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Abstract

In this work, three topics which are important for the further development of fuzzy 

systems are chosen to be investigated.

First, the mathematical aspects of fuzzy relational equations (FREs) are explored. 

Solving FREs is one of the most important problems in fuzzy systems. In order to 

identify the algebraic information of the fuzzy space, two new tools, called fuzzy 

multiplicative inversion and additive inversion, are proposed. Based on these tools, 

the relationship among fuzzy vectors in fuzzy space is studied. Analytical expressions 

of maximum and mean solutions for FREs, and an optimal algorithm for calculating 

minimum solutions are developed.

Second, the possibility of applying functional analysis theory to Takagi-Sugeno (T-S) 

fuzzy systems design is investigated. Fuzzy transforms, which are based on the 

generalised Fourier transform in functional analysis, are proposed. It is demonstrated 

that, mathematically, a T-S fuzzy model is equivalent to a fuzzy transform. Hence the 

parameters of a T-S fuzzy system can be identified by solving equations constructed 

using the inner product between membership functions and a given target function. 

The functional point of view leads to an insight into the behaviour of a fuzzy system. 

It provides a theoretical basis for exploring improvements to the efficiency of T-S 

fuzzy modelling.
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Third, the mathematical aspects of model-based fuzzy control (MBFC) are 

investigated. MBFC theory is not suitable for general nonlinear systems, due to an 

implicit linearity assumption. This assumption limits fuzzy controller design to a 

special case of linear time-varying systems control. To apply MBFC in general 

nonlinear control, a new stability criterion for general nonlinear fuzzy system is 

proposed.

The mathematical aspects investigated in this research, provide a systematic guidance 

on issues such as efficient fuzzy systems modelling, balanced “soft” and “hard” 

computing in fuzzy system design, and applicability of fuzzy control to general 

nonlinear systems. They serve as a theoretical basis for further development of fuzzy 

systems.
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fuzzy relational equations 
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mean solution of FREs

a minimum solution (the minimum solution is not unique) of FREs

the lower limit for those minimum solutions of FREs

the conjugate function of g(x)

additive inversion, also written as x © y

infimum additive inversion

S implication h ( x^y) = S ( l - x , y )  = 1 -T(x ,  1 - y )

R implication IR (x, y ) = sup { /  g  R \T(x, y ) Zy }

QL Implication IQL = S(N(x), T(x,y))
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minimum T norm, TM (x, y) = min(x, y)

product T norm Tp (x, y ) = xy
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Chapter 1 

Introduction

1.1 Motivation

Since Zadeh proposed the theory of fuzzy sets (Zadeh, 1965), fuzzy systems have 

received considerable attention. However, despite much success, some important issues 

of fuzzy systems, which are crucial for the further development, have not yet been 

resolved. They are:

• Where is the bottle-neck in fuzzy system modelling? How to improve modelling 

efficiency in the case of general fuzzy systems?

• How to achieve an optimum balance between “soft” and “hard” computing in fuzzy 

system design?

• How to apply fuzzy control in general nonlinear systems?

These are closely related to the following problems:

1) Is there an analytical solution to a fuzzy relational equation (FRE) and, if so, what 

is it?

2) What is the mathematical principle for Takagi-Sugeno (T-S) fuzzy system design?

3) What is the stability criterion for general nonlinear fuzzy systems?

Mathematical aspects of these problems are chosen to be further investigated in order to 

help build a firm foundation for the development of the field of fuzzy control.
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The solution of fuzzy relational equations (FREs) is one of the most important and 

widely studied problems in the field of fuzzy sets and fuzzy systems. Since it is closely 

related to Mamdani fuzzy system design, the efficient solution of FREs will be 

significant to the development of Mamdani fuzzy systems. However, without an 

understanding of fuzzy algebra, fuzzy relational equations can only be solved 

numerically; an analytical solution for FREs is not yet available. Therefore, 

mathematical aspects of FREs need to be investigated.

Due to a lack of understanding of the mathematical principles of T-S fuzzy system 

design, most T-S fuzzy systems still need to use least-squares method to identify their 

parameters. Inspired by a strong analogy between mathematical transforms and T-S 

fuzzy models, it is possible to identify parameters of a T-S fuzzy model through the 

inner product between membership functions and the target function. Hence, it is of 

interest to explore the mathematical aspects of T-S fuzzy systems from this point of 

view.

Modem model-based fuzzy control (MBFC) theory is not suitable for nonlinear 

systems control, due to the implicit linearity assumption in fuzzy controller design. 

Under this assumption, a fuzzy control problem is expressed in a “sector-nonlinearity” 

form (Tanaka et al, 2003). This limits the fuzzy controller design to a special case of 

linear time-varying system control. In order to introduce MBFC to general nonlinear 

control, a new stability criterion for general nonlinear fuzzy systems needs to be 

identified. Therefore, mathematical aspects of nonlinear fuzzy systems, especially 

those concerned with stability analysis, require investigation.
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1.2 Research Objectives

In this research, the mathematical aspects of the three problems described in section 1.1

were investigated.

The overall research objectives of the study were to:

• Derive an analytical solution for the fuzzy relational equation

• Derive the mathematical basis for T-S fuzzy system design

• Develop a stability criterion for general nonlinear fuzzy systems

In order to achieve these objectives, the following were attempted:

• Completing the triangular operations under fuzzy algebra

• Deriving the maximum, mean, and lower bound of the minimum solutions for 

max-family of FREs

• Based on functional analysis theory, developing a functional view point for T-S 

fuzzy models

• Developing an exact method for T-S fuzzy model parameters identification based 

on fuzzy transforms

• Developing an approximate method for T-S fuzzy model parameters identification 

based on dual bases

• Identifying the limitations of current model-based fuzzy control

• Integrating geometric information in the stability analysis of general nonlinear 

fuzzy systems

3



1.3 Outline of the Thesis

Chapter 2 reviews the fundamentals of fuzzy algebra, fuzzy relational equations and 

fuzzy control. The contents of this chapter serve as background knowledge for the 

following chapters.

Chapter 3 focuses on the analytical solution for fuzzy relational equations. In section 

3.2, the concept of inversions of general triangular operators and their connections with 

fuzzy implication are introduced. The formulae for fuzzy multiplicative inversion and 

additive inversion are then proposed. Based on the fuzzy inversions, the relationship 

between fuzzy vectors in fuzzy space is studied and a complete analytical solution for 

the max-family FREs is developed.

Chapter 4 focuses on the application of functional analysis theory to the design of T-S 

fuzzy systems. This study is inspired by the strong analogy between mathematical 

transforms and T-S fuzzy models. Functional analysis is the mathematicians’ 

"black-box diagram" (Curtain and Pritchard, 1977). It was developed to deal with 

functions instead of individual numerical values. The motivation for applying 

functional analysis to fuzzy systems is twofold. First, as an exact mathematical method, 

functional analysis can handle inexact data and knowledge. Second, the simple notions 

in functional analysis avoid many of the complicating details in design and analysis, 

highlighting only the essential aspects. Functional analysis is a convenient way to 

examine the behaviours of various models, including fuzzy models. This chapter 

advocate a functional view point for fuzzy systems and the concept of fuzzy transforms
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is proposed as the mathematical basis of T-S fuzzy modelling. The chapter 

demonstrates the parameters of a T-S fuzzy system can be identified by solving 

equations constructed using the inner product between membership functions and a 

given target function. It also introduces the application of the concepts of dual base and 

dual spaces to improve the efficiency of fuzzy modelling.

Since a flexible stability criterion is key to nonlinear fuzzy control theory, Chapter 5 

focuses on stability analysis for nonlinear fuzzy control. The chapter investigates the 

limitations of the modem fuzzy control approach and a problem with the commonly 

adopted decomposition principle. The chapter also studies perturbation theory and 

propose a new stability criterion based on the geometrical information in state space.

Finally, Chapter 6 summarises the research and makes suggestions for further

work.
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Chapter 2 

Fuzzy Algebra, Fuzzy Relational Equations 

and Model-Based Fuzzy Control

Fundamental ideas in fuzzy algebra and fuzzy control are reviewed in this chapter. The 

contents of this chapter serve as background knowledge for the following chapters.

2.1 Triangular Norms and Fuzzy Implications

2.1.1 Basic T norms and co-norms

A triangular norm (T norm) is an operation on [0,1], i.e. a function 

T(*, y ) : [0,1] x [0,1] —»[0,1] such that

•  T is associative

•  T is commutative

•  T is non-decreasing

•  T has 1 as a neutral element

If T is a T norm, then its dual T co-norm S is given by 

S(x,y) = 1-7X 1-*,1 -y )
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It is obvious that a T co-norm is also non-decreasing and it satisfies 

^ ( jc, o )  =  i  -  r  ( i  -  jc, i )  =  jc

There are many different T norms and T co-norms. The basic T norms and their 

corresponding co-norms are:

Minimum T norm TM and maximum T co-norm ^

TM(x,y) = m in(x , >>)

SM(x,y) = max(x,y)

Product T norm Tp and probabilistic sum T co-norm Sp

Tp{x,y) = xy 

Sp(xiy) = x + y - x y

Lukasiewicz T norm Tx and bounded sum T co-norm Sn 

Tx {x, y) = max(0, x + y - 1)

Sgo(x,y) = mm(x + y,\)

It can be verified that TM is the largest T norm and SM is the smallest T co-norm. It can 

be written as:

T„(x,y)>T(x,y)

and

SM(x,y)<S{x,y)

where T(x,y)  and 5,(x,y) denotes general T norm and co-norm

7



2.1.2 Ring and Semiring structures

Algebraically, T norms and co-norms have a semiring structure. They construct a 

special semigroup on the unit interval [0,1] ( Allenby, 1991).

A ring (in the mathematical sense) is a set S , together with two binary operators x and 

+ (commonly interpreted as multiplication and addition, respectively) satisfying the 

following conditions:

1). Additive associativity: For all a,byc e S  

(a + b) + c = a + {b + c)

2). Additive commutativity: For all a , b e S  

a+b=b+a

3). Additive identity: There exists an element 0 e S such that for all a e S  , 

a + Q = 0 + a = a

4). Additive inversion: For every a e S  there exists - a  e S  such that 

a + (-a)  = (-a) + a = 0

5). Multiplicative associativity: For all a,b , ceS  

(a* b)* c = a* (b* c)

6). Left and right distributivity: For all a ,b ,ceS  

a* (b + c) = (a* b) + (a* c)

and

(b + c) * a = (b * a) + (c * a)

8



Since T norms and T co-norms do not satisfy the additive inversion, and the 

distributivity conditions, the fuzzy algebra based on T norms and T co-norms only has a 

semiring structure. It is a fundamental difference between fuzzy algebra and linear 

algebra. This issue will be further discussed in Chapter 3.

2.1.3 Fuzzy Implication

Fuzzy implication is another important fuzzy operation used in fuzzy algebra. It is 

possible to construct fuzzy implication by the following ways:

First, since the statement "NOT A OR B" is equivalent to the value of the implication 

"IF A THEN B" in Boolean logic, fuzzy implication under fuzzy logic can be written 

as:

I s (x,y) = S ( l - x , y )  = l - T  (x, 1 -  y)

where T stands for a T norm and S a T co-nom. This implication is called an 

S implication. The following are examples of S implication for basic triangular 

operations.

For minimum T norm TM and maximum T co-norm SM 

!s r j x . y )  = m axd-x ,^)

For product T norm Tp and probabilistic sum T co-norm^
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For Lukasiewicz T norm Tn and bounded sum T co-norm Sx 

Is T (x, y)  = min(l -  x + y, 1)

It is obvious that Is(x,y)  is equal to Is( y , x ) . Therefore, the statement "IF A THEN B" 

is equivalent to the statement "IF NOT B THEN NOT A" under an S implication.

Another way to define the implication for fuzzy logic is to define implication using 

residuation (Janowitz, 1972). This kind of implication is called an R implication, which 

is defined on [0, 1] x [0, 1] —»[0, 1] as:

J*(*>>0 = sup{/ € R\T(x,y)< y}

For the three basic T norms, TM,TP and Tn , the R implication is formed as:

Jr rx (*» y) = min(1 - x  + y, 1)

The third type of fuzzy implication in fuzzy logic is called the QL implication. It is 

defined on [0, 1] x [0, 1] —»[0, 1] as:

IqL = S(N(x), T(x,y)) where N(x) denotes the negation

QL implications for the three basic T norms, TU,TP and 7^, is written as:

10



1 QL Tu  (*»  y )  =  ~  min(x, 7 ))

/ 0z.r/x ,^) = l -x ( l-x v )

IQl Tx (jc, y )  = min(l -  x + max(jc + y  - 1,0), 1)

It should be noted that although the implications defined above are equivalent to each 

other under classical Boolean logic, they are quite different under fuzzy logic. This is 

illustrated in figures 2-1, 2-2 and 2-3. It can be seen in the figures that although they 

are implication models for the same T norm, their shape are quite different from one 

another.

2.2 Fuzzy Relational Equations

Fuzzy relational equations (FREs) have an important role in fuzzy set theory and its 

applications. FREs were first introduced by Sanchez (1 9 7 6 ), who proposed an 

algorithm to obtain the maximum solution for Max-Min based fuzzy relational 

equations. The problem of FREs has been studied by many researchers since then 

(Tsukamoto and Terano 1977, Wang 1983, Nola 1985, Pedrycz 1990, Adamopoulos 

and Pappis 1993, Fang and Li 1999, etc.). Let A = [ai;/] , ^  g [0,1] be an

m x n  -dimensional matrix and b = (bx • • • bt • • • bn)T, bi e [0,1] , be an

11



Figure 2-1 S implication based on TM
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Figure 2-2 R implication based on T*
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n-dimensional vector. The fuzzy relational equation (FRE) is defined as:

A ® x = b

where x= (x, • • • • • • xm )T x t e [0,1] The symbol (8) stands for a T norm.

A FRE normally has a set of solutions. There is always a maximum solution in the 

solution set if the equation is solvable. There can also be more than one minimum 

solution. The term “maximum solution” means the solution of which all elements are 

greater than or equal to the corresponding elements of all other solutions. The term 

“minimum solution” means one of which all other elements are not less than or equal to

Different algorithms have been developed to solve fuzzy relational equations. 

Tsukamoto and Terano (1979) developed an algorithm that is able to find the maximal 

solution and a number of minimal solutions. This algorithm was successfully applied to 

fault diagnosis (Tsukamoto and Terano, 1977). The algorithm comprises the following 

steps:

STEP 1. Form matrix U by co-composition, i.e.

itself.

(j> otherwise

Uy can be a set having only one element b}, a set with an infinite number of

elements \bp  0] or an empty set $.

15



STEP 2. Form matrix V by ru-composition, i.e.

[0, bj] if a,y > bj 
[0, 1] otherwise

vy is a set having an infinite number of elements. vtj is either [0, bj] or

[0, 1]

STEP 3. Construct matrix W by replacing one entry in each column of V with 

the corresponding entry of U, e.g.

STEP 4. Apply the intersection operation to the entries (sets) of each row of the 

obtained matrix W. The result is a solution of the fuzzy relational 

equation if all the resulting sets are not empty.

STEP 5. Go back to STEP 3 to form a new W matrix if there are more entries to

be replaced. Otherwise, terminate.

Another algorithm involves applying the oc -operation to the fuzzy relation and the 

given goal (Pedrycz, 1990). This algorithm has the following steps:

STEP 1. Calculate the row vector T* by applying the oc-operation to A and b,

the relation matrix and the given goal, respectively, i.e.

T* = min(A oc b)T

STEP 2. Substitute T* into the fuzzy relational equation,. If T* satisfies the

W =

16



equation, then it is the maximal solution of the equation.

According to Wang (1983), Li et al, proposed another algorithm as represented in. This 

algorithm is described as follows Wang (1983):

STEP 1. Construct matrix U, in which

bj if a , > 6,

(j) otherwise

where utj can either be a set having only one element b j , or an empty set.

STEP 2. Calculate the infimum of each row of U. If all the entries in one row are 

<|), the infimum is set to be 1. The infimum of every row forms a vector, 

denoted. S = (sj ••• sn)

STEP 3. Form the matrix U by adding more bj s of b into U.

bj if a .j > bj and bj <

uu=\
(j) otherwise

where ui} can either be a set having only one element b j , or an empty set.

STEP 4. Check if every column of U ? resulting from the last step, contains at 

least one non-empty entry. If this is the case, the fuzzy relational 

equation is solvable and the vector S is accepted as the maximal 

solution. Otherwise, terminate.

STEP 5. Form matrix W. Select one non-empty entry from each column of

matrix U and put it into the corresponding position in W. Fill other 

positions in the obtained W matrix with <|>.

17



STEP 6. Calculate one minimal solution, ^ ”  I5 1 s 2 5 w) from matrix

W by applying the supremum operation to each row of W. The 

supremum will be 0 if all the entries in a row are empty entries.

STEP 7. Return to STEP 5 if further selections are possible, otherwise,

terminate.

A good review of algorithms for FREs can be found in (Li 1999).

2.3 MBFC and Lyapunov Stability

Model-based fuzzy control (MBFC) is a new fuzzy control approach developed in the 

1990s. It can be regarded as "a middle ground between conventional fuzzy control 

practice and established control theory " (Tanaka et al 2001). It preserves the 

philosophy of fuzzy sets theory, while utilising feedback control theories to improve 

fuzzy controller design. Its design procedure is as follows:

• First, a first-order T-S fuzzy model is constructed for the plant by linearising local 

dynamics in different state-space regions.

• Second, For each local linear model, a linear feedback controller is designed. The 

overall controller, which is nonlinear in general, is constructed as “a fuzzy blending 

of each individual controller”(Wang et al, 1996).

• Third, the overall stability for the entire fuzzy system is evaluated via Lyapunov’s 

direct method.

In the first step of fuzzy controller design, expert knowledge is applied to construct a 

T-S fuzzy model for the target process. In the second step, control theory is applied to
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design the local feedback controllers. In the third step, due to the fundamental 

difference between linear and nonlinear systems regarding to the local and global 

stability; the linear controllers designed in the second step, need to be evaluated. 

Lyapunov’s method is applied in the evaluation.

It should be noted that a T-S fuzzy system is a nonlinear system in general. Therefore, 

even if all its sub-systems were stable, global stability cannot be guaranteed. This fact 

makes the third step the most important step in MBFC. When global stability is not 

achieved, local nonlinear controllers need to be redesigned. The design procedure is 

repeated until global requirement is achieved.

Consider a dynamic system modelled by a set of fuzzy rules:

If X is X, Then X t = AX + Biu

The overall output of the system is:

X  = f ih,(XXAlX  + Bp)
i=1

with hj{X) as normalised membership functions 

where X <= R" » s Rm/ ,  * *“ ",«/ M ' - r f

If there exists a positive definite matrix P that satisfies:

AiTP + PAi <0

for all / e  {l •••/?}, the origin of the fuzzy system is asymptotically stable.
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The inequality A jP  + PAi < 0 can be solved efficiently by the linear matrix inequality, 

(Boyd, 1994) and was considered the basic mathematical principle behind MBFC.

2.4 Summary

This chapter has reviewed fundamental ideas in fuzzy algebra and fuzzy control. The 

chapter has discussed the solution of fuzzy relational equation and described the main 

existing solution techniques.

20



Chapter 3 

Fuzzy Inversions and Analytical Solutions of 

Fuzzy Relational Equations

3.1 Preliminaries

The solution of fuzzy relational equations (FREs) is one of the most important and 

widely studied problems on field of fuzzy sets and fuzzy systems.

Let ^  = [aly]WI , e[0,1] , be an m xn  matrix and b = (bx ••• 6, ••• bn)T,

bt e  [0,1] , be an n-dimensional vector. A fuzzy relational equation is defined as:

A 0  jc = b (3-1)

where x= (xx • • • x t • • • xm )T xi e [0,1] . The symbol 0  stands for a triangular (T) 

norm.

This formula was first introduced by Sanchez (1976) who proposed an algorithm to 

obtain the maximum solution for Max-Min based fuzzy relational equations. The 

problem of solving FREs has been studied by many researchers since then (Tsukamoto 

and Terano 1977, Wang 1983, Nola 1985, Pedrycz 1990, Adamopoulos and Pappis
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1993, Fang and Li 1999, etc.). Various numerical methods for solving FREs have been 

developed. Some typical algorithms have been reviewed in chapter 2.

The solution space of a FRE is illustrated in figure 3-1, where 3c denotes the maximum 

solution, x  the mean solution, x t a minimum solution (the minimum solution is not 

unique) andx the lower limit for those minimum solutions.

The difference between the maximum solution and the mean solution comes from the 

non-strict monotonic nature of the triangular norm. Consider a triangular 

operation T (x ,y ) . T(x,y) is not always greater than another triangular operation 

T(x,z) even if y  is greater than z .

As mentioned above, the minimum solution of FREs is not unique. This is due to 

coupling among column vectors of the matrix^ in (3-1). (Here, coupling means that 

one column vector can be expressed as a fuzzy combination of other columns). A lower 

limit, x , can be found for those minimum solutions. This characteristic was explored by 

Imai et al (1996). Cechlarova (1995) identified the conditions for Equation 3-1 to have 

a unique solvability. If those conditions are satisfied, all the vectors between the 

maximum solution 3c and the lower limit x  belong to the solution space. The lower 

limit of the minimum solution then reduces to the mean solution 3c.
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yk+l • • •

Figure 3- 1 The solution space for FRE

X denotes the maximum solution, X the mean solution, Xj 

limit for those minimum solutions. y k+l

xk minimum solutions, X the lower 

y n denote vectors between

X and x .
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Despite the efforts of different researchers, two questions relating to FRE are still open. 

They are:

•  Is there an analytical as opposed to numerical method for solving FREs?

•  FREs formed using different triangular norms and max co-norm, e.g. max-min 

max-product etc., is there a unified approach for solving them?

Since these questions are closely connected to fuzzy system design, especially for tasks 

like fuzzy relational matrix optimisation and selection of the best triangular norm for 

Mamdani’s fuzzy inference system. There are practical benefits in finding answers to 

the above questions.

In the following sections, FREs which are constructed using different triangular norms 

and max co-norms will be called “max family FREs”. It should be noted that max 

family FREs can be regarded as linear equations in fuzzy space. This is because any 

given T norms denoted byx® >>, can be distributed over the max operation, namely:

max[((2 0  c\(b  0  c)] = [max(a, 6)] 0  c

Therefore, algebraically, all the FREs built using the max operation satisfy the 

aggregation principle, and can be regarded as linear. For a linear equation an analytical 

description of the solution should not be too difficult to obtain. Hence, difficulties in 

seeking this kind of description should not be caused by the complexity of the solution 

space, but rather by the lack of efficient analysis tools in fuzzy algebra.

The triangular norm and co-norm are two basic operators used in fuzzy space. Bourke 

and Fisher (1998) suggested that in addition to those basic operators, the inversion of 

the product T norm can be used for solving max-product based FREs. The potential of
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the product inversion in fuzzy algebra was explored in their work. Based on this idea, 

an efficient method for solving the max-product FREs was proposed by 

Loetamonphong and Fung (1998).

It should be noted that since the product T norm is a one-to-one relationship, it is easy to 

identify the expression for its inversion. For general triangular norms and co-norms, 

which are likely to be many-to-one relationships, (e.g. Minimum T norm, Lukasiewicz 

T norm, Maximum T co-norm) how to construct the expression for their inversions is 

still an open problem.

In this chapter, the concept of inversion for general triangular norms and co-norms will 

be discussed. The connection between inversion and fuzzy implication will be explored. 

A complete analytical solution for the max family FREs will be developed based on 

inversions. The proposed method will be a unified approach for general triangular 

norms. It will yield a better understanding of fuzzy algebra and the solution space of 

FREs.

The chapter is organised as follows. The concepts of fuzzy multiplicative inversion and 

additive inversion are proposed in section 3.2; the relationship between fuzzy vectors in 

fuzzy space is explored in section 3.3; analytical expression of the maximum and mean 

solutions of FREs, and an optimal algorithm for deriving the minimum solutions are 

given in section 3.4; section 3.5 summarises the proposed method also provide an 

example of how to apply it to obtain analytical solution of a FRE.
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3.2 Fuzzy Connectives and Fuzzy Inversions

A number of basic fuzzy logic connectives are reviewed in this section. Based on the 

connectives, formulae of new operators in fuzzy space are proposed.

In approximate reasoning, the value of a compound statement is determined by both the 

values of its constituent statements and the way those statements are connected together. 

According to Zadeh (1981), although the values of given statements are 

context-dependent, the structures of the connectives between them are invariant. In 

fuzzy reasoning those connectives are called fuzzy connectives. The basic connectives 

used in fuzzy logic are listed in table 3-1:

Name Meaning Symbol Operation

Conjunction ••• and ••• A T(x,y)

Disjunction ... or • • • V S (x, y)

Implication if • • then-•• => Is Ir Iql

Negation not ••• —i 1 - x (etc.)

Table 3-1 Basic fuzzy connectives

Is Ir Iq l  denote S implication, R implication and QL Implication respectively.

For given statements, e.g. A, B and C, it is not the values of A, B and C, but rather the 

rules governing the truth degrees of new statements that are the concern of fuzzy logic. 

Those rules are constructed from the above connectives. They are the basic components 

of fuzzy logic.
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It might be a natural step to build fuzzy algebra operator based on the connectives in 

fuzzy logic. However due to the semiring structure (Allenby 1991) of fuzzy space, only 

the conjunction and the disjunction operation are extended into the fuzzy algebra. In 

order to derive the solution for FREs, two new types of operators will be proposed 

based on the corresponding connectives in fuzzy logic.

3.2.1 Fuzzy Implication and Fuzzy Multiplicative Inversion

The first operator proposed in this work is called fuzzy multiplicative inversion. It is 

designed as an inversion for the triangular norm. It should be noted that due to the 

semiring structure of fuzzy space, the fuzzy multiplicative inversion operation cannot 

be obtained directly. In this section, the inversion formula will be derived based on the 

fuzzy implication and the law of modus ponens.

Consider the modus ponens inference rule:

Premise 1 IF X is A THEN Y is B

Premise 2 X is A

Consequence Y is B

In Boolean logic, the consequence "Y is B" is derived from the implication ("IF X  is A

THEN Yis B"), and the statement ("Xis A") by checking a Boolean logic truth table. On 

the other hand, if Premise 2 ("X  is A") and consequence ("YisB ") are given, the value of
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the implication "IF X  is A THEN Y is B" can be obtained by checking the same truth 

table. In this case, the process of finding the value of the implication acts as an inverse 

process of conjunction by swapping the premise and consequence.

For a generalised modus ponens reasoning procedure in fuzzy logic:

Premise 1 IF X is A, THEN Y is B

Premise 2 X is A*

Consequence Y is B*

Using approximate reasoning, the value ofB* is derived as:

V y e V  /JB.(y ) = supx T(//A.(x ) ,/( /jA(x),//B(y))) (3-2)

where T stands for a triangular norm. I  stands for an implication. /  does not need to 

be of a certain form. It can be any implication operation defined in Chapter 2 (e.g. Is, I r  

or Iq l)

If two observations related to A and B, "X is A*" and "Y is B*" are given, the 

implication relationship between A and B is derived as:

Premise 1 X is A*

Premise 2______ Y is B*__________________

Consequence IF X is A, THEN Y is B
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The value of the implication in fuzzy logic is still derived by swapping the premise and 

consequence of the generalised modus ponens rule. Therefore, if a triangular operator 

T(jc,y)is given, the implication operation 7(jc,y)can be regarded as its inversion. 

I(x ,y )  should satisfy (3-2) which can be rewritten as:

T (/“ ,• (*)>1 in A (*)> Mb O'))) 2  Mg (y) (3-3)

(3-3) is called the law of modus ponens (Lowen 1996).

It should be noted that, the law of modus ponens is not valid for all the fuzzy 

implication operators reviewed in chapter 2. This is illustrated by the following 

example.

Example 3-1

For S-implications based on triangular norms ( TM, 7  ̂and T^ ) the law of modus ponens 

is only valid in the positive region of figures 3-2, 3-3 and 3-4.

Remarks

If an implication model A => B is given, a whole family of triangular norms can be 

derived using the law of modus ponens. They are called Modus Ponens Generation 

Functions, as introduced by Trillas and Valverde (1985).

In contrast, if the formula for a triangular norm is given, an inversion operator can be 

derived based on the law of modus ponens by applying the following definition:

29



Figure 3- 2 Law of modus ponens for S-implication based on TM , where Z  = Y — TM (X , Is (X , Y))
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Figure 3- 3 Law of modus ponens for S-implication based on Tp where Z =  Y — Tp(X ,Is(X>Y))
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1 0

Figure 3- 4 Law of modus ponens for S-implication based on 7^, Z  =  Y — T ^ X \IS(X , Y))
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Definition 3-1

For a given T norm, a multiplicative inversion D(x, y) is an operation on 

[0,1] x (0,1] —»[0,1], which satisfies the equation

T(y,D {x,y))< x  (3-4)

Example 3-2

D{x,y) = min(jt,y) is a multiplicative inversion of TM

[x!y  x  < y  . . . .
0(:c, y) = \ is a multiplicative inversion of Tp

[1 otherwise

\ x~  y  + 1 x < y  . , . . . . _ _D(x,y) = < is a multiplicative inversion of
[I otherwise

&
In linear algebra, an operator denoted by 0  and its corresponding inversion 0  should 

satisfy:

* 0 ( 7  0* X ) = Y

(e.g. “ X x Y  + X  = Y ( X  *0) ”). However it does not hold for operators in fuzzy 

algebra. It is one of the fundamental differences between algebra in fuzzy space and 

algebra in linear space. The difference comes from inherited many-to-many 

relationships among conjunctions and implications, described by the inequality in the 

law of modus ponens.

In order to simplify the many-to-many relationships among conjunctions and 

implications, the supremum of multiplicative inversion is defined as follows.
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Definition 3-2

For a given T norm, a supremum multiplicative inversion is an inversion that is greater 

than any other multiplicative inversions ofT.

corresponding triangular norm.

Based on the many-to-one relationship between the triangular norm and its supremum 

multiplicative inversion, some useful results can be derived, as shown below:

Definition 3

For a given T norm, an infimum multiplicative inversion is defined as:

Aup o .  y) = sup {d ( x ,  y) I T( y , D  (x, y)) < x\ (3-5)

Example 3-3

1 x > y  
x otherwise

is the supremum multiplicative inversion for TM

It is obvious that the R-implication IR is the supremum multiplicative inversion for the

otherwise
if

(3- 6)

where E = {D(x,y)\ T (y,D{x,y))  = *}
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Example 3-4

0 x> y
Anf (x> y) = i *s *he infimum multiplicative inversion for TM

[x otherwise

The infimum multiplicative inversion is another limiting case of the inversions for a 

triangular norm. It provides an alternative means for the analysis of algebra in fuzzy 

space and will be extremely useful for the derivation of the mean solution for FREs.
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3.2.2 Comparison and Fuzzy Additive Inversion

Inversion for the triangular norm was proposed based on the modus ponens rule and 

fuzzy implication in the previous section. In order to derive the formula for triangular 

co-norm inversion, the concept of comparison needs to be reviewed.

Given observation A and B, where B c A .

Let Diff(A,B) denote the difference between them 

It is easy to verify that:

Disjunction (B , Diff(A,B)) = A

The difference between A and B can be obtained by a comparison operation e.g. 

Diff(A,B) = Comparison(A,B)

If the disjunction and comparison operation are denoted by ® and 0  respectively, the 

equations above becomes 

B © Diff(A,B) = A 

Diff(A,B) = A 0  B

If we consider the left hand side of the equations as premise and the right hand side of 

the equations as consequence, comparison operation is regarded simply an inverse of 

the disjunction connective by swapping between premise and consequence. 

Comparison is widely used in reasoning processes. Consider the following example:

PROPOSITIONS: TRUTH DEGREE

A=Temperature is high “a

B=Temperature is low uB

Table 3- 2 Proposition about temperature
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CONCLUSION: TRUTH DEGREE

C=Temperature is likely to be high uc

Table 3- 3 Final decision about temperature

Given uB < uA, uc , which reflects “Temperature is likely to be high”, can be obtained 

by comparing uA and uB .

Unlike the relationship between the fuzzy implication and conjunction, which can be 

explicitly described by the modus ponens rule (3-3), the relationship between fuzzy 

comparisons and disjunctions has not yet been identified. This aspect will be explored 

in subsequent sections.

In order to find the formula for the inversion of the triangular co-norm, a measure for 

the credibility of observations under fuzzy logic has to be defined. This measure is 

called the Confidence Measure in this work. It provides an estimate of the amount of 

credibility attached to an observation.

Definition 3-4

Let /uA be an observation for proposition A and p B be an observation for proposition 

B. A confidence measure for p  is a function: V (u) e [0,1] with the following properties:

1) V(T(pA juB)) = T(V(juA) ,V(pB)) (requirement o f conjunction)

2) V(S(pA p B)) = S(V(pA ) ,V(pB)) (requirement o f disjunction)

3) V (p A =>pB)< min(V (p A ), V ( p B)) (requirement o f modus ponens)

4) V(D(pA p Bj) > max(V(pA) ,V(pB)) (requirement o f comparison)
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where n A =>f*B is the implication from A to B and D (jlia ^iB) is an estimate of the 

significance of the value of jjla and juB .

Remarks

1) The confidence measure for conjunction and disjunction are equal to the 

conjunction and disjunction of individual confidence measures.

2) An estimate of the implication relation between A and B based on observations 

HA and n B should not have more confidence than either of the observations. 

This is a requirement of the modus ponens rule.

Recall the inverse process of generalised modus ponens 

Premise 1 X is  A*

Premise 2 Y is B*

Consequence IF X  is A THEN Y is B

The information available in the above process is only contained in two 

observations, X is A* and Y is B*. There is no further information about the 

relationship between A and B. Therefore, no matter what the result is, the 

consequence should not be trusted more than either of the premises.

3) D(fdA /uB) is an estimate of the significance of the value of the observations n A 

and n B . Since this is purely about the values of juA and n B, it should be more 

reliable than either fj.A or fiB. (Most of the time, one is more confident about

facts such as “A is more likely than B”, “A is higher than B” than facts such as
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“the possibility of A” and “the height of A”. Although the former might have 

been derived from the latter)

Theorem 3-1 (The modus ponens theorem)

The following relationship holds for the confidence measure:

v  M b ) )  ( M b  ) (3- 7)

This means that a result derived from modus ponens should not be more reliable than 

one derived from direct observations.

Proof:

y ( T { n A, n A =>
< T( V{ Ma\ V ^ a =>//,))
<T(V (jtA), min(F ))
< n V ( f j A),V(tiB))

Comparing (3-7) with (3-3), shows that from confidence measure point of view the 

modus ponens rule is a direct result of Theorem 3-1.

Theorem 3-2 (Comparison theorem)

For given observations, p A and /uB the following relationship concerning disjunction 

and comparison holds:

V ( S < j i K , D ( j i w t l A ) ) ) Z V  { f i B )  (3- 8)
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Proof:

> S(KO/A ),K (DO /B ,^ A )))

“ 5  (y )>max (v(Ma )’F( /'b  ̂
> S(V(p a ) ,V(Mb ))

*  v o ^ )

Theorem 3-2 provides the theoretical basis for the definition of additive inversions. 

They have a similar structure as used for multiplicative inversions. The direction of the 

inequality relation is given by Theorem 3-2.

Definition 3-5 Additive Inversion

For a given triangular co-norm, an additive inversion M(x,y)  is an operation 

on [0,1] x [0,1] —> [0,1], which satisfies the following equation:

S(y ,M(x , y ) )>x  (3-9)

Example 3-5: M(x,y)  = max(x,y) is an additive inversion for S M = max(x,y)

Remarks: In this case the triangular co-norm and additive inversion have the same 

formula.

Definition 3-6 Infimum Additive Inversion

For a given triangular co-norm, an infimum additive inversion is an inversion that is 

less than any of its other additive inversions.
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^inf (x,y) = inf {m (x,y)\ S (y,M (x,y)) > x}

For simplicity, M inf(x,y) will be written as x 0  y  in the following section.

Example 3-6

\x  x > y
Minf (x, y) = x 0  y  = < is an infimum additive inversion for SM

[0 otherwise

It should be noted here that the many-to-many relationship between the triangular 

norms/co-norms and their inversions is caused by the semiring structure of fuzzy 

algebra. Hence, inequalities instead of equalities are used for the definition of fuzzy 

inversions. The directions of the inequalities are determined by the basic properties of 

fuzzy logic. They can be found from the modus ponens and the comparison theorem.

A comparison of the operators of linear space and fuzzy space is listed in the following 

table:

I LINEAR 
SPACE

+ - X -  OR /

FUZZY
SPACE

0 0 0 /

T co-norm Fuzzy Additive 
Inversion

T norm Fuzzy
multiplicative
inversion

Table 3- 4 A comparison of the operators of linear space and fuzzy space

A complete set of tools required in fuzzy algebra analysis is defined in this section. The 

notations and the corresponding fuzzy connectives are listed in table 3-5.
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Name Meaning Operation Symbol

C o n ju n c t io n • • • and • • • T (x ,y ) x® y

I m p l ic a t io n if • • • then • • • D (x ,y )
X

y

D is ju n c t io n ... or S (x, y) x © y

C o m p a r is o n difference between • • ■ and • • • M (x, y) x © y

N e g a t io n not • • • 1 - X "n

Table 3- 5 Fuzzy connectives and their notations

For simplicity, the symbols — ,
y

/  \  X

ky j sup

r \  x

y j
and x@ y , which denote the

inf

multiplicative inversion, supremum multiplicative inversion, infimum multiplicative 

inversion, and infimum additive inversions respectively, will be used in the following

sections.

3.3 Fuzzy Vector Space

In this section, the concept of fuzzy vectors and the relationships between two fuzzy 

vectors in fuzzy space will be investigated.

3.3.1 Notations

Definition 3-7

A fuzzy vector is V = [v( ]m with vf e [0 , 1]
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A fuzzy matrix is A = [a^]^ with atj e[0 , 1]

Remarks:

A fuzzy vector (or matrix) is a normal vector (or matrix) with its elements belonging to 

[0 , 1]. The following operations can be defined for fuzzy vectors and matrices

Definition 3-8

For fuzzy matrices Amn =[a,y]m„, Bnp = {b:J]„p C„p =[c;j]np, the following operations 

are defined:

'■ ® cv = ib,j ® c„ l ,

2- = where = x, © x2
*=1 i= l

3. AT = [a^ ] (the transpose o f  A)

4. Ak = A k- '® A  K  = (l, — n)
and A1 = A, A0 = In (In is usually but not necessary the identity matrix)

5. B > C if and only if b- > ĉ  for all i and j

6. B > C if and only if b  ̂> ĉ  for all i and j

Remarks:

Definitions of operations in fuzzy space are derived from operations in linear space. 

The operators x and + are replaced by 0  and ©. 0  and © denote the T norm and 

co-norm respectively. (See tables 3-4 and 3-5)

Example 3-7

Given min and max as T norm and co-norm, calculate
'0.1 0.3' ' 0.1' '0 .4 '

©
, 0.2 0.6, ,0.2, , 0.1,
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'0.1 0.3' 'o . r
® ©

,0.2 0.6, ,0.2, V

"0.4"
©

J ,0.1,

0.4 
0.1

/  \  /  \  > 

^(0.1®0.l)©(0.3®0.2)
(0.2® 0. l ) e ( 0.6 ® 0.2)

(0.1®0.l)e(0.3®0.2)©0.4
(0.2 ® 0.l)© (0.6 ® 0.2) e 0.1

Substituting 0  and ® by min and max

max ((min (0.1,0.1)), (min (0.3,0.2)), 0.4) 

^max ((min (0.2,0. l ) ) , (min (0.6,0.2)), 0. l) 

'0.4^
0.2

Definition 3-9

A fuzzy space constructed by a group of vectors (xj • • • x ; • • • xn} is defined as:

Span {jcj •••xi •••*„}= [*i ” 'Xj •••x„]0^y
= C0X 0  X{ ® • • • © C0t 0  x t ® • • • © con 0  x n

where co = \cox • • • coi • • • con ]r and coi e [0,1]

A vector y  belongs to the space constructed by •••*„} if and only if there exists a

vector co = \cox • • • col, • • • con ]T which satisfies

y  = [ x \ - x r --xn]®a)

Example 3-8

Given min and max as T norm and co-norm, xl =
"0.4" '0.5' '0.4'

, x2 = and y  =
,0.1, 7 Z ,0-3, ,0.2,
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Since y  -  (0.4 ® x,) © (0.2 (8 )  x2), y  belongs to the space spanned by {jc, x2}.

Definition 3-10

For given vectors v = [v} • • • vn]T and w = [w{ ] T , the supremum

projection o f  vector v on vector w is defined as

v = <8) w = inf
i6{l,-n

(  \   ̂V,

sup y

The projection vf can be regarded as a sub-vector of v in the direction of w,

where
\ w j

= inf
ie{l.-n}

f  \

s u p /

and

r \  v.

V W ' J
is the supremum multiplicative inversion.

sup

Lemma 3-1

For a vector v and its supremum projection v’, it will always be that: v > v' 

This follow directly from the modus ponens rule.

Definition 3-11

For given vectors v = [vj • • • vn]r  andw = [wj • • • wn]T, the infimum projection 

o fv o n w  is defined as:
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— I 0  w  =  sup
V W y  i e { l , - n

( {  \  \  V;

\ \ W i 7  in f J

0  W

Where
\WJ

= sup
i e { l , - n }

( f  \  \V:

\ \ W i y in f  )

and

f v A
is the infimum multiplicative inversion.

Lemma 3-2

For given vectors v -  [v} • • • vn ]T and w -  [wj • • • wn ]r

99 9

f v ^ f v ^V < V then v > w

Proof:

Assume that v > w is FALSE. There must exist an ze {!•••«} for which v, < w,

Therefore
V^Vinf v w/y

. From definitions 3-10 and 3-11, it should be that:
sup

f r v \V

yw j
> and

v ^ y inf

r \  v;

v w / y

>
sup

W  J

Then
r  *\ w j

Clearly this inequality conflicts with the condition <
w w

, so the assumption

must be wrong, which means v > w is true.
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End of proof.

Example 3-9

Given min and max as T norm and co-norm, x =
'0 .4 ' '0 .5 '

and y  =, 0.2, , 0.2,

= inf
ie {l,2 }

' (  \   ̂I I
1 s  sup

— inf (l 1) = 1

The supremum projection of vector y  on vector x is: 

r 0.4^
v0.2,

-  = sup
\ x )  i . ( u }

' V '
V V X / J  in f J

= sup (0 0.2) = 0.2
ie { l,2 }

The infimum projection of vector y  on vector x is: 

a0.2a
y  = (S> jc = ,0.2,

Since < — , y  > x  is true.
\ * J

Definitions 3-7, 3-8 and 3-9 are generalised from linear algebra. Definitions 3-10 and 

3-11 are defined uniquely for fuzzy algebra. Based on these notations, some basic 

characteristics of vectors in fuzzy space will be explored in the following section.
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3.3.2 Fuzzy Vector Algebra

Compared to vectors in the linear space, vectors in fuzzy space have a different 

geometrical character. This is illustrated by the following example.

Given vectors Y = OA , and X  = OD (figure 3-5).

If X  = a  <8> Y , a  e [0,1], in linear space, D must be located on the segment OA, 

However, this is not true in fuzzy space. Depending on the triangular norm, for 

Tm ( TM (x , y) = min(x, y) ) D would be located on trajectory OB and BA. For

Tx (7^ (jc, y ) = rnaxCO, x  + y  - 1) ) D would be located on trajectory OCand CA. Where

OB is a vector inclined at 45° relative to the X-axis, and CA is parallel to OB .

Theorem 3-3

For given vectorsx  = [xj • • • xnY  and y  = \y\ • • • y nY  > Y belongs to the space 

constructed by x if and only if



Figure 3- 5 Relationship between Fuzzy Vectors
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Proof:

Necessary condition:

If y belongs to the space constructed by x, then from Definition 3-9: 

y  = co®x co e  [ 0 , 1 ]

fy  C r CO®XJ ^

=> y  = y,- = CO 0  Xj

^y»s
y t = co 0  jc. holds for any i e {l, • • •, n}

Therefore, there exists an inversion satisfying

xi

Based on the definition of the supremum inversion, 

for any i s  {!,-••,«}
c \

y,-
V i /  Sup

Therefore,

y  = co® x < inf
i e j l ,

r \
y±

\ x i J

® x =
sup

I -w
0 *

This can be written as:

y ( y )
Kx )

0  X

Sufficient condition:

To prove the sufficient condition, one needs to demonstrate that ify < 

given, then there exists a value co that satisfies y  = co 0  x .

f /
Kx )

0 xis
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From

f -{ x j

(  (  \  
inf | —

\ * u
0 x =

0 x,
sup

inf
r \

\ X i J

0 x
sup

i e

'Y \  
Zi

\ X i J

<
sup

r  \
>JL

\ X»J
0  X,

sup

<
' y , '

vyny
= y

Therefore y  = co 0  jc and co = f l
\ X .

End of proof

Proposition 3-1

If y belongs to the space constructed by x , there must be y  -

This directly follows from the “sufficient” part of the above proof.

Lemma 3-3

For the given vectors y and x, if y belongs to the space constructed by x then

sup
\ xi j

< inf
inf

V
\ x i J

(3-10)
sup

Proof:

From proposition 3-1, if y belongs to the space constructed by x then
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y  =

y,

y_
y x j

( A

0 jt

0JC,

From the definition of infimum multiplicative inversion 

< — for anyj
r  \

yj

V J J  in f

Therefore,

\ x )

sup
V J J  inf

= inf
c \

y_i
\ x j  j sup

End of Proof

Lemma 3-4

If the equation Y = coX where Y = }n X  = {xt}n co e [0,1] is solvable, co = \ —
\ X  j

is the minimum solution.

Proof:

This can be obtained from the definition of infimum multiplicative inversion where

Y \

X
is the lower limit that satisfies y t = yj

\ X i  J

0 JC;

Lemma 3-5

If a < min
<\

then Y > a 0  X

Proof:
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Assuming “ Y > a ® X  is false”, then there must be at least one i e {1 • • •«} that satisfies

y t < a <S> Xj

Hence, a > ' y , '  ^
\ x i / sup v * y

, which conflicts with the condition

a < mm
f 9t '>1

f Y 15 U J
V J

So the assumption is false and Y > a 0  X  is true

Theorem 3-4

The solution space for equation Y = coX can be expressed as co e
y kX j

This is obtained from Theorem 3-3 and Lemma 3-4.

It should be noted that the characteristics described in the theorem 3-4 for the vector 

case agree with the scalar case where a -  co®b is only valid

whenty
\ a ) inf \ a ) sup

. This is the reason that f Y 1 and f Y )U J U J are called infimum

projection and supremum projection respectively in the Definitions 3-10 and 3-11.

In this section, the relationships between two vectors in fuzzy vector space have been 

identified. The notations developed here will be applied in the following section for 

solving FREs.
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3.4 Solutions of Max Family Fuzzy Relational Equations

As mentioned previously, max family FREs are those FREs constructed using different 

triangular norms and max co-norms. Analytical formulae for the maximum and mean 

solutions of max family FREs and an optimal algorithm for deriving the minimum 

solutions will be developed in this section.

3.4.1 Maximum and mean solutions of FREs

Similar to Theorem 3-3, a necessary condition for the solvability of FREs can be 

derived as follows.

Lemma 3-6

For a group of given vectors {jcj • • • x{ • • • xm}, if a vector y  belongs to the space

A
yconstructed by {*,}, it must satisfy y  < ^

i=l V-*/ J

® jr.. If the triangular co-norm is

idempotent, the above condition is sufficient. A co-norm is regarded as idempotent if it 

satisfies Y = Y® Y@ ---@ Y.

Proof:

Necessary conditions:

If y  belongs to the space constructed by {jcf}, y  can be rewritten as:

54



y  = {a>i ® x ,)e ((y2 ® x2)®---(a„ ® x m)

( \  
y\

\ x \ j
<8>x, ©

f  \
yi

\ X 2 J

®X. ••©
r \
In

\ X m J

®X.

where y i = coi <S> jc, , / e {l • • • w} and y i < y

It is obvious that ( y , ) <
r \

y
U J U J

Therefore

y  -
\ x \ J

® x 0 0
/  A

_z
K X m J

® X _ = 1  Z ® X

Therefore

y * n -
m y x , )

® x;

Sufficient condition:

r \
y

i = 1

If y  < ^  — ® x,. and the T co-norm is idempotent, then y  belongs to the space
\ * u

constructed by {Xt }.

y  -
f r < '

y
\ x \ j

®  X 0 . . .  ©
r \

_y ®x„

fr

xih
inf(— )sup ® xu

inf(— )sup ®*i„ 
* 1 ,1,

e e
t  \

inf (— =- ) SUp ® xml

îmen Xmin sup w -̂ mn
J )
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<

U  \
(■^~)sup ®  *11 

* 1,1

f  ^

(— )sup ® xln

© 0

© ••• ©

( )sup ®  xm\
K X m ,  1  ̂ J

r y- \
(— )sup
xm,n J)

f  y x ® ••• ©>>,'

y „ © ••• @ynj 

Therefore,

= r © r © - - .@ r  = y

m r \ ( \w
II y_ ® x i and coi = y

/=1 U  J
End of proof

Lemma 3-6 shows the importance of the idempotent property in fuzzy space. With an 

idempotent T co-norm, a necessary and sufficient condition to identify the relationship 

among fuzzy vectors can be derived. It is easy to verify that the max co-norm is 

idempotent. Considering that the max operation is a commonly used T co-norm in 

fuzzy logic, the following sections will focus on deriving solutions for max family 

FREs. For simplicity, in this work, FREs will refer to max family FREs and

\x  x > y
x ffiy = m ax(x ,x), x ®>' = i fv .. • •0 otherwise

Theorem 3-5

The maximum solution for A ®  x = b is x  = (xj • • • xt • • • xm )T and xi = 

where denotes the ith column o f  matrix A

f b '
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The proof directly follows the sufficient part of Lemma 3-6

In order to derive the mean solution, the following Lemmas need to be derived first:

Lemma 3-7

i=l

~y\ *n
• . * i = j

y«. -Xin-

, and e [0,1] exists, the following

relationship holds:

/=1i*k

m

and Yk = Y 0 ^ a , ® X l
/=1

(3-11)

where a; =
kX . j

Proof:

From the condition, Y belongs to the space spanned by {Y,.}, one has:

m m

r  =  ®x,  =  £ « , .  ®X,  ®ak ® x t ,
/=1 /=1

i *k

(3- 12)

Where a, =
f L  v
k * , j

without lose of generality, Y can be separated into three parts
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Y =
}h
}/2 and lx + 12 + /3 = n , 

)*3

(3-13)

where Zx represents the components of vector Y, which can be derived only from

m
a. 0  X i , and Z3 represents the components of vector Y, which can only be derived

/=i
i*k

from ak 0  X k . Z2 represents the components of vector Y, which can be derived from

m

either <z 0> X  or ak 0  X k
7=1i*k

Hence, Equation 3-11 can be rewritten as:

Y =
m

/
" V

f -**1 \

Z2 ii M ai 0) X i2 © ak ® X k2

-Z2_
»=i
i*k V _ * / 3 _ J I _ * * 3 _ y

where

z i = Y , a, ® x ,\ > ak
7=1
i*k

Z2 ^ a , ® X J2=ak ® X k2
/=1 
i*k

m

z ,= a k ® X t l > X ^ Q X , ,
i=1 
i*k

Let

V '= '£ a l ® X a <Zi , V " = a k ® X t l < Z ,
i=l
i*k

and

(3-14)

(3-15)

(3-16)

(3-17)
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Y = Y*@Y~ (3-18)

where

m

y = £ ^ ® j r , =
1=1
i *k

and

(3-19)

y  =ak ® X k =-
V"
z , (3- 20)

Since

Yk = r © £ a f® X i =YBY'
1 =  1

Substituting equations 3-13 and 3-19 into equation 3-21:

(3-21)

' z , ' ' z , '

n  = z 2 0 Z 2

. Z 3 _ r

(3-22)

From (3-17), Z3 > V*, one has

From Definition 3-11, the following equality holds

"J
UJ = sup r o) f 0 1 (z  ^3 Z3 1
UJ UJ 5

\ ^ k 2  J5

J UJ (3-23)

Since Z, = ® X k, exists, from Lemma 3-4
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( v  \
z 3 = ®x*3 (3-24)

Since
' z , '

^ 3  > v ^ s y
exists, from Lemma 3-3, the inequality

Z  v^3 y
k2  

Y
W ^ k l J  J

<
7v 3̂ y

y y  a 

V V ^ yy

holds. Also from Definition 3-10 and 3-11

( z \3 < sup
r z i 2 ( z '3

1̂ *3 J y\̂ k2 J \ Xk3 J
Z  v^3y

k2

Y
W ^ k z j  J

( L '
\ x k j

= inf ' A  A .  A a
Y 9 Y 9 Y

V * 1 k 2  kZ J

( (Z 2~\ 'I

\Z} j
fx 'k 2

Therefore the following inequality holds:

\ X k l  J

( y_\ 

\ X k J

(3-25)

Substituting Equation 3-25 into Equation 3-23 gives:

v ^ y
<

K*kJ
a, (3-26)

Therefore,

® X k < ak ® X k (3- 27)
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Let:

t Y >1 k
\ X k J

0 L (3-28)

Immediately one has, Z1 > V] and Z2 >V2. Also from (3-17) Z3>V*. Therefore:

Z f a ® * , ) ©
i= l
i*k

\ x k J

z . V, z , @ v , z,
© V2 = z 2 ® v 2 =

Z 2

V Z 3 . _ v ' ® z }_ Z 3

= Y (3- 29)

which can be written as

r  = |> , ® x , . ) ©
1=1
i*k

® x

End of Proof

(3- 30)

Example 3-10:

'0.7' '0.5^ '0.4' '0.5'

* ,= 0.3 >*2 = 0.6 0.2 , Y = 0.3 and min max as
,0.2, ,0.3; ,0-4, ,0-4,

f Y '
9

Y )
9

' r N
then one has a. = = 0.5, a2 = = 0.3 and a* =1 z

, * 2 ,

=  1 .

Since Y< (a, ® X 1)© (a2 ® X 2)®[a3 0 I 3) , Y belongs to the space spanned by

{ x l tx 2, x , } .

Also because
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"0.5' "0.3' "0.4^
* 1

f

a ,® * , = 0.3 , a2 ® X 2 = 0.3 , a3 ® X 3 = 0.2 and Y = y 2 =

,0-2, ,0-3, ,0-4, ^ 3 , V

X x has a unique effect on y x 

X { and X 2 both affect y 2 

X 3 has a unique effect on y3 

Finally from (3-11)

"0.5' f ° i " 0 'l

II 0 II 0 iiXT 0
, 0 , k ,0-4,

Then

® X = 0.5®
^0.7^

0.3
v0.2y

^0.5^
0.3

v0.2y

0.5^ 
0.3 
0.4

/

(y,  1
"  ^

"0.5̂ "o'!
2 ®^r2 = 0® 0.6 = 0

X,
V

\  2 J
) ,0.3, ,0,

(  " \  

' r 3 '
v^3 y

® X = 0.4®
fOA}

0.2
v0.4y

^0.4^
0.2

v0.4y

It is easy to verify that Equation (3-30) is true.

Lemma 3-8

If the equation A® x = b is solvable, and x = (jq • • • xt • • • xmf

then*. > where

is a solution,
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b , = a e £
/■! V A J  7
J*i

®Aj (3-31)

and A, denotes the column i of matrix A

Proof:

From the proof of Lemma 3-7

If the value of Ai does not have a unique effect on the value of b, then (

\ A i  J

=  0

Xi >  0 =

j

If the value of Ai has a unique effect on the value of b, then r h ^
\ a >j

> 0 , and from the

definition of the infimum multiplicative inversion, (

\ A i  J

is the lower boundary which

maintains the effects from At to b,

Therefore jc, > f ! L '
\ A i J

End of proof

Theorem 3-6

If the equation A® x = b is solvable, then the mean solution is

= (x, ••• x, ••• xm) and x, = mm
V A i J \ A i  J

(3- 32)

Proof:
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Substituting Equation 3-32 into Equation 3-lyields:

A <8> x = 0  A;
1=1

(3- 33)

Without lose of generality, Equation 3-33 can be written as

/=!
( b '

\ A j  J

m

®A,+  £
A

/'=m ,+1 V y

®A,

where
' £ M for i e<

J U J
and r b ' f b )>

a J

for i e {mx + 1, •••,/«}

A; denotes column i of matrix A

Let b* = ^  —  A.t and b** = ^
V"4/ Ji=i /=1

' b '
V ''4 / J

As ( b >1 f b \
<

u \ 4 J
from Lemma 3-2, b > At for i e {l, • • •, mx}

♦ ♦* t . 
Again without the loss of the generality, each of b , b and b can be separated into

two parts namely

b = K
k

, b  =
bi_ }n\ Ah**x and b = 

}«2

k
}"2

where nx + n2 = n. These two parts satisfy the following equation

b; = b; =
\ Ai  J

(8) A y for  / e {l, •••,«!} and j  e {l, - • *, /Wj} (3-34)

and > b* for i e {nx + 1, • • •, n)
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From the above relations and the definition of the infimum inversion,

r f c ' ib,
\ A‘J j

®Aj j  existsforall ('e{l,•••,«,} and j  e {l, •••,/«]}
inf

Therefore

* *  *

bi =*, = 6,

and

b2** < b2 < b2

Because b only affects b by bx

m

*=I
i= l

'  b '  

v 4 ,
0 A .

ffl

=*‘ + z
'  b '

=m\+1 V J

® A ;

= b " + x ' b '
i =m,  +1 V J

/=1 J /= m ,+ l v^/  y
(8) A

= £ * ,. <8>4
i= 1

So x is the solution of Equation 3-1.

In order to prove that x is the mean solution, it is necessary to prove that any 

vector* < * cannot be a solution of Equation 3-1.
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f

If x < x  then x= < min
v J

From Lemma 3-5, A, 0  jq < b

Therefore,

m
A ® x  = '*Tj Ai ® x i <b

/=l

and x < x cannot be the solution for Equation 3-1.

End of Proof 

Example 3-11:

Consider the following Max-Min based Fuzzy Relational Equations:

o bo 0.8 0.8 0.15 0.4 0.7 0.2 0.5" ' 0.8s
0.3 0.7 0.7 0.7 0.7 0.1 0.6 0.7

0 JC =
0.7

0.6 0.6 0.6 0.6 0.6 0 0.6 0.4 0.6
0̂.2 0.7 0.3 0.55 0.8 0.8 0.1 0.3y ,0.8,

From Theorems 3-5 and 3-6, the maximum solution isx  = (l 1 1 1 1 1 1 l)r

and the mean solution is x = (0.8 0.8 0.8 0.7 0.8 0.8 0.6 0.7)r 

Any vector jc , which satisfies x < x < x , is a solution for Equation 3-35.
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3.4.2 Minimum solutions of FREs

As mentioned in section 3.1, the minimum solution of a FRE is not unique. In order to 

find all the minimum solutions, an optimal algorithm will be developed in this section.

Before developing the algorithm, the lower limit of the solution space of FREs needs to 

be considered first.

Theorem 3-7

1 If the equation A ® x = b is solvable, then the lower limit of the minimum solutions

is x = (xj ••• x, wherex t = —  and Bj =
\ Ai J /=! V A J J

®Aj.
j

2 Each minimum solution is constructed by directly combining the elements from 

mean solution x and x .

Proof:

Lemma 3-8 shows that x is the lower limit of solutions for Equation 3-1 and Lemma

3-7 and Theorem 3-6 show that each minimum solution is constructed as a combination 

of the elements from x and x 

End of Proof
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Lemma 3-9

If equation A ® x = b is solvable, then it must have the same solutions as equation

Proof:

If A<8)x = b and <S>Xj < bt , then a{j does not affect the final result. So equation

End of Proof 

Lemma 3-10

If equation A 0  jc = b is solvable, and there are no coupling among the columns of A , 

then the mean solution is equal to the minimum solution.

This can be directly derived from Lemmas 3-7 and 3-8. Here, “no coupling” means that 

the column vectors of A are independent from on another. None of them can be 

expressed as a fuzzy combination of other vectors (located in fuzzy space spanned by 

other columns).

From Theorem 3-7, each minimum solution is constructed by combining the elements 

from the mean solution 3c and the lower limit x.  Then a minimum solution can be 

obtained by testing all the possible combinations of 3c and x . However, exploring all 

possible combinations can be time consuming because a large amount of calculations 

will be wasted on impossible alternatives (Wu et al 2002). The following algorithm will 

yield the minimal solution without exploring impossible alternatives.

A ® x  = b where A = [a^] and a]
otherwise

Al <8)x = b has the same solutions as Equation A ® jc =  b .
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Algorithm 3-1:

1. Simplify a FRE by arranging it into the form of A*.

2. Decompose the equation by using the row with the smallest number of non-zero 

elements.

3. Study each decomposed sub-system. If there are no compositions between 

columns, go to step 4. Otherwise go to step 2 and further decompose the 

sub-system.

4. Find the mean solution for the sub-system. From Lemma 3-10, this will be the 

minimum solution for the fuzzy relational equation.

As all impossible alternatives are automatically eliminated by the decomposition 

procedure (steps 2 and 3), unnecessary explorations are avoided. This algorithm is an 

optimal method to calculate the minimum solutions. Furthermore, it is a general 

method for solving max family FREs; other methods developed for max-product (Wu 

et al 2002) or max-min. can be regarded as variants or special cases of this method.
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3.5 Key Findings and A Numerical Example

3.5.1 Key Findings

Before illustrating the application of the results derived in this chapter, the key findings 

are first summarised as follows.

The fuzzy relational equation:

where

A = (A, ••• A, ■■■ A„)

* = (*, ••• xt ••• xm)T ,x t e [ 0,l]

is solvable if and only if:

(Lemma 3-6)

If the above condition is satisfied, the maximum solution is

X = (5, ••• X, ■■■ xmf

where jc, =
( b ^ (Theorem 3-5)

The mean solution is



where jc, = min
J

(Theorem 3-6)

The lower limit of the minimum solutions is

x=(xx • • •  x_i • • •  xmy

with x, =
m

and Bt = 6 0 ^
/=*A^ yj*>

0y4, (Theorem 3-7)

Each of minimum solutions is constructed by combining the elements of the mean 

solution x and x . An efficient algorithm to obtain all the minimum solutions is

algorithm 3-1.

3.5.2 Example 3-12

Consider the following example from (Cechlarova 1995). The product and max are 

used as T norm and co-norm.

00O
0.6 0.2 0.4 0.2 0.7 0.7 0.5^ "0.56^

0.6 0.3 0.7 0.6 0.1 0.3 0.5 0.3 0.42
0.5 0.8 0.7 0.4 0.7 0.8 0.3 0.8

<8>jc =
0.64

0.2 0.4 0.5 0.1 0.3 0.5 0.8 0.4 0.4
0.6 0.2 0.5 0.5 0.1 0.4 0.7 0.2 0.42

v0.9 0.9 0.8 0.2 0.8 0.6 0.1 0.4 J ,0.72,

From Lemma 3-6, the equation is solvable.

From Theorems 3-5, 3-6 and 3-7,

x = x = (0.7 0.8 0.6 0.7 0.9 0.8 0.5 0.8)r

and x = (0.7 0 0 0 0 0 0 0)T
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From Lemma 3-9, Equation 3-36 can be simplified to

r ~ \

"0.8 0 0 0 0 0.7 0 0 " x2 "0.56"
0.6 0 0.7 0.6 0 0 0 0 x3 0.42
0 0.8 0 0 0 0.8 0 0.8 xA 0.64

(8) -
0 0 0 0 0 0.5 0.8 0 *5 0.4

0.6 0 0 0 0 0 0 0 *6 0.42
0.9 0 0 0.8 0 0 0 ; *7 ,0.72,

\ X8J

(3- 37)

Since there is only one non-zero coefficient in the 5th row of Equation 3-37, its 

corresponding column is separated from the equation. Equation 3-37 can be reduced to 

two smaller equations, which are:

"0.8" "0.56"
0.6 ®JC, = 0.42

,0.6, ,0.42,
(3- 38)

0.8 0 0 0 0.8 0 0.8
0 0 0 0 0.5 0.8 0

0.9 0 0 0.8 0 0 0

"l
x3

\ x4 "0.64^
(8) *5 = 0.4

J *6 ,0.72,

*7

X 00 V

(3- 39)

For (3-38), it can be seen that jc, = 0.7 is the minimum solution as stated on the previous 

page.

Equation 3-39 needs to be further decoupled in order to find its minimum solution. 

Since the 2nd and 3rd rows in Equation 3-39 have the lowest number of non-zero 

elements, the equations can be divided by either 2nd or 3rd row. In this case, it is divided
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into two systems by the elements in the 2nd row. Each of the new system contains two 

equations unit.

The first system is:

(3-40)

oo©

'0.64n
0 JC6 =

,0.5, 0 ,0 .4 ,

and

(0.9 0.8) (8)
\

= 0.72 (3-41)

From Equation 3-40, x6 = 0.8 .

Equation 3-41 can be further reduced to

(0.9)® x2 =0.72

and

(0.8)® *5 =0.72

This implies x2 = 0.8 and x5 = 0.9

Therefore, the minimum solutions derived from the first system of equations are:

i ,  = (0.7 0.8 0 0 0 0.8 0 0)r

and

x2 = (0.7 0 0 0 0.9 0.8 0 0)r

The second system of equations is

(0.8)® at = 0.4

and

(3-42)
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p 00 o 0.8' "0.64̂
®x  =

,0.9 0.8 ,0.72,

As above, the minimum solutions can be found as

i 3 = (0.7 0.8 0 0 0 0 0.5 o f  and

*4 = (0.7 0 0 0 0.9 0 0.5 0.8)r

Hence the entire solution space for Equation 3-36 is:

Maximum solutions (o.7 0.8 0.6 0.7 0.9 0.8 0.5 0 .8f

Mean solution x 'o
'

p 00 o OS p o VO p 00 p p 00
Minimum solutions Jc (o.7 0.8 0 0 0 0.8 0 O f 

(o.7 0 0 0 0.9 0.8 0 o f  

(o.7 0.8 0 0 0 0 0.5 o f  

(o.7 0 0 0 0.9 0 0.5 0 .8 f

Lower boundary x "o
'

o o o o o o o

3.6 Summary

A complete analytical solution for the max family of FREs based on fuzzy inversions 

has been developed in this chapter. The proposed method is a unified approach for max 

family FREs.
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Chapter 4 

Fuzzy System Design And Functional 

Analysis

4.1 Preliminaries

This chapter focuses on the possibility of applying functional analysis theory to the 

design of fuzzy systems. Functional analysis is the mathematician’ “black-box 

diagram” (Curtain and Pritchard 1977). It was developed to deal with general functions 

instead of specific values. The motivation for applying functional analysis to fuzzy 

systems is twofold. First, as an exact mathematical analytical method, functional 

analysis can handle inexact data and knowledge. Second, the simple notions in 

functional analysis avoid many of the complicating details in design and analysis, 

highlighting only the essential aspects. Functional analysis is a convenient way to 

examine the behaviour of various models, including fuzzy models. An aim of this 

research is to provide a new perspective for fuzzy system design, and to develop an 

efficient algorithm for fuzzy models from input/output data pairs.

Based on functional analysis theory, a functional point of view for fuzzy system design 

will be developed. From a functional point of view, fuzzy system modelling consists of 

two parts:
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• Searching for the optimum basis (membership functions)

• Measuring the minimal distance between the given basis and the target function. 

This is an iterative process. If the target function is covered by the space spanned by the 

given basis, the distance between the basis and the target function is zero. If this is not 

the case, a minimal distance can be derived from fuzzy transform action. Based on the 

distance, further optimisation of the basis is performed iteratively until basis that are 

close enough to the target function are obtained.

Fuzzy system design involves a combination of “soft-computing” and 

“hard-computing”. The first part of fuzzy system design, “searching for optimum 

basis”, is a soft-computing activity. Any suitable optimisation techniques, such as 

neural network, genetic algorithm, could be applied. The second part of fuzzy system 

design, “measuring the minimal distance”, can be regarded as “hard-computing”. The 

task can be completed analytically. The most commonly used method is the 

least-squares method.

Therefore, in order to outperform modem fuzzy system design approaches, next 

generation fuzzy system design needs to be enhanced in both the "soft-computing" 

direction and the "hard-computing" direction. Areas for improvement include:

• Reducing the search space and choosing better initial conditions

• Increasing the efficiency of the minimal distance calculation

Within the last decade, the “soft-computing” aspect of fuzzy system design has 

received considerable attention and various neuro-fuzzy approaches have been 

proposed. On the other hand, since the introduction of the least-squares method for 

fuzzy system design in the early 1980s, the “hard-computing” aspect of fuzzy
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modelling has been almost untouched. This chapter presents a new “hard-computing” 

algorithm for fuzzy system design. The algorithm is based on the generalised Fourier 

transform. It will be demonstrated that instead of using the least-squares method, the 

minimal distance can be derived by fuzzy transform action. This facilitates the 

determination of optimum designs and the development of more efficient algorithms 

for the next generation fuzzy system design.

The chapter is organised as follows. The functional perspective of fuzzy systems and 

the analogy between fuzzy system design and functional analysis are explored in 

section 4.2. In section 4.3, the concept of fuzzy transforms is proposed based on the 

generalised Fourier transform. Fuzzy transformation is applied to T-S fuzzy system 

design in order to improve efficiency. In section 4.4, dual base and dual spaces are 

introduced for further improving the efficiency of fuzzy modelling.
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4.2 Functional Perspective of Fuzzy Systems

The treatment of imprecision and vagueness can be traced back to the work of 

Lukasiewicz in the 1930s (Bonissone et al 1999). A multiple-valued logic was 

proposed by him to represent undetermined intermediate truth-values between the 

classical Boolean true and false values (Rescher 1965). Later the philosopher Black 

suggested that vague concepts could be represented by a consistency profile, while 

fuzziness addresses the lack of sharp boundaries between sets (Black, 1937). As 

mentioned previously Zadeh proposed the theory of fuzzy sets (Zadeh, 1965), which 

provided a systematic way to deal with ambiguous and ill-defined concepts. Based on 

fuzzy sets theory, fuzzy systems were developed.

In the last three decades, considerable attention has been given to research into fuzzy 

systems, especially into the theory of fuzzy sets. Researchers believe that fuzzy sets 

may lead to a better understanding of fuzzy systems and possibly more advanced fuzzy 

computing approaches. Thousands of papers have been published in this area and fuzzy 

sets theory has become a respected part of science.

As fuzzy sets theory grew in popularity, various fuzzy inference mechanisms were 

proposed for different application areas. Among them, Mamdani’s fuzzy model and the 

T-S fuzzy model have been widely accepted in fuzzy system design. It is interesting to 

note that despite the popularity of fuzzy sets theory, only fuzzy models based on simple 

fuzzy sets theory have been commonly implemented. In particular for the T-S fuzzy 

model, little fuzzy sets theory is involved. This indicates that there is a gap between 

modem fuzzy sets theory and its practice in fuzzy system design. People may argue that
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since fuzzy systems mimic human thinking, their applications should be 

straightforward and easy to understand. However, when fuzzy systems are employed 

for more sophisticated problems, current theory turns out to be inadequate. Innovation 

in fuzzy theory is required to address challenges such as the construction of fuzzy 

systems for complicated systems from input/output data.

During the last decade, a number of researchers have tried to explain the behaviour of 

fuzzy systems using input-output based mathematical descriptions. They have carried 

out studies with titles such as "The universal approximation ability of fuzzy system 

based on fuzzy basis functions", "Functional equivalent between some fuzzy systems 

and the Radial Basis Function Networks", and "Fuzzy PID controller is equivalent to 

multilevel relay and a local nonlinear proportional-integral controllers" (Ying, 1993), 

(Wang and Mendel, 1993), ( Jang and Sun 1993), (Kosko, 1997). As opposed to the 

inference viewpoint commonly accepted in the fuzzy systems community, these studies 

were based on a functional point of view, regarding the fuzzy system as some kind of 

function. Their success provides new understanding of fuzzy system behaviours. 

However, because a complete input-output based mathematical description of the fuzzy 

system design is not yet available, those results of the above studies have appeared 

individually, and have not been applied to fuzzy system design directly.

According to Zadeh (Zadeh 1997), there are three basic concepts in human cognition: 

granulation, causation and organisation. Informally, granulation involves the 

decomposition of a whole into parts, organisation, the integration of parts into a whole, 

and causation, the association of a cause with effects. In a fuzzy system, these concepts 

are implemented in the following way: granulation is achieved by converting crisp
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values into fuzzy values; organisation is represented by the process of converting local 

information into global information; and causation is implemented by rules and the 

inference mechanism. For example, in the Mamdani fuzzy model, granulation and 

organisation are expressed through fuzzification and defuzzification, respectively. 

Causation is performed in the so-called compositional rule of inference (CRI). From the 

logician’s point of view, this is a balanced process with all the components in a fuzzy 

system having their own role. Together, fuzzy values, rules and the inference 

mechanism, construct a "set-to-set" mapping. They successfully avoid the drawbacks 

of "point-to-point" mappings when dealing with ambiguity and uncertainty.

If inexact data are considered as exact signals plus random noise, mathematically, in 

fuzzy system modelling, the noise is eliminated by the membership functions. This is 

because the convex-shaped membership functions are low pass filters. The ability of 

fuzzy systems to deal with uncertainty is fully dependent on the size of the support of 

membership functions as shown later in the chapter. At the same time, membership 

functions also construct a function space for implementing further approximation. The 

membership functions become the basis of the space. The role of the remaining parts of 

the fuzzy system is to approximate the fuzzy system to the signals, which have been 

extracted from inexact data, as accurately as possible. This process can be regarded as a 

transform action between the function space constructed by the membership functions 

and the target system. Since any inexactitude and uncertainty in the input/output data 

pairs have been filtered by membership functions, the term "as accurately as possible" 

has its normal meaning in mathematical transform theory. This viewpoint is somewhat 

different from the inference viewpoint that is commonly accepted in fuzzy literature. 

Because it is very close to the concept of the transform in functional analysis, this will
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be called the functional viewpoint, and the transform will be called the fuzzy transform. 

It will be demonstrated that this new point of view provides a better explanation of the 

input-output behaviour of fuzzy systems. From this point of view, the best 

approximation comes from a combination of rules, inference mechanisms and local 

information in the output space that gives the closest transform from the space 

constructed by input membership functions to the target function. The universal 

approximation ability of a fuzzy system is fully dependent on the completeness of the 

membership functional space, which is determined by its membership functions. It can 

be proved that if the number of membership functions is not limited, a complete space 

that covers any target function can be constructed. This is the principle behind the 

universal approximation ability of a fuzzy system.

The functional point of view leads to an insight into the behaviour of a fuzzy system. 

Some important results in fuzzy theory, such as the universal approximation ability of 

fuzzy systems and the functional equivalence between fuzzy systems and Radial Basis 

Function networks, become clearer from this point of view.

One important reason for the gap between modem fuzzy sets theory and fuzzy 

modelling practice is that the logician’s viewpoint fails to realise the difference 

between the roles of the components in a fuzzy system. In practice, this may generate 

great difficulties for fuzzy modelling. For example, consider a fuzzy system with three 

input variables using five membership functions for each variable. If the rulebase is 

complete (Blyth and Janowitz, 1972), a total of 134 (= 53 + 3 x 3) parameters have to 

be optimised. This is a very large search space for any kind of soft computing schema. 

However, from the functional point of view the optimum approximation can be
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achieved by tuning the input membership functions alone, and the search space is 

reduced to as few as 9 parameters (for normalised triangular membership functions).

4.3 Functional Analysis for Fuzzy System Design

In the previous section, the idea of a functional viewpoint for fuzzy system design has 

been explained. A complete fuzzy system design theory based on functional analysis 

will be presented in this section.

4.3.1 Notation

1. Normed Linear Space

Let X  be a vector space, any function ||«|| that satisfies following conditions is a norm

i. \\u\\ > 0 (Positive definiteness)

ii. \a • w|| = \a\ • ||w|| (Linearity)

iii. ||w + v|| < ||w|| + ||v|| (Triangle inequality)

where u and v are vectors on L ,  w e l  v e X . a  is a complex-valued scalar, a  e C .

A  vector space in which a norm is defined is called a normed linear space.
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For example, for a linear vector space X  [a,b] includes all bounded continuous 

functions on interval [a, b], X  [a,b] becomes a normed space if a norm is defined on 

the space as

Where / (f) denotes a continuous functions on interval [a, b] (It is regarded as a vector 

in space X  [a,b]). f ( t )  is the conjugate function of f ( t ) .  ||/ ||2 denotes the “Euclidean 

distance” of the vector /  from the origin.

2. Linear Inner Product Space

Let V be a vector space over X. An inner product on V is a complex-valued function 

(v) : V x V  —> C such that for any x ,y ,z  e V and a ,/?  e C

i. (x,ay + Pz) = a(x,y)  + p (x , z )

ii. (x,y) = (y,x)

iii. (x9 jc)  > 0 i f  x * 0

where ( jc, y) is complex conjugate of (x, y)

A linear vector space V with an inner product is called a linear inner product space.

Two vectors x and y  in an inner product space V are said to be orthogonal if

(x, y ) = 0 which denoted by jc _L y .

For given functions / ( j c )  , g(jc) and jc e  [a,b], an inner product can be defined as

(4-1)

< f > g > =  f  P(x)f(x)g(x)dxJa (4-2)
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where p{x) is a weighting function, g(jc) is the conjugate function of g (x ).

If f{x )  e R , g(x) e R and p(x) = 1 Equation (4-2) can be simplified to

< f ,g > =  \ bf(x)g(x)dx  (4- 3)J a

The discrete form of (4-3) is

< / . g > = E / ( ' ) - g ( 0  (4- 4)
i=0

where n + 1 is the number of samples in [a,b].

Equation (4-4) is defined based on the operator sum and product. It can be replaced by a 

T norm and co-norm, such as the max-product or max-min:

< f ,g > =  sup[ ( / ( j) • g(i))] max-product (4- 5)
i

< f ,g > =  su p[m in(/(/), g(  0)] max-min (4- 6)
/

It is easy to verify that Equation (4-5) and (4-6) also satisfy the requirements of the 

inner product.

3. Best approximation in linear inner product space.

Definition

n

Given / e {0, •••,«}, a basis {</>.} and a set of parameters c* e C  , a function S* = c'fa
i=o

is the best approximation of / ,  if and only if f  -S*  is orthogonal to fa ,
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< f - S *  , ^  >= 0 , z 'e{0, •••,«}

n n

If / ( x)  is best approximated by S* = , for any S = $  (it is formed by
/= 0  1=0

unknown parameters c . e C and the basis {$}), the following holds:

f  P{x)U(x) ~ S ’ f  dx < £  p{_x)[f{x) - S f d x  (4- 7)

This means the length of f - S  reaches its minimum value whenS = S *.

n

S * = is called the generalised Fourier transform of f ( x ) in functional analysis.
1=0

Let:

/(c0,c ,,- - - ,c j=  (4-8)
/=0

I  in Equation (4-8) is a linear function of (c0,c,,•••,<;„).To find the best approximation 

of f ( x )  in function space constructed by {$}, the minimal value fo r/(c0,c,, --,c;i) 

needs to be calculated:

From

^ -  = -2^ap { x ) [ f { x ) - Y j cî kdx = 0, k e{0,•••,«} (4-9)
O C k a j-Q

Z ( J V w M ^ ) c/ = J 6 p(x)f(x)</>k(x)dx , £ e{0 ,•••,«} (4-10)
/=o a a

Equation (4-10) can be rewritten in the form of an inner product
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n

>c, = < / , &  > ,  k e (4-11)
/'=0

For a normalised orthogonal basis, <(/>i,</>j >=kSi j and < (pj,</>. >=< ,(j>. > . The

solution of Equation (4-11) is:

(c  \ C1

/»
1

ci <<f)\̂ <f>\ >
(4- 12)

or

<# , / >C; = (4- 13)

Equation (4-13) is the general formula for mathematical transformation in functional 

analysis. Well-known transforms, such as Fourier Transform, Gabor Transform and 

some orthogonal wavelet transforms, can all be derived from Equation (4-13).

4.3.2 Fuzzy Modelling and Fuzzy Transform

In this section, the concept of fuzzy transform action is proposed based on the general 

formula for mathematical transforms. Fuzzy transform is applied to the T-S fuzzy 

system design in order to improve the efficiency of the development procedure.

4.3.2.1 Fuzzy Modelling for zero-order T-S model

Consider a simple zero-order T-S fuzzy system.

If Z is Af (Z) Then y. = ai
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and y  = Y , y l -<l>l(Z) = '£j ar <l>l(Z)
i i

where i e {l,•••,/?}, p  is the number of rules,Z  e R n , y  e R , y i e R  is a fuzzy

singleton and $(Z) = - .
± M Z )

From given input/output data pairs |z ; , yj •m}, a fuzzy system can be

constructed using the above T-S model by applying a hybrid learning method, for 

examples ANFIS(Jang, 1993). The parameters {<a, } in the fuzzy model are usually

identified by using a least-squares estimator (Takagi and Sugeno, 1985) as:

ax
= (ATA y 'A TY (4-14)

a .p

where:

> ,(Z ,)  ... # ,(Z ,) ' 
A= i :

MZm) -  +p(Zm) mxp

In order to identify the best parameters for the T-S model, the least-squares method has 

to calculate A7 A and the inverse of (AT A). When p  and m are large, the calculation 

can be very lengthy. Furthermore, in a hybrid learning process, the calculation needs to 

be performed repeatedly and this can make the fuzzy modelling process very slow.
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In order to solve this problem, alternative approaches are developed in this work. As 

shown previously, from functional analysis, the best approximation from the basis {$}

p
to target function /(Z )  is the generalised Fourier transform, y  = ^ a i *$(Z), which

/

satisfies

</>i>= 0, i e { \ " - p }  (4-15)

where <, > denotes an inner product.

Equation 4-15 indicates that the error function f - y  is orthogonal to all of the basis 

vectors <j)i . Then the distance from basis {(/>,} to target function /  is minimised.

As designing a fuzzy system is equivalent to deriving a transform from membership 

functions to target function, the task of fuzzy system design can be equated to that of 

finding a generalised Fourier transform. To distinguish the generalised Fourier

p
transform y  = ^ a i -<j>i{Z) for fuzzy systems from other types of transform in

/

computational harmonic analysis, the transform is called the fuzzy transform in this 

case.

Equation (4-15) can be written as

p

X <  ^  = <  / ( ^ ) » >  , k e  { l • • •/?} (4-16)
/=o

which is:

A*a = B (4-17)

where:
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r<<i>iA> * " <0i,0P >'

A = < A .A >  • • < 0 ,0 j>  • * < 0i > 0P > a - 3, and B =

K<0PA > • <<!>p4j> ' <0p^0p >j K<</>p, f ( Z ) > /

{(j)i} denote normalised membership functions,

Since the matrix A represents the relationships between membership functions, it is 

called a membership relational matrix. The matrix B reflects the interaction between 

the membership functions and the target function, it is called an interaction matrix. The

solution a = {ax • • • ai • • • ap ) can be used to construct the fuzzy transform; ai is

called a coefficient of the fuzzy transform.

Unlike other transforms in computational harmonic analysis (such as the Fourier 

transform and Gabor transform), the fuzzy transform cannot be expressed explicitly 

due to the non-orthogonal basis. These non-orthogonal basis vectors reflect the lack of 

sharp boundaries between fuzzy sets in fuzzy systems. A unique property of the fuzzy 

transform is that the basis in the transform is not fixed but varies from one application 

to another. They need to be identified in some training process or using the experience 

of the operator. This makes the fuzzy transform a very flexible technique in function 

approximation.

The fuzzy transform provides a mathematical description for the principle of fuzzy 

system design. A fundamental problem in fuzzy system design is to find optimum basis 

(membership functions). When the basis have been chosen, an optimum fuzzy system
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is constructed by computing fuzzy transform as the inner product of the basis and the 

target function.

It is easy to verify that:

• >=<</>j A >

• < $ , </>j >= 0 when </>. and ^ . do not have common support.

Therefore, the membership relational matrix A is symmetrical and only those members 

close to the diagonal are not zero. This simplifies the solution of Equation (4-17)

Example 4-1

Consider the solution for equations AX = D

'b, c. ' d , ‘ '  xi
ex b2 c2 d » x2

A = e2 . D = • X  = :

K-i <Vi d„~\ *n-l

i L _dn . _ * n  _

The equation can be expanded into:



Therefore the solution for AX -  D can be derived in two steps:

• calculate w and v , in the sequence
u
v,

- >  > - »  >
u
V,n

n

• deriving jc from u and v , in the sequence xn —> —>----- > x2 -» x{

X n = U nn n

xk =uk - v kxk+,, k = « - l ,  2, 1

The above procedure for solving equation AX = D is due to Cholesky’s algorithm 

(Press and Flannery, 1993)

Example 4-2

For n + 1 normalised triangular membership functions as illustrated in Figure 4-1, the 

membership relational matrix is:



A =

< (f>\, (f>\ > <<!>\4P >

< < t > i A >  • • •  < 4 i * 4 j >  < < ! > i ^ P >

<(/>PA >  ••• <</>P’(f>j> ••• <(t> p ^ p >t

Since

<<Pn(P, >=
I x CM

M  [ C(- — CM y

' « + i

C —C ^  — 3 ^/-l)

<01*4+1 >=
x- C./+i
c . - ci /+i y  v  i+i / y

x-C,. 
c ;i1 - c .

d x = {~{CM -C t)

where, C, is the centre of the i membership function 

This gives

A =

y(C,-Co) ^(c,-c„) 0

j(c,-Co) |( c 2-c 0) t (c2 - c,) 0

0 t ( Q - C m )  t ( C w - C m )  k c M-c,)

(̂cn.,-c„.2) i(c„-c„_2) i(c„-c„.,)
D 5 O

0 i(c„-c„_,) |(c„-c„_,)

(4 - 18)

Example 4-2 indicates that, given the type of membership functions (triangular, 

Gaussian etc.), the form of the membership relational matrix can be predetermined.
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C n-1

Cn-1

Figure 4-1 Normalised triangular membership functions.



Example 4-3

Approximate y = cos(l.5;r • f), t e [0,1], using a zero-order T-S model:

If t is w, (/) Then y  is ax 

If t is u2 (t) Then y  is a2 

If t is «3 (/) Then y  is a3

3

and y  = Y , ai ' uiit)
i

Normalised triangular membership functions are used in this example, which are 

illustrated in figure 4-2. Four parameters need to be identified in the fuzzy model. They 

are ax, a2, a3 and the centre of middle membership function C .

When C is given, the combination of ax, a2, a3 that gives the best approximation to

the target function can be derived by using the fuzzy transform action (4-17). Therefore, 

the approximation problem is converted to an optimisation problem with only one 

unknown variable, C.

Based on equation 4-18, the membership relational matrix is

0

A =

!  c I c
3 6

I c
6

7 O -C )
o

0 1(1 -C )  1(1 -C )
O 3

The interaction matrix can be derived using the inner product operation.
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Given the form of the membership relational matrix A and the interaction matrix B , 

theoretically, an optimum value of C can be obtained analytically. However, this is not 

the aim of fuzzy transform action. The idea behind the fuzzy transform is not to 

eliminate “soft-computing” activities in fuzzy system design, but to seek an optimal 

balance between “soft” and “hard” computing.

As mentioned in previous sections, in order to outperform modem fuzzy system design 

approaches, next generation fuzzy system design needs to be enhanced by reducing the 

search space and increasing the efficiency of the minimal distance calculation. It is 

clear that the fuzzy transform is a development in this direction. It provides an efficient 

way to calculate the minimal distance and at the same time reduces the problem of 

fuzzy systems modelling to the simpler problem of finding the best input membership 

functions.

The fuzzy modelling procedure for the above example is illustrated in figure 4.3. In 

order to find the best combination of parameters, the gradient descent method is applied 

to search for the value of C . For the initial condition C=0.5 and step=0.1, the 

following results are obtained.

B =
< w,,cos(1.5;r*f) >
< w2,cos(1.5;tT) >
< w3,cos(1.5;t-/) >



Iteration C Error a\ a2 *3 Step

1 0.5 0.0339 1.3626 -0.8802 -0.4510 0.1

2 0.6 0.01 1.2805 -1.0966 -0.2402 0.1

3 0.7 0.095 1.1642 -1.2324 -0.0233 0.1

4 0.65 0.063 1.2261 -1.1752 -0.1319 0.05

Final Result 0.65 0.063 1.2261 -1.1752 -0.1319

The best approximation is achieved when C is close to 0.65. This is illustrated in figure 

4-4.

o
o
o

U 3o
o
o
o
o
o

Figure 4-2 Membership functions in example 4-3
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cos(1.5 71 x)

1

0.5

0

-0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

Figure 4-4 Target function and the approximation result in example 4-3
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It should be mentioned that when the support of membership functions is sufficiently 

wide, the fuzzy transform is not sensitive to noise. Let g (Z ) denote the input/output 

data pairs. The data consist of the target function / (Z) plus white noise n(Z) : 

g(Z) = /(Z ) + a(Z).

Let D represent the support of a membership function u(Z) .

It is easy to verify that for white noise n{Z) when D is large enough.

f [u ( Z) n( Z) ] dZ  = 0
D

Then

<u(Z) ,  g ( Z)  >= f[u(Z) ■ g (Z ) \ lZ  = j [u(Z) ■ (/(Z) + n{Z))\lZ  = j[« (Z ) • f ( Z ) \ l Z
D D D

= <u(Z) , f (Z)>

which shows that the fuzzy transform is not sensitive to noise n(Z) .

Therefore the fuzzy transform can be used to deal with inexactitude, if the support of 

the membership functions is not too small. The noise filter is illustrated in figure 4-5.

It should also be mentioned that the sum and product, used in Equation (4-17) can be 

replaced by other triangular operators. When different norms and co-norms are adopted 

in fuzzy inferencing (Max-Min, Max-Product, Sum-Product etc.), only the way in 

which the equations are solved is changed.
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Figure 4-5 Inner product filters out the noise in the target function
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4.3.2.2 Higher-Order Approximation

The fuzzy transform can be easily extended to higher-order approximation 

Consider a first-order T-S fuzzy system 

If Z is A,.(Z) Then y,is qiZ-\-ri

and y  = £ y, ■ u,(Z) = '£ (q iZ + rl)-u,(Z)
/' i

where i s  {l •■■p}, p  is the number of rules, Z e R " , y e  R , q: e R" r: e R and

«,(Z) =
A,(Z)-

± M Z )

It is obvious that the coefficients of the fuzzy transform can be obtained from the 

equation:

> •• <ul,up > < uXiuxZ > • <u,,upZ > NV < f , u , > ^

< U P > U 1> <up,up > < w n, u Z >p  ’ p <up,upZ > </>»„ >

A JK
.. 

~N > < u\Z,up > < uxZ,uxZ > < uxZ,upZ > < / ,« ,Z  >

K<upZ,u >  • • <  Up Zy Up > < upZ,uxZ >  • ■ < upZ,upZ > pJ p , ,< f ’upZ >,

(4- 19)

where /  is denotes the target function.

The advantage of a higher-order approximation is that it improves the approximation 

ability of a fuzzy system without increasing the search space. For the same number of 

membership functions (the same search space), a higher-order approximation adds a 

new basis vector into the membership functional space. The basis in membership
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functional space changes from {w,.} to {w(.,w;Z}, and the coverage of the membership 

functional space increases accordingly.

Equation 4-19 can be written as

< w, , w , > <  W,,W,Z > < u l , u p z  > <  / » U\ > '

< Uiz , u l > <  W|Z,M,Z > < u lz , u p z > r \ < f , u xz >

<U' , U'  > < u i , u iz > <h < / > ,  >

< U' Z,U > < U' ZiUjZ > n < f , u jz >

< U P’U1 > < U P’ UP > < U p , U p Z > 9 P < f , U p >

< UPZ’U > < u pz , u  > < u p z , u p z > _ J p J < f ^ p z > J

(4-20)

where the membership relational matrix A is symmetrical and only those members 

close to the diagonal are not zero. Again, this kind of equation can be solved efficiently 

by Cholesky’s algorithm (Press and Flannery 1993).

Thus, a complete fuzzy system design theory based on functional analysis has been 

presented in this section. From the functional analysis point of view, the mathematical 

principle for fuzzy system design can be described by Equation (4-15). Based on that 

equation, an efficient fuzzy modelling algorithm has been developed using fuzzy 

transform for T-S fuzzy model.
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4.4 Dual bases and dual spaces

Non-orthogonal bases are an important feature of fuzzy transforms. However, 

numerically, this feature limits the ability the fuzzy transform to be applied to 

complicated systems. For example, for the Fourier transform, which has an orthogonal 

basis, a general solution for Equation (4-17) can be derived as:

a ‘ = 7 7 7 7  Are 1,•••,/>
<9k>9k >

However, for the fuzzy transform, solving Equation (4-17) tends to be complicated 

when p  is large. Furthermore, in fuzzy modelling, searching for the best partition of 

membership functions requires Equation (4-17) to be solved repeatedly. This further 

slows down the fuzzy modelling process. In order to solve this problem, a simplified 

approach is developed using the concept of dual bases.

For simplicity, consider a 2-D coordinate space. Any two vectors {̂ , ,^2 }that are not 

parallel can form a basis for the space. If the angle between the two vectors is 90 

degrees, they form an orthogonal basis.

Any vector A in the space can be written uniquely as a linear combination of the two 

basis vectors: A = ax(f>x +a2</>2 . For an orthogonal basis, < $ , ̂ - >= ^  , and the

component at along (/>j is given by the inner product:

< A , 4 , >=< a, (A, + a 1<f>2J l >= Y 1a J < > = a,
j

However, if the basis is not orthogonal, at is no longer given by the inner product
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between .4 and $ .  In order to calculate the components,, another set of basis vectors

,<fi2}, called the dual of {̂ , } is introduced. The dual basis satisfies the following

relation:

< 0 i J j  >=^ij

and the space spanned by the dual basis vectors is called the dual space of the original 

space. In terms of the dual basis, the components of a vector along the basis vector (j)i

can be calculated as < A,(f)i >=< ax<j>x + s 2̂ 2,^, >= ,</)l > = s,

So the introduction of dual basis and the dual space enables a vector to be decomposed 

as a linear combination of non-orthogonal basis vectors. Similarly, for a group of

non-orthogonal basis vectors {(j)i} in a function space, their dual basis {̂ , }can be

derived from:

< ^  > <t>j >=  £  ̂  (x)d* = $UJ (4-21)

Therefore, a function / (jc) , which is covered by the space spanned by a non-orthogonal 

basis {^,}, can be decomposed as a combination of {$} using a set of dual basis vectors

/ w =

< & >/(*) >ak = YkZ-~ (4- 22)
< A . A >

When {(j)i} is orthogonal, <t>i = (f)i . Then Equation (4-22) is the same as Equation (4-13).
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Using the concept of dual bases, a simplified solution can be derived for Equation 

(4-17).

It should be noted that, if target function / ( x) is covered by the space spanned by {</>i},

Equation (4-22) gives the exact solution for Equation (4-17). If it is not, Equation (4-22) 

gives an approximate solution for Equation (4-17).

Example 4-4: For a given normalised triangular membership function, its dual 

membership function is illustrated in figure 4-6.

By solving Equation (4-21), dual membership functions can be constructed. They are 

not unique. For example, any function that follows the “track of dual” marked in figure

4-6 is orthogonal to the neighbour membership functions, and can be regarded as a 

dual.
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Figure 4-6 Dual membership function for normalized triangular membership function
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In the above example, there are two cases of interest:

Case 1

[u{Z) = 1 Z = Ci 
\u{Z)  = 0 Z * Cj

Case 2

«(Z) = -0.5 + 1 . 5 ^ ^ -  Z 6 [C,.„C,)
c , C j . ,

-«(Z) = -  0.5 + 1 . 5 ^ ^ -  Ze[C„Cw ]
i+1

m(Z) = 0 otherwise

fi in case 1 is a singleton and its support is equal to zero. From the analysis in 4.3.2.1, 

the fuzzy transform will be sensitive to noise. So singletons are not a good candidate for 

approximation. In the following example, the dual membership function given in case 

2 is applied in order to speed up the process of fuzzy modelling.

Example 4-5

Approximate y  = / ( x , , x2) = 0.5(1 + sm{2nxx) cos(2^c2)), x, e [0,1] x2 e [0,1], using a 

zero-order T-S model, with following 9 rules:

If x, is w,(xj) and x2 is v,(x2) Then y  is au

If x, is (x,) and x2 is v . (x2) Then y  is atj

If x, is «3 (Xj) and x2 is v3 (x2) Then y  is a33

3 3

and > '= au 'ui(*>)vj (*2 )
' j
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Normalised triangular membership functions are used, as illustrated in figure 4-8. 

There are eleven parameters to be identified in the fuzzy model. Dual membership 

functions (as given in case 2) are applied to speed up searching. Parameters ay

obtained as:

<uivj , f ( x lx2)>
c*ij = — --------- ~-------

<  Uj^Uj  > <  V j , Vj  >

The result is indicated in Figures 4-8 and 4-9.

For a group of given membership functions, dual membership functions are applied to 

identify the sub-optimum parameters {or.}. An approximate minimal distance between

given membership functions and the target function can be calculated from jar. J .

Instead of the exact minimal distance, an approximate minimal distance is used in this 

approach. It speeds up the search significantly by avoiding the procedure for solving 

Equation (4-17) at every iteration.
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Figure 4-7 Target function in example 4-4
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4.5 Summary

This chapter has introduced the idea of viewing fuzzy modelling and fuzzy system 

design from a functional analysis perspective. The chapter has described fuzzy 

transforms, which are based on the generalised Fourier transform in functional analysis, 

and shown how fuzzy transforms can be applied to improve the efficiency of fuzzy 

modelling through predetermined membership relational matrices, Cholesky algorithm 

and dual membership functions.
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Chapter 5 

Stability Analysis for Nonlinear Fuzzy 

Control

5.1 Preliminaries

Larger-scale, real life, complex systems tend to be highly nonlinear. Despite much 

development in nonlinear control theory, in industrial applications, the dominant 

approaches for solving nonlinear problems are still based on PID control theory which 

has been in existence for almost 100 years. This is mainly due to the following two 

reasons. First, nonlinear control theory based on traditional mathematical methods (e.g. 

differential geometry, operator theory and H-infinity) requires exact mathematical 

models, which are difficult to produce for real industrial plants. Artificial-Intelligence 

based control theory, which may avoid the use of exact mathematical models, could not 

satisfy important requirements of industrial applications (e.g. guaranteed stability and 

optimality). This issue has received considerable attention. However, apart from PID 

control theory, a practical nonlinear control theory for industrial applications is not yet 

available.

In nonlinear control research, nonlinear fuzzy control is a technique of special interest. 

This is because, theoretically, fuzzy control not only can avoid the use of exact
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mathematical models but also may provide the performance necessary for industrial 

applications in terms of stability and optimality. However, in reality fuzzy control 

theory is still very limited in this respect. In the following sections, it will be shown that 

modem model-based fuzzy control is not suitable for the task of controlling general 

nonlinear systems. This is mainly due to the implicit linear assumption in fuzzy 

controller design. Under the assumption, a fuzzy control problem has to be expressed in 

a “sector nonlinearity” form (see 5.2.3), which as can be seen later reduces fuzzy 

controller design to a special case of linear time-varying system control. Due to this 

limitation, although fuzzy control has been widely applied to systems with simple 

dynamics, it is still rare to find complex industrial systems controlled by fuzzy 

controllers. In order to introduce fuzzy techniques to nonlinear control, a new nonlinear 

fuzzy control theory needs to be developed. The key issue here is to develop a stability 

criterion for general nonlinear fuzzy systems.

This chapter focuses on stability analysis for nonlinear fuzzy control. A new stability 

checking criterion for general nonlinear fuzzy systems will be described. The idea 

behind the new stability checking criterion is the integration of geometrical information 

in stability analysis. The chapter is organised as follows. The main limitations of 

modem fuzzy control approaches are discussed in section 5.2. The decomposition 

principle that has been proposed as a mean for handling nonlinear fuzzy systems is 

investigated in section 5.3. Perturbation theory is studied in section 5.4. Perturbation 

theory provides a qualitative analysis of the stability of nonlinear system, which leads 

to a new stability criterion in section 5.5.
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5.2 Modern Fuzzy Control and its Principal Limitations

5.2.1 HBFC and MBFC

Modem fuzzy control approaches can be separated into two categories, 

heuristics-based fuzzy control (HBFC) and model-based fuzzy control (MBFC). 

Conventional fuzzy control design is heuristics-based. It implicitly assumes that there 

is no model for the process under investigation. Its control strategy is constructed 

directly from the knowledge of experienced operators, and expressed in the form of 

fuzzy mles. Controller performance is adjusted by tuning of membership functions. For 

systems with simple dynamics, this is a convenient approach. However, due to the 

following drawbacks (Korba, Babuska, 2003), this approach is not suitable for 

complicated nonlinear systems:

• "Lack of systematic and formally tractable design and tuning techniques."

• "Lack of methods for deriving basic properties such as close-loop system stability, 

performance and robustness. These can only be investigated via extensive tests and 

simulations."

Above all, the heuristic nature of HBFC limits its applications to systems with simple 

dynamics. For complicated nonlinear systems, which cannot be controlled by human 

beings directly, it is unrealistic to expect HBFC to do better than human operators.

In order to overcome the limitations of HBFC, an alternative approach, called 

model-based fuzzy control (MBFC) was developed in the 1980s and 1990s. The new 

approach can be regarded as “a middle ground between conventional fuzzy control 

practice and established control theory” (Tanaka and Wang, 2001). This approach
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preserves the philosophy of fuzzy sets theory and, at the same time, implements of 

ideas of feedback control theory to improve fuzzy controller design. Its design 

procedure is as follows:

• First, a T-S fuzzy model is constructed for the plant in state-space by linearising 

local dynamics in different state-space regions.

• Second, for each local linear model, a linear feedback controller is designed. The 

overall controller, which is nonlinear in general, is constructed as " a fuzzy 

blending of each individual controller” (Wang et al, 1996).

• Third, the overall stability for the entire fuzzy system is evaluated via Lyapunov’s 

method.

In the first step of the controller design procedure, expert knowledge is applied to 

construct a T-S fuzzy model for the target process. In the second step, feedback control 

theory is applied to design the local feedback controllers. In the third step, due to 

fundamental differences between linear and nonlinear systems in local and global 

stability, the stability of the local linear controllers designed in the second step needs to 

be evaluated. Lyapunov’s method is applied in the evaluation.

It should be noted that a T-S fuzzy system is a nonlinear system in general. Therefore, 

even when all its sub-systems are stable, global stability cannot be guaranteed. This 

makes the third step of MBFC the most important step in the design. If the requirement 

for global stability is not satisfied, the local linear controllers need to be redesigned. 

This process is repeated until global stability is achieved.
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Due to its simplicity, it is clear that MBFC is a promising technique for general 

nonlinear control. Considerable efforts have been channelled in this direction. A search 

by the author revealed, more than six hundred papers published in IEEE and 

ELSEVIER journals and conference proceeding on this issue between the years 2000 

and 2003. Most of the authors, (e.g. Kim and Lee, 2000; Wu, Lin 2000; Tanaka and 

Wang, 2001; Tanaka et al, 2003; Korba and Babuska, 2003 etc) have studied systems 

described by the following set of rules:

If X  is Ux(X) Then X  = AxX  + B,u

If X  is Ut(X)  Then X  = AiX  + Biu

If X  is Up(X)  Then X  = ApX  + Bpu

The stability criterion for the above fuzzy system has been proposed as follows:

Lemma 5-1 (Wang et al, 1996)

If there exists a positive definite matrix that satisfies:

and

X  = f j h ,(X)(A,X + BiU) (5-1)

whereof e R" ,w e Rm s Rnxn, Bt eRnxm i e {l•••/?}
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AirP + PAi <0  (5. 2)

for all j g {1 •••/?}, the origin of the fuzzy system described in Equation (5-1) is 

asymptotically stable.

It should be noted that the inequality (5-2) is in the form of a linear matrix inequality 

(LMI) (Boyd, 1994), and can be solved efficiently by a convex optimisation method, 

such as the interior point method.

5.2.2 Limitations of MBFC

Despite its popularity, the assumed dynamic equation described by Equation (5-1) only 

reflects an extremely limited case for the dynamics of general nonlinear systems. This 

is because the assumption implicitly considers that the linearised state-space regions for 

all subsystems share the same equilibrium point, which is almost impossible for 

practical nonlinear systems.

For a nonlinear system

f ( X , X , u )  =  0  ( 5 - 3 )

A first-order T-S fuzzy model derived by local linearisation in different state-space 

regions can be written as

Q i X  + R f X  + SiU + E , ^  0 ,  X  e  Mj and / e  {!•••/?} ( 5 - 4 )
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Mj denotes the support for the i‘h rule and p denotes the number of rules in the fuzzy 

model. If the Q ( ’s are not singular, the state-space description for Equation (5-4) can be 

written as:

A' = 2 > / ( - ’0 ( 4 *  + ^ “ + A )  /e{l  ••■/>} (5-5)
1=1

where hi(X) = Ui X̂]4r̂  ,X  e R n ,u e R m ,A,. e R mn  ,£, gR™”1, Dt e R n 
/

/  j

It is easy to verify that unless all subsystems share the same equilibrium point, there is 

no coordinate transform action that can change Equation (5-5), which is for a general 

nonlinear system, into the form of Equation (5-1).

Due to the difference in the equilibrium points among the subsystems, the stability of 

the general fuzzy system described by Equation (5-5) CANNOT be guaranteed by 

Lemma 5-1. This is demonstrated by the following counter example.

Example 5-1

For the following three fuzzy systems

(1) Fuzzy system 1

R1 IF X is Al then x = —ax — b 

R2 IF X is A2 then x = -ax  + b 

where a > 0 b > 0

(2) Fuzzy system 2

R1 IF X is Al then x = - a x - b
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R2 IF X is A2 then x = -ax + b 

where a > 0 b < 0

(3) Fuzzy system 3

R1 IF X is A3 then x = -ax -  b 

R2 IF X is A4 then x = -ax  + b 

where a > 0 b < 0 

The membership functions for Al to A4 are illustrated in figure 5-1

All the above fuzzy systems satisfy Lemma 5-1. They are only different in the position 

of the equilibrium points and the partition of the membership functions. From figure

5-2 to 5-4, only fuzzy system 1 is globally asymptotically stable. Fuzzy systems 2 and 3 

are not asymptotically stable.

Example 5-1 shows that the current MBFC approach, which is based on Lemma 5-1, is

only suitable for a special type of fuzzy systems described by Equation (5-1). For

general nonlinear systems described by Equation (5-5), Lemma 5-1 does not hold and 

hence a new stability checking criterion needs to be identified.

In order to distinguish fuzzy systems described by Equation (5-5) and Equation (5-1), 

in the following sections, Equation (5-5) is called the equation for general nonlinear 

fuzzy systems and Equation (5-1), that for “sector nonlinear” fuzzy system.
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Figure 5-1 Membership functions A1-A4
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Figure 5-2 The dynamics of fuzzy system 1

Figure 5-3 The dynamics of fuzzy system 2

Figure 5-4 The dynamics of fuzzy system 3
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5.2.3 Sector-Nonlinearity Approach

A function (/>{q) is said to be in sector [/,w] if for all q , <p(q) lies between Iq and uq . 

This is illustrated in figure 5-5. Based on the idea of sector nonlinearity, if the 

nonlinearity of a given system is smooth and its mathematical model is given explicitly, 

a global or semi-global T-S fuzzy model that represents the dynamics of the system can 

be constructed in the form of Equation (5-1). This enables the methodology developed 

in MBFC to be applied to a wider area. MBFC based on “sector nonlinearity” has been 

proposed by Tanaka et al, (2001). However, in this case, although the framework of the 

fuzzy control is preserved, the philosophy of fuzzy logic has been abandoned. This is 

because:

• First, sector nonlinearity requires an exact mathematical description, which 

eliminates the main advantage of the application of fuzzy techniques to industrial

• Second, the approach reduces MBFC to a special case of linear time-varying 

system control.

Consider a linear time-varying system:

where the weights (t) may vary arbitrarily with time while satisfying

problems.

p

(5- 6)

p

0 < Aj(t) < 1 and ] £ ^ ( 0  = 1.

123



Figure 5-5 Sector nonlinearities



If the state dependence of the normalized membership functions ht{X)  is

disregarded as was suggested with current MBFC approaches, the dynamics 

described in Equation (5-1) is the same as the dynamics described in Equation 

(5-6). Hence, MBFC is reduced to a special case of the linear-time varying system 

control.

The analysis in this section shows that modem MBFC theory is still very limited as far 

as general nonlinear control problems as concerned. To implement fuzzy techniques to 

general nonlinear control, MBFC theory needs to be developed based on the general 

nonlinear fuzzy system of Equation (5-5) instead of the sector nonlinear fuzzy system 

of Equation (5-1). Since having an efficient means of checking stability for general 

nonlinear fuzzy systems is the key to the general nonlinear fuzzy control, the following 

sections are devoted to the stability analysis of the fuzzy system of Equation (5-5).
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5.3 A problem with the Decomposition Principle

As has been mentioned, the principal difference between linear and nonlinear systems 

is about local and global properties. A linear system has unified stability properties, 

which means that if the stability requirements are satisfied for any local region of a 

linear system, the global stability of the entire state-space is guaranteed. Therefore, 

there is no need to distinguish between local and global stability for a linear system.

However, the problem becomes much more complex for a general nonlinear system. 

On the one hand, local stability does not imply global stability; on the other hand, it is 

very difficult to estimate the effects of a disturbance generated from some local region 

on the entire system. In order to avoid this complexity, an obvious idea is to decompose 

a larger nonlinear system into some independent subsystems. If the stability of each 

independent subsystem can be examined independently, the individual solutions can be 

combined to yield a solution for the overall fuzzy control problem.

Based on this idea, Gao et al (1997) proposed the so-called “decomposition principle” 

for fuzzy system design.

Consider the discrete form of the fuzzy system of Equation (5-1):

x< j+ 1)= ^ ( x m M u ) + B,u(t)) (5- 7)
/=i

where X(t) e Rn , u  e  R m iAi e Rm  ,5, e R'1*'" i  e {l. • • p]
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The state space can be decomposed into m independent subspaces {Sj • • • Sm} 

For each subspace, a characteristic function is defined by

?/= i

Then Equation (5-7) can be rewritten as:

m P  /v /v

x ( t + 1) = Y . L ’i M x m A X d ) + b,u(<)) (5- 9)

For the Ith subspace, the dynamics of fuzzy system is denoted by 

X { t + 1)= + BiU{t))

It is obvious that 

/7 A W >  o

if and only if the support of the corresponding membership function is located inside 

the subspace /.

Therefore, if X  e S, , Equation (5-9) is equivalent to

ml(̂/+i)==xKwoxVw+̂ «)l (5- io)
j=i

j  e { 1 • • • ml} denotes the fired rules in Si
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Since the number of rules fired inside subspace / can be far less than the total number of 

rules in a fuzzy system, it will be much simpler to develop a stability checking criterion 

for the decomposed system instead of the original system.

Lemma 5-2 (Cao et al, 1997)

The fuzzy system of Equation (5-7) is asymptotically stable if the m subsystems 

described by Equation (5-10) are asymptotically stable or there exist a set of Lyapunov 

functions (Vx ••• Vm),

Vf = Z j  PlZl , and Zl = r/jX

such that bVt < 0 .

/} , / e [l • • • m] , is a positive definite matrix.

The above Lemma intends to build a theoretical background for decomposition in fuzzy 

space. The idea is very appealing at first sight. However, it will be demonstrated that 

the Lemma is not correct.

Consider the proof from (Cao, 1997), given in Appendix B.

In the proof, the authors demonstrated that, for each subsystem it has,

\Z,{t )||

where

c = max (5-11)
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cr = maxi
\  ^ i , ( Q ) nV2 

AnaxĈ /)
(5- 12)

/J is a positive definite matrix, Q, is a positive definite matrix. Q{ = - A j P A t+P 

Since Z, = T ] , X  

||Z(0 ||<c||X(0)||cr' t e [0,r) 

is true for subsystem /

Suppose X (/) enters another subspace S. at time instant r , .

||X(r1)||<c||A'(0)||CT' (5-13)

p r  (01 < C ||X(r, )|| o-'-" = c211̂ (0)11 cr' (5-14)

Hence from the continuity of X(t ) , the result can be generalised into all the regions as 

|A r(0 |£cr pr(0)|<7' (5-i5)

where T denotes the number of times that trajectory X{t) switches between subspaces.

Global asymptotical stability requires lim X(/) = 0 to be satisfied for any trajectory.
/-> 00

This is satisfied if and only if cr < 1 

which requires:

^ S Q , ) < ^ ( P , )  (5-16)

From

Qj = -A,TPA ,+P for the discrete case (5-17)
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Q, = - A j P  -  PA{ for the continuous case (5-18)

and Q, > 0, it is easy to verify that Equation (5-16) is not true in general. Therefore the 

proof given by Cao et al (1997) is wrong.

An interesting issue regarding the decomposition principle is that whether the stability 

of each independent subsystem can be examined independently. The answer is negative. 

This is because although the dynamics in fuzzy system of Equation (5-1) or Equation 

(5-5) is autonomous, where t does not appear explicitly in the dynamic equations, the

trajectories space {S/ cz Rn x R+ \ where X(t) e StJ is still a n +1 dimensional space.

Therefore, the subsystems in state-space are not truly independent of one another on 

trajectories space.

Also, suppose a relationship similar to Equation (5-15) is true for all trajectories in 

state-space, there must be a global Lyapunov function (such as V = ||A(/)|| in this case)

for the entire state-space. From the point of view of solving a linear matrix inequality, 

there is no need to derive the Lyapunov function for each individual subspace.

The error of the decomposition principle for fuzzy system design has been investigated 

in this section. In the following section, the dynamics of fuzzy systems will be further 

explored by examining the so-called perturbation theory.
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5.4 Stability under Perturbations

This section focuses on the stability of a dynamic system under perturbation. Consider 

an open-loop dynamic system

x = Ax (5-19)

Two types of perturbation can be found in fuzzy system design. They are:

1) Structural perturbation

x = Ax + Bx (5- 20)

where Bx is the source of the perturbation.

Since the perturbation is proportional to the state-space variables, this kind of 

perturbation is called structural perturbation

2) Positional perturbation

x = Ax + g(x) (5-21)

where g(x) is the source of the perturbation.

Since it is position-related, this kind of perturbation is called positional perturbation.

Before perturbation theory is further studied, a summary of useful results is given 

below:
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Lemma 5-3 (Curtain, 1977)

(XI -  T)u = v has a unique solution on X  = C[a, b] for all X * 0 ,  the solution is given 

as

oo

u = X'£X~nTnv (5-22)
n

Lemma 5-4 (Gronwall’s Inequality Lemma) (Curtain 1977)

Let a  e  L j ( r , r )  a(t)  > 0 , let b be continuous on [t ,T]

t
If jc(/) < b(t) + jar(s)jc(s)ofc

r

then

t t t
x(t) < b(t) exp( Ja?(5)<75) + (5) exp( ̂ a(p)d  p)ds  (5- 23)

Lemma 5-5

If dynamic system x = Ax is asymptotically stable, then any given positive definite

matrix C forms a Lyapunov function V = xTPx

Where

oo

P = jeAT,CeAldt (5- 24)

Proof:
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It is obvious that P > 0

Since the dynamic system is asymptotically stable, a positive value M  can always be

<Me°*found to satisfy

JO

J*

Ate e

p  = eA 'CeMdt
M
2co

Therefore P is well defined 

From Equation (5-24)

a tp +pa

= ,j(ATeA'CeA' +eAT'CeAIA)dt
0

= \— (eA,‘CeA')dt 
}<*

= -C

the derivative of V is

y
dt

= xTPx + xTPx 

=  ( A x ) t P x  +  x t P ( A x )

=  x t ( A t P  +  P A ) x  

= - x  TCx < 0

Therefore, the dynamic system is stable.
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5.4.1 Stability under Structural Perturbation

eAt

Consider the dynamic system of Equation (5-20). If the system is asymptotically stable 

when there is no perturbation, then

< Me~°*; co > 0 and t > 0

From Lemma 5-5, it is known that exist P and C satisfy 

At P + PA + C = 0 

Let V = xTPx 

Then

V = - x TCx + xT (Bt P + PB) x 

If |i?| < K  is given,

then an estimate of V can be given by setting the value of C .

For example, if C = /  then

oo

P = jeAT'eA‘dt

u i s " '
2 co

Under this assumption, the derivative of the Lyapunov function satisfies:

k  = - | J 2(1 - — )
CO

In this case the stability of the entire system requires 

co > KM2 

or

M 2
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A better estimation of V for the dynamic system of Equation (5-20) can be obtained 

from the following lemma:

Lemma 5-6 Stability under structural perturbation

The dynamic system of Equation (5-20) is stable if there exist M  > 0 and co > 0 such 

that

eAt < Me~°* (5- 25)

and

||i?|| <co! M  (5-26)

Proof:

Equation (5-25) indicates that the unperturbed system x = Ax is asymptotically stable. 

Therefore for 

x = Ax + Bx 

x(t) is given by

x(t) = exp[(/f + i?)f]x , x is the initial condition

From the solution of a differential delay equation, this is equivalent to:

t
x(t) = exp[^4/]jc + |exp[^4(/ -  s)Bx(s)ds 

o

Thus

t
exp[(^4 + E)t] = exp[yf/] + Jexp[^4(r -  5)] • B ■ exp[(^4 -1- B)s]ds

0

This is a second kind of volterra equation (Press, Flannery 1993).
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From Lemma 5-3 and the property of the volterra equation (Press, Flannery 1993), this 

equation has a unique solution:

exp[(/f + B)/] =
H=0

where

t
u„ (0 = J exp[^(/ -  5)] • B • un_x (s)ds 

o

Uq = exp[^4/]

From Equation (5-25)

t

||exp[04 + B)/]|| < |exp[i4/]|| + |||exp[^(r -  i)]|| • ||s|| • ||exp[(^ + B)s]|| ds
0

t

||exp[(^ + i?)f]|| < M  exp(-6tf) + J*M exp [~co(t -  5)] • ||i?| ||- exp[(^4 + B)s] || ds
0

t

||exp(6tf) • exp[(^4 + 5)/]| < M  + M  j)|exp[fiw]|| • |i?|| ||- exp[(^4 + B)s] || ds
0

t

|exp(6tf) • exp[(^4 + 2?)f]|| <M  + M  j]|Z?|| • ||exp[*ys] • exp[(^4 + B)s] || ds
0

From Lemma 5-4

||exp[*y/] • exp[(^4 + B)s]\\ < M  • exp (M ||2?|| /)

Then

||exp[(i4 + B)s]\\ < M  • exp[(-ty + Af|5|)/]

Therefore dynamic system 5-20 is stable if 

||i?|| <col M  

End of Proof
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5.4.2 Stability under Positional Perturbation

The effects of position perturbation can be deduced by the following Lemma.

Lemma 5-7 Stability under Position Perturbation

The dynamic system of Equation (5-21) is stable if there exist M and co such that

eM < Me°* 

and

||g (x )||< M ^ (5-27)

Proof:

eAt < Me~°* indicates that the unperturbed system x = Ax is stable. Therefore 

there exists 

At P + PA + I  = 0 

for

V = xTPx

V = xT (ATP +PA}x + xTPg(x) +g(x)TPx 

Hence

^-|HI2+2HiM|g(x)|

= W (2W llk w ||-W )

Stability requires
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End of Proof 

Remarks:

Lemma 5-7 indicates that a dynamic system is more sensitive to positional 

perturbations occurring closer to the origin.

A qualitative analysis of the stability of dynamic systems has been performed in this 

section. In the following section, a quantitative analysis of the stability of nonlinear 

fuzzy control system will be undertaken.



5.5 New Stability Criterion for General Nonlinear Fuzzy 

Systems

Consider again the fuzzy system described by Equation (5-5)

If X  is U{(X) Then X  = AxX  + Bxu + Dx XeM^

If X  is Ut{X) Then X  = AiX  + Biu + Dj X e M {

If X  is Up(X) Then X  = ApX  + Bpu + Dp X e  Mp

and

X  = f j h,(X)(A1X  + Blu + Di)
1=1

where X e Rn , w € Rm , At e R™", Bj e Rmm i e {l•••/?} hAs are normalised membership 

functions and ’s denote the support of the corresponding membership functions.

Given Lyapunov function

V = X TPX

the derivative of the Lyapunov function can be obtained as

V = X TPX + X TPX

V = £  h, ( X ) \ x T (A j p  + PA,) X  + Dt PX + X tPD]
1 = 1

As mentioned previously, the stability of above fuzzy system requires V < 0. However, 

since the expression of V is non-convex, it cannot be solved by convex optimisation
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techniques such as LMI. In order to avoid this problem, the geometrical information in 

the fuzzy system needs to be considered.

Definition 5-1 Characteristic Ellipsoid

Consider the fuzzy system of Equation (5-5). If the local dynamics of the rule i can be 

described as

then for a given positive definite matrix P , a characteristic ellipsoid of P is defined as

, then the origin of the fuzzy system described in Equation (5-5) is globally 

asymptotically stable.

Proof:

Given Lyapunov function 

V = X TPX

the derivative of the Lyapunov function can be obtained as

X  = AtX  + Di ,

( X - r i)TQi( X - r i) = riTQiri (5- 28)

where, Qi = - (A ^ P  + PA^ and r.t =Qi ]PDj

Theorem 5-1

If there exists a positive definite matrix satisfying:

A f P  + PAjK 0 (5-29)

•th
and the support of the 7 rule M; is located outside its characteristic ellipsoid for all
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V = X TPX + X TPX

V = £  h,,(X) [ X T (A j p + PA. ) X  + DTPX + X tPD]

SubstitutingQ = - ( 4 r^  + ^>4 ) i nt0 ^gives

V = W j V  ( - a ) J T  + (P D f X  + X rPD]
/ = 1

r = i > , m [ A ' 7' ( - a ) * + ( s _ w q * + x re,(a-'/>£>)]
Z=1

K = [(X -  Q -’PD)r ( - a ) (X -  Qr'PD) -  (Q - 'P D f  (-Q ,) (Qr'PD)]
1 =  1

Substituting = Q~lPDi into the above equation gives:

V = f dh,( X ) [ ( X - ri)T( - Q , ) ( X - r , ) - r j  (-Q,) r,]  (5- 30)
/=1

From

-Q, = A,TP+PAi < 0

It is known that the Qt is a positive definite matrix. Therefore the curve 

(X - r , ) TQ , ( X - r )  = rTQ,r

r, = Q,''PD,

is an ellipsoid. The following relation hold:

j ( X  -  rtY  Qi (X  -  rt) -  rrQtr < 0 when X  is inside the ellipsoid 
| ( X - rt)TQt( X - r f) - r TQ f  > 0 whenX  is outside the ellipsoid

Hence if Qt > 0 and the support of the ith rule is outside its characteristic ellipsoid for

all z e {l--*/?},

V < 0 for X  e Rn
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Therefore the origin of the fuzzy system described in Equation (5-5) is asymptotically 

stable in the entire state-space.

Remarks

• The first part of the condition for global asymptotical stability, namely 

A f P + PAi <0 for all / e  {l • • •

is a structure-related requirement.

The second part of the condition for global asymptotical stability, namely, that the 

support of the i,h rule locates outside its characteristic ellipsoid for all / e  {l •••/?}, 

is a position-related requirement.

• The origin X  = 0 and the point X  = - A r xDi are two special points on the 

characteristic ellipsoid. This can be verified by

(0 -r i)TQi(0 -r i) = r,TQiri 

and

( - A r 'D ; - r f Q t - A r 'D ' - r . )  = r j  Q n

Therefore, the positions of the characteristic ellipsoids are close to the origin.

• If the structural requirement of Equation (5-29) is satisfied, the stability of a 

general nonlinear fuzzy system is more sensitive to those fuzzy rules fired near the 

origin. This is because the characteristic ellipsoids are close to the origin. The 

supports of fuzzy rules that are fired near the origin are more likely to intersect the 

characteristic ellipsoids. This result is consistent with the result derived from 

positional perturbation in section 5.4.2.
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• Lemma 5-1 is a special case of Theorem 5-1 applied to sector-nonlinear fuzzy 

systems. Consider a sector-nonlinear system described by Equation (5-1), which 

has Di = 0 for all / e  {l • • • /?}

Then

ri -  Qi PDi = o

Hence, the characteristic ellipsoids reduce to the origin and the second condition of 

Theorem 5-1 can be satisfied automatically.

• To satisfy the stability condition in Theorem 5-1, if the support of a fuzzy rule 

covers the origin, its corresponding characteristic ellipsoid must has zero diameter. 

This implies Z> = 0. If the origin is covered by several rules at the same time, the

constraint is not necessary. This is demonstrated as follows.

Consider nonlinear fuzzy system of Equation (5-5), with trapezoidal or triangular 

membership functions,

p
If the function ^ j hj {X)Dj is smooth inside a subspace M0, and M 0 covers the origin

y=i

of the state-space. the following transform action of Equation (5-5) can be carried out: 

Let

f * 0

s'V

hjDJ = 'y + ('y. -  '*) :

i” J

= DJX  + GJ 

where
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V y . Ijk̂ jX h»dj\

DJ = ‘A * hk^jk hn^jk

J j l  d j n h k ^ j n " l i n d jn

and

V /
g ,=

J j O ^ j n  _

Hence, near the origin Equation 5-5 can be written as:

X = £ [ / r  (XXAjX + BjU)] + DX + G X<b M 0
j =1

where

mi

y=i

and

g  = L g ,
y=i

From the fact that X  = 0 is the equilibrium point of the state-space, G = 0.

Therefore the fuzzy system described by Equation (5-5) can be written as 

If X is Ux(X) Then X  = AxX  + Bxu + Dx X e M ' x= M x- M 0

If X  is Ut(X)  Then X  = AiX  + Biu + Di X e M ]  = M t - M 0

(5-32)

(5- 33)

(5-34)
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If X  is Up(X)  Then X  = ApX  + Bpu + Dp X e M p = M p -  M0

and

p
X ^ M X X A X  + Bp + D,) for X e M 0 (5- 35)

and

p
x  = Z  [hi (X M X  + Bv)]  + DX  for X  e M0 (5- 36)

where Xe R"  , u e R m , A, e R nxn , B,; eR™"1 / e { l •••/?} and ht ’s are the normalised 

membership function.

Immediately following theorem 5-1, a stability condition for the fuzzy system above 

can be derived as follows.

Proposition 5-1

If there exists a positive definite matrix P satisfying:

A^P + PAt < 0 (5-37)

Dt P + PD< 0 (5-38)

•th ,
and the support of the * rule M. is located outside its characteristic ellipsoid for all 

z e {1 •••/?}, then the origin of the fuzzy system described in Equation (5-5) is globally 

asymptotically stable.

The proof is similar to that for Theorem 5-1.
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As mentioned above, the location of the support can be determined by checking 

whether (X  -  rt )T Qt { X - r ^ -  rTQtr > 0 is true for X  e M \ .

Remarks:

• Proposition 5-1 is a modified version of the Theorem 5-1, extended to deal with 

fuzzy rules close to the origin.

• For the Lyapunov function’s derivative to be negative, only requires either 

A jP  + PAi or DTP + PD to be a strictly negative definite function. Because for 

other regions, it is also necessary for

AlTP + PAi < 0

in order to guarantee stability near the origin, the matrix DTP + PD only needs to 

be non-strictly negative, i.e.

Dt P + PD< 0

This relaxed requirement is especially useful when D is singular.

In this section a new stability checking criterion for general nonlinear fuzzy system has 

been developed by the integration of geometrical information in the stability analysis.

Example 5-2

Recall the fuzzy systems in example 5-1:

(1) Fuzzy system 1

R1 IF X is A1 then x = —ax — b 

R2 IF X is A2 then x = -ax  + b 

where a > 0 b > 0
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(2) Fuzzy system 2

R1 IF X is A1 then jc = -ax  -  b 

R2 IF X is A2 then x = -ax  + b 

where a > 0 b < 0 

The membership functions for A1 and A2 are: 

1 x > c

hx(x) = —  (c + jc) -c<  x < c  
2c

0 x < -c

and

fh(x) =

0 x > c

2c
( c - x )  - c  < X < c

x < - c

where c =

Since the supports Mx and M 2 of both rules cover the origin, the fuzzy systems need to 

be written in the form of Equation (5-35) and Equation (5-36). The new supports M 0, 

M\ = Mx -  M0 and M 2 = M 2 -  M 0 are illustrated in figure 5-6.

From Aj =A2 = -a  and D = 0

A*P+PA> <0

DtP + PD< 0

for all P> 0

From Equation (5-28),

r, =-■
2 a
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b

Hence, for fuzzy system 1 with b > 0 , there is no intersection between the 

characteristic ellipsoids and the support. The origin is asymptotically stable in the entire 

state-space.

For fuzzy system 2 with b < 0, there are intersections between characteristic ellipsoids 

and the support. In this case the origin is not stable.
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Figure 5-6 The supports in example 5-2
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Example 5-3

Consider the fuzzy system described by the following rules: 

R1 IF X is A/, then X  = AxX - D x

R2 IF X is M2 then X  = A2X

R3 IF X is M3 then X  = A2X - D 3

where

II

^
r

" - 1 0

10

- 1 1 "  

2  _

ii

" O '

_ - 2 _

ii

^2 “- 1

2

- 2 "

- ! 0

-10 -10 0
A, = . A  =

10 -4 7 3 _2_

The membership function for M x, M 2 and M3are plotted in Figure 5-7. 

From Theorem 5-1 stability requires:

A[P + A,P< 0 

4 >  + 4 /> < 0<
A[P + A2P<0  
P>  0

The Linear matrix inequality (5-37) is feasible for

P =
0.0623 0.0174 
0.0174 0.0657

The trajectories for the system are plotted in figure 5-8.

(5- 39)
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The characteristic ellipsoids of P  for R1 and R3 are illustrated in figure 5-9. Since the 

characteristic ellipsoids do not intersect with the supports of R1 and R3, the fuzzy 

system in this example is stable.

5.6 Summary

This chapter has examined the problem of nonlinear fuzzy control, focusing on the 

analysis of the stability of fuzzy nonlinear systems. The chapter has proposed a new 

criterion for checking stability. This criterion integrates geometric information in the 

analysis of stability and can be applied to general nonlinear fuzzy systems. The new 

stability criterion is the theoretical basis for the development of future nonlinear fuzzy 

control approaches.
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Figure 5-7 The membership functions for example 5-3

Figure 5-8 The trajectories of the fuzzy system in example 5-3
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Figure 5-9 The supports and the characteristic ellipsoids for example 5-3.

The support Mx of R1 is the dark region on the left ( Xx < — 1). Its characteristic ellipsoid is

denoted by L The support M3 of R3 is the dark region on the right (Xj > 1). Its characteristic 

ellipsoid is denoted by III. The support M2 of R2 is the region —2 < Xx <2, which covers 

origin. Since D2 = 0 , its characteristic ellipsoid II is the origin itself. Therefore, it is not 

marked on the figure above.
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Chapter 6 

Conclusion and Further Work

This research has investigated the mathematical aspects of fuzzy systems with a view

to:

• deriving an analytical solution for fuzzy relational equations

• clarifying the mathematical principle underlying T-S fuzzy system design

• developing a stability criterion for general nonlinear fuzzy systems

This chapter summarises the main contributions of the work and the conclusions

reached. It also suggests possible research topics for further study.

6.1 Contributions

This research has

1) proposed new triangular operations in fuzzy algebra. Inversions for triangular 

norms and co-norms were developed based on the modus ponens theorem and the 

comparison theorem.

2) produced an analytical solution for max-family FREs. Formulae for the 

maximum, mean, and lower bound of the minimum solutions of FREs have been 

derived.
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3) identified fuzzy transform action as the mathematical principle underlying T-S 

fuzzy system design. Based on the fuzzy transform, the optimum parameters 

Cj of a fuzzy T-S model can be derived exactly by solving the following equation

^ 1̂ 5 ̂ 1 ^ < M j >  ••• f c  }

< h A  > ••• ♦ =

<Cny

where fai is a membership function, /  is the target function and < x, y  > denotes the 

inner product of x and y  .

4) developed a new stability criterion for checking the stability of general nonlinear 

fuzzy systems.

6.2 Conclusions

The following are the main conclusions from the research:

1) The solution space of max-family fuzzy relational equations is linear under fuzzy 

algebra. Difficulties in solving FREs are not caused by the complexity of the 

solution space, but by the lack of efficient fuzzy algebra analysis tools. The new 

tools produced in this work enable an analytical solution to be obtained directly.

2) Due to fuzzy transform action, the efficiency of T-S fuzzy model design can be 

improved by using dual bases.
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3) Mathematically, a T-S fuzzy model eliminates the effects of noise via the support 

of its membership functions; therefore a T-S model is less sensitive to noise when 

its membership functions have wider support.

4) Modem model-based fuzzy control (MBFC) theory is not suitable for nonlinear 

control, due to the implicit linearity assumption in fuzzy controller design. Under 

this assumption, a fuzzy control problem has to be expressed in a 

sector-nonlinear form. This limits fuzzy controller design to being a special case 

of linear time-varying system control.

6.3 Further work

1) Although the max operation is a commonly used triangular co-norm in the 

Mamdani fuzzy model, it would be of interest to investigate the solution of fuzzy 

relational equations based on other types of triangular co-norms, such as the 

probabilistic sum and bounded sum.

2) The strong analogy between mathematical transforms and the T-S fuzzy model 

indicates the potential of applying techniques such as wavelets and Splines in T-S 

fuzzy modelling.

3) The Lyapunov function for nonlinear fuzzy systems is in the form of a bilinear 

matrix inequality (BMI). Therefore, it is possible to develop a BMI based, 

non-convex optimisation technique for stability analysis in order to achieve a less 

conservative checking criterion.
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Appendix A 

Fuzzy Transform and Reverse Engineering

The possibility of implementing the fuzzy transform in reverse engineering is 

explained here to demonstrated the applicability of the algorithm.

Reverse engineering is defined as the production of new parts, products or tooling 

from existing physical models or components. One of the main applications for 

reverse engineering is to generate CAD models from physical objects. The first step in 

reverse engineering is part digitisation. This is the process of acquiring point 

coordinates from the surface of a part. In order to model the part surface in CAD, the 

surface feature of the cloud of points acquired in digitisation is identified by surface 

fitting techniques. The most popular fitting technique is least-square fitting with Non- 

Uniform Rational B-Splines or NURBS (Piegl 1992).

The motivation of this application is arose from the similarity between the NURBS 

and a zero-order T-S fuzzy model. If a NURBS can be treated a special case of a zero- 

order T-S fuzzy model, the efficiency of surface fitting in reverse engineering can be 

improved by applying fuzzy system design theory.

NURBS curves and surfaces

NURBS curves and surfaces are widely used in CAD for the representation of free

form curves and surfaces. A NURBS curve is a vector-valued piecewise rational 

polynomial and is defined as
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n

I > , W »
C(») = /I (A-l)

5 > ^ »

where the w;. ’s are the so-called weights, the P. ’s are the control points, and 

the Nip(u) ’s are the normalised B-Spline functions of degree p defined as:

where the wt j ’s are the weights, the PUJ *s are the control points, Nip (u) and 

Nj (v) are the normalised B-Spline functions of degrees p and q in the u and v 

directions.

By comparison with zero-order T-S fuzzy model in 4.3.2.1, it is interesting to note 

that if the B-Splines in Equations (A-2) and (A-3) were replaced by certain 

membership functions, the NURBS and the zero order T-S model have the same 

mathematical description. Furthermore, if the B-Splines satisfy the requirements of

0 otherwise

(A-2)

where ui ’s are knots.

In a similar way, a NURBS surface is defined as

n m

S{u,v) = i= 0 7=0 (A-3)
rt m

i'=0 7=0
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membership functions, NURBS can be regarded as a special case of zero-order fuzzy 

system. It has been proved in (Hsu and Wang, 1995) that B-Splines can be regarded 

as a special type of membership function. Then, Equation (A-2) can be re-written in 

the fuzzy form as:

If u is At(u) Then y,is Pt

n

and y  = Y , Pi
/

A (Z) •
where $  (Z) =  , i e {l • • •«}, n is the number of rules, At (u) = coiN i (u) and

I . M Z )
j

control points in NURBS can be regarded as the consequent parts in the T-S model.

Since NURBS can be regarded as a special case of zero-order T-S models. The fuzzy 

system design techniques can be applied to reverse engineering directly. The 

advantages of applying fuzzy system design techniques in reverse engineering are 

twofold:

• First, fuzzy theory provides an alternative explanation to NURBS surface fitting, 

which is useful for choosing the initial condition.

• Second, in order to improve the efficiency of surface fitting, the fuzzy system 

design technique developed in section 4-3 can be used to replace the least-squares 

method

CAD modelling of a free-form surface from a point cloud with NURBS can be 

formulated as the creation of a NURBS surface in Equation (A-3) that approximates a 

cloud of m measured points within a given tolerance. The surface parameters to be
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determined from the points are the B-Spline functions N  (u) and N  (v), uniquely

defined by their order p , q and knots ui ,vJ respectively. For surface fitting in reverse

engineering, the number of measurement points is much larger than the number of 

control points. Therefore, the least-squares method is commonly used to minimise the 

error between the NURBS surface and the m measured points.

m
error = ^

5=1

Instead of using the least-squares method, the algorithm developed in 4.3 can be 

applied here to improve the efficiency of curve and surface fitting.

* 0 7-0___________________________________ p

n m s

Z  Z  wu N i,p (us )N j,q (v*)
/=0 7=0
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Appendix B

Proof of Decomposition Principle

The following proof is cited from “Analysis and design for a class of complex control 
systems part II”, Automatica, vol 33, no. 6, pp 1029-1039, by Cao etc (1997).
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Fig. 5. The second output response of the system (30).

All the identification and controller design 
methods proposed in these two papers have been 
implemented using the MATLAB computer 
language, and form an efficient complex control 
system design software package (CASCADE). 
Using CASCADE and the design procedure 
proposed in this paper, we can easily obtain the 
fuzzy controller for a complex system.
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A PPENDIX—PROOFS

In the proofs of the theorems, the following preliminary 
results will be used.

Lemma A .I. (Garcia et al. (1994)). Let A a and £ , be 
matrices of appropriate dimensions, and let P  be a 
positive-definite symmetric matrix satisfying

- / - p > o ,  e > 0.E
Then

A lP E x + E jP A a + E JP E X A7>pQl -  p )  'PA„ + -^E jE ,.

Lem ma  A.2. (Petersen (1987)). Let X , Y  and Z  be given 
n  x n symmetric matrices such that X > 0, F ^ 0  and Z aO i 
Furthermore, assume that

( W  -  4( e x ( p z ( )  > 0 (A .l)

for all g g R" with g t6 0. Then there exists a constant A >  0 
such that

A2X  + AF + Z < 0 . (A.2)

Lem ma  A.3. Given matrices AA(/li) and A£(/*) satisfying

[AA(/i)]T[Ai4(/i)] ^  E r E  Vfi e  M, (A.3a)

[AA(/i.*)]T[AA(p*)] = E r E, ft* e M, (A.3b)

and given A n and Q, there exists a positive-definite
symmetric matrix P  such that

[A> + AA(m)]t P[A0 + AA(m)J + Q < 0 (A.4)

if and only if there exists a scalar e > 0  such that the
following conditions hold:

- / - P > 0 ,  (A.5a)
e

AjPAo + A j P ^ Z - p )  PAa + ^ E TE  + Q < 0 . (A.5b)

Proof. Suppose that (A.5) holds. Then, using (A.3) and 
Lemma A .l, we have

[Alt + AA(/x)]TP[A(> + A<4(/*)] + Q 

= Aj)PA0 + AA (fi)TPAo + A qP  AA(/i)

+ & A(fi)r P  AA(/x) + Q

=s A jP A n + A j p i ^ I  -  p )  PAn + ~ ETE + Q < 0.

In order to prove necessity, suppose that (A.4) holds. Then, 
from the standard Schur complement result, we note that 
(A.4) is equivalent to

- p - 1 a> + a a (p ) 1  
[A(> + AA(/t)]T Q  J

Now let
r - p - '  A u 1 r 0 AA(/i)]
L A l  Q Y  (m) LAA(/t)T 0 }

We have

x r Yx < - |m a x jr TN(/x)x, fi e  A /j < 0

for any x  e  R", x  *  0. Hence, letting xT = [x7 xj] , the above 
implies that

(xTYx)2 > 4 max [x7 A A(/i)r2}2
>4 eM
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Using the Schwarz inequality, it follows that

[x j  Ai4(ji.)*2j2 =  A A 0 i)T & A(h )x 2
<:x J x xx J E t Ex 2

Because there exists a fi*  such that (A .3b) holds, it follows 
that

(xr Yx)2 > 4 max [x | A4(/i)jc2]2 =  A x J x ^ x j E 1 E x 2.
(tmM

Thus

{xTYx)2 > 4xJx^xlE TEx2 = £ T e ] X

Thus, by Lenuna A.2, it follows that there exists an e > 0  
such that

■i: :m t  j i *k a i <*
that is, - P ~ l + el < 0  and 

- p - '  + el

AS
An

- E TE  + Q 
e

<0,

□which are equivalent to (A.S).

Proof o f  Theorem 3.1. Let the /th Lyapunov function be 

Vi(z,) = zjPiZ,.

We need to define the difference of V fa )  a t the boundary of 
the subspaces. Suppose that x(t) = Z/(t,) e  5/ and x ( t ,  + 1) =  
z,(t, + 1 ) e Sy; that is, x(r) jumps into the subspace Sy from 
the subspace 5/ at traversing time instant r(. In this case, the 
difference of V, is defined by

A V ,« IH ^ ( t, +  1 ) ) - V X * ( t,)).

Thus the difference of V,(z/) at the boundary of the subspaces 
is well defined.

Suppose that there exists a set of positive-definite 
symmetric matrices (Pu P2, . . . ,  P„) such that

A ,(n )TP ,A ,(n) ~  Pi <  0. / = 1. 2 . . . . ,  m. (A .6)

It can be seen that the /th Lyapunov function satisfies the 
inequalities

A l l z / l l 2 ^  V,(z,) <  Amax(P,) ||z,||2. (A.7)

It follows from (A.6) that there exists a positive-definite 
symmetric matrix Q, such that

min(G/) ii z/ii 2 (A.8)

(A.9)

From (A.7) and (A.8), we get

VKzM) s  [l V>MT»’
where t > t s  0. Let

) < 1, c - m a x [ 0 ^ j .

Then, using (A.7) and (A.9), we obtain

||z ,(0 ll^  CO-'-7Hz,(r)||, / =  1, 2 m. (A .10)

Suppose that x(0) e  S, then it follows from (A. 10) that

ll*(0ll —c ll*(0)|| ( f ,  0 ^ / ^ T , .  (A .11)
Suppose that jc ( t , + 1 ) enters Sy at traversing time instant r , .
Then, from (A.10) and (A . l l ) ,  we obtain

||x (/) ||ssc  ||x (r,)|| < c 2 ||x(0)|| o'.  0 < / s t 2.

Thus we have that, for any t > 0,

||* (r) ||< C ||* (0 ) ||< r ', C =  c f  (A.12)

where C <  «= since f  < This proves the theorem . □

Proof o f  Theorem 3.2. Let the /th Lyapunov function be

V,(z,) = zJP,z, (A.13)

and let the state-feedback control law be (IS). Suppose that 
there exists a fuzzy control law (15) that can quadratically 
stabilize the m extreme subsystems in (9) and that there 
exists a set of membership functions denoted by 
(mT» /*!. • • •> Pm) such that the upper bound (8) can be 
achieved. Then the /th  Lyapunov difference along the 
trajectory of the /th extreme subsystem in (9) is given by

AV, = zJ{[At + + (£ „  + El2K(fx))]TPi

X [A, + B ,K {n) + (En + Ea K (p))) ~  P,}z/
< 0

It follows by Lemma (A.3) that

An/PiA w — Pi + A n / P I  — P/'j P,.
1P'Am H ElEn, < 0,£i

I ,
e,

P,>  0,
(A. 14)

where
An/ — A/ + B tK((i), En/ — Eu + Ei2K{/m).

Using the same Lyapunov function (A.13), the corres
ponding /th  Lyapunov difference along the trajectory of the 
/th subsystem in (7) is given by

AV,= z7{lA/ + AA ,{n )  + (B, + A£/(M)K(M))]T
X P,[A, + AA ,(ti)  + {B, + AB ,(n )K (n ))]  -  P,}z,

= zJ{[Ai + B iK (n )  + (AA ,{n )  + A B ,(^)K (fi))]TP,

x  [Af + B ,K {p )  + (AA,(/t) + AB,(fjL)K(n))] -  P,)zt.

It follows by Lemma A .l and (A. 14), that

AV'/ — z j [ A l P iAm — Pi + A n / P I  ~ P^j P<Ani + — £<y£(yjz/

< 0,

l - P , >  0, / = 1. 2 m.

It follows by Theorem 3.1 that the fuzzy system (4) is 
quadratically stabilizable.

Conversely, if the fuzzy system (4) is quadratically
stabilizable, let n  = jxf,  / = 1 ,2  m, in the m subsystems
(7). Then the m  extreme subsystems in (9) are quadratically 
stabilizable. □

Proof o f  Theorem 3.3. Let A u — A , + BiK{(i) and £  = 
£/, + Ei2K(fi). Then the claimed result follows immediately 
from Lemma A.3. □

Proof o f  Theorem 4.1. By results from linear system theory 
(Kailath, 1980), it follows that the control law (20) can 
stabilize the m  extreme subsystems.

(i) If accurate upper bounds are used in the extreme 
subsystems then it follows from Theorem 3.2 that the 
fuzzy system (4) is quadratically stabilizable.

(ii) If approximate upper bounds are used in the extreme 
subsystems then it follows by Theorem 3.3 that the 
control law (20) can stabilize the m  extreme 
subsystems. Then, by Theorem 3.2, the fuzzy system 
(4) is quadratically stabilizable. □

Proof o f  Theorem 4.2. This is similar to that of Theorem 4.1.
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Appendix C 

The Lyapunov method for stability analysis

Definition: Lyapunov function 

A function V is a Lyapunov function if

(a) F(0) = 0 V(x)>0  for X * 0

(b) V is continuous

(c) The time derivative of V is not positive, that is V < 0

For a dynamic system, the existence of a Lyapunov function V with V = 0 for the 

origin and V < 0 for the rest of the state-space is a sufficient condition for the origin 

to be asymptotically stable. For a linear system X  = AX  , the condition above 

becomes necessary and sufficient (Curtain, 1977).

Consider the Lyapunov function

V = X TPX

where P is a symmetric positive definite matrix 

The time derivative of V is

V = X TPX + X TPX

= (AX)t PX + X tP (A X )

= x t [a tp +p a ) x

Which is negative if 

At P + PA< 0
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Hence, the condition ArP + PA < 0 becomes the stability criterion for a linear 

dynamic system.

The stability criterion above is developed based on the Lyapunov method. The basic 

idea of Lyapunov method is to search for a positive definite function of the state space 

whose time derivative is negative definite.

For a fuzzy system, the time derivative of the above Lyapunov function is 

V = Y JX T[A*P+PAi) X
i=1

Therefore, if there exists a positive definite matrix that satisfies:

A?P  + PAi < 0

for all / e {!•■•/?}, the origin of the fuzzy system is asymptotically stable.
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Appendix D 

Model-Based Fuzzy Control and Bilinear Matrix 

Inequality

The model based fuzzy control, was developed in the 1990s. It can be regarded as “a 

middle ground between conventional fuzzy control practice and established control 

theory”. It preserved the philosophy of fuzzy sets theory, meanwhile, the idea of 

feedback control theories are implemented to improve the fuzzy controller design. Its 

design procedure is as follow:

• First, a first order T-S fuzzy model is constructed for the plant by linearising local 

dynamics in different state space regions.

• Second, for each local linear model, a linear feedback controller is designed. And 

the overall controller, which is nonlinear in general, is constructed as “a fuzzy 

blending of each individual controller”.

• Third, the overall stability for the entire fuzzy system is evaluated via Liapunov’s 

direct method.

Expert knowledge is applied to construct a T-S fuzzy model for the target process in 

the first step of fuzzy controller design. In the second step, the control theory is 

applied to design the local feedback controllers. In the third step, because of the 

fundamental difference between the linear and nonlinear systems in the local and 

global stability, the linear controllers, which are designed in the second step, need to 

be evaluated. Lyapunov method is applied in the evaluation.
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It should be noted that the T-S fuzzy system is a nonlinear system in general. 

Therefore, even all its sub-systems were stable, the global stability can not be 

guaranteed. This fact makes the third step of the MBFC the most important step in the 

model-based fuzzy control. If the global stability can not be satisfied, local nonlinear 

controllers need to be redesigned until global requirement is achieved.

Considerable amount of papers have been published based on this idea. According to 

our survey, there are more than six hundred papers published in the journals or 

conferences of IEEE and ELSEVIER about this issue since year 2000. Most of the 

publications, assume the dynamics of a fuzzy system is expressed as

X  = '^h ,(X )(A ,X  + B,u) (D-l)
M

whereX e R" ,u z  R" ,A, e R™ ,B, e R ’am i e { l - p }

and h,(X) = u* % u A X )

And the stability checking criterion is developed for Equation (1) as:

Lemma 1

If there exists a positive definite matrix that satisfies:

A,t P + PA,<0  (D-2)

for all / e { l ••■/>}, the fuzzy system described in Equation (D-l) is asymptotically 

stable.
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The inequality (D-2) can be solved efficiently by convex optimization approach , and 

was considered as a basic mathematical principle behind MBFC.

Despite the popularity of the assumption, Equation (D-l) only reflects an extremely 

limited case for the dynamics of general non-linear system. This is because the 

assumption implicitly assumes that the linearised state space regions for all 

subsystems share a same equilibrium point, which is almost impossible for practical 

nonlinear system. It can be demonstrated as follows.

For a nonlinear system denoted by

A T-S fuzzy model is derived by local linearisation in different state space regions, 

which can be written as

Mi denote the support for the ith rule, p  denotes the number of rules in fuzzy model. 

If the Qi are not singular, the state space description for (D-4) can be written as:

It is easy to verify that unless all subsystems share a same equilibrium point, there is 

no coordination transform that can transform Equation (D-5), which is for a general

f ( X , X 9u) = 0 (D-3)

QfX+ RtX +  Siu + Ei = 0 , X e M t and ig  {!•••/?} (D-4)

X  = £ h,(X)(A,X  + B,u + £>,) i € {1 • • • p) (D-5)
/ '= !

where /*, (X) = nxm
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nonlinear system, into the form of Equation (D-l). Because of the difference in the 

equilibrium points among the sub-systems, the stability of the fuzzy system can not be 

guaranteed by lemma 1.

From the descriptions above, it is important to note that the highly anticipated modem 

MBFC approach, which is based on Lemma 1, is still not suitable for the tasks of 

control nonlinear systems. As it has been mentioned, the principle difference between 

linear and nonlinear systems is the local and global properties. A Linear system has 

unified stability properties. This means that for a linear dynamic 

system, X  = AX + B u , only the transit matrix A contributes to the stability of the 

system. The geometrical position of the membership function, does not affect the 

stability of the system. If lemma 1 were satisfied for a local region, the global stability 

in the entire state space can be guaranteed. It is the reason that most of modem MBFC 

literatures do not take the partition of the membership functions into account in the 

controller design. From this point of view, it is possible to view the modem MBFC a 

generalisation of existing linear system design techniques. In order to apply the fuzzy 

techniques to the field of nonlinear control, nonlinear system design techniques need 

to be developed. The limitation of MBFC has been realised recently by some 

researchers. However, since those approaches are still based on the linear system 

design techniques, they can only provide very conservative results and can not satisfy 

the requirements of nonlinear fuzzy control.

The latest development in the MEC of Cardiff University proves that the stability 

problem of MBFC is equal to a feasible problem of the following bilinear matrix 

inequalities:
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-F'O'.z) = j^y,F,.o <0
/ 1=1 7=1

(D-6)

m

a > + 5 > a < o (D-7)
;=i

Z e M (D-8)

Where FUjiLi are constants derived from the parameters of T-S fuzzy model and 

M  = [ml " -mn J  is a hyper-rectangle satisfies w, e [0,1].

Consider the affine fuzzy system (D-5), which is derived from local linearisation, the 

geometrical constraint of the i th rule is denoted by X  e M ., where M i is a hyper- 

rectangle express the support of the corresponding membership function.

For simplicity, the hyper rectangles are mapped into M  ~ where

mj e [0,1] by the following transform:

Let Z = [z, ---zJ^andZ e M  ;

£/,i 0

_ 0  £/.».

And

h,

be diagonal matrix for the ith rule.
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It is obvious that, for each / e {l •••/?} and j  e {l •••«}, the transform can be constructed 

in the following form:

If the equilibrium point of i th sub-system is denoted by: Z/0 = [zj0, • • • z;0 n ]r 

where AtZ i0 + Di =0 

And it is written in the diagonal form as:

*10 =

It has the following theorem 

Theorem D-l

I f  there exists a positive definite matrix P > 0 that satisfies

A* P + PA; + Z TBjT P + PBtZ < 0 and Z  e M  (D-9)

for all i e {l •••/?}, the affine fuzzy system described in (D-5) is asymptotically stable. 

Where At = A f l  - G ^ H  f l) , B, = - A ^ H f '

Proof

The dynamics of the affine fuzzy system (D-5) can be written as:

‘/0,«
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X  = A ( X ) X  + D( X)  (D-10)

where A(X) = ^ h i(X)Ai and D ( X ) = ]T hi(X)Di
/=i ;=i

Given a positive definite matrix P , a Lyapunov function can be constructed as 

V = < X , P X >

where <, > denotes a inner product.

Hence:

V = < X , P X >  + < X , P X >

=< A(X) X  + D( X ) , PX > + < X , P( A( X) X + D ( X )) >

= t , h. W [<  A X  + D ,,P X  > + < X ,  P(A,X + D,) >]
J=1

= f ihi( X ) [ < M X - Z , 0) , P X >  + < X ,  P(A, (X  -  Zi0)) >] (D-l X)
1=1

Substitute As = A f l  -  ) , Bi = - A ^ ^ H ' 1 , Z = [z, • • -z J 7 and Z e M  into

equation(D-13), it becomes

K = ^ / i,(A')[< P + PAi + Z TBiT P + P B ,z )x  >]
i=1

So, a sufficient condition for K < 0 is:

A,7 P + PAt + Z TBiT P + PBtZ  < 0 and Z e M

Therefore, Lyapunov function: V > 0 and V < 0 satisfies for all X  e R" except

origin, the affine fuzzy system described in (D-5) is asymptotically stable

End o f proof.
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Immediately after theorem D-l, it has the following propositions:

Proposition D-l

The matrix inequality (D-9) can be written as the following form:

r  r  n

(D-12)

£<={!•••/>}

m

a , + 2 > a < o (D-13)

Z e M (D-14)

Remarks:

• (D-12) is a group of bilinear matrix inequalities, each of them corresponding to a

constrain derived from one fuzzy rule.

• (D-13) is come from the constrain of the positive definite matrix P > 0 ,  y i

denotes the elements in P .

_ , . , n(n + 1)• Since P is symmetrical, r  ---------- .

Proposition D-2

Bilinear matrix inequalities (14) can be expressed by the following inequality

2

r r  n

(D-15)
i i=1 j=\
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F .ij 0

Where F( J = F.ij

0 Fu

Therefore, a nonlinear fuzzy control approach can be developed based on non-convex 

optimisation techniques, e.g. the bilinear matrix inequalities (BMIs) technique. The 

BMIs technique is a non-convex optimisation technique extended from LMIs 

techniques. It was proposed by Goh and Safonov in 1995. The feasible problem 

described by inequalities (D-6)-(D-8) can be solved by Branch and Cut algorithm.
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Appendix E 

Fuzzy Transform example Source Code

2 R u l e s  1 D i m e n s i o n  0  o r d e r

maximum=200;
ratio=0.01;

for i= l: 1 :maximum 
t(i)=(i-l)*ratio;
y(i)=(sin(pi*(sqrt(t(i))*t(i)))*(sqrt(t(i))));

end
plot (t,y) 
hold

al^quadCinlineCO-O^x^O-O^x)'), 0,2,0.01); 
al2=quad(inline(l(l-0.5*x).*(0.5*x)1),0,2,0.01); 
a22=quad(inline(,(0.5*x).*(0.5*x)'),0,2,0.01);

A=[all al2 
a l2 a22]

bl=quad(inline('(l-0.5 *x).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,2,0.01); 
b2=quad(inline('(0.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,2,0.01);

b=[bl ,b2]f;

W=A\b

F=inline('(w 1 * (1 -0.5 *x)+w2 *(0.5* x))')

for i= l: 1: maximum 
t(i)=(i-1 )*ratio;
yl(i)=feval(F,W(l),W(2),t(i));

end

plot(t,yl)

2 R u l e s  1 D i m e n s i o n  1 s t  o r d e r

maximum=200;
ratio=0.01;

accuracy=0.0005;



f

for i= l: 1 :maximum 
t(i)=(i-l)*ratio;
y(i)=(sin(pi*(sqrt(t(i))*t(i)))*(sqrt(t(i))));

end
plot (t,y) 
hold

all=quad(inline(’(x.*(l-0.5*x)).*(x.*(l-0.5*x)),), 0,2, accuracy); 
a 12=quad(inline(,(x.*(l-0.5 *x)). *(0.5 *x.*x)'),0,2,accuracy); 
a22=quad(inline(,(0.5*x.*x).*(0.5*x.*x),),0,2,accuracy); 
A l=[all al2 

al2 a22 ]

a 11 =quad(inline('(x. *( 1 -0.5 *x)). *(( 1 -0.5 *x))'),0,2,accuracy); 
a 12=quad(inline('(x. *( 1 -0.5 *x)). *(0.5 *x)'),0,2,accuracy); 
a22=quad(inline('(0.5*x.*x).*(0.5*x)r), 0,2, accuracy);
A2=[al 1 al2 

al2 a22 ]

a ll  =quad(inline('(( 1 -0.5 *x)). *(( 1 -0.5 *x))'),0,2,accuracy); 
a 12=quad(inline(’(( 1 -0.5 *x)). *(0.5 *x)f),0,2,accuracy); 
a22=quad(inline(,(0.5*x).*(0.5*x)'),0,2,accuracy);
A3=[al 1 al2 

al2 a22 ]

A=[A1 A2 
A2' A3]

bl=quad(inline(,(x.*(l-0.5*x)).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'),0,2,accuracy); 
b2=quad(inline('(0.5*x.*(x)).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,2,accuracy); 
b3=quad(inline(,(l-0.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'),0,2,accuracy); 
b4=quad(inline(,(0.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))f),0,2,accuracy);

b=[bl,b2,b3,b4,]';

W=A\b

F ^ n lin e^ ^  1 *x+q 1 )*( 1 -0.5 *x)+(p2 *x+q2)*(0.5 *x))')

pl=W(l);
p2=W(2);
ql=W(3);
q2=W(4);

maximum=200;
ratio=0.01;
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for i= l: 1: maximum 
t(i)=(i-l)*ratio;
yl(i)=feval(F,pl,p2,ql,q2,t(i));

end

plot(t,yl)

2  R u l e s  1 D i m e n s i o n  0  o r d e r

maximum=200;
ratio=0.01;

for i= l: 1: maximum 
t(i)=(i-l)*ratio;
y(i)=(sin(pi*(sqrt(t(i))*t(i)))*(sqrt(t(i))));

end
plot (t,y)
%hold

all=quad(inline('(l-x).*(l-x)'), 0,1,0.01); 
a 12=quad(inline('( 1 -x). *(x)'),0,1,0.01); 
al3=0
a22=quad(inline(f(x).*(x),),0,1,0.01 )+quad(inline('(2-x). *(2-x)f), 1,2,0.01); 
a23=quad(inline(?(2-x). *(x-1)’), 1,2,0.01); 
a33=quad(inline('(x-1). *(x-1)’), 1,2,0.01);

A=[al 1 al2 al3 
al2 a22 a23 
al3 a23 a33]

bl=quad(inline(,(l-x).s|t(sqrt(x).*sin(pi.3,ex.*sqrt(x))),),0,1,0.01);
b2=quad(inline(,(x).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,l,0.01)+quad(inline('(2-
x).*(sqrt(x).*sin(^)i.*x.*sqrt(x))),), 1,2,0.01);
b3 =quad(inline(f (x-1). * (sqrt(x). * sin(pi. * x. * sqrt(x)))'), 1,2,0.01);

b=[bl,b2,b3]';

W=A\b

F1 =inline(,(w 1 * (1 -x)+w2 * (x))f)

F2=inline('(w 1 *(2~x)+w2*(x-1))’)

wl=W(l);
w2=W(2);
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maximum=200;
ratio=0.01;

for i= l: 1 :maximum/2 
t(i)=(i-l)*ratio; 
y 1 (i)=feval(F 1 ,w 1 ,w2,t(i)); 

end

wl=W(2);
w2=W(3);

for i=maximum/2+1:1 '.maximum 
t(i)=(i-l)*ratio; 
yl(i)=feval(F2,wl ,w2,t(i)); 

end

plot(t,yl)

2  R u l e s  1 D i m e n s i o n  1 s t  o r d e r

maximum=200;
ratio=0.01;

accuracy=0.1;

for i= l: 1: maximum 
t(i)=(i-l)*ratio;
y(i)=(sin(pi*(sqrt(t(i))*t(i)))*(sqrt(t(i))));

end
plot (t,y)
%hold

a ll =quad(inline('(x. *( 1 -x)). *(x. *( 1 -x))'),0,1,accuracy); 
a 12=quad(inline(,(x. *( 1 -x)). *(x. *x)'),0,1,accuracy); 
a 13=0
a22=quad(inline('(x. *x). *(x. *x)'),0,1,0.01 )+quad(inline('(x. *(2-x)). *(x. *(2- 
x))'), 1,2,accuracy);
a23=quad(inline(,(x.*(2-x)).*(x.5|t(x-l))'), 1,2,accuracy); 
a33=quad(inline(,(x. *(x-1)). *(x. *(x-1))'), 1,2,accuracy);

A l=[all al2 al3 
al2 a22 a23 
al3 a23 a33]

a 11 =quad(inline('(x. *( 1 -x)). *(( 1 -x))’),0,1,accuracy);



al2=quad(inline('(x.*(l-x)).*(x)'), 0,1, accuracy); 
a 13=0
a22=quad(inline('(x.*x).*(x)'),0,l,0.01)+quad(inline('(x.*(2-x)).*((2- 
x))’), 1,2,accuracy);
a23=quad(inline(,(x.*(2-x)).*((x-1))’), 1,2,accuracy); 
a33=quad(inline(f(x.*(x- l)).*((x-1))’), 1,2,accuracy);

A2=[al 1 al2 al3 
al2 a22 a23 
al3 a23 a33]

al 1 =quad(inline('( 1 -x).*( 1 -x)'),0,1,accuracy); 
al2=quad(inline('(l-x).*(x),),0,1,accuracy); 
a 13=0
a22=quad(inline(f(x).*(x)f),0,l,0.01)+quad(inline(,(2-x).*(2-x)'), 1,2, accuracy); 
a23=quad(inline('(2-x). *(x-1 )f), 1,2,accuracy); 
a33=quad(inline('(x- l).*(x-1)'), 1,2,accuracy);

A3=[al 1 al2 al3 
al2 a22 a23 
al3 a23 a33]

A=[A1 A2 
A2' A3]

bl=quad(inline('(x.*(l-x)).*(sqrt(x).*sin(pi.’,cx.!,tsqrt(x))),),0,1,accuracy); 
b2=quad(inline(,(x.*x).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,l,accuracy)+quad(inline('(x.* 
(2-x)).*(sqrt(x).*sin(pi.*x.s|csqrt(x)))'), 1,2,accuracy); 
b3=quad(inline(f(x.*(x-l)).5,t(sqrt(x).*sin(pi.*x.*sqrt(x))),), 1,2,accuracy); 
b4=quad(inline(,(l-x).’|t(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,1,accuracy); 
b5=quad(inline(,(x).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),0,l,accuracy)+quad(inline(,(2- 
x).*(sqrt(x).*sin(pi.*x.5|csqrt(x)))'), 1,2,accuracy); 
b6=quad(inline(f(x-l).*(sqrt(x).*sin(pi.*x.*sqrt(x))),), 1,2, accuracy);

b=[bl,b2,b3,b4,b5,b6]’;

W=A\b

F1 ̂ n lineC ^  1 *x+q 1 )*( 1 -x)+(p2*x+q2)*(x))’)

F2=inline('((p 1 *x+ql )5|£(2-x)+(p2*x+q2)*(x-1))')

pl=W(l);
p2=W(2);
ql=W(4);
q2=W(5);
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f

maximum=200;
ratio=0.01;

for i= 1:1 :maximum/2 
t(i)=(i-l)*ratio;
y 1 (i)=feval(F 1 ,p 1 ,p2,ql ,q2,t(i)); 

end

pl=W(2);
p2=W(3);
ql=W(4);
q2=W(5);

for i=maximum/2+1:1: maximum 
t(i)=(i-l)*ratio;
y 1 (i)=feval(F2,p 1 ,p2,q 1 ,q2,t(i)); 

end

plot(t,yl)

4  R u l e s  2  D i m e n s i o n  0  o r d e r

clear
maxnum=51; 
width=10;
ratio=maxnum/width;
accuracy=0.0001

for i=l:l:maxnum 
tl(i)=i/ratio-5; 
for j=l:l:maxnum 

t2(j)=j/ratio-5;
x(ij)=((tl(i)*tl(i)-t2(j)*t2Q)*sin(tl(i))*sqrt(abs(t2(i))));

end
end
surf(tl,t2,x) 

hold on

ô f=inline(,((x.*x-y.*y).*sin(0.5*x)*sqrt(abs(y))),);
%Al=inline('(0.5-0.1 *x)') A2=inline(’(0.5+0.1 *x)');
%B 1 =inline('(0.5-0.1 *y)’) B2=inline(’(0.5+0.1 *y)'); (0.5-0.1 *x).*(0.5-0.1 *y)*) *

%AB 1 l=inline('((0.5-0.1 *x).*(0.5-0.1 *y»f) 
%AB12=inline(,((0.5-0.1*x).*(0.5+0.1*y))')
%AB2 l=inline(f((0.5+0.1 *x).*(0.5-0.1 *y))')
%AB22=inline('((0.5+0.1 *x).*(0.5+0.1 *y))')
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fNnline(,(((0.5-0.1*x).*(0.5-0.1*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))r); 
b 1=dblquad(f,-5,5 ,-5,5,accuracy);
f^nlineO^O.S-O.^x^^O.S+O.Py^.^x^x-y^y^sintx^sqrt^absfy))))');
b2=dblquad(f,-5,5,-5,5,accuracy);
f=inline('(((0.5+0.1*x).*(0.5-0.1*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))’);
b3=dblquad(f,-5,5,-5,5,accuracy);
f^nlineC^O.S+O.Px^^O.S+O.PyXJ.^x^x-y^y^sintx^sqrt^absfy))))’);
b4=dblquad(f,-5,5 ,-5,5,accuracy);
b=[bl,b2,b3,b4]f

f=inline('((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5-0.1 *x). *(0.5-0.1 *y))'); 
all=dblquad(f,-5,5,-5,5,accuracy);
f=inlineC((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5-0.1 *x).*(0.5+0.1 *y))’); 
al2=dblquad(f,-5,5,-5,5,accuracy);
f=inline(’((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x).*(0.5-0.1 *y))’); 
a 13=dblquad(f,-5,5 ,-5,5,accuracy);
fHnline('((0.5-0.1 *x). *(0.5-0.1 *y)).*((0.5+0.1 *x). *(0.5+0.1 *y))'); 
al4=dblquad(f,-5,5 ,-5,5,accuracy);

f=inline('((0.5-0.1 *x). *(0.5+0.1 *y)). *((0.5-0.1 *x). *(0.5+0.1 *y))'); 
a22=dblquad(f,-5,5 ,-5,5,accuracy);
f+inlineC((0.5-0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x).*(0.5-0.1 *y))?); 
a23=dblquad(f,-5,5,-5,5,accuracy);
f^inlineCftO.S-0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x).*(0.5+0.1 *y))’); 
a24=dblquad(f,-5,5,-5,5,accuracy);

f=inline(,((0.5+0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x). *(0.5-0.1 *y))’); 
a3 3=dblquad(f,-5,5 ,-5,5,accuracy);
f=inline(!((0.5+0.1 *x).*(0.5-0.1 *y)). *((0.5+0.1 *x). *(0.5+0.1 *y))’); 
a34=dblquad(f,-5,5,-5,5,accuracy);

f=inline('((0.5+0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x).*(0.5+0.1 *y))'); 
a44=dblquad(f, -5,5 ,-5,5,accuracy);

A=[all al2 al3 al4 
al2 a22 a23 a24 
al3 a23 a33 a34 
al4 a24 a34 a44]

W=A\b

f=inline('wl *((0.5-0.1 *x). *(0.5-0.1 *y))+w2*((0.5- 
0.1 *x).*(0.5+0.1 *y))+w3 *((0.5+0.1 *x).*(0.5- 
0.1 *y))+w4*((0.5+0.1 *x). *(0.5+0.1 *y))’);

wl=W(l);
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w2=W(2);
w3=W(3);
w4=W(4);

for i=l:l:maxnum 
tl(i)=i/ratio-5; 
forj=l:l:maxnum 

t2(j)=j/ratio-5;
x 1 (i j  )=feval(f, w 1, w2, w3, w4,t 1 (i),t2(j)); 

end 
end
surf(tl,t2,xl) 

hold off

4  R u l e s  1 D i m e n s i o n  1 s t  o r d e r

clear
maxnum=51; 
width=10;
ratio=maxnum/width;
accuracy=0.0001

for i=l:l:maxnum 
tl(i)=i/ratio-5; 
for j= 1:1 imaxnum 

t2(j)=j/ratio-5;
x(ij)=((tl(i)*tl(i)-t2(j)*t20'))*sin(tl(i))*sqrt(abs(t2(i))));

end
end
surf(tl,t2,x) 

hold on

%f=inline(l((x.*x-y.*y).*sin(0.5*x)*sqrt(abs(y)))');
%Al=inline('(0.5-0.1 *x)') A2=inline('(0.5+0.1 *x)');
%B 1 =inline(,(0.5-0.1 *y)') B2=inline('(0.5+0.1 *y)'); (0.5-0.1 *x).*(0.5-0.1 *y)*).*

%AB 1 l=inline('((0.5-0.1 *x). *(0.5-0.1 *y))')
%AB 12=inline('((0.5-0.1 *x).*(0.5+0.1 *y))')
%AB2 l=inline('((0.5+0.1 *x).*(0.5-0.1 *y))')
%AB22=inline('((0.5+0.1 *x).s|t(0.5+0.1 *y))’)

f=inline(,(((0.5-0.1*x).*(0.5-0.1*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))’); 
b 1 =dblquad(f,-5,5,-5,5,accuracy);
f=inline(,(((0.5-0.1*x).*(0.5+0.1*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),);
b2=dblquad(f,-5,5,-5,5,accuracy);
f=inline(,(((0.5+0.1*x).*(0.5-0.1*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),);
b3=dblquad(f,-5,5,-5,5,accuracy);
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f=inline(X((0.5+0.1*x).*(0.5+0.1*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))');
b4=dblquad(f,-5,5 ,-5,5,accuracy);
b=[bl,b2,b3,b4]f

f=inline('((0.5-0.1 *x).*(0.5-0.1 *y)). *((0.5-0.1 *x).*(0.5-0.1 *y))'); 
a ll  =dblquad(f,-5,5,-5,5,accuracy);
f=inline('((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5-0.1 *x).*(0.5+0.1 *y))'); 
al2=dblquad(f,-5,5,-5,5,accuracy);
f=inline(’((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x). *(0.5-0.1 *y))'); 
al3=dblquad(f,-5,5,-5,5,accuracy);
f=inline('((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x). *(0.5+0.1 *y))'); 
al4=dblquad(f,-5,5,-5,5,accuracy);

f=inline('((0.5-0.1 *x).*(0.5+0.1 *y)). *((0.5-0.1 *x).*(0.5+0.1 *y))'); 
a22=dblquad(f,-5,5 ,-5,5,accuracy);
f=inline(,((0.5-0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x). *(0.5-0.1 *y))'); 
a23=dblquad(f,-5,5,-5,5,accuracy);
f=inline(’((0.5-0.1 *x).*(0.5+0.1 *y)). *((0.5+0.1 *x).*(0.5+0.1 *y))'); 
a24=dblquad(f,-5,5,-5,5,accuracy);

f=inline(’((0.5+0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x).*(0.5-0.1 *y))!); 
a3 3=dblquad(f,-5,5 ,-5,5,accuracy);
f=inline(,((0.5+0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x).*(0.5+0.1 *y))'); 
a34=dblquad(f,-5,5 ,-5,5,accuracy);

f=inline('((0.5+0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x).*(0.5+0.1 *y))'); 
a44=dblquad(f,-5,5,-5,5,accuracy);

A=[al 1 al2 al3 al4 
al2 a22 a23 a24 
al3 a23 a33 a34 
al4 a24 a34 a44]

W=A\b

f=inline(’wl *((0.5-0.1 *x).*(0.5-0.1 *y))+w2*((0.5- 
0.1 *x).*(0.5+0.1 *y))+w3 *((0.5+0.1 *x).*(0.5- 
0.1 *y))+w4*((0.5+0.1 *x).*(0.5+0.1 *y))');

wl=W(l);
w2=W(2);
w3=W(3);
w4=W(4);

for i=l:l:maxnum 
tl(i)=i/ratio-5; 
for j= 1:1 :maxnum



t2(j)=j/ratio-5;
x 1 (i,j)=feval(f,wl ,w2,w3,w4,tl (i),t2(j)); 

end 
end
surf(tl,t2,xl) 

hold off

6  R u l e s  1 D i m e n s i o n  0  o r d e r

maximum=200;
ratio=l/100;

for i= 1:1 :maximum 
t(i)=(i-l)*ratio;
y(i)=(sin(pi*(sqrt(t(i))*t(i)))*(sqrt(t(i))));

end
plot (t,y)
%hold

a ll =quad(inline('( 1 -2.5 * x). * (1 -2.5 *x)’) ,0,2/5,0.01); 
a 12=quad(inline('( 1 -2.5 *x). *(2.5 *x)'),0,2/5,0.01);
a22=quad(inline('(2-5*x).*(2.5*x),),0,2/5,0.01)+quad(inline('(2-2.5*x).*(2- 
2.5*x)'),2/5,4/5,0.01);

A=[al 1 al2 0 0 0 0 
al2 a22 al2 0 0 0 
0 al2 a22 al2 0 0 
0 0 al2 a22 al2 0 
0 0 0 al2 a22 al2 
0 0 0 0 al2 a ll]

bl=quad(inline(f(l-2.5*x).*(sq^t(x).*sin(pi.*x.*sq^t(x))),),0,2/5,0.01); 
b2=quad(inline(,(2.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))r), 0,2/5,0.0 l)+quad(inline('(2- 
2.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'),2/5,4/5,0.01); 
b3=quad(inline(’(2.5 *x-
1).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),2/5,4/5,0.01)+quad(inline('(3- 
2.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))f),4/5,6/5,0.01); 
b4=quad(inline('(2.5 * x-
2).*(sqrt(x).s,tsin(pi.*x.*sqrt(x))),),4/5,6/5,0.01)+quad(inline(,(4- 
2.5*x).s|t(sqrt(x).*sin(pi.*x.*sqrt(x)))'),6/5,8/5,0.01); 
b5=quad(inline('(2.5*x-
3).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),6/5,8/5,0.01)+quad(inline('(5- 
2.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))’),8/5,2,0.01); 
b6=quad(inline(,(2.5*x-4).*(sqrt(x).*sin(pi.5,cx.s,csqrt(x))),),8/5, 2, 0.01);

b=[bl,b2,b3,b4,b5,b6]';
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W=A\b

F1 =inline(,(w 1 * (1 -2.5 *x)+w2 * (2.5 *x))') 
F2=inline('(w 1 * (2-2.5 *x)+w2 * (2.5 *x-1))') 
F3=inline(,(wl*(3-2.5*x)+w2*(2.5*x-2))') 
F4=inline('(w 1 * (4-2.5 *x)+w2 * (2.5 *x-3))') 
F5=inline(,(wl*(5-2.5*x)+w2*(2.5*x-4))1)

step=maximum/5

wl=W(l); 
w2=W(2); 
for i= 1:1: step 

t(i)=(i-l)*ratio; 
y 1 (i)=feval(F 1 ,w 1 ,w2,t(i)); 

end

wl=W(2);
w2=W(3);
for i=step+l: 1:2*step 

t(i)=(i-l)*ratio; 
y 1 (i)=feval(F2,w 1 ,w2,t(i)); 

end

wl=W(3);
w2=W(4);
for i=2*step+l: 1:3*step 

t(i)=(i-l)*ratio; 
y 1 (i)=feval(F3 ,w 1 ,w2,t(i)); 

end
wl=W(4);
w2=W(5);

for i=3*step+l: 1:4*step 
t(i)=(i-l)*ratio; 
y 1 (i)=feval(F4,wl ,w2,t(i)); 

end
wl=W(5);
w2=W(6);

for i=4*step+l: 1:5*step 
^^(i-^^ratio ; 
y 1 (i)=feval(F5,w 1 ,w2,t(i)); 

end

plot(t,yl)
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9  R u l e s  2  D i m e n s i o n  0  o r d e r

clear
maxnum=51; 
width=10;
ratio=maxnum/width;
accuracy=0.0001

for i=l:l:maxnum 
tl(i)=i/ratio-5; 
for j=l:l:maxnum 

t2(j)=j/ratio-5;
x(ij)=((tl(i)*tl(i)-t2(j)*t2(j))*sin(tl(i))*sqrt(abs(t2(i))));

end
end
surf(tl,t2,x) 

hold on

%f^nline(,((x.*x-y.*y).*sin(0.5*x)*sqrt(abs(y)))r);
%A 1 =inline(,(-0.2*x)') A2=inline(,(l+0.2*x),) A2=inline('(l-0.2*x)') 
A3=inline(,(0.2*x)');
% A1 =inline('(-0.2*y)') A2=inline(,( 1+0.2 *y)’) A2=inline(,( 1 -0.2 *y)') 
A3=inline('(0.2 *y)');

%AB 1 ^inlineCCC-O^xX^-O^y))')
%AB 12=inline('((-0.2*x).*( 1 +0.2*y))') + in lineO a-O ^x^O -O ^y))') 
%AB 13=inline(,((-0.2*x).*(0.2*y))’)

%AB21=inline(l((l+0.2*x).*(-0.2*y)),) + inline('((l-0.2*x).*(-0.2*y))f) 
%AB22=inline(,((l+0.2*x).*(l+0.2*y)),) + inline('((l+0.2*x).*(l-0.2*y))') + 
inline(’(( 1 -0.2 *x). *( 1 +0.2*y))’) + inline(’(( 1 -0.2 *x). *( 1 -0.2*y))') 
%AB23=inline('((l+0.2*x).*(0.2*y))f) + inline(,((l-0.2*x).*(0.2*y))r)

%AB31=inline(,((0.2*x).*(-0.2*y)),)
%AB32=inline(,((0.2*x).*(l+0.2*y))') + inlineCCC-O^x^Cl-O^y))')
% AB3 3=inline('((0.2 *x). * (0.2 *y))')

f=inline(,(((-0.2*x).*(-0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))f); 
bl=dblquad(f,-5,0,-5,0,accuracy);
M nlineO ^-O ^x^’̂ l+ O ^ y ^ .’̂ x^x-y^y^sinCx^sqrtCabsCy))))'); 
b2=dblquad(f,-5,0,-5,0,accuracy);
f=inline(,(((-0.2*x).*(l-0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))r); 
b2=b2+dblquad(f,-5,0,0,5,accuracy);
f=inline('(((-0.2 * x). * (0.2 *y)). * ((x. * x-y. *y). * sin(x) * sqrt(abs(y))))'); 
b3=dblquad(f,-5,0,0,5,accuracy);

%AB21=inline(,((i+0.2*x).*(-0.2*y))r) + inline('((l-0.2*x).*(-0.2*y))’) 
f=inline('((( 1 +0.2*x). *(-0.2*y)). *((x. *x-y. *y). * sin(x)*sqrt(abs(y))))'); 
b4=dblquad(f,-5,0,-5,0,accuracy);
f=inline(,(((l-0.2*x).*(-0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),);
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b4=b4+dblquad(f,0,5,-5,0,accuracy);

%AB22=inline('((l+0.2*x).*(l+0.2*y))') + inline(,((l+0.2*x).*(l-0.2*y)),) + 
inline(’(( 1 -0.2 *x). *( 1 +0.2*y))') + inline('(( 1 -0.2*x). *( 1 -0.2*y))') 
f=inline(X((l+0.2*x).*(l+0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))'); 
b5=dblquad(f,-5,0,-5,0,accuracy);
fHnline(X((l+0.2*x).*(l-0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))r); 
b5=b5+dblquad(f,-5,0,0,5,accuracy);
f=inline(’(((l-0.2*x).,,,(l+0.2*y)).1,,((x.*x-y.*y).*sin(x)*sqrt(abs(y))))’); 
b5=b5+dblquad(f,0,5,-5,0,accuracy);
f=inline(,(((l-0.2*x).*(l-0.2*y)).*((x.*x-y.*y).*sin(x)s|!sqrt(abs(y)))),); 
b5=b5+dblquad(f, 0,5,0,5, accuracy);

%AB23=inline('((l+0.2*x).*(0.2*y))r) + in line fftl-O ^x^^O ^y))')  
fHnlineTOO+O^x^^O^y^.^x^x-y^y^sinCx^sqrtiabsCy))))'); 
b6=dblquad(f,-5,0,0,5,accuracy);
f=inline('(((l-0.2*x).*(0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),); 
b6=b6+dblquad(f,0,5,0,5,accuracy);

%AB31=inline(,((0.2*x).*(-0.2*y)),)
%AB32=inline«(0.2*x).*(l+0.2*y)),) + inlineO((0.2*x).*(l-0.2*y))') 
%AB33=inline(,((0.2*x).*(0.2*y))')
f=inline(\((0.2*x).*(-0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))’); 
b7=dblquad(f,0,5 ,-5,0,accuracy);
f=inline('(((0.2*x).*(l+0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),); 
b8=dblquad(f,0,5 ,-5,0,accuracy);
f=inline('(((0.2*x).*(l-0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),); 
b8=b8+dblquad(f,0,5,0,5,accuracy);
fNnline(X((0.2*x).*(0.2*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))'); 
b9=dblquad(f, 0,5,0,5, accuracy);

b=[bl,b2,b3,b4,b5,b6,b7,b8,b9]’
% %
% %
% %
% %
% % f=inline(,(((-0.2 ,̂cx).*(-0.2*y)).J,e((-0.2*x).*(-0.2*y))),);
% % al l=dblquad(f,-5,0,-5,0,accuracy);
% % f=inline(,(((-0.2*x).*(-0.2*y)).*((-0.2*x).*(l+0.2*y)))?);
% % a 12=dblquad(f,-5,0,-5,0,accuracy);
% % a13=0
% % f=inlineC(((-0.2*x).*(-0.2*y)).*((l+0.2*x).*(-0.2*y)))');
% % al4=dblquad(f,-5,0,-5,0,accuracy);
% % f=inline(,(((-0.2*x).*(-0.2*y)).*((l+0.2*x).*(l+0.2*y))y);
% % al5=dblquad(f,-5,0,-5,0,accuracy);
% % a 16=0 
% % a 17=0 
% % a18=0 
% % a 19=0 
% %
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% %
% % f=inline('(((-0.2*x).*(l+0.2*y)).*((-0.2*x).*(l+0.2*y)))r);
% % a22=dblquad(f,-5,0,-5,0,accuracy);
%%f=inline(,(((-0.2*x) *(l-0.2*y)).*((-0.2*x).*(l-0.2*y)))');
% % a22=a22+dblquad(f,-5,0,0,5,accuracy);
% % f=inline(,(((-0.2*x).*(l-0.2*y)).*((-0.2*x).*(0.2*y)))’);
% % a23=dblquad(f,-5,0,0,5,accuracy);
% % f^inline(,(((-0.2*x).*(l+0.2s|ey)).*((l+0.2*x).*(-0.2*y))),);
% % a24=dblquad(f,-5,0,-5,0,accuracy);
% % f^nlineCCCC-0.2*x). * (1 +0.2 *y)). * ((1 +0.2 *x). * (1 +0.2 *y)))'); 
% % a25=dblquad(f,-5,0,-5,0,accuracy);
% % Mnline(,(((-0.2*x).*(l-0.2*y)).s,!((l+0.2*x).*(l-0.2*y)))'); 
% % a25=a25+dblquad(f,-5,0,0,5,accuracy);
% % f=inline('(((-0.2*x).*(l-0.2*y)).*((l+0.2*x).*(0.2*y))),);
% % a26=dblquad(f,-5,0,0,5,accuracy);
% % a27=0 
% % a28=0 
% % a29=0 
% %
% % f=inline(,(((-0.2*x).*(0.2*y)).*((-0.2*x).*(0.2*y)))');
% % a33=dblquad(f,-5,0,0,5,accuracy);
% % a34=0;
% % MnlineC(((-0.2*x).*(0.2*y)).*((l+0.2*x).*(l-0.2*y)))');
% % a35=dblquad(f,-5,0,0,5,accuracy);
% % Mnline(’(((-0.2*x).*(0.2*y)).*((l+0.2*x).*(0.2*y)))');
% % a36=dblquad(f,-5,0,0,5,accuracy);
% % a37=0 
% % a38=0 
% % a39=0 
% %
% %
% %
% % f=inline(,(((l+0.2*x).*(-0.2*y)).*((l+0.2*x).*(-0.2*y)))');
% % a44=dblquad(f,-5,0,-5,0,accuracy);
% % f=inlineC(((l-0.2*x).*(-0.2*y)) *((l-0.2*x) *(-0.2*y)))');
% % a44=a44+dblquad(f,0,5,-5,0,accuracy);
% %
% % f=inline('((( 1 +0.2*x).*(-0.2*y)).*(( 1 +0.2*x).*( 1 +0.2*y)))'); 
% % a45=dblquad(f,-5,0,-5,0,accuracy);
% % MnlineC(((l-0.2*x).*(-0.2*y)).*((l-0.2*x).*(l+0.2*y))),); 
% % a45=a45+dblquad(f,0,5,-5,0,accuracy);
% %
% % a46=0
% %
% %
% % f=inline(,(((l-0.2*x).*(-0.2*y)).*((0.2*x).*(-0.2*y)))r);
% % a47=dblquad(f,0,5,-5,0,accuracy);
% % f=inline('(((l-0.2*x).*(-0.2*y)).*((0.2*x).*(l+0.2*y))),);
% % a48=dblquad(f,0,5,-5,0,accuracy);
% % a49=0
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% %
% % %Al=inline('(-0.2*x)') A2=inline('(l+0.2*x)’) A2=inline(,(l-0.2*x)') 
AS^nlineOCO^x)');
% % %A 1 =inline('(-0.2 *y)') A2=inlineC(l+0.2*y)') A2=inline('(l-0.2*y)') 
A3=inline(,(0.2*y)') ;
% %
% % % 1 AB11 =inline('((-0. 2 * x). * (-0.2 *y))')
% % %2 AB12=inline('((-0.2*x).*(l+0.2*y))') + inline('((-0.2*x).*(l-0.2*y))')
% % %3 AB13=inline(,((-0.2*x).*(0.2*y))')
% %
% % %4 AB21=inline(,((l+0.2*x).*(-0.2*y)),) + inline(,((l-0.2*x).*(-0.2*y)),)
% % %5 AB22=inline(’(( 1 +0.2*x).*(1 +0.2*y))’) + inline(,((l+0.2*x).*(l-0.2*y)),) + 
inline(,((l-0.25,tx).*(l^-0.2*y)),) + inlineCCCl-O^x^^l-O^y))’)
% % %6 AB23=inline(?(( 1 +0.2*x).*(0.2*y))') + inline(,((l-0.2!,'x).*(0.2*y)),)
% %
% % %7 AB31 =inline(’((0.2*x). *(-0.2*y))’)
% % %8 AB32=inline(’((0.2*x).*(l+0.2*y))1) + inline(,((-0.2*x).*(l-0.2*y))')
% % %9 AB33=inline(’((0.2 *x). *(0.2*y))')
% %
% % f=inline(,(((l-0.2*x).*(-0.2*y)).*((0.2*x).*(-0.25,!y))),);
% % a47=dblquad(f,0,5,-5,0,accuracy);
% %
% % a56 
% % a57 
% % a58 
% % a59 
%
% f=inline(,(((-0.2’|tx).*(-0.2*y)).!,̂ ((-0.2*x).*(-0.2*y))),);
% al l=dblquad(f,-5,0,-5,0,accuracy);
% c=all;
%
% all=c;
% al2=c/2;
% al3=0;
% al4=c/2;
% al5=c/4;
% a16=0 
% a 17=0;
% a18=0 
% a 19=0;
%
% a22=2*c;
% a23=c/2;
% a24=c/4 
% a25=

f=inline(,(((-0.2*x).*(-0.2*y)).*((-0.2*x).*(-0.2*y)))1); 
k=dblquad(f,-5,0,-5,0,accuracy);

A=[ 1 0.5 0 0.5 0.25 0 0 0 0
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0.5 2 0.5 0.25 1 0.25 0 0 0
0 0.5 1 0 0.25 0.5 0 0 0
0.5 0.25 0 2 1 0 0.5 0.25 0
0.25 1 0.25 1 4 1 0.25 1 0.25
0 0.25 0.5 0 1 2 0 0.25 0.5
0 0 0 0.5 0.25 0 1 0.5 0 
0 0 0 0.25 1 0.25 0.5 2 0.5 
00000 . 25  0.5 0 0.5 1]

A=k*A

W=A\b

%f=inline('((x. *x-y. *y). * sin(0.5 *x)* sqrt(abs(y)))');
% A1 =inline(l(-0.2 * x)’) A2=inline(,(l+0.2*x)') A2=inline('(l-0.2*x)') 
A3=inline('(0.2*x)') ;
% A1 =inline(,(-0. 2 * y)’) A2=inline(,(l+0.2*y)') A2=inline(’(l-0.2*y)') 
A3=inline('(0.2*y)') ;

%AB 1 ^ in lineC ft-O ^xJ.^-O ^y))1)
%AB 12=inline('((-0.2*x). *( 1 +0.2*y))') + inlineC((-0.2*x).*(l-0.2*y))') 
%AB13=inline(,((-0.2*x).*(0.2*y))')

%AB2 l=inline('(( 1 +0.2*x). *(-0.2*y))') + inline(’(( 1 -0.2*x). *(-0.2*y))') 
%AB22=inline(,((l+0.2*x).*(l+0.2*y)),) + inline(,((l+0.2*x).*(l-0.2*y))’) + 
inline(’(( 1 -0.2*x). *( 1 +0.2*y))') + inline('(( 1 -0.2*x).*( 1 -0.2*y))') 
%AB23=inline(’(( 1 +0.2*x). *(0.2*y))') + inline('(( 1 -0.2*x). *(0.2*y))')

%AB31=inline(,((0.2*x).*(-0.2*y))’)
%AB32=inline(,((0.2*x).*(l+0.2*y))') + inline('((-0.2*x).*(l-0.2*y))') 
%AB33=inline(,((0.2*x).*(0.2*y))')

fA 1 ̂ nlineOmax^O^XjO)'); 
fA2=inline(,max(min( l+0.2*x, 1 -0.2*x),0)!); 
fA3=inline(,max(0.2*x,0)f);

M=[W(1) W(2) W(3)
W(4) W(5) W(6)
W(7) W(8) W(9)];

for i=l:l:maxnum 
for j=1:1 imaxnum

x 1 (ij)=[feval(fA 1 ,tl(i)), feval(fA2,tl(i)),feval(fA3,tl(i))]*M*[feval(fAl,t2(j)), 
feval(fA2,t2(j)),feval(fA3,t2(j))]?;

end
end
surf(tl,t2,xl)
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hold off

1 0  R u l e s  1 D i m e n s i o n  0  o r d e r

maximum=180;
ratio=l/90;

for i= 1:1: maximum 
t(i)=(i-l)*ratio;
y(i)=(sin(pi*(sqrt(t(i))*t(i)))*(sqrt(t(i))));

end
plot (t,y)
%hold

al 1 =quad(inline('( 1 -4.5 *x). *( 1 -4.5 *x)'),0,2/9,0.01); 
al 2=quad(inline('( 1 -4.5 *x). *(4.5 *x)'),0,2/9,0.01); 
a22=quad(inline('(4.5 *x). *(4.5 *x)'),0,2/9,0.01 )+quad(inline('(2-4.5 *x). *(2- 
4.5*x)'),2/9,4/9,0.01);

A=[al 1 al2 0 0 0 0 0  0 0 0
al2 a22 al2 0 0 0 0 0 0 0
0 al2 a22 al2 0 0 0 0 0 0
0 0 al2 a22 al2 0 0 0 0 0
0 0 0 al2 a22 al2 0 0 0 0
0 0 0 0 al2 a22 al2 0 0 0
0 0 0 0 0 al2 a22 al2 0 0
0 0 0 0 0 0 al2 a22 al2 0
0 0 0 0 0 0 0 al2 a22 al2 
0 0 0 0 0 0  0 0 al2 al l ]

b 1 =quad(inline('( 1-4.5 *x). *(sqrt(x). * sin(pi. *x. *sqrt(x)))'),0,2/9,0.01); 
b2=quad(inline('(4.5 *x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))’),0,2/9,0.01 )+quad(inline('(2- 
4.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))f),2/9,4/9,0.01); 
b3=quad(inline('(4.5*x-
1). *(sqrt(x). *sin(pi. *x. *sqrt(x)))'),2/9,4/9,0.01 )+quad(inline('(3 - 
4.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'),4/9,6/9,0.01); 
b4=quad(inline(f (4.5 * x-
2).*(sqrt(x).*sin(pi.*x.*sqrt(x))),),4/9,6/9,0.01)+quad(inline('(4- 
4.5*x).*(sq^t(x).*sin(pi.*x.*sqrt(x))),),6/9,8/9,0.01); 
b5=quad(inline('(4.5*x-
3). * (sqrt(x). * sinQn. * x. * sqrt(x)))'), 6/9,8/9,0.01 )+quad(inline('(5 - 
4.5*x).*(sqrt(x). *sin(pi. *x. *sqrt(x)))’),8/9,10/9,0.01); 
b6=quad(inline('(4.5*x-
4).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'),8/9,10/9,0.01)+quad(inline('(6- 
4.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'), 10/9,12/9,0.01);
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b7=quad(inline('(4.5*x-
5).*(sqit(x).*sin(pi.*x.*sqrt(x)))'), 10/9,12/9,0.01)+quad(inline(’(7- 
4.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'), 12/9,14/9,0.01); 
b8=quad(inline(,(4.5 *x-
6). * (sqrt(x). * sin(pi. *x. * sqrt(x)))’), 12/9,14/9,0.01 )+quad(inline(,(8- 
4.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'), 14/9,16/9,0.01); 
b9=quad(inline('(4.5 *x-
7).*(sqrt(x).*sinQ)i.*x.*sqrt(x)))1),14/9,16/9,0.01)+quad(inline('(9- 
4.5*x).*(sqrt(x).*sin(pi.*x.*sqrt(x)))r), 16/9,2,0.01); 
bl0=quad(inline(,(4.5*x-8).*(sqrt(x).*sin(pi.*x.*sqrt(x)))'),16/9, 2, 0.01);

b=[b 1 ,b2,b3,b4,b5,b6,b7,b8,b9,b 10]';

W=A\b

Fl=inline(,(wl*(l-4.5*x)+w2*(4.5*x))')
F2=inline(,( w 1 * (2-4.5 * x)+w2 * (4.5 * x-1))')
F3=inline('(w 1 * (3 -4.5 *x)+w2 *(4.5 *x-2))') 
F4=inline(f(wl*(4-4.5*x)+w2*(4.5*x-3))')
F 5=inline('(w 1 * (5 -4.5 * x)+w2 *(4.5* x-4))')
F 6=inline('(w 1 *(6-4.5 *x)+w2 *(4.5 *x-5))')
F7=inline('(w 1 * (7 -4.5 * x)+w2 *(4.5*x-6))') 
F8=inline(,(wl*(8-4.5*x)+w2*(4.5*x-7)),)
F9=inline(’(w 1 *(9-4.5 *x)+w2 *(4.5 *x-8))')

step=(maximum/9)

wl=W(l); 
w2=W(2); 
for i= 1:1: step 

t(i)=(i-l)*ratio; 
y 1 (i)=feval(F 1 ,w 1 ,w2,t(i)); 

end

wl=W(2);
w2=W(3);
for i=step+l: 1:2*step 

t(i)=(i-l)*ratio; 
y 1 (i)=feval(F2 ,w 1, w2,t(i)); 

end

wl=W(3);
w2=W(4);
for i=2*step+l: 1:3*step 

t(i)=(i-l)*ratio; 
y 1 (i)=fe val(F 3, w 1, w2 ,t(i)); 

end
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wl=W(4);
w2=W(5);

for i=3*step+l: 1:4*step 
t(i)=(i-l)*ratio; 
y 1 (i)=feval(F4,w 1 ,w2,t(i)); 

end
wl=W(5);
w2=W(6);

for i=4*step+l: 1:5*step 
t(i)=(i-1) * ratio; 
y 1 (i)=feval(F 5 ,w 1 ,w2,t(i)); 

end
wl=W(6);
w2=W(7);

for i=5*step+l: 1:6*step 
t(i)=(i-l)*ratio; 
y 1 (i)=feval(F 6, w 1, w2 ,t(i)); 

end
wl=W(7);
w2=W(8);

for i=6*step+l: 1:7*step 
t(i)=(i-l)*ratio; 
yl(i)=feval(F7,wl,w2,t(i)); 

end
wl=W(8);
w2=W(9);

for i=7*step+l: 1:8*step 
t(i)=(i-l)*ratio; 
y 1 (i)=feval(F8 ,w 1 ,w2 ,t(i)); 

end
wl=W(9);
w2=W(10);

for i=8*step+l: 1:9*step 
t(i)=(i-l)*ratio; 
y 1 (i)=feval(F9,wl ,w2,t(i)); 

end
plot(t,yl)

1 6  R u l e s  2  D i m e n s i o n  0  o r d e r

clear
maxnum=51; 
width=10;
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ratio=maxnum/width;
accuracy=0.0001

for i=l:l:maxnum 
tl(i)=i/ratio-5; 
for j=l:l:maxnum 

t2(j)=j/ratio-5;
x(iJ )=((t 1 (i) *t 1 (i)-t2(j) *t2(j)) * sin(t 1 (i)) * sqrt(abs(t2(i)))); 

end 
end
surf(tl,t2,x) 

hold on

%f=inline('((x. *x-y. *y). *sin(0.5 *x)* sqrt(abs(y)))');
%Al=inline('(0.5-0.1 *x)') A2=inline('(0.5+0.1 *x)');
%Bl=inline('(0.5-0.1 *y)’) B2=inline('(0.5+0.1 *y)'); (0.5-0.1 *x).*(0.5-0.1 *y)*).*

%AB 1 l^nlineCXCO.S-0.1 *x).*(0.5-0.1 *y))f)
%AB 12=inline('((0.5-0.1 *x). *(0.5+0.1 *y))')
% AB21 =inline(l((0.5+0.1 *x). *(0.5-0.1 *y))')
%AB22=inline('((0.5+0.1 *x).*(0.5+0.1 *y))')

f=inline(,(((0.5-0. l*x).*(0.5-0. l*y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y)))),); 
bl=dblquad(f,-5,5,-5,5,accuracy);
f^nlinettttO-S-O.Px^^O.S+O.^yXh^x^x-y^y^sintx^sqrttabsfy))))'); 
b2=dblquad(f,-5,5 ,-5,5,accuracy);
f=inline('(((0.5+0.1 *x).*(0.5-0.1 *y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))'); 
b3=dblquad(f,-5,5 ,-5,5,accuracy);
f=inline('(((0.5+0.1 *x).*(0.5+0.1 *y)).*((x.*x-y.*y).*sin(x)*sqrt(abs(y))))');
b4=dblquad(f,-5,5 ,-5,5,accuracy);
b=[bl,b2,b3,b4]’

f=inline('((0.5-0.1 *x). *(0.5-0.1 *y)). *((0.5-0.1 *x). *(0.5-0.1 *y))'); 
a 11 =dblquad(f,-5,5 ,-5,5,accuracy);
f=inlineC((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5-0.1 *x).*(0.5+0.1 *y))'); 
a 12=dblquad(f,-5,5,-5,5,accuracy);
f=inline('((0.5-0.1 *x).*(0.5-0.1 *y)).*((0.5+0.1 *x).*(0.5-0.1 *y))'); 
a 13=dblquad(f,-5,5 ,-5,5,accuracy);
f=inline(’((0.5-0.1 *x). *(0.5-0.1 *y)). *((0.5+0.1 *x).*(0.5+0.1 *y))’); 
a 14=dblquad(f,-5,5 ,-5,5,accuracy);

f=inline('((0.5-0.1 *x). *(0.5+0.1 *y)).*((0.5-0.1 *x).*(0.5+0.1 *y))’); 
a22=dblquad(f,-5,5,-5,5,accuracy);
f=inline('((0.5-0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x).*(0.5-0.1 *y))f); 
a23=dblquad(f,-5,5,-5,5,accuracy);
f=inline('((0.5-0.1 *x).*(0.5+0.1 *y)).*((0.5+0.1 *x).*(0.5+0.1 *y))f); 
a24=dblquad(f,-5,5 ,-5,5,accuracy);
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f=inline('((0.5+0.1 *x).*(0.5-0.1 *y)).:*((0.5+0.1 *x).*(0.5-0.1 *y))'); 
a3 3=dblquad(f,-5,5 ,-5,5,accuracy);
f^nlineCCCO.S+0.1 *x).*(0.5-0.1 *y)). *((0.5+0.1 *x).*(0.5+0.1 *y))?); 
a34=dblquad(f,-5,5 5 ,5 ,accuracy);

f=inline(,((0.5+0.1 *x). *(0.5+0.1 *y)). *((0.5+0.1 *x).*(0.5+0.1 *y))'); 
a44=dblquad(f,-5,5 ,-5,5,accuracy);

A=[all al2 al3 al4 
al2 a22 a23 a24 
al3 a23 a33 a34 
al4 a24 a34 a44]

W=A\b

f=inline('wl *((0.5-0.1 *x).*(0.5-0.1 *y))+w2*((0.5- 
0.1 *x). *(0.5+0.1 *y))+w3 *((0.5+0.1 *x).*(0.5- 
0.1 *y))+w4*((0.5+0.1 *x). *(0.5+0.1 *y))');

wl=W(l);
w2=W(2);
w3=W(3);
w4=W(4);

for i= l: 1 :maxnum 
tl(i)=i/ratio-5; 
for j= l: 1 imaxnum 

t2(j)=j/ratio-5;
x 1 (i j)=feval(f,w 1 ,w2,w3 ,w4,t 1 (i),t2(j)); 

end 
end
surf(tl,t2,xl) 

hold off
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