 mixture with change in H2O fraction. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

The calculated values of SEE have been averaged for all tested H2 percentages in each 

BFG mixture, to evaluate which is numerically superior for modelling overall water 

addition. There is a repeatable trend for models to initially decrease in accuracy as 

water fraction is increased, before improving for all 0.75 g H2O mixtures, and this 

evident for both tested reaction mechanisms. It is clear from the figures in table 7.2 

and Fig. 7.19 and Fig. 7.20 that the Davis et al. [165] mechanism suggests better 

numerical agreement with the attained experimental data for H2O addition. 

SEE (cm·s-1) 

H2O mass (g) 0 0.25 0.5 0.75 

Ø = 0.8 

Li et al. [164] 0.38 0.42 0.53 0.50 

Davis et al. [165] 0.21 0.30 0.38 0.32 

Ø = 1 

Li et al. [164] 0.84 0.89 0.95 0.84 

Davis et al. [165] 0.59 0.65 0.74 0.66 

Ø = 1.4 

Li et al. [164] 0.40 0.53 0.53 0.43 

Davis et al. [165] 0.16 0.21 0.20 0.16 
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7.3.3 – Practical Implication of Obtained Results 

For each of the tested BFG mixtures and equivalence ratios, there is an apparent 

convergence in uL as a consequence of H2O increase. This suggests that water addition 

is influential from the perspective of reducing premixed combustion instabilities that 

result from variation in BFG H2 fraction. As was performed in chapter 5, this can be 

emphasised by analysing theoretical critical velocity gradients that prevent boundary 

layer flashback as an example. Again flame thickness was calculated from modelled 

temperature profiles and approximated to dq, with application of Eqn. (2.3), to give the 

values plotted in Fig. 7.21 (the figure shows worst case conditions only; 0 and 0.75 g 

H2O, with 1 and 7 % BFG H2 for clarity). 

 

 

 

 

 

  

 

 

 
 

Fig. 7.21 – Theoretical gf/c values that prevent boundary layer flashback, for selected BFG compositions. 

 

Taking the stoichiometric case as an example, the factor of difference between the 

calculated gradients for the 1 and 7% H2 mixtures is almost halved by the addition of 

0.75g H2O (all calculated values of flame thickness and velocity gradients are provided 

for each plotted mixture in Appendix B.6). However, the exaggerated change in the 

influence of flame stretch (and any subsequent impact on combustive behaviour) is 

not accounted for in this example, with operational testing required to fully 

characterise this effect. 
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7.4    Quantifying Experimental Uncertainty 

 

The observed changes in flame speed presented in this chapter were relatively small, 

increasing the importance of quantifying, and trying to reduce, the measured 

uncertainty. The same method was used as has been employed previously (detailed in 

section 4.3), with slight adjustments required for the calculation of the total bias (BSu).  

 

An additional uncertainty factor was introduced to account for the addition of water to 

the reactant mixture. The relationship between each obtained value of Su, and the 

amount of injected water was used to estimate the influence of uncertainty in the 

measured water mass. This was achieved by fitting a third order polynomial 

relationship to each data set, and calculating the resultant change from the measured 

uncertainty in water mass. A conservative value of ± 0.01 g was used for this 

calculation, two orders of magnitude higher than the precision of the employed 

balance, but exaggerated to account for the human element of repeatability in 

measurement and any error in the polynomial fit.   

 

The number of experimental repetitions was increased to five for the stoichiometric 

case in an attempt to reduce the σsu for each condition. For five tests the employed  

t (95 % confidence) value also reduces to 2.776 from 4.303 for three repetitions [161], 

thereby lowering the overall calculated values of total uncertainty (Usu). Fig. 7.22 plots 

the measured stoichiometric Su values, with ± Usu shown superimposed in error bars. It 

is evident from the figure that the estimated uncertainty in each measurement was 

considerably smaller than the changes observed from H2O addition for the most 

variable (1 and 7% H2) mixtures. If the calculated uncertainty had not been smaller 

than the observed changes in uL for H2O addition, then the number of repetitions 

would need to have been increased further (for example increasing the performed 

repeats to 10 would have reduced the t value by a further ~20 % to 2.262). 
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Fig. 7.22 – Values of average stoichiometric BFG Su with increasing H2O addition and calculated Usu. 

 

For testing with variation in equivalence ratio there were limitations with the amount 

of remaining BFG, and therefore the number of experimental repeats was reduced to 

three. Consequently the t values and calculated ± Usu were larger, and have been seen 

superimposed on each dataset in Fig. 7.23 and Fig. 7.24, with all presented data 

available in Appendix B.6. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.23 – Average BFG Su with increasing H2O addition and calculated Usu for Ø = 0.8. 
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Fig. 7.24 – Average BFG Su with increasing H2O addition and calculated Usu for Ø = 1.4. 

 

7.5    Summary and Conclusions 

In this chapter the influence of variation in H2 fraction of BFG was investigated further 
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introduced to the reactant mixture, thereby increasing the water fraction to ~72% of 

the vapour pressure. 

 

The introduction of a water component to the fuel fraction was shown to have a 

potentially non-monotonic divergent influence on the attained results, as a function of 

the amount of original H2 in the fuel blend. For mixtures comprising low fractions of 

H2, the addition of water was shown to have a catalysing effect, with measured flame 

speeds, and resultant laminar burning velocities shown to increase. Conversely, the 

corresponding values for BFG blends containing larger H2 fractions decreased as more 

water was added. This suggests water addition has a potentially beneficial influence in 

reducing the amount of fluctuation in uL, and subsequent operational instabilities, 

resulting from fluctuation in BFG H2 fraction. Two opposing mechanisms of diluent 

suppression and gas thermochemistry enhancement have been discussed in 

comparison with modelled data of flame reaction kinetics.  
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A similarly opposing influence on flame stretch was also in evidence, with rates of 

propagation of low H2 mixtures shown to be increasingly decelerated for addition of 

water with stretch rate increase, and the opposite in evidence for the higher H2 

mixtures. The influence of water on Markstein Length was shown to be increased for 

leaner conditions, with propagation therefore more susceptible to thermo-diffusive 

instability from the influence of flame stretch. Nevertheless the significant impact on 

burning velocity suggests that burning BFG mixtures with high relative humidity lowers 

the potential for instability resulting from H2 variation. 

 

The results demonstrate reasonable overall agreement with chemical models, and the 

performance of two reaction mechanisms numerically evaluated. Simulations 

performed using the Davis et al. [165] reaction mechanism were shown to be in better 

agreement with the experimental data, as water fraction within the fuel blend 

increased.  
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Chapter 8. Further Steelworks Gas Testing 
 

 
 

Thus far, research presented in this dissertation has predominantly focussed on the 

potential for variability in the combustive properties of compositionally dynamic BFG. 

The work comprised within this chapter concerns the combustion of COG and BOS gas, 

both independently, and when blended with BFG.  

 

8.1    Coke Oven Gas 
 

As described in section 1.3.1, and 2.1.2, COG is a fuel that results from the high 

temperature carbonisation of coal, and as a consequence predominantly comprises 

large quantities of H2, CH4 and CO. Therefore, not only does it have a much higher 

calorific value than BFG, but also a faster flame speed. In order to characterise how 

effectively COG can be used to enhance and stabilise BFG combustion, first 

representative properties of laminar burning velocity and Markstein length had to be 

benchmarked for standalone combustion of the fuel.  

 

8.1.1 – Defining Experimental Parameters 

In order to test a representative COG mixture, firstly a suitable fuel composition had to 

be defined. The basis of this definition were the chromatographic measurements 

detailed in section 2.1.2, which predominantly agreed with values given by other 

references [12]. The average molar composition given from the specified analyses 

contained small fractions of higher hydrocarbons, notably Ethane (C2H6 - 0.5 %mol) 

and Ethylene (C2H4 - 1.7 %mol). These constituents were combined as part of the CH4 

fraction, as it was estimated that any resultant change in flame speed would be 

minimal. This follows from the work of Liao et al. [159] who investigated the laminar 

burning velocity of natural gas containing higher hydrocarbons in relation to CH4, and 

found minimal difference. Chemical models were also performed (GRI-Mech 3.0 
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reaction mechanism, section 4.2.2 for further details) which suggested a change in 

measured flame speed of <1 %.  The resultant molar composition of the representative 

COG mixture is provided in Table 8.1.  

 

Table 8.1 – Representative COG composition acquired for COG testing. 

 

 

 

 

 

 

 

 

Combustion of this COG mixture was characterised for three repetitions of nine 

equivalence ratios in the range 0.7–1.5, undertaken at representative atmospheric 

ambient conditions of 303 K and 0.1 MPa. The required filming rate of the camera was 

adjusted to account for the increase in anticipated flame speed, specified at 7,000 fps. 

This value was maximised to allow for fastest capture of the entire flame, and whilst 

filming rate could be increased, this would necessitate a lowering of the camera 

resolution. This resulted in a decrease in the relative accuracy of the COG tests, as 

fewer frames could be employed compared to the CH4 and BFG data. This is accounted 

for in the calculated experimental uncertainty (see section 4.3.1 for further detail). 

Partial pressure calculations were performed to determine the necessary values for 

each specified equivalence ratio, with the employed oxidiser again a dry zero-grade air. 

 

8.1.2 – Relationship between Stretch and Flame speed 

The Schlieren files were computationally processed to give propagating values of the 

flame radius, with both linear and nonlinear numerical techniques employed to 

evaluate the behaviour of stretch. Fig. 8.1 and Fig. 8.2 show examples of the processed 

data for all equivalence ratios with the fitted nonlinear association superimposed onto 

each dataset. 

Fuel component  Mole Fraction (%) 

CO2 1.5 

N2 4.0 

CO 7.1 

CH4 25.6 

H2 61.8 
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The plots have been separated to avoid overlapping data and improve clarity. It is 

evident from the gradients of the plotted values that propagation becomes more 

heavily influenced by flame stretch as equivalence ratio increases. All observed 

gradients in the specified range are also negative, implying a positive value of Lb and a 

corresponding decrease in flame speed as stretch rate increases. These trends are 
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Fig. 8.1 – Samples of COG/air Sn against α relationships, for Ø = 0.7 – 1.1. 
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Fig. 8.2 – Samples of COG/air Sn against α relationships, for Ø = 1.2 – 1.5. 
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more easily visualised in the plotted values of Lb as given in Fig. 8.3, with the results of 

individual tests (grey) shown alongside averaged data (coloured).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8.3 – Individual and average values of COG/air Lb against equivalence ratio. 
 

 

The plotted tendency presents a notable similarity to the CH4 benchmarking data 

presented in Chapter 4. All values being positive indicates preferential thermal 

diffusion in relation to mass and Lewis numbers greater than one. This is interesting as 

the most significant fuel fraction is H2, which is more than double the nearest 

constituent CH4 fraction; and an increase in H2 tends to provide a decrease in the 

measured Lb, as was seen with the BFG results and data from other institutions [111]. 

However, the negative offset in Lb resulting from H2 addition is increased by the 

presence of heavier inert diluents in the fuel fraction [123], which is minimal for COG 

(respective molar CO2 and N2 fractions of 1.5 and 4 %). This tendency is continued in 

Fig. 8.4 where all experimental Su data are plotted, together with the averages, against 

equivalence ratio. Data is shown to peak at marginally rich conditions, again similar to 

the methane dataset.  The plotted values of Su are however, much faster than those 
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Fig. 8.4 – Plotted values of COG/air Su against equivalence ratio. 

 
observed for methane; a result of the preponderant H2 component of the fuel fraction. 

The results also demonstrate significant variation between the peak measured flame 

speeds, and the extreme values of each tested equivalence ratio. These increasing 

gradients of the profile indicate that when burning the fuel at heavily lean or rich 

conditions, there will be potentially more variation induced by a change in equivalence 

ratio, and hence increased chance of instability. The repeatability of the COG dataset is 

good, and of a similar order to tests previously performed, with typical standard 

deviations in measured Su of around two percent. This will be discussed further with 

experimental uncertainty in section 8.1.3.  
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employing 53 chemical species in 325 reactions. Figure 8.5 gives the consequential 

values of uL attained from Su, together with results modelled using the freely 

propagating flame configuration of CHEMKIN-PRO, and the two aforementioned 

mechanisms (together with 7% H2 BFG for comparison). All measured and modelled 

data is provided in Appendix B.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8.5 – Plotted values of COG/air uL against equivalence ratio. 

 

The results demonstrate the same tendency as the measured unstretched flame 

speed, with a peak burning velocity achieved at marginally rich conditions. The reason 

the flame speed does not peak at richer air-fuel ratios (as would be expected with a 

high H2 mixture [27]), results from the dominant thermal diffusivity of the flame, 

proportional to uL when combined with overall reaction rate. The plotted burning 

velocities are more than double the equivalent values for methane, and around an 

order of magnitude higher than those of BFG. It is also clear from the plot that there is 

poor correlation between either of the tested reaction mechanisms and the COG 

dataset, with the GRI-Mech 3.0 model offering the more favourable results. To 

quantify this, the standard error of the estimate (Eqn. 5.1) has been calculated for the 

results modelled by each mechanism, with the Li et al. [164] data achieving an average 
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value of 10.6 cm·s-1 compared to 6.3 cm·s-1 from GRI-Mech 3.0 [149]. Results 

therefore suggest that when employing a given reaction mechanism to model COG 

combustion, GRI-Mech 3.0 is the favourable selection. 

 

8.1.4 – Experimental Uncertainties for the COG dataset 

Total uncertainty in unstretched flame speed (USu) was quantified in the same way as 

had previously been employed in Chapters 4-7, by first calculating the total bias (BSu), 

and combining the observed standard deviation (further details in section 4.3). Several 

considerations had to be given to the calculation of BSu; firstly the influences of 

temperature and pressure were estimated from chemical models performed using the 

GRI-Mech 3.0 mechanism. Secondly the error in the optical system had to be 

recalculated in accordance with the camera filming rate and number of frames used 

per file (see section 4.3.1). The calculated values of USu are shown superimposed as 

error bars on the plotted Su data in Fig. 8.6.  
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Fig. 8.6 – Plotted values of COG/air Su against equivalence ratio with superimposed ±USu 
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than others. The typical average uncertainty was in the order of three percent for the 

dataset, with larger relative uncertainty at the curve extremities, where the speeds are 

slowest. The uncertainty in the obtained values of Lb have again been expressed using 

the standard deviation of the dataset. Fig. 8.7 shows the plotted COG Lb data with ±σLb 

superimposed. All experimental data, including details of uncertainty can be found in 

Appendix B.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.2    BFG blended with COG 
 

 

Results presented in previous chapters quantified the potential variation in combustive 

properties resulting from small changes in BFG H2 fraction, with further investigations 

analysing the influence of change in ambient condition and water content on the 

observed effects.  The aim of the next section of work was to quantify the 

effectiveness of blending small amounts of COG to dampen out this fluctuation for the 

same level of compositional variation, as is commonly done in practise [12, 26]. This is 

analysed from the perspectives of both laminar burning velocity and fuel energy 

content. 
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8.2.1 – Defining Experimental Parameters 

Results are presented for sixteen blends of COG and BFG in different fractions, for 

variation in four equivalence ratios. The four BFG H2 fractions remained unchanged 

from the previous chapters, with COG added in the range of 0 - 15 % of total fuel 

fraction. The representative COG composition benchmarked in section 8.1 was 

employed for this study.  The resultant molar fractions of all tested fuel compositions 

(including the specified COG values) shown in Table 8.2.  

 

Table 8.2 - Molar compositions of fuels tested in the blended BFG/COG study. 
 
 

BFG H2 % 
1 3  5 7 

COG 

% 
100 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 

CO2 0.015 0.232 0.222 0.211 0.200 0.228 0.217 0.207 0.196 0.223 0.213 0.202 0.192 0.219 0.208 0.198 0.188 

N2 0.040 0.530 0.505 0.481 0.456 0.519 0.495 0.471 0.447 0.508 0.485 0.461 0.438 0.497 0.475 0.452 0.429 

CO 0.071 0.228 0.220 0.212 0.204 0.223 0.216 0.208 0.200 0.219 0.211 0.204 0.196 0.214 0.207 0.200 0.193 

CH4 0.256 0.000 0.013 0.025 0.039 0.000 0.013 0.025 0.039 0.000 0.013 0.026 0.039 0.000 0.013 0.025 0.038 

H2 0.618 0.010 0.040 0.071 0.101 0.030 0.059 0.089 0.118 0.050 0.078 0.107 0.135 0.070 0.097 0.125 0.152 

 

It was necessary to reduce the number of experimental repetitions to two, as a result 

of the large number of compositions outlined in the testing matrix. The four specified 

equivalence ratios were in the range 0.8 - 1.4 as it was estimated that this would 

provide characteristic peaks in maximum uL.  Ambient conditions were maintained at 

quasi-atmospheric values previously employed; 303 K and 0.1 MPa. For this work the 

camera filming rate was reduced to 3,000 fps (to remain consistent with previous BFG 

work – section 5.1.1), with dry zero-grade air again employed as the oxidiser. 

 

8.2.2 – Changes to the Experimental Methodology 

The original design of the fuel manifold had to be updated to facilitate the delivery of 

three independent gases (BFG, COG, H2), and N2 required for purging. The 

methodology for calculation of required partial pressure also had to be updated thus: 

 



8. Further Steelworks Gas Testing 

 

 

                                                               - 191 - 

− The specified blend (from Table 8.2) was fed into a spreadsheet to calculate the 

overall partial pressures of fuel and oxidiser. 

 

− The fuel pressure was then broken down into constituent COG, BFG, and 

subsequent H2 fractions, in accordance with volumetric ratio. 

 

− Filling of the chamber commenced with H2, then COG, BFG, and finally oxidiser 

before preparation for ignition. 

 

All calculated values of each component partial pressure are detailed in Appendix B.8. 

 

 

8.2.2 – Relationship between Stretch and Flame speed 

Experiments were performed as outlined in section 8.2.1. with each optical file 

processed using both the linear and nonlinear analytical techniques. Samples of each 

plotted dataset are provided in Fig. 8.8 – Fig. 8.11, with plots separated on the basis of 

equivalence ratio and BFG H2 fraction. Several observations can be made; firstly for 

lean air fuel ratios the addition of COG appears to increase the positive gradient of 

each plot, causing mixtures to accelerate more under stretched conditions.  The BFG 

mixtures already displaying this tendency (blends containing higher H2) show little 

change, with plots appearing offset only by the difference in measured speeds. This 

overall trend begins to even out as equivalence ratios of the mixtures increase, until 

under richest conditions the addition of COG causes the inverse effect, and plots to 

become more negative, and hence decelerate with a rise is stretch rate. These 

tendencies are clarified in Fig. 8.12 where the measured values of Lb are plotted for 

each mixture. The overriding trend is for values of Lb to converge as COG fraction 

increases, particularly for equivalence ratios of 1 and 1.2, where the mixtures exhibit 

near equidiffusive characteristics, and influences of stretch are minimised.  The only 

tested fuel blends not to follow this tendency are the lowest H2 BFG mixtures at the 

leanest and richest conditions. The overall convergence of Lb values with COG addition 

demonstrates the propensity for the difference in diffusive properties of each blend, 
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resulting from variable BFG H2, to be minimised. Furthermore, the negative values of Lb 

for the Ø = 0.8 and Ø = 1 mixtures suggest a dominance of mass diffusion compared to 

thermal conduction in the reaction zone. An explanation for this results from the 

diffusive properties of reactant H2 fraction compared with the heat absorbed by 

diluents, which are increasingly preponderant at lean conditions. This also offers an 

explanation for the tendency of Lb readings to converge towards lower values than 

those measured for baseline COG. Analogous research from other institutions also 

demonstrates similar tendencies, with a negative decrease in mixture Lb observed for 

H2 blended with increasing quantities of N2 [111, 123].  The data therefore suggests 

the influence of BFG H2 fraction on stretched flame behaviour is significantly lessened 

with the addition of COG.  

 

The obtained values of unstretched flame speed have been plotted for the increasing 

COG fraction of each tested mixture in Fig. 8.13, with individual values again 

represented by hollow grey points and the average coloured. There are similar trends 

observed for all blends and equivalence ratios, with a near linear increase in flame 

speed for the addition of COG. Whilst the offset between each BFG mixture appears 

near parallel, there is some expected minor convergence as values tend towards those 

measured for baseline COG results presented in section 8.1. Nevertheless the increase 

in Su with COG addition is significant, particularly for low H2 BFG, as speeds rise by over 

a factor of five across the tested 0 – 15 % range. Experimental repeatability and 

uncertainty are explored in section 8.2.5.  
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8.2.3 – Change in Experimental and Modelled Laminar Burning Velocity  

The Li et al. [164] reaction mechanism was chosen to model the required adiabatic 

density ratio, to remain consistent with other BFG data. However the difference 

between values returned from other thermochemistry sets was again <0.1 %, with 

these data provided with the full experiment set in Appendix B.8.  Modelled values 

were used to convert each Su value to a corresponding uL, with the averages in plotted 

in Fig. 8.14. 
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The introduction of COG appears to not only increase the uL of each tested mixture but 

also cause an apparent shift in the peak velocity of each equivalence ratio profile. As 

has been shown with pure BFG mixtures, the maximum values is reached at 

equivalence ratios near 1.3, however this appears to shift towards stoichiometric 

conditions with the addition of COG, and the baseline results presented in section 8.1 

are approached. The effect of this is for the mixture burning velocity to be increasingly 

changed by variation in richness as the profile becomes more pronounced.  

 

In Fig. 8.14 comparisons are also made with the Li and GRI-Mech chemically modelled 

velocities using the PREMIX coded flamespeed calculator in CHEMKIN-PRO [149] 

(reaction mechanism specifications are provided in sections 5.3 and 4.2.2 respectively). 

The Li mechanism is shown to provide the most representative results for BFG, but as 

COG levels increase the performance significantly diminishes and GRI-Mech 3.0 offers 

better correlation in values. This suggests that as fuel mixtures, and resultant reaction 

chemistry, become more complex, careful consideration should be given to which 

mechanism is selected to most accurately model each fuel.  The GRI-Mech 3.0 data 

offers particularly better correlation at rich conditions, with the crossover in modelled 

results tending towards leaner ratios with COG addition. However, the results 

presented in section 8.1.3 suggest that this relative performance would only diminish 

with further COG addition.  

 

8.2.4 – Practical Implications of Fuel Property Change  

The effectiveness of COG in dampening out the fluctuation in uL, experienced as BFG 

H2 increases, was analysed by calculating the relative percentage change in values 

attained across the tested range. This was performed for every fuel blend at each 

specified equivalence ratio. For example, an increase of 1-7 % in stoichiometric BFG H2, 

causes a rise in uL from 3.75 cm·s-1 to 11.05 cm·s-1, or an increase of ~195%. All values 

are plotted in Fig. 8.15. 
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Fig. 8.15 – Percentage change in uL resulting from 1-7% BFG H2 increase with COG addition. 
 

The plot emphasises the significant reduction achieved in the relative change of BFG uL 

by the addition of COG: Mixing BFG with 5% COG reduces the calculated sensitivity to 

H2 variation by over 100 %, dropping to a maximum of ~40 % for the tested range. 

Variation in critical boundary velocity gradient (gf - as employed in previous chapters) 

for the extreme tested cases is plotted in Fig. 8.16 (with dt (~dq) calculated using 

temperature profiles from GRI-Mech 3.0, and all data provided in Appendix B.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 8.16 – gf/c values that prevent boundary layer flashback, for selected BFG/COG compositions. 
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A change in equivalence ratio profile is seen for the addition of COG, together with a 

widening of the gap between the 1 and 7 % H2 BFG cases. However, the factor of 

difference decreases from almost an order of magnitude in some cases, to ~1.6 (Again 

this is only a theoretical example employed to emphasise the significant change 

resulting from variation in uL). Additionally supplementary COG also dampens changes 

in stretch influence by causing values of Lb to converge, and thereby offers an 

advantage that both water addition and temperature increase do not.   

The corresponding reduction in additional fuel characteristics of gross calorific value 

(CVG) and equivalent Wobbe Index have also been considered for all tested fuels. 

Properties were calculated for ideal mass fractions, and normalised to STP (273.15 K 

and 100 kPa, with reference energy density values in appendix A.2). This value was 

then used to calculate the WIG for that mix using Eqn. (5.1), Where the specific gravity 

of the mixture in relation to the density of air was calculated to be 1.276 kg·m-3. Fig. 

8.17 shows the plotted change in fuel CVG (a), and the equivalent percentage 

fluctuation (b) resulting from 1 - 7 % BFG H2 variation, together with WIG. The CVG and 

WIG of the specified mixtures is as much as an order of magnitude lower than values 

typical for natural gas [159], however are almost doubled with the addition of 15% 

COG. Furthermore, the addition of COG is shown to halve the BFG H2% percentage 

fluctuation in both plotted properties. Therefore, COG not only has the potential to 

dampen relative fluctuation in flame speed and stability, but also the heating power 

output from combustion.  

 

 

 

 

 

 

 

Fig. 8.17 – Actual values and percentage change in CVG/WIG resulting from 1-7% BFG H2 increase with 

COG addition. 
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8.2.5 – Experimental Uncertainty  

Calculated values of experimental uncertainty were increased significantly for this 

testing, with only two experimental repetitions performed per condition.  

Consequently the employed t-value rose to 12.71 (from 4.303) for the 95% confidence 

limit [161]. In addition to this a further factor of uncertainty resulted from error in the 

control of COG input. Linear changes in Su from the obtained results were used to 

estimate fluctuations in flame speed resulting from over/under filling of COG 

equivalent to ± 0.01 kPa. These changes were included in the calculation of total bias 

for each test. Furthermore, errors resulting from temperature and pressure change 

were estimated from scaled chemical models, and a drop in the number of frames per 

video led to a rise in optical uncertainty. The combination of these factors meant 

overall uncertainty values of over 10 % for the measured speeds. However, this is 

regarded as an overestimation, with smaller levels of scatter shown for most of the 

plotted data (Fig. 8.13), and results largely from statistical influence (t-value) on 

calculation. To highlight the additional uncertainty primarily from COG addition, 

calculated values of BSu have been averaged for all equivalence ratios, and presented in 

Table 8.4 (full USu dataset presented in appendix B.8). 

 

Table 8.4 – Calculated uncertainty values for the COG/BFG blend study (mm·s
-1

). 
 

COG % 5 10 15 

BFG  

H2% 
1 3 3 7 1 3 3 7 1 3 3 7 

BSu 12.7 14.2 15.6 18.1 16.7 19.0 20.6 23.0 20.2 22.4 27.0 28.8 

 

8.3    BOS Gas Modelling 
 
The collection and utilisation of BOS gas is becoming inerasably widespread as 

steelworks strive for site-wide efficiency improvements [12], and the purpose of this 

section is to characterise the fuel performance in relation to analyses already 

performed. Due to financial and time restrictions this study has been limited to 

chemical kinetic modelling as a foundation for potential future work, however 

analogous work with similar fuels in this thesis demonstrated reasonable agreement 

with experimental data, vindicating use of these simulations for an initial analysis.  
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8.3.1 – Fuel Specification 

In order to simulate a representative BOS gas mixture, an approximate baseline 

composition had to be specified. This was formulated on the basis of the data collected 

and summarised for the case study presented in section 2.1.4, with average molar 

fractions given in Table 8.5. 

 

Table 8.5 – Specified baseline BOS gas composition used for modelling. 

 

 

 

 

 
 

Ambient conditions were kept at the same quasi-atmospheric values (303 K 0.1MPa) to 

provide a direct comparison between results presented for the other steelworks gases. 

Furthermore, the specified range of modelled equivalence ratios was also maintained 

at 0.7 - 1.5 for the same reason. The reaction mechanism chosen to perform the 

required chemical modelling was the set developed by Davis et al. [165]. Results 

obtained from this mechanism had thus far provided the best overall agreement for 

fuels containing mixtures of H2 and CO. Simulations were performed using the freely 

propagating flame speed calculator (utilising PREMIX) of CHEMKIN-PRO, with the 

mechanism employing 14 chemical species in 43 reactions. As before, modelled 

solutions were based on an adaptive grid of 1,000 points, with mixture-averaged 

transport properties and trace series approximation. Modelled baseline values of uL for 

the specified mixture are shown in Fig. 8.18, with those, and all other modelled result 

presented in this in section tabulated in Appendix B.9. 

Fuel component  Mole Fraction (%) 

CO2 0.1420 

N2 0.1945 

CO 0.6563 

O2 0.0008 

H2 0.0064 
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Fig. 8.18 – Modelled values of uL for specified BOS/air mixtures against Ø. 

 

The returned values are of a similar order to BFG results containing the largest 

quantities of H2, even though diluent concentration is more than halved for the BOS 

gas mixture. The modelled peak burning velocity is also reached at apparently richer 

equivalence ratio compared with BFG. This suggests the suppression resulting from a 

drop in adiabatic flame temperature is being exacerbated by the rate of chemical heat 

release. This is a result of the preponderant CO in the BOS gas mixture, and the heavy 

influence of the terminating reaction CO + O2 → CO2 + O.  This process has relatively 

high activation energy, and is slow even at high temperatures [125]. It was therefore 

important to model the kinetics of BOS gas combustion for mixtures containing more 

H2 and H2O as potential catalysts for CO oxidation. 

 

8.3.2 – Variable moisture in BOS gas mixtures 

Following from the observed chemically enhancing influence of water addition 

reported in chapter 7, larger CO and smaller H2 fractions suggested BOS gas could be 

influenced more by H2O addition, relative to the changes observed with BFG. A direct 
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comparison between the two fuels was made by adding the same amounts of moisture 

to the modelled fuel blend, with all modelled mass fractions available in Table 8.6. Fig. 

8.19 demonstrates the simulated increase in modelled burning velocity experienced by 

the baseline BOS gas mixture for the equivalent addition of up to 0.75 g of water 

(molar compositional increase of ~5 %), with the 1 % H2 BFG data from Chapter 7 

shown for comparison. 

 

Table 8.6 – Specified BOS gas composition with increasing water fraction. 
 

Fuel Composition (mass fraction) 

Water Mass (g) H2 CO CO2 N2 H2O O2 

0 0.00042 0.61027 0.20753 0.18093 0.00000 0.00085 

0.25 0.00042 0.60434 0.20552 0.17917 0.00971 0.00084 

0.5 0.00042 0.59852 0.20354 0.17744 0.01924 0.00083 

0.75 0.00041 0.59282 0.20160 0.17575 0.02858 0.00083 

  

 

 

 

 

  

 

 

 

 

 

 

 
 

Fig. 8.19 – Modelled values of uL for BOS/air mixtures against Ø, with increasing water fraction. 
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There is clear enhancement to the modelled BOS gas burning velocity experienced as a 

result of H2O addition, with values increasing for each equivalence ratio. The 

enhancement also appears to follow the same tendency as the 1% H2 BFG mixture, 

with the level of acceleration decreasing with as more H2O is added. This again 

suggests the chemically catalysing influence is counterbalanced, and eventually 

surpassed, by the suppressive and cooling effect of H2O as a diluent [125]. The relative 

influence of water addition is also simulated to rise with Ø, inasmuch that there are 

respective full range increases from ~70, to ~86 percent for equivalence ratios of 0.7, 

and 1.5. These points are emphasised in Fig. 8.20, which plots the change in uL against 

water addition for three values of Ø. BOS gas is more heavily accelerated by the 

addition of water compared to BFG, suggesting a propensity for stronger variation with 

smaller changes in H2O concentration, and potential for atmospheric humidity to have 

a significant effect on combustion characteristics.  

 

 

 

 

 

 

 

 
 

Fig. 8.20 – Modelled values of uL for BOS/air mixtures against water fraction, for three equivalence 

ratios. 
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BOS gas mixture was the same as previously employed (section 8.3.1) with results 

shown for Ø variation in Fig. 8.21. 

 

Table 8.7 - Molar compositions of fuels modelled in the blended BFG/BOS study. 

 
BFG H2 % 

1 3  5 7 

BOS 

% 
100 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 

CO2 0.142 0.2327 0.2281 0.2236 0.2191 0.2280 0.2237 0.2194 0.2151 0.2233 0.2192 0.2151 0.2111 0.2186 0.2147 0.2109 0.2071 

CO 0.656 0.2277 0.2491 0.2706 0.2920 0.2231 0.2448 0.2664 0.2881 0.2185 0.2404 0.2623 0.2842 0.2139 0.2360 0.2581 0.2803 

N2 0.195 0.5297 0.5129 0.4961 0.4794 0.5190 0.5027 0.4865 0.4703 0.5083 0.4926 0.4769 0.4612 0.4976 0.4824 0.4673 0.4521 

H2 0.006 0.0100 0.0098 0.0096 0.0095 0.0300 0.0288 0.0276 0.0265 0.0500 0.0478 0.0456 0.0435 0.0700 0.0668 0.0636 0.0605 

O2 0.001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8.21 – Modelled BFG/air/BOS gas uL against Ø, for 1(a), 3(b), 5(c),7(d) % BFG H2 and increasing BOS 

fraction. 
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The modelled results suggest analogous trends for each BFG mixture, and an apparent 

increase in uL with BOS gas addition. Furthermore, the models simulate a tendency for 

peak values of uL to become richer with increased dilution, leading toward the baseline 

profile presented in Fig. 8.18.  If the effectiveness of BOS gas in dampening BFG 

variation is quantified in a similar way as COG (section 8.2.3), the percentage 

difference in peak uL from 1 - 7 % H2 reduces from ~218, to ~160 % across the tested 

range. This is compared to approximately 40 % for COG blends (note, with COG values 

were calculated for each corresponding Ø). To quantify this further for  

15 % BOS gas addition, the modelled peak uL for the 1% H2 BFG mixture increases  to 

6.7 cm·s-1, compared with a corresponding rise to 20.1 cm·s-1 for COG.  This therefore 

suggests BOS gas is inferior to COG as a uL stabilising additive, unsurprising considering 

the significant difference between the baseline fuel values. However, the change in uL 

with BOS gas addition does show an interesting non-monotonic effect over the tested 

range, due to the reaction chemistry: The addition of 15 % BOS gas to the 7 % H2 BFG 

mixture appears to raise peak uL to a value marginally larger than the dry baseline for 

either fuel. Therefore, as the mixture tends towards 100 % dry BOS gas, there would 

be a relative deceleration in the observed speeds. Again this is due to the catalysing 

effect of H2 addition to the preponderant CO in the BOS gas mixture. Therefore the 

complex behaviours exhibited between CO, H2, and H2O, and subsequent reaction 

chemistry could lead to significant variation in blended fuel burning velocity, and 

propensity for operational instability.  

 

8.4    Summary and Conclusions 
 

Laminar burning velocities were obtained for nine equivalence ratios of a 

representative COG mixture at atmospheric ambient conditions. The significant H2 

fraction of the fuel led to high speeds, more than double the equivalent for methane 

and around an order of magnitude faster than BFG. Observed propagation was also 

shown to be more heavily suppressed by flame stretch with an increase in mixture 

richness. The relative performance of two chemical reaction mechanisms used with 

CHEMKIN-PRO were analysed with respect to experimental data, and GRI-Mech 3.0 
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shown to model values most representative of the tested mixture. A detailed attempt 

was made to quantify possible experimental error, with an average uncertainty of 

around three percent at a 95% confidence level. 

 

The same COG mixture was then blended with BFG to quantify the effectiveness of 

dampening out the previously studied variation in burning velocities, that result from 

compositional H2 variation. COG was introduced to each of the four representative BFG 

mixtures, at ambient conditions and four disparate equivalence ratios, specified to 

provide the approximate peak for that blend. COG was shown to have a significant 

impact on obtained burning velocities across the tested range, increasing values for 

the low H2 BFG mixture by as a much as a factor of five. The addition of COG was also 

shown to dramatically reduce variation in the influence of flame stretch on 

propagation, as values of Markstein length converged across the tested range. 

Furthermore, relative uL fluctuation resulting from the addition of BFG H2 was shown 

to decrease from over two hundred percent to less than forty with the highest COG 

mixture. This effect demonstrated an inverse exponential tendency, with the lowest 

level of COG addition still reducing fluctuation by over one hundred percent. 

Equivalent variation in the fuel Gross calorific value and Wobbe index was also halved 

with blending across specified range. It is therefore suggested that COG addition is the 

most effective mechanism for reducing inherent fluctuation in BFG combustive 

properties, dampening change in not only uL, but also stretch influence, and energy 

delivery. 

 

Again a comparison of values simulated by chemical reaction mechanisms was 

undertaken with respect to predicting this behaviour, with optimal performance 

shown to shift between chemistry sets as the fuel blends change. Therefore careful 

consideration should be given when selecting a mechanism to model the reaction 

kinetics of these mixtures. Detailed calculations were once more performed to 

quantify experimental uncertainty, with higher returned values due to a necessary 

reduction in the number of experimental repeats.  
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The final section of this chapter employed the Davis reaction mechanism to model 

behaviour of a representative BOS gas mixture, after the set was shown to provide 

favourable results for fuels containing H2 and CO. An equivalent laminar burning 

velocity profile was generated for the same equivalence ratios and ambient conditions 

as tested with previous fuels. The magnitude of modelled speeds was of a similar order 

to the fastest BFG mixtures, with values shown to peak under richer conditions than 

previously observed. Models were then adapted, firstly for the introduction of 

increasing gaseous H2O fractions, equivalent to those tested with BFG in chapter 7. The 

catalysing influence of H2O in opening further CO reaction paths was shown to have a 

dramatic influence on modelled flame speed, with values almost doubling across the 

tested range. The suppressive effect of H2O as a diluent slowed the rate of acceleration 

between each step change in water fraction, however not enough to provide an 

overall reduction in values. Finally, models of blended BFG and BOS gas were 

performed, with fractions of the latter increased to the equivalent fifteen percent as 

COG. The dampening influence of BOS gas on BFG H2 variation was small in comparison 

with COG. However, the catalysing influence of H2 within the BFG fraction led to a 

blended peak burning velocity higher than any modelled for the independent 

combustion of either fuel. Therefore the complex behaviours exhibited between 

blended constituent fractions, could lead to significant variation in burning velocity, 

and propensity for operational instability. 
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Conclusions and Outcomes of Work 

 

Given the remit of initial objectives, several conclusions can be drawn from the work 

undertaken in this thesis: 

The initial objective of designing and developing an experimental setup capable of 

obtaining the desired results was achieved. Results were presented to demonstrate 

that optical measurements obtained from the Cardiff CVCB were in agreement with 

corresponding CH4 data from research literature, thereby vindicating use of the 

outlined experimental system for this, and future studies.  

Variation in the combustive behaviour of atmospheric BFG was subsequently 

characterised for small changes in H2 concentration, representative of fluctuation (1-7 

%mol) experienced during production. Su and uL values were shown to increase by 

more than a factor of three for each equivalence ratio across the tested range (0.7-

1.5), thus highlighting the significant potential for premixed operational instabilities 

such as blowoff and flashback. The influence of flame stretch was also investigated 

with measured values of Lb rising with equivalence ratio. This was offset by a decrease 

in values as fuel H2 fraction rose, with both positive and negative quantities measured. 

The opposing tendencies in uL and Lb resulting from H2 addition suggest that any minor 

flame behavioural change resulting from compositional variation can not be fully 

negated with an alteration in equivalence ratio. 

BFG combustion was investigated further to quantify the influence of change in 

ambient condition, and to what extent waste heat can be used to mitigate the 

variation in atmospheric uL and Lb. Increase in ambient pressure resulted in a decrease 

of uL for each BFG composition, together with a tendency for lowering measured Lb. 

This change was quantified as a proportional offset for all tested mixtures, and was 

observed alongside the increase induced by a rise in equivalence ratio or drop in H2 

concentration. An increase in ambient temperature was shown to induce a rise in uL, 

however variation in the specified condition provided little demonstrable change in 

the analysed influence of flame stretch. The rise in uL with temperature was 

proportional to the initial value, and therefore consistent fuel preheating would not 

dampen the impact of the fluctuations initially measured. However, BFG uL could be 

maintained within a given range with controlled preheating (based on the fuel H2 
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content) however this may not fully negate instability due to stretch influence. 

Consequently power law correlations were made for variation in ambient condition, 

applicable for modelling BFG burning velocities with a change in temperature and 

pressure, with exponents compared to analogous values for different fuels. 

Variation in BFG uL and Lb was investigated further with H2 fraction, and change in 

relative humidity. Masses of water were introduced to the reactant mixture, thereby 

increasing the relative humidity to 72 %. This was shown to have a potentially non-

monotonic divergent influence on the attained uL, as a function of the ratio of CO to H2 

in the fuel blend. For mixtures comprising low H2 the addition of water demonstrated a 

catalysing influence, with resultant uL shown to increase. Conversely, the 

corresponding values for blends containing larger H2 fractions decreased with more 

water and a drop in flame temperature. A similarly opposing influence on flame stretch 

was also in evidence, with rates of propagation of low H2 mixtures shown to decelerate 

with stretch rate increase for water addition, and the opposite in evidence for the 

higher H2 mixtures. Results therefore suggest that water addition works to potentially 

stabilise BFG uL, decreasing the magnitude of the range measured from H2 increase.  

A representative COG blend was tested with resultant atmospheric uL shown to be 

significantly faster than any BFG composition, in addition to natural gas. Consequently 

small fractions of COG were added to the previously tested BFG blends to again 

quantify the dampening influence for change in uL. COG addition was shown to be 

beneficial in reducing not only the magnitude of relative fluctuation in uL, but also the 

quantified influence of flame stretch and energy density, and therefore possibly the 

best mechanism for reducing the inherent variation initially quantified. BOS gas blends 

were then modelled based on the accuracy of previous results, and suggested the 

potential for influential relationships with both moisture content, and BFG blending.  

Experimental values of burning velocity were compared to those obtained using 

computational models, employing multiple chemical reaction mechanisms. The Li and 

Davis mechanisms demonstrated the most accurate results for modelling BFG uL, with 

the preferable selection based on a function of composition, equivalence ratio and 

ambient condition. None of the mechanisms employed in this study modelled COG 

combustion in close agreement with experimental data, and is unsurprisingly complex 

given the number of constituent species, and resultant intermediate reactions. 
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Recommendations for further Work 

 

 

Several recommendations for further investigation can be made as a result of the work 

presented in this thesis: 

 

 

Firstly the experimental setup could be modified with larger, or an increased number 

of bolts. This would facilitate the performance of tests at higher values of initial 

ambient pressure. This would also allow for further development and validation of 

chemical reaction mechanisms at non atmospheric-conditions, such as those 

experienced in gas turbine combustors. 

 

 

The work presented in the final chapter highlighted the potential for BOS gas 

combustion to be significantly influenced by H2O addition, and more than the 

presented work with BFG. These results were only modelled, and it would be 

interesting to experimentally quantify this influence with BOS gas becoming a more 

widely utilised fuel, particularly from the perspective of blended BOS and BFG. The 

results would also allow the quantification of the influence of flame stretch, and 

potentially have wider ramifications concerning the use of other synthesised fuels. 

 

 

The mechanisms presented in this thesis suggest ways of improving practical BFG 

combustion by reducing operational instabilities and dampening uL fluctuation. This 

work is presented from a perspective of fundamental fuel characterisation, and it 

would be beneficial to see the presented suggestions applied on a practical burner. 

This would also facilitate the further characterisation of flame stretch influence, and 

determination of critical Karlovitz numbers, together with providing an opportunity to 

correlate some of the values attained for uL, with equivalent turbulent flame speeds.  
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Appendices 

 

Appendix A – Ancillary Information  

A.1 - Example Tata Gas Chromatograph Analysis 
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A.2 - Reference Properties, Constants and Coefficients 

 

Universal Gas Constant – R= 8.314472 J·(K·mol-1) 

The values of any molar masses were calculated using the following atomic weights, 

with examples of some example calculated values (shown to 4 significant figures) 

 

  

  

 

 

 

Average molar masses of gaseous mixtures were calculated using the values above and 

Eqn. (3.28). So for example, the equivalent molar mass of air comprising 79 percent 

nitrogen and 21 percent oxygen had an equivalent molar mass thus: 

 

Mair = ( ) ( )[ ]=×+× .31.99880.2128.01350.79 28.8503 g·mol-1 

This value was used for the partial pressure calculations performed to control 

equivalence ratio. 

 

The table below lists the gross energy densities used for calculation of approximate 

calorific values: 

Gross Energy Densities (MJ·kg
-1

) 

H2 141.51 

CO 10.10 

CH4 55.51 

C2H4 50.30 

C2H6 51.08 

Atomic weight (u) 

C 12.0107 

H 1.00794 

O 15.9994 

N 14.00674 

Ar 39.948 

Molar Mass (g·mol
-1

) - Mi 

H2 2.0159 

CO 28.0101 

CH4 16.0425 

N2 28.0135 

C2H4 28.0532 

C2H6 30.0690 

CO2 44.0095 

O2 31.9988 

H2O 18.0153 



Appendices 

 

 
                                                               - 227 - 

Tables below give coefficients used in NASA polynomials used for determination of γu 

 

N2 

Temperature Range 
Coefficient 

100 - 500 500 - 2000 2000 - 6000 

A 28.98641 19.50583 35.51872 

B 1.853978 19.88705 1.128728 

C -9.647459 -8.598535 -0.196103 

D 16.63537 1.369784 0.014662 

E 0.000117 0.527601 -4.55376 

  

O2 

Temperature Range 
Coefficient 

100-700 700 - 2000 2000 - 6000 

A 31.32234 30.03235 20.91111 

B -20.23531 8.772972 10.72071 

C 57.86644 -3.988133 -2.020498 

D -36.50624 0.788313 0.146449 

E -0.007374 -0.741599 9.245722 

 

CH4 

Temperature Range 
Coefficient 

298 - 1300 1300 - 6000 

A -0.703029 85.81217 

B 108.4773 11.26467 

C -42.52157 -2.114146 

D 5.862788 0.13819 

E 0.678565 -26.42221 
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Fig. A.2 – Photograph of experimental rig. 

A.3 - Experimental Rig 
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1. 

2. 

3. 

4. 5. 6. 

7. 

8. 

9. 

A.4 - LabVIEW programs created for data acquisition 

 

A.4.1 Temperature Data Logging 

The program written for temperature acquisition used the scan-interface programming 

model, running the cRIO in scan mode. The system real-time processor periodically 

scans the input/output, and places the returned values in a memory map ready for 

access as requested. The overall graphical program structure is presented in Fig. A.3, 

annotated with numbers to help describe the sequence of program operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. This program is designed to run a Flat Sequence Structure (the boxes surrounding 

the operational components), with the three frames accessed and executed in 

sequence. The first part of the structure creates a .tdms (the designated data storage 

format) file in the cRIO host memory, to store the real-time data.  The program then 

moves onto the next frame, where a timed-loop is employed (2.) to access the desired 

channel inputs (primarily TC0 and TC1), and arrange this data into an array. This data is 

then streamed into a buffer (3.), to ensure a consistent sampling rate, and avoid the 

system timing out under heavy loading.  

 

Fig. A.3 – Overview of the temperature control code. 
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4. A while-loop runs simultaneously, extracting the data array from the buffer and 

rearranging to the separate channel components once more. The stream is written to 

the .tdms file created in the first part of the program (5.), and also replicated (6.) to 

give a live display of the data being read on the front panel of the executed program. 

Sample calibration factors are shown as mathematical operators, with one numerical 

and one plotted output (7.). 

 

8. A universal stop input is included in the program so the user can specify when all the 

necessary data has been logged. Use of this one operator ceases execution of both 

simultaneous loops and moves the program to the final frame of the sequence 

structure. Here the .tdms file is saved and closed (9.), ready for the user to access in 

the cRIO memory. An error stream and indicator have been included should the 

system become unstable and time-out. 

 

The front panel used in program operation is shown in Fig. A.4 

 

 

 

 

 

 

 

 

 

 

 

The numerical output of the desired channel (in this case 0) is given above the plotted 

trend of the previous 1000 data points. The error indicator has been included on the 

right of the panel to display any standard error codes that could lead to system failure. 

The stop button at the bottom is the control used to cease operation of the program 

loops. 

Fig. A.4 – Front panel of the temperature control program. 
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A.4.2 Analogue Data input 

The program written for analogue data acquisition utilised the Field Programmable 

Gate Array (FPGA) to achieve high frequency data capture (up to 5 kHz – the limit of 

the pressure transducer). The system for data acquisition comprised two parts, one 

compiled directly on the FPGA, and the other compiled and installed in the memory of 

the cRIO. The first of the two parts of the program is presented in Fig. A.5, again 

annotated with numbers to help describe the sequence of program operation. 

 

 

 

 

 

 

 

 

 

 

This part of the program again uses a Flat Sequence Structure, housed within an 

encompassing while-loop. 1. The first frame of the sequence collects data from the 

four specified channels of the analogue input module (AI0-3), and collates the data 

into an array. This data is then streamed into a First-In-First-Out (FIFO) data buffer, 

with a time-out check included in a for-loop (2.). The second frame of the flat 

sequence structure cross references a user specified sampling rate, allowing the 

sequence to repeat (or the channels to be sampled) at the user specified frequency 

(3.).  This part of the program is housed within the FPGA to automatically run as 

required, when the secondary program is functioning. This second part is shown in Fig. 

A.6 again annotated with numbers to help describe the sequence of operation. 

1. 

2. 

3. 

Fig. A.5 – Overview of FPGA compiled control code 
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4. 

5. 

6. 

7. 

8. 

9. 10. 

11. 

12. 

13. 

14. 

 

 

 

 

 

 

 

 

 

 

 

 

4. The first part of this routine initiates the reference sub-program written on the FGPA 

(described above), and starts the FIFO data buffer. 5. This command allows the user to 

specify the sampling rate on the front panel, and defines the frequency that FIFO is 

written to and read. 6. At this point the .tdms file is created for the data to be written 

to, before initiating data capture (7.). 8. The next part of this routine sits within a while 

loop, that executes for each point of data being read from the FIFO. 9. The array is 

restructured to separate out the values of the four sampled channels, with numerical 

and plotted data again outputted onto the front panel (10.). The data stream from the 

four channels is simultaneously replicated and written to the .tdms file within the 

system memory (11.).  A time out check is included (12.), before the user specified 

control for the stop condition, accessible on the front panel (13.). Finally the .tdms file 

and FPGA reference to the first sub-program are both closed (14.), after the while loop 

has been ceased. 

 

The front Panel for the analogue data capture is shown in Fig. A.7 

 

 

 

 

 

Fig. A.6 – Overview of the secondary data read and write file. 
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The plot shows data from 3 of the channels; the blue line showing the current pressure 

transient, together with the red and green voltage output from the two tachometers. 

There are also two numerical outputs from these fans (both showing the slight noise in 

the system), to allow for precise control of fan rotational speed. Again, a stop control 

button is included to allow the user to cease program operation, together with the 

writable loop rate of the program, or how quickly the data is sampled (currently set to 

500 µSecs). As with the previous program, an error output is included to specify a 

standard code should a problem occur, together with a time-out indicator.  

 

 

   

Fig. A.7 – Front panel of the secondary analogue input program. 
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A.5 - derivation of partial pressure from first principles 

 

 

Section 3.3.2 gives a simple derivation for the calculation of partial pressure, however 

what follows is comprehensive analysis, employing the ideal gas equation from first 

principles to express values of partial pressure as a function of air fuel ratio. Firstly the 

ideal gas equation describes the state of a gas relative to its pressure, volume and 

temperature:  

TRnVP ⋅⋅=⋅        (A.1) 

The number of moles can be substituted for the mass, and molar mass using Eqn. 3.24 

to give: 

VM

TRm
P

⋅
⋅⋅

=        (A.2) 

Section 3.3.2 describes how the total pressure of a gas mixture is comprised of partial 

pressures of each mixture, in this case fuel and oxidiser: 

ofT PPP +=        (A.3) 

Substituting Eqn. A.2 into A.3 gives: 
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R is the universal gas constant, and the volume and temperature do not change inside 

the CVCB allowing the equation to be rearranged thus: 




















+









=

⋅

⋅

o

o

f

fT

M

m

M

m

TR

VP
      (A.5) 

Rearranging Eqn. 3.17 gives 

actfo AFRmm =        (A.6) 
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Substituting Eqn. A.6 into A.5 gives: 
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which can be rearranged in terms of mass, giving Eqn. A.7 
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Substituting Eqn. 3.24 into A.7 gives 
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And similarly the number of oxidiser moles can be derived to give: 
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Rearranging and substituting Eqns. A.8 and A.9 into Eqn. A.4 yields: 
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Allowing the 







⋅

⋅
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VPT  term to drop out to give: 
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with a similar process applicable to the partial pressure of the oxidiser. 
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A.6 - Sample MATLAB code 

 
clear all 

  

path(path,'D:\try'); 

fileFolder = fullfile('D:','try'); 

dirOutput = dir(fullfile(fileFolder, '*.tif')); 

fileNames = {dirOutput.name}'; 

tic 

  

r=1; 

A1 = imread( fileNames {r} ); 

B = edge (A1, 'canny', 0.16); 

  

for k = 1:200; 

     

    A = imread( fileNames {k} ); 

    D = edge (A, 'canny', 0.16); 

    %figure, imshow (D), title ('D'); 

    E = D-B; 

    %figure, imshow (E), title ('E'); 

     

    C = imcrop ( E, [50, 268, 550, 54]); 

    %figure, imshow (C), title ('C'); 

    

    

    ll1 = find ( C==1, 1, 'first'); 

    rr1 = find ( C==1, 1, 'last'); 

     

    lcol = ll1/55; 

    lcol1 = ceil(lcol); 

     

    rcol= rr1/55; 

    rcol1= ceil(rcol); 

     

    

    if (isempty(ll1))  

        Ledge(k) = 0; 

    else 

        Ledge(k)= 460-lcol1;  

    end; 

     

     

    if (isempty(rr1))  

        Redge(k) = 0; 

    else 

        Redge(k)= rcol1-460;  

    end; 

     

     

    if ((isempty(ll1))||(isempty(rr1)))  

        fd(k) = 0; 

        P(k) = 0; 

    else 

        fd(k) = rcol1-lcol1;  

        P(k) = (55-((lcol1*55)-ll1)); 

    end; 

     

end 

  

Tre = transpose (Redge); 

Tle = transpose (Ledge); 

Tfd = transpose (fd); 

TP = transpose (P); 

  

xlswrite('Result.xls',Tfd,1,'A1'); 

xlswrite('Result.xls',TP,1,'B1'); 

xlswrite('Result.xls',Tre,1,'C1'); 

xlswrite('Result.xls',Tle,1,'D1'); 
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A.7- Calibration plots 

 
A.7.1 Thermocouples 

Thermocouple one 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermocouple two 
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Fig. A.8 – Calibration plot of thermocouple one with 9100 HDRC dry block system 

 

Fig. A.9 – Calibration plot of thermocouple two with 9100 HDRC dry block system 
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A.7.2 Pressure transducers 

High-frequency pressure transducer calibration plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.10 – Calibration plot of high frequency pressure transducer with Druck DPI 610 

 

 

Vacuum gauge pressure transducer calibration plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A.11 – Calibration plot of vacuum transducer with Druck DPI 610 
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Appendix B - Results Tables 

 

B.1 - Benchmarking Atmospheric CH4 Results Dataset  

 
Test Conditions 

 

Fuel:    CH4      purity:  99.9% 

 

Temperature:   303 K   

 

Pressure:   0.1 MPa 

 

Camera Speed   5,000 fps 

 

 
Dynamic Pressure Measurement Results 

 
 

φ γu 

uL  

Test 1 
(cm·s

-1
) 

 

uL  

Test 2 
(cm·s

-1
) 

 

uL  

Test 3 
(cm·s

-1
) 

 

Ave 

uL  
 (cm·s

-1
) 

 

0.75 1.3893 20.1 19.6 19.5 19.7 

0.8 1.3887 24.2 24.2 23.7 24.0 

0.85 1.3882 29.0 27.9 29.2 28.7 

0.9 1.3877 31.1 31.3 31.5 31.3 

0.95 1.3872 34.0 33.8 33.4 33.7 

1 1.3866 35.0 35.1 35.0 35.0 

1.05 1.3862 35.5 34.9 35.5 35.3 

1.1 1.3856 34.0 34.2 33.9 34.0 

1.15 1.3852 33.6 32.3 32.6 32.8 

1.2 1.3846 30.0 30.1 29.5 29.8 

1.25 1.3842 25.5 26.4 26.2 26.1 
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Individual Tests – Optical Results 

 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

GRI-Mech 

3.0 

(cm·s
-1

) Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

1445.84 22.74 0.890 1431.30 22.51 0.686 

1414.24 22.24 0.837 1399.98 22.02 0.643 0.75 7.30 0.15729 23.58 

1384.98 21.78 0.827 1373.12 21.60 0.651 

1725.09 26.08 0.956 1704.56 25.77 0.717 

1737.93 26.27 0.964 1716.47 25.95 0.719 0.8 7.75 0.15117 27.36 

1696.56 25.65 0.845 1680.30 25.40 0.653 

2088.91 30.47 0.986 2063.10 30.09 0.737 

2081.85 30.36 0.972 2057.66 30.01 0.733 0.85 8.19 0.14584 30.80 

2111.39 30.79 1.004 2085.24 30.41 0.751 

2380.13 33.63 1.147 2342.81 33.10 0.826 

2372.72 33.52 1.184 2333.58 32.97 0.846 0.9 8.63 0.14129 33.78 

2350.06 33.20 1.076 2315.99 32.72 0.786 

2555.35 35.15 1.193 2533.31 34.85 0.946 

2608.80 35.89 1.046 2588.53 35.61 0.840 0.95 9.07 0.13757 36.15 

2622.36 36.08 1.109 2595.47 35.71 0.855 

2778.15 37.49 1.212 2730.30 36.84 0.860 

2780.91 37.52 1.153 2740.56 36.98 0.844 1 9.50 0.13493 37.74 

2755.73 37.18 1.150 2717.98 36.67 0.851 

2890.85 38.70 1.291 2838.46 37.99 0.910 

2875.30 38.49 1.304 2830.71 37.89 0.946 1.05 9.93 0.13386 38.48 

2886.68 38.64 1.285 2838.77 38.00 0.922 

2831.55 38.04 1.227 2784.54 37.40 0.876 

2877.76 38.66 1.350 2829.14 38.00 0.960 1.1 10.35 0.13433 38.18 

2863.60 38.47 1.320 2808.93 37.73 0.921 

2748.23 37.22 1.323 2700.90 36.58 0.944 

2740.31 37.11 1.576 2673.73 36.21 1.052 1.15 10.77 0.13543 36.61 

2736.94 37.07 1.538 2674.52 36.22 1.040 

2515.04 34.39 1.624 2438.45 33.34 1.034 

2505.70 34.26 1.816 2428.44 33.21 1.152 1.2 11.19 0.13674 33.66 

2470.27 33.78 1.752 2396.20 32.77 1.120 

2114.53 29.22 2.208 2032.38 28.08 1.332 

2191.01 30.27 2.144 2115.43 29.23 1.334 1.25 11.60 0.13817 29.29 

2152.63 29.74 2.087 2087.57 28.84 1.308 

 



Appendices 

 

 
                                                               - 242 - 

 

Summary and Error – Linear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.75 40.93 1415.02 22.26 0.851 30.4 85.901 

0.8 41.48 1719.86 26.00 0.921 21.1 66.845 

0.85 39.35 2094.05 30.54 0.987 15.4 54.885 

0.9 35.49 2367.64 33.45 1.136 15.6 52.547 

0.95 31.43 2595.51 35.71 1.116 30.7 82.490 

1 26.56 2771.60 37.40 1.172 11.3 43.370 

1.05 20.53 2884.28 38.61 1.293 8.1 28.659 

1.1 21.82 2857.64 38.39 1.299 27.0 70.537 

1.15 28.28 2741.83 37.13 1.479 5.8 31.743 

1.2 40.78 2497.00 34.14 1.731 23.6 71.416 

1.25 57.85 2152.72 29.74 2.146 38.2 111.146 

 

 

 

 

Summary and Error – Nonlinear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.75 40.93 1401.47 22.04 0.660 29.1 83.123 

0.8 41.48 1700.44 25.71 0.696 18.4 61.792 

0.85 39.35 2068.67 30.17 0.740 14.6 53.532 

0.9 35.49 2330.79 32.93 0.836 13.6 49.035 

0.95 31.43 2572.44 35.39 0.880 34.1 90.267 

1 26.56 2729.61 36.83 0.852 11.3 38.655 

1.05 20.53 2835.98 37.96 0.926 4.6 23.454 

1.1 21.82 2807.54 37.71 0.919 22.3 59.619 

1.15 28.28 2683.05 36.34 1.012 15.5 47.709 

1.2 40.78 2421.03 33.11 1.102 22.1 68.345 

1.25 57.85 2078.46 28.72 1.324 42.3 111.146 
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B.2 - Benchmarking High Temperature CH4 Results Dataset  

 
Test Conditions 

 

Fuel:    CH4      purity:  99.9% 

Temperature:   358 K   

Pressure:   0.1 MP 

Camera Speed   5,000 fps 

 

Individual Tests – Optical Results 

 

Linear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

GRI-Mech 

3.0 

(cm·s
-1

) Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

2143.74 37.59 0.95 

2158.22 37.84 1.01 0.8 7.75 0.175 36.93 

2098.64 36.79 0.98 

2763.27 45.44 1.13 

2780.00 45.71 1.02 0.9 8.63 0.164 44.89 

2749.77 45.22 1.07 

3235.24 50.94 1.17 

3234.40 50.93 1.28 1 9.50 0.157 49.71 

3234.38 50.93 1.19 

3239.37 50.62 1.30 

3296.23 51.51 1.40 1.1 10.35 0.156 50.07 

3240.29 50.64 1.31 

2898.82 46.02 1.57 

2857.82 45.37 1.71 1.2 11.19 0.159 44.54 

2916.84 46.30 1.77 

 

 

Summary and Error – Linear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 52.42 2133.32 37.40 0.98 31.43 74.13 

0.9 37.62 2764.35 45.46 1.07 15.15 54.01 

1 26.30 3234.67 50.93 1.21 0.49 43.21 

1.1 23.08 3258.63 50.93 1.34 32.56 70.94 

1.2 36.15 2891.16 45.90 1.68 30.25 68.88 
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B.3 - BFG Atmospheric Ambient Condition Dataset 

 
Test Conditions 
 

Fuel:    BFG (CO-23.07%, CO2-23.35%, and N2-53.58%)  

Temperature:   303 K   

Pressure:   0.1 MPa 

Camera Speed   3,000 fps 

 
Individual Tests – Optical BFG Results 1 % H2 Addition 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

105.58 2.49 0.11 105.20 2.48 0.08 

96.98 2.29 0.00 96.95 2.29 0.00 0.7 55.22 0.23587 

106.58 2.51 -0.10 106.71 2.52 -0.01 

0.8 58.50 0.22800 114.87 2.62 0.23 115.16 2.63 0.22 

127.09 2.90 0.19 126.82 2.89 0.17 

124.50 2.84 0.23 123.73 2.82 0.19 

151.51 3.36 0.30 150.38 3.34 0.24 

154.15 3.42 0.33 153.80 3.41 0.29 0.9 61.32 0.22186 

149.33 3.31 0.30 149.72 3.32 0.29 

1 63.79 0.21816 166.03 3.62 0.41 165.37 3.61 0.35 

166.74 3.64 0.66 163.44 3.57 0.47 

172.83 3.77 0.46 172.44 3.76 0.41 

173.23 3.91 0.63 173.23 3.91 0.54 

181.43 4.10 0.74 179.42 4.05 0.57 1.1 65.96 0.22597 

170.45 3.85 0.63 171.74 3.88 0.60 

1.2 67.89 0.23478 179.40 4.21 0.59 179.40 4.21 0.49 

179.69 4.22 0.67 179.77 4.22 0.62 

180.59 4.24 0.98 177.23 4.16 0.69 

163.09 3.97 0.85 160.95 3.92 0.67 

160.98 3.92 0.85 159.40 3.88 0.67 1.3 69.61 0.24336 

175.78 4.28 1.18 170.60 4.15 0.78 

1.4 71.15 0.25186 148.37 3.74 1.29 143.49 3.61 0.82 

155.60 3.92 1.77 147.21 3.71 0.99 

156.74 3.95 1.68 148.95 3.75 0.96 

127.88 3.33 2.11 122.18 3.18 1.25 

133.29 3.47 1.21 132.53 3.45 0.92 1.5 72.55 
0.26005 

 

138.56 3.60 2.00 130.55 3.40 1.11 
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Individual Tests – Optical BFG Results 3 % H2 Addition 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

202.08 4.68 -0.27 202.05 4.68 -0.29 

196.00 4.54 -0.21 195.08 4.52 -0.16 0.7 53.67 0.23156 

200.00 4.63 -0.08 200.62 4.65 -0.06 

0.8 56.97 0.21727 245.47 5.49 -0.17 245.12 5.48 -0.18 

250.65 5.60 -0.20 250.67 5.60 -0.20 

237.57 5.31 0.08 233.53 5.22 0.00 

277.52 6.03 0.02 277.52 6.03 0.02 

280.31 6.09 -0.03 278.56 6.05 -0.10 0.9 59.83 0.22355 

285.66 6.21 0.04 285.73 6.21 0.04 

1 62.33 0.21343 302.25 6.45 0.04 302.17 6.45 0.04 

302.65 6.46 0.07 302.44 6.46 0.06 

300.17 6.41 0.04 300.17 6.41 0.02 

311.53 6.88 0.17 310.54 6.86 0.19 

313.67 6.93 0.22 313.99 6.94 0.23 1.1 64.55 0.22957 

327.65 7.24 0.27 327.55 7.24 0.25 

1.2 66.51 0.22092 319.38 7.33 0.34 318.37 7.31 0.30 

312.13 7.17 0.24 312.28 7.17 0.23 

322.27 7.40 0.44 320.84 7.37 0.37 

299.41 7.13 0.34 299.01 7.12 0.31 

300.55 7.15 0.40 300.60 7.15 0.38 1.3 68.27 0.23799 

310.16 7.38 0.56 308.59 7.34 0.47 

1.4 69.85 0.25422 268.85 6.62 0.51 267.26 6.58 0.43 

276.02 6.80 0.57 275.23 6.78 0.50 

273.53 6.73 0.48 273.31 6.73 0.44 

254.64 6.47 1.12 248.84 6.33 0.77 

262.89 6.68 1.17 257.82 6.55 0.81 1.5 71.28 0.24621 

245.20 6.23 0.81 242.18 6.16 0.63 
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Individual Tests – Optical BFG Results 5 % H2 Addition 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

285.37 6.50 -0.58 282.59 6.43 -0.74 

277.41 6.32 -0.62 275.22 6.27 -0.78 0.7 52.20 0.22764 

281.48 6.41 -0.48 282.00 6.42 -0.51 

0.8 55.52 0.21950 335.09 7.36 -0.49 330.22 7.25 -0.49 

339.38 7.45 -0.29 337.65 7.41 -0.34 

334.87 7.35 -0.43 328.75 7.22 -0.38 

398.23 8.49 -0.11 392.01 8.35 -0.08 

385.47 8.21 -0.14 385.46 8.21 -0.15 0.9 58.41 0.21309 

398.98 8.50 -0.32 398.16 8.48 -0.36 

1 60.94 0.20914 436.08 9.12 -0.09 436.05 9.12 -0.09 

436.35 9.13 -0.08 436.36 9.13 -0.08 

431.09 9.02 -0.14 429.79 8.99 -0.09 

457.57 9.90 -0.03 457.96 9.91 -0.02 

456.92 9.89 -0.08 455.03 9.85 -0.07 1.1 63.19 0.21638 

455.14 9.85 -0.02 454.91 9.84 0.01 

1.2 65.19 0.22479 460.43 10.35 -0.07 459.21 10.32 -0.06 

450.57 10.13 0.12 450.51 10.13 0.11 

441.88 9.93 0.26 441.36 9.92 0.24 

442.98 10.32 0.35 435.95 10.16 0.20 

450.29 10.49 0.08 451.13 10.51 0.10 1.3 66.98 0.23300 

432.51 10.08 0.18 432.20 10.07 0.17 

1.4 68.60 0.24103 399.62 9.63 0.31 399.07 9.62 0.28 

406.87 9.81 0.51 405.19 9.77 0.43 

403.88 9.73 0.38 402.79 9.71 0.34 

380.15 9.46 1.26 367.35 9.14 0.81 

367.97 9.16 0.86 360.79 8.98 0.61 1.5 70.07 0.24884 

373.60 9.30 1.02 365.74 9.10 0.71 
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Individual Tests – Optical BFG Results 7 % H2 Addition 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

348.77 7.82 -0.79 349.73 7.84 -0.88 

350.06 7.84 -0.67 345.76 7.75 -0.89 0.7 50.82 0.22407 

354.70 7.95 -0.86 352.42 7.90 -1.03 

0.8 54.15 0.21578 443.63 9.57 -0.55 440.36 9.50 -0.68 

441.94 9.54 -0.62 437.38 9.44 -0.81 

451.51 9.74 -0.37 451.23 9.74 -0.41 

517.66 10.83 -0.40 511.98 10.71 -0.52 

518.10 10.84 -0.39 516.72 10.81 -0.44 0.9 57.05 0.20925 

517.19 10.82 -0.29 515.93 10.80 -0.33 

1 59.61 0.20520 550.32 11.29 -0.21 550.09 11.29 -0.22 

555.39 11.40 -0.31 554.05 11.37 -0.35 

553.41 11.36 -0.20 553.72 11.36 -0.20 

590.64 12.53 -0.16 588.98 12.50 -0.18 

593.08 12.58 -0.16 591.87 12.56 -0.15 1.1 61.88 0.21215 

587.13 12.46 -0.22 585.86 12.43 -0.20 

1.2 63.91 0.22035 592.22 13.05 -0.09 592.82 13.06 -0.08 

585.72 12.91 -0.19 584.74 12.88 -0.18 

588.89 12.98 -0.12 588.64 12.97 -0.13 

590.17 13.48 0.09 589.62 13.46 0.08 

587.05 13.41 0.01 581.54 13.28 -0.04 1.3 65.74 0.22836 

581.01 13.27 -0.02 578.94 13.22 -0.02 

1.4 67.39 0.23620 557.67 13.17 0.40 556.87 13.15 0.28 

551.02 13.01 0.13 551.42 13.02 0.14 

552.97 13.06 0.21 552.53 13.05 0.20 

496.19 12.10 0.54 492.86 12.02 0.44 

499.51 12.18 0.59 496.16 12.10 0.48 1.5 68.89 0.24384 

505.36 12.32 0.41 505.56 12.33 0.40 
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Optical BFG Results 1 % H2 Addition 

 

Summary – Linear Optical and Modelled Results 

 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.7 103.05 2.43 0.00 2.19 2.46 2.57 

0.8 122.15 2.79 0.22 2.77 3.10 3.16 

0.9 151.66 3.36 0.31 3.22 3.57 3.62 

1.0 168.53 3.68 0.51 3.55 3.90 3.92 

1.1 175.04 3.96 0.66 3.75 4.08 4.09 

1.2 179.89 4.22 0.75 3.82 4.10 4.10 

1.3 166.62 4.05 0.96 3.73 3.98 3.97 

1.4 153.57 3.87 1.58 3.48 3.70 3.68 

1.5 133.24 3.46 1.77 3.07 3.30 3.27 

 

 

Summary and Error – Nonlinear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.7 3.04 102.96 2.43 0.03 5.25 13.4 

0.8 3.38 121.90 2.78 0.19 6.04 15.4 

0.9 3.67 151.30 3.36 0.27 2.19 6.6 

1.0 3.88 167.08 3.65 0.41 4.74 12.4 

1.1 3.94 174.80 3.95 0.57 4.07 10.9 

1.2 3.91 178.80 4.20 0.60 1.37 5.2 

1.3 3.87 163.65 3.98 0.70 6.06 15.6 

1.4 3.78 146.55 3.69 0.92 2.79 7.9 

1.5 3.72 128.42 3.34 1.09 5.49 14.2 
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Optical BFG Results 3 % H2 Addition 

 

Summary – Linear Optical and Modelled Results 

 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.7 199.36 4.62 -0.17 3.76 4.29 4.31 

0.8 244.56 5.47 -0.09 4.76 5.35 5.32 

0.9 281.16 6.11 0.01 5.60 6.20 6.12 

1.0 301.69 6.44 0.05 6.26 6.83 6.72 

1.1 317.61 7.02 0.22 6.74 7.24 7.10 

1.2 317.93 7.30 0.34 7.01 7.42 7.25 

1.3 303.37 7.22 0.43 7.02 7.35 7.15 

1.4 272.80 6.72 0.52 6.73 7.03 6.80 

1.5 254.24 6.46 1.03 6.12 6.47 6.23 

 

 

Summary and Error – Nonlinear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.7 4.67 199.92 4.63 -0.19 3.68 10.3 

0.8 5.36 241.21 5.39 -0.13 8.74 22.4 

0.9 5.99 280.60 6.10 -0.01 4.47 12.6 

1.0 6.53 301.66 6.44 0.04 1.24 7.2 

1.1 6.73 317.69 7.02 0.22 8.99 23.3 

1.2 6.72 317.16 7.28 0.30 4.41 12.8 

1.3 6.61 302.73 7.20 0.39 5.13 14.4 

1.4 6.33 271.94 6.70 0.45 4.16 12.1 

1.5 6.12 249.61 6.35 0.74 7.85 20.4 
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Optical BFG Results 5 % H2 Addition 

 

Summary – Linear Optical and Modelled Results 

 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.7 281.42 6.41 -0.56 5.16 5.92 5.83 

0.8 336.45 7.39 -0.40 6.54 7.37 7.21 

0.9 394.23 8.40 -0.19 7.73 8.56 8.34 

1.0 434.51 9.09 -0.10 8.71 9.46 9.20 

1.1 456.54 9.88 -0.04 9.45 10.08 9.78 

1.2 450.96 10.14 0.10 9.91 10.40 10.07 

1.3 441.93 10.30 0.21 10.04 10.39 10.03 

1.4 403.45 9.72 0.40 9.76 10.06 9.66 

1.5 373.91 9.30 1.05 9.03 9.40 8.97 

 

 

Summary and Error – Nonlinear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.7 6.01 279.94 6.37 -0.68 4.10 11.8 

0.8 6.88 332.21 7.29 -0.40 4.77 13.7 

0.9 7.77 391.88 8.35 -0.20 6.35 17.6 

1.0 8.14 434.73 9.09 -0.09 3.71 12.3 

1.1 8.25 456.63 9.88 -0.03 1.73 9.3 

1.2 8.27 450.36 10.12 0.10 8.92 23.7 

1.3 8.25 439.76 10.25 0.15 10.02 26.2 

1.4 8.24 402.35 9.70 0.35 3.08 11.3 

1.5 8.14 364.63 9.07 0.71 3.42 11.8 
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Optical BFG Results 7 % H2 Addition 

 

Summary – Linear Optical and Modelled Results 

 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.7 351.18 7.87 -0.77 6.57 7.58 7.36 

0.8 445.69 9.62 -0.51 8.35 9.42 9.13 

0.9 517.65 10.83 -0.36 9.91 10.96 10.60 

1.0 553.04 11.35 -0.24 11.23 12.14 11.73 

1.1 590.28 12.52 -0.18 12.24 12.99 12.53 

1.2 588.94 12.98 -0.13 12.94 13.45 12.97 

1.3 586.07 13.38 0.03 13.20 13.53 13.01 

1.4 553.89 13.08 0.25 12.97 13.21 12.65 

1.5 500.35 12.20 0.51 12.16 12.48 11.88 

 

 

Summary and Error – Nonlinear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.7 7.57 351.97 7.89 -0.93 3.35 11.3 

0.8 8.56 442.99 9.56 -0.63 7.29 20.0 

0.9 9.60 514.88 10.77 -0.43 2.54 11.5 

1.0 10.25 552.62 11.34 -0.26 2.20 11.6 

1.1 10.53 590.28 12.52 -0.18 3.01 12.9 

1.2 10.58 589.40 12.99 -0.13 4.04 14.6 

1.3 10.53 583.37 13.32 0.00 5.57 17.4 

1.4 10.47 553.61 13.08 0.20 2.88 12.7 

1.5 10.24 498.19 12.15 0.44 6.59 19.3 
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Calculated BFG flame thicknesses, and critical boundary velocity gradients 

 

φ 
dt 

(mm) 
gf/c 

(s
-1

) 

dt 

(mm) 
gf/c 

(s
-1

) 

BFG 1% H2 7% H2 

0.7 3.58 6.78 1.53 51.62 

0.8 3.13 8.89 1.36 70.18 

0.9 2.88 11.64 1.28 84.36 

1.0 2.76 13.22 1.23 92.19 

1.1 2.55 15.48 1.15 109.27 

1.2 2.43 17.27 1.06 122.24 

1.3 2.41 16.53 1.02 130.54 

1.4 2.45 15.04 1.00 130.15 

1.5 2.62 12.73 1.02 119.47 
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B.4 - BFG Elevated Pressure Dataset 

 
Test Conditions 
 

Fuel:    BFG (CO-23.07%, CO2-23.35%, and N2-53.58%)   

Temperature:   303 K   

Pressure:   0.15, 0.2 MPa 

Camera Speed   3,000 fps 

 
Individual Tests – Optical BFG Results 1 % H2 Addition – 0.15 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

110.19 2.51 -0.23 109.95 2.51 -0.26 
0.8 87.75 0.22800 

117.34 2.67 -0.02 117.27 2.67 -0.02 

155.55 3.39 0.47 152.79 3.33 0.34 
1 95.69 0.21816 

139.89 3.04 0.13 139.54 3.04 0.21 

154.11 3.62 0.47 152.24 3.57 0.34 
1.2 101.84 0.23478 

155.23 3.63 0.43 154.57 3.63 0.50 

130.62 3.29 0.95 127.74 3.22 0.66 
1.4 106.73 0.25186 

128.44 3.23 0.63 128.03 3.22 0.54 

 

 

 

Individual Tests – Optical BFG Results 3 % H2 Addition – 0.15 MPa 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

200.65 4.36 -0.28 201.63 4.38 -0.25 
0.8 85.46 0.21727 

197.28 4.29 -0.36 197.75 4.30 -0.36 

264.05 5.64 -0.12 264.30 5.64 -0.12 
1 93.50 0.21343 

276.19 5.89 -0.22 271.77 5.80 -0.22 

284.43 6.28 0.05 284.41 6.28 0.05 
1.2 99.77 0.22092 

277.01 6.12 0.02 277.23 6.12 0.02 

243.84 6.20 0.63 242.26 6.16 0.51 
1.4 104.78 0.25422 

256.06 6.51 0.39 256.52 6.52 0.39 
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Individual Tests – Optical BFG Results 5 % H2 Addition – 0.15 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

282.62 6.20 -0.59 281.48 6.18 -0.71 0.8 
 

83.28 0.21950 
284.05 6.23 -0.48 284.74 6.25 -0.51 

380.44 7.96 -0.30 379.61 7.94 -0.34 
1 91.41 0.20914 

376.46 7.87 -0.42 375.10 7.84 -0.48 

398.56 8.96 -0.05 398.58 8.96 -0.05 1.2 
 

97.785 0.22479 
383.68 8.62 -0.16 383.66 8.62 -0.17 

342.02 8.24 0.21 341.71 8.24 0.20 
1.4 102.9 0.24103 

354.49 8.54 0.46 352.54 8.50 0.39 

 

Individual Tests – Optical BFG Results 7 % H2 Addition – 0.15 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

379.66 8.19 -0.62 376.03 8.11 -0.79 0.8 
 

81.23 0.21578 
385.52 8.32 -0.66 381.51 8.23 -0.85 

491.73 10.09 -0.45 489.40 10.04 -0.54 
1 89.42 0.20520 

492.06 10.10 -0.52 494.32 10.14 -0.53 

510.13 11.24 -0.32 508.96 11.21 -0.36 1.2 
 

95.87 0.22035 
515.82 11.37 -0.20 513.49 11.31 -0.26 

463.11 10.94 0.07 463.11 10.94 0.07 
1.4 101.09 0.23620 

454.83 10.74 0.01 451.52 10.66 0.01 

 

0.2 MPa 

 

Individual Tests – Optical BFG Results 1 % H2 Addition – 0.2 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

101.26 2.31 0.17 101.29 2.31 0.16 
0.8 117.00 0.22800 

95.94 2.19 -0.17 95.81 2.18 -0.19 

132.23 2.88 0.39 131.24 2.86 0.32 
1 127.59 0.21816 

143.80 3.14 0.28 144.11 3.14 0.29 

140.27 3.29 0.54 139.71 3.28 0.46 
1.2 135.79 0.23478 

143.30 3.36 0.90 139.73 3.28 0.61 

108.25 2.73 0.85 106.50 2.68 0.62 
1.4 142.31 0.25186 

108.75 2.74 0.77 108.03 2.72 0.54 
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Individual Tests – Optical BFG Results 3 % H2 Addition – 0.2 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

193.15 4.20 -0.67 190.90 4.15 -0.89 
0.8 113.95 0.21727 

186.78 4.06 -0.53 184.66 4.01 -0.70 

241.37 5.15 -0.09 241.23 5.15 -0.09 
1 124.67 0.21343 

229.87 4.91 -0.37 228.24 4.87 -0.42 

237.42 5.25 0.04 237.43 5.25 0.04 
1.2 133.03 0.22092 

238.97 5.28 -0.03 244.38 5.40 0.15 

197.17 5.01 0.12 197.11 5.01 0.11 
1.4 139.71 0.25422 

210.91 5.36 0.59 209.47 5.33 0.48 

 

Individual Tests – Optical BFG Results 5 % H2 Addition – 0.2 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

241.40 5.30 -0.63 239.32 5.25 -0.81 0.8 
 

111.04 0.21950 
247.25 5.43 -0.55 246.63 5.41 -0.63 

339.92 7.11 -0.40 338.64 7.08 -0.50 
1 121.88 0.20914 

328.35 6.87 -0.41 327.02 6.84 -0.40 

345.54 7.77 -0.12 345.51 7.77 -0.12 1.2 
 

130.38 0.22479 
330.60 7.43 -0.26 330.01 7.43 -0.25 

283.33 6.83 0.00 283.39 6.83 0.00 
1.4 137.20 0.24103 

292.52 7.05 0.17 292.34 7.05 0.16 

 

Individual Tests – Optical BFG Results 7 % H2 Addition – 0.2 MPa 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

332.33 7.17 -0.74 329.08 7.10 -0.95 0.8 
 

108.31 0.21578 
325.96 7.03 -0.73 320.48 6.92 -1.02 

432.50 8.87 -0.70 432.91 8.88 -0.76 
1 119.23 0.20520 

434.37 8.91 -0.70 430.35 8.83 -0.90 

440.59 9.71 -0.52 439.88 9.69 -0.57 1.2 
 

127.83 0.22035 
444.84 9.80 -0.46 444.32 9.80 -0.45 

404.55 9.56 -0.12 404.52 9.55 -0.13 
1.4 134.79 0.23620 

396.30 9.36 -0.01 396.33 9.36 -0.01 
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Summary – Optical BFG Results 1 % H2 Addition 0.15 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 113.67 2.59 -0.13 2.18 2.44 2.56 

1 146.72 3.20 0.30 2.89 3.16 3.24 

1.2 153.17 3.60 0.45 3.09 3.30 3.36 

1.4 129.53 3.26 0.79 2.66 2.84 2.89 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 1.74 113.61 2.59 -0.14 5.18 46.55 

1 1.98 146.17 3.19 0.28 9.37 84.23 

1.2 1.97 153.41 3.60 0.42 1.65 14.94 

1.4 1.95 127.89 3.22 0.60 0.21 2.69 

 

 

Summary – Optical BFG Results 3 % H2 Addition 0.15 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 198.97 4.33 -0.32 3.82 4.31 4.34 

1 270.12 5.77 -0.17 5.17 5.62 5.59 

1.2 280.72 6.20 0.04 5.77 6.07 5.98 

1.4 249.95 6.36 0.51 5.31 5.56 5.43 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 2.84 199.69 4.34 -0.31 2.74 20.33 

1 3.30 268.04 5.72 -0.17 5.28 38.90 

1.2 3.35 280.82 6.20 0.04 5.08 37.41 

1.4 3.37 249.39 6.34 0.45 10.08 74.07 
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Summary – Optical BFG Results 5 % H2 Addition 0.15 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 283.34 6.22 -0.54 5.29 5.99 5.92 

1 378.45 7.92 -0.36 7.23 7.83 7.67 

1.2 391.12 8.79 -0.11 8.23 8.57 8.34 

1.4 348.26 8.39 0.34 7.82 8.05 7.76 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 3.82 283.11 6.22 -0.61 2.31 17.34 

1 4.46 377.36 7.89 -0.41 3.19 23.82 

1.2 4.58 391.12 8.79 -0.11 10.55 77.55 

1.4 4.64 347.13 8.37 0.30 7.66 56.39 

 

 

Summary – Optical BFG Results 7 % H2 Addition 0.15 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 438.63 9.21 -0.56 6.80 7.73 7.53 

1 501.10 10.67 -0.42 9.36 10.12 9.82 

1.2 489.47 11.16 -0.07 10.80 11.17 10.79 

1.4 454.83 10.74 0.01 10.50 10.68 10.25 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 4.87 435.46 9.14 -0.70 3.87 28.85 

1 5.78 501.64 10.68 -0.45 3.48 26.17 

1.2 5.96 488.30 11.13 -0.10 3.20 24.25 

1.4 6.03 451.52 10.66 0.01 8.20 60.44 
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Summary – Optical BFG Results 1 % H2 Addition 0.2 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 98.60 2.25 0.00 1.79 2.01 2.16 

1 138.02 3.01 0.34 2.46 2.67 2.80 

1.2 141.79 3.33 0.72 2.60 2.77 2.87 

1.4 108.50 2.74 0.81 2.12 2.28 2.38 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 1.74 98.55 2.25 -0.02 3.87 28.49 

1 1.98 137.68 3.00 0.31 9.10 66.81 

1.2 1.97 139.72 3.28 0.54 0.01 1.98 

1.4 1.95 107.27 2.70 0.58 1.08 8.18 

 

 

Summary – Optical BFG Results 3 % H2 Addition 0.2 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 189.97 4.13 -0.60 3.18 3.61 3.70 

1 235.62 5.03 -0.23 4.42 4.81 4.84 

1.2 238.20 5.27 0.01 4.93 5.17 5.14 

1.4 204.04 5.19 0.36 4.35 4.59 4.53 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 2.84 187.78 4.08 -0.80 4.41 32.50 

1 3.30 234.74 5.01 -0.26 9.19 67.48 

1.2 3.35 240.91 5.33 0.10 4.91 36.22 

1.4 3.37 203.29 5.17 0.30 8.74 64.22 
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Summary – Optical BFG Results 5 % H2 Addition 0.2 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 244.33 5.37 -0.59 4.45 5.08 5.07 

1 334.14 6.99 -0.41 6.23 6.77 6.68 

1.2 338.07 7.60 -0.19 7.08 7.37 7.21 

1.4 287.93 6.94 0.09 6.50 6.73 6.53 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 3.82 242.98 5.33 -0.72 5.17 38.12 

1 4.46 332.83 6.96 -0.45 8.22 60.46 

1.2 4.58 337.76 7.60 -0.19 10.96 80.56 

1.4 4.64 287.87 6.94 0.08 6.33 46.67 

 

 

Summary – Optical BFG Results 7 % H2 Addition 0.2 MPa 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 379.23 7.95 -0.72 5.76 6.61 6.49 

1 437.48 9.31 -0.61 8.11 8.79 8.57 

1.2 424.70 9.68 -0.29 9.34 9.66 9.38 

1.4 396.30 9.36 -0.01 8.81 9.02 8.68 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 4.87 376.70 7.90 -0.89 6.08 44.89 

1 5.78 435.12 9.26 -0.74 1.81 14.48 

1.2 5.96 424.42 9.68 -0.29 3.14 23.80 

1.4 6.03 396.33 9.36 -0.01 5.79 42.92 
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B.5 - BFG Elevated Temperature Dataset 

 
Test Conditions 
 

Fuel:    BFG (CO-23.07%, CO2-23.35%, and N2-53.58%)  

   

Temperature:   333, 363, 393 K   

Pressure:   0.1 MPa 

Camera Speed   3,000 fps 

 
Individual Tests – Optical BFG Results 1 % H2 Addition – 333 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

156.70 3.86 0.22 156.64 3.86 0.21 
0.8 58.5 0.2465 

155.69 3.84 0.15 155.68 3.84 0.15 

201.52 4.76 0.98 196.64 4.65 0.67 
1 63.79 0.2363 

190.50 4.50 0.68 189.24 4.47 0.55 

216.46 5.49 0.79 214.02 5.43 0.61 
1.2 67.89 0.2537 

217.66 5.52 1.47 201.57 5.11 0.75 

193.10 5.25 0.86 191.72 5.21 0.69 
1.4 71.15 0.2717 

195.08 5.30 0.85 191.74 5.21 0.62 

 

 

 

Individual Tests – Optical BFG Results 3 % H2 Addition – 333 K 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

271.42 6.55 0.08 270.69 6.55 0.07 
0.8 56.97 0.2418 

291.61 7.01 0.22 290.10 7.01 0.06 

327.47 7.53 0.15 325.15 7.52 0.04 
1 62.33 0.2312 

326.50 7.53 0.15 325.68 7.53 0.04 

340.23 8.44 0.36 337.33 8.37 0.31 
1.2 66.51 0.2482 

353.23 8.77 0.06 353.12 8.77 0.07 

325.19 8.64 0.38 323.55 8.60 0.32 
1.4 69.85 0.2658 

306.49 8.15 0.30 306.10 8.14 0.27 
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Individual Tests – Optical BFG Results 5 % H2 Addition – 333 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

381.27 9.03 -0.46 380.41 9.03 -0.49 
0.8 55.52 0.2375 

384.99 9.14 -0.31 384.96 9.14 -0.31 

447.72 10.15 -0.11 447.58 10.15 -0.12 
1 60.94 0.2267 

468.89 10.61 -0.10 467.88 10.61 -0.09 

520.55 12.65 0.19 520.27 12.65 0.18 1.2 
 

65.19 0.2431 
503.24 12.23 -0.10 503.15 12.23 -0.11 

472.82 12.31 0.44 470.83 12.26 0.38 
1.4 68.6 0.2603 

465.23 12.10 0.49 464.35 12.09 0.50 

 

Individual Tests – Optical BFG Results 7 % H2 Addition – 333 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

504.36 11.78 -0.56 499.56 11.66 -0.72 
0.8 54.15 0.2335 

501.79 11.72 -0.52 498.33 11.64 -0.64 

639.32 14.22 -0.28 638.29 14.20 -0.31 
1 59.61 0.2225 

635.05 14.13 -0.22 634.46 14.12 -0.24 

685.16 16.33 -0.10 685.16 16.33 -0.10 1.2 
 

63.91 0.2384 
656.69 15.66 -0.16 656.32 15.65 -0.16 

620.86 15.84 0.03 618.63 15.79 0.00 
1.4 67.39 0.2552 

636.88 16.25 0.15 635.58 16.22 0.13 

 

363 K 

 

Individual Tests – Optical BFG Results 1 % H2 Addition – 363 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

185.28 4.90 0.43 183.17 4.84 0.45 
0.8 58.5 0.2644 

185.28 4.90 0.43 183.17 4.84 0.45 

218.85 5.56 0.60 211.31 5.36 0.65 
1 63.79 0.2538 

210.23 5.34 0.22 210.02 5.33 0.21 

225.10 6.12 0.70 221.88 6.03 0.73 
1.2 67.89 0.2720 

223.80 6.09 0.57 213.65 5.81 0.73 

200.21 5.82 1.13 199.79 5.81 0.90 
1.4 71.15 0.2908 

219.21 6.38 1.51 208.59 6.07 0.91 
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Individual Tests – Optical BFG Results 3 % H2 Addition – 363 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

310.99 8.07 0.08 310.94 8.07 0.09 
0.8 56.97 0.2594 

310.99 8.07 -0.25 310.94 8.07 -0.18 

377.18 9.37 0.13 377.03 9.37 0.12 
1 62.33 0.2485 

378.68 9.41 -0.05 378.60 9.41 -0.05 

386.97 10.30 0.14 386.72 10.29 0.13 
1.2 66.51 0.2662 

396.11 10.54 0.33 396.97 10.57 0.34 

365.66 10.41 0.50 363.52 10.35 0.41 
1.4 69.85 0.2846 

358.74 10.21 0.31 358.58 10.21 0.29 

 

Individual Tests – Optical BFG Results 5 % H2 Addition – 363 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

450.96 11.49 -0.02 450.91 11.49 -0.02 
0.8 55.52 0.2549 

439.72 11.21 -0.23 439.10 11.19 -0.25 

569.49 13.88 -0.08 569.36 13.88 -0.08 
1 60.94 0.2437 

566.83 13.81 -0.18 550.33 13.41 -0.43 

606.19 15.81 0.31 605.20 15.78 0.28 1.2 
 

65.19 0.2608 
573.09 14.95 0.01 573.09 14.95 0.01 

543.18 15.15 0.32 543.06 15.14 0.31 
1.4 68.6 0.2789 

559.97 15.62 0.52 557.58 15.55 0.43 

 

Individual Tests – Optical BFG Results 7 % H2 Addition – 363 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

552.34 13.85 -0.49 546.48 13.70 -0.64 
0.8 54.15 0.2507 

553.09 13.87 -0.31 552.92 13.86 -0.33 

706.67 16.91 -0.01 706.27 16.90 -0.01 
1 59.61 0.2393 

682.92 16.34 -0.16 682.59 16.33 -0.17 

735.35 18.81 0.07 733.00 18.75 0.11 1.2 
 

63.91 0.2558 
769.35 19.68 0.00 768.62 19.66 0.01 

709.87 19.41 0.22 709.74 19.41 0.21 
1.4 67.39 0.2735 

729.66 19.96 0.35 729.58 19.95 0.35 
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393 K 

 

Individual Tests – Optical BFG Results 1 % H2 Addition – 393 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

192.85 5.43 0.00 192.02 5.41 0.01 
0.8 58.5 0.2817 

207.86 5.86 1.59 207.61 5.85 0.01 

233.93 6.34 0.49 233.62 6.33 0.39 
1 63.79 0.2709 

233.93 6.34 0.49 233.62 6.33 0.39 

247.75 7.17 1.04 244.32 7.08 0.78 
1.2 67.89 0.2896 

236.68 6.85 1.58 234.21 6.78 1.19 

211.38 6.54 1.06 211.32 6.54 0.78 
1.4 71.15 0.3093 

202.34 6.26 1.03 201.58 6.23 0.78 

 

 

Individual Tests – Optical BFG Results 3 % H2 Addition – 393 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

361.14 9.99 0.11 359.64 9.94 0.11 
0.8 56.97 0.2765 

377.08 10.43 -0.01 376.44 10.41 0.01 

444.93 11.81 0.01 444.77 11.80 0.01 
1 62.33 0.2654 

464.18 12.32 0.12 464.06 12.31 0.12 

470.86 13.35 0.35 469.75 13.32 0.31 
1.2 66.51 0.2835 

449.44 12.74 0.62 447.27 12.68 0.53 

428.51 12.97 0.47 426.31 12.91 0.40 
1.4 69.85 0.3028 

431.50 13.07 0.40 428.44 12.97 0.36 

 

Individual Tests – Optical BFG Results 5 % H2 Addition – 393 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

477.23 12.97 -0.18 476.79 12.96 -0.19 
0.8 55.52 0.2718 

499.99 13.59 -0.06 499.94 13.59 -0.06 

611.09 15.91 -0.06 609.64 15.87 -0.08 
1 60.94 0.2603 

614.09 15.98 0.24 611.63 15.92 0.23 

679.12 18.88 0.30 677.58 18.83 0.27 1.2 
 

65.19 0.2779 
640.86 17.81 0.61 640.70 17.81 0.57 

650.55 19.31 0.47 615.14 18.26 0.40 
1.4 68.6 0.2968 

630.34 18.71 0.46 611.13 18.14 0.36 
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Individual Tests – Optical BFG Results 7 % H2 Addition – 393 K 
 

Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 

 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

620.83 16.60 -0.49 617.14 16.50 -0.60 
0.8 54.15 0.2674 

621.17 16.61 -0.40 618.81 16.55 -0.47 

761.09 19.45 -0.25 760.18 19.43 -0.29 
1 59.61 0.2556 

797.89 20.40 -0.20 797.02 20.37 -0.22 

833.90 22.74 -0.14 833.66 22.73 -0.14 1.2 
 

63.91 0.2727 
838.01 22.85 0.05 837.96 22.85 0.05 

790.87 23.03 0.16 790.47 23.01 0.15 
1.4 67.39 0.2911 

811.78 23.63 0.21 809.03 23.55 0.18 

 

 

 

Summary – Optical BFG Results 1 % H2 Addition 333 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 156.20 3.85 0.19 3.49 3.89 3.95 

1 196.01 4.63 0.83 4.39 4.82 4.83 

1.2 217.06 5.51 1.13 4.72 5.07 5.05 

1.4 194.09 5.27 0.86 3.49 4.68 4.64 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 1.74 156.16 3.85 0.18 0.68 5.28 

1 1.98 192.94 4.56 0.61 5.23 38.45 

1.2 1.97 207.80 5.27 0.68 8.80 64.63 

1.4 1.95 191.73 5.21 0.66 0.01 1.96 
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Summary – Optical BFG Results 3 % H2 Addition 333 K 
 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 281.52 6.78 0.15 5.97 6.68 6.61 

1 326.99 7.53 0.15 7.71 8.40 8.23 

1.2 346.73 8.61 0.21 8.61 9.11 8.88 

1.4 315.84 8.40 0.34 8.42 8.77 8.47 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 2.84 280.40 6.78 0.07 13.72 100.76 

1 3.30 325.42 7.53 0.04 0.37 4.29 

1.2 3.35 345.23 8.57 0.19 11.17 82.00 

1.4 3.37 314.83 8.37 0.30 12.34 90.61 

 

Summary – Optical BFG Results 5 % H2 Addition 333 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 383.13 9.09 -0.39 8.17 9.16 8.93 

1 458.31 10.38 -0.11 10.70 11.59 11.25 

1.2 511.90 12.44 0.05 12.14 12.73 12.30 

1.4 469.03 12.21 0.47 12.13 12.46 11.96 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 3.82 382.69 9.09 -0.40 3.22 23.92 

1 4.46 457.73 10.38 -0.11 14.35 105.43 

1.2 4.58 511.71 12.44 0.04 12.11 88.95 

1.4 4.64 467.59 12.18 0.44 4.58 33.94 
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Summary – Optical BFG Results 7 % H2 Addition 333K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 503.08 11.75 -0.54 10.40 11.68 11.29 

1 637.19 14.18 -0.25 13.75 14.84 14.31 

1.2 670.93 16.00 -0.13 15.78 16.40 15.79 

1.4 628.87 16.05 0.09 16.03 16.28 15.59 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 4.87 498.95 11.65 -0.68 0.87 8.03 

1 5.78 636.38 14.16 -0.28 2.71 20.70 

1.2 5.96 670.74 15.99 -0.13 20.39 149.76 

1.4 6.03 627.11 16.01 0.07 11.99 88.16 

 

Summary – Optical BFG Results 1 % H2 Addition 363 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 185.28 4.90 0.43 4.34 4.84 4.88 

1 214.54 5.45 0.41 5.38 5.89 5.87 

1.2 224.45 6.10 0.64 5.78 6.20 6.16 

1.4 209.71 6.10 1.32 5.50 5.82 5.76 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 1.74 183.17 4.84 0.45 0.00 1.74 

1 1.98 210.67 5.35 0.43 0.91 6.98 

1.2 1.97 217.77 5.92 0.73 5.82 42.75 

1.4 1.95 204.19 5.94 0.91 6.22 45.70 
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Summary – Optical BFG Results 3 % H2 Addition 363 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 310.99 8.07 -0.09 7.39 8.25 8.12 

1 377.93 9.39 0.04 9.42 10.23 10.00 

1.2 391.54 10.42 0.24 10.47 11.07 10.77 

1.4 362.20 10.31 0.41 10.39 10.79 10.42 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 2.84 310.94 8.07 -0.05 0.00 2.84 

1 3.30 377.82 9.39 0.04 1.11 8.79 

1.2 3.35 391.85 10.43 0.24 7.25 53.29 

1.4 3.37 361.05 10.28 0.35 3.49 25.85 

 

Summary – Optical BFG Results 5 % H2 Addition 363 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 445.34 11.35 -0.13 10.08 11.28 10.96 

1 568.16 13.85 -0.13 13.01 14.06 13.62 

1.2 589.64 15.38 0.16 14.72 15.41 14.87 

1.4 551.58 15.39 0.42 14.89 15.26 14.63 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 3.82 445.01 11.34 -0.14 8.35 61.40 

1 4.46 559.85 13.65 -0.26 13.46 98.84 

1.2 4.58 589.15 15.37 0.15 22.71 166.68 

1.4 4.64 550.32 15.35 0.37 10.27 75.48 
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Summary – Optical BFG Results 7 % H2 Addition 363 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 552.72 13.86 -0.40 12.79 14.32 13.80 

1 694.80 16.62 -0.09 16.69 17.97 17.30 

1.2 752.35 19.25 0.04 19.08 19.83 19.06 

1.4 719.77 19.69 0.29 19.56 19.86 19.00 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 4.87 549.70 13.78 -0.49 4.55 33.77 

1 5.78 694.43 16.62 -0.09 16.74 123.01 

1.2 5.96 750.81 19.21 0.06 25.19 184.92 

1.4 6.03 719.66 19.68 0.28 14.03 103.12 

 
Summary – Optical BFG Results 1 % H2 Addition 393 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 200.36 5.64 0.80 5.34 5.94 5.96 

1 233.93 6.34 0.49 6.53 7.13 7.09 

1.2 242.22 7.01 1.31 7.00 7.51 7.44 

1.4 206.86 6.40 0.55 6.76 7.15 7.05 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 1.74 199.82 5.63 0.01 11.02 80.91 

1 1.98 233.62 6.33 0.39 0.00 1.98 

1.2 1.97 239.26 6.93 0.99 7.15 52.50 

1.4 1.95 206.45 6.38 0.78 6.89 50.58 
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Summary – Optical BFG Results 3 % H2 Addition 393 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 369.11 10.21 0.05 9.06 10.09 9.90 

1 454.56 12.06 0.07 11.39 12.35 12.04 

1.2 460.15 13.05 0.49 12.64 13.36 12.97 

1.4 430.01 13.02 0.44 12.68 13.17 12.69 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 2.84 368.04 10.18 0.06 11.88 87.22 

1 3.30 454.42 12.06 0.07 13.64 100.15 

1.2 3.35 458.51 13.00 0.42 15.90 116.69 

1.4 3.37 427.38 12.94 0.38 1.51 11.56 

 

Summary – Optical BFG Results 5 % H2 Addition 393 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 488.61 13.28 -0.12 12.33 13.74 13.32 

1 612.59 15.94 0.09 15.71 16.94 16.38 

1.2 659.99 18.34 0.46 17.70 18.53 17.85 

1.4 640.45 19.01 0.47 18.07 18.51 17.73 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 3.82 488.36 13.27 -0.13 16.37 120.18 

1 4.46 609.64 15.89 0.08 1.41 11.25 

1.2 4.58 659.14 18.32 0.42 26.08 191.42 

1.4 4.64 613.14 18.20 0.38 2.84 21.32 
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Summary – Optical BFG Results 7 % H2 Addition 393 K 

 

Summary – Linear Optical and Modelled Results 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0.8 621.00 16.60 -0.45 15.59 17.40 16.73 

1 779.49 19.93 -0.23 20.10 21.61 20.76 

1.2 835.96 22.80 -0.05 22.90 23.81 22.83 

1.4 801.33 23.33 0.19 23.65 24.04 22.96 

 

Summary and Error – Nonlinear Optical Results 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.8 4.87 617.98 16.52 -0.54 1.18 9.94 

1 5.78 778.60 19.90 -0.26 26.05 191.24 

1.2 5.96 835.81 22.79 -0.05 3.04 23.09 

1.4 6.03 799.75 23.28 0.17 13.12 96.49 
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B.6 - BFG Variable H2O Dataset 

 
Test Conditions 

Fuel:    BFG (CO-23.00 %, CO2-23.50 %, and N2-53.50 %)   

Temperature:   303 K   

Pressure:   0.1 MPa 

Camera Speed   3,000 fps 

 

Individual Tests – Optical BFG Results 1 % H2 Addition Ø= 1 
 
 

Linear Technique Nonlinear Technique 

H2O 
(g) 

ρb/ρu 
Su 

(mm·s
-1

) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

181.95 3.96 1.30 177.27 3.86 0.87 

180.17 3.92 1.42 172.00 3.74 0.84 

180.44 3.93 1.31 172.80 3.76 0.77 

180.73 3.93 1.54 173.71 3.78 0.95 

0 0.2177 

177.08 3.86 1.22 172.73 3.76 0.83 

219.09 4.80 2.32 206.81 4.53 1.29 

210.71 4.62 1.99 201.41 4.41 1.18 

223.75 4.90 2.73 204.31 4.48 1.31 

223.11 4.89 2.56 203.05 4.45 1.22 

0.25 0.2192 

217.36 4.76 2.27 203.95 4.47 1.23 

240.59 5.31 2.90 223.16 4.93 1.49 

232.84 5.14 3.07 218.12 4.82 1.53 

228.10 5.04 2.81 214.05 4.73 1.53 

237.05 5.23 2.90 221.95 4.90 1.55 

0.5 0.2208 

240.41 5.31 2.93 222.61 4.92 1.49 

250.37 5.57 3.11 230.70 5.13 1.55 

246.22 5.48 3.03 227.47 5.06 1.53 

228.76 5.09 3.04 212.69 4.73 1.59 

227.14 5.05 2.63 213.20 4.74 1.42 

0.75 0.2225 

237.11 5.28 3.13 213.54 4.75 1.44 
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Individual Tests – Optical BFG Results 3 % H2 Addition Ø= 1 
 
 

Linear Technique Nonlinear Technique 

H2O 
(g) 

ρb/ρu 
Su 

(mm·s
-1

) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

297.88 6.35 0.08 297.79 6.35 0.09 

300.84 6.41 0.11 300.80 6.41 0.13 

296.60 6.32 0.11 297.34 6.34 0.12 

295.97 6.31 0.03 295.80 6.31 0.03 

0 0.2132 

309.99 6.62 0.27 309.87 6.61 0.26 

308.91 6.61 0.38 308.03 6.61 0.36 

313.77 6.74 0.29 313.58 6.73 0.27 

311.00 6.68 0.12 310.96 6.68 0.12 

310.62 6.67 0.33 310.13 6.66 0.30 

0.25 0.2147 

307.79 6.59 0.11 307.01 6.59 0.12 

300.39 6.47 0.13 300.25 6.47 0.13 

302.08 6.51 0.15 301.61 6.50 0.26 

302.58 6.50 0.10 301.28 6.50 0.17 

302.93 6.53 0.34 302.38 6.52 0.30 

0.5 0.2156 

304.72 6.57 0.35 304.37 6.56 0.32 

302.08 6.58 0.04 301.30 6.56 0.02 

300.46 6.54 0.18 300.15 6.54 0.17 

304.49 6.63 0.25 303.74 6.62 0.22 

301.93 6.58 0.37 300.46 6.54 0.31 

0.75 0.2178 

304.13 6.62 0.05 304.06 6.62 0.04 
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Individual Tests – Optical BFG Results 5 % H2 Addition Ø= 1 
 
 

Linear Technique Nonlinear Technique 

H2O 
(g) 

ρb/ρu 
Su 

(mm·s
-1

) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

421.99 8.82 -0.36 421.96 8.82 -0.39 

419.91 8.75 -0.49 418.41 8.74 -0.49 

419.48 8.77 -0.29 417.03 8.72 -0.37 

422.64 8.83 -0.47 419.33 8.76 -0.52 

0 0.2090 

412.75 8.63 -0.49 414.64 8.67 -0.50 

400.93 8.44 -0.50 399.30 8.40 -0.59 

400.46 8.43 -0.64 400.83 8.43 -0.71 

406.59 8.55 -0.62 404.04 8.50 -0.77 

402.15 8.46 -0.36 401.30 8.44 -0.41 

0.25 0.2104 

403.04 8.48 -0.47 401.34 8.44 -0.56 

387.87 8.22 -0.65 384.04 8.13 -0.84 

378.67 8.02 -0.68 375.11 7.95 -0.88 

391.52 8.29 -0.49 389.81 8.26 -0.58 

393.51 8.34 -0.43 392.24 8.31 -0.50 

0.5 0.2118 

399.24 8.46 -0.52 395.10 8.37 -0.67 

378.69 8.08 -0.56 376.19 8.03 -0.70 

382.47 8.16 -0.54 377.64 8.06 -0.72 

375.80 8.02 -0.49 370.84 7.91 -0.74 

381.24 8.14 -0.58 380.35 8.12 -0.66 

0.75 0.2133 

386.53 8.25 -0.70 382.75 8.17 -0.89 
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Individual Tests – Optical BFG Results 7 % H2 Addition Ø= 1 
 
 

Linear Technique Nonlinear Technique 

H2O 
(g) 

ρb/ρu 
Su 

(mm·s
-1

) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

537.93 11.02 -0.66 537.10 11.00 -0.73 

539.84 11.06 -0.60 539.42 11.05 -0.63 

529.06 10.84 -0.52 529.00 10.83 -0.60 

544.32 11.15 -0.79 543.57 11.13 -0.75 

0 0.2048 

543.78 11.14 -0.63 541.80 11.10 -0.69 

525.06 10.83 -0.64 521.09 10.74 -0.79 

510.53 10.53 -0.68 505.95 10.43 -0.86 

522.04 10.76 -0.55 519.06 10.70 -0.67 

520.43 10.73 -0.71 516.30 10.65 -0.89 

0.25 0.2062 

521.60 10.76 -0.71 517.09 10.66 -0.90 

501.49 10.44 -0.71 496.36 10.33 -0.92 

506.58 10.54 -0.68 502.13 10.45 -0.87 

516.25 10.74 -1.08 506.78 10.55 -1.12 

509.86 10.61 -0.83 500.93 10.42 -1.17 

0.5 0.2081 

508.38 10.58 -0.98 497.76 10.36 -1.12 

497.34 10.41 -0.79 484.53 10.14 -1.23 

490.45 10.27 -0.96 481.50 10.08 -1.36 

484.01 10.13 -0.95 475.01 9.94 -1.34 

487.37 10.20 -0.55 482.33 10.10 -0.71 

0.75 0.2093 

490.70 10.27 -0.55 487.35 10.20 -0.68 
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Individual Tests – Optical BFG Results 1 % H2 Addition Ø= 0.8, Ø= 1.4 
 
 

Linear Technique Nonlinear Technique 

φ 
H2O 

(g) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

138.89 3.16 0.10 138.84 3.16 0.10 

139.56 3.17 0.05 139.50 3.17 0.04 0 0.2273 

140.33 3.19 0.04 140.33 3.19 0.04 

166.32 3.81 1.93 155.60 3.56 1.03 

158.60 3.63 1.62 149.33 3.42 0.81 0.25 0.2290 

163.66 3.75 1.68 156.25 3.58 0.99 

173.48 4.00 2.35 159.84 3.69 1.17 

172.49 3.98 1.97 161.55 3.73 1.06 0.5 0.2307 

178.81 4.13 2.47 162.74 3.75 1.17 

176.63 4.11 2.05 167.32 3.89 1.16 

183.12 4.26 2.81 167.26 3.89 1.35 

0.8 

0.75 0.2325 

177.68 4.13 2.40 165.19 3.84 1.24 

153.13 3.85 1.90 143.67 3.61 1.02 

157.81 3.97 1.82 150.57 3.79 1.03 0 0.2514 

166.00 4.17 2.16 155.47 3.91 1.12 

189.89 4.81 2.71 171.72 4.35 1.24 

172.32 4.36 2.18 163.30 4.13 1.21 0.25 0.2531 

176.10 4.46 2.06 163.32 4.13 1.05 

190.67 4.86 2.70 174.69 4.45 1.30 

185.70 4.73 2.68 172.46 4.39 1.37 0.5 0.2548 

188.02 4.79 2.32 175.23 4.46 1.20 

202.73 5.20 3.35 178.05 4.57 1.38 

196.40 5.04 2.62 179.40 4.60 1.23 

1.4 

0.75 0.2565 

188.96 4.85 2.42 176.11 4.52 1.25 
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Individual Tests – Optical BFG Results 3 % H2 Addition Ø= 0.8, Ø= 1.4 
 
 

Linear Technique Nonlinear Technique 

φ 
H2O 

(g) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

231.56 5.16 -0.37 230.85 5.15 -0.42 

231.99 5.17 -0.26 230.07 5.13 -0.35 0 0.2230 

230.98 5.15 -0.29 230.66 5.14 -0.32 

240.13 5.40 -0.36 239.25 5.38 -0.42 

229.56 5.16 -0.09 229.61 5.16 -0.09 0.25 0.2247 

229.73 5.16 -0.38 228.85 5.14 -0.44 

225.29 5.10 -0.20 225.24 5.10 -0.21 

217.05 4.91 -0.37 216.39 4.90 -0.43 0.5 0.2264 

219.47 4.97 -0.29 219.01 4.96 -0.33 

211.77 4.83 -0.34 210.48 4.80 -0.41 

215.97 4.92 -0.45 215.48 4.91 -0.51 

0.8 

0.75 0.2280 

221.45 5.05 -0.34 220.30 5.02 -0.41 

264.65 6.51 0.31 264.05 6.49 0.27 

268.32 6.60 0.54 267.00 6.57 0.45 0 0.2459 

275.24 6.77 0.58 275.44 6.77 0.52 

284.49 7.04 1.01 280.43 6.94 0.74 

274.01 6.78 0.94 269.01 6.66 0.67 0.25 0.2476 

268.95 6.66 0.84 265.37 6.57 0.62 

290.86 7.25 0.60 283.09 7.05 0.59 

274.96 6.85 1.01 267.93 6.68 0.68 0.5 0.2492 

284.30 7.08 1.18 275.27 6.86 0.76 

277.27 6.96 0.75 270.56 6.79 0.52 

275.63 6.92 0.98 268.32 6.73 0.67 

1.4 

0.75 0.2509 

274.72 6.89 0.96 268.00 6.72 0.66 
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Individual Tests – Optical BFG Results 5 % H2 Addition Ø= 0.8, Ø= 1.4 
 
 

Linear Technique Nonlinear Technique 

φ 
H2O 

(g) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

322.11 7.05 -0.65 323.09 7.08 -0.69 

322.15 7.05 -0.68 322.12 7.05 -0.77 0 0.2190 

318.08 6.97 -0.72 317.23 6.95 -0.84 

307.11 6.78 -0.80 309.60 6.83 -0.90 

304.22 6.71 -0.67 304.75 6.72 -0.77 0.25 0.2207 

318.38 7.03 -0.60 311.45 6.87 -0.88 

295.37 6.56 -0.82 290.87 6.46 -1.13 

304.86 6.78 -0.73 297.72 6.62 -1.08 0.5 0.2222 

305.14 6.78 -0.71 299.53 6.66 -1.01 

291.49 6.53 -0.79 286.82 6.43 -1.10 

296.63 6.64 -0.88 290.44 6.51 -1.28 

0.8 

0.75 0.2240 

300.48 6.73 -0.89 294.01 6.59 -1.29 

405.46 9.76 0.35 402.98 9.70 0.28 

410.36 9.88 0.18 410.07 9.87 0.17 0 0.2407 

394.65 9.50 0.05 394.64 9.50 0.05 

385.65 9.35 0.14 385.49 9.34 0.13 

385.91 9.35 0.20 385.60 9.35 0.19 0.25 0.2423 

386.13 9.36 0.22 385.68 9.35 0.19 

373.59 9.12 0.31 372.18 9.08 0.27 

372.70 9.09 0.19 372.58 9.09 0.18 0.5 0.2440 

370.87 9.05 0.25 370.34 9.04 0.22 

363.11 8.92 0.33 359.72 8.84 0.26 

364.54 8.96 0.11 364.57 8.96 0.11 

1.4 

0.75 0.2457 

354.84 8.72 0.22 354.54 8.71 0.17 
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Individual Tests – Optical BFG Results 7 % H2 Addition Ø= 0.8, Ø= 1.4 
 
 

Linear Technique Nonlinear Technique 

φ 
H2O 

(g) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

430.76 9.27 -0.73 425.05 9.15 -0.98 

439.16 9.45 -0.68 433.70 9.33 -0.91 0 0.2152 

435.12 9.36 -0.73 429.10 9.24 -0.99 

414.58 8.99 -0.89 413.89 8.98 -1.04 

418.82 9.08 -0.76 412.02 8.94 -1.06 0.25 0.2169 

408.42 8.86 -0.83 404.25 8.77 -1.11 

390.89 8.55 -0.68 387.44 8.47 -0.94 

396.55 8.67 -0.81 388.41 8.49 -1.17 0.5 0.2186 

387.25 8.47 -0.79 379.73 8.30 -1.13 

370.18 8.16 -0.90 362.81 7.99 -1.37 

384.55 8.47 -0.97 373.87 8.24 -1.49 

0.8 

0.75 0.2203 

380.10 8.37 -0.95 368.91 8.13 -1.48 

549.85 12.97 0.24 547.06 12.91 0.18 

543.13 12.81 0.12 542.91 12.81 0.11 0 0.2359 

549.08 12.95 0.09 549.09 12.95 0.08 

520.47 12.36 0.05 520.50 12.36 0.05 

523.60 12.44 0.07 523.55 12.44 0.07 0.25 0.2375 

520.54 12.36 0.01 520.92 12.37 0.01 

496.33 11.87 -0.04 496.44 11.87 -0.04 

498.40 11.92 0.14 498.18 11.91 0.13 0.5 0.2392 

501.72 12.00 0.11 501.67 12.00 0.11 

481.78 11.60 -0.05 481.81 11.60 -0.05 

477.17 11.49 -0.02 477.43 11.50 -0.02 

1.4 

0.75 0.2408 

474.30 11.42 0.12 473.27 11.40 0.10 
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Summary H2O Results  

 

Summary – Linear Optical and Modelled Results 1 % H2 

φ 
H2O 

(g) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0 139.59 3.17 0.06 3.18 3.16 

0.25 162.86 3.73 1.74 3.77 3.81 

0.5 174.93 4.04 2.26 3.97 3.99 
0.8 

0.75 179.14 4.17 2.42 4.01 4.01 

0 180.07 3.92 1.36 3.97 3.92 

0.25 218.80 4.79 2.37 4.76 4.70 

0.5 235.80 5.21 2.92 5.08 4.99 
1 

0.75 237.92 5.29 2.99 5.20 5.11 

0 158.98 4.00 1.96 3.75 3.68 

0.25 179.44 4.54 2.32 4.56 4.45 

0.5 188.13 4.79 2.57 4.87 4.72 
1.4 

0.75 196.03 5.03 2.80 4.97 4.79 

 

 

Summary – Nonlinear Optical Results and Uncertainty 1 % H2 

φ 
H2O 

(g) 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0 3.46 139.56 3.17 0.06 0.74 3.92 

0.25 3.48 153.73 3.52 0.94 3.82 10.11 

0.5 3.41 161.38 3.72 1.13 1.45 4.97 
0.8 

0.75 3.41 166.59 3.87 1.25 1.22 4.55 

0 4.14 173.70 3.78 0.85 2.09 4.88 

0.25 4.31 203.91 4.47 1.25 1.97 4.96 

0.5 3.93 219.98 4.86 1.52 3.86 6.19 
1 

0.75 3.95 219.52 4.88 1.51 8.81 11.63 

0 3.88 149.90 3.77 1.06 5.93 15.24 

0.25 3.89 166.11 4.20 1.17 4.86 12.68 

0.5 3.80 174.13 4.43 1.29 1.47 5.28 
1.4 

0.75 3.79 177.85 4.56 1.29 1.65 5.59 
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Summary – Linear Optical and Modelled Results 3 % H2 

φ 
H2O 

(g) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0 231.51 5.16 -0.31 5.47 5.32 

0.25 233.14 5.24 -0.28 5.59 5.53 

0.5 220.60 4.99 -0.29 5.57 5.48 
0.8 

0.75 216.40 4.93 -0.38 5.45 5.36 

0 300.26 6.40 0.12 6.94 6.83 

0.25 310.42 6.66 0.25 7.14 6.99 

0.5 302.54 6.52 0.21 7.16 7.01 
1 

0.75 302.62 6.59 0.18 7.08 6.95 

0 269.40 6.63 0.48 7.10 6.87 

0.25 275.82 6.83 0.93 7.25 6.99 

0.5 283.37 7.06 0.93 7.22 6.93 
1.4 

0.75 275.87 6.92 0.90 7.09 6.81 

 

 

Summary – Nonlinear Optical Results and Uncertainty 3 % H2 

φ 
H2O 

(g) 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0 5.40 230.53 5.14 -0.36 0.40 5.49 

0.25 5.40 232.57 5.23 -0.32 5.80 15.38 

0.5 5.45 220.21 4.99 -0.32 4.55 12.54 
0.8 

0.75 5.38 215.42 4.91 -0.44 4.91 13.34 

0 6.61 300.32 6.40 0.13 5.64 9.63 

0.25 6.53 309.94 6.65 0.23 2.58 7.27 

0.5 6.56 301.98 6.51 0.24 1.54 6.83 
1 

0.75 6.60 301.94 6.58 0.15 1.84 6.98 

0 6.33 268.83 6.61 0.41 5.91 16.00 

0.25 6.34 271.60 6.72 0.68 7.86 20.52 

0.5 6.33 275.43 6.86 0.68 7.59 19.88 
1.4 

0.75 6.45 268.96 6.75 0.62 1.40 7.32 

 



Appendices 

 

 
                                                               - 281 - 

Summary – Linear Optical and Modelled Results 5 % H2 

φ 
H2O 

(g) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0 320.78 7.02 -0.68 7.53 7.36 

0.25 309.90 6.84 -0.69 7.42 7.24 

0.5 301.79 6.71 -0.75 7.24 7.04 
0.8 

0.75 296.20 6.63 -0.85 6.99 6.79 

0 419.35 8.76 -0.42 9.61 9.34 

0.25 402.63 8.47 -0.52 9.53 9.27 

0.5 390.16 8.27 -0.55 9.35 9.11 
1 

0.75 380.95 8.13 -0.57 9.10 8.91 

0 403.49 9.71 0.19 10.15 9.75 

0.25 385.90 9.35 0.19 9.98 9.58 

0.5 372.39 9.09 0.25 9.72 9.33 
1.4 

0.75 360.83 8.87 0.22 9.41 9.02 

 

 

Summary – Nonlinear Optical Results and Uncertainty 5 % H2 

φ 
H2O 

(g) 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0 6.90 320.81 7.03 -0.77 3.14 10.41 

0.25 6.97 308.60 6.81 -0.85 3.46 11.06 

0.5 6.93 296.04 6.58 -1.07 4.57 13.30 
0.8 

0.75 6.88 290.42 6.51 -1.22 3.59 11.27 

0 8.17 418.27 8.74 -0.45 2.72 8.84 

0.25 8.23 401.36 8.44 -0.61 1.71 8.50 

0.5 8.19 387.26 8.20 -0.69 7.92 12.79 
1 

0.75 8.15 377.55 8.06 -0.74 4.52 9.90 

0 8.27 402.56 9.69 0.17 7.73 20.90 

0.25 8.33 385.59 9.35 0.17 0.10 8.33 

0.5 8.30 371.70 9.07 0.22 1.20 8.82 
1.4 

0.75 8.29 359.61 8.84 0.18 5.01 14.96 
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Summary – Linear Optical and Modelled Results 7 % H2 

φ 
H2O 

(g) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

Li et al. 

(cm·s
-1

) 
Davis et al. 

(cm·s
-1

) 

0 435.01 9.36 -0.71 9.62 9.32 

0.25 413.94 8.98 -0.83 9.35 9.03 

0.5 391.56 8.56 -0.76 9.02 8.70 
0.8 

0.75 378.28 8.33 -0.94 8.66 8.34 

0 538.99 11.04 -0.64 12.33 11.91 

0.25 519.93 10.72 -0.66 12.04 11.66 

0.5 508.51 10.58 -0.86 11.69 11.37 
1 

0.75 489.97 10.26 -0.76 11.30 11.04 

0 547.35 12.91 0.15 13.33 12.78 

0.25 521.54 12.39 0.04 12.92 12.39 

0.5 498.82 11.93 0.07 12.47 11.96 
1.4 

0.75 477.75 11.50 0.02 11.98 11.50 

 

Summary – Nonlinear Optical Results and Uncertainty 7 % H2 

φ 
H2O 

(g) 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0 8.57 429.28 9.24 -0.96 4.33 13.75 

0.25 8.78 410.05 8.90 -1.07 5.11 15.44 

0.5 8.76 385.19 8.42 -1.08 4.75 14.70 
0.8 

0.75 8.58 368.53 8.12 -1.45 5.54 16.22 

0 10.32 538.18 11.02 -0.68 5.68 12.50 

0.25 10.34 515.90 10.64 -0.82 5.86 12.64 

0.5 10.32 500.79 10.42 -1.04 4.08 11.50 
1 

0.75 10.43 482.14 10.09 -1.06 4.59 11.88 

0 10.52 546.35 12.89 0.12 3.15 13.11 

0.25 10.64 521.66 12.39 0.04 1.65 11.40 

0.5 10.61 498.76 11.93 0.07 2.66 12.50 
1.4 

0.75 10.59 477.50 11.50 0.01 4.27 15.00 

 
Calculated BFG flame thicknesses, and critical boundary velocity gradients 

H2O 
(g) φ 

dt 

(mm) 
gf/c 

(s
-1

) 

dt 

(mm) 
gf/c 

(s
-1

) 

 1% H2 7% H2 

0.8 3.08 10.31 1.34 68.48 

1.0 2.72 13.89 1.21 90.59 0 

1.4 2.44 15.47 1.00 129.04 

0.8 2.43 15.93 1.41 56.70 

1.0 2.11 23.15 1.25 81.11 0.75 

1.4 1.88 24.20 1.06 109.33 
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B.7 - COG Dataset 

 
Test Conditions 

Fuel:    COG (H2-61.8 %, CH4-25.6%, CO-7.1 %, CO2-1.5 %, and N2-4 %) 

Temperature:   303 K   

Pressure:   0.1 MPa 

Camera Speed   7,000 fps 

 
 Linear Technique Nonlinear Technique 

φ 
Pfuel 

(kPa) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

3165.19 52.66 0.23 3164.70 52.65 0.22 

3219.15 53.56 0.24 3215.31 53.50 0.22 0.7 14.65 0.1664 

3109.38 51.73 0.21 3108.78 51.72 0.22 

4515.05 69.88 0.23 4512.01 69.83 0.22 

4515.53 69.89 0.39 4502.66 69.69 0.33 0.8 16.40 0.1548 

4552.39 70.46 0.32 4564.61 70.65 0.34 

5559.43 81.33 0.35 5553.58 81.25 0.32 

5686.69 83.20 0.46 5685.63 83.18 0.44 0.9 18.08 0.1463 

5675.80 83.04 0.43 5607.45 82.04 0.45 

6705.84 94.60 0.56 6696.36 94.47 0.51 

6572.54 92.72 0.71 6541.01 92.28 0.60 1.0 19.69 0.1411 

6601.20 93.13 0.61 6554.90 92.47 0.48 

7125.52 100.01 0.87 7062.58 99.12 0.68 

7103.54 99.70 0.80 7040.14 98.81 0.63 1.1 21.24 0.1404 

7235.47 101.55 0.81 7160.59 100.50 0.62 

6899.13 98.28 0.84 6857.22 97.69 0.69 

7072.19 100.75 0.90 7017.55 99.97 0.71 1.2 22.73 0.1425 

7137.81 101.68 0.85 7097.33 101.11 0.70 

6471.10 93.94 1.09 6408.67 93.03 0.85 

6352.80 92.22 0.92 6299.00 91.44 0.72 1.3 24.17 0.1452 

6433.24 93.39 0.93 6359.80 92.32 0.70 

5451.27 80.71 1.22 5348.11 79.18 0.85 

5446.80 80.64 1.15 5351.72 79.24 0.81 1.4 25.55 0.1481 

5453.26 80.74 1.23 5352.81 79.25 0.86 

4117.13 62.18 1.91 3971.45 59.98 1.08 

4160.76 62.84 1.53 4069.74 61.47 1.05 1.5 26.89 0.1510 

4019.41 60.71 1.41 3953.91 59.72 1.01 
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Summary – COG Linear Optical and Modelled Results 

 

φ 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

GRI-Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) 

0.7 3163.24 52.63 0.23 44.67 43.74 

0.8 4527.66 70.08 0.31 60.95 58.60 

0.9 5607.31 82.04 0.41 75.75 71.63 

1.0 6626.53 93.48 0.63 87.27 81.79 

1.1 7154.84 100.42 0.83 94.12 88.13 

1.2 7036.38 100.24 0.86 94.97 89.32 

1.3 6419.05 93.18 0.98 88.27 83.58 

1.4 5450.44 80.70 1.20 73.31 69.16 

1.5 4099.10 61.91 1.62 52.53 47.69 

 

 

Summary and Error – COG Nonlinear Optical Results 

 

φ 
BSu 

(mm·s
-1

) 
Ave Su 
(mm·s

-1
) 

Ave uL 
(cm·s

-1
) 

Ave Lb 
(mm) 

σSu 

(mm·s
-1

) 
USu 

(mm·s
-1

) 

0.7 54.94 3162.93 52.62 0.22 53.29 143.33 

0.8 55.73 4526.43 70.06 0.30 33.40 99.95 

0.9 55.81 5615.55 82.16 0.40 66.40 174.14 

1.0 57.57 6597.42 93.07 0.53 85.97 221.19 

1.1 56.01 7087.77 99.48 0.64 64.06 168.70 

1.2 54.57 6990.70 99.59 0.70 122.29 308.66 

1.3 59.79 6355.82 92.27 0.76 54.95 149.02 

1.4 68.47 5350.88 79.22 0.84 2.46 68.74 

1.5 81.28 3998.37 60.39 1.05 62.43 175.11 
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B.8 – BFG/COG Dataset 

 
Test Conditions 

Fuel:    COG (H2-61.8 %, CH4-25.6%, CO-7.1 %, CO2-1.5 %, and N2-4 %) 

   BFG (CO-23.00 %, CO2-23.50 %, and N2-53.50 %)  

Temperature:   303 K   

Pressure:   0.1 MPa 

Camera Speed   3,000 fps 

 

Individual Tests – Optical BFG/COG Results 1 % H2 Addition  

 
   Linear Technique Nonlinear Technique 

COG 
(%) 

φ PBFG 

(kPa) 
PCOG 

(kPa) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

364.28 7.72 -0.26 363.50 7.70 -0.30 
0.8 49.30 2.59 0.2119 

369.72 7.83 -0.20 369.28 7.82 -0.22 

466.13 9.38 -0.15 467.24 9.40 -0.14 
1.0 54.55 2.74 0.2012 

457.63 9.21 -0.17 464.50 9.35 -0.02 

489.20 10.58 0.31 487.66 10.54 0.27 
1.2 58.71 2.87 0.2162 

495.36 10.71 0.41 486.42 10.52 0.20 

424.79 9.87 1.52 410.68 9.54 0.95 

5 

1.4 62.10 2.99 0.2324 
407.25 9.46 1.65 395.94 9.20 1.08 

596.29 11.99 -0.50 593.26 11.92 -0.61 
0.8 41.93 4.66 0.2010 

577.18 11.60 -0.50 573.69 11.53 -0.62 

754.74 14.29 -0.25 753.76 14.28 -0.27 
1.0 46.94 4.95 0.1894 

757.32 14.34 -0.13 757.09 14.34 -0.13 

766.81 15.57 0.07 766.73 15.56 0.07 
1.2 51.01 5.22 0.2030 

769.20 15.61 0.08 769.11 15.61 0.08 

606.06 13.22 1.47 589.79 12.86 0.96 

10 

1.4 54.38 5.45 0.2181 
614.11 13.39 1.67 590.56 12.88 1.00 

807.55 15.57 -0.48 802.99 15.48 -0.59 
0.8 35.92 6.34 0.1928 

806.36 15.55 -0.63 798.27 15.39 -0.82 

1020.39 18.39 -0.42 1016.14 18.31 -0.49 
1.0 40.61 6.77 0.1802 

1050.35 18.93 -0.26 1048.85 18.90 -0.28 

1039.83 20.06 -0.04 1039.83 20.06 -0.04 
1.2 44.49 7.17 0.1929 

1041.58 20.09 -0.09 1041.40 20.09 -0.09 

861.81 17.84 1.99 820.83 16.99 1.14 

15 

1.4 47.74 7.52 0.2070 
828.83 17.16 1.80 804.47 16.65 1.17 
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Individual Tests – Optical BFG/COG Results 3 % H2 Addition  

 
   Linear Technique Nonlinear Technique 

COG 
(%) 

φ PBFG 

(kPa) 
PCOG 

(kPa) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

429.09 8.97 -0.72 423.61 8.85 -0.96 
0.8 48.21 2.54 0.2090 

439.82 9.19 -0.64 435.62 9.10 -0.82 

578.37 11.44 -0.25 578.39 11.44 -0.27 
1.0 53.48 2.68 0.1978 

607.30 12.01 -0.19 606.88 12.00 -0.20 

607.11 12.91 0.00 607.53 12.92 0.00 
1.2 57.68 2.81 0.2127 

602.49 12.81 0.00 602.50 12.82 0.00 

543.54 12.41 0.86 536.69 12.26 0.65 

5 

1.4 61.11 2.93 0.2284 
524.09 11.97 0.69 519.61 11.87 0.55 

656.14 13.05 -0.80 651.64 12.96 -1.00 
0.8 41.14 4.57 0.1989 

671.66 13.36 -0.75 670.80 13.34 -0.99 

874.71 16.34 -0.46 881.65 16.47 -0.44 
1.0 46.15 4.86 0.1868 

901.61 16.84 -0.24 900.54 16.82 -0.26 

882.78 17.69 -0.20 882.20 17.68 -0.21 
1.2 50.23 5.13 0.2004 

906.21 18.16 0.08 905.96 18.16 0.07 

731.54 15.74 1.32 712.35 15.33 0.87 

10 

1.4 53.61 5.37 0.2152 
775.15 16.68 1.35 752.92 16.20 0.87 

903.20 17.27 -0.71 880.84 16.84 -1.10 
0.8 35.34 6.24 0.1912 

914.85 17.49 -0.65 884.55 16.91 -1.07 

1192.54 21.30 -0.37 1188.98 21.24 -0.42 
1.0 40.02 6.67 0.1786 

1206.71 21.55 -0.37 1202.98 21.49 -0.42 

1192.54 22.77 0.03 1183.34 22.59 -0.04 
1.2 43.89 7.06 0.1909 

1175.09 22.43 -0.11 1174.81 22.43 -0.12 

968.05 19.83 1.63 932.01 19.09 1.00 

15 

1.4 47.15 7.42 0.2048 
960.41 19.67 0.92 931.00 19.07 1.00 
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Individual Tests – Optical BFG/COG Results 5 % H2 Addition  

 
   Linear Technique Nonlinear Technique 

COG 
(%) 

φ PBFG 

(kPa) 
PCOG 

(kPa) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

555.24 11.45 -0.57 550.67 11.35 -0.72 
0.8 47.17 2.48 0.2062 

548.84 11.32 -0.62 542.46 11.19 -0.82 

695.11 13.55 -0.37 691.18 13.47 -0.45 
1.0 52.45 2.63 0.1949 

694.92 13.54 -0.45 695.84 13.56 -0.47 

729.58 15.27 -0.22 733.14 15.34 -0.18 
1.2 56.68 2.76 0.2093 

725.39 15.18 -0.30 732.34 15.33 -0.23 

629.98 14.16 0.60 625.03 14.04 0.47 

5 

1.4 60.15 2.88 0.2247 
635.21 14.27 0.58 631.18 14.18 0.47 

789.26 15.54 -0.56 787.11 15.50 -0.64 
0.8 40.38 4.49 0.1969 

779.00 15.34 -0.79 767.50 15.11 -0.72 

1012.25 18.70 -0.43 1007.85 18.61 -0.51 
1.0 45.38 4.78 0.1847 

1011.59 18.68 -0.36 1008.74 18.63 -0.41 

1027.18 20.33 -0.16 1026.62 20.32 -0.17 
1.2 49.47 5.04 0.1979 

1023.45 20.25 -0.13 1023.10 20.25 -0.13 

873.63 18.56 1.02 855.93 18.18 0.71 

10 

1.4 52.87 5.28 0.2124 
864.16 18.35 0.94 844.69 17.94 0.64 

1031.09 19.57 -0.48 1018.30 19.33 -0.64 
0.8 34.78 6.14 0.1898 

1017.52 19.31 -0.65 1007.27 19.12 -0.84 

1326.03 23.48 -0.28 1328.02 23.52 -0.37 
1.0 39.44 6.57 0.1771 

1335.82 23.66 -0.29 1330.74 23.57 -0.40 

1360.53 25.71 -0.09 1359.62 25.70 -0.10 
1.2 43.31 6.96 0.1890 

1350.41 25.52 -0.11 1350.14 25.52 -0.11 

1112.91 22.56 1.14 1094.29 22.18 0.81 

15 

1.4 46.57 7.32 0.2027 
1094.66 22.19 1.08 1077.09 21.83 0.78 
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Individual Tests – Optical BFG/COG Results 7 % H2 Addition  

 
   Linear Technique Nonlinear Technique 

COG 
(%) 

φ PBFG 

(kPa) 
PCOG 

(kPa) 
ρb/ρu 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

654.15 13.32 -0.76 643.29 13.10 -1.07 
0.8 46.17 2.43 0.2037 

658.43 13.41 -0.60 654.81 13.34 -0.72 

871.18 16.74 -0.34 869.06 16.70 -0.39 
1.0 51.46 2.58 0.1922 

842.34 16.19 -0.46 838.32 16.11 -0.55 

876.10 18.07 -0.18 875.61 18.06 -0.19 
1.2 55.72 2.71 0.2062 

896.72 18.49 -0.07 895.89 18.47 -0.08 

767.88 16.99 0.41 765.69 16.94 0.36 

5 

1.4 59.21 2.83 0.2212 
776.66 17.18 0.42 774.63 17.13 0.37 

903.49 17.62 -0.50 898.81 17.53 -0.60 
0.8 39.64 4.40 0.1950 

902.96 17.61 -0.60 894.22 17.44 -0.78 

1151.47 21.05 -0.44 1146.41 20.96 -0.52 
1.0 44.64 4.70 0.1828 

1156.35 21.14 -0.29 1148.24 20.99 -0.36 

1202.29 23.52 -0.08 1203.28 23.54 -0.07 
1.2 48.73 4.96 0.1956 

1201.41 23.50 -0.19 1203.62 23.54 -0.18 

1008.60 21.15 0.74 999.61 20.96 0.58 

10 

1.4 52.15 5.20 0.2097 
996.56 20.90 0.72 988.28 20.72 0.57 

1110.80 20.93 -0.56 1105.20 20.82 -0.69 
0.8 34.23 6.04 0.1884 

1111.75 20.95 -0.59 1106.04 20.84 -0.72 

1457.08 25.60 -0.39 1452.18 25.51 -0.45 
1.0 38.88 6.47 0.1757 

1476.17 25.94 -0.23 1474.35 25.90 -0.26 

1487.57 27.85 -0.12 1483.11 27.76 -0.19 
1.2 42.74 6.86 0.1872 

1513.75 28.34 -0.01 1513.80 28.34 -0.01 

1252.56 25.13 0.94 1234.75 24.77 0.69 

15 

1.4 46.01 7.22 0.2006 
1200.96 24.09 1.21 1176.63 23.60 0.84 
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Summary Results – BFG/COG 1 % H2 Addition  

 

 Linear Technique Nonlinear Technique 

COG 
(%) 

φ BSu 

(mm·s
-1

) 
σSu 

(mm·s
-1

) 

USu 

(mm·s
-1

) 

GRI-

Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

0.8 11.72 4.08 38.53 7.46 8.14 367.00 7.78 -0.23 366.39 7.76 -0.26 

1.0 13.67 1.94 22.15 9.58 10.06 461.88 9.30 -0.16 465.87 9.38 -0.08 

1.2 13.67 0.88 15.78 10.29 10.36 492.28 10.65 0.36 487.04 10.53 0.24 
5 

1.4 11.73 10.42 94.39 9.01 8.84 416.02 9.67 1.59 403.31 9.37 1.02 

0.8 15.88 13.84 125.40 11.19 11.96 586.74 11.80 -0.50 583.48 11.73 -0.62 

1.0 18.41 2.35 28.03 14.38 14.68 756.03 14.32 -0.19 755.43 14.31 -0.20 

1.2 17.35 1.68 23.01 15.18 14.79 768.01 15.59 0.08 767.92 15.59 0.08 
10 

1.4 15.29 0.55 16.07 12.47 11.86 610.09 13.31 1.57 590.18 12.87 0.98 

0.8 19.13 3.33 35.54 14.77 15.48 806.96 15.56 -0.56 800.63 15.44 -0.71 

1.0 22.22 23.13 209.03 19.06 19.06 1035.37 18.66 -0.34 1032.50 18.61 -0.39 

1.2 20.73 1.11 23.01 19.98 19.11 1040.71 20.08 -0.07 1040.62 20.08 -0.07 
15 

1.4 18.87 11.57 105.68 15.76 14.82 845.32 17.50 1.90 812.65 16.82 1.16 

 

 

 

Summary Results – BFG/COG 3 % H2 Addition  

 

 Linear Technique Nonlinear Technique 

COG 
(%) 

φ BSu 

(mm·s
-1

) 
σSu 

(mm·s
-1

) 

USu 

(mm·s
-1

) 

GRI-

Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

0.8 15.84 8.15 74.91 8.97 9.83 434.46 9.08 -0.68 429.62 8.98 -0.89 

1.0 20.12 21.74 196.41 11.60 12.18 592.84 11.73 -0.22 592.64 11.72 -0.24 

1.2 19.80 14.34 130.41 12.58 12.63 604.80 12.86 0.00 605.02 12.87 0.00 
5 

1.4 16.47 6.33 59.18 11.24 10.97 533.82 12.19 0.78 528.15 12.07 0.60 

0.8 15.88 13.84 125.40 12.67 13.57 663.90 13.21 -0.78 661.22 13.15 -1.00 

1.0 18.41 2.35 28.03 16.37 16.71 888.16 16.59 -0.35 891.10 16.65 -0.35 

1.2 17.35 1.68 23.01 17.45 17.01 894.50 17.93 -0.06 894.08 17.92 -0.07 
10 

1.4 15.29 0.55 16.07 14.69 13.92 753.35 16.21 1.34 732.64 15.77 0.87 

0.8 20.61 2.62 31.29 16.22 17.05 909.03 17.38 -0.68 882.70 16.88 -1.09 

1.0 24.38 9.90 92.26 21.04 21.07 1199.63 21.43 -0.37 1195.98 21.37 -0.42 

1.2 23.78 6.03 59.17 22.27 21.29 1183.82 22.60 -0.04 1179.08 22.51 -0.08 
15 

1.4 20.87 0.72 21.84 17.99 16.87 964.23 19.75 1.28 931.51 19.08 1.00 
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Summary Results – BFG/COG 5 % H2 Addition  

 

 Linear Technique Nonlinear Technique 

COG 
(%) 

φ BSu 

(mm·s
-1

) 
σSu 

(mm·s
-1

) 

USu 

(mm·s
-1

) 

GRI-

Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

0.8 14.69 5.81 54.21 10.55 11.59 552.04 11.39 -0.60 546.57 11.27 -0.77 

1.0 16.62 3.29 33.95 13.73 14.39 695.02 13.55 -0.41 693.51 13.52 -0.46 

1.2 16.72 0.56 17.46 15.03 15.05 727.49 15.23 -0.26 732.74 15.34 -0.21 
5 

1.4 14.45 4.35 41.68 13.68 13.31 632.60 14.22 0.59 628.11 14.11 0.47 

0.8 19.23 13.86 126.08 14.21 15.26 784.13 15.44 -0.68 777.31 15.31 -0.68 

1.0 22.51 0.63 23.22 18.47 18.86 1011.92 18.69 -0.40 1008.30 18.62 -0.46 

1.2 21.87 2.49 31.30 19.90 19.35 1025.32 20.29 -0.15 1024.86 20.29 -0.15 
10 

1.4 18.78 7.95 73.90 17.10 16.16 868.90 18.46 0.98 850.31 18.06 0.68 

0.8 25.31 7.80 74.55 17.71 18.68 1024.31 19.44 -0.57 1012.79 19.23 -0.74 

1.0 29.79 1.92 34.42 23.10 23.17 1330.93 23.57 -0.29 1329.38 23.55 -0.39 

1.2 28.84 6.70 66.78 24.70 23.59 1355.47 25.62 -0.10 1354.88 25.61 -0.11 
15 

1.4 24.16 12.17 111.98 20.38 19.07 1103.79 22.38 1.11 1085.69 22.01 0.80 

 

 

 

 

Summary Results – BFG/COG 7 % H2 Addition  

 

 Linear Technique Nonlinear Technique 

COG 
(%) 

φ BSu 

(mm·s
-1

) 
σSu 

(mm·s
-1

) 

USu 

(mm·s
-1

) 

GRI-

Mech 

3.0 

(cm·s
-1

) 

Li et al. 

(cm·s
-1

) Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

Su 
(mm·s

-1
) 

uL 
(cm·s

-1
) 

Lb 
(mm) 

0.8 15.84 8.15 74.91 12.20 13.42 656.29 13.37 -0.68 649.05 13.22 -0.90 

1.0 20.12 21.74 196.41 15.97 16.72 856.76 16.47 -0.40 853.69 16.41 -0.47 

1.2 19.80 14.34 130.41 17.65 17.64 886.41 18.28 -0.13 885.75 18.27 -0.14 
5 

1.4 16.47 6.33 59.18 16.37 15.86 772.27 17.09 0.42 770.16 17.04 0.37 

0.8 15.88 13.84 125.40 15.82 17.03 903.23 17.62 -0.55 896.52 17.49 -0.69 

1.0 18.41 2.35 28.03 20.69 21.13 1153.91 21.10 -0.37 1147.33 20.98 -0.44 

1.2 17.35 1.68 23.01 22.49 21.85 1201.85 23.51 -0.14 1203.45 23.54 -0.13 
10 

1.4 15.29 0.55 16.07 19.71 18.59 1002.58 21.03 0.73 993.95 20.84 0.58 

0.8 26.27 0.60 26.81 19.26 20.36 1111.28 20.94 -0.58 1105.62 20.83 -0.71 

1.0 32.00 15.68 144.49 25.26 25.33 1466.63 25.77 -0.31 1463.27 25.71 -0.36 

1.2 31.24 21.70 197.48 27.24 26.00 1500.66 28.10 -0.07 1498.46 28.05 -0.10 
15 

1.4 25.65 41.10 370.23 22.94 21.41 1226.76 24.61 1.08 1205.69 24.19 0.77 
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Calculated BFG flame thicknesses, and critical boundary velocity gradients 

 

COG 
(%) φ 

dt 

(mm) 
gf/c 

(s
-1

) 

dt 

(mm) 
gf/c 

(s
-1

) 

 1% H2 7% H2 

0.8 3.08 10.31 1.34 68.48 

1.0 2.72 13.89 1.21 90.59 

1.2 2.44 17.85 1.07 116.54 
0 

1.4 2.44 15.47 1.00 129.04 

0.8 0.91 170.44 0.77 272.18 

1.0 0.84 222.65 0.72 357.97 

1.2 0.78 258.54 0.66 427.66 
15 

1.4 0.87 193.37 0.70 344.82 

 

 

B.9 – Modelled BOS Gas Dataset 

 
Test Conditions 

 

Temperature:   303 K   

Pressure:   0.1 MPa 

Fuel Mix: 
 

Fuel Composition (mass fraction) 

Water Mass (g) H2 CO CO2 N2 H2O O2 

0 0.00042 0.61027 0.20753 0.18093 0.00000 0.00085 

0.25 0.00042 0.60434 0.20552 0.17917 0.00971 0.00084 

0.5 0.00042 0.59852 0.20354 0.17744 0.01924 0.00083 

0.75 0.00041 0.59282 0.20160 0.17575 0.02858 0.00083 

 

Wet BOS Gas flame speeds (Davis et al. mechanism) 

 

φ 
0 g H2O 

(cm·s
-1

) 
0.25 g H2O 

(cm·s
-1

) 

0.5 g H2O 

(cm·s
-1

) 

0.75 g H2O 

(cm·s
-1

) 

0.7 9.55 13.30 15.10 16.22 

0.8 11.27 15.92 18.14 19.59 

0.9 12.75 18.15 20.80 22.49 

1.0 14.00 20.11 23.08 24.97 

1.1 14.95 21.74 25.06 27.11 

1.2 15.81 23.09 26.63 28.89 

1.3 16.46 24.25 27.98 30.29 

1.4 16.98 25.12 29.04 31.45 

1.5 17.40 25.85 29.83 32.37 
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BOS/BFG Blends 

 

BOS gas 

(%) 
φ 

1% BFG H2 

(cm·s
-1

) 
3% BFG H2 

(cm·s
-1

) 
5% BFG H2 

(cm·s
-1

) 
7% BFG H2 

(cm·s
-1

) 

0.8 3.85 6.18 8.04 9.89 

0.9 4.37 7.00 9.22 11.50 

1.0 4.70 7.62 10.21 12.75 

1.1 4.91 8.09 10.90 13.64 

1.2 4.97 8.32 11.32 14.20 

1.3 4.91 8.32 11.31 14.37 

1.4 4.66 8.14 11.19 14.17 

5 

1.5 4.29 7.61 10.59 13.60 

0.8 4.50 7.04 9.12 11.12 

0.9 5.08 8.05 10.49 12.83 

1.0 5.50 8.81 11.54 14.18 

1.1 5.75 9.33 12.30 15.17 

1.2 5.85 9.62 12.76 15.80 

1.3 5.80 9.67 12.92 16.08 

1.4 5.59 9.49 12.75 15.97 

10 

1.5 5.28 9.07 12.30 15.49 

0.8 5.14 7.84 9.99 12.01 

0.9 5.80 8.95 11.47 13.84 

1.0 6.27 9.80 12.62 15.29 

1.1 6.57 10.39 13.47 16.37 

1.2 6.72 10.74 14.01 17.10 

1.3 6.72 10.87 14.26 17.48 

1.4 6.57 10.69 14.21 17.49 

15 

1.5 6.29 10.44 13.86 17.15 
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