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Chapter 1
Introduction

The Big Bang theory, in which the Universe began in a hot dense state and gradually
expanded and cooled, has now become the standard model of cosmology. The general
acceptance of this model is due to three seminal observations.

e The measurement of the Hubble flow, indicating that the Universe is expanding.

e The measurement of light element abundances matching those predicted by Big

Bang nucleosynthesis.

e The detection of an isotropic background of radiation (Penzias and Wilson (1965))
at a temperature of 2.7K, the Cosmic Microwave Background (CMB), as predicted
by the Big Bang model.

A standard theory of structure formation within this Big Bang model is now also
emerging. In this model, tiny inhomogeneities in the primordial Universe provided the
seeds through which the large scale structure of galaxies and galaxy clusters could grow
through gravitational instability. This is supported observationally by the measurement of
tiny fluctuations in the CMB (Smoot et al. (1992)), and also by the filament-like structure
observed in high-redshift galaxy cluster surveys (e.g. Colless et al. (2001), Percival et al.
(2002)).

There has been a huge increase in the amount of observational data over the past
decade. This has meant that the results from a variety of different techniques can be
combined to give a set of concurrent values for the key parameters which determine the
evolution of the Universe within the standard Big Bang model. This has resulted in an

observationally favoured concordance model. The key features of this model are that:
e the Universe is flat,
e the expansion of the Universe is accelerating,

3



4 CHAPTER 1. INTRODUCTION

e ordinary baryonic matter can only account for about 5% of the total energy density,
the main contributions to the total density are dark matter (~ 1/3) and dark energy
(~2/3).

Dark matter is a material which can only interact gravitationally with the rest of the
Universe. Although there are a number of possible candidates from theoretical particle
physics, the nature of dark matter is still extremely speculative. Dark energy is a term
for a negative pressure which opposes gravity and causes the Universe to accelerate. The
simplest form of dark energy is a cosmological constant A, but other dynamic forms of
dark energy have also been proposed. The evidence for the acceleration of the expansion
rate comes from measurements of high-redshift supernovae (Perlmutter et al. (1999)). If
these constraints are combined with the CMB measurement of flatness, a Universe with
no dark energy is ruled out with high confidence. The concordance model also gives values
for the size and spectrum of the initial perturbations in the Universe.

However, although current observations indicate the existence of dark matter, dark
energy and primordial inhomogeneities in the Universe, our understanding of these new
concepts is still very limited. The current tasks of observational cosmology are to put
constraints on the nature of dark energy and dark matter and on the mechanism which
generated the initial inhomogeneities. One of the most promising new cosmological probes
is the measurement of the polarization of the CMB. This thesis discusses an experiment
specifically designed to measure this signal.

In this chapter I provide an overview of CMB polarization. In the first half I review the
formation of the CMB anisotropies and current status of CMB temperature measurements.
In the second half I then go on to look at how the CMB becomes polarized and how
observations of the CMB polarization can be used to probe cosmology.

1.1 The CMB

1.1.1 The CMB in a smooth Universe

The background cosmology

In order to discuss how the CMB can be used to test and constrain the concordance model
it is useful to first discuss the tools and parameters needed to describe an expanding
Universe. In the simplest case the Universe can be thought of as being perfectly smooth
and any perturbations are then added onto this simple model. The dynamics of this

smooth Universe can be derived from two initial assumptions:

e the large scale structure of the Universe is determined by gravitational interactions
and these effects can be described by Einstein’s theory of gravity, General Relativity,
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e on a sufficiently large scales the Universe is homogeneous and isotropic.

In General Relativity, a free particle will always travel on the straightest possible path
through 4-dimensional space-time. The gravitational effects we observe are due to the
curvature of space-time influencing the particle’s motion. The way in which the Universe
is curved can be expressed in terms of the space-time metric!, g,,. In four dimensions,
instead of thinking in terms of the distance between two points, it is more useful to think
in terms of the proper time between two events, 7. This is the time ticked on a clock
which passes through both events. A free particle will therefore travel along the path
along which the proper time takes it’s extremal value. The metric can be used to map the

coordinate interval between two events into the proper time using the metric equation:
ds* = g,,dr"dz". (1.1)

where the interval, ds, is related to the proper time by ds? = —dr2. The Einstein equations
give the relationship between the space-time curvature and the distribution of mass and
energy in the Universe:

G" + Ag"" = 8nT*™ (1.2)

where the components of the Einstein tensor G*¥ are obtained from the space-time metric
and the components of the stress-energy tensor T#” from the mass-energy distribution of
the Universe. The A term gives the contribution to the mass-energy distribution from
dark energy. In these equations, the curvature determines the distribution of matter and
energy, but then any change to any part of this distribution will alter the metric and so
change the overall distribution, which is consistent with the description of gravity as a
force between massive objects. The first assumption therefore tells us how to determine
the gravitational interactions given the form of the metric and the mass-energy distribu-
tion. The background metric can be obtained from the second assumption; homogeneity
and isotropy dictate that the space-time metric must be the Friedman-Robertson-Walker
(FRW) metric:

2
ds® = —dt* + a(t)? l—f%ﬁ + r*(d6* + sin®0dg) (1.3)

where (t, 7,0, $) are the coordinates specifying the position of a point in space-time and
k is either 0, -1 or 1 depending on the curvature of the Universe. The function a(t), the
scale factor, describes the expansion of the Universe.

To determine the form of the stress-energy tensor we assume that the different types
of matter and radiation in the Universe can be modelled as a fluid. This means that only

'Throughout this Chapter we use the notation commonly used in General Relativity in which Greek
indices (c.g. v) denote the four space-time coordinates and Roman indices (c.g. i) denote the threc
spatial coordinates. In this notation repeated indices imply a summation c.g. for a vector, V, gi; V7 =
gV 4 ¢gi2V2? + gi3V3. We alsoset c =G = 1.
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bulk properties need to be considered, not the motion of individual particles. The equa-
tions of motion, the continuity equation (conservation of energy) and the Euler equation
(conservation of momentum) can be used to completely describe the evolution of the fluid.
As a first approximation the perfect fluid model can be used. This means the fluid can
be completely described in terms of its pressure and density i.e. there is no vorticity
(rotational flows) or shear (velocity gradients) in the fluid. The stress-energy tensor then

takes a simple form in which only the diagonal elements are non-zero and are given by:
T = diag(p, P, P, P) (1.4)

where density, p(t), and pressure, P(t), are unknown functions of time. The factor a(t)
is found by solving Einstein’s equations using the FRW metric (to give G*”) and the
diagonal form of T#. The Einstein equations are a set of 10 equations, however, isotropy
and homogeneity reduce this set to just two independent equations: one equation from the
time-time component of Einstein’s equations and one from the space-space components.
The time-time component G% = 87T gives the Friedman equation:

(9)2=8—” kLA (1.5)

a

where the A term represents the contribution to the expansion from a cosmological con-
stant. The equations of motion of the fluid (which determine p in the above expression)
are just expressions for the conservation of energy (continuity equation) and momentum
(Euler equation) which are given by the expression:

DTH
=0 (1.6
Dzxv (1.6)

where D/Dz" represents a covariant derivative?. The terms in the covariant derivative
depend on the metric and so take the expansion and curvature of the Universe into
account. Again, due to spatial homogeneity, only the time component of this is non-
trivial (i.e. the Euler equation is not needed). This gives the continuity equation:

%(pa% = —Pdit(as) (1.7)

It is also possible (but algebraically messy) to obtain the continuity equation (1.7) by
combining the time-time (1.5) and space-space field equations. It is therefore possible to

2When we take a derivative, say dS/dx, we are finding the change in a quantity, S, if we change z by
a small amount, dz. If the metric is dependent on the value of the coordinates then dx will also depend
on the coordinate system being used and on the position at which the derivative is being taken. This can
be taken into account by using the covariant derivative, DS/Dx, which contains cxtra terms involving
the derivatives of the metric to allow for this coordinate dependence. If the metric has no coordinate

dependence, as is the case for Cartesian coordinates in flat space-time, the covariant derivative reduces
to dS/dzx.



1.1. THE CMB 7

describe all of the background cosmology with just two equations, the Friedman Equation
(1.5) and the continuity equation (1.7). However, something extra is needed to solve
this set of equations as there are three unknowns, a(t), p(t) and P(t) and only two
independent equations. To specify a complete solution, more physics is needed to specify
the relationship between p and P. This is the equation of state which can be written in
its simplest form as:

P=uwp (1.8)

where w depends on the type of matter/energy. The three main sources contributing to
T are non-relativistic matter (e.g. baryons and CDM) with w,, = 0, relativistic matter
(e.g photons) with w, = 1/3 and and dark energy with wg, < —1/3. If dark energy does
not evolve with time it can be modelled as a cosmological constant, A, for which w = —1.
However, in other dark energy models w, will take different values. One of the most
promising ways to determine the nature of dark energy is to put observational constraints
on wge. Once the equation of state is known, the continuity equation can be integrated to
find p as a function of a, and then the Friedman equation can be used give a as a function
of t.

Since the field equations are a set of differential equations, a unique solution also
requires the specification of a and @ at some instant of time. From an observational
viewpoint it is convenient to define the Hubble constant, H = a/a and to use the present
value of H, along with the present value of the density, denoted Hy and py, as the boundary
conditions for this problem. py is normally stated in terms of the critical density, p. =
3H?2/8m and is denoted by Qy = pg/pc. In a Universe in which only gravity influences the
expansion (i.e. a Universe with no dark energy), if the density of the Universe is loweer
than p. it will expand forever and if it is higher than p,. it will eventually re-collapse. It
is likely that the main contributions to €2y do not come from ordinary matter that can be
detected in the laboratory . For this reason, {1y is divided into five components, €2, for
ordinary baryonic matter3, Qcpas, for cold dark matter, ., for radiation, €, for hot dark
matter (which is thought to consist mainly of neutrinos) and (g, for the contribution
from dark energy. One of the main missions of observational cosmology is to find these
values at the present epoch in order to obtain the boundary conditions needed to solve
the equations governing the large-scale evolution of the Universe.

An important effect that can be seen from the continuity equation is that the density

of the different components of the Universe will evolve at different rates:

e for CDM, pxa™3

e for radiation, p x a™*

3In cosmology the term baryons is taken to include all non-exotic forms of matter, in particular it
includes clectrons.
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e for dark energy, p ox a=3(+we) | (with p o constant for a cosmological constant).

The overall expansion rate will therefore change as different components form the domi-
nant contribution to the equation of state. There are three distinct eras in the expansion
history of the Universe, the radiation dominated (RDE), matter dominated (MDE)
and dark energy dominated (DDE). The Universe will move from one epoch to another
as the Universe expands. The CMB was formed slightly after the Universe changed from
radiation domination to matter domination. We now go on to explain how the CMB was

formed in the expanding homogeneous Universe we have just described.

The formation of the CMB

At very early times, the Universe can be modelled as a plasma of different particles. The
density and temperature are so high that all of the reactions occurring in the plasma are
in equilibrium, with the rate at which any particle is created equal to the rate at which
it is destroyed. The interactions between different particles couple them together so that
they evolve as a single plasma. As the Universe cools and its density reduces the reaction
rates drop. When the reaction rate of a certain species falls below the expansion rate, the
reactions are not rapid enough to keep the particles in equilibrium and this species will
evolve separately from that of the rest of the plasma. This process is called decoupling.

The CMB is created when the photons decouple from the plasma. At this time, the
main components of the plasma are photons, protons and electrons. The electrons couple
to the protons through the electrostatic Coulomb interactions. The photons are coupled
to the electrons through Thomson scattering. The protons and electrons can combine to
from neutral hydrogen, but if enough photons have energies above the hydrogen binding
energy (13.6 eV'), the hydrogen will be quickly re-ionized so there will be no net hydrogen
production. The number of photons in the early Universe is much higher than the number
of baryons, so significant hydrogen production does not occur until the peak energy of
the photon distribution is about 0.25eV. The electron density will then drop rapidly,
reducing the Thomson scattering rate, and so the photons will decouple from the plasma.
This epoch is termed recombination.

The photons can be described by their distribution function, f(t,x, E,p). This gives
the probability that at time t, a particle will be at position, x, travelling with momentum
of magnitude*, E, in a direction defined by the unit vector p. For a homogeneous and
isotropic Universe, the photon distribution does not depend on position nor direction,
and so the distribution only depends on how the magnitude of the momentum varies
with time. For an equilibrium distribution of photons, this is given by the Bose-Einstein

4Note that as c=1, the magnitude of the photons momentum is equal to their energy, so this quantity
is given the symbol E.
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function: )

1t B) = pamro—1 o

where k, is the Boltzmann constant. The energy density is given by:
p(E) = g(E)f(E)EdE (1.10)

where g(E)dE is the number of energy states with energy in the interval dE. Re-instating
the correct factors of h and c, this gives the familiar black body energy distribution:

8mh s

pW) = —5 o= (1.11)

After recombination, the photons can evolve freely, affected only by the expansion of the
Universe. From the continuity equation it can be shown that temperature and frequency

of the photons scale as a™!.

The CMB frequency spectrum will therefore have a black
body spectrum, but with an amplitude much smaller than that of the photons before
decoupling due to the expansion of the Universe since that time. The 2.73K black body
spectrum of the CMB was measured by the FIRAS instrument on the COBE satellite
(Mather, J. C. et al. (1994)), as predicted by the Big Bang model. This is shown in

Fig 1.1.
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Figure 1.1: The frequency spectrum of the CMB as measured by COBE (Mather, J. C. et al.

(1994)). The x-axis has units of cm™.

In a Universe without any initial inhomogeneities, this black body distribution would
completely describe the CMB. However, the fact that galaxies and galaxy clusters exist
means that there must have been some density variations in the early Universe to provide
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the seeds for this structure. The next Section describes how these inhomogeneities create

anisotropies in the CMB temperature distribution.

1.1.2 The CMB temperature anisotropies

Perturbations at decoupling

In the standard Big Bang model, structure is formed out of this homogenous background
of particles through the gravitational instability paradigm. In this scenario, small de-
viations from homogeneity in the mass-energy distribution occur due to quantum mechan-
ical fluctuations in the early Universe. These perturbations grow into structure through
gravitational instability. Standard physics cannot be used to predict how these fluctu-
ation are produced as if we go far enough back in time conditions become so extreme
that current theories of particle physics and gravity will break down. In order to predict
the inhomogeneities in the CMB it is therefore necessary to assume that the Universe
contains small perturbations to homogeneity after a certain epoch in which General Rel-
ativity and standard particle physics can be used. The spectrum of these perturbations
can be parameterized, adding a number of new initial condition parameters to the
list of parameters which need to be determined from observations. Currently the most
plausible way in which these perturbations can be generated is called inflation. This is
discussed is Section 1.1.4.

To calculate the influence of these inhomogeneities on the CMB, we need to determine
their effect on the photon distribution at the time of decoupling. The density perturba-
tions are described by their deviation from the average density:

5=22 (1.12)
p

It is useful to picture these perturbations in terms of waves or fluctuation modes in the
homogeneous background with different spatial wavelengths A. The amplitude of each
mode, §(k), gives the size of the density fluctuation on each scale, where the magnitude
the wave vector, k, is 27 /). The evolution of the different modes will depend on the scale
of the perturbation.

There are two events which will affect the amplitude of each mode, matter-radiation
equality and decoupling. The expansion of the Universe will also means there are two
important scales affecting each mode, the horizon size (the maximum distance light can
travel since the start of the Universe) and the Jeans length (the largest scale at which
pressure fluctuations will be strong enough to resist gravitational collapse).

Scales bigger than the horizon are not affected by any causal processes and so evolve
as if they were in a separate Universe. When a mode is outside the horizon, the density
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perturbations for both photons and matter will behave in the same way. This evolution
depends on how the perturbations are defined with respect to the unperturbed back-
ground, which is determined by the choice of gauge. As will be discussed in Section
1.1.2, the two most commonly used gauges are the Newtonian gauge, in which super hori-
zon modes remain constant, and the synchronous gauge in which super horizon modes
will grow. When a mode crosses the horizon its subsequent evolution depends on if the
horizon crossing occurs in the RDE or the MDE. Small scale modes will enter the horizon
in the RDE. In this case, the growth of the CDM matter slows down compared to that
before horizon crossing. This is due to the fact that photons can free-stream out of the
perturbations. This motion will also inhibit the growth of the metric perturbations since
the photons are the dominant component influencing the metric.

After matter-radiation equality, CDM will become the dominant component and so
the growth of the metric and CDM perturbations is no longer suppressed. However, for
scales which are smaller than the Jeans length, Thomson scattering will create a pressure
which opposes the gravitational collapse of the baryons and photons causing the photon-
baryon fluid to oscillate. These oscillations will occur up until the photons decouple and
so the amplitude of each mode at decoupling will depend on the stage the mode is at in
its oscillation. The baryon density will also oscillate with the photons until decoupling,
at which point the baryon perturbations on each scale will catch up will those in the
CDM. Decoupling occurs just after matter-radiation equality, and so the growth rate of
the CDM perturbations will have been suppressed until only slightly before this time.
The metric perturbations will therefore still be relatively small. This is the reason that
the fluctuations in the CMB are so small compared to perturbations in the matter density

seen today. In summary:

e The evolution of super horizon modes is gauge dependent. In the Newtonian gauge
super horizon perturbations will remain constant, while in the synchronous gauge
they will grow. This is the same in both the RDE and the MDE.

e Sub horizon modes:

— in RDE

x growth of all perturbations is suppressed compared to that before horizon

crossing due to the free-streaming of the photons,
— in MDE before decoupling

x growth of CDM (and hence metric) no longer suppressed,

* perturbations in photons and baryons for modes smaller than Jeans length

will oscillate,
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— in MDE after decoupling

* photon perturbations are not strongly coupled to the metric (as they are

no longer coupled to baryons), so will remain constant,
* baryon perturbations can grow as they are no longer coupled to the pho-
tons,

* CDM perturbations continue to grow.

The next section shows how to extend the formalism set up in the Section 1.1.1 for
describing the photon distribution to calculate the amplitude and phase of each of the
modes in the photon perturbations at the time of decoupling. In the unperturbed case, the
photon distribution can be involved simply by using the fluid equations and the expanding
metric of the background space-time. When inhomogeneities are present, we must now
include the perturbations these create in both the metric and the photon distribution,

which makes the calculation more complicated.

Calculating the perturbations at decoupling

In Section 1.1.1 we saw that if the photons are in equilibrium at decoupling their dis-
tribution function will be a Bose-Einstein distribution. This will evolve only due to the
effects of expansion on the energy density and temperature of the Universe, which can
be calculated using the Einstein equations. However, when we add inhomogeneities this
will lead to perturbations in the photon distribution and the equilibrium distribution is
no longer correct. The perturbed distribution function is given by (Dodelson (2003)):

E -1
kT (t)[1 + 6((x, B, t)]> - 1J (1.13)

where ©(x) is the perturbation to the temperature field, © = 6T/T. © depends on both
the position of the photons, , and the direction of the photons, p. The fluid picture
of the photons is no longer valid as the introduction of perturbations gives the photon

distribution a directional dependence and the motion of individual particles becomes
important. This can be thought of as treating the photons as a gas instead of as a fluid.
It is therefore not enough to calculate just the continuity and Euler equations. Instead,
the evolution of the photons can be determined from the Boltzmann equation:

Df
o = CUl (1.14)

where C[f] are the collision terms. For photons at recombination this term is due to the
Compton scattering between photons and electrons and depends on the electron density,
the Thomson scattering cross-section, the baryon velocity and the photon distribution. If
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there where no collision terms the Boltzmann equation would be equivalent to a photon
geodesic equation which is just a mathematical statement of the fact that photons will
move on the straightest possible path through the perturbed space-time. This incorporates
all of the gravitational effects on the photons so is obviously dependent on the form
of the perturbed metric. As mentioned before, it is useful to expand the temperature
perturbation in terms of its Fourier modes, ©(k,p,t). The directional dependence of
each mode will depend only on the angle between the wave vector, k, and the photon
direction. It is therefore convenient to describe the direction in terms of u the cosine of
the angle between these two directions:

=kp (1.15)

and the magnitude of the wavevector k. The angular dependence of the photon distri-
bution function can then be expressed more clearly by expanding each Fourier mode in
terms of its multipole moments, ©,:

d
Ok, t) = “m O(k, u, t) (1.16)

In real space, the different multipoles, ©,(x, y, t), can be thought of as the size of the tem-
perature difference if an observer is at a point &, at time ¢ and compares the temperature
in different directions. For the monopole, By, there will be no difference in the tempera-
ture perturbation from any two directions, for the dipole, ©,, the biggest difference will
occur if the two directions are separated by 180°, for the quadrupole, ©,, if they are sepa-
rated by 90° etc. The first two moments are due to the density and velocity perturbations
in the photon distribution. Before recombination begins the photons are coupled tightly
to the baryons. The mean free path (the distance a photon can travel before it hits an
electron) will be very small and so any moments higher than the dipole will be removed
by this rapid scattering. This epoch is called the tight coupling limit and the photons
will behave as a fluid in this case with any directional dependence being lost due to the
rapid scattering. The first two multipoles can therefore also be derived from the fluid
equations for conservation of energy and momentum. The full Boltzmann treatment only
becomes necessary during recombination when higher-order multipoles begin to develop.

The form of the perturbed metric depends on the gauge chosen. Einstein’s equations
are a set of ten equations, but only six of these equations are independent. This is because
there are four degrees of freedom in the model, corresponding to a choice in the way
the four coordinates used to describe the perturbations are related to the background
cosmology. This choice is termed gauge freedom. The two main gauges used are
the synchronous gauge and the Newtonian gauge. The synchronous gauge defines the
perturbations in terms of the rest frame of the CDM. The Newtonian gauge defines the
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perturbations with respect to a fixed background into which the Universe is expanding.
Defining the metric perturbations in this way means that the equations reduce down
into familiar Newtonian equations for a gravitational field in the non-relativistic limit and
hence it is easier to interpret the resulting equations in terms of actual physical quantities.
This Newtonian gauge will be used throughout this Chapter.

The metric is no longer diagonal and can be written in the form:
Guv = ;j";w + h;w (117)

where g,{,’,“’ is the FRW metric describing the background space-time (Equation 1.3) and
h,, are the perturbations to the metric. For the perturbed metric, hy, is non-zero and

the metric line element takes the form (in the Newtonian gauge):
ds® = —(1 4 2¥)dt? + a?[(1 + 2®)6;; + 2H,;)dx*d’ + 2aB;dz’dt (1.18)

This introduces four new terms, ¥ and ®, the scalar perturbation potentials, B;, the
vector perturbation potential, and H;;, the tensor or gravitational wave potential. It is
useful to split the metric into these three components as the effects of scalar, vector and
tensor perturbations are decoupled. This means that the fluctuations in the CMB due
to scalar metric perturbations can be calculated independently of the fluctuations due to
tensor perturbations. This is called the decomposition theorem. Vector perturbations
create a vorticity or rotational motion which, unlike the perturbations caused by scalars
and tensors, will not be enhanced by gravitational collapse. As the Universe expands, any
initial vector perturbations will be strongly damped and so are expected to have no effect
on the CMB as they are negligible at recombination. The only way vector perturbations
could be important is if for some reason perturbations are continually being created up
until recombination, however, models in which this occurs are much more exotic than the
standard inflationary models (which predict no contribution to the CMB anisotropy from
vector perturbations) and so are not part of the current standard cosmological model.
Scalar perturbations are represented by two scalar potentials, the Newtonian potential,
¥ , and the curvature potential, ®. In the non-relativistic limit ¥ is equivalent to the
gravitational potential acting in Newtonian physics due the gravitational effects of the
baryons and the CDM. & represents changes to the motion of the relativistic particles due
to distortions in the metric. The tensor perturbations are represented by two variables,
hy and h,. For a perturbation in the positive z-direction the tensor contribution to the
metric will be given by:
hy h, O
Hij=| hy —hy 0 |. (1.19)
0 0 o
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The position of the non-zero components will vary depending on the direction of the
perturbation. This is equivalent to the standard metric used in the description of a
gravitational wave (Schutz (1985)). In fact, tensor perturbations can be thought of a

spectrum of very long wavelength primordial gravitational waves.

The perturbed stress-energy tensor for the photons will no longer be diagonal once
they have decoupled from the plasma. The photon distribution is now determined by four
components, the density, p, pressure, P, used in the fluid description, and also velocity, v,
and anisotropic stress (which is a tensor with components II,;) perturbations which are
now present due to the directional dependence of the photon distribution. The evolution of
the metric perturbations depends not only on the photons, but also on the perturbations
to the CDM and baryons. The perfect fluid approximation is valid for these species
through recombination and so their evolution can be determined using the continuity and
Euler equations. However, the coupling of the baryons to the photons through Thomson
scattering must also be taken into account, giving an extra term in the baryon Euler

equation.

The evolution of the photon distribution, © can therefore be determined by solving
the Boltzmann equation, where the coupling of the photons to the baryons depends on
the optical depth for Thomson scattering, 7, which will decrease as the electron density
reduces during recombination. This is coupled to the metric perturbations, ¥, ®, h,, h_,
through the Einstein equations. The metric perturbations will also be effected by the
CDM and baryon density and velocity perturbations, dcpm, b, Ycpom, Us, Which evolve
through the baryon and CDM continuity and Euler equations. This is summarised in
Fig. 1.2. For completeness these equations in the Newtonian gauge from Seljak and
Zaldarriaga (1996) are given on the next below.

photon Boltzmann equation
. . 1
O +iku® = & — ikp¥ — 7 [90 — O +iuvy, + '2-7’2(11)92 (1.20)
scalar metric perturbations
K20 + 3% (<i> + 9\1:) — —4ra®p
a a
k? (ci> + 9\1}) = 4ra?sf (1.21)
a

where dp is the sum of the average density of each species, p;, giving dp = 3=, 0;p; and 4 f
is the sum of the average momentum of each species, 6 f = 3_;(p; + P;)v;, where P, is the

average pressure of each species.
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tensor metric perturbations

hi + 2%h; + k*hy = 0 (1.22)
a
where i is either + or x.
CDM fluid equations
bcom = —kvcpm + 39,
VoM = —ngDM + kW (1.23)
baryon fluid equations
Sb = —kvy+ 3‘i),
%, = —%v,, + kT + 2k, + %(361 — ) (1.24)

where R = 4p,/3p, and P; is the second Legendre polynomial.
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Figure 1.2: An initial spectrum of metric perturbations is set up early on in the RDE of the
Universe. The evolution of these perturbations is governed gravitationally through the perturbed
Einstein equations, which link the metric to the matter and energy distribution of the Universe,
a combination of the effect of photons, baryons and dark matter. Conversely, the evolution of
these components is coupled to the metric evolution through the fluid equations for the density
and velocity of baryons and dark matter, and through the Boltzmann equation for the evolution
of the photons. In addition, there is a coupling of the baryons and photons through Thomson
scattering. The average background energy density of the Universe (determined through Fried-
mann and zero-order Einstein equations by the total matter density and the dark energy) will
determine the expansion rate which will influence the evolution of the different perturbations.
This set of coupled equations can be evolved from the initial conditions to the present day to
determine the photon distribution today.
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To find the present day temperature distribution of the CMB, O(k, u, to), the initial
metric fluctuations need to be defined at some epoch before recombination. This system
of equations can then be evolved to the present day. There are a number of methods which
can be used to carry out this procedure. The full numerical solution can be obtained by
expanding the temperature anisotropy in terms of its multipole moments. The evolution
of each moment in the hierarchy will depend on the previous moment, and so involving the
hierarchy for high mutipoles leads to a large system of equations to be solved at each time
step. A faster approach is to directly integrate the Boltzmann equation. The integral can
be separated into a source term, which does not depend on the multipole moment being
calculated, and a geometric term, which does not depend on the cosmological parameters
in the model. The source term can be computed from the first few moments of the
Boltzmann hierarchy, given a set of cosmological parameters. The geometric terms for
each multipole are just standard spherical Bessel functions. The integral approach greatly
reduces the number of equations to be solved for each time step and so greatly reduces
the computation time (Seljak and Zaldarriaga (1996)).

It is possible to gain an insight into the main processes occurring in the formation
of the photon perturbations by making a model in which a number of assumptions are
made to simplify the calculation presented in this Section. This system of equations can
then by solved analytically. The solutions obtained are not accurate enough to be used
to compare the theoretical model to the observations, but they highlight the main areas

of physics involved very clearly.

Approximate solution to the evolution equations

The analytic approximation assumes that recombination is instantaneous so that the
photons will go straight from the tightly-coupled epoch, where they can described solely
by fluid equations, to being completely decoupled from the rest of the plasma so that their
evolution depends only on the expansion of the Universe. This approximation means that
only the first two multipoles, ©y and O, are needed to describe the photon distribution
and that the two metric perturbations are given by ¥ = —&, so that only one metric
perturbation term is needed® (Hu and Sugiyama (1995)). A second assumption is that
the Universe is totally matter-dominated at the recombination epoch. This means that

the metric perturbations will be constant during and after recombination as the photon

SThis follows from another component of the Einstein cquations for the metric perturbation:
k2(¥ + @) o I (1.25)
where IT is a component of the anisotropic stress. Although this gives no new information over Equations

1.21, it clearly illustrates that we have ¥ = —& as we are assuming that the anisotropic stress at this
epoch will be negligible.
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oscillations will have no effect on the metric. The photon perturbations at recombination
can then be described simply in terms of acoustic oscillations of the coupled photons and
baryons inside potential wells due to the perturbations in the metric created by CDM. The
monopole and dipole at decoupling can be calculated using simplified versions of equations
1.20 - 1.24 to form a simple harmonic oscillator equation in which the potentials provide
the driving force for the oscillations in the plasma. In this picture there are three main
parameters needed to calculate the temperature perturbation at a particular point on the
sky at decoupling:

o The density of the photons at recombination (6p). This will give the photons an
intrinsic temperature.

e The gravitational potential (V) at recombination. This will create a gravitational

redshift or blueshift of the photon as it escapes from the potential well.

e The velocity of the photons a recombination, (0;) due to their oscillatory motion.

This will creates a Doppler shift in the radiation.

This simple model can be used to predict the size of each mode in the temperature
perturbation. For modes which are too big to have entered the horizon before decoupling
their are no oscillations in the plasma. It can be shown (Sachs and Wolfe (1967)), that
the temperature perturbation due to the under density or over density of the photons is
6y = —g\IJ. The gravitational redshift the photon experience when it leaves the potential
well will be ¥. This gives the total large scale temperature perturbation as:

O+ = %xy (1.26)

This is known as the Sachs- Wolfe effect. As the photons are redshifted, the temperature
perturbations on large scales correspond to cold spots in the CMB. For modes which have
entered the horizon before decoupling, the metric perturbations will remain constant (as
they entered the horizon in the MDE), but the photon perturbations can begin to collapse.
The density of the photons will therefore increase and the gravitational redshift term no
longer be dominant as we move to smaller scales. This will be the case for large-scale
sub-horizon modes. For smaller modes which entered the horizon sooner, the photons will
have begun to oscillate and so the amplitude of the mode will depend upon what stage
the oscillation has reached by decoupling. In addition, the sub-horizon modes will also
have a contribution from the dipole perturbation as the oscillations will create a fluid
velocity in the photons, this will be out of phase with the monopole term. When the
density perturbation is at a maximum the fluid velocity will be zero and when the density
perturbation is zero, the velocity perturbation will be maximum. This adds a smaller
term which is 90° out of phase with the monopole to the temperature perturbation.
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Despite its simplicity, this analytic solution to the perturbed Boltzmann-Einstein equa-
tions can predict most of the key features that come out of the full solution. However,
a number of other physical effects are also very important and must also be discussed
in order to understand the observations of CMB temperature anisotropies. These effects

will also be important when we go on to discuss the physics of CMB polarization.

Diffusion damping

The model used so far assumes that photons and baryons can be treated as a single
fluid throughout recombination. However, the photons are able to move a small distance
through the photon-baryon plasma given by the photon mean free path, so this fluid
approximation breaks down on small scales. The photons can random walk a number of
mean free paths in the time before decoupling, giving a characteristic distance that the
photons can travel, the diffusion length. This motion will damp out fluctuations on
scales smaller than the diffusion length as photons from hot and cold regions can mix
and smooth out the temperature distribution. This means that before recombination, the
smallest scale fluctuations will be very strongly damped. During recombination, before
the photons completely decouple, the diffusion length will increase and perturbations on
larger scales will become damped. This creates an exponential drop-off in the amplitude
of the perturbations at small scales, with the smallest scales being damped the most as
these will have been with-in the diffusion length for the longest time. This effect is often
called Silk damping as it was first calculated by Silk (1968).

Integrated Sachs-Wolfe effect (ISW)

The Sachs-Wolfe effect is the change in energy of photon due to gravitational red-shift as
it climbs of a region where the metric perturbation is high. This occurs at last scattering
when the photons decouple from matter. However, the same effect can also occur when
the photons pass through metric perturbations as they travel towards us from the last
scattering surface. For most of this journey the blue-shift a photon experiences as it falls
into an over-dense region is cancelled by the red-shift it experiences as it climbs back out.
However, if the amplitude of the metric perturbation changes during this time, there will
be a change in the photon’s energy. This situation can occur at two different epochs:

Early time ISW: In the matter dominated era, the metric perturbations will not vary
in the time it takes a photons to travel through them. However, for a short period
after recombination the Universe is not completely matter dominated and the effects
of radiation in the metric will still be important. Radiation causes the amplitude of
a perturbation to oscillate once the scale of the perturbation enters the horizon. The

temperature distribution on scales that enter the horizon just after recombination will
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therefore show an increased anisotropy at around the scale of the horizon at recombination
due to this effect.

Late time ISW: At present, the Universe is thought to be changing from an epoch of
matter domination to an epoch in which dark energy dominates. This causes the expansion
of the Universe to accelerate and so the metric perturbations will begin to stretch and so
will decay as the CMB photons travel through them. On small scales this effect will be
negligible as the photons will travel through roughly the same number of under densites as
over densities and so there will be no net change to the temperature anisotropy. However,
this cancellation will not occur on larger scales. At this effect occurs at late times, the
angle subtended by these scales will be large and so the late-time ISW causes an increase

in the temperature anisotropy on very large scales.

Early reionization

Diffusion damping causes a decrease in the size of the perturbations on scales below the
diffusion length at recombination. A similar effect will occur when the Universe reionizes
due to the first generation of stars and quasars (Hu and White (1997b)). The diffusion
length at this time will be the size of the horizon and so all modes inside the horizon
when reionization occurs will be damped by the same amount. The earlier reionization
occurs, the more severe the damping will be as there will have been more time for the
anisotropies to become damped.

We now have a picture of the fluctuations in the CMB at the time of decoupling, and
of how these fluctuations have evolved since then. However, we do not directly observe
the individual modes of the fluctuation, instead we observe these modes projected onto
the curved surface of the sky. This introduces a mapping between the three-dimensional
photon distribution we have discussed so far and the two-dimensional surface over which

the fluctuations are observed.

1.1.3 Observing the CMB

When we decompose the fluctuations of the photon distribution into k-modes we are
simply taking the Fourier transform of the distribution. As the Universe can be assumed
to be infinite, this gives a continuous spectrum of k values. When the photon distribution
is projected onto the surface of a sphere, the Fourier transform can no longer be used.
Instead, the most suitable functions for describing fluctuations on the surface of a sphere
are spherical harmonics, Yz (6, ¢). The subscripts £ and m are the integers describing the
mode of radiation where, £ = 0,1, .., 00, and for each ¢ value, m = —/, .., £. A sphere has
well defined boundaries and so the spectrum of different modes has now become discrete.

In this case, the integral used to define the Fourier transform becomes a summation over
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discrete modes:

AT6.¢) = 3% Ton¥en0,9) (1.27)

O
where AT is the deviation of the temperature field from its average value T,,. For the

spherical harmonic expansion, the mode amplitudes, T¢,, are known as multipole moments.

The variance of each moment is then:
(frll:nn'm'> = CzTéll’Jmm’ (128)

C77T is the temperature power spectrum and contains all the information about the tem-
perature field fluctuations. This is the spherical harmonic equivalent of the usual Fourier
power spectrum described in Appendix A. To obtain the power spectrum we are ef-
fectively averaging over the different values of m for each multipole. This can be done
because the Universe is isotropic and so each value of m can be thought of as a different
realization of the same measurement. There is only a single Universe in which the CMB
can be measured and there are only 2£+ 1 possible measurements of each multipole. This
sets a fundamental limit on how well each multipole can be measured due to the sample
variance associated with measuring a quantity from a finite sample of data. This is known
as cosmic variance. The cosmic variance is higher for low multipoles as there are fewer

values of m to average over.

It is important to note that these multipole moments are not the same as those
used in the angular expansion of the photon perturbations in Section 1.1.2. In this case,
Tem are the multipole moments of the temperature distribution projected using spherical
harmonics onto a sphere surrounding the Earth today. In the previous case, ©(x,t) are
the multipole moments of the radiation field surrounding a particular point, x, in the
Universe at a time ¢ projected out using Legendre polynomials. The CMB temperature
power spectrum is related to the multipoles in the photon temperature distribution seen
today by (Seljak and Zaldarriaga (1996)):

X = (4r)? / K2dkPy | ©5° (k. t = to) |2 (1.29)

where X is either S (for scalar contribution) or T (for tensor contribution). The total
power spectrum will be the sum of the tensor and scalar parts. Py is the power spectrum
of the initial perturbations to the metric. This will be discussed further in Section (1.1.4).

To find the anisotropies in the CMB temperature which are seen today, the pertur-
bations at decoupling need to be projected out onto a sphere surrounding the Earth at
the distance the radiation has travelled since decoupling, D. This projects the spatial
fluctuations at decoupling into the angular anisotropies we can observe today. By simple
geometry, a perturbation with a wavenumber k (so a size of 1 /k) will subtend an angle



1.1. THE CMB 23

l/£ « 1/kD on the sky, so the dominant contribution to the power spectrum for each /
will be from modes with k£ « i/D. For the tight-coupling approximation in the previous

section, this projection can be expressed as (Hu and Sugiyama (1995)):

0/fa,,*) « [eO+ *](ri)(2£+ 1)je{kD)
+ ©i(i?*)[*-1(") - (I+ D)3i+i(kD)] (1.30)

where jt are spherical Bessel functions, the conformal time, 77, is defined as dr] = dt/a(t),
70 is the conformal time at present and 7, is the conformal time at recombination. The
first term represents the contribution of the monopole at recombination to the anisotropy
seen today for each k-mode, and the second term is the same for the dipole. The total
anisotropy on each angular scale is then found by summing the contribution from each
k-mode as in Equation 1.29. Fig. 1.3 shows the spherical Bessel function for a number of
different multipoles. The functions peak when kD « £ so that, as stated previously, the

main contribution to Ce for each i will come mainly from a single k-mode at recombination.
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Figure 1.3: Spherical Bessel function used in the projection of spatial perturbations at recom-
bination to angular anisotropies seen today. The functions peak at kD « £so that the dominant
contribution to the anisotropy on each angular scale comes from a particular k-mode.

This correspondence between k-mode at last scattering and "-scale in the anisotropy
spectrum means it is possible to interpret the temperature power spectrum in terms of
the amplitude of the modes on different scales. On large scales, the anisotropy will be

due to large scale modes which have not entered the horizon by decoupling and so the



24 CHAPTER 1. INTRODUCTION

spectrum should be flat, as predicted by the Sachs-Wolfe effect. There is a slight excess
of power on the largest scales due to the late time integrated Sachs-Wolfe effect. The
anisotropy will then increase as the modes enter the horizon until the first peak in the
power spectrum is reached. The series of acoustic peaks will then correspond to modes
that have have had time to oscillate since entering the horizon. The first peak is due to
the mode which has had to just reach its first maximum compression at decoupling, the
second peak is due to the mode which has compressed and then rarefied etc. The 90°
phase shift in the velocity perturbations means that the dipole contribution fills in the
troughs in the power spectrum so that the difference in amplitude between the peaks and
the troughs is smaller. At small scales the amplitude of the acoustic peaks is reduced due

to photon diffusion. The different parts of the temperature power are shown in Fig. (1.4).

photon collapse ocoustic oscillations
R
3
é\l horizon crossing Ist compression
1st rorefroction
Sachs-Wolfe
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diffusion

10 100 1000
multipole, 1

Figure 1.4: Physical effects determining the temperature power spectrum

We now go on to describe possible theories for the mechanism which generates the

initial perturbations which create the CMB anisotropy.

1.1.4 Initial conditions - inflation

Inflation is a period in which the expansion of the Universe accelerates. In itself, the
theory of inflation does not explain how the perturbations in the Universe at the time of
decoupling came to be. Instead it is a mechanism by which fluctuations in the energy

distribution in the primordial Universe, which occur naturally as a result of the quantum
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nature the Universe at this time, became the large scale fluctuations needed to generate
the CMB anisotropies.

Inflation was initially proposed by Guth (1981) in order to solve a number of problems
in the Big Bang model. The problem most relevant to the CMB is the horizon problem.
The detection of the CMB as a uniform background indicates that the Universe is isotropic
even on very large scales that could never have been in causal contact, as there has not
been time for information to travel over such large distances. However, inflation proposes
a period of accelerated expansion during which the size of the Universe grows much faster
than the horizon size. This means that scales which were initially inside the horizon
will be stretched outside the horizon. Once inflation has finished, scales which were
previously inside the horizon will no longer be in causal contact, but because there was
thermal equilibrium over these distance before inflation the Universe will still have large
scale homogeneity. This period of expansion also allows the tiny quantum fluctuations to
stretch to much larger scales and so explains the existence of large-scale fluctuations after

inflation.

In order for inflation to occur, a form of energy with negative pressure which can drive
the accelerated expansion is needed. There are no standard forms of matter which have
this property. Instead it is theorized that a dynamic (time varying) scalar field, ®, was
initially present through-out the Universe. If the negative potential energy of this scalar
field is greater than its kinetic energy then it will effectively have a negative pressure and
inflation will begin. The form of the scalar field is fixed by specifying its potential V(®).
One way to generate a sustained period of inflation is for the form of the potential to be
slow rolling. This is analogous to a ball rolling down the side of a bowl. If the sides of
the bowl are too steep the ball’s kinetic energy will increase and quickly become greater
than its’ potential energy. Only if the sides of the bowl are very shallow will the potential
energy of the ball remain higher than its kinetic energy for a long period of time. Two slow
roll conditions exist relating to the parameters n and €, which are functions of the slope

and the curvature of the potential respectively (Peiris et al. (2003)). If the conditions:
n << 1, e<<1 (1.31)

are met then inflation will occur. If the form of the potential is chosen such that these
conditions are met then the potential is a valid inflationary potential. There are many
different inflationary models corresponding to different forms of the potential. For a given
potential, the size of the fluctuations when inflation ends can be found, as this will occur
when the slow roll conditions are violated. This can then be evolved backwards in time
using the equations of motion of the scalar field to the point at which a given scale exits
the horizon. Once this has occurred, the perturbation cannot evolve until it re-enters
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the horizon after inflation and so this will be the initial size of the perturbation which
creates the metric perturbations influencing the CMB. The range of scales influencing the
CMB will all exit the horizon at about the same time. It is therefore possible to define
the energy scale of inflation as the size of the potential when these scales exited the

horizon.

The initial scalar perturbations are parameterized by:

k ny—1
A% (k) = A% (ko) (k_o) : (1.32)
where A% (k) is the power spectrum of R, the curvature perturbation in the comoving
gauge (one in which the observer’s coordinates stretch along with the expansion), and n,

is the slope of the scalar power spectrum. The tensor perturbations are given by:

ne
836 = 830k (1) (1.33)
0

where AZ(k) is the power spectrum of gravitational waves from inflation and n, is the
slope of the gravitational wave power spectrum. The amplitude terms are evaluated at
the pivot wave number, k; = 0.05Mpc~!. When discussing inflation it is useful to define
the scalar perturbation in terms of a curvature perturbation, R, instead of directly using
the Newtonian potential ¥ defined in Section 1.1.2. This is because R is directly related
to the inflation potential at horizon exit and remains constant until a given scale has
re-entered the horizon (as opposed the actual scalar field perturbations which do not).
The perturbations generated by inflation can therefore be described in the simplest case
by four numbers, the amplitude of the scalar spectrum, A%(kg), the tilt of the scalar
spectrum, n,, the amplitude of the tensor spectrum AZ2(k,), and the tilt of the tensor
spectrum, n;. However, instead of refering directly to the amplitudes of the two power
spectra, it is often convenient to define two alternative parameters, A, the amplitude
parameter, and r, the tensor to scalar ratio. A is a number of order unity. If the scalar
power spectrum is calculated assuming that A% (ky) = 1, then A is the factor which this
quantity needs to be scaled to match the observational data. This definition is used in
order that a direct comparison with the WMAP results can be made. In the version of
CMBFAST used in the WMAP analysis, the scalar perturbations are defined in terms of
W, as opposed to R, and a value of A% (ko) = 1 is used to give the unormalized CMBFAST
output. The parameter A is related to A% (ko) by (Peiris et al. (2003)):

A (ko) = 8007r22—;’- !

A 1.34
T2us (1.34)
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The tensor to scalar ratio® is defined as:

Bk
Bh (ko)

(1.37)

A generic prediction of slow roll inflation is that r and n, are not independent but are
related by:

r = —2n,. (1.38)

This is called the consistency relation . The key observational parameters which can
be used to distinguish between simple inflationary models are therefore r and n,. These
parameters are directly related to the inflationary potential. In particular, the amplitude
of the tensor spectrum gives us the size of the potential at horizon crossing and hence
the energy scale of inflation. A measurement of r is therefore one of the holy grails
of observation cosmology as knowing this energy scale would allow us to determine the
state of the Universe during inflation allowing us to probe back in time to the earliest
moments of the Universe. However, even in the most optimistic models, r is predicted to
be extremely small and so a detection of this signal is a huge experimental challenge.

A key test for the concept of inflation is the presence of super-horizon fluctuations in
the CMB power spectra. These can only occur if there is some inflation-like mechanism
which can stretch the primordial fluctuations out to this scale. Other mechanisms for
structure formation can only create perturbations on sub-horizon scales and so are ruled
out by the presence of large-scale fluctuations. The presence of acoustic oscillations in
the CMB can also be seen as a signature of inflation. In inflationary models, all modes
of a given scale will begin to oscillate at exactly the same time (when the mode re-enters
the horizon). This means they will oscillate in phase. This phase coherence is needed
for acoustic oscillations to be created at decoupling. In other models, perturbations
on the same scale can be created at different times and so will not necessarily oscillate
in phase and could therefore cancel out over time. If super-horizon fluctuations and
acoustic oscillations are not present in the CMB spectrum this would rule out inflation.
The most solid test for inflation would be an observational validation of the consistency

relationship as it is highly unlikely that any other mechanism would produce exactly the

6 A number of different definitions arc used in the literature. The most common alternatives are to
define r in terms of the Newtonian potential:

A% (ko)
= ) 1.35
" R (k) (1.35)
so that 7¢ ~ (5/3)%r, or in terms of the CMB radiation quadruples:
Cfl‘
rQ = E% (1.36)

The relation between 7 and rg depends on the cosmological parameters used in the model.
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same relationship. However, measuring n, is even more difficult than measuring 7.

The simplest possible model for the initial perturbations is that of a scale-invariant
(n, = 1) spectrum (often called a Harrison-Zel’dovich spectrum). This is motivated by
the fact that conditions will not change much over the short timescale in which all of the
relevant modes will exit the horizon. There is strong observational evidence that n, =~ 1
(e.g. WMAP first year results). Any deviations from this gives a red (n, < 1) or a blue
spectrum (n, > 1). A further extension to this model is to allow the spectral index to
vary with scale. This is referred to a ‘running of the spectral index’ and is parameterized

by defining the spectral index as:

k
’n_,(k) = ns(ko) + a-l—kln (k—o) . (139)

It is possible to generate a wide range of possible values of these parameters by defining
different forms for the potential. It is also possible to extend the model even further to
include more than one dynamic potential using hybrid inflation models.

The perturbations discussed so far are actual perturbations to the metric and hence
the curvature of space-time. These are called adiabatic perturbations as there is no
change in the entropy of the Universe due to the perturbation (a more descriptive name
is isentropic perturbations). However, it is also possible for fluctuations to occur in
the relative abundances of different particles (entropy fluctuations) without changes the
curvature. These are called isocurvature perturbations. Hybrid inflation would be
needed to explain the existence of this kind of perturbations as it cannot be generated
with a single scalar field. This would also complicate the parmeterization further by
introducing any number of new initial power spectra corresponding to different types of
isocurvature fluctuations.

1.1.5 Status of CMB temperature observations

The detection of the CMB by Penzias and Wilson (1965) paved the way for a generation
of experiments attempting to measure the CMB anisotropies. The COBE satellite (Smoot
et al. (1992)) confirmed the presence of anisotropies in the CMB and its measurement
of this anisotropy on large angular scales supported the case for the existence of super
horizon fluctuations at last scattering.

The large-scale COBE measurement was followed by a series of ground-based and
balloon experiments aiming to measure the first peak in the temperature power spectrum.
If the current paradigm is correct, the position of this peak gives the size of the horizon
at recombination. The angular scale subtended by the peak depends on the curvature

of the Universe, and so the position of this peak can be used to infer if the Universe
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flat. Measurements from a number of experiments, in particular, BOOMERANG (Masi,
S. et al (2003)) and MAXIMA (Hanany, S. et al. (2000)) confirmed the existence of
the first acoustic peak at ¢ ~ 200. This location is consistent with a flat Universe.
These measurement were then extended out to smaller angular scales by interferometric
experiments such as the VSA (Grainge, K. et al. (2003)), DASI (Halverson, N. W et al.
(2002)) and CBI (Pearson T. J. et al. (2003)), confirming the existence of the series of
acoustic peaks which can only be created if the initial perturbations are coherent, ruling
out a number of competing theories to inflation.

CMB temperature measurements culminated in the recent results of the WMAP satel-
lite which measured the temperaure anisotropy out to £ ~ 600 (Hinshaw, G. (2003)).
These results are cosmic variance limited up to ¢ ~ 350 and this range will be extended
with future data sets. The WMAP observation allowed the key cosmological parame-
ters to be measured to high precision with a single data-set. The best fit parameters
were consistent with measurements made from previous observations and reinforced the

emerging concordance model. The WMAP best-fit parameters are given in Table 1.1. The

Parameter | A | n, [dn,/dInk| h [ Q.h° | Qh? r
Value 0.84 | 0.96 -0.042 0.7410.135 1 0.023 | < 0.71
Error 0.1 ]10.03 0.02 0.03 | 0.006 | 0.001 -

Table 1.1: WMAP best fit cosmological parameters. Taken from Table 9 of Spergel D.N. et al.
(2003). The analysis assumes a flat Universe and so a value of 4, of 0.75 can be obtained from
the matter density. This model also includes the reionization optical depth, but this is derived
from polarization measurements and is discussed later in Section 1.2.5.

data favours the simplest model of a flat Universe with a near scale-invariant spectrum
of gaussian adiabatic perturbations composed of baryons, dark matter and dark energy.
The only hint of any deviation from this simple model is the possibility of a running of the
scalar spectral index, which is favoured if additional non-CMB observations (2dF galaxy
redshift survey and Lyman « forest measurements) are added to provide information from
different redshifts.

The future of CMB temperature measurements therefore lies in making high resolu-
tion observations in order to constrain the higher multipoles in the power spectrum. This
will not greatly improve constraints on the cosmological parameters measured by WMAP,
but will begin to probe secondary effects occurring at lower redshift such as the Sunyaev-
Zel’dovich (SZ) effect which causes a small spectral distortion of the CMB blackbody
spectrum when CMB photons scatter off hot electrons in galaxy clusters. This will allow
the CMB to be used to investigate the growth of large scale structure and the properties
of clusters. Measurements as higher angular scales will also allow tighter constraints to
be made on the primordial spectral index n,. However, as this measurement requires a
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knowledge of the power spectrum over a range of angular scales, combining the results
from a low resolution experiment of the whole sky (such as WMAP) and a high resolu-
tion measurement on a small patch of sky (as would be obtained from a ground-based
measurement) would be difficult as this would require a accurate knowledge of any calibra-
tion differences between the two experiments. However, Planck, a full-sky high-resolution
satellite mission is currently under construction and is set to launch in 2007. This will
provide a cosmic variance limited signal up to high ¢. The Planck satellite will therefore
provide the most precise possible measurement of the CMB temperature power spectrum

on all but the smallest angular scales.
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1.1.6 Key points

e The CMB is a relic of the radiation created at a redshift of 1100 when the re-
combination of electrons and photons allowed photons to decouple from the rest
of the matter in the Universe. This radiation has been redshifted to microwave
wavelengths.

e To zeroth-order the Universe can be described by a perfectly homogeneous and
isotropic expanding fluid. This can be parameterized by the expanison rate, given
by the Hubble parameter, h, and density parameters for baryons, €2, cold dark
matter, (lcpm, radiation, €2,, and dark energy, Q..

e There are small inital perturbations to this homogeneous background which can
begin to grow once the Universe becomes matter dominated. At recombination these

perturbations are still small, but they can be observed through the anisotropies they
create in the CMB.

o The level of the CMB anisotropies on different scales depend on the values of each
of these densities at recombination and on the expansion of the Universe as the
photons propagate through it. The CMB can therefore be used to constrain the
values of the cosmological parameters.

o The initial perturbations can be decomposed into two parts, scalar perturbations
and tensor perturbations. These are parameterized by power-law spectra giving four
perturbation parameters, the amplitude of scalar perturbations A, the power law
index (or tilt) of the scalar spectrum, n,, the ratio of tensor-to-scalar perturbations,

r, and the tilt of the tensor spectrum, n;.

e A possible mechanism for generating these fluctuations is inflation. Measurements of
these perturbation parameters can be used to test and refine the inflationary model.
In particular a measurement of r directly probes the energy scales of inflation.

e The CMB anisotropies measured on the sky today are decompsed into multipole
moments to give the the temperature power spectrum, Cf7. This encodes all
of the information on cosmological and perturbation parameters contained in the
anisotropies if the inital perturbations are gaussian. The limit on how well this

power spectrum can be measured is set by cosmic variance.

e The temperature power spectrum on different angular scales has been measured by
a number of experiments, culminating in the recent results of the WMAP satellite.
This has allowed the CMB to put tight constraints on a number of parameters.
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e The upcoming Planck satellite will allow a cosmic-variance-limited measurement of
the CMB up to high multipoles. The focus of future CMB temperature measure-

ments will therefore be on observing at very small scales to look at secondary effects

occuring after recombination.

e The next big challenge in CMB observations is the measurement the CMB polar-

ization.
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1.2 The polarization of the CMB

1.2.1 The Stokes parameters

We begin the discussion of the polarization of the CMB by discussing the basics of po-
larized light. The most fundamental way to describe electromagnetic (EM) radiation is
in terms of the variation of the magnitude and orientation of its electric field vector, E.
For a sinusoidally varying EM wave travelling in the z direction with wavevector, k, and
angular frequency, w, the electric field at each time, ¢, can be described in terms of the

superposition of two orthogonal waves:

E:(2,t) = Ey, cos(kz — wt) (1.40)
Ey(z,t) = Ey, cos(kz — wt + &) (1.41)

For unpolarized radiation, the ratio of the amplitudes of the two components, Ey,/Ey,,
and their phase difference, { will vary randomly with time. However, if these quantities
remain constant for a time which is long compared to the vibration period of the wave,
the radiation is said to be polarized. If these quantities are always constant the radiation

is completely polarized.

The sense of the polarization depends on the value of £. If £ is an integer multiple of
7 the radiation is linearly polarized and the electric field vector oscillates in a fixed plane.
If £ takes any other value the radiation is elliptically polarized and the tip of the electric
field vector traces out an ellipse. We expect the CMB to be linearly polarized and so
can restrict the discussion to the parameters of linearly polarized radiation. Completely
polarized radiation can be represented by a vector diagram such as that in Figure (1.5). If
we specify the two parameters E, the maximum amplitude of the electric field vector, and
X, the angle of the vibration with the reference direction, the polarization is completely
defined.

However, experimentally it is difficult to measure the size of the electric field vector and

the polarization angle. The parameter of the radiation which can actually be measured

Figure 1.5: Parameters
used to define completely
polarized radiation

Y
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is its intensity, J, where I = (E?) (the angled brackets denote a time average). It is
therefore useful to define the polarization state in terms of the intensities I, Q and U, the
Stokes parameters. This is described fully in Tinbergen (1996). A polarimeter is a device
which detects the intensity of the component of the radiation in one particular direction.
If we orientate one polarimeter (co-polar, z) along the reference direction and another
(cross-polar, y) at right angles to the first, the intensity detected by each polarimeter is
(from Figure (1.5)):

I, = <E’2 cos? x> (1.42)
I, = (E*sin’ X) (1.43)

The Q Stokes parameter is defined as the difference between the intensity measured by

these two detectors:
Q=1,—1I,=1Icos2x (1.44)

If the whole system is then rotated by 45° we detect two new intensities:

Lyas) = (E®cos®(x — 45°)) (1.45)
Iyas) = (Esin®(x — 45")) (1.46)

The U Stokes parameter is defined as the difference between these two intensities:
U= 11(45) - Iy(45) = I'sin 2X (1.47)

The third Stokes parameter, I, is just the total intensity.

These definitions only apply if the radiation is completely polarized. However, in
general, radiation will only be partially polarized. It is useful to represent this case as the
sum of a polarized intensity, /, and an unpolarized intensity I,

I=Ip+1I,=1I,+ (E?) (1.48)

The degree of polarization, p, is then defined as:

IP
p="7 (1.49)

For the unpolarized component the electric field direction will vary randomly between all
possible values of x. On average the two orthogonal detectors will each detect half of the
unpolarized intensity:

L=1,=:1, (1.50)
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The Q and U Stokes parameters are now defined in terms of the polarized intensity only:

Q=1I,-1I,=I,cos2x (1.51)
U = I;(45) — Iyas) = I,sin2x (1.52)

The Q and U Stokes parameters are related to the total polarized intensity by:
Q*+U*=1 (1.53)

The Stokes parameters, Q and U, are therefore easily measurable intensities which can be

used to obtain the fundamental polarization parameters, p and .

1.2.2 E-B decomposition
Definition of E and B fields

The Stokes parameters are a useful representation of the polarization field as they are
relatively easy to measure experimently. However, because Q and U depend on the angle
between the direction of the polarization and the axes of the reference system they are
coordinate-dependent quantities. This is because polarization is not a scalar quantity so
cannot be defined by a single quantity at each point. Instead, the polarization can be

thought of as a tensor quantity of the form:

_1(e v
P_2(U-Q)' (1.54)

where Q and U are defined on a flat plane perpendicular to the direction of propagation of
the radiation. The polarization tensor transforms as P’ = RT PR where R is the standard

rotation matrix. This gives Q and U in a coordinate system rotated by an angle 6 as:

Q@ = Qcos(20) + Usin(20)

_ . (1.55)
U = —-Qsin(20) + U cos(20)

It is therefore useful to re-parameterize the polarization tensor in terms of two rotationally
invariant quantities. These are denoted by E and B. The technique used to achieve this
decomposition is similar to the decomposition of a vector, V, into a irrotational part,
Vir (V x Vi = 0), and a divergenceless part, Vg (V- Vg = 0). This can be done by
expressing V;, as the gradient of a scalar potential, ¢ (as all gradients are irrotational,
V x (V¢) = 0), and expressing V4 as the curl of a vector potential, A (as all curls are
divergenceless, V - (V x A) = 0). The decomposition of a vector is therefore given as:

V=V¢+VxA. (1.56)
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For a 2 x 2 symmetric trace-free tensor such as the polarization tensor, an equivalent
(although slightly more complicated) decomposition can be made in which P is expressed

as:

P = fy(¢E) + fe(¢B) (1.57)

where ¢z and ¢p are scalar potentials. The functions f; and f. are the tensor equivalents
of the gradient and curl operators. These operators are functions of second derivatives,
reflecting their tensor nature, as opposed to the operators used in the vector case which are
all functions of first derivatives. The exact form of these operators is given in Appendix
B. The E and B fields are then defined as E = V?¢z and B = V2¢p. B is known as a
pseudo-scalar field as it is invariant under rotation but changes sign under reflection. The
B-field therefore has opposite parity to the scalar T and E fields. The E-B notation is an
analogy with the vector case for electromagnetism where the electric field is irrotational

and the magnetic field is divergenceless.

As E and B depend on the second derivatives of Q and U they are therefore non-local
quantities and represent the global properties of the polarization field. In the small-scale
limit, we can make a Fourier decomposition of the polarization field (Seljak (1997)). The
relationship between the Fourier components of the two representations is relatively simple
(see Appendix B):

E(l) = Q@cos(2¢) + U(€)sin(26)

i , (1.58)
B(f) = -Q()sin(2¢e) + U(£)cos(2¢y)

where ¢, is the angle between the z-axis of the coordinate system and the polarization
direction. For an E-field the direction of the polarization at each point is perpendicular
or parallel to the direction in which the polarization strength is changing most rapidly.
For a B-field the direction of polarization is a +45° to this direction. An example of
the polarization pattern for a pure E-field and a pure B-field is shown in Fig. 1.6. The
E-field shows a divergence-like patterns around areas in the which the polarization peaks
where-as the B-field shows rotational patterns.

For scales on which the curvature of the sky is significant a simple Fourier decom-
position is not possible and a spherical harmonic expansion, similar to that used in for
the temperaure field, can be made. However, because the field is now determined by two
quantities, two sets of basis functions are needed. The basis functions must also have
the same transformation properties as the polarization field. There are two alternative
formalisms which can be used to make the expansion. The first is that of Kamionkowski
et al. (1997b). This extends the idea of the polarization as a tensor field, but on the
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Figure 1.6: The polarization field can be represented by lines where the the length of the
line gives the polarized intensity (y/Q2+ U2) and the orientation gives the polarization angle
at each point. For an E-field (left) the lines are orientated parallel or perpendicular to the
direction in which the field is changing most rapidly giving circular patterns. For a B-field
(right) the lines are orientated at +45° to this direction creating spiral patterns. Figure taken
from http://kong.physics.berkeley.edu/ yuki/CMBpol/

surface of a sphere instead of on a plane. The polarization matrix is now:

0 ~U sin(0)

1/
P1 _wsin0) —Qsin2(0) (159)

where 9 and ¢are the standard spherical coordinates. This polarization tensor can be
expanded in terms of tensor spherical harmonics, Y"m)ij and Y(im\ij (these are quantities

derived from the second derivatives of spherical harmonics) giving:

Pij (0, £H=7 0)+ . (1.60)
tm

E and B are still the tensor equivalent of a curl-free and divergence-free fields, but the
decomposition is more complicated as the second derivatives are over a curved surface
instead of a flat plane.

An alternative expansion is given by Zaldarriaga and Seljak (1997). This definition is
becoming common place as it is used in the CMBFAST Boltzmann code. In this case,
instead of defining polarization as a tensor field, the two complex quantities (Q = iU) are

used. These are spin-2 quantities as they transform under rotation by an angle 6 as:

{Q+iUy = e*2i0(Q+iU) (1.61)


http://kong.physics.berkeley.edu/
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which is alternative way of expressing the relations in Equation 1.55. The spin-2 property
is related to the fact that a polarization ‘vector’ is head-less so it can be rotated back
to its initial position after a 180° rotation as opposed to the 360° rotation needed for a
spin-1 quantity such as a vector. These spin-2 quantities can be decomposed in terms of
spin-2 spherical harmonics _3Y(¢m) and 2Y(em) (these are again formed from the second
differentials of spherical harmonics, but are not the same as tensor spherical harmonics)

giving (Lewis et al. (2002)):

QxiU = Z (Etm + iBlm)q;z Yim. (162)
m

A detailed discussion of how this decomposition can be described in terms of spin-2
differential operators is given by Bunn et al. (2003).
The two point statistics of the CMB can therefore be completely described in terms

of the covariances of the multipole moments, T¢m, Eem and Bem:

(TpnTom') = CT 6000mm  (EimEem) = C£P 8w bmm
(B;mBe'm'> = CtB 36”’5mm' (Te’:nEl’m’) = qEéit’émm’ (1-63)
<T;mBl'm’> = C;I‘B(Slf’(smm’ <E;mBl’m’> = C(EBéll’émm’-

As the B-field has opposite parity to the T and E fields the TB and EB correlations
are zero if we can assume that parity is conserved. If the CMB is a Gaussian random
field, as predicted if the metric fluctuations are generated from zero-point fluctuations by
inflation, the statistical properties of the CMB temperature and polarization fields are
completely defined by the four power spectra, C7 7, CFE, CEB and C7F. The scalar and
tensor contributions to these power spectra are shown in Fig. 1.7.

The two different formalisms produce power spectra which are exactly equivalent up to
an all important factor of two where C,E B(ES) — 2(3';E BEES) and C;r E@s) \/§C,T E(KKS)

The E-B decomposition is chosen in this way not only as a convenient way of comparing
different observations, but also from a deeper theoretical motivation. Due to the geomet-
ric properties of the B-mode polarization signal, B-modes cannot be produced by scalar
perturbations at decoupling (as will be discussed in the next section). This means that
any B-mode signal produced at decoupling is a direct signature of tensor met-
ric perturbations (Seljak and Zaldarriaga (1997), Kamionkowski et al. (1997a)). This is
extremely useful as the tensor contribution to the temperature and E-mode anisotropies
is expected to be much smaller than the scalar contribution and so cannot be untangled
from the scalars. This is because the measurement of the tensor component is limited
by the cosmic variance of the much bigger scalar signal, particularly on the large scales
where the tensor signal is significant (as shown in Fig. 1.7). It will therefore never be

possible to reduce the variance in these large-scales measurements. The measurement (or
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Figure 1.7: The scalar (left) and tensor (right) components to the four CMB power spectra
(black - TT, grey - TE, blue - EE, red - BB). The scalar contribution to the B-mode signal is a
secondary effect due to gravitational lensing and is generated after last scattering. A tensor to
scalar ratio of 0.1 is used.

definite non-detection) of this B-mode signal is one of the only7 tools which can be used

to investigate inflation.

Mode-mixing

For a full-sky map the definition of E and B modes is unique and any polarization can
cleanly separated into these two components. However, if the surface on which the polar-
ization field is defined has boundaries the E/B decomposition is no-longer unique (Bunn
(2002)). A finite patch of sky can be decomposed into an E-field and a B-field, but there
will be some power left over that satisfies the conditions for both E (‘curl-free’) and B
(‘divergence-free’) modes. These are called ambiguous modes (Bunn et al. (2003)). Using
the full sky definitions for E and B to separate the map into its two components will mix
some of this ambiguous mode into the pure E and B fields. This is particularly a problem
for measuring the cosmological B-field. This is expected to be very small and so mixing
a component which is not part of the true B-field into the signal could potentially swamp
this small signal. This process is therefore also known as E-B leakage as it will result
in some of the full-sky E-mode leaking into a partial sky measurement of the B-modes.
Methods of separating a finite polarization field into pure E and B modes without losing

too much information to the ambiguous mode have been derived by Lewis et al. (2002)

7t is also possible that space-based gravitational detectors will one day be able to directly measure
tensor perturbations on smaller scales
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and Bunn et al. (2003). These authors also show that the ambiguous mode is generated
mainly at the boundaries of the survey and so can be minimized if the shape of the patch
is chosen to reduce the size of the boundary compared to the area of the patch. Circular
patches are therefore the best. The ambiguous modes are also mainly generated on scales
of the size of the patch and so are not as much of a problem if the scales of interest are

smaller than the the size of the survey.

1.2.3 Generation of CMB polarization

In a perfectly homogeneous Universe the CMB will not be polarized. This was confirmed
by the first detection of the CMB by Penzias and Wilson (1965) who found that the
radiation they detected was unpolarized down to the sensitivity level of the observation.
However, if there are inhomogeneities in the Universe, the CMB can become polarized as
the photons Thomson scatter from free electrons (Rees (1968)). The number of photons
which are polarized is very small, creating a polarization anisotropy which is less than 10%
of the temperature anisotropy. This is because polarization can only be created if there is
a quadrupole temperature distribution surrounding the scattering electron. As discussed
in Section 1.1.2, before recombination begins the tight coupling between photons and
electrons washes out any angular dependence in the temperature distribution around an
electron other than the monopole and the dipole. After recombination there will be very
few electrons available to scatter the photons. The primary polarization can therefore
only be generated in the short period of time in which tight coupling has broken down
enough for there to be a significant quadrupole distribution around an electron, but the
electron density is still high enough for frequent Thomson scattering to occur. A secondary
polarization epoch which increases the polarization signal on large-scales can occur when
the Universe is reionized.

In this Section we first look at how radiation can become polarised by Thomson scat-
tering. We then discuss the features of the polarization anisotropy spectra, in particular
the acoustic oscillations in the anisotropy spectra and the differences between the polar-
ization generated by scalar and tensor perturbations. The discussion here is based on
review articles from Hu and White (1997a), Kosowsky (1999) and Zaldarriaga (2003).

Polarization from Thomson scattering

Electrons are charged particles and so interact with the electromagnetic field of incoming
radiation. If the energy of the incoming photon is low, then Thomson scattering will
occur in which the radiation scatters without changing its energy. The interaction is such
that the intensity of the out-going radiation peaks in a direction perpendicular to the
direction of the incoming radiation. Only the electric field components perpendicular to
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the direction of scattering are transmitted, so this process generates linear polarization
from unpolarized light, as shown in Fig. 1.8 (left). However, for an isotropic radiation
field, the outgoing components of incoming unpolarized radiation for orthogonal direc-
tions will create outgoing radiation with no net polarization (Fig. 1.8 (middle)). Only if
the intensity of radiation in orthogonal directions is different will a net polarization be
generated (Fig. 1.8 (right)). For this to occur the temperature distribution around the

scattering electron must have a quadrupole moment.

Figure 1.8: Generation of polarization from Thomson scattering. The electron is sitting at the
centre of the grid in each case and the lines represent the polarization of the incoming radiation
in the direction parallel to each line. Left: Electron generates polarized radiation as it will pref-
erentially re-emit radiation whose polarization is orthogonal to the scattering direction. Middle:
An isotropic distribution does not generate polarization. Right: A quadrupole distribution will
generate polarization.

Polarization from scalar and tensor perturbations

As discussed in the last Section, the polarization field generated is different for tensor and
scalar perturbations. Scalar perturbations can only produce El-mode polarization, whereas
tensor perturbations typically produce an equal amount of E-modes and B-modes. This
is related to the different type of quadrupole produced by the different types of pertur-
bations. A quadrupole can be described in terms of the spherical harmonic distributions,
y2Q Y2+, V2£2, each of which leads to a different type of polarization field. For scalar per-
turbations, an m=0 quadrupole is produced due to the radiation in different directions
being Doppler-shifted by different amounts. We consider a single density mode with an
electron in a trough of the density perturbation. If the mode is in an expanding phase
of its oscillation the photons from the two directions parallel to the direction of expan-
sion will be moving away from the electron and so the radiation field in this direction is
Doppler shifted, whereas photons from directions perpendicular to this will not be mov-
ing. This creates a quadrupole field around the electron which can generate a polarization
either perpendicular or parallel to the direction of the density perturbation. This creates

an E)-mode pattern in the polarization field as the polarization direction is either parallel
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or perpendicular to the direction in which the polarization strength is changing. This is
the only mechanism for generating polarization from scalar perturbations, hence scalar
perturbations can only produce E-modes.

For tensor perturbations, an m=2 quadrupole is produced. A gravitational wave will
stretch spacetime in two different directions, corresponding to the two different gravita-
tional wave polarization states, + and x. The + mode stretches spacetime alternately in
directions parallel and perpendicular to the direction of the perturbation, whereas the x
modes stretches spacetime in directions at £45°. This means that photons surrounding a
scattering electron will be gravitationally redshifted (or blueshifted) by different amounts
depending on the direction of the photon, creating a quadrupole moment around the elec-
tron. However, the quadrupoles generated by the two gravitational modes are orientated
such that the direction of the polarization produced from Thomson scattering is not con-
fined to be parallel or perpendicular to the wavevector and so both B-modes and E-modes

can be created.

Polarization power spectra

The TE and EE power spectra will exhibit the same series of acoustic peaks as in the
temperature power spectrum. However, the peaks occur at different places. This is be-
cause the perturbations in the quadrupole at last scattering are coupled not to the overall
density perturbations (the monopole), which are the dominant source of the acoustic
oscillations in the CMB temperature power spectrum, but to the perturbations in the
velocity of the fluid (the dipole). As the photon-baryon fluid oscillates, the fluid will be
at maximum velocity in the middle of the oscillation, when the density perturbation is
the smallest. This means that the oscillation in E-mode power spectra will be exactly out
of phase with those in the temperature spectrum (Kosowsky (1999)) so the EE spectrum
has peaks at the position of the dips in the T'T spectrum.

The peak of the EE power spectrum will occur on smaller scales to the peak in the
temperature spectrum. The is because a quadrupole can only be created over scales
on which tight coupling has broken down and so large scales have less time to generate
polarization than small scales. On small scales, the temperature perturbations, and hence

the quadrupole, are lower because of Silk damping. The E-mode spectrum therefore peaks
on scales of £ ~ 1000.

The tensor perturbations decay once they have entered the horizon and fall off dra-
matically for scales smaller than the horizon size at last scattering. This means that the
primordial B-mode signal will also fall-off at these scales and so peaks on larger scales
than the E-mode spectrum at around ¢ = 100.
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1.2.4 Calculating the polarization at recombination

The polarization power spectra can be calculated in a similar way to the temperature spec-
trum using the Boltzmann and Einstein equations given in Section 1.1.2. This requires an
additional Boltzmann equation for the polarized contribution to the photon perturbation
©Op and a slight modification to the Boltzmann equation for the total photon distribution
so that (Seljak and Zaldarriaga (1996)):

. 1
Op +ikuOp = —+ [ep +501- ’Pg(,u))H]
O +iku® = —b —ikpl — 7 [eo — O+ vy — %’Pg(,u)n] (1.64)

where I1 = ©; + Op; + O pp and P, is the second Legendre polynomial. The polarization
perturbation depends on the metric perturbation only through the influence of the metric
on the temperature quadrupole, ©,, which generates the polarization. The generation
of polarization will slightly modify the temperature perturbation as it will complicate
the process of recombination. This is shown by the inclusion of Opy + Opy into the
scattering term in the Boltmann equation. The CMBFAST code includes the generation
of polarization and can be used to predict the polarization power spectra from a set of

input cosmological and initial perturbation parameters.

1.2.5 Secondary polarization anisotropies

Polarization anisotropies are not only created at last scattering. When the Universe reion-
izes it will again be possible for Thomson scattering to occur and produce polarization.
This creates a reionization signal at large scales in the polarization power spectra. Gravi-
tational lensing by large-scale structure will also affect the CMB polarization and results

in the conversion of E-mode polarization into B-mode polarization.

Reionization

On small scales the effect of reionization on the CMB polarization is the same at that for
the temperature anisotropies, a damping of the signal on scales inside the horizon during
reionization. The damping effect on the first peak in the E-mode power spectra is shown
in Fig. 1.9. However, on large scales reionization causes a significant increase in the power
in the polarized anisotropies which does not occur in the temperature case (Zaldarriaga
(1997)). This polarization is generated in the same way as during recombination, through
Thomson scattering of a quadrupole temperature distribution. However, at the reioniza-
tion epoch, free streaming has greatly increased the size of the temperature quadrupole
and the amount of polarization produced is significantly larger. This creates a ‘reioniza-
tion bump’ at low values of ¢ in the polarization power spectra as shown in Fig. 1.9. The
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Figure 1.9: E-mode power spec-
tra for reionization optical depths
ak of 0.2 (dark blue), 0.25 (light blue)
D and 0.3 (green) compared to a model
with no reionization. Increasing the
optical depth increases the height
(@) of the reionization bump and also
+ pushes the bump out to smaller an-
gular scales. The first acoustic peak
is also shown which exhibits the
reinoization damping also present in

10 100 the temperature case.
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height of this bump will depend on the reionization optical depth, r. This parameter
depends upon the distance a photon will have travelled since the Universe reionized and
the number of free electrons it will encounter on its journey. For a high r, more photons
will be able to last scatter after reionization has occurred and so the bump will be higher.
The position of the peak depends mainly on the time at which reionization took place. If
reionization occurs further back in time, the scale over which reionization occurs will be

smaller and so bump will be shifted to higher i.

The height of the reionization bump tells us when reionization first began to occur
given a model for the reionization history. This complements an alternative observational
technique of detecting the signature of neutral hydrogen in spectra of high redshift quasars.
Finding such a signature at high redshift tells us how far back in time we need to go to
find significant amounts of neutral hydrogen. This means that reionization must still be
occurring up until this redshift, and so gives a lower redshift limit on when reionization
occurred. Quasar spectra indicate that there is a significant amount of neutral hydrogen
present in the Universe at redshifts greater than 6 (Becker R. H. et al. (2001)). However
current CMB polarization constraints for the WMAP measurement of the large-scale
TE correlation (see Section 2.3) give a reionization optical depth of 0.17, which gives a
reionzation redshift of between 11 and 30, depending on the model used for the reionization
history (Kogut, A. et al. (2003)) . This suggests that the Universe began to reionize at
higher redshift and the process gradually proceeded until reionzation was completed at
z=6. A high sensitivity measurement of the reionization bump would allow the details of
this reionization history to be studied (Kaplinghat et al. (2003a)).
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Gravitational lensing

At recombination, the photons feel the gravitational effects of inhomogeneities in the
Universe due to their coupling to the baryons. Without this coupling the perturbations to
the homogeneous background are too small to influence the photons and after decoupling
the photons can free-stream through the Universe. However, as matter collapses to form
large-scale structure this density contrast will increase and the photons will again be
influenced gravitationally by any inhomogeneities. One way this can occur is through
weak gravitational lensing. This causes random deflections of the CMB photons as
they propagate through the Universe (Seljak (1996)). The effect of these deflections on the
CMB temperature signal is to smooth out any differences in the anisotropy on different
scales. This smears out any sharp features in the power spectrum. The same effect occurs
for the EE power spectrum. This is shown is Fig. 1.10. The peaks in the EE spectrum
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are sharper than those in the TT spectrum. This is because the TT oscillations have
contributions from both the monopole and the dipole at decoupling. These oscillations
are out of phase and so the smaller dipole contribution increases the power in the dips
in the power spectrum and so the acoustic oscillation signature in the power spectrum is
smeared out. For the EE spectrum the oscillations are due predominantly to the dipole
and so this smearing does not occur. The effect of gravitational lensing is therefore more
noticeable for the EE spectrum.

The effect of lensing on the B-mode spectrum is much more severe (Zaldarriaga and
Seljak (1998)). Lensing not only changes the amplitude of the primordial signal, it also
mixes E and B mode polarization. When a photon is deflected it will disrupt the global
polarization pattern. For example, a pure E-field polarization field may have all of its po-

larization vectors orientated parallel to the direction in which the polarization amplitude
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is changing most rapidly. If each of these vectors will be shifted by a different amount
as the field is deflected around a gravitational lens, the lensed field will no longer be
a pure E-field; a B-field component has been generated by the lens. This is shown in

Fig. 1.11. This means that although the polarization pattern generated at last scatter-

Figure 1.11: Distortion of a pure E-field by a gravitational lens. The left figure shows a pure
E-field around a polarization hot spot. The polarization is strongest at the centre and decreases
radially outwards. If this field is distorted by a gravitational lens, the polarization vectors at
each point will be moved and the pattern is no longer a pure E-field.

ing from scalar perturbations is a pure E-mode, the polarization pattern detected today
will have a B-mode component. The lensing effect only occurs over small scales, so