
Quality of Service Management in Service-oriented Grids

Rashid J. Al-Ali

B.S., University of the Pacific, USA, 1992
M.S., The George Washington University, USA, 1997

Thesis submitted for the degree of
Doctor of Philosophy

School of Computer Science
Cardiff University, Cardiff, UK, October 2005

UMI Number: U584740

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584740
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Dedication

For my Family, Friends and Colleagues

iii

Acknowledgements

I must, in the first instance, thank Dr Omer Rana, my first supervisor, for his many

suggestions and support during this research, and Professor David Walker, my

second supervisor, for his help and support; without their constant advice and support

this thesis would not be complete.

I am also grateful to Dr Gregor von Laszewski of the Argonne National Laboratory

(ANL), for his help in gaining access to the ANL Grid infrastructure, testing our

work on a scientific application and contributing to the Java CoG Kit project. Thanks

also to Kaizar Amin from ANL for useful discussions on integrating the QoS work

into the Java CoG Kit, and to Mihael Hategan, also of ANL, for support in

integrating the scientific application.

Special thanks to Dr. Abdelhakim Hafid, Dr. Karim Djimam, Professor Peter Dew,

Dr. Raj Kumar, Shaleeza Sohail, Dr. Sanjay Jha, Dr. Sander Volker, Dr. Klara

Nahrstedt, Ali ShaikhAli, Dr. Simone Ludwig, Dr. Steven Lynden, Hema Arora and

Karthika Arunachalam for their support, and to members of the School of Computer

Science at Cardiff - my appreciation for a stimulating work environment.

I must acknowledge, with thanks, those who have funded me throughout this

research project; The Qatar government for sponsoring me throughout the research

period, and Cardiff University for covering participation at a number of conferences,

with an acknowledgement also to the Java CoG Kit project for appreciated support.

I am especially grateful to my mother, for her support and prayers, and to my lovely

family, my wife Madiha and my children, Ahmad, Abdullah, Fatema and Noora, for

their constant support and patience during my absence for much of the past four

years.

iv

Abstract

Grid computing provides a robust paradigm for aggregating disparate resources in a

secure and controlled environment. The emerging grid infrastructure gives rise to a
class of scientific applications and services in support of collaborative and distributed
resource-sharing requirements, as part of teleimmersion, visualization and simulation

services. Because such applications operate in a collaborative mode, data must be
stored, processed and delivered in a timely manner.

Such classes of applications have collaborative and distributed resource-sharing
requirements, and have stringent real-time constraints and quality-of-service (QoS)

requirements. A QoS management approach is therefore essential to orchestrate and
guarantee the interaction among such applications in a distributed computing
environment. Grid architectures require an underpinning of QoS support to manage

complex computation-intensive and data-intensive applications, as current grid
middleware solutions lack QoS provision. QoS guarantees in the grid context have,
however, not been given the importance they merit. To enhance its functionality, a

computational grid must be overlaid with an advanced QoS architecture to best
execute those applications with real-time constraints.

This thesis reports on the design and implementation of a software framework, called
Grid QoS Management (G-QoSm). G-QoSm incorporates a new QoS management
model and provides a service-oriented QoS management approach that supports the
Open Grid Service Architecture. Its novel features include grid-service discovery
based on QoS attributes, immediate and advance resource reservation, service

execution with QoS constraints, and techniques for QoS adaptation to compensate for

resource degradation, and to optimise resource allocation while maintaining a service
level agreement.

The benefits of G-QoSm are demonstrated by prototype test-beds that integrate
scientific grid applications and simulate grid data-transfer applications. Results show
that the grid application and the data-transfer simulation have better performance

when used with the proposed QoS approach. QoS abstractions are presented for
building QoS-aware applications, in the context of service-oriented grids. These
abstractions are application programming interfaces to facilitate application
developers utilising the proposed QoS management solution.

v

Quality of Service Management in Service-oriented Grids

Contents

Declaration..... ---------------- i

Abstract--V

Contents............... - ... - VI

Figures-- IX

Tables---X

Algorithms---X

Notation---XI

CHAPTER 1 - INTRODUCTION___ 1

1.0 Background ... 1
1.1 Service-oriented Arc h itec tu r e ..2
1.2 Q uality o f Se r v ic e ... 3
1.3 Research Methodology and Hypo th esis ..6
1.4 Novel Contributions of th e T h e s is .. 6
1.5 Thesis O u t lin e .. 8

CHAPTER 2 - LITERATURE REVIEW---9

2.0 Sy n o psis .. 9
2.1 Q uality of Se r v ic e .. 9

2.1.1 - QoS Management Functions..11
2.2 QoS in Grid Com puting ... 14

2.2.1 - Requirements..15
2.2.2 - QoS in Grids...15
2.2.3 - Discussion: GARA and VAS.. 17

2.3 Resource Disco very ...18
2.4 Resource Reserv a tio n ..22
2.5 S ervice Level Ag reem en ts..24
2.6 QoS Ada pta tio n ...27
2.7 Network Qo S for G rid Applica tio n s.. 29

2.7.1 - GARA Network QoS Support...30
2.7.2 - NRS Network QoS Support.. 31

2.8 Sum m ary ... 31

CHAPTER 3 ~ A MODEL FOR QUALITY-OF-SERVICE PROVISION_____________________33

3.0 Background ...33
3.1 Sy n o psis ...33
3.2 Q uality-of-Service Mo d el ..34

3.2.1 - Service Request.. 37
3.2.2 - Service Level Agreement.. 40

3.2.3 - Service Level Agreement Formation ..42
3.2.4 - Utilisation M odel... 43
3.2.5 - Optimisation Problem ... 44
3 .2 .6 - Service Level Agreement C om pliance .. 45

3.3 Q uality-of-Service Ma n a g em en t ..45
3.3.1 - Advance Resource Reservation ... 45
3.3.2 - Admission Control...47
3.3.3 - QoS Adaptation .. 48

3.4 E x a m ple .. 53
3.5 S um m a ry ...56

CHAPTER 4 - FRAMEWORK DESIGN___57

4.0 Background ...57
4.1 S y n o psis .. 57
4.2 Framew ork O v erv iew ... 58
4.3 G-QoSm Architecture...61
4.4 QoS G rid Service... 62
4.5 QoS Bro k er in g ...64
4.6 Co m po n e n ts ...65

4.6.1 - Reservation M anager.. 67
4.6.2 - Allocation M anager...67
4.6.3 - QoS Registry Service ...68
4.6.4 - QoS Policy M anager... 68

4.7 Java CoG K it Co r e ..68
4.7.1 - Background ..68
4.7.2 - Constructs..69

4.8 N egotiation of Qo S Le v e l s .. 72
4.9 Q uality-of-service N egotiation Pr o to c o l ... 74

4.9.1 - Q uery .. 74
4.9.2 - Reserve .. 76
4.9.3 - U pdate .. 77
4.9.4 - Cancel... 78

4.10 Sum m a ry ... 80

CHAPTER 5 - THE PROTOTYPE___ 82

5.1 S y n o psis .. 82
5.2 Implementation O verview ...82

5.2.1 - QGS Reservation M anager... 83
5.2.2 - Q G S A P I ..84
5.2.3 - Resource M anager Integration ...87
5.2.4 - Compute Resource M anager .. 88
5.2.5 - Network Resource M anager ... 89
5.2.6 -A pp lica tion Example using Q G S ... 90
5.2.7 - QoS Registry Service .. 96
5.2.8 - The UDDI Extension... 98
5.2.9 - Performance Experiments.. 99
5.2.10 - Lim itations...101

5.3 Sum m ary ..102

CHAPTER 6 - VALIDATION___104

6.1 Com putation-Intensive Ex a m p l e ...104
6.1.1 - Test-bed ... 106
6.1.2 - Time-domain A lloca tion ...106
6.1.3 - Resource-domain Allocation ..I l l
6.1.4 - QoS Overhead and System Limitations... 113

6.2 C o m m u n ica tio n -in ten s iv e E x a m p le .. 114

6.2.1 - BBBasic Implementation..114
6.2.2 - Experimental Results..118

6.3 Su m m a ry ... 124

CHAPTER 7 ~ CONCLUSION__ 125

7.1 S y n o psis .. 125
7.2 Co n tr ib u tio n s ..127
7.3 Further Research ... 129

7.3.1 - Cost Model..129
7.3.2 - Reservation Strategies... 129
7.3.3 - QoS for Workflow and Task Graphs..129
7.3.4 - Monitoring Service...130
7.3.5 - Prediction Service...130

BIBLIOGRAPHY___131

APPENDIX A - QGS SERVICE WSDL INTERFACE-- 141

APPENDIX B - QGS INSTALLATION___ 144

B. 1. Installation Prerequisites...144
B.2. Compilation and Service Deplo y m en t ...145
B.3. Bug Re po r ts ...145

APPENDIX C - DSRT WRAPPER API___ 146

C. 1. DSRT QoS C om m and Execution - Java C l a s s ...147

APPENDIX D~ A JAVA CLASS FOR QOS NEGOTIATION_____________________________ 149

D. 1. Submitting a Qo S-based Job after QGS N eg otiatio n ..151

APPENDIX E ~ RESERVATION DATA STRUCTURE AND METHODS__________________ 153

E. 1. A Java C lass for the R eservation Ag e n t .. 158
E.2. A Java Class for Validating Reservation Re q u e st s ..161

APPENDIX F - JAVA CODE FOR INTERFACING THE QOS REGISTRY SERVICE UDDIE...164

F. 1. Java Code for Selecting the C losest Matched Se r v ic e ..169

APPENDIX G - BANDWIDTH BROKER IN DIFFSERV________________________________ 172

Figures
Number Title Page

2.1 QoS Management Functions 12

3.1 Sequence Diagram of Activities undertaken
by the QoS Model 36

3.2 The QoS Model Architecture 37
3.3 The Dynamics of the Adaptive Algorithm 51
3.4 Sites and Established SLA’s 54

4.1 Concept of a Service-oriented Architecture 58
4.2 The G-QoSm Framework: A Conceptual View 60
4.3 G-QoSm Architecture 62
4.4 Structure of a QGS 62
4.5 The Role of the QoS Broker 63
4.6 Hierarchical QoS Brokering 65
4.7 QoS Handler Integration with the Java CoG Kit 71
4.8 XML Schema Definition for the Query Operation 75
4.9 XML Schema Definition for the Reserve Operation 76
4.10 XML Schema Definition for the Update Operation 77
4.11 XML Schema Definition for the Cancel Operation 78
4.12 Sequence Diagram for QoS Negotiation Protocol 80

5.1 Prototype Implementation Architecture 83
5.2 Main QoS Interface Class with Primitives for the QGS API 85
5.3 Integration of Resource Managers in G-QoSm 88
5.4 Role of Bandwidth Broker in DiffServ 90
5.5 Formulating a QoS Negotiation Request Task 92
5.6 Formulating a QoS-based Job Submission Task 92
5.7 Submitting a Previously Formulated Task Object

to the QoS Handler 93
5.8 Parameters for the QoS Negotiation Task 94
5.9 Parameters for the QoS-based Job-submission Task 95
5.10 The Five Most Processor-intensive Processes

before the Guaranteed Process 96
5.11 The Five Most Processor-intensive Processes

after starting the Guaranteed Process 96
5.12 Sample XML Request Submitted to the UDDIe 98
5.13 Logical Query Path 100

ix

6.1 Asynchronous Processes in Nanoscale Structure
Application 105

6.2 QoS-based Execution - Parallel 107
6.3 QoS-based Execution - Sequential 108
6.4 Best Effort Execution using GT2 - Parallel 109
6.5 Best Effort Execution Using GT2 - Sequential 109
6.6 The Application Using GT2 - Best Effort Service 110
6.7 The Application Using QoS - Guaranteed Service 110
6.8 Execution of Guaranteed and Competing Processes 112
6.9 Java Code for Requesting a Network Resource 118
6.10 Network Setup for Intra-domain Architecture 119
6.11 Network Setup for Inter-domain Architecture 119
6.12 Network QoS under Congestion 121
6.13 Multiple Network QoS Flows under Congestion 122
6.14 Guaranteed and Best Effort Network QoS 122
6.15 Network QoS under Congestion-

Intra-domain Architecture 123

G1 Appendix ~ Bandwidth Broker Concept 174

Tables
Number Title Page

5.1 Round Trip Time Responses (in milliseconds) 101

Algorithms
Number Title Page

3.1 Admission Control Function 47
3.2 QoS Adaptation 52

x

Notation

ANL Argonne National Laboratory
API application programming interface
BB bandwidth broker
BE best effort
BSLA bind SLA
COPS Common Open Policy Service
COPS-PR COPS for provisioning
CPU central processing unit
DiffServ differentiated services
DMM distributed multimedia
DSCP DiffServ Code Point
DSQDP Domain-specific Query and Discovery Protocol
DSRT Dynamic Soft Real-time
EF expedited forwarding
FSQDP Full Search Query and Discovery Protocol
GARA General-purpose Architecture for Reservation and Allocation
GGF Global Grid Forum
G-QoSm Grid QoS Management
GRAAP Grid Resource Allocation Agreement Protocol
GRAM Globus Resource Allocation Manager
GRIA Grid Resource for Industrial Applications
GTjc Globus Toolkit version x
GUI graphical user interface
H-FSC Hierarchical Fair Service Curve
IETF Internet Engineering Task Force
IntServ Integrated Services
IP Internet Protocol
Java CoG Kit Java Commodity Grid Kit
MM multimedia
MG Manufacturing Grid
NAFUR Negotiation Approach with Future Reservation
NFC National Fusion Collaborator
NRM Network Resource Manager
NRS Network Resource Scheduler
OGSA Open Grid Services Architecture

OGSI Open Grid Service Infrastructure
PDP policy decision point
PEP policy enforcement point
PIB policy information base
QGS QoS Grid Service
QoS quality-of-service
RAA resource allocation answer
RAR resource allocation request
RB Resource Broker
RFC request for comment
RM Resource Manager
RSLA resource SLA
RTARM Real-time Adaptive Resource Manager
RTT round trip time
SDS Service Discovery Service
SIBBS Simple Inter-domain BB Signalling protocol
SLA service level agreement
SLA-ID SLA identifier
SLS service level specification
SNAP Service Negotiation and Acquisition Protocol
SOA service-oriented architecture
SP service provider
SRT Soft Real-time
TAST Timely Adaptive State Tree
TCP Transmission Control Protocol
TSLA task SLA
UDDI Universal Description Discovery and Integration
UDDIe extended UDDI
UDP User Datagram Protocol
VAS Virtual Application Service
VDHA Virtual Dynamic Hierarchical Architecture
VO virtual organization
WS Web Service
WSA Web Service Agreement
WSDL Web Services Description Language
WSRF Web Services Resource Framework
XML extensible Markup Language

Quality of Service Management in Service-oriented Grids

Chapter 1 - Introduction

1.0 Background

Grid computing, which can be viewed as ‘coordinated resource sharing within multi-

institutional organizations’ (Foster et al. 2001), originally focused on large-scale

sharing of distributed resources, scientific applications and the achievement of high

performance (von Laszewski et al. 2003). A grid architecture integrates diverse

network environments, with widely varying resource and security characteristics,

into a virtual organization (VO). Computational grids offer high-performance

computing facilities that can be exploited by advanced scientific and commercial

applications. Such facilities provide computational resources with high storage

capacities and/or processing power to execute applications with special resource

requirements, such as data-intensive and computation-intensive applications.

Until recently, research on grids focused on designing and building middleware that

address the core problem of grids, such as the management of resources and services

in a distributed environment (Argonne, 2004). Such services include resource

management, security and data management; services fundamental to grids, as they

deal with accessing resources in distributed computing environments which exist in

multiple domains. Argonne National Laboratory (ANL) has developed an open-

source grid middleware, called Globus, which has become the de facto grid

middleware for research, and also, more recently, for production purposes.

Although the grid community has produced a number of other systems - Legion (The

Legion Project, 2004) and NetSolve (NetSolve, 2004) to name a few - many areas of

the grid concept remain to be investigated. Promising research directions include

resource management, security and networking, particularly with the use of Web

Services (WS) technologies, which offer a new approach to building and utilising

1

services in distributed computing environments. Some advantages of this new

approach are: i) loose coupling in application-to-application interaction, or

application to data sources, via Internet technology, and ii) a protocol based on using

extensible Markup Language (XML) message encoding.

1.1 Service-oriented Architecture

A Service-oriented Architecture (SOA) is essentially a collection of inter­

communicating services passing and exchanging data, and co-ordinating some

activities. Services are self-contained, and well-defined, software entities, each with

an interface and behaviour i.e. service capability. Services exchange messages with

applications or other services; for example in Web Services (WS) technology, these

messages are encoded as extensible Markup Language (XML) messages and are

encapsulated into Simple Object Access Protocol (SOAP) envelopes; with services

thus ‘language’ independent and designed to support inter-operability (Taylor, 2005).

Web Services is a technology in a SOA for connecting services, with services

connected through WS, and ‘service’ the endpoint of a connection, i.e. basically a

software capability. In WS services can be advertised by a service provider, to a

service repository, such as the Universal Description Discovery and Integration

(UDDI), through a process called ‘publish’. A Web Services standard, the Web

Services Description Language (WSDL), is used to advertise service-related

information, such as the service interface, i.e. how a client can invoke a set of pre­

defined operations on another service. A service can further be discovered by a

service requestor, sometimes called service consumer, through a process called

‘find’, which, essentially, searches the service repository, such as the UDDI, to locate

suitable services, described in the service WSDL description. A service can be

invoked through a process called ‘bind’, i.e. making use of the service capability by

sending a request to the remote service and receiving a response over the network;

essentially an exchange of XML messages.

The Open Grid Service Architecture (OGSA) is an architecture-specifying grid

system based on Web Services concepts and technologies (Argonne, 2004). OGSA

presents grid functionalities as a collection of services called ‘grid services’. Grid

2

services are essentially Web services with additional features such as stateful,

lifetime management and notification support. In OGSA all resources and

applications are presented as grid services, with one noticeable feature that grid

services are manageable, and, unlike Web services, grid services can be created,

destroyed or even monitored. OGSA defines a common standard for grid-based

applications, and developed an Open Grid Service Infrastructure (OGSI) standard to

provide technical specifications for grid services. OGSA has recently produced the

Web Services Resource Framework (WSRF) (Czajkowski et al. 2004) standard to

overcome some limitations of the OGSI, such as specifications for stateful services.

In this thesis the proposal for the design and implementation of a QoS management

system is envisioned as a grid service conforming to the OGSA standard. Such a QoS

grid service delivers QoS management functionality to applications or other grid

services. The stateful feature of grid services, defined by the OGSA standard, is

essential for the proposed QoS grid service, as this grid service deals with

applications and other services to provision QoS assurances, referenced by an

agreement called a Service Level Agreement (SLA). SLAs should be stored, and

accessed when applications want to utilise the services with QoS provision, as

specified in a SLA. Any request for services with QoS provision goes through a

validation process which verifies the requesting application has, indeed, a provisioned

QoS level specified in a SLA. SLA information should be associated with QoS grid

service; such an association can be delivered by the stateful feature specified by the

OGSA for grid services. (A further discussion on SLAs is given in Chapter 3.)

1.2 Quality of Service

Quality-of-service (QoS) issues have been explored in various contexts: network,

multimedia and, more recently, resource management, as discussed further in

Chapter 2. The work described here focuses on QoS issues in resource management

for distributed computing in service-oriented architectures (SOAs), and, in

particular, in the context of the Open Grid Services Architecture (OGSA) (Foster et

al. 2002). QoS can be defined as a measure of performance for certain service

quality, where the service could be networking, multimedia or certain resources e.g.

processors - sometimes called central processing units (CPU) in the following

3

Chapters. The QoS is normally specified in a set of parameters describing the desired

service: for example, a networking service is described by a group of parameter,

including bandwidth, delay, jitter and packet-loss rate.

Grid services conform to certain specifications, are self-contained and provide well

defined interfaces. Grid services are hosted in grid resources and infrastructures; and

connectivity is maintained among resources via dedicated high-speed networks. A

well-established grid infrastructure facilitates constant resource connectivity, resource

monitoring and fault tolerance. Hence some basic level of QoS is provided by the

committed members of a VO, based on their pre-agreed grid policies and their

dedication to collaboration. Nevertheless, the complexities involved in critical grid

applications require guaranteed QoS assurances beyond those provided by a basic grid

infrastructure, such as critical applications with real-time requirements. Because of the

increasing sophistication of grid applications (TeraGrid, 2001), such as those with real­

time constraints, QoS provision becomes an inherent requirement in a grid

architecture. A modem SOA requires advanced management to provide QoS

assurances of meeting such application requirements.

QoS depends on the context in which it is addressed. For example, QoS in

multimedia deals with the presentation quality of multimedia documents, while

network QoS deals with communication-link characteristics, such as bandwidth and

delay. QoS management, for the purpose of this thesis, is defined as all activities,

from resource selection and allocation through to resource release, intended to

ensure a set o f qualitative and quantitative attribute values. Examples of qualitative

QoS attributes include service reliability and user satisfaction, while examples of

quantitative QoS attributes include network bandwidth, processor performance and

storage capacity, which implies a certain capacity of disk storage for application use.

Overlaying an advanced QoS framework on existing grid architectures allows the

support of complex QoS requirements. The work presented in this thesis is the design

and implementation of a software framework called Grid QoS Management (G-

QoSm) that provides QoS functionality in SOAs. G-QoSm supports recent

standardisation efforts by the Global Grid Forum (GGF) (The Global Grid Forum,

4

2004) and is compatible with the OGSA specification. Important features of G-

QoSm are:

❖ It is based on the concept of a service level agreement (SLA) that contains

service-related details and agreement terms. A SLA comprises the contract

document between a user and a QoS management entity, which specifies

the services and quality the user should expect.

❖ It employs a service-selection mechanism in the service-discovery process to

select the most appropriate service, based on user-supplied service requirements.

❖ It supports advance resource reservation to guarantee resource availability

when needed.

❖ It incorporates techniques for QoS adaptation to compensate for resource

QoS degradation during the active phase of a QoS session.

The process of establishing SLAs, in the context of G-QoSm, shares many similarities

with the WS-Agreement (WSA) standard (Andrieux etal. 2004). For example, in a job

submission for a WSA, the provider posts an agreement template, comprising a list of

available applications, and the service consumer is required to populate the template

with information on the desired application, such as the application name, the number

of required processing nodes and other job submission parameters, including, for

example, the source of input data. Once the template is returned to the provider, the

consumer waits for confirmation, or rejection, of the agreement - if the agreement is

rejected, the consumer can try again with different parameters in the agreement

template - which basically constitutes a negotiation process. In G-QoSm a similar

approach is taken to negotiate and establish SLAs, as outlined in Section 4.2.

The effectiveness of G-QoSm is validated by building two prototype test-beds; the

first incorporating a scientific grid application and the second the simulation of a grid

data transfer application. The first prototype demonstrates computation QoS and the

second demonstrates network QoS. Performance results demonstrate the benefits of

the proposed QoS-based deployment.

5

1.3 Research Methodology and Hypothesis

Hypothesis: QoS management in a SOA can provide a guaranteed, reliable and

consistent service-execution mechanism.

A new architecture for QoS management is proposed, which addresses the questions:

❖ How can a QoS management system be presented as a Web Services (WS), in

the context of SOAs, where users and applications interact through standard

WS protocols?

❖ How can a typical service-oriented application utilise and benefit from use of

such a QoS management approach?

❖ What performance gains can be obtained by an application using such a QoS

management system in a SOA?

The hypothesis is verified by comparing the performance of the G-QoSm prototypes

to a grid middleware system without QoS management support, based on two

measures:

❖ Computation QoS: defined as guaranteeing a certain percentage of processor

capacity for an application in a shared processor system, or guaranteeing a

processor, or a number of processors, for an application’s exclusive use in a

multiprocessor system (Roy, 2001). In this instance, the computation QoS

measures the time taken to complete a QoS-aware application process while

other applications utilise system resources.

❖ Network QoS: defined as guaranteeing a certain quality level of a network link

between two end points, where the link characteristics include delay, jitter,

packet loss rate and bandwidth. In this instance, the network QoS is the ability

of a QoS-aware application to maintain a promised rate of data transfer while

other applications utilise system resources.

1.4 Novel Contributions of the Thesis

The thesis is motivated by the desire and need to develop a QoS management system

for SOAs and particularly for service-oriented grids. It envisions that the proposed

6

approach would be of great benefit for the Globus toolkit ecosystem (Liming, 2004).

The Globus toolkit ecosystem is based around the OGSA concept, and outlines grid

architectures for various types of applications, such as computation-intensive, data-

intensive and distributed collaborations. This thesis proposes a QoS management

system which could be utilised in such architectures to guarantee a required QoS

level for applications accessing grid resources.

The novel aspect of this thesis is the proposal of a QoS management system, called

G-QoSm, to provide QoS functionality for grid resources, such as computation and

networks. The G-QoSm prototype is designed and implemented in the context of

OGSA as a grid service within Globus Toolkit version 3 (GT3). Additional

contributions to research on grid and QoS management, raised in the development of

the new QoS management system, include:

❖ Development of an abstraction for QoS management in SOAs. The abstraction

employs a utility model for cost optimisation; depending on whether the cost

for executing a service is calculated by a client or a provider, a user may

optimise this cost from different perspectives. Given a particular quality level, a

user may be interested in identifying a set of resources that can offer the quality

at a minimum cost. Alternatively, a user may be interested in maximising the

revenue that could be obtained by selecting from available resources.

❖ The description of a novel protocol for agreement-based QoS negotiation,

which establishes a SLA between a service consumer and a provider.

❖ New resource selection and resource domain and time domain resource

allocation strategies based on QoS properties: resource domain allocates a

certain percentage capacity for a shared resource and is suitable for applications

that require limited resources, whereas time domain allocates the entire

resource capacity for an application, based on exclusive use, and is suitable for

applications that require high-performance resources.

❖ A new technique for advance resource reservation in grids, for single and/or

multiple resources. Reservation of multiple resources is of particular

importance in grid systems as normally grid applications require more than a

single resource to be simultaneously allocated, also referred to as co-allocation.

7

QoS adaptation mechanisms that compensate for QoS degradation and maintain

agreed-on SLAs.

Thesis Outline

Chapter 2 - Literature Review, surveys the background areas of research

related to the main ideas presented in the thesis. These main ideas are resource

discovery in distributed systems, resource reservation for QoS-aware systems,

literature on SLAs, and related works on the concept of QoS adaptation.

Chapter 3 - A Model for Quality-of-Service Provision, presents a new

agreement-based abstraction for QoS management in SOAs, and discusses the

main components of the model.

Chapter 4 - Framework Design, presents the design for G-QoSm, based on

the model presented in Chapter 3, and discusses the modularity of the G-QoSm

design.

Chapter 5 - The Prototype, discusses implementation issues for the proposed

QoS management system, describes the prototype implementation, and

discusses how a grid application can utilise the proposed G-QoSm system.

Chapter 6 ~ Validation, presents performance results of the G-QoSm prototype,

based on experiments undertaken in collaboration with ANL and Cardiff

University.

o Work at ANL integrated an image-processing grid application based on

nano materials, with this application demonstrating the need for

computation QoS (Al-Ali et al. 2004a/2004b).

o Work at Cardiff University demonstrates network QoS for data-transfer

applications (Al-Ali et al. 2004d).

Chapter 7 - Conclusion, presents a summary of the results, discusses the

outcome of the work and makes recommendations for further study.

Chapter 2 - Literature Review

2.0 Synopsis

In this Chapter literature on QoS management is surveyed; the concept of QoS is

defined and the activities and functions undertaken during a QoS session are

presented. QoS issues with reference to grid computing are introduced, and the

requirements for a QoS-aware grid-resource management system are identified.

Existing research projects dealing with QoS in distributed computing are discussed,

and the concepts in these projects are compared to the research presented in this

thesis. Work related to functions essential for QoS management is reviewed,

including: a) resource discovery; b) resource reservation; c) Service Level

Agreements; and d) QoS adaptation. In addition to these four functions this Chapter

includes a review of network QoS for grid applications. A number of QoS

management systems are also reviewed and compared to the proposed G-QoSm

system.

2.1 Quality of Service

The concept of QoS was first used in the network community (Aurrecoechea et al.

1995). In this context, network QoS specifically deals with providing certain quality

levels for network link characteristics between two points, with these characteristics

expressed as delay, jitter, throughput and packet loss rate:

• Delay: Time it takes a packet to travel from a sender to a receiver;

• Jitter: Variation in the delay of packets taking the same route;

• Throughput: Rate at which packets travel through the network;

• Packet-loss rate: Rate at which packets are dropped, lost or corrupted.

To manage these network parameters, certain network elements - network routers or

network traffic-control entities, such as Linux-based routers - are modified to

support QoS models, such as Differentiated Services (Blake et al. 1998; Xiao and Ni,

1999), or changes are made at the application end-points to control how packets are

transmitted, based on feedback from the receiver. The first of these - modifying

9

network elements - is usually undertaken at the network level; a very effective

mechanism as it controls the physical network link. The alternative approach is an

application-level solution, where feedback on network performance is used to control

the rate at which data is transmitted from the sender.

The QoS concept was next introduced in resource management applications, and

particularly in distributed multimedia (DMM) (Campbell et al. 1993; Narhstedt and

Smith, 1995; Bochmann and Hafid, 1996). QoS in resource management deals with

the issue of providing certain service qualities to applications, whereas in the

multimedia community QoS issues are concerned with providing a client with an

acceptable level of presentation quality when accessing a multimedia document. This

level of quality includes support for QoS at the network level, which forms a

connection between client and server, in addition to providing certain guarantees for

resources on the server side, comprising computing (processor performance) - to

process and dispatch, for example, multimedia frames at specific rates.

QoS was introduced into the grid computing community prior to 2004. The Globus

Alliance (Argonne, 2004) discusses the concept of the General-purpose Architecture

for Reservation and Allocation (GARA) (Foster et al. 1999). In the context of grid

computing, some effort has been expended in introducing a specialised network QoS

to support grid applications; exploiting ideas and concepts from the networking

community (Bhatti et al. 2003). Recently, with the introduction of the OGSA

concept, QoS provision has been introduced in the context of service-oriented grids

(Al-Ali et al. 2002a). The QoS work presented in this thesis benefits from concepts

related to QoS investigated in different communities, such as networking and DMM.

QoS in SOAs, and specifically in OGSA, is the theme of this research.

Although there is extensive research on QoS in various communities, there is no

standardisation; although some communities have working groups setting up

architecture and specifications for QoS. For example, in the context of the

networking community, the Internet Engineering Task Force (IETF) has released a

request for comment (RFC), describing a network QoS architecture based on

differentiated service (Blake et al. 1998). Similarly, the GGF has a working group

called Grid Resource Allocation Agreement Protocol (GRAAP), which is involved in

10

a number of issues related to QoS (MacLaren, 2003) and is establishing standards for

resource description, reservation and agreements. The GRAAP working group

primarily addresses the protocol to reserve and allocate resources in grid

environments.

QoS has no standard definition and is therefore, normally, defined according to the

context in which it is used. For instance, Jarvis et al. (2003) define QoS as a

representation of user-side service (i.e. user perception) based on deadlines assigned

to tasks, while Roy (2001) defines QoS as guaranteeing the availability of specific

resource characteristics in a shared resources environment, such as processor

performance or network bandwidth.

QoS provision in a shared resources environment is essential, as, with any finite set

of resources, the resources are, eventually, fully occupied and no further clients or

applications can utilise the resources. To overcome this problem, either a QoS

management system, which can support reservation mechanisms and admission

control procedures to access the resources, must be provided, or the finite set of

resources must be increased to accommodate requirements for all expected client or

application needs. The second solution is not usually acceptable as it is virtually

impossible to provide access to unlimited resources, and provision of QoS

management functionality is normally more efficient and cost effective. This thesis

focuses primarily on proposing a design, and building a QoS management system.

2.1.1 - QoS Management Functions

A QoS session has three main phases: (1) the establishment phase; (2) the active

phase; and (3) the clearing phase (Hafid and Bochmann, 1998). Each phase has QoS

functions, as shown in Figure 2.1.

During the establishment phase a client states their QoS specifications, and the QoS

management entity undertakes service and resource discovery based on QoS

properties negotiated with the client (Al-Ali et al. 2003d).

During the active phase, additional activities such as resource allocation, based on

previously-reserved resources, QoS monitoring, accounting, adaptation and possibly

11

re-negotiation may take place. Some activities in this QoS management phase may

be repeated a number of times; for example, a re-negotiation may trigger resource

allocation being re-applied, and similarly for adaptation when allocated resources fall

below the agreed-on specifications.

QoS Specification
QoS Mapping
QoS Negotiation
Resource Reservation
QoS Accounting

Establishment Phase

Resource Allocation
QoS Monitoring
QoS Re-Negotiation
QoS Adaptation
QoS Accounting

Active Phase

QoS Termination Clearing Phase

Figure 2.1: QoS Management Functions

The clearing phase occurs when the QoS session is terminated, due to a resource

reservation ending, a SLA violation, or service completion, which frees resources for

use by other clients. To detect a SLA violation, the QoS levels - i.e. resource

specifications - must be monitored. For example, Baker and Smith (2003) propose a

grid resource monitoring system called GridRM - a generic resource monitoring

framework capable of providing a client/application with resource data. This data can

be used by the QoS management entity during the active phase.

This thesis is mainly concerned with four aspects of QoS management in a grid context:

(i) Resource Discovery: concerned with discovering and selecting grid resources

based on QoS properties, such as resource specifications, during the establishment

phase of QoS management.

(ii) Resource Reservation: part of the establishment phase, and an important

function in providing resource access guarantees.

(iii) Service Level Agreements: cover the entire spectrum of QoS management.

These agreements, negotiated in the establishment phase, are used in both the active

and clearing phases, and may be re-negotiated during the active phase.

12

(iv) QoS Adaptation: triggered primarily during the active phase, this process is

concerned with resource allocation and adaptation and is meant to compensate for QoS

degradation.

When studied in the context of grid computing, QoS research differ from other

communities in two main areas: (a) the nature of available resources; and (b) the

simultaneous allocation of resources that span multiple administrative domains. QoS

in grid computing usually deals with more than one type of resource because of the

co-allocation requirements of many grid applications, whereas most other

communities, such as networking, normally only deal with one type of resource. Grid

resources include computation nodes, networks, storage devices and specialised

instruments; normally found in more than one administrative domain. This domain-

spanning is the main distinguishing feature of a grid system. In resource management

terminology, this can be viewed as coordinating multiple resource access - which

may be simultaneous - spanning multiple domains, in scientific, or commercial,

applications.

The nature of QoS provision depends on the nature of the resources involved. For

example, processor QoS depends on whether a processor is being used as a shared or

an exclusive access resource (Roy, 2001). With processor sharing, an application can

specify that it requires a certain percentage of processor capacity over a specific time

period. In a multiprocessor system an application can also specify exclusive access to

a number of processors over a specific time period.

Similarly, storage QoS concerns access to storage devices such as disks. In this

context, QoS is characterised by bandwidth and storage capacity. Bandwidth is the

rate of data transfer between a storage device and an application program. Bandwidth

is dependent on the speed of the bus connecting the application to the storage

resource, and the number of such buses that can be concurrently used. The number

and types of parallel I/O channels available between the processor and the storage

media are significant parameters in specifying storage QoS. Storage capacity is the

volume of storage space an application can use, during its execution, for writing data.

13

2.2 QoS in Grid Computing

It would be convenient for a grid application to specify its QoS requirements in the

form of a single (virtual) resource, necessary to run the application, comprising

computing, storage and networking resources, and the period over which the resource

is required. Such a resource may, in practice, involve the aggregation of a number of

distinct grid resources to achieve the desired outcome.

A grid application usually submits its requirements to a grid resource management

service that schedules jobs as resources become available. Each resource provider

supports a resource manager that receives requests from external applications.

Certain applications, such as real-time and collaborative applications, need to obtain

results within strict deadlines, and cannot always wait for resources to become

available. Others require multiple resources to be simultaneously allocated, with no

strict deadlines. For such applications, it is often necessary to reserve grid resources

for a specific time; in advance, or immediately. Guaranteeing resource availability

for an application’s execution is highly desirable, indeed, it is required if grid

services are to handle complex scientific and business applications that need

resources distributed over multiple administrative domains.

Taylor (2005) sees QoS in grid systems as a key parameter, and negotiating SLAs to

address QoS requirements as essential. Taylor categorises QoS in grid systems into three

types:

❖ None: verifying that QoS is not supported; similar to best effort support.

❖ Soft: implying QoS can be specified, but the resource management system

cannot provide guarantees. This is the most common form of QoS in grid

computing.

❖ Hard: meaning that all nodes on the grid support, and guarantee, QoS.

In the following sections, requirements for a QoS-aware grid resource management

system are presented and the extent to which current QoS systems meet such

requirements is discussed.

14

2.2.1 - Requirements

A grid resource management system should address the following requirements:

❖ Resource Reservation: should support mechanisms for immediate or advance

resource reservation. Advance reservation is particularly important for

resources shared in multi-user environments.

❖ Reservation Policy: should support mechanisms for resource owners to

enforce policies governing when, how and who can reserve their resources. For

reservation flexibility the policy mechanism should be decoupled from the

reservation mechanism (Karsten et al. 1999).

❖ Protocol for Negotiating SLAs: should assure clients of the resource

configuration expected during the service session. Such assurance can be given

in an agreement document, such as a SLA. Creation of such a document

requires a negotiation mechanism so service consumers and providers can

negotiate SLA terms, such as service starting time and resource specifications.

❖ Security: should prevent malicious users from penetrating or altering data

repositories holding information about reservations, policies and agreements. In

addition to a secure channel between an application and the grid resources

being used, a security infrastructure providing support for authentication and

access control is also required.

❖ Simplicity: should have as simple a design as is reasonable, requiring minimal

or no changes to existing infrastructure.

❖ Scalability: should be scalable to a large number of entities. This is especially

true since grids are expected to be open and dynamic, with resources and users

joining and leaving in a non-deterministic manner.

❖ Resource Co-allocation: should be able to simultaneously deal with multiple

resources, as a typical grid application requires different types of resources to

be allocated concurrently.

2.2.2 - QoS in Grids

In grid computing, QoS management must provide the required access to computing

resources in multiple domains. Unlike multimedia and network QoS, grid QoS

requires a global information service (Fitzgerald et al. 1997; Cjazkowski et al. 2001).

which is a central virtual resource, consisting of a number of replicated information

15

services, to have global information readily available on the status of resources. This

is essential, as the grid consists of diverse resources distributed over multiple

domains. Such a service can be interrogated by an application to determine which

resources it can use. Because grid QoS deals with concurrent service sessions, SLAs

are essential to specify resource configurations for each service with these

configurations encoded in the SLA as parameters. Subsequently, each parameter can

be monitored to ensure SLA conformance.

SLAs encode particular resource requirements for an application as SLA elements,

which represent SLA terms, for example, the required network bandwidth or required

processor performance. These elements can be verified against resource capabilities a

specific owner can provide. Such SLAs, between a service consumer and service

providers, can be expressed using first-order logic.

Relatively few systems have been developed that provide QoS support for grid

applications; with examples including GARA (Foster et al. 1999), the Virtual

Application Service (VAS) (Keahey and Motawi, 2003), and the GRLA project

(GRIA, 2004). The Grid Resource for Industrial Applications (GRIA) project targets

industrial applications and attempts to provide end-to-end performance and

availability estimation, with efficient mapping of workloads to resources. It uses

techniques such as workload estimation and resource capacity estimation to

accomplish QoS-based performance. A notable feature of the GRIA is that it does

not provide absolute guarantees that a resource will be available to run the required

job at a specific time, but does allow a client to specify requirements, and agrees on

what should happen if these requirements are not met. This approach to QoS

management does not engender a high degree of confidence that a job will be

executed, or that results will be collected on time. As discussed in Section 2.2.3 the

GARA and VAS systems share many similarities with the work in this thesis.

Other QoS efforts in the grid community are mostly attempts to manage network

properties for grid applications. Examples include The Network Resource Scheduler

(NRS) project (Bhatti et al. 2003). The objective of the NRS is to provide the users,

and applications, with a means to request network capacity allocation, with

immediate or advance reservation. This network resource allocation provides QoS

16

guarantees over grid domains, such network QoS utilising the differentiated services

(DiffServ) concept (Blake et al. 1998). Section 2.7 discusses the network QoS for

grid applications.

2.23 - Discussion: GARA and VAS

Although networking support is important, GARA and VAS are designed not only to

provide network QoS but also other types of QoS, such as processor performance.

The following sections discuss these two systems and highlight their differences.

2.2.3.1 General-purpose Architecture for Reservation and Allocation (GARA)

GARA is the best known framework for supporting QoS in computational grids, and

provides the ability of specifying end-to-end QoS requirements. Its advance

reservation service treats various types of resources uniformly such as networks,

computation and storage, and provides a guarantee that an application initiating a

reservation will receive a specific QoS from the resource manager. This is made

possible by employing specialised resource managers to support QoS guarantees.

GARA also provides an application programming interface (API) to create, modify,

bind and cancel reservation requests.

Although GARA has gained popularity in the grid community, it has limitations in

coping with current application requirements and technologies. For example:

❖ GARA does not operate in an OGSA context, and OGSA-enabled applications

cannot use it directly. Grid computing increasingly relies on WS technologies,

and many current grid middleware systems are moving towards WS standards

(Foster et al. 2002) and placing greater importance on the Web Services

Resource Framework (WSRF) (Czajkowski et al. 2004).

❖ GARA does not support protocols for agreements, or the establishment of

SLAs, which are essential requirement for dealing with resources spanning

multiple administrative domains. The GGF is working on standardising

agreement protocols, which address resource negotiation with QoS

specifications, through the GRAAP working group (Czajkowski et al. 2003).

17

❖ GARA does not support a QoS adaptation feature for computational resources,

although QoS monitoring and adaptation during an active QoS session is one of

the important mechanisms in providing quality guarantees (Al-Ali et al. 2004c).

❖ Although GARA is, in principle, portable, it is based on earlier versions of

Globus (Version 2.2 and earlier), and is not currently maintained.

2.2.3.2 Virtual Application Service (VAS)

Keahey and Motawi (2003) propose the VAS architecture for managing QoS in

computational grids. VAS is a grid service with interfaces for negotiating QoS levels

and service requests. A key objective is to support real-time services with QoS

provision. A client submits a request to VAS for immediate or advance reservation,

supplying only time constraints. Application modelling information associated with

every service allows the system to compute the feasibility of satisfying such time

constraints. If feasible, the modelling information, such as execution times and

hardware resource data, allows the system to determine the computational resources

required to support the request, and to reserve a specific processor capacity. A SLA

is then presented to the user based on these parameters.

VAS is a deadline-driven system, in which a client specifies only the time constraints

(start time and deadline time) and VAS computes the feasibility of meeting this

deadline. This approach is ambitious but is, in reality, limited to a set of predefined

services. This view is supported by the fact that VAS is designed for a specific

application domain called the National Fusion Collaborator (NFC) (National Fusion

Col laboratory, 2005).

2.3 Resource Discovery

Resource discovery is the process of locating resources in a distributed computing

environment, where a resource can be of any type, including computing nodes,

networks and storage devices (Foster et al. 2002). A number of techniques have been

introduced to solve the discovery problem. For example, Ludwig and van Santen

(2 0 0 2) use ontology-based descriptions to enhance the matchmaking process of

service discovery in grids. Lican et al. (2003), investigating algorithms for service

discovery, propose the Virtual Dynamic Hierarchical Architecture (VDHA). They

18

claim that VDHA supports scalable, autonomous, efficient, reliable and quick

response, and propose two service-discovery algorithms: (1) Full Search Query and

Discovery Protocol (FSQDP), and (2) Domain-specific Query and Discovery

Protocol (DSQDP). Service discovery based on VDHA is fully decentralised and

unrelated to service-description languages, because it uses local agents of nodes to

match the services, and can scale to a large number of services; scalability, in the

context of distributed computing, is highly desirable because of the potential for

service growth.

Rana et al. (2001) also utilise agents to solve the discovery problem; for example,

they propose a decentralised approach to resource management and discovery, based

on a community of interacting software agents, unlike the solution proposed in this

thesis using a centralised discovery system.

Mechanisms for service discovery based on QoS properties in grids, DMM

applications and network services have recently been explored. In grids, several such

mechanisms are based on the Universal Description Discovery and Integration

(UDDI) project (UDDI, 2004). The myGrid project (Moreau et a l 2002) involves

middleware intended to provide a toolbox for biologists and bio-informaticians

performing workflow-based in silico experiments, so as to automate the management

of such workflow. The concepts of QoS registration for service instances are

explored in the service directory of the myGrid project though the use of UDDI-M

an extension to the standard UDDI service directory approach that supports service

metadata storage via a tunnelling technique that ties the metadata store to the original

UDDI directory (Dialani et al. 2002). Search mechanisms based on QoS properties, a

desirable feature for any QoS-based discovery system, are not supported in UDDI-M.

The GARA project (Foster et al. 1999), does not address specifications of QoS

associated with a particular service and the service concept is not supported by

GARA. Service discovery based on QoS has also been explored in the context of

grids, with a demonstration of how a feedback capability on service performance can

improve QoS. The Wide-area Discovery Framework (Xu et al. 2001), is a

hierarchical architecture of three elements, service clients, service providers and

discovery servers, which work together to constitute a wide-area distributed-system

19

service directory management. This service directory management is enhanced to

provide better query responsiveness and QoS awareness. Feedback, in this context,

means that, during a service session, a software component monitors QoS levels and

generates the numerically-average QoS level observed. The definition of this QoS

level is highly service-specific, i.e. dependant on the type of service being

considered. This project targets queries which must traverse a number of discovery

services in a hierarchical fashion.

In the context of DMM applications, Madja et al. (1998) propose a data model for

QoS management on the Web. Their data model is a set of QoS characteristics for

multimedia audio/video documents. This data may be stored in a database, as text

files, or as an extension of HTML tags. A client specifies the desired quality of the

multimedia document and the QoS manager accesses the multimedia document's

metadata to negotiate the requirements identified by the client. This work, however,

is limited to multimedia documents, and not general enough to support the concept of

services.

In the context of network services, the Service Discovery Service (SDS) provides an

architecture consisting of clients, services and SDS servers (Czerwinski et al. 1999).

This architecture includes a number of interesting features such as security,

scalability and the notion of a capability manager. The capability manager has an

access control list to indicate which users have the right to access which service. In

SDS, a client searches for services based on their capability rather than the client's

QoS requirements. In an agreement-based system, the client/application must be able

to specify their QoS requirements, so a negotiation can take place and an agreement

can be reached.

The Darwin system (Chandra et al. 1998) is a service-oriented resource management

system capable of managing requests for complex network services with QoS

support. A request is entered into the system by the user in the form of a task graph.

A resource manager locates suitable resources to perform the requested tasks with

the optionally-specified QoS requirements. The resource manager is responsible for

creating a hierarchical grouping, which consists of a structure of the network flows,

with their QoS specifications and the IP addresses of the nodes. This hierarchical

20

grouping tree is passed to the designated network resource manager(s) for the

allocation process.

Darwin has four main components: (1) a high-level resource allocation mechanism

and a resource broker named Xena, to perform global allocation of resources using

domain knowledge to support optimisations; (2) runtime resource managers and Java

control delegates, which support service-specific adaptation for network resources;

(3) a hierarchical scheduling mechanism, the Hierarchical Fair Service Curve (H-

FSC) scheduler, which enables each participating resource to specify its own policy;

and (4) a signalling protocol, named Beagle, which provides an interface between an

abstract view of the network and the real physical network.

The concept of a service in Darwin is quite restrictive, with its primary focus on

network resources. Support for generic services such as computation, storage or other

services is limited. In the Darwin system, Xena does not employ a general resource

discovery protocol, rather, it offers a mechanism through which services can register

their availability and capabilities, i.e. a simple publish-subscribe mechanism. This

allows Xena to build a coarse-grained database of available resources.

The systems surveyed in this section do not address the issues of QoS criteria

specified within a service interface, such as service capability and resource

specifications needed to run the service properly. Such criteria are particularly

important when a service is distributed on a number of hosts, or when there are

multiple service providers who can provide the same service, but with different QoS

capabilities. Much emphasis has been placed in previous work on building service

discovery mechanisms that attempt to minimise response time. Generally, such

approaches utilise a hierarchical scheme to aggregate and propagate network

statistics (Yemini et al. 1991; Lin and Stadler, 2001). Although such approaches are

adopted in the context of service discovery (Hass et al. 2001; Xu et al. 2001), issues

arising as a consequence of using QoS properties have not been adequately

addressed.

21

2.4 Resource Reservation

A reservation can be viewed as a promise from a QoS manager to a client of

expected resources with a certain capability to be available during a certain time.

Advance resource reservation is defined as a possibly limited or restricted

delegation, o f a particular resource capability over a defined time interval, obtained

by the requester from the resource owner through a negotiation process (MacLaren,

2003). A resource reservation can be categorised either as an advance reservation or

as an immediate (also called on-demand) reservation, which can be for a specified, or

indefinite, duration.

Indefinite reservation is undesirable as it introduces blockages that can result in a

waste of unused resources. But an important feature of reservation, of particular

importance to grid computing, is support for co-reservation. Immediate and advance

reservations are used in a wide variety of systems, mostly in networking,

communication and distributed applications, including DMM applications. A number

of systems with advance/immediate reservation features have been proposed in the

networking and DMM communities, whereas few systems are proposed in the

context of grids.

Negotiation Approach with Future Reservation (NAFUR) is a QoS negotiation

system with advance reservation support in the context of DMM applications (Hafid

et al. 1998). It computes the QoS that can be supported at the time of a service

request or at a certain later predetermined time. If a multimedia service with a certain

QoS cannot be supported at the time of a request, NAFUR computes the earliest time

at which the service can be supported with that specific QoS. This counter offer

reservation feature is quite desirable, but NAFUR is restricted to DMM applications.

In Kim and Nahrstedt (2000), a resource broker (RB) model in the context of

middleware for DMM applications is proposed with the following design goals:

(1) Advance and immediate reservations;

(2) A new admission control scheme based on a Timely Adaptive State Tree

(TAST); and

22

(3) The processing of brokerage requests for resource reservation, modification,

allocation and release.

The admission control, based on TAST, is used to make advance reservation

decisions, with TAST based on an algorithm that provides QoS suggestions to users.

These suggestions, provided when the original QoS request is rejected due to

resource unavailability, can be to reduce reservation duration, to degrade QoS or to

select a different start time. The use of TAST to make admission control decisions is

a notable feature of this model, which is useful as it provides suggestions when the

original request cannot be granted, as opposed to a YES/NO response. The approach

is however limited to DMM applications.

In Karsten et al. (1999), advance reservation is formalised in the context of networking

systems, and the fundamental problem of admission control associated with resource

reservation is introduced. Based on a literature review, the authors conclude that no

earlier approach is sufficiently flexible to cover all potential needs of all users. Their

solution is to separate the issue into technical and policy specifications, supported by a

generic reservation service description and a corresponding policy layer. This

combination improves the flexibility of advance reservation. Although this advance

reservation approach is intended for networking systems, and deals with only one type

of resource, it can be generalised for multiple resources.

None of these research projects address advance reservation in the context of service-

oriented architectures. Nevertheless, the GGF GRAAP working group has produced

a ‘state of the art’ document laying down properties for resource reservation in grids

(MacLaren, 2003). None of the systems reviewed address the concept of co­

reservation for advance/immediate resource reservation; such co-reservation is of

particular importance for grid applications, as they often simultaneously utilise

multiple grid resources. For example; the GARA framework, in the context of grid

computing, does not provide co-reservation support - the reservation of multiple

resources in a single request. The approaches reviewed focus mostly on providing

alternative reservation suggestions where an original reservation request cannot be

granted, i.e. counter-proposal reservations. Such approaches are useful but are

usually limited to a predefined set of services. In the context of grid computing

23

however, applications deal with multiple types of resources, and services

dynamically join, and leave, the grid.

2.5 Service Level Agreements

A SLA, in the context of grid services, is a contract between a service provider and a

consumer (Czajkowski et al. 2003). A SLA contains general and service-specific

elements. General elements, a part of every SLA, are independent of the service and

include, for example, a contract validity period, as well as penalties for SLA

violations. For example, service-specific, or technical elements include, service

execution requirements in terms of resource capability specifications and, perhaps,

performance requirements.

Bhoj et al. (1998) present a Web-based SLA management for network services in a

federated system, including a framework for contract verification with a visual

interface for contract compliance reports. Nguyen et al. (2002) propose a protocol for

negotiating service-level specifications (SLSs) as the technical elements of a SLA for

intra- and inter-domain network services, based on the Common Open Policy Service

(COPS), called COPS-SLS.

Pard et al. (2001) discuss the management and control of SLAs for multimedia

Internet services using a utility model, a mathematical model designed to capture the

management and control aspects of SLAs. This particular utility model has been used

in micro-economics theory, and is defined, in this context, as the satisfaction

obtained from a service provider for the consumed system and network resources.

The aim of this approach is to address management and control aspect of the QoS

levels while utilising the system and network resources efficiently. This is achieved

through the concepts of:

(1) a quality profile that specifies the quality performances of customers, i.e. a

set of acceptable operating qualities for a service;

(2) quality-to-resource mapping, which maps the qualities specified in the SLA

to the available resources;

(3) resource constraints - the sum of all resources allocated to customers, which

cannot exceed the total available resources, and

24

(4) a utility model that maps the customer’s operating quality to a utility value.

This work is useful as it associates resource operating qualities and utility

values. It is however limited to the multimedia Internet services domain.

The Service Negotiation and Acquisition Protocol (SNAP), introduced by

Czajkowski et al. (2002), is a resource management model for negotiating resources

in distributed systems such as grids. SNAP incorporates three types of SLA: the task

SLA (TSLA), the resource SLA (RSLA), and the bind SLA (BSLA). A TSLA

describes a task to be executed while the RSLA describes the resources needed. The

BSLA provides an association between the resources from an RSLA and the task in a

TSLA. The protocol requires a resource management entity to guarantee resource

capability and provide resource provision, i.e. to enforce the RSLA.

In a manufacturing grid (MG), resources are classified by their function and type,

and encapsulated as grid services (Shi et al. 2003). When a client application

requests a manufacturing task with QoS specifications, a designated resource

management entity generates a workflow schedule, consisting of subtasks, services

and resources needed, encoded into a SLA. The generated SLA includes a

description of the workflow, with each task of the workflow defined as a grid service

with its QoS specifications. This work is useful as an approach to QoS-based

workflow, but the applicability is restricted to the manufacturing application domain

and operates on predefined services.

Sahai et al. (2003) describe a SLA management entity for supporting QoS in the

context of commercial grids. In commercial grids businesses are bound by

commitments specified in SLAs, and monitoring and accountability therefore

becomes important. The SLA management entity exists within OGSA - with its own

set of protocols for manageability and assurance. SLA management also needs

interfaces to the service factory, registration and discovery service, for finding

resources based on QoS requirements, and interfaces with a notification service to

notify impacted parties on SLA status. The authors also describe a formal language

for SLA specification. Although interesting, this work is preliminary and its general

applicability is not altogether clear.

25

Burchard et al. (2004) propose SLAs for negotiating service execution parameters

between resource managers. SLA management is achieved via a virtual resource

manager that enables interaction among a number of schedulers on different clusters.

The virtual resource manager acts as a coordinator to aggregate SLAs negotiated

with different sub-systems.

Sahai et al. (2001) explore application-level QoS. Their work focuses on relating

client QoS criteria with business metrics such as revenue. According to Sahai et al.

SLAs between two parties should be based on the business transactions conducted

between them and a transaction focus can then be used to identify criteria that are

important, for both clients and service providers. Hence, the QoS criteria for a client

are motivated by metrics such as the performance, reliability and availability of a

service, whereas a service provider would prefer to differentiate between

transactions, provide throughput guarantees, support load balancing across available

resources, and support smooth degradation on overload. Basing their argument on

these attributes, Sahai et al. propose services with high priorities should be provided

with a high degree of resource replication to support particular QoS requirements,

which would allow a service provider to establish specific performance guarantees

for individual transactions. This work encodes application-level QoS criteria into

SLAs, and uses the business transaction focus to guarantee SLA compliance.

In this survey the concept of the SLA is explored from various contexts, and is used

to encode technical specifications, as for DiffServ services in the networking

community (Nguyen et al. 2002), such as bandwidth, delay and other parameters, to

characterise the networking link. SLAs are also used to encode business terms, and to

realise loss/revenue in terms of QoS, as in Sahai et al. (2001). SLAs in SOA should

extend the traditional concept of SLAs in the networking community to include other

QoS parameters specific to SOAs, such as resources needed to run a service and

expected response time. With this extension QoS parameters can be realised in SLAs

and a client or application can request services with specific levels of quality.

26

2.6 QoS Adaptation

A QoS adaptation, as defined here is used to enable the dynamic adjustment of

application behaviour based on changes in a pre-defined SLA. This adjustment can

occur when the SLA is violated - i.e. the QoS specified in the SLA has been

degraded - or adaptation is necessary to optimise resource allocation during a QoS

session (Al-Ali et al. 2004c). QoS adaptation can be seen as a reaction by a resource

manager to compensate for a resource shortage, such as when QoS has been

degraded, optimising resource utility by admitting more requests to share the

available resource, while maintaining agreed-on quality levels. Adaptation is

particularly useful when workload, or network traffic, changes unpredictably during

an active QoS session.

QoS adaptation is also defined as ‘the alteration o f an application's behaviour or

interface in response to arbitrary context changes’ (Henricksen and Indulska, 2001).

It has been explored in various contexts such as communication networks, DMM

applications, real-time systems and Web browsers. For example, Mobiware,

developed at Columbia University (Oguz et al. 1998), is a toolkit that supports

adaptation at the network level. Mobiware provides programmable network objects

that can be manipulated to provide applications with a desired QoS. Applications

specify their QoS requirements using an API, in the form of a utility function and an

adaptation policy. The utility function expresses the desired application requirements

with different levels of network bandwidth, while the adaptation policy determines

how an application's bandwidth allocation should vary as resource availability

changes. This approach primarily focuses on network QoS.

Hafid et al. (1996) designed and implemented a QoS manager for negotiation and

adaptation in DMM applications. Based on a user profile, the QoS manager considers

possible system configurations, called system offers, and selects an optimal offer,

called a user offer. During playback of a multimedia document, if the network or the

server becomes congested, thereby lowering presentation quality, the QoS manager

dynamically considers another system configuration from the list of system offers. If

an alternate system offer is selected and the required resources reserved, the manager

automatically changes to the new offer.

27

Chu and Nahrstedt (1999) designed and implemented the Soft Real-Time (SRT)

system for multimedia applications. SRT supports multiple CPU service classes for

real-time processes, based on the usage pattern of these processes. They use a

concept of contracts to specify the CPU service class together with a parameter used

to reserve CPU cycles. As the processing time per frame in a multimedia application,

changes dynamically for some processes, the contract parameters are adjusted

accordingly to reflect the change in the processor usage pattern. SRT provides a

system-initiated adaptation that can adjust contract parameters for the real-time

processes based on their actual processor usage. One noticeable feature of this

adaptation scheme is the ability to reserve 'just sufficient’ processor time to execute

the required processes.

Foster et al. (2000) designed and implemented an adaptive control system prototype

for grid computing based on: (1) actuators that permit online control; (2) sensors that

permit monitoring of resource allocations; and (3) a decision procedure that allows

entities to respond to sensor information by invoking actuators. The prototype was

implemented with particular emphasis on network resource usage. For example, a

loss-rate sensor might acquire information from a network edge router. The decision

procedure obtains information from the loss-rate sensor and adapts the network

reservation using the GARA Create/Modijy reservation request, via a reservation

actuator. Although this work uses GARA as the underlying resource manager to

create, and modify, reservations, this is limited to providing a network adaptation

mechanism.

Cardei et al. (2000) describe the Real-time Adaptive Resource Manager (RTARM)

for resource management adaptation. RTARM is a general middleware architecture

for adaptive management of integrated services, and is targeted at real-time mission-

critical distributed applications. RTARM recognises three situations where the QoS

for an application may change: (1) QoS reduction when a new application begins; (2)

QoS improvement when an application terminates and releases resources; and (3)

feedback adaptation. Situations (1) and (2) impose contract changes due to

adaptation. Feedback adaptation, conversely, does not impose contract changes but

operates as a closed-loop control system, monitoring the delivered QoS, and using the

28

difference between delivered and desired QoS parameters to adapt to application

behaviour. The feedback adaptation is intended to optimise resources, even if the

contract specifies more resources, and if the application actually uses fewer resources,

only those fewer resources are allocated. This approach of adaptation, i.e. feedback

adaptation, is useful as resources are optimised. But the situation can arise where the

applications, which have had their QoS reduced due to adaptation and are using fewer

resources, can change their usage pattern, and require more resource, but all resources

are utilised. Such a problem can arise in this type of adaptation mechanism.

The QoS adaptation systems reviewed here have a number of interesting adaptive

techniques; for example, the introduction of a decision procedure in Foster et al.

(2 0 0 0) and the use of a closed-loop control system, to utilise 'just sufficient’ resources

in Cardei et al. (2000). However, none of the systems surveyed are SLA-based

adaptive systems, i.e. using an adaptation mechanism to maintain an SLA agreement.

A QoS-based system should facilitate the negotiating of SLAs, and then, during an

active QoS session, provide adaptation behaviour to maintain SLA compliance when

the QoS degrades, and optimise resource utilisation while maintaining the agreed-on

quality levels. A SLA-based approach is more practical, and provides a mechanism for

a client, or application, to negotiate the quality level of service to be received and,

eventually, the level of service to be expected during the active phase.

2.7 Network QoS for Grid Applications

Currently the Internet treats all traffic equally as best effort and does not support

QoS. IETF has proposed Integrated Services (IntServ) and DiffServ architectures

(Barden et al. 1994; Blake et al. 1998). Both these architectures support QoS, with

data transfer guarantees on bandwidth, delay and other parameters.

IntServ supports network resource reservation by maintaining per-flow admission

control, signalling, classification and scheduling at every router on the transmission

path. However, because of its need for maintenance-of-state information for a large

number of flows through core routers, scalability is a major issue preventing the

deployment of IntServ.

29

DiffServ, in contrast, provides a broad and flexible range of services, while avoiding

the need for per-flow state information in core routers. The main goal of DiffServ is

to provide a preferred level of service to particular types of network traffic, without

increasing overheads in the core routers. To achieve this, it provides an aggregated

end-to-end service over a number of separately administered domains. As the inter­

domain level, i.e. between two domains, needs a mechanism to exchange critical

information about aggregated flows, a Bandwidth Broker (BB) (Teitelbaum et al.

1999) was introduced to allocate intra-domain resources and arrange inter-domain

agreements.

A BB is a logical entity responsible for managing QoS for network resources in an

administrative domain, based on a SLA between two domains, or between a domain

and an application. Such a SLA specifies to the forwarding service the volume of

traffic the application can receive. Organisational policies can be configured by using

the mechanism provided by the BB. On the inter-domain level, the BB is responsible

for negotiating QoS parameters and setting up bilateral agreements with

neighbouring domains. On the intra-domain level, the BB’s responsibility includes

the configuration of edge routers, to enforce resource allocation and for admission

control. Edge routers can be configured to police, and mark, packets with a DiffServ

Code Point (DSCP). Policing ensures the receiving rate does not exceed the agreed

rate; if exceeded, depending on the adopted policy, excess packets are either

discarded or re-marked for a delayed discard if congestion occurs.

There are recent efforts in the grid community to adopt concepts from the network

community and to provide QoS in grid applications. Two significant approaches,

both DiffServ-based, are the GARA project (Foster et al. 1999) and the NRS project

(Bhatti et al. 2003).

2.7.1 - GARA Network QoS Support

GARA provides network QoS for grid applications based on a DiffServ architecture.

Network QoS in GARA is designed, and built, to work with a specific network

router, the Cisco 7507, and uses Cisco’s Modular QoS Command-line interface to

configure routers as a policy enforcement point (PEP) to support DiffServ capability.

30

In a multi-domain network, i.e. multi-administrative domains, the GARA system

must exist in every administrative domain. In making a network reservation, for

traffic spanning multiple administrative domains, two issues arise: locating and

contacting the GARA system in each domain along the traffic path; and ensuring that

the application requesting the reservation has secure access to each GARA system

along the path. This introduces manageability limitations, and constraints on the

administrative domains where GARA is deployed.

2.7.2 - NRS Network QoS Support

NRS adopts a peer-to-peer model, as it exists in every administrative domain, and it

is assumed there is a trust relationship between neighbouring NRSs. NRS uses the

DiffServ concept, and therefore every neighbouring NRS has a DiffServ SLA (a SLA

related to a network connection). The application requesting network QoS needs only

negotiate with the local NRS to establish a local SLA. During the negotiation process

the local NRS replicates the request, to all NRSs along the network path, to conduct an

admission control check and, subsequently, to establish a SLA. NRS, like GARA, is

designed, and built, to only work with Cisco routers and to use Cisco-ISO to configure

Cisco’s routers as PEPs to support DiffServ. Although NRS has demonstrated its

effectiveness in providing DiffServ QoS, it is not clear how a grid application

developer would make use of this ability, because the NRS API is not clearly defined.

Using NRS also requires the definition of specific network parameters, such as traffic

specifications, which requires advanced networking knowledge.

2.8 Summary

Research relevant to the thesis is reviewed. QoS management, in the context of grids,

is defined and the different functions of QoS management are discussed. Special

attention is given to the four main elements of the thesis: resource discovery,

resource reservation, SLAs and adaptation. In addition to the network, QoS, in the

context of grid applications, is discussed, and key efforts in grid QoS networking are

reviewed. Interesting techniques are reviewed concerning the four main elements of

the thesis, and it is shown that there is little effort to provide QoS in SOAs.

31

Since the QoS management problem was first introduced in the networking

community, and subsequently in DMM applications, and recently in the grid

community, a particular focus is placed on related work in these areas. The novelty

of the thesis lies foremost in introducing a generic, modular QoS management

framework for SOAs, and for grids in particular (Al-Ali et al. 2002b; Al-Ali et al.

2003c). The proposed framework gives service providers a means to publish their

services with QoS properties, while the service consumer can search for services

based on QoS properties, and execute services on resources with QoS properties.

Chapter 3 - A Model fo r Quality-of-Service Provision introduces a conceptual

abstract model for QoS management in service-oriented architectures, with the

model's features compared to the work reviewed in this Chapter. The model's most

significant aspect is an agreement-based model, i.e. a SLA-driven QoS model.

32

Chapter 3 - A Model for Quality-of-Service Provision

3.0 Background

Certain clients of SOAs are concerned with the quality of a service, its computational

and economic costs, and that it is executed promptly and properly, in accordance

with their expectations. A QoS mechanism identifies the resources needed to execute

a service at a specified service quality level. It is important that the selection of such

resources be subject to other constraints, such as the cost associated with service

execution on a particular set of resources.

The QoS model presented here (Al-Ali et al. 2005) distinguishes between a service

provider, a service, a resource and a SLA. A resource is an entity that can be

reserved, while a SLA is a contract agreed upon between a client and a service

provider during the establishment phase of a QoS session, prior to resource

allocation. The problem addressed by the QoS model is how to determine, given

multiple types of QoS requests from clients, the optimal resource allocation. This is

undertaken with reference to a set of pre-defmed criteria to maximise resource

utilisation and maintain requested quality levels. The model includes optimisation

heuristics to discover such resources.

3.1 Synopsis

Advance resource reservations can be viewed as a way to provide a resource access

guarantee, and an assurance from the resource management entity that the reserved

resources, with the specifications requested, will be available during the agreed-on

period. The model has a mechanism for reserving resources in advance for single and

collective (i.e. multiple) resources; the latter is called co-reservation. Co-reservation

is essentially the ability to reserve multiple resources based on a single request,

reserving for example, processor time and network resources to run a simulation. The

33

need for co-reservation arises in grid computing as resources exist across multiple

administrative domains, and grid applications, usually simultaneously, utilise

resources from these multiple domains.

The proposed model operates in a distributed computing environment. It is assumed

resources are shared, and that, during the active phase of a QoS session, resources

may become congested, or even fail, causing resource QoS levels to degrade. A

means of compensation for such degradation is essential to maintain an agreed-on

SLA. A technique for such QoS adaptation is proposed based on reserving extra

resource capacity to compensate for any resource shortage - this extra resource

capacity is adaptive in the way it is utilised by the best effort users (users with no

QoS requirements) when not in use by guaranteed users. Section 3.3.3.4 elaborates

on this adaptation technique. Aspects of the QoS model include the following:

❖ It is SLA based;

❖ It employs a service-selection mechanism during the service-discovery

process, based on QoS properties;

❖ The advance resource reservation mechanism employed guarantees resource

allocation with certain QoS levels;

❖ It incorporates techniques for QoS adaptation, to compensate for QoS

degradation during the active phase of a QoS session.

3.2 Quality-of-Service Model

Resource management in distributed systems deals with co-ordinating resource

allocation for application execution; possibly for multiple clients in a shared-resource

environment.

Resource management for a single application in distributed systems, in its simplest

form (Rana et al. 2002), consists of:

❖ Selecting a set of resources for executing tasks generated by the application.

❖ Mapping the tasks to computational resources.

❖ Routing data to these computations.

❖ Ensuring that task and data dependencies between tasks are maintained.

34

In grid computing, a resource management entity usually interacts directly with the

grid middleware. Middleware is a layer of software that connects processes on

computer nodes connected through a network. An example is Globus, a middleware

infrastructure from the Globus Alliance (Argonne, 2004) that provides functionality

specific to a grid infrastructure, such as co-allocation of resources, data management,

information and security services (Czajkowski et al. 1998). Baker et al. (2000)

identify the functionalities of grid middleware as the core services mentioned above,

in addition to QoS and resource reservation. Current grid middleware infrastructures,

such as Globus, lack QoS and resource-reservation functionality. The QoS model

presented here can be used to enhance grid middleware by incorporating QoS

functionality and resource reservation support. Chapters 4 and 5 describe the

architecture and implementation of a prototype system, and its interaction with

Globus middleware. The enhancements are embodied in the following actions:

1. Service providers publish their services with QoS properties to the registry service.

2 . A service request consisting of QoS requirements is submitted by a client

application.

3. The QoS system selects a service that best matches the specified QoS constraints.

4. A SLA specifying the negotiated service and resource capabilities is issued by

the QoS management system to the client application.

5. Resources required to execute the agreed-on service are reserved for later

allocation during the active phase of a QoS session.

6 . SLA compliance is assured during the active session by monitoring the QoS

levels of the allocated resources. Adaptation techniques are utilised if there is

QoS degradation.

Figure 3.1, on the following page illustrates the sequence of activities undertaken by
the QoS Model.

35

Client QoS Manager Registry Service Service Provider

1: Publish services With

2: Service request with QoS properties

3: SerMce discovery

4: List of services

Select the I
closest match

Reserve

5: SLA offer J .

6: Accept service offer

Establish

r

7: SLA reference

8: Service invocation

SLA
compliance

I
9: Start the servce with the specified resources in the SLA 1_________________

10: Return results

Figure 3.1: Sequence Diagram of Activities undertaken by the QoS Model

Figure 3.2 on the next page illustrates the model and its components. The QoS

Manager is viewed as a component within the QoS model, and its main objective is

to capture requests from the client/application, negotiate SLAs, and enforce SLAs by

delivering services with agreed-on levels of quality. The QoS Registry is a WS

registry system, such as the UDDI system (UDDI, 2004), and is part of the proposed

model. The Service Provider generates a description of its services, with their QoS

properties, such as the required resources and capabilities needed to execute the

service, and publishes these to the QoS registry. The Resource Managers (RMs)

control a set of resources (RES), and interact with the QoS Manager for resource

36

allocation. RES contains subsets of various types of resources, unlike some of the

systems reviewed in Chapter 2, which only focus on network resources. The

client/application is a consumer that initiates a request for service with QoS

constraints.

: Client/Application j*—

Client/application requests
a service (SREQ)

QoS Manager generates
and enforces SLAs

A registry of services
with their profiles

RM: Resource Manager
RES: Resources of the

same type

RM2RM1

RES3\

QoS Manager

QoS
Registry

Service Provider

Figure 3.2: The QoS Model Architecture

3.2.1 - Service Request

A client submits a service request SREQ to the QoS Manager, specifying a requested

service, optional QoS levels, budget constraints and the time interval required for the

service. These parameters constitute the client’s requirements; the manager searches

for services with the specified quality level, finds an appropriate service and starts a

negotiation process. If multiple services are found, a selection process is started, or a

‘not found’ service message is returned to the client/application. A negotiation

process in this context means the QoS Manager presents a SLA offer to the client,

which the client should approve or reject. If rejecting the offer, the client may submit

another SREQ with different QoS levels - a process which can be repeated,

constituting a negotiation process.

Multiple service requests SREQj, SREQ2 SREQm from m clients may be

concurrently submitted. Each requested SREQi undergoes a negotiation process in

37

which the manager considers candidate services and available resources, and selects

those most suitable for the client/application’s requested QoS specification. Some

client requirements, such as reliability, availability, accuracy and response time, are

difficult to specify or to measure, and are consequently difficult to capture with

monitoring tools such as Netlogger (Gunter et al. 2002). Such difficulty arises where

some QoS specifications are qualitative, such as reliability, and there is no standard

acceptable criterion. In such cases, it is necessary to obtain this information from

other sources. To address this problem, the concept of a service profile, specifying

quality levels associated with a service is introduced. The suggested QoS

specifications are obtained from statistics, based on client feedback or from the

service provider. Statistics based on the client’s feedback can be achieved by, for

example, getting feedback from each client/application using the service, and

updating the service profile accordingly. These quality levels are dynamically

updated and maintained in the service profile. The service profile is intended for use

by the QoS Manager when a client [/] either specifically requests services with the

default profile, or is unable to specify the resource required for the desired quality.

On receiving a service request SREQi with the required QoS specifications, whether

obtained from client [i] or from a service profile, the QoS manager undertakes a

service discovery process by requesting a list of service matches from the QoS

registry, from which it selects the closest match (according to the mechanism

described below). The QoS registry, in this context, is characterised by three main

features:

(1) Service properties - the ability to associate QoS properties with a service

through a publishing process. This mainly involves QoS information related

to the resources required to execute the service, and service utilisation cost;

(2) Range-based searching - the ability to search for QoS attributes based on

numerical ranges; to give the flexibility of searching for a service with a

particular QoS property based on a range. For example ‘find services with a

required network QoS within the range: 45Mbps>=NetBandwidth>= 155Mbps’;

and

(3) Service leasing - the ability to associate a lifetime validity for the service; to

publish a service valid for usage during a specific time frame, which is useful

38

in associating different pricing schemes based on the time of day, such as

peak and off-peak hours.

This last feature is motivated by the OGSA service-lifetime management function,

such as transient or permanent services (Foster et al. 2002). Likewise, in the

proposed approach using this soft-state feature, the published services can have

associated validity data, so the service provider can set and control this feature. Most

of the discovery systems mentioned in Chapter 2 do not support such advanced

features, which can add flexibility for QoS-based discovery.

It is assumed that each service request contains numerical values - associating an

importance level with each QoS attribute - to assist the QoS Manager in making a

better selection. The selection is based on the principle of choosing the profile that

most closely matches the requested QoS levels, considering the importance level of

each QoS attribute stated in the service request.

The selection method is formally described as follows:

Let SREQi = ((qn, wit), (qa, wi2), ..., (qi„, win)) denote a service request

from client i, where each q& is a resource request and w,* its associated

importance weight, with r, = (qn, ql2, ..., qin) denoting the resource requests

from service request SREQi, and w, = (w n, wi2, ..., win) denoting the

specified importance weights for service request SREQi. It is important to

remember that the service request contains one or more resource requests,

i.e. the required resource QoS level.

Each resource request <7,* is of the form (type, value, range) where type is the type of

resource requested, such as network bandwidth or processor, value is the minimum

QoS level acceptable, and value + range is the highest QoS level the client is willing

to pay for. For example; if a request <7,* of the form (type, value, range) is given as

(bandwidth, 45, 10) then the request is for type = bandwidth; with the minimum QoS

value 45 Mbps, and the highest QoS value 45 + 10 = 55 Mbps. The type component

of qtk is denoted type(qui), with similar notation for value and range.

39

Let PROFi = (pn, pi2, ..., Pis) denote the sequence of profiles returned by the QoS

registry for service request SREQi, and each py from PROFi take the form (q’iji, q ’y2 ,

q ’ij„), where q satisfies in r , .

A profile resource request q ’yk = (type9, value’, range’) satisfies a service-request

resource request q^ = (type, value, range) if type ’ = type, value ’ > value, and value ’

+ range ’ < value + range.

To define the difference between profile p y = (q’iji, q ’y2 , • • • , q ’yn) and resource

request vector r, = (qu, qt2, ..., qm) then

n - Pij = (((value(qu)+range(qu)) - (value(q’ijl)+range(q’iji))), ... , ((value(qin)+

range(qin)) - (value(q ’ijn)+range(q ’ijn))).

Assuming two vectors, v and w, then the norm of a vector v with respect to vector w

can be defined as: IIv II* =

The profile that most closely matches the resource requests in r, is taken to be the

profile py that yields the least value for the norm:

Hr, -p y II* = <J]£nk=1wk((value(qik) + range(qik)) - (value(q'ijk) + range(q'ijk)))2 .

3.2.2 - Service Level Agreement

A SLA is of the form

([ti, t2] , <resource assignmenti, <resource assignment2,

<resource assignmentr)

where the range [th t2] is the time interval over which the SLA is valid and a

<resource assignment is of the form (type, value, w) where type is a member of the

set RTYP of resource attributes, value is a QoS level expressed as an integer, and w

is the importance level expressed as an integer.

RTYP contains the string names of various attributes of resource types under

management and is partitioned according to these types. For example,

RTYP = RTYP network U RTYP disk U RTYP cpu U RTYP memory, where

40

RTYPnetworkmight be {bandwidth, packet-loss rate, jitter, delay}.

A resource assignment <resource assignm ent specifies an agreement to provide the

resource type at QoS level value. An assignment is said to evaluate to true if the

actual QoS level equals or exceeds that in the assignment, and false otherwise.

Examples of SLAs are: SLAj = ([tj, t2], (memory, 24, 1))

SLA2 = ([11, t2], (memory, 24, 1), (bandwidth, 10, 2))

A type in a resource assignment in a SLA must be measurable and quantifiable

during service execution. A SLA has two important properties:

❖ A SLA is atomic - its resource assignments are sufficient to determine its

status.

❖ A SLA is satisfiable - it evaluates to true under some interpretations. An

evaluation to false during a service session indicates a SLA violation. Only

assignments that are dynamically monitored can become false during service

execution.

The reader will recall that a SLA is an agreement between two, or more, collaborating

entities. In the simplest case, these are assumed to be a client and a service provider.

Three key abstractions in the QoS model are a set ‘SP’ of service providers, a set

‘SER' of services and a set ‘RES' of resources. These abstractions allow one to

decouple a service provider from the resources it uses to execute a service - for

example, certain resources may be owned by others, i.e. the SP may not own the

resources. A service provider can offer one or more services, and must support a

hosting environment, such as Apache Axis/Tomcat for WSs. A service may use one or

more resources to execute.

The set RES of resources, similar to RTYP, is partitioned by the types under

management. For example, RES = RESmmork URESdisk URESCI'V URESmm’r'

where, for example, RES”™* = R E S j RESp“ ke‘ hs’ m‘' U R E S U R E S de‘°>

Network attributes, such as bandwidth, packet-loss rate, jitter and delay are

associated with RES^etwork. Similarly, attributes such as seek time, I/O throughput and

storage capacity are associated with RESdtsk. The set RES of available resources is a

41

union of resource sets based on their attributes. Each set RESattnbute contains multiple

instances of resources of the associated attribute.

Finally, each resource R e RE$utribute is associated with a single value; the amount

required is denoted val(R), specifying an appropriate measure of the resource instance,

for example, a network bandwidth of 10 Mbps or a main memory of 512 MB.

To execute a service with a particular quality, as stated in a SLA, it is necessary to

select resources (network, disk and processor) based on measurable attributes

associated with the available services. Resource selection is driven by the fact that

different resource instances provide different QoS levels.

Each resource assignment in a SLA corresponds to a resource request and

importance weight pair in the service request. Each resource assignment in a SLA

must provide a QoS level at least as great as its corresponding lower bound QoS

level in the service request, but not greater than the upper bound specified by the

range. This range element increases the flexibility for a client/application to request a

range-based quality level; alternatively the value of the range must be zero if the

client/application requests a fixed quality level.

To make this link between a service request SREQi and its corresponding SLAif the

sequence of resource assignments in SLAi corresponding to the resource request

sequence r, = (qu, qi2, ..., qj„) in SREQi is denoted as r) = (q'u, q'i2, q\n) where

each q'ik meets, or exceeds, the quality level specified in . That is, type(q’ik) =

type(qik), value(q’ik) > value(qik), and value(q’,*) + range(q’ik) - value(qik) +

range(qik).

3.2.3 - Service Level Agreement Formation

From the client’s side, a SLA is a contract to receive a service with specified quality

levels; from the QoS manager side, it is a commitment to deliver a service, based on

resources with the specified QoS levels. The model described here attempts to

capture these views in the abstract and does not address SLA protocols or reporting

mechanisms such as those described in Chapter 2 (Bhoj et al. 1998; Pard et al. 2001;

Nguyen et al. 2002).

42

The negotiation process involves a client initially proposing a SLA to the QoS

Manager via a service request. The Manager replies with a yes/no type answer; if the

reply is no, i.e. the Manager cannot satisfy the client/application request, the

client/application should submit another request, perhaps with different QoS levels.

Once a SLA is agreed between the two parties, the QoS Manager must reserve, and

subsequently allocate, sufficient resources to meet the resource QoS levels in the SLA.

This negotiation approach is based on a request/reply paradigm, and can be extended

to support a ‘counter-offer’; instead of replying with a ‘no’ answer, the manager could

reply with a ‘no’, and a suggestion for possible resource reservation, similar to the

approach taken in Hafid et al. (1998) as discussed in Chapter 2.

3.2.4 - Utilisation Model

Given a SLAi, let cost(q'ik) denote the cost of providing the resource specified in q The

evaluation of cost(q'J can simply be based on a look-up table, or may be dynamically

calculated as a service executes. As a service uses a collection of resources, the

aggregate cost is the sum of the costs of the resources specified in SLAi, namely:

Depending on whether the cost for executing a service is calculated by a client or a

provider, one may optimise this cost from different perspectives. Given a particular

QoS level, one may be interested in identifying a set of resources that can offer the

QoS at a minimum cost. This would require a search to determine the best resource

ensemble that offers a particular QoS at the minimum cost. To achieve this, it is

necessary to keep the QoS level constant and search for a resource ensemble

where tl and t2 denote the validity time interval for SLAj. Thus the MinjCosti

equation assigns, for all SLA, elements, resource R eRES type(qik) to q\k , where all

resource assignments satisfy SLAi, with the cost of SLA, thus minimised.

Service cost for client i = cost(q'ik)

12

satisfying: MinjCosti = m i l l
«€ RKSryp,' qit

43

Alternatively, one may be interested in maximising the revenue that can be obtained

by selecting from available resources while still satisfying the SLA. That is, to find a
12

set of resources satisfying: Max_Costi = m a x J X"=i cosf(^r'Ijt) dt
R eR E Slyp‘ 'q *) M R

The MaxjCosti equation assigns, for all SLAi elements, resource R e RES type(q lk) to

q ’ik, where all resource assignments satisfy SLAi, with the cost of SLAi thus maximised.

One can compute the total cost to m clients, for a given set of SLAs, as:

3.2.5 - Optimisation Problem

When considering QoS issues for a particular service provider, one may, given a

sequence of SLAs, SLAi, SLA2, ..., SLAm, allocate resources so that all SLAs are

satisfied and total cost is minimised. The problem consists of two parts: evaluation of

each SLA and cost optimisation. The evaluation of a SLA may be binary - i.e. true or

false.

Recall that, given a SLAi, value(q'ik) denotes the number of type(q'ik) QoS units

specified in r). The optimisation problem is to find an r'„ such that, for each resource

type type(q'ik), the assignment does not exceed the resource capacity of the service

provider, i.e. value(q'ik) ^ ^ val(R)

Thus the Maxrotaicost equation maximises the total cost of all given SLAs without

exceeding the service provider’s resource capacity. This cost maximisation heuristic

is consistent with the objective of maximising resource utility; thereby increasing

revenues. This optimisation model focuses on the service provider side.

12

Tota!_Cost= J cost(q'ik) dt

R € RES

and which maximises the total cost of all m SLAs:

TotalCost = max

44

3.2.6 - Service Level Agreement Compliance

Having allocated resources for the specified QoS levels, it is important to ensure that,

during an active QoS session, SLA compliance is maintained and all QoS attributes

are satisfied. One approach is through a monitoring service that periodically reviews

the status of the allocated resources, and an adaptation service that compares the

agreed-on QoS levels with those actually provided. The monitoring service captures

QoS values during the actual runtime and compares these to the values stated in the

SLA. The adaptation service compensates for QoS degradation where possible, if

such compensation is not possible, a violation report is made to the QoS Manager. A

further discussion on adaptation can be found in Section 3.3.3.

3.3 Quality-of-Service Management

To realise some of the QoS management functions in this model, as described in

Chapter 2, a mechanism for advance resource reservation is presented. This

reservation mechanism is mainly intended to provide a degree of assurance that the

reserved resources will be available for use; for increasing system flexibility and

maximising resource utilisation.

3.3.1 - Advance Resource Reservation

A mechanism to reserve a collection of grid resources is proposed. It is important

that the reservation be for a collection of resources, as most current grid applications

require a collection of resources to run successfully. This co-reservation feature

distinguishes the model from others such as GARA and VAS (Foster et al. 1999;

Keahey and Motawi, 2003). The fundamental problem with advance reservation, (as

discussed in Karsten et al. 1999), is that once an advance reservation is granted it is

difficult to utilise or grant reservations during the hold-back time - the interval from

the reservation being submitted until the start time. The problem arises when a client

requests an immediate reservation for an indefinite period, which may overlap a

previously granted advance reservation. A number of solutions have been proposed

to solve this problem; for example, all reservations, including immediate reservation,

could be specified within an interval - i.e. indefinite reservation is not supported.

45

Another solution is to partition resources for immediate reservation, and to only

allow advance reservations for specified durations.

The solution adopted for the proposed model is for all reservations to be

accompanied by duration specifications. This is a valid restriction for high

performance (or high demand) resources, for applications such as scientific

experiments or simulations. In these cases, there is prior knowledge of the need for

resources and there are no ad-hoc requests for simple resources. Although this type

of application (e.g. scientific experiments, simulations) would have prior knowledge

of when the application needs to use resources, the resource configuration to deliver

the desired QoS remains an issue. One approach to overcoming this issue is to utilise

prediction systems, such as the PACE project (Jarvis et al. 2003), which would

propose an estimate of the resource configuration required to deliver a certain QoS

for a specific hardware platform - given that PACE has prior knowledge of the

particular application.

An advance reservation model is specified in terms of five parameters:

ts: the reservation start time
te: the reservation end time

cl: a reservation class of service - guaranteed, controlled load, or best effort:
discussed in Section 3.3.3.1.

type e RTYP: a resource type

value: an integer specifying an attribute value for a resource of type type.

A reservation request is denoted as Res(ts, te, cl, (typej, valuei), ..., (typen, value„))

representing a co-reservation for n resources, with start time ts, end time te, and

reservation class cl. Each resource is specified by a type typek and an associated

attribute value value*. In the proposed QoS management model these reservation

parameters result from the negotiation process with the client/application in

establishing the SLA. A mechanism for pre-emption priority (Karsten et al. 1999) is

assumed, to allow higher priority service executions to reduce the priority of services

already running. The pre-emption priority ensures that when the reservation is not in

effect, either before, or after, the reservation period, the job, or service, making use

of the reserved resource is not refused or eliminated, but is rather assigned a low

46

priority value, which means switching its status from a guaranteed to a best effort

type of service. To support pre-emption priority in practice, the underlying resource

manager should be a priority-based system such as the Dynamic Soft Real-time

(DSRT) scheduler (Chu and Nahrstedt, 1999).

3.3.2 - Admission Control

Admission control is the process of granting, or denying, reservation requests based

on factors such as the actual load on a specified resource, and the policy that governs

who, how and when reservation for a resource should be granted. The maximum

available capacity for all resources of type type can be defined as

where reserved(R, t) is true if resource R is reserved at time t.

The process of admission for a reservation request

Res(ts, te, cl, (typei, valuei), ..., (typen, value„))

can be formally described by a Boolean function that returns true if the request can

be granted, and false otherwise, as in Algorithm 3.1.

maxavail(type) -
Re RES'*"

The load on all resources of type type at time t can be defined as

load(type, t) = ^ v a l(R) .
Re RES'*" A resened(R ,t)

Input: Res(ts, te, cl, (typeh value i) , ... , (typen, valuen))

Output: boolean

1. for i = 1 to n

2. for t = ts to te

5.

3.

4.

if value,• > (maxavail(type) - load(type, t)) then

return false

end if

6. end for

7. end for

8. return true

Algorithm 3.1: Admission Control Function

47

3.3.3 - QoS Adaptation

Adaptation is a key function of QoS management during the active phase of a

session. Three scenarios under which adaptation can arise are:

❖ Scenario 1 - New Service Request: a service request is received for which

there are insufficient resources. Adaptation can be used to free resources by

adjusting the allocations of active services, for example, services whose clients

indicate a willingness to accept a degraded QoS, such as receiving the lower

boundary of the acceptable QoS in their SLA.

❖ Scenario 2 - Service Termination: a service completes successfully and its

resources are released. Adaptation can be used to increase resource allocation

for certain active services while still satisfying their SLAs. This can be realised

by upgrading the quality level of services that have had their levels reduced,

upgrading the levels of those not currently receiving the best quality specified

in their SLAs. In other words, these services have valid SLAs, but the service

quality being offered is at the lower boundary of the acceptable range.

❖ Scenario 3 - QoS Degradation: the situation where QoS falls below the

minimum specified in a SLA. The degradation is detected, either by the

resource monitoring service, or by an explicit notification from the underlying

resource manager. Adaptation is used, if possible, to restore the degraded QoS

to one satisfying the SLA.

The following sections describe a QoS adaptation scheme to address the scenarios

described above. Section 3.3.3.1 describes the QoS classes supported by the scheme.

Section 3.3.3.2 discusses the SLA and how it is used. Section 3.3.3.3 discusses the

optimisation heuristic for adjusting resource allocation; to optimise resource

utilisation. Section 3.3.3.4 presents the adaptation algorithm, based on reserving

extra resources for guaranteed services, while general adaptation strategies are

presented in Section 3.3.3.5. An example is presented in Section 3.4.

3.3.3.1 QoS Classes

Service delivery is categorised into three distinct classes of service motivated by the

IETF: guaranteed (Shenker et al. 1997), controlled load (Wroclawski, 1997), and

best effort. Guaranteed class service provides QoS based on pre-defined constraints

48

identified by the user, and agreed on by the provider. These constraints are specified

using pre-agreed parameters, and must be supported by the service provider. QoS

parameters are enforced to explicitly identified values and are monitored; the service

provider is committed to delivering the service exactly as specified in the SLA. With

controlled load service, users state their QoS requirements based on parameter

ranges; a service provider must be able to offer QoS within the specified range. With

best effort service, no SLA is required; i.e. there is no QoS agreement, and any

suitable available resources are allocated to the client. This best effort service is the

default situation on the Internet.

3.3.3.2 SLA and QoS Adaptation

Choosing an appropriate adaptation strategy and its constituent parameters relies on

terms that are agreed on, in advance, during SLA establishment. Such terms involve,

for example, acceptable levels of resource QoS, budget constraints and SLA

violation penalties.

One important parameter, based on the selected class of service, is the level of

acceptable QoS. For example, in the case of controlled load, a client/application

specifies the range of acceptable QoS. This gives the QoS manager flexibility to

support a range of acceptable quality levels for this particular client/application. With

this flexibility the manager can upgrade, or downgrade, quality levels while still

satisfying the SLA, aiming to maximise resource utilisation.

Such parameters in the SLA play a major role in constraining the adaptation strategy.

They assist in better optimisation decisions as to which services should be upgraded, or

downgraded, while maintaining SLA conformance and maximising resource utility.

3.3.3.3 Resource Allocation Optimisation

Many different clients can concurrently request service with a specific QoS

requirement. The QoS levels must be negotiated, and agreed, along with other

management parameters such as service name, class and duration. The optimisation

heuristic, introduced above in Section 3.2.5, to reconcile these competing requests, is

to maximise the total cost as defined by:

49

max zr=i J S *=1 cost(q'ik) dt .
' tl

The QoS manager implements this heuristic by varying resource QoS levels based on

the specified ranges in the SLA. This maximises overall resource utility, while

maintaining acceptable quality for a user. This variation is undertaken for all active

services, aimed at reaching the optimal resource allocation that satisfies the heuristic.

The benefit of specifying QoS levels as ranges in the SLA provides flexibility for the

QoS manager in allocating resources, and improves resource utilisation, by

accommodating more service requests.

3.3.3.4 Adaptation Algorithm

Unlike the optimisation heuristic, the adaptation algorithm only operates on the

guaranteed and best effort service classes. Under this approach, the system

administrator determines the total resource capacity available for the guaranteed and

best effort users, including processor, network and disk storage. In addition, an

adaptive capacity can be specified, based on the rate of resource failure, or

congestion, as determined by the system administrator. The adaptive capacity is used

when the QoS for the guaranteed clients has been degraded; as a means to

compensate for such QoS degradation, or to be used by best effort users when it is

not needed for guaranteed clients. The algorithm incorporates a minimum capacity

for best effort clients, also determined by the system administrator. Providing a

minimum capacity for best effort clients is useful in distributed systems and shared-

resource environments, because services with no SLAs - i.e. without QoS guarantees

- will not be starved of resources, as they are likely to receive a low level of resource

usage. The concept of adaptive capacity is an extra resource ability, to be used when

adaptation is needed in terms of Algorithm 3.2.

These capacity allocations are dynamic, in that, using the adaptive and guaranteed

capacities, the best effort capacity utilises the free adaptive resources, provided they

are not currently allocated. The algorithm starts execution by invoking either the

Allocate_Guaranteed_Resource or the Allocate_Best_Effort_Resource function, as

shown in Algorithm 3.2:

50

Allocate_Guaranteed_Resource: when a request arrives, at line 23 in

Algorithm 3.2, to allocate resources for guaranteed clients, a check is made

to find out if the request is less than stated in the SLA; if the request is for

less, it is considered, while, if the request is for more then only the

specification in the SLA is considered; (lines 26 and 28). At line 26, if there

are insufficient resources for allocation to the specification in the SLA, then

the adaptation function Adapt is called. The Adapt function, at line 17,

calculates the available net capacity for guaranteed clients at that time. If

there are insufficient resources available at guaranteed capacity, then it

borrows resources to satisfy the SLA under consideration, from the adaptive

resource capacity, and make the remainder of the adaptive resource capacity

available for best effort clients.

Allocate_Best_Effort_Resource: when a request is made for allocation of

resources to best effort clients, (at line 33), the algorithm calculates the net

capacity for the best effort clients at that time; which is the sum of the pre­

defined best effort resource capacity and the available adaptive capacity, i.e.

the unused capacity of the adaptive. If the calculated net capacity is

insufficient for the request under consideration, a rejection message is

generated, otherwise the request is honoured.

Figure 3.3 illustrates the dynamic property of the adaptation algorithm.

Assume capacityToal: C = CG + CA + CB

‘Best effort’ can uses the adaptive
capacity if needed

When QoS degrades for ‘guaranteed’

Then adaptive is utilised to compensate
for the degradation
‘Best effort' can still utilise the
remaining capacity of the adaptive, as
long as not in use by the ‘guaranteed’

G A B

G: Guaranteed, A: Adaptive, B: Best effort

Figure 3.3: The D ynam ics of th e A daptive A lgorithm

51

1 C: the total resource capacity
2 CG: the guaranteed QoS capacity
3 CA: the adaptive capacity
4 CB: the b est effort QoS capacity
5 Ng: net capacity for guaranteed

6 Then C = CG + CA + Cb

7 U: set of ALL clients U = { U i , u n}
8 G: set of users of class guaranteed G = {vu vnj
9 B: set of users of c lass b est effort B = {w1 t wn}

10 c(u,t) = capacity required at time t by client ue G
11 b(u,t) = capacity required at time t by client ue B
12 g(u) = guaranteed capacity with a SLA for client ue G

13 Available_Guaranteed_Resource (g(u))
14 IF ^ g(u) < CG; where u e GTHEN

" SLA guaran tees to g(u) can be honoured
16 ENDIF

17 AdaptQ
18 Net capacity NG(t) = CG(t) - ^ g(u);where u e G
19 IF NG(t) < 0, (guarantees cannot be honoured at time f) THEN

ADD < X . g(u) - CG(t)) from A to G
ADD (CA(t) - /■£ g(u) - CG(t)]) from A to B

22 ENDIF

23 AHocate_Guaranteed_Resource(c(u,t), g(u))
24 IF c(u,t) < g(u) THEN

c(u,t) capacity must be given
26 ELSE IF NOT Available_Guaranteed_Resource(g(u)) THEN

Adapt; allocate c(u,t) capacity
28 ELSE IF c(u,t) > g(u) THEN

only g(u) capacity is given
Cnew(u,t) Q (d)

Allocate_Guaranteed_Resource(cneW(u,o, 9(u))
32 ENDIF
33 Allocate_Best_Effort_Resource(b(u, t))
34 IF b(u,t) < NB(t); (NB(t) = CB(t) + available A) THEN

allocate b(u,t)
36 ELSE

cannot allocate the required capacity
38 ENDIF

Algorithm 3.2: QoS Adaptation

52

The adaptation algorithm has two important advantages.

❖ Resources are never under-utilised; the extra capacity is used by best effort

clients provided the capacity is not needed by guaranteed clients (Algorithm

3.2, lines 21 and 34).

❖ A minimum resource capacity is allocated for best effort clients (Algorithm

3.2, lines 4 and 6).

3.3.3.S Adaptation Strategies o f Grid Services

The adaptation scheme is based on Algorithm 3.2 and the resource allocation

optimisation heuristic described in Sections 3.3.3.3. The QoS Manager periodically

applies the optimisation heuristic, and if there is a considerable gain in benefit to the

service provider, the resource allocation is modified. On receipt of a request from a

guaranteed client, the adaptation algorithm is applied; if the request cannot be

accommodated, the optimisation heuristic is executed.

3.4 Example

An example illustrates the operation of the adaptation scheme, with an emphasis on

processor resources. Assume that a scientist is about to conduct a simulation

experiment using grid services and infrastructure. The experiment is to run at site A

on an SGI multiprocessor machine with 64 processors and 10 GB of memory. The

database, holding the required data for the simulation, resides at site B. A second

scientist participating in the simulation is located at site C. The resources required for

the experiment are:

❖ A 622 Mbps communication link to connect site B and site A.

❖ A 45 Mbps communication link to connect site C and site A.

❖ 10 processor nodes, 2 GB of memory and 15 GB of disk space at site A.

The resources must be available over the duration of the experiment - ts to tg. The

SGI machine is configured to provide 26 processor nodes to all grid users, with the

rest dedicated for local processing. The grid system operator partitions the 26

processor nodes as:

53

Cg = 15, Cb = 6 and Ca = 5 processor nodes

C = Cq + Cb + Ca = 15 + 6 + 5 = 26 processor nodes

Three SLAs are negotiated with the QoS manager over the period ts to tg.

❖ SLAj: network bandwidth of 622 Mbps from Site B to Site A. Using the SLA

format outlined in Section 3.2.2, SLA] can be expressed as:

SLA] = ([ts , tg], (bandwidth, 622,(source: B, destination: A), 0))

❖ SLA2 : network bandwidth of 45 Mbps from Site C to Site A. Using the SLA

format outlined in Section 3.2.2, SLA2 can be expressed as:

SLA2 - ([ts , tg] , (bandwidth, 45, (source: C, destination: A), 0))

❖ SLA3: 10 processor nodes, 2 GB of memory and 15 GB of disk space on the

SGI machine at Site A. Using the SLA format outlined in Section 3.2.2, SLA3

can be expressed as:

SLA3 = ([ts , tg] , (CPU, 10, 0), (memory, 2, 0), (disk, 15,0))

Figure 3.4 depicts the three sites and resources required as in SLA], SLA2 and SLA3 .

Site A
SLA3 includes:
• 10 processors
• 2 GB of memory
• 15 GB of disk space

Site CSite B
SLA2 includes:
•4 5 Mbps network link

SLA, includes:
• 622 Mbps network lint

Figure 3.4: Sites and Established SLAs

Assume the following measurements are recorded during the period to through tc>. The

‘a ’ and V notations correspond respectively to available and used processor node

resources.

Notation: Cg : the guaranteed QoS capacity

Cb : the best effort QoS capacity

Ca : the adaptive capacity

a : the number of available processor nodes

u : the number of used processor nodes

54

❖ At (to to /j) the processor node allocation is:

Cq: u = 10, a = 5 ; processor node utilisation and availabity at Cg

Cb: u = 6 , a = 0 ; processor node utilisation and availabity at Cb

Ca: u = 0, a = 5 ; adaptive capacity from Cg point of view with the

corresponding processor node utilisation and availability.

CA: u =4, a = 1 ; adaptive capacity from CB point of view with the

corresponding processor node utilisation and availability.

❖ At t4:

Cq: u = 4, a = 1 1 ; processor node utilisation and availabity at Cg

CB: u = 6 , a = 0 ; processor node utilisation and availabity at Cb

Ca: u = 0, a = 5 ; Cg point of view

CA: u = 3, a = 2 ; Cb point of view

(best effort clients use resources in unpredictable patterns)

❖ At fj/ three processors from the Cq resource pool become inaccessible; Cg is

therefore updated to 12 processor nodes. SLA3 is also due to be active;

requiring the allocation of 1 0 processors

Cg-' u = 14, a = 1; to be brought from Ca when required.

Cb: u = 6 , a = 0

Ca: u = 2, a - 3; Cg point of view

Ca: u = 3, a = 0; Cb point of view

❖ At t$: three additional processors become accessible:

Cq: u = 14, a = 1

Cb: u = 6 , a = 0

Ca: u = 0, a = 5; Cg point of view

Ca ' u - 3, a = 2; Cb point of view

❖ At tg: S L A 3 has completed its validity period:

Cq: u = 4, a = 11

Cb: u = 6 , a = 0

Ca: u = 0, a = 5; Cg point of view

Ca: u = 3, a = 2; Cb point of view

This example illustrates how the adaptation strategy reserves resource capacity for

guaranteed clients; for use when there is a resource failure, or congestion. The

dynamic nature of the strategy allows unused resources to be utilised by best effort

55

clients. Best effort clients can therefore always make use of system resources. This

adaptation strategy is, furthermore, a generic approach and is not restricted to a

specific type of resource, unlike other work (Oguz et al. 1998; Foster et al. 2000).

Adaptation strategies based on reserving ‘just sufficient’ resources (Chu and

Nahrstedt, 1999; Cardei et al. 2000) are not used here, as it is difficult to apply such

mechanisms to different types of resources.

3.5 Summary

A new model for resource management based on QoS is presented. The model shows

that the QoS problem - to determine, given multiple client requests, the optimal

resource allocation that maximises utilisation and maintains requested QoS levels -

is an optimisation problem. A heuristic to achieve this is described. The model is

SLA-based, with a client negotiating for service access during an establishment

phase. The model selects services based on their QoS properties, as published by a

service provider. Selecting services based on QoS properties requires a registry

service that can recognise services with such QoS properties, such as the extended

version of UDDI (ShaikhAli et al. 2003).

The model employs a new mechanism for advance resource reservation, able to

reserve one or more resources. A novel approach for QoS adaptation, to compensate

for resource shortages when resource QoS degrades, is introduced in this model.

Finally, an example illustrating the adaptation approach is given.

Chapter 4 - Framework Design presents the design for the G-QoSm system, based

on the model presented in this Chapter.

56

Chapter 4 - Framework Design

4.0 Background

Some applications utilising a grid computing infrastructure require the simultaneous

allocation of resources, such as computer nodes, network bandwidth, disk storage or

other specialised resources. Collaborative work, visualisation and image processing

in distributed computing are examples of such applications. As such applications

operate in a collaborative mode, data must be stored and delivered in a timely

manner to clients or processing nodes, and sufficient processing power must be

available to process the data according to the required behaviour; consequently such

applications have QoS requirements.

4.1 Synopsis

This Chapter presents a novel architecture for QoS management, called G-QoSm;

based on the conceptual model described in Chapter 3.

G-QoSm is a general-purpose architecture, in the sense that it can be applied within

various SOAs, such as computational grids. It has a number of features:

❖ A negotiation protocol, between a client and QoS management entity, or QoS

Manager, is used interchangeably on behalf of a service provider. This

negotiation process either results in an agreement, i.e. the establishment of a

SLA, or finds no agreement. If in agreement, the SLA constitutes a contract

whose elements i.e. values associated with QoS properties, must be supported

throughout the agreed-on QoS session.

❖ A registry structured to allow a service provider to publish its services with

QoS properties, hereinafter referred to as a QoS-aware registry. This allows

services to be found based on QoS properties. The discovery process employs

search mechanisms for searches based on complex discovery requests,

constructed using operators, such as ‘= \ ‘< \ *<’, ‘> \ and ‘> \ and the logical

operators AND and OR.

57

❖ A mechanism for selecting a service based on its QoS properties. Different

resource allocation strategies for computing QoS are used: resource-domain

for relatively small applications and services, and time-domain for

applications and services requiring high-performance resources.

❖ A design with a resource reservation module decoupled from the underlying

Resource Manager (RM). This decoupling adds flexibility, in that new types

of RMs can be incorporated as they become available. This flexibility is made

possible through an intermediate software interface, which integrates a

newly-introduced RM with the existing reservation module.

4.2 Framework Overview

G-QoSm is intended to operate in a SOA, and the basic principles of SOAs, as in

Figure 4.1 (including publish, find and bind) (Graham et al. 2002), should hold.

Service
Registry

Find Publish

Service
Request

Service
ProviderBind

Figure 4.1: C oncept of a Serv ice-orien ted A rch itectu re

A major contribution in this project is an enhancement of the basic principles of

SOAs with resource QoS provisions, allowing publishing of services with QoS

properties, finding services based on QoS properties, and binding to services with

resource QoS provisions.

At a conceptual level, G-QoSm operates as follows:

58

Service providers publish their services to the QoS-aware registry with QoS

properties for each service. These properties can be qualitative, such as

reliability and accuracy, or quantitative for resource characteristics such as

network bandwidth. The service properties are stored in a service profile for

later use. For the purpose of this thesis, quantitative characteristics are

considered foremost.

A client submits a service request, with optional QoS properties, to the QoS

Manager, which takes clients’ requests on a ‘First in First out’ basis (FIFO).

The QoS Manager attempts to find a suitable service, based on the

specifications supplied by the client. Where no specifications are supplied by

the client, the QoS Manager relies on the service profile created during the

service-publishing process. In all cases, the QoS Manager:

o Queries the QoS-aware registry for possible matching services,

o Selects the most suitable service.

o Reserves the required resources and waits for SLA establishment,

o Encodes service specifications in XML format, noting reserved

resources, into a SLA document and presents it to the client for

approval.

o If the SLA is approved, it is established and committed; otherwise the

reserved resources are released. The resources will be temporarily

reserved until the client/application approves or disapproves the SLA,

or until a pre-defined time interval has elapsed.

On successful negotiation of a SLA, the SLA is forwarded to the client,

together with its SLA-identifier (SLA-ID), for a later service activation request.

When the SLA validity period approaches, the client can request the service,

with the QoS specified in the SLA, and the service is then made available for the

full SLA validity period, with a start and end time to define its validity period.

59

Client/ Applicati
Layer

ication I

r I

T t f r ?-s *Tr? ‘-"vs A'i.-g-.rr-w.-' ■ .v.-y- ■ — —- ___—_;■ a

C lient/Application: ‘Portals, Swing, Legacy
TV

XZ

G-QoSm Main J
C om ponents Layer j

G-QoSm R esource I
M anger Interface |

Layer

R esource Manager I
Layer

G-QoSm
R e se rv a tio n , A llo ca tio n

a n d P o licy M a n a g e rs

Registry

Compute N etw ork
In te rfaceIn te rface In te r la c e

Dynamic Soft Real
Time Scheduler

(DSRT)

Disk R esource
M anager,
e.g. Nest

Network
Bandwidth Broker

Figure 4.2: The G-QoSm Fram ew ork: A C o n cep tu a l View

The G-QoSm Framework in Figure 4.2 shows a 4-layer architecture, including a:

❖ Client Application Layer: where the client/application resides and interacts

with the G-QoSm framework. The client/application can access the framework

via various means, such as portals, swing libraries and legacy applications. This

interaction with the framework is possible through the G-QoSm API, where the

client/application can interact with the G-QoSm framework, can request

services and negotiate SLAs.

❖ G-QoSm Main Components Layer: where reservation, allocation and policy

managers G-QoSm components are found - further details on each component

are given in Section 4.6. These components interact with the client/application

for service requests and SLA negotiations. They also interact with the various

resource manager interfaces to allocate and de-allocate resources. These

components are designed to interact with various RMs in a uniform way. They

are not designed for a particular RM, and a RM interface layer is therefore

needed to interact with specific RMs.

❖ G-QoSm Resource Manager Interface Layer: where interfaces for various

RMs exist. These interfaces are designed to translate instruction from the G-

QoSm main component layer to the underlying RM layer. This translation

essentially converts instructions from the G-QoSm main component layer to

instructions which can be understood by designated RMs. This interface layer

60

is useful and new RMs can be incorporated in the architecture as they become

available. All that is needed is an interface designed to translate to the specified

RM. The G-QoSm logic, at the main component layer, is kept unchanged.

❖ Resource Manager Layer: where various RMs reside, for example,

computational RM and network RM. The main role of these RMs is to interact

with the actual resources, and to allocate, or de-allocate, resources, based on

instructions from the G-QoSm. A variety of RMs can be used, for example,

DSRT can be used as a computational RM (Chu and Nahrstedt, 1999), Network

Bandwidth Broker (BB) as a network RM (Teitelbaum et al. 1999), and Nest

(Bent et al. 2002) as a disk storage RM. The format and semantic of the data

coming from, and going to, the RM is handled by a software module, called a

wrapper, designed specifically for each type of RM. A further discussion on

RM integration can be found in Section 5.2.3.

This layered architecture is flexible, and can be realised by an ability to incorporate

new RMs as they become available, which only involves designing a specific

software wrapper for the RM introduced, while the main components of the G-QoSm

design are not affected.

4.3 G-QoSm Architecture

G-QoSm has three main operational phases, as described in Chapter 2;

establishment, activity and termination. During the establishment phase, a client

application specifies a desired service and the QoS requirements. G-QoSm then

undertakes a service discovery, based on the specified QoS properties. This process

submits a service request query to the QoS registry, and receives a list of matched

services available. G-QoSm then selects a suitable service and presents an agreement

offer for the client application. During the activity phase, additional operations, such

as QoS monitoring, adaptation, accounting and, possibly, re-negotiation may take

place. During the termination phase the QoS session is ended (following a resource

reservation expiry, an agreement violation or service completion); resources are then

freed for use by other clients. G-QoSm supports these three phases using specialist

components, as depicted in Figure 4.3. Subsequent sections describe these

interactions and highlight how service provision occurs.

61

o

Policy Manager f

T 1'
Resource Mangrs.

I
I
00

N etw o rk
Reservation Manager Allocation Manager

QoS Grid Service (QGS) * -

UDDle IJDDIc Handler

[Q oS H a n d le r] (o n Handler] (crr.l Handler]

i' ~ T I t ♦" i

QoS Broker

Java CoG Kit Core

Applications Portals Swing Legacy
r r

Figure 4.3: G -Q oSm A rch itectu re

The Client/Application accesses the QGS through the Java CoG Kit and QoS Broker

4.4 QoS Grid Service

G rid N ode

Resources

R1 Policy M anager

A llocation M anager R eservation M anager

Q oS Grid S ervice

Grid Q o S service interface

Figure 4.4: S tru c tu re of a QGS

The basic component of the G-QoSm architecture is the QoS Grid Service (QGS), an

OGSA-based grid service, providing QoS functionality, including negotiation,

reservation and resource allocation, accessed through its service-interface operations.

62

Each QoS-enabled resource is accessed via a QGS, which publishes itself to a registry

service so it can be found by clients and QoS brokers (entities acting on behalf of the

client to find services based on QoS properties), and negotiates SLAs with

clients/applications to use these services. Figure 4.4 shows the structure and main

components of a QGS.

Figure 4.5 shows the conceptual role of the QoS Broker, which utilises the QGSs and

interacts with the registry service to search for, locate and negotiate services with the

QGSs on behalf of a client application. The QoS broker is an intermediate agent that

accepts requests for the client/application, searches for QGSs that can provide the

required services, formulates the request in a format the QGSs can recognise,

submits requests to identified QGSs, and, finally, aggregates the replies and

negotiates with the client/application, on behalf of the QGSs, the establishment of a

SLA. This process simplifies the client/application role, especially when dealing with

multiple grid nodes, involving coordination of multiple requests, negotiation with

multiple QGSs and aggregating the SLAs.

Grid node 1 Grid node 2 Grid node 3

'W ’;'r'ay-
Allocation 1 [Reservation

Q oS Service

U D D I e

QoS Broker Q oS D iscovery

□
Client's Application

Figure 4.5: The Role of th e Q oS B roker

The following Section outlines the benefits of the basic QGS building block, of the

G-QoSm architecture, when used by a QoS Broker.

63

4.5 QoS Brokering

The concept of the QGS, together with the concepts of a QoS Registry and QoS

Broker, incorporates various features:

❖ It hides, from client/applications, information about locations and

specifications of each QoS-enabled grid node, and delegates this task to the

QoS Broker.

❖ It simplifies the task of a client/application when requesting multiple grid

nodes - the client needs only state, for example, the number and

specifications of the QoS-enabled grid resource, and the QoS broker locates

the specified resources, if available.

❖ The QoS broker-based approach provides scalability; for example; when a

grid node joins or leaves the grid its state information is maintained in the

QoS Registry and not in the QoS Broker, improving scalability and

flexibility. This is possible because detailed information for this QoS-enabled

grid node is retained in the QGS, which is, in essence, a grid service

representing a physical grid node. Publishing the service (e.g. QGS) in a QoS

discovery system such as the extended UDDI (UDDIe) adds flexibility, and

scalability, for grid nodes joining, or leaving, the grid infrastructure.

Essentially the QGS can register itself through a publishing process to the

QoS discovery system, and the QoS Broker can query the discovery system

on the available services, when needed. It is important to note, as mentioned

in Section 2.2.2, that the central QoS registry is a virtual resource, possibly

consisting of a number of replicated information services, and does not,

therefore, constitute a single point of failure.

❖ The architecture forms a hierarchy of QoS brokering. For example, Figure 4.5

shows a single level of brokering, basically cluster-based QoS brokering.

Cluster-based QoS brokering refers to a single layer of grid nodes - the

Cluster Broker - which interacts and directly controls a group of grid nodes.

However, this can be extended by introducing another level of brokering,

called grid-level brokering as in Figure 4.6 - a two level brokering. This Grid

Broker interacts directly with cluster brokers and not with the grid nodes;

useful when simultaneously dealing with large numbers of grid nodes. A

drawback of such QoS brokering is that as the depth of the hierarchy

64

increases, additional design complexity is introduced in the root broker. The

root broker undertake the management process; sending requests to multiple

brokering entities, and then aggregating their replies to ascertain if the

original client request can be fulfilled, and a SLA can be established.

C lu s te r B ro k er C lu s te r B ro k e t

Grid Broker

Client's Application

Figure 4.6: H ierarch ical Q oS B rokering

4.6 Components

The QGS interacts with various modules to deliver QoS guarantees. In addition to

the main QoS functions, it supports two types of resource allocation strategies,

allowing the client application to specify the strategy that best suits its needs. These

strategies are:

Resource Domain: A client can specify a certain percentage capacity for a

shared QoS-enabled resource - for example, access to 50 % of processor

time, or request for 20 Mbps bandwidth from 155 Mbps available.

❖ Time Domain: A client can request an entire resource for exclusive use -

i.e. no other clients are allowed to share the resource. This functionality is

enabled by ensuring all requests for resources are issued through the QGS.

The components of the QGS are the Reservation Manager, Allocation Manager, QoS

Registry Service and Policy Manger as shown in Figures 4.3 and 4.4. The

65

architecture in Figure 4.3 consists of a client (the lower part of the figure), and a

service provider (the upper part of the figure) in a grid environment.

❖ The client makes use of a registry service, (the UDDIe), to find services

requested. A client may be a physical user accessing G-QoSm services, or

may be an application.

❖ A service provider, on the other hand, illustrated in the upper portion of Figure

4.3, must provide access to physical resources that are used to manage the

service, including support for computation, data storage and network access.

The first interaction between a client and a service provider therefore takes

place via the discovery operation invoked on the registry service. The UDDIe

Handler enables the publishing of services, and their properties, to the registry,

and, subsequently, enables the altering of any parameters associated with such

services.

Once a request for a service has been received, the Reservation Manager is invoked,

and, subsequently, the Allocation Manger undertakes resource allocation. To support

QoS characteristics, a service provider must ensure that in addition to the service

being offered to external users, it supports additional components to allow

reservation, and subsequent allocation, of resources where the service is to be hosted.

In addition, the service must be annotated with additional properties that enable these

QoS attributes to be encoded in its interface.

The QGS undertakes resource reservation and allocation. When a reservation request

is received, the QGS undertakes an admission control - to check the feasibility of

granting such a request. This feasibility check is undertaken via the Reservation

Manager, using the admission control function outlined in Algorithm 3.1, and, if

such a reservation is possible, the requested resources are reserved, the reservation

table (where reservation entries are stored) is updated, and an agreement, based on

reservation specification, is generated and returned to the client.

When a resource allocation request is received (as in the case of computational QoS)

the QGS undertakes a validation process, and verifies that the user has, indeed, made

a reservation based on the supplied agreement. This test basically retrieves the

reservation parameters from the reservation table and compares these with those

66

supplied by the client/application. If this test is passed, the QGS submits the

specification of the job to be executed to the Globus Resource Allocation Manager

(GRAM) for that particular resource. Along with the job specification, the QGS

supplies other parameters related to computing resource allocation and QoS levels;

these parameters are passed from GRAM to the computing RM for immediate

allocation, as GRAM has a direct interaction with the compute RM, as described in

Chapter 5, Section 5.2.4. This process is handled by the Allocation Manager in the

QGS. For network QoS, when the active phase of the QoS session has started, the

networking elements (e.g. a Bandwidth Broker) are configured to support the network

QoS as specified in the SLA. Further details on QoS support are presented in Chapter 6.

4.6.1 - Reservation Manager

The Reservation Manager uses a data structure that supports reservations of quantifiable

resources - i.e. resources associated with defined capacities. The Reservation Manager is

de-coupled from the underlying resources, and does not have direct interaction with

them. However, it obtains resource characteristics, and policies governing resource

usage, from the Policy Manager. The Policy Manager, in turn, is responsible for

validating reservation requests by applying domain-specific rules, established by the

resource owners, as to when, how and by whom the resource can be used. The Policy

rules are assumed as being supplied by the system administrator. In brief, when the

Reservation Manager receives a reservation request from the QGS, it contacts the Policy

Manager for validation, and then performs an admission control to check the availability

of the requested resource. If successful, it returns a positive reply to the QGS, which

allows the QGS to propose an agreement offer.

4.6.2 - Allocation Manager

The Allocation Manager primarily interacts with underlying resource managers for

resource allocation and de-allocation, and to enquire about the status of resources. It

has interfaces with various resource managers such as DSRT (Chu and Nahrstedt,

1999) and the Network BBawc (Sohail et al. 2003). When the Allocation Manager

receives a resource allocation request from the QGS, it forwards the request to the

designated underlying RM, through its specific interface, as outlined in Figure 4.2.

67

4.6.3 - QoS Registry Service

G-QoSm is intended for use within a SOA, and its implementation is based on an

Open Grid Service Infrastructure (OGSI) (Foster et al. 2002). Essentially the core

component of the G-QoSm, the QGS is a grid service. The QGS, and other grid

services in the OGSI container, should be published to a registry service. However,

service publishing here does not mean only publishing a service name, URL and

basic description. A QGS includes information on QoS-enabled services it offers,

what allocation strategies it employs, in the case of computing QoS provisions, and

what classes of network QoS it offers. Such services, with their QoS information, are

published in a QoS Registry Service so the service can be found, based on the QoS

information. The QoS Registry Service is used, in this context, to publish services

with their QoS properties.

4.6.4 - QoS Policy Manager

The Policy Manager aims to provide information about the resource characteristics,

and rules governing when, what and who is authorised to use resources. This Policy

Manager relies heavily on the existence of a policy repository - data storage for

policies. Resource owners include information and rules, about their resources, in the

policy repository; for example, resource capacity allowed for utilisation and class of

service their resource can provide. These rules are utilised by the Policy Manager to

provide information on resource characteristics and usage policies when resources

are requested for reservation, and are mainly used for validating requests.

4.7 Java CoG Kit Core

4.7.1 - Background

The QGS manages grid resources that are QoS-aware. However, to take advantage

of, and utilise, such QoS-aware grid resources it is important for applications to

conveniently interact with such entities, without having to undergo significant

changes. Consequently, interaction with the QGS is supported via middleware

libraries, as a means to interact with the G-QoSm architecture.

68

The Java CoG Kit (von Laszewski et al. 2001) is Java-based middleware used to

access various grid implementations, such as Globus Toolkit Version 2 (GT2) and

Version 3 (GT3). One of the modules of the Java CoG Kit, called cog-core (Amin et

al. 2004) provides the core functionality for technology and architecture-independent

interoperability. Cog-core provides APIs offering abstract grid functionality such as

remote job execution and file transfers without consideration of the underlying grid

implementation. For example, consider a grid application developed using the APIs

provided by cog-core. As cog-core offers abstract functionality, irrespective of the

back-end architecture, whether GT2 or GT3, the same application can be executed on

a variety of platforms. Thus, to run an application on a GT2 service, the user merely

needs to state a provider attribute as GT2. The same application can later be executed

on a GT3 service without modification to its implementation, by simply changing the

provider attribute from GT2 to GT3.

Cog-core has the required functionality for mapping abstract application

requirements into back-end specific detail, such as GT2 and GT3 detail, controlled

by the corresponding provider attribute. To provide seamless interaction between

grid applications and the QoS-aware grid resources, the functionality of cog-core is

augmented by incorporating QoS-related parameters. The necessary logic and

implementation overhead for QoS management is introduced into cog-core, thereby

allowing an application to make use of QoS features by changing the provider

attribute to QoS. The provider attribute, is an attribute the client application should

specify to enable cog-core to select which back-end service to access, whether GT2,

GT3 or QoS service.

4.7.2 - Constructs

The two basic constructs of the cog-core library, and enhancement to the QoS

domain, are Task and Handler:

4.7.2.1 Task

A task in cog-core denotes an atomic unit of execution, abstracting remote job

execution or a file transfer request. A task has a unique identity, a security context, a

specification, a service contact and a provider attribute. The task identity helps

69

uniquely represent the task across the grid. The security context represents the

abstract security credentials of the task, requested by the client who initiated the task.

Most back-end grid implementations will have their own notion of a security context;

the security context in cog-core offers a common construct that can be extended by

an implementation to satisfy a back-end requirement. The specification represents the

actual attributes required for the execution of the grid task. The generalised

specification can be extended for common grid tasks such as remote job execution

and file transfer request. The service contact associated with a task symbolises the

grid resource required to execute it, and the provider attribute specifies the desired

back-end grid implementation for the task.

4.7.2.2 Handlers

The task handler provides a simple interface to support interaction with a generic

grid task. It categorises a submitted task, depending on the selected back-end service,

and provides the appropriate functionality based on its provider attributes. Cog-core

contains a separate handler for the back-end functionality it supports. These handlers

map the generic grid parameters of a task into the back-end implementation-specific

grid functionality. To incorporate the cog-core functionality into the QoS domain, a

QoS Handler that holds the QoS-related implementation and logic is provided. The

QoS Handler manages negotiation, task execution and data redirection between the

client application and the QoS-aware grid resource. It is important to remember that

a QoS-aware grid resource is the actual physical grid resource, while QGS is the grid

service representing the grid resource, with the interaction between the QoS Handler

and the QoS-aware grid resource achieved through the QGS.

To enable a grid application to request a network or computational resource with

QoS provisions, certain configuration parameters are needed. The application

developer must specify the QoS parameters to be considered during the negotiation,

including start and end times, resource type and specifications. Once the task object

has been specified, the QoS Handler is delegated, on behalf of the client, to negotiate

QoS requests. In this case, the QoS Handler is seen as the client by the QGS. This is

useful especially when an application requires more than one grid resource. All the

application needs do is instantiate the required number of QoS Handler objects,

70

submit the task object to the handlers, and let the handlers negotiate QoS requests

with the QGS, and return an agreement if the negotiation succeeds.

4.7.23 Integration

Figure 4.7 depicts the architecture of the Java CoG Kit with the integration of G-

QoSm’s QoS Handler. This figure shows the modular design of a three-layered

architecture: i) the client application layer, ii) the Java CoG Kit layer, and iii) the

back-end services layer, whether GT2, GT3, WSRF, QoS or similar. The QoS

services supported by G-QoSm only interacts with the QoS Handler, a module of the

Java CoG Kit. Details of the logic needed to handle the communication with the G-

QoSm are hidden from the client application, and are handled by the QoS Handler as

part of the Java CoG Kit. It is important to note that the API used to access back-end

services are similar, which makes it convenient to switch between back-end services,

such as accessing GT2 or QoS services. In Figure 4.7 the Reservation and Execution

Modules are designed in two parts - the client and server. The client section is part

of the Java CoG Kit, namely the QoS Handler, and its role is to implement the logic

needed for communication with the QGS, i.e. from the application perspective. The

server part implements the interaction handling between the client and the services

supported by G-QoSm, i.e. from the G-QoSm perspective.

Portals Java Swing
GUI

Legacy
A p plica tion

____________________ •

m

Ja v a CoG Kit Abstractions

GT2 Handler WSRF Handler QoS Handler

Execution
Module

QoS
Reservation

STii£J
Task

Execution

Reservation
Module

Execution
Module

G-QoSm Service
QGS

Figure 4.7: QoS Handler Integration with the Java CoG Kit

71

This abstraction of the Java CoG provides several advantages:

❖ The Java CoG Kit provides access to various grid implementations, through

its API.

❖ The QoS service can merely be a back-end service, and focus on back-end

functionality, while allowing the client application interface to be handled

by the Java CoG Kit.

❖ Because the Java CoG Kit already has many grid applications using its API,

these grid applications can easily utilise the QoS back-end service. This is

particularly true because, with a minor change, an application already

accessing grid services through the Java CoG Kit is able to use the QoS

back-end services. For new applications it is a simple process to use the

Java CoG Kit API, with more detail on the implementation is given in

Chapter 5.

4.8 Negotiation of QoS Levels

A QoS negotiation is based on a request/reply paradigm, which can be as simple as a

single request and reply, or can involve multiple requests and replies. The

negotiation process must reach agreement, between the client and the service

provider, about the reservation schedule, or the parameters involved in providing a

given service, before the service starts. It is not necessary for a negotiation to take

place every time, (e.g. multiple requests and replies), but at least one request/reply is

required, especially if the service provider can immediately meet the request.

However, if the constraints, i.e. QoS levels, in a request cannot be met, it is necessary

for the service provider and the client to reach an agreement, which can be achieved

through negotiation, by altering the QoS parameters in the request, sending the

request to the service provider, and waiting for a reply. If the request cannot be

supported by the service provider, the client may send another request. This process

can be repeated and this, in total, comprises the negotiation. This negotiation

approach can however be extended to support a counter-offer, and, subsequently, if

the resultant negotiation cannot provide the resource required, a suggestion can be

made on when the resource would be available.

72

A QoS negotiation is essentially a match-making process, between a client’s desire

for a service with QoS constraints and a service provider’s matching resource

capability. For example, a client may request constant QoS levels during the lifetime

of a service session, such as a data transfer service transferring a data set from point

A to B at a rate of 100 Mbps. However, during the transfer session it is possible that

the requested bandwidth cannot be sustained. In this case, the client may either

request a decrease in the requested bandwidth while the transfer service is active or

terminate the service. Alternatively the service provider must find additional capacity

to sustain the QoS demand. A QoS re-negotiation requests the increase, or decrease,

of QoS levels while the service session is active. If a client’s re-negotiation request

has lower QoS levels than the original request, then the new request is guaranteed,

but if the re-negotiation request increases the QoS level, the service provider must

run an admission control check, treating the request as a new QoS negotiation,

subject to approval, or rejection.

The QoS negotiation process involves service negotiation and QoS negotiation.

Decoupling service and QoS negotiations improves system availability and

flexibility; system availability is concerned with the number of requests admitted,

while system flexibility is concerned with adapting to different client requests during

an active QoS session. The QoS negotiation model proposed in this thesis requires a

service negotiation phase, with an optional QoS negotiation phase, for negotiating

resource characteristics and QoS levels. Two mechanisms are envisaged to obtain

resource characteristics and service quality. Either the client application explicitly

supplies resource characteristics and QoS levels required, or it relies on a service

profile stored in the QoS registry, as discussed in Chapter 2.

In the latter case - using a service profile - the service profiles are either obtained

from the service provider, based on feedback provided by clients, or generated using

prediction models such as that in Jarvis et al. (2003). Quality levels within the

service profile are dynamically updated and stored in the QoS registry. The service

profile is for use by the QGS where a client specifically requests a service with its

default QoS specifications, or does not have details on the resource configuration

required to support the requested QoS level.

73

4.9 Quality-of-service Negotiation Protocol

The three participants involved in a negotiation protocol are the client, the QGS and

the service provider. The QGS is the coordinator of the negotiation process between

a client and a provider. The provider delegates the QGS to act on its behalf. There is

no direct interaction between the client and the provider during negotiation.

The QGS supports a number of operations for use by a client, which include: Query,

Reserve, Update and Cancel, using an interaction based on an XML message

exchange, with these operations explained in sections 4.9.1 to 4.9.4. The XML

schemas for these operations are new and specifically designed for the G-QoSm

architecture.

4.9.1 - Query

The QGS maintains, in a registry service, information about services and resources

available to clients. The Query operation is used to interrogate the registry to find a

service with particular QoS attributes. If a suitable service is found, the QGS reserves

the resource(s) for a limited period (as a temporary reservation) and returns a query

handle. The resource(s) are held until the client confirms the reservation, or the

temporary reservation time elapses.

74

<xs:element name="Query">
<xs:annotation>

<xs:documentation>XML Schema for Query Operation</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="service">

<xs:complexT ype>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type=”xs:string" use="optional"/>

</xs :complexT ype>
</xs:element>
<xs:element name="temporalQoS">

<xs:complexT ype>
<xs:attribute name="startTime" type="xs:dateTime" use="required’V>
<xs:attribute name="endTime" type="xs:dateTime" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="computeQoS" minOccurs="0">

<xs:complexT ype>
<xs:attribute name="capacity" type="xs:integer" use="required"/>
<xs:attribute name="nodeCount" type="xs:integer" use="optional’7>
<xs:attribute name="computeImportance" type="xs:integer" use=" optional " />

</xs:complexType>
</xs:element>
<xs:element name="networkQoS" minOccurs="0">

<xs:complexType>
<xs:attribute name="sourceIP" type="xs:string" use="required"/>
<xs:attribute name="destIP" type="xs:string" use="required'7>
<xs:attribute name="bandwidth" type="xs:integer" use="required'7>
<xs:attribute name="networkImf)ortance" type="xs:integer" use=" optional "/>

</xs:complexT ype>
</xs:element>

</xs:sequence>
</xs:complexT ype>

</xs:element>

Figure 4.8: XML Schema Definition for the Query Operation

Figure 4.8 is the XML schema definition for the Query operation with the required,

and optional, elements as follows:

❖ Service Name: name of the requested service and its required element.

❖ Service Type: type of service, such as compute or network service, which is

an optional element.

❖ Temporal QoS: concerned with the start and end time of the requested

service, this is a required element associated with the two attributes: start time

and end time.

❖ Compute QoS: describes the QoS attributes for the compute service, which

are: ‘capacity’ (a required attribute), ‘node count’ (an optional attribute, as

75

the default is one compute node), and ‘compute importance level’ (an

optional attribute), to specify the importance level as discussed in Chapter 3.

❖ Network QoS: describes the QoS attributes for the network service. These

attributes are, ‘source IP’, ‘destination IP’ and ‘bandwidth’, which are all

required, together with ‘network importance level’ (an optional attribute), to

specify the importance level.

4.9.2 - Reserve

After a successful Query operation, and while resources are being held on a

temporary basis, the Reserve operation is used to confirm the reservation. The QGS

changes the status of temporarily-reserved resources to permanent, establishes a SLA

and return an agreement handle to the client for use during service invocation. A

schema for this Reserve is given in Figure 4.9 on the next page.

The reserve operation confirms a previously-made query for a service, with the reply

including an agreement handle; a unique identifier for the requested service and its

QoS information. The reserve schema has only one element:

❖ Service Offer: with only one attribute - query handler; a required attribute

for confirming the reservation.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="Reserve">

<xs:annotation>
<xs:documentation>XML Schema for Reserve Operation</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="serviceOffer">

<xs:complexT ype>
<xs:attribute name="queryHandle" type="xs:string" use="required"/>

</xs:complexT ype>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 4.9: XML Schem a Definition for the R eserve Operation

76

http://www.w3.org/2001/XMLSchema

4.9.3 - Update

The update operation is used for re-negotiation in a situation where a client, during

an active session, wishes to modify the constraints on particular QoS attributes. If the

constraints are being relaxed, i.e. the QoS levels are reduced, then the operation is

guaranteed to succeed. However, if additional resources are required then the request

is treated as a new request, and the admission control procedure is applied, with the

request either being approved or rejected. This is equivalent to a Query operation

followed by a Reserve operation. Figure 4.10 shows an XML schema definition for

the Update operation.

<xs:element name="Update">
<xs:annotation>

<xs:documentation>XML Schema for Update Operation</xs:documentation>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="agreement">

<xs:complexT ype>
<xs:attribute name="agreementHandle" type="xs:string" use="required"/>

</xs: complexType>
</xs:element>
<xs:element name="newTemporalQoS" minOccurs="0">

<xs:complexT ype>
<xs:attribute name="endTime" type="xs:dateTime" use="required"/>

</xs:complexT ype>
</xs:element>
<xs:element name="newComputeQoS" minOccurs="0">

<xs xomplexT ype>
<xs:attribute name="capacity" type="xs:integer" use="required"/>
<xs:attribute name="nodeCount" type="xs:integer" use="optional"/>

</xs:complexT ype>
</xs:element>
<xs:element name="newNetworkQoS" minOccurs="0">

<xs:complexType>
<xs:attribute name="bandwidth" type="xs:integer" use= "required"/>

</xs:complexT ype>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 4.10: XML Schema Definition for the Update Operation

77

The schema for the Update operation requires the following elements:
❖ Agreement Handle: an element returned from a previously-made reserved

operation; used to reference the previously-made SLA; a required element.
❖ New Temporal QoS: for the re-negotiation, during the active session of the

service. Needed to extend, or decrease, the service session period, with this
element concerned with the new end time of the service. This element is only
required if the end time of the service changes.

❖ New Compute QoS: where a compute QoS specification is re-negotiated, the
capacity attribute is required. The number of nodes is optional as the default
is one.

❖ New Network QoS: where the network QoS specification will be re­
negotiated, the bandwidth attribute is the only one requiring updating, and is
therefore required.

4.9.4 - Cancel

The Cancel operation, with schema given in Figure 4.11, cancels an agreement

handle returned by a Reserve operation - i.e. it cancels a reservation. It may only be

used before the service session starts. If the session has started, a different operation,

not part of the negotiation process, may be used to release resources as part of the

clearing phase of the QoS management function, as discussed in Chapter 2, namely

the service_completion primitive part of the QGS API - with further details given in

Chapter 5.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

attributeFormDefault="unqualified">
<xs:element name="Cancel">

<xs:annotation>
<xs:documentation>XML Schema for Cancel Operation</xs:documentation>

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="agreement">

<xs:complexT ype>
<xs:attribute name="agreementHandle" type="xs:string" use="required'7>

</xs:complexT ype>
</xs:element>
</xs:sequence>

</xs:complexT ype>
</xs:element>

</xs:schema>

Figure 4.11: XML Schem a Definition for the Cancel Operation

78

http://www.w3.org/2001/XMLSchema

The cancel operation cancels a previously-made reservation, and therefore needs

only one parameter:

❖ Agreement: contains one attribute, the agreement handler; a required

attribute for cancelling the reservation.

Figure 4.12 is a sequence diagram for QoS negotiation protocol; it makes use of the

four basic operations, namely; Query, Reserve, Update and Cancel, to implement the

QoS negotiation, and re-negotiation, of a QoS session. The sequence diagram defines

the general syntax of the protocol as follows:

1) The client/application sends a Query operation, i.e. initiates a negotiation request.

2) The QGS replies with a query handle, which is a reference for the query, only

supplied if the query can be satisfied.

3) If the client/application accepts the offer, the client/application should use a

Reserve operation, supplying the query handle to confirm the acceptance of the

offer, and subsequently, the SLA is established.

4) The QGS replies with an agreement handle; a reference to the SLA.

5) Before the service, i.e. the QoS session has started, the client/application can

use the Cancel operation to cancel the established SLA.

6) The QGS replies with the agreement status, i.e. whether or not the established

SLA has been cancelled.

7) During the active phase, i.e. the QoS session, the client/application can use the

Update operation to re-negotiate the established service agreement. For

example, by requesting more resources, relaxing the resource specifications, or

altering the end time of the service.

8) The QGS replies with a re-negotiation status, to indicate whether or not the re­

negotiation has been successful.

79

Client QGS

1: Query for service and resources

2: Reply a QoS proposal

3: Reserve [if proposal is accepted]
-> L

4: Reply agreement handle

Before the
service starts

5: Cancel, to cancel agreement

6: Reply agreement status

ir
During the
service session

7: Update, to re-negotiate agreement

8: Reply re-negotiation status

Figure 4.12: Sequence Diagram for QoS Negotiation Protocol

4.10 Summary

The G-QoSm architecture is presented in this Chapter, The basic building block of

the architecture is the QGS; a QoS management system encapsulated into a grid

service. This QGS manages physical grid resources to provide QoS functionality,

such as resource reservation and allocation. The QGS can be published to a QoS

discovery system, making it convenient for service discovery based on QoS

properties. The QGS can further be used by a variety of QoS-brokering approaches,

such as a hierarchical organisation of brokering agents.

80

G-QoSm is modular in design, giving flexibility for incorporating new resource

managers as they become available. The architecture is a self-contained QoS

management system and is built as a back-end service to the Java CoG Kit. This

gives the G-QoSm further flexibility, as Java CoG is popular in the gird community,

and many grid applications already use the Java CoG Kit to access grid back-end

services, such as GT2 and GT3. Consequently, a CoG-based grid application has a

natural transition into G-QoSm, and a new grid application can easily become QoS-

aware via the API provided.

The process of QoS negotiation is presented, including a description of the protocol

for message exchange between client and the QGS. The protocol is based on four

message operations, Query, Reserve, Update and Cancel, which are conjectured to be

suitable for QoS negotiation in a distributed system.

Chapter 5 ~ The Prototype discusses implementation aspects of the G-QoSm

architecture, presenting a prototype and highlighting its key features, and

demonstrates how a grid application can become QoS-aware, via the Java CoG API

and the G-QoSm QoS Handler.

81

Chapter 5 - The Prototype

In this Chapter, implementation details of the G-QoSm prototype are presented,

describing how the underlying resource managers are integrated into G-QoSm, and

how a typical grid application uses the system.

5.1 Synopsis

A novel feature of the G-QoSm system is its implementation as a grid service within

the GT3 toolkit. Being a grid service this allows G-QoSm to leverage services from

Globus middleware such as security and the standard job submission mechanism,

through GRAM, and other grid middleware services. The Java CoG kit (von

Laszewski et al. 2001) client API library is extended to support access to the G-

QoSm system, making use of services from the GT3 grid middleware. The prototype

implementation of G-QoSm is an open-source implementation and can be

downloaded and used. 1 The Java CoG Kit and Globus toolkit can also be

downloaded from the Globus Alliance Web site (The Java CoG Kit Project, 2004;

Argonne, 2004).

5.2 Implementation Overview

The implementation uses Java for most components, and C is used for creating a

wrapper between QGS and the underlying resource managers, such as DSRT. Java

allows for object-oriented design, modularity in system design, easy integration with

other Java, C and C++ components and availability of APIs, to use the protocols for

distributed computing and WS, such as SOAP and Web Services Description

Language (WSDL).

Figure 5.1 presents an overview of the implementation architecture, showing how the

QoS management component is implemented as QGS grid service. The QGS is

deployed into the OGSI container within Globus GT3, with the entire GT3

1 Appendix B gives the installation procedure for the QGS service and the computation resource
manager.

82

middleware installed on a Linux-based machine. The grid node is identified as that

machine which can offer its resources for use by G-QoSm clients. Clients may

interact with QGS in two ways, either by directly using the API of QGS to negotiate

a SLA request, or by using the API of the client library from the Java CoG kit, which

provides most of the functions, such as negotiating the SLA. Using either way of

interacting with QGS, the client must specify the allocation strategy for the chosen

resources, whether time-domain or resource-domain, which are defined in Section

4.6. Once a client has negotiated a SLA request, the corresponding resource manager

interface is configured accordingly, and the underlying resource manager is duly

given the SLA parameters for actual resource allocation.

R2

W tn
n> T>

Application

QoS Grid Service
(QGS)

OGSI Container

Figure 5.1: Prototype Implementation Architecture

5.2.1 - QGS Reservation Manager

The reservation component within QGS plays a major role in providing resource

QoS provisions. Once a request is received from an application the functional

requirements needed for the reservation are extracted from the request and

formulated as resource specifications. These resource specifications are then

submitted to the Reservation Manager with the request passing through a validation

and admission control process; if the request is successful, a reservation handle is

returned. This handle can later be used to claim or modify the reservation. In addition

to implementing the admission control procedure, the validation function captures

policy information necessary to validate the service request - for example, to

discover any limitations on resource utilisation per service, or the class of service

requested. The reservation manager, in general, performs admission control on

reservation requests after a validation process has been undertaken by the policy

83

manager. Here the generic reservation component dynamically binds the reservation

to a specific resource type, such as a network or a computing resource. In Appendix

E, a Java class shows the reservation data structure and method used for resource

reservation. Section E.l shows a Java class for the reservation agent, which

implements the reservation manager functionality. Section E.2 is a Java class for

validating reservations requests.

5.2.2-Q G S API

Appendix A gives a WSDL specification of the QGS service interface provided by a

set of APIs, including the specification of its operations. The term application is used

to denote a client.

An application may interact with QGS in two ways:

❖ It can interact directly through the QGS API; this requires some extra handling

by the application, such as using the API to negotiate SLAs as described in

Figure 4.12, (i.e. using the negotiation protocol), or using the security

infrastructure of the Globus API. This approach is ideal for building brokering

services that use the QoS management entities.

❖ An application can interact with QGS via the Java CoG kit client library. Using

this approach, the Java CoG kit is extended with a library for QoS handling.

This extension provides: (i) compatibility with other services supported by Java

CoG, such as a file transfer service and a job submission service, making it

relatively easy to build a complex application; (ii) access to the Globus security

infrastructure; (iii) the advantages of the built-in SLA negotiation component -

the application submits the request and the Java CoG QoS handler is delegated,

on behalf of the application, to undertake the negotiation phase; it returns a null

response if it is not possible to establish a SLA and a SLA identifier (SLA-ID)

response otherwise.

package or g .globus.c o g .q o s .server.impl;

public interface Qos {

public String service_request(String request);

 public String delete_request(String deleteRequest);

84

public String sla_acceptance(String acceptanceRequest) ;

public String sla_rejection(String rejectionRequest) ;

public String service_execution (String executionRequest) ;

public String service_extention(String extentionRequest) ;

public String service_completion(String completionRequest) ;

public String isResourceAvailable (String request);

public String print_reservations();

public String isJobCompleted(String id);

public String setGramContact(String gramContact);

public
}

String deleteReservationEntries();

Figure 5.2: Main QoS Interface Class with Primitives for the QGS API

Figure 5.2 is a Java interface class that includes primitives for the QGS; the

primitives, with a brief description, are:

❖ public String service_request(String request): sends a service request to

QGS with the service name, allocation strategy, start and end times and

service type, thus implementing the Query operation - Section 4.9.1. The

request is encoded as XML attributes. A reply is returned, either with a

service offer or with no offer. If a service offer is returned QGS has found

suitable resources and temporarily reserved these. These resources await

application approval so the temporary status can be changed to permanent, or

until a pre-defined time elapses.

❖ public String delete_request(String deleteRequest): removes a reservation

entry from the reservation table. After a service_request has been successfully

completed, and a SLA has been established, the associated application has the

chance to cancel the SLA. thus implementing the Cancel operation - Section

4.9.4. This feature is particularly useful when the application cannot use the

promised resource due to some problem on the application side, for example,

the application ‘hangs’ and cannot run at this time.

❖ public String sla_acceptance(String acceptanceRequest): accepts a SLA

offer generated after a service_request had been successfully completed, and

85

the requested resources temporarily reserved. This changes the reservation

status to permanent, thus implementing the Reserve operation - Section 4.9.2.

public String sla_rejection(String rejection Request): rejects a SLA offer

that was generated after a service_request had been successfully completed

and the requested resources temporarily reserved. A SLA offer can be rejected

for various reasons, such as the offer not matching the initial request or the

application deciding to negotiate for more, or fewer, resources.

public String service_execution(String executionRequest): activates a

successfully negotiated SLA for a job submission with QoS properties. The

executable files, data input/output files and the job submission mode - batch

or interactive - are specified in the input parameter.

public String service_extention(String extentionRequest): initiates a QoS

re-negotiation during the active phase of service, i.e. the QoS session, thus

implementing the Update operation - Section 4.9.3. A request to update an

established SLA is passed to the reservation manger and, in particular, for the

admission control procedure and validation function for the QoS levels to be

increased. Such a request is automatically granted if the QoS level is to be

reduced.

public String service_completion(String completion Request): releases

resources when a service completes prematurely - i.e. before the SLA expires

- thus starting the clearing phase as mentioned in Chapter 2. QoS

management systems usually hold resources until SLA expiration, unless

otherwise requested by the application.

public String isResourceAvailable(String request): used by a brokering

service to reserve multiple resources from more than one grid node. This

allows an application to check whether resources are available without

actually reserving them. This primitive is usually used before a

service_request call.

public String print_reservations(): used by a brokering service, or system

administrator, to query the reservation table and view all established SLAs

and their corresponding reservation details.

86

❖ public String isJobCompleted(String id): used for notification purposes on

a previously submitted job. The GRAM gatekeeper is contacted for the status

of the submitted job: running, suspended, completed or failed.

❖ public String setGramContact(String gramContact): used when QGS is

started, to supply the GRAM gatekeeper contact address, provided by Globus

middleware for job submission management and control. All submitted jobs

are processed by this specific GRAM gatekeeper.

❖ public String deleteReservationEntries(): used by a brokering service, or a

system administrator, to clear the reservation table. All reservation entries

within the reservation table are removed. This is useful before shutting down

QGS, or for testing purposes.

5.2.3 - Resource Manager Integration

The integration of a Resource Manager into G-QoSm requires the design, and

implementation, of a software interface module specific to that Resource Manager.

Such a software module, sometime called a wrapper, interacts with the Allocation

Manager module in G-QoSm, and acts as a gateway to, and from, the Resource

Manager. It translates requests from QGS into requests understood by the

corresponding Resource Manager. Requests can include:

❖ return resource status and availability

❖ allocate resources

❖ de-allocate resources

❖ set resource allocation options and strategies

In Appendix C, the DSRT wrapper API is shown for a computational Resource

Manager. Section C.l shows a Java class for executing commands by the Resource

Manager, such as the command to allocate resources. This modular design for G-

QoSm, with a wrapper specific to the Resource Manager, allows flexibility in

integrating new resources managers as they become available. To integrate a new

Resource Manager, a corresponding wrapper implementation is necessary.

Most RMs provide some functions already provided by QGS, such as resource

reservation; this duplication allows for flexibility. For example, suppose the network

resource manager has two SLAs at the network level, denoted SLAnetworu and

87

S h k network2 to distinguish them from SLAs for other resources. One can then define

two resource capacities - i.e. pools of resources - one for guaranteed clients and one

for best effort clients. One can map the G-QoSm view of the resource pool to the

physical resources managed by a resource manager, such as a SLA network in this case.

Such mapping allows a degree of flexibility and is consistent with the adaptation

strategy of the G-QoSm model outlined in Chapter 3. This flexibility lies in the

ability of QGS to manipulate the logical resource pool and conduct admission control

checks whilst not actually committing physical resources until necessary. Figure 5.3

shows a model of resource manager integration in G-QoSm.

Disk
Interface

Allocation M anager

Disk Resource
M anager, e g .

Nest

C o m p u te — C PU
In terface

Dynamic Soft Real
Time S cheduler

(DSRT)

Netw ork
in terface

Network
B andwidth B rok er

Figure 5.3: In tegration of R e so u rc e M an ag ers in G -Q oSm

5.2.4 - Compute Resource M anager

The compute resource manager in G-QoSm is DSRT, a user-level soft-real-time

scheduler, based on the changing priority mechanism supported by Unix and Linux

(Chu and Nahrstedt, 1999). The highest fixed priority is reserved for DSRT itself,

and a real-time process admitted by DSRT is run under its scheduling mechanism.

The real-time process can thus be scheduled to utilise a specific processor time.

DSRT has a flexible scheduling mechanism; for example, a real-time process can be

scheduled to run for 100 ms at every 1000 ms interval. Consequently, the wrapper in

G-QoSm, which interacts with DSRT, translates the application requests for

processor time into a DSRT scheduling request. From an application point of view,

the computing QoS supported by DSRT is specified in terms of a processor

88

percentage; for example, a real-time process requests 40% of processor time, which

the wrapper translates to 400 ms of every 1000-ms interval.

The DSRT scheduler supports immediate reservations for an indefinite period.

Although immediate reservation is a sound approach for reserving resources,

immediate reservation for an indefinite period is not desirable, as outlined in Chapter

3, Section 3.3.1. Advance reservation, with a defined period, is more consistent with

G-QoSm. To overcome this problem, the generic reservation module supported by

G-QoSm manages advance reservation bookkeeping at the logical level, and the

allocation manager implements resource allocation at resource manager level, via the

specific resource manager interface, i.e. using DSRT for resource allocation. For

example, if a grid service S has a compute reservation starting at time X, expiring at

time Y, for Z% of processor time, then when the reservation begins at time X the

compute interface wrapper instructs the DSRT resource manager to immediately

schedule Z% of processor time to the requesting application for an indefinite period.

When the reservation expires at time Y the compute interface wrapper instructs the

DSRT resource manager to terminate the execution of the grid service S and to

release the reserved resources. If, however, the reservation expires but S has not

completed, it is not suspended or terminated, but is moved to the best effort resource

pool, thus reducing its priority from high to low, and S continues to run in best effort

mode. Alternatively, the application can re-negotiate the SLA before its expiration,

or can negotiate a new SLA at expiry time.

When QGS receives a job submission request to be sent to the DSRT, the compute

interface wrapper submits the request to the GRAM gatekeeper, which contacts the

DSRT scheduler for actual job submission. Passing job submissions through GRAM

utilises its services supported by Globus and its API supported by GRAM for job

status monitoring.

5.2.5 - Network Resource Manager

The network resource manager (NRM) in G-QoSm, conceptually a DiffServ

bandwidth broker (BB) (Teitelbaum et al. 1999), manages network QoS parameters

within a given domain (generally defined to cover certain networks under the same

administration), based on SLAs agreed at the network level between two domains, or

89

between a domain and a client. The NRM is responsible for managing inter-domain

communication with NRMs in neighbouring domains to coordinate SLAs across

domain boundaries. It may communicate with local monitoring tools to determine the

state of the network and its current configuration. Figure 5.4 shows a BB-managed

DiffServ domain.

Domain A Dom ain B

BB BB

ER: E g re ss R outer
IR: Ing ress Router

Host

Figure 5.4: Role of B andw id th B roker in DiffServ

The integration of the DiffServ BB into G-QoSm is similar to that of any other

resource manager, as shown in Figure 5.3. A network resource manager interface is

required to translate requests between the Allocation Manager of G-QoSm and the

underlying network resource manager, the DiffServ BB. An application requesting

network resources can use the same API provided by the QGS service; this API is

consistent for the various resource managers integrated with G-QoSm.

An implementation of NRM called B B Ba.sio from the University of New South Wales,

(Sohail et al. 2003), is used in G-QoSm. B B BaSiC supports most of the essential

functions required to manage DiffServ domains. More details on the implementation

and evaluation of B B Basic, as integrated into G-QoSm, are presented in Chapter 6.

5.2.6 - Application Example using QGS

This section presents a scenario example of an application executing a QoS-enabled

remote job submission to a grid node. The application developer must specify the

QoS parameters for QoS negotiation. These parameters include start time, end time,

resource type, and other QoS specifications such as allocation strategy, whether

90

resource, or time domain, and compute QoS requirements. Once the task object has

been specified, the QoS Handler is delegated on behalf of the application to negotiate

QoS requests; in this case, for compute resources. The QoS Handler is seen, from the

QGS point of view, as a client. This is a useful approach particularly when the

application requires more than one grid resource. All the application needs do is to

instantiate the required number of QoS Handler objects, submit the task object to the

handlers, and let the handlers negotiate QoS requests with QGS to return a SLA-ID.

Once the QoS parameters have been successfully negotiated, the application

formulates the actual grid task object to be executed and submits it to the QoS

handler, along with the SLA-ID. The job submission task includes specifications

such as the executable files, input/output data files and mode of submission (batch or

interactive). Furthermore, for QoS-based job submission through the interactive, or

batch, modes, the QoS handler listens for notifications of job status via the GRAM

gatekeeper. This notification feature is important for some types of applications in

keeping track of jobs which have completed.

The ease of use and benefits of using QoS properties can be demonstrated with an

application. To enable other grid applications to use the QoS-enabled framework, a

user needs to perform the following operations:

a) Create a task object, based on the Java CoG kit task object.
b) Depending on the type of required QoS function, set up the necessary

objects for security, QoS functional specification and service access.
c) Instantiate a QoS Handler object.
d) Submit the QoS negotiation request task object to the QoS Handler.
e) Get a SLA-ID; for a successful submission.
f) Prepare the submission task along with the job specification, security

context and service access.
g) Associate the created task with the QoS Handler object.
h) Submit the task object for execution.

Figures 5.5, 5.6 and 5.7 show Java code fragments demonstrating how an application

can generate a QoS negotiation request, formulate a QoS-based job submission task

and submit the formulated task object to the QoS handler. Appendix D shows a

91

complete working example with Java code for a QoS negotiation request and, in

Appendix D.l the Java code for submitting a QoS-based job.

/*** QoS: Prepare Negotiation Task ***/
private void prepareQosNegotiationTask () {

// create a QoS service, and setup QoS attributes
Task task = new QosTasklmpl(' 'myTask' ', QoS.NEGOTIATION);
this.task.setAttribute(' ' startTime’', startTime);
this.task.setAttribute(' ' endTime’ ', endTime);
this.task.setAttribute(' ' allocStrategy’',strategy) ;
this.task.setAttribute(' ' cpu_capacity ' ', cpuCapacity);

// create a Globus version of the security context
SecurityContextlmpl securityContext = new GlobusSecurityContextlmpl();
// selects the default credentials
securityContext.setCredential(null);
// associate the security context with the task
task.setSecurityContext(securityContext);

// create a contact for the Grid resource
Contact contact = new Contact("'myGridNode’’);

// create a service contact
ServiceContact service = new ServiceContactlmpl(qosServiceURL);
// associate the service contact with the contact
contact.setServiceContact(' ' QGSurl'',service);
// associate the contact with the task
task.setContact(contact);

Figure 5.5: Formulating a QoS Negotiation R equest Task

/*** QoS: Prepare Job Submission Task ***/
private void prepareQosJobSubmissionTask () {

// create a QoS JobSumbission Task
Task task = new Tasklmpl("'m y T a s k , QoS.JOBSUBMISSION);
this .task.setAttribute(' ' agreementToken’’, token);

// create a remote job specification
JobSpecification spec = new JobSpecificationlmpl ();

// set all the job related parameters
spec.setExecutable(' ' /bin/myExecutable ' ’) ;

spec.setRedirected(false) ;
spec.setStdOutput(''QosOutput’1);
//associate the specification with the task
task.setSpecification(spec);

// create a Globus version of the security context
SecurityContextlmpl securityContext = new GlobusSecurityContextlmpl();
securityContext.setCredential(null);
task.setSecurityContext(securityContext);

Contact contact = new Contact('"myQoScontact*');
ServiceContact service = new ServiceContactlmpl(qosServiceURL) ;
contact.setServiceContact(" ' QGSurl’’,service);
task.setContact(contact) ;

Figure 5.6: Formulating a Q oS-based Jo b Subm ission Task

92

/*** QoS: Task Submission to QoS Handler ***/ private void
QosTaskSubmission(Task task) {

TaskHandler handler = new QoSTaskHandlerlmpl();
// submit the task to the handler
handler.submit(task) ;

}

Figure 5.7: Submitting a Previously Form ulated Task Object to the QoS Handler

A graphical user interface (GUI) is included in the G-QoSm prototype to
demonstrate the QoS functionality supported. The GUI proceeds through the steps
outlined in the Java code fragments shown in Figures 5.5, 5.6 and 5.7.

Figures 5.8 and 5.9 illustrate how G-QoSm can be used to allocate processor
resources with QoS specifications using a resource-domain allocation strategy. With
this strategy, a certain capacity of the processor is reserved and the application
submits jobs for execution within this reserved capacity. The process is implemented
via the Java CoG kit API to create a task object, which is submitted to the QoS
Handler for negotiation. If successful, a SLA-ID is returned for use in claiming a
reserved resource.

A set of graphical components is included in the prototype to make access to QoS

functions easier for non-technical users. Figure 5.8 shows a screen shot of the form

used to specify the parameters of the QoS negotiation task to be submitted to the QoS

Handler. Figure 5.9 shows a screen shot of the details of a QoS job submission

object, specifying the executable application, called mathAppl, and a reserved

processor time of 60%; mathAppl is a compute-intensive process and in this example

is set to only use 60% of the total processor time. A simple feasibility study was

conducted to evaluate the behaviour of the prototype system under heavy load, using

compute-intensive processes that usually require full available processor time. Two

compute-intensive competing processes were started before submitting the

guaranteed mathAppl process.

93

C ogK it S u p p o rt

Service C o m p le tio n Is R esou rce A v a ila b le D isp la y R e se r v a tio n s
Service R eq u est Service E x ten sio n | S erv ice C a n ce lla tio n (Serv ice E xecution

Label:

S tart Tim e:

End Tim e:

S e le n Date:

iMyFirstReservation

Hrs:

Hrs:

November 13. 2003

S e le c t A llo ca tio n S trategy:

O T im e D o m a in <§} R eso u rce D om ain

CPU

C apacity: 6 0

S u b m it C ancel

M ins:

10

Mins:

h t t p : / / l o c a lh o s t : 8 0 8 0 /o g s a / s e r v ic e s /o r g /g lo b u s / c o g /q o s / s e r v e r /Q o s S e r v ic e /q o s ▼

Figure 5.8: P aram eters for th e Q oS N egotiation T ask

94

http://localhost:8080/ogsa/services/org/globus/cog/qos/server/QosService/qos

Java CogKit: QoS Support

: Service C o m p le tio n \ Is R eso u rce A v a ila b le \ D isp la y R ese r v a tio n s
Service R eq u est \ S erv ice E x te n sio n \ S erv ice C a n ce lla tio n \ S ervice E xecution

A g r e e m e n t ID: llocalhost.localdomain: 10687831

E xecutab le Name: |/hom e/local/m athAppl

Param eters: |2 3 4 5 1

Standard O utput: jmathOut.txt

Standard Error lmathError.txt

Is Batch F a lse ▼

S u b m it C ancel

h t t p : / / lo c a lh o s t : 8 0 8 0 /o g s a / s e r v ic e s /o r g /g lo b u s /c o g /q o s / s e r v e r /Q o s S e r v ic e /q o s ▼

Figure 5.9: P aram eters for th e Q oS -based Jo b -su b m iss io n Task

A processor monitoring tool was developed to study the behaviour of processor

utilisation during runtime. Examples of this monitor are given in Figures 5.10 and

5.11. In Figure 5.10, the five most processor-intensive processes are shown before

mathAppl is submitted. Figure 5.11 shows the processor utilisation of the five most

processor-intensive processes after mathAppl has been started; this Figure also

shows mathAppl, as a guaranteed process, using 60% of the processor time of this

grid node, with the competing processes using the remainder.

95

http://localhost:8080/ogsa/services/org/globus/cog/qos/server/QosService/qos

P ro c es se s CPU Utilization

30

delay
A

com pute X ja v a

P rocesses at time: 2 3 : 2 7 : 5 7

(Proc l ■ P ro c :2 * P ro c :3 Proc:4 Proc:5

— ^ y
b a tts ta t- a p p l

Figure 5.10: The Five M ost P ro cesso r-in ten s iv e P ro c e s se s
before s ta rtin g th e G uaranteed P ro ce ss

P rocesses CPU Utilization

*

60

50

40

S 30
20

10

0
I It

m athAppl de lay X com pute g n o m e-
te rm in a

Processes at time: 23:35:52
I Proc.l ■ Pioc:2 H P roc:3 Proc:4 Proc:5

Figure 5.11: The Five M ost P ro ce sso r-in ten s iv e P ro c e sse s
afte r s ta rtin g th e G uaranteed P ro c e ss

5.2.7 - QoS Registry Service

The QoS registry service is based on the Universal Description, Discovery and

Integration (UDDI), which is a specification for distributed Web-based information

registries for Web Services. UDDI allows HTTP-enabled business services to be

published, and subsequently searched, based on their interfaces. UDDI consists of

three components: ‘white pages’ to hold basic contact information and identifiers for

96

a company; ‘yellow pages’ to enable companies to be listed based on their industry

categories (using standard taxonomies); and ‘green pages’ to record interface details

of how a Web service is to be invoked. UDDI is however limited in scope - allowing

white, yellow or green pages to be searched based on a few attributes, and does not

provide an automatic mechanism for updating the registry, as services (and service

providers) change. The UDDIe, an extension to UDDI, supports the concept of ‘blue

pages’, to record user-defined properties associated with a service, enables the

discovery of services based on these properties and support for qualifier-based

search mechanisms as discussed below. UDDIe enables a registry to be more

dynamic, by allowing services to hold a lease; a time period describing how long a

service description should remain in the registry (ShaikAli etal. 2003).

The UDDI has four data types, for business and service information, which are

XML-based data structures: business Entity, businessService, bindingTemplate and

tModel. The UDDIe - extension of the UDDI - makes use of the businessEntity and

businessService data structures and provides the APIs, as described in Section 5.2.8.

The QoS registry service in the prototype is UDDIe registry2 (ShaikAli et al. 2003),

and based on a public domain implementation of UDDI from uddi.org. The UDDIe

implementation is built with Java technology and supports service publishing and

discovery, based on extended properties, as outlined in Section 5.2.8. One of the first

applications for UDDIe was in the context of the G-QoSm framework, whereby

services are published, and queried, dependent on QoS properties. Figure 5.12 shows

a sample XML request submitted to UDDIe to search for services according to the

specified QoS properties.

2
The UDDIe registry service is available as open-source software from The Welsh e-Science Centre,

Cardiff University, http://www.wesc.ac.uk/projects/uddie/uddie/download/

97

http://www.wesc.ac.uk/projects/uddie/uddie/download/

UDDIe Client
ierfyE fagi

<property»

</property»

<propertyFindQuallfier»exactMatch</propertyfinclC
«propertyName>cpuQoS </propertyName»
<propertyType>number«/propertyType>
«propertyValue»60</propertyValue»

sertyBag*

<1. ...

find_business
find_service
get _serwic eDet ail
get ̂ businessDetail
get_authToken
save_service
renew lease
delete service

S en d

C a r d i f f
UNIVERSITY

PRIFYSCOL
CaeRDy$>

UDDIe * d d re s K it it tp - ./)B erv * u m x s .c f .ac ,u lc8080A jd d ie » u | ▼ I

Figure 5.12: Sam ple XML R equest Subm itted to the UDDIe

5.2.8 - The UDDI Extension

Extensions in UDDIe comprise a set of application programming interfaces (APIs)

for interacting with the registry system. These APIs are:

❖ saveService: used mainly for publishing service details. This API has been

extended from the original UDDI system to introduce dynamic metadata for

services. It is used to present QoS information, but can also be used to

present various services’ related information.

❖ findService: used mainly for inquiry purposes. In particular, this API

includes queries based on information associated with services, such as

service property and service leasing.

❖ getServiceDetails: used mainly for requesting more detailed information

about services, such as BusinessKey and service information. This API

includes service property information.

❖ renewLease: used by the UDDI administrator to control leasing

information, and by the service provider (SP) to renew and set leasing

information. Using the leasing concept, every service is associated with a

lease, either for a limited, or an infinite, time period. The maximum number

of infinite services is controlled by the operator; required to efficiently

98

maintain the registry. For a limited duration, a start and end date for the

lease period is provided. The UDDI administrator can control the setting of

the default, i.e. the initial leasing period. If a lease expires the SP can renew

the lease, provided the request is within the number of renewal times

allowed for a particular lease; controlled by the UDDI administrator. When

the lease expires, the service becomes invalid and a client cannot use the

service further. It is important to regularly renew a lease, or request an

infinite lease, and an event manager alerts all connected users if a service

lease is about to expire.

One motivation for leasing is that a service provider is often interested

in leasing a service with particular QoS constraints for a particular time period,

while advertising the same service with different QoS constraints at another

time. This is similar to the way tele-communication companies introduce

different charge schemes at different times, such as peak and off-peak charges.

Another motivation is the introduction of grid service lifetime management in

the OGSA specification, which specifies the validity of a service from creation

to destruction.

❖ startLeaseManager: This set of APIs is used to monitor the lease constraints, by

starting processes to monitor and delete expired leases from the registry. The

UDDI administrator can control how often these processes are run.

In addition to these APIs, support for a qualifier-based search is included, to find

services based on the value of a property specified by a qualifier expression, based

on =, < or >. More complex expressions can be built using the logical operators AND

and OR. These extensions to the UDDI registry and associated query mechanisms

add search flexibility making UDDI useful for QoS-based systems.

Appendix F gives Java code for accessing UDDIe for services with QoS properties,

and for selecting matching services based on the QoS property importance levels

outlined in Chapter 3.

5.2.9 - Performance Experiments

An experiment was carried out to determine if the performance of the UDDIe

registry is acceptable for applications requiring QoS provisions (Al-Ali et al. 2003d).

99

This experiment also aimed to find any bottlenecks in the query processing path. The

experimental infrastructure includes the QoS manager, which processes clients’

requests, the UDDIe registry and the database (used to store data related services, as

well as service provider and user information), with the UDDIe and database on the

same server. Queries were issued from another client workstation. The client

workstation and server, located in the School of Computer Science at Cardiff

University, were connected via a 100Mbps Ethernet network. The query round trip

time (RTT) was measured as the time required for a query to be submitted from the

client workstation, processed by the QoS manager and UDDIe, and the results

returned to the client. Figure 5.13 shows a logical query path.
4

RTT can be computed as: QueryRTT = ^ 7 7

T, T,r ^

Application T, Q oS M anager c
D

1 "̂3 O
CD

Figure 5.13: Logical Query Path

Ti: time taken to send the request from the application initiating the request to the

QoS Manager including request processing at the QoS Manager,

T2: time taken from the QoS Manager forwarding the request to the UDDIe,

including the time taken at the UDDIe to process the request,

T3: time taken from the UDDIe sending the reply to the QoS Manager and the

QoS Manager regenerating the reply to the Application, and

T4: time taken to send the reply from the QoS Manager to the Application.

The experiment comprised a mixture of queries for services with QoS properties:

❖ Query 1 requests services with QoS properties making use of the service property

extension; the result is that no match has been found.

❖ Query2 requests services with QoS properties along with service validity

constraints, making use of the service leasing extension.

100

❖ Query3 requests services with more complex QoS properties and leasing

information. Query3 introduces logical operations, making use of the range-based

search mechanism.

The UDDIe registry was populated with a number of services and the three types of

query were submitted. Each submission used a different service name and QoS

attributes. Table 5.1 gives the average RTT for the queries submitted in each case.

Query RTT Case, RTT Cas&2 RTT Cases RTT

Query\ 2749 4421 5031

Query2 9250 11469 13422

Query3 9703 9407 10703

Table 5.1: Round Trip Time Responses
(in milliseconds)

The main purpose of the experiment is to show the performance obtained by

integrating UDDIe into the G-QoSm framework. It was observed that the minimum

time taken by the QoS manager and the UDDIe to process a request is about 5

seconds. If the list of services returned contains more than 30 services, and the QoS

manager must choose between these based on the application’s constraints then the

response time is high. The maximum number of services returned was, therefore,

restricted to five, which yields a better response time. The average response time for

a successful request takes about 9 seconds; this response can still be improved by i)

designing a more efficient algorithm to choose the best match, and ii) considering a

hardware platform server with a higher specification than the experiment test-bed,

and doing further experiments with, and without, the QoS Manager.

5.2.10 - Limitations

A limitation of the prototype is that one needs system administrator privileges to

effectively configure QGS - i.e. root access on a Unix system. This is particularly

true when configuring the underlying resource managers.

The prototype is Unix-based and was tested on Linux Red Hat version 9. Although

the application can reside on any platform, QGS is restricted to a Unix system.

Portability to other platforms is clearly desirable, but this restriction is because the

101

compute resource manager employed (DSRT), is a Unix-based implementation. The

network resource manager integrated with the G-QoSm, namely BBfiaiiC, is a Java-

based implementation which requires a Linux-based machine to be configured as a

routing element for DiffServ support, with further detail on the B B ^ c integration

given in Chapter 6 .

5.3 Summary

The G-QoSm prototype - a QoS management service - is implemented as a grid

service in the GT3 OGSI container. Such implementation enables QGS to make use

of GT3 middleware services, for example, security and job submission through

GRAM. The QGS provides an API, for client application and developers to interact

with QGS, and uses grid resources with QoS provision. The communication protocol

is based on the de facto Web Services protocol SOAP, and messages are encoded in

XML. The core component within QGS is the reservation manager, which handles

admission control, reservation validation and the generation of SLAs.

The reservation manager (the core component of QGS), manipulates logical entities

that represent the actual physical resources. Such a manipulation is possible through

the layered design of the resource manager integration architecture. The resource

manager interface component is the actual entity that does the interaction between

the allocation manager and the particular resource manager. The DSRT scheduler is

used in the G-QoSm prototype as the compute resource manager. BBeasic is used as

the network resource manager, which supports DiffServ for networking QoS

provisions.

This Chapter explains how a non-QoS-enabled application can be extended with

QoS-based properties. To achieve this, the extended Java CoG API library and GT3

OGSI grid services container are used. Java code fragments demonstrate the use of

the G-QoSm prototype.

The QoS registry service is based on the implementation of UDDIe, which has a

number of extensions suitable for QoS-based discovery. The API of UDDIe is

102

outlined, and performance data is presented. Finally, some limitations of the current

G-QoSm prototype are also presented.

Chapter 6 ~ Validation presents a verification of the compute QoS and network QoS

support, and gives performance results for a grid application making job

submissions, and undertaking data transfers with specific QoS requirements.

103

Chapter 6 - Validation

Certain classes of applications in grid computing, such as collaborative applications,

must satisfy strict QoS constraints, as these application operate in collaborative mode

and data must therefore be stored, processed and delivered over a limited time span -

for example, tele-immersion, visualization and computational simulation. QoS

management is required to plan and guarantee the timely interaction among

components of such applications. To validate G-QoSm two example applications were

chosen for performance analysis, one computation-intensive and the other

communication-intensive. The first is an image processing task derived from a

nanoscale structure application (Al-Ali et a l 2004b). The second involves the use of the

DiffServ architecture with a Bandwidth Broker (BB) component (Al-Ali et al. 2004d).

6.1 Computation-Intensive Example

The G-QoSm prototype was used to manage a nanoscale structure application, being

developed as part of Argonne National Laboratory's advanced analytical electron

microscopy program (Zaluzec, 2004). With this technique, a focused electron probe

is sequentially scanned across a two-dimensional field of view of a thin specimen. At

each point on the specimen a two-dimensional electron diffraction pattern is acquired

and stored.

Analysis of the spatial variation in the electron diffraction pattern of each measured

point allows a researcher to study subtle changes resulting from micro-structural

differences, such as electro-magnetic domain formation. The analysis of this data

requires a resource-rich grid infrastructure satisfying real-time constraints. During an

experiment, results need to be archived, remote computing resources need to be

reserved, and the data must be moved to the computing resources for analysis.

Moreover, results need to be gathered and presented in a meaningful, human-

readable form.

The need for a reliable computing infrastructure is demonstrated by the simplified

flow diagram in Figure 6 .1. The elementary logic of the instrument control can be

104

expressed as a sequence of interacting processes: Data Acquisition gathers time-

delayed images from the electron microscope; Backup stores incoming data; Data

Analysis analyses the time-delayed images; and Result Display gathers the results

from the data analysis, in a form suitable for interpretation and continuance of the

experiment.

Asynchronous
processesmonitoring u c c o o c o

(5^7 V \
A cquisition | J

{ oJL] \
l A nalysis) I

Default Backup

aquisition

Optional Backup

analysis

Optional Backup

When results are good

Collaborators
W ith secure access

Figure 6.1: A sy n ch ro n o u s P ro c e s s e s in N an o sca le S tru c tu re Application

This nanoscale structure example exhibits a pattern typical of many scientific

applications in high-end instrument scenarios. The pattern includes a high volume of

interaction during an experiment which must be dealt with in an adaptive and flexible

way. The instrument operator's interface with the grid must be as simple as possible,

while at the same time providing flexibility to interactively modify the experiment.

The Java CoG kit provides a convenient abstraction for formulating tasks, such as

file transfer, job execution and job management. At the same time, it hides much of

the complexity from a grid application developer. The Grid Application Toolkit

(GAT) interface, developed in the European GridLab project, also provides a

generalised collection of calls to shield grid applications from implementation detail

of the underlying grid middleware. GAT uses adaptors that facilitate the application

105

choosing a specific binding (from the GAT interface to the underlying technology)

which implements a specific functionality (Taylor et al. 2003). Using a suitable

interface, a scientist will be able to interact with the experiment resources and decide

when, what, and where data gathered during the course of the experiment is backed

up. Because of the focus on the experiment itself, the use of the grid should, as far as

possible, be via abstractions, i.e. details of the grid should be hidden from the

scientists doing the experiments. This allows the scientists to focus on the experiment.

The application example presents the following requirements for QoS:

a) Data acquisition - network transfer of the time-delayed images from the

electron microscope;

b) Disk storage - to cache the large amounts of incoming data during data

acquisition, and also for backup usage;

c) Computational power - to carry out scientific calculations on the time-

delayed images;

d) Result presentation - transfer of results to a display for interpretation.

Experiments in this thesis focus primarily on requirement ‘c’ and the result display.

6.1.1 - Test-bed

The test-bed for the experiment included two Linux-based computers: one with a 1.8

GHz Pentium processor and 256 MB of memory, acting as the service consumer; the

other, a 1.2 GHz Pentium processor and 512 MB of memory, acting as the service

provider. All machines were connected through an Ethernet local-area-network. This

experiment was not carried out on a wide area network, as one needs a super-user

access privilege to install and configure the G-QoSm prototype. Deployed on these

machines were GT3 OGSI service container, GT2, and the Java CoG kit.

Experiments were carried out using two different approaches: one with a QoS

handler through the Java CoG kit and the second with a GT2 handler through the

Java CoG kit.

6.1.2 - Time-domain Allocation

The nanostructures image analysis task, based on a sample electron diffraction using
up to 900 input images, was executed on the test-bed using a time-domain strategy

106

for resource allocation, as outlined in Section 4.6. With the entire compute node
reserved for the application, multiple jobs were submitted to the reserved node but

only one was executed, the job that had previously made a reservation.

Two sets of runs were conducted, one with job submission based on QoS and one

with standard job submission based on GT2. In the job submission based on QoS the

submission is done through the QoS Handler in the Java CoG Kit, and involves QoS

management, such as resource reservation and SLA establishment. Each set

consisted of two groups of four runs each for observation and analysis purposes. In

the first group, four collections of images were processed in parallel, submitting the

entire collection to the grid node for processing at the same time. In the second

group, the same four collections of images were processed sequentially, submitting

one image at a time to the grid node for processing. The four collections contained

25, 50, 75 and 90 images respectively. Figures 6.2, 6.3, 6.4 and 6.5 show the

performance results relating the number of images and the time taken for each run.

T im e T a k e n to P r o c e s s Im a g e s u s in g Q o S - (P a ra lle l)

3 0 0

2 5 0

2 2 0 0
g 150

F 100
50

0

2 5

Processing Time

5 0 7 5

N um ber of Im ages

F igure 6.2: Q o S -b ase d E xecu tion - Parallel

107

Time Taken to Process Images using QoS - (Sequential)

■ Processing Time

1200
1000

800

g" 600
P 4 0 0

200
0

25 5 0 75 90

Number of Images

F igure 6.3: Q o S -b ased E xecution - S equen tia l

The results displayed in Figures 6.2 and 6.3, obtained from the QoS approach, show

that the time taken to process the images, in both parallel and sequential mode, is less

than for the GT2 approach. This is expected, since the reservation mechanism

employed in this time-domain strategy reserves the entire processing power of the

grid node for the QoS-based application, which prevents other processes from using

processing power during the reservation.

Experimental results (using GT2), displayed in Figures 6.4 and 6.5, show that the

time taken to process images in both parallel and sequential mode, is more than for

the QoS approach. The reason is that multiple processing loads were applied through

a background workload generator - to simulate a shared multi-user environment.

This background workload generator is used to sort a list of up to 10,000 random

numbers - the actual number of elements in the array is also picked randomly - using

a variety of sorting algorithms, such as bubble and heap sort. A random wait period

is also specified between each invocation of the random number generator to

simulate the creation of new jobs at unpredictable times. Executing this process adds

a variable workload to the existing jobs that are managed by a processor. Because the

GT2 technology does not employ a reservation mechanism, other processes can use

processing power while the job submitted is being processed.

108

Time Taken to Process Images using GT2 - (Parallel)

■ Processing Time

6 0 0 n

2 5 5 0 7 5 90

N um ber of Im ages

Figure 6.4: Best Effort Execution using GT2 - Parallel

Time Taken to P ro c e ss Im ages u sin g GT2 - (Sequential)

■ Processing Time

1200

25 50 75 90

Number of Images

Figure 6.5: Best Effort Execution Using GT2 - Sequential

Figures 6 .6 and 6.7 show results for the nanostructure application in GT2 and QoS,

for, respectively, best effort service and QoS guaranteed service. Figure 6 .6 indicates

that processing time per image generally takes from 10 to 30 seconds. This 20 second

variation in the image processing time is quite significant, compared to the variation

from the QoS approach shown in Figure 6.7 and discussed in the next paragraph. The

time variation from the best effort approach, in Figure 6 .6 makes the processing

pattern inconsistent.

109

■ Processing Time -- GT2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

Image Number

Figure 6.6: The A pplication U sing GT2 - B est Effort Serv ice

■ Processing Time - QoS

7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91

Image Number

Figure 6.7: The A pplication U sing Q oS - G uaranteed Serv ice

Figure 6.7, using the QoS guaranteed approach, shows an execution time per image

ranging from 10 to 12 seconds, except for image number 36 which took

approximately 15 seconds. The same image is shown to take approximately 37

seconds in Figure 6 .6 , based on the GT2 best effort mechanism, which indicates that

image 36 has greater processing requirements than the other images. The variation in

image processing time using QoS constraints is quite small, which makes the

processing pattern reliably consistent. From the above results, one can observe that

application processing using the proposed QoS approach provides the following

advantages:

❖ The processing of the images gives better performance.

110

532323534848532323484848535353232348485353232348482353

❖ The time variation in processing each image is about 2 seconds, compared to

the GT2 approach of 20 seconds, using the same set of images. This

difference is quite significant, making the proposed QoS approach more

predictable and consistent.

6.1.3 - Resource-domain Allocation

Performance results, using the G-QoSm framework to allocate processor resources

with a QoS specification, using a resource-domain allocation strategy, as outlined in

Section 4.6, are presented here. In this strategy, a certain processor capacity resource

is reserved, and a client application can submit jobs for execution within this

reserved capacity. The process is implemented using the Java CoG kit to create a task

object which is submitted to the QoS Handler to negotiate the required resources or

services. If successful, a SLA is returned for future use when claiming a reserved

resource.

To evaluate the behaviour of the system under heavy load, and to observe the

effectiveness of job submission with QoS constraints, two experiments were run, one

with two processes run in best effort mode - i.e. without a processor reservation; and

one with one process run in guaranteed mode - i.e. with a processor reservation of

60% from time (J25 to ^ 5), as shown in Figure 6 .8 . The guaranteed process was run

for a specified time while the competing best effort processes were running.

I l l

r.R11 PLOT OF PROCESSES EXECUTION TIME v s . CPU UTILIZATION
CPU U t i l i z a t i o n

"c p u I n t e n s i veQ os. d a t "

"c p u I n t e n s i v e l . d a t “
“c p u I n te n s i v e 2 . d a t “

50 -

10 20 30 40 50 60 70 80

Time (s)

Figure 6.8: Execution of G uaranteed an d C om peting P ro c e s se s

To further study system behaviour, and to observe the execution pattern of the

guaranteed process, performance data was observed shortly before the guaranteed

process started, then periodically every 5 seconds, until shortly after completion.

Figure 6.8 plots the execution pattern.

❖ From 11o to t25, two computation-intensive processes competed for 100% use

of the processor.

❖ At t25, the guaranteed process, with a guaranteed processor usage of 60%

started, and lasted until t65 (based on processor reservation).

❖ From t65, the two computation-intensive processes again competed for 100%

use of the processor.

During the active session of the guaranteed process, the guaranteed processor usage

of 60% was maintained, with the remainder of the processor shared between the

other processes. At t65, when the guaranteed process completed, the two

computation-intensive processes started to compete for 100% usage.

112

6.1.4 - QoS Overhead and System Limitations

To further evaluate the proposed system, two experiments were conducted to

establish the QoS overhead imposed on job submissions, and system limitations, in

terms of the maximum number of requests managed before failure - essentially to

test scalability. In this context failure is when the service cannot accept any more

requests from the client/application.

The limitations of the present system are:

❖ QoS Overhead: The most apparent QoS overhead on conventional job

submission is negotiation and resource reservation, which occurs when an

application submits a request for resource reservation with QoS constraints

and subsequent resource allocation. QGS undertakes resource discovery and

reservation and presents the application with a SLA. To measure this

overhead, an application generating (at various times) about 1 ,0 0 0 requests for

QGS was monitored. The interval recorded was from the time the application

initiated the QoS request until the request was acknowledged by QGS. The

time taken to acknowledge QoS requests ranged from a best case of 50 ms to a

worst case of 200 ms. The acknowledgement time depends on how busy QGS

is and on the network connecting the client/application and QGS - in a wide

area network infrastructure this acknowledgement time might differ due to the

network factor. 50 to 200 ms is not significant compared to the time normally

reserved for a QoS session, in the order of minutes or even hours; and this

overhead is negligible.

❖ System Limitation: A test was conducted to determine scalability in terms of

the QoS request load. A large number of requests, at different times, were

issued by the client/application over the network. It was observed that QGS

cannot accept more requests after approximately 3,600 requests in

approximately 6 minutes, after which denial of service occurs, due to a

hardware limitation on the experimental test-bed. The reason for this

limitation was found to be the prototype system’s reservation table, which

contains information about reservations, agreements and SLAs. This table,

maintained in primary memory, was found to be almost full when denial of

service occurred. The denial of service could also have arisen from the

113

process table becoming fully utilised, as more requests were forwarded to the

server. To overcome this constraint, it is planned to store the reservation table

in a disk file rather than in the main memory, or store the reservation table in

a database, such as Oracle or MySQL, for more efficient data retrieval.

6.2 Communication-intensive Example

This Section examines G-QoSm’s network QoS support and provides experimental

results (Al-Ali, et al. 2004d). The network QoS support is provided via the DiffServ

architecture and relies on a BB component. Performance results, using a BB, along

with other elements, in the G-QoSm framework are presented. BBBasic implementation

is integrated with the G-QoSm framework to provide network QoS. BBBasic is

University of New South Wales implementation of a BB (Sohail et al. 2003).

6.2.1 - BBBasic Implementation

The BB Basic is based on the concept of BB - background information is provided in

Appendix G. The BBbos/c implementation provides the features of the BB architecture

as outlined in Appendix G. It is implemented in Java and follows a client-server

model. BBBfliJC can interact with Linux-based routers, unlike the systems reviewed in

Section 2.7, as the routing element, whereas Linux routers need to have DiffServ

support enabled, which is built into the Linux kernel from version 2.4 onwards. Java

handles remote client-server functionality through TCP sockets. A BBBasjc can handle

multiple connections from the routers and clients simultaneously. The

implementation provides a query facility, about resources and SLAs, for users and

network administrators who can request details. Implementation details for BBBaslc

are available in Pham and Nguyen (2003). Some relevant implementation details of

BBftM/c are explained in the following Sections.

6.2.1.1 Inter-domain

The inter-domain protocol embedded in BBBasIC is designed on the specifications of

simple inter-domain BB signalling (SIBBS) protocol, denoted here as SIBBS#*s/c.

The specification of SIBBS (QBone, 2002) does not explicitly state the mechanism

that a BB uses to gather information about neighbouring BBs. Nor does it give detail

about their administrative domains. SIBBS#*™- collects this information from its

114

database, which contains a comprehensive network map, enabling BB^/c to identify

the neighbour which should be contacted to complete an application’s resource

allocation request (RAR). Whenever the resources requested include those from

other domains, B B ^ c gathers information from neighbouring BBs and contacts

them via SIBBSe^. A neighbouring BB checks its resources, and if the request is

accepted, propagates it to the next BB in the direction of flow. The process continues

until the request reaches the BB with the destination host in its domain, and replies

are sent back in the reverse manner. After sending the resource allocation answer

(RAA), in the case of request acceptance, BBfiajJC configures its edge routers via the

intra-domain protocol to allocate network resources for the accepted flow.

6.2.1.2 Intra-domain

Common Open Policy Service for Provisioning (COPS-PR) (Halim and Darmadi,

2 0 0 0), the intra-domain communication protocol used in B B ^c, is an independent

implementation linked to BB Basic- The COPS-PR and BB Basic combination was tested

on Linux routers, with results (Halim and Darmadi, 2000; Pham and Nguyen, 2003)

indicating that BB&Kic effectively manages network resources by reconfiguring the

relevant routers with COPS-PR when required. BB^/c functions as a policy decision

point (PDP) that connects to its own domain routers, at a policy enforcement point

(PEP), to configure these according to a pre-defined domain policy. Whenever

BBgos/c accepts a request, related core and edge routers (if required) are contacted via

COPS-PR. A core router needs reconfiguration when it is a first-hop router for the

flow; with reconfiguration required for marking and shaping the flow’s packets.

Marking of packets is required to classify the packet, and shaping is required to keep

the flow below agreed limits. The edge router is contacted by the BB when the

destination or source of the requested flow is in a different DiffServ domain, to enable

the edge router to filter, shape, schedule, or mark the packets according to the SLA.

6.2.1.3 Database

A MySQL database is used to store information related to a BB. The information is

divided into three parts: user, BB and network. The user part consists of an

application’s SLA, password and resource request information. The BB part contains

relevant information about peer BBs, and the SLAs with these BBs. The network part

contains information on the network, such as network domains and network addresses,

115

essential to determine the routers needing reconfiguration when a BB accepts a

request. Network information is also necessary to find the neighbouring BBs to contact

for resources acquired from multiple domains.

6.2.1.4 User/Application

BBfiaj/c has multiple interfaces for application access; these interfaces allow an

application to choose the most suitable mechanism for interaction with BB Basic-

Distinct interfaces are provided, for example, a Java API and a Web-based client for

administrators and users. Detailed description of these interfaces and information

about their use is available in Pham and Nguyen (2003).

6.2.1.5 BBBasic Integration

The BBfloj/c integration into G-QoSm enables support for managing network

resources. To integrate a new resource manager, it is necessary to specifically design

an interface, as shown in Figure 5.3.

6.2.1.6 Network Interface

The network interface does the translation of requests between the QGS and BBBas,c.

The QGS may include four types of request:

❖ Querying Resources: Resource querying can be classified into querying a

SLA network for information related to a specific SLA network (SLAnm,0nt relates to

SLAs between DiffServ domains), and querying the status of an RAR within

a particular SLA network-, with a RAR corresponding to a G-QoSm SLA (i.e.

application/user SLA). Querying a SLAnetwork allows the QGS to enquire

about the capacity of a specific network element currently being used, and the

remaining capacity available for use. The second type of query allows the

QGS to enquire about the status of a particular established RAR, and to view

associated information such as start and end times, network bandwidth

granted, type of network service, such as expedited forwarding (EF), and

source and destination IP addresses. EF is a mechanism used to build assured

bandwidth in DiffServ domains, based on low delay, jitter and packet-loss

rate (Jacobson et al. 1999).

116

❖ Allocating Resources: Resource allocation involves issuing a RAR

associated with a pre-defined SLA network- Parameters required include the

amount of network bandwidth required, the type of network service, the

associated SLAn<>mw*, start and end times, and source and destination IP

addresses.

❖ Releasing Resources: The release or de-allocation of resources only works

for pre-established RARs. Here, the RAR can be deleted - i.e. the removal of

network QoS privileges - with the parameter, required for this request, the

RAR identification number. This operation changes the network traffic

service type from guaranteed service to best effort service, if the network

resources are still needed. This is consistent with the G-QoSm concept that

network flow will not be terminated, or suspended, but will rather be reduced

to a low priority type service.

❖ Modifying Requests: Request modification affects a SLAwem,orjt or a RAR.

For example, a SLAnetwork can be modified by changing its bandwidth

capacity or the type of network service being provisioned. Similarly, a RAR

can be modified to change its bandwidth capacity, or start and end times, i.e.

implementation of re-negotiation requests, which is consistent with the G-

QoSm concept.

6.2.1.7 Requesting Network Resources

With the integration of B B ^ y into G-QoSm, grid applications can request network

resources with QoS constraints. The protocol is similar to that for computational

resources, outlined in Chapter 5 and in Al-Ali et al. (2004a). G-QoSm extends the

Java CoG kit architecture and makes use of its API, as discussed in Chapter 5. Figure

6.9 shows Java code for initiating a request for network resources; in particular, it

shows a negotiation task for network resources. The API used is similar to that in

Chapter 5, the only difference being the task attributes which should be specific to

the type of resource under consideration, in this case the network; and attributes like

network bandwidth, source IP and destination IP are expected.

117

/*** QoS: Prepare Negotiation Task ***/
private void prepareQosNegotiationTask() {
// create a QoS service and setup QoS attributes for network resource
Task task = new QosTasklmplf'myTask", QoS.NEGOTIATION);
this.task.setAttribute(“startTime", startTime);
this.task.setAttribute(“endTlme", endTime);
this.task.setAttribute(“networkBandwidth",networkBandwidth);
this.task.setAttribute(“sourcelP’\sourcelP);
this.task.setAttribute("destlP",destlP);

// create a Globus version of the security context
SecurityContextlmpI securityContext = new GlobusSecurityContextlmpl();

// selects the default credentials
securityContext.setCredential(null);
// associate the security context with the task
task.setSecurityContext(securityContext);
// create a contact for the Grid resource
Contact contact = new Contact(” myGridNode");

i___________________ :___
Figure 6.9: Java C ode for R equesting a Network R esource

6.2.2 - Experimental Results

The effectiveness of network resource reservations, based on the integration of

BBfiaj/c and G-QoSm, was evaluated on a local network test-bed. This section

discusses the experiments and presents the corresponding validation results.

6.2.2.1 Network Test-bed

Figures 6.10 and 6.11 show the network test-bed, a local area network (LAN) of

computing nodes and routing elements, with computing nodes representing the

source and sink points - i.e. traffic senders and receivers. The routing elements use

the Linux iproute2 package to provide DiffServ capability to a Linux-based machine,

and the Linux machine then acts as a PEP entity. Figure 6.10 shows the intra-domain

architecture, while Figure 6 .11 shows an inter-domain architecture.

118

Client / Application

P E P

BB serv er and Q G S

M achine “B”
S ource 2

M achine "A"
S o u rce 1

Machine *R1 *
Linux-based

Router

10 Kbps M achine “C ”
Sink

/

Figure 6.10: Netw ork S e tu p fo r In tra-dom ain A rch itec tu re

Client / Application

V

PE P 1

BB se rv e r and QG:

M achine “B”
S ource 2

M achine “A”
S o u rce 1

Machine “R1*
Linux-based *

Router

10 Kbps Machine "R2‘
Linux-based

Router

10 Kbps M achine “C”
Sink

P E P 2

Figure 6.11: Netw ork S e tu p fo r In ter-dom ain A rch itectu re

B tW ,c comes with three separate modules: a BB server, to be installed in each

administrative domain, to act as a PDP; a PEP module to be installed in each Linux

routing element; and a MySQL database to be populated with the relevant data

describing the network. For example, the database describes network topology, link

capacities and the pre-defined SLAs with their service types - expedited forwarding

119

or best effort - and associated domains. G-QoSm provides an interface to request,

modify or cancel network resource reservations.

6.2.2.2 Demonstration o f Network QoS for Grid Applications

Experiments were designed to show that a grid application can initiate a network

reservation request through G-QoSm and have it forwarded to BBBaf(C, with

admission control and routing elements appropriately configured. Network traffic

generator tools are used at the source, to simulate applications requiring data transfer.

Similarly, network traffic collector tools are used at the sink, to collect traffic

received and measure network bandwidth. The network traffic generator tools are

Real-time UDP Data Emitter (RUDE) and Collector fo r RUDE (CRUDE) (RUDE

and CRUDE, 2004).

A User Datagram Protocol (UDP) constant-traffic-rate generator was used to

generate network traffic that simulates grid data-transfer applications. Similarly, a

UDP traffic generator was used to generate competing traffic. It is important to use

UDP for traffic congestion, as opposed to TCP, because UDP does not employ the

slow-start mechanism during congestion, maintaining congestion behaviour, and

supporting a constant transmission rate. The TCP slow-start mechanism operates on

the basis of sending rate increments exponentially until congestion occurs, and then

reduces the sending rate and starts incrementing exponentially again. This will not

maintain a constant traffic rate, whereas the objective of the traffic generator, in this

context, is to provide a constant traffic rate.

120

P e r fo rm a n c e o f a U D P F lo w w ith N e tw o rk R e s e r v a t io n
g

5 -

4 -

f 3 '

2 -

1 -

0 - -------- ,------I--m-------- ------------ --------- Hi
1 3 5 7 9 11 13 15 17 19 21 23 2 5 2 7 29

Tim e (s)

F igure 6.12: N etw ork Q oS u n d e r C o n g estio n

Figure 6.12 shows the performance of network QoS for UDP traffic simulating a grid

application under different situations. This experiment was conducted in the intra­

domain architecture shown in Figure 6.10. The link between the router element and

the sink was configured for a 10 Kbps stream, to easily congest the link. The UDP

traffic under consideration was maintained from time ts to t29- From ts to tio the UDP

traffic was sent without reservation - i.e. best effort - at 4 Kbps on an unloaded

communication link from source to sink. From tn to t\e, with the UDP flow still

transmitting at 4 Kbps, random competing traffic was started to generate congestion;

observations show that the UDP traffic could not maintain the 4 Kbps rate due to

congestion. A network QoS reservation, for 4 Kbps, was made from tn to t23 for the

UDP traffic, with the competing traffic still generating congestion.

The result of the QoS reservation was that the UDP traffic managed to maintain the

promised reservation rate, even though congestion was still operating. Finally, from

t24 to t29 the reservation ended and the UDP traffic was unable to keep its 4 Kbps.

121

P e rfo rm a n c e o f M ultip le R e s e r v a t io n s o f U DP Traffic

6

5

4

2

1

0
3 5 7 9 11 13 15 17 19 21 231

UDP Flowl
UDP Flow2

Time (s)

Figure 6.13: Multiple N etw ork Q oS F low s u n d e r C o n g estio n

Figure 6.13 demonstrates multiple network QoS reservations under congestion. This

is similar to the previous setup, with the link between the router and the sink

configured to 10 Kbps. In this case, two UDP flows were generated. From ts to tjo the

two UDP flows transmitted simultaneously at 5 Kbps, while the congestion

continued. Reservations were established from tn to t)6 and the 2 flows maintained

the promised resources. The DiffServ forwarding mechanism, at the routing element,

is thus undertaking the correct traffic forwarding.

P e r fo rm a n c e o f E F R e s e r v a t io n s a n d BE F lo w s

-+— BE flow 1
a — BE flow 2

— EF flow

Time (s)

Figure 6.14: G uaranteed an d B est Effort Network QoS

Figure 6.14 shows performance results for transmitting multiple traffic flows

belonging to 2 different classes: EF - which can be mapped to guaranteed service in

G-QoSm; and best effort (BE). The network link from the routing element to the sink

1 2 2

is configured to support 10 Kbps; two S L A nelwork contracts were generated, i.e.

network SLAs between DiffServ domains, one for the EF traffic at 5 Kbps, and one

for the BE traffic at 5 Kbps. Using the Linux traffic control script, the

communication link was configured to not allow borrowing, meaning that each type

of traffic, EF and BE, must stay within the boundaries of the defined resource. The

traffic performance was realised from t5 to t]3, when a network reservation was made

for an EF flow of 4 Kbps. At the same time, 2 BE flows were attempting to transmit

at 5 Kbps each. The EF flow maintained the reserved rate of 4 Kbps while the 2 BE

flows are less, although attempting to transmit at 5 Kbps, because the BE network

source was configured for a maximum capacity of 5 Kbps with no borrowing.

Therefore, the routing element shaped, and policed, the two BE flows to fit within

the configured BE network resource. The concept of borrowing network resources is

consistent with the adaptation model outlined in Algorithm 3.2. One can map the

adaptation model into the network resource and use the borrow concept to implement

the adaptive capacity of the adaptation model.

P erform ance of a UDP F low w ith N etw ork Reservation

Time (s)

Figure 6.15: N etw ork Q oS u n d e r C o n g es tio n - In ter-dom ain A rchitecture

To further verify the inter-domain communication between BBfiavic and the PEPs,

experiments similar to those on intra-domain communication were conducted. Figure

6.15 shows the results, which are similar to the intra-domain case, implying that

BBfloijc is able to configure local PEPs as well as remote PEPs. The concept of inter­

domain communication can be replicated, over a large number of administrative

domains, making the proposed architecture scalable.

123

6.3 Summary

A G-QoSm prototype is used in a nanoscale application, as an illustrative example, to

validate the usefulness of the proposed approach for the compute QoS in scientific

applications. The architecture includes a set of components that abstract the use of

QoS for the non-programmer. It is emphasised that these components are critical if

the grid is to gain widespread acceptance in real applications. The current set of

components must be augmented, and their utility demonstrated, to convince and

encourage new users to utilise grid computing resources.

It is shown in this Chapter how compute QoS support at the middleware level provides a

better application performance. This Chapter also focuses on evaluating the combination

of G-QoSm and a BB, using a network established with Linux-based routers.

The provision of network QoS to support grid applications is presented, based

essentially on the IETF DiffServ model. The DiffServ model is shown to provide

acceptable network QoS when integrated with G-QoSm architecture. The BB is

identified as the key architectural component necessary to support network QoS

management.

A key limitation in any network QoS mechanism is the ability to manage and control

traffic flows at internal routers. This is especially true in deploying grid applications,

where such routers may not be owned by one individual or institution. Forcing such

intermediate routing elements to conform to a defined policy is difficult to achieve.

The approach presented here, based on the DiffServ model, requires intermediate

routers to adopt the DiffServ-expedited forwarding model. Consequently, the

approach is restricted to routers that support this model - providing a traditional best

effort service at other routers. The author knows of no other QoS-related work that

avoids this need to manage intermediate routers.

Chapter 7 - Conclusions summarises questions addressed by this research, discusses

contributions made and provides recommendations for further research.

124

Chapter 7 ~ Conclusion

7.1 Synopsis

This thesis proposes a quality-of-service (QoS) management system. QoS management

is essential to provide guaranteed resource allocations with specified quality levels, and

is a means to negotiate and establish service level agreements (SLAs), and then deliver

services according to SLA specifications. A summary of the research findings,

contributions and recommendations for future work is presented in this Chapter.

In Chapter 1 it is hypothesised that QoS management in a service-oriented architecture

(SOA) can provide a guaranteed, reliable and consistent service-execution mechanism.

Questions considered include:

❖ How can a QoS management system be presented as a Web Service (WS),

in the context of SOAs, where users and applications interact through

standard WS protocols?

❖ How can a typical service-oriented application utilise and benefit from use

of such a QoS management approach?

❖ What performance gains can be obtained by an application using such a

QoS management system in a SOA?

To answer these questions an abstract model for QoS management in SOAs was

developed, aimed at maximising resource utilisation, while maintaining contracted

SLAs. Maximising resource utilisation admits more SLA users to the system, which

is possible with the flexible range-based SLA feature. The abstract model shows

that the QoS problem - to determine, given multiple client requests, the optimal

resource allocation to maximise utilisation and maintain requested QoS levels - is an

optimisation problem.

To validate the model, the G-QoSm prototype was designed and built as a grid

service in the context of grid computing. G-QoSm is modular in design, giving it

flexibility to include new resource managers to support different resources, as, and

when, they become available. Integrating new resource managers is possible because

125

of the uniform treatment of a variety of resource managers through a resource-

specific interface layer. The architecture is a self-contained QoS management system

which can be used with the Java CoG Kit client library. Consequently, a grid

application that uses the Java CoG Kit has a natural transition into G-QoSm, and a

new grid application can easily become QoS-aware.

This prototype was integrated with a scientific application of nanoscale structures,

and used to evaluate computational QoS property. The network QoS property is

evaluated through a simulation of grid data-transfer application. The evaluation is

aimed at comparing the performance of the G-QoSm prototype to a standard grid

middleware system without QoS management support, based on two measures:

❖ For computation QoS, the time taken to complete a process with QoS

constraints, despite workloads generated by other applications utilising

system resources.

❖ For network QoS, the ability of an application with QoS constraints to

maintain a promised rate of data transfer while other applications are utilising

system resources.

Performance results and analysis, based on the G-QoSm approach, demonstrate the

usefulness of a QoS management approach in SOAs, and, in particular, in grid

computing. The results show that in the case of computational QoS support, the

performance of the application with QoS support yielded improved performance and

provided reliable and consistent application execution. In this context, reliable

implies that when an application is given a SLA indicating certain resources will be

available, at certain pre-defined time, with the expected performance levels, then this

is an assurance the application will find these resources available when the time

comes. Similarly, consistent implies that the application will receive the expected

performance throughout the SLA validity period. The results also show that the

introduction of QoS generates some processing overhead - this overhead is,

however, small, and negligible when compared to the overhead generated by WS

protocols, especially when invoking services using the SOAP protocol. The overhead

generated by the QoS management system is in the order of 100 ms per request.

Essentially this overhead results from the negotiation process during the establishment

phase of the QoS session, and the 100 ms overhead constitutes 100% of the negotiation

126

overhead per request, with request, in this context, meaning a single request, from the

client, and a corresponding reply from the QoS management entity.

Similarly, in the case of network performance, results show that the simulated

application can successfully maintain the promised rate of data transfer, while other

applications utilise network resources, throughout the SLA validity period. The

provision of network QoS to support grid applications is based essentially on the

IETF DiffServ model. The Bandwidth Broker (BB) is identified as the key

architectural component necessary to support network QoS management. A key

limitation with network QoS approaches is the ability to manage and control

networking elements to conform to a defined policy. This is especially true when

deploying grid applications where such networking elements may not be owned by

one individual or institution.

QoS abstractions are also presented for building QoS-based applications in the

context of service-oriented grids. These abstractions, presented as an application

programming interface (API), will assist application developers in building QoS-

aware grid applications.

G-QoSm is not limited to service-oriented grids, and is also suitable for applications in

other SOAs, and the G-QoSm model can, for example, be applied in peer-to-peer

computing (Rana et al. 2005).

7.2 Contributions

A new abstract model for resource management, based on QoS for service-oriented

architectures is presented. This model is a general type for QoS management in

SOAs and can be applied in various architectures. Although this model is designed

for SOAs, the concepts developed in the model are not restricted to SOAs. The key

advantages of SOAs are loose coupling, in application-to-application interaction or

application to data sources, and inter-operability support.

A novel protocol for agreement-based QoS negotiation, establishing a SLA as a

contract between service consumer and provider, is developed. This protocol is

127

particularly useful when designing QoS brokers for a distributed computing

environment.

A new approach to resource selection, based on QoS properties, is presented. This is

possible through the extension of a standard registry system, such as UDDI. The

extension enables the registry system to support service publishing and discovery,

based on QoS properties as outlined in Chapter 4. A service selection approach is

introduced to select the best match based on a client’s application requirements.

Two mechanisms for resource allocation (i) time domain and (ii) resource domain

are presented. Time domain is suitable for applications requiring high-performance

computing resources, while resource domain is suitable for small applications and

services requiring relatively limited resources with QoS guarantees.

A new technique for advance resource reservation in grids, for single, or multiple,

resources is developed. Most reservation systems deal with only one type of resource

per request, as in GARA; however, in grid systems applications are normally

interested in using multiple resources simultaneously. The proposed technique for

reserving multiple resources, both computational and network is effective for grid

applications.

Resources can become congested or even fail, leading to QoS degradation, and

require adaptation mechanisms to maintain SLA compliance. Adaptation

mechanisms are developed to compensate for such QoS degradation and to optimise

resource utilisation, as discussed in Chapter 3. The adaptation approach is based on

reserving extra resources for the guaranteed class of service.

In summary, the main contribution of this work is an approach to enhance the basic

principles of the SOA in supporting QoS, which enables the execution of applications

with resource QoS guarantees, based on pre-established agreements. This QoS support is

realised by introducing a QoS management component in middleware systems.

128

7.3 Further Research

Various issues arise which present opportunities for future research in this field.

7.3.1 - Cost Model

A cost model to price resources would improve the G-QoSm model. The need for

such a model becomes clear when considering multiple applications competing

simultaneously for immediate or advance reservations of a finite set of resources.

With a cost model, a QoS management system would be able to limit competition

while still generating necessary revenue, which can be realised by applying a cost-

related reservation strategy, such as increasing the cost when resources become

limited. Such a cost model could be derived from business and economic theories.

7.3.2 - Reservation Strategies

A resource reservation strategy is a key function in QoS management systems, and

introducing advanced strategies, or approaches, for resource reservation can improve

resource utilisation. Reservation strategies, based on statistical information for

applications and resources, can be utilised to achieve this; such statistical information

can be application-profiling data, application usage patterns or the use of probability

functions (Rolia et al. 2003).

7.3.3 - QoS for Workflow and Task Graphs

In this context, a task represents a unit of execution on a grid or job. Certain

applications require a more sophisticated execution framework facilitating complex

execution patterns and dependencies. A task graph - a directed acyclic graph - for

execution control flows between multiple tasks can be modeled (Amin et al. 2004).

A task graph handler enforces execution ordering on the task graph. QoS support, as

available in G-QoSm, can be integrated with the task graph handler to support

execution with QoS properties.

Similarly, in the context of workflow management, G-QoSm could be integrated

with a workflow scheduling engine to form QoS-enabled workflow applications,

enabling execution of such workflow applications on resources with QoS provisions.

129

7.3.4 - Monitoring Service

Monitoring resource utilisation is an important QoS management function during the

active phase of a QoS session - useful for accounting, adaptation and resource

profiling. An investigation into the design of a monitoring service, to provide

feedback on resource utilisation to the QoS manager, would be useful. For example;

the Grid Resource Monitoring (GridRM) project (Baker and Smith, 2003) and the

Network Weather Service (NWS) project (Wolski, Spring and Hayes, 1999) can

provide such a monitoring functionality.

The monitoring service can report on resource utilisation during the active phase of the

QoS session. This service can be linked with the allocation manager and the reservation

manager of the G-QoSm for SLA compliance verification and adaptation purposes.

7.3.5 - Prediction Service

In the G-QoSm architecture, an application can request services from the QoS

Manager, even though the QoS Manager has no QoS information about the requested

service. Here the QoS manager consults the registry service for resource and QoS

specifications, suggested as sufficient to run the service.

It would benefit the G-QoSm to have a prediction method for determining resource

and QoS specifications for a requested service, in the environment in which the

service is to be executed. Such a service could reduce over, or under, reservation and

provide for just sufficient resource reservation, as in the reservation technique in Chu

and Nahrstedt (1999) in Chapter 2. The PACE project, at Warwick University, is a

prediction service which may well deliver these services within G-QoSm (Jarvis et

al. 2003). Systems with prediction capabilities, such as PACE, can be used in the G-

QoSm architecture to provide QoS information related to services, which

information, and, in particular, the service profile, can then be published in the

registry service.

130

Bibliography

Al-Ali, R; Rana, 0 ; Walker, D; Jha, S and Sohail, S. (2002a). G-QoSm: Grid Service
Discovery using QoS Properties. Computing and Informatics Journal,
21(4):363-382, 2002. Slovak Academic Press Ltd.

Al-Ali, R; Rana, O; Walker, D; Jha, S and Sohail, S. (2002b). Grid Service
Discovery Based on Quality of Service Characteristics. In Proceedings o f the
e-Science AHM02 Proceedings, 2002.

Al-Ali, R; Amin, K; von Laszewski, G; Rana, O and Walker, D. (2003a). An OGSA-
Based Quality of Service Framework. The Second International Workshop on
Grid and Cooperative Computing (GCC2003), Shanghai, China, December
2003. Springer Verlag.

Al-Ali, R; Hafid, A; Rana, O and Walker, D. (2003b). QoS Adaptation in Service-
Oriented Grids. Proceedings o f the 1st International Workshop on
Middleware for Grid Computing (MGC2003) at ACM/IFIPZUSENIX
Middleware 2003. Rio de Janeiro, Brazil, June 2003. ISBN 85-87926-03-9.

Al-Ali, R; Rana, O and Walker, D. (2003c). G-QoSm: A Framework for Quality of
Service. In Proceedings o f the e-Science AHM03, Nottingham, UK, 2003.

Al-Ali, R; ShaikhAli, A; Rana, O and Walker, D. (2003d). Supporting QoS-Based
Discovery in Service-Oriented Grids. In Proceedings o f IEEE Heterogeneous
Computing Workshop (HCW'03), Nice, France, 2003. IEEE Computer
Society Press.

Al-Ali, R; Amin, K; von Laszewski, G; Hategan, M; Rana, O; Walker, D and
Zaluzec, N. (2004a). QoS Support for High-Performance Scientific
Applications. Proceedings o f the IEEE/ACM 4th International Symposium on
Cluster Computing and the Grid (CCGrid 2004). Chicago IL, USA, April
2004. IEEE Computer Society Press.

Al-Ali, R; Amin, K; von Laszewski, G; Rana, O; Walker, D; Hategan, M and
Zaluzec, N. (2004b). Analysis and Provision of QoS for Distributed Grid
Applications. Journal o f Grid Computing, 2(2): 163-182, 2004. Kluwer
Academic Publishers.

Al-Ali, R; Hafid, A; Rana, O and Walker, D. (2004c). An Approach for QoS
Adaptation in Service-Oriented Grids. Concurrency and Computation:
Practice and Experience Journal, 16(5):401-412, 2004. John Wiley and Sons
Ltd.

Al-Ali, R; Rana, O; von Laszewski, G; Hafid, A; Amin, K and Walker, D. (2005) A
Model for Quality-of-Service Provision in Service Oriented Architectures.
International Journal o f Grid and Utility Computing, 2005.

131

Al-Ali, R; Sohail, S; Rana, O; Hafid, A; von Laszewski, G; Amin, K; Jha, S and
Walker, D. (2004d) Network QoS Provision for Distributed Grid
Applications. International Journal o f Simulations Systems, Science &
Technology, 5(5), December 2004.

Akram, A and Rana, O. (2003a). Structuring Peer-2-Peer Communities, 3rd IEEE
International Conference on Peer-2-Peer Computing, Linkoping, Sweden,
September 2003. IEEE Computer Society Press.

Akram, A and Rana, O. (2003b). Organising Service-Oriented Peer Collaborations,
International Conference on Service Oriented Computing, Italy, December
2003. Springer Verlag.

Amin, K; Hategan, M; von Laszewski, G and Zaluzec, N. (2004). Abstracting the
Grid. Proceedings o f the 12-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2004), A Coruna, Spain, 2004.

Amin, K; von Laszewski, G; Al-Ali, R; Rana, O and Walker, D. (2005). An
Abstraction Model for a Grid Execution Service. Journal of Systems
Architecture, 2005.

Andrieux, A; Czajkowski, K; Dan, A; Keahey, K; Ludwig, H; Pruyne, J; Rofrano, J;
Tuecke, S and Xu, M. (2004). Web Services Agreement Specification (WS-
Agreement). Global Grid Forum, GRAAP-WG Author Contributions, May
2004.

Argonne National Laboratory. (2004). The Globus Alliance.
Web Site: http://www.globus.org/. Last visited: February 2004.

Aurrecoechea, C; Campbell, A and Hauw, L. (1995). A Survey of Quality of Service
Architectures. Technical Report MPG-95-18, Lancaster University, 1995.

Baker, M; Buyya, R and Laforenza, D. (2000). The Grid: International Efforts in
Global Computing. International Conference on Advances in Infrastructure
fo r Electronic Business, Science and Education on the Internet (SSGRR
2000), Rome, Italy, 2000. ISBN 88-85280-52-8.

Baker, M and Smith, G. (2003). GridRM: An Extensible Resource Management
System. In Proceedings o f the IEEE International Conference on Cluster
Computing (Cluster 2003), Hong Kong, 2003. IEEE Computer Society Press,
ISBN 0-7695-2066-9.

Barden, R; Clark, D and Shenker, S. (1994). Integrated Services in the Internet
Architecture: an Overview. Internet request for Comments RFC 1633, IETF,
June 1994.

Bent, J; Venkataramani, V; LeRoy N; Roy A; Stanley, J; Arpaci-Dusseau, A; Arpaci-
Dusseau R. H., and Livny, M. (2002). "Flexibility, Manageability, and
Performance in a Grid Storage Appliance", Proceedings o f the Eleventh IEEE

132

http://www.globus.org/

Symposium on High Performance Distributed Computing, Edinburgh,
Scotland, July 2002. IEEE Computer Society Press.

Bhatti, S; Sprensen, S; Clarke, P and Crowcroft, J. (2003). Network QoS for Grid
Systems. International Journal o f High Performance Computing
Applications, Special Issue on Grid Computing: Infrastructure and
Applications, 17(3), 2003.

Bhoj, P; Singhal, S and Chutani, S. (1998). SLA Management in Federated
Environments. Technical Report HPL-98-203, Hewlett-Packard Company,
December 1998.

Blake, S; Blake, D; Carlson, M; Davies, E; Wang, Z and Weiss, W. (1998). An
Architecture for Differentiated Service. Internet RFC 2475, 1998.

Bochmann, G and Hafid, A. (1996). Some Principles for Quality of Service
Management. Technical Report, Universite de Montreal, 1996.

Burchard, L; Hovestadt, M; Kao, O; Keller, A and Linnert, B. (2004). The Virtual
Resource Manager: An Architecture for SLA-aware Resource Management.
In Proceedings o f IEEE CCGrid'04, Chicago, US, 2004. IEEE Computer
Society Press.

Campbell, A; Coulson, G; Garcia, F and Hutchison, D. (1993). Resource
Management in Multimedia Communication Stacks. In Proc. 4th IEEE
Conference on Telecommunications, Manchester, UK, pages 287-295, 1993.
IEEE Computer Society Press.

Cardei, I; Jha, R; Cardei, M and Pavan, A. (2000). Hierarchical Architecture for
Real-Time Adaptive Resource Management. In IF1P/ACM International
Conference on Distributed Systems Platforms, pages 415-434, New York,
USA, 2000. Springer-Verlag, ISBN:3-540-67352-0.

Chandra, P; Fisher, A; Kosak, C; Eugene Ng, T.S; Steenkiste, P; Takahashi, E and
Zhang, H. (1998). Darwin: Customizable Resource Management for Value-
Added Network Services. In Sixth International Conference on Network
Protocols, pages 177-188, Austin, October 1998. IEEE Computer Society
Press.

Chan, K; Sahita, R; Hahn, S and McCloghrie, K. (2003). Differentiated services
quality o f service policy information base . Internet request for comments
RFC3317, IETF, March 2003.

Chan, K; Seligson, J; Durham, D; Gai, S; McCloghrie, K; Herzog, S; Reichmeyer, F;
Yavatkar, R and Smith, A. (2001). Cops usage o f policy provisioning (COPS-
PR). Internet request for comments RFC3084, IETF, Mar 2001.

Chu, H and Nahrstedt, K. (1999). CPU Service Classes for Multimedia Applications.
In IEEE International Conference on Multimedia Computing and Systems
'99, Florence, Italy, 1999. IEEE Computer Society Press.

133

Czajkowski, K; Foster, I; Karonis, N; Kesselman, C; Smith, M and Tueck, S. (1998).
“A Resource Management Architecture for Metacomputing Systems.”
Proceedings o f the IPPS/SPDP '98 Workshop on Job Scheduling Strategies
for Parallel Processing, 62-82, 1998. Springer-Verlag, ISBN:3-540-64825-9.

Czajkowski, K; Fitzgerald, S; Foster, I and Kesselman, C. (2001). Grid Information
Services for Distributed Resource Sharing. In Proceedings o f the 10th IEEE
High Performance Distributed Computing, pages 181-184, 2001. IEEE
Computer Society Press.

Czajkowski, K; Foster, I; Kesselman, C; Sander, V and Tuecke, S. (2002). SNAP: A
Protocol for Negotiating Service Level Agreements and Coordinating
Resource Management in Distributed Systems. In Proceedings o f the 8th
Workshop on Job Scheduling Strategies fo r Parallel Processing, 2002.
Lecture Notes in Computer Science.

Czajkowski, K; Dan, A; Rofrano, J; Tuecke, S and Xu, M. (2003). Agreement-based
Grid Service Management (OGSI-Agreement). Global Grid Forum, GRAAP-
WG Author Contribution, June 2003.

Czajkowski, K; Ferguson, D; Foster, I; Frey, J; Graham, S; Sedukhin, I; Snelling, D;
Tuecke, S and Vambenepe, W. (2004). The WS-Resource Framework
(Version 1.0). The Globus Alliance, Web Site: http://www.globus.org/wsrf/
Last visited: May 2004.

Czerwinski, S; Zhao, B; Hodes, T; Joseph, A and Katz, R. (1999). An Architecture
for a Secure Service Discovery Service. In Mobile Computing and
Networking, pages 24-35, 1999. ACM Press.

Davis, R. and Smith R.G. (1983). ‘Negotiation as a Metaphor for Distributed
Problem Solving’. Artificial Intelligence 20, 63-109, 1983. Elsevier Science
Publishers.

Deora, V; Shao, J; Gray, W and Fiddian, N. (2003). A Quality of Service
Management Framework Based on User Expectations. In Proceedings o f the
First International Conference on Service Oriented Computing (ICSOC),
Trento, Italy, December 2003. Springer-Verlag.

Dialani, V; Miles, S; Papay, J and Moreau, L. (2002). The Architecture of UDDI-M,
2002. Technical report, University of Southampton UK.

Durham, D; Boyle, J; Cohen, R; Herzog, S; Rajan, R and Sastry, A. (2000). The
COPS (common open policy service) protocol. Internet request for comments
RFC2748, IETF, Jan 2000.

Fitzgerald, S; Foster, I; Kesselman, C; von Laszewski, G; Smith, W and Tuecke, S.
(1997). A Directory Service for Configuring High-Performance Distributed
Computations. In Proceedings o f the IEEE 6th Symposium on High-
Performance Distributed Computing, pages 365-375, 1997. IEEE Computer
Society Press. ISBN:0-8186-8117-9.

134

http://www.globus.org/wsrf/

Foster, I; Kesselman, C; Lee, C; Lindell, R; Nahrstedt, K and Roy, A. (1999). A
Distributed Resource Management Architecture that Supports Advance
Reservation and Co-Allocation. In Proceedings o f the IEEE/IFIP
International Workshop on Quality o f Service (IWQOS'99), pages 27-36,
London, UK, 1999. IEEE Computer Society Press.

Foster, I; Roy, A and Sander, V. (2000). A Quality of Service Architecture that
Combines Resource Reservation and Application Adaptation. In Proceedings
of the 8th International Workshop on Quality o f Service (IWQOS), pages 181-
188, Pittsburgh, PA, June 2000. IEEE Computer Society Press.

Foster, I; Kesselman, C and Tuecke, S. (2001). The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal o f Supercomputer
Applications, 15(3), 2001. Lecture Notes in Computer Science.

Foster, I; Kesselman, C; Nick, J and Tuecke, S. (2002). The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration.
Technical Report, Argonne National Laboratory, Argonne IL, USA, January
2002.

Graham, S; Simeonov, S; Boubez, T; Davis, D; Daniels, G; Nakamura, Y and
Neyama, R. (2002). Building Web Services with Java: Making Sense of
XML, SOAP, WSDL, and UDDI, 2002. SAMS Publishing. ISBN 0-672-
32181-5.

GRLA Project. (2004). GRIA: Grid Resources for Industrial Applications.
Web Site: http://www.gria.org/ Last visited: May 2004.

Gunter, D; Tiemey, B; Jackson, K; Lee, J and Stoufer, M. (2002). “Dynamic
Monitoring of High-Performance Distributed Applications.” Proceedings o f
the 11th IEEE Symposium on High Performance Distributed Computing,
(HPDC-11), July, 2002. IEEE Computer Society Press.

Haas, R; Droz, P and Stiller, B. (2001). A hierarchical Mechanism for the Scalable
Deployment of Services over Large Programmable and Heterogeneous
Networks. In Proceedings ofICC2001 The IEEE International Conference on
Communications, 2001. IEEE Computer Society Press.

Hafid, A; Bochmann, G and Kerherve, B. (1996). A Quality of Service Negotiation
Procedure for Distributed Multimedia Presentational Applications. In HPDC
'96, pages 330-339, Syracuse, NY, USA, 1996. IEEE Computer Society
Press.

Hafid, A and Bochmann, G. (1998). Quality of Service Adaptation in Distributed
Multimedia Applications. ACM Multimedia Systems Journal, 6(5):299-315,
1998. Springer-Verlag.

Hafid, A; Bochmann, G and Dssouli, R. (1998). A Quality of Service Negotiation
Approach with Future Reservation (NAFUR): A Detailed Study. Computer
Networks and ISDN, 30(8), 1998. Elsevier Science, ISSN 0169-7552.

135

http://www.gria.org/

Halim, H and Darmadi, M. (2000). Implementation of Bandwidth Broker using
COPS-PR. Honours thesis report, School o f Computer Science and
Engineering, UNSW, Nov 2000.

Henricksen, K and Indulska, J. (2001). Adapting the Web Interface: An Adaptive
Web Browser. In Second Australasian User Interface Conference (AUIC'01),
Gold Coast, Queensland, Australia, 2001. IEEE Computer Society Press.

Jacobson, V; Nichols, K andPoduri, K. (1999). An Expedited Forwarding PHB.
Internet RFC 2598, IETF, 1999.

Jarvis, S; Spooner, D; Keung, H; Dyson, J; Zhao, L and Nudd, G. (2003).
Performance-based Middleware Services for Grid Computing. In Fifth
International Workshop on Active Middleware Services (AMS 2003), held as
part o f the 12th IEEE International Symposium on High Performance
Distributed Computing (HPDC-12), Seattle, USA, 2003. IEEE Computer
Society Press.

Karsten, M; Berier, N; Wolf, L and Steinmetz, R. (1999). A Policy-Based Service
Specification for Resource Reservation in Advance. In International
Conference on Computer Communications (ICCC'99), 1999. ISBN 1-
891365-05-3.

Keahey, K and Motawi, K. (2003). The Taming of the Grid: Virtual Application
Service. Argonne National Laboratory, Technical Memorandum, 2003.

Kim, K and Nahrstedt, K. (2000). A Resource Broker Model with Integrated
Reservation Scheme. In IEEE International Conference on Multimedia and
Expo (ICME2000), 2000. IEEE Computer Society Press.

Lefevre, L; Pham, C; Primet, P; Tourancheau, B; Gaidioz, B; Gelas, J and Maimour,
M. (2001). Active Networking Support for the Grid. In IFIP-TC6 Third
International Working Conference on Active Networks, IWAN'01, 2001.
Springer-Verlag, ISBN:3-540-42678-7.

Lican, H; Zhaohui, W and Yunhe, P. (2003). A Scalable and Effective Architecture
for Grid Services Discovery. In Proceedings o f SemPGRID'031st Workshop
on Semantics in Peer-to-Peer and Grid Computing, Budapest, Hungary,
2003.

Lim, K and Stadler, R. (2001). A Navigation Pattern for Scalable Internet
Management. In Proceedings IFIP/IEEE Inti Symposium on Integrated
Network Management, 2001. Seattle, WA, USA. IEEE Computer Society
Press.

Liming, L. (2004) The Globus Toolkit Ecosystem. Argonne National Laboratory -
The Globus Alliance, GRIDS Center/NFS Middleware Initiative. Slide
presentation at conference: All-Hands-Meeting, 2004. Nottingham, UK.

136

Liu, Z; Squillante, M and Wolf, J. (2001). On Maximizing Service-Level-Agreement
Profits. Proceedings o f the Third ACM Conference on Electronic Commerce,
213-223, 2001. ACM Press, ISSN:0163-5999.

Lourenco, H and Serra, D. (2002) Adaptive Search Heuristics for the Generalized
Assignment Problem. Mathware and Soft Computing, 9(2-3): 209-234, 2002.
European Society for Fuzzy Logic and Technology (EUSFLAT).

Ludwig, S and van Santen, P. (2002). A Grid Service Discovery Matchmaker based
on Ontology Description. In Proceedings o f 2nd International EuroWeb2002
Conference, Oxford, UK, 2002. British Computer Society.

MacLaren J. (2003). Advance reservations: State of the Art. GGF GRAAP-WG.
Web Site: http://www.fz-juelich.de/zam/RD/coop/ggf/graap/graap-wg.html
Last visited: August 2003.

Madja, E; Hafid, A; Dssouli, R; Bochmann, G and Gecsei, J. (1998). Meta-data
Modelling for Quality of Service Management in the World Wide Web. In
Proc. o f Int. Conf on Multimedia Modeling, 1998. IEEE Computer Society
Press.

Moreau, L; Dialani, V; Miles, S and Liu, X. (2002). Architectural Issues in myGrid.
In UK e-Science All-Hands Meeting, 2002.

Nahrstedt, K and Smith, J. (1995) The QoS Broker. IEEE Multimedia, 2(l):53-67
1995. IEEE Computer Society Press.

National Fusion Collaboratory. The (2005). Web Site: http://www.fusiongrid.org
Last visited: September 2005.

NetSolve/GridSolve Project (2004) http://icl.cs.utk.edu/netsolve/
Last visited: August 2004.

Nguyen, T; Boukhatem, N; Doudane, Y and Pujolle, G. (2002). COPS-SLS: A
Service Level Negotiation Protocol for the Internet. IEEE Communications
Magazine, 40(5), 2002. IEEE Computer Society Press.

Oguz, A; Campbell, A; Kounavis, M and Liao, R. (1998). The Mobiware Toolkit:
Programmable Support for Adaptive Mobile Networking. IEEE Personal
Communications Magazine, Special Issue on Adapting to Network and Client
Variability, 5(4), 1998. IEEE Computer Society Press.

Pard, J; Baek, J and Hong, J. (2001). Management of Service Level Agreements for
Multimedia Internet Service Using a Utility Model. IEEE Communications
Magazine, 39(5), 2001. IEEE Computer Society Press.

Parunak, H.V.D. (1987). ‘Distributed Artificial Intelligence’, Chapter:
Manufacturing Experience With the Contract Net, pp. 285-310, Research
Notes in Artificial Intelligence, Los Altos, CA, 1987. Morgan Kaufmann
Publishers.

137

http://www.fz-juelich.de/zam/RD/coop/ggf/graap/graap-wg.html
http://www.fusiongrid.org
http://icl.cs.utk.edu/netsolve/

Pham, K and Nguyen, R. (2003) Implementation o f Bandwidth Broker in Java.
Undergraduate thesis report, School of Electrical Engineering and
Telecommunications, UNSW, Jun 2003.

QBone Signaling Design Team. (2002). Final Report:
http://qos.intemet2.edu/wg/documentsinformational/20020709-chimento-
etal-qbonesignaling/

Rana, O; Akram, A; Al-Ali, R; Walker, D; von Laszewski, G and Amin, K. (2005).
Quality o f Service Based Grid Communities. Chapter in Book “ Web Services
and Agent-Based Engineering”, 2005, Springer Verlag.

Rana, O; Bunford-Jones, D; Walker, D; Addis, M; Surridge, M and Hawick, K.
(2001). Resource Discovery for Dynamic Clusters in Computational Grids. In
Proceedings o f the Heterogeneous Computing Workshop at IPDPS/SPDS,
San Francisco, USA, 2001. IEEE Computer Society Press.

Rana, O; Winikoff, M; Padgham, L and Harland, J. (2002). Applying Conflict
Management Strategies in BDI Agents for Resource Management in
Computational Grids. Twenty-Fifth Australasian Computer Science
Conference (ACSC2002), Monash University, Melbourne, Victoria, Australia,
2002. Australian Computer Society, ISBN 0-909-92582-8.

RAP, (2000). Resource allocation protocol (rap) At http://www.ietf.org/charters/
manet-charter.html 2 0 0 0 .

Rolia, J; Pruyne, J; Zhu, X and Arlitt, M. (2003). Grids for Enterprise Applications.
Proceedings o f the 9 workshop on Job Scheduling Strategies for Parallel
Programs. Seattle, June 2003. Lecture Notes in Computer Science.

Roy, A. (2001). End-to-End Quality o f Service for High-End Applications. PhD
thesis, The University of Chicago, August 2001.

RUDE & CRUDE, (2004). Web Site: http://mde.sourceforge.net/ July 2004.

Sahai, A; Ouyang, J; Machiraju, V and Wurster, K. (2001). Specifying and
Guaranteeing Quality of Service for Web Services through Real Time
Measurement and Adaptive Control. Technical Report HPL-2001-134, E-
Services Software Research Department. HP Labs, Palo-Alto, CA, USA, 2001.

Sahai, A; Graupner, S; Machiraju, V and van Moorsel, A. (2003). Specifying and
Monitoring Guarantees in Commercial Grids through SLA. In Proceedings o f
the 3rd IEEE/ACM CCGrid'03, Hong Kong, 2003. IEEE Computer Society
Press.

ShaikhAli, A; Rana, O; Al-Ali, R and Walker, D. (2003). UDDIe: An Extended
Registry for Web Services. Proceedings of the Service Oriented Computing:
Models, Architectures and Applications, SAINT-2003, Orlando, Florida,
USA, January 2003. IEEE Computer Society Press.

138

http://qos.intemet2.edu/wg/documentsinformational/20020709-chimento-
http://www.ietf.org/charters/
http://mde.sourceforge.net/

Shenker, S; Partridge, C and Guerin, R. (1997). Specification of Guaranteed Quality
of Service. Internet Engineering Task Force, RFC 2212, 1997.

Shi, Z; Yu, T and Liu, L. (2003). MG-QoS: QoS-Based Resource Discovery in
Manufacturing Grid. In Proceedings o f the Second International Workshop
on Grid and Cooperative Computing (GCC2003), Shanghai, China, 2003.
Lecture Notes in Computer Science, Springer Verlag.

Sohail, S; Pham, K; Nguyen, R and Jha, S. (2003). Bandwidth Broker
Implementation - Circa-Complete and Integrable. Proceedings o f 7th
International Symposium on Digital Signal Processing and Communication
Systems, Coolangata, Australia, 2003. National ICT Australia Limited.

Taylor, I. J., (2005). From P2P to Web Services and Grids. Springer-Verlag, London
Limited 2005. ISBN 1852338695.

Taylor, I; Shields, M; Wang, I and Rana, O. (2003). Triana Applications within Grid
Computing and Peer to Peer Environments. Journal o f Grid Computing,
1 (2): 199-217. Kluwer Academic Press.

Teitelbaum, B; Hares, S; Dunn, L; Neilson, R; Vishy Narayan, R and Reichmeyer, F.
(1999) Intemet2 QBone: Building a testbed for differentiated services, IEEE
Network, 13(5):8—16, September/October 1999. IEEE Computer Society
Press.

‘TeraGrid’ Web Page, (2001). http://www.teragrid.org/
Last visited: July 2004.

‘The Global Grid Forum’ Web Page, (2004). http://www.gridforum.org
Last visited: August 2004.

The Java CoG Kit Project. (2004). http://www-unix.globus.org/cog
Last visited: September 2004.

The Legion Project. (2004). http://www.cs.virginia.edu/~legion/
Last visited: August 2004.

UDDI Project. (2004). UDDI: Universal Description, Discovery and Integration.
Web Site: http://www.uddi.org Last visited: May 2004.

von Laszewski, G; Foster, I; Gawor, J and Lane, P. (2001). A Java Commodity Grid
Kit. Concurrency and Computation: Practice and Experience, 13(8-9), 2001.
John Wiley and Sons Ltd.

von Laszewski, G; Pieper, G and Wagstrom, P. (2003). Gestalt of the Grid, in
Performance Evaluation and Characterization o f Parallel and Distributed
Computing Tools. Series on Parallel and Distributed Computing, 2004.
Wiley.

139

http://www.teragrid.org/
http://www.gridforum.org
http://www-unix.globus.org/cog
http://www.cs.virginia.edu/~legion/
http://www.uddi.org

Wolski, R; Spring, N and Hayes, J. (1999) The Network Weather Service: A
Distributed Resource Performance Forecasting Service for Metacomputing.
Journal o f Future Generation Computing Systems, Volume 15, Numbers 5-6,
pp. 757-768, October, 1999. Elsevier Science.

Wroclawski, J. (1997). Specification of the Controlled-load Network Element
Service. Internet Engineering Task Force, RFC 2211, 1997.

Xiao, X and Ni, L. (1999). Internet QoS: A Big Picture. IEEE Network, 13(2):8-18,
1999. IEEE Computer Society Press.

Xu, D; Nahrstedt, K and Wichadakul, D. (2001). QoS-Aware Discovery of Wide-
Area Distributed Services. In Proceedings o f the First IEEE/ACM Cluster
Computing and the Grid (CCGrid'01), 2001. IEEE Computer Society Press.

Yemini, Y; Goldszmidt, G and Yemini, S. (1991). Network Management by
Delegation. In Proceedings o f Intl. Symposium on Integrated Network
Management, 1991. Elsevier Science Publishers.

Zaluzec, N. (2004). Argonne National Laboratory TPM/AAEM Collaboratory. See
Web Site at: http://tpm.amc.anl.gov/ Last visited: September 2004.

140

http://tpm.amc.anl.gov/

Appendix A

QGS Service WSDL Interface

<?xml version="l.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://qos.cog.globus.org/QoS"
xmlns="http://schemas.xmlsoap.org/wsdl/ "
xmlns : apachesoap="http: / /xml. apache. org/xml-soap"
xmlns : gridservicesoapbinding="http: / /www. gridf orum. org/namespaces/2 0 03/03/0G
SI/bindings" xmlns:impl="http: / /qos.cog.globus.org/QoS"
xmlns:intf="http://qos.cog.globus.org/QoS"
xmlns : soapenc="http: / /schemas .xmlsoap. org/soap/encoding/"
xmlns :wsdl="http: / /schemas .xmlsoap. org/wsdl / "
xmlns :wsdlsoap="http: //schemas . xmlsoap.org/wsdl/soap/”
xmlns : xsd="http: / /www. w3 . org/2 0 01/XMLSchema" x w s d l : import
location="../../ogsi/ogsi_bindings.wsdl"
namespace="http: / /www. gridf orum. org/namespaces/2 003/03 /OGSI/bindings " / >
<wsdl:types>
<schema targetNamespace="http: //qos .cog.globus .org/QoS"

xmlns="http: / /www. w3 . org/2001/XMLSchema">
<element name="serviceRequest">
<complexType>
<sequence>
<element name="inO" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="serviceRequestResponse">
<complexType>
<sequence>
<element name="serviceRequestReturn" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="confirmSlaOffer">
<complexType>
<sequence>
<element name="inO" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="confirmSlaOfferResponse">
<complexType>
<sequence>
<element name="confirmSlaOfferReturn" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="rejectSlaOffer">
<complexType>
<sequence>
<element name="inO" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="rejectSlaOfferResponse">
<complexType>
<sequence>
<element name="rejectSlaOfferReturn" type="xsd:string"/>

</sequence>
</complexType>

</element>

141

http://qos.cog.globus.org/QoS
http://schemas.xmlsoap.org/wsdl/
http://qos.cog.globus.org/QoS

</schema>
</wsdl:types>

<wsdlrmessage name="rejectSlaOfferRequest">
<wsdl:part element="impl:rejectSlaOffer" name="parameters"/>

</wsdlrmessage>
<wsdlrmessage name=nconfirmSlaOfferResponse">

<wsdl:part element="impl:confirmSlaOfferResponse" name="parameters"/>
</wsdl:message>
<wsdlrmessage name=nserviceRequestResponse">

<wsdl:part element="impl: serviceRequestResponse" name="parameters"/>
</wsdl:message>
<wsdlrmessage name="serviceRequestRequest">

<wsdlrpart element="implrserviceRequest" name="parameters"/>
</wsdlrmessage>
<wsdl rmessage name="confirmSlaOfferRequest">

<wsdlrpart element="implrconfirmSlaOffer" name="parameters"/>
</wsdlrmessage>
<wsdl rmessage name="rejectSlaOfferResponse">

<wsdlrpart element="implr rejectSlaOfferResponse" name="parameters"/>
</wsdlrmessage>
<wsdlrportType name="QoSPortType">

<wsdlroperation name="serviceRequest" parameterOrder="">
<wsdlr input message="implr serviceRequestRequest"

name="serviceRequestRequest"/>
<wsdlr output message="implr serviceRequestResponse"

name="serviceRequestResponse"/>
</wsdlr operation>
<wsdlroperation name="confirmSlaOffer" parameterOrder="">

<wsdlrinput message="implrconfirmSlaOfferRequest"
name="confirmSlaOfferRequest"/>

<wsdl r output message=" implr confirmSlaOfferResponse"
name="confirmSlaOfferResponse"/>

</wsdlr operation>
<wsdlroperation name="rejectSlaOffer" parameterOrder="">

<wsdlr input message="implr rejectSlaOfferRequest"
name="rejectSlaOfferRequest"/>

<wsdlroutput message="implr rejectSlaOfferResponse"
name="rejectSlaOfferResponse"/>

</wsdlr operation>
</wsdlrportType>
<wsdlrbinding name="QoSServiceSoapBinding" type="implrQoSPortType">

<wsdlsoaprbinding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdlr operation name="serviceRequest">
<wsdlsoaproperation soapAction=""/>
<wsdlr input name="serviceRequestRequest">

<wsdlsoaprbody namespace="httpr//qos.cog.globus.org/QoS"
use="literal"/>

</wsdlr input>

142

http://schemas.xmlsoap.org/soap/http%22/

<wsdl:output name="serviceRequestResponse">
<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS"

use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="confirmSlaOffer">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="confirmSlaOfferRequest">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS"
use="literal"/>

</wsdl:input>
<wsdl :output name="confirmSlaOfferResponse">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS"
use="literal"/>

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="rejectSlaOffer">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="rejectSlaOfferRequest">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS"
use="literal"/>

</wsdl:input>
<wsdl:output name="rejectSlaOfferResponse">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS"
use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="QoSService">

<wsdl:port binding="impl:QoSServiceSoapBinding" name="QoSService"
<wsdlsoap:address

location="http://localhost/ogsa/services/QoSService"/>
</wsdl:port>

<wsdl :port binding="gridservicesoapbinding: GridServiceSOAPBinding"
name="GridServiceSOAPBindingPort "xwsdlsoap: address
location="http://localhost/ogsa/services/QoSService"/>

</wsdl:port>
</wsdl:service>

http://qos.cog.globus.org/QoS
http://qos.cog.globus.org/QoS
http://qos.cog.globus.org/QoS
http://qos.cog.globus.org/QoS
http://qos.cog.globus.org/QoS
http://localhost/ogsa/services/QoSService%22/
http://localhost/ogsa/services/QoSService%22/

Appendix B

QGS Installation

QGS, part of G-QoSm, provides access to Grid resources with QoS guarantees. Two

resource allocation strategies are supported: (a) time-domain, and (b) resource-domain.

❖ Time-domain entails the user having full access to the computer resource

where the QGS is installed; and the user can submit job(s) to this particular

resource throughout the period defined in the QoS agreement.

❖ Resource-domain is gaining access to specific computation capacity of the

Grid node, for a period of time defined in the QoS guarantees.

Note: In the time-domain strategy the Grid resource is dedicated, while in the

resource-domain strategy, the resource is shared

B.l. Installation Prerequisites

Ensure the following components are properly installed and configured:

1. Globus toolkit 3.0, or later versions - full installation or the'core'

2. Java CoG kit 1.1a, or later versions from the Java CoG Kit project web site.

The QoS package from http://users.cs.cf.ac.uk/Rashid/qos/ This QoS package

should be placed in the downloaded CoG as a directory, under the directory

/modules of the CoG as: ../modules/qos

3. Dynamic Soft Real-time scheduler (DSRT), available with this distribution -

make sure you:

o use the DSRT with this distribution as it has some customized API

o Edit the file "config.txt" available in the root directory of this

distribution, with the DSRT installation path and save the file in the

'.globus/' directory.

4. Java VM and apache ant.

144

http://users.cs.cf.ac.uk/Rashid/qos/

B.2. Compilation and Service Deployment

1. Edit the file 'build.properties' in the installation root directory with the right value
of the 'ogsa.root', which should be set to the OGSA installation.

2. From the installation directory, run the convenient script, created by the GT3
team, as shown below, to compile the QGS service and create the appropriate jar
and gar files.
./compileService.sh org/globus/cog/qos/imple/Qgs.java
If all goes well, then you should have a build directory with all the jar, gar and
compiled classes.

3. Create a proxy. If you don't have a valid one; one way to do this is from the
CoG_dir/bin: enter the following: ./visual-proxy-init

4. From the OGSA installation directory deploy the service by entering the following
command:
ant deploy -Dgar.name=$QGS_DIR/src/build/lib/org.globus.cog.qos.Qgs.gar
where QGS_DIR is the installation directory of this distribution

5. Start the OGSI container by entering the following command from the OGSA
directory: ant startContainer

6. Create a persistent instance of the QGS by entering the following command from
the <ogsa_dir>/bin: ogsi-create-service \
http://localhost:8080/ogsa/services/org/globus/cog/qos/QgsService test
this should be entered as one command.

7. To ensure the service instance has been started, from the ogsa_dir enter the
following command: ant gui This command starts the OGSI visual browser.
You should see in the browser: 'A QoS Service Factory' and 'A QoS Service
Instance' with both in 'ACTIVE' states.

8. If all goes well, and you can see the service instance in the browser as 'ACTIVE',
then Congratulations!! - the QGS is deployed and instantiated correctly.

B.3. Bug Reports

To report bugs please use http://www.globus.org/cog/contact/bugs

or e-mail: Rashid Al-Ali at rashid@mcs.anl.gov or rashid@cs.cardiff.ac.uk

145

http://localhost:8080/ogsa/services/org/globus/cog/qos/QgsService
http://www.globus.org/cog/contact/bugs
mailto:rashid@mcs.anl.gov
mailto:rashid@cs.cardiff.ac.uk

Appendix C

DSRT Wrapper API

package org.globus.cog.qos.server.dsrtApi;

import org. globus . cog. core. impl. common . CoreProperties;
public class QosDsrtProxy {

private String cpuPercent;
private String option;
private String pid;
private String dsrtPath = null;
private String dsrtAPI = "DSRTapi.o";

public void setDsrtPath() {
try {

CoreProperties properties = new CoreProperties("config.txt");
this.dsrtPath = properties.getCoreProperty("DSRT_INSTALLATION") ;

} catch (Exception e) {
System.out.printIn (e);

public void setCpuPercent(int cpuPercent) {
this.cpuPercent = Integer.toString(cpuPercent);

}

public String getCpuPercent() {
return this.cpuPercent;

}

public void setPid(int pid) {
this.pid = Integer.toString(pid);

}

public String getPid() {
return this.pid;

}

public void allocateResource() {
this.option = "0";
this.contactDSRT() ;

}

public void releaseResource () {
this.option = "1";
this.contactDSRT();

}

private void contactDSRT() {
try {

146

String cmd = dsrtPath + "/" + dsrtAPI + " " + cpuPercent + " " +
pid + " " + option;

Runtime rt = Runtime.getRuntime ();
System.out.println("Exec: executing: " + cmd);
rt.exec(cmd);

} catch (Throwable t) {
t .printStackTrace ();

}
}

}

C.l. DSRT QoS Command Execution - Java Class
package org.globus.cog.qos.server.dsrtApi;
import org. globus . cog. core. impl. common. CoreProperties;

import java.io.*;
public class QosExecCommand {

private String cCodePath = "prog";
private String executable;
private String paraml;
private String utilPath;
public QosExecCommand(String executable, String paraml) {

this.executable = executable;
this.paraml = paraml;
try {

CoreProperties properties = new CorePropertiesCconfig.txt");
this.utilPath = properties.getCoreProperty("DSRT_INSTALLATION")
+ "/util/";

} catch (Exception e) {
System.out.println(e);

}

}

public String getCommandArguments () {
String cmd = null;

// note: executable + " " + executable this is an Excel
requirement!

cmd = utilPath + "pid.txt" + " " + executable + " " + executable + "
" + paraml;

System.out.println("Service: the generated cmd. Args: " + cmd);

return cmd;
}

public String getCommandExec () {
String cmd = null;
cmd = utilPath + cCodePath;
System.out.println("Service: the generated cmd. Exec: " + cmd);

return cmd;
}

public String getPidO {

147

String pid = null;
try {

File file = new File(utilPath + "pid.txt");
if (file.canRead()) {

FilelnputStream fis = new FilelnputStream(file)
int Cbuffer = -1;
char buf[] = new char[10];
int i = 0;
char C;

do {
Cbuffer = fis.read();
C = (char) Cbuffer;
if (Cbuffer != -1) {

System.out.print (C);
buf[i++] = C;

}
} while (Cbuffer != -1);
StringBuffer strbuff = new StringBuffer ();
strbuff.append(buf);
String temp = strbuff.toString ();
pid = temp.trim();
fis.close();
file.delete();

}
} catch (IOException ioe) {

ioe .printSta.ckTrace () ;
}
return pid;

}

}

Appendix D

A Java Class for QoS Negotiation

package org.globus.cog.qos.examples;

import org.apache.log4j.Logger;
import org.globus.cog.core.impl.common.*;
import org.globus.cog.qos.handler.QosTaskHandlerlmpl;
import org.globus.cog.qos.handler.QoS;
import org.globus.cog.core.interfaces.*;

public class QosRequest2 {
static Logger logger =

Logger.getLogger(QosRequest2.class.getName ());
private Task task;

public QosRequest2() {
prepareTask();
submitTask();

String status = (String)
this.task.getAttribute("agreementToken");

if (status != null) {
System.out.println("Your request has SUCCEEDED and the
agreementID is: " + status);

} else
System.out.println("Your request has FAILED!");

}

private void prepareTask() {
String startTime = "11/10/2003 16:21:00";
String endTime = "11/10/2003 16:35:00";
String serviceContact =
"http://localhost:8080/ogsa/services/org/globus/

cog/qos/server/QosService/qos" ;
String allocationStrategy = "resource-domain"; / / o r can be

time-domain

task = new Tasklmpl("myTestTask", QoS.QoSNEGOTIATION) ;
logger.debug("Task Identity: " +
task.getIdentity () .getValue());

this.task.setAttribute("startTime", startTime);
this.task.setAttribute("endTime", endTime);
this.task.setAttribute("allocationStrategy",

allocationStrategy);

if (allocationStrategy.compareTo("resource-domain") == 0) {
this.task.setAttribute("resourceCapacity", "40");

}

ServiceContact service = new
ServiceContactImpl(serviceContact) ;

149

http://localhost:8080/ogsa/services/org/globus/

this . task.setServiceContact(service);
}

private void submitTaskO {
TaskHandler handler = new QosTaskHandlerlmpl() ;
try {

handler.submit(this.task);

} catch (InvalidSecurityContextException ise) {
logger.error("Security Exception");
ise.printStackTrace() ;
System.exit (1);

} catch (TaskSubmissionException tse) {
logger.error("TaskSubmission Exception");
tse.printStackTrace();
System.exit (1);

} catch (IllegalSpecException ispe) {
logger.error("Specification Exception");
ispe.printStackTrace();
System.exit (1);

} catch (InvalidServiceContactException isce) {
logger.error("Service Contact Exception");
isce.printStackTrace ();
System.exit(1);

}
}

public static void main(String a r g []) {
new QosRequest2();

}

150

D.l. Submitting a QoS-based Job after QGS Negotiation

package org.globus.cog.qos.examples;

import org.apache.log4j.Logger;
import org.globus.cog.core.impl.common.*;
import org.globus.cog.qos.handler.QosTaskHandlerlmpl;
import org.globus.cog.qos.handler.QoS;
import org.globus.cog.core.interfaces . *;

public class QosJobSubmission implements StatusListener {
static Logger logger =

Logger. getLogger (Qos JobSubmission. class . getName ()) ;
private Task task;

public QosJobSubmission () {
prepareTask ();
submitTask();

Status jobStatus = this.task.getStatus ();
if (Status.SUBMITTED == jobStatus.getStatus ()) {

System.out.printIn("Job has been submitted.");
}

if (Status.FAILED == jobStatus.getStatus ()) {
System.out.println("Job submission has failed.");

}
}

private void prepareTask() {
String serviceContact =
"http://localhost:8080/ogsa/services/org/globus/

cog/qos/server/QosService/qos";
this.task = new Tasklmpl("myTestTask", QoS.JOB_SUBMISSION);
logger.debug("Task Identity: " +
this.task.getldentity() .getValue ());

this.task.setAttribute("agreementToken",
"localhost.localdomain:1068608841065:120");
JobSpecification spec = new JobSpecificationlmpl();
spec.setExecutable("/bin/sleep");
spec.setArguments("30");
spec.setStdOutput("qosOutput");

spec.setBatchJob(true);
this.task.setSpecification(spec);

ServiceContact service =
new ServiceContactImpl(serviceContact) ;

this.task.setServiceContact(service) ;

this.task.addStatusListener(this) ;
}

private void submitTask() {
TaskHandler handler = new QosTaskHandlerlmpl();

151

http://localhost:8080/ogsa/services/org/globus/

try {
handler.submit(this.task);

} catch (InvalidSecurityContextException ise) {
logger.error("Security Exception");
ise.printStackTrace();
System.exit(1);

} catch (TaskSubmissionException tse) {
logger.error("TaskSubmission Exception");
tse.printStackTrace();
System.exit(1);

} catch (IllegalSpecException ispe) {
logger.error("Specification Exception");
ispe.printStackTrace ();
System.exit(1);

} catch (InvalidServiceContactException isce) {
logger.error("Service Contact Exception");
isce.printStackTrace();
System.exit(1);

}
}

public void statusChanged(StatusEvent event) {
Status status = event.getStatus();
logger. debug("Status changed to " + status.getStatus());
if (status.getStatus() == Status.COMPLETED) {

logger.debug("Output = " + this.task.getStdOutput())
System.out.println("Job has completed!");
System.exit(1);

}
}

public static void main(String ar g []) {
new QosJobSubmission();

}

Appendix E

Reservation Data Structure and Methods

package org.globus.cog.qos.server.reservation;

import java.util.Date;
j ★ ★
An implementation of a Reservation
★ ★ j

public class QosReservation implements QosReservationlnterface

Date startTime;
Date endTime;
Date submitTime;
Date lastModified;
boolean isActive;
String type;
String label;
int capacity;
String nodeName;
String id;
boolean resConfirmed = false;
String strategy;

private void modify() {
Date now = new DateO;
lastModified = now;

}

public QosReservation() {
Date now = new DateO;
lastModified = now;
submitTime = now;
isActive = false;
startTime = now;
endTime = now;
label = "undefined";
capacity = 0;

}

public QosReservation(Date from, Date to) {
Date now = new DateO;
lastModified = now;
submitTime = now;

startTime = from;
endTime = to;

label = "undefined";
isActive = false;
type = "undefined";
capacity = 0;

}

public String getLabelO {
return label;

}

public void setLabel(String 1) {
label = 1;

}

j k k ___
Start Time
__________ — * ★ j

/ * *

* Get the StartTime when the reservation is set.
* @return the StartTime of the reservation.
* /

public Date getStartTime() {
return startTime;

}

j k ★
* Set the StartTime for the reservation.
* Sparam newStartTime The new StartTime of the reservation.
* /

public void setStartTime(Date newStartTime) {
modify();
this.startTime = newStartTime;

}
j k k ___
Type
 ★ ★ j

j k k
* Get the Type when the reservation is set.
* @return the Type of the reservation.
* /

public String getTypeO {
return type;

}
/ * *

* Set the Type for the reservation.
* @param newType The new Type of the reservation.
* /

public void setType(String newType) {
modify();
this.type = newType;

}
J k k ___
Capacity k k J

J k k
* Get the Capacity when the reservation is set.
* @return the Capacity of the resource.
* /

public int getCapacity() {

154

return capacity;
}

j ★ ★
* Set the Capacity for the reservation.
* @param newCapacity The new Capacity of the reservation.
* /

public void setCapacity(int newCapacity) {
modify() ;
this.capacity = newCapacity;

}
j ★ ★ ___ _____________________________________
EndTime
 ★ ★ J

j ★ ★
* Get the EndTime when the reservation is set.
* @return the EndTime of the reservation.
* /

public Date getEndTimeO {
return endTime;

}
j 'k ★
* Set the EndTime for the reservation.
* @param newEndTime The new EndTime of the reservation.
* /

public void setEndTime(Date newEndTime) {
modify();
this.endTime = newEndTime;

}
j -k ★ __
submit Time
 ★★!

j ★ ★
* Get the SubmitTime when the reservation is set.
* @return the SubmitTime of the reservation.
* /

public Date getSubmitTime() {
return submitTime;

}
! ★ ★
* Set the SubmitTime for the reservation.
* @param newSubmitTime The new SubmitTime of the reservation.
* /

public void setSubmitTime(Date newSubmitTime) {
modify();
this.submitTime = newSubmitTime;

}

j * ★ ___
last modified
 * * j

155

* Get the LastModified when the reservation is set.
* @return the LastModified of the reservation.
* /

public Date getLastModified () {
return lastModified;

}

j ★ ★
* Set the LastModified for the reservation.
* @param newLastModified The new LastModified of the
reservation.

* /
public void setLastModified(Date newLastModified) {

this . lastModified = newLastModified;
}

// Node name: is the name of the computer that the reservation
is made for

public String getID() {
return id;

}

public void setID(String id) {
mo dify();
this.id - id;

}

public String getStrategy() {
return this.strategy;

}

public void setStrategy(String strategy) {
this.strategy = strategy;

}

// a flag to indicate reservation was confirmed or not
public boolean isReservConfirmed() {

return this.resConfirmed;
}

public void setReservConfirmation(boolean confirmed) {
t h i s .resConfirmed = confirmed;

}
j ★ ★ ___
toXML ★★!

private String field(String name, String value) {
return name + "=" + value;

}

private String field(String name, Date value) {
return name + "=" + v a l u e .toString();

}

156

private String field(String name, int value) {
return name + "=" + value;

}

private String field(String name, boolean value) {
return name + "=" + value;

}
j ★ ★
* Returns the Reservation in XML format. Not implemented yet
* 0return the reservation in XML through a String.
*/

public String toXML(String indent) {

String out =
indent + Preservation"
field(indent + "label",
field(indent
field(indent
field(indent
field(indent
field(indent
field(indent

getID ()) +
field(indent
field(indent

return out;

+
label) +

"start", startTime) +
"end", endTime) +
"submitted", submitTime) +
"modified", lastModified) +
"active", isActive) +
"type", "node:" + type +

"capacity",
"Strategy",

capacity)
strategy) indent +

}

public String toXML () {
return (toXML(""));

}
y ★ ★ _______
activation

/ ’
* Changes the state of the reservation to active
*/

public void activate () {

modify ();
isActive = true;

}
/**

*
*/

public void deactivate() {
modi fy();
isActive = false;

}

Changes the state of the reservation to deactivate

public int compare(QosReservation r) {
int result = 0;
// compares if the other reservation outside of the

current.
if (startTime.after(r.startTime) II

endTime.before(r.startTime)) {
result = 0;

} else {
result = -1;

}
return result;

}

}

E.l. A Java Class for the Reservation Agent

package o r g.globus.cog.q o s .server.reservation;

import java.util.Date;
import java.util.Enumeration;
import java.util.Hashtable;

public class QosReservationAgent {

static int id = 111;

private String label;
private Hashtable reserveTable;

public QosReservationAgent(String 1) {
label = 1;
reserveTable = new Hashtable ();

}

public String getLabel() {
return label;

}

public void setLabel(String 1) {
label = 1;

}

public boolean isAvailable(QosReservation r) throws
QosReservationException {

QosReservationValidation resValidation = null;

resValidation = new
QosReservationValidation(r.getCapacity (), reserveTable);

if (!resValidation.validateReservation(r.getStartTime() ,
r .getEndTime())) {
throw new QosReservationException("Cannot make
reservation for the given request !!");

}
return true;

}

public String extend(String label, long durationlnMin) throws
QosReservationException {

if (durationlnMin <= 0) {

158

throw new QosReservationException("Check the supplied
extension duration !!");

}
String reply = null;
QosReservation r = (QosReservation) reserveTable.get(label);
long newLongEndTime = r .getEndTime().getTime() +

durationlnMin * (1000 * 60);
Date newEndTime = new Date(newLongEndTime);
Date newStartTime = new Date(r.getEndTime().getTime() + 60 *

1000); //increment by a minute
QosReservation newR = new QosReservation(newStartTime,

newEndTime);
newR.setCapacity(r.getCapacity());
if (this.isAvailable(newR)) {

QosReservation extendedR = r;
extendedR.setLabel(r.getLabel ());
extendedR.setCapacity(r.getCapacity());
extendedR.setReservConfirmation(true);
extendedR.setID(r.getID());
extendedR.setStartTime(r.getStartTime ());
extendedR.setEndTime(newR.getEndTime ());
reserveTable.remove(label);
reserveTable.put(extendedR.getLabel(), extendedR);
reply = extendedR.getLabel ();

}
return reply;

public String add(QosReservation r) throws
QosReservationException {

if (reserveTable.get (r.getLabel()) != null) {
return null; // this label has been used in another

entry
}
if (isAvailable(r)) {

reserveTable.put(r.getLabel(), r);
return t his .createToken(r);

}
return null;

public String delete(String label) throws
QosReservationException {

QosReservation r = (QosReservation) reserveTable.get(label) ;
Date currentTime = new D a t e O ;

if (r != null) {
if (!currentTime.before(r.getStartTime())) {

return ("cannot delete sla");
} else {

reserveTable.remove(label);
return ("successful");

}
} else

return ("failed");

159

public String completion(String label) throws
QosReservationException {

QosReservation r = (QosReservation) reserveTable.get(label) ;

if (r != null) {
if (this.isTimeToStartTheReservSrvc(label)) { //means

yes we can report on completion
reserveTable.r e m o v e (label);
return ("successful");

}
}
return ("failed");

public boolean isReservExist(String label) throws
QosReservationException {

QosReservation r = (QosReservation) reserveTable.get(label) ;
if (r != null) {

return true;
}
return false;

public String t o X M L () throws QosReservationException {

String result = "";

result = "reservationAgent ";
result = result + "name=" + label;
for (Enumeration e = reserveTable.k e y s ();

e.hasMoreElements();) {
QosReservation r = (QosReservation)
reserveTable.g e t (e .nextElement());
result = result + r .t o X M L ("\t");

}
return result + "\t>";

private String createToken(QosReservation r) {

String idString = Integer.toStri ng(id++) ;
r .set ID (idString);
return (r.getTypeO + ":" + r. getLabel () + + r.getlDO);

public boolean isTimeToStartTheReservSrvc(String labelin) {

QosReservation r = (QosReservation)
reserveTable.get(labelin);
Date currentTime = new D a t e O ;

if (r != null) {
if (currentTime.before(r.getEndTime()) &&

((currentTime.after(r.getStartTime())) II
(currentTime.eq ual s(r .getStartTime())))) {

160

return true;
}

}

return false;

public String getCapacity(String labelin) {

QosReservation r = (QosReservation)
reserveTable.get(labelin);

return Integer.toString(r.getCapacity());

public String g etStrategy(String labelin) {

QosReservation r = (QosReservation)
reserveTable.get(labelin);

return r . getStrategy () ;

public boolean getConfirmationStatus(String label) {

QosReservation r = (QosReservation) reserveTable.get(label);
if (r != null) {

return r .isReservConfirmed();
} else

return false;

public QosReservation getReservation(String label) {

return (QosReservation) reserveTable.get(label);

public void deleteReservationEntries() {

for (Enumeration e = reserveTable.k e y s ();
e .hasMoreElements();) {
QosReservation r = (QosReservation)
reserveTable.g e t (e .nextElement());
reserveTable.remove(r.get Lab el());

}
}

}

E.2. A Java Class for Validating Reservation Requests

package o r g .globus.c o g .q o s .server.reservation;

//import o r g .glo bus .c o g .q o s .i m p l .Qgslmpl;

import java.u t i l .Date;

161

import java.u t i l .Hashtable;
import java.u t i l .Enumeration;

public class QosReservationValidation {
private int reqCapacity, tempCapacity;
private int durationlterator;
private Hashtable reservationTable;

public QosReservationValidation(Hashtable reservationTable) {
t h i s .reqCapacity =

Integer.parselnt(QosRequestHandler.MAX_CAPACITY) ;
t h i s .reservationTable = reservationTable;
tempCapacity = 0;

}

public QosReservationValidation(int reqCapacity, Hashtable
reservationTable) {

t h i s .reqCapacity = reqCapacity;
t h i s .reservationTable = reservationTable;
tempCapacity = 0;

}

// this method is to check if two given reservation times have
intersections

public boolean isWithln(Date sTref, Date eTref, Date sTService,
Date eTService) {

if ((sTService.after (sTref) | | (sTService.compareTo(sTref)
== 0))

&& (sTService.before(eTref) ||
sTService.compareTo(eTref) = = 0)) {
return true;

} else if ((eTService.after(sTref) ||
(eTService.compareTo(sTref) == 0))

&& (eTService.before(eTref) I I
eTService.compareTo(eTref) = = 0)) {
return true;

} else if ((sTService.before(sTref) I I
(sTService.compareTo(sTref) == 0))

&& (eTService.after(eTref) I I
eTService.compareTo(eTref) = = 0)) {
return true;

} else
return false;

}

// this method is to convert the period of a reservation into
minutes

public int convertDurationToIteration(Date sTime, Date eTime) {
long duration = ((eTime.g e t T i m e () - sTime.getTime()) / (1000

* 60));
return ((int) duration);

}

// this method is to reset the total capacity of intersected
services.

public void resetCapacity () {
tempCapacity = 0;

}

162

// this method is to check the total accumulated capacities —
admission control

public boolean checkAdmission() {
int netcapacity =

Integer.parselnt(QosRequestHandler.MAX_CAPACITY) -
t h i s .tempCapacity;

if (netcapacity >= t h i s .reqCapacity) {
return true;

}
return false;

public boolean validateReservation (Date sTimeln, Date eTimeln) {
Date sTime = new Date(sTimeln.g e tTi me());
Date eTime = new Date(eTimeln.g e tTi me());

/* check that the end time is after the start time and
the start time is later than current time. */

if ((sTimeln.after(eTimeln)) || (sTimeln.before(new D a t e ()))
I I

(sTimeln.compareTo(eTimeln) == 0)) {
return false;

}
t h i s .durationlterator =

t h i s .convertDurationToIteration(sTime, eTime);
Date sTService = null, eTService = null;

int resourceValue = 0 ; / / a variable to hold resource
capacity

for (int i = 0; i < durationlterator; i++) {
for (Enumeration e = reservationTable.k e y s () ;

e .hasMoreElements();) {
QosReservation r = (QosReservation)

reservationTable.get(e.nextElement()) ;
sTService = r .getStartTime();
eTService = r .getEndTime();
resourceValue = r .getCapacity(); // SHOULD BE FIXED

TO HOLD RESOURCE CAPACITY

if (this.isWithln(sTime, eTime, sTService,
eTService)) {

t h i s .tempCapacity = t h i s .tempCapacity +
resourceValue;

}
}

if (!(this.checkAdmission())) {
return false;

}
sTi me.setTime(sTime.ge t T i m e () + (60 * 1000));

//increment by a minute
t h i s .resetCapacity (); // reset capacity counter

}
return true;

}
}

163

Appendix F

Java Code for Interfacing the QoS Registry Service UDDIe

package gqosm.ns.uddie;

import a q o s .dataType.*;
import o r g .ud di4 j.*;
import o r g .ud di4 j.cli ent .*;
import org.uddi4j.d ata typ e.*;
import o r g .uddi4 j .datatyp e.assertion.*;
import o r g .uddi4 j .data typ e.b i n d i n g .*;
import o r g .uddi4 j .datat ype .business . *;
import u k .a c .c f .c s .uddie4 j .datat ype .service.*;
import u k .a c .c f .c s .uddie4 j .datat ype .service.BusinessServices ;
import o r g .uddi4 j .data typ e.tm o d e l .*;
import o r g .ud di4 j.request.*;
import u k .a c .c f .c s .uddie4 j .response.eServiceDetail;
import o r g .uddi4 j .response.DispositionReport;
import o r g . uddi4 j ..response . BusinessList;
import o r g .uddi4 j .response.AuthToken;
import o r g .uddi4 j .response.BusinessDetail;
import o r g .uddi4 j .response.BusinessInfo;
import o r g .uddi4 j .response.ServiceList;
import o r g .ud di4 j.r e s p o n s e ;
import u k .a c .c f .c s .u d d ie4 j.response.eServiceDetail;
import o r g .uddi4j.u t i l ;
import u k .a c .c f .c s .uddie4 j .UDDIeElement;
import o r g .w 3 c .dom.Element;
import o r g .w 3 c .dom.*;
import javax.x m l .par ser s.*;
import java.util.Vector;
import java.u t i l .Properties;
import java.io.*;
import u k .a c .c f .c s .uddie4j.client.UDDIeProxy;
import u k .a c .c f .c s .uddie4 j .datatype.lease.*;
import gqosm.ns.datatype.*;
import gqosm.ns.u t i l .StatusWindow;

public class UDDIelnterface {

Service_Request service;
StatusWindow status;

public UDDIelnterface(Service_Request service, StatusWindow
status)

{
this.service = service;
this.status = status;
status.setCurrentTaskProgressBar(3);

}

public UDDIelnterface()
{
}

164

j ★ ★
* Get Services which match a specific serviceName
* and service properties
* 0return Vector of relevant Services
* 0throws Exception
*/

public Vector getServices() throws Exception
{

UDDIeProxy proxy = new UDDIePr oxy ();
proxy.setInquiryURL("http://localhost:8080/uddie/inquiry") ;
proxy.setPublishURL("h t t p ://localhost:8080/uddie/publish") ;

//Get Authorization by sending a username and password
// for the owner of the business
//AuthToken token = p r o x y .get_authToken("gqosm" , "gqosm");
AuthToken token = p r o x y .get_authToken("Rashiduddie" ,

"Rashiduddie");

//Define service name and add them to a vector
//The maximum allowed names is 5

Name name = new N a m e (service.getServiceName());
Vector names = new V e c t o r ();
n a mes .add(name);
Vector properties = new V e c t o r ();

status.addSubTask("Creating SOAP message for the requested
service");

// Define property and add them to a Vector
if (service.getBudget () != null)
{

Property property = new Property("budget", "number",
service.getBudget());

property.setPropertyFindQualifer(
PropertyFindQualifiers.LESS_THAN_OR_EQUAL);

properties.add(property);
}

if (service.getCpu_count() != null)
{

Property property2 = new P roperty("cpu_count", "number" ,
service.getCpu_count());

property2.setPropertyFindQualifer(
PropertyFindQualifiers.GREATER_THAN_OR_EQUAL);

properties.add(property2) ;
}

if (service.getReliability() != null)
{

Property property3 = new Pr ope r t y ("reliability", "number"
, service.getReliability());

property3.setPropertyFindQualifer(
PropertyFindQualif i e r s .GREATER_THAN_OR_EQUAL) ;

properties.add(property3);
}

if (service.g etB andwidth() != null)
{

Property property4 = new Proper ty("bandwidth", "number" ,
service.getReliability());

165

http://localhost:8080/uddie/inquiry
http://localhost:8080/uddie/publish

property4.setPropertyFindQualifer(
PropertyFindQualif iers . GREATER_THAN_OR_EQUAL) ;

properties.add(property4);
}

// Define a propertyBag and add the properties Vector in
the Bag

PropertyBag bag = new Pro pertyBag();
bag.setPropertyVector(properties) ;

// Define Find Qualifier for property exact match (Logical
AND)

FindQualifier findQualifier = new
FindQualifier("exactPropertyMatch") ;

FindQualifier findQualifier2 = new
FindQualifier("exactNameMatch");

FindQualifier findQualifier3 = new
FindQualifier("exactMatch");

FindQualifiers qualifiers = new FindQualifiers();
Vector qualifiersVector = new V e c t o r () ;
qualifiersVector.add(findQualifier) ;
qualifiersVector.add(findQualifier2);
qualifiers.setFindQualifierVector(qualifiersVector);

// Send the query
status.addSubTask("Sending request to UDDIe");
ServiceList list = p r o x y .find_eService(null, names, null,

bag, null, qualifiers , 5) ;

Servicelnfos infos = lis t.getServicelnfos() ;
status.addSubTask ("receiving reply from UDDIe");
Vector services = infos.getServicelnfoVector();
Vector resultServices = new V e c t o r ();

for (int i = 0; i < services.s i z e () ; i++)
{

Servicelnfo service = (Servicelnfo)services.get(i);
eServiceDetail serviceDetail =
p r ox y.get_eServiceDetail(service.getServiceKey());
Vector serviceVector =
serviceDetail.getBusinessServiceVector();
BusinessService returnedService =
(BusinessService)serviceVector.firstElement();
resultServices.add(returnedService);

}
return resultServices;

J ★ ★
* Return BusinessService Detail based on a

Request_Specific_Service msg
* /

public BusinessService
getSpecificService(Request_Specific_Service sService)

{
try
{

return getServiceDetail(sService.getServiceKey()) ;

} catch(Exception exp)
{

166

System.out.println("Error in U D D I e : " + exp);
}
return null;

}
j ★ ★
* Get the URL address of Service Provider
* @parm BusinessKey the businessKey of the provider
*/

public String getBusinessAddress(String businessKey) throws
Exception

{
UDDIeProxy proxy = new UDDIeProxy ();
p r o x y .setlnquiryURL("h t t p ://localhost:8080/uddie/inquiry") ;
p r o x y .setPublishURL("h t t p ://localhost:8080/uddie/publish") ;

BusinessDetail businessDetail =
p r o x y .get_businessDetail(businessKey) ;
Vector business = businessDetail.getBusinessEntityVector() ;
for (int i = 0; i < bus ine ss.s i z e (); i++)
{

BusinessEntity businessEntity =
(BusinessEntity)business.get(i);

Vector urls =
businessEntity.getDiscoveryURLs()

.getDiscoveryURLVector();
for (int j = 0 ; i < url s.size(); j++)
{

DiscoveryURL url = (DiscoveryURL)urls.g e t (j);
return u r l .g et T e x t ();

}
}

return null;
}
/ * *

* Get Service Detail based on the Service Key
* From UDDIe
* /

public BusinessService getServiceDetail(String key) throws
Exception

{
UDDIeProxy proxy = new UDDIeProxy();
p r o x y .set InquiryURL("http://localhost:8080/uddie/inquiry");
p r o x y .setPublishURL("h t t p ://localhost:8080/uddie/publish");

eServiceDetail serviceDetail = p r o x y .get_eServiceDetail(key) ;
Vector serviceVector =
serviceDetail.getBusinessServiceVector() ;
BusinessService returnedService =
(BusinessService)serviceVector.firstElement();
return returnedService;

}
j ★ ★
* Get the URL of the WSDL Interface for a given Service
* @param serviceKey
* /

public String getServiceWSDLInterfaceURL(String serviceKey) throws
Exception

{

167

http://localhost:8080/uddie/inquiry
http://localhost:8080/uddie/publish
http://localhost:8080/uddie/inquiry
http://localhost:8080/uddie/publish

BusinessService returnedService =
getServiceDetail(serviceKey);

//Get the wsdl interface URL from the best selected service
String url = "";
Vector bindingTemplateV =
returnedService.getBindingTemplates ()

.getBindingTemplateVector();
for (int i = 0; i < bindingTemplateV.s i z e (); i++)
{

BindingTemplate bt =
(BindingTemplate)bindingTemplateV.get(i) ;

Vector tmodelV = b t .getTModellnstanceDetails()
.getTModellnstancelnfoVector();

for (int j = 0; j < t mo del V.s i z e (); j++)
{

TModellnstancelnfo tmodel =
(TModellnstancelnfo)tmodelV.get(j);

url = tmodel.getInstanceDetails ()
.getOverviewDoc().getOverviewURLString();

}
}
return url;

}
}

168

F.l. Java Code for Selecting the Closest Matched Service

package gqosm.ns;

import gqosm.ns.u t i l .StatusWindow;
import a q o s .dataType.* ;
import gqosm.ns.uddie .UDDIelnterface;
import gqosm.ns.datatype.*;
import a q o s .dataType.*;
import u k .a c .c f .c s .uddie4 j .datatype.service.*;
import u k .a c .c f .cs.uddie4 j .datatype.service.BusinessServices;
import o r g .uddi4 j .datatype.t m o d e l .*;
import o r g .uddi4j.request.*;
import u k .a c .c f .c s .uddie4 j .response.eServiceDetail;
import o r g .uddi4 j .response.BusinessDetail;
import org.uddi4 j .response.BusinessInfo;
import o r g .uddi4 j .response.ServiceList;
import org.uddi4j.response . *;
import u k .a c .c f .c s .uddie4 j .response.eServiceDetail;
import org.uddi4j.util.*;
import u k .a c .c f .c s .uddie4 j .UDDIeElement;
import o r g .w 3 c .dom.Element;
import java.u t i l .Vector;
import o r g .uddi4j.datatype.binding.*;

import gqosm.ns.datatype.*;

public class ServiceSelector {

private StatusWindow status;
private Service_Request service;

public ServiceSelector(StatusWindow status, Service_Request
service) {

this.status = status;
this.service = service;

}
J ★ ★
* Select the best possible service from UDDIe
* @return Best_Service Message
* ©throws Exception
* /

public AqosObject getBestService() throws Exception
{

//Contact the UDDIe and get the Matched Services to the request
service

status.setMainTask("Service Discovery: Contact UDDIe");
// <-- Demonstration Only

UDDIelnterface uddie = new UDDIelnterface(service, status);
Vector servicesVector = u d d i e .getServices();

//Get highest weight of the returned services
double high = 0;

169

int selectedServicelndex = 0;

status. setMainTask ("Selecting the best service (highest W A)11);
/ /

status.setCurrentTaskProgressBar (3); //
<— Demonstration Only

status.addSubTask("Computing the total importance level"); //

ImportanceLevel imp = new ImportanceLevel(service) ;

status.addSubTask("Computing the Weighted Average (WA) for
every service");

for (int i = 0 ; i < servicesVector.size () ; i + +)
{

BusinessService returnedService =
(BusinessService)servicesVector.get(i);
PropertyBag bag = returnedService.getPropertyBag();
Vector propertiesFound = b a g .getPropertyVector();

if (propertiesFound.s i z e () != 0)
{

String cpu_count =
String reliability = "";
String bandwidth =
String budget = "";

for (int j = 0 ; j < propertiesFound.size(); j++)
{

Property propertyFound =
(Property)propertiesFound.g e t (j);

if (
propertyFound.getPropertyName()

.eq ual s("cpu_count"))
{

cpu_count = propertyFound.getPropertyValue();
}
else if (propertyFound.getPropertyName()

.equ als ("bandwidth"))
{

bandwidth = propertyFound.getPropertyValue();
}
else if (propertyFound.getPropertyName()

.equals("reliability"))
{

reliability = propertyFound.getPropertyValue();
}
else if (propertyFound.getPropertyName()

.e q u a l s ("budget"))
{

budget = propertyFound.getPropertyValue();
}

}

double serviceW =
i mp .getImportanceLevel(budget,cpu_count, bandwidth,

reliability);
if (high < serviceW)
{

high = serviceW;

170

selectedServicelndex = i;
}

}

}
status.addSubTask("Selecting the best service based on its WA

value");

//Return the best service
BusinessService returnedService =
(BusinessService)servicesVector.get(selectedServicelndex) ;
AqosObject bestService = new AqosObj ect ("best_service");

//Get the wsdl interface URL from the best selected service
AqosObject wsdlURL = new Aqo sOb jec t("wsdl_interface") ;
String url = u d d i e .getServiceWSDLInterfaceURL(

returnedService.getServiceKey());
wsdlURL.setValue(url) ;
bestService.addElement(wsdlURL);

//Get the URL address from the best selected service
AqosObject urlAddress = new AqosOb jec t("url_address");
String url_address = u d d i e .getServiceWSDLInterfaceURL(

returnedService.getServiceKey());
urlAddress.setValue(url_address);
bestService.addElement(urlAddress) ;

//Add the ServiceKey to the best_service message
AqosObject serviceKey = new AqosObject("service_key");
serviceKey.setValue(returnedService.getServiceKey());
bestService.addElement(serviceKey);

PropertyBag bag2 = returnedService.getPropertyBag();
Vector propertiesFound = b a g 2 .getPropertyVector();

for (int j = 0 ; j < propertiesFound.size (); j + +)
{

Property propertyFound = (Property)propertiesFound.g e t (j);
AqosObject node = new

AqosObject(propertyFound.getPropertyName());
n od e.setValue(propertyFound.getPropertyValue ());
bestService.addElement(node);

}

return bestService;
}

171

Appendix G

Bandwidth Broker in DiffServ

A Bandwidth Broker (BB) is important in providing QoS in a DiffServ domain.

Traffic entering a DiffServ domain is classified, and conditioned, as a means to

enforce DiffServ agreements between domains, at the boundary of the network, and

then assigned to different behaviour aggregates, or group of packets with the same

code point. The flows entering a domain are classified, based on the DiffServ Code

Point (DSCP) value in each packet header. All packets with the same DSCP are

treated in the same manner, and belong to the same behaviour aggregate. The core

routers forward packets according to the treatment required on the basis of their

behaviour aggregate.

The main resource management entity in a DiffServ domain is the BB, which

maintains policies and negotiates SLAs with client and neighbouring domains. The

interactions of a BB with other components of a DiffServ domain, such as routers

and hosts, and the end-to-end communication process in a DiffServ domain are

shown in Figure 5.4. This figure shows that when a flow needs to enter the DiffServ

domain, or a local user wants to send traffic, the broker is requested to check related

SLAs (SLAs associated with flow) and the present traffic condition on the network.

The broker decides whether or not to allow the traffic, on the basis of previously-

negotiated SLAs, to ensure that new traffic does not violate current SLAs. If there is

a new flow, the broker might have to negotiate a new SLA with the neighbouring

domain(s) depending on traffic requirements. Once the broker allows the traffic, the

edge or leaf router, i.e. the router on the border of the DiffServ domain, needs to be

reconfigured. SLA negotiation is a dynamic process that needs to take into account

the ever-changing requirements of network traffic. The BB is responsible for

admission control, as it has global knowledge of network topology and resource

allocation.

172

Bandwidth Broker Architecture

A BB is a complex entity, comprising four distinguishable parts: Inter-domain, Intra­
domain, Database and User/Application, as discussed in the following sub-sections
and shown in Figure G. 1.

Inter-domain: At the inter-domain level, a BB communicates with neighbouring

BBs to reserve resources in other domains. A broker needs this communication when

the destination of the user’s flow - i.e. the resources requested - is in another

DiffServ domain. The Intemet2 QBone BB Advisory Council proposed the simple

inter-domain BB signalling (SIBBS) protocol (Teitelbaum et al. 1999). The SIBBS

protocol follows a request/response model between peer BBs.

Brokers have long-running Transmission Control Protocol (TCP) connections with

one another, with TCP providing the basic reliability and flow control for the

protocol. Whenever a broker receives a resource allocation request (RAR) from

another broker, it checks the sender’s identity, the route, and the egress router (edge

router of the DiffServ domain) for the flow, and the SLA related to the user or flow.

On acceptance of a request, if the destination of the flow is not in the broker’s

domain, it propagates the RAR to the neighbouring broker on the flow path. In this

manner, in due course, the RAR contacts the BB with the destination host in its

domain. A resource allocation answer (RAA), the response to the RAR, is sent back

from the destination broker to the source broker.

Intra-domain: At the intra-domain level, a BB needs to communicate with edge

routers as well as core routers, to transmit policy decisions, with the routers

configured to provide network QoS. There are many suitable intra-domain protocols,

such as COPS (RAP, 2000), SNMP and Telnet; however, intra-domain protocols

used in the DiffServ domain are only significant to the local network provider.

COPS is used to send policy decisions from the policy decision point (PDP) to the

PEP at which IP traffic is handled, and policy-based admission control for data flows

is implemented. The PDP has a complete view of the network and configures its

PEPs according to network policies. A BB normally has the functionality of a PDP,

173

with all the edge routers configured as PEPs. COPS is a client-server protocol in

which the server - a PDP - has a TCP connection with all its clients - PEPs (Durham

et al. 2000). A PEP maintains a policy information base (PIB), as described by Chan

etal. (2003).

For supporting policy specifications, a new client-type COPS for PRovisioning

(COPS-PR) is introduced in Chan et al. (2001). A COPS-PR supports real-time

event-driven communication. A PEP has only one connection to a PDP in the area of

policy control, which supports atomic transactions of data and only exchanges

differential updates.

On initialisation, a PEP establishes a connection with a PDP and sends all device­

relevant information. The PDP replies with all provisioned policies relevant to the

device. If there are any changes in policies at the PDP it sends an update message.

Alternatively, if there is a change at the PEP, it sends the change to the PDP which

can in turn reply with new relevant policy provisioning elements.

OB

<\ r
To Local Routers

Bandwidth BrokerIntra
Domain

Inter
Domain

U s e r / A p p l

Database
Interface

' s...........uy
To Neighboring BBs

To Local Users / Applications

Figure G .1: Bandwidth Broker C oncept

Database: A BB has a database interface to gather information for decision-making.

To provide QoS, the BB must have a comprehensive picture of the complete

network, and needs information on SLAs, network state and current resource

allocation status (Teitelbaum et al. 1999). Routers can be configured to provide

monitoring data, to enhance the security of the network and to improve resource

174

usage. Routers’ configuration data and information about BB’s own components is

also maintained for the purpose of fault tolerance. Many database management

systems are available that can meet a BB’s database requirements, such as MySQL

and Oracle.

User/Application: There is a need for a protocol and interface for a network operator

and/or an application to interact with the BB. A network operator may use this

interface to monitor or update performance-related features of a BB, while an

application requires the protocol and interface to query a BB.

175

