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Summary

Although the interleukin (IL)-6 related cytokine Oncostatin M (OSM) affects a variety of 
inflammatory events associated with disease progression, the function of OSM in the face of 
an inflammatory challenge remains unclear. In this thesis a peritoneal model of inflammation, 
in association with in vitro studies using human primary cell lines, has been used to define the 
influence of OSM on chemokine-mediated leukocyte recruitment. When compared to wild 
type mice (WT) the induction of peritoneal inflammation in Oncostatin M receptor-p deficient 
mice (OSMR-KO) resulted in enhanced monocytic cell trafficking, with no differences in 
neutrophil or lymphocyte recruitment observed, suggesting that OSM control of leukocyte 
recruitment is functionally distinct from that of IL-6. Subsequent in vitro studies and an in 
vivo appraisal of inflammatory chemokine expression following peritoneal inflammation 
inferred that OSM regulation of CCL5 might account for the observed difference in 
monocytic cell trafficking. The OSM-mediated control of CCL5 is clearly distinct from the 
actions of IL-6, which acts as a more prominent in vivo regulator of CCL2 expression than 
OSM. Mechanistically, these studies inferred a hitherto unidentified interplay between 
OSM-mediated STAT signalling and NF-kB activation. In this respect, EMSA analysis of 
nuclear extracts from peritoneal membranes isolated during course of the inflammatory 
response showed that OSMR-KO mice display an enhanced profile of NF-kB activation as 
compared to WT mice. Initial in vivo appraisal of the role of OSMRP-mediated signalling in 
repeated episodes of inflammation and associated tissue damage suggest that OSM continues 
to regulate monocytic cell trafficking throughout recurrent inflammatory episodes and does 
not play a significant role in inflammation-associated peritoneal tissue damage, again a 
finding clearly distinct from the observed effects of IL-6 in tissue injury. These findings 
suggest that activation of gp 130 by IL-6 and OSM trigger distinct inflammatory responses to 
affect individual aspects of leukocyte trafficking.
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Chapter 1

General Introduction



1.1 Overview of thesis objectives

The initiation of an immune response and ensuing inflammation is integral in 

clearance of any pathogen and returning the body to homeostasis. During these 

processes cytokines play an important role, not only in the initiation of an immune 

response, but also in the resolution of inflammation. Therefore understanding the role 

of individual cytokines during inflammation is important when considering potential 

therapeutic targets for chronic inflammatory conditions. One such factor is the 

inflammatory cytokine Interleukin (IL)-6, whose involvement in disease processes has 

led to the development of blocking agents (for example, the anti-IL-6 receptor 

antibody, Tocilizumab®) for therapeutic intervention. However, the contribution of 

other IL-6-related family members remains less well defined. Of particular interest in 

this study is the role of Oncostatin M (OSM). IL-6 and OSM elicit signalling through 

distinct receptor complexes, with IL-6 utilising gpl30 homodimers and OSM utilising 

receptor complexes comprised of gpl30 associated with alternative p-signal 

transducing subunits, OSMRp or LIFRp. Therefore there is a potential for OSM to 

have roles in inflammation and tissue injury unique from those elicited by IL-6. This 

thesis aims to delineate the role of OSM-mediated signalling in acute inflammation 

and compare these roles with those known to be elicited by IL-6, therefore assessing 

the potential for OSM as a therapeutic target for modulating inflammatory conditions.

1.2 Inflammation and the immune system

The immune system is a defence mechanism comprised of a variety of highly 

specialised defence cells, which utilise and respond to a series of communication 

molecules that work in unison to protect the body from infection and disease. This 

system enables the detection and subsequent removal of foreign pathogens with the 

aim of clearing the causative agent and restoring normal tissue architecture. 

Regulation of this immunological outcome is governed by activation of an 

inflammatory response.

Inflammation is a normal physiological response to infection, trauma or 

immunological challenge involving both innate and adaptive immunity, and can be 

characterised by the orderly recruitment of specific leukocyte subsets to sites of 

infection or tissue damage. The inflammatory response, initiated by inflammatory 

cytokines, involves a combination of cells, plasma components and cellular products,
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the main aim of which is to regulate the recruitment, activation and the final clearance 

of leukocytes to bring about the effective resolution of the immune response. It is 

therefore a highly specialised communication system between leukocytes and stromal 

tissue cells local to the inflammatory insult or challenge.

During episodes of acute inflammation release of pro-inflammatory cytokines, 

predominantly IL-1 and tumour necrosis factor (TNF)-a, initiates the inflammatory 

process by inducing various cell types, including leukocytes and stromal cells to 

produce inflammatory mediators. At the onset of inflammation, leukocytes migrate to 

post-capillary venules surrounding the damaged tissue in a directional and selective 

manner, via chemotaxis. Many factors released by stromal cells and recruited 

leukocytes as well as the causative agent can act as chemoattractants, including 

phospholipid metabolites such as platelet activating factor (PAF), bacterial products 

(formylated N-terminal methionine groups), breakdown products of the complement 

cascade such as C5a, and possibly most importantly, the chemotactic cytokines 

(chemokines) (Hartmann et al, 1997; Zabel et al, 2006). Chemokines enable selective 

trafficking of individual leukocyte subsets dependent on the cell surface expression of 

specific chemokine-associated receptors. In addition to selective chemotaxis, 

chemoattractants perform other important roles during inflammation including 

leukocyte activation (eg. degranulation, NADPH oxidase activation), growth 

modulation of myeloid progenitor cells, induction of angiogenesis and sensitisation of 

cells to respond to sub-optimal levels of other inflammatory mediators (Baggiolini, 

1998; Sallusto & Baggiolini, 2008).

After initiation of an immune response, the first cells to respond are typically 

neutrophils which initiate a rapid non-specific phagocytic response. This initial 

response is augmented by a secondary influx of monocytes and specific subsets of T 

and B cells, which accumulate at the site of inflammation and become activated to 

produce a more specialised or targeted immune response (Topley et al, 1996). The 

culmination of these activities comes from the orchestration of two immunological 

processes: innate immunity (a non-specific response to all potential foreign bodies), 

and acquired immunity (a specific response to a recognised pathogen).
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1.2.1 Innate Immunity

Innate immunity is the first line of defence against all pathogens and involves not only 

a cellular response but also comprises anatomical and humoral barriers which act 

together to provide an initial rapid response. The innate defence mechanisms include 

the skin and mucosal membranes as well as leukocytes including neutrophils, 

macrophages, eosinophils and basophils. The innate response is a fast acting, non­

specific response which does not change or evolve.

1.2.2 Polymorphonuclear neutrophils

Neutrophils are critical as a first line of anti-microbial defence and are the primary 

cell type involved in the innate immune response. Neutrophils differentiate from 

myeloid precursors in the bone marrow and are released into the periphery, where 

during incidences of infection or injury, they are rapidly recruited to the site of 

inflammation (Borregaard & Cowland, 1997). The initial phase in neutrophil 

recruitment is adhesion to the blood vessel wall, facilitating trans-migration from the 

circulation to the inflammatory site. Initially low affinity selectins facilitate 

neutrophil ‘rolling’ along stromal tissue cells, followed by firm attachment mediated 

by binding to adhesion molecules such as intracellular adhesion molecule (ICAM)-l. 

Tight adhesion is followed by extravasation into the damaged tissue (Faurschou & 

Borregaard, 2003). Neutrophils are trafficked to the site of inflammation by 

following a chemotaxis and can respond to a variety of stimuli including chemotactic 

agents such as C5a (a breakdown product of the complement cascade), lipid mediators 

(leukotrienes, eicosanoids) and neutrophil-activating chemokines including CXCL8 

(formerly IL-8). Once at the site of inflammation, neutrophil activation leads to the 

phagocytosis of pathogens or cellular debris utilising degradative proteolytic enzymes 

and reactive oxygen species to clear the causative problem. In addition to 

phagocytosis, neutrophils also play an important role in the further recruitment of 

leukocytes to the site of inflammation through the release of cytokines and 

chemokines, including CXCL8 and receptor molecules including soluble CD62L (L- 

Selectin) and the soluble IL-6 receptor (sIL-6R) (Scapini et al, 2000).

Neutrophils are short-lived cells (typically 3 days) and are unable to proliferate but 

undergo constitutive apoptosis, which is vital not only in the regulation of basal 

neutrophil production but also in limiting excessive non-selective tissue inflammation
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(Akgul et al, 2001). In this respect, self limiting shedding of CD62L and IL-6 R 

reduces neutrophil recruitment and aids resolution (Venturi et al, 2003). Apoptotic 

neutrophils are recognised and phagocytosed by macrophages, depending on specific 

cell surface receptors expressed on the apoptotic cell.

1.3 Acquired Immunity

Adaptive or acquired immunity is a highly specific response involving recognition 

and targeting of the pathogen, then conferring ‘immunologic memory’ providing 

lasting protection against the targeted antigen. The adaptive immune response can be 

split into two categories; cell mediated, which is governed by T cells, and humoral, 

which is controlled by B cells, however, both these responses act in unison to convey 

host defence.

1.3.1 Cell mediated Immunity

Cell mediated immunity involves direct recognition and binding of T cells to antigen, 

via the T cell receptor (TCR), the composition of which is unique to an individual T 

cell. Antigens are classified as a specific peptide presented on the surface of a cell in 

association with an appropriate major histocompatibility complex (MHC) molecule. 

There are two classes of MHC; class I, which is expressed on all nucleated cells and is 

recognised by the TCR of CD8 + cytotoxic T cells, and class II which are present only 

on the surface of antigen presenting cells (APC; for example macrophages, B-cells 

and dendritic cells (DCs)) and are recognised by CD4+ T helper cells. CD8 + T cells 

monitor MHC Class I expressed on the surface of all cells and are therefore able to 

distinguish ‘self antigens from virally infected cells (ie. the MHC presentation of 

virally-encoded antigens) or tumourigenic cells (Krogsgaard & Davis, 2005). CD8 + T 

cells destroy infected cells by increasing membrane permeability and promoting 

apoptosis.

Following activation, peripheral CD4+ T helper cells can differentiate into several 

distinct subsets, which are characterised by the secretion of a distinct profile of 

inflammatory cytokines. As a result, each T-helper subset is considered to convey a 

specific function.
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1.3.2 CD4+ T effector cell subsets

1.3.2.1 Thl Cells

T cells activated by dendritic cells and macrophages induce cell-mediated 

inflammatory responses which are characterised by the type of cytokines they secrete 

and the expression of specific transcription factors. The Thl subset can be 

characterised by high expression of interferon (IFN)-y and require IL-12 for 

differentiation (Figure 1.1). EFN-y signalling through STAT (signal transducers and 

activators of transcription) 1 activates the T-box differentiation factor, T-bet, which in 

turn upregulates expression of IL-12RJ32. IL-12, utilising IL-12R activates STAT4 

thereby stabilising IFN-y production and development of terminally differentiated Thl 

cells (Murphy & Reiner, 2002; Szabo et al, 2000). Thl cell responses are associated 

with eradication of intracellular pathogens, but are largely associated with the 

progression of chronic inflammation (Takeda et al, 1999; Harrington et al, 2006; 

Leonard et al, 1995).

1.3.2.2 Th2 Cells

Th2 cells recognise MHC class II expressed on antigen presenting cells and aid 

antibody secretion by activated B-cells (see Section 1.3.5). Th2 cells are associated 

with elimination of parasitic infections and the development of allergic responses. In 

this respect Th2 cells are characterised by production of IL-4, IL-5 and IL-13, which 

are potent activators of B-cell immunoglobulin (Ig)E production, eiosinophil 

recruitment and mucous production (Harrington et al, 2006). Differentiation of Th2 

cells is initiated through IL-4 mediated induction of STAT6  and activation of the 

TCR, which promotes expression of the transcription factor GAT A3, which in turn 

upregulates production of IL-4, IL-5 and IL-13, while suppressing Thl differentiation 

by blocking STAT4 activation (Zhang & Flavell, 1997; Ouyang et al, 1998; Ouyang 

et al, 2000). Dysregulation of Th2 responses is associated with allergy and asthma 

(Larche et al, 2003).

1.3.2.3 Thl 7 Cells

An additional T-helper population was recently characterised by its capacity to secrete 

IL-17. These cells (termed Thl 7 cells) are characterised by production of IL-17A, IL- 

17F, IL-21, IL-22, IL-23 and expression of IL-23R (Harrington et al, 2005). IL-17 is 

a pleiotropic cytokine consisting of a number of isoforms which induces pro-
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inflammatory cytokine and chemokine expression, angiogenesis and regulates 

neutrophil chemotaxis and dendritic cell maturation (Kolls et al, 2004).

Differentiation to a Thl 7 phenotype is dependent on several cytokines including IL-6 , 

transforming growth factor (TGF)-p, IL-21 and IL-23, and can be blocked by the 

cytokines associated with promoting differentiation to either a Thl or Th2 phenotype 

(McGeachy & Cua, 2008). Analysis of Jak-STAT pathway involvement in Thl7 cell 

differentiation in response to IL- 6  and TGFp activation outlines a role for STAT3 and 

to a lesser extent STAT4, in the differentiation of Thl 7 cells. Further STAT3 driven 

signalling via IL-23 is subsequently needed to maintain the effector properties of 

Thl7 cells (Yang et al, 2007; Mathur et al, 2006). Analysis of the transcription 

factors important in Thl7 cell differentiation has shown a role for STAT3 driven 

activation of the transcription factor ROR-yt (Retinoic acid-related orphan nuclear 

hormone receptor-yt) (Ivanov et al, 2006).

Thl7 cells are considered important in autoimmune responses as demonstrated in a 

variety of autoimmune conditions including murine models of rheumatoid arthritis 

and experimental autoimmune encephalomyelitis (EAE), where IL-17A deficient 

mice demonstrate decreased inflammation and tissue destruction and overexpression 

of IL-17 exacerbates disease severity (Nakae et al, 2003; Lubberts et al, 2001; Bettelli 

et al, 2007).

1.3.3 CD4+ memory T cells

Memory T cells can be generated by clonal expansion and differentiation of effector T 

cells, the functions and migratory properties of which are imprinted during the 

interaction of T cells with antigen presenting cells. There are two general subsets of 

memory T cells; central memory cells (Tcm), which can be distinguished from a 

second subset, effector memory cells (Tem), by the expression of CD27, CD62L and 

CCR7 (Campbell et al, 1998; Forster et al, 1999; Henger et al, 2003). Tcm provide 

reactive memory, they have little effector function but are homed to T cell areas 

within secondary lymphoid organs via CCR7 where they can readily proliferate and 

differentiate to effector cells in response to antigenic stimulation. Conversely, Tem 

migrate to inflamed peripheral tissues and display immediate effector function 

(Lanzavecchia & Sallusto, 2000).
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1.3.4 CD4+ T cell regulatory subsets

In addition to effector T cells, CD4+ T cells can be induced to differentiate into 

regulatory T cells (Treg), which are characterised by expression of CD25 (IL-2Ra) 

and the transcription factor FoxP3 (Figure 1.1) (Roncarolo et al, 2006; Chen et al,

2003). Tregs are widely accepted as immunological suppressor cells preventing 

autoimmune and chronic inflammatory conditions and their activity is governed by 

cytokines including IL-10, TGFp and IL- 6  (Vignali et al, 2008). In addition to 

inducible regulatory T cells, which are adapted from effector CD4+ T cells, naturally 

occurring FoxP3+ Tregs develop in the thymus and display a diverse TCR repertoire 

that is specific for self antigens (Fontenot et al, 2005). Antigen presenting cells, when 

exposed to a given pathogen in the periphery, initiate both effector T cell and natural 

Treg responses (Vignali et al, 2008). Critically IL- 6  has been shown to suppress Treg 

activity and differentiation. In this respect Treg are considered to be derived from the 

same T cell lineage as Thl7 cells (Bertelli et al, 2007; Pasare & Medzhitof, 2003).
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Figure 1.1 Differentiation of T cell subsets
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Fig 1.1. Differentiation of T cell subsets. Peripheral nai've CD4+ T cells (Th0  

cells) can differentiate into at least three effector subsets (expressing unique 

transcription factors) dependent upon cytokine stimulation; Thl, Th2 and Thl7, 

each of which have important but unique roles in host defence. In addition Tho 

cells can also differentiate into regulatory T cells including induced Treg (iTreg) 

cells and T rl cells (another class of regulatory T cell). Naturally occurring Tregs 

(nTreg) are generated from CD4+ thymic T cell precursors. (Adapted from 
Bettelli et al, 2007).
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1.3.5 Humoral Immunity

Humoral immunity involves the production of antibodies by B cells in response to the 

recognition of specific antigenic epitopes. Naive B cells can be activated in either a T 

cell dependent or independent manner. Activation is through binding of antigens on 

the pathogen to a specific B cell receptor (BCR), which have a typical 

immunoglobulin (Ig) structure and resemble either IgD or monomeric IgM.

Naive B cells are responsible for the primary humoral response, however, after 

exposure to cytokines including IL-4, IL-6 , IL-10, IL-13, IL-21 and TGFP, and 

repeated TCR activation, B cells can be induced to differentiate to give a memory 

phenotype. This involves Ig ‘class switching’ where naive B cells, in response to 

specific stimuli, can be induced to switch Ig isotype from secretory IgM (either 

pentameric or heptameric) to IgA, IgG or IgE enabling a more robust specialised 

response (Tangye & Hodgkin, 2004). Memory B cells also demonstrate increased 

expression of MHC class II, CD80, CD8 6  and CD95 which enable them to act as 

antigen presenting cells for CD4+ T cells (Lui et al, 1995) (see Section 1.3.2). 

Memory B cells can be induced to secrete Ig, and thus become antibody releasing 

cells after continued exposure to the T cell and certain regulatory molecules including 

CD40L (Arpin et al, 1995).

The primary source of serum antibodies are terminally differentiated plasma cells, 

which differ from memory B cells through alterations in cell surface marker 

expression. Plasma cells downregulate expression of membrane bound Ig and MHC 

Class II, but acquire expression of CD38 (Abney et al, 1978; Halper et al, 1978; 

Tangye & Hodgkin, 2004). Unlike memory B cells, plasma cells do not process and 

present antigen, instead the main function of plasma cells appears to be production 

and secretion of large quantities of specific antibody (Slifka et al, 1998).
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1.4 Mononuclear phagocytes

Mononuclear phagocytes are integral to host immune defence but also play a crucial 

role in development and tissue homeostasis (Gordon, 1986; Gordon, 1998). 

Macrophages can be split into two very broad categories, ‘resident’ tissue 

macrophages and ‘inflammatory’ macrophages; however, both are derived from 

circulating bone marrow-derived monocytes (Volkman & Gowans, 1965; Gordon & 

Taylor, 2005). Monocytes can also give rise to antigen presenting dendritic cells (see 

Section 1.4.2) (Taylor et al, 2005). Tissue macrophages are highly heterogeneous 

populations, with differences in their activities dependent on the local environment 

and function they are required to perform (Taylor et al, 2005). In addition to 

lymphoid organs, many other organ systems including the liver, lung, nervous system, 

gut and epidermis have distinct populations of specialised tissue macrophages (Taylor 

et al, 2005). A major role of the macrophage in homeostasis and after infection or 

injury is the phagocytic removal of apoptotic and senescent cells (Fadok et al, 1998; 

Pickering et al, 2000). In response to immune stimulation or triggering of the 

inflammatory response, additional monocytes are recruited from the periphery where 

they adapt to their new microenvironment by altering cell surface receptor expression 

(Taylor et al, 2005).

Studies into human peripheral blood monocyte heterogeneity demonstrate that in 

addition to morphological heterogeneity, these cells can be characterised as two 

distinct subsets: ‘inflammatory’ CD 16' monocytes, which show high expression of 

CD 14, the classical human monocyte marker which forms part of the receptor for 

lipopolysaccharide (LPS), an endotoxin present in the cell wall of gram-negative 

bacteria; and ‘resident’ CD14+CD16+ monocytes, which in addition to expressing 

CD 14, also express CD 16, an Fc receptor for IgGl (Passilick et al, 1989). Several 

phenotypic and physiological differences have been observed between these two 

subsets. Each demonstrates individual chemokine receptor expression, for example 

CD14h,CD16' monocytes express CCR2, whereas CD14+CD16+ cells express CCR5 

(Weber et al, 2000). The specific receptor expression for each subset is outlined in 

Table 1.1. Each subset also display a unique cytokine and chemokine profile, with 

‘inflammatory’ monocytes associated with high expression of pro-inflammatory 

cytokines including IL-1, TNF-a and IL-6 , whereas ‘resident’ monocytes are 

associated with the release of IL-12 and IFN-a (Akiyama et al, 1985; Elias et al,
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1985; Fernandez et al, 1986; Szabo et al, 1990). As in humans, mice also exhibit two 

distinct monocyte subsets, each determined by unique receptor expression (Figure

1.2). Monocytes in mice can be identified as F4/80+CDllb+, but can be further 

divided by expression of CD62L (L-selectin), CCR2, CXsC-chemokine receptor 1 

(CX3 CRI) and Ly6 C (Gordon & Taylor, 2005; Palframan et al, 2001). Studies have 

shown that CCR2+CD62L+CX3CRllowLy6C+ monocytes are functionally equivalent 

to CD14hlCD16' ‘inflammatory’ monocytes in humans, whereas the CCR2'CD62L' 

CX3CRlhlLy6 C' monocytes relate to human CD14+CD16+ ‘resident’ monocytes 

(Gordon & Taylor, 2005).
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Table 1.1 Monocyte phenotype in humans and mice

Human

CD14WCD16'

‘inflammatory’

monocytes

Human

CD14+CD16+

‘resident’

monocytes

Mouse CCR2+ 

CX3CR1,ow 

‘inflammatory’ 

monocytes

Mouse CCR2' 

CX3C R lhi 

‘resident’ 

monocytes

Chemokine receptors

CCR1 + -

CCR2 + - + -

CCR4 + -

CCR5 - +

CCR7 + -

CXCR1 + -

CXCR2 + -

CXCR4 + ++

CX3CR1 + ++ + ++

Other receptors

CD4 + +

C D lla + ++

C D llb ++ ++ ++ ++

C D llc ++ +++ - +

CD14 +++ +

CD31 -H-+ +++ ++ +

CD32 -H-+ +

CD33 +++ + +

CD43 - -

CD49b + -

CD62L ++ - +

CD86 + ++ ++

CD115 ++ ++ ++ ++

CD116 ++ ++ ++

F4/80 + +

Ly6C + -

MHC Class II + + - -

Table 1.1. Cell surface marker expression of mouse and human ‘inflammatory’ 

and ‘resident’ monocytes (Adapted from Gordon & Taylor, 2005).
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Figure 1.2 Maturation of mononuclear phagocytes in mice
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Fig 1.2. Maturation of mononuclear phagocytes in mice. Ly6 C+ monocytes are 

generated from haematopoietic stem cells in the bone marrow and released into 

the peripheral blood, where they are thought to adopt a Ly6 Cmid phenotype, both 
of which are able to respond to pro-inflammatory chemokines and are therefore 

recruited to sites of inflammation. Most ‘inflammatory’ monocytes differentiate 

into macrophages, but some migrate into draining lymph nodes where they 

acquire dendritic cell-like phenotypes. In the absence of inflammation, Ly6 C' 

monocytes enter the tissue where they replenish the resident macrophage and 

dendritic cell populations. (Adapted from Gordon & Taylor, 2005).
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1.4.1 Macrophage activation

Cell mediated macrophage activation can follow two pathways: classical activation, 

which relies on IFN-y, and alternative activation, which is triggered after stimulation 

by IL-4 or IL-13 (Nathan et al, 1983; Stein et al, 1992; Goerdt et al, 1999) (Figure

1.3).

Classical activation requires two signals, IFN-y (Nathan et al, 1983) and a secondary 

signal which sensitises the macrophages to respond to IFN-y. Both CD4+ Thl and 

CD8 + cytotoxic T cells produce IFN-y, Thl cells provide the other signal by 

expressing CD40 ligand (CD40L) on their cell surface, which when bound to CD40 

on the macrophage, sensitise the macrophage to respond to IFN-y (Stout et al, 1996). 

Alternative secondary signals include LPS and other conserved pathogen-associated 

molecular patterns (PAMPs) binding to pathogen recognition receptors (PRRs) 

expressed on the surface of the macrophage (see Table 1.2) thus inducing TNF 

production (Taylor et al, 2005); and endogenous factors including heat shock protein 

(Van Ginderachter et al, 2006). Classical activation is associated with a pro- 

inflammatory response, inducing increased anti-microbial activity, increased cytotoxic 

activities, increased expression of pro-inflammatory cytokines including TNFa, EL-1, 

IL-6 , IL-12 and IL-23, and stimulates increased expression of MHC class II and 

CD40L (Mytar et al, 1999; Stuehr & Nathan, 1989; Urban et al, 1986). Due to the 

cytokine profile exhibited by classically activated macrophages, this pathway is 

associated with promoting Thl immune responses.

In addition to IFN-y-induced regulation of macrophage function, a pro-inflammatory 

class of macrophages can be activated through stimulation with Toll-like receptor 

(TLR) ligands, such as LPS (Boldrick et al, 2002; Nau et al, 2002). This form of 

activation is associated with a rapid, innate immune response, rather than cell- 

mediated. Innate activation is associated with increased production of pro- 

inflammatory cytokines as well as upregulation of reactive oxygen species (ROS) and 

inducible nitric-oxide synthase (iNOS), therefore increasing the phagocytic activity of 

the macrophage (Gordon, 2003).

The targeted recognition of bacterial, apoptotic or necrotic cells for phagocytic 

removal is highly complex and dependent on a wide array of specific receptor
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complexes. Receptors including TLRs, mannose and p-glucan receptors, fibronectins 

and integrins expressed on the surface of both classically and innate activated 

macrophage bind to specific molecular patterns expressed on the surface of the target. 

These include markers such as phosphatidyl serine expressed on the surface of 

apoptotic or senescent cells (Taylor et al, 2005). Once recognition has occurred, the 

particle is internalised and exposed to detrimental levels of reactive oxygen species 

including superoxide and nitric oxide, which together with the degranulation of 

degradative enzymes leads to the clearance of the pathogen or cellular debris.

Table 1.2 Pathogen associated molecular patterns (PAMPs) and associated 

pathogen recognition receptors (PRR)

PRR family Examples of associated PAMPs (PRR ligands)

Scavenger (collagenous) eg. 

SR-A

Polyanionic ligands, LDL (low density lipoproteins)

Scavenger (noncollagenous) 

eg. CD36

Oxidised LDL, apoptotic cells

GPI-anchored eg. CD 14 LPS, LTA (lipoteichoic acid), PGN (prostaglandin), 

apoptotic cells

Integrin eg. CD lib Apoptotic cells

Ig superfamily eg. CD33 Siacylic acid

NK-like C-type lectin-like 

eg. Dectin-1

B-glucan polysaccharides

Multiple CTLD eg. 

Mannose receptor

Mannose, fucose, N-acetylglucosamine

Toll-like receptor eg. TLR2, 

TLR4

LPS, peptodoglycan
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Alternative activation is mediated through the Th2 cytokines, IL-4 and IL-13 

(Gordon, 2003; Stein et al, 1992). Macrophages activated by IL-4 and IL-13 display 

increased expression of both MHC class II and the mannose receptor, facilitating 

endocytosis and antigen presentation; and suppression of pro-inflammatory cytokines 

(such as IL-1 and IL-6 ). Instead, alternatively activated macrophages secrete anti­

inflammatory cytokines including TGFp and IL-10, and direct Th2-type responses 

through the control of CCR4+ CD4+ T cell recruitment via secretion of CCL22 and 

CCL17 (Bonnechi et al, 1998; Andrew et al, 1998; Imai et al, 1999; Gordon, 2003). 

The anti-inflammatory cytokine IL-10 (also released by Th2 cells) also serves to 

suppress macrophage function by limiting MHC class II expression and anti­

inflammatory mediator production (Fiorentino et al, 1989). As a result, alternatively 

activated macrophages are associated with tissue repair and have a general anti­

inflammatory phenotype.
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Figure 1.3 Activation pathways of macrophages
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Fig 1.3. Activation pathways of macrophages. Innate activation occurs in 

response to recognition of microbial PAMPs (pattern-associated molecular 

patterns) by pattern-recognition receptors such as TLRs. Stimulation results in 

the release of pro-inflammatory cytokines such as IFNs, and reactive oxygen 

species (ROS) and nitric oxide (NO) thus promoting phagocytosis. Classical 

activation is mediated by IFN-y followed by a secondary microbial stimulus such 

as LPS. Stimulation results in upregulation of MHC class II molecules, the 

release of pro-inflammatory cytokines such as IL-1 and IL - 6  and initiation of the 

respiratory burst. The net effect of classical macrophage activation is 

microbicidal and conveys cellular immunity. Alternative activation is mediated 

by IL-4 and IL-13 and results in upregulation of MHC class II and Mannose 

receptor resulting in increased antigen endocytosis. Stimulation also results in 

the release of anti-inflammatory cytokines IL-10 and TGF0, the net response of 

which is to mediate allergic and anti-parasitic responses and to induce tissue 

repair. (Adapted from Gordon, 2003).
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1.4.2 Dendritic cells

Dendritic cells (DCs) are an additional class of antigen presenting cell, derived from 

circulating and bone-marrow derived monocytes. DCs are distinct from macrophages 

in their ability to present antigen to naive T cells, whereas macrophages can only 

activate primed T cells (Inaba et al, 1990; Knight et al, 1985). There are two main 

categories of DC: plasmacytoid and conventional (also referred to as lymphoid and 

myeloid), which are distinguished by the presence of specific cell surface markers 

(Shortman & Naik, 2007). Plasmacytoid DCs produce large quantities of type-I EFN 

(IFNa, IFNP) and express many lymphoid markers including CD 123, CD45Ra, 

BDCA-2/4 (blood dendritic cell antigen-2/4), CCR6  and CCR7, whereas conventional 

DCs express CD lib , CD 11c, CD la and DC-SIGN (dendritic cell-specific 

intercellular adhesion molecule (ICAM) 3-grabbing nonintegrin) (Barchet et al, 

2005). Numerous agents activate DCs including PAMPs (binding to PRRs), TLR 

signalling and damage-associated molecular pattern molecules (DAMPs), including 

heat shock proteins and uric acid expressed by dying cells (Janeway & Medzhitov, 

2000; Calderwood et al, 2005; Pulendran, 2004). DCs secrete a wide array of 

inflammatory cytokines, chemokines and co-stimulatory molecules which aid the 

activation of naive T cells, and their polarisation into Thl, Th2, Thl 7 or Treg cells.
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1.5 Cytokines

Cytokines are a group of polypeptides produced and released by a variety of stromal 

cells and leukocytes. Cytokines act as intracellular and extracellular signalling 

mediators, which regulate cellular responses through juxtracrine, paracrine and 

autocrine mechanisms, affecting both homeostatic ‘house-keeping’ function and 

immunological processes. In this respect, cytokines are important regulators of the 

innate and adaptive immunity and affect proliferation, cellular differentiation, 

haematopoiesis and apoptotic regulation of cell survival or death (Yarden & Ullrich, 

1988; Thomson, 1991). Proteins with cytokine-like properties include growth factors, 

interleukins, interferons and members of the TNF superfamily.

1.5.1 Interleukins

The interleukins (derived from communicates ‘inter’ with leukocytes) refer to a group 

of cytokines able to provide communication signals between different populations of 

leukocytes (Aarden et al, 1979). There are currently 35 members of the interleukin 

family (Niedbala et al, 2007). Although the name implies that these factors only 

affect leukocytes, many interleukins are produced by non-haematopoietic cells and 

affect the functions of a diverse range of somatic cells. Of particular interest in this 

study are IL- 6  and its related cytokines which will be discussed in further detail in 

Section 1.7.

1.5.2 Interferons

Interferons (IFN) are cytokines originally defined by their ability to inhibit virus 

replication and can be sub-divided into type I and type II interferons. Type I (IFNa/p) 

are induced by virally infected cells and can respond to almost any cell type (Roberts 

et al, 1998). In addition the type I IFNs have been shown to induce many activities 

linking innate and acquired immunity including dendritic cell maturation, B-cell 

differentiation and NK activation (Biron, 2001). Whereas type II IFN (IFNy) is 

induced following antigenic stimulation of T cells and has a wide variety of actions 

including macrophage activation and upregulation of MHC class II (see Section 1.4.1) 

(Schroder et al, 2004).
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1.5.3 TNF superfamily members

The tumour necrosis factor (TNF) superfamily currently consists of 19 ligands and 

orchestrates a wide range of biological functions including host defence, 

inflammation, cell death and development of the immune system (Zhang, 2004; 

Bodmer et al, 2002).

1.5.4 Functional redundancy within cytokine networks

Cytokines elicit similar or overlapping functions on the same cell types (functional 

redundancy). In this way a cytokine network is established, enabling the precise 

control of cellular proliferation, differentiation and activation of a variety of cell 

types, as well as controlling the further production and release of inflammatory 

mediators. Consequently cytokines provide an inflammatory cascade of signalling 

molecules, which function to fine-tune the inflammatory response dictating the 

duration and magnitude. This response therefore finely balances both beneficial and 

detrimental outcomes. As a result, the cytokine network is tightly regulated. 

Cytokines are only transiently expressed and are highly specific depending on cell 

surface expression of receptors corresponding to a particular cytokine. Other 

regulatory mechanisms exist including decoy and soluble receptors and specific 

cytokine antagonists which will be discussed in Section 1.6.6.
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1.6 Cytokine Receptors

Cytokine receptors are expressed on the membranes of a wide variety of cell types, 

including leukocytes and stromal cells, whist some are also present in soluble form. 

Their ability to alter signalling in a wide variety of cell types is vital to their role in 

physiological processes. Membrane bound cytokine receptors are transmembrane 

glycoproteins, comprising an extracellular amino-terminal ligand binding domain and 

an intracellular carboxy-terminal domain. Based on this structural organisation 

cytokine receptors can be split into families which dictate ligand specificity and 

biological function.

1.6.1 Type I cytokine receptors

Type I cytokine receptors are transmembrane glycoproteins comprising an 

extracellular ligand-binding domain, a short hydrophobic transmembrane region and a 

carboxy-terminal intracellular domain. All receptors belonging to this group share 

structural homology in a 2 1 0  amino acid region in the ligand-binding domain, 

including four highly conserved cysteine residues and a repeated tryptophan-serine 

motif separated by one random amino acid (WSXWS motif) proximal to the 

transmembrane domain (Hibi et al, 1990). There is little sequence homology in the 

intracellular domains, however, none of the type I receptors have intrinsic tyrosine 

kinase activity so rely on activation of cytoplasmic tyrosine kinases, the activity of 

which are discussed in Section 1.8. Many cytokines utilise type I receptors including 

members of the interleukin-related family of cytokines, therefore these receptors will 

be discussed in further detail in Sections 1.7 and 1.8.

1.6.2 Type II cytokine receptors

Type II cytokine receptors are tripartite single pass transmembrane proteins 

characterised by structural similarities in their extracellular domain, which includes 

the ligand binding motif. Similar to type I receptors, members of the type II cytokine 

receptor family lack intrinsic tyrosine kinase activity. However, type II receptors are 

distinguished from type I receptors by the absence of the carboxy terminal WSXWS 

motif. Instead class II receptors have a variety of sequences which appear to be 

important in preservation of the three-dimensional fold of the extracellular domain of 

the receptor (Langer et al, 2004). Ligands utilising the class II family of receptors 

include the type I interferons (IFN-a, IFN-P and IFN-k) which utilise IFNAR-1 and
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IFNAR-2 (Roberts et al, 1998), the type II interferon IFN-y which utilises the 

IFNGR-1 and IFNGR-2 receptors (Schroder et al, 2004), IL-10 (and other related 

interleukins including IL-19, IL-22, IL-24 and IL-26) (Fickenscher et al, 2002) and 

factor Vila, the ligand for tissue factor. Class II cytokines have varied roles in both 

innate and acquired immune responses including DC maturation, B cell 

differentiation, macrophage activation, T helper cell biasing and suppression of 

tumour development (Langer et al, 2004).

1.6.3 Tumour necrosis factor superfamily receptors

Tumour necrosis factor (TNF) family members and their corresponding receptors play 

a pivotal role in the development and function of the immune system. Due to the 

roles of TNF superfamily proteins in human disease, pharmaceuticals to inhibit TNF 

have been developed to treat inflammatory conditions such as rheumatoid arthritis and 

inflammatory bowel disease (Maini & Taylor, 2000; Papadakis & Targan, 2000). 

Members of the TNF superfamily include TNFa, CD40L and TRAIL (TNF-related 

apoptosis ligand). TNF family ligands exist as trimers, with each monomer composed 

of structurally conserved p strands organised in two layered sheets. Tumour necrosis 

family receptors (TNFR) are type I transmembrane proteins that form elongated 

structures on a scaffold of disulphide bridges forming cysteine-rich domains which 

are important in ligand recognition and binding (Locksley et al, 2001). The 

cytoplasmic domain of TNFRs functions as docking sites for signalling molecules. 

Signalling occurs through the engagement of adaptor proteins, either TRAFs (TNF 

receptor associated factors), or DD (‘death domain’) molecules, which are associated 

with receptors that generally result in caspase activation and subsequent cell death 

such as Fas. Association of TRAF proteins with TNF receptors results in activation 

of pathways such as NF-kB through direct interaction with IRAK (see Figure 1.4) 

(Muzio et al, 1998).

1.6.4 IL-l/Toll-like receptors

Toll-like receptors (TLRs) are type I integral membrane glycoproteins and on the 

basis of shared structural homology in the intracellular region, belong to a larger 

superfamily including IL-1 receptors. Conversely there is little homology in the 

extracellular domain, with the extracellular region of TLRs consisting of 19-25 

tandem copies of a leucine-rich repeat (LRR) region, whereas the extracellular region
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of IL-1 receptors contains three immunoglobulin-like domains. The LRR domains 

form a horseshoe structure, which is thought to be directly involved in pathogen 

recognition. Members of this superfamily share a conserved region of approximately 

200 amino acids in the cytoplasmic region, the Toll/IL-IR (TIR) domain, which 

comprises three conserved boxes essential for signalling (Akira et al, 2001).

After ligand binding TLRs dimerise and undergo a conformational change enabling 

the binding of subsequent downstream signalling molecules as demonstrated in Figure 

1.4. In the case of some TLRs including TLR2 and TLR4 signalling, TLR dimers 

associate with the adaptor molecule myeloid differentiation primary-response protein 

8 8  (MyD8 8 ), which in turn recruits IL-1-receptor associated kinase (IRAK) proteins 

(Wesche et al, 1997; Li et al, 2002). Activation by phosphorylation initiates a 

cascade resulting in activation of both the inhibitor of nuclear factor-xB kinase (IKK) 

complex and mitogen-activated protein (MAP) kinase cascade (Wesche et al, 1997). 

NF-kB is present in the circulation in an inactive form bound to inhibitor proteins 

(inhibitor of NF-kB (IkB)), which are broken down by IKKs, allowing translocation 

of NF-kB subunits to the nucleus (Karin & Ben-Neriah, 2000). Other TLRs, 

including TLR4 also utilise a MyD8 8 -independent pathway, instead activating 

IFN-regulatory factor (IRF3) and resulting in expression of IFNp and IFN-inducible 

gene products (Fitzgerald et al, 2003; Hoebe et al, 2003).
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Figure 1.4 TLR-mediated activation of the NF-kB pathway

PM

Cytosol
MyD88

TRIF

co' u_ n~AB2 j
TAK1
fTABV

(iKKeJ

ITBKI]

NEMO MAP k inases

IKK1XIKI

Ubiquitin
proteosom e

IkB

Gene expression
Nucleus

Fig 1.4. TLR mediated activation of the N F -k B  pathway. A) MyD8 8  (myeloid 

differentiation primary response protein 8 8 ) activation involves the association 

of the MyD8 8  to the intracellular domain of TLRs and subsequent recruitment 

of IRAK4 (IL-lR-associated kinase 4), which induces phosphorylation of IRAKI 

and additional association of TRAF6  (tumour-necrosis-factor-receptor- 

associated factor 6 ) with the receptor complex. Phosphorylated IRAKI and 

TRAF6  dissociate from the receptor complex and associate with TAK1 

(transforming-growth-factor-P-activated kinase), TAB1 (TAKl-binding protein 

1) and TAB2 resulting in the phosphorylaytion of TAB2 and TAK1 and 

recruitment of ubiquitin ligases which ubiquitylate TRAF6 , activating TAK1. 

TAK1 activates both the MAPK pathway and phosphorylates the IKK (inhibitor 

of nuclear factor kB  (iKB)-kinase) complex (comprising NEMO, IKK1 and 

IKK2), which in turn phosphorylates Ik B  leading to its ubiquitylation and 

subsequent degredation. This allows N F -k B  subunits to translocate to the 

nucleus. B) MyD8 8 -independent pathways activate IRF3 and late-phase N F -k B . 

(Adapted from Akira et al, 2004; Li et al, 2002; Beinke et al, 2004).
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1.6.5 Seven-transmembrane cytokine receptors

Seven-transmembrane receptors form the functional receptors for the family of 

chemotactic cytokines, referred to as chemokines.

1.6.5.1 Chemokines

Chemokines are a population of chemotactic cytokines that are characterised by four 

highly conserved cysteine residues within their amino acid sequence. There are two 

main families of chemokines, distinguished by the position of the first two cysteines 

which lie either adjacent to one another (CC chemokines) or are separated by one 

amino acid (CXC chemokines) (Baggiolini et al, 1997). Exceptions to this are 

fractalkine (CX3CL1), which has three amino acids separating the first two cysteine 

residues (CX3C) (Bazan et al, 1997) and lymphotactin, which has only two cysteines 

(C) (Houck et al, 1977). Chemokines were originally characterised by their capacity 

to direct leukocyte chemotaxis and activation (for example, degranulation, respiratory 

burst) during inflammation, however, it is now understood that chemokines also play 

roles in homeostasis, cell proliferation, haematopoiesis, angiogenesis and cancer 

metastasis (Bagglioni & Loetscher, 2000). Chemokines can be clustered into two 

subgroups, either constitutive or inducible; however, there is overlap between the two 

groups. Constitutive chemokines are responsible for the physiological control of 

leukocyte homing, this group includes CXCL12 (stromal cell derived factor-1; 

SDF-1), CCL12 (secondary lymphoid tissue chemokine; SLC), CCL17 (thymus- and 

activation-regulated chemokine; TARC) and CCL25 (thymus-expressed chemokine; 

TECK). Inducible chemokines are produced in response to immune or inflammatory 

signals and are responsible for the observed increase in leukocytic trafficking under 

these conditions. In this respect they are often termed ‘inflammatory’ chemokines, 

and their activities will be dealt with in more detail in subsequent sections.

1.6.5.2 Chemokine receptor interactions

Chemokine signalling is achieved through binding to specific G-protein coupled 

seven-transmembrane domain receptors (Kuang et al, 1996; Wu et al, 1993). 

Chemokine receptors function as allosteric molecular relays where chemokine binding 

to the extracellular portion of the receptor creates a conformational change allowing 

the intracellular portion to bind to and activate heteromeric G protein (Kuang et al, 

1996). Heteromeric G proteins consist of a, p, and y subunits, and ligand binding to
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the receptor allows exchange of GDP for GTP on the alpha subunit, triggering its 

dissociation from the GPy complex subunit. Both dissociated subunits are able to 

activate further downstream signalling cascades including mobilisation of intracellular
7+Ca and the activation of the mitogen-activated protein kinase (MAPK) cascade, 

phosphatidylinositol 3-kinase (PI3K) and nuclear factor kB  (N F -kB ) pathways (Rossi 

& Zlotnik, 2000).

As demonstrated in Table 1.3, there is high redundancy in the chemokine family as 

multiple chemokines utilise the same receptor. In general CC chemokine receptors 

are more promiscuous than CXC receptors. Cellular distribution of each chemokine 

receptor is also regulated, with some receptors being cell-type specific and others 

expressed on multiple leukocyte subsets (Moser & Willimann, 2004). In this respect, 

receptors such as CXCR4 have a more widespread cellular distribution than 

chemokine receptors including CXCR3 which is restricted to defined T cell subsets. 

In addition to the functional signal transducing chemokine receptors, there are several 

‘decoy receptors’ which bind chemokines with high affinity but do not elicit signal 

transduction (Mantovani et al, 2007), these are further discussed in Section 1.6.6.2. 

These regulatory features of the chemokine system allow for fine tuned specific 

responses and ensure that the effects of the chemokine are only short-lived.
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Chemokine receptors Ligands Cellular distribution

CXCR1 CXCL6, CXCL8 Neutrophils
CXCR2 CXCL1-3, CXCL5-8 Neutrophils
CXCR3 CXCL9-11 Thl cells
CXCR4 CXCL12 Neutrophils, monocytes, T cells, B cells, 

DCs
CXCR5 CXCL13 Memory B cells, memory T cells
CXCR6 CXCL16 T cells
CXCR7 CXCL11, CXCL12 Monocytes, B cells, T cells

CCR1 CCL3-5, CCL8, Monocytes, eosinophils, basophils,
CCL14-16, CCL23 activated T cells

CCR2 CCL2, CCL7, CCL8, CCL13 Monocytes, basophils, activated T cells
CCR3 CCL5, CCL8, CCL11, CCL13, 

CCL24, CCL26
Th2 cells, eosinophils, basophils

CCR4 CCL17, CCL22 T cells, thymocytes
CCR5 CCL3-5, CCL7, CCL13 Thl cells, monocytes
CCR6 CCL20 T & B cells, immature DCs
CCR7 CCL19, CCL21 Naive T cells, mature DCs
CCR8 CCL1 Th2 cells
CCR9 CCL25 Memory T cells, B cells
CCR10 CCL27, CCL28 Memory T cells

XCR1 XCL1, XCL2 Neutrophils, B cells, T cells
CX3CR1 CX3CL1 T cells, mast cells

Table 1.3. Human chemokine receptors. Cellular distribution and ligands 

associated with each receptor.

1.6.5.3 CXC chemokines

In addition to the classification of chemokines based on the position of the cysteine 

residues, CXC chemokines can be functionally defined by the presence or absence of 

a three amino acid sequence (Glu-Leu-Arg (ELR) motif), in the Nth-terminal portion 

directly preceding the first cysteine. Chemokines which possess the ELR motif 

(ELR+ chemokines, CXCL1-8), signal through CXCR1 and CXCR2 which are 

chemokine receptors expressed on the surface of neutrophils. For this reason ELR+ 

chemokines, such as CXCL8  (IL-8 ) and CXCL1 (gro protein a, GROa) are 

specifically neutrophil chemoattractants and also possess the ability to induce 

angiogenesis (Strieter et al, 2005). In addition to chemotaxis, CXC chemokines are 

also important in pathogenic destruction through their ability to promote 

degranulation and the production of superoxide (Jones et al, 1996; Jones et al, 1997). 

CXC chemokines that do not possess this motif (ELR' chemokines, CXCL9-16) 

signal via a range of receptors expressed on T lymphocytes, this includes the
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IFN-inducible chemokines CXCL9 (monokine induced by interferon-y; MIG), 

CXCL10 (lOkDa interferon-y induced protein; IP-10), and CXCL11 (interferon- 

inducible T cell a chemoattractant; I-TAC), all of which signal via CXCR3 (Loetscher 

et al. 1996). An exception to this is the ELR' chemokine CXCL12 (stromal-derived 

factor-la; SDF-la) which utilises the chemokine receptor CXCR4 expressed on many 

cell types including neutrophils, monocytes, T cells and stromal cells. CXCL12 is 

involved in lymphocyte maturation and other homeostatic functions such as 

embryonic development of peripheral tissue, trafficking progenitor cells into the 

appropriate maturation sites in the bone marrow (Baggiolini, 1998; Lapidot et al, 

2005).

1.6.5.4 CC chemokines

CC chemokines tend to be more promiscuous than their CXC counterparts exerting 

their effects on multiple leukocyte subsets including monocytes, basophils, 

eosinophils, T cells, dendritic cells and natural killer cells (Baggiolini, 1998). 

Constitutive homeostatic CC chemokines including CCL12, CCL17 and CCL25 are 

expressed in the thymus, lymph nodes and other lymphoid tissues and are responsible 

for coordination of T cell homing to and from the secondary lymph nodes and may aid 

T cell development (Kim et al, 1998). Inducible CC chemokines of note include the 

MCP (monocyte chemoattractant protein) family (comprising four members in 

humans and five in mice), which are potent monocyte chemoattractants utilising 

CCR2 (Charo et al 1994) and CCL5 (regulated upon activation, normal T cell 

expressed and secreted; RANTES), which signals via a range of receptors (CCR1, 

CCR3 and CCR5), expressed on lymphocytes as well as other mononuclear cells 

(Baggiolini, 1998).

Chemokines, although potentially damaging in chronic inflammatory conditions due 

to their ability to induce monocytic cell trafficking into the affected area, provide 

potential therapeutic agents for certain cancers where increased leukocyte trafficking 

may be beneficial (Reckamp et al, 2008). Some chemokines, for example CCL3, 

CCL4 and CCL5, can also act as human immunodeficiency virus (HIV) suppressive 

factors, as HIV utilises certain chemokine receptors namely CXCR4 (T-cell tropic) 

and CCR5 (macrophage tropic) and to a lesser extent CCR2, CCR3 and CX3CRI. 

Selective blockade of these specific chemokine receptors with suitable antagonists or
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modified chemokines, may attenuate HIV progression (Princen & Schols, 2005). 

Anti-chemokine based therapy may also aid the management of chronic inflammatory 

conditions such as rheumatoid arthritis and Crohn’s disease (Rossi & Zlotnik, 2000). 

However, to date clinical trials therapeutically targeting the chemokine receptor 

CCR2 in rheumatoid arthritis patients have been unsuccessful (Proudfoot, 2008).

1.6.6 Regulation of cytokine activity

1.6.6.1 Soluble receptors

Soluble forms of many cytokine receptors have been discovered both in culture 

supernatants and biological fluids. Once bound to their respective ligands, soluble 

receptors serve four primary functions: they can be either agonistic (eg. sIL-6 R) or 

antagonistic (eg. sTNFRl), they can act as carrier molecules (eg. sIL-4R) and can 

protect the cytokine, thereby increasing the cytokines half life. In this respect, soluble 

cytokine receptors have been identified for IL-2, IL-4, IL-6 , IL-7, IFNy, TNFa, TNFp 

and leukaemia inhibitory factor (LIF) (Rose-John & Heinrich, 1994). Soluble forms 

of conventional signalling receptor complexes can be generated through a variety of 

mechanisms including proteolytic cleavage, phospholipase C mediated cleavage and 

alternative splicing (Levine, 2008).

Soluble receptor complexes retain an ability to bind their ligand and can act as natural 

antagonists binding ligand in circulation and preventing its association with the 

membrane bound receptor and therefore inhibiting signalling. Examples of this 

include the soluble receptor for TNF (p75/type II TNFR), which is used 

therapeutically (for example Enbrel/Etanercept) to sequester and retain TNF in the 

circulation (Maini & Taylor, 2000). Soluble receptors can also act as agonists, an 

example of this is soluble IL- 6  receptor (sIL-6 R), which can facilitate IL- 6  signalling 

in cells not expressing membrane bound IL-6 R (Mackiewicz et al, 1992), this 

relationship will be further discussed in Section 1.8.

1.6.6.2 Decoy receptors

Decoy receptors possess high affinity binding for a specific ligand, but are structurally 

incapable of signalling (Mantovani et al, 2001). The primary role of decoy receptors, 

unlike soluble receptors, appears to be to fine-tune the action of primary inflammatory 

cytokines such as members of the IL-1 and TNF family and inflammatory
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chemokines. Examples of decoy receptors include IL-1RII (Colotta et al, 1993), 

which competes with IL-1RI for IL-1 binding and also engages with IL-1R accessory 

protein (IL-1 RAP) preventing signal transduction. Another example of a decoy 

receptor is osteoprotegerin (OPG), which binds members of the TNF family and is 

associated with the regulation of osteoclastogenesis by RANKL (Simonet et al, 1997). 

Decoy receptors in the chemokine system can either be ‘silent’ which are structurally 

incapable of signalling (such as DARC (Duffy antigen receptor for chemokines)) 

(Mantovani et al, 2001), or ‘functional’ which are structurally identical to signalling 

receptors but are induced to dissociate from the signal transducing subunits (D’Amico 

et al, 2000). This latter response is highly regulated and cytokines like IL-10 induce 

functional decoys for the CC chemokine receptors CCR1, CCR2 and CCR5 on 

dendritic cell and monocytes (D’Amico et al, 2000).

The role of soluble cytokine receptors in inhibiting the actions of pro-inflammatory 

cytokines has been exploited by several viruses which synthesise homologues of 

mammalian cytokine receptors in order to evade host defence mechanisms. Viruses 

including poxviruses and herpes viruses encode proteins that mimic either cytokines 

or cytokine receptors to modulate cytokine activity during infection (Alcami, 2003). 

Examples of cytokines mimicked by viruses include viral IL- 6  encoded by human 

herpesvirus 8  (HHV8 ), which is a structural and functional homologue of human IL- 6  

(Mullberg et al, 2000; Fielding et al, 2005). Viral IL- 6  is able to activate the Jak- 

STAT pathway in a similar manner to that exhibited by human IL- 6  and is thought to 

be of significance in several conditions associated with viral infection including 

Kaposi’s sarcoma (Molden et al, 1997).
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1.7 Interleukin (IL)-6 related cytokines

IL- 6  and several other pleiotropic cytokines are related through their utilisation of 

receptor complexes composed of at least one subunit of the signal transducing protein, 

glycoprotein 130 (gpl30). This family includes Oncostatin M (OSM), IL-11, 

leukaemia inhibitory factor (LIF), IL-6 , IL-27, ciliary neurotrophic factor (CNTF), 

granulocyte colony-stimulating factor (G-CSF), cardiotrophin-1 (CT-1) and B-cell 

stimulating factor-3 (BSF-3 also known as NNT; novel neurotrophin-1 and CLC; 

CNTF-like cytokine) (Heinrich et al, 2003; Senaldi et al, 1999; Pflanz et al, 2004). 

All IL-6 -related cytokines are polypeptides with molecular weights of approximately 

20kDa, comprising four a-helices connected by loop domains to allow two anti­

parallel bundles (Heinrich et al, 1998). Members of this family have both pro- and 

anti-inflammatory properties as well as being involved in neuronal differentiation and 

development, haematopoiesis and remodelling of the extra-cellular matrix (Heinrich 

et al, 2003).

1.7.1 Interleukin-6

Interleukin (IL) - 6  was originally characterised through its ability to induce the 

differentiation and proliferation of B-cells, and as such was termed B-cell growth 

factor or B-cell differentiation factor. Cloning of these factors in 1986 lead to the 

discovery of a novel cytokine (originally named B-cell stimulatory factor-2, 

hepatocyte stimulating factor and Interferon P2 , later re-named IL-6 ) able to induce 

acute phase reactions and induce the differentiation of myeloid precursor cells 

(Kishimoto, 2006). Further studies demonstrated IL- 6  as a pleiotropic cytokine that 

influences antigen-specific immune responses and inflammatory reactions (Kopf et al, 

1994). The specific roles of IL- 6  in inflammation will be further discussed in Section 

1.9. IL- 6  signalling follows one of two pathways: in cells expressing membrane 

bound IL-6 R, signalling follows the classical pathway; whilst cells not expressing IL- 

6 R can also respond to IL- 6  signalling through its soluble receptor.

As discussed in Section 1.2, inflammation is characterised by alterations in the 

concentration of a group of plasma proteins, termed acute phase proteins defined as a 

group of plasma proteins whose concentrations deviate by at least 25% during 

inflammatory progression. These hepatocyte-derived proteins are important 

regulators of inflammation and include C reactive protein (CRP), serum amyloid A
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(SAA) and fibrinogen. Cytokines induced during the onset of inflammation including 

IL-ip, TNFa, IFNy and TGFp are capable of stimulating the release of acute phase 

proteins, however IL- 6  is the primary stimulator of many of the acute phase proteins 

(Andus et al, 1988).

Studies using IL- 6  deficient (IL-6 KO) mice have demonstrated a role for IL- 6  in the 

resolution of acute inflammation through the control of chemokine-mediated 

leukocyte trafficking, control of pro-inflammatory cytokines (Schindler et al, 1990; 

Romain et al, 1997) and promoting the release of the anti-inflammatory mediators IL- 

1 receptor antagonist and the soluble p55 TNFa receptor (Tilg et al, 1994), thereby 

directing transition from neutrophil to mononuclear cell recruitment (Hurst et al, 

2001). In addition, IL- 6  deficient mice demonstrate impaired viral and bacterial 

clearance (Onogawa, 2005; Ramshaw et al, 1997). However, in instances of chronic 

inflammation IL- 6  signalling is detrimental, as demonstrated by the resistance of IL- 6  

deficient mice to a variety of experimental autoimmune conditions (Nowell et al, 

2003; Ohshima et al, 1998; Mihara et al, 1998).

1.7.1.1IL-6R classical signalling

Classical IL- 6  receptor signalling is initiated by cytokine binding to IL-6 Ra (CD 126), 

a non-signalling a-chain. IL- 6  binding to IL-6 Ra is essential for interaction with the 

signal transducing p-chain gpl30 and subsequent receptor homodimerisation, which is 

required for signal transduction. Although gpl30 is ubiquitously expressed, the 

cellular distribution of the membrane-bound IL-6 R is largely restricted to hepatocytes 

and leukocyte subsets (Rose-John et al, 2006).
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1.7.1.2 IL-6 trans-signalling

As outlined in Section 1.6.6.1, soluble forms for many cognate a-receptor chains have 

been identified in serum and urine (Rose-John & Heinrich, 1994). Although many of 

these soluble receptors act in an antagonistic manner, sequestering free cytokine in the 

circulation and preventing association with the respective signal transducing (3 chains 

(see Section 1.6.6.1), soluble forms of IL-6 Ra form an agonistic complex with IL- 6  in 

the circulation which binds to membrane bound gpl30 to initiate signalling (Rose- 

John et al, 2006). As gpl30 is ubiquitously expressed, the trans-signalling pathway 

enables cell types typically unresponsive to IL- 6  to become activated by IL-6 . The 

ability of IL- 6  to signal via two distinct pathways is responsible for its role in the 

‘switch’ between innate and adaptive immunity (Hurst et al, 2001; Jones, 2005). IL- 6  

trans signalling is important in the pathophysiology of many chronic inflammatory 

disorders including rheumatoid arthritis, inflammatory bowel disease and some types 

of cancer (Atreya et al, 2000; Nowell et al, 2003; Richards et al, 2006; Becker et al,

2004). However, IL- 6  trans-signalling is also vital during development as embryonic 

stem cells, early haematopoietic progenitor cells and neural cells are only responsive 

to IL- 6  in the presence of soluble IL-6 Ra (Humphrey et al, 2004; Peters et al, 1997; 

Marz et al, 1999).

1.7.1.3 Generation of soluble IL-6R

Soluble IL- 6  receptor subunits lacking the cytoplasmic domains have been detected in 

biological fluids of both healthy individuals and in various disease states (Muller- 

Newen et al, 1996). Two mechanisms for the generation of soluble receptors exist: 

proteolytic cleavage of the cognate IL-6 R (receptor shedding) (PC-sIL-6 R) and 

differential IL-6 R mRNA splicing (DS-sIL-6 R) (Jones et al, 2001). Although both 

forms are structurally related, the differentially spliced isoform possesses a novel 1 0  

amino acid C terminal sequence (GSRRRGSCGL), which is introduced during the 

splicing process (Horiuchi et al, 1994).

During an inflammatory response, chemotactic agents including CXCL1, CXCL8 , 

C5a and CRP promote IL-6 R shedding from the infiltrating neutrophils (Jones et al, 

1999; Marin et al, 2001; McLoughlin et al, 2004). In addition apoptosis is a natural 

stimulus of IL-6 R shedding, due to upregulation of the metalloproteinase ADAM 17 (a 

disintegrin and metalloproteinase 17) which acts as an IL-6 R cleavage enzyme
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(Chalaris et al, 2007). Conversely, differential mRNA splicing appears to be 

responsible for basal production of sIL-6 R in certain cell lines, including monocytic 

THP-1 cells (Jones et al, 1998). During episodes of acute inflammation however, 

emergence of differentially spliced sIL-6 R corresponds with the influx of 

mononuclear cell infiltration suggesting a potential role for DS-sIL-6 R in later stages 

of the immune response (Hurst et al, 2001).

A soluble isoform of gpl30 exists as a natural antagonist to IL- 6  trans signalling 

(Jostock et al, 2001). Soluble gpl30 (sgpl30) specifically binds to sIL-6 R, once 

bound with IL-6 , leaving membrane bound ‘classical’ IL- 6  signalling unaffected. As 

such sgpl30 provides a potential therapeutic agent for chronic inflammatory 

conditions such as Crohn’s disease and rheumatoid arthritis, where IL- 6  trans­

signalling is damaging (Rose-John, 2006). The application of the inhibitory 

properties of sgpl30 has been instrumental in defining the physiological involvement 

of IL- 6  trans-signalling in vivo.
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Figure 1.5 Classical IL-6 R signalling and trans-signalling pathways utilised by

IL - 6
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Fig 1.5. IL - 6  utilises two signalling pathways, classical (A) and trans-signalling 

(B). Classical signalling involves IL - 6  binding to membrane-bound IL-6 Ra, 

which then associates with membrane-bound gpl30, resulting in receptor 
complex dimerisation. Trans-signalling involves IL- 6  binding to soluble IL-6 Ra 

(either released by proteolytic cleavage or differential mRNA splicing), which 

binds to membrane-bound gpl30 again resulting in receptor dimerisation and 

subsequent signal transduction (as demonstrated in figures 1.8 and 1.9). The 

trans-signalling pathway can be selectively blocked by soluble gpl30 binding to 

sIL-6 Ra/IL - 6  complexes, thereby preventing its association with membrane- 

bound gpl30 (C). Soluble gpl30 lacks the signal transducing subunits, therefore 

binding of IL-6 /sIL-6 Ra complexes prevents IL - 6  trans-signalling. (Adapted 
from Rose-John et al, 1994; Rose-John, 2003).



1.7.2 Oncostatin M

Oncostatin M (OSM) is a multifunctional cytokine belonging to the IL- 6  superfamily. 

OSM has a diverse range of biological functions including the ability to modulate 

tumour cell growth, regulate the inflammatory response, affect re-modelling of the 

extracellular matrix and modulate haematopoiesis (Zarling et al, 1986; Zhang et al, 

1994; Modur et al, 1997; Richards et al, 1993; Tanaka et al, 1999).

Human OSM (hOSM) is a 28KDa secreted glycoprotein monomer consisting of four 

a-helical chains and three inverting helix regions (Hoffman et al, 1996). Initially 

isolated from PMA-stimulated human hystiocytic lymphoma U937 cells (Zarling et 

al, 1986), it was originally identified by its ability to inhibit the proliferation of 

various tumour cells including the A375 human melanoma line (Zarling et al, 1986). 

Human OSM cDNA encodes a precursor protein of 252 amino acids with a short 

signal peptide of 25 amino acids (Malik et al, 1989). Subsequently it was shown that 

the C-terminal region of 31 residues is cleaved from the precursor to form a mature 

protein of 196 amino acid residues (Linsley et al, 1990).

The corresponding murine OSM gene was cloned in 1996 and found to be a cytokine- 

inducible gene; specifically regulated by IL-2, IL-3 and erythropoietin through the 

Jak-STAT5 pathway (Yoshimura et al, 1996).

OSM is closely structurally and functionally related to LIF, sharing 27% sequence 

homology in humans. In addition the genes for both cytokines are closely sited on the 

same chromosomal locus (22ql2, in humans) (Rose & Bruce, 1991; Jeffery et al, 

1993; Nicola et al, 1993). LIF and OSM share some biological functions, however 

OSM has several unique functions, potentially due to activation through the OSM 

specific receptor (gpl30 bound to OSMRp) (Mosely et al, 1996). These unique 

activities include growth inhibition of A375 melanoma cells (Bruce et al, 1992), 

autocrine growth stimulation of AIDS-related Kaposi’s sarcoma cells (Miles et al, 

1992) and upregulation of a 1-proteinase inhibitor in lung derived epithelial cells 

(Cichy et al, 1998).
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1.7.2.1 Oncostatin M receptor complexes

In humans two types of functional receptor exist for OSM: Type I is identical to the 

high affinity LIF receptor consisting of LIFRp and gpl30 (Gearing et al, 1992); Type 

II is comprised of gpl30 and OSMRp, which also forms the p-receptor subunit for 

another cytokine, IL-31 (Mosley et al, 1996). OSMRp has been found on a wide 

variety of cell types including endothelial cells, keratinocytes, hepatic cells, lung cells 

and many tumour cell lines (Linsley et al, 1989; Mosley et al, 1996). However, under 

basal conditions peripheral blood leukocytes do not express either OSMRp or LIFRp 

(Hurst et al, 2002; Godard et al, 1992).

1.7.2.2 Murine OSM receptor complex

In mice OSM is unable to signal through the LIF receptor, relying solely on signal 

transduction through OSMRp (Tanaka et al, 1999). This implies that there is only 

one functional receptor for OSM in mice, composed of gpl30 and murine OSMRp. 

Such differences may explain the observed differences in function between mouse and 

human OSM (Ichihara et al, 1997). It has unique roles in mouse embryo development 

relating to hematopoiesis, including maturation of hepatic cells (Kamiya et al, 1999; 

Kinoshita et al, 1999), none of which are exhibited by human OSM or LIF. Instead 

these activities are governed by other human gpl30 activating cytokines (Tanaka et 

al, 1999). In this regard, human OSM is unable to signal via murine OSMRp, but 

instead activates cells through LIFRp (Lindberg et al, 1998).

1.7.3 Interleukin-31 and IL-31Ra

Interleukin (IL)-31 is a novel cytokine derived from Th2 cells, which has been 

implicated in allergic responses (Dillon et al, 2004). Transgenic mice over-expressing 

IL-31 develop severe dermatitis (Dillon et al, 2004). However, mice deficient in 

IL-31 Ra show increased type 2 inflammation in lung epithelial cells (Perrigoue et al, 

2007). In a similar manner to OSM, cellular activation by IL-31 has been shown to 

induce the release of pro-inflammatory cytokines, chemokines and matrix 

metalloproteinases (MMPs) (Yagi et al, 2007; Ip et al, 2007).

IL-31 signals through a receptor comprising a specific IL-31 Ra subunit bound to the 

OSM receptor OSMRp. IL-31 Ra (also referred to as gpl30-like receptor, GLR) is a 

member of the type I group of cytokine receptors, sharing many of their structural
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motifs including the cytokine receptor homology domain comprising two pairs of 

conserved cysteine residues and a WSXWS sequence in the extracellular domain. 

IL-31 Ra is closely related to gpl30, sharing 28% sequence homology. In humans 

both are located in tandem on chromosome 5 with opposite transcriptional translation, 

suggesting the evolution of IL-31 Ra as a result of gene duplication (Ghilardi et al, 

2002; Diveu et al, 2003). Cells expressing IL-31 Ra include monocytic cells, 

activated CD4+ and CD8 + T cells and skin and lung epithelial cells (Dreuw et al, 

2004). Expression of OSMRp, which as previously stated forms the p-subunit of the 

receptor complex, has been detected on a variety of cell types including skin and lung 

epithelial cells, and can be induced on monocytic cells (Dillon et al, 2004). Cellular 

expression of IL-31 Ra is closely related to the apparent role of IL-31 in allergic 

responses, in particular asthma and allergic dermatitis (Dreuw et al, 2004; Dillion et 

al, 2004).

Signalling through IL-31 Ra utilises the Jak-STAT pathway, primarily activating 

STAT3 and STAT5 through tyrosine residues 721 and 652 respectively, but only 

weakly transducing STAT1 (Dreuw et al, 2004). Conversely activation of the MAP 

kinase cascade appears to require IL-31 Ra heterodimerisation with OSMRp, as 

IL-31 Ra cannot directly phosphorylate ERK1/2 or recruit either SHP2 or She (Dreuw 

et al, 2004). Therefore, when considering the role of OSMRp signalling in vivo, it is 

important to note the contribution of both IL-31 and OSM.
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1.8 Signalling of IL-6 related cytokines

Receptor-mediated activation leads to gpl30-dimerisation or gpl30 interaction with 

its related receptors LIFRp or OSMRp. This leads to signalling events via extrinsic 

tyrosine kinase regulation. The following sections summarise details relating to these 

activation processes.

1.8.1 The signal transducing protein, gpl30

Glycoprotein 130 (gpl30) is a ubiquitously expressed type I cytokine receptor, which 

acts as the signal transducing P-receptor subunit for all IL-6 -related cytokines. Signal 

transduction through gpl30 is essential in development, as the phenotype of gpl30 

deficient mice is lethal in utero as evidenced by the requirement of LIF in maintaining 

embryonic cell totipotency (Ernst & Jenkins, 2004; Shellard et al, 1996; Yoshida et 

al, 1996). As described in Section 1.6.1 all members of this family share several 

common features in the extracellular domain: four conserved cysteine residues in the 

amino-terminal portion and a WSXWS motif adjacent to the transmembrane domain 

(Hibi et al, 1990). The conserved cysteine residues are critical in maintaining the 

structural and functional integrity of the receptor, with the WSXWS motif essential 

for facilitating interaction between ligand and receptor, as such this domain is termed 

the cytokine-binding module (Cosman, 1993; Bravo et al, 1998). The extracellular 

region of gpl30 consists of an N-terminal immunoglobulin-like domain followed by 

the cytokine binding module and three additional fibronectin type Ill-like domains, 

which appear necessary for recognition of the non-signalling cognate a-subunit of the 

receptor complex (Heinrich et al, 1998; Kurth et al, 2000).

Signalling through gpl30 is integral to the IL- 6  family of cytokines. Receptor 

complexes can be subdivided into two classes: those which utilise non-signalling 

ligand-specific a-receptors (including IL-6 Ra, IL-llRa, IL-27Ra/WSX-l and 

CNTFRa), and signal transducing p-receptors (including OSMRp and LIFRP) 

(Heinrich et al, 2003). Cytokine binding to its receptor leads to either the 

homodimerisation or heterodimerisation of gpl30 and subsequent signal transduction.
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Fig 1.6. Structural organisation of the gpl30 protein. The extracellular domain 

comprises an Ig-like domain and two fibronectin-like domains (FNIII) which 

comprise the cytokine binding module containing several conserved cysteine 

residues and the highly conserved WSXWS motif which is integral in all type I 

receptors, gpl30 also has three additional fibronectin-like domains. The 

intracellular domain comprises box 1 and box 2 motifs which form the Jak 

(Janus kinase) binding site. In addition there are several tyrosine residues that 

are phosphorylated upon Jak association including y 757/759 (mouse/human 

respectively) which is integral for SHP2 (SH2-domain-containing tyrosine 

phosphatase) and SOCS3 (suppressor of cytokine signalling 3) binding; and 

Y765/\  Y812'5, Y904'5 and Y914'5, which form important STAT1 and STAT3 binding 

sites. TM -  transmembrane. (Adapted from Heinrich et al, 2003; Ernst & 

Jenkins, 2004).

1.8.1.1 Formation of gpl30 homodimers

Cytokines which signal utilising receptor complexes comprising gpl30 homodimers 

include IL-6 , IL-11 and IL-27. These cytokines initially bind specifically to their 

related non-signalling a-chains (IL-6 Ra, IL-1 IRa and IL-27Ra/WSX-l respectively), 

which is a vital step in receptor complex formation as neither the ligand or a-chain 

can effectively associate with gpl30 separately (Pflanz et al, 2004; Heinrich et al, 

2003). The function of integral binding to a-chains is to exert some control over 

cellular response to certain cytokines, although due to the presence of soluble forms 

for many of these receptors, in particular soluble IL-6 Ra, cell types not expressing 

membrane bound forms of the a-subunit receptor are still able to elicit responses to 

some of these cytokines (Hibi et al, 1990; Yasukawa et al, 1990) (see Section 

1.8.5.2). Mutagenesis studies have identified three specific ‘sites’ important for 

receptor complex formation. Site I binds to the cytokine binding module conferring
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specificity for the a-chain, site II and site III interact with two gpl30 subunits 

(Grotzinger et al, 1997; Simpson et al, 1997; Heinrich et al, 1998).

1.8.1.2 Formation of gpl30 heterodimers

In addition to the signal transducing receptor gpl30, two other gp 130-like p-chains 

exist in the IL-6 -related family of cytokine receptors which are capable of signal 

transduction, LIFRp and OSMRp. In both cases ligand binding induces association of 

either LIFRp or OSMRp with one subunit of gpl30 via interactions between site II 

and site III (Layton et al, 1994; Deller et al, 2000). LIF and OSM directly induce 

receptor heterodimerisation, however, several other cytokines (for example CNTF) 

utilise the LIFRP:gpl30 receptor complex through first binding to a non-signalling a- 

chain in a similar manner to that described for IL- 6  and IL-11 (Davis et al, 1991).
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Figure 1.7 Formation of gpl30 homo- and heterodimers.
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Fig 1.7. (A) Homodimer formation requires the binding of pre-formed 

ligand/non-signalling a-chain receptor complexes. These can be either 

membrane-bound a-chains (IL-6 R, IL-11R or WSX-1 for IL-6 , IL-11 and IL-27 

respectively) or for IL-6 , can be soluble. (B) Heterodimer formation involves the 

association of gpl30 with either LIFRp or OSMRp (both signal-transducing p- 

chains). Signal transduction can either involve direct cytokine binding to the 

receptor (OSM, LIF) or through association of the gpl30 heterodimer with the 

non-signalling a-chain CNTF in either a membrane bound or soluble form, in 

this way gpl30:LIFRp acts as the receptor complex for CNTF and CLC. 

(Adapted from Ernst & Jenkins, 2004; Schuster et al, 2003).



1.8.2 Jak-STAT mediated signalling

Due to the lack of intrinsic tyrosine kinase activity, IL-6 -related cytokine receptor 

signalling is mediated via the Janus kinases (Jaks) (Silvennoinen et al, 1997; Heinrich 

et al, 1998). Jaks are intracellular tyrosine kinases of approximately 120-140kDa. 

There are four identified mammalian Jaks, of which Jakl, Jak2 and tyrosine kinase 2 

(Tyk2) are of particular importance in IL-6 -related cytokine signalling (Stahl et al, 

1994). Of these, it is known that Jakl plays an essential role. Studies using IL- 6  and 

IL-11 in combination with their associated soluble receptors in Jakl negative cells 

demonstrated a lack of signalling (Guschin et al, 1995) and Jakl deficient mice fail to 

elicit efficient IL-6 -related signalling in vivo (Rodig et al, 1998).

Receptor association of the Jak proteins is mediated through binding to the 

membrane-proximal boxl/box2 regions which are present on gpl30, LIFRp and 

OSMRp (Gearing et al, 1991; Mosley et al, 1996; Murakami et al, 1991). The box 1 

sequence comprises a short proline-rich sequence that is essential for Jak association, 

whereas the box 2  region, comprising a short sequence of hydrophobic residues 

followed by several positively charged residues, is not always required (Heinrich et 

al, 1998). Jak activation occurs in response to receptor dimerisation because two Jaks 

are bought into close proximity, thus allowing trans-phosphorylation between the two 

Jak proteins. Activated Jaks phosphorylate highly conserved tyrosine residues on the 

proximal intracellular domain of the receptor, creating docking sites for ST AT (signal 

transducers and activators of transcription) proteins. However, in addition to 

activation of ST AT proteins, phosphorylation of a single tyrosine residue in gpl30 

(Y7 5 9  in humans, Y7 5 7 in mice) governs the recruitment and activation of the SH2- 

domain-containing tyrosine phosphatase, SHP2, and subsequent activation of the Ras- 

ERK1/2 MAP kinase cascade (Ernst & Jenkins, 2004). This tyrosine residue, 

however, serves a dual function and also binds suppressor of cytokine signalling 

(SOCS)-3, which is a negative suppressor of gpl30-mediated STAT3 signalling 

(Ernst & Jenkins, 2004).

STATs have conserved structural organisation consisting of several identified 

domains including a leucine zipper-like domain at the N-terminus, a DNA-binding 

domain in the middle and a C-terminal SH2 domain, which is responsible for both 

binding to the tyrosine phosphorylated Jak proteins, and dimerisation with other
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phosphorlyated STAT proteins (Heinrich et al, 1998). All IL- 6  type cytokines 

activate STAT3 and STAT1 (although to a lesser extent) via binding to 

phosphorylated YXXQ motifs on the signal transducing P-receptor chain. In human 

gpl30 these are present at positions Y7 6 7RHQ, Y8 1 5FKQ, Y905LPQ and Y9 1 5MPQ; in 

LIFRP Y9 8 1 QPQ, Y1001KPQ and Y1 0 2 8RPQ; and in OSMRp at Y9 1 7 and Y9 4 5  

(Hermanns et al, 2000; Chattopadhyay et al, 2007). Activated STAT proteins form 

homo- (STAT1:STAT1, STAT3:STAT3) or heterodimers (STAT1:STAT3). In 

addition, OSM is also able to trigger STAT5 signalling, however the mechanism of 

STAT5 activation requires further clarification as it is unclear whether this occurs via 

a specific tyrosine residue within the OSMRp subunit or via direct interaction of 

STAT5 with Jaks (Heinrich et al, 1998). The receptor bound STAT proteins are 

subsequently phosphorylated on single tyrosine residues (Y701 in STAT1 and Y7 0 5 in 

STAT3) in the SH2 domain, which enables STAT homo- or hetero-dimerisation, 

which is integral for translocation to the nucleus (Heinrich et al, 2003). Once in the 

nucleus, dimerised STATs bind specific regulatory sequences to either activate or 

repress transcription of target genes, including acute phase proteins and transcription 

factors (Heinrich et al, 1998).

1.8.3 Activation of the MAPK cascade

IL-6 -type cytokines not only signal via the Jak-STAT pathway but can also induce the 

mitogen activated protein kinase (MAPK) signalling cascade (Heinrich et al, 2003). 

MAP kinases are a group of serine/threonine kinases including ERK1/2, which have 

roles in cell survival and the control of the stress-activated members of the MAPK 

family p38 and JNK. Activation of the MAPK cascade is dependent on Jak 

phosphorylation creating binding sites for adaptor proteins such as SHP2 and SH2- 

and-collagen-homology-domain-containing (She) proteins. Phosphorylated SHP2 

binds the adaptor growth factor receptor bound protein 2 (Grb2) through a specific 

phosphorylated tyrosine (Y304) in the SH2 domain of SHP2. This receptor complex 

activates the guanine nucleotide releasing protein son of sevenless (SOS), which 

activates the GTPase ras allowing initiation of the Ras-Raf-MAPK cascade (Stancato 

et al, 1998; Heinrich et al, 2003).

OSMRp does not recruit SHP2, instead recruiting She through a specific
QiT 1

phosphorylated tyrosine residue (Y ) in the OSMRp chain (Figure 1.10) (Thoma et
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al, 1994; Hermanns et al, 2000). Activated She also recruits the adaptor protein Grb2 

through a phosphorylated tyrosine residue on She (Y317). Recruitment of SOS to the 

receptor complex allows Ras activation and subsequent initiation of the Ras-Raf- 

MAPK cascade (Stancato et al, 1998; Heinrich et al, 2003).

1.8.4 Mechanisms of signal termination and SOCS proteins

In addition to extracellular regulatory mechanisms designed to sequester and 

antagonise cytokine activity in the circulation, several mechanisms exist to terminate 

signal transduction. These include protein tyrosine phosphatases, which 

dephosphorylate activated tyrosine residues thereby terminating the signal, PIAS 

(protein inhibitor of activated STAT) proteins, which are important transcriptional co­

regulators of the Jak-STAT pathway and SOCS (suppressors of cytokine signalling) 

proteins (Heinrich et al, 2003). Most SOCS proteins are induced by cytokines, 

therefore providing a classical negative-feedback system to control cytokine-induced 

signal transduction. There are eight members of the SOCS family, each comprising a 

central SH2 domain, a variable N-terminal domain and a C-terminal 40 amino acid 

module, the SOCS box (Yoshimura et al, 2007). Of importance in IL-6 -related 

cytokine signalling are SOCS1, which binds directly to phosphorylated Jakl to 

terminate STAT1 signalling, and SOCS3 which is specific for STAT3 (Ernst & 

Jenkins, 2004). SOCS3 is recruited to the phosphorylated tyrosine residue (y757/759) 

required for SHP2 binding in gpl30 and LIFRp (Nicholson et al, 1999; Schmitz et al, 

2000).
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Figure 1.8 Activation of the Jak-STAT pathway
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Fig 1.8. Activation of the Jak-STAT pathway through gpl30-medaited pathways 

in humans. Cytokine binding induces homo- or heterodimerisation of each 

receptor subunit (as demonstrated in Fig 1.7) resulting in binding and activation 

of JAKs. Activated JAKs phosphorylate tyrosine residues on the intracellular 

domain of the receptor, creating docking sites for STAT proteins. Homo- or 

hetero-dimerization of the STAT proteins occurs after phosphorylation of the 

monomers, once again by the JAKs, which enables translocation and 

accumulation of the STATs in the nucleus. (Adapted from Heinrich et a/, 2003; 
Ernst & Jenkins, 2004).

47



Figure 1.9 Activation of the MAPK pathway 
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Fig 1.9. Activation of the MAP kinase pathway by IL-6 -related cytokines in 

humans. SHP2 is recruited to the receptor subunit (either gpl30 or LIFRp) a 

site containing the phosphorylated tyrosine residue 757, which results in its 

phosphorylation and its subsequent association with the adaptor protein Grb2 or 

activation of the PI3K cascade. Association with Grb2 recruits SOS allowing 

activation of the Ras-Raf-MAPK cascade. Tyrosine 757 is also the binding site 

for SOCS3, which negatively regulates cytokine signalling. (Adapted from Ernst 

& Jenkins, 2004; Schmitz et al, 2000).
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Figure 1.10 Signalling pathways initiated by OSMRp-mediated signalling 

A) Activation of the Jak/STAT pathway B) Activation of the MAPK cascade
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Fig 1.10. Signalling through OSMRp:gp 130 heterodimers initiates both 

Jak/STAT and MAPK pathways. The Jak/STAT pathway is initiated as for all 

IL-6 -related cytokines resulting in the formation of STAT1:STAT3 homo- and 

heterodimers. In addition OSMRp also induces activation of STAT5 potentially 

through direct binding to Jak2 and the OSMRp subunit. Unlike gpl30 and 

LIFRp, OSMRp does not recruit SHP2, instead activation of the MAPK pathway 

is via a She cascade; phosphorylated She bound to OSMRp recruits Grb2, SOS 

binds to this adaptor protein allowing activation of the Ras-Raf-MAPK cascade. 

(Adapted from Heinrich et al, 2003; Hermanns et al, 2000).
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1.9 The role of IL-6-related cytokines in inflammation

A variety of studies have implicated overproduction of IL- 6  in the pathogenesis of 

various autoimmune and chronic inflammatory disorders. During episodes of acute 

inflammation IL- 6  is involved in the switch between early and late inflammation, 

acting to promote the clearance of neutrophils, activate and promote expansion of T 

cells and induce differentiation of B cells. However, if IL- 6  activity becomes 

exaggerated, as is evident in many chronic inflammatory conditions, its effects 

become detrimental. In this regard IL- 6  has been implicated in the retention of 

inflammatory cells, including effector T cells, at sites of disease and has been linked 

with tissue/cell proliferation and damage.

1.9.1 IL-6 in acute inflammation

During acute inflammation the initial neutrophil influx is replaced by a more 

sustained population of mononuclear cells, this marks a transition from an initial 

innate-type immune response to acquired immunity. IL- 6  trans-signalling is pivotal in 

this transition (see Section 1.7.1.2) through suppressing chemokine-directed 

neutrophil trafficking and steering T-cell recruitment and activation, promoting 

neutrophil apoptosis (in a mechanism involving caspase-3) and inducing B cell 

differentiation and subsequent antibody production (McLoughlin et al, 2003, 

McLoughlin et al, 2005; La Flamme & Pearce, 1999; Xing et al, 1998; Romani et al,

1996).

Stromal cells typically lack cognate IL-6 Ra expression instead relying on IL- 6  trans­

signalling to respond to IL-6 . Therefore local sIL-6 Ra concentrations determine the 

magnitude of the IL- 6  response. During an acute inflammatory response, shedding of 

membrane bound IL-6 Ra from infiltrating neutrophils (in response to chemotactic 

agents) is the source of sIL-6 Ra (Hurst et al, 2001). Interestingly, infiltrating 

neutrophils are also the predominant source of OSM during an acute immune 

response (Hurst et al, 2002), suggesting a potential link between these two IL-6 - 

related cytokines. IL- 6  driven transition from neutrophil to mononuclear cell 

trafficking is mediated through attenuation of the IL-1 and TNFa induced chemokines 

(which are predominantly neutrophil chemoattractants) and direct enhancement of 

mononuclear cell chemoattractants (including CCL2 and CCL8 ), complemented by 

additional upregulation of adhesion molecules. In this regard the role of IL- 6  appears
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to be critical for resolution of acute inflammation and is evidenced by the inability of 

IL-6 KO mice to effectively clear both bacterial and viral infection (Kopf et al, 1994; 

Onogawa et al, 2005; Longhi et al, 2008).

1.9.2 IL-6 in chronic inflammation

The transition from neutrophil to mononuclear cell recruitment is essential for the 

successful resolution of the immune response; however, if the mononuclear cell 

infiltrate (primarily T-cell) is not effectively cleared a chronic inflammatory state can 

ensue. Overproduction and increased signalling of IL- 6  has been associated with 

several chronic inflammatory and autoimmune conditions (including rheumatoid 

arthritis, Crohn’s disease, psoriasis and systemic lupus eryhthematosus), which 

through an undefined dysregulation of chemokine-mediated recruitment and 

leukocyte apoptosis, is potentially detrimental (Gross et al, 1992; Houssiau et al, 

1988; Swaak et al, 1989; Grossman et al, 1989). In this respect, IL-6 KO mice 

showed limited histological signs of disease in various models of experimental 

autoimmunity (Kallen et al, 2002).

As previously mentioned, IL- 6  trans-signalling is able to enhance production of 

several mononuclear cell chemoattractants from resident tissue cells (Jones, 2005). 

In addition to this, IL- 6  also has anti-apoptotic effects on T cells, which can result in 

retention of mononuclear cells at sites of inflammation as observed in the synovium of 

RA patients and in the lamina propria of Crohn’s disease patients (Salmon et al, 1997; 

Atreya et al, 2000). Both in vitro and in vivo studies have demonstrated the ability of 

IL- 6  trans-signalling to ‘rescue’ T cells from apoptosis through a mechanism 

involving STAT3 driven expression of the anti-apoptotic regulators Bcl-2 and B c 1 -x l  

(Teague et al, 2000; Atreya et al, 2000).

The detrimental effects of IL- 6  trans-signalling have been confirmed in many 

inflammatory models using IL- 6  deficient mice, which are protected against a variety 

of chronic inflammatory diseases including experimental models of arthritis Crohn’s 

disease, nephritis, uveitis and experimental autoimmune encephalomyelitis (Boe et al, 

1999; de Hooge et al, 2000; Kallen et al, 2002; Mihara et al, 1998). As such 

pharmaceutical agents have been developed to target IL- 6  signalling, including the 

anti-IL- 6  receptor blocking antibody MRA (Atlizumab, Tocilizumab), which have
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shown promise in the treatment of both Crohn’s disease and inflammatory arthritis 

(Choy et al, 2002; Ito et al, 2004). However, as previously mentioned, IL- 6  signalling 

is integral in the resolution of acute inflammation and also protects against septic 

shock (Barton et al, 1993; Ulich et al, 1991) so completely blocking IL- 6  signalling 

may have an undefined deleterious effect on the host’s ability to resolve bacterial 

infections (Onogawa et al, 2005). Such findings emphasise the need to define the 

balance between classical IL-6 R signalling and IL- 6  trans-signalling and underline the 

importance of developing second generation anti-IL- 6  blockers. In this respect, use of 

soluble gpl30 (sgpl30) as a therapeutic agent may provide a suitable alternative as 

sgpl30 is specific for IL- 6  trans-signalling, potentially leaving the classical signalling 

pathway unaffected (see Section 1.7.1.2).

1.9.3 The role of OSM in disease

OSM is a modulator of the inflammatory response, and as such has been demonstrated 

to be present in a variety of inflammatory disorders. OSM is below the level of 

detection in the serum or tissue of healthy individuals (Robak et al, 1997). However, 

OSM can be detected in biological fluids obtained from patients with certain 

inflammatory conditions. For example, OSM has been found in the synovium of 

patients with rheumatoid arthritis (Okamoto et al, 1997), the bronchial lavage fluid of 

patients with pneumonia (Grenier et al, 2001) and in the peritoneum of patients with 

acute bacterial peritonitis (Hurst et al, 2002) suggesting a potential role for OSM in 

these inflammatory conditions. OSM also has an important role in regulating the 

growth of certain cancers; inhibiting the growth of melanoma cells (Zarling et al, 

1986), breast and lung cancer cells (Lui et al, 1997) and glioma cells (Halfter et al, 

1998). In contrast OSM stimulates growth of AIDS-related Kaposi’s sarcoma cells 

(Miles et al, 1992). However, similarities in the biological action of IL- 6  and OSM in 

vitro have lead investigation to consider the therapeutic potential of modulating OSM 

in disease.

1.9.4 Inflammatory responses mediated via OSM

Although OSM affects processes associated with disease progression, the specific 

function of OSM in the face of an inflammatory challenge remains unclear. In vitro 

studies illustrate that OSM and IL- 6  share a similar capacity to control inflammatory 

processes, however, it remains to be established whether their control of common
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biological activities provides a cytokine hierarchy with one factor over-riding the 

properties of the other. In this regard, the in vivo function of OSM in inflammation is 

not as well defined as IL-6 . However, several pro- and anti-inflammatory responses 

have been observed in vitro (Hurst et al, 2002; Wahl et al, 2001; Wallace et al, 1999; 

Modur et al, 1997). The anti-inflammatory effects of OSM include regulation of 

tissue inhibitor of metalloproteinase (TIMP)-l and TIMP-3 in several cell types 

(Cross et al, 2004; Li et al, 2001). The TIMP family are responsible for controlling 

the action of the MMPs, a group of enzymes that regulate extracellular matrix 

composition (Li et al, 2001). MMPs play a vital role in tissue remodelling under both 

physiological and pathological conditions, however, excessive activation, induced by 

pro-inflammatory cytokines such as IL-1 and TNFa, is associated with ECM (extra­

cellular matrix) destruction in inflammatory conditions such as arthritis (Lark et al,

1997). The TIMP proteins form complexes with MMPs, thereby preventing their 

action on the ECM, in addition many are also anti-tumourigenic and have anti- 

angiogenic and pro-apoptotic characteristics (Brew et al, 2000). Therefore, through 

the upregulation of TIMPs, OSM is able to protect against degradation of the ECM by 

MMPs.

OSM is also able to inhibit the production of the neutrophil chemoattractant CXCL8  

by the pro-inflammatory cytokine IL-1 in lung fibroblasts, in a similar manner to that 

of IL-6 , suggesting that OSM may also promote the clearance of neutrophils (Cross et 

al, 2004). Similarly IL- 6  and OSM are equally capable of promoting expression of 

the ELR+ CXC-chemokines CXCL5 and CXCL6  (Modur et al, 1997; McLoughlin et 

al, 2004). However, the function of CXCL5 and CXCL6  remains unclear and may 

not represent frontline PMN chemoattractants (McLoughlin et al, 2004).

Pro-inflammatory effects of OSM include the induction of adhesion and chemotaxis 

in neutrophils and increased production of chemokines in endothelial cells, synovial 

fibroblasts and human peritoneal mesothelial cells (HPMC) (Cross et al, 2004; Hurst 

et al, 2002). In a similar manner to IL- 6  trans-signalling, OSM has been shown to 

induce CCL2 production in mesothelial cells (Hurst et al, 2002) and fibroblasts 

(Brown et al, 1991; Nowell et al, 2006), as well as having as additive effect on CCL2 

expression after co-stimulation with the pro-inflammatory mediators IL-1 and TNFa. 

In addition OSM is also able to induce IL- 6  expression in a variety of cell types
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(Brown et al, 1991; Bernard et al, 1999; Hurst et al, 2002). The observed effects of 

OSM on mononuclear chemoattractants, in addition to its ability to regulate the 

production of IL- 6  suggest that OSM may be important in the progression of the 

immune response by promoting mononuclear cells activities.

1.9.5 OSM as a therapeutic target

Pro-inflammatory cytokines such as TNFa, IL-1 p and IL- 6  have been identified as 

promising therapeutic targets in the treatment of chronic inflammatory conditions 

(Maini & Taylor, 2000; Papadakis & Targan, 2000; Choy et al, 2002; Ito et al, 2004; 

Verbsky & White, 2004). As discussed in Section 1.9.4, OSM appears to have both 

pro- and anti-inflammatory roles in inflammation, therefore it is currently unclear 

whether it represents a significant therapeutic target (Pelletier & Martel-Pelletier, 

2003). However, studies using experimental models of arthritis have demonstrated 

some success of antibodies against OSM in limiting disease development, suggesting 

OSM may present a therapeutic target (Plater-Zyberk et al, 2001; Milner et al, 2003).
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1.10 Peritoneal dialysis associated infection and inflammation

Studies outlined within this thesis will adopt a model of inflammation designed to 

mimic inflammatory events observed during episodes of bacterial peritonitis seen in 

the peritoneal cavity of end-stage renal failure patients receiving peritoneal dialysis 

(PD). PD is a treatment strategy in cases of established renal failure (ERF).

1.10.1 Peritoneal dialysis

PD is an alternative treatment to haemodialysis, which involves the use of a highly 

concentrated sugar solution to remove solutes from the blood using the peritoneal 

lining as a dialysing membrane. Due to the highly concentrated nature of the fluid, an 

osmotic and chemical gradient is developed between dialysis fluid and the blood 

capillaries of the peritoneum. Water and small solutes including uremic metabolites 

move from the blood into the dialysate through a combination of osmotic pressure and 

hydrostatic ultrafiltration.

1.10.2 The peritoneal cavity

The peritoneal membrane is composed of two distinct layers: an epithelial layer 

known as the mesothelium; and an underlying connective tissue, the interstitium. 

These two layers are separated by a discontinuous basement membrane, composed of 

proteoglycans, type IV collagen and glycoproteins, which supports the mesothelium 

(Nagy & Jackman, 1998). The peritoneal membrane is highly vascularised to traffic 

molecules to and from the tissues and organs of the abdominal cavity (Nagy & 

Jackman, 1998). A lymphatic system is also present, which maintains the small 

volume of fluid present in the normal peritoneal cavity and has an important role in 

host defence within the peritoneum (Nagy & Jackman, 1998).

1.10.2.1 The mesothelium

The mesothelium lining the peritoneal cavity is composed of a monolayer of flattened 

mononuclear mesenchymal cells (human peritoneal mesothelial cells, HPMC). The 

major function of the mesothelium is to maintain normal homeostasis within the 

peritoneal cavity (Mutsaers, 2004); however, mesothelial cells also play an important 

role in regulating the inflammatory response after peritoneal infection or injury 

(Topley et al, 1993). Mesothelial cells represent the principle population lining the 

peritoneal cavity and serve a prominent role during inflammation providing the major
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source of inflammatory cytokines, chemokines and other mediators (Topley et al, 

1993; Lanfrancone et al, 1992).

1.10.3 Peritoneal dialysis associated peritonitis

Peritonitis, a generalised infection of the peritoneal cavity, is a major complication of 

PD treatment and recurrent bouts of infection can lead to progressive alterations in 

tissue architecture including vasculopathy, fibrosis and membrane thickening 

(Williams et al, 2002). Repeated episodes of peritonitis are directly related with 

increased susceptibility to further peritoneal infection due to the loss of the 

mesothelium and subsequent attenuation of host cell defence (Williams et al, 2002; 

Davies et al, 1996). The most common pathogens associated with PD peritonitis are 

gram-positive Staphlococci, including Staphylococcus epidermidis and 

Staphylococcus aureus.

Peritoneal infections trigger an immune response through the TLR-mediated 

production of pro-inflammatory cytokines from both HPMC and the small population 

of resident peritoneal macrophages (Park et al, 2007; Kato et al, 2004).

1.10.3.2 The inflammatory role of the mesothelium

In response to pathogen recognition and subsequent activation of both NF-kB and 

MAP kinase pathways, mesothelial cells and resident peritoneal macrophages express 

a variety of inflammatory mediators which serve to regulate the recruitment and 

activation of inflammatory leukocytes. As previously discussed in Section 1.2, the 

initial cells to respond during an immune assault are neutrophils, which are trafficked 

into the peritoneal cavity from the circulation in response to secretion of neutrophil 

chemoattractants such as mesothelial-derived CXCL8  (Topley et al, 1993; Visser et 

al, 1995). Other inflammatory mediators are released from both the mesothelial cells 

and infiltrating neutrophils, including members of the IL- 6  family (Topley et al, 1993; 

Hurst et al, 2002) which aid the progression of the immune response by inducing 

mesothelial secretion of mononuclear cell chemoattractants and the upregulation of 

specific cell surface adhesion molecules. Adhesion molecules including selectins, 

ICAM-1 and vascular cell adhesion molecule (VCAM)-l provide an interaction 

between the leukocyte and activated mesothelial cell enabling transmigration through 

the vascular endothelial cell layers into the peritoneal cavity.
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1.10.4 Peritoneal dialysis associated fibrosis

In acute episodes of bacterial peritonitis the influx of leukocytes efficiently clears the 

pathogen, thereby allowing resolution of inflammation. However, repeated episodes 

of peritonitis and long-term exposure to peritoneal dialysis fluids result in longitudinal 

changes in both peritoneal membrane structure and function (Williams et al, 2002). 

Examples of these changes include, thickening of the submesothelial tissue due to the 

deposition of collagen (fibrosis or sclerosis) and alterations in mesothelial cell 

integrity, including reduced regenerative capacities (Di Paulo et al, 1986; Williams et 

al, 2002; Devuyst et al, 2002). In cases of membrane thickening or ‘fibrosis’ the 

effectiveness of the cavity as a dialysing membrane is compromised, which ultimately 

leads to treatment failure.

Figure 1.11 Peritoneal membrane sections demonstrating normal and fibrosed

morphology

M esothelium —► A  , Altered m esothelium

Fig 1.11. A comparison of peritoneal membrane sections taken from a patient 

prior to therapy (A) showing normal morphology; the mesothelial layer covers a 

submesothelial zone consisting of collagen fibres as well as lymphatic and blood 

vessels. B shows a membrane section taken from a patient on long term PD 

demonstrating denuded mesothelium and increased vasculopathy and collagen 

deposition (Adapted from Williams et al, 2002)

Sub­
m esothelial
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Increased collagen  
deposition and 
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1.10.5 The role of IL-6 related cytokines in peritoneal inflammation

Analysis of peritoneal dialysis fluid from patients with PD associated peritonitis has 

shown raised levels of both OSM and IL- 6  during bacterial infection coinciding with 

the influx of neutrophils into the peritoneal cavity (Hurst et al, 2002; Hurst et al, 

2001). Levels of LIF have also been analysed and shown to remain undetectable 

through the course of infection (Hurst et al, 2002). This therefore suggests that both 

IL- 6  and OSM are of potential importance in the progression of bacterial peritonitis.

OSM and IL- 6  (via IL- 6  trans-signalling) induces the release of mononuclear cell 

chemoattractants such as CCL2 from HPMC and can upregulate the production of 

adhesion molecules, further enhancing the trafficking of mononuclear cells (Hurst et 

al, 2001) (Section 1.10.3.2). Unpublished work has shown that IL- 6  deficient mice, in 

addition to being protected against experimental models of autoimmunity, are also 

resistant to membrane thickening in experimental models of peritonitis and show an 

impaired ability to clear bacteria (Fielding et al, unpublished data; Coles et al, 

unpublished data). Due to the similarities between IL- 6  and OSM in the chemokine 

driven profile, this study will aim to delineate the role of OSM in leukocyte 

trafficking during experimental models of peritonitis.

1.10.6 The potential role of OSM in peritoneal fibrosis

As discussed in Section 1.10.4, the primary reason for failure of peritoneal dialysis in 

the treatment of end-stage renal failure is fibrosis of the peritoneal membrane. This 

occurs in part due to the bio-incompatible composition of peritoneal dialysis fluid but 

predominantly due to repeated incidences of bacterial peritonitis (see Section 1.10.3). 

In addition to the observed roles of OSM in the progression of inflammation, it has 

also been implicated in the development of fibrosis (O’Hara et al, 2003; Nightingale 

et al, 2004). Currently no work has been published on the potential role of OSM in 

peritoneal epithelial to mesenchymal transition (EMT). However, a role for OSM in 

renal and lung EMT has been implicated (Nightingale et al, 2004; Pollack et al, 2007; 

O’Hara et al, 2003). The process of EMT involves attenuation of cell-to-cell and cell- 

to-extracellular matrix interactions, which enable epithelial cells to move through the 

extracellular matrix, where they take on a more mesenchymal phenotype. Such 

alterations are typically characterised by expression of smooth muscle a-actin. This 

process is integral in early embryonic development, however, dysregulation of this
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process in fully differentiated tissues can lead to damage and fibrosis (Radisky, 2005). 

Induction of EMT is cell type specific, however, in peritoneal fibrosis the major cause 

is upregulation of TGF-p (Margetts et al, 2005).

Project aims

The observed in vitro similarities between the action of OSM and IL- 6  (via IL- 6  trans­

signalling) suggest that OSM may also play a pivotal role in the progression from 

innate to acquired immunity, either by augmenting the response of IL- 6  (through its 

upregulation), or through its direct effect on chemokine-driven leukocyte recruitment. 

This, in addition to the observed role of OSM in the progression of fibrosis, makes it a 

potential target for therapeutic blocking (Pelletier & Martel-Pelletier, 2003).

This PhD project aims to investigate the inflammatory role of OSM in governing 

leukocyte recruitment within the peritoneal cavity, using in vitro and in vivo model 

systems.

Objective 1. Determine which cell populations are likely to be affected by OSM by 

defining OSMRp expression on HPMC and human leukocyte subsets.

Objective 2. Investigate the role of OSMRp (and IL-31) in leukocyte trafficking and 

adhesion using both in vivo and in vitro methods.

Objective 3. Compare the activities of OSM with responses known to be governed 

by IL- 6  using in vivo approaches.

Objective 4. Examine the OSMRp signalling events controlling leukocyte 

recruitment.

Objective 5. Investigate a potential role for OSMRp signalling in progressive 

inflammation, using an in vivo simulation of recurrent peritoneal 

inflammation.

Objective 6. Define what effect OSMRp deficiency has on tissue damage.
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Chapter 2

Materials and Methods



2.1 Reagents

All chemicals were purchased from Sigma-Aldrich unless otherwise stated. All 

chemicals were of analytical grade or higher.

2.2 Tissue culture

2.2.1.1 Isolation of human peritoneal mesothelial cells

Human peritoneal mesothelial cells (HPMC) were isolated and cultured from 

omentum tissue derived from consenting patients undergoing elective abdominal 

surgery using an adapted version of Stylianou’s original method (Stylianou et al, 

1990; Beavis et al, 1995). Briefly, tissue sections were washed in sterile PBS 

(Dulbecco’s phosphate-buffered saline; 2.5mM KC1, 1.5mM KH2PO4 , 137mM NaCl, 

8 mM Na2HPC>4 pH7.4) (Gibco, Invitrogen, Paisley, UK), then digested in 20ml 0.1% 

(w/v) trypsin/ 0.02% (w/v) EDTA diluted in PBS and incubated for 15 minutes at 

37°C with continuous rotation. HPMC were harvested by centrifugation at 800g for 6  

minutes. Pelleted cells were suspended in growth medium.

2.2.1.2 HPMC growth conditions

Cells were cultured in complete Earle’s buffered 199-medium (Gibco, Invitrogen, 

Paisley, UK) containing 10% (v/v) heat-inactivated foetal calf serum (Hyclone, Perbio 

Science Ltd, Cranlington, UK), supplemented with 2mM L-glutamine, lOOU/ml 

penicillin, 1 OOpg/ml streptomycin, 5pg/ml transferrin, 5pg/ml insulin and 0.4pg/ml 

hydrocortisone (Li et al, 1998). Cell monolayers were grown (incubated at 37°C, 5% 

CO2) in T25 Falcon culture flasks (Beckton Dickinson, Oxford, UK) until confluent, 

once cells reach confluence they were passaged at a ratio 1:3.

2.2.1.3 Monolayer sub-culture

On reaching confluence in the primary culture flask, cells were initially transferred 

into T75 flasks before subsequent passage into the appropriate culture vessel for 

experimental purposes. Sub-culture involved the use of trypsin to remove the cells 

from the bottom of the plate. Growth media was removed by aspiration and the cells 

washed with sterile PBS, before trypsinisation with 10% (v/v) trypsin/EDTA diluted 

in sterile PBS. Cell detachment was monitored by light microscopy following brief 

incubation at 37°C. Following detachment lOmls of the appropriate growth medium 

supplemented with 10% (v/v) FCS was added to neutralise the trypsin. The cell
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suspension was transferred to a 50ml universal tube and spun at 600g for 6 minutes, 

the supernatant removed and the cell pellet resuspended in fresh FCS supplemented 

media. Cells were transferred to the appropriate culture vessel and incubated at 37°C, 

5% C02.

2.2.1.4 Growth arrest and cell stimulation

Prior to each experiment, the growth phase of the cells was synchronised by growth 

arrest in the appropriate serum free media. Briefly, growth medium was removed, the 

cells washed to remove all FCS then the media replaced with serum free medium. 

Under these conditions cells remain viable for up to 96 hours and were typically used 

after 48 hours growth arrest (Topley et al, 1991). For cell stimulation the growth 

arrest media was removed and the cells were washed with serum free medium. 

Stimulation was performed by incubation of the cells with the desired cytokine (eg. 

OSM, IL-1) as outlined within the specific Figure Legends.

62



2.2.1.5 Characterization of HPMC

The morphology of HPMC monolayer cultures was examined using an inverted light 

microscope (Axiovert 25, Carl Ziess Ltd, Hertfordshire, UK). Confluent HPMC were 

typically polygonal in shape having approximately 5 sides and displaying the classical 

‘cobblestone’ appearance as demonstrated in Figure 2.1. Cells adopting this 

morphology were growth arrested (Section 2.2.1.4) to be used in experiments. 

Confluent HPMC were also characterised by their expression of cell surface markers 

including Cytokeratin 8/18, Vimentin and lack of Factor VIII related antigen 

expression (Stylianou et al, 1990; Zhang et al, 1999).

Figure 2.1 Morphology of HPMC monolayers.

Fig 2.1. Confluent monolayer of HPMC showing polygonal shape and typical 

‘cobblestone’ appearance after growth arrest (magnification x250).
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2.2.2 SV40 transformed HPMC

SV40 transformed HPMC (kindly provided by Jean-Phillipe Rougier, Department of 

Nephrology and Dialysis, Tenon Hospital, Paris, France) are derived from a primary 

HPMC line transformed with a plasmid containing a modified SV40 sequence, 

containing a deletion in the late region and a lbp insertion, which disrupts the origin 

of replication site within the SV40 genome. These cells retain many of the 

phenotypic characteristics of primary HPMC including morphology and the 

expression of Cytokeratins 8 and 18 and Vimentin (Fischereder et al, 1997).

2.2.2.1 SV40 HPMC growth conditions

SV40 transformed HPMC were cultured in DMEM (Dulbecco’s modified medium) 

(Gibco, Invitrogen, Paisley, UK) with 10% (v/v) foetal calf serum, supplemented with 

2mM L-glutamine, lOOU/ml penicillin, 1 OOpg/ml streptomycin, 5pg/ml transferrin, 

5pg/ml insulin and 0.4jig/ml hydrocortisone. Cell monolayers were then grown 

(incubated at 37°C, 5% CO2 ) in T25 Falcon culture flasks until confluent and 

passaged as previously described for HPMC (Section 2.2.1.3).
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2.2.3 Isolation and culture of peripheral blood leukocytes

Peripheral blood mononuclear cells (PBMC) were isolated from venous blood taken 

from non-smoking healthy volunteers (Ulmer et al, 1984; Kanof et al, 2001). Briefly, 

blood was layered onto Dextran 70 (6 % in 0.9% sodium chloride) with citrate (76mM 

citric acid, 169mM sodium citrate, pH5.6) and left to sediment for 1 hour at 37°C. 

The straw-coloured plasma was removed, leaving the red blood cells undisturbed. 

Leukocytes within the plasma were pelleted by centrifugation, then washed in PBS 

(pH7.4) and re-suspended in 5ml PBS (pH7.4). This was layered on Ficoll-Paque 

PLUS (Ficoll PM400 and sodium diatrizoate with a specific density of 1.077g/ml) 

then centrifuged at 400g for 35 minutes with no braking. PBMC sediment at the 

interface, whereas neutrophils (PMN) pellet at the bottom. PBMC were collected and 

washed in PBS, then re-suspended at a concentration of 2xl06 cells/ml in serum-free 

RPMI-1640 medium (Sigma-Aldrich, Poole, UK) supplemented with 2mM 

L-glutamine, lOOU/ml penicillin, lOOpg/ml streptomycin. Cells were cultured to 

remove all non-adherent cells. PMN were also collected, washed in PBS (pH7.4) and 

retained for flow cytometric analysis.

2.2.3.1 Stimulation of PBMC

After incubation for 2 hours, any non-adherent cells were removed by washing with 

PBS. Cells were subsequently stimulated overnight in the absence of serum with 

various cytokines and inflammatory mediators (as described in the appropriate Figure 

Legends). Culture supernatant samples were rendered cell-free by centrifugation and 

stored at -70°C for subsequent cytokine analysis. Cells were collected for flow 

cytometric analysis or extraction of total RNA (using methods described in section

2.5.1).
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2.3 Animal experiments

Experiments were performed on 6-12 week C57/Blk6 wild type (WT) and Oncostatin 

M Receptor p deficient (OSMR-KO) mice. Procedures were carried out following 

Home Office approval under project license number PPL-30/2269 ‘Regulation of 

leukocyte trafficking and fibrosis’.

2.3.1 Generation of OSMRp deletion

OSMR-KO mice (kindly provided by Minoru Tanaka, Institute of Molecular and 

Cellular Biosciences, University of Tokyo, Tokyo, Japan) were generated as 

previously described (Tanaka et al, 2003). Briefly, disruption of the OSMRp gene 

was achieved through replacement of the proximal region of the initiation codon with 

the LacZ gene and neomycin resistance cassette, resulting in deletion of the N- 

terminal region of the gene.

2*3.2 Genotyping OSMR-KO animals

Approximately 1mm was removed from the end of the tail of mice at between 2-4 

weeks old using a scalpel blade. This was incubated with 750pl tail buffer (50mM 

Tris-HCl (pH7.4), lOOmM EDTA, lOOmM NaCl, 1% SDS, in 100ml distilled H2 0) 

and lOpl Proteinase K (20mg/ml) overnight at 55°C. This was mixed with 5M NaCl 

and separated by centrifugation (13,000g, 25 minutes). The lower phase was 

collected and mixed with isopropanol (1:1.6), precipitated DNA was pelleted by 

centrifugation (13,000g, 10 minutes). The DNA was washed in 70% (v/v) ethanol 

and resuspended in sterile double distilled H20  prior to use.

Polymerase chain reaction (PCR) was performed using 2pl cDNA per reaction. PCR 

reactions were performed as described in Section 2.6.1. Amplification conditions 

were as follows:

Initial denaturation 94°C 2  mins

94°C 1 min '

60°C 1 min

72°C 90 secs -

Final extension 72°C 1 0  mins
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DNA banding was visualised on 2% agarose gels using ethidium bromide (5mg/ml) 

(Tanaka et al, 2003).

Primer Sequences Annealing Temp %GC content

5 ’-GTAATCAGACC AATGGCTTTCTC-3 ’ 70 43

5 ’-GATCCAACACAATCATGAAGC-3 ’ 72 45

5 ’ -GC AC AT AACTTC AGC-3 ’ 65 50

Table 2.1. Genotyping was performed by polymerase chain reaction (PCR) 

using the outlined primers from genomic DNA isolated from tail tips. Wild type 

mice generate a 364bp product, whereas OSMR-KO mice generate a 750bp 

product. Heterozygous mice show both fragments (Tanaka et al, 2003).

Figure 2.2 Genotyping OSMR-KO mice

lkb+ KO WT -PCR

650 

300 

100

Fig 2.2. cDNA was isolated from tail tips of WT and OSMR-KO mice and PCR 

performed using primers as outlined in Table 2.1 (Section 2.3.2). Wild type mice 

generate a 364bp product, whereas OSMR-KO mice generate a 750bp product.

2.3.3 Determination of baseline leukocyte numbers

Differential cell counts and FACS analysis were performed on peripheral blood and 

peritoneal leukocytes from WT and OSMR-KO animals. Peripheral blood was 

collected by cardiac puncture into tubes containing EDTA (0.5M) as an anti­

coagulant. All red blood cells were removed by hypertonic lysis (155mM NH4CI, 

7mM K2CO3, O.lmM EDTA pH 7.2). To collect peritoneal leukocytes, healthy

OSMR-KO 750bp 

WT 364bp
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animals were sacrificed by schedule 1. The peritoneal cavity was lavaged with 2ml 

ice cold sterile PBS. Leukocytes were collected by centrifugation (2000g, 5 minutes) 

and resuspended in PBS. Cell numbers were determined using a Coulter counter. 

Slides for differential cell counting were prepared by cytospin (Thermo Fisher 

Scientific, Waltham, MA, USA) and stained with GIEMSA (Sigma, Poole, UK). 

Leukocyte subsets were counted according to cell morphology as visualised by light 

microscopy. Baseline leukocyte numbers were also quantified by flow cytometric 

analysis using pan-leukocyte markers as described in Section 2.4.3.

2.3.4 Generation of peritoneal inflammation using Staphylococcus epidermidis 

cell-free supernatant

A lyophilized cell free supernatant (SES) was prepared from Staphylococcus 

epidermidis following previously stated protocol (Hurst et al, 2001). Briefly, 

S.epidermidis taken from a clinical isolate, was grown to stationary phase in nutrient 

broth 2 (Oxoid, Basingstoke, UK) at 37°C in a shaking incubator overnight. The cell 

pellet was collected by centrifugation (1800g, 20mins, 20°C) and re-suspended in 

Tyrode’s salt solution (1.8mM CaCl2 *2H2 0, ImM MgCl2 *6H2 0, 2.6mM KC1, 

137mM NaCl, 0.42mM NaH2PC>4 , 5.5mM D-glucose, with 12mM NaHC03) diluted 

to an OD6 0 0  of 0.5. The bacterial pellet was incubated in Tyrode’s salt solution at 

37°C overnight to ensure complete lysis of the bacteria. All bacterial debris was 

removed by centrifugation (5000g, 30 mins, 20°C) and excess salt removed by 

dialysis against water. Aliquoted samples were freeze-dried and stored at -80°C as a 

lyophilised powder, prior to reconstitution in sterile PBS directly before use.

Prior to use the activity of each batch of SES was assayed using SV40 HPMC. 

Monolayers of SV40 HPMC were growth arrested (Section 2.2.2.1) prior to 

stimulation with a serial dilution of SES reconstituted in serum free DMEM. Cells 

were incubated for 24 hours, culture supernatant collected and assayed for CXCL8  

using ELISA (Section 2.9). Production of CXCL8  in the range of 2500±500pg/ml in 

response to undiluted SES was used for all experiments.

For each experiment groups of mixed sex, age-matched WT and OSMR-KO animals 

were used. Induction of peritoneal inflammation was achieved by intra-peritoneal 

injection of SES (500pl). At designated time intervals of between 30 minutes and 48
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hours, mice were sacrificed by schedule 1 and the peritoneal cavity lavaged with 2 ml 

of ice cold sterile PBS. Sections of the peritoneal cavity were removed and snap 

frozen in liquid nitrogen for analysis by EMSA (Section 2.8).

Samples of peritoneal membrane were taken for histology from mice after resolution 

of four episodes of SES-induced inflammation. Groups of four OSMR-KO and five 

WT mice received four injections of SES (500pl at weekly intervals) and were 

sacrificed 21 days after the final episode to allow for resolution. Sections of 

peritoneal membrane were removed and pinned flat in PBS, exposing the 

mesothelium. Sections were fixed overnight at 4°C in 10% neutral buffered formal 

saline (Sigma, Poole, UK) prior to embedding in paraffin. Fixed sections were cut (5- 

6 pm thickness) and stained with haematoxylin and eosin or primary antibodies against 

collagen I or collagen III (Santa-Cruz Biotechnology, Santa Cruz, CA) in combination 

with an HRP-conjugated secondary antibody. All histology was performed by Central 

Biotechnology Services, Cardiff University.

Peritoneal leukocytes were collected and counted using methods outlined in Section

2.3.3. Slides were prepared by cytospin and stained for differential cell count as 

described in Section 2.3.3. Remaining leukocytes were stained for flow cytometric 

analysis of macrophage specific markers (F4/80 and CD lib ) and CCR5 expression as 

described in Section 2.4.4. Peritoneal lavage supernatant was retained and stored for 

future analysis by ELISA (Sections 2.9 and 2.9.1).
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2.4 FACS Analysis

2.4.1 Use of FACS Calibur 4CA flow cytometer

Flow cytometric analysis enables information on the relative size, granularity and 

phenotypic expression of defined cell markers.

2.4.1.1 Analysis of individual cell subsets utilising forward vs side scatter

Size and granularity can be assessed using plots of forward scatter (FSC, reflects 

particle size) versus side scatter (SSC, reflects particle granularity), thus enabling 

individual cell subsets to be identified and analysed further. As cells pass though the 

laser beam light is deflected and refracted by the cells in the stream. The scattered 

light is collected by the FSC and SSC photodiodes, which convert the light signal into 

electronic signals that are expressed as a plot of points on an axis corresponding to the 

morphology of the cells, as illustrated in Figure 2.3.

Figure 2.3 FSC vs SSC dot plot of human peripheral blood leukocytes

Figure 2.3. Density plot demonstrating forward vs side scatter of freshly isolated 

human peripheral blood leukocytes. Due to the characteristics of individual 

leukocyte subsets, each can be gated for further analysis. R1 are neutrophils, 

which are relatively small but demonstrate granular morphology. R2 are 

monocytes, which are large, relatively granular cells. R3 are lymphocytes which 

are smaller and less granular than neutrophils and monocytes.

2.4.1.2 Analysis of receptor expression using single colour staining

When using a single fluorescent dye conjugated to a monoclonal antibody, histogram 

analysis can be used to gauge the relative distribution of a surface marker. The 

amount of fluorescent signal detected by the machine (electronic events) is 

proportional to the number of flourochrome molecules.
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Specific alterations in the expression of cell markers can be calculated by monitoring 

the mean fluorescence units (MFU) associated with receptor expression. Markers can 

be placed on a histogram to specify a range of events for a single parameter. Negative 

isotype controls are used to place the marker for positive events as illustrated in 

Figure 2.4. Any events to the right of the end of the negative isotype peak are 

considered to be positive.

Figure 2.4 Histogram analysis of cells stained with a FITC positive stain and an 

isotype control

Fig 2.4. Isolated neutrophils were stained with a FITC conjugated antibody 

against CXCR1 and a FITC conjugated isotype control. The marker is set to 

enclose the positive sample but not the isotype control.

By utilising the statistics function on CellQuest Pro software, the number of positive 

events (those enclosed by the marker Ml) can be determined and the MFU calculated 

using the formula below. Calculation of the MFU enables the effect of cell 

stimulation on the relative receptor expression to be assessed, where sample 1 is the 

stimulated cell population and sample 2 is the unstimulated control cell population.

MFU (from Ml) = events from positive sample 1 -  events from negative IgG

2.4.1.3 Analysis of multiple receptors using more than one fluorochrome

More than one fluorochrome can be analysed simultaneously if the wavelengths 

required for excitation are similar and the peak emission wavelengths are far enough 

apart to be detected by separate detectors. However, the emission spectra of the 

fluorochromes used can overlap; this overlap can be compensated for by altering the

o

Key
□ Isotype control 
— FL1 positive sample

events from positive sample 2 -  events from negative IgG
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optical filters within the machine. To set the correct compensation, control samples 

stained with negative isotype and positive controls for FITC (FL1), PE (FL2), PECy5 

(FL3) and APC (FL4) (see Table 2.2) were analysed to ensure no detection of 

fluorochromes in any other detector than that stated but that there was sufficient 

positive detection by the appropriate detector.

Detector Flourochrome Abbreviation

FL1 Fluoroscein / Fluoroscien 

isothiocyanate

FITC

FL2 Phycoeryhtrin PE

FL3 Phycoerythrin cyano-5 PECy5

FL4 Allophycocyanin APC

Table 2.2. Fluorochromes used for flow cytometric analysis within this report 

and associated detectors.

Dot plots can be used to analyse two parameters together, enabling receptor 

expression to be determined on cell subsets based on additional expression of specific 

pan-leukocyte markers (see Section 2.4.3) and further quantification of specific cell 

subsets (see Section 2.4.5). Quadrant markers can be used to divide two parameter 

plots into four sections to determine populations which are negative, single positive or 

double positive. As demonstrated in Figure 2.5, isotype controls are used to set the 

position of the quadrant marker. Cells within the lower left quadrant are considered 

negative for both parameters, cells within the lower right quadrant are positive only 

for the x  axis parameter (positive for the FITC conjugated stain). The upper left 

quadrant contains cells positive only for the y  axis parameter (positive for the PE 

conjugated stain). The upper right quadrant contains cells that are positive for both 

parameters (double positive for FITC and PE). Using the quadrant statistics function 

on Cellquest Pro software, the percentage of cells in each quadrant can be calculated.
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Figure 2.5 Dot plots of isotype control and PE and FITC positive cells with 

quadrant markers
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Fig 2.5. A, isotype controls are used to set the quadrant positions. B, cells 

positive for only the FITC stain are in the lower right quadrant, cells positive for 

only the PE stain are in the upper left quadrant, cells in the upper right 

quadrant are positive for both stains.

2.4.2 Flow cytometric analysis of receptor expression on HPMC

Flow cytometric analysis was used to assess the expression of a variety cytokine 

receptors on the surface of mesothelial cells. Confluent HPMC were growth arrested 

as previously described (Section 2.2.1.4) and collected by gently scraping into PBS. 

Cells were pelleted by centrifugation and resuspended in FACS buffer (0.5% BSA, 

7.5mM NaN3 , 5mM EDTA in PBS, pH 7.4). To reduce non-specific binding, cells 

were incubated for 5 minutes in FACS blocking buffer (50% FACS buffer, 25% 

human antibody serum (HD Supplies, Aylesbury, UK), 25% rabbit serum (DAKO, 

Cambridgeshire, UK)). HPMC were assessed for cell surface expression of IL-6- 

related receptors, adhesion molecules and IL-31Ra by incubation for 1 hour with 

antibodies against the extracellular portions of named receptors as outlined in Table

2.3.

Cells incubated with antibodies against OSMRp and IL-31Ra required additional 

incubation with fluorochrome-associated secondary antibodies (phycoerythrin goat- 

F(ab’ )2  fragment was used in conjunction with antibodies against OSMRp and its 

associated isotype control, whilst anti-goat IgG FITC conjugate was used in for 

antibodies against IL-31Ra and its associated isotype control, Table 2.3). Cells were 

washed and resuspended in FACS buffer prior to analysis. Cell staining was 

quantified using a FACS Calibur 4CA cell sorter (see Section 2.4.1). Data was
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acquired from 10,000 gated events for each sample. Cells stained with secondary 

antibody alone were used as controls to eliminated non-specific binding, whilst non­

labelled cells were used to monitor the degree of autofluorescence. All antibody 

concentrations used and incubation periods were chosen in response to prior 

optimisation. Data was analysed using CellQuest-pro software, as described in 

Section 2.4.1.

2.4.3 Flow cytometric analysis of receptor expression on peripheral blood 

leukocytes

Neutrophils and mononuclear cells were separated using Ficoll density centrifugation 

(see Section 2.2.3). Cells were diluted to a concentration of 2x106 cells/ml in FACS 

buffer. To identify individual leukocyte subsets, cells were stained with FITC- 

conjugated antibodies against the extracellular portions of specific pan-leukocyte cell 

markers: CD 14 (monocytes), CXCR1 (neutrophils) and CD3 and CD4 (T cells) 

(conditions as described in Table 2.2).

Each subset was co-stained with an antibody against either receptor subunits for IL-6 - 

related cytokines (OSMRp, gpl30 or LIFRp) or IL-31Ra or related isotype controls 

(conditions as described in Section 2.3.2 and Table 2.3). To reduce non-specific 

antibody binding, cells were incubated with FACS blocking buffer for 30 minutes at 

4°C in the dark, before the addition of antibody (specific antibody combinations used 

are described in the relevant chapters) and further 1 hour incubation (in the dark, 

4°C). Cells were washed in FACS buffer then resuspended in secondary antibody (if 

required, see Section 2.4.2) and incubated for 30 minutes. Antibody-labelled cells 

were washed and resuspended in FACS buffer before acquisition (20,000 gated 

events). Autofluorescence and antibody labelling controls were included as before 

(Section 2.4.2), and the data analysed as per Section 2.4.1.
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Antibody Clone Isotype Fluoro-

chrome

Working

dilution

Source

OSMRp AN-A2 Mouse

IgGi

N/A 5(xg/ml Santa-Cruz Biotechnology

LIFRp 7G7 Mouse

IgGj,K

PE 2 pg/ml BD Pharmingen

IL-6Ra M5 Mouse

IgGi,K

PE 2 jo,g/ml BD Pharmingen

gpl30 28126.111 Mouse

IgG!

PE 2.5|ig/ml R&D Systems

IL-31Ra N-16 Goat

IgG

N/A 5pg/ml Santa-Cruz Biotechnology

ICAM-1 BBIG-I1 Mouse

IgG!

Fluoro-

scein

2 pg/ml R&D Systems

VCAM-1 BBIG-V3 Mouse

IgG2a

Fluoro-

scein

lpg/ml R&D Systems

CD3 UCHT1 Mouse

IgGi,K

FITC 1 / 1 0 0 BD Pharmingen

CD4 RPA-T4 Mouse

IgGi,K

PECy5 1 / 1 0 0 BD Pharmingen

CD14 M5E2 Mouse

IgG2a,K

FITC 1 / 1 0 0 BD Pharmingen

CXCR1 5A12 Mouse

IgG2b,K

FITC 5pg/ml BD Pharmingen

Mouse

IgGi

N/A N/A N/A 5p,g/ml Santa-Cruz Biotechnology

Anti­

goat IgG

N/A N/A FITC 1/400 Sigma-Aldrich

RPE

F(ab’)2

N/A N/A PE 0 . 1  (ig/ml Dako

Table 2.3. Primary and secondary antibodies and isotype controls used for 

FACS analysis of human peripheral blood cells and HPMC.
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2.4.4 Quantification of baseline leukocyte numbers in WT and OSMR-KO mice

Murine peritoneal and blood leukocytes were isolated as described in Section 2.3.3. 

Cells were re-suspended to a concentration of 2 x 106 cells/ml in Fc block (4pg/ml Rat 

anti-mouse CD16/CD32 FcyRl monoclonal antibody (BD Pharmingen, Oxford, UK) 

in FACS buffer) to reduce non-specific antibody binding, and incubated in the dark at 

4°C for 30 minutes. Samples were diluted to a concentration of 105 cells per sample 

in FACS buffer and incubated (in the dark, 4°C, 1 hour) with Phycoerythrin- 

conjugated antibodies against the extracellular portion of CD3 (T cells), B220 (B 

cells) and F4/80 (monocytes) as well as a related isotype control (conditions as 

outlined in Table 2.4). Expression of these cell markers was quantified from a total of

20.000 gated events using a FACS Calibur 4CA flow cytometer, (Section 2.4.1).

2.4.5 Flow cytometric analysis of CCR5 expression on murine peritoneal 

macrophages

Peritoneal leukocytes were isolated from inflammatory challenged mice and counted 

(Section 2.3.4). Cells were re-suspended in blocking buffer and incubated for 30 

minutes at 4°C (Section 2.4.4). To characterise individual monocytic subsets, cells 

were labelled (lhr incubation) with a FITC-conjugated anti-F4/80 antibody (Serotec 

AbD Ltd, Oxford, UK) in combination with an APC-conjugated anti-CD lib  (BD 

Pharmingen, Oxford, UK) (resident-like monocytes are characterised as 

F4/80h,ghCDllbhlgh, inflammatory monocytes are characterised as F4/80lowCDllb+, 

see Chapter 5.3) and CCR5 expression evaluated using a PE-conjugated anti-CCR5 

antibody (BD Pharmingen, Oxford, UK). Specific information relating to antibody 

concentrations used is presented in Table 2.4; again, all antibody concentrations were 

used dependent on prior optimisation. Cells were washed and resuspended in FACS 

buffer prior to analysis. Expression of cell markers was quantified from a total of

20.000 gated events using a FACS Calibur 4CA flow cytometer, as described in 

Section 2.4.1.
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Antibody Clone Isotype Fluoro-

chrome

Working

dilution

Source

CD16/CD32 

(Fc block)

2.4G2 Rat IgG2bK N/A 4(xg/ml BD Pharmingen

CD3 GK1.5 Rat IgG2bK FITC 5pg/ml BD Pharmingen

B220 RA3-6B Rat IgG2aK FITC 5 jig/ml BD Pharmingen

F4/80 CI:A3-1 Rat IgG2b FITC 5(xg/ml Serotec

CDllb Ml/70 Rat IgG2bK APC l|4,g/ml BD Pharmingen

CCR5 C34-3448 Rat IgG2ck PE 2  jig/ml BD Pharmingen

Rat IgG2 A95-1 Rat IgG2bK FITC 5|ig/ml BD Pharmingen

Rat IgG2 A95-1 Rat IgG2bK APC 2 pg/ml BD Pharmingen

Rat IgG2 A95-1 Rat IgG2bK PE 2 p.g/ml BD Pharmingen

Table 2.4. Primary and secondary antibodies and isotype controls used for 

FACS analysis of murine peritoneal leukocytes.
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2.5 RNA Analysis

2.5.1 Chloroform/Isopropanol RNA extraction

Total cellular RNA was extracted using TRI reagent (Sigma-Aldrich, Poole, UK). 

Cell monolayers established in 6-well microtitre plates were incubated for 5 mins with 

lml TRI reagent per well. The cell lysate was collected, chloroform added (1/10 to 

lysate) and samples incubated for 5 mins to allow separation of the aqueous phase. 

Samples were centrifuged (12,000g, 15 mins, 4°C with no braking), the colourless 

upper aqueous phase was collected, and the lower solvent phase and the interface 

were discarded. An equal volume of isopropanol was added to the aqueous phase to 

precipitate total cellular RNA at -20°C overnight. The RNA was pelleted by 

centrifugation and washed in 75% (v/v) ice cold ethanol. Samples were air dried and 

resuspended in lOpl of sterile H2 O.

2.5.2 Determination of RNA concentration

RNA concentrations were determined by spectrophotometric analysis (Beckman UV- 

DU64 spectrophotometer, Beckman Instruments Ltd, High Wycombe, UK). In an 

appropriate cuvette 1 pi of RNA was diluted in 54pl of sterile water. The absorbance 

was read at 260 and 280nm. A 260/280 ratio of above 1.8 was indicative of a 

sufficiently pure sample. The total RNA concentration was calculated using the 

following formula:

[RNA] (pg/ml) = OD2 6 0  x molar extinction coefficient x dilution factor

Molar extinction coefficient for RNA = 40 

Dilution factor = 55

An OD2 6 0  of between 0.1 -  1.0 was required to be in the linear range of the Beer- 

Lambert law, which states that there is a linear relationship between absorbance and 

the concentration of an absorbing substance, relying on both the distance light travels 

through the substance (path length) and the absorption coefficient of the substance. 

Samples were diluted where necessary and discarded if OD2 6 0  <0.1.

78



2.5.3 RNA quantification

RNA integrity was determined by flat bed electrophoresis using a mini-gel system 

(Thermo Life Sciences Ltd, Basingstoke, UK) through a 2% (w/v) agarose gel 

(composed of lg electrophoresis grade agarose (Ultrapure agarose, Gibco/BRL), 50ml 

of IX TAE (40mM Tris-Acetate, lmM EDTA) buffer (Promega, Southampton, UK) 

and 5 pi ethidium bromide (5mg/ml). Into a single well, lpg RNA was loaded with 

5pl of loading buffer (15% (v/v) Ficoll Type 400 (GE Healthcare, Chalfont St Giles, 

UK) in H2O, with 0.25% (w/v) Orange G). RNA integrity was visualised under ultra
n r w

violet light in the ChemiDoc gel documentation system (Bio-Rad Laboratories, 

Hemel Hempstead, UK). The quality of the RNA was assessed by an observed 

ethidium bromide staining pattern for 28S and 18S ribosomal RNA.

Figure 2.6 Representative RNA gel demonstrating expected ethidium bromide 

staining pattern for 28S and 18S ribosomal RNA.

Sample number
1 2  3 4

$ ||f  mm wm <—  28S

'<m «** £g$ <—  18S

Fig 2.6. RNA was isolated from four individual primary HPMC isolates (Section

2.5.1). RNA integrity was determined by gel electrophoresis (2% (w/v) agarose 

gel), lpg RNA was loaded per well, staining was visualised using ethidium 

bromide under ultra violet light.
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2.5.4 Semi-quantitative reverse transcription
Reverse transcription was performed using the random hexamer method (Topley et al, 

1993). Briefly, lpg total RNA in a total volume of 20pl comprising lOOpM random 

hexamers (GE Healthcare, Chalfont St Giles, UK), 5mM mixed deoxynucleotides 

(2’deoxyadenosine 5’triphosphate (dATP), 2’deoxyguanidine 5’triphosphate (dGTP), 

2’deoxycytidine 5’triphosphate (dCTP), 2’deoxythymidine 5’triphosphate (dTTP)) 

(GE Healthcare, Chalfont St Giles, UK), IX PCR buffer (20mM Tris-HCl, pH 8.4, 

50mM KC1) (Invitrogen, Paisley, UK) and ImM DTT (Dithiothreitol) (Invitrogen, 

Paisley, UK) was heated to 95°C for 5 mins to linearise the RNA. Following 

immediate cooling on ice, 40U of recombinant ribonuclease inhibitor (RNAsin, 

Promega, Southampton, UK) and 200U Superscript II Rnase H-ve reverse 

transcriptase (Invitrogen, Paisley, UK) was added. The RNA was heated to 20°C for 

10 mins to enable primer annealing to the linearised RNA, before transferring to 42°C 

for 60 mins to allow primer extension from the random hexamers by reverse 

transcription. The reaction was stopped by denaturation at 95°C for 5 mins. Negative 

control reactions were also performed replacing the Superscript reverse transcriptase 

enzyme with distilled H2 O alone. Two microlitres of the resulting complementary 

DNA (cDNA) was used for each PCR reaction.
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2.6 DNA Analysis

2.6.1 Polymerase Chain Reaction (PCR)

Each 50pl reaction comprised 2pi cDNA, IX PCR buffer containing 1.5mM MgCb 

(lOmM Tris-HCl, pH8.3, 50mM KC1, 0.001% (w/v) gelatin) (Applied Biosystems, 

Warrington, UK), 5mM mixed deoxynucleotides (dATP, dCTP, dGTP and dTTP) 

(GE Healthcare, Chalfont St Giles, UK), 2.5U AmpliTaq Gold (Applied Biosystems, 

Warrington, UK) and ImM oligonucleotide primers (5’-3’ and 3’-5’, forward and 

reverse) (Invitrogen, Paisley, UK). Negative control reactions were also performed, 

replacing the cDNA with 2pi of distilled water. The standard PCR protocol used in 

this study is as follows:

Step 1 -  Initial Linearisation 

94°C 2 mins 

Step 2 -  Denaturation, primer annealing and extension 

94°C 30 secs "

55°C 1 min > 2 6 -3 8  cycles (dependent on primers)

72°C 1 min 

Step 3 -  Final extension and proof reading 

6 8 °C 15 mins

All PCR reactions were carried out in a GeneAmp PCR System 9700 Thermo-cycler 

(Applied Biosystems Ltd).

2.6.2 Primer design

All primers were designed using the internet based Primer 3 software 

(http://ffodo. wi.mit.edu/cgi-bin/primer 3/primer3) and purchased from Invitrogen Ltd. 

Primers were designed to have a GC content of 50-60% and an annealing temperature 

of approximately 60°C. All primers were reconstituted in sterile water to give a stock 

concentration of 200pM. Detailed sequences for forward and reverse primers are 

shown in Table 2.5.
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Gene Sequence Tm (°C) %GC Cycle Product

No. length (bp)

P-actin F 5 ’-ATCCCCCAAAGTTCACAA-3 ’ 65 44 26 198

R 5 ’-CTGGGCCATTCTCCTTAG-3 ’ 65 55

GAPDH F 5 ’-CGAGATCCCTCCAAAATCAA-3 ’ 58 45 28 330

R 5 ’-ATCCACAGTCTTCTGGGTGG-3 ’ 58 55

IL-31Ra F 5 ’-TGGTGGAGGCCTTCTTATTC-3 ’ 60 50 35 180

R 5 ’-CACAGAGTCATCAGACTCCTTCA-3 ’ 60 48

IL -llR a F 5’-CCAACCCTGTAGAGGACCCA-3 ’ 70 55 32 230

R 5 ’-CGTTCCTTGAGCAGAACTCC-3 ’ 70 55

IL-31 F 5’-TGGACCTCGCACTAAAATCATTG-3’ 69 43 32 60

R 5 ’ -CGAAAGGAAGAGATGGCCTT AA-3 ’ 69 45

Table 2.5. Human primer sequences used in PCR reactions, outlining the 

annealing temperature (Tm), GC content, the required cycle number and 

resulting product size. All PCR reactions were performed using the 

amplification conditions specified in Section 2.6.1. Product length was estimated 

by comparison to banding exhibited by lkb+ DNA ladder. (F - forward sequence, 

R - reverse sequence).

2.6.3 Sizing of PCR products

All PCR products were run on a 2% agarose gel (as described in Section 2.5.3). 5pl 

of PCR product was loaded onto the gel along with 5 pi of loading buffer (as in section 

2.4.3) and separated by electrophoresis at 75V for 45-60 mins in TAE (Tris-Acetic 

Acid, EDTA) buffer (Promega, Southampton, UK). The DNA banding pattern was 

visualised/photographed using a ChemiDoc™ gel documentation system, and the size 

of product compared against molecular weight standards (lkb+ DNA ladder; 

Invitrogen, Paisley, UK).
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2.7 CCL5 promoter construct analysis

CCL5 promoter sequences (outlined in Table 2.6) were kindly provided by Lisa M. 

Schweibert (Department of Physiology and Biophysics, University of Alabama, 

Birmingham, Alabama, USA) and inserted into the Smal and Kpnl sites of the 

multiple cloning region of pGL2 basic luciferase reporter vector (Promega, 

Southampton, UK). Briefly, a 1.4kb 5’ noncoding sequence upstream of the CCL5 

gene was cloned as described by Moruichi et al, 1997 and found to contain the 

published promoter sequence and approximately 0.4kb sequence further upstream 

(R1.4). Additional sequences were generated via 5’ deletions and site directed 

mutations within putative cis-acting elements (Moruichi et al, 1997). Plasmids were 

inserted and stored in competent E.coli.

Putative cis- 

acting element

Position Base change in site-directed 

mutagenesis

Promoter 

sequence length

NFIL- 6 -92 TCCGTTGCATGCAATT 1.4kb

NF-kB (KB1) -44 GGAAACTTACGTAGG 1.4kb

Table 2.6 CCL5 promoter constructs. Additional CCL5 promoter constructs 

were generated to analyse putative cis-acting elements by site-directed 

mutagenesis. The base changes involved in site-directed mutagenesis are shown 

in bold type, positions are relative to the transcription start site (Moruichi et al, 

1997).
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2.7.1 Plasmid purification

Plasmids were isolated from competent cells (E.coli; Bioline, London, UK) using 

QIAGEN plasmid midi kits (Qiagen, Crawley, UK) following the manufacturers’ 

protocol. Briefly, 20pl cell stock (as stored in LB medium and glycerol, -80°C) was 

used to inoculate 50ml LB medium (10g/l tryptone, 5g/l yeast extract, 0.17M NaCl, 

pH7.0, heat sterilised) and incubated overnight with constant shaking. Cells were 

collected by centrifugation (6,000g, 15 mins) and lysed (using 200mM NaOH-1% 

(w/v) SDS buffer) resulting in the release of the cell contents. Neutralisation of the 

lysate causes SDS to precipitate, trapping chromosomal DNA and cellular debris but 

leaving plasmid DNA in solution. The precipitated cell debris was removed by 

centrifugation (13,000g, 15 mins), the plasmid DNA was bound to resin columns 

(QLAGEN-tips) and washed to remove all contaminating RNA and proteins. Plasmid 

DNA was eluted from the column, precipitated by the addition of isopropanol and 

collected by centrifugation. DNA was washed in 70% ethanol and resuspended in 

lml distilled H2 O.

The concentration of plasmid DNA isolated was quantified by UV spectrophotometry 

as described in Section 2.5.2. Briefly, lpl DNA was diluted in 54pl H2 O in an 

appropriate cuvette. The absorbance was read at 260 and 280nm. The DNA 

concentration was calculated using the following formula:

[DNA] (pg/ml) = OD2 6 0 x molar extinction coefficient x dilution factor 

Molar extinction coefficient for DNA = 50

2.7.2 Transient transfection

Transient transfection of SV40 HPMC was performed using the lipofection agent 

FuGene 6  (Roche Diagnostics, Lewes, UK). SV40 HPMC were grown as described 

in Section 2.2.2.1. When cells reached 70% confluence in 6  well plates, the growth 

medium was removed and the cell monolayer washed with PBS. Cells were 

transfected with 0.9pg pGL2 containing the CCL5 promoter sequence (Section 2.7) 

and O.lpg of Renilla luciferase vector (Promega, Southampton, UK) in accordance 

with the manufacturer’s protocol for the application of FuGene 6 . All transfections 

were carried out in serum free medium. After 24 hours the transfection medium was
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replaced with fresh medium containing the necessary stimulus for the experiment and 

incubated for a further 18 hours.

2.7.3 Reporter gene analysis

The medium was removed and the cells washed in PBS before the addition of 500pl 

of lysis buffer (supplied in Dual-Glo luciferase assay kit (Promega, UK)) per well. 

After a 15 minute incubation at room temperature, adherent cells were removed by 

scraping and the resultant supernatant transferred to an eppendorf tube, where each 

sample was vortexed to ensure complete lysis. 2 0 pl of each cell lysate was 

transferred to a white luminmetric 96-well plate, luciferase activity was assayed using 

the Dual-Glo luciferase assay kit as outlined in the manufacturer’s protocol. Briefly, 

lOOpl of Luciferase Assay Reagent II was added to each sample, immediately after 

this the luminescence of each well was read for 1 0  seconds using a luminometer 

(FLUOSTAR Optima, BMG Labtechnologies GmbH, Offenburg, Germany). lOOpl 

Stop n’ Glo reagent was then added to each well and Renilla luminescence recorded 

as before.
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2.8 Electrophoretic mobility shift assays (EMSA)

2.8.1 Generating nuclear extract from HPMC

HPMC were grown to confluence in T25 tissue culture flasks, growth arrested 

(Section 2.2.1.4) then treated with the desired stimulants over a designated time 

course. Cells were washed and scraped into ice cold PBS and pelleted by 

centrifugation. The cells were resuspended in buffer A (lOmM HEPES, 1.5mM 

MgCl2, lOmM KC1, 0.8pM PMSF, 40 pM Na3V04, 0.2mM NaF, 2pM DTT, 0.025% 

protease inhibitor cocktail (containing 4-(2-aminoethyl)benzenesulfonyl fluoride 

(AEBSF), pepstatinA, E-64, bestatin, leupeptin, and aprotinin) (Sigma-Aldrich, Poole, 

UK), 0.01% (v/v) NP-40) and incubated on ice for 10 minutes. Samples were 

centrifuged (13,000g, 5mins, 4°C), the supernatant collected (cytosolic extract), and 

the pellet resuspended in buffer B (20mM HEPES, 40mM NaCl, 1.5mM MgCl2, 

0.2mM EDTA, 25% glycerol, 0.8pM PMSF, 40 pM Na3V04, 0.2mM NaF, 2pM 

DTT, 0.025% (w/v) protease inhibitor cocktail (Sigma-Aldrich, Poole, UK)) and 

incubated on ice for 20 minutes for high salt extraction of nuclear proteins. Cell 

debris was removed by centrifugation (conditions as before); the supernatant (nuclear 

extract) was stored at -70°C. Protein concentrations were determined as outlined in 

Section 2.8.3.

2.8.2 Generating nuclear extract from murine peritoneal membrane sections

Nuclear protein was extracted from snap frozen peritoneal membrane sections taken 

during in vivo experiments. Membrane sections were kept frozen on dry ice, each was 

submerged in liquid N2 in a mortar and ground to a powder with the pestle. The tissue 

extracts were collected and suspended in buffer A and incubated on ice for 30 

minutes. Samples were centrifuged (13,000g, 5mins, 4°C), the supernatant collected 

and the pellet resuspended in buffer B, before being incubated on ice for 30 minutes. 

Cell debris was removed by centrifugation; the supernatant (nuclear extract) was 

stored at -70°C.

2.8.3 Estimation of protein concentration

The protein concentration of the nuclear extract was determined using the Bio-Rad 

protein assay (Bio-Rad Laboratories, Hemel Hempstead, UK). Protein concentration 

was determined by direct comparison with BSA (bovine serum albumin fraction V) 

standards diluted in buffer B, ranging from 0-1 mg/ml. Protein standards and samples
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diluted appropriately in buffer B (10pl total volume), were loaded in duplicate on a 

96-well plate before addition of 40% (v/v) dye binding reagent (Bio-Rad 

Laboratories, Hemel Hempstead, UK). Absorbance was read at 450nm (FLUOSTAR 

Optima, BMG Labtechnologies GmbH, Offenburg, Germany), concentrations were 

deduced using the logarithmic relationship between the standards and their 

absorbencies.

2.8.4 Radio-labelling double-stranded oligonucleotide probes with 32Phosphorous

All work involving radioactive material was performed behind a perspex shield. 

Double stranded oligonucleotide primers (sequences outlined in Table 2.7) were 

labelled using an end-labeling technique. Complementary oligonucleotide sequences 

were annealed so as to create overhanging 5’ single stranded sequences (identified by 

lower case in 5’-3’ sequences described in Table 2.7). Primers were annealed at a 

concentration of lOOng/ml in the presence of 10% 1M NaCl at 95°C for 10 minutes. 

The annealed probe was cooled slowly overnight and stored at -20°C.

Transcription

factor

Orientation Sequence

NFkB Forward 5’-gaTCCATGGGGAATTCCCC-3’

Reverse 5 ’-gaGGGGAATTCCCCATGGA-3 ’

SIE(M67) Forward 5 ’-cgaCATTTCCCGTAAATCG-3 ’

Reverse 5 ’ -cgaCGATTT ACGGGAAAT G-3 ’

NF1 Forward 5 ’-gaTCTTTTGGATTGAAGCCAATATGATAA-3 ’

Reverse 5’-gaTCTTATCATATTGGCTTCAATCCAAAA-3’

Table 2.7. Oligonucleotide sequences used for probe preparation for all EMSA 

analysis. Transcription factor binding motifs are shown in bold type.

The labeling reaction was prepared as follows: oligonucleotide probe (25ng), dNTP 

mix (dATP, dCTP, dGTP) (2.5mM each), 10X Klenow buffer (500mM Tris-HCl, 

pH7.2, lOOmM MgSC>4 , ImM DTT) (Promega, Southampton, UK), NaCl (1M) made 

up to 46pl with RNA grade H2 O. Binding of 30pCi of a-[3 2P]dTTP (GE Healthcare, 

Chalfont St Giles, UK) (30pCi) was catalysed by 2U of Klenow fragment (DNA
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Polymerase I Large) (Promega, Southampton, UK). The reaction was incubated at 

room temperature for 1 hour, after which time the reaction was stopped by the 

addition of EDTA (0.5M, pH8 ) and STE (lOOmM NaCl, lOmM Tris-HCl, ImM 

EDTA, pH8 ). Probes were purified from any free contaminating radioactivity using 

size exclusion columns (GE Healthcare, Chalfont St Giles, UK) and stored at -80°C.

2.8.5 Gel preparation

All samples were run on vertical 8 % (w/v) polyacrylamide gels (cast and run on 

Hoeffer Sturdier gel apparatus), the composition of which are outlined in Table 2.8. 

Loading wells were washed with 0.5X TBE (Tris-Boric Acid EDTA, running buffer) 

prior to use.

Distilled H2O 44.25ml

40% Acrylamide/Bis-acrylamide (29:1) 15ml

5X TBE* 7.5ml

50% Glycerol 7.5ml

10% Ammonium Persulphate (APS) 0.75ml

TEMED 0.06ml

* 5X TBE (0.45M Tris-HCl, 0.45M Boric acid, 0.01M EDTA, pH8 )

Table 2.8. Composition of 8% (w/v) polyacrylamide gels.

2.8.6 Analysis of DNA-protein complexes by electrophoresis

Experiments evaluated formation of protein-DNA complexes which showed restricted 

electrophoretic mobility. The binding reaction consisted of 5X binding buffer (50mM 

HEPES, 250mM KC1, 50% glycerol, 1 mg/ml acetylated BSA, 5mM DTT, ImM 

PMSF) (1/5 final volume), poly dl/dC (lmg/ml), nuclear extracts (2pg HPMC, lOpg 

peritoneal membrane extract) and RNA grade H2 O (to final volume minus 2pi). After 

a 10 minute incubation (RT) to allow blocking of non-specific binding sites, 

radiolabelled oligonucleotide probe containing a binding motif for a transcription 

factor was added. Samples were incubated with the probe for a further 20 minutes 

prior to loading onto the gel. Gels were run at 180V for 3hrs 30 minutes, then 

transferred to 3M Whatman paper and dried on a vacuum drier at 80°C for 2 hrs.

88



Dried gels were exposed to X-ray film (GE Healthcare, Chalfont St Giles, UK) (6 hrs 

to overnight at -80°C) and developed by autoradiography.

2.8.6.1 Supershift analysis of individual subunits

Supershift analysis utilises antibodies to define the protein composition of individual 

transcription factor subunits in the DNArprotein complex. If the subunit is present, 

antibody binding to the protein bound with the probe will either directly block DNA 

binding or result in formation of a larger complex and will migrate slower upon gel 

electrophoresis (the supershift). Briefly, nuclear extracts were incubated (20 mins, 

RT) with antibodies against NF-kB subunits and ST AT subunits (as described in 

Table 2.10) prior to the addition of radio-labelled probe.

Transcription factor Subunit Clone Concentration

NF-kB p50 NL2 2 0 ng/ml

p52 C5 2 0 ng/ml

p65 A 2 0 ng/ml

c-Rel N-466 2 0 ng/ml

SIE(M67) STAT1 M-22 2 0 ng/ml

STAT3 C-20 2 0 ng/ml

STAT5 C-17 2 0 ng/ml

Table 2.10. Antibodies used for human and murine supershift analysis and 

optimal concentrations used. All antibodies were purchased from Santa-Cruz 

Biotechnology, Santa Cruz, CA.

2.8.7 Densitometry and standardisation of temporal changes

Quantification of banding intensity was performed for each individual time point 

using the Bio-Rad gel documentation system (Section 2.5.3) and QuantityOne 

software. For HPMC stimulations, temporal changes in IL-ip-mediated transcription 

factor activation following co-stimulation with OSM is expressed as a ratio of the 

banding intensity of IL-lp stimulation alone. In vivo transcription factor activation in 

OSMR-KO mice was expressed as a ratio of the banding intensity seen in WT mice at 

each time point.
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2.9 Enzyme-linked immunosorbent assays (ELISA)

Cell culture supernatant and murine peritoneal lavage fluid were assayed for cytokine 

and chemokine concentrations in accordance with the BD OptEIA™ (murine CCL2, 

KC/CXCL1, IL-6 , IL-lp; human CCL2, CXCL8 , CXCL9 and CXCL10) or the R&D 

Systems Duoset (murine CCL3, CCL4 and CCL5; human IL-6 , CCL5 and CXCL11) 

ELISA protocols. For specific antibody dilutions and concentrations see Table 2.11.

Species Chemokine

/Cytokine

Primary 

capture Ab 

concentration 

/dilution

Secondary 

detection Ab 

concentration 

/dilution

Top standard 

concentration

Limit of 

detection

Human CCL2 1/250 1/500 500pg/ml 7.8pg/ml

CCL5 lpg/ml 2 0 ng/ml lOOOpg/ml 15.1pg/ml

CXCL8 1/250 1/250 2 0 0 pg/ml 3.1pg/ml

CXCL9 1/250 1/250 2 0 0 0 pg/ml 31.3pg/ml

CXCL10 1/250 1/250 500pg/ml 7.8pg/ml

CXCL11 lpg/ml 2 0 0 ng/ml 500pg/ml 7.8pg/ml

IL- 6 2 jig/ml 2 0 0 ng/ml 600pg/ml 9.1pg/ml

Murine CCL2 1/250 1/250 lOOOpg/ml 15.1pg/ml

CCL3 0.4pg/ml lOOng/ml 500pg/ml 7.8pg/ml

CCL4 2 pg/ml lOOng/ml lOOOpg/ml 15.1pg/ml

CCL5 2 pg/ml 400ng/ml 2 0 0 0 pg/ml 31.3pg/ml

CXCL1 2 pg/ml 2 0 0 ng/ml lOOOpg/ml 15.1pg/ml

IL-lp 1/250 1/250 2 0 0 0 pg/ml 31.3pg/ml

IL- 6 1/250 1/250 lOOOpg/ml 15.1pg/ml

Table 2.11. Antibody concentrations and samples used for commercial ELISA 

kits. Kits supplied by R&D Systems and BD Biosciences.

Briefly a 96-well micro-titre plate (Immulon 4HBX, Thermo Life Sciences Ltd) was 

coated with specific monoclonal capture antibody (lOOpl per well) and incubated 

overnight. After each step the plate was washed using 0.05% (v/v) Tween 20 in PBS
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on a wellwash 4 automatic plate washer (Thermo Life Sciences Ltd). Plates were 

blocked for 1 hour with assay diluent (3% (w/v) BSA in PBS) (200pl per well), then 

washed prior to incubation with the samples and standards, followed by a 2  hour 

incubation at room temperature (samples were diluted to an appropriate 

concentration). Each well was washed again before addition of working detection 

solution (specific biotinylated monoclonal antibody and streptavidin-horseradish 

peroxidase conjugate) (lOOpl per well) and further 1 hour incubation. Immuno- 

reactivity was detected by the addition of substrate solution (Sureblue TMB 

(3,3 ’,5,5 ’ -tetramethylbenzidine) substrate, KPL), once the required colour change had 

been observed, the reaction was stopped by the addition of 2M H2 SO4 . The 

absorbance of each sample was read at 450nm (FLUOSTAR Optima, BMG 

Labtechnologies GmbH, Offenburg, Germany). Concentrations were deduced using 

the logarithmic relationship between the standards and their absorbencies.

2.9.1 Murine OSM ELISA development

Murine OSM levels were quantified using an ELISA system developed using 

0.8pg/ml goat anti-mouse OSM polyclonal IgG (AF-495-NA, R&D Systems, 

Abingdon, UK) as a capture antibody and 200ng/ml biotinylated goat anti-mouse 

OSM polyclonal IgG (BAF495, R&D Systems, Abingdon, UK) as a secondary 

antibody. Concentrations of OSM were quantified against murine OSM (495-MO- 

025, R&D Systems, Abingdon, UK) as a protein standard. Antibody concentrations 

were optimised using a ‘chequerboard’ design, as outlined in Figure 2.6. The ELISA 

protocol was followed as described in Section 2.9.
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Figure 2.6 Optimisation of murine OSM ELISA using individual antibodies 

supplied by R&D Systems.
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Fig 2.6. Murine OSM ELISA design. A plate was coated with goat anti-mouse 

polyclonal IgG diluted to the designated concentrations (0.2, 0.4 and 0.8pg/ml) in 

PBS and incubated at RT overnight. The plate was washed prior to the addition 

of recombinant murine OSM diluted to 1, 2 and 4ng/ml in 1% (w/v) BSA in PBS 

and incubated at RT for 2 hours. Again, the plate was washed prior to 

incubation with biotinylated goat anti-mouse polyclonal IgG diluted to the 

designated concentrations (50, 100, 200 and 400ng/ml) in 1% (w/v) BSA in PBS 

for 2 hours. Immuno-reactivity was quantified by the addition of streptavidin-
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horseradish peroxidase conjugate and TMB substrate. The absorbance of each 

sample was read at 450nm. As demonstrated, optimum conditions were 

observed using 0.8pg/ml capture antibody and 200ng/ml detection antibody.

2.10 Statistical analysis

Statistical analyses were performed using the Student’s Mest. A P-value of <0.05 

was considered significant. All data represent mean ± SEM. The number of repeats 

for each experiment is shown in the appropriate figure legends.
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Chapter 3

Defining the receptor signature for gpl30- 

related cytokines in mesothelial cells and 

leukocyte subsets



3.1 Introduction

Previous work has demonstrated a role for the Interleukin (IL)-6-related cytokine 

OSM in stromal cell activation, leukocyte recruitment and tissue injury (Wahl et al, 

2001; Wallace et al, 1999; Modur et al, 1997; Urn et al, 2000), however, the role of 

OSM in the progression of acute inflammation has not been extensively studied. This 

Chapter aims to examine the ability of OSM to mediate expression of chemokines and 

adhesion molecules by both HPMC and peripheral blood leukocytes.

To examine the cytokine network governing leukocyte trafficking during acute 

inflammation studies adopted the peritoneal cavity as a site in which to investigate the 

role of OSM. The peritoneum represents an easily accessible cavity, which can 

periodically become susceptible to bacterial infections (peritonitis) as a consequence 

of perforated appendicitis, rupture of the cavity wall or complications from gastric 

ulcers. However, bacterial peritonitis is a frequent complication in end-stage renal 

failure patients undergoing peritoneal dialysis treatment (Section 1.10). The primary 

cell types involved in driving the initial inflammatory response within the peritoneal 

cavity are peritoneal mesothelial cells lining the peritoneum, and smaller populations 

of resident macrophages and lymphocytes which play an important role in immune 

surveillance and initiation of an inflammatory response (Goldstein et al, 1984; Topley 

et al, 1996).

The role of IL-6 in the progression of acute inflammation, has been extensively 

studied and shown to be mechanistically reliant upon IL-6 trans-signalling and the 

transcription factor STAT3 (Hurst et al, 2001; McLoughlin et al, 2003; McLoughlin 

et al, 2005; Fielding et al, 2008). During episodes of acute inflammation, the primary 

source of sIL-6R is from infiltrating neutrophils which shed membrane-bound 

receptor as a consequence of apoptosis or inflammatory activation by chemokines and 

other chemotactic regulators (Hurst et al, 2001; Marin et al, 2001; Chalaris et al, 

2007). In addition infiltrating neutrophils produce and secrete OSM suggesting OSM 

may also be important in the progression of the immune response (Hurst et al, 2002). 

Although less extensively studied, previous work has shown that OSM can induce 

expression of pro-inflammatory mediators including IL-6 and CCL2, and also regulate 

expression of IL-1-induced neutrophil chemoattractants such as CXCL5, CXCL6 and
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CXCL8 in a similar manner to that exhibited by IL-6 (Modur et al, 1997; Hurst et al, 

2002; Cross et al, 2004; McLoughlin et al, 2004).

Due to the short-lived and synergistic nature of the cytokine network, many cytokines 

are subject to a functional hierarchy with certain factors eliciting comparable 

outcomes. In this respect, several of the IL-6-related family of cytokines have been 

shown to promote similar activities. However, each individual cytokine also has its 

own set of biological properties. This redundancy may be explained by the cellular 

expression of each specific receptor subunit. Although gpl30 is ubiquitously 

expressed, cognate receptor subunits to the various cytokine family members 

including LIFRp and OSMRp show distinct expression patterns (Ernst & Jenkins, 

2004). Previous work using peritonitis as an inflammatory model has demonstrated a 

lack of LIFRp expression on both peripheral blood leukocytes and HPMC, however 

HPMC express OSMRp (Hurst et al, 2002). This, taken in combination with the 

release of OSM from infiltrating neutrophils, suggests a role for OSM in the 

progression of peritoneal inflammation potentially in a similar manner to that seen in 

response to IL-6 trans-signalling due to the previously observed similarities in 

chemokine regulation between the two cytokines (Langdon et al, 1997; Hartner et al, 

1997; Hurst et al, 2002).

This chapter aims to examine expression of IL-6-related cytokine specific a-chains, 

LIFRp, OSMRp and IL-31Ra on HPMC, as the primary cell type orchestrating the 

immune response within the peritoneal cavity. Expression of OSMRp and IL-31Ra 

on peripheral blood leukocytes before and after activation with IFN-y and LPS 

(Nathan et al, 1983) will be determined. In addition the effect of OSM and IL-31 on 

HPMC and peripheral blood leukocytes before and after LPS and IFN-y activation 

will be examined. This will provide a basis for examining the role of OSM in 

peritoneal inflammation and also determine any potential role for IL-31 during acute 

inflammation.

96



3.2 Materials and Methods

3.2.1 Flow cytometric analysis of receptor expression on unstimulated HPMC

HPMC were isolated from consenting patients undergoing elective surgery as 

described in Section 2.2.1.1. Monolayers were grown to confluence prior to growth 

arrest (Section 2.2.1.4). Cells were collected by scraping into ice cold PBS, washed 

and resuspended in FACS buffer (Section 2.4). To determine the expression of IL-6- 

related cytokine receptor expression, cells were incubated with antibodies against the 

extracellular portion of IL-6Ra, LIFRp, gpl30, OSMRp or an appropriate isotype 

control (Section 2.4.2). Cells stained with antibodies against OSMRp and the isotype 

control were washed then incubated for a further 30 minutes with a phycoerythrin- 

conjugated secondary antibody. Cells were washed and resuspended in FACS buffer 

before cell surface receptor expression analysis by flow cytometry (Section 2.4.1).

3.2.2 Flow cytometric analysis of receptor expression on freshly isolated 

peripheral blood leukocytes

Blood leukocytes were isolated from healthy volunteers as described in Section 2.2.3. 

Isolated neutrophils and PBMC were resuspended in FACS buffer at a concentration 

of 2xl06 cells/ml, prior to blocking for 30 minutes with block buffer (see Sections

2.4.1 and 2.4.2). Leukocyte subsets were identified by expression of specific pan 

leukocyte cell markers (CD3 and CD4 (T cells), CD 14 (monocytes) and CXCR1 

(neutrophils)) (see Section 2.4.2). In addition to the leukocyte-specific markers, cells 

were co-stained with antibodies against the extracellular portion of LIFRp, gpl30, 

OSMRp or a specific isotype control, as outlined in Table 3.2.1 (conditions of use 

outlined in Table 2.2). Again, cells were washed and resuspended in FACS buffer 

before cell surface receptor expression analysis by flow cytometry (Section 2.4.4).
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Leukocyte

subset

Pan-leukocyte

marker

Flouro-

chrome

Co-stain Flouro-

chrome

Secondary

antibody

Monocyte CD14 FITC OSMRP N/A RPE-goat (ab’)2

LIFRp PE N/A

gpl30 PE N/A

Mouse IgGi N/A RPE-goat (ab’)2

Neutrophil CXCR1 FITC OSMRP N/A RPE-goat (ab’)2

LIFRp PE N/A

gpl30 PE N/A

Mouse IgGi N/A RPE-goat (ab’)2

Lymphocyte CD3 FITC OSMRP N/A RPE-goat (ab’)2

LIFRP PE N/A

gpl30 PE N/A

Mouse IgGi N/A RPE-goat (ab’)2

T cell CD4 PE-Cy5 OSMRp N/A RPE-goat (ab’)2

LIFRP PE N/A

gpl30 PE N/A

Mouse IgGi N/A RPE-goat (ab’)2

Table 3.2.1. Combinations of antibodies used to determine gpl30, OSMRp and 

LIFRp expression on leukocyte subsets. Cell staining was quantified by FACS 

analysis, performed as previously described (Section 2.4.1). (FITC - flourescein 

isothiocyanate, PE - phycoerythrin, PECy5 -  phycoerythrin cyano-5).

3.2.3 Reverse-transcription PCR analysis of receptor expression on unstimulated 

HPMC

Total cellular RNA was isolated from growth arrested HPMC using TRI reagent and 

reverse transcribed into complementary DNA (cDNA) (Section 2.5). PCR was 

performed using forward and reverse primers for IL-1 IRa and IL-31Ra as outlined in 

Section 2.6.
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3.2.4 Stimulation of HPMC with OSM and subsequent quantification of induced 

cytokines and chemokine production

Growth arrested HPMC (Sections 2.2.1.1, 2.2.1.2 and 2.2.1.4) were stimulated (37°C, 

5% CO2 ) with defined doses of human recombinant OSM (R&D Systems, Abingdon, 

UK) in serum free medium. Dose- and time-dependent experiments were performed 

as outlined in the appropriate Figure Legends. Cells stimulated with recombinant 

human IL-lp (R&D Systems, Abingdon, UK) (50pg/ml, chosen based on the levels 

quantified in vivo and was shown to elicit robust chemokine induction in vitro) or 

IFN-y (500U/ml, chosen in response to previous dose response experiments (Robson 

et al, 2001)) (R&D Systems, Abingdon, UK) were used as a positive control. 

Unstimulated controls (cells treated with fresh serum free medium) provided baseline 

measurements for all mediators tested. Following stimulation culture supernatant was 

removed and rendered cell free by centrifugation. Levels of CCL2, CCL5, CXCL8, 

CXCL9, CXCL10, CXCL11 and IL-6 were quantified by ELISA (Section 2.9).

3.2.5 In vitro activation of PBMC with a combination of LPS and IFN-y

PBMC were isolated from whole blood (Section 2.2.3) and resuspended in serum free 

supplemented medium at a concentration of 2xl06 cells/ml. Cells were allowed to 

adhere for 2 hours in 12 well plates and subsequently activated overnight with a 

combination of LPS (lOng/ml) and IFN-y (500U/ml).

To assess the induction of OSMRp on ‘LPS/IFN-y-activated’ PBMC, cells were 

stimulated overnight with either OSM (30ng/ml) or IL-31 (50ng/ml). CCL2 levels in 

cell-free culture supernatant were quantified by ELISA (Section 2.9). Cells were 

collected by scraping into ice cold PBS and flow cytometry used to assess surface 

expression of OSMRp and IL-31 Ra (Section 2.4.2). Total cellular RNA was 

extracted for PCR analysis of IL-31 Ra expression (Sections 2.5 and 2.6).

3.2.6 Analysis of adhesion molecule expression on stimulated HPMC

Confluent HPMC were growth arrested (Section 2.2.1.4) and stimulated overnight 

with OSM (30ng/ml), IL-1 (50pg/ml) or TNFa (lOOpg/ml). Cells were harvested and 

incubated with antibodies against the extracellular portions of ICAM-1 and VCAM-1 

and an appropriate isotype control (conditions used are outlined in Table 2.2) for 1 

hour. Cell staining was quantified by flow cytometry (Section 2.4.1).
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3.3 Results

3.3.1 Receptor expression on HPMC at basal levels

Due to the central importance of HPMC in orchestrating cytokine production during 

peritoneal inflammation, cytokine receptor expression on HPMC was evaluated to 

determine which IL-6-related cytokines potentially govern mesothelial cell responses 

during inflammatory processes.

IL-6-related cytokines signal through a receptor system utilising at least one subunit 

of the ubiquitously expressed signal transducing receptor gpl30. As outlined in 

Section 1.8.1, signalling via gpl30 can either occur through a gpl30 homodimer 

complex, or via interaction with a secondary subunit as a heterodimeric receptor 

complex. To examine the potential of HPMC to trigger signalling events through 

these distinct modes of gpl30 activation, studies evaluated the expression of receptor 

subunits that direct gpl30-mediated responses in HPMC. As previously determined, 

HPMC do not express IL-6Ra (Hurst et al, 2001), however expression of IL-llRa 

was detected (Figure 3.3.1). In addition to gpl30 homodimers, two additional 

receptor complexes utilising gpl30 exist, comprising one subunit of gpl30 associated 

with either OSMRp or LIFRp. A variety of IL-6-related cytokines utilise 

LIFRp:gpl30 receptor complexes, including OSM, LIF, CNTF and CT-1, however, 

HPMC do not express LIFRp (Figure 3.3.1) therefore are unable to respond to these 

cytokines. As previously demonstrated HPMC express OSMRp (Figure 3.3.1) and 

are therefore able to respond directly to OSM.
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Figure 3.3.1 IL-6-related receptor expression on HPMC
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Fig 3.3.1. IL-6-related receptor expression on HPMC. A, demonstrates 

forward/side scatter of HPMC at passage 2. Stained samples were 

compared to isotype controls and secondary antibody controls (B). Growth 

arrested HPMC were incubated with antibodies against gpl30, OSMR, 

IL-6R and LIFR (C), the calculated mean fluorescence for each receptor, 

compared to the isotype control, can be seen in panel D. IL -llR a 

expression was quantified by RT-PCR (E). Data represents mean +/- SEM 

of three independent primary isolates.
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3.3.2 OSM selectively regulates inflammatory chemokine production, but not 

that of IL-6

It has previously been reported that OSM, released from infiltrating neutrophils 

during episodes of acute inflammation, is able to regulate secretion of IL-6 (Brown et 

al, 1991), which has been suggested as a contributing mechanism for OSM 

involvement in the control of leukocyte trafficking (Hurst et al, 2002). However, 

when IL-6 production in response to OSM was assayed, no significant increase in 

IL-6 was observed in either a dose- or time-dependent manner (Figure 3.3.2).

Studies have previously demonstrated the ability of OSM to upregulate expression of 

the mononuclear cell chemoattractant CCL2 in HPMC (Hurst et al, 2002). Figure

3.3.3 confirms these previous observations and shows that OSM treatment stimulates 

both a dose- and time-dependent upregulation of CCL2, which due to the magnitude 

and reproducibility of this response will be used as a positive control for further 

experiments. To further examine the potential ability of OSM to regulate mononuclear 

cell trafficking, production of two additional mononuclear chemoattractants, CCL3 

and CCL5, was assayed. However, no increase in production of either CCL3 or 

CCL5 was observed in response to OSM (Figure 3.3.3). OSM stimulation also had 

minimal effects on the T cell chemoattractants CXCL9, CXCL10 and CXCL11 

(Figure 3.3.4), with only CXCL10 production observed in response to high 

concentrations of OSM. The induction of CXCL10 by OSM, was however minimal 

when compared with the archetypal activator of CXCL10, IFN-y (Figure 3.3.4). In 

addition OSM does not induce expression of the neutrophil chemoattractant CXCL8 

(Figure 3.3.5).
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Figure 3.3.2 OSM does not regulate IL-6 expression in HPMC
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Fig 3.3.2. Growth arrested HPMC were stimulated with increasing doses of 

OSM for 18 hours, or with 30ng/ml OSM for increasing time periods. IL-6 

expression was quantified in the culture supernatant by ELISA, OSM 

treated cells were compared to IL-lp (50pg/ml) stimulated cells or non­

stimulated control cells. Data represents mean +/- SEM of three 

independent primary isolates (*p<0.05).
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Figure 3.3.3 OSM selectively increases expression of the monocyte 

chemoattractant CCL2 in HPMC
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Fig 3.3.3. OSM selectively induces expression of CCL2. Growth arrested 

HPMC were stimulated with increasing doses of OSM for 18 hours, or with 

30ng/ml OSM for increasing time periods. CCL2 (A), CCL3 and CCL5 (B) 

expression was compared to IL-lp (50pg/ml) stimulated cells or non­

stimulated control cells. Chemokine expression in the culture supernatant 

was quantified by ELISA. Data represents mean +/- SEM of three

independent primary isolates (*p<0.05).
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Figure 3.3.4 OSM selectively increases expression of the T cell 

chemoattractant CXCL10 in HPMC
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Fig 3.3.4. OSM control of ELR CXC chemokines. CXCL9, CXCL10 and 

CXCL11 expression in HPMC was quantified after overnight stimulation 

with OSM (0-30ng/ml) or IFN-y (500U/ml) (A, C, D), or OSM (30ng/ml) 

compared to non-stimulated control cells over a time course (B, E). Data 

represents mean +/- SEM of three independent primary isolates (* p<0.05).
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Figure 3.3.5 OSM does not increase expression of the neutrophil 

chemoattractant CXCL8 in HPMC

4000

5000 5000  -
O  Non-stim ulated  

4 00 0  - #  OSM

O)
3000 3000  -oo

X 2000 2000 -O
1000 1000  -

0 0
0 3 30 IL-1

OSM ng/ml

0 6  12 18 24

Time hrs

Fig 3.3.5. Growth arrested HPMC were stimulated with increasing doses of 

OSM for 18 hours, or with 30ng/ml OSM for increasing time periods. 

CXCL8 expression in the culture supernatant was quantified by ELISA, 

OSM treated cells were compared to IL-lp (50pg/ml) stimulated cells or 

non-stimulated control cells. Data represents mean +/- SEM of three 

independent primary isolates (*p<0.05).
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3.3.3 OSM selectively promotes expression of the adhesion molecule VCAM-1

In addition to regulating chemokine expression, IL-6-related cytokines can also 

control leukocyte trafficking by controlling expression of adhesion molecules (Modur 

et al, 1997; Oh et al, 1998). Previous work has illustrated OSM induced upregulation 

of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 

(VCAM-1) in endothelial cells (Modur et al, 1997 Fritz et al, 2006; Fearon et al, 

2006). Stimulation with OSM significantly increases surface expression of VCAM-1 

but not ICAM-1 on HPMC, which remains comparable to that observed in 

unstimulated cells (Figure 3.3.6). VCAM-1 is associated with the adhesion of a 

variety of mononuclear cells including monocytes and T cells, whereas ICAM-1 is 

more closely associated with the adherence of neutrophils (Liberek et al, 1996). The 

ability of OSM to specifically upregulate expression of VCAM-1 on HPMC provides 

further evidence for a role in mononuclear cell trafficking.
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Figure 3.3.6 OSM selectively upregulates expression of the adhesion 

molecule VCAM-1 in HPMC
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Fig 3.3.6. Growth arrested HPMC were treated with OSM (30ng/ml), 

IL-lp (50pg/ml) or TNFa (lOOpg/ml). Cells were stained with FITC 

conjugated antibodies against ICAM-1 (A) or VCAM-1 (B), compared 

back to a FITC conjugated IgG control. Data is representative of three 

independent primary isolates (* p<0.05).
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3.3.4 IL-6 related receptor expression on peripheral blood leukocytes

Inflammation is a highly orchestrated communication system, which links responses 

between stromal tissue cells local to the initial insult and infiltrating leukocytes. 

Studies outlined thus far illustrate that OSM is likely to affect mesothelial cell 

responses within the peritoneal cavity. To examine the potential impact of OSM on 

infiltrating cells, peripheral blood leukocytes were examined for OSMRp expression. 

As shown in Figure 3.3.7, freshly isolated peripheral blood leukocytes do not express 

either OSMRp or LIFRp and are unable to respond to OSM stimulation (assessed by 

production of both CCL2 and IL-6) (Figure 3.3.8) confirming PBMC do not express a 

functional receptor complex for OSM. However, PBMC produce RNA for the 

cognate IL-llRa (Figure 3.3.7) and have previously been shown to express IL-6Ra 

(McLoughlin et al, 2004), implying signalling is only mediated through gpl30 

homodimers on peripheral blood mononuclear cells.

During an inflammatory response macrophages are activated through several distinct 

mechanisms (Section 1.4.1), one of which is the classical pathway where activation is 

achieved through IFN-y and additional TLR activation by microbial products such as 

LPS. Stimulation of peripheral blood leukocytes with LPS in combination with IFN-y, 

promoted expression of OSMRp on the surface of PBMC but not PMN (Figure 3.3.9). 

This process is confined to signalling through TLR4 however, as co-stimulation with 

IFN-y and the TLR2 agonist SES, (a cell-free supernatant derived from the gram 

positive bacterium Staphylococcus epidermidis), failed to induce OSMRp expression 

on either PBMC or PMN (Figure 3.3.9). The TLR4-driven expression of OSMRP 

was functional, and OSM stimulation of these pre-activated PBMC promoted CCL2 

production (Figure 3.3.9).
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Figure 3.3.7 Freshly isolated PBMC express IL -llR a but not LIFRp or OSMRp
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Fig 3.3.7. Leukocyte subsets were gated dependent on their forward-side 

scatter (N-neutrophils, M-monocytes, L-lymphocytes) and expression of pan­

leukocyte markers (A). To identify leukocyte specific expression PBMC 

were incubated with FITC-conjugated antibodies against pan-leukocyte 

markers in combination with PE-conjugated antibodies against either gpl30

(B), LIFRp (C) or OSMRp (D), the percentage of cells expressing these 

receptors (cells in the upper right (UR) quadrant) is demonstrated in Panel 

(E). RT-PCR was performed using primers for GAPDH and IL-11R on 

cDNA isolated from growth arrested PBMC (32 cycles) (F). Data is 

representative of three individual donors.
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Figure 3.3.8 Freshly isolated PBMC are unable to respond to direct OSM

stimulation
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Fig 3.3.8. Isolated PBMC were stimulated with increasing concentrations 

of OSM (0-30ng/ml) for 18 hours. Cell culture supernatants were assayed 

for CCL2 (A) and IL-6 (B) compared to IL-1 (5 (50pg/ml) stimulated cells. 

Data represents mean +/- SEM of three independent PBMC isolates 

(*p<0.05).
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Figure 3.3.9 Induction of OSMRp expression on PBMC
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Fig 3.3.9. Isolated PBMC and PMN were treated with LPS (50ng/ml) or 

IFN-y (500U/ml) individually and in combination overnight (A). Panel B 

shows an identical experimental set up in which LPS has been replaced 

with the TLR2 agonist SES. Changes in OSMRp were evaluated by flow 

cytometry and compared to isotype and secondary antibody controls. C, 

isolated PBMC were stimulated with LPS and IFN-y alone and in 

combination with OSM (30ng/ml). CCL2 in the culture supernatants was 

assayed by ELISA. All data represents mean +/- SEM of three 

independent PBMC isolates (*p<0.05).

112



3.3.5 IL-31Ra expression on HPMC

In addition to the association with gpl30, OSMRp also interacts with the cognate 

IL-31Ra to form a functional receptor complex for IL-31 (Dillon et al, 2004). IL-31 

plays an important role in allergic responses (Dillon et al, 2004; Perrigoue et al, 2007), 

with IL-31 Ra expression detected in several cell types including keratinocytes, lung 

epithelial cells, activated monocytic cells and T lymphocytes (Dreuw et al, 2004). 

Basal IL-31 expression was detected at low levels in OSM stimulated HPMC (Figure 

3.3.10), indicating a potential role for IL-31 in peritoneal inflammation. However, 

RT-PCR analysis showed HPMC do not express IL-31 Ra, and was confirmed by an 

inability of HPMC to produce CCL2 in response to IL-31 (Figure 3.3.10) To control 

for the activity of IL-31, a similar set of experiments were performed using THP-1 

cells (a leukaemic monocytic cell line). As shown in Figure 3.3.10, IL-31 promoted 

CCL2 production by THP-1 cells and subsequent RT-PCR analysis on cDNA isolated 

from THP-1 cells exhibited low level IL-31Ra expression (Figure 3.3.10).

HPMC were however shown to upregulate IL-31 Ra expression following exposure to 

IFN-y, which was further enhanced by additional stimulation with the TLR2 and 

TLR4 agonists SES and LPS respectively (Figure 3.3.11). To substantiate the 

functional relevance of this induction, IL-31-mediated regulation of CCL2 was 

examined in LPS and IFN-y treated HPMC (Figure 3.3.11). As predicted from prior 

RT-PCR and flow cytometry studies (Figure 3.3.11), IFN-y and LPS rendered HPMC 

susceptible to IL-31 stimulation (Figure 3.3.11).
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Figure 3.3.10 HPMC do not express IL-31Ra under basal conditions
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Fig 3.3.10. Regulation of IL-31 responsiveness in HPMC (A). RT-PCR 

was performed using primers for IL-31 on cDNA isolated from OSM 

stimulated HPMC (30 cycles). Densitometry was performed comparing 

each band to the corresponding P-actin control. Expression of IL-31Ra 

on growth arrested HPMC and THP-1 cells was quantified by RT-PCR 

using primers for GAPDH and IL-31 Ra (35 cycles) (B). CCL2 

expression was assayed in the culture supernatants following IL-31 

(50ng/ml), IL-ip (50pg/ml) and OSM (30ng/ml) stimulation overnight 

(C, HPMC; D, THP-1). Data represents mean +/- SEM of three 

independent primary isolates (*p<0.05).
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Figure 3.3.11 Induction of IL-31Ra expression on HPMC
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Fig 3.3.11. Expression of IL-31Ra on HPMC stimulated with IFN-y 

(500U/ml) alone or in combination with either LPS (50ng/ml) or SES 

overnight was quantified by RT-PCR (35 cycles) (A) and flow cytometry

(B). CCL2 expression was assayed in the culture supernatants, following 

pre-activation with LPS and IFN-y and subsequent IL-31 stimulation

(C). Data is representative of three independent primary isolates 

(*p<0.05).
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3.3.6 Analysis of IL-31Ra expression on PBMC and PMN

Studies on the role of IL-31 in allergic responses have demonstrated expression of 

IL-31 Ra on activated mononuclear cells, corresponding with expression of OSMRP 

but at substantially reduced levels (Dillon et al, 2004). RT-PCR demonstrated that 

freshly isolated PBMC do not express IL-31 Ra, however expression can be induced 

by stimulation with IFN-y (Figure 3.3.12). Changes in IL-31Ra expression on PBMC 

were confirmed by flow cytometry (Figure 3.3.12). Conversely, PMN show no 

alteration in IL-31 Ra expression following IFN-y and LPS stimulation (Figure 3.3.12).
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Figure 3.3.12 Induction of IL-31Ra expression on PBMC
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Fig 3.3.12. Expression of IL-31 Ra on PBMC stimulated with IFN-y (500U/ml) 

alone or in combination with either LPS (50ng/ml) or SES overnight was 

quantified by RT-PCR (35 cycles) (A) and flow cytometry (B). Expression of 

IL-31 Ra on PMN was quantified by flow cytometry after stimulation with LPS 

and IFN-y (C). Data is representative of three independent PBMC isolates.
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3.4 Discussion

Previous studies have outlined a potential role for the gpl30-activating cytokine OSM 

in the development of acute inflammation (Hurst et al, 2002). Using bacterial 

peritonitis as a model in which to study acute inflammation, in vitro studies described 

in this Chapter suggest a role for OSM upregulating expression of inflammatory 

mediators and adhesion molecules thereby aiding leukocyte recruitment in a similar 

manner to that observed in response to IL-6 and its soluble receptor (Hurst et al, 

2001).

Previous studies have demonstrated that IL-6 or OSM can regulate chemokine 

expression in a variety of stromal cells. In many instances, these two gpl30- 

activating cytokines are similar in their capacity to control these inflammatory 

regulators (Modur et al, 1997; Hurst et al, 2002; McLoughlin et al, 2004; Langdon et 

al, 1997). For example, both cytokines demonstrate the ability to upregulate 

expression of the mononuclear cell chemoattractant CCL2, which in the case of IL-6 

aids the progression of inflammation by mediating recruitment of mononuclear cells 

(Hurst et al, 2001; Romano et al, 1997). This shared role taken in combination with 

the observed ability of OSM to upregulate expression of adhesion molecules suggests 

OSM may be of importance in orchestrating leukocyte recruitment and activation 

during acute inflammation.

Acute inflammation is a beneficial response to infection or injury ensuring successful 

resolution of the condition and a return to tissue homeostasis. Pivotal to the 

resolution of inflammation is the transition from innate to acquired immunity, which 

is defined by precise regulation of leukocyte recruitment, activation and clearance 

(Jones, 2005). Previous work using an in vivo model of acute bacterial peritonitis has 

demonstrated the importance of IL-6 in this transition, through control of chemokine- 

driven leukocyte recruitment and regulation of apoptosis (Hurst et al, 2001; 

McLoughlin et al, 2003; McLoughlin et al, 2004; McLoughlin et al, 2005). However, 

previous work based on OSM reconstitution studies in experimental models of disease 

has been unable to determine whether OSM has a beneficial or detrimental effect in 

vivo (Wallace et al, 1999; Langdon et al, 2000; Plater-Zyberk et al, 2001; De Hooge 

et al, 2003).
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Regulation of OSM activity is governed by the cellular expression of OSMRp. In this 

context, we identified two central events affecting OSM responsiveness. During acute 

inflammation, the primary cell types expressing OSMRp and therefore able to respond 

to OSM are stromal cells, with leukocyte subsets not expressing OSMRp or LIFRp 

(Hurst et al, 2002). However, in response to activation with LPS and IFN-y, OSMRp 

expression can be induced on mononuclear cells, suggesting that in more progressive 

disease OSM may have two distinct modes of action.

As previously mentioned this project uses a model of bacterial peritonitis in which to 

study the inflammatory response. In addition to in vitro analysis of HPMC, 

subsequent studies will also utilise an in vivo mouse model which uses a cell-free 

supernatant derived from S. epidermidis to induce acute peritoneal inflammation. The 

application of OSMRp-deficient mice will help to define the inflammatory role of 

both OSM and IL-31 to disease progression, although in vitro studies suggest that 

IL-31 is not involved in chemokine-directed leukocyte trafficking during acute 

inflammation. However, because factors including IFN-y and LPS can induce 

IL-31 Ra expression, IL-31 may serve an additional role in more progressive forms of 

disease as demonstrated by the involvement of IL-31 in dermatitis and type 2 lung 

inflammation (Dillon et al, 2004; Perrigoue et al, 2007).

In summary, studies outlined in this Chapter implicate OSM, acting through 

OSMRP:gpl30 heterodimers, in the progression of an inflammatory response by 

upregulating mononuclear cell chemoattratants and adhesion molecules. These 

effects are similar to those observed by IL-6 and its soluble receptor. Future chapters 

will aim to delineate the regulatory abilities of OSM, in comparison to those 

previously observed by IL-6 and any differences in signalling pathways initiated 

through activation of gpl30 hetero- and homodimers.
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Chapter 4

OSM-mediated regulation of inflammatory 

chemokine expression in HPMC



4.1 Introduction

Studies outlined in Chapter 3 demonstrate the ability of OSM to selectively upregulate 

expression of inflammatory mediators specific for trafficking of mononuclear cells. 

Many of these activities are shared by IL-6, with IL-6 trans-signalling known to 

govern neutrophil clearance and mononuclear cell recruitment (McLoughlin et al, 

2004; Hurst et al, 2001). This Chapter aims to compare the ability of OSM to 

regulate chemokine expression with those observed by IL-6.

The ability of OSM to modulate chemokine activation has previously been outlined in 

several cell types (Hurst et al, 2002; Richards et al, 1996; Langdon et al, 1997). In 

many instances, these activities closely mirror those exhibited by IL-6 when utilising 

gpl30 homodimeric receptor complexes (McLoughlin et al, 2004; Hurst et al, 2001). 

In vivo studies using IL-6 deficient mice have shown that IL-6-mediated control of 

these processes is pivotal for successful resolution of neutrophil infiltration and the 

development of acquired immunity through increased T cell recruitment (Hurst et al, 

2001; McLoughlin et al, 2005; Jones, 2005). The contribution of OSM to this 

immunological switch, however, has not previously been examined.

Both in vitro and in vivo studies have illustrated the ability of IL-6 signalling, to 

selectively inhibit the IL-lp-induced production of the neutrophil chemoattractants 

CXCL1 and CXCL8, while enhancing secretion of other inflammatory chemokines 

including CCL2 and CCL8 thereby aiding the resolution of the neutrophil infiltration 

and promoting mononuclear cell recruitment (Romani et al, 1997; Hurst et al, 2001; 

McLoughlin et al, 2003; McLoughlin et al, 2004; Jones, 2005). Similar in vitro 

analysis has demonstrated that OSM is able to inhibit IL-lp-directed production of 

CXCL8 and to mediate production of CCL2 (Hurst et al, 2002), consequently OSM 

has the potential to regulate leukocyte trafficking in a similar manner to that of IL-6. 

However, in contrast to IL-6, OSM is able to selectively increase expression of the 

adhesion molecule VCAM-1 (Chapter 3). This data, taken in combination with the 

ability of OSM to upregulate mononuclear cell chemoattractants including CCL2 and 

CXCL10 (Chapter 3) suggests a distinct role for OSM in governing mononuclear cell 

recruitment.
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Studies outlined within this Chapter aim to further examine the ability of OSM to 

regulate the expression inflammatory chemokines. In addition, the ability of OSM to 

regulate downstream signalling pathways will be studied, with an aim to outline the 

mechanisms by which OSM may regulate chemokine-driven leukocyte recruitment.
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4.2 Materials and Methods

4.2.1 Stimulation of HPMC and subsequent quantification of induced cytokines 

and chemokine production

To examine the effects of OSM stimulation on the IL-lp- and IFN-y-induced 

production of inflammatory mediators, growth arrested HPMC (Section 2.2.1.4) were 

stimulated with human recombinant IL-ip (R&D Systems, Abingdon, UK) (at 

concentrations between 0 and 50pg/ml) or human recombinant IFN-y (R&D Systems, 

Abingdon, UK) (at concentrations between 0 and 500U/ml) both alone and in 

combination with 30ng/ml human recombinant OSM (R&D Systems, Abingdon, UK). 

To investigate the effects of IL-31 on IL-ip-induced chemokine production, HPMC 

were first treated with LPS (50ng/ml) and IFN-y (500U/ml) (Section 3.2.5) for 18 

hours and subsequently stimulated with human recombinant IL-ip (at concentrations 

between 0 and 50pg/ml) either alone or in combination with 50ng/ml human 

recombinant IL-31. Unstimulated controls (cells treated with fresh serum free 

medium) were used for all experiments to provide baseline chemokine production.

Following stimulation (37°C, 5% CO2) culture supernatants were removed and 

rendered cell free by centrifugation. Analysis of CCL2, CCL5, CXCL8, CXCL9, 

CXCL10, CXCL11 and IL-6 was performed using commercial ELISA (Section 2.9).

4.2.2 Luciferase analysis of CCL5 promoter constructs

SV40 HPMC were grown to 70% confluence (Section 2.2.2) and transiently 

transfected overnight with 0.9pg CCL5 luciferase promoter constructs in pGL2 and 

0.1 pg Renilla luciferase vector (Section 2.7.2). Cells were washed with PBS then 

stimulated for 24 hours with a combination of PM A (15ng/ml) and Ionomycin (lpM) 

or IL-1 p (1 ng/ml). Medium was removed and the cells lysed prior to luciferase 

analysis (Section 2.7.3).
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4.2.3 EMSA analysis of ST AT and NF-kB activation in response to IL-lp and 

OSM stimulation of HPMC

Nuclear extracts were isolated from HPMC stimulated with IL-ip (50pg/ml) and 

OSM (30ng/ml) alone or in combination (Section 2.8.1). Prior to EMSA analysis, the 

protein concentration was determined as described in Section 2.8.3. EMSA using 

[a- PjdTTP labelled oligonucleotide probes containing consensus sequences for 

NF-kB and total STAT were performed using 2pg of nuclear extract (Section 2.8.6.1). 

Supershift analyses were performed using antibodies against individual transcription 

factor subunits as outlined in Section 2.8.6.2. Quantification of the banding intensity 

was performed for each time point as described in Section 2.8.7.
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4.3 Results

4.3.1 OSM selectively regulates inflammatory cytokine and chemokine 

production

IL-6 signalling through its soluble receptor has been shown to inhibit IL-lp-induced 

production of several ELR+ CXC chemokines, including CXCL1 and CXCL8. In 

accordance with this observation, IL-6 deficient mice show significantly enhanced KC 

and MIP-2 (the functional murine homologues of CXCL1 and CXCL8) expression in 

comparison to wild type animals following induction of peritoneal inflammation, 

which results in increased trafficking of neutrophils into the peritoneal cavity of IL-6 

deficient animals (McLoughlin et al, 2004). We therefore assessed whether OSM 

could elicit similar activities in vitro. Although prior studies had shown that OSM 

could induce IL-6 expression (Brown et al, 1991; Hurst et al, 2002), studies outlined 

in Chapter 3 showed no significant increase in IL-6 expression in HPMC in response 

to OSM. In addition OSM was also unable to regulate the IL-lp-induced production 

of IL-6 (Figure 4.3.1).

Studies in Chapter 3 showed that OSM governs CCL2 expression but not that of 

CXCL8, CCL3 or CCL5. We therefore tested whether OSM could manipulate the 

IL-lp-mediated control of inflammatory chemokines. Consistent with previous 

studies OSM significantly inhibits IL-lp-mediated CXCL8 expression (Figure 4.3.1; 

Hurst et al, 2002; Langdon et al, 1997; Richards et al, 1996). In addition OSM 

selectively controlled expression of mononuclear cell chemoattractants, 

synergistically upregulating CCL2 production by IL-ip (Figure 4.3.1), whilst 

inhibiting IL-lp-induced production of CCL5 (Figure 4.3.1). The observed ability of 

OSM to control expression of CCL5 was in direct contrast to IL-6, which had no 

effect on IL-lp-induced CCL5 expression (Figure 4.3.1).
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Figure 4.3.1 OSM regulates IL-ip-induced chemokine expression

40000

30000

20000

10000

30000

S  20000
a>c
2
E 10000  a>
.cO

0 1 10 25  50

CXCL8

i

30000  IL-6

20000

10000

0

2000

1500

1000

500

0

□ IL-1 p 
■ IL-1 P + OSM

0 1 10 25  50

B 2 000 '

-  1500  

o>
m 1000-iOo

500

0

□ IL-1 p 
■ IL-1 p + IL-6

0 1 10 25  50

IL-1 (pg/ml) -

0 1 10 25  50 0 1 10 2 5  50

[IL-1] (pg/m l)

Fig 4.3.1. Growth arrested HPMC were stimulated with increasing doses of 

IL-ip (0-50pg/ml), either alone or in combination with OSM (30ng/ml) for 

18 hours. Expression of CCL2, IL-6, CXCL8 and CCL5 in the culture 

supernatant was quantified by ELISA (A). Growth arrested HPMC were 

stimulated with IL-ip (0-50pg/ml) either alone or in combination with IL-6 

(lOng/ml) and sIL-6R (50ng/ml) for 18 hours (B). CCL5 expression in the 

culture supernatant was quantified using ELISA. Data represents mean +/- 

SEM of three independent primary isolates (*p<0.05).
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4.3.2 IL-31 is unable to regulate expression of inflammatory chemokines

As mentioned in Chapter 3, the related cytokine IL-31 also utilises OSMRP as a 

P-signalling unit following binding to a cognate IL-31 receptor (Dillon et al, 2004). 

Due to the shared use of the OSMRP subunit by OSM and IL-31 it was important to 

assess the role of IL-31 to fully appreciate the contribution of OSMRp signalling. 

Stimulation of HPMC with IFN-y and LPS induced IL-3 IRa expression enabling cells 

to respond to IL-31 signalling (Chapter 3, Figure 3.3.10). However, unlike OSM, 

IL-31 is unable to suppress IL-lp-induced expression of either CXCL8 or CCL5 by 

HPMC (Figure 4.3.2), suggesting that IL-31 does not share the ability of OSM to 

govern chemokine-driven leukocyte trafficking in this context.
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Figure 4.3.2 IL-31 does not regulate IL-10-induced chemokine expression
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Fig 4.3.2. Growth arrested HPMC were stimulated with increasing doses 

of IL-lp (0-50pg/ml) alone or in combination with IL-31 (50ng/ml) for 18 

hours. Chemokine expression was quantified in the culture supernatant by 

ELISA. This data represents mean +/- SEM of three independent primary 

isolates.
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4.3.3 OSM significantly impairs IL-lp-mediated NF-kB signalling

The inhibition of IL-lp-driven expression of CCL5 by OSM infers that OSM 

signalling may inhibit NF-kB signalling. To assess this, EMSA analysis was 

performed using oligonucleotide probes containing the consensus sequence for 

NF-kB. Analysis of nuclear extracts isolated from HPMC stimulated with IL-1 P and 

OSM demonstrated the ability of OSM to suppress the IL-lp-mediated activation of 

NF-kB (Figure 4.3.3). Stimulation of HPMC with OSM alone did not result in NF-kB 

activation (Figure 4.3.3). Supershift analysis of the protein-DNA complex from IL-1 p 

stimulated cells demonstrated classical activation of the NF-kB pathway, with 

evidence of both p50 and p65 subunits (Figure 4.3.3). OSM-mediated suppression of 

NF-kB activation was not specific for an individual subunit, but globally affected both 

p50 and p65 subunits (Figure 4.3.3).

Conversely, IL-lp had no effect on OSM-mediated STAT activation (Figure 4.3.4). 

Analysis of OSM-induced STAT activation in nuclear extracts isolated from OSM 

and IL-lp stimulated HPMC demonstrated no alteration in total STAT activation in 

comparison to that stimulated with OSM alone (Figure 4.3.4). Supershift analysis of 

the STAT subunits identified a predominant activation of STAT3, whilst STAT1 and 

STAT5 were activated to a lesser extent (Figure 4.3.4).
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Figure 4.3.3 OSM inhibits IL-lp-induced NF-kB activation
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Fig 4.3.3. Temporal activation of NF-kB in nuclear extracts derived from 

HPMC incubated with IL-lp (50pg/ml) and OSM (30ng/ml) alone or in 

combination was monitored by EMSA (A). Alteration in NF-kB induction 

was quantified by densitometry by calculating the ratio of activation 

elicited by OSM and IL-ip, which was compared to activation with IL-ip 

alone (B). Composition of the NF-kB complex was verified by supershift 

analysis of nuclear extracts derived from HPMC cultures. Cells were 

stimulated for 30 minutes as indicated and supershift performed with 

antibodies against p50, p52, p65 and c-Rel subunits (C). Data is 

representative of mean +/- SEM of three individual primary isolates 

(*p<0.05).
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Figure 4.3.4 OSM stimulation upregulates STAT activation in HPMC
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Fig 4.3.4. Temporal activation of STAT in nuclear extracts derived from 

HPMC incubated with IL-lp (50pg/ml) and OSM (30ng/ml) alone or in 

combination was monitored by EMSA (A). Alterations in STAT 

activation were quantified by densitometry by calculating the ratio of 

activation elicited by OSM and IL-lp, which was compared to activation 

with OSM alone (B). Composition of the STAT complex was verified by 

supershift analysis of nuclear extracts derived from HPMC. Cells were 

stimulated for 30 minutes as indicated and supershifts performed using 

antibodies against STAT1, STAT3 and STAT5 (C). Data is 

representative of mean +/- SEM of three individual primary isolates.
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4.3.4 CCL5 promoter construct analysis

Studies into the molecular mechanism of CCL5 expression utilising CCL5 promoter 

sequences have demonstrated that NF-kB upregulates the promoter activity of CCL5 

(Moruichi et al, 1997). Due to the observed OSM-mediated inhibition of 

IL-ip-induced NF-kB activation and parallel suppression of CCL5 in HPMC, further 

analysis using a series of luciferase reporter constructs containing the CCL5 promoter 

sequence was undertaken. Due to difficulties in transfecting primary HPMC, SV40 

transformed HPMC were used in their place. Cells were transfected with luciferase 

reporter constructs containing either the full length CCL5 promoter sequence (R1.4), 

or the full length CCL5 promoter sequence containing mutations in the putative 

binding sites for NF-IL-6 (NFIL-6) or NF-kB (kBI) respectively. These vectors were 

co-transfected with the Renilla luciferase vector, which was used to internally assess 

transfection efficiency. As previously reported in several cell types (Moruichi et al,

1997), stimulation with PMA and ionomycin significantly increased reporter activity 

of the full length promoter sequence, which was inhibited by mutation within one of 

the putative NF-kB binding sites (Figure 4.3.5) thus providing further evidence of the 

importance of NF-kB in promoting CCL5 activity.

Previous work using CCL5 promoter constructs has also shown upregulation of CCL5 

promoter activity in response to stimulation with IL-lp, which is inhibited by 

mutation within the kBI site (Moruichi et al, 1997). However, IL-lp stimulation does 

not appear to significantly upregulate CCL5 promoter activity in SV40 transformed 

HPMC, when compared with unstimulated controls (Figure 4.3.6).
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Figure 4.3.5 Effects of site-directed mutations of CCL5 promoter sequences

on the promoter activity

TGCAT

TTAC

Fold Increase

Fig 4.3.5. SV40 transformed HPMC were transfected overnight with 0.9pg 

of the indicated plasmid. Cells were either unstimulated or stimulated 

with PMA (15ng/ml) and ionomycin (lpM) for 24 hours. The fold 

increase of luciferase activity of stimulated compared to unstimulated 

cells was calculated. Data is representative of mean +/- SEM of three 

individual experiments performed in duplicate (*p<0.05).
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Figure 4.3.6. The effect of IL-lp stimulation on CCL5 promoter activity

0 1 2 3 4  5
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Fig 4.3.6. SV40 transformed HPMC were transfected overnight with 0.9pg 

of the indicated plasmid. Cells were either unstimulated or stimulated 

with IL-ip (lng/ml) for 24 hours. The fold increase of luciferase activity 

of stimulated compared to unstimulated cells was calculated. Data is 

representative of mean +/- SEM of three individual experiments 

performed in duplicate.
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4.3.5 OSM selectively regulates expression of IFN-y-inducible chemokines

The ability of OSM to regulate expression of CCL5 suggests that in addition to aiding 

monocyte trafficking, OSM may also affect the trafficking of lymphocytes in 

particular lymphocytes with a Thl phenotype. As previously mentioned, CCL5 

utilises chemokine receptors present on a variety of mononuclear cells including Thl 

cells, which express CCR5 (Loetscher et al, 1998). Thl cell trafficking is also reliant 

on another group of chemokines which utilise CXCR3, also expressed on the surface 

of Thl lymphocytes (Loetscher et al, 1998). This group of ELR' CXC chemokines 

are reliant on induction by IFN-y and include CXCL9, CXCL10 and CXCL11. 

HPMC can be induced to selectively express one of these chemokines, CXCL10, in 

response to OSM stimulation (Chapter 3, Figure 3.3.4). In addition, OSM was able to 

significantly inhibit IFN-y-induced production of all three chemokines (Figure 4.3.7). 

These observations provide evidence that OSM, although unlikely to induce T cell 

trafficking, may play some accessory role in controlling the migration of certain T cell 

subsets, again this will require further study in vivo.
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Figure 4.3.7 OSM inhibits IFN-y-induced chemokine production
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Fig 4.3.7. Growth arrested HPMC were stimulated with increasing doses 

of IFN-y (0-500U/ml) alone or in combination with OSM (30ng/ml). 

Chemokine expression was quantified in the culture supernatant by 

ELISA. Data represents mean +/- SEM of three independent primary 

isolates (* p<0.05).
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4.4 Discussion

Studies outlined in this Chapter demonstrate the ability of OSM to regulate IL-lp- 

mediated chemokine expression. Although both IL-6 and OSM suppress CXCL8 

expression, OSM also drives suppression of IL-ip-mediated CCL5 production 

potentially through attenuation of NF-kB activation.

The role of IL-6 in the progression from innate to acquired immunity has been well 

documented (Jones, 2005). Both in vitro and in vivo studies utilising IL-6KO mice 

emphasise that IL-6 trans-signalling, aids the clearance of neutrophils by suppressing 

expression of the neutrophil chemoattractants CXCL1 and CXCL8 (Hurst et al, 2001; 

McLoughlin et al, 2004). As previously shown, OSM is also able to inhibit IL-ip- 

mediated CXCL8 expression, therefore suggesting a similar role for OSM in aiding 

resolution of the neutrophil influx. However, in direct contrast to IL-6, OSM also 

inhibits IL-ip-mediated expression of the mononuclear cell chemoattractant CCL5. 

CCL5 signals via several receptors including CCR1, CCR3 and CCR5 present on the 

surface of monocytes, eosinophils, basophils and activated T cells (Loetscher et al,

1998). Therefore the ability of OSM to control expression of CCL5 may affect 

mononuclear cells globally or be specific for certain subsets. This will be explored in 

more detail in Chapter 5. In addition OSM inhibits the IFN-y-induced expression of 

CXCL9, CXCL10 and CXCL11, which signal via CXCR3 expressed on the surface of 

T cells again implying a potential role for OSM in governing chemokine-driven 

mononuclear cell trafficking.

Studies have outlined a potential mechanism for the OSM-mediated control of CCL5 

expression through attenuation of NF-kB signalling. Parallel EMSA show no 

significant effect of IL-lp on OSM induced STAT activation. Supershift analysis of 

the DNA-protein complex confirms IL-lp mediates classical activation of NF-kB and 

suggests that OSM globally knocks down both the p50 and p65 subunits. It is 

mechanistically unclear whether this response results from co-operative manipulation 

of NF-kB signalling, competition for DNA binding within overlapping consensus 

sites for NF-kB and STAT factors, or NF-kB regulation via cytokine mediated 

increases in unphophorylated STAT3, all of which have been implicated in the gpl30
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control of NF-icB-mediated events (Zhang & Fuller, 1997; Yu et al, 2002; Yang et al, 

2007).

Transcriptional studies using CCL5 reporter constructs will hopefully help to fully 

define the nature of the interaction between OSMRp-mediated signalling and NF-kB 

activation. Initial studies outlined within this Chapter demonstrated the potential 

importance of NF-kB in promoting CCL5 activity. However, transcriptional studies 

were unsuccessful in response to IL-lp stimulation, therefore preventing further 

analysis. Although it is unclear why this was unsuccessful, it could potentially be due 

to the cells used for this experiment. SV40 transformed HPMC retain many of the 

characteristics of primary HPMC (Fischereder et al, 1997), however, the process of 

immortalisation is likely to result in alteration in the cellular responses to cytokine 

stimulation. Therefore these experiments would need to be performed in primary 

HPMC, but due to difficulties in transfecting these cells, this is not currently possible.

In vitro analysis of the regulatory abilities of OSM suggest its ability to govern 

chemokine-driven leukocyte trafficking. Although signalling through OSMRp shares 

some functions with those previously attributed the IL-6-mediated gpl30 homodimer 

activation, for example down-regulation of CXCL8, the ability of OSM to suppress 

the IL-lp-induced expression of CCL5 is clearly distinct from that of IL-6. This, 

taken in combination with the ability of OSM to regulate expression of the Thl 

chemokines CXCL9, CXCL10 and CXCL11 suggests a role for OSM in governing 

mononuclear cell trafficking. The next chapter will utilise OSMRp deficient mice to 

study the effects of OSMRp-mediated signalling on leukocyte recruitment during 

episodes of acute peritoneal inflammation.
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Chapter 5

OSMRp-mediated control of leukocyte 

trafficking during acute inflammatory challenge



5.1 Introduction

Previous chapters have emphasised a potential role for OSM in governing leukocyte 

trafficking through the in vitro upregulation of mononuclear cell chemoattractants 

(CCL2), adhesion molecules (VCAM-1) and the control of IL-lp-directed expression 

of inflammatory chemokines. Using OSMRp deficient (OSMR-KO) mice, this 

chapter aims to further examine the role of OSM-mediated signalling during an acute 

inflammatory response.

Signalling of IL-6-related cytokines is mediated through either gpl30 homodimers, 

initiated by IL-6, IL-11 and IL-27 binding to non-signalling receptor subunits, or 

through gpl30 heterodimerised with either LIFRp or OSMRp, which can be initiated 

by other IL-6-related cytokines including LDF, OSM, CT-1 and CNTF. Unlike human 

OSM, which can utilise both gpl30:LIFRp and gpl30:OSMRp receptor complexes, 

murine OSM has only one functional receptor complex comprised of gpl30 and the 

selective OSMRp, therefore, animals deficient in OSMRp are unable to respond to 

OSM-mediated signalling (Tanaka et al, 1999).

In vitro analysis has highlighted functions for OSM in stromal cell activation, 

leukocyte recruitment and tissue injury (Wahl et al, 2001; Modur et al, 1997). In 

many instances, the effects of OSM are similar to those observed in response to the 

gpl30 activating cytokine IL-6. However, due to the differences in signalling, with 

OSM utilising gpl30 heterodimer complexes and IL-6 utilising gpl30 homodimers, it 

would be expected that activation would result in distinct biological activities. In this 

respect, in vitro studies presented in Chapter 4 emphasise defined differences in the 

control of CCL5 by IL-6 and OSM. Indeed, distinct differences are evident in the 

control of haematopoiesis in OSMR-KO mice, when compared with IL-6KO, 

IL-11KO and LIFR-KO mice (Tanaka et al, 2003; Nandurkar et al, 1997; Escary et al, 

1993). However, such differences are not well defined during inflammation.

Acute inflammation is characterised by an initial influx of neutrophils, which are later 

replaced by a more sustained population of mononuclear cells. The role of IL-6 in the 

progression of inflammation has been well characterised; IL-6, acting via its soluble 

receptor (IL-6 trans-signalling) is responsible for the switch from an innate to an
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acquired response (Jones, 2005). Both in vitro and in vivo studies have demonstrated 

the ability of IL-6 to suppress chemokine-mediated neutrophil recruitment and 

concurrently promote neutrophil clearance in addition to preventing the apoptosis of T 

cells and upregulating production of mononuclear cell chemoattractants (Hurst et al, 

2001; McLoughlin et al, 2005). The contribution of OSMRp signalling in this 

immunological switch, however, has not been examined. This Chapter demonstrates 

OSM-mediated signalling is able to selectively control monocytic cell trafficking, but 

does not alter clearance and recruitment of neutrophils or lymphocytes. These results 

highlight a clear distinction between gpl30 activation by OSMRp and IL-6R during 

acute inflammation.
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5.2 Materials and Methods

5.2.1 Generation of SES-induced acute peritoneal inflammation

All animal experiments were performed under Home Office License PPL-30/2269 on 

6-12 week-old WT C57/B16 mice and OSMR-KO mice (see Section 2.3.1).

Peritoneal inflammation was induced using a cell-free supernatant derived from a 

clinical isolate of Staphylococcus epidermidis (SES) as described in Section 2.3.4. 

Experiments were performed on groups of 4-6 age-matched, mixed sex, WT and 

OSMR-KO mice. Peritoneal inflammation was induced by intraperitoneal injection of 

500pl SES, groups of mice were sacrificed at designated intervals and the peritoneal 

cavity lavaged with 2ml ice-cold PBS. Peritoneal membrane sections were also 

collected for subsequent EMSA analysis.

5.2.2 Determination of leukocyte numbers by differential cell count

Leukocytes were isolated from the peritoneal lavage fluid and peripheral blood of 

mice either prior to or after induction of inflammation (Section 2.3.3). Cytospin 

slides were prepared and stained as described in Section 2.3.3. A total of 200 

leukocytes were counted per slide, the percentage of each cell type was multiplied by 

the total number of cells isolated from the peritoneal cavity (as determined by Coulter 

count) to give the relative number of each leukocyte subset.

5.2.3 Flow cytometric analysis of peritoneal leukocytes

Peritoneal leukocytes were isolated (Section 2.3.3) and stained for expression of 

macrophage specific markers (F4/80 and CD lib ) and CCR5 as outlined in Section 

2.4.5. Peritoneal monocytic cells were identified and gated according to forward vs 

side scatter profiles as shown in Figure 5.2.1. To assess the relative cell number of 

each population, the percentage of events present in each gate was multiplied by the 

total number of peritoneal leukocytes isolated from the mouse. CCR5 expression was 

quantified on F4/80+CDllb+ monocytic cells by gating the upper right quadrant and 

assessing CCR5 expression on those cells. All flow cytometry data was compared 

with appropriate isotype controls.
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Figure 5.2.1 Identification of ‘resident-like’ and ‘inflammatory’ peritoneal 

monocytes

CD11b

Fig 5.2.1. Murine peritoneal leukocyte subsets isolated in response to SES- 

induced peritoneal inflammation. Forward vs side scatter enables identification 

of individual leukocyte subsets (R1 -  macrophages, R2 -  monocytes, R3 -  

neutrophils, R4 -  lymphocytes). CDllb and F4/80 staining was quantified on 

peritoneal monocytes (cells in gate R2). Two distinct populations are identified, 

F4/80highCD llbhigh ‘resident-like’ monocytes (R5) and F4/80lowC D llb+ 

‘inflammatory’ monocytes (R6).

5.2.4 ELISA quantification of inflammatory mediators expressed in response to 

SES-induced peritoneal inflammation

Following SES-induced peritoneal inflammation, commercial ELISA was used to 

quantify expression of IL-lp, IL-6, CXCL1/KC, CCL2, CCL3, CCL4 and CCL5 in 

the peritoneal lavage fluid (Section 2.9). Levels of murine OSM were quantified 

using an ELISA system developed using goat anti-mouse OSM polyclonal IgG as a 

capture antibody and biotinylated goat anti-mouse OSM polyclonal IgG as a detection 

antibody (Section 2.9.1).
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5.2.5 EMSA analysis of STAT and NF-kB activation in peritoneal membrane 

sections in response to SES-induced peritoneal inflammation

Nuclear extracts from peritoneal membrane sections were harvested following SES- 

induced peritoneal inflammation (Section 2.8.2). Prior to EMSA analysis, the protein 

concentration was determined as described in Section 2.8.3. EMSA using [a-32P] 

dTTP labelled oligonucleotide probes containing consensus sequences for NF-kB and 

total STAT (SIE m67) were performed using 10pg of nuclear extract as described in 

Section 2.8.6.1. Supershift analyses were performed on the blank (time zero) and 6 

hour time point groups of both WT and OSMR-KO mice using antibodies against 

individual transcription factor subunits (Section 2.8.6.2). Densitometry of the 

banding intensity was quantified for each time point as outlined in Section 2.8.7.
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5.3 Results

5.3.1 OSMR-KO mice show increased monocytic cell trafficking following 

inflammatory challenge

To examine the role of OSMRp signalling during acute inflammatory challenge, 

peritoneal inflammation was induced in WT and OSMRp-deficient (OSMR-KO) mice 

using SES (Section 5.2.1). Prior to assessing the role of OSMRp mediated signalling 

during an acute inflammatory response, baseline leukocyte numbers in both the 

peritoneal cavity and peripheral blood of OSMR-KO mice were assessed and shown 

to be comparable to WT mice (Figure 5.3.1).

As shown in Figure 5.3.2, administration of SES causes an initial influx of neutrophils 

into the peritoneal cavity that was later replaced by a more sustained population of 

lymphocytes and monocytes. Comparative analysis between WT and OSMR-KO 

mice demonstrated that an absence of OSMRp signalling led to a significant increase 

in monocytic cell trafficking into the peritoneal cavity. However, deficiency in 

OSMRp signalling did not appear to affect trafficking of neutrophils or lymphocytes. 

This is in contrast to the response exhibited by IL-6 deficient mice, which display 

increased neutrophil migration but no alteration in monocytic cell trafficking (Hurst et 

al, 2001; McLoughlin et al, 2003; McLoughlin et al, 2005; Hams et al, 2008).

The observed increase in monocyte trafficking was substantiated by flow cytometric 

analysis of F4/80+CDl lb+ cells (Figure 5.3.3). Two distinct populations of monocytic 

cells were identified within the peritoneal cavity: resident-like F4/80hlghCD llbhlgh 

cells, which are the predominant cell type in the peritoneal cavity of mice prior to 

inflammatory challenge, and inflammatory F4/80lowCD llb+ cells, which emerge 

following inflammatory activation. SES stimulation results in an exodus of the 

resident-like monocytes together with in influx of the inflammatory monocytes. 

However, a re-emergence of the resident-like monocytes was observed as 

inflammation progressed (24hrs post-induction). This pattern of monocytic cell 

trafficking was observed in both WT and OSMR-KO mice, however, both populations 

were significantly increased in OSMR-KO mice.
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Figure 5.3.1 Leukocyte numbers are comparable between WT and 

OSMR-KO animals prior to inflammatory challenge
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Fig 5.3.1. Baseline leukocyte numbers in WT and OSMR-KO mice. 

Differential cell counts were performed on peripheral blood and peritoneal 

leukocytes isolated from healthy animals. Data represents mean +/- SEM of 

four WT and four OSMR-KO animals.
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Figure 5.3.2 OSMR-KO mice show increased monocyte infiltration 

during SES-induced peritoneal inflammation
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Fig 5.3.2. Peritoneal inflammation was induced in WT and OSMR-KO 

animals by i.p. injection of SES, mice were sacrificed at designated time 

points and differential cell counts performed on peritoneal leukocytes 

isolated from peritoneal lavage fluid. Data represents mean ± SEM of 

twelve WT and twelve OSMR-KO mice for each time point (*p<0.05).
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Figure 5.3.3 OSMR-KO mice show significantly increased monocyte 

trafficking during acute inflammation 
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Fig 5.3.3. SES-induced peritoneal inflammation was established in WT and 

OSMR-KO mice. At designated intervals FACS analysis was performed on 

leukocytes lavaged from the peritoneal cavity, using antibodies against 

F4/80 and CDllb. Representative flow cytometry plots for WT and 

OSMR-KO mice together with temporal changes in the number of 

resident-like F4/80highC D llbhigh monocytic cells (R) and infiltrating 

F4/80,owCDllb+ monocytic cells (I) are shown. Data represents mean +/- 

SEM of four WT and four OSMR-KO mice for each time point (*p<0.05).
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5.3.2 OSMRp mediated signalling selectively controls expression of inflammatory 

chemokines

OSM has previously been detected in the peritoneal fluid of patients with clinical 

peritonitis, the source of which was shown to be infiltrating neutrophils (Hurst et al, 

2002). Analysis of OSM in the peritoneal cavity of WT and OSMR-KO mice 

following SES-induced peritoneal inflammation showed that the initial increase of 

OSM corresponds with the neutrophil influx and OSM levels are comparable between 

WT and OSMR-KO mice (Figure 5.3.4). Expression of IL-1 p and IL-6, two principal 

regulators of inflammatory chemokines, were determined in response to SES-induced 

inflammation. Expression of both increased at between 1 and 3 hours post 

inflammatory induction, with levels comparable between WT and OSMR-KO mice, 

implying that any observed effect of OSM was not due to an aberrant control of these 

cytokines (Figure 5.3.5).

To evaluate the ability of OSMRp signalling to control expression of inflammatory 

chemokines, CXCL1, CCL2 and the CCR5 ligands CCL3, CCL4 and CCL5 were 

quantified in response to SES-induced inflammatory challenge. Expression of CCL5 

was significantly increased in OSMR-KO mice in response to SES challenge; 

however, CCL3 and CCL4 remained consistent between WT and OSMR-KO mice 

(Figure 5.3.6). Studies presented in Chapter 3 highlighted the in vitro control of 

CCL2 by OSM. However, no significant difference in CCL2 was observed between 

WT and OSMR-KO mice (Figure 5.3.6). Expression of CXCL1/KC was also 

significantly decreased in OSMR-KO mice in comparison to WT mice (Figure 5.3.7), 

however as previously mentioned, no corresponding alteration in neutrophil 

trafficking was observed.

149



Figure 5.3.4 OSM production in the peritoneal cavity is comparable 

between WT and OSMR-KO mice
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Fig 5.3.4. SES-induced inflammation was established in WT and OSMR-KO 

mice, and OSM levels in peritoneal lavage fluid quantified using ELISA. 

Data represents mean ± SEM of fifteen WT and fifteen OSMR-KO mice.
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Figure 5.3.5 The temporal expression of IL-lp and IL-6 is unaltered in

OSMR-KO mice
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Fig 5.3.5. SES-induced inflammation was established in WT and 

OSMR-KO mice. Levels of IL-6 (A) and IL-lp (B) in peritoneal lavage 

fluid were quantified using ELISA. Data represents mean ± SEM of twelve 

WT and twelve OSMR-KO mice.
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Figure 5.3.6 OSMR-KO mice display a selective increase in CCL5 

expression following inflammatory activation
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Fig 5.3.6. SES-induced inflammation was established in WT and 

OSMR-KO mice. ELISA was used to quantify CCL2, CCL3, CCL4 and 

CCL5 levels in peritoneal lavage fluid at designated time points. Data 

represents the mean ± SEM of twelve WT and twelve OSMR-KO mice 

(*p<0.05).
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Figure 5.3.7 OSMR-KO mice show decreased CXCL1/KC expression in 

response to inflammatory challenge

5000 n
O WT
•  OSMR-KO

E
g  3000 ■

_io
Xo

1000 ■

0 3 6 9 12
Time (hrs)

Fig 5.3.7. SES-induced inflammation was established in WT and 

OSMR-KO mice. ELISA was used to quantify levels of CXCL1/KC in 

the peritoneal lavage fluid at designated time points. Data represents 

mean +/- SEM of twelve WT and twelve OSMR-KO mice (*p<0.05).
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5.3.3 OSMRp signalling does not alter expression of the inflammatory chemokine 

receptor CCR5

To determine whether the observed increase in CCL5 corresponds to increased 

monocytic expression of CCR5, flow cytometric analysis was performed on isolated 

peritoneal leukocytes after SES-induced inflammation. Prior to the induction of 

inflammation, resident-like F4/80h,ghCDllbhlgh monocytes are either CCR5,0W or 

CCR5nu11. During the progression of inflammation, F4/80+CDllb+ monocytes 

increase expression of CCR5, implying that activation of monocytes induces 

expression of CCR5. However, no difference in CCR5 expression was observed 

between WT and OSMR-KO mice (Figure 5.3.8).
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Figure 5.3.8 CCR5 expression is comparable on peritoneal monocytes of

WT and OSMR-KO mice
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Fig 5.3.8. SES-induced peritoneal inflammation was established in WT and 

OSMR-KO mice. At designated intervals FACS analysis was performed on 

the peritoneal leukocyte population using antibodies against F4/80, C D llb 

and CCR5. Monocytes were identified and gated through cell surface 

expression of F4/80 and CDllb. CCR5 expression (—) on monocytes is 

compared to corresponding isotype controls (■). Data is representative of 

mean +/- SEM of four WT and four OSMR-KO mice.
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5.3.4 OSMR-KO mice demonstrate decreased ST AT activation

As previously discussed, OSM signalling predominantly activates the Jak-STAT 

pathway, through association of Jak subunits with the OSMRJ3:gpl30 receptor 

complex. Therefore mice deficient in OSMRp would be expected to demonstrate 

decreased ST AT signalling. Analysis of SES-induced ST AT activation in nuclear 

extract isolated from peritoneal membranes of OSMR-KO and WT mice 

demonstrated decreased peritoneal STAT activation in OSMR-KO mice (Figure 5.3.9). 

Supershift analysis of the STAT/DNA complex showed evidence of STAT3, and to a 

lesser extent STAT1. Prior studies have shown that OSM-mediated signalling can 

induce STAT5 activation (Heinrich et al, 1998), however, this was not seen in this 

experiment. The decreased STAT activation observed in OSMR-KO mice was not 

however specific for an individual STAT transcription factor, but globally affected 

both STAT1 and STAT3 activation.
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Figure 5.3.9 OSMR-KO mice show decreased STAT activation 
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Fig 5.3.9. Temporal activation of STAT signalling in nuclear extracts 

derived from peritoneal membranes of WT and OSMR-KO mice was 

monitored by EMSA following SES activation (A). Alterations in STAT 

activation were quantified by densitometry by calculating the ratio of 

activation elicited in OSMR-KO mice, which was compared to activation 

in WT mice (B). Composition of the STAT complex was verified by 

supershift analysis of nuclear extracts isolated from both non-challenged 

mice and mice exposed to SES for 6 hours using antibodies against 

STAT1, STAT3 and STAT5 subunits (C). Data is representative of three 

WT and three OSMR-KO mice (*p<0.05).
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5.3.5 OSMR-KO mice demonstrate altered NF-kB activity

As discussed in Chapter 4, EMSA analysis of nuclear extracts isolated from HPMC 

highlight the potential for OSM to block NF-kB activation (Section 4.3.4). To 

substantiate these observations, NF-kB activation following SES-induced 

inflammation was profiled in both WT and OSMR-KO mice. As illustrated in Figure 

5.3.10, NF-kB activation was markedly enhanced in OSMR-KO mice. Subsequent 

supershift analysis of the NF-kB complex confirmed a role for both the p50 and p65 

subunits. Enhanced NF-kB signalling in OSMR-KO mice does not appear to be 

specific for an individual subunit, instead globally affecting both subunits. The 

apparent ability of OSM to regulate NF-kB activation may be responsible for the 

alterations in monocytic cell trafficking observed during acute inflammation.
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Figure 5.3.10 OSMR-KO mice show increased NF-kB activation
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Fig 5.3.10. Temporal activation of NF-kB in nuclear extracts derived 

from peritoneal membranes of WT and OSMR-KO mice was monitored 

by EMSA following SES activation (A). Alterations in NF-kB activation 

were quantified by densitometry by calculating the ratio of activation 

elicited in OSMR-KO mice, which was compared to activation in WT 

mice (B). Composition of the NF-kB complex was verified by supershift 

analysis of nuclear extracts isolated from both non-challenged mice and 

mice exposed to SES for 6 hours using antibodies against p50, p52, p65 

and c-Rel subunits (C). Data is representative of three WT and three 

OSMR-KO mice (*p<0.05).
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5.4 Discussion

Studies outlined in this Chapter suggest that OSMRp signalling selectively affects the 

inflammatory trafficking of monocytic cells. This is distinct from the action of IL-6, 

which is known to affect the recruitment and clearance of neutrophils and T cells 

(Hurst et al, 2001; McLoughlin et al, 2005; Hams et al, 2008). These data provide the 

first evidence for a role to OSM in controlling acute inflammation and point to clear 

distinction from the activity of IL-6 under a similar inflammatory constraint.

The model of acute peritoneal inflammation used in this project is designed to profile 

episodes of clinical peritonitis as seen in patients on peritoneal dialysis (Topley et al, 

1996). The pattern of leukocyte recruitment observed in response to inflammatory 

challenge is integral to the resolution of inflammation and subsequent outcome of the 

condition (Topley et al, 1996; Beutler et al, 2004; Jones, 2005). Therefore the switch 

from the initial influx of neutophils to a more sustained mononuclear cell infiltrate is 

vital for the resolution of inflammation (Topley et al, 1996). Other studies have 

shown that IL-6 trans-signalling, aids this transition through differentially regulating 

leukocyte apoptosis and chemokine-mediated leukocyte trafficking (Hurst at al, 2001). 

As seen in other inflammatory conditions, the initial neutrophil influx is associated 

with an increase in the expression of a variety of inflammatory cytokines (Kasama et 

al, 2005; Corvol et al, 2003). Previous studies have shown that neutrophils are the 

primary source of sIL-6Ra (McLoughlin et al, 2004; Jones et al, 1999; Hurst et al, 

2001; Marin et al, 2002). Clinical evaluation of OSM in acute peritonitis has 

illustrated a direct correlation between OSM levels and neutrophil numbers (Hurst et 

al, 2002). In this present study we demonstrate a similar trend with the profile of 

OSM closely resembling the neutrophil influx.

Previous in vitro analysis on HPMC demonstrate significant similarities between IL-6 

and OSM-mediated signalling. However, as outlined in this Chapter, there appears to 

be a hierarchy in the ability of each cytokine to control the in vivo expression of 

inflammatory chemokines and to affect recruitment of leukocytes. IL-6-mediated 

signalling may override the ability of OSM to affect neutrophil clearance, whereas 

OSMRp-mediated signalling selectively governs monocytic cell recruitment. This 

could potentially explain the ability of OSM to regulate expression of neutrophil
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activating chemokines both in vitro and in vivo, but lack of effect on neutrophil 

clearance observed in response to acute inflammatory challenge. In this respect, we 

show a marginal effect of OSM on CXCL1/KC expression, yet it is unclear whether 

OSM or IL-6 control of other neutrophil activating chemokines (for example MIP-2/ 

CXCL8 or CXCL5) could affect this outcome (Hurst et al, 2001; Modur et al, 1997; 

McLoughlin et al, 2004).

The OSMRP-mediated control of monocytic cell trafficking appears to centre on the 

ability of OSM to control expression of CCL5. Previous in vitro analyses have 

demonstrated than OSM can suppress the IL-ip induced expression of CCL5 by 

HPMC, whilst CCL5 expression in response to SES-induced inflammation is 

significantly increased in OSMRp deficient mice. This is in direct contrast to that of 

IL-6, which is unable to promote expression of CCL5 in vitro or in vivo (McLoughlin 

et al, 2005; Hams et al, 2008). However, IL-6 represents a principle regulator of 

CCL2 in vivo, a chemokine upregulated by OSM in vitro but not affected by a lack of 

OSM-mediated signalling in vivo (Hams et al, 2008). Despite the ability of IL-6 to 

regulate expression of CCL2, no significant alteration in monocytic cell recruitment 

has been observed in IL-6KO mice (Hams et al, 2008; McLoughlin et al, 2005; 

Nowell et al, 2008 submitted). In this respect, CCL2 may predominantly affect T cell 

trafficking since IL-6KO mice display impaired T cell migration in acute 

inflammation (McLoughlin et al, 2005). Such findings highlight functional 

differences in the gpl30-mediated control of the mononuclear cell chemoattractants 

CCL2 and CCL5. Studies outlined herein infer an important role for OSMRp- 

mediated control of CCL5 in selectively governing monocytic cell recruitment. 

However, further work would be required to evaluate the potential role of other 

chemokines and adhesion molecules involved in monocytic cell recruitment before 

confirming OSM-mediated control of CCL5 as the primary mechanism orchestrating 

the control of monocytic cell recruitment.

Studies examining differential cellular changes in expression of inflammatory 

chemokine receptors provide evidence for the potential importance of CCL5 in 

governing monocytic cell recruitment. For example, monocytic cell CCR2 expression, 

one of the receptors for CCL2, defines a population of monocytes actively recruited to 

sites of inflammation. However, terminally differentiated macrophages lose
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expression of CCR2, whilst increasing expression of the CCL5 receptors CCR1 and 

CCR5 (Fantuzzi et al, 1999; Kaufmann et al, 2001). The gpl30-activating cytokines 

IL-6, LIF and OSM have been shown to regulate various aspects of monocyte 

differentiation, including macrophage formation, induction of receptors for G-CSF 

and CM-CSF and the activation and expansion of dendritic cells (Tanigawa et al, 

1995; Clutterbuck et al, 2000; Chomarat et al, 2000; Jenkins et al, 2004). However, 

these activities are not universally regulated by all three gpl30-activating cytokines 

(Tanigawa et al, 1995), suggesting OSMRp-mediated signalling may have a unique 

role in monocytic cell trafficking.

OSM-mediated control of monocytic cell trafficking appears to rely on the ability of 

OSM to regulate NF-kB signalling. Work in Chapter 4 demonstrated the regulation of 

IL-lp-induced NF-kB activation by OSM. Such signalling interplay may be 

responsible for the OSM regulation of inflammatory chemokine production in vivo. 

Nuclear extracts from the peritoneal membrane of OSMR-KO mice showing 

significantly increased NF-kB activation as compared to WT animals. Comparative 

analysis using OSMR-KO and IL-6KO mice imply the regulation of NF-kB activation 

is specific for OSMRP-mediated signalling and is not regulated by gpl30- 

homodimeric receptor complexes (Hams et al, 2008). As expected, OSMR-KO mice 

show impaired STAT signalling due to the lack of gpl30:OSMRp heterodimers. 

However, significant decreases in STAT-activated chemokines such as CCL2 were 

not observed, again suggesting a hierarchy of gpl30-activating cytokines. It would 

therefore be important to monitor IL-6-mediated STAT signalling in OSMR-KO mice.

Studies outlined in this Chapter highlight a unique role for OSMRP-mediated 

signalling in controlling monocytic cell recruitment during acute inflammation. 

Regulation of this response was associated with a signalling interplay between OSM 

and NF-kB. However, it remains unclear whether these signalling mechanisms 

underpin the inflammatory control of chemokines including CCL5. Further 

transcriptional studies would be required to fully define the nature of this interaction. 

The next aim is to investigate whether these activities observed during acute 

inflammation impact progression of a chronic inflammatory state. This may have 

significant bearing on the potential modulation of OSMRP signalling for therapeutic 

benefit.
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Chapter 6

Defining a role for OSMRp-mediated signalling 

in recurrent inflammatory challenge and tissue

injury



6.1 Introduction

Studies outlined in Chapters 3-5 have demonstrated the ability of OSM both in vitro 

and in vivo to regulate chemokine-mediated leukocyte trafficking during acute 

inflammation. Using repeated episodes of inflammation (Section 6.2.1) to simulate 

the consequence of recurrent bouts of peritonitis, this Chapter aims to gauge whether 

OSM-mediated control of inflammation becomes modified in more progressive 

inflammatory processes.

As mentioned previously, leukocyte recruitment in acute inflammation is 

characterised by an initial influx of neutrophils, which are subsequently replaced by 

populations of inflammatory monocytes and T cells (Jones, 2005). Inappropriate 

regulation of leukocyte recruitment can lead to impaired neutrophil clearance and 

increased tissue damage due to the accumulation and retention of activated leukocytes 

at the site of immunological challenge including inflammatory bowel disease, sepsis, 

renal injury and chronic peritonitis (Brannigan et al, 2000; Brown et al, 2006; 

Heinzelmann et al, 1999).

Previous studies have illustrated a distinction in the role IL-6-related cytokines 

perform during acute and chronic inflammation. For example, although IL-6 is 

integral for the resolution of acute inflammation, its activities give rise to more 

detrimental consequences during more progressive inflammatory conditions. For 

example, in rheumatoid arthritis IL-6 has been shown to induce proliferation of 

synovial fibroblasts and promote cartilage damage by decreasing aggrecan and 

collagen II production in chondrocytes (Mihara et al, 1995; Legendre et al, 2003). 

These deleterious effects of IL-6-mediated signalling have been confirmed in vivo, 

where IL-6 deficient mice are protected against development of chronic inflammatory 

conditions including collagen-induced arthritis and colitis (Alonzi et al, 1997; 

Yamamoto et al, 2000; Kallen, 2002). In addition to these observations, the 

therapeutic use of an antibody against IL-6 receptor (Tocilizumab, Actemra) has 

proven effective in the treatment of rheumatoid arthritis, Castleman’s disease and 

Crohn’s disease (Nishimoto et al, 2003; Nishimoto et al, 2005; Ito et al, 2004).
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However, the role of IL-6-related cytokines in chronic inflammatory conditions 

appears to be dependent on the particular gpl30-activating cytokine. In vivo studies 

using experimental arthritis have suggested that IL-6 is the primary gpl30-activating 

cytokine governing these inflammatory processes as both IL-llRa- and OSMRJ3- 

deficient mice develop disease hallmarks comparable with those observed in WT mice 

(Wong et al, 2006). However, OSM has also been implicated in tissue damage 

associated with recurrent inflammation, including epithelial-to-mesenchymal 

transition (Bamber et al, 1998; Goren et al, 2006; Nightingale et al, 2004; Pollack et 

al, 1997), which could be of potential significance in the development of peritoneal 

fibrosis (Masunaga et al, 2003; Kalluri & Neilson, 2003; Topley et al, 1996; Lai et al, 

2000). However, it is unclear whether these activities are disease (tissue) specific, 

whilst the coordination of these responses in disease is ill-defined.

This Chapter will use recurrent episodes of SES-induced peritoneal inflammation, 

with an aim to simulate the progression of chronic peritoneal inflammation and 

fibrosis as is associated with recurrent episodes of bacterial peritonitis. Using 

repeated intraperitoneal introduction of SES at weekly intervals allows for clearance 

of the resulting leukocyte infiltrate between episodes thereby simulating the effect of 

repeated episodes of clinical peritonitis, and allowing the potential role for OSM- 

mediated signalling in the progression of chronic inflammatory conditions to be 

examined.
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6.2 Materials and Methods

6.2.1 Generation of SES-induced acute and chronic peritoneal inflammation

All animal experiments were performed under Home Office License PPL-30/2269 on 

6-12 week-old WT C57/B16 mice and OSMR-KO mice (see Section 2.3.1).

Peritoneal inflammation was induced using a cell-free supernatant derived from a 

clinical isolate of Staphylococcus Epidermidis (SES) as described in Section 2.3.4. 

Experiments were performed on groups of 4-5 age-matched, mixed sex, WT and 

OSMR-KO mice. Recurrent peritoneal inflammation was induced by four sequential 

intraperitoneal injections of 500pl SES at 7 day intervals. After the final injection 

groups of five WT and four OSMR-KO mice were sacrificed at designated time 

intervals and peritoneal membrane sections and lavage fluids obtained. In addition, a 

group of WT and OSMR-KO mice were treated with four recurrent doses of SES (as 

described above) and left for 21 days after the final injection. At which time 

peritoneal membranes were taken and prepared for histological analysis (Section

2.3.4). Inflammatory parameters and leukocyte recruitment was monitored as 

outlined in Chapter 5.

Figure 5.2.1 Flow diagram of recurrent inflammation model procedure

Assess leukocyte profile Assess leukocyte profile

♦ ♦ Take membrane sections

\
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Fig 5.2.1. To simulate recurrent peritoneal inflammation, groups of WT and 

OSMR-KO mice received four ip injections of SES at weekly intervals. 

Peritoneal leukocytes were sampled after the first and fourth episodes of 

inflammation. Peritoneal membrane sections were recovered from mice that had 

received 4 episodes of inflammation, 49 days after the initial SES administration.
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6.3 Results

6.3.1 Recurrent episodes of peritoneal inflammation heightens the increase in 

monocytic cell infiltration seen in OSMR-KO mice

Under basal conditions in both WT and OSMR-KO mice, the peritoneal leukocyte 

population consists predominantly of mononuclear cells. However, comparative 

analysis of neutrophil, monocytic cell and lymphocyte numbers in the peritoneal 

cavity prior to the induction of a fourth SES challenge shows a significant increase in 

the retention of neutrophils in addition to mononuclear cells. Moreover a direct 

comparison between WT and OSMR-KO mice showed increased retention of 

lymphocytes in the peritoneal cavity of WT mice (Figure 6.3.1, Table 6.3.1). The 

pattern of leukocyte recruitment associated with repeated episodes of peritoneal 

inflammation was also characterised by an initial influx of neutrophils, subsequently 

replaced by a mononuclear cell infiltrate (Figure 6.3.1). However, leukocyte 

trafficking was significantly enhanced after four inflammatory episodes.

Table 6.3.1 WT and OSMR-KO mice show increased retention of leukocytes 

within the peritoneal cavity after repeated episodes of inflammation

Neutrophils (xlO6) Macrophages (xlO6) Lymphocytes (xlO6)

WT OSMR-KO P WT OSMR-KO P WT OSMR-KO P
Episode 1 0.06±0.04 0.01±0.01 0.12 2.32±0.17 2.44±0.35 0.38 0.47±0.09 0.33±0.06 0.14

Episode 4 0.50±0.46 0.44±0.22 0.45 4.24±0.29 4.86±1.28 0.33 1.72±0.41 0.93±0.16 0.06

P 0.19 0.07 0.00 0.07 0.01 0.01

Table 6.3.1. Peritoneal leukocytes were collected from WT and OSMR-KO mice 

prior to the first and fourth episode of SES-induced peritoneal inflammation. 

The relative composition of the resident population was compared by differential 

cell count. Data represents mean ± SEM of five WT and four OSMR-KO mice.

Studies outlined in Chapter 5 demonstrated that during a single acute inflammatory 

episode, an absence of OSMRp signalling significantly enhances monocytic cell 

recruitment into the peritoneal cavity, whilst appearing not to alter trafficking of either 

neutrophils or lymphocytes (Chapter 5, Figure 5.3.1). To examine whether recurrent 

sequential bouts of inflammation modified this response profile, leukocyte
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recruitment was compared in mice that received a single dose of SES and mice that 

had received four repeated SES challenges (7 days apart). Consistent with the data 

presented in Chapter 5, OSMR-KO mice showed significantly increased monocytic 

cell recruitment when compared with WT mice both after one and four episodes of 

SES-induced inflammation (Figures 6.3.1 and 6.3.2).

Flow cytometric analysis of F4/80+CDllb+ cells, confirmed significant increases in 

both the ‘resident-like’ F4/80highCDllbhigh cells and ‘inflammatory’ F4/80lowCDl lb+ 

cells in OSMRp deficient mice (Figure 6.3.2). The magnitude of the inflammatory 

response was significantly enhanced in both murine strains following four episodes of 

inflammation (Figure 6.3.2).
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Figure 6.3.1 Leukocyte infiltration into the peritoneal cavity of WT and 

OSMR-KO mice following acute and recurrent inflammation
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Fig 6.3.1. SES-induced inflammation was established in WT and 

OSMR-KO mice. Data is presented for mice receiving a single SES dose 

and mice treated with four individual doses of SES at weekly intervals. At 

designated time points the peritoneal cavity was lavaged and the 

composition of the inflammatory infiltrate compared by differential cell 

count. Data represents mean ± SEM of five WT and four OSMR-KO 

mice for each time point (*p<0.05).
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Figure 6.3.2 OSMR-KO mice show increased monocytic cell infiltration
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Fig 6.3.2 Single (Episode 1) and recurrent (Episode 4) SES-induced 

peritoneal inflammation was established in WT and OSMR-KO mice. At 

designated intervals FACS analysis was performed on peritoneal 

leukocytes to determine numbers of resident-like F4/80hlghC D llbhlgh 

monocytic cells and infiltrating F4/80,owC D llb+ monocytic cells. Data 

represents mean +/- SEM of five WT and four OSMR-KO mice (*p<0.05).
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6.3.2 OSMRp mediated signalling selectively regulates CCL5 expression during 

recurrent inflammatory challenge

Analysis of OSM expression during acute inflammatory conditions has defined 

neutrophils as the primary source of OSM (Hurst et al, 2002), however, during 

chronic inflammation the cellular source of OSM is predominantly activated 

macrophages and T cells (Modur et al, 1997; Langdon et al, 2000). Mice exposed to 

an acute SES-induced inflammatory challenge demonstrated low levels of OSM 

expression within the peritoneal cavity, which coincided with the neutrophil influx 

(Figure 6.3.3), confirming observations outlined in Chapter 5 (Figure 5.3.4). This 

profile was somewhat delayed and more sustained as a consequence of repeat SES 

challenge, and may reflect the more prolonged neutrophil infiltration observed in 

response to recurrent inflammation (Figure 6.3.3). Furthermore, OSM levels were 

observed to be higher in WT mice, however, due to the low expression and low 

number of replicates, this would need to be substantiated by additional studies.

Expression of the mononuclear chemoattractants CCL2 and CCL5 in response to 

acute and repeated episodes of inflammation was also quantified. Interestingly the 

profile of CCL2 expression is comparable between acute and repeated inflammation 

(Figure 6.3.4). Due to the increased and sustained mononuclear infiltrate, increased 

expression of mononuclear cell chemoattractants would be expected with repeated 

inflammation. However, analysis of CCL2 levels in the peritoneal cavity 

demonstrated only slightly enhanced expression in response to repeated inflammatory 

assault, with OSMR-KO mice demonstrating significantly higher CCL2 in 

comparison to WT mice (Figure 6.3.4).

In vivo and in vitro experiments previously outlined in Chapters 4 and 5 illustrated an 

ability of OSM to control CCL5 expression (Figure 4.3.1; Figure 5.3.7). The profile 

of CCL5 expression is similar between single and repeated episodes of inflammation, 

however, the observed profile of CCL5 expression was notably more sustained 

following repeated SES activation, with significantly elevated CCL5 levels detected 

24 hours post SES activation (Figure 6.3.5). In response to repeated episodes of 

inflammation, OSMR-KO mice demonstrate significantly increased CCL5 expression 

in comparison to WT animals (Figure 6.3.5), thereby suggesting a role for 

OSMRp-mediated signalling in regulating CCL5 in recurrent and acute inflammation.
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Figure 6.3.3 OSM expression in response to acute and repeated episodes

of inflammation in WT and OSMR-KO mice
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Fig 6.3.3. Single (Episode 1) and recurrent (Episode 4) SES-induced 

inflammation was established in WT and OSMR-KO mice. ELISA was 

used to quantify OSM levels in peritoneal lavage fluid at designated time 

points. Data represents the mean ± SEM of five WT and four OSMR-KO 

mice.
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Figure 6.3.4 CCL2 expression in response to acute and repeated episodes of

inflammation in WT and OSMR-KO mice
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Fig 6.3.4. Single (Episode 1) and recurrent (Episode 4) SES-induced 

inflammation was established in WT and OSMR-KO mice. Temporal 

changes in CCL2 concentration were quantified in peritoneal lavage fluid 

using ELISA. Data represents the mean ± SEM five WT and four OSMR- 

KO mice (*p<0.05).
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Figure 6.3.5 CCL5 expression in response to acute and repeated episodes of

inflammation in WT and OSMR-KO mice
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Fig 6.3.5. Single (Episode 1) and recurrent (Episode 4) SES-induced 

inflammation was established in WT and OSMR-KO mice. Temporal 

changes in CCL5 concentration were quantified in peritoneal lavage fluid 

using ELISA. Data represents the mean ± SEM five WT and four OSMR- 

KO mice (*p<0.05).
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6.3.3 OSMR-KO mice demonstrate decreased STAT activation

As predicted by the data generated following a single acute inflammatory challenge 

OSMR-KO mice demonstrate decreased STAT activation (Figure 5.3.9). Analysis of 

SES-induced STAT activation in nuclear extracts isolated from peritoneal membranes 

of OSMR-KO and WT mice after both single and repeated episodes of SES-induced 

inflammation demonstrated decreased STAT activation in OSMR-KO mice (Figure

6.3.5). During acute inflammation the peak of STAT activation occurs between 1 and 

3 hours post induction (Figure 5.3.9; Figure 6.3.6). However in response to repeated 

episodes of inflammation, the degree of STAT activation was more pronounced 

potentially reflecting alterations in other STAT3 activating cytokines including IL-6 , 

IL-10 and IL-11. Supershift analysis of the DNA/protein complex subsequently 

highlighted activation of STAT1, and to a greater extent STAT3 (Figure 6.3.6).
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Figure 6.3.6 STAT activation is enhanced in response to recurrent 

episodes of SES-induced inflammation
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Fig 6.3.6. (A) Temporal activation of STAT in nuclear extracts from

peritoneal membranes of WT and OSMR-KO mice was monitored by 

EMSA following acute (Episode 1) and repeated episodes of peritoneal 

inflammation (Episode 4). Banding intensity was quantified by 

densitometry by calculating the ratio of activation elicited in OSMR-KO 

mice, which was compared to activation in WT mice (B). Composition of 

the STAT/DNA complex was verified by supershift analysis of extracts 

isolated from unchallenged mice and mice exposed to SES for 3 hours (C). 

Data is representative of EMSA performed using nuclear extracts from 

three WT and three OSMR-KO mice.

176



6.3.4 OSMR-KO mice demonstrate altered NF-kB activity

Studies outlined in Chapters 4 and 5 demonstrated an ability of OSM to regulate 

NF-kB activation both in vitro (Chapter 4, Figure 4.3.3) and during an acute 

inflammatory challenge in vivo (Chapter 5, Figure 5.3.10). To examine potential 

alterations in NF-kB activation as a consequence of repeated inflammatory challenge 

nuclear extracts were prepared from peritoneal membranes obtained during the course 

of the inflammatory response (episode 1 and episode 4) from WT and OSMR-KO 

mice (Figure 6.3.7). NF-kB activation followed a similar pattern in both single and 

repeated episodes of inflammation, with increased activation seen in OSMR-KO mice 

in comparison with WT mice in response to single and repeated inflammation (Figure 

6.3.7). Subsequent supershift analysis of the NF-kB subunits involved confirms 

classical activation, with expression of both the p50 and p65 subunits in response to 

both acute and repeated induction of inflammation. The apparent sustained activation 

of NF-kB in response to repeated inflammatory challenge appears to correspond with 

both sustained CCL5 expression and mononuclear cell trafficking into the peritoneal 

cavity.
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Figure 6.3.7 OSMR-KO mice demonstrate increased NF-kB signalling 

in response to acute and recurrent inflammatory challenge
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Fig 6.3.7. (A) Temporal activation of NF-kB in nuclear extracts from 

peritoneal membranes of WT and OSMR-KO mice was monitored by 

EMSA following acute (Episode 1) and repeated episodes of peritoneal 

inflammation (Episode 4). Banding intensity was quantified by 

densitometry by calculating the ratio of activation elicited in OSMR-KO 

mice, which was compared to activation in WT mice (B). Composition of 

the NF-kB complex was verified by supershift analysis of extracts isolated 

from unchallenged mice and mice exposed to SES for 3 hours (C). Data is 

representative of EMSA performed using nuclear extract from three WT 

and three OSMR-KO mice (*p<0.05).
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6.3.5 OSMR-KO mice develop peritoneal membrane thickening comparable to 

that observed in WT mice

Chronic inflammatory conditions are often characterised by accumulation of a 

persistent leukocyte infiltrate at the site of inflammation (Buckley, 2003). In this 

respect, peritoneal membrane biopsies taken from PD patients who had encountered 

repeated episodes of bacterial peritonitis display increased evidence of histological 

abnormalities including membrane thickening and EMT (Suassuna et al, 1994). As 

illustrated in Figure 6.3.8, mice exposed to repeated episodes of SES-induced 

inflammation develop significantly increased thickening of the peritoneal membrane, 

potentially due to increased leukocyte infiltration and deposition of collagen. OSMR- 

KO mice appear to develop membrane thickening comparable to that observed in WT 

mice, however, OSMR-KO mice appear to have thickened peritoneal membranes 

prior to induction of peritoneal inflammation, although the reasons for this remain 

unclear (Figure 6.3.8).
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Figure 6.3.8 OSMR-KO mice develop peritoneal membrane thickening 
comparable to that observed in WT mice

SE S x4Control

□  Control

OSMR-KO cl*

WT OSMR-KO

B Control
WT

SES x4

OSMR-KO

Fig 6.3.8. SES-induced inflammation was established in WT and OSMR-KO 
mice using four individual doses of SES at weekly intervals (SES x4). Peritoneal 
membrane sections were taken 49 days after the initial dose of SES and 
compared to membrane sections taken from unchallenged, age-matched mice. 
Sections were stained with haematoxylin and eosin (A) and an antibody against 
collagen I (B). The thickness of the mesothelium was assessed and the average 
thickness for each section calculated. Data is representative of three WT and 
three OSMR-KO mice (*p<0.05).
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6.4 Discussion

Studies outlined in this Chapter suggest that OSMRp-mediated signalling plays an 

important role in maintaining control of monocytic cell trafficking during recurrent 

episodes of inflammation. As indicated by the results outlined in previous chapters, 

the ability of OSM to selectively control monocytic cell trafficking may be due to 

enhanced NF-kB activation as evidenced by changes in CCL5 expression.

Resolution of inflammation is dependent on the effective clearance of the leukocyte 

infiltrate, which if not cleared can lead to chronic inflammation and tissue damage 

(Buckley, 2003). In accordance with this, both WT and OSMR-KO mice demonstrate 

an increased population of resident peritoneal leukocytes after repeated inflammatory 

episodes. Corresponding to the sustained neutrophil influx, OSM expression within 

the peritoneal cavity also appears increased and sustained. Collectively, these data 

infer that OSM activity is associated with the control of leukocyte retention within 

inflamed tissue, with OSM expression becoming heightened and more sustained.

As discussed in Chapter 5, IL-6 and OSM regulate distinct roles in governing 

leukocyte trafficking during acute inflammation, with IL-6 primarily affecting the 

neutrophil and T cell populations, and OSM controlling monocytic cell recruitment 

(McLoughlin et al, 2005; Hurst et al, 2001; Hams et al, 2008). However, both 

cytokines appear to be of significant importance in the transition of innate to acquired 

immunity (Jones, 2005; Hams et al, 2008). This pattern is maintained in response to 

recurrent inflammatory challenge, suggesting that during progressive inflammation 

OSM remains the predominant gpl30-activating cytokine controlling monocytic cell 

recruitment. Analysis of the inflammatory chemokines CCL2 and CCL5 suggests that 

OSMRP-mediated control of CCL5 expression is maintained in response to repeated 

inflammatory challenge and be a principle regulator of monocytic cell trafficking.

As previously discussed, although pivotal in bacterial clearance, IL-6 is also 

associated with tissue damage as exemplified in a variety of chronic inflammatory 

disorders, with IL-6KO mice protected against a variety of experimental inflammatory 

conditions (Alonzi et al, 1998; Yamamoto et al, 2000; Onogawa, 2005; Ramshaw et 

al, 1997). In addition, IL-6 deficient mice are also resistant to membrane thickening
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in experimental models of peritonitis (Fielding et al, unpublished data). However, a 

deficiency in OSM-mediated signalling does not exhibit this protective phenotype, 

with OSMR-KO mice developing experimental arthritis (Wong et al, 2006). As 

demonstrated within this Chapter, OSMR-KO mice also develop peritoneal membrane 

thickening as associated with chronic peritoneal inflammation. This also implies that 

within the inflammatory setting used in this project, OSM-mediated signalling does 

not have a significant effect on EMT as has previously been reported in renal fibrosis 

(Pollack et al, 2007; Nightingale et al, 2004), however, further analysis of the typical 

markers of EMT in OSMR-KO mice in response to recurrent inflammatory 

stimulation would be required to support this idea.

These results suggest that during repeated episodes of peritoneal inflammation OSM 

continues to direct CCL5-mediated monocytic cell recruitment in a similar manner to 

that observed in response to a single episode of acute inflammation. This 

upregulation of chemokine expression, taken in combination with a more sustained* 

profile of OSM expression, due to the delayed clearance of the neutrophil influx, may 

prove to be detrimental resulting in an increased population of monocytic cells within 

the peritoneum. However, studies outlined within this Chapter were unable to find any 

evidence for a role for OSM in membrane thickening or tissue injury associated with 

repeated inflammatory assault, suggesting that OSM does not play an important role 

in tissue damage within this inflammatory context.
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Chapter 7

General Discussion



7. Discussion

Previous in vitro and in vivo investigations have outlined potential roles for the 

gpl30-activating cytokine OSM in inflammation, tissue remodelling and 

haematopoiesis (Zarling et al, 1986; Modur et al, 1997; Langdon et al, 2000; Tanaka 

et al, 2003; Hurst et al, 2002; Richards et al, 1996). However, these investigations 

have not evaluated the in vivo contribution of OSM during acute inflammation. Using 

an in vivo model of acute bacterial peritonitis, supported by in vitro studies, this thesis 

illustrates that OSMRp signalling selectively affects the inflammatory trafficking of 

monocytic cells (Hams et al, 2008). This OSM-mediated response is distinct from 

that elicited by IL-6, which predominantly regulates recruitment and clearance of 

neutrophils and lymphocytes (Hurst et al, 2001; McLoughlin et al, 2005; Jones, 2005; 

Hams et al, 2008). Such findings highlight a distinction between the inflammatory 

activities controlled by a gp 130 homodimer receptor complex and those governed by 

OSMRP:gpl30 heterodimeric receptor.

Studies outlined in Chapters 3 and 4 illustrate an ability of OSM to selectively 

upregulate inflammatory chemokines and adhesion molecules in vitro when utilising a 

OSMRp:gpl30 receptor complex expressed on HPMC. In addition, OSM can 

selectively control IL-lp-mediated chemokine production, suppressing expression of 

the neutrophil chemoattractant CXCL8 and the mononuclear cell chemoattractant 

CCL5. The potential importance of OSM-mediated control of CCL5 was confirmed 

in vivo, where OSMR-KO mice demonstrated significantly enhanced CCL5 

expression following acute inflammatory activation. Such coordinated regulation of 

inflammatory chemokine expression, as highlighted by the impact of OSM on CCL5 

secretion, may represent a potential mechanism for the OSMRp-mediated control of 

monocytic cell recruitment. Subsequent examination of transcriptional events 

highlighted a role for OSM in negatively regulating the level of NF-kB activation. 

The orchestrated control of NF-kB signalling by OSM may explain the regulation of 

CCL5 (and CXCL8 production), and provides an additional mechanism for the 

OSM-mediated control of mononuclear cell trafficking. However, the specific 

interplay between OSM/OSMRp and NF-kB activation requires further analysis.
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7.1 The differential roles of IL-6 and OSM in leukocyte recruitment during acute 
inflammation.

The leukocyte profile following an acute inflammatory challenge can be characterised 

by an initial influx of neutrophils, which are subsequently replaced by a more 

sustained population of activated mononuclear cells (Topley et al, 1996). This 

transition marks a switch from innate to acquired immunity, which is vital for the 

effective resolution of inflammation (Jones, 2005; Beutler, 2004). The importance of 

IL-6 in this transition has been well documented in several recent review articles 

(Jones, 2005; Rose-John et al, 2006), however, the roles of other gpl30-activating 

cytokines are less well defined. Analysis of effluent from peritoneal dialysis patients 

with acute bacterial peritonitis has shown expression of both IL-6 and OSM, but not 

LIF, suggesting that within this inflammatory context the two primary 

gpl30-activating cytokines of potential importance are IL-6 and OSM (Hurst et al, 

2002). However, it should be noted that other IL-6-related cytokines including IL-11 

and IL-27 have prominent inflammatory roles as defined by their involvement in other 

models of inflammation. For example, IL-11 has been described as the principle 

cytokine promoting STAT1 and STAT3 mediated gastric-inflammation and 

tumourigenesis, whilst IL-27 plays a pivotal role in governing T-cell effector 

functions (Ernst et al, 2008; Villarino et al, 2003; Artis et al, 2004). Collectively, 

these studies emphasise a hierarchy of gpl30-activating cytokines in governing 

specific inflammatory activities. While other family members such as LIF, CLC and 

CNTF may provide homeostatic functions not typically associated to immunological 

processes (Taga & Kishimoto, 1997; Nakashima & Taga, 1998).

The archetypal gpl30-activating cytokine IL-6 plays an integral role in the transition 

from innate to acquired immunity by regulating both the chemokine-driven 

recruitment and apoptotic clearance of both neutrophils and T cells (Hurst et al, 2001; 

Jones, 2005). Initial in vitro investigations outlined both within this project and in 

previous studies have documented similarities between OSM and IL-6 in their 

capacity to regulate chemokine-driven responses (Hurst et al, 2002; Nowell et al, 

2006; Modur et al, 1997; McLoughlin et al, 2004; Richards et al, 1996). For example 

both cytokines exhibit an ability to suppress expression of the neutrophil 

chemoattractant CXCL8, although unlike IL-6KO mice, OSMR-KO mice do not 

display any alteration in neutrophil influx (Chapters 4 and 5; McLoughlin et al, 2003;

185



McLoughlin et al, 2004; Fielding et al, 2008; Hams et al, 2008). Likewise, although 

m vfrro analysis has suggested the potential for OSM to regulate T cell trafficking 

through the control of mononuclear cell chemoattractants, including CCL2, CCL5 and 

CXCL10, in vivo analysis illustrated OSMRp-mediated signalling does not control 

lymphocyte recruitment (Chapters 4 and 5; Hams et al, 2008). Consequently in vitro 

studies would infer a role for OSM in the control of neutrophil and T cell trafficking. 

However, this is not borne out in vivo suggesting that a hierarchy exists where IL-6 is 

of more importance in orchestrating certain chemokine-mediated events.

In direct contrast to IL-6, OSM appears to be of importance in the recruitment of 

monocytic cells. In vitro and in vivo analysis illustrates that IL-6 is the principle 

gpl30-activating cytokine involved in governing CCL2 expression. In this respect 

OSMR-KO mice show a comparable profile of CCL2 production to WT mice 

following inflammatory activation (Chapter 5). CCL2 was originally described as a 

monocytic cell chemoattractant, however, IL-6 deficiency has no significant impact 

on monocytic cell recruitment (Hurst et al, 2001; McLoughlin et al, 2005; Hams et al, 

2008). It is therefore questionable as to whether CCL2 is a more prominent regulator 

of activated T cells (Loetscher et al, 1996). A principle mechanism for controlling 

monocytic cell recruitment appears to be the OSM-mediated control of CCL5 and 

regulation of NF-kB signalling. These specific activities are distinct from the action 

of IL-6 (Chapters 4 and 5; McLoughlin et al, 2005; Hams et al, 2008). These findings 

suggest that during acute inflammation the OSM-mediated regulation of CCL5 may 

override IL-6-mediated control of CCL2 when recruiting monocytic cells to the site of 

inflammation. Such observations may support the notion that CCL2 preferentially 

control T cell recruitment, whilst CCL5 governs monocyte trafficking.

This contrasting ability of OSM and IL-6 to differentially regulate monocytic and T 

cell chemoattractants may further relate to studies into the receptors known to bind 

CCL2 and CCL5. Monocytic cells expressing CCR2, the primary functional receptor 

for CCL2, are defined as ‘inflammatory’ monocytes, which are actively recruited to 

sites of inflammation. Conversely, terminally differentiated macrophages lose 

cellular CCR2 expression, and instead upregulate CCR1 and CCR5, both of which act 

as receptors for CCL5 (Fantuzzi et al, 1999; Kaufmann et al, 2001). Previous studies 

have demonstrated the importance of gpl30-activating cytokines in the differentiation
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of monocytes, with OSM and IL-6 having unique roles in macrophage formation and 

the expansion of dendritic cells (Tanigawa et al, 1995; Chomarat et al, 2000; 

Kitamura et al, 2005). Therefore, differential regulation of CCL2 and CCL5 by IL-6 

and OSM may mediate the controlled recruitment of specific subpopulations of 

monocytic cells during inflammation. Initial studies into the monocyte subsets 

recruited into the peritoneal cavity following inflammatory challenge suggest that 

OSMRp-mediated signalling does not result in an alteration of the proportion of 

CCR5 expressing infiltrating monocytes, implying that the increase in CCL5 

expression does not increase the recruitment of terminally differentiated macrophages 

(Chapter 5). However, CCL5 also utilises CCR1 and to a lesser extent, CCR3, 

therefore to further understand the implications of CCL5 on mononuclear trafficking, 

cellular expression of these receptors would also have to be determined.

As previously mentioned, the OSMRp-mediated control of NF-kB signalling has been 

suggested as the principle mechanism regulating CCL5 expression (Moriuchi et al, 

1997), which may be in part responsible for the observed alteration in monocytic cell 

recruitment. This was demonstrated in vitro, where OSM inhibition of the 

IL-ip-induced expression of CCL5 was associated with suppression in NF-kB activity 

(Chapter 4). Similarly, in vivo activation of NF-kB as a consequence of SES-driven 

TLR2 activation suggests that OSM may also regulate TLR-mediated NF-kB 

signalling (Figure 7.1). As TLR activation is associated with the innate immune 

response (Beutler & Rietschel, 2003), the OSM-mediated control of NF-kB suggests 

the potential for OSM to regulate innate immune activation, in addition to regulating 

mononuclear cell recruitment associated with an acquired immune response. The 

observed suppression of NF-kB in inflammatory activated OSMR-KO mice is unique 

and is not seen in IL-6KO mice. Since IL-6 and OSM utilise gpl30, changes in 

NF-kB activation may arise from signals triggered via OSMRp. However, the shared 

effects of OSM and IL-6, for example the ability of both cytokines to upregulate 

CCL2 and control the IL-lp-induced expression of CXCL8 (Chapters 3 and 4; Hurst 

et al, 2001), are potentially mediated through gpl30.
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Figure 7.1 OSMRp-mediated signalling regulates NF-kB activity
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Fig 7.1. OSM-mediated signalling regulates both IL-lp- and TLR2-mediated 

activation of NF-kB. Both in vivo and in vitro analysis has illustrated the ability 

of OSM to suppress NF-kB activation, resulting in the inhibition of chemokines 

such as CCL5. This mechanism is unique to OSM, suggesting it is mediated 

through the OSMRp subunit rather than gpl30. This ability of OSM to regulate 

NF-kB activation may be responsible for regulation of monocytic cell 

recruitment observed in response to OSMRp-mediated signalling. It remains 

unclear whether OSM acts on both signalling events (TLR and IL-lp) or if OSM 

acts solely on IL-lp responses which are triggered through TLR activation.
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F igure 7.2 IL -6 and O SM  have u n iq u e  roles in the tran sition  from  in n ate  to
a cq u ired  im m u n ity
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Fig 7.2. T he leukocyte profile  g en era ted  in resp on se to  S E S -in d u ced  p er ito n ea l 

in flam m ation  in W T, IL -6K O  and O S M R -K O  m ice d em o n stra tes  th e ab ility  o f  IL -6  to 

regulate both neutrophil and ly m p h o cy te  recru itm en t an d  c learan ce. C o n v erse ly , 

O SM R -K O  m ice d em onstrate  n eu trop h il and  ly m p h o cy te  tra ffick in g  co m p a ra b le  to  

that seen in W T  m ice, however, O SM  selectively  regu lates tra ffick in g  o f  m o n o cy tes , in  

an in d ep en d en t fashion.
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Taken in combination, this data suggest that while IL-6 critically governs the pattern 

of neutrophil and T cell recruitment, monocytic cell trafficking is co-ordinated by 

OSM/OSMRp (Figure 7.2). However, these studies suggest that OSM is also of 

significance in the transition from innate to acquired immunity and resolution of 

inflammation as increased monocytic cell infiltration may lead to enhanced 

phagocytic clearance of dying neutrophils (Savill et al, 2002; Brown & Savill, 1999). 

Further functional studies will be required to define the role of OSM in governing the 

clearance of apoptotic cells.

7.2 Differential roles for OSM and IL-6 in chronic inflammation and tissue 

injury

Chronic inflammatory conditions are characterised by an increased retention of 

activated mononuclear cells at sites of inflammation. The maintenance of a persistent 

leukocyte infiltrate reflects an imbalance between factors that promote cellular 

recruitment and those which promote cell death (Buckley, 2003). Chronic 

inflammation is often associated with tissue injury, for example articular cartilage 

damage in rheumatoid arthritis and development of fibrosis, characterised by 

excessive deposition of extracellular matrix components (Wynn, 2008; Arend & 

Dayer, 1990; Feldmann et al, 1990). As previously mentioned, gpl30-activating 

cytokines are integral in governing leukocyte recruitment during acute inflammation, 

it is therefore conceivable that dysregulation of these cytokines may play a role in 

chronic inflammation.

This assumption has proved correct for IL-6, which has been shown to be detrimental 

in chronic inflammatory conditions, encouraging mononuclear cell infiltrate both 

through increasing expression of mononuclear cell chemoattractants and protecting T 

cells from apoptotic clearance (Salmon et al, 1997; Atreya et al, 2000; Teague et al, 

2000; Nowell et al, 2008 in press). The detrimental effects of IL-6 have been 

demonstrated in several experimental models of chronic inflammatory disease, where 

IL-6KO mice are protected against models of arthritis, EAE and renal fibrosis (Alonzi 

et al, 1998; Yamamoto et al, 2000; Kallen, 2002). Initial studies have suggested that 

these activities are unique to IL-6 as OSMRP and IL-llRa deficient mice develop 

classic hallmarks of experimental arthritis (synovial hyperplasia, leukocyte infiltration 

and joint erosion), comparable to those observed in WT mice (Wong et al, 2006). In
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addition, OSMR-KO mice are not protected against membrane thickening in response 

to repeated peritoneal inflammation, unlike IL-6KO mice (Chapter 6; Fielding et al, 

unpublished data). This data further suggests that there is a hierarchy in the activities 

of gpl30-activating cytokines, with IL-6 playing the primary role in governing 

leukocyte retention in chronic inflammation, which may contribute to excessive tissue 

damage. However, OSM has previously been shown to be of importance in tissue 

injury associated with fibrosis and EMT (Pollack et al, 2007; Nightingale et al, 2004), 

therefore suggesting potentially unique roles during chronic inflammatory conditions 

which require further analysis.

Studies have detected expression of OSM in chronic inflammatory conditions, 

however, it appears that the primary source switches from the infiltrating neutrophils 

to activated macrophages and T cells (Cawston et al, 1998). This suggests that unlike 

its involvement in acute inflammatory events, where OSM expression is transient, 

expression is more sustained at the site of inflammation. This implies that OSM may 

play a role in the pathogenesis of chronic inflammatory conditions, however, studies 

have demonstrated both pro- and anti-inflammatory roles for this cytokine in tissue 

injury (Nagata et al, 2003; Sohara et al, 2002; Li et al, 2001; Plater-Zyberk et al, 

2001; Langdon et al, 2000). These contrasting roles for OSM may relate to changes 

in the cellular distribution of OSMRp. In this respect stromal cells, but not 

inflammatory cells express OSMRp (Chapter 3). Here again, we see that OSMRp 

expression has the potential to be modulated on both HPMC and leukocytes, with 

IFN-y and bacterial agonists affecting the repertoire of cells responsive to OSM 

(Chapter 3).

One interesting observation from this study is the apparent upregulation of OSMRp 

expression on monocytic cells in response to activation with LPS and IFN-y (Chapter 

3; Dillon et al, 2004). Stimulation with LPS and IFN-y is associated with an 

enhancement in macrophage responsiveness (Nathan et al, 1983; Taylor et al, 2005), 

suggesting that during more progressive forms of disease where there is an 

accumulation of activated mononuclear cells, OSM may perform additional 

inflammatory roles as a consequence of OSMRP induction on activated monocytic 

cells. These activities could be potentially distinct from the cellular responses 

directed by OSM in stromal cells. However, the observed upregulation of OSMRp on
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monocytic cells also corresponds to an increase in expression of IL-31 Ra, both of 

which form the functional receptor complex for IL-31 (Chapter 3). Although initial 

studies have found no involvement for IL-31 in the in vitro control of 

chemokine-mediated leukocyte trafficking, previous studies have implicated both 

IL-31 and OSM in more chronic inflammatory conditions such as dermatitis and 

asthma (Dreuw et al, 2004; Dillion et al, 2004; Boniface et al, 2007). Further 

differential analysis of both IL-31 and OSM signalling in activated monocytes would 

be required to establish any additional role this pathway may have.

It still remains unclear whether OSM plays an important role in the progression of 

chronic inflammation and associated tissue injury. Studies outlined in this thesis 

taken in combination with the observation that OSMR-KO mice do not share the 

protective phenotype exhibited by IL-6KO mice in experimental models of 

autoimmunity suggest that during chronic inflammation, IL-6 overrides 

OSMRp-mediated signalling. However, further analysis of OSMRp-mediated 

signalling in experimental models of chronic inflammation would be necessary to 

fully determine the inflammatory role of OSM. In this respect fibrosis following 

repeated SES-induced inflammatory stimulation is mild, a more aggressive model of 

fibrosis would be required to fully assess the role of OSM.

7.3 Is OSM pro- or anti-inflammatory?

Previous studies have demonstrated the therapeutic benefits of selectively blocking 

certain pro-inflammatory cytokines, for example the use of pharmaceuticals to inhibit 

both TNF (eg. Enbrel, Etanercept) and IL-6 (eg. Atlizumab, Tocilizumab) (Maini & 

Taylor, 2000; Papadakis & Targan, 2000; Choy et al, 2002; Ito et al, 2004). There is 

evidence for OSM to have both beneficial and detrimental roles in inflammation and 

from the information currently available through published literature and studies 

outlined in this project, it still remains unclear whether OSM represents a suitable 

therapeutic target. This is therefore an avenue for future studies.

However, the apparent ability of OSM to selectively regulate monocytic cell 

trafficking may prove to be of importance as more is discovered about the specific 

roles of monocytes and macrophages during inflammatory activation. Although the 

roles of lymphocytes during progressive inflammation are well defined, the potential
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role of the macrophage is less clearly defined. Therefore, as more is understood about 

the potential implications of macrophage activation, the therapeutic benefits of OSM 

in regulating monocytic cell recruitment may become apparent. Although effective, 

concerns are now being raised about the use of anti-TNF therapies (such as 

Etanercept) due to the increased risk of severe bacterial and viral infections associated 

with the effects of blocking TNF on the immune system (Desai & Furst, 2006; Domm 

et al, 2008; Winthrop, 2006). Therefore it may be advantageous to investigate the use 

of anti-cytokine therapies which are more specific, such as the potential therapeutic 

use of soluble gpl30, which specifically blocks IL-6 trans-signalling whilst leaving 

classical IL-6R signalling unaffected (Rose-John et al, 2007; Richards et al, 2006).

Studies have thus far emphasised both pro- and anti-inflammatory roles for OSM in 

the progression of an immune response (Chapters 3-6; Modur et al, 1997; Wahl & 

Wallace, 1999). Both in vitro and in vivo analysis have shown OSM to promote 

wound healing and to upregulate expression of acute phase proteins and protease 

inhibitors (eg. TIMP1 and TIMP3), which have been implicated in modulating 

cytokine function and limiting tissue damage at sites of inflammation (Wallace et al, 

1995; Cross et al, 2004; Li et al, 2001; Goren et al, 2006). In addition, OSM can 

regulate inflammatory chemokine expression, and may aid the resolution of 

inflammation (Chapters 3-6). Such data suggest the potential for the therapeutic use 

of OSM in inflammatory disorders. Initial studies have demonstrated that OSM can 

protect against LPS-induced toxicity and reduce inflammation in experimental models 

of arthritis and inflammatory bowel disease (Wallace et al, 1999; Wahl & Wallace, 

2001; Loy et al, 1999). However, these studies were performed using human OSM, 

which in mice utilises the LIF receptor complex (Yoshimura et al, 1996), and as such 

do not appropriately reflect the potential contribution or impact of OSM via OSMRp.

Subsequent studies have also implicated OSM as a pro-inflammatory mediator able to 

upregulate expression of inflammatory cytokines and tissue destruction both in vitro 

and in vivo (Langdon et al, 2000; Brown et al, 1991; Nowell et al, 2006; Plater- 

Zyberk et al, 2001). In accordance with these observations, the use of antibodies 

against OSM has shown some success in inhibiting joint destruction in experimental 

models of arthritis (Plater-Zyberk et al, 2001). In addition, OSM has been implicated 

in renal EMT, which is fundamentally linked to the pathogenesis of fibrosis (Pollack
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et al, 2007; Nightingale et al, 2004). Although studies outlined herein fail to 

demonstrate a role for OSM in EMT within the peritoneum, future studies using a 

more aggressive model of peritoneal fibrosis may better illustrate a defined role for 
OSM in this process.

7.4 Future directions

Although this project has clearly outlined a role for OSM in governing monocytic cell 

recruitment during acute inflammation there are several questions that remain 

unanswered:

- Does OSM regulation of CCL5 represent the primary mechanism orchestrating 

the OSMRp-mediated control of monocytic cell recruitment? To answer this 

question a full evaluation of inflammatory mediators involved in governing 

monocytic cell trafficking in response to OSM would be required. However, 

this is currently restricted by the lack of suitable blocking agents for murine 

OSM or OSMRp. In addition, further analysis of the interplay between 

OSMRp-mediated signalling and the inhibition of NF-kB using transcriptional 

analysis with suitable reporter assays would be required to fully understand the 

interaction between the two pathways.

- Does IL-31 play any role in the progression of acute or progressive peritoneal 

inflammation? Although in vitro analysis suggests that during acute 

inflammation IL-31 does not share the ability of OSM to regulate 

inflammatory chemokine expression, the observation that IL-31Ra expression 

can be induced on HPMC in response to IFN-y stimulation implies that IL-31 

may play an additional role in more progressive forms of disease. The use of 

OSM-KO mice in comparison with OSMRp-KO mice within the same 

inflammatory model could be used to outline any potential role of IL-31 in the 

observed effects of OSMRp-mediated signalling during peritoneal 

inflammation.

- Does OSMRp-mediated signalling on activated monocytic cells play a role in 

progressive inflammatory disorders? The apparent induction of OSMRp 

expression on monocytic cells activated with LPS and IFN-y suggests the 

potential for unique signalling events in chronic inflammatory conditions, 

either mediated by OSM or IL-31. The use of mice deficient in stromal
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OSMRp expression could be used to assess the potential importance of 

OSMRp-mediated signalling solely on monocytic cells.

7.5 Concluding comments

Studies outlined within this thesis suggest a role for OSM in regulating monocytic cell 

trafficking during inflammation, potentially through altering NF-kB activity thereby 

inhibiting production of specific downstream chemoattractants. Monocytes play an 

important role in the immune response, both in the removal of pathogen and in the 

clearance of apoptotic cells (Fadok et al, 1998; Savill et al, 2002), however, 

accumulation of activated monocytes and macrophages at inflammatory sites is 

associated with tissue damage (Buckley, 2003). These observations suggest 

OSM-mediated regulation of monocytic cells may have a beneficial role during 

progressive inflammatory conditions. However, OSM control of mononuclear cell 

chemoattractants appears to be limited to CCL5 in vivo suggesting the effects of OSM 

may be confined to specific subsets of monocytic cells. In this respect the impact of 

OSM on NF-kB may be more pertinent. These observations and their implications 

would require further analysis in vivo. Studies into the potential role of OSM in 

peritoneal fibrosis were inconclusive and would require further analysis in a more 

robust fibrosis model, however, it would appear from previous studies that OSM does 

not represent the primary gpl30-activating cytokine involved in tissue damage (Wong 

et al, 2006). From studies outlined within this thesis it remains unclear whether OSM 

would provide a suitable therapeutic target, however, results have demonstrated 

unique and previously undefined roles for OSMRp-mediated signalling in the 

progression of inflammation.
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