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Abstract

The negative binomial distribution (NBD) and negative binomial processes have been
used as natural models for events occurring in fields such as accident proneness; acci-
dents and sickness; market research; insurance and risk theory. The fitting of negative
binomial processes in practice has mainly focussed on fitting the one-dimensional dis-
tribution, namely the NBD, to data. In practice, the parameters of the NBD are
usually estimated by using inefficient moment based estimation methods due to the
ease in estimating moment based estimators in comparison to maximum likelihood
estimators.

This thesis develops efficient moment based estimation methods for estimating pa-
rameters of the NBD that can be easily implemented in practice. These estimators,
called power method estimators, are almost as efficient as maximum likelihood esti-
mators when the sample is independent and identically distributed. For dependent
NBD samples, the power method estimators are more efficient than the commonly
used method of moments and zero term method estimators.

Fitting the one-dimensional marginal distribution of negative binomial processes to
data gives partial information as to the adequacy of the process being fitted. This thesis
further develops methods of statistical inference for data generated by negative bino-
mial processes by comparing the dynamical properties of the process to the dynamical
properties of data. For negative binomial autoregressive processes, the dynamical prop-
erties may be checked by using the autocorrelation function. The dynamical properties
of the gamma Poisson process are considered by deriving the asymptotic covariance
and correlation structures of estimators and functionals of the gamma Poisson process
and verifying these structures against data.

The adequacy of two negative binomial processes, namely the gamma Poisson pro-
cess and the negative binomial first-order autoregressive process, as models for con-
sumer buying behavior are considered. The models are fitted to market research data
kindly provided by ACNielsen BASES.
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Chapter 1

Introduction

Negative binomial processes have been used as a natural model for events occurring
in continuous or discrete time in many fields. Negative binomial processes have been
successfully applied in the modeling of, for example: accident proneness (Greenwood
and Yule (1920)); accidents and sickness (Lundberg (1964)); market research (Ehren-
berg (1988)); risk theory (Grandell (1997)) and more recently in clinical trials (Cook
and Wei (2003)).

The fitting of negative binomial processes in practice has mainly focussed on the
fitting of the corresponding one-dimensional marginal distribution of the process, i.e.
the negative binomial distribution (NBD), to data. Parameter estimation for the NBD
using maximum likelihood has been considered independently by Fisher (1941) and
Haldane (1941) and moment based estimators for the NBD have been considered by
Anscombe (1950). Moment based estimators were considered due to the computational
difficulties of maximum likelihood estimators. With the computational power available
today, the computation of maximum likelihood estimators is no longer an issue. In
many practices, however, the use of moment based estimators is still predominant (see
e.g. Ehrenberg (1988)) even though maximum likelihood estimators are asymptotically

the most efficient in the class of all asymptotically normal estimators.
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A number of negative binomial processes have been presented in literature (see e.g.
Barndorff-Nielsen and Yeo (1969); McKenzie (1986); Grandell (1997)). The fitting of
the NBD to data over a fixed time interval therefore provides partial indication as
to the adequacy of the theoretical process being fitted. Ehrenberg (1988) somewhat
addressed the problem of assessing the goodness of fit of a particular negative binomial
process, known as the gamma Poisson process, by comparing observed and expected
frequencies as well as comparing the fit of numerous statistical measures computed
in two different time intervals. No statistical tests were, however, presented to test
whether the statistical measures computed in the two time intervals were (statistically)
significantly different. The comparison of statistical measures computed in two different

time intervals by Ehrenberg (1988) was mainly empirical.

Aim

The aim of this thesis is to further develop methods of statistical inference for data
generated by negative binomial processes. This thesis will concentrate on methods of
statistical inference that are efficient and methods that can be practically applied in
the field of market research and other similar fields of practice.

The negative binomial processes considered will be restricted to the gamma Poisson
process and the negative binomial first-order autoregressive process. Using empirical
evidence, Ehrenberg (1988) has shown that the gamma Poisson process is suitable
for modeling the number of purchases of various products by households within a
population. The negative binomial first-order autoregressive process is a simple process
in the family of autoregressive processes and will be used as a source of comparison

against the gamma Poisson process.
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Overview of the thesis

Chapter 2 provides a detailed background to the thesis. The chapter begins with a
description of the numerous ways in which the NBD may be derived and parameterized.
This will present the primary set of parameters upon which inference is to be made.
The chapter then reviews methods of parameter estimation in the form of maximum
likelihood and general moment based estimators.

The é-method of obtaining the asymptotic normal distribution of various functionals
of asymptotically normal statistics is described. By checking the covariance structure
of functionals of data to the covariance structure of corresponding functionals of the
proposed statistical distribution or process, it is possible to verify whether data could
be generated from that distribution or process.

A concise description of two negative binomial processes, namely the gamma Pois-
son process and the negative binomial first-order autoregressive process, follows. The
derivation of the processes are important when studying the statistical properties of es-
timators. The chapter finishes with some methods that are currently used in literature
to fit and assess goodness of fit of negative binomial processes.

Chapters 3 and 4 further develop methods of statistical inference for data gener-
ated by negative binomial processes with application to market research data in mind.
Chapter 3 investigates the problem of efficiently fitting the NBD using moment based
estimators. Chapter 3 works on the basis that maximum likelihood can be difficult to
implement in practice. Chapter 4 analyzes the dynamical behavior of negative bino-
mial processes by considering the covariance of statistics computed in different time
intervals. Checking the covariance structure of functionals of the data to the covariance

structure of functionals of the theoretical model gives a method for testing goodness

of fit.



Chapter 1 4

Chapter 5 applies the results of Chapters 3 and 4 to market research data kindly
provided by ACNielsen BASES. The data comprises of raw transaction data obtained
from the scanning of individual items by a panel of 34,647 households representative of
the United States for the duration of the year 2000. Since the data has been collected by
the use of scanners, the database contains a comprehensive list of products purchased
by each household. This list includes the epochs when a product is purchased and
the number of products purchased at each epoch, thus allowing the NBD and negative
binomial processes to be fit to the data.

Finally, Chapter 6 draws conclusions on statistical inference for the NBD and neg-
ative binomial processes with particular emphasis made on fitting these models to
market research data. The standard methodology described in literature of fitting the
NBD is compared to the methodology suggested in Chapters 3 and 4. A discussion is
then presented on further possible research stemming from the research conducted in

this thesis.
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Background

This chapter reviews methods of fitting the negative binomial distribution (NBD) and
negative binomial processes. Section 2.1 introduces the NBD and presents ways in
which the distribution may be parameterized. The derivations of the NBD that are
presented provide indication of the many settings in which the NBD may be used.
The natural settings of the NBD often allow natural interpretations for the numerous
parameters of the NBD. Various well known methods of estimating negative binomial
parameters are presented and the efficiency of these estimation methods are given.

Section 2.2 modifies the approach of the §-method to derive the asymptotic normal
distribution of a general class of moment based estimators, and also of various function-
als of data, computed using data from a specified distribution. Testing goodness of fit
of the NBD or negative binomial processes can be consequently achieved by verifying
covariance structures of functionals of raw data to covariance structures of functionals
of the model being fitted.

Section 2.3 introduces two types of negative binomial processes: the gamma Pois-
son process and the negative binomial first-order autoregressive processes (or simply
the NBD INAR(1) process) and finally Section 2.4 reviews methods of fitting these

processes to observed data.
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2.1 The negative binomial distribution

The NBD is a two parameter distribution that has been used in the modeling of various
types of events. For example, the NBD has been used to model: accident proneness and
sickness (see e.g. Yule (1910); Lundberg (1964)); the frequency of accidents (see e.g.
Greenwood and Yule (1920); Arbous and Kerrich (1951)); animal populations (see e.g.
Kendall (1948); Anscombe (1949)), market research (see e.g. Goodhardt, Ehrenberg,
and Chatfield (1984); Ehrenberg (1988)) and risk theory (see e.g. Grandell (1997)).
The ability of the NBD to model a diverse range of events arises from the fact
that the NBD can be derived, using natural assumptions, in a number of different
ways. The various derivations of the NBD leads to numerous ways in which the NBD
may be parameterized and these are presented in Section 2.1.1. Methods of estimating
parameters of the NBD have also varied according to the field in which the NBD is ap-
plied. Natural methods of estimating the NBD parameters include using the standard
method of moments, the zero term method and the maximum likelihood method. Com-
mon methods of estimating NBD parameters are discussed in Section 2.1.2. Finally,

the efficiency of these estimation methods are discussed in Section 2.1.3
2.1.1 Derivations and parameter representations

Inverse binomial sampling. Yule (1910) derived the NBD as a waiting time distribution.
He considered a model for the time, more specifically the age in years, at which deaths
occur within a population. Suppose that death per individual occurs at the exposure of
k fatal accidents and that the event of a fatal accident occurring at discrete time points
of fixed length is independent and identically Bernoulli distributed with the probability
of a fatal accident given by p. The probability of death occurring at discrete time points

z (r=0,1,2,...) beyond the k’th time point from time zero is then given by the NBD.
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Let X be a random variable from the NBD then the probabilities of the NBD are

=0,1,2,...
Fk'{".’lf . x y Ly &y
. = P(X =) = eyt p,

' k=1,2,3,..., p>0.

The NBD, in the case where k is integer, is known as the Pascal distribution.

Heterogenous Poisson sampling. Greenwood and Yule (1920) later showed, using en-
tirely different arguments to inverse binomial sampling, that the distribution of the
number of accidents encountered by individuals may also be modeled by the NBD.
Suppose that the number of accidents follow a Poisson distribution with mean A; for
individual j. Assume that these means A;, within the population of individuals, follow

the gamma distribution with probability density function given by

1

yk“le"y/“, a>0,k>0, y>0,

then the distribution of the number of accidents registered by different individuals

chosen at random follows the NBD with
[T yTeV CTk+z) (1Y ( a\?
Pz = /0_ x! fy)dy = zIT'(k) \1+a l+a) ’

The NBD parametrization in this setting was also used by Fisher (1941) who thoroughly

r=0,1,2,...

k>0, a>0.

investigated estimation properties of these parameters using maximum likelihood and

moment based estimators and applied the model to the number of ticks found in sheep.

Urn models. Eggenberger and Pélya (1923) considered the probability of choosing
white balls, in a sequence of trials, from a single urn containing black and white balls.
Suppose that there are initially Np white balls and N(1 — p) black balls in an urn
containing a total of N balls. Additionally, each time a ball is chosen, assume that
the ball is replaced together with Nv balls of the same color. Then the probability

of obtaining = white balls in a sequence of n trials is given by the Pélya-Eggenberger
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distribution with probabilities

O+ L A—ptjy)  T=0L2.

r — )

1 :
H?=0(1+JV) 0<p<l1, v20, n=0,1,2,...,

where v is such that Nv is a non-negative integer. Note that the probabilities do
not depend on the total number of balls NV in the urn at the first trial. Assume that
lim,_,. np = m and that lim,_,., nv = m/k, then the probability of obtaining z white

balls in an infinite number of trials is NBD with

=S 0 7) (7))

This distribution is sometimes known as the Pdlya distribution. If v = 0 then a

z=0,1,2,...

k>0, m>0.

sequence of i.i.d. trials is obtained. The probability of obtaining x white balls in a finite
number of trials is then binomially distributed with mean np and variance np(1 — p).
Additionally, if lim,,_,., np = m then the probability of obtaining z white balls in an

infinite number of trials is Poisson distribution with mean m.

Consumer buying behavior. In the case of market research, where the NBD is used to
model the frequency of consumer purchases, the NBD is often parameterized by two
alternative, but highly interpretable, ‘repeat-buying’ measures called the penetration
and mean purchase frequency. Let p, (x = 0,1,...) denote the probabilities of the
NBD and let X be a NBD random variable then the penetration, b, and the purchase

frequency, w, are defined by
b=1-p and w=EX|X >1) 0<bgl, w>1.

The NBD probabilities cannot be explicitly presented in terms of the parameters b
and w. To obtain the NBD probabilities, the equations above for b and w must first
be solved in terms of (m,k) (see Eq. (2.1.1)). Note that for the NBD to be a valid

distribution, it must be the case that w > —log(1 — b)/b.
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=05
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Figure 2.1: a, m, p and k versus (b,w").

A closed NBD parameter space. 1In this thesis an alternative parametrization denoted
by (b,w') with w' = I/w is considered. Its appeal lies in the fact that the correspond-
ing parameter space is within the unit square (b,w') € [0,1]2, which makes it easier to
make a visual comparison of different characteristics of NBD parameters for all NBD
parameter values. Examples of characteristics include: plotting the efficiency of esti-
mators; plotting the coefficient of variation of estimators or, more generally, plotting
the covariances of estimators with respect to other estimators.

Fig. 2.1 shows the contour levels of a, m, p and k within the (6,u/)-parameter
space. The NBD is only defined for the parameter pairs (6,w’) € (0,1) x (0,1) such
that w' <—6/ log(l —b) (shaded region in Fig. 2.1). The relationship w'=—b/log(l—b)
represents the limiting case of the distribution as k& — oo, when the NBD converges
to the Poisson distribution with mean m. The NBD is not defined on the axis w'= 0
(where m = o00) and is degenerate on the axis 6= 0 (as po = 1).

It is clear from Fig. 2.1 that the parameter pairs (a, A), (m, k), (p,k), (b,w) and
(6,it/) all have a one-to-one relationship. This simplifies the comparison of the estima-

tors for NBD parameters since only one of the parameter pairs needs to be estimated.
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NBD parameter pair relationships. The parameter k is the shape parameter of the NBD
and the parameters a and p are scale parameters of the NBD. The parameter m is the

mean of the NBD. The parameters a, m and p are related through the equations

k

m+k

p= and az% a>0, m>0, p>0, k>0.

The parameters b and w have an indirect influence on the shape and scale of the
distribution. The parameters b and w can be obtained from the pair (m, k) by solving

the equations

b=1—(1+%)_’c and w=_—. (2.1.1)

To avoid confusion with the NBD parameterizations in this thesis, the notation de-
scribed in Table 2.1 will be used. The use of multiple notations will allow simplifications
in formulae used later in the thesis. For example, it is much simpler to compare effi-
ciency of estimators of different estimation methods using the parametrization (a, k).
The NBD(m, k) notation, where the first parameter m refers to the mean and the
second parameter k refers to the shape of the distribution, will be used throughout
the thesis. If there is ambiguity in the NBD(m, k) notation, the parameterization

NBD,,(m, k) will be used.

Parameterization | Probabilities Parameter constraints
NBD(m, k) Eii;%k-)l 1+ (:2)° | m>0 k>0
NBD.(a, k) x'I‘(k) (1+a) ()" az0, k>0
NBD,(p, k) }%%?p (1-p)* 0<p<l, k>0
NBD,, (b, w) re-parameterize 0<b<, w>1
NBD, (b, w') re-parameterize 0<H<],0<u' <1

Table 2.1: Table of NBD probabilities distributions
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2.1.2 Parameter estimation for i.i.d. NBD samples

The estimation of NBD parameters given an i.i.d. sample has been considered indepen-
dently by Fisher (1941) and Haldane (1941) who used maximum likelihood (ML) and
by Anscombe (1950) who used general moment based methods. This section reviews
estimation methods for the parameter pair (m, k) given an i.i.d. NBD sample of size
N with observations (z;, Z2,..., zn). The parameter pair (m, k) is statistically con-
venient since the maximum likelihood estimator and natural moment based estimators

for the pair (m, k) are asymptotically uncorrelated given an i.i.d. NBD sample.

Exponential families. Note that in general the NBD does not fit into the exponential
family. If the NBD was in the family of exponential distributions then it would be
possible to find complete sufficient statistics as estimators for m and k. For fixed k,
however, the NBD does fit into the exponential family and the statistic Z = + SN T
is a complete minimal sufficient statistic for m.

Willson, Folks, and Young (1986) have shown using the result of Lehmann and
Scheffé (1950, Theorem 6.3) that if k£ is unknown, then the set of all order statistics
of the sample is minimal sufficient. Willson et al. (1986) have, however, also shown
that the set of all order statistics of the sample is not complete, so that the search for
a minimum variance unbiased estimator for k is not straightforward. In fact, Wang

(1996) has shown that an unbiased estimator for k does not exist.

The log-likelihood function. The log-likelihood function for a vector = (21, zs,...,ZnN),

where each z; (: = 1,2,..., N) are i.i.d. NBD(m, k), is

e =e ([ 0 2)” (2)')

3 (log P(k+;) —log(z;!) +; log (mlM)) _Nlog (F(k) (1+T)k> .

=1
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Maximum likelihood estimators. The ML estimator for m is given by the sample mean

L XN
5= 2%
1=1
however there is no closed form solution for k,,, , the ML estimator of k. The estimator

k,,, is defined as the solution, in z, to the equation

._.n

i—

log(1+§> i% — (2.1.2)

i=1 J

I
=}

where N is the sample size and n; denotes the observed frequency of ¢ = 0,1,2,...
within the sample. Equation (2.1.2) can be solved using numerical methods.

Note that the maximum likelihood estimator for the parameter k requires knowledge
of the frequencies n;. In market research it is difficult to obtain these frequencies either
due to difficulties in collecting data or due to problems such as ownership of raw data.
Instead, it is often the case that market research companies are easily able to request
and obtain statistics associated with consumer purchases. Moment based estimators
are, therefore, an important alternative to estimating the NBD parameters.

Moreover, in market research, analyzing consumer purchase data often requires
investigating data over different time periods of varying lengths (see e.g. Ehrenberg
(1988)). Fitting the NBD to such data using the ML approach will require calculation of
the n; from raw transaction data for each analysis period. Since it is very uneconomical
to store and very difficult to obtain such raw transaction data, ML estimation is hardly
ever used in the practice of market research.

In Section 2.4.2 the problem of estimating NBD parameters from a dependent
sample is investigated. The dependency in the observations makes it extremely difficult
to analytically solve the ML equations in order to obtain ML estimators. Moment based
estimators in this situation provide a simple alternative to ML estimators and may be

preferred even when all the frequencies are available.
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Generalized moment based estimators. Moment based estimation methods were con-
sidered by Anscombe (1950), as an alternative to ML estimators, on the basis that the
ML estimator for k required the solution of the ‘tedious’ equation given by Eq. (2.1.2).
The increase in computational power today makes the difficulty of solving an equation
such as Eq. (2.1.2) obsolete. However, as discussed above, there are situations in which
moment based estimators may still be preferred to ML estimators.

The estimation of the parameter pair (m,k) requires the choice of two sample
moments. A natural choice for the first moment is the sample mean Z which is both
an efficient and an unbiased estimator for the parameter m. An additional moment is
then required to estimate k. Denote this moment by f = + S°N | f(x1). The estimator
for k is obtained by equating the sample moment f to its expected value Ef(X), with
m replaced by m = Z, and solving the corresponding equation f = Ef(X) for k.

Anscombe (1950) considered various statistics f; = & S, fi(z) for the estimation
of k and these functions are shown in Table 2.2. In Table 2.2 the function Ijz—q
denotes the indicator function of the event z = 0 so that Ij;—o) = 1 if z = 0 and
Ijz=q) = 0 otherwise. Note that f; = & Zf\; , €™ depends on an additional parameter c
(¢ >0,c#1). If c=0, then defining ¢® =1if z; =0 and ¢® =0 if ; # 0, it is clear

that fy = f, and the two moment based estimation methods become equivalent.

f(z) Ef(X) Ef(X)=f

hw) == m(m +1) + 5 2= il o
f2(z) = I;z=q) (1+ %)_k oo = Mo

I5(@) = 25 e [1- ()] |5 = Ao
fi@) = (c>0,c#1) (1+1"_($2)_'° G—1yV

’ m T= ﬁZzNﬂ ]

Table 2.2: Moments and moment estimators for the NBD
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Method name fi(z) k Estimator or equation for k
Method of moments (MOM) | f1(z) | k0 z—z_i;_i

Zero term method  (ZTM) | fo(z) | kpppy | B0 = (1+ f)mz

Factorial method (FM) f3(x) I}FM T, = T [1 _ (j_i_;)z—l]
Power method (PM) fa(z) I}PM(C) X = (1 + ﬂl—z_—cl)_z

Table 2.3: Moment based estimators for the NBD parameter &

The estimator for m is always Z irrespective of the additional function f;(z) chosen
for estimating the parameter pair (m, k). Anscombe (1950) proved that if f(x) is any
integrable convex or concave function on the non-negative integers then Ef(X) with m
substituted by Z is a monotone function in k. Estimating the parameter k by solving
the equation f = Ef(X) will therefore have at most one solution.

Table 2.3 shows the moment based estimators for k, denoted by k, for the different

functions f;(z) presented in Table 2.2. Although an explicit formula exists for k no

MOM?

e OF Ky - Since there is at most one solution for

analytical solution exists for IAcZT M k

~ ~

kyra keyy and k P these estimators may be obtained by using numerical algorithms
to solve the corresponding equations given in Table 2.3 for z. Note that the PM
estimator for k is equal to the ZTM estimator if the additional PM parameter ¢ = 0
and tends to the MOM estimator as ¢ — 1.

For each estimation method in Table 2.3 and the ML method there is, for any m > 0
and k > 0, a positive but small probability that the estimator for k£ will be negative even
though the sample may be NBD. For the MOM it is clear that l}MO » 1S negative when

22— 72 <Z. For the PM, the estimator k is negative when X < exp(—Z(1 — ¢)).

PM(c)
In literature (see e.g. Anscombe (1950); Ehrenberg (1988)) it is common to set k = oo
whenever a negative estimate for k is obtained; however the setting of k = oo is not

fully justified in the literature. This topic is investigated further in Section 3.3.2.
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2.1.3 Efficiency of estimators

The variances of the ML estimators are the minimum possible asymptotic (as N — 00)
variances attainable in the class of all asymptotically normal estimators and therefore
provide a lower bound for the asymptotic variance of moment based estimators. Fisher
(1941) and Haldane (1941) independently derived an expression for the asymptotic
covariance matrix for the ML estimators by taking the inverse of the Fisher information
matrix. The asymptotic variance of the moment based estimators and asymptotic
covariances between moment based estimators for (m, k) were derived by Anscombe

(1950) using the so-called é-method (see e.g. Serfling (1980), Chapter 3).

Maximum likelihood estimators. The asymptotic normalized variances of 72 and k,,, are

A}im N Var (m) = ka(l+ a), (2.1.3)
(I} ) 2k(k + 1)(a + 1)2
ML a \i—1 __ j'T(k+2 ’
a? (1 +2 Z}Zz (m) (j+]1)I‘((k+j)+1))

where a = m/k. Using the inverse of the Fisher information matrix, the asymptotic

v, = lim N Var
N—oo

normalized covariance between the estimators is limy_o, N Cov(7i, k,,,) = 0 and hence

the ML estimators are asymptotically uncorrelated.

Generalized moment based estimators. The asymptotic normalized variance of m = %
is given by Eq. (2.1.3). The asymptotic normalized variance for general moment based
estimators of k for a given function f(-) is
EfA(X) - [Ef(X)P - (m+ 2) [ZEF(X))°
2
[%ES(X)]

Using the §-method the asymptotic normalized covariance between moment based es-

lim N Var (k) =

N—oo

timators 7 and k is limy_o N Cov(z, k) = 0.
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The asymptotic normalized variances of k IE‘ZTM and k,,, are

MOM)

; 2k(k+1 1)2

Vuson = Jim NVar (Eyoy ) = ( +a)2(a+ >
—0

-\ _ (a+1)**—(a+1)>~ka(a+1)

= lim NVar (& =
Par = N ar( ZTM) [(a+1)log(a+1)—a]?

o - _ (1+a—ac?) *r#+2_r2_ko(a+1)(1—c)?
UPM (C) - JI_I‘IIOONva'r (kPM(c)) - [T log(r) —r+ 1]2

b

)

where 7 = 1+ a — ac. The asymptotic normalized variance of k,,, is difficult to
express explicitly and for an expression of the variance see Anscombe (1950, p. 369).
Since, amongst the class of moment based estimators considered, the estimator for m
is the same and the asymptotic covariance between the estimators of k and m is zero,
the most efficient estimation method is determined by the method that minimizes the
variance of k.

The efficiency of estimating k, relative to ML, using the MOM and ZTM was plotted
by Anscombe (1950) over the parameter space 0.04 < m < 400 and 0.1 < k£ < 100. A
comparison of the efficiencies of the MOM, ZTM, PM and FM estimators was made,
although no contours of the efficiency of the PM and FM estimators were plotted.
Anscombe (1950) noted that the PM and FM estimators are nowhere uniformly more
efficient than the more efficient of the MOM and ZTM estimators.

Fig. 2.2(a) shows ZTM estimates for NBD parameters when fitting the NBD to the
number of purchases made by households for 46 different categories and the top 50
brands within each category. The estimator k,,.,, < 3 for all the products considered.
For large values of k the Poisson distribution serves as a very good approximation to
the NBD. Since this thesis is primarily concerned with market research data, and the
Poisson distribution serves as a good approximation for the NBD for large values of k,
this thesis will be primarily concerned with estimation of NBD parameters in areas of

the parameter space which is of practical importance in market research.
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Figure 2.2: (a)ZTM estimators for NBD parameterswhen fitting the NBD to 46 categories andthe 50 top brands within each category
for consumer purchases.Data courtesy ofACNielsen BASES, (b)Contour levels of the efficiency of FM (vUL/vF,,), MOM(vML/v MOM),
PM at ¢= 0.5 (i\iL/vrM(0.5)) and ZTM (uAL/vZIJW estimators relative to ML.



Chapter 2 18

Fig. 2.2(b) shows contour levels of the efficiency for the FM , MOM, PM at ¢ = 0.5
and ZTM estimators relative to the ML estimator. It is clear from Fig. 2.2(b) that
Anscombe’s statement concerning the inefficiency of the PM and FM methods is clearly
untrue. For example, in the case m = 5 and k = 1, it is easy to compute that the
efficiencies for the FM, MOM, PM at ¢ = 0.5 and ZTM, relative to ML, are 0.96,
0.56, 0.97 and 0.71 respectively. The FM and PM at ¢ = 0.5 methods are clearly more
efficient than the MOM and ZTM methods for the parameters m = 5and k = 1.
Choosing the more efficient estimator amongst the MOM and ZTM estimators was
suggested by Anscombe (1950); this method still only achieves 73% efficiency with
respect to the PM estimator at ¢ = 0.5 in the case m =5 and k = 1.

Anscombe (1950) noted that the PM estimator is equivalent to the ZTM estimator
when ¢ = 0 and tends to the MOM estimator as ¢ — 1. The PM estimator therefore
generalizes both the MOM and ZTM estimators. Fig. 2.2(b), therefore, in effect shows
the efficiency levels of the PM estimator computed at ¢ = 0 (ZTM), ¢ = 0.5 (PM(0.5))
and ¢ = 1 (MOM). For each value of c, it appears that the PM is efficient in different
regions of the parameter space. This raises the question as to whether there exists an
optimum value of ¢ for each pair of NBD parameters (m, k) and how efficient the PM
estimator would be when computed using the optimum value of c.

The MOM and ZTM estimators are, nevertheless, much simpler to implement in
practice as the statistics required (namely the mean, variance and number of zero
events) for estimation are either regularly collected or easy to compute. The ZTM is
especially popular since the number of zero buyers can be computed in various ways,
this includes either i) direct calculation of zero buyers from raw data if the size of the
population is known or ii) estimation of zero buyers from consumer surveys or by the

use of supermarket retail data.
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2.2 Asymptotic properties of a general estimator

Section 2.1 considered the asymptotic distribution of maximum likelihood estimators
and a class of moment based estimators called power method estimators. The power
method estimators include the case of method of moments and zero term method
estimators. This section considers the asymptotic distribution of a general class of
estimators for a vector of parameters @ = (,,...,60;4)T where the estimators satisfy the
equation Gi(0, f;) =0 (i = 1,...,d), using d statistics f;, with G;(8, f;) = Efi(¢;0)—fi.
The covariance matrix of the limiting normal distribution of the estimators is derived.
The construction of the limiting normal distribution of the estimator of 8 satisfying
the general equation G;(8, f;) = 0 with Gi(8, f;) = Ef;(¢;8) — f; is useful in that the
limiting distribution for estimators of any combination of parameters can be derived.

In the case of the NBD, for example, the joint distribution of the vector of pa-
)T

rameters (1h, k k., (c),k

mon Kpa(€)ykyra )’ may be derived. When considering the estima-

tion of parameters from a process, the general scheme of estimation allows the joint
distribution of estimators computed in different time intervals to be derived. Take,
for example, a negative binomial process where the distribution of events over differ-
ent time intervals is NBD. Using the general methodology discussed in this section,
it is possible to derive the limiting normal distribution of the vector of parameters
(kD) (c), k2 (c), ..., kY, (c))T, where k&) (c) is the PM(c) estimator for k computed in
the 7’th time interval.

The results of this section are a particular case of the results on M- and Z-estimators
as noted in van der Vaart (1998, Chapters 3-5). This section considers the possibility
of applying these results in the case where the distribution is discrete and in particular

negative binomially distributed.
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2.2.1 General method of estimation

Let ¢ be a random variable taking values in some set Z and let ¢ have probability
mass function p(z;0), z € Z, where @ = (6;,...,04)T (d > 1) is a vector of parameters
taking values in some set © C R? with non-empty interior int(©). Define the vector
f=0,-- f)T € R such that f; : Zx© — R (i = 1,...,d) are some functions
which are smooth enough and possibly depend on 6. Let {z,...,2x} be a sample
of values of ¢ and set f = (fi,..., fs)T € R? with f; = %Z{il fi(z1;0). Finally,
assume that Ef; = Ef;(¢;0); which is indeed true in the case where the sample is
i.i.d. and also true in the case where {21,...,zny} are observed values indexed by
time obtained from an ergodic time series. A general estimator 0= (91, e ,éd)T for
0" = (0;,...,07)T € int(©), the true parameter values of the sampling distribution, is

then defined to be the solution to the equations
Gi0,f)=0 i=1,...,d, (2.2.1)
where G;(0, f;) = Efi(¢; 0) — fi.
Example 2.2.1. f;(z;0) = 0log(p(z; 8))/06; implying Ef;(¢;0) =0,
Example 2.2.2. f;(2;0) = fi(z) so that the functions f; do not depend on 8,
Example 2.2.3. fi(z;0) = 2* implying Ef;({;0) = E(F,
Note that the system of Egs. (2.2.1) may be represented in vector form as
GO, f) = (Gi(6,T1),...,Ga(8,T2))" = 0. (2.2.2)

For each 4, the G;(8, f;) may be represented as G;(8, f;) = * Zf;l 9i(21,0) = gi;, where

9:(2,0) = Efi(¢;0) — fi(2;0).
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2.2.2 Asymptotic normality of estimators

The following theorem summarizes the multivariate version of the so-called §-method
(see e.g. Serfling (1980, Chapter 3)) and the implicit function theorem (see e.g.

Schwartz (1967)). The results can also be found in van der Vaart (1998, Chapters 3-5).

Theorem 2.2.1. Assume that the function G is invertible as a function of 0 in some
neighbourhood of (8*,Ef) and let @ be the solution of G(0,f) = 0. Assume that
E|09:(¢,0)/08;| < oo for alli,j. Additionally, assume that the estimator 8 is a consis-

tent estimator of @ and VN(f —Ef) is asymptotically normally distributed N'(0,Df),

where Df = E(f —Ef)(f —Ef)T = [|Cov(£:(¢;8), £;(¢;0))II;—, - Then as N — oo,
VN6 -6*) B N0,V Df)VT) (2.2.3)

D . Ny
where = s convergent in distribution and

i 9G0.9)

-1
V=lN_m e H.] . (2.2.4)

Proof. According to the weak law of large numbers as N — oo, f — Ef in probability

and for any @ there exists the weak limit

0G(8, £)
|5 =

al b
NZ gzl H

which is a non-random matrix.

Since G is invertible as a function of @ in the neighbourhood of (8*,Ef), for N
large enough the inverse (u%%fl) - exists in the neighbourhood of 8*. Using the first
order Taylor expansion Eq. (2.2.2) is approximated by

0G(0, f)

G(6.5) =G, )+ =5

@ —6") =0. (2.2.5)
6=6"

According to the well known é-method (see e.g. Serfling (1980)) the asymptotic dis-

tribution of @ is the same as the asymptotic distribution of é, which is the solution to
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Eq. (2.2.5). Solving Eq. (2.2.5) we obtain

G(6, f).
0=6*
The asymptotic distribution of v/ N(@ — 8*) can be related to the asymptotic dis-

tribution of vV NG(0*, f) using Slutsky’s theorem which allows the replacement of

(242)’ i
6=6"

and we obtain that the asymptotic distributions of VN(6—6*) and V (\/IV GO, f ))

o[ 9G®.f
with V = []Jgrle

00
6=6"
coincide. Note that vV N(f—Ef) = vVNG(0, f) and therefore vV NG(8, f) is asymptot-
ically normally distributed A'(0,Df). This implies that v N (é — 0*) is asymptotically

normally distributed A'(0, V(Df)VT). O
2.2.3 Examples of estimation methods

Example 2.2.4. Maximum likelihood. The functions f; are of the form f;(z;80) =

dlog(p(2;0))/06; (i =1,...,d) so that Ef; = Ef;(¢;0) = 0 and

p) 0
Df = “EG—G, logp((;O)gfglOgP(Ce)” = 1(0),

01
%6, N 2. 5—0:10%?(21,9)

2

o . 1L 9§
V™ = - lim N E mlogp(zl;f))
=1 37

N—oo

= — lim
N—oo

= 1(6),

where /(8) is the Fisher information matrix. The covariance matrix of the maximum

likelihood estimators is therefore D = 1(8)~11(0)1(8)~! = 1(8)".

Example 2.2.5. General method of moments. The functions f; are of the form
fi(2,0) = fi(z) (i=1,...,d) so that the functions f; do not depend on the unknown

parameters 6. This implies

Df = |Cov(£i(¢), £i(O))Il  and V_l=”8E—a{o(Q“'

Example 2.2.6. Standard method of moments: f;(2,0) = z* (: = 1,...,d) im-

plying Df = |[E¢*7 — EC'E¢7||.
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2.3 Negative binomial processes

The aim of this section is to provide a concise description of two negative binomial
processes, namely the gamma Poisson process and the negative binomial first-order
autoregressive process. The derivation of these processes are important when studying
the statistical properties of estimators computed from data generated by these pro-
cesses. Practical examples where these processes have been used in literature are also
presented.

This section begins with some definitions important in the studying of stochas-
tic processes. Section 2.3.2 then defines the gamma Poisson process while Section
2.3.3 defines negative binomial first-order autoregressive processes or in short the NBD

INAR(1) processes.
2.3.1 Definitions and notation

A stochastic process {X(t) : t € T} is a set of random variables indexed by time ¢.
In this thesis, only stochastic processes where X (t) takes values on the non-negative
integers and the set 7 = [0,00) or 7 = {0,1,2,...} will be considered. In the case
T = [0,00), {X(t) : t € T} is a continuous time stochastic process and in the case
T =1{0,1,2,...}, {X(t) : t € T} is a discrete time stochastic process.

Let X = (X(t1),...,X(tn)) be a vector of time indexed random variables and let
x = (x1,...,Z,) be a vector of non-negative integers then the distributional proper-
ties of a non-negative integer-valued stochastic process {X(t) : t € T}, with 7 =

{t1,...,tn}, are defined by its finite-dimensional distributions (f.d.d.’s)

PX=x)=P(X(ty) =z1,..., X(tp) = zn) n=12,....
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Homogeneity and stationarity

A process is called homogenous in space if the f.d.d.’s are invariant under shifts in
the state space. A process is called homogenous in time or strictly stationary if the
f.d.d.’s are invariant under shifts in time i.e. if the process {X(¢t) : t € T}, with

T = {t,...,t,} satisfies
P(X(t)=xz1,...,X(tpn)=z,) =P(X(t1 + h)=z1,..., X (t, + h)=zx,)

foralln=1,2,3,...and h>0. A process is called weakly stationary if EX (t,) = EX (¢;)
and Cov (X (t;), X(t2)) = Cov (X(¢t; + h), X(t2 + h)) for all ¢1,t5 and h > 0. A process

homogenous in both space and time is simply known as a homogenous process.

Types of processes

Renewal processes. Let To = 0, T, = Wi + Wao+ ...+ W, (n > 1) and let W;
(¢ = 1,...,n) be iid. non-negative random variables, then a renewal process Z =

{Z(t) : t € T} is the process defined by Z(t) = max{n: T, < t}.

Autoregressive processes. A process X (t) is said to be an autoregressive process of the

order r if the process satisfies

X(t) =ia,X(t-’t)+Et

where o;,7 = 1,...,r are constants and ¢, forms a sequence of uncorrelated random
variables.
Markov processes. A process is called a Markov process if, given t; < t;4 (i =1,...,n),

P (X (tn) = Tu| X (t1) = T1, .., X (tno) = Tno1) = P (X (t) = 2n| X (tno1) = Tn_1).
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2.3.2 The gamma Poisson process

The gamma Poisson process is a count process that falls into the class of immigration,
birth and death processes or mixed Poisson processes. The class of mixed Poisson
processes has been thoroughly studied by Lundberg (1964) and Grandell (1997). Some

important results on mixed Poisson processes will now be presented.

Mixed Poisson processes

Let Z = (Z(t,), Z(t2),...,Z(t,)) be a random vector with 0 =, < ¢t; < ... < 1,
representing an increasing sequence of time points, let * = (z;,zo,...,Z,) be a vector
of non-negative integers with 0 = zo < z; < ...z, and let A > 0 be the intensity of a

process, then given the multivariate Poisson distribution

T M(tigr — b))

P(Z =x|A=)\)= ex —)\t, —i; y 2.3.1
(2 = =la =% = [[ 52— e (A = 0) (23.)
the mixed Poisson process is consequently defined as a process {Z(t) : t € {t1,t2,...,tn}}
whose f.d.d.” s are
P(Z=x)= / P(Z = x|A = \) dUA(X; 8). (2.3.2)

Here Ua(A; @), commonly known as the structure distribution, is the distribution func-
tion for the random variable A with support (0,00) and 0 is a vector of unknown
parameters. Grandell (1997, p. 27) noted that any distribution for A, with support on
the interval (0, 00), that is infinitely divisible may be used for Ux();8). [A random
variable A is said to be infinitely divisible (see e.g. Feller (1966, p. 176)) if and only
if A can be represented as the sum of n independent random variables with identical
distribution function U, for every n.] Note that the mixed Poisson process conditioned
upon A = ), so that the value of A is fixed, is simply a pure Poisson process with

stationary and independent increments whose f.d.d.’s are given by Eq. (2.3.1).
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The gamma Poisson process. The gamma Poisson process is a mixed Poisson process
whose structure distribution Uy (A; ) is the gamma distribution with probability den-

sity function

g(N;a, k) = Ne—lg=2Ma 650, k>0, A>0.

akT'(k)

The f.d.d. of the gamma Poisson process is the multivariate NBD with probabilities

P(Z =x) = /0 i° (’ﬁ LIS ) i VS ))) g a, k) dA

=0 (Ii+1 —-'L'i)!

— i+1—Ti In
_ F(’Iﬂ (“;x" (H (t*gmt_ . ) e (2.3.3)
The one dimensional distribution of the process is the NBD with probabilities
k P
P(Z(t,) = 7) = Fﬁ’(“;)“xf) ( 1 +1at1) ( 1 f;h) r=0,1,2,.... (2.34)
Note that the gamma Poisson process is homogenous neither in time nor space since the
f.d.d. of the process may not be represented as a function of t;1; —¢; ( =0,...,n—1)
nor ;41 — z; (j =0,...,n — 1) respectively.

Birth and immigration processes

For any t > 0 and h > 0, let z; be a non-negative integer with z,,5, > z; and let
Az (t) 2 0 for any x;, then an immigration, birth and death process {Z(¢) : t € [0,00)}

is a process such that
1)Z(0) =0 and Z(t) < Z(t+ h);

2)P(Z(t+h)—Z(t) = zean—x:|Z(5) = x4, Z(t) = )

=P(Z(t+h)—Z(t) = zpen—x:|Z(t) = ;) for0<s < t;
/\zt(t)h'*-O( ), if Tiph— Ty = 0
(

T4 th ( ) ifo.h—xt:]..
( )’ if Te4n—Ty > 1

Q

3)1P’(Z(t+h)—Z(t) = $t+h-$t|Z(t) =) = {
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It is clear from these properties that the birth and immigration process is also a Markov
process. Property 3) is called the transition probability and defines the distributional

behavior of the count process Z(t).

The gamma Poisson process. The gamma Poisson process may be characterized within
the class of birth and death processes (see e.g. Grandell (1997, p. 62)) as having the

intensity

_ 3 B f0°_°_ /\z¢+1e—->\tf()‘)d/\ _ a(k-i—(l:t)
Asi(t) = E(Az)(1)I1Z(s) = ) = oo Ny~ lval

The mixed Poisson process for consumer buying behavior.

The analysis of modeling consumer buying behavior using the gamma Poisson process
was originally considered by Ehrenberg (1988). Consumer purchase occasions represent
the rate of recurrence with which households purchase products. Let {2(t1), ..., z(t,)}
represent the number of purchase occasions for household ! up to times {¢;,¢ts,...,t,}
and let z(0) = O (i.e. there are zero purchases at time zero for household !). Assume
that the purchasing process of a household follows a Poisson process with mean \; over
a unit time interval. The distribution of purchases for a fixed household is then given
by Eq. (2.3.1).

If the intensity \; varies between individuals so that ); has the distribution function
Ua(A; @) then, for fixed time points {¢i,...,¢,}, the number of purchase occasions
{z1(t1), ..., z(t,)} for a random household follows the mixed Poisson distribution given
by Eq. (2.3.2). It is assumed that purchasing across households are independent events.
The mixed Poisson process, when \; is gamma distributed, was applied to consumer

buying behavior by many authors (see e.g. Goodhardt et al. (1984); Ehrenberg (1988)).
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2.3.3 Negative binomial first-order autoregressive processes

First-order autoregressive integer-valued processes, or INAR(1) processes, were inde-
pendently constructed by McKenzie (1986, 1988) and Al-Osh and Alzaid (1987) in
an effort to introduce a discrete-valued process analogous to the continuous valued

first-order autoregressive, or AR(1), process with a stationary marginal distribution.

The AR(1) process and self-decomposability. The AR(1) process is a Markov process.
Let 7 denote the marginal distribution of the process {X;;t € Z} and let X, be a
random variable with distribution 7, then the AR(1) process is a discrete time process

X, that satisfies
Xt g aXt_l + &;.

Here X;_; and ¢; are mutually independent random variables from a continuous dis-
tribution, &, is a sequence of uncorrelated random variables for ¢ € Z and the value of
« satisfies a € (0,1). Here 2 means equivalence in distribution. The existence of an
AR(1) process with a stationary marginal distribution requires self-decomposability of
the marginal distribution such that its characteristic function ¢x,(t) = Ee**~ satisfies

the equation

¢x.(t) = ¢x,(at)pe(t;a) a€(0,1), teR, (2.3.5)

where ¢.(t; @) = Fe' is the characteristic function of ¢ depending on «. Steutel and
van Harn (1979) noted that the construction of discrete valued AR(1) processes is made
difficult by the fact no non-degenerate discrete random variable satisfies Eq. (2.3.5).
In response, they presented a discrete analogue of self-decomposability that allows the

construction of discrete-valued process that resembles the AR(1) processes.
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Discrete self-decomposability. A non-negative integer-valued random variable X is said
to be discrete self-decomposable (see Steutel and van Harn (1979)) if for every a € (0, 1)

the random variable X can be written as
XZao0X+ X (2.3.6)

Here the random variables a o X and X, are independent. The ‘o’ operator is called

the thinning operator and a o X is defined as
b'e
aoX 23 U, (2.3.7)
j=1

where the U; are i.i.d. Bernoulli random variables with P(U; = 1) = a and P(U; =
0) = 1—ca. Note that the random variable o o X conditioned upon X = z follows
a binomial distribution with mean za and variance za(1 — a). Using this definition
of a o X the probability generating function (PGF) of the random variable o o X is

Gaox(c) = Gx(1 — a + ac) and Eq. (2.3.6) may therefore be expressed as
Gx(c) = Gx(1 — a+ ac)Gx,(c) (2.3.8)
where Gx_(s) is the PGF of X,.

The INAR(1) process. Al-Osh and Alzaid (1987) and McKenzie (1988) defined a non-
negative integer-valued process {X;;t € Z} to be an INAR(1) process if the process

satisfies the equation
D
Xt =ao Xt—l + &4, (239)

where a o X;_; and g; are mutually independent discrete random variables and the
¢; form a sequence of uncorrelated random variables for ¢ € Z. The value of o must
satisfy a € (0,1) for the process to be stationary. It is assumed that the X; and &,

have finite means and variances.



Chapter 2 30

The INAR(1) process X; with marginal distribution 7 will have a stationary marginal
distribution, i.e. X; 2 X1 2 X, for all t € Z, if and only if the random variable X,

is discrete self-decomposable and satisfies Eq. (2.3.8) so that
Gx.(s) =Gx,(1—a+as)G(s;a) a€(0,1). (2.3.10)

The autocorrelation function of an INAR(1) process was derived by both Al-Osh
and Alzaid (1987) and McKenzie (1988). Due to the discrete self-decomposability of
the INAR(1) process, implying stationarity, the autocorrelation function only depends
on the time interval between events and is in fact identical to the autocorrelation
function of an AR(1) process. Let X; be an INAR(1) process with finite first and

second moments then the autocorrelation function at lag u is given by

E(X: — EX))(Xesw — EX1ra)

SV W e weZ @3

P( X, Xiyu) =

Further developments of discrete valued processes. McKenzie (1986, 1988) has consid-
ered integer-valued autoregressive (INAR) and moving-average (INMA) processes with
Poisson and NBD marginal distributions. The INAR(1) process has been generalized
to the INAR(p) process by Al-Osh and Alzaid (1990) and Du and Li (1991). Both
authors discuss similarities and differences between the INAR(p) and AR(p) processes.
Du and Li (1991), in particular, show that the INAR(p) process is ergodic. Latour
(1997, 1998) generalizes the INAR(p) process by allowing a general thinning operator,
similar to Eq. (2.3.7), where the Bernoulli random variables in the thinning operation
are substituted by any non-negative integer-valued random variables with finite mean
and variance. Methods of estimation have so far only utilized the methods described
by Al-Osh and Alzaid (1987). The problem of estimation will be discussed in more

detail in Section 2.4.2. In this thesis only the INAR(1) process will be considered.
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Negative binomial first-order autoregressive processes

Two different negative binomial first-order autoregressive processes will now be intro-
duced. These processes were constructed by McKenzie (1986) as discrete analogues to
gamma autoregressive processes. The processes differ in that a NBD INAR(1) process
can be constructed by considering «, the thinning parameter, as either deterministic

or stochastic.

The NBD INAR(1) process with deterministic thinning

The first NBD INAR(1) process obtained by McKenzie (1986) was derived by consid-
ering the standard form of the INAR(1) process defined by Eq. (2.3.9) with o fixed.
Note that if the process X; has a NBD(m, k) marginal distribution then X is discrete
self-decomposable since the PGF of X, can be written in the form of Eq. (2.3.10) with

\(1+@)_i = \(1+%‘3)_k‘ (kk:;:’of(ll'_cz))_k. (2.3.12)

[\ 7

Gy (©) G (1-atac) Ge(c; a)
The generating function of the error distribution, G¢(c; &), presented in this equation
is indeed a well defined PGF. McKenzie (1986) noted that the PGF of the ¢; was
of an obscure form and did not specify the distribution of the errors. A method for
generating a random variable from the distribution of ¢;, however, was presented, since
it was shown that the errors could be represented in the form of a compound Poisson

process given by

ee=>» (@%)oY; a€(0,1). (2.3.13)

j=1
Here P is Poisson distributed with mean —k log a, the U; are uniformly distributed on
(0,1) and the Y; are NBD(m/k, 1) random variables. The random variables N, U; and

Y;, 1=1,2,..., N are all independent of each other.
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The NBD INAR(1) process with stochastic thinning

As an alternative to the NBD INAR(1) process with deterministic thinning, McKenzie
(1986) proposed a process whereby the errors also have a NBD distribution. Assume
that there exists a non-negative integer-valued autoregressive process X, with i.i.d.
stochastic thinning parameters A, supported on the interval (0, 1), then the INAR(1)

process with stochastic thinning is defined by
X, 2 Ao X1 +e, (2.3.14)

where for fixed ¢ the A;, X;_; and ¢; are independent random variables. If the process
X; defined by Eq. (2.3.14) is to be a stationary process then the PGF of X, must

satisfy

G, (c) = /0 G, (1 — y + yo)dFa(y)Gelc; @), (2:3.15)

where F4(y) is the cumulative distribution function (c.d.f.) of A;.
McKenzie (1986) derived a stationary NBD INAR(1) process with stochastic thin-

ning by letting X, be NBD(m, k) and letting A; follow a Beta distribution defined by

_ yl—l(l — y)k—l—-l
fA,(y)_ B(l,k-l) )

>0, k-1>0,0<y<]1,

where B(p,q) = I'(p)I'(q)/T'(p + q) is the beta function. The NBD INAR(1) process

with stochastic thinning can be represented in terms of Eq. (2.3.15) by

(e mB29)" (1 miza)” (( mo0)

G (€) [ Gx, (1—yt+yc)dFay) Ge(c; @)

The generating function of the error distribution may be represented in the form

m(l — NN
Gl a)=(1+ 1=/ c))

from which it becomes clear that the errors are NBD(m(1 — I/k), k — ).
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Long-range dependent processes

A process is often said to be long-range dependent or have long-memory if the process
has non-summable correlations or if the spectral density has a pole at the origin. There
are various statistical definitions of long-memory and they are not all equivalent. A
thorough review on long-range dependence has been made by Beran (1994) and more
recently by Doukhan, Oppenheim, and Taqqu (2003).

Barndorff-Nielsen (1998) constructed a stationary long-memory normal-inverse Gau-
ssian (NIG) process in continuous time by the superposition (or aggregation) of short-
memory Ornstein-Uhlenbeck type processes with NIG marginal distributions. For suit-
able parameters of the individual short-memory NIG processes, each with the same
autocovariance function, the aggregated process was shown to have long-memory with

autocovariance function of the form
R(u) ~ L(w)u 2" He€(05,1), ue R as u— oo, (2.3.16)

where H is the long-memory (or Hurst) parameter and L(u) is a slowly varying function.
In particular, a stationary process X; has long memory, if there exist constants
H € (0.5,1) and ¢, > 0 such that the correlation function p(u) of the process X,

satisfies

lim p(u) / [c,u®?72] = 1.

u—oo

If the above condition is satisfied then H is called the Hurst parameter. Alternatively, a

stationary process X; has long memory, if for some x € (0, 1) and ¢; > 0, the spectral

density f(A) of X, satisfies

Jim FO)/ [efAT] =1
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2.4 Fitting negative binomial processes

This section reviews well known methods of fitting the negative binomial processes con-
sidered in Section 2.3. Methods of fitting these processes have often relied on fitting
the marginal distribution to data. Since there are different processes with negative bi-
nomial marginal distributions, an adequate fit of the NBD to data provides only partial
indication about the adequacy of the process. Methods of fitting the gamma Poisson

process and INAR(1) processes are discussed in sections 2.4.1 and 2.4.2 respectively.
2.4.1 Fitting the gamma Poisson process

The gamma Poisson process has the feature that the one-dimensional marginal distri-
bution of the process is NBD whose parameter parameter k£ remains constant in time
and whose mean m increases linearly with time. Here m and k are parameters of the
NBD for a unit time interval. In literature the fit of the gamma Poisson process has
mainly focussed on fitting the one-dimensional marginal distribution to the data (see
Greenwood and Yule (1920); Lundberg (1964); Grandell (1997)). In the work of Ehren-
berg (1988), however, a more detailed investigation into the adequacy of the gamma
Poisson process as a model for consumer buying behavior is presented.

Using household panel data Ehrenberg (1988) verified that consumer purchase occa-
sions could be successfully modeled by the gamma Poisson process. Consumer purchase
occasions represent the rate of recurrence with which households purchase products.
An advantage of panel data is that multiple realizations of the gamma Poisson process
are observed. In the case of market research, when collecting household panel data,
the number of purchases are recorded for many customers over a specific time period.
Each customer, therefore, has their own realization and this information can be used

to test adequacy of the gamma Poisson process.
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Ehrenberg (1988) tested the adequacy of the gamma Poisson process by fitting
the NBD to observed data over time intervals of different length and comparing the
observed and expected frequencies of consumer purchase occasions. In addition Ehren-
berg (1988) considered the behavior of various repeat buying measures commonly used
in market research. Ehrenberg (1988) used the multivariate NBD (Eq. (2.3.3)) to con-
sider how repeat buying measures associate between two non-overlapping time intervals
and compared the theoretical and observed patterns.

A description of repeat buying measures follows. The repeat buying measures
considered by Ehrenberg (1988) are then described under the heading of single-period
repeat buying theory and multi-period repeat buying theory. Single-period repeat
buying theory considers how repeat buying measures develop as time increases whereas
multi-period repeat buying theory considers the relationship between repeat buying

measures in different time intervals.

Repeat buying measures

The single-period repeat buying measures are functionals of the one-dimensional margin-
al distribution that have a natural interpretation in the field of market research. As-
sume, for simplicity, that the marginal distribution is NBD. These measures are often
estimated in practice by using intuitive methods where probabilities are replaced by
observed proportions. Such estimators may, however, be biased. Let X be a random

variable from the NBD and let p, denote the probabilities of the NBD.

Penetration. The simplest measure of consumer buying behavior is the penetration
of a product, which represents the probability that an individual makes at least one

purchase in a given time period. The penetration is defined by

b=1-py, O0<b<1. (2.4.1)
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When estimating the NBD parameters by the zero term method, popular in the field of
market research, the penetration is estimated by the frequency of non-zero buyers. In
practice, estimation of penetration using the zero term method can cause problems due
to the ambiguity in the definition of a zero buyer; indeed it is difficult to distinguish
between zero buyers who are potential buyers and zero buyers who will never purchase

the product in their lifetime.

Purchase frequency. The purchase frequency of an item represents the mean number
of purchase occasions of the population who purchase an item at least once in the

analysis period. The purchase frequency w is

w=EX|X>1)= %

w1 (2.4.2)
Measured repeat. The r-th (r = 1,2,3,...) measured repeat of a product represents
the proportion of households who bought a product at least 7 + 1 times out of those

households who bought the product at least r times. Theoretically, the r-th measured

repeat is

_ 1- Z;=0P(X = J)
1- YT P(X =j)

Repeats per repeater. The r-th (r = 1,2,3,...) repeats per repeater of a product

Br=P(X2r+1X>r) (2.4.3)

represents the mean purchase frequency of the households who bought a product at
least 7+ 1 times. The mean purchase frequency is usually shifted by the value r so that
the minimum possible purchase frequency is always one. The r-th theoretical repeats

per repeater is

m— Z;=ojIP(X = J) _

w=EX-7X2r+1)= TS PX =)
j=0 -

(2.4.4)
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Single-period repeat buying

In single-period repeat buying analysis the length of time, ¢ > 0, over which data is
analyzed may be taken to be variable. Equation (2.3.4) showed the one-dimensional
distribution of the gamma Poisson process as a function of time. The repeat buying
measures as a function of time can therefore be easily obtained. Let X (t) be a random
variable from the gamma Poisson process observed over a time interval of length ¢ and

let p, denote the probabilities of the NBD as given by Eq. (2.3.4).

Penetration. The penetration b(t) as a function of time is
bt)=1-P(X(t)=0)=1-(1+at)™* 0<b(t) <1 (2.4.5)

The penetration is a non-linear non-decreasing function of ¢ as ¢ increases. Since no
purchases may be made at time intervals of length ¢ = 0 units, we have b(0) = 0. At
time t = oo the penetration b(co) = 1 and the model presumes that given an infinite

amount of time the whole population will make at least one purchase of the item.

Purchase frequency. The purchase frequency w(t) is

w(t) = E(X(8)|X(t) > 1)

I
|
£
v

(2.4.6)

As a function of time w(t) is a strictly increasing function.

Measured repeat. The measured repeat is

_ 1— Z;=0 P(X(t)
1= YT P(X(2)

Repeats per repeater. The theoretical repeats per repeater is

m—3 o JP(X(t) = j)
1 -3 =0 P(X(8) =)

2 (2.4.7)
j

PX(@)>2r+1|1X(t)>7) )

EX({t)-r|X@t)=>r+1)= - (2.4.8)
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Multi-period repeat buying

In the analysis of multi-period repeat buying, Ehrenberg (1988) considered the asso-
ciation between market measures in two different non-overlapping time intervals. The
association is made simply by using the two-dimensional distribution of the gamma
Poisson process which can be obtained from Eq. (2.3.3). Although the time intervals
do not necessarily have to be of equal length, Ehrenberg (1988) mainly considered
equal length time periods due to the simplification in theoretical formulae.

Ehrenberg (1988) considered how market measures for purchases in the combination
of two non-overlapping intervals relate to market measures for purchases in two different
time-periods of equal length. Since the time-periods are of equal length, the NBD
parameters are identical in each of the two individual time periods. Therefore, without
loss of generality, it may be assumed that purchases follow the NBD,(a, k) distribution

in each of the individual time periods.

Penetration in two equal length time-periods. Let b, denote the probability that a con-
sumer buys in both periods and let consumer buying behavior follow a gamma Poisson
process such that purchases are NBD,(a, k) in the two individual time-periods of equal

length, then
by =1—2(1+a)™* + (1 4+ 2a)7*.

Note that b, is not equivalent to the penetration in the two combined periods and
the representation used by Ehrenberg (1988) can be therefore be misleading. The
probability that a consumer buys in only one of the two intervals is b, = b — b, where
b=1-(1+a)"* and b is the penetration in an individual time period. Ehrenberg
(1988) used b, to check frequencies of new buyers that did not purchase in the first

time period but did purchase in the second time period.
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Purchase frequency in two equal length time-periods. The mean purchase frequency, w,,

of consumers that purchase in both periods is
w, = b,/m,, where m, =m(1-(1+a)*")
and the mean purchase frequency, w, of consumers that purchase in only one period is
Wy, = by /my, where my, =m(l+4a)7F

Conditional trend analysis

To consider a more detailed fit of the gamma Poisson process to data Ehrenberg (1988)
considered the use of “conditional trend analysis”. Here, two consecutive periods are
taken and the distribution of purchases in the second period are analyzed conditional
upon the number of purchases observed in the first time period.

Let the distribution of purchases for a random individual in the first time interval be
NBD,(a, k). Ehrenberg (1988) noted that given y purchases are made in the first time
interval, the probability mass function of purchases made in the second time interval,

on the assumption of time intervals of equal length, is

Tk+y+z) (1+2a) * a \°
P(2(t) = 212() =v) = D () T (L) s

which is the NBD,(a/(1 + a), k + y) distribution.

The observed and expected market measures in the second period can be compared
conditional upon the observed frequency of purchases in the first period. The market
measures in the second period, conditional upon the fact that y purchases are made in
the first period are given by Egs. (2.4.2)-(2.4.4) with the parameter pair (a, k) in these
formulae replaced by the parameter pair (a/(1+ a),k+y). For example, let b, and w,

represent the conditional measures then

1492 —(k+y)
by =1- t2a and wyzﬂ where my=M.
l+a by (1+a)
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2.4.2 Fitting the INAR(1) process

The fitting of the INAR(1) process was first considered by Al-Osh and Alzaid (1987)
in the case when the marginal distribution of the process is Poisson distributed. The
model was fit to data simulated from an INAR(1) process. In practice, the Poisson
INAR(1) process has been applied by Franke and Seligmann (1993) and Silva and
Oliveira (2005) in the case of epileptic seizure counts employing the methods described
by Al-Osh and Alzaid (1987). The INAR model has also been applied by Gourieroux
and Jasiak (2004) in the case of car insurance claims.

Al-Osh and Alzaid (1987) proposed to determine the adequacy of the INAR(1)
process by verifying that the empirical autocorrelation function has the equivalent

theoretical form

_ E(X; — EX)(Xt4u — EX14)

= =aol¥ u . 4.
p(Xt, Xeyu) = JVar (X, Var (Xopo) = p(u) , €Z (2.4.9)

Since the autocorrelation function of the INAR(1) process is identical to the auto-
correlation function of the AR(1) process, the problem of estimating o has been well
documented (see e.g. Brockwell and Davis (2002)). On estimating the parameter o,
the problem is then reduced to that of estimating the parameters of the marginal
distribution of the process.

In addition, Al-Osh and Alzaid (1987) considered the problem of estimating the
mean parameter A of the Poisson INAR(1) process using three different types of esti-
mators. The first two types of estimators, called the Yule-Walker estimator and the
conditional least squares estimator, use moment based methods and are asymptotically
equivalent (see Freeland and McCabe (2005)). The third method of estimation uses
the maximum likelihood approach. It will be assumed that (z1, s, ..., Zy) is a sample

of size N from an INAR(1) process X;.
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Yule-Walker estimators The Yule-Walker method estimates parameters of a time series
by equating the theoretical autocorrelation function to the empirical autocorrelation
function. The autocorrelation function of an INAR(1) process is given by p(u) =
a, u € Z. The parameter o of the INAR(1) process may therefore be estimated by
the equation

7 f;—lu(xt = Z)(Tt4u — T)

) = & = e 2

where T = Zf’z o Tt- Note that multiple estimates for o may be obtained using different

u€Z, (2.4.10)

values of the lag u. Using the properties of the thinning operator, the expected value
of the errors is E[e;] = E[X;] — aE[X;—1]. The estimated value of a, denoted by &, may
therefore be used to obtain estimates for the observations of the uncorrelated errors
by computing & = z; — Gxy—1 for t = 1,2,..., N. The distribution of the errors may
then be used to estimate the distributional parameters of the process. In the case of

the Poisson INAR(1) process with thinning parameter « and X, having mean A, the

value of ) is estimated by A = KI_T"Q SN LE.

Conditional least squares estimators The conditional least squares estimators are de-
rived by minimizing the sum of squares of X; conditioned upon the value of X;_;. The

estimators for an INAR(1) process are therefore derived by minimizing the function

N N

N
(Xe—E[Xi| X))’ = ) (Xe—aXe—Ela])’ = Y (Xe—aX,—(1 — o) E[X4))°.

t=2 t t=2

with respect to a and the distributional parameters. The parameter estimates for the

Poisson INAR(1) process are

Zf; TtTe—-1 — ﬁ (Z{iz Tt Z:iiz xt—l)
Ei\(:z 7y — Tv'l:I (Zf; xt—1)2

The conditional least squares estimators and the Yule-Walker estimators, at u = 1, are

&=

asymptotically equivalent for the Poisson INAR(1) process.
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Conditional maximum likelihood estimators The conditional maximum likelihood esti-
mators are obtained by maximizing the likelihood function given an initial value x,
for the sample. Let x = (x,%9,...,Zn) be an observed sample from an INAR(1)
process and let © be the set of parameters for the INAR(1) process then the likelihood
function is

N

L(x; ©) =P(X; = z1) [[P(Xe = 2o Xee1 = 701)
t;2
=P(X; =) H]P(a 0Ty1 + & = Ty)

t=2

N min(z:,ze—1)
T
=P =z)]] > ( - 1) "1—a)* ' Ple, =z — 7). (2.4.11)
t=2 r=0
Denote P(X; = ;| X;-1 = %4-1) = Pr,_, 2 (t — 1,t), then Al-Osh and Alzaid (1987)

defined the conditional maximum likelihood function, given the value of x;, to be

N N min(z¢,ze-1) .
Lixlzy; ©) = [[ Pecreet-1,0) =] D (t;l)a’(l—a)m“‘_rlp(et=$t—r).

t=2 t=2 =0

(2.4.12)
Al-Osh and Alzaid (1987) used a method described by Sprott (1983) to maximize the
conditional maximum likelihood function for a sample generated by a Poisson INAR(1)
process. The conditional maximum likelihood function for a Poisson INAR(1) process

with thinning parameter a and E[X,] = X is

N min(Eeze) x1-a) (\(] — @))%

L(x|zy; ©) = H Z @ —1)] (xtr_l)ar(l —a)® 17T (24.13)

t=2 r=0

Sprott (1983) noted that with the computational power available it is possible to
numerically maximize the likelihood function. Brannéss (1994) noted that maximum
likelihood estimation for the NBD INAR(1) model is difficult due to the complex form
of the maximum likelihood equations even in the case of an i.i.d. NBD sample (i.e. in

the case a = 0).
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Chapter summary and discussion

Negative binomial processes have been used as models in fields such as accident prone-
ness, accidents and sickness, market research, risk theory and more recently in clinical
trials. This thesis concentrates on the efficient fitting of the NBD and negative binomial

processes to observed data, with application to market research data in mind.

Fitting the NBD. The NBD can be parameterized in numerous ways and the first
problem in the estimation of NBD parameters is the choice of parameters to be esti-
mated. The NBD parameters all have a one-to-one relationship and it therefore suffices
to estimate just one of the parameter pairs. Since parameter estimates of m and k are
asymptotically uncorrelated for natural moment based estimators and maximum likeli-
hood estimators (m is the mean and & is the shape parameter of the NBD), estimation
in literature has justifiably focussed on the estimation of (m, k).

In practice, maximum likelihood estimators are difficult to implement and, depend-
ing upon the NBD parameter values, the standard moment based estimators currently
used can be inefficient. Chapter 3 will investigate problems related to the efficient
estimation of NBD parameters using moment based estimators for i.i.d. NBD samples.

Parameter estimation in the case when the sample follows the INAR(1) processes
has been considered by Al-Osh and Alzaid (1987). The methods suggested by Al-Osh
and Alzaid (1987) require estimating the moments of the error distribution. The error
distribution in the case of the NBD INAR(1) process is complex. The INAR(1) process
is an ergodic process. It should therefore be possible to equate moments of a single
observed realization to the moments of the stationary distribution in order to estimate
parameters of the process. Chapter 3 will also consider efficient estimation of NBD

parameters for NBD INAR(1) samples.
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Negative binomial processes. Numerous negative binomial processes have been consid-
ered in literature. These include the gamma Poisson process, which falls into the class
of mixed Poisson processes, and the negative binomial INAR(1) process, which falls
into the class of integer-valued first-order autoregressive processes. The two classes
of processes mentioned have the common feature that the marginal distribution of
the process is negative binomial. Chapter 4 will deal with statistical inference for the
gamma Poisson process and the negative binomial INAR(1) process. The two processes
will be considered separately as they both come from different families of processes (the
families of renewal processes and autoregressive processes respectively).

Ehrenberg (1988) has considered the goodness of fit of the gamma Poisson process
to consumer buying data by empirically comparing various market research measures
computed over varying time intervals. The gamma Poisson process is not an ergodic
process. In the case of market research, however, multiple realizations of the process
are observed thus enabling valid statistical inference to be made from data generated by
the gamma Poisson process. Chapter 4 will consider statistical inference of the gamma
Poisson process by investigating the joint asymptotic distribution of various statistics or
estimators computed from data generated in different time intervals. The methodology
discussed in Section 2.2 will be used to compute that asymptotic distribution of the
statistical pairs.

The most common method of statistical inference of autoregressive processes is to
consider the autocorrelation function of the time series (time domain analysis) or to
consider the spectral density of the process (frequency domain analysis). Long-range
dependence has been of great interest in literature (see e.g. Beran (1994); Doukhan et
al. (2003)). Chapter 4 will consider developing the NBD INAR(1) models by extend-

ing the NBD INAR(1) models to NBD INAR(1) models with long-range dependence.
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Developing discrete-valued time series models with long-range dependence will provide

possible models for integer-valued data observing long-range dependence.

Application to market research data. Chapter 5 will analyze market research data and
assess suitability of the gamma Poisson process and the NBD INAR(1) process to the
market research data kindly provided by ACNielsen BASES. Ehrenberg (1988) has
empirically verified goodness of fit of the gamma Poisson process to consumer buying
behavior through the use of the Chi-squared test statistic and empirically compared
observed and expected values of numerous market research measures. In this chapter
the goodness of fit of the gamma Poisson process will be verified by using the tradi-
tional Chi-squared technique as well as the statistical inference procedures developed

in Chapter 3 and Chapter 4.
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The power method for estimating
parameters of the NBD

This chapter investigates the efficiency of the power method (PM) estimator for in-
dependent and dependent INAR(1) samples and considers the implementation of PM
estimators in practice. Section 3.1 investigates the efficiency of PM estimators for
i.i.d. NBD samples. Section 3.2 investigates the PM for estimating NBD parameters
from NBD INAR(1) samples. Finally, Section 3.3 considers the implementation of PM
estimators in practice.

Only estimation of the NBD parameter pair (m, k) will be considered since maxi-
mum likelihood (ML) estimators and all natural moment based estimators for (m, k)
are asymptotically uncorrelated given an i.i.d. NBD sample. For dependent samples,
the parameter pair (m, k) is no longer uncorrelated due to dependence in sample obser-
vations. Nevertheless, the parameter pair (m, k), as opposed to other parameter pairs,
will be considered for simplicity.

The choice of an optimum estimation method in this thesis is determined by the
method whose estimators minimize the determinant of the covariance matrix. The
covariance matrix of the ML estimators provides a lower bound for the covariance

matrix of all asymptotically normal, and hence moment based, estimators.

46
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3.1 Efficient moment estimators for i.i.d. samples

Anscombe (1950) proved that the ML estimator and all natural moment based es-
timators for the parameter pair (m,k), when estimating from i.i.d. NBD samples,
are asymptotically uncorrelated so that limy_o Cov(rh, k) = 0. The parameter m
is always efficiently estimated by 7n = Z for both ML and moment based estimation
methods. The most efficient moment based method of estimation for parameters of
an i.i.d. NBD sample is therefore determined by the method whose estimator for k
achieves the lowest asymptotic variance. The asymptotic normalized variance for the

ML estimator of k is

- 2
vy, = Jim N Var (k) = 2k(k+1)(a+1) , (3.1.1)

Jj-1 jI0(k+2)
a’ (1 +2372, () (j+Jl)I‘(k+j+1))

where a = m/k. This variance v,,, is a lower bound for the asymptotic normalized

variance of all asymptotically normal estimators.
The asymptotic normalized variances for the method of moments (MOM), zero

term method (ZTM) and power method (PM) estimators of & are

, - 2k(k+1)(a+1)2
Vuon = Jim NVar (kyo ) = ( a)2( iy (3.1.2)
. - (a+1)*2—(a+1)2—ka(a+1)
v,.., = lim NVar (k = , 3.1.3
ZT™ N ( ZTM) [(a+1) log(a+1)—a]2 ( )
_ . (1+a—ac?) *r2*+2_r2_ko(a+1)(1—c)?
v,,,(c) = lim NVar |k = , 3.14

where r = 1+ a — ac. The variance of k for the factorial method is difficult to express
explicitly; an expression of the variance is given in Anscombe (1950, p. 369).
Behavior of the ML estimator for &

Before investigating the efficiency of the PM estimator, the limits of the efficiency

levels of moment based estimators is considered by considering the behavior of the

asymptotic normalized variance of the ML estimator for k.
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g
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(a) (b)
Figure 3.1: Contour levels of (a) v,,, and (b) \/v,,./k.

Fig. 3.1(a) shows contour levels of the asymptotic normalized variance, v,,, , for k ML
It is clear that v,,, increases as k — oo and the NBD converges to the Poisson dis-
tribution. For large values of k, the Poisson distribution is a good approximation to
the NBD and the probabilities of the NBD will therefore be dominated by the mean
m of the distribution; in such cases, the probabilities of the NBD will be insensitive to
changes in the value of k.

Fig. 3.1(b) shows contour levels of the coefficient of variation ,/v,,,/k, thereby
indicating areas of the NBD parameter space where estimation of k is difficult even
for ML. Assume that k is fixed but m is allowed to vary, then Fig. 3.1(b) indicates that
a smaller m would require larger sample sizes in comparison to a large m in order to
obtain a fixed precision of the ML estimator for k.

In consideration of the results shown in Fig. 3.1 and the fact that in the practice
of market research large values of k appear to be rarely observed (see e.g. Fig. 2.2(a)
where no products with k,,.,, > 3 were observed), it seems sensible to concentrate on

efficient estimation of parameters in areas of the parameter space where k£ < 3.
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3.1.1 Efficiency of the MOM/ZTM estimator

The MOM and ZTM estimators are commonly used in practice for the estimation of
NBD parameters given i.i.d. NBD samples. These estimators, however, achieve low
efficiency levels in certain regions of the NBD parameter space when compared to
ML. Fig. 3.2(a) shows the efficiency of the MOM/ZTM estimator, the more efficient
method amongst the MOM and ZTM estimators relative to the ML estimator, given by
vM,/ m’n {uMOM>7ZTM }» The green and red shading in the figure respectively represents
areas where the MOM and ZTM are the more efficient in comparison to each another.

Fig. 3.2(b) shows ZTM estimates of the NBD parameters for 46 different categories
and the top 50 brands within each category with data courteously provided by AC-
Nielsen BASES. Fig. 3.2(b) indicates that the NBD parameters for numerous products
are inefficiently estimated, with efficiency levels sometimes reaching below 70% when
compared to ML. In the practice of market research, where MOM and ZTM estimators
axe commonly used, parameter estimates for large values of m and small values of &

may be inefficient.

w

as (6]
@
(I) os to (DCO os to
V) (b)

Figure 3.2: (a) Efficiency of the more efficient amongst the MOM and ZTM estimator

K i/minKojw.% M}) (b) Contour levels of vML/m\n {vMOM,vZIMj together with ZTM
estimators for NBD parameters when fitting the NBD to the top 50 brands in each category
and 46 categories in consumer buying behavior. Data courtesy of ACNielsen BASES.
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3.1.2 Efficiency of the power method estimator

The computation of the PM estimator for £ depends on an additional parameter c; the
PM estimator is equal to the ZTM estimator if ¢ = 0 and tends to the MOM estimator
as ¢ —4 1. Fig. 2.2(a) showed contour levels of the efficiency of the MOM, ZTM and
PM(0.5) estimators in the (ra, k) parameter space. All three methods of estimation
achieved high levels of efficiency in different regions of the NBD parameter space. This
raises the question as to whether efficient estimators can be obtained by choosing an
appropriate value of ¢ depending upon the parameters (m, k).

Denote the PM estimator for £ computed at ¢ as the PM(c) estimator. Fig. 3.3
shows the relative asymptotic efficiency, vPM(c)/vML, of the PM(c) estimators for &
with respect to the ML estimator for £ for different parameter values (m,k). The
values of the efficiency are plotted against the power method parameter ¢ € (0, 1).
Note that vPM(0) = vZIM and vPM(l) = Fig. 3.3 shows that there exists a range

of values of ¢* such that vPMc*) < min{vZIM, v MOM)}.

4.0

1137

ZT™M MOM ZT™M

0 @ 04 08 02 04 03)
C 6

Ti= 0.5 m=2
Figure 3.3: vPM(c)/vM. versus c for different parameter values (m,k).
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Note that for these cases there exists a single optimum c,
Co = ATGMIN ¢ (g 1)Upy(C), (3.1.5)

where v,,,(c,)/v,,, = 1, so that the PM(c,) estimator is almost as efficient as the
ML estimator for k. The proof that a single optimum c exists for all NBD parameter
values requires proving the convexity of the function v,,,(c) in ¢. The complex form
of the function v,,,(c), however, makes it difficult to prove that the function is indeed
a convex function. An attempt to prove the convexity of the function v,,,(c) was

unfortunately unsuccessful.

Inadmissability of the MOM /ZTM

The inadmissability of the MOM and ZTM estimators is now proven in that there
always exists a ¢ € (0, 1) such that v,,(c) < min{v,,,,, v,,0. } for all NBD parameter
values. The proof basically relies on the fact that v,,(c) is a continuous function for
c € [0,1] and that the gradient of v,,(c) < 0 at ¢ = 0 and the gradient of v,,,(c) > 0

at ¢ =1 for all NBD parameter values.

Theorem 3.1.1. (Savani & Zhigljavsky, 2006) The MOM/ZTM estimator is inadmis-
sible in the class of PM estimators in the following sense: for any fized m and k there
ezists ¢, with 0 < cx < 1, such that v,,(c.) < min{v,.,,,Vyorn}> WheTe Vyy00rs Voras

and v,,(-) are the normalized asymptotic variances of k as defined in Egs. (3.1.2),

(3.1.3) and (3.1.4) for the MOM, ZTM and PM respectively.

Proof. Let m and k be fixed and set a = m/k. Note that 0 < a, k,m < oco.
i) Inadmissability of MOM. A Taylor expansion of v,,(c) in the neighborhood of

c =1 gives

_ 2k(k+1)(1+ a)®  8k(k+1)(1+a)?
a? 3a

) (I-¢)+0((1-¢)?), c—1.
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In view of (3.1.2) this implies v, (1) = v,,,,,.- Additionally, the derivative of v,,,(c) at

c=1is
v, (c) _ 8k(k+1)(1+a)?
Oc B 3a '

c=1

which is strictly positive for all m and k. Hence, there always exists ¢’ such that
0<cd <1and v,,(c) < V(1) = Vyou-

ii) Inadmissability of ZTM. A Taylor expansion of v,,(c) in the neighborhood of
c =0 gives

Vpr(€) = vp,(0) + ¢ av,,a,z(c) ) +0(c%), c—0. (3.1.6)

Equation (3.1.3) and (3.1.4) directly imply that v,,(0) = v The derivative of

V() at ¢ = 0 can be written as
Ovpn(c)| 2a(a-+1) (1+a)* [k(1+a)log(1+a)—a(k+1)]+a(k+1)—klog(1+a)
o | .o ((14a) log(l +a)—a)d

_ 2a(a +1) [k log( 1+a)] .
~ [A(@)Plog(1+a) Z hj(a), (3.1.7)

where h(a) = (1 + a)log(l + a) — a and hj(a) = [(j — 1)a + j]log(l + a) — aj. The
infinite series in (3.1.7) is derived by a Taylor expansion of (1 + a)* (at k = 0) in the
numerator. Lemma 3.1.1 implies that h(a) > 0 and hj(a) > O for all @ > 0 and all
j = 2. All the terms in the infinite series in (3.1.7) are therefore positive for all £ and
a. This implies first, that the series is absolutely convergent for all k and a and second,
that the derivative (3.1.7) is negative for all k¥ and a. Hence, there always exists ¢’
such that 0 < ¢” < 1 and v,,,,(¢") < v,,,(0) = v,,.,,-

Let ¢ and ¢’ be particular values as above. Define

—_ CI lf UZTM Z UMOM
=L i Z e 318

then we obviously have v, (c,) < min{v,,,,,Vy,0n }- O
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Lemma 3.1.1. The functions

h(a) = 1 4a)log(l 4a) —a and hj(a) = [G —D)a + j] log(1 4 a) - aj

are positive for all a > 0 andj ™ 2.

Proof We have h(0)= 0 and /i'(a) = log(l14-a) >0 for all a>0, implying that %4(a)>0
for all a > 0. Similarly, for all j * 2 we have 4;(0)= 0 and h'-(a) = (j —2)log(l4-a) 4

/i(a)/(14-a) > O for all @ > 0, implying that hj(a)>0 for all a>0 and j " 2. m

Efficiency of the PM(c,,) estimator

Consider the PM estimator computed at ¢O= ajgmindG01)%PMc). It is difficult to ex-
press cOanalytically since the solution, with respect to ¢, of the equation dvPM(c)/dc = 0
is intractable. Fig. 3.3 showed, for various values of the NBD parameters (m, k), that
the function vPM(c) is a convex function in c. If the function vPM(c) is a convex func-
tion in ¢ for all parameter values, then the equation dvPM(c)/dc = 0 may be solved

numerically to compute the optimum value of c.

to

oS

(a) Contour levels for cc (b) vUL/vpu(c0)

Figure 3.4: Optimum values of the power method parameter ¢ and efficiency of the
power method estimator computed at optimum c for all admissible values of NBD
parameters.
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Fig. 3.4(a) shows contour levels of ¢, within the NBD parameter space. The contour
levels are plotted from values of ¢, obtained by numerical minimization of v,,,(c) for
a fine grid of values of b and w' < —b/log(1 — b). The fact that the contour lines vary
smoothly over the parameter space indicate no erratic jumps in the value of ¢, and
therefore that the function v,,,(c) may well have only one minimum.

Note that ¢ — 0 as b — 0, in this case the probability of observing a zero event
tends to one; the ZTM is therefore asymptotically efficient when the NBD is degenerate.
Furthermore, ¢ — 1 as k — oo; the MOM is therefore asymptotically efficient when
the NBD converges to the Poisson distribution. The asymptotic efficiency v,,, /v,,,(c,)
is shown in Fig. 3.4(b). The PM(c,) estimator achieves an efficiency of greater than

0.96 for the majority of the (b, w')-parameter space.
3.1.3 Approximating optimum c

Fig. 3.3 showed that there is a range of values c, such that v,,(c.) < min{v,;,,, Vyon }-
Moreover, for the parameter values shown in Fig. 3.3, the function v,,,(c) appears to
be a smooth and convex function in c. Approximations to the value of ¢, should
therefore provide efficient NBD estimators for the parameter k. Although the level of
efficiency will be reduced for the PM estimator computed at an approximated c,, using
approximations to ¢, will have the advantage of being simple in that the estimators do
not require the solution of dv,,,(c)/dc = 0 in ¢ to compute c,.

Two different types of approximations will be considered. Set approximations re-
quire collection of the statistics X = % Zfil c® for fixed values of ¢ belonging to
some set A; this method is a generalization of the MOM/ZTM method suggested by
Anscombe (1950). Alternatively, approximations of ¢, can be obtained using regression

methods.
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Set approximations for c,

In the computation of the combined MOM/ZTM estimator for k, the more efficient
estimator amongst the MOM and ZTM estimator is chosen. The MOM/ZTM estimator
can therefore be thought of as a PM estimator computed at an approximated c, by
choosing the value of ¢ € {0,1} such that v,,,(c) = min{v,,,(0),v,,(1)}.

A generalization of the MOM/ZTM estimator is achieved by extending the set of
possible values of ¢ such that v, (c) is minimized. Denote by A the set of values of ¢
that will be used to approximate c,, then the value of ¢, is approximated by c4 such that
ca = argmin ¢ 4v,,,(c). Fig. 3.5 shows the asymptotic efficiency of v,,,(co)/vpy (ca),
where c4 =argmin ¢ 4v,,,(c), for the combined MOM/ZTM estimator (A={0,1}) and
two different sets A={0,31,1} and A={0,1,2,8,£,1}.

Fig. 3.5(a) shows that the asymptotic normalized efficiency of the MOM/ZTM esti-
mator relative to the PM(c,) estimator lies in the interval (0, 1) for all parameter values
of the NBD. This indicates that the PM(c,) estimator is always more efficient than the
MOM/ZTM estimator. Areas of red shading represents regions where v,.,, < v,
and areas of green shading represents regions where v,,,,, < v,,,,- Asymptotically the
MOM/ZTM estimator becomes efficient in the following sense: if either m or a = m/k
is fixed then v,,, /v,,0, — 1 as k — oo and v,,, /v,;,, — 1 as k — 0. The com-
bined MOM/ZTM estimator can have efficiency levels as low as 0.7 and below when
compared to the PM(c,) estimator.

Fig. 3.5(b) and Fig. 3.5(c) show that extending the set A improves the efficiency
of the estimation method. These estimators are just as simple as the combined
MOM/ZTM estimator, apart from the fact that the collection of extra statistics X =
% Zf\;l c® for all c€ A is required. It is clear that greater efficiency levels can be ob-

tained by further extending the set A at the expense of computing additional statistics.



Figure 3.5: Contour levels for vru (co)/vrm(ca) where ca
A 1234

(b) (©)
argminceAuPAf(c) for the sets (a) 4 = {0,1}, (b) 4 = {0,

1} and

¢ 1dey)d
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Regression approximations for cQ

The value of c¢Qis obtained by numerical minimization of vPM(c). Using knowledge of
these numerical values over the whole parameter space, regression techniques can be
used to obtain an approximation for ¢Q Note that the values of cQare a continuous
function of the parameter space {b,w’). The regression approximation is obtained as
follows. For a grid of values of w' € (0,1) a regression equation of the form cB =
Oo{w’)b + 0\{w')b2 is obtained. The coefficients Jo{w’) and 0\(w’) are then plotted
against w' and regression is used to obtain the coefficients Oo{w’) and 0\(w’).

Fig. 3.6(a) shows values of ¢G depicted by the “+’ symbol, plotted against b for
different values of fixed w' together with a quadratic regression approximation given
by ¢B = Pow')b + 0\(w')b2 fitted using the ordinary least squares method. The R2
value for the regression is approximately 0.998 for each fixed value of w' indicating a
good fit for the approximation. Fig. 3.6(b) shows that the efficiency of the PM(c")

estimator is very close to the efficiency of the PM(c0) estimator.

(@) (b)

Figure 3.6: (a) Quadratic regression: c¢B = Oo(w')b + 0\{w')b2 to approximate values
of c0 (+) for fixed values of w' and (b) contour levels of vPM{c0)/v PM{cB).



Chapter 3 58

(a) » (b)
+ 4+ + Po + 4+ + Pi A) Pi

Figure 3.7: (a) Po and Pi versus w' where PQ and p\| are the regression coefficients in
@B = A)YW"5 + p\(w)b2. (b) Values of PQ and /?i approximated by Pg = 0.4206 +
0.8065u/ —2.9790u/2+ 3.644u/3 and Pi = 0.509 —1.6594u/ + 4.3075U/2 respectively.

Fig. 3.7 shows the regression coefficients pq(w’) and Pi(w’) plotted against w'. Both
regression coefficients are continuous functions of w' for w’ £ (0,1). For 0 < w' < 0.6
the values of Pg and pi behave like cubic and quadratic functions of w' respectively.
For 0.6 < w’ < 1 the values of Pg and Pi increase at an exponential rate as w' increases.
The values of Pg and pi are now regressed for values of w’ £ (0,0.6]. The choice of
restricting the interval of regression to 0 < w’ < 0.6 is arbitrary. It will be shown that
even with this restriction, an efficient estimator can still be obtained.

Fig. 3.7(b) shows the coefficients Pq(w’) and Pi(w’) approximated by regressing on
values of w' £ (0,0.6]. The values of Pq/w") and Pifw') for w’ > 0.6 are then computed
by extrapolating from the fitted regression models. The approximated values of cD
denoted by c”, are shown in Fig. 3.8(a). The values of  lie in the interval (0,1) for
all parameter values of the NBD. The efficiency of the PM(cg) estimator for k& with
respect to the PM(c0) estimator is shown in Fig. 3.8(b). The efficiency is at least 0.99

(white contour) for the majority of the (5, u/)-parameter space.
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M

Figure 3.8: (a) @@ and (b) vPM(c0)/vPM(c&) where c& = (30b+ /3\b2 with fio = 0.4206 +
0.8065u/ - 2.9790ft/2+ 3.644ft/3 and ft = 0.509 - 1.6594w' + 4.30751t/2.

Sensitivity of efficiency to changes in ¢

All of the results shown in Section 3.1.3 indicate that efficient NBD estimators for the
parameter k can be obtained by using the PM estimator computed at a suitable value
of ¢. The PM(c0) estimator, where cQ= argminc€O1)ftPMc), is required to obtain the
most efficient PM estimator. The value of cQcan be approximated extremely well by
using regression techniques. Using the regression technique mentioned in Section 3.1.3
a negligible loss of efficiency is seen for the majority of NBD parameter values. Finally,
a much simpler approximation can be made by the use of set approximations to cQ
The loss of efficiency for set approximations depends on the set 4.

The approximations have the advantage that they do not require the solution of
dvPM(c)/dc =0 in ¢ to compute ¢Q The fact that different approximations of cQexist,
to give highly efficient PM estimators relative to the PM(c0) estimator, show the in-
sensitive nature of the PM(c) estimator to small changes in c. This insensitive nature
is important when implementing the PM estimator to efficiently estimate k£ in the case,

as in practice, when the NBD parameters are unknown (see Section 3.3.1).
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3.2 Moment estimators for NBD INAR(1) samples

This section considers the problem of parameter estimation given a NBD INAR(1)
sample with deterministic thinning. The estimation of the parameter « is well docu-
mented in literature (see e.g. Brockwell and Davis (2002)) and our primary concern is

in estimating the distributional parameters; o will therefore assumed to be known.
3.2.1 Standard INAR(1) estimators

The moment based estimators and the maximum likelihood estimators considered by
Al-Osh and Alzaid (1987) use the distribution of the errors for the INAR(1) process. Al-
though the probability generating function of the errors for the NBD INAR(1) process

is known (see McKenzie (1986)), the distribution was never written down explicitly.

Proposition 3.2.1. Let X, be a NBD INAR(1) process with thinning parameter o and
marginal distribution NBD(m, k), then e, has a negative-binomial geometric distribu-

tion, NBD-G(k,k/(k+ma), a) with probability mass function

Plev=1) = Ji__: (Hz—l) (k+,ina)j (k-T:za) <k+§_1) o (1-a.

z=0,1....

Proof. Note that the generating function of the errors can be written as

(o) = (k+m(1-—c)))_k=ak(ka+ma(1—-c))_k=ak (1 k(1—a) ))-k

k+ma(l—c k+ma(l—c) ~ k+ma(l—c

- (1m0 () (-5 ) 21)

This is of the form of the generating function of the negative-binomial geometric NBD-

G(u, v, 0) distribution (see Wimmer and Altmann (1990, pp. 459-460)) given by
Gle)=6*(1-(1-6r(1—(1-v))™)*.

Here0 <v <1,0<6<1and p>0. O
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The negative-binomial geometric distribution is a compound Poisson distribution
in direct agreement with the result by McKenzie (1986) (see Eq. 2.3.13). Note that the

generating function of €; can be written in the form G.(c)=exp {A (G4(c)—1)} with

k -1
A= —kloga and Gy(c) = (loga)™'log (1—(1—(1) (k+ma) (1_k-T:1a c) ) .

Here G4(c) is the generating function of the logarithmic-geometric distribution (see

Wimmer and Altmann (1990, pp. 388-389)) with

o= £ (17 () () i

Generating random variables from the negative-binomial geometric NBD-G(y, v, §) is

made simple by the fact that the distribution is equivalent to the NBD,(v,r) distri-
bution where 7 is itself a random variable with a NBD,(6, m) distribution. The errors

therefore have the distribution

D k D k
= NBD-G | £ = — . 2.
£t G ( , k+ma’°‘) NBD, ( k+ma,r) /T\NBD,, (o, k) (3.2.2)
The maximum likelihood estimator. Let x = (z1,%2,...,Zn) be an observed sample

from an INAR(1) process and let © be the set of parameters for the INAR(1) process

then the likelihood function is

Tt
T

Lx; ©)=PX,=z)[[ >

N min(z¢,Te—1) (
=2 r=0

)a’(l —a)"*17P(eg =2, —1).  (3.2.3)
The likelihood function for the NBD INAR(1) process requires the distribution of
errors, i.e. the negative binomial geometric distribution. Since the likelihood function
is complex, it is difficult to obtain the Fisher information matrix and hence analytically
analyze the efficiency of moment based estimators with respect to maximum likelihood

estimators.
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Nevertheless, parameter estimates from an NBD INAR(1) sample can be obtained
by maximizing the likelihood function using global optimization algorithms. Simulation
results will therefore provide some indication as to the efficiency of moment based
methods of estimation with respect to maximum likelihood estimation. These results

are shown in Section 3.3.

Standard INAR(1) moment based estimators. For the standard INAR(1) moment based
estimators considered by Al-Osh and Alzaid (1987), the thinning parameter « is esti-
mated from the autocorrelation function of the INAR(1) process. (The same method
is applied in the case of estimating the corresponding parameter for continuous AR(1)
processes.) Since the autocorrelation function of the INAR(1) process is identical to
that of the AR(1) process, the problem of estimating « is well documented in many
textbooks (see e.g. (Brockwell & Davis, 2002)). Once « is estimated by &, Al-Osh
and Alzaid obtain a sequence of estimators €; using the equation &; = z; — ax;_;.
Note that the &; are no longer integer-valued although the distribution of ¢, is discrete.
Standard moment based estimation methods are then used to estimate the parameters
of the marginal distribution of the error process. The distribution of the errors for the
NBD INAR(1) process is not simple and this makes inference about the estimators of
(m, k) difficult.

Since the INAR(1) process is a stationary and ergodic process (see e.g. Du and
Li (1991)), the expected value of the sample moments for an observed realization are
equivalent to the expected value of the sample moments of the stationary distribution.
It therefore seems reasonable to use the moments of the observed realization to estimate
the distributional parameters of the process; in this way the method will not need to
use the complex structure of the distribution of the innovation process. Moreover, the

power method estimators may be used to obtain efficient estimators.
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3.2.2 Efficiency of the power method estimator

Since the INAR(1) process is a stationary and ergodic process, the expected value of
the sample moments for an observed realization are equivalent to the expected value
of the sample moments of the stationary distribution. An unbiased estimator for m
is therefore m = T = & SN ;. The PM estimator k,,, for the shape parameter of
the NBD distribution is computed by solving, in 2, the equation X = 7{,— Zf/: L=
(1 + “”(l—z“cl) -

Although computing moment based estimators for a NBD INAR(1) process and an
i.i.d. NBD sample are identical, the fact that the values of z; are correlated for INAR(1)
samples implies that the covariance matrices of the estimators of (m, k) are different.
The asymptotic distribution of the estimators (i, IAcPM) can be derived by using a
multivariate version of the so-called §-method (see e.g. Serfling (1980)). Using the 6-
method if (E, c’}) is asymptotically normally distributed then the estimators (rh, lAcP M)
are also asymptotically normally distributed. In this section the asymptotic covariance
matrix for the statistics (:T:,c/f) is derived. The covariance matrix of (fn, IACPM) is

consequently obtained.

Theorem 3.2.2. (Savani & Zhigljavsky, 2006) Let {z;; t = 1,2,..., N} be a sample re-
alization from an INAR(1) process X, with stationary distribution w. Let f = (=, cX )T,
f= (E,C/)?)T with T = %Zil z; and X = 7{72&1 c™, withc >0 and c# 1. Then
F has an asymptotic normal distribution given by limy_o VN(Ff — Ef) ~ N(0,Df)

with covariance matriz

Vi C. x
Df =E(f - Ef)(f - Ef)T = <C e ) - (3.2.4)
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Here
Vg = lim N Var (X) = (1—1;%) Var|[X,], (3.2.5)
Vz = lim N Var(cX)
N-1
3 T T T T
= Var (¢*) + 2131_1'11002_; (1_ﬁ) {Gx, (cl —a" +a7c]) Ge(c; ") — G%, ()},
(3.2.6)
Cy = =A}im N Cov()_(,c/}\‘) Cov (Xc*)
N-1
. T x r
+Jl_1£o 2 (1— ]—V_) { [X (1—a" +a"c)® ] Ge(c;a") — E[X4]Gx, . (¢) }
N-1 .
+ Jim > (1 - N) (Gx. (¢[l — o + a’c]) — E[X:]Gx.()}. (3.2.7)
Proof. See Appendix A.l. O

_ —~\T

Note that the asymptotic distribution of f = (i, cX ) derived in Theorem 3.2.2
holds for any INAR(1) process and not just the NBD INAR(1) process. Fig. 3.9 shows
95% asymptotic bivariate normal confidence ellipses for E f, centered at zero, given by

the equation

(f = EF)" D7 (F — EF) < Xous(2) = 5.99.

As a increases the correlation between the statistics Z and ¢X clearly increases irre-
spective of the value of the PM parameter c.

Fig. 3.10 shows estimates f — Ef obtained from 1000 simulations from a NBD
INAR(1) process together with corresponding 95% asymptotic bivariate normal confi-
dence ellipses. The parameters used for the NBD INAR(1) process are m = 1, k = 2,

N = 1000, o € {0,0.25,0.5,0.75} and the PM estimator ¢X is computed using the

value ¢ = 0.5.
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Figure 3.9: 95% asymptotic bivariate normal confidence ellipses for £ f (/ = (x, cx )T), centered at zero, for a NBD INAR(])
sample with m = 1, k= 2, a G {0,0.25,0.5,0.75} and ¢ G {0,0.25,0.5,0.75}.

N §—en
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Figure 3.10: 1000 simulated / - Ef (/ = (x,cx)T) with 95% asymptotic bivariate normal confidence ellipses for a NBD
INAR(]) sample with m = 1, k =2, N = 1000, c= 0.5 and a G {0,0.25,0.5,0.75}.
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Corollary. Let {z;; t = 1,2,...,N} be a sample realization from a NBD INAR(1)
process X, with NBD parameters (m,k). Let 6 = (i, k,, )T be the power method
estimators, with fized c, 0 < ¢ < 1, obtained from the NBD INAR(1) sample, then 6
has an asymptotic normal distribution given by limy_co VN (é - Eé) ~ N(0,Z,(c))
with

Sa(c) = (DM Dz ) ( ro Cxa > (Dm D'h'CAX)T (3.2.8)

o Dj ; Dl‘c,c'? C)Z’,c’)\f Vx Dy, D.=% /| o

Here Dy, is the derivative of f(v) with respect to v and Dy,),, is evaluated at the
point (1, k) = (m, k). The asymptotic normalized variances Vx, Vz and Cx are given

by Egs. (8.2.5), (3.2.6) and (3.2.7) respectively. The matriz of partial derivatives is

1 0
(Dﬁ"j Dr‘n,c’)?) — c—1 gk+1

D;. D; =% -
k,Z k,cX glog(g) —-g+1 glOg(g) —g+1

where g =1+ a —ac and a = m/k.

Note that as a particular case, when a = 0, the asymptotic normalized variances
given by Eq. (3.2.8) collapse to the asymptotic normalized variances of estimators for
m and k given in Section 2.1.3.

Fig. 3.11 shows 95% asymptotic bivariate normal confidence ellipses for EB, cen-
tered at zero. For a = 0, i.e. in the case of an i.i.d. NBD sample, the estimators m
and kPM are clearly uncorrelated. For a € (0,1), however, there is a positive corre-
lation between the estimators 77 and k,,,. As a increases the volume of the ellipse
also increases. Since the estimators for m and k are correlated, a comparison of the
efficiency of estimation methods may no longer be made by comparing just the variance
of IEPM. A traditional method for comparing the efficiency of correlated estimators is

by minimizing the determinant of the covariance matrix.
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Figure 3.11: 95% asymptotic bivariate normal confidence ellipses for E6 (
(m,k,,)), centered at zero, for a NBD INAR(1) sample with m = 1, k
a € {0,0.25,0.5,0.75}.

I
N

In Fig. 3.11 there is no clear observable difference between the PM estimators
computed at ¢ = 0 and ¢ = 0.5. This suggests the possibility that the volume of
the ellipse may be insensitive to certain changes in the value of c. The insensitivity
of the volume of the ellipse to changes in ¢ implies the possibility of using simple
approximations to c to obtain efficient PM estimators. Note that the estimator for m
is identical for both PM estimators computed at ¢ = 0 and ¢ = 0.5 and therefore the
ellipses are likely to be very similar.

As a more informative indicator of efficiency, Fig. 3.12 shows the determinant of the
asymptotic normalized covariance matrix X,(c) (see Eq. (3.2.8)) plotted against c for
two different NBD parameter pairs (m, k) € {(1,0.5),(1,2)} and « € {0,0.25,0.5,0.75}.
For the NBD parameter pairs shown, the optimal values of ¢ are never equal to 0 or 1.
Moreover, there is an optimum ¢, denoted by ¢, that minimizes det(X,(c)). For the
parameter pair m = 1 and k = 2 there is actually a difference between the values of

the determinant for ¢ = 0 and ¢ = 0.5 which is not apparent in Fig. 3.11.
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Figure 3.12: Determinant of the covariance matrix ¥,(c), for (m, I;:PM), Versus c.

Fig. 3.13 shows contour levels of c,, the value of ¢ € (0, 1) that minimizes det(Z,(c)),
within the (b, w’)-parameter space. The contour levels of c, are similar as « increases
highlighting the insensitive nature of ¢, to changes in a. This is useful in that, if the
value of a is unknown or not accounted for, then the loss in efficiency when using the
standard PM(c,) estimator as opposed to the PM(c,) estimator will be small.

Fig. 3.13 also shows contour levels of efficiency, defined by det(2o(co))/ det(Eq(ca))
for o € {0.25,0.5,0.75,0.95}. The figure shows the loss in efficiency when using a
NBD INAR(1) sample with thinning parameter « relative to an i.i.d. NBD sample.
As o increases the efficiency of estimating (m, k), with respect to estimating from an
i.i.d. sample using the PM(c,) estimator, decreases.

More importantly, however, Fig. 3.13 shows the efficiency of estimating (m, k) using
the PM(c,) estimator with respect to the PM(c,) estimator for a NBD INAR(1) sample
with thinning parameter a. The efficiency is defined by det(X,(c,))/ det(X4(c,)) and
shows the loss in efficiency in estimation when assuming an i.i.d. sample when in fact
the sample is obtained from a NBD INAR(1) process. The loss of efficiency, even when

a = 0.95 is at most 10% for the majority of the NBD (b, w’)-parameter space.
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3.2.3 Approximating optimum c

Fig. 3.13 showed that c, = argmin.¢ ;) det(Z4(c)) changes slowly as o increases when
estimating parameters from a NBD INAR(1) sample. Approximations to the value of
co should therefore provide efficient NBD estimators for the parameter k. Two set
approximations are considered. Let A be a set of values of ¢, then the value of c, is
approximated by c, 4 = argmin ., det(Z4(c)) and é,4 = argmin ¢, det(o(c)). Note
that c, 4 is obtained by minimizing the determinant for the correct value of o and ¢
minimizes the determinant in the case of @ = 0. The two sets used for A are A = {0, 1},
which is the combined MOM/ZTM method, and A = {},2,3,4,1}.

Fig. 3.14 and Fig. 3.15 show the efficiency of two set approximations to c, when
the sample is NBD INAR(1). The efficiency levels of det(2,(ca))/ det(Xa(ca,4)) and
det(Zq(ca))/ det(Ta(Ca,a)) are shown for the sets A = {0,1} and A = {},2,3,¢,1}.
For both sets, the efficiency of the estimator decreases marginally as « increases to 1.
Additionally, the choice of c4 4 by €44 = argmin ., det(Xo(c)) leads to small losses
in efficiency. These figures again highlight the insensitive nature of c, to changes in
the value of a for all NBD parameter values and thus the ability for the PM estimator
computed at values of c close to ¢, to retain high efficiency at different values of a.

In practice the parameter values are unknown,; it is therefore not possible to compute
the value of c, nor any approximation to ¢, such as c, 4 = argmin,, det(X,(c))
OF Co,4 = argmin.c, det(Zo(c)). As a result, the PM(c,) estimator for k& cannot be
computed. Using the set approximation, it is still possible to compute estimators of k&
using the PM(c) estimator for every ¢ € A; the only problem is that it is not possible
to determine the optimum estimator for k since c, 4 is unknown. The problem of

implementing the PM estimators in practice is considered in the next section.
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Figure 3.14: Contour levels of det(Ea(ca))/det(Ea(cQid) and det(EQc0))/det(Ea(cQA)) for 4 = {0,1}. Here cQ4 =
argmindGAdet(Ea(c)) and ca4 = argmindGAdet(EO(c)). Red and green shading represents areas of the parameter space where

cajd and cqja are o and 1 respectively.
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3.3 Practical implementation of the power method

This section considers the difficulties of implementing the PM that may arise in prac-
tice. One of the major problems is that the optimum value of the power method
parameter c requires knowledge of the distributional parameters; the distributional pa-
rameters and optimum c are obviously unknown in practice. Section 3.3.1 considers the
possibility of estimating c,, the optimum value of the power method parameter ¢ for a
NBD INAR(1) sample with o € [0,1). In practice it is possible for the estimator of &
to be negative, Section 3.3.2 further investigates the validity of setting k = oo in such
situations. Section 3.3.3 provides simulation results on using the maximum likelihood

estimators and moment based estimators for i.i.d. NBD and NBD INAR(1) samples.
3.3.1 Computing efficient PM estimators in practice

In order to obtain efficient PM estimators for NBD INAR(1) samples, or i.i.d. samples in
the case o = 0, the optimum value of ¢, that minimizes det(2,(c)) given in Eq. (3.2.8)
must be computed. The value of ¢,, however, depends on the parameters (m, k) which
are unknown in practice. This section investigates the use of preliminary, possibly
inefficient, NBD estimators to estimate ¢,. Denote the preliminary inefficient NBD
estimators by 7 and k, then the following estimators for ¢, and approximated ¢, will

be considered
Co=argmin ¢ q ;) det(Zq(c; k)), (3.3.1)
Ea=argmin, , det(Zq(c;m, k), A€ {0,1/5,2/5,3/5,4/5,1}, (3.3.2)
&= (0.42+O.81u~;'—2.981])’2+3.6415’3) b+ (051-1.660/+4310°) B, (33.3)

where b = 1 — (1 4+ 7/k)~* and w’ = b/m. The two simplest and natural choices for

the preliminary estimators are the MOM or ZTM estimators.
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Fig. 3.16 shows 95% confidence ellipses of the MOM and ZTM estimators for various
values of (m, k) within the (6,u/)-parameter space together with contour levels of cQfor
a € {0,0.25,0.5,0.75}. The ellipses have been constructed assuming a NBD INAR(])
sample of size N = 1000 with a € {0,0.25,0.5,0.75}. The ellipses show the variability
that would be expected in the estimated values of cQ given a significance level of
0.05. The confidence ellipses become larger as either N decreases, a increases or the

significance level decreases.

Ll

a=05 a=0.75

Figure 3.16: 95% confidence ellipses for NBD estimators when using (a) MOM (red)
and (b) ZTM (black) using a sample size of N = 1000. It is assumed that N is large
enough for convergence of the distribution of estimators to the normal distribution.
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Fig. 3.16 indicates that, for the majority of NBD parameter values in the (b, w')-
parameter space, the inefficient NBD estimator should provide an estimator of c, close
enough to ¢, so that the PM estimator achieves a negligible loss of efficiency relative to
the PM(c,) estimator. The variability in estimated values of c, depends on the sample

size N, the value of a and the method used in estimating c,.

Robustness

The robustness of using the PM(C) estimator, where ¢ is one of the estimators defined
in (3.3.1), (3.3.2) or (3.3.3), is investigated by considering the loss of efficiency caused
by using the PM(¢) estimator as opposed to the PM(c,) estimator. The loss of effi-
ciency depends on the preliminary estimators used to compute the estimator ¢. The
ZTM estimators are convenient since both ZTM estimators for (m, k) and (b, w’) are
asymptotically uncorrelated for i.i.d. samples. The PM estimators for (b, w’) are in
general correlated for other methods (such as the MOM, for example).

The notation $4(c; m, k) and T, (c; 70, k) will be used to differentiate between mini-
mizing det(X4(c)) using the values (m, k) and preliminary estimates (77, k) respectively.
The efficiency of the PM(¢) estimator for k with respect to the PM(c,) estimator is
given by det(X,(cq;m, k))/ det(Z4(C; m, k)). Note that the estimator ¢ is computed
using the preliminary NBD estimators (1, l~c)

To investigate the robustness of using the PM(é) estimator, the lowest efficiency
attainable in the estimation of (m, k) using the PM(C) estimator will be considered,
when estimating ¢, from preliminary estimators (7, I~c) that lie within an asymptotic
95% confidence ellipse centered at the true values (m, k). The lowest efficiency, for a
significance level of 0.05, is given by det(X4(ca;m, k))/ det(Zn(Cx; m, k)) where ¢ =
argmax, s det(X,(c; m, k)) and C is the set of all possible estimators & obtained from

preliminary estimators (rn, I~c) that lie within the 95% confidence ellipse.
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eff=0.9960

(2) (b)

Figure 3.17: Asymptotic confidence ellipses for NBD estimators (74, k) when using (a)
ZTM and (b) MOM to estimate (rh,k). The value ‘eff’ indicates the lowest value of
vPM(cO\m , k)/vPM(c0\m,k), where c0 = argmincdG01)UPM(c; 7h, k), amongst all (vh, k)
within the confidence ellipse.

Fig. 3.17(a) and (b) show examples of the robustness for the case m = 2 and
k = 0.5 when using (a) ZTM and (b) MOM estimators as preliminary estimators for
the estimation of cQ A sample size of v = 1000 is assumed. An asymptotic 95%
confidence ellipse is shown for the preliminary estimators (m, k) of (m, k) within the
(6,u/)-parameter space together with contour levels of c0. The lowest efficiency occurs
at the boundary of the ellipse and is 0.996 (m = 1.90, k = 0.43, cO= 0.36) when using
preliminary ZTM estimators and 0.995 (m = 1.92, k = 0.40, cO= 0.35) when using the
preliminary MOM estimators.

The lowest efficiency attainable depends on the significance level, the size of the
sample and the preliminary estimator used. Increasing the sample size naturally re-
duces the size of the confidence ellipse for (74, k) providing a more accurate estimator
for cQand the estimation method becomes more robust. The PM(c) estimator also

appears more robust when the significance level is increased.
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Fig. 3.18 shows, for all NBD parameter values, the lowest efficiency attainable when
estimating k using the PM at ¢ with preliminary ZTM and MOM estimators that
lie within a 95% asymptotic confidence ellipse centered at the true values (m, k) for
i.i.d. NBD samples of size N = 1000. A graph is shown for each estimator ¢ defined by
Egs. (3.3.1), (3.3.2) and (3.3.3). Ignoring the boundaries of the NBD parameter space
(i.e. considering areas where k£ < 3), the PM estimators with ¢ defined by Eqgs. (3.3.1),
(3.3.2) and (3.3.3) achieve a lowest efficiency of at least 0.98 for the majority of the

NBD (6,u/)-parameter space.

(A) (B) (©)
(a) (b) (c)

Figure 3.18: Lowest possible efficiency of the PM(c) estimator when using preliminary
ZTM ((A),(B) and (C)) and MOM ((a), (b) and (c)) estimators for (m, k) that lie
within a 95% confidence ellipse of the true values. The sample size is i.i.d. NBD
(a = 0) with N = 1000. The estimators ¢ axe obtained from (a) equation (3.3.1), (b)
equation (3.3.2) and (c) equation (3.3.3).
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3.3.2 Degenerate samples

In literature (see e.g. Anscombe (1950)) it is often assumed that, when an invalid
estimator for k (I;: < 0) is obtained, the Poisson distribution may be fitted and the
estimator for k is set to k = co. Recall that the MOM estimator for k is I;:MOM =
72/(z2 — 2% — 7). It is clear that the MOM estimator for k will be negative when
s2 < %, where s? = 22 — z2. The PM estimator (k,, ) and ZTM estimator (k,,,,)
for k are respectively obtained by solving the equations X = (1+z(1—-c¢)/2)"* and
Po = (1 + Z/2)”* with respect to 2. Negative estimators for IEPM and l;:ZTM are obtained
when ¢X < exp(—Z(1 — ¢)) and pp < exp(—z) for the PM and ZTM respectively.

Fig. 3.19 shows the probability of obtaining an invalid estimator k in the case when
the sample size is 10000. The probabilities are obtained from the joint asymptotic
normal distribution of the statistics used in the computation of k. It must be noted
that the assumption of asymptotic normality is important and that, for k very small,
the NBD is highly skewed and convergence to the asymptotic distribution is very slow.
The value of N required for approximate convergence to the normal distribution for
the distribution of & may be larger than that shown in Fig. 3.19. To investigate invalid
estimators it is much simpler to consider the results of the simulation study in the
following section.

Fig. 3.19 indicates that the probability of obtaining an invalid estimator k increases
as the NBD converges to the Poisson distribution. The Poisson approximation to the
NBD therefore seems reasonable. Nevertheless, positive probabilities are observed for
all values of k shown in the picture, allbeit with very small probability. In practice,
care must be taken. If estimators of market research measures (e.g. penetration or
purchase frequency) are sensitive to changes in the value of k, then setting k= oo may

provide completely wrong inference on estimators for the market research measures.



Serertncecnnncnnan.
eacennal

(a) (b) ()

Figure 3.19: Probability of obtaining a degenerate sample with sample size N = 10000 using (a) MOM, (b) PM (c = 0.5) and
(c) ZTM.
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3.3.3 Simulation results

This section considers the results of a simulation study comprising R = 1000 sample
runs of the NBD distribution with sample size N = 10000 for various parameters
(m, k) with m € {0.1,0.5,1,5,10} and k € {0.01,0.25,0.5,1,3,5}. The purpose of the
simulations are to analytically confirm the results of the previous sections and also
to investigate the behavior of the maximum likelihood estimators for NBD INAR(1)

samples which are difficult to analytically analyze.

Table 3.1 shows the empirical coefficient of variation &y = VN \/ £ Zf;l(léi —k)2/k
for the ML, MOM, ZTM and PM(c,) estimators against the theoretical coefficient of
variation ki = /v, /k (see Fig. 3.1 (b)) when estimating from an i.i.d. NBD sample.
A value of Ky = oo indicates that 15,- <0or 15,- = oo for at least one sample. For all
samples with Kx < oo the PM(c,) estimator has a consistently lower £ than both the
MOM and ZTM estimators. The largest percentage difference between the PM(c,)
estimator and the combined MOM/ZTM method occurs when k£ = 1 and m = 10 when

the value of Kj is increased by a factor of 26% by using the MOM/ZTM method.

Table 3.2 shows the coefficient of variation & = VN \/ % SR (ki — k)2/k for the

ML and PM(c) estimators and Table 3.3 shows the coefficient of variation &, =

vV'N \/ LS (i —m)?/m for ML estimators in the case where the sample is NBD
INAR(1) with & = 0.5. These tables compare estimators computed on the false as-
sumption that the data is i.i.d. NBD against estimators computed using the fact that
the true distribution of the sample is a NBD INAR(1) sample with a = 0.5. For an
i.i.d. NBD sample, the ML estimator for m is the sample mean and the ML estimator
for k is given by Eq. (2.1.2). For an INAR(1) NBD sample, the ML estimators are
computed by maximizing the likelihood function given by Eq. (3.2.3). In Table 3.2 a

value of ¥ = oo indicates that I%i <O0or Iéi = oo for at least one sample.



k=0.01 k=0.25 k=05

m || /Uy /k | MLE | ZTM | PM | MOM || \/v,,./k | MLE | ZTM | PM | MOM | /v, /k | MLE | ZTM | PM | MOM

0.1 8.27 8.78 | 878 | 8.78 | 15.21 10.05 | 10.38 | 10.38 | 10.38 | 11.50 14.01 | 1534 | 15.34 | 15.34 | 16.25

0.5 5.90 591 [ 591 [ 5.91 | 13.70 3.56 362 | 3.63 | 3.62 | 4.76 4.14 4.06 | 4.11 | 4.07 | 4.86
1 5.28 5.30 | 5.30 | 5.30 | 13.86 2.66 2.65 | 2.67 | 2.65 | 4.00 2.85 2.85 | 292 | 2.86 | 3.60
5 4.41 448 | 4.48 | 448 | 13.75 1.77 1.80 | 1.83 | 1.81 | 3.34 1.70 1.77 | 1.89 | 1.78 | 2.66
10 4.15 419 | 420 | 4.19 | 13.74 1.59 1.61 | 1.66 | 1.61 | 3.30 1.51 1.51 | 1.70 | 1.53 | 2.56

k=1 k=3 k=5
m || \/0,,,./k | MLE | ZTM | PM | MOM || ,/v,,./k | MLE | ZTM | PM | MOM NG /k | MLE | ZTM | PM MOM
0.1 21.55 o0 00 00 [e9) 50.40 00 00 00 00 78.86 o] 00 00 00

0.5 5.51 5.52 | 5.68 | 5.53 | 6.00 11.21 | 11.88 | 12.55 | 11.88 | 12.07 16.89 | 19.92 | 22.26 | 20.00 | 19.90
1 3.49 3.51 | 3.65 | 3.52 | 4.07 6.30 6.63 | 745 | 6.63 | 6.82 9.14 9.28 | 10.73 | 9.29 | 9.38
) 1.79 1.81 | 2.07 | 1.83 | 238 2.36 241 | 3.78 | 241 | 2.67 2.94 296 | 5.63 | 296 | 3.09
10 1.55 158 | 2.02 [ 1.60 | 2.22 1.86 1.80 | 425 | 1.81 | 2.07 2.16 2.14 | 741 | 2.15 | 2.34

Table 3.1: Comparison of v N \/ 5 Zf;(’;i — k)?/k against /v,,,/k for the ML, ZTM, PM(c,) and MOM estimators using

R = 1000 i.i.d. samples of the NBD distribution with sample size N = 10000. A value of oo indicates that k; <0 or ]51 = 00 for
at least one sample. All values are given to 2 decimal places.
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k=10.01 k=0.25 k=0.5
Assuming i.i.d. a=05 Assuming i.i.d. a=05 Assuming i.i.d. a=05
sample sample sample
m || MLE | PM(c,) | MLE | PM(cos) | MLE | PM(c,) | MLE | PM(cos) || MLE | PM(c,) | MLE | PM(cos)
0.1 || 1530 [ 15.30 | 12.56 15.04 20.99 20.96 17.06 21.14 32.55 32.48 25.6 32.59
0.5 13.24 ] 13.24 | 12.20 13.16 5.37 5.35 4.02 5.33 6.59 6.52 4.30 6.77
1 13.16 | 13.16 | 11.97 12.84 4.35 4.34 3.29 4.60 4.18 4.15 3.14 4.14
5 3.41 3.42 2.80 3.31 2.90 2.90 227 2.84
10 3.25 3.26 2.57 3.11 2.78 2.78 2.09 2.66
k=1 k=3 k=5
Assuming i.i.d. a=0.5 Assuming i.i.d. a=05 Assuming i.i.d. a=05
sample sample sample
m || MLE | PM(c,) | MLE | PM(cps) | MLE | PM(c,) | MLE | PM(cos) | MLE | PM(c,) | MLE | PM(cos)
0.1 | 77.97 | 76.71 | 37.48 77.63 2122.57 0o 1383.75 00 2463.90 oo 2408.02 00
0.5 | 13.66 | 13.60 [ 11.38 13.92 32.65 32.70 26.84 32.66 63.03 62.30 34.86 62.30
1 5.77 5.68 3.86 6.04 21.30 21.27 18.45 21.35 30.60 30.66 25.74 30.63
2.79 2.76 2.16 2.75 3.78 3.72 2.80 3.91 5.04 4.99 3.97 5.16
10 || 2.62 2.61 1.92 2.56 2.86 2.81 2.06 291 3.37 3.34 2.45 3.45

Table 3.2: Comparison of v N \/ % SR (ki — k)2/k using the ML and PM(c,p) estimators when assuming (incorrectly) that

the sample is i.i.d. against the estimators obtained when the sample is NBD INAR(1) with a = 0.5. Here R = 1000 samples
of NBD INAR(1) realizations distribution with series length N = 10000. A value of oo indicates that k; < 0 or k; = oo for at

least one sample. All values are given to 2 decimal places.
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Table 3.2 shows that the coefficient of variation of the estimator for k, computed
by maximizing the true likelihood equation (Eq. (3.2.3)), is clearly much lower than
the coefficient of variation of the PM(cos) estimator as well as the ML and PM(c,)
estimators computed under the assumption that the data is i.i.d. NBD. The empirical
coefficient of variation of the PM(c,) and PM(co5) estimators are similar. It has already
been noted in Section 3.2.2 that using the PM(c,) estimator leads to a small loss of
efficiency in comparison to using the correct PM(co5) estimator (see Fig. 3.13).

The numerical results in Table 3.3 show that the coefficient of variation for the
estimator of m when maximizing the true likelihood function (Eq. (3.2.3)) is lower
than the coefficient of variation of the maximum likelihood estimator for m of an
i.i.d. NBD sample (i.e. the sample mean). This further indicates that the sample mean

does not maximize the likelihood function given by Eq. (3.2.3).

k=0.01 k=025 k=05
m || Assuming i.i.d. | @ =0.5 || Assumingi.i.d. | @ =0.5 | Assuming i.id. | a =0.5
sample sample sample
0.1 17.45 17.17 6.30 5.64 5.97 4.96
0.5 17.86 17.68 4.28 4.04 3.49 3.29
1 16.63 16.20 3.74 3.66 2.97 2.79
3.59 3.57 2.61 2.58
10 3.37 3.35 2.52 2.50
k=1 k=3 k=5
m || Assuming i.i.d. [ @ = 0.5 || Assuming i.id. | «a =0.5 || Assuming i.i.d. | a =0.5
sample sample sample
0.1 6.53 5.92 7.15 6.39 6.56 5.91
0.5 2.84 2.61 2.90 2.67 2.79 2.59
1 2.51 2.37 1.97 1.83 1.86 1.75
5 1.96 1.93 1.20 1.20 1.09 1.07
10 1.83 1.81 1.12 1.11 1.00 0.98

Table 3.3: Comparison of VN \/ L SR (m; —m)2/m using the ML estimators when
assuming (incorrectly) that the sample is i.i.d. against the estimators obtained when
the sample is NBD INAR(1) with o = 0.5. Here R = 1000 samples of NBD INAR(1)
realizations distribution with series length N = 10000. All values are given to 2 decimal
places.
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(b) m= 0.1 k= 025 by m=01k=1

(byra= 14= 1 b)m=1A=5 (b)m=5A= 1

Figure 3.20: (a) ZTM preliminary estimators for m 6 {0.1,0.5,1,5,10} and
A€ {0.01,0.25,0.5,1,5} in space, (b) ZTM preliminary estimators with cor-
responding 95% confidence ellipse.

Fig. 3.20 shows preliminary ZTM estimates, (b,w’), for different NBD parameters
within the (5, w’) parameter space. For each parameter pair, ZTM estimates for 1000
different NBD samples of size N = 10000 are shown. When comparing the ZTM
estimates in Fig. 3.20 (a) to values of cQin Fig. 3.4(b) it is clear that, even with the
variation in the estimates (b,w'), the variation in the corresponding estimated values
of ca will be small in most regions of the (b, it/)-space. The regions where cQis sensitive
to small changes in (5,w’) and the corresponding maximum possible loss of efficiency
in these regions was shown in Fig. 3.18. The maximum possible loss of efficiency was
based on a 95% confidence ellipse. Fig. 3.20 (b) shows examples of preliminary ZTM
estimates within the corresponding theoretical 95% confidence ellipses for (5, it/). These

pictures are typical for each of the parameter pairs considered in Fig. 3.20(a).
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Conclusion

This chapter has considered moment based estimators as alternatives to the maximum
likelihood estimator for estimating parameters of an i.i.d NBD sample and a NBD
INAR(1) sample. The reason for considering moment based estimators is that, in the
practice of market research, the maximum likelihood method is difficult to implement
and moments are easier to obtain.

In the practice of market research it is common to use the standard method of
moments estimator and the zero term method estimator as the alternative to the
maximum likelihood method when estimating parameters of an i.i.d. NBD sample.
These estimators are, however, inefficient in certain regions of the NBD parameter
space. Importantly, this inefficient region of the parameter space includes areas where
zero term method estimates of NBD parameters occur when fitting the NBD to the
number of purchases of a product made by households at category level.

The power method for estimating the NBD parameters includes as particular cases
the method of moments and the zero term method. The power method estimator for
the NBD parameter k requires the choice of an additional parameter c. For ¢ = 0, the
power method estimator is equivalent to the zero term method estimator and as ¢ — 1
the power method estimator tends to the method of moments estimator.

The power method estimator is more efficient than the method of moments and
zero term method estimator upon suitable choice of ¢ except in the limiting cases as
b — 0 (which is when ¢ — 0) and as k¥ — oo (which is when ¢ — 1); in these cases the
efficiency of the power method is equivalent to the efficiency of the zero term method
and method of moments respectively. In the case of an i.i.d. NBD sample, it is in fact
proven that there always exists a ¢ (¢ € (0,1)) such that the power method estimator

is more efficient than either the method of moments or zero term method estimators.
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The optimum value of ¢ depends on the NBD parameters m and k£ and must be
computed by numerical minimization of the expression for the variance of the estimator
for k given an i.i.d. NBD sample or minimization of the determinant of the covariance
matrix of estimators of m and k given a NBD INAR(1) sample. In the case of an
i.i.d. NBD sample, computing the power method estimator at this optimum value of ¢
provides estimators of k almost as efficient as the maximum likelihood estimator for k.
For a NBD INAR(1) sample, however, simulation results show that maximizing the
likelihood function for the NBD INAR(1) model provides more efficient estimates for
the NBD parameters in comparison to estimating the NBD parameters using the power
method at optimum c. Nevertheless, the power method estimators at optimum c are
still more efficient than the method of moments and zero term method estimators.

Simple approximations to the optimum value of ¢ for the power method estimator
have been proposed. These approximations lead to very small losses in efficiencies
when estimating k relative to the power method estimator computed at the optimum
value of c. Each of the approximations provide slightly different values of c; this shows
the insensitive nature of the efficiency of estimating k using the power method to small
changes in c.

The insensitive nature of the efficiency of the power method estimator for k¥ to small
changes in the value c in the region of the optimum value of ¢, enables the power method
to be robustly implemented in practice. In practice, preliminary estimators that are
possibly inefficient may be used to estimate the value of c; the estimated value of ¢ can
then be used to find an updated more efficient estimator for the NBD parameter k.
Note that this procedure may be used iteratively until the value of estimated ¢ or the
estimates of the parameters converges. Simulation results, however, have shown that,

even on the first iteration, efficient estimators for k£ can be obtained.
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Analyzing the dynamical behavior
of negative binomial processes

This chapter considers the dynamical behavior of negative binomial processes by consid-
ering the correlation between statistical measures computed in varying time intervals.
Analyzing the dynamical behavior of the mixed Poisson process with a negative bino-
mial marginal distribution differs to analyzing the dynamical behavior of the negative
binomial first-order autoregressive integer-valued process, which includes the sequence
of i.i.d. NBD random variables.

The mixed Poisson process is not an ergodic process and therefore analyzing a
single fixed realization does not represent the behavior of the process in the ensemble
of realizations. In the case of panel data, many realizations are observed and it is
therefore possible to check the appropriateness of fitting a mixed Poisson process by
considering the covariances between statistics of the marginal distribution computed
in different time intervals.

The NBD INAR(1) process is an ergodic process and the suitability of the INAR(1)
process as a model for observed data can be confirmed by considering the autocorre-
lation function of the process. In addition to time domain analysis, where autocorre-
lation functions are considered, one may also consider spectral domain analysis of the

INAR(1) process by considering the spectral frequencies of the process.
87
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4.1 Mixed Poisson processes

This section considers the dynamical behavior of mixed Poisson processes by consid-
ering the covariances between statistics and estimators in two different time intervals.
The gamma Poisson process is considered as a particular example in Section 4.2, where

the correlation between commonly used market research measures is also considered.

Background

Recall the definition of a mixed Poisson process. Define the multivariate Poisson dis-

tribution as

Atigr — t))ir ™™
- (-:-+1 ‘"):]1:-)! exp (—A(tis1 — 1)),

where A > 0 is the intensity, Z = {Z(t1), Z(t2),...,Z(tn)} is a random vector, the

IP’(Z=w|A=/\)=ﬁ
=0

set © = {zo, T1,Z2,...,Zn} is a set of non-negative integers such that 0 = o < 7; <
.<zpand 0 = ¢ty < ¢ < ... < t, represents an increasing sequence of time
points. The mixed Poisson process is then defined as a process whose finite-dimensional

distributions are

[e o]

P(Z = x) =/0_ P(Z = @|A = \) dUA(\; 6).

Here Uj(A;8) is the distribution function for the random variable A and 6 is a vector
of unknown parameters. The function U, (); 0) is commonly known as the structure
distribution of the mixed Poisson process.

In this section the asymptotic distributions of different statistics and estimators
computed in two different, possibly overlapping, time intervals, using data from mixed
Poisson processes, are derived. Section 4.1.1 considers the covariance of various statis-
tics computed in two different time intervals. The joint asymptotic distribution of
estimators are then derived in Section 4.1.2 using the results of Theorem 2.2.1 and

Section 4.1.1.
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4.1.1 Covariance of statistics

The simple case of computing the covariance of statistics computed in non-overlapping
intervals is first considered. The results are then generalized to the case of statistics

computed in overlapping intervals.

Non-overlapping intervals

Note that since the Poisson process is a stationary process that is homogenous in time,
considering covariances of two statistics computed over the intervals [¢;,¢2) and [t3, t4)
with 0 < t; < t; < t3 < t4 is equivalent to considering covariances of the same statistics
over the time intervals [0,t) and [t,t + s), so that ¢4 =0, to =t3 =t and t4 =t + s.

Consider the covariance between the statistics

N N
Joe= 5 D 4(a(0,0) and dours = > Wlaltt+9))
1=1 =1

where {21(0,1),...,2~5(0,t)} and {z(t,¢t + s),...,2~n(t,t + s)} are i.i.d. data from a
mixed Poisson process observed over two adjacent time intervals [0,t) and [t,t + s)
respectively (t,s > 0). Here ¢ and 1 are some functions possibly dependent upon the
vector of parameters 6.

Note that for fixed u and v the observations 2;(u,u+v) (I = 1,..., N) are mutually
independent. For fixed [, the observations z(0, t) and z (¢, t-+s) are independent Poisson
distributed with means A\t and A;s respectively. Here ); is random for [ =1,..., N,
but is the same for fixed ! as time varies. The samples {2(0,%),...,2n5(0,%)} and
{z1(t,t+s),...,2n(t,t +5)} are dependent since, for each I, 2(0,t) and z/(t,t +s) are
Poisson distributed with a common ;. Let (, , be a random variable whose distribution

is identical to the distribution of the i.i.d. random variables z;(u,v) ({ = 1,..., N), the
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number of events occurring in the time interval [u,v). Then

NCov [fo Brrs] = Cov [$(Go,)s Y(Grews)] - (4.1.1)

Indeed,
NCov [¢oz, V4] = NE(Gor — Edo) (Pt e4s — Ethrers)

N
— NE H% 3" [6(2(0,6)) ~Ee(a(0, t))l} x

=1

N
{Nz (z1(t, t+5))—Ep(2(t, t+3))]}]

N
[z 6(21(0,1)) — E¢(2(0, )] [¥(z1(t,t +5)) — E(an(t,t + )

N
+ > [6(2;(0, 1)) — Eg(2(0, 1) [ (a(t, t + ) — Exp(a(t, t + 5))]
J#l

2

= }'v“ E[¢(2(0,1)) — Ed(2(0,1))] [¥(a(t, t + 5)) — Eyp(ai(t, t + s))]

=E [¢(C0’t) — Eo(Co,e)] [¥(Ceitrs) — E(Certrs))]

= Cov [¢(Co,t), ¥(Ctets)] -

The covariances of pairs of statistics, commonly used in the estimation of NBD
parameters, are derived below. These statistics are the method of moments statistics
(22, 2P) for some a > 0 and B > 0; the power method statistics (z, c?) for some c # 1,
general power method statistics (cf,c3) for some ¢; # 1 and c; # 2 and finally the
functionals used in maximum likelihood (%log Plo.y)(2;8), a%jlog Ditt+s)(2;0)). Let
I.=0) be the indicator function such that Ij,—q) = 1 if z = 0 and Ij,—q] = 0 otherwise.
Define ¢* = 1 when 2z = 0 and ¢* = 0 otherwise, then the zero term method statistics

(2, I};=q)) are equivalent to the power method statistics (z, ¢?) for ¢ = 0.
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Let £(c) = Ee A be the Laplace transform of the random variable A with its
derivative £'(c) = ZEe~** = —E[Ae~"]. Additionally, let pp,.)(; 8) denote the mixed
Poisson distribution over the time interval [u,v). Then the covariances for the statistics

discussed above are:
Case 1. ¢(2) = 2%,9(z) = 25
Cov [0(Co,t), V(Crt4s)] = Epta(Mt)pg(As) — Epa(Xt)Epg(As),

where p,(v) = Ex% is the a-th moment of a Poisson random variable , with

intensity v.

Case 1la. ¢(z) = z,9(2) = 2:
Cov [(Co,t)s ¥(Ceers)] = EosCrirs — ECo B ers = EA’ts — EAtEAs = tsVar A.
Case 1b. ¢(z) = 2z,¥(2) = 2%
Cov [¢(Cos), Y(Cte+s)] = EdoCess — ECoECE, 1, = ts*Cov[A, A%] + tsVarA.
Case 2. ¢(z) = z,¥(z) = c*:

Cov [¢(Co,t),1/)(Ct,t+s)] — ]ECO,tCCt'H-J _ ECO,tEC(!,t+a = EAte—20-¢) _ EAt Ee—As(—)
= —t[L'(s(1-c)) + EA L(s(1-¢))].

Case 3. ¢(2) = i, Y(z) = &

Cov [9(Gos), ¥(Grers)] = Eef** 5+ — Eef B+

—_ ]Ee—At(l—cl)e—As(l—cz) _ ]Ee—At(l—cl)IEe—As(l—cz)

= L([t(1 — 1) + 5(1 = c2)]) — L(E(1 = 1)) L(s(1 = ¢2)).
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Case 4. ¢(2) = 5 logppy(2: 0),¥(2) = 73; 1og Pit,e+5)(2; 0)]:

0 0
Cov [¢(Co,z)s ¢(Ct,t+s)] = EW log P[o,t)(Co,t; 9)%‘ 10gp[t,t+s) (Ct,z+s; 0)
1 J
1

0 0
=E )égp[o,t) (CO,t;o)% [t,t+s)(<t,t+s§0)

P[o t) (Co t G)P[t t+s)((t t+s, 0

p{lo 1), [t t+s)}(u v;0) 8
N aa P u; 0 (v, 0
gg P, t) u; 6 P[t t+s)(’U 0) 96; [0, t)( )ag Pit,t+ )( )

where pyo,¢),(t,t+s)} 1S the joint probability mass function of the random variables

Cot and (i t4+s. The derivative z;%;P[u,u)(Z; 0) can be computed using the formula

a(r; 0 (50 = 660 /oo (Av —u))? e)ch)(—)\(v —u)) dUA (X 6)

_ A*exp(—A) 8 A
—v—u/o_ 2! 06; dUn v—u’e )

Overlapping intervals

This section considers covariances of statistics in the most general case when the inter-
vals are possibly overlapping. This includes the cases when the intervals do not overlap

and also when the intervals coincide. Consider the covariance of the statistics

- N - 1 X
B ts = —1]\7; #(atts)) and Pup = §¢(z,(t2,t4)>

where {21(t1,t3),...,2n(t1,t3)} and {z1(t2,t4), ..., 2n(t2,t4)} are data from a mixed
Poisson process observed over two, possibly overlapping, intervals [t;,t3) and [ts,4)
with 0 < ¢; <ty < t3 < t4. Since the z(u,u +v) for | = 1,..., N are mutually

independent, the covariances of the statistics can be simplified to

NCOV [(ztl,ta’ 1/_)t2,t4] = COV[¢(Ct1,t3)1 'l)b(ctz,t‘g)]- (412)

Computing these covariances for different functions ¢ and v can be further simplified

by using the fact that the Poisson process has stationary and independent increments.
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Case l'a. ¢(z) = z,9(2) = =

COV[¢(Ct1,t3)’ 1/’(@2&4 )] = Ectl,tactz,n - IECh,tsIECtz,u
= ]E(Ctl,tz + Ctz,ta)(ctz,ta + Cts,ta;) - (IECtI,tZ + IECtz,ts)(IECtz,ts + E<t3,t4)

= Cov(Cty t2) Ctarts) + CoV(Giy tyy Ctata) + COV( Gty tr Ctarte) + Var($e )

and using the results of Case 1

COV[¢(<t1,ta)7 'l/)(ctz,h)] = (t3 - t2) EA + (t3 - t2)2varA
+ [(t2 - tl)(t3 - t2) + (tz - tl)(t4 - t3) + (tg - t2)(t4 - tg)] VarA

= (ts — t2)(t3 — t1)VarA + (t3 — t2)EA.
Case 1'b. ¢(z) = z,¢(z) = 2%

Cov(p(Certs) W(Ctata)] = By 13 10 — Bty 1 ECE 4,
= ]E(Ctx,tz + Ctz,ta)(clz,ta + Ct3,t4)2 - (]Ectl,tz + ECtz,ts)E(Ctz,ta + Cta,t4)2
= Cov(C 2 <t22,t3) + 2CoV(Gty 25 Gz tGta ta) + Cov(Ciy Cti,u)

+ COV(Ctz,t;;, <t22,t3) + 2COV(Ct2,t3> Ctz,ts Cts,t.x) + COV(Ctz,ts’ Ctga,t‘;)

and using the results of Case 1

COV[QS(Ctl,ta)’w(Ctz,t«:)] = (t4 - t2)2(t3 - tl)COV(A’ A2) + (t4 - tZ)(t3 - tl)VarA

+ 2(t4 - tz)(t;; - tg)]EA2 + (t3 — tg)IEA.
Case 2. ¢(z) = z,9¥(2) = ¢

Cov[¢(<t1,t3)) w(ctg’t4)] = Ectl,tacCt2‘¢4 — IECt],taEcCtz't“
= ]E(Ctlnt2 + Ctmta)CCt%“ - E(Ctl,t2 + Ctz,ta)]ECQz’M

= Cov (Ctl,tz) cCtz,t4) + E;, ¢4 cStaita oStata — ECtz,taECCtz’“.
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Using the result of Case 2
Cov (Coy 5y €S124) = —(t2 — t1) [L'((ta — t2)(1—¢)) + EAL((ts — t2)(1—0))].
Similarly,

ECy, ycftatacststs = Ep [E (G 1523 |A = A) E (S04 |A = N)]
= Ex [(Ac(ts — tz)e'A(‘a"tz)(H)) (e‘A(‘4“3)(1‘C))]
= c(t3 — t2)Ep [AeAta=12)(10)]
= —c(tz — to) L' ((t4 — t2)(1—=0)).
Noting that E(y, ¢, Ec2t = (t3 — t2)EAL ((t4 — t2)(1—c)), the above results are
combined to give
COV[Ch,tsi CC%M] = '_(t2 - tl) [E,((t4 - tz)(l—c)) + EAE((t4 — t2)(]_—c))]
— c(ts — t2) L' ((ta — t2)(1—c)) — (ts — t2)EAL ((ts — t2)(1—c))

= — [(tz - t1) + C(tg —_ tg)] ﬁl((t4 — t2)(1—0)) bl (t3 - tl)EAﬁ((t‘; - tg)(l—c)).
Case 3. ¢(z) = &, ¢¥(2) = &

Cov[(Ceats)s Y(Craa)] = Eci1 2 c52* — EcST By
1,13 2;l4 1 2 1 2
— ]Ecgfl,t'z (6102)02,:3 cgfa,m _ Ecgtlxta Ecgh‘"t“

— ]Ee"A(tT'tl)(l_Cl)e‘A(tS_t2)(1“clc2)e“‘A(t4_t3)(1“C2) _ Ee—A(ta—tl)(l—cl)Ee—A(t4—tz)(l—cg)

= L: ((t4—t1) - (tg—tl)cl - (t3—t2)0102— (t4—t3)62) —-E ((tg—tl)(l—cl)) E ((t4—t2)(1—02)).

Ift, =0,t; =t3 =t and t4 = t + s the results of Section 4.1.1 are obtained, i.e. the

covariances over non-overlapping intervals, in all three cases.
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Covariance between statistics in the same time interval

Consider the particular case when t; = t; = 0 and t3 = {4 = t so that the statistics are
computed in the same time interval. The covariances between statistics in overlapping

intervals can then be simplified as follows:
Case 1a. ¢(2) = 2,9(2) = z:
Var (o) = t*VarA + tEA.
(This formula is given in Grandell (1997, p. 14).)
Case 1b. ¢(2) = 2,9(2) = 2% :

Cov[Cot, (5] = t*Cov[A, A?] + t*VarA + 2t’EA® + tEA.

Case 2. ¢(2) = z,9(2) = ¢*:

Cov([(os, 4] = —t[cL (t(1—c)) + EA L(t(1—c))).

Case 3. ¢(2) = ¢}, 9(2) = :

Cov[ci™, ] = L (t(1 = e1c2)) — £ (t(1 — 1)) £ (t(1 = c2)).

Consider also

Case 4. Any suitable ¢(2) (so that the expectations below exist)

and ¢(2) = a%, log pio,t)(2; 0) :

#(Cos) O

Cov [¢(Co,t), ¥(Co,e)] = E(Co, t) logp[o t)(Cot; 0) = Ep(o,t) (Cos; 0) %P[o,t)(@,t;e)

= Zd’(u) P[o t)(u; 9).

u=0
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4.1.2 Covariances of estimators

Let 9(1) and é(z) be estimators of @ in the intervals [t;,¢3) and [to,t4) constructed
using the general scheme of Section 2.2.1 with the sets of functions { fi(l)(z; 0)}¢, and
{ fi(z)(z;O) d_ , respectively. Assume that Theorem 2.2.1 applies to 9(1) and 8? SO
that both estimators are asymptotically normal and let V), V® Df® and Df?
be the matrices associated with 8" and 8. Using Theorem 2.2.1, VN(f — Ef) is

asymptotically normal A(0,Df), where

Mz 0 - F EfY (¢ 050
o= (Jaia)) 7= (f ) o= (B

and

DFV  C(fO, §@
ad =(C(f‘1{f(2’)T s )) (4.1.3)

with
C(£, 1) = | Cov(1 (Gu6i ), £2Cusi O
The components of the matrix C( FO, f(2)) are computed using the results of Sec-
tion 4.1.1.
Consider the problem of estimating the vector 8, = (0(1), 0(2))T with the estimator
0, = (9(1),@(2)>T, where 8 and 8® are two different copies of . The fact that 6
and 8@ are two different copies of 8 implies that the matrix of partial derivatives V/,

defined by Eq. (2.2.4) with 6, substituted for 8*, has a block diagonal structure

v o

Using Theorem 2.2.1, vVN(6, — 8,) is asymptotically normal N/ (0,V(Df)VT), where
Df and V are defined by Egs. (4.1.3) and (4.1.4). The asymptotic covariance matrix

is therefore

v pr® (VT vO W, @) (vEnT

VUDf)VT:(V(Z)(C(f(l)’f(Z)))T(V(l))T VAR (y@yT ) (4.1.5)
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4.2 The gamma Poisson process

The gamma Poisson process is a mixed Poisson process whose structure distribution

Ua(X; 0) is the gamma distribution with probability density function

g(Aa,k) = a>0,k>0, A>0.

#Tk)" °©

The finite-dimensional distribution of the gamma Poisson process is

P(Z =) = /: (ﬁ LTS 7)) s VR t,-))) g\ a, k) dA

i—0 ($i+1 "xi)!

k + xn) H F (bigq — BT a®n
)! (1+ aty)entk’

$z+1 - xz

The one-dimensional distribution of the gamma-Poisson process is the negative bino-

mial distribution (NBD) with probabilities

P =P {Z{h) =) = I11(“1(‘:1':)2;'5) (1 +1at1)k (1 -T—t;n)z .

Four methods are considered in the estimation of (m, k). The estimators 77 and k

are obtained as the solutions to the equations f; — Efy = 0 and f, — Ef; = 0, where
= % Z{il fi(z;m, k) and f, = 71V Zf;l fa(zi;m, k) and {z1,...,2x} is ani.i.d. NBD
sample. The methods are defined by the functions f,, f, which are as follows:
e Maximum likelihood (ML): f,(z;m, k) = Ql"g—g(fr:ﬂ@, fa(z;m, k) = Mé%k);
e Standard method of moments (MOM): f(2) = z, fo(z) =

e Zero term method (ZTM): fi(z) = 2, fo(2) = 1 if z = 0 and 0 otherwise;

e Power method (PM): f1(z) = 2, fa(2) = c* for some ¢ # 1;
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4.2.1 Covariance of statistics

This section considers the covariance of the statistics ¢ and 1 for the following pairs

(35)<{(2)-(2).(2).(2))

For the gamma distributed random variable A with density g(}; a, k) = A*~le=*/¢/(a*T'(k))

of functions:

with @ > 0, £ > 0, A > 0 the following moments and expectations are required:

o 0°T(k+a)
BN ="Tm

L'(c) = —ak(1 +ac)™*, Cov(A,A?) = 2a3k(k + 1).

(«=1,2,3,...), VarA=2a2%k, L(c)=(1+ac)F,

The covariances between statistics in non-overlapping and overlapping intervals follow

from the results in Section 4.1.

Non-overlapping intervals [0,t) and [¢,t + s)

Case 1la. ¢(z) = z,9¥(2) = z:

Cov [¢,¥] = tsa’k.
Case 1b. ¢(z) = z,¢(z) = 2%
Cov [¢, 9] = tsa’k(1 + 2as(k + 1)).
Case 2. ¢(z) = z,9¥(z) = c*
Cov [, 9] = —tsa’k(1 + as(1—c))* 1 (1—c).
Case 3. ¢(z) = &, 9(2) = c3:
Cov [¢, 9] = (1 +at(1—c;) + as(1—c2)) F—(1+at(1—c1)) ™ (1+as(1—cy))7*.
Note that in the case of ¢; = c; = ¢

Cov (g, 9] = (1 +a(t+s)(1-c) ™ = (1 +at(1—c)) ™" (1 +as(1—c))7*.
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Overlapping intervals [t;,t3) and [t,t4) With 0 <t <ty <t3 <ty

Case la. ¢(2) = z,¢(2) = =

Cov [, 9] = (ta — t2)(ts — t1)a’k + ak(ts — t,).

Case 1b. ¢(z) = z,¥(z) = 2%

Cov [¢, 9] = 2(ts — t2)(ts — t1)a’k(k + 1) + (ta — t2)(ts — t1)a’k

+ 2(t4 - tz)(tg - tg)a2k(k + 1) + (t3 - tz)ak.

Case 2. ¢(z) = 2,¢(2) = c*:

_ak(1 —o)[(ts — ta) + alts — t1)(ts — tz)]_

Cov [¢,9] = (1 + ats — t2)(1 — ¢))F+1

Case 3. ¢(z) =cf,9(2) = c&:

COV [(Z, ’IZ)] = (1 + a[(tg—tl)(l—cl) + (tg—tg)(l—CICQ) + (t4—t3)(1—02)])—k

—(1+a(ts —t))(1— 1)) (1 +ats — t2)(1 — c2)) 7"
Note that for the case t, = t; and t4 = t3 the covariances are obtained for statistics
computed in the same time interval. Let t, = t; = 0 and t4 = t3 = ¢ then
Case 1la. ¢(z) = z,9(2) = 2z

Cov [(75,1/_1] = kat(1 + at).

Case 1b. ¢(2) = z,¥(2) = 22

Cov [¢, 9] = kat(1 + at) (2(k + 1)at +1).

Case 2. ¢(z) = 2,¢(2) = c*

Cov [¢, 9] = —akt(1 — ¢)(1 + at) (1 + at(1 —c))~*".
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Case 3. ¢(2) = cf,¥(2) = c5:

Cov [p, 9] = (1+ at(l—c1c2))F — (1 +at(1 — 1)) ™ (1 + at(1 — ) 7.

Fig. 4.1 and Fig. 4.2 show bivariate plots of various statistics ¢ and ¢ computed in
different time intervals for 1000 replications of the gamma Poisson process with sample
size N=1000. A 95% confidence ellipse based on the covariance matrix (4.1.3) and
constructed under the assumption of asymptotic normality is also shown. Figures are
shown for the two cases of overlapping and non-overlapping time intervals and confirm
the results of this section.

Fig. 4.3 and Fig. 4.4 show correlations p(¢, ) = p(¢, ) (follows from Eq. (4.1.1)
and Eq. (4.1.2)) for various functions ¢ and ¢ in the case of overlapping and non-
overlapping time intervals. These correlations will be useful when computing the cor-
relations between estimators and market research measures of the gamma Poisson
process computed in different time intervals. Note that given data from the gamma
Poisson process, computing the correlations between statistics in different time inter-
vals can give some indication as to the region of the parameter space in which the
parameters lie.

Fig. 4.5 and Fig. 4.6 show the correlations p(¢,¥) = p(¢, 1) (for various functions ¢
and ) in the case m = 1 and k = 1 as a function of varying time for both overlapping
intervals and non-overlapping intervals. In the case of overlapping intervals, for the
statistics shown, the absolute value of the correlation decreases linearly as the amount
of overlap decreases. As would be expected, if the statistics computed in each time
interval are the same then the correlation tends to 1 as the proportion of overlap goes
to 1. The adequacy of the gamma Poisson process as a model for data can be checked
by comparing the empirical covariances of statistics obtained from data in varying time

intervals to the expected gamma Poisson covariances of statistics.



Joint distributions of statistics: Non-overlapping intervals [0,£), [£¢ + s)
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Figure 4.1: 1000 points of
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~ > versus y/Nfy —E*>) computed for various functions (f)(z7) and ip(z) when sampling from the

gamma Poisson process with m = 1,k = 1 with samples of size N = 1000 in the case r = 1,5 = 1. A 95% confidence ellipse based on the

covariance matrix (4.1.3) and constructed under the assumption of asymptotic normality is also shown.

Joint distributions of statistics: Overlapping intervals [ti,13), [£,84)
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Figure 4.2: 1000 points of - EP versus -/N(4> - Et
gamma Poisson process with m =

iI>E)= 0.5%

(d)0(2)=0.25%(z)=0.75!

fomputed for various functions

I,k = I with samples of size V = 1000 in the case z| = 0,2 = M3 = 2,t4= 3. A 95% confidence

ellipse based on the covariance matrix (4.1.3) and constructed under the assumption of asymptotic normality is also shown.



Correlations between statistics: Non-overlapping intervals [0,2), [t,t + s)

(a) 5@ = zr ip(z) = 2 (b) £2) = 2, 'ipz) = z2 (©) L@ =1z 'ipm =052 (d) 9% = 0.25z, ip{z) = 0.75"

Figure 4.3: Correlation p(<NCo), N(Ct,t-i-s)) = Cov [H(B2), /-y/Var</>(Co,*)Var(CVHs) plotted for all NBD parameter values for
various functions and »f in the case # = 1 and s = 1 when sampling from the gamma Poisson process.

Correlations between statistics: Overlapping intervals [t\ts)y [£2"4)

(@) 02)=2,0(2) =2 (b) 0(2)= 2, 0(2)= 22 (©) 02) = 2, V12) = 0.5*  (d) 0(z) = 0.25%, 0(z) = 0.75!

Figure 4.4: Correlation p(0(CtLt3),0(Cta,t4)) = Cov [0(0,.83), 0 «i2,id))/ V5. Tip(h:63)Va.rJp((hM) plotted for all NBD parameter values

for various functions ¢>and in the case #| = 0,£2 = 17£3 = 2, £4 = 3 when sampling from the gamma Poisson process.
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Correlations between statistics: Non-overlapping intervals [0, £), [£¢ + s)
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Figure 4.5: Correlation p(<€(Co,t)5SVKCnts)) = Cov [Hotp>  t1+s)] NVar</>(Co,t)Var’(Ct,t+s) plotted against s for various functions %
and ip in the case ¢ = 1 when sampling from the gamma Poisson process with m = 1 and k = L

Correlations between statistics: Overlapping intervals /[7),ts),
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Figure 4.6: Correlation p(*(Cti,t3)i V(Cs,69) = Cov [NCH,B) 1 yVai<p(Ct],Byvar~n(Ct2M)>where *3- =1 = <4- =2 = 1 plotted

against the overlap ¢3 —s2 for various functions and ijp when sampling from the gamma Poisson process with m = 1 and K =
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4.2.2 Covariances of estimators

This section considers the covariances between estimators of the gamma Poisson pa-
rameter pair (m, k) when the parameters are estimated using the method of moments
(MOM), power method (PM) and zero term method (ZTM) computed over two dif-
ferent time intervals. The estimator for m is identical for all three methods and is
given by

N
1
ooy = W) v>u>0
oo = gy 2 ) 0>

when using observations observed over the interval [u,v). The MOM, PM and ZTM

use the respective statistics

z,(u v) al zi(u,v)
MOM - N Z 2 (u,v) )’ PM(c) Z cz,(u v) ’

zi(u,v)
and fZTM - N Z ( I[z,(u v)=0] ) (4.21)

where the parameter ¢ > 0 (c # 1) is a constant and Iz (u,v)=0) is the indicator function
with I uu)=0 = 1 if 2(u,v) = 0 and I, uv)=0) = O otherwise. The covariances of

the statistics f and f__  were discussed in the previous section. In the

MOM? fPM(c) ZTM

computation of covariances between parameter estimates only the matrix of partial
derivatives V' defined by Eq. (4.1.4) is required. The covariance matrices for the esti-
mators (172, k) can then be computed using Eq. (4.1.5) The matrix of partial derivatives

for the MOM, PM and ZTM are respectively

1 0 1 0
‘r—l _ t V—l _ t x
MOM - 1+2at1k+1) _ 1 9 PM(c) - c—1 _ r +1 )
L a2t a’t? rlog(r)r+l rlog(r) -+l

0
1 (Hat)k+? )
(1+at) log(1+at)—at ~ (1+at) log(1+at)—at

—
l o =

V—l

zr™M

where r =1+ at(1—c) and t = v — u.
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The covariance matrices for estimators (7, k) computed in different time intervals

are analytically simple only in the case of non-overlapping intervals for the MOM, PM

and ZTM. The covariance matrix of the MOM estimators is

) [~ ak!1t+at2 0 a2k 0 7
my 2
. 2k(k+1)(1+at
ol & |_ 0  ZbtlLldet) 2k (k+1) (422
‘n’}s a2k 0 a.k!l:as! 0 e
k
8 L 0 2k (k+ 1) 0 2k(k+i)g1+a3)2 ]
and the covariance matrix for the PM and ZTM estimators is
, [ eklta) a2k 0 ]
my
D 'I;;t _ 0 VUpum (C; t) 0 ]D2,4 (4 9 3)
T)’}s - a2k 0 ak!ls-l-asg 0 o
kg
L 0 D4:2 0 Upm (C; 3) i
Dy, = Dy = rf kL (o — 1) — g — (1= )2t sk
S (relog (ry) —re + 1) (rs log (rg) — 7o +1)
v () = (1+au—auc?) *r2k+2 72 _kau(14-au)(1—c)?
PM\™ - ’

[rulog(ry) — 7o + 1)°
where 7, = 1+ au(1l — ¢). For the ZTM the matrix D can be computed using (4.2.3)
with ¢ = 0.

Fig. 4.7 and Fig. 4.8 show bivariate plots of various estimators 8(t) and 4(s) com-
puted in different time intervals for 1000 replications of the gamma Poisson process
with sample size N=1000 with m = 1 and kK = 1. A 95% confidence ellipse based
on the covariance matrix (4.2.3) and constructed under the assumption of asymptotic
normality is also shown. Figures are shown for the two cases of overlapping and non-
overlapping time intervals and confirm the results of this section.

Fig. 4.9 and Fig. 4.10 show correlations between p(8(t), 8(s)), where 8(t) and 6(s) are
different estimators of the same parameter §* computed using data in non-overlapping

and overlapping time intervals. For fixed time intervals, the correlations for estimators

of m and k increases as w increases for the MOM, PM and ZTM estimators.
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Fig. 4.11 shows correlations between p(0(t), 6(s)) against the time interval s, where
6(t) and 6(s) are different estimators of the same parameter 6* computed using data
in non-overlapping intervals in the case when ¢t =1, m = 1 and k = 1. The correlation
p(8(t),8(s)), in the case where §* = m and 6* is the MOM estimator for k, increases to
a constant as the length of the second time interval increases. For any set of parameter

values (a, k), where a = m/k, it is straightforward to show using (4.2.2) that

o . . 1\? at : . . | at
gﬂ(m(t),m(s))= (l-l-as) /T (iTas)ts and sllrgp(m(t),m(s))_ Tral’

so that the derivative is positive for all @ > 0, £ > 0 and the correlation tends to a

constant as s — oo for the ML, MOM, PM and ZTM estimator of m. For the MOM
it is straightforward to show using (4.2.2) that

0 (ko) i a’t . £t at
—p(k(t), k(s)) = At a5 as)? and 8ll'rglo,o(k(t),k(s)) = Trat’

so that the derivative is positive for all @ > 0, k > 0. Therefore, the correlation
p(k(t), k(s)) for MOM estimators of k is also strictly increasing and tends to a con-
stant. There is no simple equivalent limiting form for the covariance between the PM
estimators for k.

Fig. 4.12 shows correlations between p(6(t),d(s)), where t = t; — ¢, = 1 and s =
ta—ty = 1fort; <ty < t3 < ty4, against the length of overlap t3 —t,. Here é(t) and 9(3)
are different estimators of the same parameter 8* computed using data in overlapping
time intervals of length t = ¢t3 —t; = 1 and s = t4 — t = 1, in the case when m =1
and k = 1. For the MOM, PM and ZTM methods, the correlation of estimators of m
and k increase as the length of the overlap increases. For any fixed length of s and ¢
and any set of parameter values (a, k), as the length of the overlap tends to zero, the
correlations are equivalent to the correlations in non-overlapping intervals of the same

length s and t.



Estimators: Non-overlapping intervals [0,2), [£t+ s)
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Figure 4.7: 1000 points of y/N(6(t) —0%(t)) versus VrN(6(s) - 0*(s)) computed from data in the time intervals [0,#) and [t ¢ + s)
respectively when sampling from the gamma Poisson process with m = 1,k = 1 and samples of size V = 1000 in the case t = 1,5 = 1.
A 95% confidence ellipse based on the covariance matrix (4.1.5) and constructed under the assumption of asymptotic normality is also

shown.

Estimators: Overlapping intervals and /t2,U)
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Figure 4.8: 1000 points of \/N(9(t) - 6%(t) versus \/N(6(s) - 9*%(s)) computed from data in the time intervals [ti,#3) and [2"4)
respectively when sampling from the gamma Poisson process with m = [,k = 1 and samples of size NV = 1000 in the case 7| = 0,"2 =
1,83 = 2,84 = 3. A 95% confidence ellipse based on the covariance matrix (4.1.5) and constructed under the assumption of asymptotic
normality is also shown.



Correlations between estimators: Non-overlapping intervals [0,

(a) 6' =m (b) 0* =iOM) (o) 0*= (PM(0.5)) (d) O* (ZTM)
Figure 4.9: Correlation p(9(1),9(s)) = Cov[0(£),0(s)]/yVar [#$)]Var[0(s)], where 9{t) and 9{s) are different estimators of the same
parameter 9* computed using data in the time intervals [0,7), [£7 + s) respectively. Correlations are plotted for all NBD parameter

values in the case r = 1 and s = 1 when sampling from the gamma Poisson process.

Correlations between estimators: Overlapping intervals \#i,zs) and [t2,£4)

(a) 0= m (b) 9% = k (MOM) (c) 9*= k (PM(0.5)) (d) 9% = k (ZTM)

Figure 4.10: Correlation p(9(1),9(s)) = Cov[<2), 0(s)]/yVax[0(t)]Var[<?(s)], where 9{¢t) and ~(s) are different estimators of the same
parameter 9* computed using data in the time intervals ["1,"3) and [t2,/1) respectively. Correlations are plotted for all NBD parameter
values in the case ¢\ = 0,<2= 1,*3 = 2,4 = 3 when sampling from the gamma Poisson process.
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Correlations between estimators: Non-overlapping intervals [0,£), [££+ s)
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Figure 4.11: Correlation p(0(t),0(s)) = Cov][0(t),0(s)]/*Var[0(t)]Var[0(s)] versus s, where 0{t) and 0{s) are different estimators of the
same parameter 0* computed using data in the time intervals [0,£), [££+ s5) respectively. Correlations are plotted for m —1 and &k = 1
in the case = 1 when sampling from the gamma Poisson process.

Correlations between estimators: Overlapping intervals [t
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Figure 4.12: Correlation p(0(t)J(s))Cov[0(t), 0(s)]//var[0(t))Var[0(s)] versus overlap I3 —£, where 6(z) and 0(s) are different
estimators of the same parameter 0* computed using data in the time intervals [#i,ts) and [£”4) respectively. Correlations are plotted
for m = 1 and &k = 1 in the case :3 —¢| = :4 —£ = 1 when sampling from the gamma Poisson process.
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4.2.3 Corr_elations between market research measures

Section 4.1 considered the covariances of statistics and estimators for mixed Poisson
processes and Section 4.2 considered results for the specific case of the gamma Poisson
process. In market research, the purpose of estimating the parameters of the gamma
Poisson process is to be able to predict the market research measures discussed in
Section 2.4.1. Using the results of Section 2.2 it is possible to compute the correlations

between these measures in two different time intervals.

Market research measures for mixed Poisson processes

Let X (t) denote the one-dimensional marginal distribution of the mixed Poisson pro-

cess. The following market research measures will be considered:

1. Penetration

bo(t) = 1 — P(X(t) =0), 0<b(t) < L;

2. Purchase frequency

w(t) =EX@®)|X(@#) 21), w)=>1;

3. Measured repeat

Be(t) =P(X(@t) =r+1X(t)>7)= ijgggﬁggjg, 0< 6 (t) < 1;

4. Repeats per repeater

EX(t)-S"_,iP(X()=j
wr(t) = E(X(0) = rlX(t) > 7 +1) = TPl () > 1.

In practice and in literature there is ambiguity in the definition of the market measures.
It is unclear as to whether the measures refer to observed values or expected values
of the underlying sampling distribution. In this thesis the market research measures
are considered to be those obtained from the underlying sampling distribution. The

measures are therefore functions of the moments of the distribution of X(¢).
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Let @ = (61,...,04)T denote the vector of parameters for the one-dimensional
marginal distribution of X (t). The theoretical market research measures are straight-
forward to compute from knowledge of the one-dimensional marginal distribution of
X (t). The market measures may be estimated by using different estimators 0 of 6. The
covariances of the market research measures will therefore depend on the estimation

method used to estimate the parameter vector 6.

Computing the covariance matrix

The asymptotic normal distribution of different estimators of (m, k) using maximum
likelihood and generalized moment based estimators given a sample of i.i.d. NBD obser-
vations was considered in Chapter 3. The asymptotic normal distribution of estimators
of (m, k) computed in two different intervals was considered in Section 4.2. Using the
results of these sections and the theory given in Section 2.2 it is possible to derive
the covariance of market measures computed in two different time intervals when the
underlying process is gamma Poisson. Let m; and fc} be parameter estimates of the
gamma Poisson process using data observed over a time interval of length ¢t. The mar-
ket research measures of penetration, mean purchase frequency, measured repeat and

repeats per repeater are respectively given by

s (L T\ s 1= B () =)
o= (H 7) P05y ’(t)’l—zg;éﬂ?’(X(t>=j)

and @(t)=mt 2j=0] X () J)—r.

1— Y7 o BX(t) = )

where

-~

. F E . —~ —kt — J
Bx(t) = 5) = L +9) (1 N 22) (Am_ﬂ> _
F(kt)]' kt mtt + kt
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It should be noted that for finite sample sizes 3, (t) and &; (t) are biased estimators
of B,(t) and w,(t) respectively. They are, however, asymptotically unbiased and the
asymptotic distributions of the estimator will therefore remain unaffected.

Since the estimators for m and k are asymptotically uncorrelated, the asymptotic

normalized covariance matrix is of the form

R Var(rf;) 0 Cov(riy, M) 0 ]
my R A
A 0 Var(k 0 Cov(k;, ks
p| % | = tm N (k) (ke ks)
My N—oo Cov(ris, mis) 0 Var(nis) 0
ks N oA N
i 0 Cov(k, ks) 0 Var(k,) |

(4.2.4)

In the computation of covariances between the same market measures computed in
different time intervals, only the matrix of partial derivatives V' defined by Eq. (4.1.4)

is required. The matrices of partial derivatives are

_ b b 0 0 w w 0 0
v-1= | 2 % ] vol= [ (Lt Wiy
’ [0 0 by by v 0 0wy weg

v-l= By Py O 0 ] v-l = [wll,tl wg 0 0 4.2.
br [ 0 0 Bi,s) B2, wr 0 0 Wi,s Wi2,s) (4.2.5)
where
ki—1
b{lu]—u<1+ﬁkt}£)
t
mu —he=1 meu
bow = ( 1+ —— log (1 —lo —=
2 ( kt) [og(+kt>+kt (+k,)+kt]
e _ _t(k = mt+ kb + bmt + mibk)
e (=1 + )% (k + mt)
" __bmt (kln (45) + In (&22) mt — my)
(2 (=14 0)2 (k + mt)
] 1— Y5205 (w)) 2 () + r () 525 25 ()
(L] =
(1-T5mmw)
, 1 Y52 55(w)) £r(w) + B () Tjb £ (w)
[2u] =

(1- i)
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(1 S5ea(®) (4= Tioddipi(®) + (i = 5o s50)) Tieo A0

W = (1 ~ Z;=013}(u))2
(1= Tn) (= S gBW) + (A= 006 (w) 5o 5
(2,u] (1 _ Z;zoﬁ}(u))z
Here
%f)}(u) = %@(u) and

0 mu>+mu—

() = [q:(k +) = (k) ~ log (1+ 2= Tﬁ] B (u)

and ¥(-) is the digamma function. Let Dj; j be the elements of the matrix (4.2.4) and
let V; ;) denote the elements of one of the diagonal matrix of partial derivatives as
given in Eq. (4.2.5). Then V[iJ]]D[i’j]Vi;;'] is of the form
v-lo [ by Dy + b,y Dp b11,4b11,6)Dp1,3) + bj2,4bj2,5Dj2,4 ]
b bi1,4b01,6 D3 + B2, bp2si D2 b3 D33 + 0% o Diag)

Hypothesis testing

The construction of the joint asymptotic normal distributions of statistics and func-
tionals of data whose underlying distribution is the gamma Poisson process, and also
mixed Poisson processes in general, has the important consequence that the limiting

distribution can be used in the testing of various hypotheses. For example, suppose

we have a vector of estimators @ = (6(1), 62 .. . 6() of the vector of parameters with
identical entries 6, computed in time intervals 1,2,...,n. Then it is possible to check

whether the vector of estimators falls within the confidence ellipsoid of the correspond-
ing n-dimensional asymptotic normal distribution of 8 for a specified significance level.
In performing the hypothesis test, it will be important to consider the power of the

test so that the test minimizes the probability of a Type 1 error.
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4.3 The NBD INAR(1) process

This section considers the dynamic properties of the INAR(1) process by considering
the correlations and spectral representations of the INAR(1) process. The INAR(1)
process is an ergodic process. The correlations of statistics computed in an ensemble
of realizations therefore represents the correlations of statistics computed from a single
realization of the process by using the autocorrelation function. As well as considering
the autocorrelation function (time domain analysis), the spectral representation of the
process is also considered (see e.g. Priestley (1981)). Spectral domain analysis considers
the decomposition of time series into frequency components and is commonly used in

the detection of long-range dependence.
Background

The INAR(1) process with deterministic thinning. Recall the definition of an INAR(1)
process. A non-negative integer-valued process {X;;t € Z} is said to be an INAR(1)

process if the process satisfies the equation
D
Xt = 010Xt—1 + &, (431)

where a o X;_; and &, are mutually independent random variables from a discrete

distribution and the ¢; form a sequence of uncorrelated random variables for ¢t € Z.

The value of o must satisfy o € (0, 1) for the process to be stationary. It is assumed that

the X; and ¢; have finite means and variances. The INAR(1) process X; with marginal
D

distribution 7 will have a stationary marginal distribution, i.e. X; = X;_; 2 X, for

all t € Z, if and only if the random variable X, is discrete self-decomposable so that

Gx,(s) = Gx,(1 — a+ as)G.(s;a) a € (0,1). (4.3.2)
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The INAR(1) process with stochastic thinning. The INAR(1) process with stochastic
thinning was introduced by McKenzie (1986) in the special case where the marginal dis-
tribution of the process is NBD. Assume that there exists a non-negative integer-valued
autoregressive process X; with i.i.d. stochastic thinning parameters A; supported on

the interval (0, 1), then the INAR(1) process with stochastic thinning is defined by
Xt 2 At (] Xt—l + &, (433)

where for fixed t the A;, X;_; and ¢, are independent random variables. If the process

X defined by (4.3.3) is to be a stationary process then the PGF of X, must satisfy

Gx,(c) = /0 Gx,. (1 —y+yc)dFa(y)Ge(c; a), (4.3.4)

where F4(y) is the cumulative distribution function (c.d.f.) of A;.
McKenzie (1986) derived a stationary NBD INAR(1) process with stochastic thin-

ning by letting X; be NBD(m, k) and letting A, follow a Beta distribution defined by

-1 k—1-1
_y (1-vy)
fa(y) = BUE-T 1>0,k—1>0,0<y<1,

where B(p,q) = I'(p)I'(q)/T'(p + q) is the beta function. The NBD INAR(1) process

with stochastic thinning can be represented in terms of Eq. (4.3.4) by

£1 " w) _’i - £1 - r—n%) _i gl + TQ{—C—)> _(k_li- (4.3.5)

~

G)::(C) It Gxy (1-y+yc)dFa(y) GsFCT a)

The generating function of the error distribution may be represented in the form

m(l — —¢)\ "¢D
Gele o) = (14 M= =9))

from which it becomes clear that the errors are NBD,,(m(1 — I/k), k —1).
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4.3.1 The NBD INAR(1) process with mixed thinning

A more general NBD INAR(1) process can be derived as a mixture of the two processes

described by Eqs. (4.3.1) and (4.3.3).

Definition 4.3.1. Let X; be a stationary non-negative integer-valued autoregressive
process of the first-order with innovation process €; (uncorrelated for ¢ # s), indepen-
dent of X;. Assume that both processes have finite means and variances. Additionally
let o € (0,1) be a deterministic thinning parameter and A; (independent of a) be i.i.d.
stochastic thinning parameters with c.d.f. F4 concentrated on the interval (0,1). Then

the INAR(1) process with mixed deterministic and stochastic thinning is defined by
Xy = aAio X1 +¢&:. (4.3.6)
The generating function of the process (4.3.6) is given by
Gx(c) = /0 ' Gx(1 = ya + yac) dFa(y) Ga(c). (4.3.7)

Proposition 4.3.1. Let the process X; have a NBD(m, k) marginal distribution then
X may be represented as a process with mized deterministic and stochastic thinning

with A, ~ Beta(v, k — v) and &, ~ NBD(ma, k — v) *x NBDG(k, k/(k+ma), a).

Proof. The proof of the proposition is obtained directly from proving Eq. (4.3.7). Sup-

pose X; has a NBD(m, k) distribution then
/olGX(l ~ ya +yac)dFy(y) Ge(c)
el
- (1+_E_> (%LT) (k+ma(1—c)>

(14 20=9) " g
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Proposition 4.3.2. Let X; be an INAR(1) process with mized deterministic and
stochastic thinning with thinning parameters given by o and A, where A; has dis-
tribution function Fa. Assume that the process has finite first and second moments,

then the autocorrelation function of the process at lag u is given by
p(Xe, Xesu) = p(u) = (@E[AYM, uweZ (4.3.8)

Proof. Let A; and A, be two random variables with c.d.f. concentrated on (0, 1) then it
is straightforward to show that for any non-negative integer X, the thinning operation
Ay 0As0X = A;A; 0 X. Note that using an iterative technique the process X; in
(4.3.6) may be written in terms of X;_, as
u-1 u-1 [j-1
X; = (H aAt_,-) o X+ Z (H aAt_,-) 0 € + & (4.3.9)
i=0 j=1 \i=0

The autocovariance function at lag u is

u—1 u—-1 /j—1
R(u) = Cov[X}, Xi—,] = Cov [(H aAt_i) OXt—u+Z (H aAt_,-> 0Es_j+E¢, Xt_u]

=0 j=1 \i=0
u—1 u—-1 /j-1
= Cov KH aAt_i) 0X¢—u, Xt_u} + Cov Z (H aAt_i) o&;_j+Et, Xt_u}
i=0 j=1 \i=0
-1
=F HaAt_,- Var [X;_,) + 0 = (¢E[A])" Var [X;_.], u€Z™.
=0

Note that for any ¢t > s the pair (&, X;) are uncorrelated. Additionally, using the
stationarity property of the process, the variances are invariant under shifts in time
so that Var[X;_,] = Var[X;]. The autocorrelation function of the process then follows

directly. 0

Note that by taking o = 1, the autocorrelation function of the process with random

thinning (see Eq. (4.3.3)) is E[A), u € Z.
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4.3.2 Integer valued processes with long memory

This section derives a long-memory non-negative integer-valued process using the ap-
proach of Barndorff-Nielsen (1998) by the aggregation, X; = Z,‘;‘;l Xt("), of a sequence
of stationary and independent INAR(1) processes X" (p=0,1,2,...). Here X" are

of the form
Xt(n) =0y Xt(z)l + €£n)a n=12.. tez

Conditions required in order to construct long-memory processes with Poisson and
NBD marginal distributions are presented followed by some simulation results of the

autocovariance function and spectral density.

Proposition 4.3.3. Let X; = )77 Xt(") be the aggregation of independent INAR(1)
processes with each Xt(") having mean pux, < oo and variance ag(n < oo with thinning

parameter a,. If og{n and oy, are of the form

1
03(,, = m, ap = exp{—cz /n} (4.3.10)

with some positive constants c;, co and 0.5 < H < 1, then on the assumption that
E[X:] = Z;‘;l px, < 0o, the limiting aggregated processes X, is a well defined process
in the L? sense with long-memory (or Hurst) parameter H. The autocovariance function

and the spectral density of the process are given by Egs. (4.3.12) and (4.3.13) below.

Proof. Note that the aggregated process has a finite mean (by assumption) and finite
variance, which for any H € (0.5, 1) is given by
[ o] o0
VarX) =Y 0% = m < 0. (4.3.11)
n=1 n=1
The long-memory of the process is proved by showing that the aggregated process has

an autocovariance function of the form R(u) ~ A;(u)u™" with 7 € (0,1) as u — o0
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and spectral density of the form f(w) ~ As(w)|w|™ with k € (0,1) as w — 0, where

both A; and A, are slowly varying functions.

The autocovariance function. Let R™ (u) represent the autocovariance function of the
individual INAR(1) processes, then under the conditions of (4.3.10), the covariance of

the aggregated process at lag u =t — s is given by

o0 o0 oo (e ]
u C1 —lu
Ru)=> R"(u) =" Cov(X™ XMy = Y ok o =3%" e © Julez/n
n=1 n=1 n=1

n=1
% lulea
~ _ 8 -lule/s g — 1 2(1-H)—1 -2
_/l- $1+2(1—H) € dzx (IU|C2)2(1—H) 0 z e *dz
al'(2(1 — H)) C
= ulegrm ~ upam o e (43.12)

where C is a constant, u € Z and H € (0,1). Note that a substitution of z = |u| ¢y / =
was made to the integral in the third line of the proof. If H € (0.5,1) then Eq. (4.3.12)

satisfies the definition of long-memory given in Eq. (2.3.16).

The spectral density. Barndorff-Nielsen (1998) constructed a long-memory process
with the same autocovariance function R(u) as (4.3.12) but in continuous time so that
u € R. The corresponding spectral density f.(w), w € R therefore exists and may be
obtained directly from the autocovariance function (4.3.12) (see Priestley (1981, pp.
210-226)). The identity f(w) = > oo fe(w + 2ms) where —m < w < 7 may then
be used to find the spectral density of the discrete time process with autocovariance
structure of the form (4.3.12).

Let f.(w) denote the spectral density of a continuous time process { X;; t € R}, then

the spectral density for a process with autocovariance function of the form (4.3.12)
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under the conditions of proposition 4.3.3 is derived on re-writing R(u) as

oo oo 00
Ol —fuleafn _ a1 / 2 i
Ru)=Y ——¢e =y ——= [ e
( ) ngl 771+2(1—H) ; 771~1—2(1—H) TJ oo c% + "72w2

C1C2 1 wu _ °° wu
_R(O)/ (R(O)Z m 772(1 H) ¢3 +w2772) ¢ = R(0) /.oo elw)e e

Hence the spectral density of the aggregated process in continuous time with autoco-

variance function R(u), u € R of the form (4.3.12) has spectral density f.(w) given by

filw) = = 3 9 L weRr

o% oo 7)2(1 H) 2 + w2n?’

The equivalent spectral density for the discrete time process f(w) is therefore

1 ¢ 1
flw) = Z felw +27s) = _2_ Z Z 2(1 H) 2 + (w + 27s)?n?

§=—00 s=-o00 =1

- <w<T. (4.3.13)

Note that the spectral density has a pole at the origin for H € (0.5,1). Consider
the individual terms in s of the spectral density (4.3.13), then the spectral density at
s =10, w =0 is given by

=1

]. C1
f(0) ;o = o & 7{2;52—(1—_;{—) =00, ¢, >0, for He (05 1).

The spectral density can be simplified on interchanging the summation to give

o0
flw) = 1 Z aq 1 1 — exp{—2c2/n}
0% = n+20-H) 211 — 2exp{—co/n} cosw + exp{—2c2/n}

_ i2 i ci 1 cosh(cz/2n)sinh(cy/2n) Cr<wen

n'+20-H) 27 cosh(cy/2n) — cos(w/2)?’
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Example: Long memory Poisson processes

This example constructs a stationary long-memory process with a Poisson marginal
distribution with mean ), autocovariance function of the form (4.3.12) and spectral
density of the form (4.3.13) by the aggregation of independent Poisson INAR(1) pro-

cesses.

Proposition 4.3.4. Let {Xt("); n = 1,2,...} be a sequence of stationary and in-
dependent Poisson INAR(1) processes with mean A, and thinning parameter o, =

exp{—ca/n} (c2 > 0) where

A 1

M T 2L - B

H € (0.5,1)

and ((s) = Z;’;l 1/n° is the Riemann-Zeta function. Then the aggregated process
X = E;’;l Xt(”) has long-memory with Hurst parameter H and a Poisson marginal

distribution with mean A and autocovariance function

- A i exp{—cslul/n}
= AT 20=H) - ni+20-H)

R(u) , UEZ

and spectral density

(o <] oo 1

_ Co 1
flw)= m¢(1+2(1 - H)) 2|2 n*0=H) g + (w + 2ms)n? |’

s=-o00 Ln=1

—m<w<T.

Proof. The proposition is easily proved by using properties of generating functions.
Note that the Poisson distribution is infinitely-divisible and hence the aggregated pro-
cess Xy = 32, X as a sum of independent Poisson INAR(1) processes, is well
defined on the assumption that X; is L? convergent. Assume that the Xt(") follow a

Poisson distribution with mean A, then using the fact that Gx,(c) = [I;2; G m(c)
t
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and the form of a2@) in (4.3.10), we require for any te Z

exp (—A(- ¢)) =exp (-  ARl- ¢)J=exp (- 1+2C(1141) (1-C)
TH .U v

This implies that the constant (! and the parameter A* must be of the form
A I v-[i+2(i-H)\
a= Aw =A . .
zZ~ i i; -

O

It is clear from the form of A" that the aggregated long-memory process is a sum
of weighted Poisson processes whose mean and variance tend to zero in the limit as

k —>oo0.

Simulation results. Figure 4.13 shows part of a realization of a simulated long-memory
Poisson INAR(1) process of length # = 20000 with Hurst parameter H = 0.8, A= 5 and
constant (2= 0.1. Note that the constant ( is restricted on specifying the marginal
distribution of the long-memory process. The simulations show both the short term

(t = 100) and long term (¢ = 10000) behaviour of the process.

X(t)
14

13
12

Oanbmo\\]wwE‘:

4000 6000 8000 10000
Time (t) Time (t)

Figure 4.13: Long Memory Poisson INAR(I) Realization

Figure 4.14 shows the autocorrelation function and periodogram in logarithmic scale
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of the simulated long-memory process, with the solid line showing the theoretical value

of the autocorrelation function and spectral density respectively.

Figure 4.14: Autocorrelation function & periodogram

Example: Long memory NBD processes

This example constructs a stationary long-memory process with a negative binomial,
NBD(m, k), marginal distribution with autocovariance function of the form (4.3.12)
and spectral density of the form (4.3.13) by the aggregation of independent NBD

INAR() processes.

Proposition 4.3.5. Let {X" ; 5= 1,2,...} be a sequence of stationary and inde-
pendent NBD(m, kjj) INAR(I) processes with thinning parameter a™ = exp{—e"/rj}

(c2 > 0). Additionally let kv be of the form

fo,= CA+ 2(1-//))?2T+2(>-«)> H e (°-5>1)

where ((s) = Xlfcii the Riemann-Zeta function. Then the aggregated process
Xt = YI™= has long-memory with Hurst parameter H and a NBD(m, k) marginal

distribution with covariance function

m (, , m\ S2 exp{-c2ul/77} A
R{u)eTi + 2(1 - HY) (+ TE€Z
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and spectral density

o0
1 1
Z , Tl w<T.
n

Co =
1) = feaai= i) 2, | 2 PP G+ w2

oo Ln=1
Proof. The proposition is easily proved by using properties of generating functions.
Note that the NBD distribution is infinitely-divisible and hence the aggregated process
Xe=302 XM as a sum of independent NBD INAR(1) processes is well defined on
the assumption that X, is L? convergent. Assume that the Xt(") follow a NBD(m, k)

distribution then the form of 62, in (4.3.10) implies that for any t € Z

X(n

2 1+ 2y g = K oL
oem =m {1+ k) = prre-m = Kp = m(m + k) piF 201

Furthermore using the fact that Gx,(c) = [[;2; Gy (c), the value of &, is obtained as

<1+Tﬂ_‘i))_k _ (Hyl(l_:c_))—z;,“;lk,,

o0 oo k2 C]_
= k = an = g {m(m + k) 771+2(1—H):l

—[1+2(1-H))
=k, = 1
7 Z:il n-11+20-H)] |

O

It is clear from the form of k, that the aggregated long-memory process is also a
sum of weighted NBD processes whose mean and variance tend to zero in the limit as

k — oo.

Simulation results. Figure 4.15 shows part of a realization of a simulated long-memory
NBD INAR(1) process of length ¢t = 20000 with Hurst parameter H = 0.8, m = 5,
k = 5 and constant ¢ = 0.1. Note that the constant ¢; is restricted on specifying
the marginal distribution of the long-memory process. The simulations show both the

short term (¢ = 500) and long term (¢ = 10000) behaviour of the process.
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4000 6000 8000 10000
Time (t) Tim* (t)

Figure 4.15: Long Memory NBD INAR(l) Realization

Figure 4.16 shows the autocorrelation function and periodogram in logarithmic scale
of the simulated long-memory process, with the solid line showing the theoretical value

of the autocorrelation function and spectral density respectively.

Figure 4.16: Autocorrelation function & periodogram
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Models for consumer buying
behavior

This chapter considers the NBD and related processes discussed in Chapters 2, 3 and 4
as possible models for use in market research. The data analyzed has been courteously
provided by ACNielsen BASES. The transaction data comprises a panel of 34,647 indi-
vidual households representative of the United States. The database contains records
of every transaction, through the scanning of individual items, of each household for the
duration of the year 2000. Each record contains the following information: household
identification number; category of product purchased; brand of product purchased and
date of purchase. The NBD models are fit to the number of purchases made by house-
holds for 46 different categories and the top 50 brands of each category. The products
range from goods purchased regularly such as food and drink to longer lasting products
such as cosmetics and household goods.

The transaction data is an ideal source as the data can either be represented in the
form of panel data, analyzing the number of purchases across many households, or as
a single time-series of longitudinal data, analyzing the total number of purchases of
a particular brand or category. The mixed Poisson processes are suitable models for
panel data whereas the INAR(1) processes are suitable models for a single realization
of longitudinal data with serial dependence.

126
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The event that will be modeled by the negative binomial processes will be consumer
purchase occasions. A single consumer purchase occasion is said to occur if a household
purchases a given product on any single day during the analysis period. The number
of purchase occasions in a time interval therefore represents the number of days a
household purchased the product within that time interval.

Section 5.1 considers the NBD as a suitable marginal distribution for consumer
purchase occasions. The power method of estimation is used to estimate parameters
of the NBD and the estimator is compared to the traditional method of moments and
zero term method estimators. Sections 5.2 and 5.3 respectively consider the gamma
Poisson process and the INAR(1) process as models for consumer purchase occasions
by analyzing the covariances and correlations of functionals of the data computed in

different time intervals.

5.1 The NBD model

The gamma Poisson process and the NBD INAR(1) process both have the NBD as
their one-dimensional marginal distribution of the process. This is regardless of the
fact that the gamma Poisson process and the NBD INAR(1) process are count and
stationary processes respectively and therefore model different types of events.

Fig. 5.1 shows bar charts of observed frequencies and expected frequencies for two
different types of category purchases (detergents and cereals) during time intervals
of length 13, 26 and 52 weeks. The expected frequencies are computed under the
assumption that the data follow the NBD. The NBD parameters are estimated by
using the power method at optimum value of ¢ using zero term method estimators as
preliminary estimators. The NBD visually seems to be a good model for consumer

purchase occasions for these two categories.
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Figure 5.1: NBD fits for two different categories (detergents and cereals) for time intervals of lengths 13, 26 and 52 weeks.
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5.1.1 The Chi-squared goodness of fit test

As an initial goodness of fit test for the NBD, a comparison of observed and expected
frequencies is made by using the Chi-squared goodness of fit test. The p-values are
computed with [ —3 degrees of freedom where ! denotes the number of frequency groups
used in the computation of the Chi-squared statistic.

The plots in Fig. 5.1 have so far considered consumer purchases starting from week 1
up until weeks 13, 26 and 52. The panel data, however, consists of subjects observed
continuously for a period of 1 year. Let ¢ denote the time interval under consideration,
then for ¢ < 52 it is possible to select multiple t-weekly intervals by selecting different
starting time points from which consumer purchase counts begin to be observed. The
Chi-squared goodness of fit test is applied to multiple time intervals of length ¢. The
NBD fit is replicated for each length of time interval ¢ by incrementing the starting
point of each time interval by one week during the one year analysis period. It must
be noted, however, that for each replication at each interval length ¢ the Chi-squared
values will not be independent; the only exception is for the 1-week data where the
NBD will be fitted to data observed in non-overlapping time intervals.

Fig. 5.2 shows plots of p-values from the Chi-squared goodness of fit test versus
the length of time interval during which consunier counts are observed. The plots are
shown for the detergent and cereal categories. The p-value axis has been re-scaled on
the logarithmic scale. The geometric mean of the p-values is also plotted. The p-values
for fitting the NBD to category level data are less than 0.01 for the majority of time
periods and interval lengths chosen. The geometric mean of the p-values for brand level
data depend on the individual brand and also on the interval length over which data
is analyzed. As a relative comparison, the NBD seems to be a more suitable model for

brand level purchasing as opposed to category level purchasing.
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Figure 5.2: Chi-squared goodness of fit test when fitting the NBD, using the PM at c-optimum with preliminary ZTM estimators,
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Fig. 5.3 shows means of NBD parameter estimates w'(z) = » w'j{t) plotted
against b(t) = " where R denotes the number of replications of the esti-
mator for time intervals of length ¢t = 1,2,..., 13. The NBD parameters are estimated
using the PM at optimum c¢ with preliminary ZTM estimators. Points are shown for
the 46 different categories and the major brand within each category. The means of the
NBD parameter estimates are taken over the replications obtained from the 1-weekly
increments. The points are colored according to the corresponding mean p-value when
implementing the Chi-squared goodness of fit.

It is evident that the p-value varies according to the value of the estimated param-
eter w'. The p-value increases as w' increases for both brands and categories, with the
exception of areas of the parameter space where the coefficient of variation {y/v"/k)

is large (i.e. when b < 0.05 and w' > 0.95).

VA
os 0s
oil
(D Oft ‘0 (B to
0 to 04001 00001 10 O0I o . 0 10 00001 + « 00001 10 001
00l to 006 0.06 to 1 .. 0O0I 10 006 .. 006 10 1
Category Largest brand within category

Figure 5.3: Plots of w'(?) = ™ Yif=i w'j(t) against b(t) = ™ Yif=\h where R denotes
the number of replications and ¢ = 1,2,...,13 denotes the length of time interval.
Points are colored by the corresponding mean Chi-squared p-value. Points are shown
when fitting the NBD to 46 different categories and the major brand within each
category.
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5.1.2 Single period repeat buying measures

Market measures for a general marginal distribution. 1In practice and in literature there
is ambiguity in the definition of the market research mea.surés. It is unclear as to
whether the measures refer to observed values or values of the underlying sampling
distribution. In this thesis the market research measures are considered to be those
obtained from the underlying sampling distribution. Let X be a random variable from
the one-dimensional distribution of purchases and let p, denote the probabilities of
purchasing x = 0,1,2,... products in the chosen time interval. The measures are
then functions of the moments of the distribution of X. The penetration (b), purchase
frequency (w), measured repeat (5,) and repeats per repeater (w,) are defined by the

equations

b=1-py, 0<b<LK 1 w=EX|X>21)=—, w>1,

_ 1- Z;=0P(X = J)
1= 350 P(X =)
—ZgzojP(X=j)

m
w=EX-r|X2>2r+1)= - — —r r=1,2....
1—Zj=OIP(X=.7)

B=PX >r+1X >r)

In practice, the goodness of fit of the marginal distribution has relied upon being
able to closely match the empirical market research measures to the market research
measures estimated from the fitted distribution. The empirical market research mea-

sures are computed using the formulae

~ n, - T ~ 1-— 1:_ % T — 7:_ j o2
b=1—-9, w= =, ﬂr=——z;’.—__?'% and 4, = Z’;’szi.v—r. (5.1.1)
N b 1-30 0% 1-3 0

The empirical measured repeat and repeats per repeater are therefore computed by
replacing the probability P(X = j) with its sample equivalent n;/N where n;, (j =

1,2,...) are observed frequencies of j within the sample and N is the size of the sample.
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The NBD as a marginal distribution for repeat buying measures. For purchases of cate-
gory and the major brand within each category respectively, Fig. 5.4 and Fig. 5.5 show
values of the NBD estimated market research measures (5, w, 31 and ;) against the
empirical values of the market research measures (b, w, £, and ) defined by (5.1.1).
Points are shown for each replication when fitting the NBD to 1-weekly data through
to 13-weekly data in 1-week increments. The figures show data for all 46 categories. A
line regressing the theoretically estimated measures on the empirical measures is shown
along with a line corresponding to the 45° diagonal.

The estimated market research measures are computed using estimators for m and k
obtained from the MOM/ZTM estimators and the PM estimator computed at opti-
mum c with ZTM preliminary estimators. Note that, in the case of the MOM/ZTM
estimator, if the ZTM estimator is deemed to be more efficient then b = b and therefore
W = w, so that the ratios for the penetration and mean purchase frequency will be
equal to 1.

The NBD estimated points plotted against the empirical points for penetration (13
vs. 5) and mean purchase frequency (@ vs. w) lie very close to the diagonal for con-
sumer purchases of both category and the major brand within each category. There is,
however, a tendency for the NBD estimates computed using the MOM/ZTM to slightly
deviate from the diagonal as both penetration and purchase frequency increases; this
is not the case for the NBD estimated penetration and purchase frequency obtained by
using the PM at optimum ¢. The points for measured repeat and repeats per repeater
(r =1 and 7 = 2) also lie close to the diagonal for category purchases. For the pur-
chases of the major brand within each category the fit of measured repeat and repeats
per repeater become worse as r increases from r = 1 to r = 2 with outliers becoming

increasingly present.
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5.2 The gamma Poisson model

The gamma Poisson model for consumer buying behavior was suggested by Ehrenberg
(1988) who confirmed, using empirical evidence, that consumer purchase occasions
could be successfully modeled using the gamma Poisson process. This section expands
on and furthers this work by investigating the PM estimators and incorporating the
asymptotic distributions of estimators derived in Section 4.2 into the analysis.

The one-dimensional distribution of the gamma Poisson process when considering
events in a time interval of length ¢ is NBD(mt, k). Section 5.2.1 compares parameter
estimates and estimates of market research measures computed from different time
intervals of length ¢ when normalized to a unit time interval. A comparison is also made
between the traditional MOM/ZTM and the more efficient PM method of estimation.
The asymptotic distributions of estimators and estimated market research measures
are used to test whether there are significant differences between measures computed
by the MOM/ZTM and PM methods.

Section 5.2.2 considers how well parameter estimates of the single period market
research measures extrapolate to different lengths of time intervals. In practice, it is
important to know the minimum length of time interval over which purchases need to
be observed in order that the gamma Poisson process can be reliably used to forecast
market research measures.

Section 5.2.3 assesses goodness of fit of the gamma Poisson process by considering
the correlations between observed market research measures computed in different time
intervals to the correlations that would be expected under the gamma Poisson model.
Although the gamma Poisson process is not an ergodic process, multiple realizations of
consumer purchases are observed over households and this allows the verification of the

covariance structure of market research measures computed in different time intervals.
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5.2.1 Single period measures with varying time

The one-dimensional distribution of the gamma Poisson process is

Ik +z) k k mit z r=01,2,...
P(Z(t)==z)= T(k)z! (k+mt> (k+mt) k>0 m>0. (5.2.1)

The process stipulates that the number of events within a time interval of length ¢
is NBD(mt, k). The mean, mt, of the one-dimensional distribution increases linearly
with time whereas the shape parameter £ remains constant.

Fig. 5.6 shows MOM/ZTM and PM estimators (computed at optimum c using
ZTM preliminary estimators) for m and k when fitting the NBD to consumer purchase
occasions of cereals and detergents at different lengths of time intervals ¢. The estimator
for m is the normalized sample mean 1, = Z/t, where T is the sample mean of purchase
occasions in a time interval of length ¢. Replications for each time interval ¢ are obtained
by incrementing the starting point of the time intervals by 1 week. A 95% lower and
upper confidence bound computed using the results of Section 4.2 and the mean for
each estimator is also shown by solid lines. For fixed ¢, the confidence bounds have
been computed using the mean of the estimators for m and k over the replications.

Fig. 5.6 shows the estimators for m and k converging to a constant as ¢ increases.
The variation of the estimators at each fixed ¢t appears to decrease as t increases. It is
important to note that this may be a cause of the dependence in observations and the
reduction in the number of observations as the length of the time interval increases. For
many of the values of ¢, a large number of points for 7; lie outside the 95% confidence
interval for both detergents and cereals at top brand and category level. This indicates
significant differences in the estimators for m over different time intervals. For t > 4,
the estimators for k lie within the 95% confidence bounds indicating no significant

differences in the shape parameter for varying time intervals.
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The estimators for &k in small time intervals clearly differ to estimators for & in larger
time intervals. In small time intervals either the gamma Poisson process does not hold
or the estimator for & is poorly estimated; indeed, at category level purchasing, for t < 4
the estimators for k are significantly different to estimators for ¢ > 4. Ehrenberg (1988)
suggested that the gamma Poisson process does not hold in small time intervals as the
Poisson process assumption of independent purchasing in consecutive time intervals by
each household is unlikely to be true in practice. A possible cause of k£ being poorly
estimated may be the zero term problem where there is ambiguity in the definition of
a zero buyer (for a description of the problem see Section 2.4.1).

At the category level for large time intervals, there is also a significant difference
between the MOM/ZTM estimators of k and the PM estimators computed at opti-
mum c using ZTM preliminary estimators. For both cereal and detergent categories
the MOM/ZTM estimator for k is persistently lower than the PM estimator for k. In
Section 2.1.2 it was noted that the estimators for k are biased; it is therefore possible
that the two estimation methods have different amounts of bias when estimating k.
Alternatively, there may again be the zero term problem.

To investigate the difference between the MOM/ZTM and PM estimators for k, the
ratios of NBD estimated market research measures to the empirical market research
measures is considered. Note that for the MOM/ZTM method, if the ZTM method
is deemed to be more efficient, then the NBD estimated penetration and purchase
frequency are equal to the empirical penetration and purchase frequency. The ratios of
NBD estimated market research measures to the empirical market research measures
for penetration and purchase frequency will therefore equal 1. As a result, the ZTM
gives no additional information in terms of goodness of fit of the gamma Poisson process

when comparing the empirical and NBD estimated penetration and purchase frequency.
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Fig. 5.7 shows ratios of NBD estimated market research measures to the empirical
market research measures by estimation method for the detergent and cereal categories.
A 95% lower and upper confidence bound computed using the results of Section 4.2
and the mean over the replications for each estimator are also shown by solid lines. For
fixed t, the confidence bounds have been computed using the mean of the estimators
for m and k over the replications.

Since the penetration and purchase frequency ratios equal 1, the ZTM estimator
has been used for the cereal category and for ¢ < 3 in the detergents category. When
fitting the NBD to data in practice, it is unclear as to whether the zero counts should
refer to potential buyers of the product or all non-buyers of the product. The empirical
penetration used in these figures considers all buyers in the population that did not
purchase a product during the time interval as zero buyers. This empirical penetration
may, however, be incorrect. This problem is referred to as the zero term problem. The
penetration and purchase frequency for the cereals category is therefore not considered.

In the case of detergents, the ratios for penetration and purchase frequency are
closer to 1 using the PM estimators in comparison to using the MOM/ZTM estimator.
The ratios are significantly closer to one for larger time intervals. The confidence
intervals for penetration includes the value 1 and the confidence intervals for purchase
frequency are closer to 1 than that of the MOM/ZTM method.

For longer time intervals, the PM estimator also persistently achieves a ratio closer
to 1 for the ratio of NBD estimated measured repeat and repeats per repeater to
the empirical measured repeat and repeats per repeater respectively. The fact that
the ratios for measured repeat and repeats per repeater are closer to 1 in the cereal
category, suggests that the empirical penetration in the cereal category may not be the

empirical penetration required when fitting the NBD to data.
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5.2.2 Extrapolating market research measures

The gamma Poisson fits have so far analyzed estimators in the time interval in which
they were computed. The extrapolation of estimators to different length time intervals
is now considered to assess the ability of the gamma Poisson process to forecast mea-
sures for time periods of different lengths. Let X (t) be a NBD(mt, k) random variable.
The penetration (b(t)), purchase frequency (w(t)), measured repeat ((3.(t)) and repeats

per repeater (wr(t)) as functions of time are given by

bt) =1-P(X(t)=0)=1- <1+m7t)_k, 0<b(t) < L;
w(t) = EX @)X (1) > 1) = % w(t) > 1;

1- Z;=0P(X(t) =J)

1= Y P(X () =3)’

m— 5 0d BX (1) =3) _
1- Z;=o P(X(t) = J)

Br(t)=PXEt)=>r+1XEt) =)= 0<6:(8) <1

we(t) =E(X@) —r|X{t)2r+1)= r, we(t) > 1.

(5.2.2)
Fig. 5.8 shows plots of the market research measures b(t), 5;(t), w(t) and w;(¢)

computed in time intervals ¢ of different lengths. In addition, extrapolated curves
using the relationships of (5.2.2) are also plotted. Each extrapolated curve is produced
using the parameters m(t) = }%Z;il 1h;(t) and k(t) = —léZle k;(t), where R denotes
the number of replications of the estimator for time intervals of length ¢t = 1,2,..., 26.
Each replication is obtained by incrementing the time interval by one week.

It is clear from Fig. 5.8 that estimating parameters of the gamma Poisson process in
small time intervals leads to incorrect extrapolations of the market research measures
when varying time. In the case of detergents and cereals a poor fit of the empirical
market research measures is obtained when the gamma Poisson parameters are esti-
mated from time intervals of length 1 and 2 weeks. This reinforces the fact that the

gamma Poisson process may not hold for small time intervals.



[« I

| ] I

I

1 I- I:

Detergents - b(t) Detergents - w(t) Detergents - (3\(2) Detergents - uj\(t)

I

.I 1 i

1

1 I 1

Cereal - b(1) Cereal - w(t) Cereal - (3i(t) Cereal - ul\(?)

Figure 5.8: Extrapolating estimators for market research measures using NBD parameter estimates obtained from different
length time intervals. The NBD parameter estimates are computed using the power method at optimum ¢ with ZTM preliminary
estimators. Extrapolations are shown for category level purchasing only.
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The extrapolated curves for penetration, purchase frequency, measured repeat and
repeats per repeater are almost identical when estimated using time intervals of length
greater than 3 weeks. This indicates that it is not necessary to observe purchasing be-
havior for individuals over long time intervals, even though the extrapolation improves
as the length of the time interval increases. For time intervals greater than 3 weeks,
the degree of improvement decreases as the time interval increases. It is therefore pos-
sible to use time intervals as small as 3 weeks to reliably compute extrapolated market

research measures.
5.2.3 Correlations between market research measures

Sections 5.2.1 and 5.2.2 have both considered fitting the one-dimensional NBD to counts
of consumer purchase occasions. Fitting the one-dimensional distribution implies that
purchase counts cah occur in any random order across households. For example, it is
possible that a fixed household has a high purchasing intensity in one period and a low
purchasing intensity in the next period. As long as the intensities of purchasing in each
time period is gamma distributed and household purchases are Poisson distributed,
then the one-dimensional distribution of purchases will be NBD. Sections 5.2.1 and 5.2.2
have therefore only confirmed that the NBD(m¢t, k) relationships for market research
measures hold in practice.

The mixed Poisson processes, however, assume that the intensity \ is fixed for
each individual across all time periods. The fact that A is fixed for each individual
is highlighted by the multivariate NBD. This section examines the fit of the two-
dimensional NBD by applying the results of Section 4.2 and considering the joint
asymptotic distributions of statistics and estimators computed in two different time

intervals when fitting the gamma Poisson process to purchases of cereals and detergents.
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Computing covariances between estimators in two different time intervals requires
replications of estimators. The replications cannot be obtained by incrementing the
time intervals by 1 week, as in the previous section. The gamma Poisson process is
not an ergodic process and therefore the correlations between estimators obtained by
considering different time intervals in a single realization are not equivalent to the
correlations between estimators in the ensemble of realizations.

In the case of panel data, however, realizations of consumer purchase occasions are
observed for each household. Replications of statistics or estimators can be obtained
by taking sub-samples of the overall population and computing statistics or estimators
for each sub-sample. In this thesis, the 34,467 households comprising the panel are
randomly split into sub-samples of size 500 households.

Fig. 5.9 and Fig. 5.10 shows normalized estimators of the gamma Poisson param-
eters m and k computed in consecutive non-overlapping time intervals of length 12
weeks. In addition to the estimators, two 95% confidence ellipses constructed using
the covariance matrix (4.2.2) for estimators of m and k in non-overlapping time inter-
vals are also shown. The values m and k required to construct the ellipses are replaced
by PM estimators 7 and k computed at optimum c using preliminary ZTM estimators.
The solid confidence ellipse uses the estimators 77 and k obtained by fitting the NBD
to the whole 52-week period, whereas the dotted confidence ellipse uses the mean of
the estimators r and k obtained by fitting the NBD to each time period shown.

The estimators for k are captured well by the 95% theoretical confidence ellipses
for both detergent and cereal categories. Note that in the detergent category a number
of observations for estimators of k lie well outside the confidence ellipse and may be
labeled as potential outliers of the model. The estimators for k in the cereal category

are much more highly correlated than estimators for k in the detergents category.
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Figure 5.9: Correlations between estimators when fitting the gamma Poisson process
to purchases of detergents at category level. Bivariate plots show estimators computed
in different time periods together with corresponding 95% confidence ellipses computed

under the assumption of asymptotic normality.
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Figure 5.10: Correlations between estimators when fitting the gamma Poisson process
to purchases of cereals at category level. Bivariate plots show estimators computed in
different time periods together with corresponding 95% confidence ellipses computed

under the assumption of asymptotic normality.
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In both detergent and cereal categories, the ellipsoidal shape of the estimators for
m is captured well by the theoretical 95% confidence ellipse. The ellipses are, however,
often shifted to one side of the data. This is indicative of non-stationarity in the mean
of the data as highlighted in Section 5.2.1 which noted significant differences in the
estimator for m in different time periods. The estimators for m are correlated implying
that households with high intensities in one period are likely to have high intensities
in all time periods.

Fig. 5.11 and Fig. 5.12 shows normalized estimators of the gamma Poisson param-
eters b and w computed in consecutive non-overlapping time intervals of length 12
weeks. Two 95% confidence ellipses constructed using the results of Section 4.2.3 are
also shown. The values m and k required to construct the ellipses are replaced by PM
estimators 7 and k computed at optimum c¢ using preliminary ZTM estimators. The
solid confidence ellipse uses the estimators 7 and k obtained by fitting the NBD to
the whole 52-week period, whereas the dotted confidence ellipse uses the mean of the
estimators 1 and k obtained by fitting the NBD to each time period shown.

The 95% theoretical confidence intervals for estimators of both b and w capture the
ellipsoidal shape of the data. In certain periods, however, the ellipses are again shifted
to one side of the data. This is most likely to be caused by the significant differences
in estimators for m in the different time periods.

In practice, it may be the case that market research measures are computed sep-
arately for different time periods. For example, the penetration of a product may be
computed separately for the first six months and the second subsequent six months in
the year. From the figures shown, however, the market research measures are clearly
correlated. More accurate estimators may therefore be obtained by computing esti-

mates from fitting the joint two-dimensional NBD.
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Figure 5.11: Correlations between estimators when fitting the gamma Poisson process
to purchases of detergents at category level. Bivariate plots show estimators computed
in different time periods together with corresponding 95% confidence ellipses computed
under the assumption of asymptotic normality.
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Correlations between estimators of b in different time intervals
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Figure 5.12: Correlations between estimators when fitting the gamma Poisson process
to purchases of cereals at category level. Bivariate plots show estimators computed in
different time periods together with corresponding 95% confidence ellipses computed
under the assumption of asymptotic normality.
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5.3 The NBD INAR(1) model

The gamma Poisson process assumes that, for a fixed household, consumer purchase
occasions in non-overlapping time intervals are independent events. The assumption
of independence is likely to be true for events in “long” time intervals, but is unlikely
to be true for events occurring in short time intervals. Indeed, it is unlikely that a
consumer will purchase a product in the time interval immediately after purchasing
the product. Of course, the definition of long and short time intervals depends on the
product in consideration.

The NBD INAR(1) process is a suitable model for realizations with serial depen-
dence and could be introduced to model the number of purchases in short time intervals.
Recall that the non-negative integer-valued process {X;;t € Z} is an INAR(1) process

if the process satisfies the equation
D
Xi=ao0X; 1 +¢,

where o o X;_, and &; are mutually independent random variables from a discrete
distribution and the ¢; form a sequence of uncorrelated random variables for ¢t € Z. Here
aoX 2 Z;;l U; where the U; are i.i.d. Bernoulli random variables with P(U;=1) = a
and P(U; =0) = 1—a. The value of a must satisfy a € (0,1) for the process to be
stationary. The INAR(1) model for the current time period stochastically retains a
proportion of the event in the previous time period and observes some random input.

The INAR(1) model, however, is not natural in the case of consumer purchase
occasions since purchasing in different time intervals are new events. (The INAR(1)
model is, for example, natural in the case of stock levels of a product within a store.
The stock level in a time period can be represented as a retention of stock from the

previous time period plus the addition of stock obtained during the current period.)
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5.3.1 The INAR(l) model for the number of consumers

In the models considered so far, the event modeled has been the number of purchases
made by consumers within a given time interval. In this section the analysis is con-
cerned with the number of buyers who purchase a product. Consider the number of
buyers that purchase a particular category. The number of buyers may be considered
to be a retention of a proportion of the customers in the previous time period plus new
customers. Such a situation could be modeled well by the INAR(l) process where X¢
denotes the number of customers and a possibly denotes the level of loyalty.

Fig. 5.13 shows the autocorrelation function of the time series of the number of buy-
ers of detergents and cereals observed in weekly increments. The shaded area indicates
values of 0 £ 1.96cr/ at each lag / where ai is the standard deviations of the estimated
correlation. Correlation bars outside the shaded are therefore represent significant au-
tocorrelation. Fig. 5.13 indicates that there is significant lag-1 autocorrelation of about
0.4 for both detergent and cereal categories. The remaining correlations for higher lags
are insignificant. This indicates that an INAR(I) model could be appropriate for mod-

eling the number of buyers in the detergents and cereal categories.

1112 1114 1S111711V20

Detergents Cereals

Figure 5.13: Autocorrelation functions for the number of buyers of detergents and
cereal categories in different weeks.
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Conclusions and further work

This thesis has considered two themes in developing statistical inference for negative
binomial processes. The first theme has been to consider more efficient moment based
estimators for estimating parameters of the NBD than the standard method of moments
and zero term method estimators. The second theme has been to assess adequacy of
negative binomial processes by considering the dynamical behavior of the processes.
The dynamical behavior of the processes has been assessed by verifying the correlation
structure of estimators and statistics computed from data in two different time intervals
to the correlation structure that would be expected given the process being fitted.
Parameters of negative binomial processes are often estimated by fitting the neg-
ative binomial distribution to data. Maximum likelihood estimators are difficult to
implement in practice since the estimator for the negative binomial parameter k re-
quires frequency counts and these are difficult to obtain. Instead, it is easier for market
research companies to request statistics of the data and therefore moment based esti-
mators are popular in the field of market research. The standard method of moments
estimator and zero term method estimator are, however, inefficient in certain regions
of the NBD parameter space. Importantly, many parameter estimates when fitting the

NBD to purchases of a category reside in this inefficient area of the parameter space.
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Fitting the negative binomial distribution only provides partial indication to the
suitability of negative binomial processes for data. Ehrenberg (1988), to an empirical
extent, considered assessing suitability of the gamma Poisson process for market re-
search data, more precisely the modeling of consumer purchase occasions, by assessing
relationships between market research measures computed in different time intervals
and also the growth of market research measures as a function of time. These measures,
however, were only assessed empirically and no method of checking the significance of

the fits were presented.

6.1 Conclusion and discussion

In this thesis more efficient moment based estimation methods have been considered in
the form of power method estimators. Statistically assessing the adequacy of negative
binomial processes have been considered by deriving the limiting covariance matrix of
estimators of the negative binomial distribution and also the limiting covariance matrix

of estimators of parameters in negative binomial processes.
6.1.1 The power method estimators

The power method estimators depend on the parameter c. The power method estimator
tends to the method of moments estimator as ¢ — 1 and is equivalent to the zero term
method estimator when ¢ = 0. Upon suitable choice of the parameter ¢ the power
method estimator can be almost as efficient as the maximum likelihood estimator
when the sample is i.i.d. NBD. Moreover, upon suitable choice of ¢, the power method
estimator is always more efficient than the method of moments estimator and zero
term method estimator. The optimum choice of ¢ that minimizes the variance of the

estimator for the NBD parameter k£ however depends on the NBD parameter values.



Chapter 6 155

In practice, since the NBD parameters are unknown, it appears as though the power
method estimators may be difficult to implement. The optimum value for ¢, however,
may be estimated using preliminary, possibly inefficient, estimators. The optimum
value of ¢ changes smoothly within the NBD (b, w’)-parameter space. Estimating
optimum c¢ using preliminary NBD parameter estimates, for most NBD parameter
values within the (b, w’)-parameter space, will give estimates of ¢ close enough to the
value of optimum c to obtain an updated more efficient power method estimate for the
parameter k.

In market research, simple estimators for the NBD parameters are required. The
insensitivity of the efficiency of power method estimators to small changes in ¢ further
allows the construction of simple estimators, by approximating optimum ¢, that can be
more easily implemented in practice. The approximations and estimations for optimum
c are robust in areas of the parameter space where the coefficient of variation of the
maximum likelihood estimator for & is low. The robustness of the estimators are shown
in Fig. 3.18, by indicating the maximum possible loss of efficiency in estimating the

NBD parameters, with respect to estimating using optimum c, with probability 0.95.
6.1.2 Fitting the NBD

The fit of the NBD at different time intervals is consistently rejected by the Chi-square
test for purchases at category level. The fit of the NBD is not rejected, to the same
extent as category level purchasing, for purchases of products at brand level. It is
known (see e.g. Berkson (1938); Neyman (1949)) that for fixed significance level and
fixed observed and expected frequencies, the power of the Chi-square test tends to one
as the sample size increases. The Chi-square test is therefore not an ideal test for large

sample sizes.
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For both category level purchasing and brand level purchasing the NBD visually
seems to be a good fit. Moreover, the observed market research measures when com-
pared to the empirical market research measures agree extremely well, especially for
category level purchasing. For brand level purchasing, more outliers are observed when
comparing empirical and NBD estimated market research measures.

The é-method has been used to construct asymptotic normal distributions of esti-
mators of the NBD and also estimators of market research measures. The distributions
have been computed as a by-product of considering the distribution of estimators of
the gamma Poisson process computed in two different time intervals. The asymptotic
distributions allows the construction of asymptotic confidence intervals for the estima-
tors and therefore allows us to test whether the MOM/ZTM and the PM estimators are
significantly different from each other and also if they are different from the empirical
measures.

The empirical market research measures are estimated well by the NBD estimated
market research measures when estimating the NBD parameters using the standard
MOM/ZTM method and the PM at optimum c¢ using ZTM preliminary estimators.
The estimators for both MOM/ZTM and PM are very similar.

Using the asymptotic distribution of estimators for k£ and the asymptotic distribu-
tion of estimators for market research measures, the MOM/ZTM and PM methods can
be shown to provide significantly different estimates when fitting the NBD to category
level purchasing in large time intervals. The PM is shown to provide closer estimates
for market research measures to the empirical measures than the MOM/ZTM method.
The exception is in the case of penetration and purchase frequency when the ZTM of
estimation is used; here the empirical and NBD estimated penetration and purchase

frequencies are equal by definition of the estimator.
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6.1.3 Fitting negative binomial process

This thesis has considered two negative binomial processes, namely the gamma Pois-
son process and the NBD INAR(1) process. The gamma Poisson process and the
NBD INAR(1) process belong to different families of processes (that of renewal and
autoregressive processes respectively). Assessing the adequacy of the two processes as

a model for data therefore require different methods of inference.

Assessing the adequacy of the gamma Poisson process

The first method of assessing the adequacy of the gamma Poisson process extends the
work of Ehrenberg (1988) by considering market research measures which, when esti-
mated using data from a single time interval, have the ability to accurately extrapolate
measures for time intervals of different lengths. The data analysis considered in this
thesis showed that market research measures extrapolate well to all lengths of time
periods when using parameter estimates obtained by fitting the NBD to time intervals
of greater than three weeks for both cereal and detergent categories.

The second method verifies that estimators, computed using data in two different
time intervals, fall within the corresponding asymptotic confidence ellipse that would
be expected for estimators computed using data generated from a gamma Poisson pro-
cess. The advantage of this method, over the method of assessing how well the NBD
extrapolates to different lengths of time intervals, is that computing measures using
the two-dimensional NBD requires individuals to retain the same Poisson (purchasing)
intensity in both time intervals. Verifying the fit of the one-dimensional NBD to differ-
ent length time intervals does not require the restriction that individuals must retain
the same intensity in two time intervals; the only requirement is that the distribution

is NBD where m increases linearly in time and k remains constant.
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The estimators for the NBD parameters m, k, b and w when computed in two
non-overlapping intervals all observe the ellipsoidal shape of the asymptotic confidence
ellipse when fitting the gamma Poisson process to both cereal and detergent categories.
However, for estimators of m and w, which are primarily location parameters, the
ellipses are often shifted to one side of the data. A possible cause of this could be that

there is a trend in the mean of the data.

Assessing the adequacy of the INAR(1) process

The assessment of the adequacy of the INAR(1) process considers the autocorrelation
function of the process. In a similar fashion to the case of continuous valued first-
order autoregressive processes, the INAR(1) process has an exponentially decaying
autocorrelation function of the form p(u) = o/l at lag u = {0, £1,42,...}. Using the
approach of Barndorff-Nielsen (1998), it is possible to construct long-memory integer
valued processes by the aggregation, X; = Zf’il Xt("), of a sequence of stationary
and independent INAR(1) processes Xt(") (n=10,1,2,...). The aggregated series has
long-memory if X{™ has mean px, < oo and variance o% = c1/(n***"H) < oo
with thinning parameter a, = exp{—c2 / n} for some positive constants ¢, and c, with
Hurst parameter 0.5 < H < 1. As examples, a long-memory Poisson process and a
long-memory NBD process were constructed.

The INAR(1) process was suggested as a possible model for the number of con-
sumers of a product; the number of consumers in a subsequent time period can be
thought of as a retention of customers from the previous time period plus the addition
of new customers. The autocorrelation functions of the number of consumers in both
cereal and detergent categories show that there is significant lag-1 autocorrelation. The
estimate of & for both categories is about 0.4 suggesting that about 40% of consumers

that purchase in one time interval will also purchase in the next time interval.
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6.2 Further work

This section considers further work and additional questions raised by this thesis. The
topics are split into the three subsections of power method estimators, fitting the NBD

and fitting negative binomial processes.
6.2.1 The power method estimators

The power method estimators have been shown to be almost as efficient as maximum
likelihood estimators for i.i.d. NBD samples. For NBD INAR(1) samples it is difficult
to analytically obtain the Fisher information matrix and therefore to obtain analytical
expressions for the covariance matrix for maximum likelihood estimators of m and k.
Simulation results, however, show that the maximum likelihood estimators are much
more efficient than the power method estimators. Note that the power method esti-
mators are still more efficient than the standard method of moments and zero term
method estimators.

What is surprising, however, is that simulation studies maximizing the likelihood
function for NBD INAR(1) samples show that the estimator for m is not equivalent to
the sample mean of the data. The power method estimators assume that the estimator
for m is efficiently estimated by the sample mean. Further study is required to check
whether using a more efficient estimator for the sample mean to estimate m will provide

more efficient power method estimators for the NBD parameters m and k.
6.2.2 Fitting the NBD

The zero term problem has not been fully investigated in this thesis. Since the number
of zero buyers are latent, it is difficult to determine what the number of zero buyers

should be when fitting the NBD. Further study is required to check goodness of fit
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of the NBD with varying number of zeros in the data. Note that the power method
estimators may be iteratively used to estimate the number of zero buyers by updating
the frequency of observed zeros with estimated zeros obtained by fitting the NBD using
the power method. The process may be repeated until parameter estimates converge.

The NBD has been shown to provide a good fit for the data in terms of adequately
estimating market research measures. Often, when considering frequency charts of
consumer purchase occasions, long tails are observed indicating a small but significant
presence of heavy buyers. Further study is required to check how much of an effect

these heavy buyers have on fitting the NBD to consumer purchase occasions.
6.2.3 Fitting negative binomial process

This thesis has so far considered fitting the two-dimensional NBD to data in order to
assess adequacy of the gamma Poisson process. Using the methodology used in this
thesis, it should be possible to derive joint distributions of estimators computed in
multiple (greater than two) time intervals and to use the joint distribution to verify
whether the vector of estimators fall within the asymptotic confidence ellipsoid of
estimators whose underlying process is gamma Poisson. This should provide a stronger
indication of how well the assumption of constant intensity for each household holds
in practice.

The asymptotic distributions of estimators computed in two different time intervals
have shown that the estimators are in fact correlated. The strength of the correlation
depends on the NBD parameter values. In practice, therefore, it is not sensible to
compute estimators in separate time intervals as though the estimators in the two time
intervals were independent. For example, it may be the case that the mean of consumer

purchase occasions is estimated separately for the year 2005 and the year 2006. The
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moments of the two-dimensional NBD, in the case where the estimators are correlated,
could be used to provide more accurate estimators for the year 2006.

Note that the joint asymptotic normal distributions of estimators computed from
data generated by the gamma Poisson process allows testing of the hypothesis as to
whether two estimators come from the same gamma Poisson process. This could aid
in outlier detection. In this thesis the households were placed into sub-groups of size
500 households. For example, when computing estimators in two consecutive time
intervals, some estimators for & in the detergent category fell far outside the confidence
ellipse. This could have been a result of an outlier or outliers within the particular

sub-group.



Appendices

162



Appendix A

A.1 Asymptotic distributions of statistics computed
from INAR(1) samples

Theorem A.1.1. Let {z:; t =1,2,...,N} be a sample realization from an INAR(1)
_ —A\T

process X; with stationary distribution w. Let f = (:1:, cX )T, f = (i, cX ) with

z= % Zf’zl x; and X = % Efil c®, withc > 0 and c # 1. Then f has an asymptotic

normal distribution given by limy_.oo VN(F — Ef) ~ N (0, Df) with covariance matric

Vi C. =
Df =E(f ~Ef)(f ~Ef)" = (C 'R ) - (A1)
X,cX cX
Here
Vi = lim N Var (%) = G * Z) Var[X], (A1.2)
Vg = lim N Var(E)?)
N-1 r
= Var (c**) + 2 lim Z (1——]\7) {Gx, (cl1—a" +a"c]) Ge(c; ") — G%. ()},
r=1
(A.1.3)
Cy = =1\}E?>0N Cov()_(,g’?) = Cov (Xrc*)
N-1
: T T r \Xr A7)
+dm 30 (1= ) {2 [X- (- 07+ 29 Guleion) - BIX:IGx. ()]
N-1 r
+ lim 3" (1 - N) {Gx, (c[l - o +a’c]) — &" E[X4|Gx.(c)}. (A.14)
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The proof of Theorem A.1.1 uses the statistical properties of the thinning operator
and the form of the INAR(1) process. Recall that the thinning operation a o X is

defined as

X
aOXiZZj a € (0,1),

j=1

where the Z; are i.i.d. Bernoulli random variables with P(Z;=1) = a and P(Z;=0) =

1—a. From the definition of the thinning operator above it follows that
Elao X]=aE[X] and E[f(X)(aocX)]=aE[Xf(X)],

where all expectations are assumed to be finite.

Since the INAR(1) process is a stationary process we have for any s # ¢

E[f(Xs)] = E[f(Xt)] = E[f(Xﬂ’)]

From the definition of the INAR(1) process we note that the dependence between any
two random variables X; and X, from the same INAR(1) process with s > ¢ can be

written as

s—t—-1
Xs=a3‘t0Xt+ Z ajoss_j.

=0

Finally we note that since X; Lao0 Xi—1 + &; the expected value of the errors are
E[Et] = E[Xt] - E[a o Xt—l] = (1 - CY)E[XW]

This result and many more relationships between the moments of the ¢, and the

moments of X, can be obtained using the relationship

Gx,(c) = Gx, (1 - a+ ac)G(c; ).
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Proof of Theorern A.l1.1.

Proof for Var(X)

N
Var(X) = Var (—]1\7 ZX‘) = {Z Var(X,) + ZCOV(Xt,X )}

t=1 t#s
1\1,2 {NVa.r[X ]+ Z_(N - r)aTVar[X,,]}

r=1

%Var[X,,] {1 + 22_: (1 - %) af}

r=1

lim Var(X) = (”—0‘) Var(X,). O

N—ooo l-«a
Proof for Var(g’\()

Note that

E[XcX) = E[¢X %] = E [CXH—Q"_‘OX:] E [cz;~3- aJoss-J]
s—t—1
= Gx, (c(1 - "+ a*7'c)) H Ge(1— o’ + dc; @)

3=0

s—t—1 : :
_ _ Gx,(1—al +dlc)
— G 1— s—t s—t X= ' i
X (1 = @™ + ")) g Gx, (1 —a+a(l — ol + adc))

=Gx, (c(1—a* "t + ")) Ge(c; o)

therefore
—~ 1 & 1
Var(cX) = Var (ﬁ ZCX'> = Nz {Z Var(c™*) + ZCOV Xt X’)}
t=1 t#s
1
= {NVar [c*] + Z (B[] -E[ME [cx])}
t#s
1 N-1
=Nz {NVar Xx] +2>: (N-r)(Gx, (c(l—a"+a"c)) Ge(c; ") — Gg("(c))}
r=1

dim NVar(cX) = Var (c*)
N-1 r
+2 lim (1"’1V) {Gx, (c[1—a"+a"d) Ge(c;0") = G%.(6)}. O

N—oo
r=1
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Proof for Cov(X, E’\()

Note that fort < s

s—t—1
E[X, X =E [(as‘t o X; + Z oo ss_j) cx‘}
=0
s—t—1
=E[cX® (o X,)]+E [¢*] Z E ol ogy_j]

Jj=0

= T'E [¢M X)) + (1 — oY E [¢*] E[X)]
=’ E [ X, + (1 - o E [*] E[X,],

Cov (X, cX‘) = o’ 'Cov (X, cX")
and

E' [Xtha] — E -Xtcaa—foxt:l E I:Cz;;(t)nlajoea—j]
i s—t—1
-t T[ G- 0
L P,

=E -X,r (1-a*t+ as_‘c)x"] Ge(c; 7%

Il

Cov (X;,c**)=E X, (1—a"t+ as_tc)x"] (¢ &™) — E[X,] E [¢*],

therefore
_ o~ 1 (X
Cov (X, cx) = {Z Cov (X, cX‘) + Z Cov(X;,c**) + z Cov(X;, cX’)}
t=1 t<s t>s
N-1
= {NCOV (X,,,c ”) + Z(N — 7)o" Cov (X,T, cx")
r=1

+ NZ-I(N'—T) (E [X" (1—as‘t+as“c)X"] Ge(e; &™) —E[X,] E [CX"])}

r=1

A}i_lgoNCov (X,?) =7 !

Cov (X,,,CX")

N-1

+ lim ; (1—7:,-) (E [X,,(l—a"+a’c)x"] G.(c; ") —E[X,,]E[cX"]).
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B.l NBD Chi-square goodness of fit plots for 46 categories
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2 Ratio of NBD estimated market research measures to empirical market research measures

1 I
I
i "ttHFFSEBEOS{fiEEEH
]_ r7————ﬁ """ h IULl HHIFHHfHHit
}
0 ” - - I
i
1-
| L
1 |
i :
1
|
I
i!
}
“ 1
i I
1



Ratio of NBD estimated market research measures to empirical market research measures

ufUmtUmnrm

MHHH+HAWAH+"



Ratio of NBD estimated market research measures to empirical market research measures

TrmfUprr+ Mlttttum........

miimnfl

%

q 1adey)



Ratio of NBD estimated market research measures to empirical market research measures

i
i
i
y*u t i_
i
i
1
i
| =
h i

I1

e

Mi

!

I' inuin

——

P e e e



Ratio of NBD estimated market research measures to empirical market research measures

j 7 hiTTntlIHINITHIVE

g Iadey)



Ratio of NBD estimated market research measures to empirical market research measures

ttlU IH frr

bt

ek o ko -

I-
{E
I-
1E
1%
1
1=

fTIK<emmm»TTir

q @™dey)
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B.3 Extrapolation of market research measures to different length time intervals
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Extrapolation of market research measures to different length time intervals
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1e

Correlations between market research measures computed in two 26-week time intervals
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B.5 Autocorrelation function for the time series of the number of consumers in a category



Autocorrelation function for the time series of the number of consumers in a category
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