
Quality of Service Management in Service-oriented Grids

Rashid J. Al-Ali

B.S., University of the Pacific, USA, 1992 
M.S., The George Washington University, USA, 1997

Thesis submitted for the degree of 
Doctor of Philosophy

School of Computer Science 
Cardiff University, Cardiff, UK, October 2005



UMI Number: U584740

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584740
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Dedication

For my Family, Friends and Colleagues

iii



Acknowledgements

I must, in the first instance, thank Dr Omer Rana, my first supervisor, for his many 

suggestions and support during this research, and Professor David Walker, my 

second supervisor, for his help and support; without their constant advice and support 

this thesis would not be complete.

I am also grateful to Dr Gregor von Laszewski of the Argonne National Laboratory 

(ANL), for his help in gaining access to the ANL Grid infrastructure, testing our 

work on a scientific application and contributing to the Java CoG Kit project. Thanks 

also to Kaizar Amin from ANL for useful discussions on integrating the QoS work 

into the Java CoG Kit, and to Mihael Hategan, also of ANL, for support in 

integrating the scientific application.

Special thanks to Dr. Abdelhakim Hafid, Dr. Karim Djimam, Professor Peter Dew, 

Dr. Raj Kumar, Shaleeza Sohail, Dr. Sanjay Jha, Dr. Sander Volker, Dr. Klara 

Nahrstedt, Ali ShaikhAli, Dr. Simone Ludwig, Dr. Steven Lynden, Hema Arora and 

Karthika Arunachalam for their support, and to members of the School of Computer 

Science at Cardiff -  my appreciation for a stimulating work environment.

I must acknowledge, with thanks, those who have funded me throughout this 

research project; The Qatar government for sponsoring me throughout the research 

period, and Cardiff University for covering participation at a number of conferences, 

with an acknowledgement also to the Java CoG Kit project for appreciated support.

I am especially grateful to my mother, for her support and prayers, and to my lovely 

family, my wife Madiha and my children, Ahmad, Abdullah, Fatema and Noora, for 

their constant support and patience during my absence for much of the past four 

years.

iv



Abstract

Grid computing provides a robust paradigm for aggregating disparate resources in a 

secure and controlled environment. The emerging grid infrastructure gives rise to a 
class of scientific applications and services in support of collaborative and distributed 
resource-sharing requirements, as part of teleimmersion, visualization and simulation 

services. Because such applications operate in a collaborative mode, data must be 
stored, processed and delivered in a timely manner.

Such classes of applications have collaborative and distributed resource-sharing 
requirements, and have stringent real-time constraints and quality-of-service (QoS) 

requirements. A QoS management approach is therefore essential to orchestrate and 
guarantee the interaction among such applications in a distributed computing 
environment. Grid architectures require an underpinning of QoS support to manage 

complex computation-intensive and data-intensive applications, as current grid 
middleware solutions lack QoS provision. QoS guarantees in the grid context have, 
however, not been given the importance they merit. To enhance its functionality, a 

computational grid must be overlaid with an advanced QoS architecture to best 
execute those applications with real-time constraints.

This thesis reports on the design and implementation of a software framework, called 
Grid QoS Management (G-QoSm). G-QoSm incorporates a new QoS management 
model and provides a service-oriented QoS management approach that supports the 
Open Grid Service Architecture. Its novel features include grid-service discovery 
based on QoS attributes, immediate and advance resource reservation, service 

execution with QoS constraints, and techniques for QoS adaptation to compensate for 

resource degradation, and to optimise resource allocation while maintaining a service 
level agreement.

The benefits of G-QoSm are demonstrated by prototype test-beds that integrate 
scientific grid applications and simulate grid data-transfer applications. Results show 
that the grid application and the data-transfer simulation have better performance 

when used with the proposed QoS approach. QoS abstractions are presented for 
building QoS-aware applications, in the context of service-oriented grids. These 
abstractions are application programming interfaces to facilitate application 
developers utilising the proposed QoS management solution.
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Quality of Service Management in Service-oriented Grids

Chapter 1 -  Introduction

1.0 Background

Grid computing, which can be viewed as ‘coordinated resource sharing within multi- 

institutional organizations’ (Foster et al. 2001), originally focused on large-scale 

sharing of distributed resources, scientific applications and the achievement of high 

performance (von Laszewski et al. 2003). A grid architecture integrates diverse 

network environments, with widely varying resource and security characteristics, 

into a virtual organization (VO). Computational grids offer high-performance 

computing facilities that can be exploited by advanced scientific and commercial 

applications. Such facilities provide computational resources with high storage 

capacities and/or processing power to execute applications with special resource 

requirements, such as data-intensive and computation-intensive applications.

Until recently, research on grids focused on designing and building middleware that 

address the core problem of grids, such as the management of resources and services 

in a distributed environment (Argonne, 2004). Such services include resource 

management, security and data management; services fundamental to grids, as they 

deal with accessing resources in distributed computing environments which exist in 

multiple domains. Argonne National Laboratory (ANL) has developed an open- 

source grid middleware, called Globus, which has become the de facto grid 

middleware for research, and also, more recently, for production purposes.

Although the grid community has produced a number of other systems -  Legion (The 

Legion Project, 2004) and NetSolve (NetSolve, 2004) to name a few -  many areas of 

the grid concept remain to be investigated. Promising research directions include 

resource management, security and networking, particularly with the use of Web 

Services (WS) technologies, which offer a new approach to building and utilising
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services in distributed computing environments. Some advantages of this new 

approach are: i) loose coupling in application-to-application interaction, or 

application to data sources, via Internet technology, and ii) a protocol based on using 

extensible Markup Language (XML) message encoding.

1.1 Service-oriented Architecture

A Service-oriented Architecture (SOA) is essentially a collection of inter­

communicating services passing and exchanging data, and co-ordinating some 

activities. Services are self-contained, and well-defined, software entities, each with 

an interface and behaviour i.e. service capability. Services exchange messages with 

applications or other services; for example in Web Services (WS) technology, these 

messages are encoded as extensible Markup Language (XML) messages and are 

encapsulated into Simple Object Access Protocol (SOAP) envelopes; with services 

thus ‘language’ independent and designed to support inter-operability (Taylor, 2005).

Web Services is a technology in a SOA for connecting services, with services 

connected through WS, and ‘service’ the endpoint of a connection, i.e. basically a 

software capability. In WS services can be advertised by a service provider, to a 

service repository, such as the Universal Description Discovery and Integration 

(UDDI), through a process called ‘publish’. A Web Services standard, the Web 

Services Description Language (WSDL), is used to advertise service-related 

information, such as the service interface, i.e. how a client can invoke a set of pre­

defined operations on another service. A service can further be discovered by a 

service requestor, sometimes called service consumer, through a process called 

‘find’, which, essentially, searches the service repository, such as the UDDI, to locate 

suitable services, described in the service WSDL description. A service can be 

invoked through a process called ‘bind’, i.e. making use of the service capability by 

sending a request to the remote service and receiving a response over the network; 

essentially an exchange of XML messages.

The Open Grid Service Architecture (OGSA) is an architecture-specifying grid 

system based on Web Services concepts and technologies (Argonne, 2004). OGSA 

presents grid functionalities as a collection of services called ‘grid services’. Grid
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services are essentially Web services with additional features such as stateful, 

lifetime management and notification support. In OGSA all resources and 

applications are presented as grid services, with one noticeable feature that grid 

services are manageable, and, unlike Web services, grid services can be created, 

destroyed or even monitored. OGSA defines a common standard for grid-based 

applications, and developed an Open Grid Service Infrastructure (OGSI) standard to 

provide technical specifications for grid services. OGSA has recently produced the 

Web Services Resource Framework (WSRF) (Czajkowski et al. 2004) standard to 

overcome some limitations of the OGSI, such as specifications for stateful services.

In this thesis the proposal for the design and implementation of a QoS management 

system is envisioned as a grid service conforming to the OGSA standard. Such a QoS 

grid service delivers QoS management functionality to applications or other grid 

services. The stateful feature of grid services, defined by the OGSA standard, is 

essential for the proposed QoS grid service, as this grid service deals with 

applications and other services to provision QoS assurances, referenced by an 

agreement called a Service Level Agreement (SLA). SLAs should be stored, and 

accessed when applications want to utilise the services with QoS provision, as 

specified in a SLA. Any request for services with QoS provision goes through a 

validation process which verifies the requesting application has, indeed, a provisioned 

QoS level specified in a SLA. SLA information should be associated with QoS grid 

service; such an association can be delivered by the stateful feature specified by the 

OGSA for grid services. (A further discussion on SLAs is given in Chapter 3.)

1.2 Quality of Service

Quality-of-service (QoS) issues have been explored in various contexts: network, 

multimedia and, more recently, resource management, as discussed further in 

Chapter 2. The work described here focuses on QoS issues in resource management 

for distributed computing in service-oriented architectures (SOAs), and, in 

particular, in the context of the Open Grid Services Architecture (OGSA) (Foster et 

al. 2002). QoS can be defined as a measure of performance for certain service 

quality, where the service could be networking, multimedia or certain resources e.g. 

processors -  sometimes called central processing units (CPU) in the following

3



Chapters. The QoS is normally specified in a set of parameters describing the desired 

service: for example, a networking service is described by a group of parameter, 

including bandwidth, delay, jitter and packet-loss rate.

Grid services conform to certain specifications, are self-contained and provide well 

defined interfaces. Grid services are hosted in grid resources and infrastructures; and 

connectivity is maintained among resources via dedicated high-speed networks. A 

well-established grid infrastructure facilitates constant resource connectivity, resource 

monitoring and fault tolerance. Hence some basic level of QoS is provided by the 

committed members of a VO, based on their pre-agreed grid policies and their 

dedication to collaboration. Nevertheless, the complexities involved in critical grid 

applications require guaranteed QoS assurances beyond those provided by a basic grid 

infrastructure, such as critical applications with real-time requirements. Because of the 

increasing sophistication of grid applications (TeraGrid, 2001), such as those with real­

time constraints, QoS provision becomes an inherent requirement in a grid 

architecture. A modem SOA requires advanced management to provide QoS 

assurances of meeting such application requirements.

QoS depends on the context in which it is addressed. For example, QoS in 

multimedia deals with the presentation quality of multimedia documents, while 

network QoS deals with communication-link characteristics, such as bandwidth and 

delay. QoS management, for the purpose of this thesis, is defined as all activities, 

from resource selection and allocation through to resource release, intended to 

ensure a set o f qualitative and quantitative attribute values. Examples of qualitative 

QoS attributes include service reliability and user satisfaction, while examples of 

quantitative QoS attributes include network bandwidth, processor performance and 

storage capacity, which implies a certain capacity of disk storage for application use.

Overlaying an advanced QoS framework on existing grid architectures allows the 

support of complex QoS requirements. The work presented in this thesis is the design 

and implementation of a software framework called Grid QoS Management (G- 

QoSm) that provides QoS functionality in SOAs. G-QoSm supports recent 

standardisation efforts by the Global Grid Forum (GGF) (The Global Grid Forum,
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2004) and is compatible with the OGSA specification. Important features of G- 

QoSm are:

❖ It is based on the concept of a service level agreement (SLA) that contains 

service-related details and agreement terms. A SLA comprises the contract 

document between a user and a QoS management entity, which specifies 

the services and quality the user should expect.

❖ It employs a service-selection mechanism in the service-discovery process to 

select the most appropriate service, based on user-supplied service requirements.

❖ It supports advance resource reservation to guarantee resource availability 

when needed.

❖ It incorporates techniques for QoS adaptation to compensate for resource 

QoS degradation during the active phase of a QoS session.

The process of establishing SLAs, in the context of G-QoSm, shares many similarities 

with the WS-Agreement (WSA) standard (Andrieux etal. 2004). For example, in a job 

submission for a WSA, the provider posts an agreement template, comprising a list of 

available applications, and the service consumer is required to populate the template 

with information on the desired application, such as the application name, the number 

of required processing nodes and other job submission parameters, including, for 

example, the source of input data. Once the template is returned to the provider, the 

consumer waits for confirmation, or rejection, of the agreement -  if the agreement is 

rejected, the consumer can try again with different parameters in the agreement 

template -  which basically constitutes a negotiation process. In G-QoSm a similar 

approach is taken to negotiate and establish SLAs, as outlined in Section 4.2.

The effectiveness of G-QoSm is validated by building two prototype test-beds; the 

first incorporating a scientific grid application and the second the simulation of a grid 

data transfer application. The first prototype demonstrates computation QoS and the 

second demonstrates network QoS. Performance results demonstrate the benefits of 

the proposed QoS-based deployment.
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1.3 Research Methodology and Hypothesis

Hypothesis: QoS management in a SOA can provide a guaranteed, reliable and 

consistent service-execution mechanism.

A new architecture for QoS management is proposed, which addresses the questions:

❖ How can a QoS management system be presented as a Web Services (WS), in 

the context of SOAs, where users and applications interact through standard 

WS protocols?

❖ How can a typical service-oriented application utilise and benefit from use of 

such a QoS management approach?

❖ What performance gains can be obtained by an application using such a QoS 

management system in a SOA?

The hypothesis is verified by comparing the performance of the G-QoSm prototypes 

to a grid middleware system without QoS management support, based on two 

measures:

❖ Computation QoS: defined as guaranteeing a certain percentage of processor 

capacity for an application in a shared processor system, or guaranteeing a 

processor, or a number of processors, for an application’s exclusive use in a 

multiprocessor system (Roy, 2001). In this instance, the computation QoS 

measures the time taken to complete a QoS-aware application process while 

other applications utilise system resources.

❖ Network QoS: defined as guaranteeing a certain quality level of a network link 

between two end points, where the link characteristics include delay, jitter, 

packet loss rate and bandwidth. In this instance, the network QoS is the ability 

of a QoS-aware application to maintain a promised rate of data transfer while 

other applications utilise system resources.

1.4 Novel Contributions of the Thesis

The thesis is motivated by the desire and need to develop a QoS management system 

for SOAs and particularly for service-oriented grids. It envisions that the proposed
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approach would be of great benefit for the Globus toolkit ecosystem (Liming, 2004). 

The Globus toolkit ecosystem is based around the OGSA concept, and outlines grid 

architectures for various types of applications, such as computation-intensive, data- 

intensive and distributed collaborations. This thesis proposes a QoS management 

system which could be utilised in such architectures to guarantee a required QoS 

level for applications accessing grid resources.

The novel aspect of this thesis is the proposal of a QoS management system, called 

G-QoSm, to provide QoS functionality for grid resources, such as computation and 

networks. The G-QoSm prototype is designed and implemented in the context of 

OGSA as a grid service within Globus Toolkit version 3 (GT3). Additional 

contributions to research on grid and QoS management, raised in the development of 

the new QoS management system, include:

❖ Development of an abstraction for QoS management in SOAs. The abstraction 

employs a utility model for cost optimisation; depending on whether the cost 

for executing a service is calculated by a client or a provider, a user may 

optimise this cost from different perspectives. Given a particular quality level, a 

user may be interested in identifying a set of resources that can offer the quality 

at a minimum cost. Alternatively, a user may be interested in maximising the 

revenue that could be obtained by selecting from available resources.

❖ The description of a novel protocol for agreement-based QoS negotiation, 

which establishes a SLA between a service consumer and a provider.

❖ New resource selection and resource domain and time domain resource 

allocation strategies based on QoS properties: resource domain allocates a 

certain percentage capacity for a shared resource and is suitable for applications 

that require limited resources, whereas time domain allocates the entire 

resource capacity for an application, based on exclusive use, and is suitable for 

applications that require high-performance resources.

❖ A new technique for advance resource reservation in grids, for single and/or 

multiple resources. Reservation of multiple resources is of particular 

importance in grid systems as normally grid applications require more than a 

single resource to be simultaneously allocated, also referred to as co-allocation.
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QoS adaptation mechanisms that compensate for QoS degradation and maintain 

agreed-on SLAs.

Thesis Outline

Chapter 2 -  Literature Review, surveys the background areas of research 

related to the main ideas presented in the thesis. These main ideas are resource 

discovery in distributed systems, resource reservation for QoS-aware systems, 

literature on SLAs, and related works on the concept of QoS adaptation.

Chapter 3 -  A Model for Quality-of-Service Provision, presents a new 

agreement-based abstraction for QoS management in SOAs, and discusses the 

main components of the model.

Chapter 4  -  Framework Design, presents the design for G-QoSm, based on 

the model presented in Chapter 3, and discusses the modularity of the G-QoSm 

design.

Chapter 5 -  The Prototype, discusses implementation issues for the proposed 

QoS management system, describes the prototype implementation, and 

discusses how a grid application can utilise the proposed G-QoSm system.

Chapter 6 ~ Validation, presents performance results of the G-QoSm prototype, 

based on experiments undertaken in collaboration with ANL and Cardiff 

University.

o Work at ANL integrated an image-processing grid application based on 

nano materials, with this application demonstrating the need for 

computation QoS (Al-Ali et al. 2004a/2004b).

o Work at Cardiff University demonstrates network QoS for data-transfer 

applications (Al-Ali et al. 2004d).

Chapter 7 -  Conclusion, presents a summary of the results, discusses the 

outcome of the work and makes recommendations for further study.



Chapter 2 -  Literature Review

2.0 Synopsis

In this Chapter literature on QoS management is surveyed; the concept of QoS is 

defined and the activities and functions undertaken during a QoS session are 

presented. QoS issues with reference to grid computing are introduced, and the 

requirements for a QoS-aware grid-resource management system are identified. 

Existing research projects dealing with QoS in distributed computing are discussed, 

and the concepts in these projects are compared to the research presented in this 

thesis. Work related to functions essential for QoS management is reviewed, 

including: a) resource discovery; b) resource reservation; c) Service Level 

Agreements; and d) QoS adaptation. In addition to these four functions this Chapter 

includes a review of network QoS for grid applications. A number of QoS 

management systems are also reviewed and compared to the proposed G-QoSm 

system.

2.1 Quality of Service

The concept of QoS was first used in the network community (Aurrecoechea et al. 

1995). In this context, network QoS specifically deals with providing certain quality 

levels for network link characteristics between two points, with these characteristics 

expressed as delay, jitter, throughput and packet loss rate:

• Delay: Time it takes a packet to travel from a sender to a receiver;

• Jitter: Variation in the delay of packets taking the same route;

• Throughput: Rate at which packets travel through the network;

• Packet-loss rate: Rate at which packets are dropped, lost or corrupted.

To manage these network parameters, certain network elements -  network routers or 

network traffic-control entities, such as Linux-based routers -  are modified to 

support QoS models, such as Differentiated Services (Blake et al. 1998; Xiao and Ni, 

1999), or changes are made at the application end-points to control how packets are 

transmitted, based on feedback from the receiver. The first of these -  modifying
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network elements -  is usually undertaken at the network level; a very effective 

mechanism as it controls the physical network link. The alternative approach is an 

application-level solution, where feedback on network performance is used to control 

the rate at which data is transmitted from the sender.

The QoS concept was next introduced in resource management applications, and 

particularly in distributed multimedia (DMM) (Campbell et al. 1993; Narhstedt and 

Smith, 1995; Bochmann and Hafid, 1996). QoS in resource management deals with 

the issue of providing certain service qualities to applications, whereas in the 

multimedia community QoS issues are concerned with providing a client with an 

acceptable level of presentation quality when accessing a multimedia document. This 

level of quality includes support for QoS at the network level, which forms a 

connection between client and server, in addition to providing certain guarantees for 

resources on the server side, comprising computing (processor performance) -  to 

process and dispatch, for example, multimedia frames at specific rates.

QoS was introduced into the grid computing community prior to 2004. The Globus 

Alliance (Argonne, 2004) discusses the concept of the General-purpose Architecture 

for Reservation and Allocation (GARA) (Foster et al. 1999). In the context of grid 

computing, some effort has been expended in introducing a specialised network QoS 

to support grid applications; exploiting ideas and concepts from the networking 

community (Bhatti et al. 2003). Recently, with the introduction of the OGSA 

concept, QoS provision has been introduced in the context of service-oriented grids 

(Al-Ali et al. 2002a). The QoS work presented in this thesis benefits from concepts 

related to QoS investigated in different communities, such as networking and DMM. 

QoS in SOAs, and specifically in OGSA, is the theme of this research.

Although there is extensive research on QoS in various communities, there is no 

standardisation; although some communities have working groups setting up 

architecture and specifications for QoS. For example, in the context of the 

networking community, the Internet Engineering Task Force (IETF) has released a 

request for comment (RFC), describing a network QoS architecture based on 

differentiated service (Blake et al. 1998). Similarly, the GGF has a working group 

called Grid Resource Allocation Agreement Protocol (GRAAP), which is involved in
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a number of issues related to QoS (MacLaren, 2003) and is establishing standards for 

resource description, reservation and agreements. The GRAAP working group 

primarily addresses the protocol to reserve and allocate resources in grid 

environments.

QoS has no standard definition and is therefore, normally, defined according to the 

context in which it is used. For instance, Jarvis et al. (2003) define QoS as a 

representation of user-side service (i.e. user perception) based on deadlines assigned 

to tasks, while Roy (2001) defines QoS as guaranteeing the availability of specific 

resource characteristics in a shared resources environment, such as processor 

performance or network bandwidth.

QoS provision in a shared resources environment is essential, as, with any finite set 

of resources, the resources are, eventually, fully occupied and no further clients or 

applications can utilise the resources. To overcome this problem, either a QoS 

management system, which can support reservation mechanisms and admission 

control procedures to access the resources, must be provided, or the finite set of 

resources must be increased to accommodate requirements for all expected client or 

application needs. The second solution is not usually acceptable as it is virtually 

impossible to provide access to unlimited resources, and provision of QoS 

management functionality is normally more efficient and cost effective. This thesis 

focuses primarily on proposing a design, and building a QoS management system.

2.1.1 -  QoS Management Functions

A QoS session has three main phases: (1) the establishment phase; (2) the active 

phase; and (3) the clearing phase (Hafid and Bochmann, 1998). Each phase has QoS 

functions, as shown in Figure 2.1.

During the establishment phase a client states their QoS specifications, and the QoS 

management entity undertakes service and resource discovery based on QoS 

properties negotiated with the client (Al-Ali et al. 2003d).

During the active phase, additional activities such as resource allocation, based on 

previously-reserved resources, QoS monitoring, accounting, adaptation and possibly
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re-negotiation may take place. Some activities in this QoS management phase may 

be repeated a number of times; for example, a re-negotiation may trigger resource 

allocation being re-applied, and similarly for adaptation when allocated resources fall 

below the agreed-on specifications.

QoS Specification 
QoS Mapping 
QoS Negotiation 
Resource Reservation 
QoS Accounting

Establishment Phase

Resource Allocation 
QoS Monitoring 
QoS Re-Negotiation 
QoS Adaptation 
QoS Accounting

Active Phase

QoS Termination Clearing Phase

Figure 2.1: QoS Management Functions

The clearing phase occurs when the QoS session is terminated, due to a resource 

reservation ending, a SLA violation, or service completion, which frees resources for 

use by other clients. To detect a SLA violation, the QoS levels -  i.e. resource 

specifications -  must be monitored. For example, Baker and Smith (2003) propose a 

grid resource monitoring system called GridRM -  a generic resource monitoring 

framework capable of providing a client/application with resource data. This data can 

be used by the QoS management entity during the active phase.

This thesis is mainly concerned with four aspects of QoS management in a grid context:

(i) Resource Discovery: concerned with discovering and selecting grid resources 

based on QoS properties, such as resource specifications, during the establishment 

phase of QoS management.

(ii) Resource Reservation: part of the establishment phase, and an important 

function in providing resource access guarantees.

(iii) Service Level Agreements: cover the entire spectrum of QoS management. 

These agreements, negotiated in the establishment phase, are used in both the active 

and clearing phases, and may be re-negotiated during the active phase.
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(iv) QoS Adaptation: triggered primarily during the active phase, this process is 

concerned with resource allocation and adaptation and is meant to compensate for QoS 

degradation.

When studied in the context of grid computing, QoS research differ from other 

communities in two main areas: (a) the nature of available resources; and (b) the 

simultaneous allocation of resources that span multiple administrative domains. QoS 

in grid computing usually deals with more than one type of resource because of the 

co-allocation requirements of many grid applications, whereas most other 

communities, such as networking, normally only deal with one type of resource. Grid 

resources include computation nodes, networks, storage devices and specialised 

instruments; normally found in more than one administrative domain. This domain- 

spanning is the main distinguishing feature of a grid system. In resource management 

terminology, this can be viewed as coordinating multiple resource access -  which 

may be simultaneous -  spanning multiple domains, in scientific, or commercial, 

applications.

The nature of QoS provision depends on the nature of the resources involved. For 

example, processor QoS depends on whether a processor is being used as a shared or 

an exclusive access resource (Roy, 2001). With processor sharing, an application can 

specify that it requires a certain percentage of processor capacity over a specific time 

period. In a multiprocessor system an application can also specify exclusive access to 

a number of processors over a specific time period.

Similarly, storage QoS concerns access to storage devices such as disks. In this 

context, QoS is characterised by bandwidth and storage capacity. Bandwidth is the 

rate of data transfer between a storage device and an application program. Bandwidth 

is dependent on the speed of the bus connecting the application to the storage 

resource, and the number of such buses that can be concurrently used. The number 

and types of parallel I/O channels available between the processor and the storage 

media are significant parameters in specifying storage QoS. Storage capacity is the 

volume of storage space an application can use, during its execution, for writing data.
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2.2 QoS in Grid Computing

It would be convenient for a grid application to specify its QoS requirements in the 

form of a single (virtual) resource, necessary to run the application, comprising 

computing, storage and networking resources, and the period over which the resource 

is required. Such a resource may, in practice, involve the aggregation of a number of 

distinct grid resources to achieve the desired outcome.

A grid application usually submits its requirements to a grid resource management 

service that schedules jobs as resources become available. Each resource provider 

supports a resource manager that receives requests from external applications. 

Certain applications, such as real-time and collaborative applications, need to obtain 

results within strict deadlines, and cannot always wait for resources to become 

available. Others require multiple resources to be simultaneously allocated, with no 

strict deadlines. For such applications, it is often necessary to reserve grid resources 

for a specific time; in advance, or immediately. Guaranteeing resource availability 

for an application’s execution is highly desirable, indeed, it is required if grid 

services are to handle complex scientific and business applications that need 

resources distributed over multiple administrative domains.

Taylor (2005) sees QoS in grid systems as a key parameter, and negotiating SLAs to 

address QoS requirements as essential. Taylor categorises QoS in grid systems into three 

types:

❖ None: verifying that QoS is not supported; similar to best effort support.

❖ Soft: implying QoS can be specified, but the resource management system 

cannot provide guarantees. This is the most common form of QoS in grid 

computing.

❖ Hard: meaning that all nodes on the grid support, and guarantee, QoS.

In the following sections, requirements for a QoS-aware grid resource management 

system are presented and the extent to which current QoS systems meet such 

requirements is discussed.
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2.2.1 -  Requirements

A grid resource management system should address the following requirements:

❖ Resource Reservation: should support mechanisms for immediate or advance 

resource reservation. Advance reservation is particularly important for 

resources shared in multi-user environments.

❖ Reservation Policy: should support mechanisms for resource owners to 

enforce policies governing when, how and who can reserve their resources. For 

reservation flexibility the policy mechanism should be decoupled from the 

reservation mechanism (Karsten et al. 1999).

❖ Protocol for Negotiating SLAs: should assure clients of the resource 

configuration expected during the service session. Such assurance can be given 

in an agreement document, such as a SLA. Creation of such a document 

requires a negotiation mechanism so service consumers and providers can 

negotiate SLA terms, such as service starting time and resource specifications.

❖ Security: should prevent malicious users from penetrating or altering data 

repositories holding information about reservations, policies and agreements. In 

addition to a secure channel between an application and the grid resources 

being used, a security infrastructure providing support for authentication and 

access control is also required.

❖ Simplicity: should have as simple a design as is reasonable, requiring minimal 

or no changes to existing infrastructure.

❖ Scalability: should be scalable to a large number of entities. This is especially 

true since grids are expected to be open and dynamic, with resources and users 

joining and leaving in a non-deterministic manner.

❖ Resource Co-allocation: should be able to simultaneously deal with multiple 

resources, as a typical grid application requires different types of resources to 

be allocated concurrently.

2.2.2 -  QoS in Grids

In grid computing, QoS management must provide the required access to computing 

resources in multiple domains. Unlike multimedia and network QoS, grid QoS 

requires a global information service (Fitzgerald et al. 1997; Cjazkowski et al. 2001). 

which is a central virtual resource, consisting of a number of replicated information
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services, to have global information readily available on the status of resources. This 

is essential, as the grid consists of diverse resources distributed over multiple 

domains. Such a service can be interrogated by an application to determine which 

resources it can use. Because grid QoS deals with concurrent service sessions, SLAs 

are essential to specify resource configurations for each service with these 

configurations encoded in the SLA as parameters. Subsequently, each parameter can 

be monitored to ensure SLA conformance.

SLAs encode particular resource requirements for an application as SLA elements, 

which represent SLA terms, for example, the required network bandwidth or required 

processor performance. These elements can be verified against resource capabilities a 

specific owner can provide. Such SLAs, between a service consumer and service 

providers, can be expressed using first-order logic.

Relatively few systems have been developed that provide QoS support for grid 

applications; with examples including GARA (Foster et al. 1999), the Virtual 

Application Service (VAS) (Keahey and Motawi, 2003), and the GRLA project 

(GRIA, 2004). The Grid Resource for Industrial Applications (GRIA) project targets 

industrial applications and attempts to provide end-to-end performance and 

availability estimation, with efficient mapping of workloads to resources. It uses 

techniques such as workload estimation and resource capacity estimation to 

accomplish QoS-based performance. A notable feature of the GRIA is that it does 

not provide absolute guarantees that a resource will be available to run the required 

job at a specific time, but does allow a client to specify requirements, and agrees on 

what should happen if these requirements are not met. This approach to QoS 

management does not engender a high degree of confidence that a job will be 

executed, or that results will be collected on time. As discussed in Section 2.2.3 the 

GARA and VAS systems share many similarities with the work in this thesis.

Other QoS efforts in the grid community are mostly attempts to manage network 

properties for grid applications. Examples include The Network Resource Scheduler 

(NRS) project (Bhatti et al. 2003). The objective of the NRS is to provide the users, 

and applications, with a means to request network capacity allocation, with 

immediate or advance reservation. This network resource allocation provides QoS
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guarantees over grid domains, such network QoS utilising the differentiated services 

(DiffServ) concept (Blake et al. 1998). Section 2.7 discusses the network QoS for 

grid applications.

2.23 -  Discussion: GARA and VAS

Although networking support is important, GARA and VAS are designed not only to 

provide network QoS but also other types of QoS, such as processor performance. 

The following sections discuss these two systems and highlight their differences.

2.2.3.1 General-purpose Architecture for Reservation and Allocation (GARA)

GARA is the best known framework for supporting QoS in computational grids, and 

provides the ability of specifying end-to-end QoS requirements. Its advance 

reservation service treats various types of resources uniformly such as networks, 

computation and storage, and provides a guarantee that an application initiating a 

reservation will receive a specific QoS from the resource manager. This is made 

possible by employing specialised resource managers to support QoS guarantees. 

GARA also provides an application programming interface (API) to create, modify, 

bind and cancel reservation requests.

Although GARA has gained popularity in the grid community, it has limitations in 

coping with current application requirements and technologies. For example:

❖ GARA does not operate in an OGSA context, and OGSA-enabled applications 

cannot use it directly. Grid computing increasingly relies on WS technologies, 

and many current grid middleware systems are moving towards WS standards 

(Foster et al. 2002) and placing greater importance on the Web Services 

Resource Framework (WSRF) (Czajkowski et al. 2004).

❖ GARA does not support protocols for agreements, or the establishment of 

SLAs, which are essential requirement for dealing with resources spanning 

multiple administrative domains. The GGF is working on standardising 

agreement protocols, which address resource negotiation with QoS 

specifications, through the GRAAP working group (Czajkowski et al. 2003).
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❖ GARA does not support a QoS adaptation feature for computational resources, 

although QoS monitoring and adaptation during an active QoS session is one of 

the important mechanisms in providing quality guarantees (Al-Ali et al. 2004c).

❖ Although GARA is, in principle, portable, it is based on earlier versions of 

Globus (Version 2.2 and earlier), and is not currently maintained.

2.2.3.2 Virtual Application Service (VAS)

Keahey and Motawi (2003) propose the VAS architecture for managing QoS in 

computational grids. VAS is a grid service with interfaces for negotiating QoS levels 

and service requests. A key objective is to support real-time services with QoS 

provision. A client submits a request to VAS for immediate or advance reservation, 

supplying only time constraints. Application modelling information associated with 

every service allows the system to compute the feasibility of satisfying such time 

constraints. If feasible, the modelling information, such as execution times and 

hardware resource data, allows the system to determine the computational resources 

required to support the request, and to reserve a specific processor capacity. A SLA 

is then presented to the user based on these parameters.

VAS is a deadline-driven system, in which a client specifies only the time constraints 

(start time and deadline time) and VAS computes the feasibility of meeting this 

deadline. This approach is ambitious but is, in reality, limited to a set of predefined 

services. This view is supported by the fact that VAS is designed for a specific 

application domain called the National Fusion Collaborator (NFC) (National Fusion 

Col laboratory, 2005).

2.3 Resource Discovery

Resource discovery is the process of locating resources in a distributed computing 

environment, where a resource can be of any type, including computing nodes, 

networks and storage devices (Foster et al. 2002). A number of techniques have been 

introduced to solve the discovery problem. For example, Ludwig and van Santen 

(2 0 0 2 ) use ontology-based descriptions to enhance the matchmaking process of 

service discovery in grids. Lican et al. (2003), investigating algorithms for service 

discovery, propose the Virtual Dynamic Hierarchical Architecture (VDHA). They
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claim that VDHA supports scalable, autonomous, efficient, reliable and quick 

response, and propose two service-discovery algorithms: (1) Full Search Query and 

Discovery Protocol (FSQDP), and (2) Domain-specific Query and Discovery 

Protocol (DSQDP). Service discovery based on VDHA is fully decentralised and 

unrelated to service-description languages, because it uses local agents of nodes to 

match the services, and can scale to a large number of services; scalability, in the 

context of distributed computing, is highly desirable because of the potential for 

service growth.

Rana et al. (2001) also utilise agents to solve the discovery problem; for example, 

they propose a decentralised approach to resource management and discovery, based 

on a community of interacting software agents, unlike the solution proposed in this 

thesis using a centralised discovery system.

Mechanisms for service discovery based on QoS properties in grids, DMM 

applications and network services have recently been explored. In grids, several such 

mechanisms are based on the Universal Description Discovery and Integration 

(UDDI) project (UDDI, 2004). The myGrid project (Moreau et a l 2002) involves 

middleware intended to provide a toolbox for biologists and bio-informaticians 

performing workflow-based in silico experiments, so as to automate the management 

of such workflow. The concepts of QoS registration for service instances are 

explored in the service directory of the myGrid project though the use of UDDI-M 

an extension to the standard UDDI service directory approach that supports service 

metadata storage via a tunnelling technique that ties the metadata store to the original 

UDDI directory (Dialani et al. 2002). Search mechanisms based on QoS properties, a 

desirable feature for any QoS-based discovery system, are not supported in UDDI-M.

The GARA project (Foster et al. 1999), does not address specifications of QoS 

associated with a particular service and the service concept is not supported by 

GARA. Service discovery based on QoS has also been explored in the context of 

grids, with a demonstration of how a feedback capability on service performance can 

improve QoS. The Wide-area Discovery Framework (Xu et al. 2001), is a 

hierarchical architecture of three elements, service clients, service providers and 

discovery servers, which work together to constitute a wide-area distributed-system
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service directory management. This service directory management is enhanced to 

provide better query responsiveness and QoS awareness. Feedback, in this context, 

means that, during a service session, a software component monitors QoS levels and 

generates the numerically-average QoS level observed. The definition of this QoS 

level is highly service-specific, i.e. dependant on the type of service being 

considered. This project targets queries which must traverse a number of discovery 

services in a hierarchical fashion.

In the context of DMM applications, Madja et al. (1998) propose a data model for 

QoS management on the Web. Their data model is a set of QoS characteristics for 

multimedia audio/video documents. This data may be stored in a database, as text 

files, or as an extension of HTML tags. A client specifies the desired quality of the 

multimedia document and the QoS manager accesses the multimedia document's 

metadata to negotiate the requirements identified by the client. This work, however, 

is limited to multimedia documents, and not general enough to support the concept of 

services.

In the context of network services, the Service Discovery Service (SDS) provides an 

architecture consisting of clients, services and SDS servers (Czerwinski et al. 1999). 

This architecture includes a number of interesting features such as security, 

scalability and the notion of a capability manager. The capability manager has an 

access control list to indicate which users have the right to access which service. In 

SDS, a client searches for services based on their capability rather than the client's 

QoS requirements. In an agreement-based system, the client/application must be able 

to specify their QoS requirements, so a negotiation can take place and an agreement 

can be reached.

The Darwin system (Chandra et al. 1998) is a service-oriented resource management 

system capable of managing requests for complex network services with QoS 

support. A request is entered into the system by the user in the form of a task graph. 

A resource manager locates suitable resources to perform the requested tasks with 

the optionally-specified QoS requirements. The resource manager is responsible for 

creating a hierarchical grouping, which consists of a structure of the network flows, 

with their QoS specifications and the IP addresses of the nodes. This hierarchical
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grouping tree is passed to the designated network resource manager(s) for the 

allocation process.

Darwin has four main components: (1) a high-level resource allocation mechanism 

and a resource broker named Xena, to perform global allocation of resources using 

domain knowledge to support optimisations; (2) runtime resource managers and Java 

control delegates, which support service-specific adaptation for network resources; 

(3) a hierarchical scheduling mechanism, the Hierarchical Fair Service Curve (H- 

FSC) scheduler, which enables each participating resource to specify its own policy; 

and (4) a signalling protocol, named Beagle, which provides an interface between an 

abstract view of the network and the real physical network.

The concept of a service in Darwin is quite restrictive, with its primary focus on 

network resources. Support for generic services such as computation, storage or other 

services is limited. In the Darwin system, Xena does not employ a general resource 

discovery protocol, rather, it offers a mechanism through which services can register 

their availability and capabilities, i.e. a simple publish-subscribe mechanism. This 

allows Xena to build a coarse-grained database of available resources.

The systems surveyed in this section do not address the issues of QoS criteria 

specified within a service interface, such as service capability and resource 

specifications needed to run the service properly. Such criteria are particularly 

important when a service is distributed on a number of hosts, or when there are 

multiple service providers who can provide the same service, but with different QoS 

capabilities. Much emphasis has been placed in previous work on building service 

discovery mechanisms that attempt to minimise response time. Generally, such 

approaches utilise a hierarchical scheme to aggregate and propagate network 

statistics (Yemini et al. 1991; Lin and Stadler, 2001). Although such approaches are 

adopted in the context of service discovery (Hass et al. 2001; Xu et al. 2001), issues 

arising as a consequence of using QoS properties have not been adequately 

addressed.
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2.4 Resource Reservation

A reservation can be viewed as a promise from a QoS manager to a client of 

expected resources with a certain capability to be available during a certain time. 

Advance resource reservation is defined as a possibly limited or restricted 

delegation, o f a particular resource capability over a defined time interval, obtained 

by the requester from the resource owner through a negotiation process (MacLaren, 

2003). A resource reservation can be categorised either as an advance reservation or 

as an immediate (also called on-demand) reservation, which can be for a specified, or 

indefinite, duration.

Indefinite reservation is undesirable as it introduces blockages that can result in a 

waste of unused resources. But an important feature of reservation, of particular 

importance to grid computing, is support for co-reservation. Immediate and advance 

reservations are used in a wide variety of systems, mostly in networking, 

communication and distributed applications, including DMM applications. A number 

of systems with advance/immediate reservation features have been proposed in the 

networking and DMM communities, whereas few systems are proposed in the 

context of grids.

Negotiation Approach with Future Reservation (NAFUR) is a QoS negotiation 

system with advance reservation support in the context of DMM applications (Hafid 

et al. 1998). It computes the QoS that can be supported at the time of a service 

request or at a certain later predetermined time. If a multimedia service with a certain 

QoS cannot be supported at the time of a request, NAFUR computes the earliest time 

at which the service can be supported with that specific QoS. This counter offer 

reservation feature is quite desirable, but NAFUR is restricted to DMM applications.

In Kim and Nahrstedt (2000), a resource broker (RB) model in the context of 

middleware for DMM applications is proposed with the following design goals:

(1) Advance and immediate reservations;

(2) A new admission control scheme based on a Timely Adaptive State Tree 

(TAST); and
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(3) The processing of brokerage requests for resource reservation, modification, 

allocation and release.

The admission control, based on TAST, is used to make advance reservation 

decisions, with TAST based on an algorithm that provides QoS suggestions to users. 

These suggestions, provided when the original QoS request is rejected due to 

resource unavailability, can be to reduce reservation duration, to degrade QoS or to 

select a different start time. The use of TAST to make admission control decisions is 

a notable feature of this model, which is useful as it provides suggestions when the 

original request cannot be granted, as opposed to a YES/NO response. The approach 

is however limited to DMM applications.

In Karsten et al. (1999), advance reservation is formalised in the context of networking 

systems, and the fundamental problem of admission control associated with resource 

reservation is introduced. Based on a literature review, the authors conclude that no 

earlier approach is sufficiently flexible to cover all potential needs of all users. Their 

solution is to separate the issue into technical and policy specifications, supported by a 

generic reservation service description and a corresponding policy layer. This 

combination improves the flexibility of advance reservation. Although this advance 

reservation approach is intended for networking systems, and deals with only one type 

of resource, it can be generalised for multiple resources.

None of these research projects address advance reservation in the context of service- 

oriented architectures. Nevertheless, the GGF GRAAP working group has produced 

a ‘state of the art’ document laying down properties for resource reservation in grids 

(MacLaren, 2003). None of the systems reviewed address the concept of co­

reservation for advance/immediate resource reservation; such co-reservation is of 

particular importance for grid applications, as they often simultaneously utilise 

multiple grid resources. For example; the GARA framework, in the context of grid 

computing, does not provide co-reservation support -  the reservation of multiple 

resources in a single request. The approaches reviewed focus mostly on providing 

alternative reservation suggestions where an original reservation request cannot be 

granted, i.e. counter-proposal reservations. Such approaches are useful but are 

usually limited to a predefined set of services. In the context of grid computing
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however, applications deal with multiple types of resources, and services 

dynamically join, and leave, the grid.

2.5 Service Level Agreements

A SLA, in the context of grid services, is a contract between a service provider and a 

consumer (Czajkowski et al. 2003). A SLA contains general and service-specific 

elements. General elements, a part of every SLA, are independent of the service and 

include, for example, a contract validity period, as well as penalties for SLA 

violations. For example, service-specific, or technical elements include, service 

execution requirements in terms of resource capability specifications and, perhaps, 

performance requirements.

Bhoj et al. (1998) present a Web-based SLA management for network services in a 

federated system, including a framework for contract verification with a visual 

interface for contract compliance reports. Nguyen et al. (2002) propose a protocol for 

negotiating service-level specifications (SLSs) as the technical elements of a SLA for 

intra- and inter-domain network services, based on the Common Open Policy Service 

(COPS), called COPS-SLS.

Pard et al. (2001) discuss the management and control of SLAs for multimedia 

Internet services using a utility model, a mathematical model designed to capture the 

management and control aspects of SLAs. This particular utility model has been used 

in micro-economics theory, and is defined, in this context, as the satisfaction 

obtained from a service provider for the consumed system and network resources. 

The aim of this approach is to address management and control aspect of the QoS 

levels while utilising the system and network resources efficiently. This is achieved 

through the concepts of:

(1) a quality profile that specifies the quality performances of customers, i.e. a 

set of acceptable operating qualities for a service;

(2) quality-to-resource mapping, which maps the qualities specified in the SLA 

to the available resources;

(3) resource constraints -  the sum of all resources allocated to customers, which 

cannot exceed the total available resources, and
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(4) a utility model that maps the customer’s operating quality to a utility value. 

This work is useful as it associates resource operating qualities and utility 

values. It is however limited to the multimedia Internet services domain.

The Service Negotiation and Acquisition Protocol (SNAP), introduced by 

Czajkowski et al. (2002), is a resource management model for negotiating resources 

in distributed systems such as grids. SNAP incorporates three types of SLA: the task 

SLA (TSLA), the resource SLA (RSLA), and the bind SLA (BSLA). A TSLA 

describes a task to be executed while the RSLA describes the resources needed. The 

BSLA provides an association between the resources from an RSLA and the task in a 

TSLA. The protocol requires a resource management entity to guarantee resource 

capability and provide resource provision, i.e. to enforce the RSLA.

In a manufacturing grid (MG), resources are classified by their function and type, 

and encapsulated as grid services (Shi et al. 2003). When a client application 

requests a manufacturing task with QoS specifications, a designated resource 

management entity generates a workflow schedule, consisting of subtasks, services 

and resources needed, encoded into a SLA. The generated SLA includes a 

description of the workflow, with each task of the workflow defined as a grid service 

with its QoS specifications. This work is useful as an approach to QoS-based 

workflow, but the applicability is restricted to the manufacturing application domain 

and operates on predefined services.

Sahai et al. (2003) describe a SLA management entity for supporting QoS in the 

context of commercial grids. In commercial grids businesses are bound by 

commitments specified in SLAs, and monitoring and accountability therefore 

becomes important. The SLA management entity exists within OGSA -  with its own 

set of protocols for manageability and assurance. SLA management also needs 

interfaces to the service factory, registration and discovery service, for finding 

resources based on QoS requirements, and interfaces with a notification service to 

notify impacted parties on SLA status. The authors also describe a formal language 

for SLA specification. Although interesting, this work is preliminary and its general 

applicability is not altogether clear.
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Burchard et al. (2004) propose SLAs for negotiating service execution parameters 

between resource managers. SLA management is achieved via a virtual resource 

manager that enables interaction among a number of schedulers on different clusters. 

The virtual resource manager acts as a coordinator to aggregate SLAs negotiated 

with different sub-systems.

Sahai et al. (2001) explore application-level QoS. Their work focuses on relating 

client QoS criteria with business metrics such as revenue. According to Sahai et al. 

SLAs between two parties should be based on the business transactions conducted 

between them and a transaction focus can then be used to identify criteria that are 

important, for both clients and service providers. Hence, the QoS criteria for a client 

are motivated by metrics such as the performance, reliability and availability of a 

service, whereas a service provider would prefer to differentiate between 

transactions, provide throughput guarantees, support load balancing across available 

resources, and support smooth degradation on overload. Basing their argument on 

these attributes, Sahai et al. propose services with high priorities should be provided 

with a high degree of resource replication to support particular QoS requirements, 

which would allow a service provider to establish specific performance guarantees 

for individual transactions. This work encodes application-level QoS criteria into 

SLAs, and uses the business transaction focus to guarantee SLA compliance.

In this survey the concept of the SLA is explored from various contexts, and is used 

to encode technical specifications, as for DiffServ services in the networking 

community (Nguyen et al. 2002), such as bandwidth, delay and other parameters, to 

characterise the networking link. SLAs are also used to encode business terms, and to 

realise loss/revenue in terms of QoS, as in Sahai et al. (2001). SLAs in SOA should 

extend the traditional concept of SLAs in the networking community to include other 

QoS parameters specific to SOAs, such as resources needed to run a service and 

expected response time. With this extension QoS parameters can be realised in SLAs 

and a client or application can request services with specific levels of quality.
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2.6 QoS Adaptation

A QoS adaptation, as defined here is used to enable the dynamic adjustment of 

application behaviour based on changes in a pre-defined SLA. This adjustment can 

occur when the SLA is violated -  i.e. the QoS specified in the SLA has been 

degraded -  or adaptation is necessary to optimise resource allocation during a QoS 

session (Al-Ali et al. 2004c). QoS adaptation can be seen as a reaction by a resource 

manager to compensate for a resource shortage, such as when QoS has been 

degraded, optimising resource utility by admitting more requests to share the 

available resource, while maintaining agreed-on quality levels. Adaptation is 

particularly useful when workload, or network traffic, changes unpredictably during 

an active QoS session.

QoS adaptation is also defined as ‘the alteration o f an application's behaviour or 

interface in response to arbitrary context changes’ (Henricksen and Indulska, 2001). 

It has been explored in various contexts such as communication networks, DMM 

applications, real-time systems and Web browsers. For example, Mobiware, 

developed at Columbia University (Oguz et al. 1998), is a toolkit that supports 

adaptation at the network level. Mobiware provides programmable network objects 

that can be manipulated to provide applications with a desired QoS. Applications 

specify their QoS requirements using an API, in the form of a utility function and an 

adaptation policy. The utility function expresses the desired application requirements 

with different levels of network bandwidth, while the adaptation policy determines 

how an application's bandwidth allocation should vary as resource availability 

changes. This approach primarily focuses on network QoS.

Hafid et al. (1996) designed and implemented a QoS manager for negotiation and 

adaptation in DMM applications. Based on a user profile, the QoS manager considers 

possible system configurations, called system offers, and selects an optimal offer, 

called a user offer. During playback of a multimedia document, if the network or the 

server becomes congested, thereby lowering presentation quality, the QoS manager 

dynamically considers another system configuration from the list of system offers. If 

an alternate system offer is selected and the required resources reserved, the manager 

automatically changes to the new offer.
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Chu and Nahrstedt (1999) designed and implemented the Soft Real-Time (SRT) 

system for multimedia applications. SRT supports multiple CPU service classes for 

real-time processes, based on the usage pattern of these processes. They use a 

concept of contracts to specify the CPU service class together with a parameter used 

to reserve CPU cycles. As the processing time per frame in a multimedia application, 

changes dynamically for some processes, the contract parameters are adjusted 

accordingly to reflect the change in the processor usage pattern. SRT provides a 

system-initiated adaptation that can adjust contract parameters for the real-time 

processes based on their actual processor usage. One noticeable feature of this 

adaptation scheme is the ability to reserve 'just sufficient’ processor time to execute 

the required processes.

Foster et al. (2000) designed and implemented an adaptive control system prototype 

for grid computing based on: (1) actuators that permit online control; (2 ) sensors that 

permit monitoring of resource allocations; and (3) a decision procedure that allows 

entities to respond to sensor information by invoking actuators. The prototype was 

implemented with particular emphasis on network resource usage. For example, a 

loss-rate sensor might acquire information from a network edge router. The decision 

procedure obtains information from the loss-rate sensor and adapts the network 

reservation using the GARA Create/Modijy reservation request, via a reservation 

actuator. Although this work uses GARA as the underlying resource manager to 

create, and modify, reservations, this is limited to providing a network adaptation 

mechanism.

Cardei et al. (2000) describe the Real-time Adaptive Resource Manager (RTARM) 

for resource management adaptation. RTARM is a general middleware architecture 

for adaptive management of integrated services, and is targeted at real-time mission- 

critical distributed applications. RTARM recognises three situations where the QoS 

for an application may change: (1) QoS reduction when a new application begins; (2) 

QoS improvement when an application terminates and releases resources; and (3) 

feedback adaptation. Situations (1) and (2) impose contract changes due to 

adaptation. Feedback adaptation, conversely, does not impose contract changes but 

operates as a closed-loop control system, monitoring the delivered QoS, and using the
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difference between delivered and desired QoS parameters to adapt to application 

behaviour. The feedback adaptation is intended to optimise resources, even if the 

contract specifies more resources, and if the application actually uses fewer resources, 

only those fewer resources are allocated. This approach of adaptation, i.e. feedback 

adaptation, is useful as resources are optimised. But the situation can arise where the 

applications, which have had their QoS reduced due to adaptation and are using fewer 

resources, can change their usage pattern, and require more resource, but all resources 

are utilised. Such a problem can arise in this type of adaptation mechanism.

The QoS adaptation systems reviewed here have a number of interesting adaptive 

techniques; for example, the introduction of a decision procedure in Foster et al. 

(2 0 0 0 ) and the use of a closed-loop control system, to utilise 'just sufficient’ resources 

in Cardei et al. (2000). However, none of the systems surveyed are SLA-based 

adaptive systems, i.e. using an adaptation mechanism to maintain an SLA agreement. 

A QoS-based system should facilitate the negotiating of SLAs, and then, during an 

active QoS session, provide adaptation behaviour to maintain SLA compliance when 

the QoS degrades, and optimise resource utilisation while maintaining the agreed-on 

quality levels. A SLA-based approach is more practical, and provides a mechanism for 

a client, or application, to negotiate the quality level of service to be received and, 

eventually, the level of service to be expected during the active phase.

2.7 Network QoS for Grid Applications

Currently the Internet treats all traffic equally as best effort and does not support 

QoS. IETF has proposed Integrated Services (IntServ) and DiffServ architectures 

(Barden et al. 1994; Blake et al. 1998). Both these architectures support QoS, with 

data transfer guarantees on bandwidth, delay and other parameters.

IntServ supports network resource reservation by maintaining per-flow admission 

control, signalling, classification and scheduling at every router on the transmission 

path. However, because of its need for maintenance-of-state information for a large 

number of flows through core routers, scalability is a major issue preventing the 

deployment of IntServ.
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DiffServ, in contrast, provides a broad and flexible range of services, while avoiding 

the need for per-flow state information in core routers. The main goal of DiffServ is 

to provide a preferred level of service to particular types of network traffic, without 

increasing overheads in the core routers. To achieve this, it provides an aggregated 

end-to-end service over a number of separately administered domains. As the inter­

domain level, i.e. between two domains, needs a mechanism to exchange critical 

information about aggregated flows, a Bandwidth Broker (BB) (Teitelbaum et al. 

1999) was introduced to allocate intra-domain resources and arrange inter-domain 

agreements.

A BB is a logical entity responsible for managing QoS for network resources in an 

administrative domain, based on a SLA between two domains, or between a domain 

and an application. Such a SLA specifies to the forwarding service the volume of 

traffic the application can receive. Organisational policies can be configured by using 

the mechanism provided by the BB. On the inter-domain level, the BB is responsible 

for negotiating QoS parameters and setting up bilateral agreements with 

neighbouring domains. On the intra-domain level, the BB’s responsibility includes 

the configuration of edge routers, to enforce resource allocation and for admission 

control. Edge routers can be configured to police, and mark, packets with a DiffServ 

Code Point (DSCP). Policing ensures the receiving rate does not exceed the agreed 

rate; if exceeded, depending on the adopted policy, excess packets are either 

discarded or re-marked for a delayed discard if congestion occurs.

There are recent efforts in the grid community to adopt concepts from the network 

community and to provide QoS in grid applications. Two significant approaches, 

both DiffServ-based, are the GARA project (Foster et al. 1999) and the NRS project 

(Bhatti et al. 2003).

2.7.1 -  GARA Network QoS Support

GARA provides network QoS for grid applications based on a DiffServ architecture. 

Network QoS in GARA is designed, and built, to work with a specific network 

router, the Cisco 7507, and uses Cisco’s Modular QoS Command-line interface to 

configure routers as a policy enforcement point (PEP) to support DiffServ capability.
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In a multi-domain network, i.e. multi-administrative domains, the GARA system 

must exist in every administrative domain. In making a network reservation, for 

traffic spanning multiple administrative domains, two issues arise: locating and 

contacting the GARA system in each domain along the traffic path; and ensuring that 

the application requesting the reservation has secure access to each GARA system 

along the path. This introduces manageability limitations, and constraints on the 

administrative domains where GARA is deployed.

2.7.2 -  NRS Network QoS Support

NRS adopts a peer-to-peer model, as it exists in every administrative domain, and it 

is assumed there is a trust relationship between neighbouring NRSs. NRS uses the 

DiffServ concept, and therefore every neighbouring NRS has a DiffServ SLA (a SLA 

related to a network connection). The application requesting network QoS needs only 

negotiate with the local NRS to establish a local SLA. During the negotiation process 

the local NRS replicates the request, to all NRSs along the network path, to conduct an 

admission control check and, subsequently, to establish a SLA. NRS, like GARA, is 

designed, and built, to only work with Cisco routers and to use Cisco-ISO to configure 

Cisco’s routers as PEPs to support DiffServ. Although NRS has demonstrated its 

effectiveness in providing DiffServ QoS, it is not clear how a grid application 

developer would make use of this ability, because the NRS API is not clearly defined. 

Using NRS also requires the definition of specific network parameters, such as traffic 

specifications, which requires advanced networking knowledge.

2.8 Summary

Research relevant to the thesis is reviewed. QoS management, in the context of grids, 

is defined and the different functions of QoS management are discussed. Special 

attention is given to the four main elements of the thesis: resource discovery, 

resource reservation, SLAs and adaptation. In addition to the network, QoS, in the 

context of grid applications, is discussed, and key efforts in grid QoS networking are 

reviewed. Interesting techniques are reviewed concerning the four main elements of 

the thesis, and it is shown that there is little effort to provide QoS in SOAs.
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Since the QoS management problem was first introduced in the networking 

community, and subsequently in DMM applications, and recently in the grid 

community, a particular focus is placed on related work in these areas. The novelty 

of the thesis lies foremost in introducing a generic, modular QoS management 

framework for SOAs, and for grids in particular (Al-Ali et al. 2002b; Al-Ali et al. 

2003c). The proposed framework gives service providers a means to publish their 

services with QoS properties, while the service consumer can search for services 

based on QoS properties, and execute services on resources with QoS properties.

Chapter 3 -  A Model fo r  Quality-of-Service Provision introduces a conceptual 

abstract model for QoS management in service-oriented architectures, with the 

model's features compared to the work reviewed in this Chapter. The model's most 

significant aspect is an agreement-based model, i.e. a SLA-driven QoS model.
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Chapter 3 -  A Model for Quality-of-Service Provision

3.0 Background

Certain clients of SOAs are concerned with the quality of a service, its computational 

and economic costs, and that it is executed promptly and properly, in accordance 

with their expectations. A QoS mechanism identifies the resources needed to execute 

a service at a specified service quality level. It is important that the selection of such 

resources be subject to other constraints, such as the cost associated with service 

execution on a particular set of resources.

The QoS model presented here (Al-Ali et al. 2005) distinguishes between a service 

provider, a service, a resource and a SLA. A resource is an entity that can be 

reserved, while a SLA is a contract agreed upon between a client and a service 

provider during the establishment phase of a QoS session, prior to resource 

allocation. The problem addressed by the QoS model is how to determine, given 

multiple types of QoS requests from clients, the optimal resource allocation. This is 

undertaken with reference to a set of pre-defmed criteria to maximise resource 

utilisation and maintain requested quality levels. The model includes optimisation 

heuristics to discover such resources.

3.1 Synopsis

Advance resource reservations can be viewed as a way to provide a resource access 

guarantee, and an assurance from the resource management entity that the reserved 

resources, with the specifications requested, will be available during the agreed-on 

period. The model has a mechanism for reserving resources in advance for single and 

collective (i.e. multiple) resources; the latter is called co-reservation. Co-reservation 

is essentially the ability to reserve multiple resources based on a single request, 

reserving for example, processor time and network resources to run a simulation. The
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need for co-reservation arises in grid computing as resources exist across multiple 

administrative domains, and grid applications, usually simultaneously, utilise 

resources from these multiple domains.

The proposed model operates in a distributed computing environment. It is assumed 

resources are shared, and that, during the active phase of a QoS session, resources 

may become congested, or even fail, causing resource QoS levels to degrade. A 

means of compensation for such degradation is essential to maintain an agreed-on 

SLA. A technique for such QoS adaptation is proposed based on reserving extra 

resource capacity to compensate for any resource shortage -  this extra resource 

capacity is adaptive in the way it is utilised by the best effort users (users with no 

QoS requirements) when not in use by guaranteed users. Section 3.3.3.4 elaborates 

on this adaptation technique. Aspects of the QoS model include the following:

❖ It is SLA based;

❖ It employs a service-selection mechanism during the service-discovery 

process, based on QoS properties;

❖ The advance resource reservation mechanism employed guarantees resource 

allocation with certain QoS levels;

❖ It incorporates techniques for QoS adaptation, to compensate for QoS 

degradation during the active phase of a QoS session.

3.2 Quality-of-Service Model

Resource management in distributed systems deals with co-ordinating resource 

allocation for application execution; possibly for multiple clients in a shared-resource 

environment.

Resource management for a single application in distributed systems, in its simplest 

form (Rana et al. 2002), consists of:

❖ Selecting a set of resources for executing tasks generated by the application.

❖ Mapping the tasks to computational resources.

❖ Routing data to these computations.

❖ Ensuring that task and data dependencies between tasks are maintained.
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In grid computing, a resource management entity usually interacts directly with the 

grid middleware. Middleware is a layer of software that connects processes on 

computer nodes connected through a network. An example is Globus, a middleware 

infrastructure from the Globus Alliance (Argonne, 2004) that provides functionality 

specific to a grid infrastructure, such as co-allocation of resources, data management, 

information and security services (Czajkowski et al. 1998). Baker et al. (2000) 

identify the functionalities of grid middleware as the core services mentioned above, 

in addition to QoS and resource reservation. Current grid middleware infrastructures, 

such as Globus, lack QoS and resource-reservation functionality. The QoS model 

presented here can be used to enhance grid middleware by incorporating QoS 

functionality and resource reservation support. Chapters 4 and 5 describe the 

architecture and implementation of a prototype system, and its interaction with 

Globus middleware. The enhancements are embodied in the following actions:

1. Service providers publish their services with QoS properties to the registry service.

2 . A service request consisting of QoS requirements is submitted by a client 

application.

3. The QoS system selects a service that best matches the specified QoS constraints.

4. A SLA specifying the negotiated service and resource capabilities is issued by 

the QoS management system to the client application.

5. Resources required to execute the agreed-on service are reserved for later 

allocation during the active phase of a QoS session.

6 . SLA compliance is assured during the active session by monitoring the QoS 

levels of the allocated resources. Adaptation techniques are utilised if there is 

QoS degradation.

Figure 3.1, on the following page illustrates the sequence of activities undertaken by 
the QoS Model.
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Client QoS Manager Registry Service Service Provider

1: Publish services With

2: Service request with QoS properties

3: SerMce discovery

4: List of services

Select the I 
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Reserve

5: SLA offer J .

6: Accept service offer

Establish

r

7: SLA reference

8: Service invocation

SLA
compliance

I
9: Start the servce with the specified resources in the SLA 1_________________

10: Return results

Figure 3.1: Sequence Diagram of Activities undertaken by the QoS Model

Figure 3.2 on the next page illustrates the model and its components. The QoS 

Manager is viewed as a component within the QoS model, and its main objective is 

to capture requests from the client/application, negotiate SLAs, and enforce SLAs by 

delivering services with agreed-on levels of quality. The QoS Registry is a WS 

registry system, such as the UDDI system (UDDI, 2004), and is part of the proposed 

model. The Service Provider generates a description of its services, with their QoS 

properties, such as the required resources and capabilities needed to execute the 

service, and publishes these to the QoS registry. The Resource Managers (RMs) 

control a set of resources (RES), and interact with the QoS Manager for resource
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allocation. RES contains subsets of various types of resources, unlike some of the 

systems reviewed in Chapter 2, which only focus on network resources. The 

client/application is a consumer that initiates a request for service with QoS 

constraints.

: Client/Application j*—

Client/application requests 
a service (SREQ)

QoS Manager generates 
and enforces SLAs

A registry of services 
with their profiles

RM: Resource Manager 
RES: Resources of the 

same type

RM2RM1

RES3\

QoS Manager

QoS
Registry

Service Provider

Figure 3.2: The QoS Model Architecture

3.2.1 -  Service Request

A client submits a service request SREQ to the QoS Manager, specifying a requested 

service, optional QoS levels, budget constraints and the time interval required for the 

service. These parameters constitute the client’s requirements; the manager searches 

for services with the specified quality level, finds an appropriate service and starts a 

negotiation process. If multiple services are found, a selection process is started, or a 

‘not found’ service message is returned to the client/application. A negotiation 

process in this context means the QoS Manager presents a SLA offer to the client, 

which the client should approve or reject. If rejecting the offer, the client may submit 

another SREQ with different QoS levels -  a process which can be repeated, 

constituting a negotiation process.

Multiple service requests SREQj, SREQ2  SREQm from m clients may be

concurrently submitted. Each requested SREQi undergoes a negotiation process in
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which the manager considers candidate services and available resources, and selects 

those most suitable for the client/application’s requested QoS specification. Some 

client requirements, such as reliability, availability, accuracy and response time, are 

difficult to specify or to measure, and are consequently difficult to capture with 

monitoring tools such as Netlogger (Gunter et al. 2002). Such difficulty arises where 

some QoS specifications are qualitative, such as reliability, and there is no standard 

acceptable criterion. In such cases, it is necessary to obtain this information from 

other sources. To address this problem, the concept of a service profile, specifying 

quality levels associated with a service is introduced. The suggested QoS 

specifications are obtained from statistics, based on client feedback or from the 

service provider. Statistics based on the client’s feedback can be achieved by, for 

example, getting feedback from each client/application using the service, and 

updating the service profile accordingly. These quality levels are dynamically 

updated and maintained in the service profile. The service profile is intended for use 

by the QoS Manager when a client [/] either specifically requests services with the 

default profile, or is unable to specify the resource required for the desired quality.

On receiving a service request SREQi with the required QoS specifications, whether 

obtained from client [i] or from a service profile, the QoS manager undertakes a 

service discovery process by requesting a list of service matches from the QoS 

registry, from which it selects the closest match (according to the mechanism 

described below). The QoS registry, in this context, is characterised by three main 

features:

(1) Service properties -  the ability to associate QoS properties with a service 

through a publishing process. This mainly involves QoS information related 

to the resources required to execute the service, and service utilisation cost;

(2) Range-based searching -  the ability to search for QoS attributes based on 

numerical ranges; to give the flexibility of searching for a service with a 

particular QoS property based on a range. For example ‘find services with a 

required network QoS within the range: 45Mbps>=NetBandwidth>= 155Mbps’; 

and

(3) Service leasing -  the ability to associate a lifetime validity for the service; to 

publish a service valid for usage during a specific time frame, which is useful
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in associating different pricing schemes based on the time of day, such as 

peak and off-peak hours.

This last feature is motivated by the OGSA service-lifetime management function, 

such as transient or permanent services (Foster et al. 2002). Likewise, in the 

proposed approach using this soft-state feature, the published services can have 

associated validity data, so the service provider can set and control this feature. Most 

of the discovery systems mentioned in Chapter 2 do not support such advanced 

features, which can add flexibility for QoS-based discovery.

It is assumed that each service request contains numerical values -  associating an 

importance level with each QoS attribute -  to assist the QoS Manager in making a 

better selection. The selection is based on the principle of choosing the profile that 

most closely matches the requested QoS levels, considering the importance level of 

each QoS attribute stated in the service request.

The selection method is formally described as follows:

Let SREQi = ((qn, wit), (qa, wi2), ..., (qi„, win) ) denote a service request 

from client i, where each q& is a resource request and w,* its associated 

importance weight, with r, = (qn, ql2, ..., qin) denoting the resource requests 

from service request SREQi, and w, = (w n, wi2, ..., win) denoting the 

specified importance weights for service request SREQi. It is important to 

remember that the service request contains one or more resource requests, 

i.e. the required resource QoS level.

Each resource request <7,* is of the form (type, value, range) where type is the type of 

resource requested, such as network bandwidth or processor, value is the minimum 

QoS level acceptable, and value + range is the highest QoS level the client is willing 

to pay for. For example; if a request <7,* of the form (type, value, range) is given as 

(bandwidth, 45, 10) then the request is for type = bandwidth; with the minimum QoS 

value 45 Mbps, and the highest QoS value 45 + 10 = 55 Mbps. The type component 

of qtk is denoted type(qui), with similar notation for value and range.
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Let PROFi = (pn, pi2, ..., Pis) denote the sequence of profiles returned by the QoS 

registry for service request SREQi, and each py from PROFi take the form (q’iji, q ’y2 , 

q ’ij„), where q satisfies in r , .

A profile resource request q ’yk = (type9, value’, range’) satisfies a service-request 

resource request q^ = (type, value, range) if type ’ = type, value ’ > value, and value ’ 

+ range ’ < value + range.

To define the difference between profile p y  =  (q’iji, q ’y2 , • • • ,  q ’yn) and resource 

request vector r, = (qu, qt2, ..., qm) then

n -  Pij = (((value(qu)+range(qu)) -  (value(q’ijl)+range(q’iji))), ... , ((value(qin)+ 

range(qin)) -  (value(q ’ijn)+range(q ’ijn))).

Assuming two vectors, v and w, then the norm of a vector v with respect to vector w 

can be defined as: IIv II* =

The profile that most closely matches the resource requests in r, is taken to be the 

profile py that yields the least value for the norm:

Hr, -p y  II* = <J]£nk=1wk((value(qik) + range(qik)) - (value(q'ijk) + range(q'ijk )))2 .

3.2.2 -  Service Level Agreement

A SLA is of the form

([ti, t2] , <resource assignmenti, <resource assignment2, ....

<resource assignmentr) 

where the range [th t2] is the time interval over which the SLA is valid and a 

<resource assignment is of the form (type, value, w) where type is a member of the 

set RTYP of resource attributes, value is a QoS level expressed as an integer, and w 

is the importance level expressed as an integer.

RTYP contains the string names of various attributes of resource types under 

management and is partitioned according to these types. For example,

RTYP = RTYP network U RTYP disk U RTYP cpu U RTYP memory, where
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RTYPnetworkmight be {bandwidth, packet-loss rate, jitter, delay}.

A resource assignment <resource assignm ent specifies an agreement to provide the 

resource type at QoS level value. An assignment is said to evaluate to true if the 

actual QoS level equals or exceeds that in the assignment, and false otherwise. 

Examples of SLAs are: SLAj = ([tj, t2], (memory, 24, 1))

SLA2 = ([11, t2], ( memory, 24, 1), ( bandwidth, 10, 2))

A type in a resource assignment in a SLA must be measurable and quantifiable 

during service execution. A SLA has two important properties:

❖ A SLA is atomic -  its resource assignments are sufficient to determine its 

status.

❖ A SLA is satisfiable -  it evaluates to true under some interpretations. An 

evaluation to false during a service session indicates a SLA violation. Only 

assignments that are dynamically monitored can become false during service 

execution.

The reader will recall that a SLA is an agreement between two, or more, collaborating 

entities. In the simplest case, these are assumed to be a client and a service provider. 

Three key abstractions in the QoS model are a set ‘SP’ of service providers, a set 

‘SER' of services and a set ‘RES' of resources. These abstractions allow one to 

decouple a service provider from the resources it uses to execute a service -  for 

example, certain resources may be owned by others, i.e. the SP may not own the 

resources. A service provider can offer one or more services, and must support a 

hosting environment, such as Apache Axis/Tomcat for WSs. A service may use one or 

more resources to execute.

The set RES of resources, similar to RTYP, is partitioned by the types under 

management. For example, RES = RESmmork URESdisk URESCI'V URESmm’r' 

where, for example, RES”™* = R E S j  RESp“ ke‘ hs’ m‘'  U R E S U R E S de‘°>

Network attributes, such as bandwidth, packet-loss rate, jitter and delay are 

associated with RES^etwork. Similarly, attributes such as seek time, I/O throughput and 

storage capacity are associated with RESdtsk. The set RES of available resources is a
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union of resource sets based on their attributes. Each set RESattnbute contains multiple 

instances of resources of the associated attribute.

Finally, each resource R e RE$utribute is associated with a single value; the amount 

required is denoted val(R), specifying an appropriate measure of the resource instance, 

for example, a network bandwidth of 10 Mbps or a main memory of 512 MB.

To execute a service with a particular quality, as stated in a SLA, it is necessary to 

select resources (network, disk and processor) based on measurable attributes 

associated with the available services. Resource selection is driven by the fact that 

different resource instances provide different QoS levels.

Each resource assignment in a SLA corresponds to a resource request and 

importance weight pair in the service request. Each resource assignment in a SLA 

must provide a QoS level at least as great as its corresponding lower bound QoS 

level in the service request, but not greater than the upper bound specified by the 

range. This range element increases the flexibility for a client/application to request a 

range-based quality level; alternatively the value of the range must be zero if the 

client/application requests a fixed quality level.

To make this link between a service request SREQi and its corresponding SLAif the 

sequence of resource assignments in SLAi corresponding to the resource request 

sequence r, = (qu, qi2, ..., qj„) in SREQi is denoted as r) = (q'u, q'i2, q\n) where 

each q'ik meets, or exceeds, the quality level specified in . That is, type(q’ik) = 

type(qik), value(q’ik) > value(qik), and value(q’,*) + range(q’ik) -  value(qik) + 

range(qik).

3.2.3 -  Service Level Agreement Formation

From the client’s side, a SLA is a contract to receive a service with specified quality 

levels; from the QoS manager side, it is a commitment to deliver a service, based on 

resources with the specified QoS levels. The model described here attempts to 

capture these views in the abstract and does not address SLA protocols or reporting 

mechanisms such as those described in Chapter 2 (Bhoj et al. 1998; Pard et al. 2001; 

Nguyen et al. 2002).
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The negotiation process involves a client initially proposing a SLA to the QoS 

Manager via a service request. The Manager replies with a yes/no type answer; if the 

reply is no, i.e. the Manager cannot satisfy the client/application request, the 

client/application should submit another request, perhaps with different QoS levels. 

Once a SLA is agreed between the two parties, the QoS Manager must reserve, and 

subsequently allocate, sufficient resources to meet the resource QoS levels in the SLA. 

This negotiation approach is based on a request/reply paradigm, and can be extended 

to support a ‘counter-offer’; instead of replying with a ‘no’ answer, the manager could 

reply with a ‘no’, and a suggestion for possible resource reservation, similar to the 

approach taken in Hafid et al. (1998) as discussed in Chapter 2.

3.2.4 -  Utilisation Model

Given a SLAi, let cost(q'ik) denote the cost of providing the resource specified in q The 

evaluation of cost(q'J can simply be based on a look-up table, or may be dynamically 

calculated as a service executes. As a service uses a collection of resources, the 

aggregate cost is the sum of the costs of the resources specified in SLAi, namely:

Depending on whether the cost for executing a service is calculated by a client or a 

provider, one may optimise this cost from different perspectives. Given a particular 

QoS level, one may be interested in identifying a set of resources that can offer the 

QoS at a minimum cost. This would require a search to determine the best resource 

ensemble that offers a particular QoS at the minimum cost. To achieve this, it is 

necessary to keep the QoS level constant and search for a resource ensemble

where tl and t2 denote the validity time interval for SLAj. Thus the MinjCosti 

equation assigns, for all SLA, elements, resource R eRES type(qik) to q\k , where all 

resource assignments satisfy SLAi, with the cost of SLA, thus minimised.

Service cost for client i = cost(q'ik)

12

satisfying: MinjCosti = m i l l
«€ RKSryp,' qit
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Alternatively, one may be interested in maximising the revenue that can be obtained 

by selecting from available resources while still satisfying the SLA. That is, to find a
12

set of resources satisfying: Max_Costi = m a x  J X"=i cosf(^r'Ijt) dt
R eR E Slyp‘ 'q * ) M R

The MaxjCosti equation assigns, for all SLAi elements, resource R e RES type(q lk) to 

q ’ik, where all resource assignments satisfy SLAi, with the cost of SLAi thus maximised.

One can compute the total cost to m clients, for a given set of SLAs, as:

3.2.5 -  Optimisation Problem

When considering QoS issues for a particular service provider, one may, given a 

sequence of SLAs, SLAi, SLA2, ..., SLAm, allocate resources so that all SLAs are 

satisfied and total cost is minimised. The problem consists of two parts: evaluation of 

each SLA and cost optimisation. The evaluation of a SLA may be binary -  i.e. true or 

false.

Recall that, given a SLAi, value(q'ik) denotes the number of type(q'ik) QoS units 

specified in r). The optimisation problem is to find an r'„ such that, for each resource 

type type(q'ik), the assignment does not exceed the resource capacity of the service 

provider, i.e. value(q'ik) ^  ^  val(R)

Thus the Maxrotaicost equation maximises the total cost of all given SLAs without 

exceeding the service provider’s resource capacity. This cost maximisation heuristic 

is consistent with the objective of maximising resource utility; thereby increasing 

revenues. This optimisation model focuses on the service provider side.

12

Tota!_Cost= J cost(q'ik) dt

R € RES

and which maximises the total cost of all m SLAs:

TotalCost =  max
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3.2.6 -  Service Level Agreement Compliance

Having allocated resources for the specified QoS levels, it is important to ensure that, 

during an active QoS session, SLA compliance is maintained and all QoS attributes 

are satisfied. One approach is through a monitoring service that periodically reviews 

the status of the allocated resources, and an adaptation service that compares the 

agreed-on QoS levels with those actually provided. The monitoring service captures 

QoS values during the actual runtime and compares these to the values stated in the 

SLA. The adaptation service compensates for QoS degradation where possible, if 

such compensation is not possible, a violation report is made to the QoS Manager. A 

further discussion on adaptation can be found in Section 3.3.3.

3.3 Quality-of-Service Management

To realise some of the QoS management functions in this model, as described in 

Chapter 2, a mechanism for advance resource reservation is presented. This 

reservation mechanism is mainly intended to provide a degree of assurance that the 

reserved resources will be available for use; for increasing system flexibility and 

maximising resource utilisation.

3.3.1 -  Advance Resource Reservation

A mechanism to reserve a collection of grid resources is proposed. It is important 

that the reservation be for a collection of resources, as most current grid applications 

require a collection of resources to run successfully. This co-reservation feature 

distinguishes the model from others such as GARA and VAS (Foster et al. 1999; 

Keahey and Motawi, 2003). The fundamental problem with advance reservation, (as 

discussed in Karsten et al. 1999), is that once an advance reservation is granted it is 

difficult to utilise or grant reservations during the hold-back time -  the interval from 

the reservation being submitted until the start time. The problem arises when a client 

requests an immediate reservation for an indefinite period, which may overlap a 

previously granted advance reservation. A number of solutions have been proposed 

to solve this problem; for example, all reservations, including immediate reservation, 

could be specified within an interval -  i.e. indefinite reservation is not supported.
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Another solution is to partition resources for immediate reservation, and to only 

allow advance reservations for specified durations.

The solution adopted for the proposed model is for all reservations to be 

accompanied by duration specifications. This is a valid restriction for high

performance (or high demand) resources, for applications such as scientific

experiments or simulations. In these cases, there is prior knowledge of the need for 

resources and there are no ad-hoc requests for simple resources. Although this type 

of application (e.g. scientific experiments, simulations) would have prior knowledge 

of when the application needs to use resources, the resource configuration to deliver 

the desired QoS remains an issue. One approach to overcoming this issue is to utilise 

prediction systems, such as the PACE project (Jarvis et al. 2003), which would 

propose an estimate of the resource configuration required to deliver a certain QoS 

for a specific hardware platform -  given that PACE has prior knowledge of the 

particular application.

An advance reservation model is specified in terms of five parameters: 

ts: the reservation start time
te: the reservation end time

cl: a reservation class of service -  guaranteed, controlled load, or best effort:
discussed in Section 3.3.3.1. 

type e RTYP: a resource type

value: an integer specifying an attribute value for a resource of type type.

A reservation request is denoted as Res(ts, te, cl, (typej, valuei), ..., (typen, value„)) 

representing a co-reservation for n resources, with start time ts, end time te, and 

reservation class cl. Each resource is specified by a type typek and an associated 

attribute value value*. In the proposed QoS management model these reservation 

parameters result from the negotiation process with the client/application in 

establishing the SLA. A mechanism for pre-emption priority (Karsten et al. 1999) is 

assumed, to allow higher priority service executions to reduce the priority of services 

already running. The pre-emption priority ensures that when the reservation is not in 

effect, either before, or after, the reservation period, the job, or service, making use 

of the reserved resource is not refused or eliminated, but is rather assigned a low
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priority value, which means switching its status from a guaranteed to a best effort 

type of service. To support pre-emption priority in practice, the underlying resource 

manager should be a priority-based system such as the Dynamic Soft Real-time 

(DSRT) scheduler (Chu and Nahrstedt, 1999).

3.3.2 -  Admission Control

Admission control is the process of granting, or denying, reservation requests based 

on factors such as the actual load on a specified resource, and the policy that governs 

who, how and when reservation for a resource should be granted. The maximum 

available capacity for all resources of type type can be defined as

where reserved(R, t) is true if resource R is reserved at time t.

The process of admission for a reservation request

Res(ts, te, cl, (typei, valuei), ..., (typen, value„)) 

can be formally described by a Boolean function that returns true if the request can 

be granted, and false otherwise, as in Algorithm 3.1.

maxavail(type) -
Re RES'*"

The load on all resources of type type at time t can be defined as 

load(type, t) = ^ v a l(R )  .
Re RES'*" A  resened( R ,t)

Input: Res(ts, te, cl, (typeh value i ) , ... , (typen, valuen)) 

Output: boolean

1. for i = 1 to n

2. for t = ts to te

5.

3.

4.

if value,• > (maxavail(type) -  load(type, t)) then 

return false

end if

6. end for

7. end for

8. return true

Algorithm 3.1: Admission Control Function
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3.3.3 -  QoS Adaptation

Adaptation is a key function of QoS management during the active phase of a 

session. Three scenarios under which adaptation can arise are:

❖ Scenario 1 -  New Service Request: a service request is received for which 

there are insufficient resources. Adaptation can be used to free resources by 

adjusting the allocations of active services, for example, services whose clients 

indicate a willingness to accept a degraded QoS, such as receiving the lower 

boundary of the acceptable QoS in their SLA.

❖ Scenario 2 -  Service Termination: a service completes successfully and its 

resources are released. Adaptation can be used to increase resource allocation 

for certain active services while still satisfying their SLAs. This can be realised 

by upgrading the quality level of services that have had their levels reduced, 

upgrading the levels of those not currently receiving the best quality specified 

in their SLAs. In other words, these services have valid SLAs, but the service 

quality being offered is at the lower boundary of the acceptable range.

❖ Scenario 3 -  QoS Degradation: the situation where QoS falls below the 

minimum specified in a SLA. The degradation is detected, either by the 

resource monitoring service, or by an explicit notification from the underlying 

resource manager. Adaptation is used, if possible, to restore the degraded QoS 

to one satisfying the SLA.

The following sections describe a QoS adaptation scheme to address the scenarios 

described above. Section 3.3.3.1 describes the QoS classes supported by the scheme. 

Section 3.3.3.2 discusses the SLA and how it is used. Section 3.3.3.3 discusses the 

optimisation heuristic for adjusting resource allocation; to optimise resource 

utilisation. Section 3.3.3.4 presents the adaptation algorithm, based on reserving 

extra resources for guaranteed services, while general adaptation strategies are 

presented in Section 3.3.3.5. An example is presented in Section 3.4.

3.3.3.1 QoS Classes

Service delivery is categorised into three distinct classes of service motivated by the 

IETF: guaranteed (Shenker et al. 1997), controlled load (Wroclawski, 1997), and 

best effort. Guaranteed class service provides QoS based on pre-defined constraints
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identified by the user, and agreed on by the provider. These constraints are specified 

using pre-agreed parameters, and must be supported by the service provider. QoS 

parameters are enforced to explicitly identified values and are monitored; the service 

provider is committed to delivering the service exactly as specified in the SLA. With 

controlled load service, users state their QoS requirements based on parameter 

ranges; a service provider must be able to offer QoS within the specified range. With 

best effort service, no SLA is required; i.e. there is no QoS agreement, and any 

suitable available resources are allocated to the client. This best effort service is the 

default situation on the Internet.

3.3.3.2 SLA and QoS Adaptation

Choosing an appropriate adaptation strategy and its constituent parameters relies on 

terms that are agreed on, in advance, during SLA establishment. Such terms involve, 

for example, acceptable levels of resource QoS, budget constraints and SLA 

violation penalties.

One important parameter, based on the selected class of service, is the level of 

acceptable QoS. For example, in the case of controlled load, a client/application 

specifies the range of acceptable QoS. This gives the QoS manager flexibility to 

support a range of acceptable quality levels for this particular client/application. With 

this flexibility the manager can upgrade, or downgrade, quality levels while still 

satisfying the SLA, aiming to maximise resource utilisation.

Such parameters in the SLA play a major role in constraining the adaptation strategy. 

They assist in better optimisation decisions as to which services should be upgraded, or 

downgraded, while maintaining SLA conformance and maximising resource utility.

3.3.3.3 Resource Allocation Optimisation

Many different clients can concurrently request service with a specific QoS 

requirement. The QoS levels must be negotiated, and agreed, along with other 

management parameters such as service name, class and duration. The optimisation 

heuristic, introduced above in Section 3.2.5, to reconcile these competing requests, is 

to maximise the total cost as defined by:
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max zr=i J S *=1 cost(q'ik) dt .
' tl

The QoS manager implements this heuristic by varying resource QoS levels based on 

the specified ranges in the SLA. This maximises overall resource utility, while 

maintaining acceptable quality for a user. This variation is undertaken for all active 

services, aimed at reaching the optimal resource allocation that satisfies the heuristic. 

The benefit of specifying QoS levels as ranges in the SLA provides flexibility for the 

QoS manager in allocating resources, and improves resource utilisation, by 

accommodating more service requests.

3.3.3.4 Adaptation Algorithm

Unlike the optimisation heuristic, the adaptation algorithm only operates on the 

guaranteed and best effort service classes. Under this approach, the system 

administrator determines the total resource capacity available for the guaranteed and 

best effort users, including processor, network and disk storage. In addition, an 

adaptive capacity can be specified, based on the rate of resource failure, or 

congestion, as determined by the system administrator. The adaptive capacity is used 

when the QoS for the guaranteed clients has been degraded; as a means to 

compensate for such QoS degradation, or to be used by best effort users when it is 

not needed for guaranteed clients. The algorithm incorporates a minimum capacity 

for best effort clients, also determined by the system administrator. Providing a 

minimum capacity for best effort clients is useful in distributed systems and shared- 

resource environments, because services with no SLAs -  i.e. without QoS guarantees 

-  will not be starved of resources, as they are likely to receive a low level of resource 

usage. The concept of adaptive capacity is an extra resource ability, to be used when 

adaptation is needed in terms of Algorithm 3.2.

These capacity allocations are dynamic, in that, using the adaptive and guaranteed 

capacities, the best effort capacity utilises the free adaptive resources, provided they 

are not currently allocated. The algorithm starts execution by invoking either the 

Allocate_Guaranteed_Resource or the Allocate_Best_Effort_Resource function, as 

shown in Algorithm 3.2:
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Allocate_Guaranteed_Resource: when a request arrives, at line 23 in 

Algorithm 3.2, to allocate resources for guaranteed clients, a check is made 

to find out if the request is less than stated in the SLA; if the request is for 

less, it is considered, while, if the request is for more then only the 

specification in the SLA is considered; (lines 26 and 28). At line 26, if there 

are insufficient resources for allocation to the specification in the SLA, then 

the adaptation function Adapt is called. The Adapt function, at line 17, 

calculates the available net capacity for guaranteed clients at that time. If 

there are insufficient resources available at guaranteed capacity, then it 

borrows resources to satisfy the SLA under consideration, from the adaptive 

resource capacity, and make the remainder of the adaptive resource capacity 

available for best effort clients.

Allocate_Best_Effort_Resource: when a request is made for allocation of 

resources to best effort clients, (at line 33), the algorithm calculates the net 

capacity for the best effort clients at that time; which is the sum of the pre­

defined best effort resource capacity and the available adaptive capacity, i.e. 

the unused capacity of the adaptive. If the calculated net capacity is 

insufficient for the request under consideration, a rejection message is 

generated, otherwise the request is honoured.

Figure 3.3 illustrates the dynamic property of the adaptation algorithm.

Assume capacityToal: C = CG + CA + CB

‘Best effort’ can uses the adaptive 
capacity if needed

When QoS degrades for ‘guaranteed’

Then adaptive is utilised to compensate 
for the degradation 
‘Best effort' can still utilise the 
remaining capacity of the adaptive, as 
long as not in use by the ‘guaranteed’

G A B

G: Guaranteed, A: Adaptive, B: Best effort

Figure 3.3: The D ynam ics of th e  A daptive A lgorithm
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1 C: the total resource capacity
2 CG: the guaranteed QoS capacity
3 CA: the adaptive capacity
4 CB: the b est effort QoS capacity
5 Ng: net capacity for guaranteed

6 Then C = CG + CA + Cb

7 U: set of ALL clients U = { U i , u n}
8 G: set of users of class guaranteed G = {vu vnj
9 B: set of users of c lass b est effort B = {w1 t wn}

10 c(u,t) = capacity required at time t by client ue G
11 b(u,t) = capacity required at time t by client ue B
12 g(u) = guaranteed  capacity with a  SLA for client ue G

13 Available_Guaranteed_Resource (g(u))
14 IF ^  g(u) < CG; where u e  GTHEN

" SLA guaran tees to g(u) can be honoured
16 ENDIF

17 AdaptQ
18 Net capacity NG(t) = CG(t) -  ^  g(u);where u e  G
19 IF NG(t) < 0, (guarantees cannot be honoured at time f) THEN

ADD < X . g(u) -  CG(t)) from A to G 
ADD (CA(t) -  /■£ g(u) -  CG(t)]) from A to B

22 ENDIF

23 AHocate_Guaranteed_Resource(c(u,t), g(u))
24 IF c(u,t) < g(u) THEN

c(u,t) capacity must be given 
26 ELSE IF NOT Available_Guaranteed_Resource(g(u)) THEN

Adapt; allocate c(u,t) capacity 
28 ELSE IF c(u,t) > g(u) THEN

only g(u) capacity is given
Cnew(u,t) Q (d )

Allocate_Guaranteed_Resource(cneW(u,o, 9(u))
32 ENDIF
33 Allocate_Best_Effort_Resource(b(u, t))
34 IF b(u,t) < NB(t); (NB(t) = CB(t) + available A ) THEN

allocate b(u,t)
36 ELSE

cannot allocate the required capacity
38 ENDIF

Algorithm 3.2: QoS Adaptation
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The adaptation algorithm has two important advantages.

❖ Resources are never under-utilised; the extra capacity is used by best effort 

clients provided the capacity is not needed by guaranteed clients (Algorithm

3.2, lines 21 and 34).

❖ A minimum resource capacity is allocated for best effort clients (Algorithm

3.2, lines 4 and 6 ).

3.3.3.S Adaptation Strategies o f Grid Services

The adaptation scheme is based on Algorithm 3.2 and the resource allocation 

optimisation heuristic described in Sections 3.3.3.3. The QoS Manager periodically 

applies the optimisation heuristic, and if there is a considerable gain in benefit to the 

service provider, the resource allocation is modified. On receipt of a request from a 

guaranteed client, the adaptation algorithm is applied; if the request cannot be 

accommodated, the optimisation heuristic is executed.

3.4 Example

An example illustrates the operation of the adaptation scheme, with an emphasis on 

processor resources. Assume that a scientist is about to conduct a simulation 

experiment using grid services and infrastructure. The experiment is to run at site A 

on an SGI multiprocessor machine with 64 processors and 10 GB of memory. The 

database, holding the required data for the simulation, resides at site B. A  second 

scientist participating in the simulation is located at site C. The resources required for 

the experiment are:

❖ A 622 Mbps communication link to connect site B and site A.

❖ A 45 Mbps communication link to connect site C and site A.

❖ 10 processor nodes, 2 GB of memory and 15 GB of disk space at site A.

The resources must be available over the duration of the experiment -  ts  to tg. The 

SGI machine is configured to provide 26 processor nodes to all grid users, with the 

rest dedicated for local processing. The grid system operator partitions the 26 

processor nodes as:
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Cg = 15, Cb = 6  and Ca = 5 processor nodes 

C = Cq + Cb + Ca = 15 + 6  + 5 = 26 processor nodes 

Three SLAs are negotiated with the QoS manager over the period ts  to tg.

❖ SLAj: network bandwidth of 622 Mbps from Site B to Site A. Using the SLA 

format outlined in Section 3.2.2, SLA] can be expressed as:

SLA] = ([ ts ,  tg],  ( bandwidth, 622,(source: B, destination: A), 0))

❖ SLA2 : network bandwidth of 45 Mbps from Site C to Site A. Using the SLA 

format outlined in Section 3.2.2, SLA2 can be expressed as:

SLA2 -  ([ ts ,  tg ] , ( bandwidth, 45, (source: C, destination: A), 0))

❖ SLA3: 10 processor nodes, 2 GB of memory and 15 GB of disk space on the 

SGI machine at Site A. Using the SLA format outlined in Section 3.2.2, SLA3 

can be expressed as:

SLA3 = ( [ ts ,  tg] ,  (CPU, 10, 0), ( memory, 2, 0), (disk, 15,0))

Figure 3.4 depicts the three sites and resources required as in SLA], SLA2 and SLA3 .

Site A
SLA3 includes:
• 10 processors
• 2 GB of memory
• 15 GB of disk space

Site CSite B
SLA2 includes:
•4 5  Mbps network link

SLA, includes:
• 622 Mbps network lint

Figure 3.4: Sites and Established SLAs

Assume the following measurements are recorded during the period to through tc>. The 

‘a ’ and V  notations correspond respectively to available and used processor node 

resources.

Notation: Cg : the guaranteed QoS capacity

Cb : the best effort QoS capacity 

Ca : the adaptive capacity 

a : the number of available processor nodes 

u : the number of used processor nodes
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❖ At (to to /j) the processor node allocation is:

Cq: u = 10, a = 5 ; processor node utilisation and availabity at Cg 

Cb: u = 6 , a = 0  ; processor node utilisation and availabity at Cb 

Ca: u = 0, a = 5 ; adaptive capacity from Cg point of view with the 

corresponding processor node utilisation and availability.

CA: u =4, a = 1  ; adaptive capacity from CB point of view with the 

corresponding processor node utilisation and availability.

❖ At t4:

Cq: u = 4, a = 1 1 ; processor node utilisation and availabity at Cg

CB: u = 6 , a = 0  ; processor node utilisation and availabity at Cb

Ca: u = 0, a = 5 ; Cg point of view

CA: u = 3, a = 2  ; Cb point of view

(best effort clients use resources in unpredictable patterns)

❖ At fj/ three processors from the Cq resource pool become inaccessible; Cg is 

therefore updated to 12 processor nodes. SLA3 is also due to be active; 

requiring the allocation of 1 0  processors

Cg-' u = 14, a = 1; to be brought from Ca when required.

Cb: u = 6 , a = 0

Ca: u = 2, a -  3; Cg point of view 

Ca: u = 3, a = 0; Cb point of view

❖ At t$: three additional processors become accessible:

Cq: u = 14, a = 1

Cb: u = 6 , a = 0

Ca: u = 0, a = 5; Cg point of view 

Ca ' u -  3, a = 2; Cb point of view

❖ At tg: S L A 3  has completed its validity period:

Cq: u = 4, a = 11

Cb: u = 6 , a = 0

Ca: u = 0, a = 5; Cg point of view 

Ca: u = 3, a = 2; Cb point of view

This example illustrates how the adaptation strategy reserves resource capacity for 

guaranteed clients; for use when there is a resource failure, or congestion. The 

dynamic nature of the strategy allows unused resources to be utilised by best effort
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clients. Best effort clients can therefore always make use of system resources. This 

adaptation strategy is, furthermore, a generic approach and is not restricted to a 

specific type of resource, unlike other work (Oguz et al. 1998; Foster et al. 2000). 

Adaptation strategies based on reserving ‘just sufficient’ resources (Chu and 

Nahrstedt, 1999; Cardei et al. 2000) are not used here, as it is difficult to apply such 

mechanisms to different types of resources.

3.5 Summary

A new model for resource management based on QoS is presented. The model shows 

that the QoS problem -  to determine, given multiple client requests, the optimal 

resource allocation that maximises utilisation and maintains requested QoS levels -  

is an optimisation problem. A heuristic to achieve this is described. The model is 

SLA-based, with a client negotiating for service access during an establishment 

phase. The model selects services based on their QoS properties, as published by a 

service provider. Selecting services based on QoS properties requires a registry 

service that can recognise services with such QoS properties, such as the extended 

version of UDDI (ShaikhAli et al. 2003).

The model employs a new mechanism for advance resource reservation, able to 

reserve one or more resources. A novel approach for QoS adaptation, to compensate 

for resource shortages when resource QoS degrades, is introduced in this model. 

Finally, an example illustrating the adaptation approach is given.

Chapter 4 -  Framework Design presents the design for the G-QoSm system, based 

on the model presented in this Chapter.
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Chapter 4 -  Framework Design

4.0 Background

Some applications utilising a grid computing infrastructure require the simultaneous 

allocation of resources, such as computer nodes, network bandwidth, disk storage or 

other specialised resources. Collaborative work, visualisation and image processing 

in distributed computing are examples of such applications. As such applications 

operate in a collaborative mode, data must be stored and delivered in a timely 

manner to clients or processing nodes, and sufficient processing power must be 

available to process the data according to the required behaviour; consequently such 

applications have QoS requirements.

4.1 Synopsis

This Chapter presents a novel architecture for QoS management, called G-QoSm; 

based on the conceptual model described in Chapter 3.

G-QoSm is a general-purpose architecture, in the sense that it can be applied within 

various SOAs, such as computational grids. It has a number of features:

❖ A negotiation protocol, between a client and QoS management entity, or QoS 

Manager, is used interchangeably on behalf of a service provider. This 

negotiation process either results in an agreement, i.e. the establishment of a 

SLA, or finds no agreement. If in agreement, the SLA constitutes a contract 

whose elements i.e. values associated with QoS properties, must be supported 

throughout the agreed-on QoS session.

❖ A registry structured to allow a service provider to publish its services with 

QoS properties, hereinafter referred to as a QoS-aware registry. This allows 

services to be found based on QoS properties. The discovery process employs 

search mechanisms for searches based on complex discovery requests, 

constructed using operators, such as ‘= \ ‘< \  *<’, ‘> \  and ‘> \  and the logical 

operators AND and OR.
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❖ A mechanism for selecting a service based on its QoS properties. Different 

resource allocation strategies for computing QoS are used: resource-domain 

for relatively small applications and services, and time-domain for 

applications and services requiring high-performance resources.

❖ A design with a resource reservation module decoupled from the underlying 

Resource Manager (RM). This decoupling adds flexibility, in that new types 

of RMs can be incorporated as they become available. This flexibility is made 

possible through an intermediate software interface, which integrates a 

newly-introduced RM with the existing reservation module.

4.2 Framework Overview

G-QoSm is intended to operate in a SOA, and the basic principles of SOAs, as in

Figure 4.1 (including publish, find  and bind) (Graham et al. 2002), should hold.

Service
Registry

Find Publish

Service
Request

Service
ProviderBind

Figure 4.1: C oncept of a Serv ice-orien ted  A rch itectu re

A major contribution in this project is an enhancement of the basic principles of 

SOAs with resource QoS provisions, allowing publishing of services with QoS 

properties, finding services based on QoS properties, and binding to services with 

resource QoS provisions.

At a conceptual level, G-QoSm operates as follows:
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Service providers publish their services to the QoS-aware registry with QoS 

properties for each service. These properties can be qualitative, such as 

reliability and accuracy, or quantitative for resource characteristics such as 

network bandwidth. The service properties are stored in a service profile for 

later use. For the purpose of this thesis, quantitative characteristics are 

considered foremost.

A client submits a service request, with optional QoS properties, to the QoS 

Manager, which takes clients’ requests on a ‘First in First out’ basis (FIFO).

The QoS Manager attempts to find a suitable service, based on the

specifications supplied by the client. Where no specifications are supplied by 

the client, the QoS Manager relies on the service profile created during the 

service-publishing process. In all cases, the QoS Manager: 

o Queries the QoS-aware registry for possible matching services, 

o Selects the most suitable service.

o Reserves the required resources and waits for SLA establishment, 

o Encodes service specifications in XML format, noting reserved

resources, into a SLA document and presents it to the client for 

approval.

o If the SLA is approved, it is established and committed; otherwise the 

reserved resources are released. The resources will be temporarily 

reserved until the client/application approves or disapproves the SLA, 

or until a pre-defined time interval has elapsed.

On successful negotiation of a SLA, the SLA is forwarded to the client,

together with its SLA-identifier (SLA-ID), for a later service activation request.

When the SLA validity period approaches, the client can request the service, 

with the QoS specified in the SLA, and the service is then made available for the 

full SLA validity period, with a start and end time to define its validity period.
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Figure 4.2: The G-QoSm  Fram ew ork: A C o n cep tu a l View

The G-QoSm Framework in Figure 4.2 shows a 4-layer architecture, including a:

❖ Client Application Layer: where the client/application resides and interacts 

with the G-QoSm framework. The client/application can access the framework 

via various means, such as portals, swing libraries and legacy applications. This 

interaction with the framework is possible through the G-QoSm API, where the 

client/application can interact with the G-QoSm framework, can request 

services and negotiate SLAs.

❖ G-QoSm Main Components Layer: where reservation, allocation and policy 

managers G-QoSm components are found -  further details on each component 

are given in Section 4.6. These components interact with the client/application 

for service requests and SLA negotiations. They also interact with the various 

resource manager interfaces to allocate and de-allocate resources. These 

components are designed to interact with various RMs in a uniform way. They 

are not designed for a particular RM, and a RM interface layer is therefore 

needed to interact with specific RMs.

❖ G-QoSm Resource Manager Interface Layer: where interfaces for various 

RMs exist. These interfaces are designed to translate instruction from the G- 

QoSm main component layer to the underlying RM layer. This translation 

essentially converts instructions from the G-QoSm main component layer to 

instructions which can be understood by designated RMs. This interface layer
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is useful and new RMs can be incorporated in the architecture as they become 

available. All that is needed is an interface designed to translate to the specified 

RM. The G-QoSm logic, at the main component layer, is kept unchanged.

❖ Resource Manager Layer: where various RMs reside, for example, 

computational RM and network RM. The main role of these RMs is to interact 

with the actual resources, and to allocate, or de-allocate, resources, based on 

instructions from the G-QoSm. A variety of RMs can be used, for example, 

DSRT can be used as a computational RM (Chu and Nahrstedt, 1999), Network 

Bandwidth Broker (BB) as a network RM (Teitelbaum et al. 1999), and Nest 

(Bent et al. 2002) as a disk storage RM. The format and semantic of the data 

coming from, and going to, the RM is handled by a software module, called a 

wrapper, designed specifically for each type of RM. A further discussion on 

RM integration can be found in Section 5.2.3.

This layered architecture is flexible, and can be realised by an ability to incorporate 

new RMs as they become available, which only involves designing a specific 

software wrapper for the RM introduced, while the main components of the G-QoSm 

design are not affected.

4.3 G-QoSm Architecture

G-QoSm has three main operational phases, as described in Chapter 2; 

establishment, activity and termination. During the establishment phase, a client 

application specifies a desired service and the QoS requirements. G-QoSm then 

undertakes a service discovery, based on the specified QoS properties. This process 

submits a service request query to the QoS registry, and receives a list of matched 

services available. G-QoSm then selects a suitable service and presents an agreement 

offer for the client application. During the activity phase, additional operations, such 

as QoS monitoring, adaptation, accounting and, possibly, re-negotiation may take 

place. During the termination phase the QoS session is ended (following a resource 

reservation expiry, an agreement violation or service completion); resources are then 

freed for use by other clients. G-QoSm supports these three phases using specialist 

components, as depicted in Figure 4.3. Subsequent sections describe these 

interactions and highlight how service provision occurs.
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The Client/Application accesses the QGS through the Java CoG Kit and QoS Broker
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Figure 4.4: S tru c tu re  of a QGS

The basic component of the G-QoSm architecture is the QoS Grid Service (QGS), an 

OGSA-based grid service, providing QoS functionality, including negotiation, 

reservation and resource allocation, accessed through its service-interface operations.
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Each QoS-enabled resource is accessed via a QGS, which publishes itself to a registry 

service so it can be found by clients and QoS brokers (entities acting on behalf of the 

client to find services based on QoS properties), and negotiates SLAs with 

clients/applications to use these services. Figure 4.4 shows the structure and main 

components of a QGS.

Figure 4.5 shows the conceptual role of the QoS Broker, which utilises the QGSs and 

interacts with the registry service to search for, locate and negotiate services with the 

QGSs on behalf of a client application. The QoS broker is an intermediate agent that 

accepts requests for the client/application, searches for QGSs that can provide the 

required services, formulates the request in a format the QGSs can recognise, 

submits requests to identified QGSs, and, finally, aggregates the replies and 

negotiates with the client/application, on behalf of the QGSs, the establishment of a 

SLA. This process simplifies the client/application role, especially when dealing with 

multiple grid nodes, involving coordination of multiple requests, negotiation with 

multiple QGSs and aggregating the SLAs.

Grid node 1 Grid node 2 Grid node 3

'W ’;'r'ay-
Allocation 1 [Reservation

Q oS Service

U D D I e

QoS Broker Q oS D iscovery

□
Client's Application

Figure 4.5: The Role of th e  Q oS B roker

The following Section outlines the benefits of the basic QGS building block, of the 

G-QoSm architecture, when used by a QoS Broker.

63



4.5 QoS Brokering

The concept of the QGS, together with the concepts of a QoS Registry and QoS 

Broker, incorporates various features:

❖ It hides, from client/applications, information about locations and 

specifications of each QoS-enabled grid node, and delegates this task to the 

QoS Broker.

❖ It simplifies the task of a client/application when requesting multiple grid 

nodes -  the client needs only state, for example, the number and 

specifications of the QoS-enabled grid resource, and the QoS broker locates 

the specified resources, if available.

❖ The QoS broker-based approach provides scalability; for example; when a 

grid node joins or leaves the grid its state information is maintained in the 

QoS Registry and not in the QoS Broker, improving scalability and 

flexibility. This is possible because detailed information for this QoS-enabled 

grid node is retained in the QGS, which is, in essence, a grid service 

representing a physical grid node. Publishing the service (e.g. QGS) in a QoS 

discovery system such as the extended UDDI (UDDIe) adds flexibility, and 

scalability, for grid nodes joining, or leaving, the grid infrastructure. 

Essentially the QGS can register itself through a publishing process to the 

QoS discovery system, and the QoS Broker can query the discovery system 

on the available services, when needed. It is important to note, as mentioned 

in Section 2.2.2, that the central QoS registry is a virtual resource, possibly 

consisting of a number of replicated information services, and does not, 

therefore, constitute a single point of failure.

❖ The architecture forms a hierarchy of QoS brokering. For example, Figure 4.5 

shows a single level of brokering, basically cluster-based QoS brokering. 

Cluster-based QoS brokering refers to a single layer of grid nodes -  the 

Cluster Broker -  which interacts and directly controls a group of grid nodes. 

However, this can be extended by introducing another level of brokering, 

called grid-level brokering as in Figure 4.6 -  a two level brokering. This Grid 

Broker interacts directly with cluster brokers and not with the grid nodes; 

useful when simultaneously dealing with large numbers of grid nodes. A 

drawback of such QoS brokering is that as the depth of the hierarchy
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increases, additional design complexity is introduced in the root broker. The 

root broker undertake the management process; sending requests to multiple 

brokering entities, and then aggregating their replies to ascertain if the 

original client request can be fulfilled, and a SLA can be established.

C lu s te r B ro k er C lu s te r B ro k e t

Grid Broker

Client's Application

Figure 4.6: H ierarch ical Q oS B rokering  

4.6 Components

The QGS interacts with various modules to deliver QoS guarantees. In addition to 

the main QoS functions, it supports two types of resource allocation strategies, 

allowing the client application to specify the strategy that best suits its needs. These 

strategies are:

Resource Domain: A client can specify a certain percentage capacity for a 

shared QoS-enabled resource -  for example, access to 50 % of processor 

time, or request for 20 Mbps bandwidth from 155 Mbps available.

❖ Time Domain: A client can request an entire resource for exclusive use -  

i.e. no other clients are allowed to share the resource. This functionality is 

enabled by ensuring all requests for resources are issued through the QGS.

The components of the QGS are the Reservation Manager, Allocation Manager, QoS 

Registry Service and Policy Manger as shown in Figures 4.3 and 4.4. The
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architecture in Figure 4.3 consists of a client (the lower part of the figure), and a 

service provider (the upper part of the figure) in a grid environment.

❖ The client makes use of a registry service, (the UDDIe), to find services 

requested. A client may be a physical user accessing G-QoSm services, or 

may be an application.

❖ A service provider, on the other hand, illustrated in the upper portion of Figure

4.3, must provide access to physical resources that are used to manage the 

service, including support for computation, data storage and network access. 

The first interaction between a client and a service provider therefore takes 

place via the discovery operation invoked on the registry service. The UDDIe 

Handler enables the publishing of services, and their properties, to the registry, 

and, subsequently, enables the altering of any parameters associated with such 

services.

Once a request for a service has been received, the Reservation Manager is invoked, 

and, subsequently, the Allocation Manger undertakes resource allocation. To support 

QoS characteristics, a service provider must ensure that in addition to the service 

being offered to external users, it supports additional components to allow 

reservation, and subsequent allocation, of resources where the service is to be hosted. 

In addition, the service must be annotated with additional properties that enable these 

QoS attributes to be encoded in its interface.

The QGS undertakes resource reservation and allocation. When a reservation request 

is received, the QGS undertakes an admission control -  to check the feasibility of 

granting such a request. This feasibility check is undertaken via the Reservation 

Manager, using the admission control function outlined in Algorithm 3.1, and, if 

such a reservation is possible, the requested resources are reserved, the reservation 

table (where reservation entries are stored) is updated, and an agreement, based on 

reservation specification, is generated and returned to the client.

When a resource allocation request is received (as in the case of computational QoS) 

the QGS undertakes a validation process, and verifies that the user has, indeed, made 

a reservation based on the supplied agreement. This test basically retrieves the 

reservation parameters from the reservation table and compares these with those
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supplied by the client/application. If this test is passed, the QGS submits the 

specification of the job to be executed to the Globus Resource Allocation Manager 

(GRAM) for that particular resource. Along with the job specification, the QGS 

supplies other parameters related to computing resource allocation and QoS levels; 

these parameters are passed from GRAM to the computing RM for immediate 

allocation, as GRAM has a direct interaction with the compute RM, as described in 

Chapter 5, Section 5.2.4. This process is handled by the Allocation Manager in the 

QGS. For network QoS, when the active phase of the QoS session has started, the 

networking elements (e.g. a Bandwidth Broker) are configured to support the network 

QoS as specified in the SLA. Further details on QoS support are presented in Chapter 6.

4.6.1 -  Reservation Manager

The Reservation Manager uses a data structure that supports reservations of quantifiable 

resources -  i.e. resources associated with defined capacities. The Reservation Manager is 

de-coupled from the underlying resources, and does not have direct interaction with 

them. However, it obtains resource characteristics, and policies governing resource 

usage, from the Policy Manager. The Policy Manager, in turn, is responsible for 

validating reservation requests by applying domain-specific rules, established by the 

resource owners, as to when, how and by whom the resource can be used. The Policy 

rules are assumed as being supplied by the system administrator. In brief, when the 

Reservation Manager receives a reservation request from the QGS, it contacts the Policy 

Manager for validation, and then performs an admission control to check the availability 

of the requested resource. If successful, it returns a positive reply to the QGS, which 

allows the QGS to propose an agreement offer.

4.6.2 -  Allocation Manager

The Allocation Manager primarily interacts with underlying resource managers for 

resource allocation and de-allocation, and to enquire about the status of resources. It 

has interfaces with various resource managers such as DSRT (Chu and Nahrstedt, 

1999) and the Network BBawc (Sohail et al. 2003). When the Allocation Manager 

receives a resource allocation request from the QGS, it forwards the request to the 

designated underlying RM, through its specific interface, as outlined in Figure 4.2.
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4.6.3 -  QoS Registry Service

G-QoSm is intended for use within a SOA, and its implementation is based on an 

Open Grid Service Infrastructure (OGSI) (Foster et al. 2002). Essentially the core 

component of the G-QoSm, the QGS is a grid service. The QGS, and other grid 

services in the OGSI container, should be published to a registry service. However, 

service publishing here does not mean only publishing a service name, URL and 

basic description. A QGS includes information on QoS-enabled services it offers, 

what allocation strategies it employs, in the case of computing QoS provisions, and 

what classes of network QoS it offers. Such services, with their QoS information, are 

published in a QoS Registry Service so the service can be found, based on the QoS 

information. The QoS Registry Service is used, in this context, to publish services 

with their QoS properties.

4.6.4 -  QoS Policy Manager

The Policy Manager aims to provide information about the resource characteristics, 

and rules governing when, what and who is authorised to use resources. This Policy 

Manager relies heavily on the existence of a policy repository -  data storage for 

policies. Resource owners include information and rules, about their resources, in the 

policy repository; for example, resource capacity allowed for utilisation and class of 

service their resource can provide. These rules are utilised by the Policy Manager to 

provide information on resource characteristics and usage policies when resources 

are requested for reservation, and are mainly used for validating requests.

4.7 Java CoG Kit Core

4.7.1 -  Background

The QGS manages grid resources that are QoS-aware. However, to take advantage 

of, and utilise, such QoS-aware grid resources it is important for applications to 

conveniently interact with such entities, without having to undergo significant 

changes. Consequently, interaction with the QGS is supported via middleware 

libraries, as a means to interact with the G-QoSm architecture.
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The Java CoG Kit (von Laszewski et al. 2001) is Java-based middleware used to 

access various grid implementations, such as Globus Toolkit Version 2 (GT2) and 

Version 3 (GT3). One of the modules of the Java CoG Kit, called cog-core (Amin et 

al. 2004) provides the core functionality for technology and architecture-independent 

interoperability. Cog-core provides APIs offering abstract grid functionality such as 

remote job execution and file transfers without consideration of the underlying grid 

implementation. For example, consider a grid application developed using the APIs 

provided by cog-core. As cog-core offers abstract functionality, irrespective of the 

back-end architecture, whether GT2 or GT3, the same application can be executed on 

a variety of platforms. Thus, to run an application on a GT2 service, the user merely 

needs to state a provider attribute as GT2. The same application can later be executed 

on a GT3 service without modification to its implementation, by simply changing the 

provider attribute from GT2 to GT3.

Cog-core has the required functionality for mapping abstract application 

requirements into back-end specific detail, such as GT2 and GT3 detail, controlled 

by the corresponding provider attribute. To provide seamless interaction between 

grid applications and the QoS-aware grid resources, the functionality of cog-core is 

augmented by incorporating QoS-related parameters. The necessary logic and 

implementation overhead for QoS management is introduced into cog-core, thereby 

allowing an application to make use of QoS features by changing the provider 

attribute to QoS. The provider attribute, is an attribute the client application should 

specify to enable cog-core to select which back-end service to access, whether GT2, 

GT3 or QoS service.

4.7.2 -  Constructs

The two basic constructs of the cog-core library, and enhancement to the QoS 

domain, are Task and Handler:

4.7.2.1 Task

A task in cog-core denotes an atomic unit of execution, abstracting remote job 

execution or a file transfer request. A task has a unique identity, a security context, a 

specification, a service contact and a provider attribute. The task identity helps

69



uniquely represent the task across the grid. The security context represents the 

abstract security credentials of the task, requested by the client who initiated the task. 

Most back-end grid implementations will have their own notion of a security context; 

the security context in cog-core offers a common construct that can be extended by 

an implementation to satisfy a back-end requirement. The specification represents the 

actual attributes required for the execution of the grid task. The generalised 

specification can be extended for common grid tasks such as remote job execution 

and file transfer request. The service contact associated with a task symbolises the 

grid resource required to execute it, and the provider attribute specifies the desired 

back-end grid implementation for the task.

4.7.2.2 Handlers

The task handler provides a simple interface to support interaction with a generic 

grid task. It categorises a submitted task, depending on the selected back-end service, 

and provides the appropriate functionality based on its provider attributes. Cog-core 

contains a separate handler for the back-end functionality it supports. These handlers 

map the generic grid parameters of a task into the back-end implementation-specific 

grid functionality. To incorporate the cog-core functionality into the QoS domain, a 

QoS Handler that holds the QoS-related implementation and logic is provided. The 

QoS Handler manages negotiation, task execution and data redirection between the 

client application and the QoS-aware grid resource. It is important to remember that 

a QoS-aware grid resource is the actual physical grid resource, while QGS is the grid 

service representing the grid resource, with the interaction between the QoS Handler 

and the QoS-aware grid resource achieved through the QGS.

To enable a grid application to request a network or computational resource with 

QoS provisions, certain configuration parameters are needed. The application 

developer must specify the QoS parameters to be considered during the negotiation, 

including start and end times, resource type and specifications. Once the task object 

has been specified, the QoS Handler is delegated, on behalf of the client, to negotiate 

QoS requests. In this case, the QoS Handler is seen as the client by the QGS. This is 

useful especially when an application requires more than one grid resource. All the 

application needs do is instantiate the required number of QoS Handler objects,
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submit the task object to the handlers, and let the handlers negotiate QoS requests 

with the QGS, and return an agreement if the negotiation succeeds.

4.7.23 Integration

Figure 4.7 depicts the architecture of the Java CoG Kit with the integration of G- 

QoSm’s QoS Handler. This figure shows the modular design of a three-layered 

architecture: i) the client application layer, ii) the Java CoG Kit layer, and iii) the 

back-end services layer, whether GT2, GT3, WSRF, QoS or similar. The QoS 

services supported by G-QoSm only interacts with the QoS Handler, a module of the 

Java CoG Kit. Details of the logic needed to handle the communication with the G- 

QoSm are hidden from the client application, and are handled by the QoS Handler as 

part of the Java CoG Kit. It is important to note that the API used to access back-end 

services are similar, which makes it convenient to switch between back-end services, 

such as accessing GT2 or QoS services. In Figure 4.7 the Reservation and Execution 

Modules are designed in two parts -  the client and server. The client section is part 

of the Java CoG Kit, namely the QoS Handler, and its role is to implement the logic 

needed for communication with the QGS, i.e. from the application perspective. The 

server part implements the interaction handling between the client and the services 

supported by G-QoSm, i.e. from the G-QoSm perspective.
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Figure 4.7: QoS Handler Integration with the Java CoG Kit
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This abstraction of the Java CoG provides several advantages:

❖ The Java CoG Kit provides access to various grid implementations, through 

its API.

❖ The QoS service can merely be a back-end service, and focus on back-end 

functionality, while allowing the client application interface to be handled 

by the Java CoG Kit.

❖ Because the Java CoG Kit already has many grid applications using its API, 

these grid applications can easily utilise the QoS back-end service. This is 

particularly true because, with a minor change, an application already 

accessing grid services through the Java CoG Kit is able to use the QoS 

back-end services. For new applications it is a simple process to use the 

Java CoG Kit API, with more detail on the implementation is given in 

Chapter 5.

4.8 Negotiation of QoS Levels

A QoS negotiation is based on a request/reply paradigm, which can be as simple as a 

single request and reply, or can involve multiple requests and replies. The 

negotiation process must reach agreement, between the client and the service 

provider, about the reservation schedule, or the parameters involved in providing a 

given service, before the service starts. It is not necessary for a negotiation to take 

place every time, (e.g. multiple requests and replies), but at least one request/reply is 

required, especially if the service provider can immediately meet the request. 

However, if the constraints, i.e. QoS levels, in a request cannot be met, it is necessary 

for the service provider and the client to reach an agreement, which can be achieved 

through negotiation, by altering the QoS parameters in the request, sending the 

request to the service provider, and waiting for a reply. If the request cannot be 

supported by the service provider, the client may send another request. This process 

can be repeated and this, in total, comprises the negotiation. This negotiation 

approach can however be extended to support a counter-offer, and, subsequently, if 

the resultant negotiation cannot provide the resource required, a suggestion can be 

made on when the resource would be available.
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A QoS negotiation is essentially a match-making process, between a client’s desire 

for a service with QoS constraints and a service provider’s matching resource 

capability. For example, a client may request constant QoS levels during the lifetime 

of a service session, such as a data transfer service transferring a data set from point 

A to B at a rate of 100 Mbps. However, during the transfer session it is possible that 

the requested bandwidth cannot be sustained. In this case, the client may either 

request a decrease in the requested bandwidth while the transfer service is active or 

terminate the service. Alternatively the service provider must find additional capacity 

to sustain the QoS demand. A QoS re-negotiation requests the increase, or decrease, 

of QoS levels while the service session is active. If a client’s re-negotiation request 

has lower QoS levels than the original request, then the new request is guaranteed, 

but if the re-negotiation request increases the QoS level, the service provider must 

run an admission control check, treating the request as a new QoS negotiation, 

subject to approval, or rejection.

The QoS negotiation process involves service negotiation and QoS negotiation. 

Decoupling service and QoS negotiations improves system availability and 

flexibility; system availability is concerned with the number of requests admitted, 

while system flexibility is concerned with adapting to different client requests during 

an active QoS session. The QoS negotiation model proposed in this thesis requires a 

service negotiation phase, with an optional QoS negotiation phase, for negotiating 

resource characteristics and QoS levels. Two mechanisms are envisaged to obtain 

resource characteristics and service quality. Either the client application explicitly 

supplies resource characteristics and QoS levels required, or it relies on a service 

profile stored in the QoS registry, as discussed in Chapter 2.

In the latter case -  using a service profile -  the service profiles are either obtained 

from the service provider, based on feedback provided by clients, or generated using 

prediction models such as that in Jarvis et al. (2003). Quality levels within the 

service profile are dynamically updated and stored in the QoS registry. The service 

profile is for use by the QGS where a client specifically requests a service with its 

default QoS specifications, or does not have details on the resource configuration 

required to support the requested QoS level.
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4.9 Quality-of-service Negotiation Protocol

The three participants involved in a negotiation protocol are the client, the QGS and 

the service provider. The QGS is the coordinator of the negotiation process between 

a client and a provider. The provider delegates the QGS to act on its behalf. There is 

no direct interaction between the client and the provider during negotiation.

The QGS supports a number of operations for use by a client, which include: Query, 

Reserve, Update and Cancel, using an interaction based on an XML message 

exchange, with these operations explained in sections 4.9.1 to 4.9.4. The XML 

schemas for these operations are new and specifically designed for the G-QoSm 

architecture.

4.9.1 -  Query

The QGS maintains, in a registry service, information about services and resources 

available to clients. The Query operation is used to interrogate the registry to find a 

service with particular QoS attributes. If a suitable service is found, the QGS reserves 

the resource(s) for a limited period (as a temporary reservation) and returns a query 

handle. The resource(s) are held until the client confirms the reservation, or the 

temporary reservation time elapses.
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<xs:element name="Query">
<xs:annotation>

<xs:documentation>XML Schema for Query Operation</xs:documentation> 
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="service">

<xs:complexT ype>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type=”xs:string" use="optional"/>

</xs :complexT ype>
</xs:element>
<xs:element name="temporalQoS">

<xs:complexT ype>
<xs:attribute name="startTime" type="xs:dateTime" use="required’V> 
<xs:attribute name="endTime" type="xs:dateTime" use="required"/> 

</xs:complexType>
</xs:element>
<xs:element name="computeQoS" minOccurs="0">

<xs:complexT ype>
<xs:attribute name="capacity" type="xs:integer" use="required"/>
<xs:attribute name="nodeCount" type="xs:integer" use="optional’7> 
<xs:attribute name="computeImportance" type="xs:integer" use=" optional " />  

</xs:complexType>
</xs:element>
<xs:element name="networkQoS" minOccurs="0">

<xs:complexType>
<xs:attribute name="sourceIP" type="xs:string" use="required"/>
<xs:attribute name="destIP" type="xs:string" use="required'7>
<xs:attribute name="bandwidth" type="xs:integer" use="required'7> 
<xs:attribute name="networkImf)ortance" type="xs:integer" use=" optional "/> 

</xs:complexT ype>
</xs:element>

</xs:sequence>
</xs:complexT ype>

</xs:element>

Figure 4.8: XML Schema Definition for the Query Operation

Figure 4.8 is the XML schema definition for the Query operation with the required, 

and optional, elements as follows:

❖ Service Name: name of the requested service and its required element.

❖ Service Type: type of service, such as compute or network service, which is 

an optional element.

❖ Temporal QoS: concerned with the start and end time of the requested 

service, this is a required element associated with the two attributes: start time 

and end time.

❖ Compute QoS: describes the QoS attributes for the compute service, which 

are: ‘capacity’ (a required attribute), ‘node count’ (an optional attribute, as
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the default is one compute node), and ‘compute importance level’ (an 

optional attribute), to specify the importance level as discussed in Chapter 3.

❖ Network QoS: describes the QoS attributes for the network service. These 

attributes are, ‘source IP’, ‘destination IP’ and ‘bandwidth’, which are all 

required, together with ‘network importance level’ (an optional attribute), to 

specify the importance level.

4.9.2 -  Reserve

After a successful Query operation, and while resources are being held on a 

temporary basis, the Reserve operation is used to confirm the reservation. The QGS 

changes the status of temporarily-reserved resources to permanent, establishes a SLA 

and return an agreement handle to the client for use during service invocation. A 

schema for this Reserve is given in Figure 4.9 on the next page.

The reserve operation confirms a previously-made query for a service, with the reply 

including an agreement handle; a unique identifier for the requested service and its 

QoS information. The reserve schema has only one element:

❖ Service Offer: with only one attribute -  query handler; a required attribute 

for confirming the reservation.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified" attributeFormDefault="unqualified"> 
<xs:element name="Reserve">

<xs:annotation>
<xs:documentation>XML Schema for Reserve Operation</xs:documentation> 

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="serviceOffer">

<xs:complexT ype>
<xs:attribute name="queryHandle" type="xs:string" use="required"/> 

</xs:complexT ype>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 4.9: XML Schem a Definition for the R eserve Operation
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4.9.3 -  Update

The update operation is used for re-negotiation in a situation where a client, during 

an active session, wishes to modify the constraints on particular QoS attributes. If the 

constraints are being relaxed, i.e. the QoS levels are reduced, then the operation is 

guaranteed to succeed. However, if additional resources are required then the request 

is treated as a new request, and the admission control procedure is applied, with the 

request either being approved or rejected. This is equivalent to a Query operation 

followed by a Reserve operation. Figure 4.10 shows an XML schema definition for 

the Update operation.

<xs:element name="Update">
<xs:annotation>

<xs:documentation>XML Schema for Update Operation</xs:documentation> 
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="agreement">

<xs:complexT ype>
<xs:attribute name="agreementHandle" type="xs:string" use="required"/> 

</xs: complexType>
</xs:element>
<xs:element name="newTemporalQoS" minOccurs="0">

<xs:complexT ype>
<xs:attribute name="endTime" type="xs:dateTime" use="required"/> 

</xs:complexT ype>
</xs:element>
<xs:element name="newComputeQoS" minOccurs="0">

<xs xomplexT ype>
<xs:attribute name="capacity" type="xs:integer" use="required"/> 
<xs:attribute name="nodeCount" type="xs:integer" use="optional"/> 

</xs:complexT ype>
</xs:element>
<xs:element name="newNetworkQoS" minOccurs="0">

<xs:complexType>
<xs:attribute name="bandwidth" type="xs:integer" use= "required"/> 

</xs:complexT ype>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 4.10: XML Schema Definition for the Update Operation
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The schema for the Update operation requires the following elements:
❖ Agreement Handle: an element returned from a previously-made reserved 

operation; used to reference the previously-made SLA; a required element.
❖ New Temporal QoS: for the re-negotiation, during the active session of the 

service. Needed to extend, or decrease, the service session period, with this 
element concerned with the new end time of the service. This element is only 
required if the end time of the service changes.

❖ New Compute QoS: where a compute QoS specification is re-negotiated, the 
capacity attribute is required. The number of nodes is optional as the default 
is one.

❖ New Network QoS: where the network QoS specification will be re­
negotiated, the bandwidth attribute is the only one requiring updating, and is 
therefore required.

4.9.4 -  Cancel

The Cancel operation, with schema given in Figure 4.11, cancels an agreement 

handle returned by a Reserve operation -  i.e. it cancels a reservation. It may only be 

used before the service session starts. If the session has started, a different operation, 

not part of the negotiation process, may be used to release resources as part of the 

clearing phase of the QoS management function, as discussed in Chapter 2, namely 

the service_completion primitive part of the QGS API -  with further details given in 

Chapter 5.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" 

attributeFormDefault="unqualified">
<xs:element name="Cancel">

<xs:annotation>
<xs:documentation>XML Schema for Cancel Operation</xs:documentation> 

</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:element name="agreement">

<xs:complexT ype>
<xs:attribute name="agreementHandle" type="xs:string" use="required'7> 

</xs:complexT ype>
</xs:element>
</xs:sequence>

</xs:complexT ype>
</xs:element>

</xs:schema>

Figure 4.11: XML Schem a Definition for the Cancel Operation
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The cancel operation cancels a previously-made reservation, and therefore needs 

only one parameter:

❖ Agreement: contains one attribute, the agreement handler; a required 

attribute for cancelling the reservation.

Figure 4.12 is a sequence diagram for QoS negotiation protocol; it makes use of the 

four basic operations, namely; Query, Reserve, Update and Cancel, to implement the 

QoS negotiation, and re-negotiation, of a QoS session. The sequence diagram defines 

the general syntax of the protocol as follows:

1) The client/application sends a Query operation, i.e. initiates a negotiation request.

2) The QGS replies with a query handle, which is a reference for the query, only 

supplied if the query can be satisfied.

3) If the client/application accepts the offer, the client/application should use a 

Reserve operation, supplying the query handle to confirm the acceptance of the 

offer, and subsequently, the SLA is established.

4) The QGS replies with an agreement handle; a reference to the SLA.

5) Before the service, i.e. the QoS session has started, the client/application can 

use the Cancel operation to cancel the established SLA.

6 ) The QGS replies with the agreement status, i.e. whether or not the established 

SLA has been cancelled.

7) During the active phase, i.e. the QoS session, the client/application can use the 

Update operation to re-negotiate the established service agreement. For 

example, by requesting more resources, relaxing the resource specifications, or 

altering the end time of the service.

8 ) The QGS replies with a re-negotiation status, to indicate whether or not the re­

negotiation has been successful.
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Client QGS

1: Query for service and resources

2: Reply a QoS proposal

3: Reserve [if proposal is accepted]
-> L

4: Reply agreement handle

Before the 
service starts

5: Cancel, to cancel agreement

6: Reply agreement status

ir
During the 
service session

7: Update, to re-negotiate agreement

8: Reply re-negotiation status

Figure 4.12: Sequence Diagram for QoS Negotiation Protocol

4.10 Summary

The G-QoSm architecture is presented in this Chapter, The basic building block of 

the architecture is the QGS; a QoS management system encapsulated into a grid 

service. This QGS manages physical grid resources to provide QoS functionality, 

such as resource reservation and allocation. The QGS can be published to a QoS 

discovery system, making it convenient for service discovery based on QoS 

properties. The QGS can further be used by a variety of QoS-brokering approaches, 

such as a hierarchical organisation of brokering agents.
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G-QoSm is modular in design, giving flexibility for incorporating new resource 

managers as they become available. The architecture is a self-contained QoS 

management system and is built as a back-end service to the Java CoG Kit. This 

gives the G-QoSm further flexibility, as Java CoG is popular in the gird community, 

and many grid applications already use the Java CoG Kit to access grid back-end 

services, such as GT2 and GT3. Consequently, a CoG-based grid application has a 

natural transition into G-QoSm, and a new grid application can easily become QoS- 

aware via the API provided.

The process of QoS negotiation is presented, including a description of the protocol 

for message exchange between client and the QGS. The protocol is based on four 

message operations, Query, Reserve, Update and Cancel, which are conjectured to be 

suitable for QoS negotiation in a distributed system.

Chapter 5  ~  The Prototype discusses implementation aspects of the G-QoSm 

architecture, presenting a prototype and highlighting its key features, and 

demonstrates how a grid application can become QoS-aware, via the Java CoG API 

and the G-QoSm QoS Handler.
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Chapter 5 -  The Prototype

In this Chapter, implementation details of the G-QoSm prototype are presented, 

describing how the underlying resource managers are integrated into G-QoSm, and 

how a typical grid application uses the system.

5.1 Synopsis

A novel feature of the G-QoSm system is its implementation as a grid service within 

the GT3 toolkit. Being a grid service this allows G-QoSm to leverage services from 

Globus middleware such as security and the standard job submission mechanism, 

through GRAM, and other grid middleware services. The Java CoG kit (von 

Laszewski et al. 2001) client API library is extended to support access to the G- 

QoSm system, making use of services from the GT3 grid middleware. The prototype 

implementation of G-QoSm is an open-source implementation and can be 

downloaded and used. 1 The Java CoG Kit and Globus toolkit can also be 

downloaded from the Globus Alliance Web site (The Java CoG Kit Project, 2004; 

Argonne, 2004).

5.2 Implementation Overview

The implementation uses Java for most components, and C is used for creating a 

wrapper between QGS and the underlying resource managers, such as DSRT. Java 

allows for object-oriented design, modularity in system design, easy integration with 

other Java, C and C++ components and availability of APIs, to use the protocols for 

distributed computing and WS, such as SOAP and Web Services Description 

Language (WSDL).

Figure 5.1 presents an overview of the implementation architecture, showing how the 

QoS management component is implemented as QGS grid service. The QGS is 

deployed into the OGSI container within Globus GT3, with the entire GT3

1 Appendix B gives the installation procedure for the QGS service and the computation resource 
manager.
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middleware installed on a Linux-based machine. The grid node is identified as that 

machine which can offer its resources for use by G-QoSm clients. Clients may 

interact with QGS in two ways, either by directly using the API of QGS to negotiate 

a SLA request, or by using the API of the client library from the Java CoG kit, which 

provides most of the functions, such as negotiating the SLA. Using either way of 

interacting with QGS, the client must specify the allocation strategy for the chosen 

resources, whether time-domain or resource-domain, which are defined in Section 

4.6. Once a client has negotiated a SLA request, the corresponding resource manager 

interface is configured accordingly, and the underlying resource manager is duly 

given the SLA parameters for actual resource allocation.

R2

W tn 
n> T>

Application

QoS Grid Service 
(QGS)

OGSI Container

Figure 5.1: Prototype Implementation Architecture 

5.2.1 -  QGS Reservation Manager

The reservation component within QGS plays a major role in providing resource 

QoS provisions. Once a request is received from an application the functional 

requirements needed for the reservation are extracted from the request and 

formulated as resource specifications. These resource specifications are then 

submitted to the Reservation Manager with the request passing through a validation 

and admission control process; if the request is successful, a reservation handle is 

returned. This handle can later be used to claim or modify the reservation. In addition 

to implementing the admission control procedure, the validation function captures 

policy information necessary to validate the service request -  for example, to 

discover any limitations on resource utilisation per service, or the class of service 

requested. The reservation manager, in general, performs admission control on 

reservation requests after a validation process has been undertaken by the policy
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manager. Here the generic reservation component dynamically binds the reservation 

to a specific resource type, such as a network or a computing resource. In Appendix 

E, a Java class shows the reservation data structure and method used for resource 

reservation. Section E.l shows a Java class for the reservation agent, which 

implements the reservation manager functionality. Section E.2 is a Java class for 

validating reservations requests.

5.2.2-Q G S  API

Appendix A gives a WSDL specification of the QGS service interface provided by a 

set of APIs, including the specification of its operations. The term application is used 

to denote a client.

An application may interact with QGS in two ways:

❖ It can interact directly through the QGS API; this requires some extra handling 

by the application, such as using the API to negotiate SLAs as described in 

Figure 4.12, (i.e. using the negotiation protocol), or using the security 

infrastructure of the Globus API. This approach is ideal for building brokering 

services that use the QoS management entities.

❖ An application can interact with QGS via the Java CoG kit client library. Using 

this approach, the Java CoG kit is extended with a library for QoS handling. 

This extension provides: (i) compatibility with other services supported by Java 

CoG, such as a file transfer service and a job submission service, making it 

relatively easy to build a complex application; (ii) access to the Globus security 

infrastructure; (iii) the advantages of the built-in SLA negotiation component -  

the application submits the request and the Java CoG QoS handler is delegated, 

on behalf of the application, to undertake the negotiation phase; it returns a null 

response if it is not possible to establish a SLA and a SLA identifier (SLA-ID) 

response otherwise.

package or g .globus.c o g .q o s .server.impl; 

public interface Qos {

public String service_request(String request);

 public String delete_request(String deleteRequest);
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public String sla_acceptance(String acceptanceRequest) ;

public String sla_rejection(String rejectionRequest) ;

public String service_execution (String executionRequest) ;

public String service_extention(String extentionRequest) ;

public String service_completion(String completionRequest) ;

public String isResourceAvailable (String request);

public String print_reservations();

public String isJobCompleted(String id);

public String setGramContact(String gramContact);

public
}

String deleteReservationEntries();

Figure 5.2: Main QoS Interface Class with Primitives for the QGS API

Figure 5.2 is a Java interface class that includes primitives for the QGS; the 

primitives, with a brief description, are:

❖ public String service_request(String request): sends a service request to 

QGS with the service name, allocation strategy, start and end times and 

service type, thus implementing the Query operation -  Section 4.9.1. The 

request is encoded as XML attributes. A reply is returned, either with a 

service offer or with no offer. If a service offer is returned QGS has found 

suitable resources and temporarily reserved these. These resources await 

application approval so the temporary status can be changed to permanent, or 

until a pre-defined time elapses.

❖ public String delete_request(String deleteRequest): removes a reservation 

entry from the reservation table. After a service_request has been successfully 

completed, and a SLA has been established, the associated application has the 

chance to cancel the SLA. thus implementing the Cancel operation -  Section 

4.9.4. This feature is particularly useful when the application cannot use the 

promised resource due to some problem on the application side, for example, 

the application ‘hangs’ and cannot run at this time.

❖ public String sla_acceptance(String acceptanceRequest): accepts a SLA 

offer generated after a service_request had been successfully completed, and
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the requested resources temporarily reserved. This changes the reservation 

status to permanent, thus implementing the Reserve operation -  Section 4.9.2.

public String sla_rejection(String rejection Request): rejects a SLA offer 

that was generated after a service_request had been successfully completed 

and the requested resources temporarily reserved. A SLA offer can be rejected 

for various reasons, such as the offer not matching the initial request or the 

application deciding to negotiate for more, or fewer, resources.

public String service_execution(String executionRequest): activates a 

successfully negotiated SLA for a job submission with QoS properties. The 

executable files, data input/output files and the job submission mode -  batch 

or interactive -  are specified in the input parameter.

public String service_extention(String extentionRequest): initiates a QoS 

re-negotiation during the active phase of service, i.e. the QoS session, thus 

implementing the Update operation -  Section 4.9.3. A request to update an 

established SLA is passed to the reservation manger and, in particular, for the 

admission control procedure and validation function for the QoS levels to be 

increased. Such a request is automatically granted if the QoS level is to be 

reduced.

public String service_completion(String completion Request): releases 

resources when a service completes prematurely -  i.e. before the SLA expires 

-  thus starting the clearing phase as mentioned in Chapter 2. QoS 

management systems usually hold resources until SLA expiration, unless 

otherwise requested by the application.

public String isResourceAvailable(String request): used by a brokering 

service to reserve multiple resources from more than one grid node. This 

allows an application to check whether resources are available without 

actually reserving them. This primitive is usually used before a 

service_request call.

public String print_reservations(): used by a brokering service, or system 

administrator, to query the reservation table and view all established SLAs 

and their corresponding reservation details.
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❖ public String isJobCompleted(String id): used for notification purposes on 

a previously submitted job. The GRAM gatekeeper is contacted for the status 

of the submitted job: running, suspended, completed or failed.

❖ public String setGramContact(String gramContact): used when QGS is 

started, to supply the GRAM gatekeeper contact address, provided by Globus 

middleware for job submission management and control. All submitted jobs 

are processed by this specific GRAM gatekeeper.

❖ public String deleteReservationEntries(): used by a brokering service, or a 

system administrator, to clear the reservation table. All reservation entries 

within the reservation table are removed. This is useful before shutting down 

QGS, or for testing purposes.

5.2.3 -  Resource Manager Integration

The integration of a Resource Manager into G-QoSm requires the design, and 

implementation, of a software interface module specific to that Resource Manager. 

Such a software module, sometime called a wrapper, interacts with the Allocation 

Manager module in G-QoSm, and acts as a gateway to, and from, the Resource 

Manager. It translates requests from QGS into requests understood by the 

corresponding Resource Manager. Requests can include:

❖ return resource status and availability

❖ allocate resources

❖ de-allocate resources

❖ set resource allocation options and strategies

In Appendix C, the DSRT wrapper API is shown for a computational Resource 

Manager. Section C.l shows a Java class for executing commands by the Resource 

Manager, such as the command to allocate resources. This modular design for G- 

QoSm, with a wrapper specific to the Resource Manager, allows flexibility in 

integrating new resources managers as they become available. To integrate a new 

Resource Manager, a corresponding wrapper implementation is necessary.

Most RMs provide some functions already provided by QGS, such as resource 

reservation; this duplication allows for flexibility. For example, suppose the network 

resource manager has two SLAs at the network level, denoted SLAnetworu  and
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S h k network2 to distinguish them from SLAs for other resources. One can then define 

two resource capacities -  i.e. pools of resources -  one for guaranteed clients and one 

for best effort clients. One can map the G-QoSm view of the resource pool to the 

physical resources managed by a resource manager, such as a SLA network in this case. 

Such mapping allows a degree of flexibility and is consistent with the adaptation 

strategy of the G-QoSm model outlined in Chapter 3. This flexibility lies in the 

ability of QGS to manipulate the logical resource pool and conduct admission control 

checks whilst not actually committing physical resources until necessary. Figure 5.3 

shows a model of resource manager integration in G-QoSm.

Disk
Interface

Allocation M anager

Disk Resource 
M anager, e g .  

Nest

C o m p u te  — C PU  
In terface

Dynamic Soft Real 
Time S cheduler 

(DSRT)

Netw ork
in terface

Network 
B andwidth  B rok er

Figure 5.3: In tegration  of R e so u rc e  M an ag ers in G -Q oSm

5.2.4 -  Compute Resource M anager

The compute resource manager in G-QoSm is DSRT, a user-level soft-real-time 

scheduler, based on the changing priority mechanism supported by Unix and Linux 

(Chu and Nahrstedt, 1999). The highest fixed priority is reserved for DSRT itself, 

and a real-time process admitted by DSRT is run under its scheduling mechanism. 

The real-time process can thus be scheduled to utilise a specific processor time. 

DSRT has a flexible scheduling mechanism; for example, a real-time process can be 

scheduled to run for 100 ms at every 1000 ms interval. Consequently, the wrapper in 

G-QoSm, which interacts with DSRT, translates the application requests for 

processor time into a DSRT scheduling request. From an application point of view, 

the computing QoS supported by DSRT is specified in terms of a processor
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percentage; for example, a real-time process requests 40% of processor time, which 

the wrapper translates to 400 ms of every 1000-ms interval.

The DSRT scheduler supports immediate reservations for an indefinite period. 

Although immediate reservation is a sound approach for reserving resources, 

immediate reservation for an indefinite period is not desirable, as outlined in Chapter 

3, Section 3.3.1. Advance reservation, with a defined period, is more consistent with 

G-QoSm. To overcome this problem, the generic reservation module supported by 

G-QoSm manages advance reservation bookkeeping at the logical level, and the 

allocation manager implements resource allocation at resource manager level, via the 

specific resource manager interface, i.e. using DSRT for resource allocation. For 

example, if a grid service S has a compute reservation starting at time X, expiring at 

time Y, for Z% of processor time, then when the reservation begins at time X  the 

compute interface wrapper instructs the DSRT resource manager to immediately 

schedule Z% of processor time to the requesting application for an indefinite period. 

When the reservation expires at time Y the compute interface wrapper instructs the 

DSRT resource manager to terminate the execution of the grid service S and to 

release the reserved resources. If, however, the reservation expires but S has not 

completed, it is not suspended or terminated, but is moved to the best effort resource 

pool, thus reducing its priority from high to low, and S continues to run in best effort 

mode. Alternatively, the application can re-negotiate the SLA before its expiration, 

or can negotiate a new SLA at expiry time.

When QGS receives a job submission request to be sent to the DSRT, the compute 

interface wrapper submits the request to the GRAM gatekeeper, which contacts the 

DSRT scheduler for actual job submission. Passing job submissions through GRAM 

utilises its services supported by Globus and its API supported by GRAM for job 

status monitoring.

5.2.5 -  Network Resource Manager

The network resource manager (NRM) in G-QoSm, conceptually a DiffServ 

bandwidth broker (BB) (Teitelbaum et al. 1999), manages network QoS parameters 

within a given domain (generally defined to cover certain networks under the same 

administration), based on SLAs agreed at the network level between two domains, or
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between a domain and a client. The NRM is responsible for managing inter-domain 

communication with NRMs in neighbouring domains to coordinate SLAs across 

domain boundaries. It may communicate with local monitoring tools to determine the 

state of the network and its current configuration. Figure 5.4 shows a BB-managed 

DiffServ domain.

Domain A Dom ain B

BB BB

ER: E g re ss  R outer 
IR: Ing ress  Router

Host

Figure 5.4: Role of B andw id th  B roker in DiffServ

The integration of the DiffServ BB into G-QoSm is similar to that of any other 

resource manager, as shown in Figure 5.3. A network resource manager interface is 

required to translate requests between the Allocation Manager of G-QoSm and the 

underlying network resource manager, the DiffServ BB. An application requesting 

network resources can use the same API provided by the QGS service; this API is 

consistent for the various resource managers integrated with G-QoSm.

An implementation of NRM called B B Ba.sio from the University of New South Wales, 

(Sohail et al. 2003), is used in G-QoSm. B B BaSiC supports most of the essential 

functions required to manage DiffServ domains. More details on the implementation 

and evaluation of B B Basic, as integrated into G-QoSm, are presented in Chapter 6.

5.2.6 -  Application Example using QGS

This section presents a scenario example of an application executing a QoS-enabled 

remote job submission to a grid node. The application developer must specify the 

QoS parameters for QoS negotiation. These parameters include start time, end time, 

resource type, and other QoS specifications such as allocation strategy, whether
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resource, or time domain, and compute QoS requirements. Once the task object has 

been specified, the QoS Handler is delegated on behalf of the application to negotiate 

QoS requests; in this case, for compute resources. The QoS Handler is seen, from the 

QGS point of view, as a client. This is a useful approach particularly when the 

application requires more than one grid resource. All the application needs do is to 

instantiate the required number of QoS Handler objects, submit the task object to the 

handlers, and let the handlers negotiate QoS requests with QGS to return a SLA-ID.

Once the QoS parameters have been successfully negotiated, the application 

formulates the actual grid task object to be executed and submits it to the QoS 

handler, along with the SLA-ID. The job submission task includes specifications 

such as the executable files, input/output data files and mode of submission (batch or 

interactive). Furthermore, for QoS-based job submission through the interactive, or 

batch, modes, the QoS handler listens for notifications of job status via the GRAM 

gatekeeper. This notification feature is important for some types of applications in 

keeping track of jobs which have completed.

The ease of use and benefits of using QoS properties can be demonstrated with an 

application. To enable other grid applications to use the QoS-enabled framework, a 

user needs to perform the following operations:

a) Create a task object, based on the Java CoG kit task object.
b) Depending on the type of required QoS function, set up the necessary

objects for security, QoS functional specification and service access.
c) Instantiate a QoS Handler object.
d) Submit the QoS negotiation request task object to the QoS Handler.
e) Get a SLA-ID; for a successful submission.
f) Prepare the submission task along with the job specification, security 

context and service access.
g) Associate the created task with the QoS Handler object.
h) Submit the task object for execution.

Figures 5.5, 5.6 and 5.7 show Java code fragments demonstrating how an application 

can generate a QoS negotiation request, formulate a QoS-based job submission task

and submit the formulated task object to the QoS handler. Appendix D shows a
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complete working example with Java code for a QoS negotiation request and, in 

Appendix D.l the Java code for submitting a QoS-based job.

/*** QoS: Prepare Negotiation Task ***/ 
private void prepareQosNegotiationTask () {

// create a QoS service, and setup QoS attributes
Task task = new QosTasklmpl(' 'myTask' ', QoS.NEGOTIATION);
this.task.setAttribute(' ' startTime’', startTime);
this.task.setAttribute(' ' endTime’ ', endTime);
this.task.setAttribute(' ' allocStrategy’',strategy) ;
this.task.setAttribute(' ' cpu_capacity ' ', cpuCapacity);

// create a Globus version of the security context
SecurityContextlmpl securityContext = new GlobusSecurityContextlmpl(); 
// selects the default credentials 
securityContext.setCredential(null);
// associate the security context with the task 
task.setSecurityContext(securityContext);

// create a contact for the Grid resource 
Contact contact = new Contact("'myGridNode’’);

// create a service contact
ServiceContact service = new ServiceContactlmpl(qosServiceURL);
// associate the service contact with the contact 
contact.setServiceContact(' ' QGSurl'',service);
// associate the contact with the task 
task.setContact(contact);

Figure 5.5: Formulating a QoS Negotiation R equest Task

/*** QoS: Prepare Job Submission Task ***/ 
private void prepareQosJobSubmissionTask () {

// create a QoS JobSumbission Task
Task task = new Tasklmpl("'m y T a s k , QoS.JOBSUBMISSION); 
this .task.setAttribute(' ' agreementToken’’, token);

// create a remote job specification
JobSpecification spec = new JobSpecificationlmpl ();

// set all the job related parameters 
spec.setExecutable(' ' /bin/myExecutable ' ’ ) ;  

spec.setRedirected(false) ; 
spec.setStdOutput(''QosOutput’1);
//associate the specification with the task 
task.setSpecification(spec);

// create a Globus version of the security context
SecurityContextlmpl securityContext = new GlobusSecurityContextlmpl(); 
securityContext.setCredential(null); 
task.setSecurityContext(securityContext);

Contact contact = new Contact('"myQoScontact*');
ServiceContact service = new ServiceContactlmpl(qosServiceURL) ; 
contact.setServiceContact(" ' QGSurl’’,service); 
task.setContact(contact) ;

Figure 5.6: Formulating a Q oS-based Jo b  Subm ission Task
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/*** QoS: Task Submission to QoS Handler ***/ private void 
QosTaskSubmission(Task task) {

TaskHandler handler = new QoSTaskHandlerlmpl();
// submit the task to the handler 
handler.submit(task) ;

}

Figure 5.7: Submitting a Previously Form ulated Task Object to  the QoS Handler

A graphical user interface (GUI) is included in the G-QoSm prototype to 
demonstrate the QoS functionality supported. The GUI proceeds through the steps 
outlined in the Java code fragments shown in Figures 5.5, 5.6 and 5.7.

Figures 5.8 and 5.9 illustrate how G-QoSm can be used to allocate processor 
resources with QoS specifications using a resource-domain allocation strategy. With 
this strategy, a certain capacity of the processor is reserved and the application 
submits jobs for execution within this reserved capacity. The process is implemented 
via the Java CoG kit API to create a task object, which is submitted to the QoS 
Handler for negotiation. If successful, a SLA-ID is returned for use in claiming a 
reserved resource.

A set of graphical components is included in the prototype to make access to QoS 

functions easier for non-technical users. Figure 5.8 shows a screen shot of the form 

used to specify the parameters of the QoS negotiation task to be submitted to the QoS 

Handler. Figure 5.9 shows a screen shot of the details of a QoS job submission 

object, specifying the executable application, called mathAppl, and a reserved 

processor time of 60%; mathAppl is a compute-intensive process and in this example 

is set to only use 60% of the total processor time. A simple feasibility study was 

conducted to evaluate the behaviour of the prototype system under heavy load, using 

compute-intensive processes that usually require full available processor time. Two 

compute-intensive competing processes were started before submitting the 

guaranteed mathAppl process.
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Figure 5.9: P aram eters  for th e  Q oS -based  Jo b -su b m iss io n  Task

A processor monitoring tool was developed to study the behaviour of processor 

utilisation during runtime. Examples of this monitor are given in Figures 5.10 and 

5.11. In Figure 5.10, the five most processor-intensive processes are shown before 

mathAppl is submitted. Figure 5.11 shows the processor utilisation of the five most 

processor-intensive processes after mathAppl has been started; this Figure also 

shows mathAppl, as a guaranteed process, using 60% of the processor time of this 

grid node, with the competing processes using the remainder.
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5.2.7 -  QoS Registry Service

The QoS registry service is based on the Universal Description, Discovery and 

Integration (UDDI), which is a specification for distributed Web-based information 

registries for Web Services. UDDI allows HTTP-enabled business services to be 

published, and subsequently searched, based on their interfaces. UDDI consists of 

three components: ‘white pages’ to hold basic contact information and identifiers for
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a company; ‘yellow pages’ to enable companies to be listed based on their industry 

categories (using standard taxonomies); and ‘green pages’ to record interface details 

of how a Web service is to be invoked. UDDI is however limited in scope -  allowing 

white, yellow or green pages to be searched based on a few attributes, and does not 

provide an automatic mechanism for updating the registry, as services (and service 

providers) change. The UDDIe, an extension to UDDI, supports the concept of ‘blue 

pages’, to record user-defined properties associated with a service, enables the 

discovery of services based on these properties and support for qualifier-based 

search mechanisms as discussed below. UDDIe enables a registry to be more 

dynamic, by allowing services to hold a lease; a time period describing how long a 

service description should remain in the registry (ShaikAli etal. 2003).

The UDDI has four data types, for business and service information, which are 

XML-based data structures: business Entity, businessService, bindingTemplate and 

tModel. The UDDIe -  extension of the UDDI -  makes use of the businessEntity and 

businessService data structures and provides the APIs, as described in Section 5.2.8.

The QoS registry service in the prototype is UDDIe registry2 (ShaikAli et al. 2003), 

and based on a public domain implementation of UDDI from uddi.org. The UDDIe 

implementation is built with Java technology and supports service publishing and 

discovery, based on extended properties, as outlined in Section 5.2.8. One of the first 

applications for UDDIe was in the context of the G-QoSm framework, whereby 

services are published, and queried, dependent on QoS properties. Figure 5.12 shows 

a sample XML request submitted to UDDIe to search for services according to the 

specified QoS properties.

2
The UDDIe registry service is available as open-source software from The Welsh e-Science Centre, 

Cardiff University, http://www.wesc.ac.uk/projects/uddie/uddie/download/
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5.2.8 -  The UDDI Extension

Extensions in UDDIe comprise a set of application programming interfaces (APIs) 

for interacting with the registry system. These APIs are:

❖ saveService: used mainly for publishing service details. This API has been 

extended from the original UDDI system to introduce dynamic metadata for 

services. It is used to present QoS information, but can also be used to 

present various services’ related information.

❖ findService: used mainly for inquiry purposes. In particular, this API 

includes queries based on information associated with services, such as 

service property and service leasing.

❖ getServiceDetails: used mainly for requesting more detailed information 

about services, such as BusinessKey and service information. This API 

includes service property information.

❖ renewLease: used by the UDDI administrator to control leasing 

information, and by the service provider (SP) to renew and set leasing 

information. Using the leasing concept, every service is associated with a 

lease, either for a limited, or an infinite, time period. The maximum number 

of infinite services is controlled by the operator; required to efficiently
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maintain the registry. For a limited duration, a start and end date for the 

lease period is provided. The UDDI administrator can control the setting of 

the default, i.e. the initial leasing period. If a lease expires the SP can renew 

the lease, provided the request is within the number of renewal times 

allowed for a particular lease; controlled by the UDDI administrator. When 

the lease expires, the service becomes invalid and a client cannot use the 

service further. It is important to regularly renew a lease, or request an 

infinite lease, and an event manager alerts all connected users if a service 

lease is about to expire.

One motivation for leasing is that a service provider is often interested 

in leasing a service with particular QoS constraints for a particular time period, 

while advertising the same service with different QoS constraints at another 

time. This is similar to the way tele-communication companies introduce 

different charge schemes at different times, such as peak and off-peak charges. 

Another motivation is the introduction of grid service lifetime management in 

the OGSA specification, which specifies the validity of a service from creation 

to destruction.

❖ startLeaseManager: This set of APIs is used to monitor the lease constraints, by 

starting processes to monitor and delete expired leases from the registry. The 

UDDI administrator can control how often these processes are run.

In addition to these APIs, support for a qualifier-based search is included, to find 

services based on the value of a property specified by a qualifier expression, based 

on =, < or >. More complex expressions can be built using the logical operators AND 

and OR. These extensions to the UDDI registry and associated query mechanisms 

add search flexibility making UDDI useful for QoS-based systems.

Appendix F gives Java code for accessing UDDIe for services with QoS properties, 

and for selecting matching services based on the QoS property importance levels 

outlined in Chapter 3.

5.2.9 -  Performance Experiments

An experiment was carried out to determine if the performance of the UDDIe 

registry is acceptable for applications requiring QoS provisions (Al-Ali et al. 2003d).
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This experiment also aimed to find any bottlenecks in the query processing path. The 

experimental infrastructure includes the QoS manager, which processes clients’ 

requests, the UDDIe registry and the database (used to store data related services, as 

well as service provider and user information), with the UDDIe and database on the 

same server. Queries were issued from another client workstation. The client 

workstation and server, located in the School of Computer Science at Cardiff 

University, were connected via a 100Mbps Ethernet network. The query round trip 

time (RTT) was measured as the time required for a query to be submitted from the 

client workstation, processed by the QoS manager and UDDIe, and the results 

returned to the client. Figure 5.13 shows a logical query path.
4

RTT can be computed as: QueryRTT = ^ 7 7

T, T,r  ^

Application T, Q oS M anager c
D

1 "̂3 O
CD

Figure 5.13: Logical Query Path

Ti: time taken to send the request from the application initiating the request to the

QoS Manager including request processing at the QoS Manager,

T2: time taken from the QoS Manager forwarding the request to the UDDIe,

including the time taken at the UDDIe to process the request,

T3: time taken from the UDDIe sending the reply to the QoS Manager and the

QoS Manager regenerating the reply to the Application, and 

T4: time taken to send the reply from the QoS Manager to the Application.

The experiment comprised a mixture of queries for services with QoS properties:

❖ Query 1 requests services with QoS properties making use of the service property 

extension; the result is that no match has been found.

❖ Query2 requests services with QoS properties along with service validity 

constraints, making use of the service leasing extension.
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❖ Query3 requests services with more complex QoS properties and leasing 

information. Query3 introduces logical operations, making use of the range-based 

search mechanism.

The UDDIe registry was populated with a number of services and the three types of 

query were submitted. Each submission used a different service name and QoS 

attributes. Table 5.1 gives the average RTT for the queries submitted in each case.

Query RTT Case, RTT Cas&2 RTT Cases RTT

Query\ 2749 4421 5031

Query2 9250 11469 13422

Query3 9703 9407 10703

Table 5.1: Round Trip Time Responses
(in milliseconds)

The main purpose of the experiment is to show the performance obtained by 

integrating UDDIe into the G-QoSm framework. It was observed that the minimum 

time taken by the QoS manager and the UDDIe to process a request is about 5 

seconds. If the list of services returned contains more than 30 services, and the QoS 

manager must choose between these based on the application’s constraints then the 

response time is high. The maximum number of services returned was, therefore, 

restricted to five, which yields a better response time. The average response time for 

a successful request takes about 9 seconds; this response can still be improved by i) 

designing a more efficient algorithm to choose the best match, and ii) considering a 

hardware platform server with a higher specification than the experiment test-bed, 

and doing further experiments with, and without, the QoS Manager.

5.2.10 -  Limitations

A limitation of the prototype is that one needs system administrator privileges to 

effectively configure QGS -  i.e. root access on a Unix system. This is particularly 

true when configuring the underlying resource managers.

The prototype is Unix-based and was tested on Linux Red Hat version 9. Although 

the application can reside on any platform, QGS is restricted to a Unix system. 

Portability to other platforms is clearly desirable, but this restriction is because the
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compute resource manager employed (DSRT), is a Unix-based implementation. The 

network resource manager integrated with the G-QoSm, namely BBfiaiiC, is a Java- 

based implementation which requires a Linux-based machine to be configured as a 

routing element for DiffServ support, with further detail on the B B ^ c  integration 

given in Chapter 6 .

5.3 Summary

The G-QoSm prototype -  a QoS management service -  is implemented as a grid 

service in the GT3 OGSI container. Such implementation enables QGS to make use 

of GT3 middleware services, for example, security and job submission through 

GRAM. The QGS provides an API, for client application and developers to interact 

with QGS, and uses grid resources with QoS provision. The communication protocol 

is based on the de facto Web Services protocol SOAP, and messages are encoded in 

XML. The core component within QGS is the reservation manager, which handles 

admission control, reservation validation and the generation of SLAs.

The reservation manager (the core component of QGS), manipulates logical entities 

that represent the actual physical resources. Such a manipulation is possible through 

the layered design of the resource manager integration architecture. The resource 

manager interface component is the actual entity that does the interaction between 

the allocation manager and the particular resource manager. The DSRT scheduler is 

used in the G-QoSm prototype as the compute resource manager. BBeasic is used as 

the network resource manager, which supports DiffServ for networking QoS 

provisions.

This Chapter explains how a non-QoS-enabled application can be extended with 

QoS-based properties. To achieve this, the extended Java CoG API library and GT3 

OGSI grid services container are used. Java code fragments demonstrate the use of 

the G-QoSm prototype.

The QoS registry service is based on the implementation of UDDIe, which has a 

number of extensions suitable for QoS-based discovery. The API of UDDIe is
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outlined, and performance data is presented. Finally, some limitations of the current 

G-QoSm prototype are also presented.

Chapter 6 ~ Validation presents a verification of the compute QoS and network QoS 

support, and gives performance results for a grid application making job 

submissions, and undertaking data transfers with specific QoS requirements.
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Chapter 6 -  Validation

Certain classes of applications in grid computing, such as collaborative applications, 

must satisfy strict QoS constraints, as these application operate in collaborative mode 

and data must therefore be stored, processed and delivered over a limited time span -  

for example, tele-immersion, visualization and computational simulation. QoS 

management is required to plan and guarantee the timely interaction among 

components of such applications. To validate G-QoSm two example applications were 

chosen for performance analysis, one computation-intensive and the other 

communication-intensive. The first is an image processing task derived from a 

nanoscale structure application (Al-Ali et a l 2004b). The second involves the use of the 

DiffServ architecture with a Bandwidth Broker (BB) component (Al-Ali et al. 2004d).

6.1 Computation-Intensive Example

The G-QoSm prototype was used to manage a nanoscale structure application, being 

developed as part of Argonne National Laboratory's advanced analytical electron 

microscopy program (Zaluzec, 2004). With this technique, a focused electron probe 

is sequentially scanned across a two-dimensional field of view of a thin specimen. At 

each point on the specimen a two-dimensional electron diffraction pattern is acquired 

and stored.

Analysis of the spatial variation in the electron diffraction pattern of each measured 

point allows a researcher to study subtle changes resulting from micro-structural 

differences, such as electro-magnetic domain formation. The analysis of this data 

requires a resource-rich grid infrastructure satisfying real-time constraints. During an 

experiment, results need to be archived, remote computing resources need to be 

reserved, and the data must be moved to the computing resources for analysis. 

Moreover, results need to be gathered and presented in a meaningful, human- 

readable form.

The need for a reliable computing infrastructure is demonstrated by the simplified 

flow diagram in Figure 6 .1. The elementary logic of the instrument control can be
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expressed as a sequence of interacting processes: Data Acquisition gathers time- 

delayed images from the electron microscope; Backup stores incoming data; Data 

Analysis analyses the time-delayed images; and Result Display gathers the results 

from the data analysis, in a form suitable for interpretation and continuance of the 

experiment.

Asynchronous
processesmonitoring u c c o o c o

( 5^7 V \
A cquisition |  J

{ oJL ] \
l  A nalysis ) I

Default Backup

aquisition

Optional Backup

analysis

Optional Backup

When results are good

Collaborators 
W ith secure access

Figure 6.1: A sy n ch ro n o u s P ro c e s s e s  in N an o sca le  S tru c tu re  Application

This nanoscale structure example exhibits a pattern typical of many scientific 

applications in high-end instrument scenarios. The pattern includes a high volume of 

interaction during an experiment which must be dealt with in an adaptive and flexible 

way. The instrument operator's interface with the grid must be as simple as possible, 

while at the same time providing flexibility to interactively modify the experiment.

The Java CoG kit provides a convenient abstraction for formulating tasks, such as 

file transfer, job execution and job management. At the same time, it hides much of 

the complexity from a grid application developer. The Grid Application Toolkit 

(GAT) interface, developed in the European GridLab project, also provides a 

generalised collection of calls to shield grid applications from implementation detail 

of the underlying grid middleware. GAT uses adaptors that facilitate the application
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choosing a specific binding (from the GAT interface to the underlying technology) 

which implements a specific functionality (Taylor et al. 2003). Using a suitable 

interface, a scientist will be able to interact with the experiment resources and decide 

when, what, and where data gathered during the course of the experiment is backed 

up. Because of the focus on the experiment itself, the use of the grid should, as far as 

possible, be via abstractions, i.e. details of the grid should be hidden from the 

scientists doing the experiments. This allows the scientists to focus on the experiment.

The application example presents the following requirements for QoS:

a) Data acquisition -  network transfer of the time-delayed images from the 

electron microscope;

b) Disk storage -  to cache the large amounts of incoming data during data 

acquisition, and also for backup usage;

c) Computational power -  to carry out scientific calculations on the time- 

delayed images;

d) Result presentation -  transfer of results to a display for interpretation. 

Experiments in this thesis focus primarily on requirement ‘c’ and the result display.

6.1.1 -  Test-bed

The test-bed for the experiment included two Linux-based computers: one with a 1.8 

GHz Pentium processor and 256 MB of memory, acting as the service consumer; the 

other, a 1.2 GHz Pentium processor and 512 MB of memory, acting as the service 

provider. All machines were connected through an Ethernet local-area-network. This 

experiment was not carried out on a wide area network, as one needs a super-user 

access privilege to install and configure the G-QoSm prototype. Deployed on these 

machines were GT3 OGSI service container, GT2, and the Java CoG kit. 

Experiments were carried out using two different approaches: one with a QoS 

handler through the Java CoG kit and the second with a GT2 handler through the 

Java CoG kit.

6.1.2 -  Time-domain Allocation

The nanostructures image analysis task, based on a sample electron diffraction using 
up to 900 input images, was executed on the test-bed using a time-domain strategy
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for resource allocation, as outlined in Section 4.6. With the entire compute node 
reserved for the application, multiple jobs were submitted to the reserved node but 

only one was executed, the job that had previously made a reservation.

Two sets of runs were conducted, one with job submission based on QoS and one 

with standard job submission based on GT2. In the job submission based on QoS the 

submission is done through the QoS Handler in the Java CoG Kit, and involves QoS 

management, such as resource reservation and SLA establishment. Each set 

consisted of two groups of four runs each for observation and analysis purposes. In 

the first group, four collections of images were processed in parallel, submitting the 

entire collection to the grid node for processing at the same time. In the second 

group, the same four collections of images were processed sequentially, submitting 

one image at a time to the grid node for processing. The four collections contained 

25, 50, 75 and 90 images respectively. Figures 6.2, 6.3, 6.4 and 6.5 show the 

performance results relating the number of images and the time taken for each run.
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F igure 6.2: Q o S -b ase d  E xecu tion  -  Parallel
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The results displayed in Figures 6.2 and 6.3, obtained from the QoS approach, show 

that the time taken to process the images, in both parallel and sequential mode, is less 

than for the GT2 approach. This is expected, since the reservation mechanism 

employed in this time-domain strategy reserves the entire processing power of the 

grid node for the QoS-based application, which prevents other processes from using 

processing power during the reservation.

Experimental results (using GT2), displayed in Figures 6.4 and 6.5, show that the 

time taken to process images in both parallel and sequential mode, is more than for 

the QoS approach. The reason is that multiple processing loads were applied through 

a background workload generator -  to simulate a shared multi-user environment. 

This background workload generator is used to sort a list of up to 10,000 random 

numbers -  the actual number of elements in the array is also picked randomly -  using 

a variety of sorting algorithms, such as bubble and heap sort. A random wait period 

is also specified between each invocation of the random number generator to 

simulate the creation of new jobs at unpredictable times. Executing this process adds 

a variable workload to the existing jobs that are managed by a processor. Because the 

GT2 technology does not employ a reservation mechanism, other processes can use 

processing power while the job submitted is being processed.
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Time Taken to Process Images using GT2 - (Parallel)
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Figure 6.4: Best Effort Execution using GT2 -  Parallel

Time Taken to P ro c e ss  Im ages u sin g  GT2 - (Sequential)
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Figure 6.5: Best Effort Execution Using GT2 -  Sequential

Figures 6 .6  and 6.7 show results for the nanostructure application in GT2 and QoS, 

for, respectively, best effort service and QoS guaranteed service. Figure 6 .6  indicates 

that processing time per image generally takes from 10 to 30 seconds. This 20 second 

variation in the image processing time is quite significant, compared to the variation 

from the QoS approach shown in Figure 6.7 and discussed in the next paragraph. The 

time variation from the best effort approach, in Figure 6 .6  makes the processing 

pattern inconsistent.
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■ Processing Time -  QoS
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Figure 6.7: The A pplication U sing Q oS -  G uaranteed  Serv ice

Figure 6.7, using the QoS guaranteed approach, shows an execution time per image 

ranging from 10 to 12 seconds, except for image number 36 which took 

approximately 15 seconds. The same image is shown to take approximately 37 

seconds in Figure 6 .6 , based on the GT2 best effort mechanism, which indicates that 

image 36 has greater processing requirements than the other images. The variation in 

image processing time using QoS constraints is quite small, which makes the 

processing pattern reliably consistent. From the above results, one can observe that 

application processing using the proposed QoS approach provides the following 

advantages:

❖ The processing of the images gives better performance.
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❖ The time variation in processing each image is about 2 seconds, compared to 

the GT2 approach of 20 seconds, using the same set of images. This 

difference is quite significant, making the proposed QoS approach more 

predictable and consistent.

6.1.3 -  Resource-domain Allocation

Performance results, using the G-QoSm framework to allocate processor resources 

with a QoS specification, using a resource-domain allocation strategy, as outlined in 

Section 4.6, are presented here. In this strategy, a certain processor capacity resource 

is reserved, and a client application can submit jobs for execution within this 

reserved capacity. The process is implemented using the Java CoG kit to create a task 

object which is submitted to the QoS Handler to negotiate the required resources or 

services. If successful, a SLA is returned for future use when claiming a reserved 

resource.

To evaluate the behaviour of the system under heavy load, and to observe the 

effectiveness of job submission with QoS constraints, two experiments were run, one 

with two processes run in best effort mode -  i.e. without a processor reservation; and 

one with one process run in guaranteed mode -  i.e. with a processor reservation of 

60% from time (J25 to ^ 5), as shown in Figure 6 .8 . The guaranteed process was run 

for a specified time while the competing best effort processes were running.
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To further study system behaviour, and to observe the execution pattern of the 

guaranteed process, performance data was observed shortly before the guaranteed 

process started, then periodically every 5 seconds, until shortly after completion. 

Figure 6.8 plots the execution pattern.

❖ From 11o to t25, two computation-intensive processes competed for 100% use 

of the processor.

❖ At t25, the guaranteed process, with a guaranteed processor usage of 60% 

started, and lasted until t65 (based on processor reservation).

❖ From t65, the two computation-intensive processes again competed for 100% 

use of the processor.

During the active session of the guaranteed process, the guaranteed processor usage 

of 60% was maintained, with the remainder of the processor shared between the 

other processes. At t65, when the guaranteed process completed, the two 

computation-intensive processes started to compete for 100% usage.
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6.1.4 -  QoS Overhead and System Limitations

To further evaluate the proposed system, two experiments were conducted to 

establish the QoS overhead imposed on job submissions, and system limitations, in 

terms of the maximum number of requests managed before failure -  essentially to 

test scalability. In this context failure is when the service cannot accept any more 

requests from the client/application.

The limitations of the present system are:

❖ QoS Overhead: The most apparent QoS overhead on conventional job 

submission is negotiation and resource reservation, which occurs when an 

application submits a request for resource reservation with QoS constraints 

and subsequent resource allocation. QGS undertakes resource discovery and 

reservation and presents the application with a SLA. To measure this 

overhead, an application generating (at various times) about 1 ,0 0 0  requests for 

QGS was monitored. The interval recorded was from the time the application 

initiated the QoS request until the request was acknowledged by QGS. The 

time taken to acknowledge QoS requests ranged from a best case of 50 ms to a 

worst case of 200 ms. The acknowledgement time depends on how busy QGS 

is and on the network connecting the client/application and QGS -  in a wide 

area network infrastructure this acknowledgement time might differ due to the 

network factor. 50 to 200 ms is not significant compared to the time normally 

reserved for a QoS session, in the order of minutes or even hours; and this 

overhead is negligible.

❖ System Limitation: A test was conducted to determine scalability in terms of 

the QoS request load. A large number of requests, at different times, were 

issued by the client/application over the network. It was observed that QGS 

cannot accept more requests after approximately 3,600 requests in 

approximately 6  minutes, after which denial of service occurs, due to a 

hardware limitation on the experimental test-bed. The reason for this 

limitation was found to be the prototype system’s reservation table, which 

contains information about reservations, agreements and SLAs. This table, 

maintained in primary memory, was found to be almost full when denial of 

service occurred. The denial of service could also have arisen from the
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process table becoming fully utilised, as more requests were forwarded to the 

server. To overcome this constraint, it is planned to store the reservation table 

in a disk file rather than in the main memory, or store the reservation table in 

a database, such as Oracle or MySQL, for more efficient data retrieval.

6.2 Communication-intensive Example

This Section examines G-QoSm’s network QoS support and provides experimental 

results (Al-Ali, et al. 2004d). The network QoS support is provided via the DiffServ 

architecture and relies on a BB component. Performance results, using a BB, along 

with other elements, in the G-QoSm framework are presented. BBBasic implementation 

is integrated with the G-QoSm framework to provide network QoS. BBBasic is 

University of New South Wales implementation of a BB (Sohail et al. 2003).

6.2.1 -  BBBasic Implementation

The BB Basic is based on the concept of BB -  background information is provided in 

Appendix G. The BBbos/c implementation provides the features of the BB architecture 

as outlined in Appendix G. It is implemented in Java and follows a client-server 

model. BBBfliJC can interact with Linux-based routers, unlike the systems reviewed in 

Section 2.7, as the routing element, whereas Linux routers need to have DiffServ 

support enabled, which is built into the Linux kernel from version 2.4 onwards. Java 

handles remote client-server functionality through TCP sockets. A BBBasjc can handle 

multiple connections from the routers and clients simultaneously. The 

implementation provides a query facility, about resources and SLAs, for users and 

network administrators who can request details. Implementation details for BBBaslc 

are available in Pham and Nguyen (2003). Some relevant implementation details of 

BBftM/c are explained in the following Sections.

6.2.1.1 Inter-domain

The inter-domain protocol embedded in BBBasIC is designed on the specifications of 

simple inter-domain BB signalling (SIBBS) protocol, denoted here as SIBBS#*s/c. 

The specification of SIBBS (QBone, 2002) does not explicitly state the mechanism 

that a BB uses to gather information about neighbouring BBs. Nor does it give detail 

about their administrative domains. SIBBS#*™- collects this information from its
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database, which contains a comprehensive network map, enabling BB^/c to identify 

the neighbour which should be contacted to complete an application’s resource 

allocation request (RAR). Whenever the resources requested include those from 

other domains, B B ^ c  gathers information from neighbouring BBs and contacts 

them via SIBBSe^. A neighbouring BB checks its resources, and if the request is 

accepted, propagates it to the next BB in the direction of flow. The process continues 

until the request reaches the BB with the destination host in its domain, and replies 

are sent back in the reverse manner. After sending the resource allocation answer 

(RAA), in the case of request acceptance, BBfiajJC configures its edge routers via the 

intra-domain protocol to allocate network resources for the accepted flow.

6.2.1.2 Intra-domain

Common Open Policy Service for Provisioning (COPS-PR) (Halim and Darmadi, 

2 0 0 0 ), the intra-domain communication protocol used in B B ^c, is an independent 

implementation linked to BB Basic- The COPS-PR and BB Basic combination was tested 

on Linux routers, with results (Halim and Darmadi, 2000; Pham and Nguyen, 2003) 

indicating that BB&Kic effectively manages network resources by reconfiguring the 

relevant routers with COPS-PR when required. BB^/c functions as a policy decision 

point (PDP) that connects to its own domain routers, at a policy enforcement point 

(PEP), to configure these according to a pre-defined domain policy. Whenever 

BBgos/c accepts a request, related core and edge routers (if required) are contacted via 

COPS-PR. A core router needs reconfiguration when it is a first-hop router for the 

flow; with reconfiguration required for marking and shaping the flow’s packets. 

Marking of packets is required to classify the packet, and shaping is required to keep 

the flow below agreed limits. The edge router is contacted by the BB when the 

destination or source of the requested flow is in a different DiffServ domain, to enable 

the edge router to filter, shape, schedule, or mark the packets according to the SLA.

6.2.1.3 Database

A MySQL database is used to store information related to a BB. The information is 

divided into three parts: user, BB and network. The user part consists of an 

application’s SLA, password and resource request information. The BB part contains 

relevant information about peer BBs, and the SLAs with these BBs. The network part 

contains information on the network, such as network domains and network addresses,
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essential to determine the routers needing reconfiguration when a BB accepts a 

request. Network information is also necessary to find the neighbouring BBs to contact 

for resources acquired from multiple domains.

6.2.1.4 User/Application

BBfiaj/c has multiple interfaces for application access; these interfaces allow an 

application to choose the most suitable mechanism for interaction with BB Basic- 

Distinct interfaces are provided, for example, a Java API and a Web-based client for 

administrators and users. Detailed description of these interfaces and information 

about their use is available in Pham and Nguyen (2003).

6.2.1.5 BBBasic Integration

The BBfloj/c integration into G-QoSm enables support for managing network 

resources. To integrate a new resource manager, it is necessary to specifically design 

an interface, as shown in Figure 5.3.

6.2.1.6 Network Interface

The network interface does the translation of requests between the QGS and BBBas,c. 

The QGS may include four types of request:

❖ Querying Resources: Resource querying can be classified into querying a 

SLA network for information related to a specific SLA network (SLAnm,0nt relates to 

SLAs between DiffServ domains), and querying the status of an RAR within 

a particular SLA network-, with a RAR corresponding to a G-QoSm SLA (i.e. 

application/user SLA). Querying a SLAnetwork allows the QGS to enquire 

about the capacity of a specific network element currently being used, and the 

remaining capacity available for use. The second type of query allows the 

QGS to enquire about the status of a particular established RAR, and to view 

associated information such as start and end times, network bandwidth 

granted, type of network service, such as expedited forwarding (EF), and 

source and destination IP addresses. EF is a mechanism used to build assured 

bandwidth in DiffServ domains, based on low delay, jitter and packet-loss 

rate (Jacobson et al. 1999).

116



❖ Allocating Resources: Resource allocation involves issuing a RAR 

associated with a pre-defined SLA network- Parameters required include the 

amount of network bandwidth required, the type of network service, the 

associated SLAn<>mw*, start and end times, and source and destination IP 

addresses.

❖ Releasing Resources: The release or de-allocation of resources only works 

for pre-established RARs. Here, the RAR can be deleted -  i.e. the removal of 

network QoS privileges -  with the parameter, required for this request, the 

RAR identification number. This operation changes the network traffic 

service type from guaranteed service to best effort service, if the network 

resources are still needed. This is consistent with the G-QoSm concept that 

network flow will not be terminated, or suspended, but will rather be reduced 

to a low priority type service.

❖ Modifying Requests: Request modification affects a SLAwem,orjt or a RAR. 

For example, a SLAnetwork can be modified by changing its bandwidth 

capacity or the type of network service being provisioned. Similarly, a RAR 

can be modified to change its bandwidth capacity, or start and end times, i.e. 

implementation of re-negotiation requests, which is consistent with the G- 

QoSm concept.

6.2.1.7  Requesting Network Resources

With the integration of B B ^ y  into G-QoSm, grid applications can request network 

resources with QoS constraints. The protocol is similar to that for computational 

resources, outlined in Chapter 5 and in Al-Ali et al. (2004a). G-QoSm extends the 

Java CoG kit architecture and makes use of its API, as discussed in Chapter 5. Figure

6.9 shows Java code for initiating a request for network resources; in particular, it 

shows a negotiation task for network resources. The API used is similar to that in 

Chapter 5, the only difference being the task attributes which should be specific to 

the type of resource under consideration, in this case the network; and attributes like 

network bandwidth, source IP and destination IP are expected.
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/*** QoS: Prepare Negotiation Task ***/ 
private void prepareQosNegotiationTask() {
// create a QoS service and setup QoS attributes for network resource 
Task task = new QosTasklmplf'myTask", QoS.NEGOTIATION); 
this.task.setAttribute(“startTime", startTime); 
this.task.setAttribute(“endTlme", endTime); 
this.task.setAttribute(“networkBandwidth",networkBandwidth); 
this.task.setAttribute(“sourcelP’\sourcelP); 
this.task.setAttribute("destlP",destlP);

// create a Globus version of the security context
SecurityContextlmpI securityContext = new GlobusSecurityContextlmpl();

// selects the default credentials 
securityContext.setCredential(null);
// associate the security context with the task 
task.setSecurityContext(securityContext);
// create a contact for the Grid resource 
Contact contact = new Contact(” myGridNode");

i___________________ :_________________________________________
Figure 6.9: Java  C ode for R equesting  a Network R esource

6.2.2 -  Experimental Results

The effectiveness of network resource reservations, based on the integration of 

BBfiaj/c and G-QoSm, was evaluated on a local network test-bed. This section 

discusses the experiments and presents the corresponding validation results.

6.2.2.1 Network Test-bed

Figures 6.10 and 6.11 show the network test-bed, a local area network (LAN) of 

computing nodes and routing elements, with computing nodes representing the 

source and sink points -  i.e. traffic senders and receivers. The routing elements use 

the Linux iproute2 package to provide DiffServ capability to a Linux-based machine, 

and the Linux machine then acts as a PEP entity. Figure 6.10 shows the intra-domain 

architecture, while Figure 6 .11 shows an inter-domain architecture.
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B tW ,c comes with three separate modules: a BB server, to be installed in each 

administrative domain, to act as a PDP; a PEP module to be installed in each Linux 

routing element; and a MySQL database to be populated with the relevant data 

describing the network. For example, the database describes network topology, link 

capacities and the pre-defined SLAs with their service types -  expedited forwarding
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or best effort -  and associated domains. G-QoSm provides an interface to request, 

modify or cancel network resource reservations.

6.2.2.2 Demonstration o f Network QoS for Grid Applications

Experiments were designed to show that a grid application can initiate a network 

reservation request through G-QoSm and have it forwarded to BBBaf(C, with 

admission control and routing elements appropriately configured. Network traffic 

generator tools are used at the source, to simulate applications requiring data transfer. 

Similarly, network traffic collector tools are used at the sink, to collect traffic 

received and measure network bandwidth. The network traffic generator tools are 

Real-time UDP Data Emitter (RUDE) and Collector fo r RUDE (CRUDE) (RUDE 

and CRUDE, 2004).

A User Datagram Protocol (UDP) constant-traffic-rate generator was used to 

generate network traffic that simulates grid data-transfer applications. Similarly, a 

UDP traffic generator was used to generate competing traffic. It is important to use 

UDP for traffic congestion, as opposed to TCP, because UDP does not employ the 

slow-start mechanism during congestion, maintaining congestion behaviour, and 

supporting a constant transmission rate. The TCP slow-start mechanism operates on 

the basis of sending rate increments exponentially until congestion occurs, and then 

reduces the sending rate and starts incrementing exponentially again. This will not 

maintain a constant traffic rate, whereas the objective of the traffic generator, in this 

context, is to provide a constant traffic rate.
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F igure 6.12: N etw ork  Q oS u n d e r C o n g estio n

Figure 6.12 shows the performance of network QoS for UDP traffic simulating a grid 

application under different situations. This experiment was conducted in the intra­

domain architecture shown in Figure 6.10. The link between the router element and 

the sink was configured for a 10 Kbps stream, to easily congest the link. The UDP 

traffic under consideration was maintained from time ts to t29- From ts to tio the UDP 

traffic was sent without reservation -  i.e. best effort -  at 4 Kbps on an unloaded 

communication link from source to sink. From tn  to t\e, with the UDP flow still 

transmitting at 4 Kbps, random competing traffic was started to generate congestion; 

observations show that the UDP traffic could not maintain the 4 Kbps rate due to 

congestion. A network QoS reservation, for 4 Kbps, was made from tn  to t23 for the 

UDP traffic, with the competing traffic still generating congestion.

The result of the QoS reservation was that the UDP traffic managed to maintain the 

promised reservation rate, even though congestion was still operating. Finally, from 

t24 to t29 the reservation ended and the UDP traffic was unable to keep its 4 Kbps.
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Figure 6.13: Multiple N etw ork Q oS F low s u n d e r C o n g estio n

Figure 6.13 demonstrates multiple network QoS reservations under congestion. This 

is similar to the previous setup, with the link between the router and the sink 

configured to 10 Kbps. In this case, two UDP flows were generated. From ts to tjo the 

two UDP flows transmitted simultaneously at 5 Kbps, while the congestion 

continued. Reservations were established from tn to t)6 and the 2 flows maintained 

the promised resources. The DiffServ forwarding mechanism, at the routing element, 

is thus undertaking the correct traffic forwarding.
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Figure 6.14: G uaranteed  an d  B est Effort Network QoS

Figure 6.14 shows performance results for transmitting multiple traffic flows 

belonging to 2 different classes: EF -  which can be mapped to guaranteed service in 

G-QoSm; and best effort (BE). The network link from the routing element to the sink
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is configured to support 10 Kbps; two S L A nelwork contracts were generated, i.e. 

network SLAs between DiffServ domains, one for the EF traffic at 5 Kbps, and one 

for the BE traffic at 5 Kbps. Using the Linux traffic control script, the 

communication link was configured to not allow borrowing, meaning that each type 

of traffic, EF and BE, must stay within the boundaries of the defined resource. The 

traffic performance was realised from t5 to t]3, when a network reservation was made 

for an EF flow of 4 Kbps. At the same time, 2 BE flows were attempting to transmit 

at 5 Kbps each. The EF flow maintained the reserved rate of 4 Kbps while the 2 BE 

flows are less, although attempting to transmit at 5 Kbps, because the BE network 

source was configured for a maximum capacity of 5 Kbps with no borrowing. 

Therefore, the routing element shaped, and policed, the two BE flows to fit within 

the configured BE network resource. The concept of borrowing network resources is 

consistent with the adaptation model outlined in Algorithm 3.2. One can map the 

adaptation model into the network resource and use the borrow concept to implement 

the adaptive capacity of the adaptation model.

P erform ance of a UDP F low  w ith  N etw ork Reservation

Time (s)

Figure 6.15: N etw ork Q oS u n d e r  C o n g es tio n  -  In ter-dom ain A rchitecture

To further verify the inter-domain communication between BBfiavic and the PEPs, 

experiments similar to those on intra-domain communication were conducted. Figure 

6.15 shows the results, which are similar to the intra-domain case, implying that 

BBfloijc is able to configure local PEPs as well as remote PEPs. The concept of inter­

domain communication can be replicated, over a large number of administrative 

domains, making the proposed architecture scalable.
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6.3 Summary

A G-QoSm prototype is used in a nanoscale application, as an illustrative example, to 

validate the usefulness of the proposed approach for the compute QoS in scientific 

applications. The architecture includes a set of components that abstract the use of 

QoS for the non-programmer. It is emphasised that these components are critical if 

the grid is to gain widespread acceptance in real applications. The current set of 

components must be augmented, and their utility demonstrated, to convince and 

encourage new users to utilise grid computing resources.

It is shown in this Chapter how compute QoS support at the middleware level provides a 

better application performance. This Chapter also focuses on evaluating the combination 

of G-QoSm and a BB, using a network established with Linux-based routers.

The provision of network QoS to support grid applications is presented, based 

essentially on the IETF DiffServ model. The DiffServ model is shown to provide 

acceptable network QoS when integrated with G-QoSm architecture. The BB is 

identified as the key architectural component necessary to support network QoS 

management.

A key limitation in any network QoS mechanism is the ability to manage and control 

traffic flows at internal routers. This is especially true in deploying grid applications, 

where such routers may not be owned by one individual or institution. Forcing such 

intermediate routing elements to conform to a defined policy is difficult to achieve.

The approach presented here, based on the DiffServ model, requires intermediate 

routers to adopt the DiffServ-expedited forwarding model. Consequently, the 

approach is restricted to routers that support this model -  providing a traditional best 

effort service at other routers. The author knows of no other QoS-related work that 

avoids this need to manage intermediate routers.

Chapter 7 -  Conclusions summarises questions addressed by this research, discusses 

contributions made and provides recommendations for further research.
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Chapter 7 ~ Conclusion

7.1 Synopsis

This thesis proposes a quality-of-service (QoS) management system. QoS management 

is essential to provide guaranteed resource allocations with specified quality levels, and 

is a means to negotiate and establish service level agreements (SLAs), and then deliver 

services according to SLA specifications. A summary of the research findings, 

contributions and recommendations for future work is presented in this Chapter.

In Chapter 1 it is hypothesised that QoS management in a service-oriented architecture 

(SOA) can provide a guaranteed, reliable and consistent service-execution mechanism. 

Questions considered include:

❖ How can a QoS management system be presented as a Web Service (WS), 

in the context of SOAs, where users and applications interact through 

standard WS protocols?

❖ How can a typical service-oriented application utilise and benefit from use 

of such a QoS management approach?

❖ What performance gains can be obtained by an application using such a 

QoS management system in a SOA?

To answer these questions an abstract model for QoS management in SOAs was 

developed, aimed at maximising resource utilisation, while maintaining contracted 

SLAs. Maximising resource utilisation admits more SLA users to the system, which 

is possible with the flexible range-based SLA feature. The abstract model shows 

that the QoS problem -  to determine, given multiple client requests, the optimal 

resource allocation to maximise utilisation and maintain requested QoS levels -  is an 

optimisation problem.

To validate the model, the G-QoSm prototype was designed and built as a grid 

service in the context of grid computing. G-QoSm is modular in design, giving it 

flexibility to include new resource managers to support different resources, as, and 

when, they become available. Integrating new resource managers is possible because
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of the uniform treatment of a variety of resource managers through a resource- 

specific interface layer. The architecture is a self-contained QoS management system 

which can be used with the Java CoG Kit client library. Consequently, a grid 

application that uses the Java CoG Kit has a natural transition into G-QoSm, and a 

new grid application can easily become QoS-aware.

This prototype was integrated with a scientific application of nanoscale structures, 

and used to evaluate computational QoS property. The network QoS property is 

evaluated through a simulation of grid data-transfer application. The evaluation is 

aimed at comparing the performance of the G-QoSm prototype to a standard grid 

middleware system without QoS management support, based on two measures:

❖ For computation QoS, the time taken to complete a process with QoS 

constraints, despite workloads generated by other applications utilising 

system resources.

❖ For network QoS, the ability of an application with QoS constraints to 

maintain a promised rate of data transfer while other applications are utilising 

system resources.

Performance results and analysis, based on the G-QoSm approach, demonstrate the 

usefulness of a QoS management approach in SOAs, and, in particular, in grid 

computing. The results show that in the case of computational QoS support, the 

performance of the application with QoS support yielded improved performance and 

provided reliable and consistent application execution. In this context, reliable 

implies that when an application is given a SLA indicating certain resources will be 

available, at certain pre-defined time, with the expected performance levels, then this 

is an assurance the application will find these resources available when the time 

comes. Similarly, consistent implies that the application will receive the expected 

performance throughout the SLA validity period. The results also show that the 

introduction of QoS generates some processing overhead -  this overhead is, 

however, small, and negligible when compared to the overhead generated by WS 

protocols, especially when invoking services using the SOAP protocol. The overhead 

generated by the QoS management system is in the order of 100 ms per request. 

Essentially this overhead results from the negotiation process during the establishment 

phase of the QoS session, and the 100 ms overhead constitutes 100% of the negotiation
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overhead per request, with request, in this context, meaning a single request, from the 

client, and a corresponding reply from the QoS management entity.

Similarly, in the case of network performance, results show that the simulated 

application can successfully maintain the promised rate of data transfer, while other 

applications utilise network resources, throughout the SLA validity period. The 

provision of network QoS to support grid applications is based essentially on the 

IETF DiffServ model. The Bandwidth Broker (BB) is identified as the key 

architectural component necessary to support network QoS management. A key 

limitation with network QoS approaches is the ability to manage and control 

networking elements to conform to a defined policy. This is especially true when 

deploying grid applications where such networking elements may not be owned by 

one individual or institution.

QoS abstractions are also presented for building QoS-based applications in the 

context of service-oriented grids. These abstractions, presented as an application 

programming interface (API), will assist application developers in building QoS- 

aware grid applications.

G-QoSm is not limited to service-oriented grids, and is also suitable for applications in 

other SOAs, and the G-QoSm model can, for example, be applied in peer-to-peer 

computing (Rana et al. 2005).

7.2 Contributions

A new abstract model for resource management, based on QoS for service-oriented 

architectures is presented. This model is a general type for QoS management in 

SOAs and can be applied in various architectures. Although this model is designed 

for SOAs, the concepts developed in the model are not restricted to SOAs. The key 

advantages of SOAs are loose coupling, in application-to-application interaction or 

application to data sources, and inter-operability support.

A novel protocol for agreement-based QoS negotiation, establishing a SLA as a 

contract between service consumer and provider, is developed. This protocol is
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particularly useful when designing QoS brokers for a distributed computing 

environment.

A new approach to resource selection, based on QoS properties, is presented. This is 

possible through the extension of a standard registry system, such as UDDI. The 

extension enables the registry system to support service publishing and discovery, 

based on QoS properties as outlined in Chapter 4. A service selection approach is 

introduced to select the best match based on a client’s application requirements.

Two mechanisms for resource allocation (i) time domain and (ii) resource domain 

are presented. Time domain is suitable for applications requiring high-performance 

computing resources, while resource domain is suitable for small applications and 

services requiring relatively limited resources with QoS guarantees.

A new technique for advance resource reservation in grids, for single, or multiple, 

resources is developed. Most reservation systems deal with only one type of resource 

per request, as in GARA; however, in grid systems applications are normally 

interested in using multiple resources simultaneously. The proposed technique for 

reserving multiple resources, both computational and network is effective for grid 

applications.

Resources can become congested or even fail, leading to QoS degradation, and 

require adaptation mechanisms to maintain SLA compliance. Adaptation 

mechanisms are developed to compensate for such QoS degradation and to optimise 

resource utilisation, as discussed in Chapter 3. The adaptation approach is based on 

reserving extra resources for the guaranteed class of service.

In summary, the main contribution of this work is an approach to enhance the basic 

principles of the SOA in supporting QoS, which enables the execution of applications 

with resource QoS guarantees, based on pre-established agreements. This QoS support is 

realised by introducing a QoS management component in middleware systems.
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7.3 Further Research

Various issues arise which present opportunities for future research in this field.

7.3.1 -  Cost Model

A cost model to price resources would improve the G-QoSm model. The need for 

such a model becomes clear when considering multiple applications competing 

simultaneously for immediate or advance reservations of a finite set of resources. 

With a cost model, a QoS management system would be able to limit competition 

while still generating necessary revenue, which can be realised by applying a cost- 

related reservation strategy, such as increasing the cost when resources become 

limited. Such a cost model could be derived from business and economic theories.

7.3.2 -  Reservation Strategies

A resource reservation strategy is a key function in QoS management systems, and 

introducing advanced strategies, or approaches, for resource reservation can improve 

resource utilisation. Reservation strategies, based on statistical information for 

applications and resources, can be utilised to achieve this; such statistical information 

can be application-profiling data, application usage patterns or the use of probability 

functions (Rolia et al. 2003).

7.3.3 -  QoS for Workflow and Task Graphs

In this context, a task represents a unit of execution on a grid or job. Certain 

applications require a more sophisticated execution framework facilitating complex 

execution patterns and dependencies. A task graph -  a directed acyclic graph -  for 

execution control flows between multiple tasks can be modeled (Amin et al. 2004). 

A task graph handler enforces execution ordering on the task graph. QoS support, as 

available in G-QoSm, can be integrated with the task graph handler to support 

execution with QoS properties.

Similarly, in the context of workflow management, G-QoSm could be integrated 

with a workflow scheduling engine to form QoS-enabled workflow applications, 

enabling execution of such workflow applications on resources with QoS provisions.
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7.3.4 -  Monitoring Service

Monitoring resource utilisation is an important QoS management function during the 

active phase of a QoS session -  useful for accounting, adaptation and resource 

profiling. An investigation into the design of a monitoring service, to provide 

feedback on resource utilisation to the QoS manager, would be useful. For example; 

the Grid Resource Monitoring (GridRM) project (Baker and Smith, 2003) and the 

Network Weather Service (NWS) project (Wolski, Spring and Hayes, 1999) can 

provide such a monitoring functionality.

The monitoring service can report on resource utilisation during the active phase of the 

QoS session. This service can be linked with the allocation manager and the reservation 

manager of the G-QoSm for SLA compliance verification and adaptation purposes.

7.3.5 -  Prediction Service

In the G-QoSm architecture, an application can request services from the QoS 

Manager, even though the QoS Manager has no QoS information about the requested 

service. Here the QoS manager consults the registry service for resource and QoS 

specifications, suggested as sufficient to run the service.

It would benefit the G-QoSm to have a prediction method for determining resource 

and QoS specifications for a requested service, in the environment in which the 

service is to be executed. Such a service could reduce over, or under, reservation and 

provide for just sufficient resource reservation, as in the reservation technique in Chu 

and Nahrstedt (1999) in Chapter 2. The PACE project, at Warwick University, is a 

prediction service which may well deliver these services within G-QoSm (Jarvis et 

al. 2003). Systems with prediction capabilities, such as PACE, can be used in the G- 

QoSm architecture to provide QoS information related to services, which 

information, and, in particular, the service profile, can then be published in the 

registry service.
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Appendix A 

QGS Service WSDL Interface

<?xml version="l.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://qos.cog.globus.org/QoS"
xmlns="http://schemas.xmlsoap.org/wsdl/ "
xmlns : apachesoap="http: / /xml. apache. org/xml-soap"
xmlns : gridservicesoapbinding="http: / /www. gridf orum. org/namespaces/2 0 03/03/0G
SI/bindings" xmlns:impl="http: / /qos.cog.globus.org/QoS"
xmlns:intf="http://qos.cog.globus.org/QoS"
xmlns : soapenc="http: / /schemas .xmlsoap. org/soap/encoding/"
xmlns :wsdl="http: / /schemas .xmlsoap. org/wsdl / "
xmlns :wsdlsoap="http: //schemas . xmlsoap.org/wsdl/soap/”
xmlns : xsd="http: / /www. w3 . org/2 0 01/XMLSchema" x w s d l : import
location="../../ogsi/ogsi_bindings.wsdl"
namespace="http: / /www. gridf orum. org/namespaces/2 003/03 /OGSI/bindings " / >
<wsdl:types>
<schema targetNamespace="http: //qos .cog.globus .org/QoS" 

xmlns="http: / /www. w3 . org/2001/XMLSchema">
<element name="serviceRequest">
<complexType>
<sequence>
<element name="inO" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="serviceRequestResponse">
<complexType>
<sequence>
<element name="serviceRequestReturn" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="confirmSlaOffer">
<complexType>
<sequence>
<element name="inO" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="confirmSlaOfferResponse">
<complexType>
<sequence>
<element name="confirmSlaOfferReturn" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="rejectSlaOffer">
<complexType>
<sequence>
<element name="inO" type="xsd:string"/>

</sequence>
</complexType>

</element>
<element name="rejectSlaOfferResponse">
<complexType>
<sequence>
<element name="rejectSlaOfferReturn" type="xsd:string"/>

</sequence>
</complexType>

</element>
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</schema>
</wsdl:types>

<wsdlrmessage name="rejectSlaOfferRequest">
<wsdl:part element="impl:rejectSlaOffer" name="parameters"/>

</wsdlrmessage>
<wsdlrmessage name=nconfirmSlaOfferResponse">

<wsdl:part element="impl:confirmSlaOfferResponse" name="parameters"/> 
</wsdl:message>
<wsdlrmessage name=nserviceRequestResponse">

<wsdl:part element="impl: serviceRequestResponse" name="parameters"/> 
</wsdl:message>
<wsdlrmessage name="serviceRequestRequest">

<wsdlrpart element="implrserviceRequest" name="parameters"/>
</wsdlrmessage>
<wsdl rmessage name="confirmSlaOfferRequest">

<wsdlrpart element="implrconfirmSlaOffer" name="parameters"/>
</wsdlrmessage>
<wsdl rmessage name="rejectSlaOfferResponse">

<wsdlrpart element="implr rejectSlaOfferResponse" name="parameters"/> 
</wsdlrmessage>
<wsdlrportType name="QoSPortType">

<wsdlroperation name="serviceRequest" parameterOrder="">
<wsdlr input message="implr serviceRequestRequest" 

name="serviceRequestRequest"/>
<wsdlr output message="implr serviceRequestResponse" 

name="serviceRequestResponse"/>
</wsdlr operation>
<wsdlroperation name="confirmSlaOffer" parameterOrder="">

<wsdlrinput message="implrconfirmSlaOfferRequest" 
name="confirmSlaOfferRequest"/>

<wsdl r output message=" implr confirmSlaOfferResponse" 
name="confirmSlaOfferResponse"/>

</wsdlr operation>
<wsdlroperation name="rejectSlaOffer" parameterOrder="">

<wsdlr input message="implr rejectSlaOfferRequest" 
name="rejectSlaOfferRequest"/>

<wsdlroutput message="implr rejectSlaOfferResponse" 
name="rejectSlaOfferResponse"/>

</wsdlr operation>
</wsdlrportType>
<wsdlrbinding name="QoSServiceSoapBinding" type="implrQoSPortType">

<wsdlsoaprbinding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdlr operation name="serviceRequest">
<wsdlsoaproperation soapAction=""/>
<wsdlr input name="serviceRequestRequest">

<wsdlsoaprbody namespace="httpr//qos.cog.globus.org/QoS" 
use="literal"/>

</wsdlr input>
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<wsdl:output name="serviceRequestResponse">
<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS" 

use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="confirmSlaOffer">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="confirmSlaOfferRequest">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS" 
use="literal"/>

</wsdl:input>
<wsdl :output name="confirmSlaOfferResponse">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS" 
use="literal"/>

</wsdl:output>
</wsdl:operation>
<wsdl:operation name="rejectSlaOffer">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="rejectSlaOfferRequest">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS" 
use="literal"/>

</wsdl:input>
<wsdl:output name="rejectSlaOfferResponse">

<wsdlsoap:body namespace="http://qos.cog.globus.org/QoS" 
use="literal"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="QoSService">

<wsdl:port binding="impl:QoSServiceSoapBinding" name="QoSService" 
<wsdlsoap:address

location="http://localhost/ogsa/services/QoSService"/> 
</wsdl:port>

<wsdl :port binding="gridservicesoapbinding: GridServiceSOAPBinding" 
name="GridServiceSOAPBindingPort "xwsdlsoap: address 
location="http://localhost/ogsa/services/QoSService"/>

</wsdl:port>
</wsdl:service>
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Appendix B

QGS Installation

QGS, part of G-QoSm, provides access to Grid resources with QoS guarantees. Two 

resource allocation strategies are supported: (a) time-domain, and (b) resource-domain.

❖ Time-domain entails the user having full access to the computer resource 

where the QGS is installed; and the user can submit job(s) to this particular 

resource throughout the period defined in the QoS agreement.

❖ Resource-domain is gaining access to specific computation capacity of the 

Grid node, for a period of time defined in the QoS guarantees.

Note: In the time-domain strategy the Grid resource is dedicated, while in the 

resource-domain strategy, the resource is shared

B.l. Installation Prerequisites

Ensure the following components are properly installed and configured:

1. Globus toolkit 3.0, or later versions - full installation or the'core'

2. Java CoG kit 1.1a, or later versions from the Java CoG Kit project web site. 

The QoS package from http://users.cs.cf.ac.uk/Rashid/qos/ This QoS package 

should be placed in the downloaded CoG as a directory, under the directory 

/modules of the CoG as: ../modules/qos

3. Dynamic Soft Real-time scheduler (DSRT), available with this distribution -  

make sure you:

o use the DSRT with this distribution as it has some customized API

o Edit the file "config.txt" available in the root directory of this 

distribution, with the DSRT installation path and save the file in the 

'.globus/' directory.

4. Java VM and apache ant.
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B.2. Compilation and Service Deployment

1. Edit the file 'build.properties' in the installation root directory with the right value 
of the 'ogsa.root', which should be set to the OGSA installation.

2. From the installation directory, run the convenient script, created by the GT3 
team, as shown below, to compile the QGS service and create the appropriate jar 
and gar files.
./compileService.sh org/globus/cog/qos/imple/Qgs.java
If all goes well, then you should have a build directory with all the jar, gar and 
compiled classes.

3. Create a proxy. If you don't have a valid one; one way to do this is from the 
CoG_dir/bin: enter the following: ./visual-proxy-init

4. From the OGSA installation directory deploy the service by entering the following
command:
ant deploy -Dgar.name=$QGS_DIR/src/build/lib/org.globus.cog.qos.Qgs.gar 
where QGS_DIR is the installation directory of this distribution

5. Start the OGSI container by entering the following command from the OGSA 
directory: ant startContainer

6. Create a persistent instance of the QGS by entering the following command from
the <ogsa_dir>/bin: ogsi-create-service \
http://localhost:8080/ogsa/services/org/globus/cog/qos/QgsService test 
this should be entered as one command.

7. To ensure the service instance has been started, from the ogsa_dir enter the 
following command: ant gui This command starts the OGSI visual browser. 
You should see in the browser: 'A QoS Service Factory' and 'A QoS Service 
Instance' with both in 'ACTIVE' states.

8. If all goes well, and you can see the service instance in the browser as 'ACTIVE',
then Congratulations!! -  the QGS is deployed and instantiated correctly.

B.3. Bug Reports

To report bugs please use http://www.globus.org/cog/contact/bugs 

or e-mail: Rashid Al-Ali at rashid@mcs.anl.gov or rashid@cs.cardiff.ac.uk
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Appendix C

DSRT Wrapper API

package org.globus.cog.qos.server.dsrtApi;

import org. globus . cog. core. impl. common . CoreProperties;
public class QosDsrtProxy {

private String cpuPercent;
private String option;
private String pid;
private String dsrtPath = null;
private String dsrtAPI = "DSRTapi.o";

public void setDsrtPath() {
try {

CoreProperties properties = new CoreProperties("config.txt"); 
this.dsrtPath = properties.getCoreProperty("DSRT_INSTALLATION") ; 

} catch (Exception e) {
System.out.printIn (e);

public void setCpuPercent(int cpuPercent) {
this.cpuPercent = Integer.toString(cpuPercent);

}

public String getCpuPercent() {
return this.cpuPercent;

}

public void setPid(int pid) {
this.pid = Integer.toString(pid);

}

public String getPid() { 
return this.pid;

}

public void allocateResource() {
this.option = "0"; 
this.contactDSRT() ;

}

public void releaseResource () {
this.option = "1"; 
this.contactDSRT();

}

private void contactDSRT() {
try {

146



String cmd = dsrtPath + "/" + dsrtAPI + " " + cpuPercent + " " + 
pid + " " + option;

Runtime rt = Runtime.getRuntime ();
System.out.println("Exec: executing: " + cmd); 
rt.exec(cmd);

} catch (Throwable t) { 
t .printStackTrace ();

}
}

}

C.l. DSRT QoS Command Execution -  Java Class
package org.globus.cog.qos.server.dsrtApi;
import org. globus . cog. core. impl. common. CoreProperties;

import java.io.*;
public class QosExecCommand {

private String cCodePath = "prog"; 
private String executable; 
private String paraml; 
private String utilPath;
public QosExecCommand(String executable, String paraml) { 

this.executable = executable; 
this.paraml = paraml;
try {

CoreProperties properties = new CorePropertiesCconfig.txt"); 
this.utilPath = properties.getCoreProperty("DSRT_INSTALLATION") 
+ "/util/";

} catch (Exception e) {
System.out.println(e);

}

}

public String getCommandArguments () {
String cmd = null;

// note: executable + " " + executable ....  this is an Excel
requirement!

cmd = utilPath + "pid.txt" + " " + executable + " " + executable + " 
" + paraml;

System.out.println("Service: the generated cmd. Args: " + cmd); 

return cmd;
}

public String getCommandExec () {
String cmd = null;
cmd = utilPath + cCodePath;
System.out.println("Service: the generated cmd. Exec: " + cmd); 

return cmd;
}

public String getPidO {
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String pid = null; 
try {

File file = new File(utilPath + "pid.txt"); 
if (file.canRead()) {

FilelnputStream fis = new FilelnputStream(file)
int Cbuffer = -1;
char buf[] = new char[10];
int i = 0;
char C;

do {
Cbuffer = fis.read();
C = (char) Cbuffer; 
if (Cbuffer != -1) {

System.out.print (C); 
buf[i++] = C;

}
} while (Cbuffer != -1);
StringBuffer strbuff = new StringBuffer (); 
strbuff.append(buf);
String temp = strbuff.toString (); 
pid = temp.trim(); 
fis.close(); 
file.delete();

}
} catch (IOException ioe) { 

ioe .printSta.ckTrace () ;
}
return pid;

}

}



Appendix D 

A Java Class for QoS Negotiation

package org.globus.cog.qos.examples;

import org.apache.log4j.Logger;
import org.globus.cog.core.impl.common.*;
import org.globus.cog.qos.handler.QosTaskHandlerlmpl;
import org.globus.cog.qos.handler.QoS;
import org.globus.cog.core.interfaces.*;

public class QosRequest2 { 
static Logger logger =

Logger.getLogger(QosRequest2.class.getName ()); 
private Task task;

public QosRequest2() {
prepareTask(); 
submitTask();

String status = (String)
this.task.getAttribute("agreementToken");

if (status != null) {
System.out.println("Your request has SUCCEEDED and the 
agreementID is: " + status);

} else
System.out.println("Your request has FAILED!");

}

private void prepareTask() {
String startTime = "11/10/2003 16:21:00";
String endTime = "11/10/2003 16:35:00";
String serviceContact =
"http://localhost:8080/ogsa/services/org/globus/ 

cog/qos/server/QosService/qos" ;
String allocationStrategy = "resource-domain"; / / o r  can be 

time-domain

task = new Tasklmpl("myTestTask", QoS.QoSNEGOTIATION) ; 
logger.debug("Task Identity: " + 
task.getIdentity () .getValue());

this.task.setAttribute("startTime", startTime); 
this.task.setAttribute("endTime", endTime); 
this.task.setAttribute("allocationStrategy", 

allocationStrategy);

if (allocationStrategy.compareTo("resource-domain") == 0) {
this.task.setAttribute("resourceCapacity", "40");

}

ServiceContact service = new
ServiceContactImpl(serviceContact) ;
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this . task.setServiceContact(service);
}

private void submitTaskO {
TaskHandler handler = new QosTaskHandlerlmpl() ; 
try {

handler.submit(this.task);

} catch (InvalidSecurityContextException ise) { 
logger.error("Security Exception"); 
ise.printStackTrace() ;
System.exit (1);

} catch (TaskSubmissionException tse) {
logger.error("TaskSubmission Exception"); 
tse.printStackTrace();
System.exit (1);

} catch (IllegalSpecException ispe) {
logger.error("Specification Exception"); 
ispe.printStackTrace();
System.exit (1);

} catch (InvalidServiceContactException isce) { 
logger.error("Service Contact Exception"); 
isce.printStackTrace ();
System.exit(1);

}
}

public static void main(String a r g []) {
new QosRequest2();

}

150



D.l. Submitting a QoS-based Job after QGS Negotiation

package org.globus.cog.qos.examples;

import org.apache.log4j.Logger;
import org.globus.cog.core.impl.common.*;
import org.globus.cog.qos.handler.QosTaskHandlerlmpl;
import org.globus.cog.qos.handler.QoS;
import org.globus.cog.core.interfaces . *;

public class QosJobSubmission implements StatusListener { 
static Logger logger =

Logger. getLogger (Qos JobSubmission. class . getName () ) ; 
private Task task;

public QosJobSubmission () {
prepareTask (); 
submitTask();

Status jobStatus = this.task.getStatus (); 
if (Status.SUBMITTED == jobStatus.getStatus ()) {

System.out.printIn("Job has been submitted.");
}

if (Status.FAILED == jobStatus.getStatus ()) {
System.out.println("Job submission has failed.");

}
}

private void prepareTask() {
String serviceContact =
"http://localhost:8080/ogsa/services/org/globus/ 

cog/qos/server/QosService/qos"; 
this.task = new Tasklmpl("myTestTask", QoS.JOB_SUBMISSION); 
logger.debug("Task Identity: " + 
this.task.getldentity() .getValue ());

this.task.setAttribute("agreementToken",
"localhost.localdomain:1068608841065:120");
JobSpecification spec = new JobSpecificationlmpl();
spec.setExecutable("/bin/sleep");
spec.setArguments("30");
spec.setStdOutput("qosOutput");

spec.setBatchJob(true);
this.task.setSpecification(spec);

ServiceContact service =
new ServiceContactImpl(serviceContact) ; 

this.task.setServiceContact(service) ;

this.task.addStatusListener(this) ;
}

private void submitTask() {
TaskHandler handler = new QosTaskHandlerlmpl();
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try {
handler.submit(this.task);

} catch (InvalidSecurityContextException ise) { 
logger.error("Security Exception"); 
ise.printStackTrace();
System.exit(1);

} catch (TaskSubmissionException tse) {
logger.error("TaskSubmission Exception"); 
tse.printStackTrace();
System.exit(1);

} catch (IllegalSpecException ispe) {
logger.error("Specification Exception"); 
ispe.printStackTrace ();
System.exit(1);

} catch (InvalidServiceContactException isce) { 
logger.error("Service Contact Exception"); 
isce.printStackTrace();
System.exit(1);

}
}

public void statusChanged(StatusEvent event) {
Status status = event.getStatus();
logger. debug("Status changed to " + status.getStatus()); 
if (status.getStatus() == Status.COMPLETED) {

logger.debug("Output = " + this.task.getStdOutput()) 
System.out.println("Job has completed!");
System.exit(1);

}
}

public static void main(String ar g []) {
new QosJobSubmission();

}



Appendix E

Reservation Data Structure and Methods

package org.globus.cog.qos.server.reservation; 

import java.util.Date;
j ★ ★
An implementation of a Reservation
★ ★ j

public class QosReservation implements QosReservationlnterface

Date startTime;
Date endTime;
Date submitTime;
Date lastModified; 
boolean isActive;
String type;
String label; 
int capacity;
String nodeName;
String id;
boolean resConfirmed = false;
String strategy;

private void modify() {
Date now = new DateO; 
lastModified = now;

}

public QosReservation() {
Date now = new DateO; 
lastModified = now; 
submitTime = now; 
isActive = false; 
startTime = now; 
endTime = now; 
label = "undefined"; 
capacity = 0;

}

public QosReservation(Date from, Date to) {
Date now = new DateO; 
lastModified = now; 
submitTime = now;

startTime = from; 
endTime = to;

label = "undefined"; 
isActive = false; 
type = "undefined"; 
capacity = 0;



}

public String getLabelO { 
return label;

}

public void setLabel(String 1) {
label = 1;

}

j k k _________________________________________
Start Time
__________ — * ★ j

/  *  *

* Get the StartTime when the reservation is set.
* @return the StartTime of the reservation.
* /

public Date getStartTime() {
return startTime;

}

j  k ★
* Set the StartTime for the reservation.
* Sparam newStartTime The new StartTime of the reservation. 
* /

public void setStartTime(Date newStartTime) { 
modify();
this.startTime = newStartTime;

}
j k k _________________________________________
Type
 ★ ★ j

j k k
* Get the Type when the reservation is set.
* @return the Type of the reservation.
* /

public String getTypeO { 
return type;

}
/  *  *

* Set the Type for the reservation.
* @param newType The new Type of the reservation.
* /

public void setType(String newType) { 
modify();
this.type = newType;

}
J k k _________________________________________
Capacity k k J

J k k
*  Get the Capacity when the reservation is set.
* @return the Capacity of the resource.
* /

public int getCapacity() {
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return capacity;
}

j ★ ★
* Set the Capacity for the reservation.
* @param newCapacity The new Capacity of the reservation.
* /

public void setCapacity(int newCapacity) { 
modify() ;
this.capacity = newCapacity;

}
j ★ ★ ___ _____________________________________
EndTime
 ★ ★ J

j ★ ★
* Get the EndTime when the reservation is set.
* @return the EndTime of the reservation.
* /

public Date getEndTimeO { 
return endTime;

}
j  'k ★
* Set the EndTime for the reservation.
* @param newEndTime The new EndTime of the reservation.
* /

public void setEndTime(Date newEndTime) { 
modify();
this.endTime = newEndTime;

}
j -k ★ ________________________________________
submit Time
 ★★!

j ★ ★
* Get the SubmitTime when the reservation is set.
* @return the SubmitTime of the reservation.
* /

public Date getSubmitTime() {
return submitTime;

}
! ★ ★
* Set the SubmitTime for the reservation.
* @param newSubmitTime The new SubmitTime of the reservation. 
* /

public void setSubmitTime(Date newSubmitTime) { 
modify();
this.submitTime = newSubmitTime;

}

j * ★ _________________________________________
last modified
 * * j
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* Get the LastModified when the reservation is set.
* @return the LastModified of the reservation.
* /

public Date getLastModified () {
return lastModified;

}

j ★ ★
* Set the LastModified for the reservation.
* @param newLastModified The new LastModified of the 
reservation.

* /
public void setLastModified(Date newLastModified) { 

this . lastModified = newLastModified;
}

// Node name: is the name of the computer that the reservation 
is made for 

public String getID() { 
return id;

}

public void setID(String id) { 
mo dify(); 
this.id - id;

}

public String getStrategy() {
return this.strategy;

}

public void setStrategy(String strategy) { 
this.strategy = strategy;

}

// a flag to indicate reservation was confirmed or not 
public boolean isReservConfirmed() {

return this.resConfirmed;
}

public void setReservConfirmation(boolean confirmed) { 
t h i s .resConfirmed = confirmed;

}
j ★ ★ _________________________________________
toXML ★★!

private String field(String name, String value) { 
return name + "=" + value;

}

private String field(String name, Date value) { 
return name + "=" + v a l u e .toString();

}
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private String field(String name, int value) { 
return name + "=" + value;

}

private String field(String name, boolean value) { 
return name + "=" + value;

}
j  ★ ★
* Returns the Reservation in XML format. Not implemented yet
* 0return the reservation in XML through a String.
*/

public String toXML(String indent) {

String out =
indent + Preservation" 
field(indent + "label", 
field(indent 
field(indent 
field(indent 
field(indent 
field(indent 
field(indent 

getID ()) + 
field(indent 
field(indent 

return out;

+
label) +

"start", startTime) +
"end", endTime) + 
"submitted", submitTime) + 
"modified", lastModified) + 
"active", isActive) + 
"type", "node:" + type +

"capacity", 
"Strategy",

capacity)
strategy) indent +

}

public String toXML () {
return (toXML(""));

}
y ★ ★ _______
activation

/ ’
* Changes the state of the reservation to active 
*/

public void activate () {

modify (); 
isActive = true;

}
/**

*
*/

public void deactivate() {
modi fy(); 
isActive = false;

}

Changes the state of the reservation to deactivate

public int compare(QosReservation r) { 
int result = 0;
// compares if the other reservation outside of the 

current.
if (startTime.after(r.startTime) II



endTime.before(r.startTime)) { 
result = 0;

} else {
result = -1;

}
return result;

}

}

E.l. A Java Class for the Reservation Agent

package o r g.globus.cog.q o s .server.reservation;

import java.util.Date; 
import java.util.Enumeration; 
import java.util.Hashtable;

public class QosReservationAgent {

static int id = 111;

private String label;
private Hashtable reserveTable;

public QosReservationAgent(String 1) {
label = 1;
reserveTable = new Hashtable ();

}

public String getLabel() { 
return label;

}

public void setLabel(String 1) {
label = 1;

}

public boolean isAvailable(QosReservation r) throws 
QosReservationException {

QosReservationValidation resValidation = null;

resValidation = new
QosReservationValidation(r.getCapacity (), reserveTable);

if (!resValidation.validateReservation(r.getStartTime() , 
r .getEndTime()) ) {
throw new QosReservationException("Cannot make 
reservation for the given request !!");

}
return true;

}

public String extend(String label, long durationlnMin) throws 
QosReservationException {

if (durationlnMin <= 0) {
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throw new QosReservationException("Check the supplied 
extension duration !!");

}
String reply = null;
QosReservation r = (QosReservation) reserveTable.get(label);
long newLongEndTime = r .getEndTime().getTime() + 

durationlnMin * (1000 * 60);
Date newEndTime = new Date(newLongEndTime);
Date newStartTime = new Date(r.getEndTime().getTime() + 60 * 

1000); //increment by a minute
QosReservation newR = new QosReservation(newStartTime, 

newEndTime);
newR.setCapacity(r.getCapacity());
if (this.isAvailable(newR)) {

QosReservation extendedR = r; 
extendedR.setLabel(r.getLabel ()); 
extendedR.setCapacity(r.getCapacity()); 
extendedR.setReservConfirmation(true); 
extendedR.setID(r.getID()); 
extendedR.setStartTime(r.getStartTime ()); 
extendedR.setEndTime(newR.getEndTime ()); 
reserveTable.remove(label);
reserveTable.put(extendedR.getLabel(), extendedR); 
reply = extendedR.getLabel ();

}
return reply;

public String add(QosReservation r) throws 
QosReservationException {

if (reserveTable.get (r.getLabel()) != null) {
return null; // this label has been used in another 

entry
}
if (isAvailable(r)) {

reserveTable.put(r.getLabel(), r); 
return t his .createToken(r);

}
return null;

public String delete(String label) throws 
QosReservationException {

QosReservation r = (QosReservation) reserveTable.get(label) ; 
Date currentTime = new D a t e O ;

if (r != null) {
if (!currentTime.before(r.getStartTime())) {

return ("cannot delete sla");
} else {

reserveTable.remove(label); 
return ("successful");

}
} else

return ("failed");
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public String completion(String label) throws 
QosReservationException {

QosReservation r = (QosReservation) reserveTable.get(label) ;

if (r != null) {
if (this.isTimeToStartTheReservSrvc(label)) { //means

yes we can report on completion 
reserveTable.r e m o v e (label); 
return ("successful");

}
}
return ("failed");

public boolean isReservExist(String label) throws 
QosReservationException {

QosReservation r = (QosReservation) reserveTable.get(label) ; 
if (r != null) { 

return true;
}
return false;

public String t o X M L () throws QosReservationException {

String result = "";

result = "reservationAgent "; 
result = result + "name=" + label; 
for (Enumeration e = reserveTable.k e y s (); 

e.hasMoreElements();) {
QosReservation r = (QosReservation) 
reserveTable.g e t ( e .nextElement()); 
result = result + r .t o X M L ("\t");

}
return result + "\t>";

private String createToken(QosReservation r) {

String idString = Integer.toStri ng(id++) ; 
r .set ID (idString);
return (r.getTypeO + ":" + r. getLabel () + + r.getlDO);

public boolean isTimeToStartTheReservSrvc(String labelin) {

QosReservation r = (QosReservation) 
reserveTable.get(labelin);
Date currentTime = new D a t e O ;

if (r != null) {
if (currentTime.before(r.getEndTime() ) &&

((currentTime.after(r.getStartTime())) II 
(currentTime.eq ual s(r .getStartTime())))) {
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return true;
}

}

return false;

public String getCapacity(String labelin) {

QosReservation r = (QosReservation) 
reserveTable.get(labelin);

return Integer.toString(r.getCapacity());

public String g etStrategy(String labelin) {

QosReservation r = (QosReservation) 
reserveTable.get(labelin);

return r . getStrategy () ;

public boolean getConfirmationStatus(String label) {

QosReservation r = (QosReservation) reserveTable.get(label); 
if (r != null) {

return r .isReservConfirmed();
} else

return false;

public QosReservation getReservation(String label) { 

return (QosReservation) reserveTable.get(label);

public void deleteReservationEntries() {

for (Enumeration e = reserveTable.k e y s (); 
e .hasMoreElements();) {
QosReservation r = (QosReservation) 
reserveTable.g e t ( e .nextElement()); 
reserveTable.remove(r.get Lab el());

}
}

}

E.2. A Java Class for Validating Reservation Requests

package o r g .globus.c o g .q o s .server.reservation;

//import o r g .glo bus .c o g .q o s .i m p l .Qgslmpl; 

import java.u t i l .Date;
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import java.u t i l .Hashtable; 
import java.u t i l .Enumeration;

public class QosReservationValidation {
private int reqCapacity, tempCapacity;
private int durationlterator;
private Hashtable reservationTable;

public QosReservationValidation(Hashtable reservationTable) { 
t h i s .reqCapacity =

Integer.parselnt(QosRequestHandler.MAX_CAPACITY) ; 
t h i s .reservationTable = reservationTable; 
tempCapacity = 0;

}

public QosReservationValidation(int reqCapacity, Hashtable 
reservationTable) { 

t h i s .reqCapacity = reqCapacity; 
t h i s .reservationTable = reservationTable; 
tempCapacity = 0;

}

// this method is to check if two given reservation times have 
intersections

public boolean isWithln(Date sTref, Date eTref, Date sTService, 
Date eTService) { 

if ((sTService.after (sTref) | | (sTService.compareTo(sTref)
== 0) )

&& (sTService.before(eTref) ||
sTService.compareTo(eTref) = = 0 ) )  {
return true;

} else if ( (eTService.after(sTref) ||
(eTService.compareTo(sTref) == 0))

&& (eTService.before(eTref) I I 
eTService.compareTo(eTref) = = 0 ) )  {
return true;

} else if ( (sTService.before(sTref) I I 
(sTService.compareTo(sTref) == 0))

&& (eTService.after(eTref) I I 
eTService.compareTo(eTref) = = 0 ) )  {
return true;

} else
return false;

}

// this method is to convert the period of a reservation into 
minutes

public int convertDurationToIteration(Date sTime, Date eTime) { 
long duration = ((eTime.g e t T i m e () - sTime.getTime()) / (1000

* 60)); 
return ( (int) duration);

}

// this method is to reset the total capacity of intersected 
services.

public void resetCapacity () {
tempCapacity = 0;

}
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// this method is to check the total accumulated capacities —  
admission control 

public boolean checkAdmission() {
int netcapacity =

Integer.parselnt(QosRequestHandler.MAX_CAPACITY) - 
t h i s .tempCapacity; 

if (netcapacity >= t h i s .reqCapacity) {
return true;

}
return false;

public boolean validateReservation (Date sTimeln, Date eTimeln) { 
Date sTime = new Date(sTimeln.g e tTi me());
Date eTime = new Date(eTimeln.g e tTi me());

/* check that the end time is after the start time and 
the start time is later than current time. */ 

if ((sTimeln.after(eTimeln)) || (sTimeln.before(new D a t e ()))
I I

(sTimeln.compareTo(eTimeln) == 0)) {
return false;

}
t h i s .durationlterator =

t h i s .convertDurationToIteration(sTime, eTime);
Date sTService = null, eTService = null;

int resourceValue = 0 ;  / / a  variable to hold resource
capacity

for (int i = 0; i < durationlterator; i++) {
for (Enumeration e = reservationTable.k e y s () ; 

e .hasMoreElements();) {
QosReservation r = (QosReservation)

reservationTable.get( e.nextElement() ) ; 
sTService = r .getStartTime(); 
eTService = r .getEndTime();
resourceValue = r .getCapacity(); // SHOULD BE FIXED

TO HOLD RESOURCE CAPACITY

if (this.isWithln(sTime, eTime, sTService, 
eTService)) {

t h i s .tempCapacity = t h i s .tempCapacity + 
resourceValue;

}
}

if (!(this.checkAdmission())) {
return false;

}
sTi me.setTime(sTime.ge t T i m e () + (60 * 1000));

//increment by a minute 
t h i s .resetCapacity (); // reset capacity counter

}
return true;

}
}
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Appendix F

Java Code for Interfacing the QoS Registry Service UDDIe

package gqosm.ns.uddie;

import a q o s .dataType.*;
import o r g .ud di4 j.*;
import o r g .ud di4 j.cli ent .*;
import org.uddi4j.d ata typ e.*;
import o r g .uddi4 j .datatyp e.assertion.*;
import o r g .uddi4 j .data typ e.b i n d i n g .*;
import o r g .uddi4 j .datat ype .business . *;
import u k .a c .c f .c s .uddie4 j .datat ype .service.*;
import u k .a c .c f .c s .uddie4 j .datat ype .service.BusinessServices ; 
import o r g .uddi4 j .data typ e.tm o d e l .*; 
import o r g .ud di4 j.request.*;
import u k .a c .c f .c s .uddie4 j .response.eServiceDetail; 
import o r g .uddi4 j .response.DispositionReport; 
import o r g . uddi4 j ..response . BusinessList; 
import o r g .uddi4 j .response.AuthToken; 
import o r g .uddi4 j .response.BusinessDetail; 
import o r g .uddi4 j .response.BusinessInfo; 
import o r g .uddi4 j .response.ServiceList; 
import o r g .ud di4 j.r e s p o n s e ;
import u k .a c .c f .c s .u d d ie4 j.response.eServiceDetail; 
import o r g .uddi4j.u t i l ;
import u k .a c .c f .c s .uddie4 j .UDDIeElement;
import o r g .w 3 c .dom.Element;
import o r g .w 3 c .dom.*;
import javax.x m l .par ser s.*;
import java.util.Vector;
import java.u t i l .Properties;
import java.io.*;
import u k .a c .c f .c s .uddie4j.client.UDDIeProxy; 
import u k .a c .c f .c s .uddie4 j .datatype.lease.*; 
import gqosm.ns.datatype.*; 
import gqosm.ns.u t i l .StatusWindow;

public class UDDIelnterface {

Service_Request service;
StatusWindow status;

public UDDIelnterface(Service_Request service, StatusWindow 
status)

{
this.service = service; 
this.status = status;
status.setCurrentTaskProgressBar(3);

}

public UDDIelnterface()
{
}
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j  ★ ★
* Get Services which match a specific serviceName
* and service properties
* 0return Vector of relevant Services
* 0throws Exception 
*/

public Vector getServices() throws Exception 
{

UDDIeProxy proxy = new UDDIePr oxy ();
proxy.setInquiryURL("http://localhost:8080/uddie/inquiry") ; 
proxy.setPublishURL("h t t p ://localhost:8080/uddie/publish") ;

//Get Authorization by sending a username and password 
// for the owner of the business
//AuthToken token = p r o x y .get_authToken("gqosm" , "gqosm"); 
AuthToken token = p r o x y .get_authToken("Rashiduddie" , 

"Rashiduddie");

//Define service name and add them to a vector 
//The maximum allowed names is 5

Name name = new N a m e (service.getServiceName());
Vector names = new V e c t o r (); 
n a mes .add(name);
Vector properties = new V e c t o r ();

status.addSubTask("Creating SOAP message for the requested 
service");

// Define property and add them to a Vector 
if ( service.getBudget () != null )
{

Property property = new Property("budget", "number", 
service.getBudget()); 

property.setPropertyFindQualifer(
PropertyFindQualifiers.LESS_THAN_OR_EQUAL); 

properties.add(property);
}

if ( service.getCpu_count() != null)
{

Property property2 = new P roperty("cpu_count", "number" , 
service.getCpu_count()); 

property2.setPropertyFindQualifer(
PropertyFindQualifiers.GREATER_THAN_OR_EQUAL); 

properties.add(property2 ) ;
}

if ( service.getReliability() != null)
{

Property property3 = new Pr ope r t y ("reliability", "number" 
, service.getReliability()); 

property3.setPropertyFindQualifer(
PropertyFindQualif i e r s .GREATER_THAN_OR_EQUAL) ; 

properties.add(property3);
}

if ( service.g etB andwidth() != null)
{

Property property4 = new Proper ty("bandwidth", "number" , 
service.getReliability());
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property4.setPropertyFindQualifer(
PropertyFindQualif iers . GREATER_THAN_OR_EQUAL) ; 

properties.add(property4);
}

// Define a propertyBag and add the properties Vector in 
the Bag

PropertyBag bag = new Pro pertyBag(); 
bag.setPropertyVector(properties) ;

// Define Find Qualifier for property exact match (Logical 
AND)

FindQualifier findQualifier = new
FindQualifier("exactPropertyMatch" ) ;

FindQualifier findQualifier2 = new
FindQualifier("exactNameMatch");

FindQualifier findQualifier3 = new
FindQualifier("exactMatch");

FindQualifiers qualifiers = new FindQualifiers();
Vector qualifiersVector = new V e c t o r () ; 
qualifiersVector.add(findQualifier) ; 
qualifiersVector.add(findQualifier2);
qualifiers.setFindQualifierVector(qualifiersVector);

// Send the query
status.addSubTask("Sending request to UDDIe");
ServiceList list = p r o x y .find_eService(null, names, null, 

bag, null, qualifiers , 5) ;

Servicelnfos infos = lis t.getServicelnfos() ; 
status.addSubTask ("receiving reply from UDDIe");
Vector services = infos.getServicelnfoVector();
Vector resultServices = new V e c t o r ();

for ( int i = 0; i < services.s i z e () ; i++)
{

Servicelnfo service = (Servicelnfo)services.get(i); 
eServiceDetail serviceDetail =
p r ox y.get_eServiceDetail(service.getServiceKey()); 
Vector serviceVector =
serviceDetail.getBusinessServiceVector(); 
BusinessService returnedService =
(BusinessService)serviceVector.firstElement(); 
resultServices.add(returnedService);

}
return resultServices;

J ★ ★
* Return BusinessService Detail based on a 

Request_Specific_Service msg
* /

public BusinessService
getSpecificService(Request_Specific_Service sService)

{
try
{

return getServiceDetail(sService.getServiceKey()) ;

} catch(Exception exp)
{
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System.out.println("Error in U D D I e : " + exp);
}
return null;

}
j  ★ ★
* Get the URL address of Service Provider
* @parm BusinessKey the businessKey of the provider 
*/

public String getBusinessAddress(String businessKey) throws 
Exception

{
UDDIeProxy proxy = new UDDIeProxy ();
p r o x y .setlnquiryURL("h t t p ://localhost:8080/uddie/inquiry") ; 
p r o x y .setPublishURL("h t t p ://localhost:8080/uddie/publish") ;

BusinessDetail businessDetail = 
p r o x y .get_businessDetail(businessKey) ;
Vector business = businessDetail.getBusinessEntityVector() ; 
for ( int i = 0; i < bus ine ss.s i z e (); i++)
{

BusinessEntity businessEntity =
(BusinessEntity)business.get(i);

Vector urls =
businessEntity.getDiscoveryURLs()

.getDiscoveryURLVector(); 
for ( int j = 0 ; i < url s.size(); j++)
{

DiscoveryURL url = (DiscoveryURL)urls.g e t (j); 
return u r l .g et T e x t ();

}
}

return null;
}
/ * *

* Get Service Detail based on the Service Key
* From UDDIe 
* /

public BusinessService getServiceDetail(String key) throws 
Exception

{
UDDIeProxy proxy = new UDDIeProxy();
p r o x y .set InquiryURL("http://localhost:8080/uddie/inquiry"); 
p r o x y .setPublishURL("h t t p ://localhost:8080/uddie/publish");

eServiceDetail serviceDetail = p r o x y .get_eServiceDetail(key) ; 
Vector serviceVector =
serviceDetail.getBusinessServiceVector() ;
BusinessService returnedService =
(BusinessService)serviceVector.firstElement(); 
return returnedService;

}
j  ★ ★
* Get the URL of the WSDL Interface for a given Service
* @param serviceKey 
* /

public String getServiceWSDLInterfaceURL(String serviceKey) throws 
Exception

{
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BusinessService returnedService =
getServiceDetail(serviceKey);

//Get the wsdl interface URL from the best selected service 
String url = "";
Vector bindingTemplateV = 
returnedService.getBindingTemplates ()

.getBindingTemplateVector(); 
for ( int i = 0; i < bindingTemplateV.s i z e (); i++)
{

BindingTemplate bt =
(BindingTemplate)bindingTemplateV.get(i) ;

Vector tmodelV = b t .getTModellnstanceDetails()
.getTModellnstancelnfoVector(); 

for ( int j = 0; j < t mo del V.s i z e (); j++)
{

TModellnstancelnfo tmodel =
(TModellnstancelnfo)tmodelV.get(j); 

url = tmodel.getInstanceDetails ()
.getOverviewDoc().getOverviewURLString();

}
}
return url;

}
}
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F.l. Java Code for Selecting the Closest Matched Service

package gqosm.ns;

import gqosm.ns.u t i l .StatusWindow;
import a q o s .dataType.* ;
import gqosm.ns.uddie .UDDIelnterface;
import gqosm.ns.datatype.*;
import a q o s .dataType.*;
import u k .a c .c f .c s .uddie4 j .datatype.service.*;
import u k .a c .c f .cs.uddie4 j .datatype.service.BusinessServices;
import o r g .uddi4 j .datatype.t m o d e l .*;
import o r g .uddi4j.request.*;
import u k .a c .c f .c s .uddie4 j .response.eServiceDetail; 
import o r g .uddi4 j .response.BusinessDetail; 
import org.uddi4 j .response.BusinessInfo; 
import o r g .uddi4 j .response.ServiceList; 
import org.uddi4j.response . *;
import u k .a c .c f .c s .uddie4 j .response.eServiceDetail; 
import org.uddi4j.util.*;
import u k .a c .c f .c s .uddie4 j .UDDIeElement;
import o r g .w 3 c .dom.Element;
import java.u t i l .Vector;
import o r g .uddi4j.datatype.binding.*;

import gqosm.ns.datatype.*;

public class ServiceSelector {

private StatusWindow status; 
private Service_Request service;

public ServiceSelector(StatusWindow status, Service_Request 
service) { 

this.status = status; 
this.service = service;

}
J ★ ★
* Select the best possible service from UDDIe
* @return Best_Service Message
* ©throws Exception 
* /

public AqosObject getBestService() throws Exception 
{

//Contact the UDDIe and get the Matched Services to the request 
service

status.setMainTask("Service Discovery: Contact UDDIe");
// <-- Demonstration Only 

UDDIelnterface uddie = new UDDIelnterface(service, status); 
Vector servicesVector = u d d i e .getServices();

//Get highest weight of the returned services 
double high = 0;
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int selectedServicelndex = 0;

status. setMainTask ("Selecting the best service (highest W A)11); 
/ /

status.setCurrentTaskProgressBar (3); //
<—  Demonstration Only 

status.addSubTask("Computing the total importance level"); //

ImportanceLevel imp = new ImportanceLevel(service) ;

status.addSubTask("Computing the Weighted Average (WA) for 
every service"); 

for ( int i = 0 ; i < servicesVector.size () ; i + +)
{

BusinessService returnedService =
(BusinessService)servicesVector.get(i);
PropertyBag bag = returnedService.getPropertyBag();
Vector propertiesFound = b a g .getPropertyVector();

if ( propertiesFound.s i z e () != 0)
{

String cpu_count =
String reliability = "";
String bandwidth =
String budget = "";

for ( int j = 0 ; j < propertiesFound.size(); j++)
{

Property propertyFound =
(Property)propertiesFound.g e t (j);

if (
propertyFound.getPropertyName()

.eq ual s("cpu_count"))
{

cpu_count = propertyFound.getPropertyValue();
}
else if ( propertyFound.getPropertyName()

.equ als ("bandwidth"))
{

bandwidth = propertyFound.getPropertyValue();
}
else if ( propertyFound.getPropertyName()

.equals("reliability"))
{

reliability = propertyFound.getPropertyValue();
}
else if ( propertyFound.getPropertyName()

.e q u a l s ("budget"))
{

budget = propertyFound.getPropertyValue();
}

}

double serviceW =
i mp .getImportanceLevel(budget,cpu_count, bandwidth, 

reliability); 
if ( high < serviceW )
{

high = serviceW;
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selectedServicelndex = i;
}

}

}
status.addSubTask("Selecting the best service based on its WA 

value");

//Return the best service 
BusinessService returnedService =
(BusinessService)servicesVector.get(selectedServicelndex) ; 
AqosObject bestService = new AqosObj ect ("best_service");

//Get the wsdl interface URL from the best selected service 
AqosObject wsdlURL = new Aqo sOb jec t("wsdl_interface" ) ;
String url = u d d i e .getServiceWSDLInterfaceURL( 

returnedService.getServiceKey()); 
wsdlURL.setValue(url) ; 
bestService.addElement(wsdlURL);

//Get the URL address from the best selected service 
AqosObject urlAddress = new AqosOb jec t("url_address");
String url_address = u d d i e .getServiceWSDLInterfaceURL( 

returnedService.getServiceKey()); 
urlAddress.setValue(url_address); 
bestService.addElement(urlAddress) ;

//Add the ServiceKey to the best_service message 
AqosObject serviceKey = new AqosObject("service_key"); 
serviceKey.setValue(returnedService.getServiceKey()); 
bestService.addElement(serviceKey);

PropertyBag bag2 = returnedService.getPropertyBag();
Vector propertiesFound = b a g 2 .getPropertyVector();

for ( int j = 0 ; j < propertiesFound.size (); j + + )
{

Property propertyFound = (Property)propertiesFound.g e t (j); 
AqosObject node = new

AqosObject(propertyFound.getPropertyName()); 
n od e.setValue(propertyFound.getPropertyValue ()); 
bestService.addElement(node);

}

return bestService;
}
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Appendix G

Bandwidth Broker in DiffServ

A Bandwidth Broker (BB) is important in providing QoS in a DiffServ domain. 

Traffic entering a DiffServ domain is classified, and conditioned, as a means to 

enforce DiffServ agreements between domains, at the boundary of the network, and 

then assigned to different behaviour aggregates, or group of packets with the same 

code point. The flows entering a domain are classified, based on the DiffServ Code 

Point (DSCP) value in each packet header. All packets with the same DSCP are 

treated in the same manner, and belong to the same behaviour aggregate. The core 

routers forward packets according to the treatment required on the basis of their 

behaviour aggregate.

The main resource management entity in a DiffServ domain is the BB, which 

maintains policies and negotiates SLAs with client and neighbouring domains. The 

interactions of a BB with other components of a DiffServ domain, such as routers 

and hosts, and the end-to-end communication process in a DiffServ domain are 

shown in Figure 5.4. This figure shows that when a flow needs to enter the DiffServ 

domain, or a local user wants to send traffic, the broker is requested to check related 

SLAs (SLAs associated with flow) and the present traffic condition on the network. 

The broker decides whether or not to allow the traffic, on the basis of previously- 

negotiated SLAs, to ensure that new traffic does not violate current SLAs. If there is 

a new flow, the broker might have to negotiate a new SLA with the neighbouring 

domain(s) depending on traffic requirements. Once the broker allows the traffic, the 

edge or leaf router, i.e. the router on the border of the DiffServ domain, needs to be 

reconfigured. SLA negotiation is a dynamic process that needs to take into account 

the ever-changing requirements of network traffic. The BB is responsible for 

admission control, as it has global knowledge of network topology and resource 

allocation.
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Bandwidth Broker Architecture

A BB is a complex entity, comprising four distinguishable parts: Inter-domain, Intra­
domain, Database and User/Application, as discussed in the following sub-sections 
and shown in Figure G. 1.

Inter-domain: At the inter-domain level, a BB communicates with neighbouring 

BBs to reserve resources in other domains. A broker needs this communication when 

the destination of the user’s flow -  i.e. the resources requested -  is in another 

DiffServ domain. The Intemet2 QBone BB Advisory Council proposed the simple 

inter-domain BB signalling (SIBBS) protocol (Teitelbaum et al. 1999). The SIBBS 

protocol follows a request/response model between peer BBs.

Brokers have long-running Transmission Control Protocol (TCP) connections with 

one another, with TCP providing the basic reliability and flow control for the 

protocol. Whenever a broker receives a resource allocation request (RAR) from 

another broker, it checks the sender’s identity, the route, and the egress router (edge 

router of the DiffServ domain) for the flow, and the SLA related to the user or flow. 

On acceptance of a request, if the destination of the flow is not in the broker’s 

domain, it propagates the RAR to the neighbouring broker on the flow path. In this 

manner, in due course, the RAR contacts the BB with the destination host in its 

domain. A resource allocation answer (RAA), the response to the RAR, is sent back 

from the destination broker to the source broker.

Intra-domain: At the intra-domain level, a BB needs to communicate with edge 

routers as well as core routers, to transmit policy decisions, with the routers 

configured to provide network QoS. There are many suitable intra-domain protocols, 

such as COPS (RAP, 2000), SNMP and Telnet; however, intra-domain protocols 

used in the DiffServ domain are only significant to the local network provider.

COPS is used to send policy decisions from the policy decision point (PDP) to the 

PEP at which IP traffic is handled, and policy-based admission control for data flows 

is implemented. The PDP has a complete view of the network and configures its 

PEPs according to network policies. A BB normally has the functionality of a PDP,
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with all the edge routers configured as PEPs. COPS is a client-server protocol in 

which the server -  a PDP -  has a TCP connection with all its clients -  PEPs (Durham 

et al. 2000). A PEP maintains a policy information base (PIB), as described by Chan 

etal. (2003).

For supporting policy specifications, a new client-type COPS for PRovisioning 

(COPS-PR) is introduced in Chan et al. (2001). A COPS-PR supports real-time 

event-driven communication. A PEP has only one connection to a PDP in the area of 

policy control, which supports atomic transactions of data and only exchanges 

differential updates.

On initialisation, a PEP establishes a connection with a PDP and sends all device­

relevant information. The PDP replies with all provisioned policies relevant to the 

device. If there are any changes in policies at the PDP it sends an update message. 

Alternatively, if there is a change at the PEP, it sends the change to the PDP which 

can in turn reply with new relevant policy provisioning elements.
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Figure G .1: Bandwidth Broker C oncept

Database: A BB has a database interface to gather information for decision-making. 

To provide QoS, the BB must have a comprehensive picture of the complete 

network, and needs information on SLAs, network state and current resource 

allocation status (Teitelbaum et al. 1999). Routers can be configured to provide 

monitoring data, to enhance the security of the network and to improve resource
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usage. Routers’ configuration data and information about BB’s own components is 

also maintained for the purpose of fault tolerance. Many database management 

systems are available that can meet a BB’s database requirements, such as MySQL 

and Oracle.

User/Application: There is a need for a protocol and interface for a network operator 

and/or an application to interact with the BB. A network operator may use this 

interface to monitor or update performance-related features of a BB, while an 

application requires the protocol and interface to query a BB.
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