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Abstract

This thesis presents three new three-dimensional constitutive models for cementitious 

materials. All three models use embedded damage planes and adopt the theory of contact 

mechanics to describe the characteristic behaviour of cracks formed in concrete and other 

cementitious materials.

The first of these is a smooth frictional contact model which incorporates a simplified 

Mohr-Coulomb yield surface to capture plastic slip planes in concrete. The aim of the 

model is to accurately represent the behaviour of smooth construction joints in large 

concrete structures. The second proposed model is the dual-surface contact model. The 

model employs two contact surfaces, each of which nominally represents a different 

component of concrete composite, i.e. coarse aggregate particles and mortar.

The third model is the ‘embedded planes with local plasticity contact’ model (EPLPC). 

The model adopts a yield surface, which is similar to the damage surface in strain space, 

to capture plastic embedment on crack surfaces. This model, as with the dual-surface 

contact model, is developed to simulate crack opening-closing, as well as the behaviour 

of aggregate interlock. The models are integrated with a hardening/softening frictional 

plasticity component that uses a smoothed triaxial plastic yield surface developed from 

that used by Lubliner et al. (1989).

Each of the proposed models is implemented with a consistent tangent stiffness operator 

and return mapping algorithm, similar to that of the Closest Point Projection algorithm. 

The models are coded in Fortran77 and implemented in a constitutive driver program, and 

also a finite element software package LUSAS.

The models are assessed using a series o f stress/strain paths at the constitutive level, and 

also validated against a range of experimental data. These include data from uniaxial and 

multiaxial compressive tests, uniaxial tensile tests with and without unloading-reloading 

cycles, and also tests in which shear load is applied on open cracks.
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Notation

Notation

a yield surface shape parameter

ac hardening/softening curve parameter

ac, a, model parameter for damage criterion in compression and tension 

(Chapter 2)

am continuous softening curve parameter

Clp parameter in the softening function to control the level of damage

at proportion of peak tensile strength at which damage starts

aK defined in equation (4.34)

aK defined in equation (5.41)

aK defined in equation (7.26)

A undamaged cross-sectional area

A defined in equation (4.42)

A defined in equation (5.49)

A c defined in equation (6.17)

Ac A defined in equation (4.51)

Ac A defined in equation (5.58)

Ac A defined in equation (6.38)

Ac A defined in equation (7.48)

Ad total area o f microcracks

Ac defined in equation (7.37)

Ar smoothing function

a standard nodal degrees o f freedom

A effective cross-sectional area

“u additional degrees of freedom associated with node i and enrichment 

function j

bc, b, model parameter for damage criterion in compression and tension

bm continuous softening curve parameter

br biaxial/uniaxial strength ratio



Notation

B c defined in equation (6.17)

B e defined in equation (4.44)

B e defined in equation (5.51)

B e defined in equation (6.26)

B e defined in equation (7.40)

B y defined in equation (6.27)

B x defined in equation (4.43)

B x defined in equation (5.50)

B x defined in equation (7.38)

B , defined in equation (7.39)

c yield function shape parameter

C\ softening curve factor

Co C( compressive and tensile cohesions

Cc\ hardening/softening curve parameter

Cc 2 constant governing initial plastic slope of smooth hardening curve

Cg contact function constant

Cm continuous softening curve parameter

Ck defined in equation (4.34)

Ck defined in equation (5.41)

Ck defined in equation (7.26)

C c„ defined in equation (6.40)

C cc defined in equation (6.41)

C cg defined in equation (6.41)

C cs defined in equation (6.36)

C cu defined in equation (6.44)

C c<p defined in equation (6.44)

C c y defined in equation (6.36)

C ls f local compliance matrix

C itf defined in equation (4.47)

C u f defined in equation (5.54)
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Notation

C/tf defined in equation (7.43)

Cl inverse matrix of the local elastic constitutive matrix

D damage parameter

Dc, Dt damage measure in compression and tension

De elastic stiffness matrix

Dep consistent tangent stiffness matrix

Dip defined in equation (7.33)

Dis defined in equation (4.11)

Dis defined in equation (5.18)

Dis defined in equation (7.1)

Dit defined in equation (4.38)

D[t defined in equation (5.45)

Du defined in equation (7.33)

D[K defined in equation (4.38)

D ik defined in equation (5.45)

D/k defined in equation (7.33)

Di secant elastic-damage constitutive matrix

Dl local elastic constitutive matrix

e eccentricity parameter

e local effective strain

ebg relative normal displacement at start of contact loss in interlock state

ea inelastic local strain on crack plane

ee local elastic strain vector

e/ui strain beyond which contact is minimum

ejuic, efuif strain beyond which contact is minimum for coarse and fine components

eg crack opening parameter

egc, egf crack opening parameter for coarse and fine components

e/ti strain at end of first section of shear contact function

ep local plastic strain vector

er, es, et local strain components



Notation

Crec recoverable strain vector

es local plastic slip strain

E Young’s modulus

E effective elasticity modulus

f loading function (Chapter 2)

f damage loading function (Chapter 3)

f c uniaxial compressive strength

f e local yield function

fe s local plastic slip function

fe te defined in equation (7.31)

fh contact function parameter

fn defined in equation (7.54)

f s fracture stress parameter

f t uniaxial tensile strength

f i stress at first damage

A defined in equation (4.36)

A defined in equation (5.43)

A defined in equation (7.29)

fKV defined in equation (7.54)

F yield function

Fd damage loading function

Fe total-local function

FP yield function

Fe defined in equation (4.44)

Fe defined in equation (5.51)

Fe defined in equation (6.26)

Fe defined in equation (7.40)

Fx defined in equation (4.43)

Fx defined in equation (5.50)

Fx defined in equation (7.38)
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Notation

F y defined in equation (6.27)

Fm defined in equation (7.39)

g  embedment strain

gc, gf embedment strain for coarse and fine components

ge local plastic potential function

gm defined in equation (4.53)

gm defined in equation (5.60)

gm defined in equation (7.48)

gm defined in equation (5.49)

G plastic potential function

Gf fracture energy

hc, ht isotropic hardening-softening function in compression and tension

hK defined in equation (4.36)

hK defined in equation (5.43)

hK defined in equation (7.29)

h(0 defined in equation (6.3)

H  hardening parameter

Hc proportion of undamaged material

H f contact function

Hfc, Hjf contact function for fine and coarse components

Hg function for smooth transition to closed and interlock states

Hgc, Hgf function for smooth transition to closed and interlock states for coarse and 

fine components 

Hm contact function constant

I  identity matrix

I I  first stress invariant

IcA defined in equation (6.38)

Idc defined in equation (6.46)

Ie defined in equation (6.46)

I n  defined in equation (4.53)



Notation

I n  defined in equation (5.60)

I an defined in equation (7.48)

J  fourth-order symmetrical tensor

J2 second stress invariant

J3 third stress invariant

k  bar stiffness (Chapter 3)

k  Drucker-Prager cohesion parameter (Chapter 2)

k c, k t model parameter for damage criterion in compression and tension

k a defined in equation (4.34)

k a defined in equation (5.41)

k a defined in equation (7.26)

K  softening parameter

Ko undamaged bulk modulus (Chapter 2)

Kq initial value of softening parameter (Chapter 3)

Kc, Kt hardening-softening parameter in the loading function of damage in

compression and tension 

L length of bars

m number of parallel bars (Chapter 3)

m continuous softening curve parameter

mc, mt plastic participation factors in damage force

nifui factor for shear contact limiting strain

m/uic, mfuif factor for shear contact limiting strain for coarse and fine components

mg gradient of the interlock surface

mgc, mgf interlock surface parameter for coarse and fine components

mhi factor for end o f first section o f shear contact function

Mhic, mhif factor for end o f first section o f shear contact function for coarse and fine

components 

M k defined in equation (4.47)

M k defined in equation (5.54)

M k defined in equation (7.43)
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Notation

M ,i defined in equation (4.43)

Mx defined in equation (5.50)

Mx defined in equation (7.38)

Mm defined in equation (7.39)

m 'c defined in equation (6.22)

m p differential o f M x with respect to local recoverable strain

m 'x differential o f M x with respect to local strain

m 'K differential o f M x with respect to hardening parameter

Mp defined in equation (7.43)

Mx defined in equation (4.11)

Mx defined in equation (5.18)

Mx defined in equation (7.1)

M e defined in equation (4.44)

M e defined in equation (5.51)

M e defined in equation (7.40)

n number of nodes

n number of broken bars (Chapter 3)

nmax maximum number of PODs permitted to form

np number of damage plane

N  shape function

N  stress transformation matrix

N e defined in equation (7.33)

N a defined in equation (4.38)

N a defined in equation (5.45)

N& defined in equation (7.54)

p  softening curve constant

P  total force

Py defined in equation (6.27)

PA defined in equation (7.38)

Pp defined in equation (7.39)
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Notation

P e defined in equation (6.26)

P e defined in equation (7.40)

q softening curve parameter

r elliptic function

rc residual strength factor

rd energy resistance function

Fd, $d, td unit vectors of crack plane

re factor in damage loading function

y es defined in equation (6.7)

rf contact function constant

re strain ratio, defined in equation (5.29)

r» parameter in the local yield function

ra cohesion to tensile strength ratio

r C relative shear strain intercept

P e p error measure for local plastic strain

P e s error measure for local plastic slip strain

R e error measure for plastic strain

P en t defined in equation (5.49)

PeKp defined in equation (7.37)

R k error measure for hardening parameter

Sd local stress vector for fully debonded slip component

sf local stress vector

Sfc, Sff local stress vector for coarse and fine components

$u local stress vector for undamaged material

U enriched displacement approximation (Chapter 2)

U displacement (Chapter 3)

w c fracture process zone width

Xk defined in equation (5.28)

y cd
compressive damage criteria



Notation

y ‘ tensile damage criteria

Yc, Y, damage energy release rate in compression and tension

Yv volumetric thermodynamic conjugate force for damage

z \, Z2, Z3 softening curve contants

a model parameter for compressive damage criterion (Chapter 2)

a yield surface shape parameter

a\ elastic constitutive matrix factor

ai elastic constitutive matrix factor

ac proportion of coarse particles in a representative volume of the fully

debonded component 

ap Drucker-Prager friction parameter

ap yield surface shape parameter

/? yield surface shape parameter

pd dilatation parameter

X parameter for enhancement factor

X  enhancement factor in work hardening/softening plastic evolution

function

Xi constant for enhancement factor

6ea iterative local added strain

Sep iterative local plastic strain

6es iterative local plastic slip strain

Ssd iterative local stress for fully debonded slip component

Ssf iterative local stress

5e iterative strain

dep iterative plastic strain

Sy iterative local plastic slip parameter

6k  iterative hardening parameter

SX plastic multiplier increment

Sp incremental local plastic parameter increment

6a iterative stress

xviii



Notation

Sen softening parameter increment

Aep incremental local plastic strain

Aes local plastic slip strain increment

Ae strain increment

Aep plastic strain increment

Aa incremental plastic parameter

Ak incremental hardening parameter

Ay incremental local plastic slip parameter

incremental local plastic parameter

Aa out o f balance stress

Aoa applied stress increment

Aorc ‘reaction’ stress increment

e uniaxial strain

£ Cartesian strain vector

Co strain at end o f softening curve

Ca sum of the transformed inelastic local strain vector on all crack planes

£c uniaxial compressive strain

£e elastic strain

£, elastic strain at peak uniaxial stress

Eti strain at first damage

Etol strain tolerance

< elastic volumetric strain

plastic volumetric strain

equivalent deviatoric plastic strain

£ equivalent strain

* damage function

$cl closure function

$cki ^clf closure function for coarse and fine components

Pint interlock function

flints interlock function for coarse and fine components



Notation

local plastic slip potential function

transformation matrix

& d c, & d f transformation matrix for coarse and fine components

*&gc, & g f defined in equation (5.16)

y local plastic multiplier

yP yield surface shape parameter

r defined in equation (6.44)

r defined in equation (7.54)

r e defined in equation (6.49)

n ratio between work hardening and work hardening limit

n defined in equation (5.18)

no, n\ contact function parameters

9 parameter governing the crack ‘floating’ stage

K hardening parameter

Kc, K, damage variable for compression and tension

Kp hardening parameter limit

k plastic multiplier

Pes coefficient o f friction

P e equivalent friction factor in strain terms

residual friction factor

V Poisson’s ratio

e lode angle

p deviatoric stress invariant (Chapter 2)

p eccentricity parameter

Pc yield surface smoothing function parameter

p f l ,  p p contact function constants

a uniaxial stress

a stress tensor

o\ principal stress

Gm mean nominal stress

xx



Notation

&new new converged stress 

G0id last converged stress

Grec recorded last converged stress

g, total stress

G(0i stress tolerance

Gtr trial stress

Gy yield stress

Gi trial stress based on the secant elastic-damage constitutive matrix

g+/ g' positive/negative stress tensor

g  effective uniaxial stress

a m a x i m u m  principal stress

m relative error

co damage variable

Q  defined in equation (6.44)

Q  defined in equation (7.54)

Qe defined in equation (6.49)

£ hydrostatic stress invariant

E  defined in equation (6.45)

E  defined in equation (7.56)

yj dilatancy parameter

y/ thermodynamic potential (Chapter 2)

W global enrichment function

defined in equation (6.50) 

defined in equation (7.55)

C damage strain parameter

(k damage strain at peak o f tensile curve

Zo initial position of yield function

Z friction hardening/softening function

dy Kronecker delta

o contraction with respect to the ‘in-plane’ components of a 3rd order matrix
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Chapter One Introduction

Chapter One 

Introduction

1.1 Cracking -  Effect and modelling

Cracks are always present within concrete structures, even at early age before the 

application of any mechanical load. Although they are often just microcracks, they grow 

stably under external loading, coalesce with other microcracks and eventually form large 

macrocracks which can lead to complete loss of structural strength. The modelling of 

crack initiation and propagation is one of the most essential aspects in the failure analysis 

of concrete structures.

Many constitutive formulations for concrete cracking have been established over the 

years. The theory of plasticity and continuum damage mechanics are the most commonly 

used by researchers to describe the compressive and tensile behaviour of concrete. Other 

more powerful models include those of plastic-damage and microplane models. The way 

in which these models capture the behaviour of cracks differ from one another.

1-1



Chapter One Introduction

One of the important characteristics governing the behaviour of cracked concrete is 

aggregate interlock, which according to experimental evidence, can provide a significant 

contribution to the total shear resistance of concrete beams. Also, when cracked concrete 

is subjected to cyclic loads, the ability of numerical models to simulate crack opening and 

closing is important. Constitutive crack models should be able to simulate the above 

behavioural characteristics, and include the gradual reduction of material stiffness on 

unloading, and the regaining of stiffness when crack faces regain contact.

The work described in this thesis employs the theories of plasticity, damage mechanics 

and contact mechanics in order to develop a comprehensive constitutive model suitable 

for the simulation o f cracked concrete. The plastic-damage-contact model (Craft) by 

Jefferson (2003a, b) was used as a basis for the construction of the constitutive model. 

The Craft model has a fairly basic damage-contact component, which is used to describe 

the behavioural characteristics of cracks in concrete. Hence, the work presented in this 

thesis is dedicated to the improvement of the local embedded plane model.

1.2 Study objectives

The primary objective of the current study was to develop different and improved 

interface models that can be coupled into the plastic-damage-contact framework. This 

was fulfilled with the development of three different contact models as follows

1-2



Chapter One Introduction

• Dual-surface contact model

• Smooth frictional contact model

• Embedded planes with local plasticity contact model

Each of the above can be further subdivided into a series of steps required to realise their

development

• Develop governing equations

• Derive the return mapping algorithm and consistent tangent stiffness operator

• Verify the consistent algorithm via a Mathcad implementation

• Develop a computer code in Fortran77 to numerically implement the proposed 

theoretical models in both a constitutive driver program and a finite element 

program

• Verify that both the dual contact and embedded planes with plasticity contact model 

correctly predict the behaviour of cracked concrete when compared to standard tests 

for compressive, tensile and combined loading paths

• Verify that the smooth frictional contact model correctly predicts the behaviour of 

construction joints for compressive, tensile and combined loading paths

1.3 Summary of contents

Chapter two presents a brief review on the behaviour of concrete and also a review on

published literature relating to experimental investigation on the behaviour of aggregate
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Chapter One Introduction

interlock on cracked concrete. Attention then turns to published literature on the various 

constitutive models available for modelling concrete. Emphasis here is placed on the four 

main types of model that are currently the subject of extensive research. This is followed 

by the various approaches used to model cracking.

Chapter three outlines the fundamental theories which form the basis of the theories used 

to develop the models in this study. A brief description of the derivation of the tangent 

stiffness matrix and stress recovery algorithm is given.

Chapter four details the theoretical formulation of the plastic-damage-contact model, 

which is used as a basis of the contact models developed in this study. Detailed 

descriptions of the local damage-contact component and plasticity component of the 

model are presented. The stress recovery algorithm and derivation of the consistent 

tangent matrix are documented.

Chapter five presents the theoretical formulation of the proposed dual-surface contact 

model. The decomposition of local stress in the damaged component is explored. The 

way in which the contact model parameters are obtained is discussed. Full derivations of 

the consistent tangent matrix and stress recovery algorithm are given. The 

implementation of the constitutive model is verified by comparisons with previously 

published data.

1-4



Chapter One Introduction

Chapter six concerns the theoretical formulation of the proposed smooth frictional 

contact model. The introduction of the local slip function is discussed. Full derivations of 

the consistent tangent operator and return mapping algorithm are presented. The 

numerical implementation of the theoretical formulation using Mathcad is fully 

documented. The implementation of the proposed model is verified using a variety of 

loading paths.

Chapter seven details the theoretical formulation of the proposed ‘embedded planes with 

local plasticity contact’ model (EPLPC). The inclusion of the local plasticity function is 

discussed, and modification to the softening function is suggested. Complete derivations 

of the consistent tangent stiffness matrix and return mapping algorithm are documented, 

followed by the verification procedure of the consistent algorithm. The implementation 

of the model is verified by comparisons with previously published results, using a variety 

of loading paths. Predictions made using the proposed model are discussed.

Chapter eight summarises the conclusions given for each of the proposed model. The 

overall conclusions o f the work are discussed and further research is suggested.

1-5



Chapter Two Literature Review

Chapter Two 

Literature Review

2.1 Introduction

A vast number of numerical models for concrete have been developed over the last 30 

years. These developments have been accompanied by the various experiments carried 

out which provide better insight into the complexity of concrete behaviour. Under 

uniaxial compression, concrete exhibits considerable ductility and non-linearity prior to 

reaching its peak stress, whereas in tension, the behaviour is far more brittle. Upon 

reaching its compressive limit, concrete losses strength in all directions. In contrast, under 

tensile loading, strength degradation is confined to the direction normal to the crack plane 

(Jefferson 1989). In biaxial compression, experimental evidence has shown that the 

maximum strength of concrete increases by up to 125% of the uniaxial strength (Kupfer 

et al. 1969). In triaxial compression tests, the strength and ductility of concrete has also 

been found to increase significantly under high confinement (Li and Ansari 1999; Sfer et 

al. 2002).

2-1



Chapter Two Literature Review

Under uniaxial loading, concrete generally exhibits linearly elastic behaviour as long as 

the uniaxial compressive stress does not exceed 45-50% of the peak compressive 

strength f c o f the material, and it exhibits nonlinear strain-hardening behaviour when the 

compressive stress varies between 0.5^. and f c. Concrete demonstrates a strain-softening 

behaviour after its peak strength f c has been reached.

On the other hand, concrete has a much lower strength in tension. The material behaves 

almost entirely elastically up until 70% of the peak tensile strength f h after which 

nonlinearity takes place and strain softening occurs. In the post-peak regime, microcracks 

are developed in an area known as the fracture process zone (Karihaloo 1995), which 

results in a continual decrease of the strength of concrete together with an increase in 

deformation. These microcracks eventually bridge and coalesce into macrocracks. At this 

point, the presence of major cracks jeopardises the integrity of the material.

This chapter gives a review of the type of existing concrete models that are present in 

today’s software packages. The first section presents literature relating to experimental 

investigations undertaken on concrete specimens. This is followed by outlines of the 

various constitutive models that have been developed over the years to describe the 

behaviour of concrete material. The last section presents descriptions of the different 

approaches available to simulate cracks in concrete.
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2.2 Crack opening-closing and aggregate interlock

When a crack is formed within a concrete material, the crack surfaces are generally rough 

and irregular. This is largely due to the coarse aggregate particles, which remain 

embedded in one or the other of the crack faces, as shown in Figure 2.1. Parallel 

movement between these faces along the crack plane causes projecting particles from one 

face of the crack to come into contact with the matrix of the other face. Shear forces can 

be transmitted across the crack interface subjected to simultaneous shear and normal 

compression. This phenomenon is known as aggregate interlock (also termed interface 

shear).

Mortar matrix
Crack

Aggregate

Figure 2.1. Irregular crack surface

When shear is applied to an initially cracked surface, relative slip (shear displacement) 

between the faces is accompanied by the separation of the surfaces (dilation) owing to 

rough asperities of aggregate and mortar tips projecting across the sliding path. In cases 

where reinforcement is present across the crack, the separation of the surfaces generates
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tensile stress in the reinforcement (Ali and White 1999). For equilibrium, elongation of 

the reinforcement produces compression forces on the interface. Thus, shear is 

transferred across the crack by the action of aggregate interlock, as well as by friction due 

to asperities of the aggregates and the surrounding matrix. For the case of reinforced 

material, dowel action o f reinforcement crossing the crack surface also contributes to the 

shear transfer mechanism (Ali and White 1999).

Aggregate interlock has been found to provide a significant contribution to the total shear 

resistance o f concrete beams (Fenwick and Paulay 1968). A number of authors have 

studied the resistance to shear displacement o f concrete interfaces in various ways. 

However, hardly any attention has been given to the phenomenon o f wedging action 

which provides the link between normal and shear stresses, on the one hand and crack 

opening and shear displacement on the other hand. As far as the mechanism of shear 

transfer across cracks is concerned, it cannot be simply described using merely a 

relationship between shear stress and shear displacement. A more realistic description of 

the mechanism would have to include not only shear stress and shear displacement, but 

also normal stress and crack opening (Divakar et al. 1987).

The results obtained from experiments with concrete specimens subjected to 

normal-shear loading provide evidence that there is a gradual build up of shear and 

compressive stresses, up to a certain limit and then plateau or reduce, when a crack is first 

opened in tension and subsequently sheared (Hassanzadeh 1991; Nooru-Mohamed 1992). 

However, the level of stresses decreases with increasing crack opening, up to some limit,
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after which no further contact can be regained in shear (Walraven and Reinhardt 1981).

When a material is subjected to alternated loads, the effects of crack closure are of 

importance. During load cycles, microcracks close progressively and the material 

stiffness increases while the degree of damage remains unchanged. The real 

unloading-reloading response o f a cracked concrete is highly non-linear, and is neither 

the elastic response o f plasticity nor the secant response o f damage theory. Results 

obtained from experiments with concrete specimen subjected to pure tension show that 

the slopes of unloading curves vary continuously between secant and almost initial 

stiffness, and intersect the zero-stress axis with considerable residual opening. Under 

normal-shear loading condition, the unloading stiffness gets closer to the initial stiffness 

due to a higher degree of contact between the crack faces.

The simulation of these phenomena is one of the main topics of this thesis. The following 

presents a review of current existing numerical models for concrete that can be found in 

the literature.

2.3 Constitutive models for concrete

2.3.1 Damage models

The application of continuum damage mechanics theory to concrete dates from the late 

1970s. The concept of effective stress was originated by Kachanov (1980) to describe the
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rupture process o f metals. The theory is based on the thermodynamics o f irreversible 

process. The underlying assumption of the theory is that the constitutive properties of the 

fracturing materials depend upon a damage variable, which can be a scalar, vectorial or 

tensorial quantity.

Isotropic damage models have been widely used because of their simplicity, numerical 

implementation and parameter identification (Burlion et al. 2000). Among the various 

scalar damage models that have been developed over the years are those of Simo and Ju 

(1987), Ju (1989) and Oliver et al. (1990). The use of a scalar damage variable implies 

that the material is assumed to be isotropic, i.e. independent of the crack orientation.

From experimental observations, it has been confirmed that damage is in fact not 

isotropic but has preferential directions. The initially assumed isotropic material becomes 

gradually anisotropic. Fichant et al. (1999) undertook a comparative study to assess the 

limitation of scalar damage models in describing the response of concrete subjected to 

different loading conditions. They found out that the scalar model is capable of predicting 

failure mainly due to uniaxial tension. For multi-axial tension problems, a damage model 

that accounts for damage-induced anisotropy in concrete is preferable.

A number of anisotropic damage models have been developed for quasi-brittle materials. 

These models differ from one another mainly in the order of the damage tensors 

employed to describe the progressive deterioration of the material, for example, 

Krajcinovic and Fonseka (1981) used damage vectors, Mazars and Pijaudier-Cabot

2-6



Chapter Two Literature Review

(1989) used a second-order tensor and Carol et al. (1994), Ortiz (1985) and Yazdani and 

Schreyer (1990) employed a fourth-order tensor.

The development of microcracks causes progressive degradation of the elastic stiffness. 

Under cycling loading, microcracks which have initially opened may close during load 

reversal. This causes restoration of the material rigidity, known as the unilateral effect. 

This directional phenomenon can be observed in a beam subjected to cycling loading. 

Several numerical models, in the context of isotropic and anisotropic damage, have been 

established with the incorporation of the effect of microcrack closure (Brencich and 

Gambarotta 2001; Dragon et al. 2000; Ju 1989; Thionnet and Renard 1999).

Separate damage criteria have been employed to capture the different responses of 

concrete under tension and compression (Comi and Perego 2001; Mazars and 

Pijaudier-Cabot 1989). For example, in Comi and Perego (2001), the two damage criteria 

used to model tensile and compressive behaviour, respectively, are expressed as follows

in which /, is the first invariant of the stress tensor and J 2 is the second invariant of the 

deviator stress. a( , b( , (/ = / or c) and a  are non-negative model parameters

determined based on the experimental failure envelope and properties of the material, h,

y'd(<T) ~ J j - a , I ?  + b ,h , (D , )I i  - 0  - a D c )k ,h , (D , )2 (2 . 1)

v j (a) = J 2 +acI 2 + bchc(Dc)/, - kchc2(Dc) (2 .2 )
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and hc are isotropic hardening-softening functions to control the evolution of the two

failure surfaces. Dc and Dt are the compressive and tensile damage variable

respectively. In equation (2.1), the presence of the term Dc in the tensile damage

function is to take into account the effect of compressive damage on the tensile strength 

of the material.

The concept o f positive and negative projections of stress and strain tensors has also been 

adopted by several researchers (Ortiz 1985; Simo and Ju 1987; Hansen and Schreyer 

1995). Mazars and Pijaudier-Cabot (1989) developed a composite damage surface which 

was expressed as a double criterion using two thermodynamic forces associated with the 

tensile and compressive damage variables, as follows

(2.3)

= K ~ k , (D ,) (2.4)

where

dD, 2E{\ -  D, )2 1
(1 + v)(a*T a *) -  v[(/«r)+

Y 8y/ -
C dDc 2 E ( \ - D c)2 L

(\ + v)(o~To ~ ) - v \ t r o )  f
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—  2 [ E ( l -  D,)
(l + v) (o+T<r+)-v][tr<T)+J  J +

1
E { \ - D c)

{\ + v){o~To  ) -v [(/r tr )“ ]2

E and v are Young’s modulus and Poisson’s ratio respectively, and i// denotes the 

thermodynamic potential energy. K { and K c are two separate hardening-softening 

functions for tension and compression, respectively.

In the model developed by Ortiz (1985), concrete is treated as a composite material, in 

which both mortar and aggregate are modelled separately. The resulting governing 

equations for the two-phase material are derived using the theory of mixtures, with the 

assumptions that the total stresses are the sum of a scalar multiple of the stresses in each 

of the two phases. Ortiz (1985) employed a rate-independent damage model to describe 

the behaviour of the mortar phase. In contrast to most of the available damage models in 

the literature, the model uses the elastic compliances as the damage variables. The 

damage surface, as shown in Figure 2.2, uses the sum of the square of the positive and 

negative principal stresses.
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Damage
surface

Figure 2.2. Damage surface in Ortiz’s composite damage model

The square of the negative compressive stresses is multiplied by a constant, which is 

considerably less than unity. The softening law is an expression that matches the uniaxial 

tensile softening curve of concrete. The mortar damage model also allows for some 

plastic deformation by the use of the assumption that a proportion of the inelastic strain 

increments are plastic. As for the plasticity model, Ortiz (1985) utilised the standard 

Drucker-Prager yield function with a non-associated flow rule to model the aggregate 

phase. The plastic potential function is also a Drucker-Prager surface, but it has a 

different slope from that of the yield function.

In contrast to the basic approach by Ortiz (1985), which was a stress-based formulation, 

Stevens and Liu (1992) refined the model to simulate concrete inelasticity using a 

strain-based formulation. The original model by Ortiz has been further developed by 

several researchers to capture the response of brittle solids under proportional and
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non-proportional load paths (Kamawat and Yazdani 2001), and to model softening and 

localisation phenomena (Schreyer and Neilsen 1996).

Labadi and Hannachi (2005) developed a damage surface similar to the yield function in 

the conventional theory o f plasticity. The loading function was defined in the strain space 

and depends on the equivalent strain s  and damage parameter as follows

f = s - K =
l + ^ y - D
 J_l____

A
/,

l ^ e TJe -  K (2.5)

where

r.  =  <

0 if Z h l = °  

Z(e->
3

I
i=\

IIA
I i=i

3

I
/= !

3

I
/= !

if Z k - I > 0

J  is a fourth-order symmetrical tensor and K  is the softening function. The equivalent 

strain was defined, taking into account the asymmetric behaviour of concrete in tension 

and compression.
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Tao and Phillips (2005) presented a simplified isotropic damage model capable of 

simulating concrete under biaxial stress states. Two damage variables were employed to 

capture the different damage criteria under tension and compression. A weighted damage 

variable was also introduced to prevent conflict occurring when both tensile and 

compressive damage are activated under biaxial or reverse cyclic loading. Under uniaxial 

loading, damage is solely governed by the associated damage parameter, whereas under 

biaxial loading, both tensile and compressive damage parameters contribute to the 

induced damage.

It has been acknowledged that care has to be taken when generating damage functions for 

quasi-brittle materials. Yazdani et al. (2002) reported that an apparent snapback was 

observed in the post-peak regime of a uniaxial loading path. This is due to an internal 

contradiction developed in the damage model itself, in which snapback is predicted even 

though the theory was not structured to model this behaviour. Cope et al. (2005) proved 

that by establishing a set o f functions with certain characteristics, the formulation could 

lead to the construction o f a well behaved response in the stress-strain space.

2.3.2 Plasticity models

The largest group of continuum models, for the simulation of concrete, is the group based 

on the theory of plasticity. Constitutive models that are based on conventional plasticity 

always require an elastic constitutive relationship, the assumption of total strain 

decomposition, the definition of a yield surface with an evolution rule, and a flow rule.
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There have been a number of yield surfaces developed over the years. These surfaces 

differ from one another by the shape of the yield envelope in principal stress space and by 

the number of model parameters employed to define the yield function. The Von Mises 

and Tresca criteria are examples of one-parameter yield surfaces, while the 

Mohr-Coulomb and Drucker-Prager criteria form the basis of two-parameter plasticity 

models. Among the various yield surfaces, the Drucker-Prager yield criterion, in 

particular, has been employed and modified by a number of researchers for the 

constitutive modelling o f concrete (Addessi et al. 2002; Feenstra and de Borst 1996; 

Kang and Wiliam 1999; Salari et al. 2004; Wiliam and Wamke 1974). Figure 2.3 shows a 

comparison of yield surfaces for plain concrete.

The complex behaviour of concrete under multiaxial load has led to the development of 

biaxial and triaxial models using the theory o f plasticity. Among the various biaxial 

models developed, Chen and Chen (1975) presented a yield surface which is used to 

capture both the compressive and tensile behaviour of concrete. The biaxial envelope, as 

indicated in Figure 2.4, consists of comers at the compression-compression and 

compression-tension boundaries, which leads to numerical instabilities (de Borst 1987). 

In addition, the use of plasticity theory to describe the tensile behaviour of concrete has 

been found inappropriate since concrete in uniaxial and biaxial tension remains almost 

purely elastic up to its fracture limit and does not maintain its original stiffness upon 

unloading after the limit, as predicted by the theory of plasticity.
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(i)

(i)

(a) Mohr-Coulomb

02

(ii)

(b) Drucker-Prager

(iii)

Figure 2.3. Comparison of yield surfaces for plain concrete; (i) meridian section, (ii) 

deviatoric section, (iii) plane stress section
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Figure 2.4. Chen and Chen yield surface in biaxial principal stress space

Buyukozturk (1977) presented a smooth continuous yield envelope which provides a 

good fit to biaxial test data in the compression-compression region. However, the yield 

surface is incapable of capturing the behaviour of concrete in the compression-tension 

region. Concrete is assumed to behave linearly elastic in the tension-tension region up to 

its tensile limit, after which cracking is assumed to occur. Yielding in the 

compression-tension region will result in a discontinuity between the 

compression-tension and tension-tension regions.

In the 1980s, more attempts were made in the development of plasticity models to 

simulate the complex triaxial behaviour of concrete. These included the work by Hsieh et 

al. (1982) in which a four parameter yield surface, similar to that of Ottosen (1979), was 

employed to capture the characteristic behaviour of concrete. The model uses a fracture 

surface to limit the tensile strength, as well as introducing a crushing coefficient to control
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the amount of cracking and crushing. The addition of the coefficient which relates to the 

amount of crushing helps to alleviate the difficulties presented due to the inclusion of a 

fracturing criterion into a plasticity model.

Este and Wiliam (1994) developed a plasticity model named the Extended Leon Model 

(ELM), which is characterised by an elliptic loading surface in the deviatoric plane. The 

model utilises an elliptic function r{6),  similar to that used by William and Wamke 

(1974), in which an eccentricity parameter ewas introduced to generate a continuous 

failure surface, as shown in Figure 2.5.

___________4(1- e 2) cos2 0 + ( 2 e - l )2 (2 6)

2 ( l - e 2)cos#  + ( 2 e - l ) ^ 4 ( l - e 2)cos2 0 + 5e2 - A e

In the ELM model, an isotropic hardening rule was used to describe the inelastic 

behaviour of concrete in the pre-peak regime. The model employs a non-associated 

plastic flow rule to control the inelastic dilatant behaviour of concrete. The performance 

of the model had been assessed by means of numerical analyses of concrete specimens 

subjected to mixed-mode loading. The model was found to provide good prediction of 

crack patterns (Pivonka et al. 2004).
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Figure 2.5. Elliptic function

Feenstra and de Borst (1996) developed a composite yield function for the numerical 

analysis of concrete structures, either plain or reinforced, which are predominantly in 

tension compression biaxial stress states. The model uses a Rankine (principal stress) 

yield criterion to limit the in-plane tensile stresses and a Drucker-Prager yield contour for 

the compressive-compressive regime in biaxial stress. The composite yield contour 

closely matches the classical Kupfer and Gerstle (1973) data.

The plasticity-based approach has experienced difficulties in modelling stiffness 

degradation due to progressive damage. However, it has been shown from experimental 

evidence that stiffness degradation due to tensile cracking is excessive only when tensile 

cracking has fully developed (Wiliam et al. 1987; Hordijk 1991). Stiffness degradation 

due to compressive loading is even less pronounced than stiffness degradation due to
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tensile loading.

Menetrey and Wiliam (1995) developed a three-parameter concrete failure criteria that is 

based on the model originally proposed by Hoek and Brown (1980) for the analysis of 

rock masses. The strength envelope was formulated in terms of three independent stress 

invariants i.e. the hydrostatic stress invariant £ , the deviatoric stress invariant p , and the 

deviatoric polar angle 0 . These are also known as the Haigh-Westergaard coordinates, as 

geometrically interpreted in Figure 2.6, and are related to the three stress invariants i.e. 

/ , ,  J 2 and J 3 , as follows

j    'K F \ J
g = - 7=* P  = and cos 36? = — ------jjy (2.7)

V 3 2 J  2

The failure criterion has a smooth and convex surface in stress space, in addition to 

parabolic meridians which intersect the hydrostatic axis at the point of equitriaxial 

tension. The deviatoric section changes from triangular shapes at low confinement to 

almost circular shapes at high confinement. The failure function was derived such that it 

can be generalised to incorporate other strength criteria, for instance the Huber-Mises, 

Drucker-Prager, Rankine, and Mohr-Coulomb criteria. An elliptic function after William 

and Wamke (1974) was adopted to counter for the presence of sharp comers in the 

deviatoric plane.
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Deviatoric plane 
07 + (72 + Oj = constant

Hydrostatic axis
07 =  <J2 =  CTj

Figure 2.6. Haigh-Westergaard stress space

Imran and Pantazopoulou (2001) developed a constitutive model for concrete based on 

non-associative, non-linear strain hardening plasticity theory. Volumetric strain was used 

as the state variable, which provides measurement of the extent and intensity of damage 

in the material. It is possible to determine the degree of stiffness and strength degradation 

as well as the ductility for any stress state. In contrast to most conventional plasticity 

models, the failure envelope used in this model is allowed to expand (hardening) or 

contract (softening) with respect to the deformation of plastic strains. This is due to the 

failure being controlled by a continuous damage-drive process rather than a distinct 

event.

Grassl et al. (2002) developed a hardening law and combined it with a three-parameter 

yield surface developed by Menetrey and Wiliam (1995), as depicted in Figure 2.7, to
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describe the behaviour of plain concrete in triaxial compression. The hardening law 

differs from those in other plasticity theories by using the volumetric component of the 

plastic strain increment as the hardening parameter. The overall formulation is simplified 

and can be easily implemented by means of an implicit backward-Euler algorithm.

tensile meridian

compressive meridian

p H
o

3.5

2.5

0.5

-2 ■30 •11

Figure 2.7. Deviatoric and meridian sections of the yield surface by Grassl et al. (2002)
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More recently, Park and Kim (2005) developed a plasticity model that uses three 

independent failure surfaces to simulate more accurately the behavioural characteristics 

of concrete in various stress states. These failure surfaces correspond to the three 

orthogonal stress components, which are the volumetric and deviatoric stress components 

respectively. The idea behind the development of the model is merely based on the 

success of the microplane model, which suggests that independent stress-strain 

relationships should be applied to the decomposed volumetric, deviatoric, and tangent 

components. The model also accounts for dilatancy due to compressive damage by 

adopting a non-associative flow rule.

2.3.3 Plastic-damage models

The progressive formation of microcracks under load is difficult to model by classical 

plasticity, in particular the gradual degradation of material stiffness. This behaviour can 

be captured using the theory of continuum damage mechanics. Nevertheless, the theory 

by itself is incapable o f simulating the effect of dilatancy for concrete under multiaxial 

loading. This phenomenon, on the other hand, can be described well by the theory of 

plasticity. Plastic flow simulates permanent deformation. It does not affect the elastic 

properties, nor lead to any strain softening. A number of researchers have explored the 

combination of plasticity and continuum damage theories in order to properly model the 

constitutive behaviour of concrete in compression or tension (Ekh et al. 2003; Lubliner 

1989; Luccioni and Rougier 2005).
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Experimental evidence has shown that concrete exhibits a certain degree of ductility 

before failure under compressive loading with confining pressure. This observation is 

represented in Figure 2.8. In tensile and low confining pressure regimes, the damage 

surface dominates, and brittle behaviour is simulated. As the confining pressure 

increases, the behaviour becomes ductile due to the activity of the plasticity surface. 

However, the amount of ductility is limited as the stress is prevented from reaching the 

plasticity surface by the damage state. As the confining pressure increases further, the 

material becomes more ductile with no strain softening. The plasticity surface dominates 

and prevents the stress from reaching the damage surface (Yazdani and Schreyer 1990).

Damage surfaceShear

Plasticity surface

Pressure

Figure 2.8. Representation of plasticity and damage surfaces

One of the plasticity-based damage models is the so-called Barcelona model, developed 

by Lubliner et al. (1989). The model employs a fracture energy based scalar damage 

variable to represent all damage states. Two other variables, i.e. elastic and plastic 

degradation variables, were also introduced to simulate stiffness degradation. These
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variables are coupled with the plastic deformation in the constitutive relations to facilitate 

calibration of the parameters with experimental results. The model employs a 

Drucker-Prager typed yield criterion, as depicted in Figure 2.9, and a Mohr-Coulomb 

plastic potential function for non-associated deformation.

Figure 2.9. Yield envelope in plane stress space by Lubliner et al. (1989)

Luccioni et al. (1996) adopted the same plasticity model developed by Lubliner et al. 

(1989) and employed the concept o f effective stress in developing the damage model. The 

evolutions of both plastic strains and stiffness degradation were obtained by solving 

simultaneous equations formed using the consistency conditions. By relating the 

hardening variables to the energy dissipation in each problem, correct energy dissipation 

of the whole problem was attained.
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Lee and Fenves (1998) developed a similar plastic-damage model to that of Lubliner et al. 

(1989) to characterise the cyclic behaviour of concrete. The model employs the same 

concepts of fracture-energy based damage, but with two damage variables to describe the 

different damage processes under tensile and compressive loading. The original yield 

function used in the Barcelona model was modified by including multiple hardening 

variables. In the Barcelona model, the dimensionless constant /?, which is used to define 

the yield surface, is derived using the initial tensile and compressive strengths of the 

material. Lee and Fenves (1998) modified the yield function F , as expressed below, by 

redefining /? in terms o f the current tensile and compressive strengths of the materials, 

both of which are a function o f the respective damage variables, K t and k c .

c { { k )  and c c { k )  are the tensile and compressive cohesions respectively. <rmax denotes

the maximum principal stress and a p is a constant parameter. The evolution of the yield

surface is governed by the damage variables, which in turn are functions of the equivalent 

plastic strain.

F { o , k )  = [ a y ,  + V I7 7 +/?(*•)( ̂ max }] ^c (^0 (2 .8)

where

c (fc')
P M  =  - £— -  (1 -  a  a )  -  (1 +  <Xp)

c , ( k )
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In the plastic-damage model, the uniaxial strength functions are factored into two parts 

corresponding to the effective stress and stiffness degradation. The constitutive relations 

for the elastoplastic response are separated from the degradation damage response. The 

model also introduces a simple thermodynamically consistent damage model which is 

capable of simulating the effect o f damage on elastic stiffness and also its recovery during 

crack opening and closing.

Yazdani and Schreyer (1990) presented a combined plastic-damage model for plain 

concrete. The model was developed within the general framework of the internal variable 

theory of thermodynamics. The pressure dependent damage model, with both hardening 

and softening features, is capable of simulating both cleavage and compressive cracking 

due to the combination of shear sliding and crack opening. The anisotropic damage 

model, together with a classical von Mises plasticity model with strain hardening, is able 

to describe the characteristics of concrete such as dilation with shear and enhanced 

ductility with increased confining pressure. Another advantage of the model is its 

suitability for computer implementation. Figure 2.10 shows schematic diagrams of the 

combined plastic-damage model.
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Figure 2.10. Combined plastic-damage model by Yazdani and Schreyer (1990)
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Another significant contribution to the development of plastic-damage model can be 

found in the work by Meshke et al. (1998). A multi-surface elastoplastic damage model 

was developed to simulate plastic deformations as well as stiffness degradation. The 

model employs the maximum tensile stress criterion to control cracking. To simulate the 

postcracking characteristics of concrete, a hyperbolic softening law was introduced, 

which can be easily calibrated to the fracture energy release rate. The model uses a 

hardening/softening Drucker-Prager yield surface to capture the behaviour of plain 

concrete under mixed tensile-compressive and multiaxial compressive stress states.

Hansen et al. (2001) combined the theories of plasticity and damage mechanics to 

develop a multi-surface anisotropic plastic-damage model for plain concrete. A parabolic 

extension of the classic two-invariant Drucker-Prager plasticity model was adopted to 

capture the degradation of frictional strength of concrete, as well as the dilatation of 

materials under shear. The model employs a Rankine-type anisotropic damage model 

which was introduced by Carol et al. (2001). A second-order damage tensor was used to 

describe anisotropic damage. The model is capable of modelling stiffness recovery due to 

the closing of microcracks.

Shen et al. (2004) presented a fully coupled plastic-damage model to simulate the 

history-dependent plastic-damage behaviour of massive structural concrete under 

confinement. The model employs a Drucker-Prager yield criterion based on the work by 

Menetrey and Wiliam (1995), with a non-associated plastic flow rule. In this model, the 

damage evolution is coupled with the increase of plastic strain. The model is capable of
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simulating accurately both uniaxial tension and compression cases, as well as multiaxial 

compression with hydrostatic confinement stresses.

Salari et al. (2004) developed a fully coupled plastic-damage model for concrete, in 

which the decrement of the plasticity threshold is associated with the change of a scalar 

damage variable. The model controls plastic behaviour using a pressure-dependent 

Drucker-Prager yield criterion as follows

in which a p and k are the Drucker-Prager friction and cohesion parameters,

respectively. D  denotes the scalar-valued damage parameter. A non-associated flow rule 

was employed, which requires a plastic potential function of the form

where is a dilatation parameter used to control inelastic volume expansion. The 

damage loading function used in the model was derived as follows

(2.9)

(2 . 10)

Fd(Yv,D) = Yv - r d(D) (2 . 11)
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in which

m = mt for s ev > 0 and m = mc for e ev < 0

Yv is the volumetric thermodynamic conjugate force for damage. K 0 and <jm denote the

undamaged bulk modulus of the intact material and mean nominal stress, respectively.

s ev and e*  are the volumetric parts of the elastic and plastic strain, respectively and rd is

the energy resistance function. mt and mc are model parameters, which were introduced

in the damage function to capture the tensile and compressive behaviour of quasi-brittle 

materials separately. The use of a single scalar damage indicator hinders the model to be 

used for cases where load reversal takes place.

2.3.4 Microplane models

The development of microplane formulations dates back to the year 1938, when Taylor 

(1938) came up with a brilliant idea of characterising the constitutive behaviour of 

polycrystalline metals by relations between stress-strain vectors acting on planes of 

various orientations within the material. Using Taylor’s idea as the starting point, Batdorf 

and Budianski (1949) successfully formulated the theory, famously known as the ‘slip 

theory of plasticity’ and developed a realistic model for plastic-hardening metals. The slip 

theory is based on the assumption that the stress vectors acting on the various slip planes
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in the material are the projection of the macroscopic stress tensor, or in other words, 

statically constrained. This constraint creates material instability when a strain-softening 

constitutive law is introduced, and thus, lacks of the ability to model damage in 

quasi-brittle materials (Bazant 1984).

This led to the emergence of the microplane model, later labelled M l, which was first 

devised to describe tensile failure of concrete (Bazant 1984; Bazant and Oh 1985; Bazant 

and Gambarova 1984). The microplanes can be interpreted as weak links between 

aggregate particles and the cement matrix. The microplane theory differs from the slip 

theory in that instead of the static constraint, the kinematic constraint is introduced in the 

microplane theory. The strain vectors on each plane are now assumed to be the projection 

of the macroscopic strain tensor, as shown in Figure 2.11. Despite satisfactory results 

predicted in tension and shear, the formulation is incapable of capturing the 

volumetric-deviatoric interaction observed under compressive stresses for concrete.

Microplane
MicroplaneAggregate

Figure 2.11. Decomposition of macroscopic strain tensor on the microplane
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Bazant and Prat (1988a,b) extended Model M l to describe the behaviour of postpeak 

softening damage in both compression and tension. The model, labelled Model M2, 

introduces a volumetric-deviatoric split of the normal stresses and strains on the 

microplanes. This allows for the simulation of high inelastic deviatoric strain on the 

microplanes parallel to the direction of compression or by slip on inclined microplanes. 

However, it was found that the separation of normal strains into the volumetric and 

deviatoric parts led to excessively large positive lateral strains being developed in the tail 

of softening under unixaxial tensile stress (Jirasek 1993). This is due to the localisation of 

tensile strain softening into the volumetric strain, while the deviatoric strains on the strain 

softening microplanes undergo unloading.

The microplane model of Bazant and Prat (1988a,b) was further improved by the 

inclusion of the non-local continuum concept, which enables the new model to describe 

cyclic loading, rate effect, cracking and nonlinear triaxial behaviour (Ozbolt and Bazant, 

1992). The non-local continuum concept (Eringen and Edelen, 1972), which will be 

discussed later in Section 2.4.2, was introduced in the form of non-local damage 

(Pijaudier-Cabot and Bazant 1987; Bazant and Pijaudier-Cabot 1988) to provide a 

method for controlling localisation and preventing spurious mesh sensitivity. The concept 

also allows for correct modelling of the size effect (Bazant and Lin, 1988).

The concept of stress-strain boundaries was introduced into the microplane level within 

the development o f model M3 (Bazant et al. 1996a, b). The boundaries and elastic 

behaviour are defined as functions of different strain components. This facilitates the
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simultaneous modeling of tensile, compressive and shear softening behaviours of the 

material. A strain-independent linear frictional-cohesive yield surface was introduced, 

which relates the normal and shear stress components on the microplane. To remedy the 

drawback encountered in model M2, an additional softening tensile stress-strain 

boundary was employed, which is defined in terms of the total normal strains.

An alternative solution for the pathological behaviour of the microplane M3 model was 

introduced by Ozbolt et al. (2001). The improved model preserves the conceptual 

simplicity of the model formulation based on the kinematic constraint approach, 

however, the kinematic constraint is relaxed at the microplane level. This was achieved 

by splitting the microplane strain component into the effective and relaxed part using the 

discontinuity function, which is related to the volumetric stress-strain relationship.

Further development on the microplane model has been made, within which a 

work-conjugate volumetric-deviatoric split was introduced (Bazant et al. 2000a). The 

microplane model M4 also presents strain independent horizontal boundaries for the 

normal and deviatoric stresses on the microplanes. These boundaries enable the model to 

capture the yield capacity due to the smooth roundness of stress peaks in unconfined 

compression and tension. In this model, the linear frictional yield function presented in 

model M3 was replaced with a frictional non-linear boundary. This is to remedy the 

incorrect prediction of high stresses with very high hydrostatic pressures. The way in 

which the material parameters are identified was explored with a new fitting procedure 

introduced. A method to control the steepness and tail length of post-peak softening was
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presented along with damage modeling with a reduction of unloading stiffness and 

crack-closing boundary. The performance of model M4 was further improved by 

developing the model within a thermodynamically consistent framework (Carol et al. 

2001; Kuhl et al. 2001).

Most of the microplane models described so far were developed for small strains, except 

for model M3, which has been generalised to finite strain. Bazant et al. (2000b) modified 

the microplane M4 model by introducing the back-rotated Cauchy (true) tensor as the 

stress measure. Green’s Lagrangian tensor was introduced due to the strain tensor 

conjugate to the back-rotated Cauchy (or Kirchoff) stress tensor being unsuitable because 

of its path dependency.

In the latest microplane model M5, Bazant and Caner (2005a,b) employed hybrid 

constraints, i.e. static and kinematic constraints, to better simulate the tensile cohesive 

fracture by removing the incorrectly predicted excessive lateral contraction or expansion 

and stress locking at very large postpeak tensile strains. The kinematic constraint was 

used to describe hardening nonlinear triaxial behaviour, and coupled with the static 

constraint which is responsible for the simulation of cohesive tensile fracture. A new 

iterative algorithm was introduced to facilitate the coupling procedure and thus, overall 

convergence properties. The cohesive softening stiffness matrix, which is based on the 

fracture energy of concrete and the effective crack spacing, was used as the predictor and 

the hardening stiffness matrix as the corrector that returns the current stress point to the 

stress-strain boundaries. This method is in contrast to the classical iterative return
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mapping algorithm for hardening elasto-plastic behaviour, in which the roles of predictor 

and corrector are interchanged.

2.4 Computational modelling

Tensile failure in heterogeneous materials like concrete involves the initiation of 

microcracks, after which the softening processes continue with crack growth, branching 

and coalescence into a dominant crack which separates the material. Numerous numerical 

tools have been developed to simulate cracking in concrete. The discrete and smeared 

crack concepts are traditionally the two most popular methods adopted by researchers to 

simulate the behaviour of cracked concrete.

2.4.1 Approaches to modelling cracking

In the discrete crack approach, a crack is introduced as a discontinuity in the geometry of 

the structure (Ngo and Scordelis 1967). In this approach, the crack is formed when the 

nodal force at the node ahead o f the crack tip exceeded a tensile strength criterion. Crack 

propagation is simulated by splitting the node into two and assuming the tip of the crack 

to propagate to the next node. The procedure is repeated when the tensile strength 

criterion is violated at this node. One of the advantages of discrete models is their 

applicability to relatively coarse finite element meshes. In addition, discrete models can 

reproduce anisotropy that arises naturally in a cracked material.
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However, there are also a few drawbacks which limit their applicability to model 

cracking. Among these is the mesh-induced directional bias in crack representation which 

is inevitable if the crack path is not known a priori. Another drawback of the discrete 

crack approach is the continuous change in topology during the propagation of cracks. 

This process requires the application of intensive remeshing techniques, which are 

computationally expensive especially in three-dimensional finite element analysis. The 

efficiency of the approach is also greatly reduced in the case of multiple crack situations.

In the smeared crack approach, fracture is represented in a smeared manner, in which an 

infinite number o f parallel cracks with small opening are distributed over the finite 

element. The idea is based on experimental observation, whereby small cracks are formed 

within a heterogeneous material, and linked up at the later stage of the loading process to 

form dominant cracks. The smeared crack approach is preferable to the discrete as it does 

not involve remeshing techniques and continuous change of mesh topology. The 

deterioration process of the material is captured using a non-linear constitutive relation 

with strain softening. The propagation of cracks in the volume that is attributed to an 

integration point is simulated by a deterioration of the stiffness and strength at that 

integration point. The weakness of smeared crack models is their proneness to mesh 

sensitivities. There exist two types of mesh sensitivities, i.e. mesh sensitivity with respect 

to the shape of the finite elements, and mesh sensitivity with respect to the size of the 

elements (Petrangeli and Ozbolt 1996).
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Probably the earliest smeared crack model for concrete cracking was by Rashid (1968). In 

this approach, a crack is assumed to form when the maximum tensile stress in the element 

exceeds a critical value. The constitutive equation is then modified such that the stress 

normal to the crack plane becomes zero. This representation of a complete loss of 

stiffness at the onset of failure leads to numerical difficulties. The crack model also 

exhibits pathological sensitivity to the mesh size.

The inclusion of the shear retention factor improves the capability of fixed smeared crack 

models by taking into account the interaction between tensile and shear components of 

the tractions. It can be regarded as a representation of some effects of aggregate 

interlocking and friction within the crack. Traditional smeared crack models for concrete 

fracture suffer from stress locking, i.e. by spurious stress transfer across a widely open 

crack. For fixed crack models with a nonzero retention factor, locking is mainly due to 

shear stresses generated by a rotation of the principal strain axes after the crack initiation. 

Later improvements treated the retention factor as a function of the crack opening, 

decaying to zero as the crack opens wide.

In the rotating crack model (Rots 1988), the crack is always orientated in a direction 

normal to the principal stress. This prevents the build up of spurious stresses tangential to 

the crack. The use of the shear retention factor is also omitted because the shear stiffness 

coefficient is uniquely defined by the assumption that the axes of principal stress and 

strain coincide. However, stress locking is still observed due to the poor kinematic 

representation of the discontinuous displacement field around a macroscopic crack.

2-36



Chapter Two Literature Review

2.4.2 Regularisation techniques

Upon closer observation of a fracture, it appears that it is often preceded by the formation 

of a process zone in which damage and other inelastic effects accumulate. This 

phenomenon is commonly known as strain localisation, or localisation of deformation. 

Strain localisation occurs in the form of the localised accumulation of microcracks in 

concrete under low confining pressures. The inadequacy of conventional continuum 

models to simulate the behaviour of softening materials has been recognised since the 

mid 1970s. Among the various problems encountered are the ill-posedness of boundary 

value problems, excessive damage localisation on refined mesh and pathological spurious 

mesh sensitivity. In the continuum approach, non-local and gradient enhanced models 

have been shown to be effective in overcoming such a problem i.e. mesh dependency.

Non-local continuum models, in general, consider the interaction of particles. Within a 

non-local continuum, the stress at a point depends not only on the strain at that point but 

also on the strain field in the neighbourhood of that point. The approach consists of 

replacing a certain variable by its non-local counterpart obtained by weighted averaging 

over a spatial neighbourhood of each point under consideration. These spatial averaged 

state variables are introduced into the classical constitutive relations. The non-local 

continuum models preserve material stability by avoiding localisation. They also produce 

solutions that are free from mesh sensitivities. Bazant (1984) and Bazant et al. (1984) 

introduced the concept of non-local averaging to strain-softening materials. The method 

was later improved by Pijaudier-Cabot and Bazant (1987) who developed a non-local

2-37



Chapter Two Literature Review

damage theory. Other constitutive models include the non-local smeared crack model 

(Bazant and Lin 1988a), the plasticity-based model with softening yield limit (Bazant and 

Lin 1988b) and the non-local microplane model (Bazant and Ozbolt 1990; Ozbolt and 

Bazant 1992).

Despite the success of non-local continuum models in generating mesh-objective 

solutions, the regularisation technique has not been without its drawbacks. In particular, 

for integral models, the difficulty encountered when dealing with a complex shaped 

structure, the need to change existing computing codes due to the implementation of a 

consistent numerical solution procedure, the presence of inconsistent tangent operators 

which dramatically degrades convergence characteristics, have all limited their 

usefulness (Peerlings et al. 1996).

Addessi et al. (2002) developed an elasto-plastic non-local damage model to simulate the 

mechanical behaviour of cementitious materials. The local damage model is regularised 

by the introduction of the Laplacian damage variable in the loading function, which is 

related to the material characteristic length that controls the size of the localisation zone. 

The fact that the damage evolution process is now governed by the differential equation 

makes the evaluation of the tangent constitutive matrix more difficult to perform.

Enhanced gradient models have been developed in recent years to overcome the 

limitations of classical continuum models for softening problems through the inclusion of 

higher-order gradient terms and an internal length scale related to the specific material (de
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Borst 2001; Askes and Metrikine 2005; Peerlings et al. 1996). One of the basic features of 

higher-order models is the need to generate fine meshes in the localisation zone for 

capturing high strain gradients. Hence, prior knowledge of the failure zone is necessary. 

This hinders the applicability of higher order models for large-scale three-dimensional 

problems due to the high computational costs involved.

Despite the success of both non-local and gradient-enhanced continuum models in 

generating mesh-objective solutions, it has been found that the use of a non-local 

dissipation-driving state variable results in an incorrect prediction of damage initiation 

away from the crack tip in mode-I problems. Also, the approach was found to produce 

wrong failure pattern in certain cases of shear band problems (Simone et al. 2004).

The concept of strain or displacement discontinuities embedded into standard finite 

elements has been explored by several researchers as a method of overcoming the mesh 

dependency of classical continuum models and the dependency of discrete models on 

mesh alignment, when separation is only possible at element interfaces. The choice of an 

appropriate constitutive model suitable for implementation in an element with an 

embedded discontinuity is governed by the type of the discontinuity, i.e. weak (strain) 

and strong (displacement) discontinuity (Mosler and Meshke 2003; Oliver et al. 2004).

For models incorporating weak discontinuities, it is sufficient to postulate a continuum 

stress-strain law (Sluys and Berends 1998). Two discontinuity lines are incorporated into 

the strain field to form a localisation band. This approach avoids the need to deal with
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unbounded strains as a result of a displacement jump, but the ability of such an approach 

to overcome mesh-alignment dependence and to reproduce full mode-I crack opening is 

questionable since elements are not kinematically enhanced.

Models with strong discontinuities, in addition to a stress-strain law for the material, also 

require a traction-separation law governing the behaviour of the embedded crack 

(Larsson and Runesson 1996). The embedded crack is represented by a single 

discontinuity line in the displacement field. The embedment of discontinuities within 

elements allows the use o f relatively large elements compared to the width of the 

localisation zone, making the method suitable for three-dimensional and large scale 

applications (Simo et al. 1993).

Stress locking that appears in smeared crack models can be eliminated by improving the 

kinematic representation of highly localized fracture. According to Jirasek (2000), the 

techniques of incorporating a discontinuity (of strain or displacements) into the interior of 

a finite element can be classified into three different groups, i.e. statically optimal 

symmetric (SOS), kinematically optimal symmetric (KOS), and statically and 

kinematically optimal non-symmetric (SKON). The SOS formulation works with a 

natural stress continuity condition, but it does not properly reflect the kinematics of a 

completely open crack. On the other hand, the KOS formulation describes the kinematic 

aspects satisfactorily, but it leads to an awkward relationship between the stress in the 

bulk of the element and the tractions across the discontinuity line. The SKON formulation 

deals with a very natural stress continuity condition and is capable of properly
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representing complete separation at late stages of the fracturing process, without any 

locking effects (spurious stress transfer).

Conventional embedded crack approaches have been found to predict incorrectly the 

direction of the displacement discontinuity at the onset of cracking (Jirasek and 

Zimmerman 2001 a,b). It has been suggested that diffuse damage at early stages of 

material degradation is adequately captured by a model dealing with inelastic strain, 

while highly localised fracture is better represented by a displacement discontinuity. In 

order to simulate such a cracking process, Jirasek and Zimmerman (2001 a,b) developed a 

delayed embedded crack model (DEC), which may be described as a smeared crack 

model with transition to an embedded crack.

The DEC model employs the smeared crack approach immediately at the onset of 

cracking to describe the displacement discontinuity, and activates an embedded crack at 

later stages when the crack has reached a certain critical crack opening. At every material 

point, the crack is smeared until it reaches a critical opening value, after which a 

displacement discontinuity is introduced into the respective finite element. The DEC 

model is capable of producing results free from stress locking. However, the use of the 

smeared crack approach results in the formation of a cracking band which is biased by the 

orientation of finite element mesh. This problem can be alleviated if the smeared part of 

the model is reformulated as non-local.
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Sukumar et al. (2000) employed the extended finite element method (X-FEM) to alleviate 

shortcomings associated with meshing of the crack surfaces in existing methods. The 

finite element approximation was enriched by additional functions through the notion of 

partition of unity (Babuska and Melenk 1997) to model the presence of cracks, voids or 

inhomogeneities. The enriched displacement approximation can be written in the form

/

« = 2 > ,
1=1

m

V 7=1

(2 . 12)

where n denotes the number of nodes of the finite element model; N t (i = 1, 2 .. n) are 

the standard shape functions; ( /=  1, 2 .. n) are the standard displacement degrees of 

freedom; V'. ( j  = 1, 2 .. m) are the global enrichment functions; and aij are the additional 

degrees of freedom associated with node i and enrichment function j  .

In the model, a discontinuous function was used to model the interior of the crack surface, 

and functions from the two-dimensional asymptotic crack-tip displacement fields were 

added for the crack front enrichment. The method provides a robust and versatile 

numerical tool to solve crack problems in complex structural components without the 

need to explicitly align the mesh with the crack.

The superior kinematic properties and numerical robustness provided by extended finite 

elements based on the partition of unity have made the technique more preferable than 

traditional elements with embedded discontinuities based on incompatible discontinuous
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modes (Daux et al. 2000; Dolbow et al. 2001). However, this regularisation technique 

requires relatively complicated implementation and also the need to add new global 

degrees of freedom during the simulation, as well as to refine integration scheme in the 

enriched area around the crack (Jirasek and Belytschko 2002). Figure 2.12 shows 

comparisons of characteristics between the standard finite element (smeared), element 

with embedded discontinuity and extended finite element in a separation test.

Another method, which has also been successful in solving a certain class of finite 

element problems, has been explored by several researchers in recent years. The 

meshless, or mesh-free methods, which is based on node analysis, demonstrates 

flexibility in modelling complex discontinuities, as well as avoids the distortion of mesh 

when extreme large deformation is encountered. The method also provides an efficient 

means for addressing high gradient problems such as that occurred in strain localisation.

Belytschko and Black (1999) developed a minimal remeshing finite element method for 

crack growth. Cracks and crack growth can be modelled by finite elements with no 

remeshing. The essential idea in this method is to add enrichment functions to the 

approximation which contains a discontinuous displacement field by means of the 

partition of unity finite element method. This allows for the solving of most crack growth 

problems without any remeshing. However, some remeshing near the crack root is still 

necessary in order to capture severely curved cracks. This method also allows crack tips 

to be represented inside an element.
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Figure 2.12. Separation test: (a) real body, (b) standard finite element (smeared), (c) 

element with embedded discontinuity, (d-e) extended finite element

In the aforementioned remeshing technique, curved cracks were treated by mapping the 

straight crack enriched field. This is not readily applicable to long cracks or three 

dimensions. Moes et al. (1999) improved the method by incorporating a discontinuous 

field across the crack faces away from the crack tip by means of the generalised Heaviside 

function. The technique also exploits the partition of unity property of finite elements, in 

which a standard approximation is enriched in a region of interest by the local functions 

in conjunction with additional degrees of freedom. The enrichment functions were the 

near-tip asymptotic fields and a discontinuous function to represent the jump in 

displacement across the crack line. The only drawback of the method is the need for a 

variable number of degrees of freedom per node.
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Wells and Sluys (2001) exploited the partition of unity property of finite element shape 

functions to introduce displacement jump to conventional finite elements. In their 

approach, extra degrees of freedom were added to existing nodes to represent the 

displacement jump across a crack. This was done by enhancing the underlying 

interpolation with the discontinuous Heaviside jump function in the displacement field. 

This method is readily applicable to a variety of elements with different underlying finite 

element interpolation. A cohesive crack model was used to simulate fracture in 

quasi-brittle materials, in which all inelastic deformation around a crack tip is condensed 

onto a line and portrayed as traction forces acting on a crack or on a fictional extension of 

a crack. The bulk of the material away from the discontinuity was treated to be elastic.

The results obtained were insensitive to the mesh structure and also element size. The 

model is also capable of modelling curved crack, which has proved difficult with other 

models. A crucial advantage over conventional interface elements is that deformations at 

the discontinuity are purely inelastic. This bypasses the reliability of a ‘dummy’ elastic 

stiffness to achieve numerical stability. Numerical examples showed that the model is 

capable of giving excellent results with relatively coarse meshes, though it is still 

necessary to use fine meshes in regions with high stress gradients in order to accurately 

evaluate the normal vector to the discontinuity path.

de Borst et al. (2004) developed a crack model based on the cohesive-segment method for 

heterogeneous materials. The model is capable of describing the heterogeneity 

characteristic of concrete, including the processes of crack initiation, growth, coalescence
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and branching. These processes are mainly due to the presence of particles with different 

sizes and stiffnesses within the matrix. The model employs a decohesion constitutive 

relation, which specifies the conditions for crack nucleation and also the direction of 

crack propagation.

A cohesive segment was introduced to represent the discontinuity when the criterion for 

crack initiation is met. The cohesive segment was inserted through the integration point 

and orientated such that it is orthogonal to the direction of the major principal stress. The 

magnitude of the displacement jump was determined by a set of additional degrees of 

freedom which were added to all nodes whose support is crossed by the cohesive 

segment. This was done by exploiting the partition of unity property of finite element 

shape functions. The resulting model, which exhibits the advantages of both the discrete 

and smeared crack approaches, is capable of capturing the transition from distributed 

micro-cracking to a dominant crack.

2.5 Conclusions

In recent years, considerable effort has been made and good progress achieved in 

developing material models for concrete. Technology advances have allowed for the 

establishment of more rigorous models for the constitutive modelling of concrete. The 

ease of computational effort provides more accurate predictions of the behaviour of 

concrete under different loading conditions. This can be seen from the increased number 

of constitutive models developed over the years, ranging from the more common
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plasticity and damage models, to models which are considered more complex and 

powerful such as the microplane models, and those developed using the combined theory 

of plasticity and continuum damage mechanics.

The consideration of softening related problems, such as strain localisation, play a crucial 

role in the development of constitutive models for concrete. Various regularisation 

techniques have been established to deal with the significant post-peak softening 

behaviour of concrete, the behaviour of which cannot be correctly captured by 

conventional continuum models.

The type of approach chosen for the proposed models presented in the following chapters 

of this thesis is the smeared crack concept. In addition, the constitutive models employ 

the plastic-damage concept to capture the behavioural characteristics of concrete in 

various stress states. This is because plasticity theory is well established and suitably 

proven to describe the behaviour of concrete when coupled with the theory of damage 

mechanics.
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Chapter Three 

Fundamental Theories

3.1 Introduction

This chapter serves to aid the understanding of the plastic-damage-contact models 

proposed later in this thesis. A brief description of the development of a classical 

plasticity model will be first presented, followed by the introduction of the theory of 

continuum damage mechanics.

3.2 Plasticity theory

The theory of plasticity deals with the calculation of stresses and strains in a deformed 

body, within which part or all of the body has yielded. Johnson and Mellor (1978) state 

that the most difficult problems to solve analytically in plasticity are those of constrained 

plastic flow, where part of the body has yielded and part is still elastic. It is difficult to 

handle the compatibility equations and the stress-strain relations, and very few complete 

solutions have been obtained to such problems. It is vital to consider the change in 

dimensions of the body, especially for cases where the plastic strains are large compared
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with the elastic strains.

A general plasticity theory consists of four basic ingredients

• Elastic stress-strain relationship prior to plastic yielding

• Yield criterion which indicates the onset of plastic straining

• Flow rule which describes the direction of plastic strains

• Hardening law which indicates the change of yield stress during the course of plastic 

flow

Prior to introducing the development of the plasticity component of the crack model, the 

author feels that it is necessary to describe briefly the fundamental theory behind the 

overall development of the constitutive model.

3.2.1 Elastic stress-strain relationship

The overall strain vector s is  assumed to be the sum of both elastic, se and inelastic, sp 

strain components

£ = £e +£p (3.1)

A relationship between the elastic stress a  and strain can then be expressed by means of 

the elastic stiffness matrix as
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O A s - e  J  (3.2)
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D e denotes the isotropic elastic constitutive matrix, and E  and vare Young’s modulus and 

Poisson’s ratio respectively. It should be borne in mind that matrices and vectors are 

represented by bold letters. Figure 3.1 shows a uniaxial stress-strain relationship of an 

ideally plastic material.

a

s

Figure 3.1. Uniaxial stress-strain relationship

3-3



Chapter Three Fundamental Theories

3.2.2 Yield criteria

For a randomly selected stress loading path, the stress remains elastic providing the yield 

criterion has not been violated. The criterion introduces a stress limit at which any 

stresses that reach or pass the limit will become irrecoverable, or in order words, some of 

the strain becomes permanent plastic strain. In a one-dimensional problem, the limit is 

simply a scalar value termed the yield stress cry , whilst in a three-dimensional problem,

the scalar value controls the size of the yield surface. A convex yield surface allows 

separation of the regions of purely elastic and plastic response in stress space. The 

following conditions determine the state of a material.

F{o ,k ) < 0  material is elastic, with the current stress state within the current yield 

surface

F(t7, k ) = 0 material has yielded, with the current stress state on the yield surface 

The yield function, F  is derived based on the stress state o’and a hardening parameter k .

3.2.3 Flow rule

For situations where a material has yielded, both the direction and size of the plastic strain 

increment can be obtained via the introduction of a flow rule, which can exist in either 

associated or non-associated form. Figure 3.2 illustrates the difference between 

associated and non-associated flow rules. Owen and Hinton (1980) state that there exists
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a direct proportional relationship between the plastic strain increment and the stress 

gradient of a function known as the plastic potential G such that

dGSe — SA — (3.3)
da

where / l is a  proportionality constant, and is termed the plastic multiplier. The direction of 

the plastic strain increment is normal to the surface of the plastic potential, as indicated by 

the above equation. The plastic potential function can be defined in a manner similar to 

that of the yield function, i.e. in terms of the stress vector cr and hardening parameter k .

G = G(a,tc) (3.4)

Equation (3.3) shows a typical expression of a non-associated flow rule. Vermeer and de 

Borst (1984) suggest that for highly isotropic materials, it may be reasonable to assume 

both the yield function and the plastic potential function to be the same. This leads to an 

associated flow rule that can be defined as

dFS e = S A —  (3.5)
p da

3-5



Chapter Three Fundamental Theories

£p3
Non-associated flow, F(ct,k) *

<72, i

Elastic domain 
F(cr,rc) < 0

Associated flow, F(cr,tc) = G(<t,k)

(7j> £pl

Yield surface, F{ct,k) = 0

Figure 3.2. Associated and non-associated flow rule

3.2.4 Hardening rule

Once initial yielding has occurred, the stress level at which further plastic deformation 

will occur depends upon the current level of plastic straining. This suggests that the 

evolution of the yield surface is governed by the form of hardening law adopted (Owen 

and Hinton 1980). The relationship between the hardening parameter k  and the plastic 

strain increment can be expressed as

In general, there exist two plastic hardening rules that have been widely used in plasticity 

models. These are

k  =  K ( e p ) (3.6)
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• Isotropic hardening -  yield surface is allowed to expand or contract uniformly in all 

directions, as depicted in Figure 3.3(a)

• Kinematic hardening -  the yield domain remains unchanged, but the surface is 

allowed to move in stress space, as shown in Figure 3.3(b)

Initial yield 
surface

(b) Kinematic(a) Isotropic

Figure 3.3. Plastic hardening rules 

3.2.5 Elasto-plastic constitutive matrix

Once the yield function has a value greater than zero the standard elasticity matrix is no 

longer valid and a new matrix must be developed. One of the conditions to be satisfied 

upon developing a plasticity model is for the stress to remain on the yield surface 

throughout the process of plastic straining. This can be explained mathematically by the 

following expression

F(o ,k ) = 0 (3.7)
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If the yield surface is hardening, due to the applied loading, the following expression 

must also be satisfied.

SF(<t,k ) = 0 (3.8)

Expanding (3.8) yields the consistency condition as

d F r dF—  So + — Sk -  0 (3.9)
da dK

Having considered the basic parts of a classical plasticity model it is now possible to 

define the elasto-plastic incremental stress-strain relationship.

Utilising equations (3.2), (3.3) and (3.6) in (3.9), and collecting terms yields

SA =

aF
da

D r

h + * t d . *
da da

Se (3.10)

where

dF dK T 8G
Dk dep da
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Substituting (3.10) into the elastic stress-strain relationship gives

Sa = DepSe (3.11)

where

Dep D

dG dF  
da da

H +
dF_
da

Da dG
da

Dep is the iterative elasto-plastic constitutive matrix and H  denotes the hardening 

parameter.

3.2.6 Stress recovery algorithm

During plastic straining, the process of ‘pushing’ the yield surface to the new stress point 

is governed by a stress recovery algorithm. The following describes the stress recovery 

algorithm as proposed by Ortiz and Simo (1986) using a ‘tangent cutting’ formulation. 

The return mapping algorithm can be defined based upon the elastic-plastic split in the 

strain increment by first integrating the elastic equations to obtain an elastic predictor. 

The initial elastically predicted stress is then relaxed until the yield surface satisfying the 

elasto-plastic state is reached. Figure 3.4 shows the ‘steepest descent return path’ for the 

case of isotropic hardening.
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cr n+\ (Elastic predictor)

Elastic
domain

n+\

Return path

Yield surface F = 0

Figure 3.4. Steepest descent return path for the case of isotropic hardening

Calculate the trial stress o tr. This is the ‘elastic predictor’ referred to by Ortiz and 

Simo (1986) and can be defined as

° , r  =  O d d  +  D A (3.12)

Evaluate the yield function F  at o tr . If the yield function is less than zero then the

material has not yielded for the current applied load increment. At this stage the 

material is assumed to behave elastically and thus the stress recovery procedure is 

completed. If the material has yielded, i.e. F  > 0, then,

dF
■ Evaluate the yield function gradient —  and the plastic potential function

50-

gradient 5G
do

Evaluate the hardening parameter H

3-10



Chapter Three Fundamental Theories

■ Compute the plastic multiplier 8/1

(3-13)

■ Update the trial stress o tr

G tr ~  G old D e — ~  8 A (3.14)
do

■ Update the state variables i.e. A, k, sp

■ Re-evaluate the yield function at the new trial stress

■ If converged to within the specified tolerance, exit the stress recovery loop, 

otherwise return to the start of the stress recovery loop

• End stress recovery procedure

Figure 3.5 shows diagrammatically the stress recovery algorithm. Implementation of the 

aforementioned algorithm in finite element codes has posed difficulties in obtaining 

solutions for problems that involve large time steps in particular. This is due to the loss of 

the asymptotic rate of quadratic convergence characteristics of Newton’s methods. Simo 

and Taylor (1986) suggested that a consistent tangent operator should be used instead, 

along with the implicit stress recovery algorithm, in order to optimise the overall 

computational cost.
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If yield function 
F  > tolerance

If yield function 
F  < tolerance

Calculate trial stress cr,

If yield function F  > 0

Evaluate yield function F

Start iteration loop

Exit stress recovery procedure

Compute hardening parameter

Evaluate 8X and compute new <r/

Re-evaluate yield function

If F  < tolerance, exit iteration loop

Update state variables i.e. A ,  re, e

Compute yield function and plastic potential gradients

i . e . ^  and £ £  
da da

Figure 3.5. Stress recovery algorithm
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3.3 Continuum damage mechanics

3.3.1 Concepts of damage mechanics

The concept of effective stress is based on considering a fictitious undamaged 

configuration of a body and comparing it with the actual damaged configuration. The 

concept can be explained with the aid from Figure 3.6.

4
7------'

7^:

\

I

Remove cracks 

C = >

(a) Damaged body (b) Effective undamaged body

Figure 3.6. Cylindrical bar subjected to uniaxial tension

Consider the case of uniaxial tension with a scalar damage variable D. The bar is 

subjected to a uniaxial tensile load P . As a result of damage the virgin cross-sectional 

area .4 is reduced and becomes the effective cross-sectional area A =A-Aj, with Ad being 

the total area of microcracks. The uniaxial tensile force P acting on the bar, as shown in 

Figure 3.6(a), is easily expressed using the formula P=aA. Consider now a fictitious 

undamaged bar as shown in Figure 3.6(b). In this configuration, all damage is removed

3-13



Chapter Three Fundamental Theories

from the bar. Given that both bars are subjected to the same tensile force, the uniaxial 

tensile force acting on the undamaged bar is expressed as P  = dA , where a  is the 

effective uniaxial stress. Equating the two expressions for Py the following expression for 

the effective uniaxial stress a  is derived

o  — ——— (3.15)
1 -  D

A — A A
where D  = -------- = —-  is the one-dimensional damage variable.

In unloading from tension to compression, due to the crack closure effect, the effective 

cross-sectional area is larger than A-Ad. Both stress and effective stress become equal 

when all the defects close (A d -  0). This unilateral behaviour should always be accounted 

for in the constitutive modelling of concrete materials.

The principle of strain equivalence follows directly the effective stress concept, as 

schematically explained in Figure 3.7. The hypothesis states (Lemaitre 1992):

“Any strain constitutive equation for  a damaged material may be derived in the same way 

as for  a virgin material except that the usual stress is replaced by the effective stress”.
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Application of the strain equivalence hypothesis results in the state of coupling between 

damage and elasticity, which, for a uniaxial case, can be expressed as

<j = E e (3.16)

where E = (1 -  D)E is the effective elasticity modulus.

cr

Damaged

1 £ 

Physical space

Undamaged

1 £ 

Effective space

Figure 3.7. Hypothesis of strain equivalence

Similar to conventional plasticity models, damage models can also be developed within 

two alternative frameworks. In a strain-based formulation, damage is characterised 

through the effective stress concept along with the hypothesis of strain equivalence. On 

the contrary, in a stress-based formulation, the hypothesis of stress equivalence is used 

and damage is described through the effective strain concept. The hypothesis states (Simo 

and Ju 1987):
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“The stress associated with a damaged state under the applied strain is equivalent to the 

stress associated with its undamaged state under the effective strain”.

Figure 3.8 shows a schematic representation of the stress equivalence hypothesis.

cr

Damaged Undamaged
E

1 8 

Physical space

1 e

Effective space

Figure 3.8. Hypothesis of stress equivalence

3.3.2 Elementary damage model

Consider the case of uniaxial tension with scalar damage variable. Figure 3.9 shows a 

system of m parallel bars with the same stiffness k . After the tensile strength in a 

particular bar is exceeded, a perfectly brittle behaviour is assumed, in which the stress 

drops to zero with no additional straining. Assuming that for a given displacement u , n 

bars are broken. The total force that is transmitted is equal to

n u
P = Y k u  = {m -n )ku  = ( \ — - ) E A -  

1 1 m L
(3.17)
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in which E is the total stiffness of the system, and A and L denote the total 

cross-sectional area and the length of the bars respectively.

Figure 3.9. System of m parallel elastic-perfectly brittle bars

In going from a discrete to a continuum model, the macroscopically observed stress can 

be defined as

cr = — = (1 -  co)Ee (3.18)
A

in which c o - n l m  is the fraction of broken bars ranging from 0 to 1, and e - u / L 

denotes the strain in the bars. Utilising the concept of effective stress, the effective stress 

<7 is related to area of unbroken bars as

_  P „  ,  EAecr = =  = (1 - 0 ) ) - = -  
A A

(3.19)
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For each individual bar, the following relation must hold

a  = Ee (3.20)

The relationships between the virgin area Ao and the still intact area A can then be 

expressed as

A = ( \ - c o )A  (3.21)

Generalising (3.18) to three dimensions yields

o = ( \ - (o )D ee (3.22)

where De is the isotropic elastic stiffness matrix, either expressed in terms of Young’s

modulus and Poisson’s ratio or in terms of shear and bulk moduli. As in plasticity, it is 

necessary to define a damage loading function. One relatively simple form being

f ( s , fc )  = £ - K  (3.23)

in which the equivalent strain s  can generally be defined using the elastic energy.

1£ = —£TDpe (3.24)
2
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Alternatively, s  can also be a function of the principal strains

(3.25)

where et are the tensile principal strains, and (f,) = e( if s t > 0 and (f,) = 0 otherwise. 

K  is a history dependent parameter, which takes an initial value K 0 During the loading 

history, K  increases by taking the largest value ever attained of the equivalent strain.

Similar to plasticity models, an evolution law is also required for the damage variable co, 

which is here defined as a function of K .

A tangent operator for the constitutive relationships can be obtained by first 

differentiating equation (3.22)

co = co(K) (3.26)

S g  = (1 -  co)De5s -  ScoDes (3.27)

Given that co = co(K) , K  = K (s )  and s  -  s{£) yields

Sco = ---------------- Ss
dK de d£
dco dK ds T (3.28)

3-19



Chapter Three Fundamental Theories

where —  =  1 
ds

Loading

Unloading

Substituting (3.28) in (3.27) yields the tangential stiffness relation for an isotropic 

elastic-damaging material

Noting that on unloading, the second term in the above equation becomes zero. Thus the 

tangent stiffness matrix takes the form of the secant stiffness matrix for unloading. This 

makes the damage theory different from standard plasticity theories, where unloading is 

according to the original elastic stiffness. Figures 3.10 and 3.11 show typical uniaxial 

stress-strain curves for both plasticity and damage models for concrete materials 

subjected to compressive and tensile loadings respectively.

(3.29)
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<7

Plasticity s

or

Damage s

Figure 3.10. Uniaxial compressive stress-strain curves for plasticity and damage models

<j

Plasticity £

cr

Damage £

Figure 3.11. Uniaxial tensile stress-strain curves for plasticity and damage models 

3.4 Conclusions

The development of microcracks in concrete results in the degradation of material 

stiffness, the behaviour of which can be well captured by the theory of continuum damage 

mechanics. This is reflected by the use of the secant stiffness on unloading path. On the 

other hand, the theory of plasticity simulates plastic flow, which leads to permanent 

deformation. The theory can also capture the effect of dilatancy in concrete under
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multiaxial loading. Both phenomena do not however affect the stiffness of the material. 

This is reflected by the use of an elastic stiffness on both loading and unloading paths. 

Hence, in order to capture both tensile and compressive behaviour of concrete, models 

developed based on the combination of both theories, i.e. plastic-damage models, seem to 

be a better option for constitutive modelling of concrete.
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Chapter Four 

Plastic-Damage-Contact Model

4.1 Introduction

The plastic-damage-contact model, also known as Craft, was originally developed by 

Jefferson (2003a, b) to simulate both tensile and compressive behaviour of concrete, and 

in particular the post-cracking behaviour of cracked concrete. The model employs the 

concept of embedded contact surfaces to simulate micro and macro crack opening and 

closing behaviour, including shear contact (aggregate interlock), in which open crack 

faces can regain contact under applied shear and normal compressive loadings (Jefferson 

2002a).

The model employs plasticity, damage and contact theory in the formulation and thus has 

been classified ‘plastic-damage-contact’ rather than the more commonly used 

classification of plastic-damage.
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The essential elements of the models are

• a triaxial plasticity component to simulate frictional behaviour and the increase in 

strength with triaxial confinement

• a plastic-work damage function for simulating loss of tensile strength with 

compressive damage

• a local stress-strain relationship, which is based on damage-contact theory

• a total-local function, such that the local and global constitutive relationships are 

both satisfied

• a thermodynamically consistent global stress-strain relationship

4.2 Plasticity component

4.2.1 Yield function

The model has a fully integrated plasticity component which uses the same straight 

compressive meridians as those developed by Lubliner et al. (1989). An illustration of the 

yield surface on the 7t-plane is shown in Figure 4.1. A smoothing function presented by 

Wiliam and Wamke (1974) is employed to blunt sharp edges of the yield surface as 

observed in the 7i-plane.
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Figure 4.1. Yield surface on the 7i-plane

The yield function is derived as follows

F(a,Z(K)) = 4 T 1Ar(0) + '  r P 'a  + —
3 ,L Z - f cZ ( \ - a ) (4.1)

where

Ar(9) = p c
2cos(9)2 +b2

cos(Q) + b ^2  cos(9)' + c
(4.2)

f c, /, and J 2 are the uniaxial compressive strength, the first stress invariant and the

second deviatoric stress invariant respectively. 9 is the Lode angle with range 0° to 60° 

and Z  denotes the friction hardening factor, which varies with the work hardening
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parameter k  . The initial value of the friction hardening factor Z 0 governs the yield

surface starting position. Z  varies from a possible value of 0, at which the yield surface 

forms a line on the hydrostatic axis, up to 1 at which the yield surface reaches its peak 

position.

The model constants b , c , a  , y  and p c in both (4.1) and (4.2) are computed as 

follows (Lubliner et a l  1989)

, b = V 2 - 1 ,  C = ^ - - 2 V 2 ,  p  = Vr~,  y  = 1 P p c = 43
a  2br - \ ’ u  C _ 2 V3

in which p  denotes the eccentricity parameter and br is the ratio between the biaxial and 

uniaxial strengths, which is generally in the range 1.05 to 1.3 (Kupfer et al. 1969; van 

Mier 1997). It is noted that the smoothing function in (4.2) is a simplified version of that

developed by Wiliam and Wamke (1974) by setting p to  a constant value of  J / j ^ .  The

complete version, as expressed below, was adopted in the proposed models presented in 

the following chapters of this thesis.

Ar(0,p) = p c 4(1- p 2)cos2 # + ( 2 p - l ) :

2(1 - p 2)cos#  + (2p -l)^ /4 (l - p 2)cos2 6 + 5 p 2 - 4 p
(4.3)
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4.2.2 Plastic potential and flow rule

The plastic potential function used in this model is of a similar form to the yield function 

presented earlier, but with an additional parameter y/ that controls the degree of 

dilatancy. If y/ is set to unity, the potential takes the same form as the yield function and 

the plastic flow is associated, whereas if it is set to zero, the model predicts zero dilatancy. 

The values of y/ in the range of -0.1 to -0.3 were found to produce good match with 

experimental data (Jefferson 2003a).

where X denotes the plastic multiplier, which obeys the condition SX>0.

4.2.3 Hardening/softening relationships

The model employs a frictional work hardening and softening plastic evolution function 

to account for pre- and post-peak non-linear behaviour. It is assumed that the amount of 

work to reach peak stress increases with a parameter X,  which is a function of the mean

G(<t,Z ( /c)) = J 7 ^ A r(0)+ a  + — I xZy/ -  f cZ y / ( \ - a ) (4.4)

The non-associative flow rule is given by

(4.5)
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stress. This parameter performs the same role as the ductility parameter found in the 

model by Este and Wiliam (1994). The work hardening parameter is derived as

Sk = X  (<t)g TSep (4.6)

The expression used for the enhancement factor X is as follows

^  = +ez-i + X l  (4.7)

where

x  = — —  + 0.55 and X , = 0.0022
f c * 0.9 '

It should be noted that the enhancement factor is only required for compressive stress 

states i.e. when 7/ is negative.

A single friction hardening/softening function, as illustrated in Figure 4.2, is presented for 

Z to give a smooth transition from pre- to post-peak behaviour, as follows

Z  = Z 0 + !— £o (j -  e -cc2n) (4  8)
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where rj =  k / k  , and K p  is the value of k  at the peak yield surface position. In order to

ensure that the peak occurs at Z -  1, the constants in equation (4.8) must satisfy the 

following relationships

c e~Cĉ
t'cl =  { I  - c c2 30(1 =  e  ' C' (1 “ e  H 1  ) (4 '9)

in which cc2 = 5, cc, = 0.0339182745 and ac = 0.9601372615.

K

Figure 4.2. Friction hardening/softening function

The expression for K p  was derived by integrating Saenz’s (1964) equation over a

uniaxial compressive stress-strain curve and then removing the elastic component, using 

data typical for structural concrete as follows
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Kp = f U . 1 2 e c - ^ \  (4.10)
V 2 E J

where sc denotes the uniaxial compressive strain at the peak uniaxial compressive stress 

fc-

4.3 Local damage-contact component

The damage-contact component of the model employs a simplified version of the 

effective crack plane model developed by Jefferson (2002b) to describe the local 

stress-effective strain relationship. In the crack plane model, the local stress for a damage 

plane z, is assumed to be the sum of the stresses contributed by the undamaged component 

and damage-contact component, as follows

sn  = D , ( H cie, + H f .<olgl) = D L(H CiI  + H f i C0 :<Pdi)ei = D LM xie( = Dhie, (4.11)

where e( , DL and /  are the local effective strain, local elastic constitutive matrix and 

identity matrix respectively. The effective local strains ei are those that apply to a 

fracture process zone of an effective crack plane. They are taken as equal to the relative 

displacements across the process zone divided by the width of the effective zone wc. The

reason for choosing the local effective strains as the basis of the model is that these local 

strains can be obtained directly from tests, gi is the embedment strain relative to a contact
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surface, and is related to the local effective strain by a transformation matrix 4>di. Figure

4.3 shows a schematic diagram of the contact surface.

Open

Interlock

Closed

Figure 4.3. Contact surface (Jefferson 2003a)

Hc denotes the proportion of undamaged material and can be expressed as

Hc i =(\-<ot) (4.12)
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in which coi is a damage variable that lies in the range 0 to 1, and depends upon a local 

strain parameter ^ .

With reference to equation (4.11), the local stress in the damaged component is a function 

of H f , where H  y denotes the proportion of fully debonded material on a crack plane

that is in contact. The H f  function, as given below, is included to simulate the observed

behaviour that the amount of shear stress that can develop with increasing shear strain 

reduces with increasing crack opening.

H f = H m ifJ  m er < ebg (4.13)

■Pf\
rf e

eg~£t
. £o

\ 2

+ (1 - r f )e
-Pf2 eg~£t 

mful£0 J (4.14)

where

H g =  i - e e*+2e‘

g  denotes the embedment, as shown in Figure 4.3, and r/ = 0.95, p/j = 4, pp = 1.5, cg = 3, 

Hm = 0.995 and ebg = l . l£ , . The H g function provides a smooth but rapid transition to 

closed and interlock states. The H j  function varies from 1 to effectively 0 when the
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crack opening parameter eg reaches a value at which no further shear contact is possible,

as shown in Figure 4.4. This value is defined as a multiple of the strain value at the end of 

the softening curve i.e. .

fyeg)

1

Figure 4.4. Contact proportion function

The model employs both interlock and closed <j>d {e) functions to identify the

state of contact. These functions are derived based upon experimental data from tests in 

which cracked concrete specimens are subjected to normal-shear loadings. With 

reference to Figure 4.3, ejul represents the crack opening strain beyond which no further

contact can be gained in shear.

A crack plane is assumed to form when the major principal stress reaches the fracture 

stress. The POD is orientated such that its direction is orthogonal to the major principal 

axis. It is assumed that damage on the plane can occur with both shear and normal strains. 

The model employs a damage surface similar to that used by Kroplin and Weihe (1997).
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The damage function is asymptotic to an equivalent strain friction surface and is 

orthogonal to normal strain axis at its intercept with that axis. Figure 4.5 shows a 

schematic diagram of the damage surface in strain space. The damage function is derived 

as follows

(  \ 2~

r t e . f )  =  e- i r 1 +
M s

2
j

+ ~ ~ 2 '\J(r( 2 ~ ^ e 2J er2 +*r( 2(e32 +e,2) - £  = 0 (4.15)
2rr

The material constants and fj.e are the relative shear strain intercept and the

asymptotic shear friction factor respectively. These are the strain equivalents of the 

relative shear stress intercept ra and the asymptotic friction factor n a .

Damage surface

Undamaged region 
#(€,<*) <0

Figure 4.5. Damage surface

In this original Craft model, a single term exponential softening curve was used for the 

damaged evolution function. This function was derived in terms of the fracture stress f s

4-12



Chapter Four Plastic-Damage-Contact Model

and the strain parameter C, , and has the uniaxial strength f t , the strain at peak stress et 

and the strain at the effective end of the curve e0, as control parameters. The basic 

function, as illustrated in Figure 4.6, is as follows

f s = ( l -0 * O ) E C  (4-16)

in which

co = 1 -  r.
-q C-s,

’ e0 - e t
- 2 -

The constant was set to fixed value of 5. The term rc was included in the above

expression to provide residual damage strength that is essential for stabilising numerical 

calculations and maintaining a residual damage stress.

f

st

Figure 4.6. Damage evolution function
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4.4 Overall stress-strain relationship

The overall relationship between the total stresses a and strains is given by

tT = De( s - s p - s a) = D(
7=1

(4.17)

in which np denotes the number of crack planes. De is the elastic constitutive matrix and 

s is the total strain tensor. ea is the sum of the transformed inelastic local strain vector 

ea on all crack planes. Utilising equation (4.11), ea is related to the effective strain 

vector as follows

ea, =«/ - C Ls fj  = ( I - M xt)ei (4.18)

The local stresses Sj- on each of the PODs can be related to the global stress tensor a  via 

a transformation matrix as follows

Sf . = N,t7 (4.19)

4-14



Chapter Four Plastic-Damage-Contact Model

where

i

t d \  t  d 2  ^3  ^ d \ ^ d 2  ^ d 2 ^ d 3  ^ d \ ^ d 3

rd i , rd2, rd3 are the x , y, z components of the unit vector rd normal to the POD surface, 

and sd and td are the corresponding in-plane vectors. sd is generated such that its 

directions are perpendicular to rd and to each of the reference axes in turn (Hasegawa 

1995). td is then made orthogonal to both the r and s components. Figure 4.7 shows the 

local and global coordinate systems of a POD.

y r

2

Figure 4.7. POD local and global coordinate systems
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By using equations (4.11), (4.17), (4.18) and (4.19), the secant stress recoverable-strain 

relationship may be obtained as

where C L = D,  1.

4.5 Total-local function

The role of the total-local function is to ensure that both local and global relationship, as 

well as the stress transformation in equation (4.19), are simultaneously satisfied for 

multiple crack planes. The function allows all damage surfaces to be fully coupled. The 

function gives measurement of the error between the transformed global stresses 

computed from (4.20) and the local stresses computed from equation (4.11).

By equating the total-local function to zero, the equation can then be solved for the 

unknown local effective strain e . This equation may be rewritten as follows

-l

(4.20)
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~NxDeN xT( l - M n )+ D LM xx N xDeN 2T{ l - M x2) V
N 2DeN xT( l - M xX) N 2DeN 2T{ l - M x2)+ D LM x2_,e2- * 2 .

(4.22)

For cases where more than one crack plane is present, a non-linear solution procedure is 

required for equation (4.21). Nevertheless, it has been found that very few iterations of a 

Newton procedure are required to achieve convergence for equation (4.21) when multiple 

surfaces are active (Jefferson 2003a).

4.6 Return mapping algorithm

The overall procedure of the stress recovery algorithm employed in the Craft model is to 

first update the local effective strains and then account for any plastic flow. The stress 

update-is computed from the previous converged state. In this section, it is noted that the 

subscripts k and k +1 represent the values of quantities on entry to and exit from the 

return mapping algorithm respectively. The symbol A represents the overall change of 

any quantity from the last converged state and 8  denotes the change of a quantity within 

the stress update iteration. The algorithm is presented with the assumptions that both 

yield and fracture criteria have already been violated, i.e. plastic yield is active along with 

the existence of one or more PODs.
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The following relationships must be satisfied in order to evaluate the new stresses <rk+] 

for the incremental strain Ae from the previous converged stresses a k.

total constitutive relationship

=  D e
^ nP T ^

£ *+l ~ £ Pk+\ ^ j  e ° jk+l
V J

(4.23)

stress transformation

s f ik+x ~ N ik+\a k+\ (4.24)

local stress-strain relationships for all PODs i

Sf i k+1 ^ lsik+\e ‘k+\

e a ik+] C l s f i k + l S f ik+]

(4.25)

(4.26)

where Clsj- is the local compliance matrix.

flow rule and plastic parameter

Ae = —  AX (4.27)
p 5<7*+l

Ak = X m AX*m t ^  (4.28)
0(7 k+1
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yield function

F(* m , km ) = 0 (4.29)

total-local function

Fe, M = 1 -  Di,IM‘tk+t =  ° (4 -3°)

The model adopts an algorithm similar to that of the Closest Point Projection algorithm, 

which is chosen for its stability and enhanced rate of convergence (Simo and Hughes 

1998). Error measures are introduced for the plastic strain and plastic parameter, which, 

along with the error in the yield function and total-local function, are used in a coupled 

Newton iterative solution procedure.

In the following, all iteration subscripts will not be included. It is assumed that all 

quantities on the right of an equation are those from the previous update iteration (or the 

values from the previous overall finite element increment for the 1st iteration).

The error measures for both plastic strain and hardening parameter are given by

Rc = -A e p + ^ - A A  (4.31)
OG

Rh. = - A k  + XAXaT —  (4.32)
da
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The iterative corrections are obtained as follows

O. »  Cl dG A 0 d2G S e  _ = Rf + 8 A  h z U  — —
p f da da2 

8 k  -  a*, (ft*. + AXkJ 8a + cK8/1)

where

a*. = l-ZhU<7J dG
5<t

-l
cr = *<7

dG
da

and

dX 7 dG v d2G v dG A =  a — + X — - a  + X
da da da4 da

The yield function consistency condition is as follows

„  8Ft „ dF x . F + —  8a + —  8 k  = 0 
da dK

Substituting (4.34) in (4.35) yields

F + f j  So + — aK.Rr +h,SA = 0
•r K K K  K

O K

(4.33)

(4.34)

(4.35)

(4.36)
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where

,  dF dF A, ,  . , dF
A  = ~z~ + T - aKAM „  and hK = — aKcK

da o k  o k

Making use of equation (4.30), the total-local consistency condition can be written as 

follows

F . + N.Sa  + —  o ado -  » e,Se, - - ^ - e . S K  -  D,s Se, = 0 (4.37)
da de, ' ‘ 8 k  ' 1 1 , 1

in which ° denotes a contraction with respect to the ‘in-plane’ components of a third 

order matrix. The third term in the above equation is ignored here as the POD direction 

remains fixed during the stress update iterations. Then, substituting (4.34) in (4.37) yields

F„ + N AiSa -  DUiaK{RK + cKSX)~ DhtSe, = 0 (4.38)

where

dD[si 5Z),„.
Dh. = -----   o e{ + Dh . , D, . = ----- - e , and", d  , Is, Ik , d K  ,

n m = N i - D llcjaKk a TM
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The initial trial stress is defined as follows

e + A e - e p - ^ N / e
j =1

(4.39)

after which iterations are performed to satisfy equations (4.23) to (4.29). The total strain 

tensor remains unchanged during the iterations. Hence, the iterative change in the stress 

may be given by

So = - D ,
V J=1

(4.40)

The iterative change in the added strain ea is given by

* 0 / = (7 + m 'kiSk  (4.41)

where

dMx. dMx.
m'r. = M „ . +  ‘-oe.- and m ' .  = -------‘-e.-

de, ' dK '
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Substituting (4.33), (4.34) and (4.41) in (4.40) and rearranging yields

(4.42)

where

A. — /  + De AX
V

(

Substituting for 8a from (4.42) in (4.36) and (4.38) gives a set of coupled equations with 

8X and 8e as the unknowns. These are written in the following compact form, in which / 

and j  are indices from 1 to np and in which the summation of repeated indices is implied.

Note i , j  does not here imply differentiation with respect to the j  components as it 

would in indicial notation.

Fx = M ASX + B AjSej (4.43)

^Ei ~ M EiSX + B Ei j8ej (4.44)
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in which

Fx = F - f J  A
F j

R e ~ Z . , N k
k=1

d F  D

Qk  ^ K

^Ei = F et- N AiA R S j K k ° K R >
k=1

^iKi^ K^K

M ,  = f j A
dG
da

 r_

k
*=]

M Ei = N a,A dG
da

~ Y ,N k m... a„c.k "*Kk UKl'K

- K

+ DlKiaKCK
k=1

R h  = f / A / v / ( l - m ’Xj)

B e, ,  = N AiA N /  ( / - < . ) +  D,n j  5 ,

where di j in the expression for B E is the Kronecker delta.

The overall steps of the return mapping algorithm may now be summarised for the case 

when plastic yield is active and one or more POD exists.
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Box 4.1. Return mapping algorithm

Step Description

1 Initialise AX = 0 and A k  -  0

2 Compute trial stress from (4.39)

3
Evaluate FA,M A,BA,FE,M E,BE from (4.43) and (4.44) and solve for 8X and

& i

4 Compute 8a from (4.42)

5

6

Update ei using ei = ei + 8e{ and update ^

Compute 8 e p , 8 k  from (4.33) and (4.34) respectively

7

Update plastic terms

s p = e p + 8 e p , Asp = Asp + 8 e p , AX = AX + 8 A , k  -  k  + 8 k  and 

A k  -  A k  + 8 k

8

Compute a new trial stress from 

<7 = D e

L j=l J

9

10

Compute F  , Fei , R e and RK from (4.29), (4.30), (4.31) and (4.32) 

respectively

Check for convergence

If CT» / . \F e I ^  <r,oi. \R S | ^ e,ol and | < e,ol 

Exit iteration

Else

Return to Step 2(1)

End If

Note:

1. Tolerance levels are crtol = f t *10~6 and s tol = et *10-6
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4.7 Consistent tangent constitutive relationship

In order to achieve accurate, fast convergence and stable solutions, the model employs a 

tangent stiffness matrix that is consistent with the stress update algorithm described in 

Section 4.6. The following describes the derivation of a constitutive tangent operator.

The differential form of equation (4.23) is given by

The term <57Vy is the differential of the transformation matrix with respect to the trial

stress components used for the new POD detection. The choice of this trial stress <rl is 

discussed later in Section 4.5. Thus equation (4.45) may now be written as

(4.45)

(4.46)

Differentiating equation (4.26) yields

(4.47)

4-26



Chapter Four Plastic-Damage-Contact Model

in which

c v , .  =  ( < - ' - / ) c £ and

The following gives the differential quantities of the plastic strain, plastic parameter and 

the local stress vector

dG d2G _ os _ = oA —  + Aa  — —do 
p do da2

S k  = aK[AAkaTSo + c^SA,)

ds f = N  :Sa + ^ - l ° o i D,Se
f i  1 do j  1 1

(4.48)

(4.49)

(4.50)

Utilising equations (4.47) to (4.50) in (4.46) and collecting terms gives

So = A cA

r  n fnP

*- I .
dN> d N /

J do j  doj  J
Se-

( d G  V f y v  \
da J j ’

SA (4.51)
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where

-l

-4, ,= I  + D Y N , T(Cllf, N , - M K,ar A X k / )  + AX
\ J =1

d_G_
da2

D

The consistency condition for the yield surface may be written as

SF = f j S o  +hKSX = 0

Substituting for 5g in (4.52) using (4.51) and rearranging gives

s x  = _ £ ^ cJ n— &

f  k  ^ c A & m  ~

in which

7=1

d N ; dN

J !,/J So, doj  UJ

g n , = ^ - f j N J TM K j a Kc . )

(4.52)

(4.53)
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Substituting for SX in (4.51), and using (4.53), gives the consistent tangent relationship 

as follows

8g = ^cA^N
^cA&mfk ^cA^I 
J k  ^ c A & m  ~ h / c

Se = DepSs (4.54)

where Dep is the consistent tangent operator.

4.8 Stress computation procedure

Prior to entering the return mapping algorithm, checks have to be made on whether the 

current step will violate the yield criterion and also whether it will result in the formation 

of one or more new POD. These checks are carried out using the trial stress Oj , which is 

derived as follows

—  TI  + D ^ N / C ^ . N j
J ,

De(et + A s - £ n ) = Di(ek + ^ e - e p t ) (4.55)

where D { is the secant elastic-damage constitutive matrix. It is suggested that the use of 

an elastic stress increment, as given by equation (4.39), can cause inefficiency such that it 

incorrectly predicts yield and POD formation (Jefferson 2003b).
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The overall stress recovery procedure systematically checks for the formation of PODs 

one at a time. At the end of the first return mapping that is undertaken with any existing 

PODs and plastic flow, if required, a check is performed to detect for new POD 

formation. If required, one new POD is formed and the next reduction is carried out, after 

which a further check is performed for the next POD. The process continues until the 

POD formation criterion is not violated. Box 4.2 shows the algorithm for the stress 

recovery calculations.
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Box 4.2. Overall stress calculation procedure

Step Description

1 Record all state variables on entry

2 Compute Gf (4.55)

3 If F(Oj , k ) > 0 and I x (<77) < 0 Then

Carry out return mapping with plasticity and existing PODs to obtain new 

stress a  

If ZU < 0 Then

Reset state variables and carry out mapping without plasticity 

End If 

Else If np > 0

Carry out return mapping with existing PODs to obtain new stress a

Else

G — G j

End If

FOr i  1, FI max

If cr, ( g )  >  f t Then

Form one POD(2) using principal direction of <r7 nearest that of g  

Reset all state variables and carry out return mapping with revised 

number of PODs to obtain new stress g

Else

No new PODs, record final stress and exit formation loop 

End If 

End For

Notes:

1 • Umax = maximum number of PODs permitted to form

2. A POD (/') is only permitted to form if the normal satisfies rd j T rd . < 0.65 , where i

= 1, np (with np being the existing number of PODs)
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4.9 Numerical examples

The Craft model has been implemented into a constitutive driver program for the 

simulation of single point stress-strain path examples. In order to assess the effectiveness 

of the local damage-contact model in simulating cracked concrete material, the model 

was validated by comparisons with results obtained from normal-shear tests. Table 4.1 

gives the material parameters used in the analyses.

Table 4.1. Material properties used for analyses

Material parameters Example 1 Example 2

E (N/mm2) 30000 50000

V 0.15 0.15

f c (N/mm2) 29.5 40

f  (N/mm2) 2.7 3

0.0022 0.0023

£o 0.001 -

Gf (N/mm) - 0.1

br 1.15 1.15

Zo 0.5 0.6

¥ -0.1 -0.1

mg 0.38 0.4

mfui 20 1.3
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The first example involves the normal-shear test carried out by Walraven and Reinhardt 

(1981). Figure 4.8 shows the test specimen, which had a shear plane of 300x 120 mm and 

were tested in a stiff testing frame with external restraint bars to control the crack opening. 

Different initial crack opening displacements were specified for each test. Once a crack 

had been formed to the required opening, the specimen was then subjected to shear 

loading whilst the normal and shear displacements were monitored. Figure 4.9 and 4.10 

show comparisons of the results obtained for tests with initial crack opening 

displacements of 0.2 mm.

-CL

600

Thickness = 120 mm

400

Figure 4.8. Walraven and Reinhardt’s test specimen
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-2 -

■q— Exper. 1/0.2/0.4 

-e— Exper. 1/0.2/1.4 

-a —  Numerical

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Opening displacement (mm)

Figure 4.9. Normal stress-displacement relationship

6  -r—

s —  Exper. 1/0.2/0.4 

*e— Exper 1/0.2/1.4 

■a —  Numerical

0 0.5 1 1.5 2 2.5
Shear displacement (mm)

Figure 4.10. Shear stress-displacement relationship

4-34



Chapter Four Plastic-Damage-Contact Model

The next example was taken from the test series undertaken by Hassanzadeh (1991). 

Figure 4.11 shows the test specimens used for the combined normal-shear test. The

was first subjected to a tensile load to the point of first fracture and then displacements 

according the relationship, u = (tanor)*v were applied. The tests considered here were 

those with a  -  45° and 60°. The model was assessed using data obtained after the crack 

had fully formed. Figures 4.12 to 4.15 give the stress-displacement responses and provide 

comparisons of the numerical predictions with that of experimental results.

specimen had an effective cross-section at the notch level of 40x40 mm . The specimen

u

70
v

40 x 40 mm2
unnotched
area 60

Thickness = 70 mm

Figure 4.11. Hassanzadeh’s test specimen
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4

0
0.25

■4

8 -q— Experimental 

-a — Numerical

-12

Normal displacement (mm)

Figure 4.12. Normal stress-displacement relationship (a  = 45°)

8

Experimental

Numerical6

4

2

0
0 0.05 0.1 0.15 0.2 0.25

Shear displacement (mm)

Figure 4.13. Shear stress-displacement relationship (a=  45°)
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3

■e— Experimental 

-a — Numerical
2

1

0

-1

2

3

Normal displacement (mm)

Figure 4.14. Normal stress-displacement relationship (a=  60°)

3

Experimental

Numerical

2

v>w<u
V)
m 1 o>

- C(O

0
0 0.1 0.2 0.3 0.4

Shear displacement (mm)

Figure 4.15. Shear stress-displacement relationship (a=  60°)
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4.10 Conclusions

The original Craft model developed by Jefferson (2003a, b) has a fully integrated 

plasticity component to simulate the behaviour of concrete under multiaxial loading, as 

well as the inclusion of contact theory to simulate aggregate interlock behaviour, and also 

crack opening and closing. The model had been implemented in a constitutive driver 

program as well as a finite element program, from which numerical results obtained were 

compared with a range of experimental data, which includes data from uniaxial tension 

tests, tests in which cracks are formed and then loaded in shear, and multiaxial 

compression tests.

From the numerical examples presented in Section 4.9, the model has shown to be 

capable of representing the key characteristics of the behaviour of formed cracks in 

concrete. Although the numerical predictions for the test of Walraven and Reinhardt 

(1981) were not close to that observed in experiment, the model managed to simulate the 

stress free zone before contact, and also the build up of shear and normal stresses 

reasonably.

As for the comparisons made with the data of Hassanzadeh (1991), the model seemed to 

overestimate the build up of post crack shear and normal stresses at small openings. This 

was due to the fact that the H f  function, as discussed in Section 4.3, was derived based

on the data of Walraven and Reinhardt (1981). A modified function of H y should be

employed in order to simulate normal-shear tests on concrete specimens made from

4-38



Chapter Four Plastic-Damage-Contact Model

relatively small coarse aggregate.

The Craft model is used as a basis of the crack plane models developed in the following 

chapters. Developments were carried out from the existing local damage-contact 

component of the model. This model has been chosen for several reasons:

1. The model has a proven triaxial failure envelope

2. Both plasticity and damage theory have already been implemented

3. The incorporation of contact mechanics has proven to simulate well the behaviour of 

crack opening and closing, as well as aggregate interlock

4. The constitutive relationships and stress update algorithm are well documented

The embedded planes model is suitable for the simulation of cracks in concrete. The

model is however not applicable to massive concrete structures in which slip planes can 

develop as observed in construction joints. A new contact model, suitable for the 

simulation of smooth construction joints, is therefore proposed in Chapter 6. In addition, 

the original Craft model only predicts good concrete response under monotonic loading 

condition. In cyclic loading problems, the numerical predictions given by the model 

differ from those observed experimentally. This is mainly due to the assumption of a 

secant stiffness reduction, with no inelastic strains developed. Therefore, in order to 

simulate more realistically the behaviour of cracks in concrete, a new embedded planes 

model with local plasticity is proposed in Chapter 7.
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Chapter Five 

Dual-Surface Contact Model

5.1 Introduction

Experimental evidence has shown that the overall shear strength of a material is affected 

by the type, shape and size of aggregate particles. In normal strength concretes, both fine 

and coarse aggregate particles are evenly distributed within the mortar matrix. Large 

mismatches between the elastic moduli and strengths of aggregate and mortar matrix 

prevents cracks from penetrating into the aggregate particles. Crack paths tend to move 

towards the interface between aggregate and mortar, a region which is normally regarded 

as the weakest link in concrete (Karihaloo 1995). Figure 5.1 illustrates the path of a 

typical crack within a normal strength concrete matrix that comprises both coarse and fine 

aggregate particles. Paulay and Loeber (1974) undertook experiments to investigate the 

behaviour of such cracks in shear and, as may be seen from Figure 5.2, their results show 

that with increasing shear movement, for an open crack, the stiffness increases 

significantly at a certain shear displacement. Similar behaviour can also be seen in other 

such data (Walraven and Reinhardt 1981). Jefferson (2002a) interpreted this stiffness 

increase point as the first contact point and used it to define the interlock contact surface.
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However, this ignores the fact that there are significant shear stresses before this point is 

reached. In order to better simulate the observed behaviour, a two-phase contact model is 

explored in which, tentatively, the two components are associated with the coarse 

particles and mortar (fine particles), as illustrated in Figure 5.1 (Hee et al. 2004).

M g r
Coarse
aggregate

Coarse
componentcomponent

Mortar

Figure 5.1. Crack path within concrete mix

CN
E
E
Z
u> 4 .o
v>L-roa>

j C(0 -d— Exper. u=0.125mm  

■b— Exper. u=0.25mm  

-a— Exper. u=0.51mm

0 0.2 0.4 0.6 0.8
Shear displacement (mm)

Figure 5.2. Shear deformations (Paulay and Loeber 1974)
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5.2 Local damage-contact relationship

A two-phase contact model is proposed in which two contact surfaces are introduced, 

each of which captures the contact states of the damaged component on a crack plane. 

The proposed model employs a local stress-effective strain relationship similar to that 

used by Jefferson (2003a), with the addition of a new parameter a c, which denotes the 

proportion of coarse particles in a representative volume of the fully debonded material. 

The local stress Sj- is the sum of the stresses on each of the components, and is given by

where H c is a function of a scalar damage variable ^  , and both H  fc and H  govern

the fully debonded component, with the subscripts f c  and f f  relating to the fraction of 

coarse and fine particles, respectively, in a representative volume of the damaged 

material. su denotes the local undamaged stress vector, and Sj-C and s ^  are the local

stress vector for each of the fully debonded component respectively. H c, Hj-c and H

must satisfy the following conditions

sf  = H cs u + a cH /c(osfi + ( l - a c)Hffa)s/f (5.1)

H c + a cH fcco + (1 -  a c )H f f co = 1 (5.2)

0 < H c < 1 (5.3)

0 < a cH fcca + { \ - a c)Hf f co < 1 (5.4)
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H c denotes the proportion of undamaged material and can be expressed as

H c = \-co  (5.5)

in which co is a damage variable that lies in the range 0 to 1, and depends upon a local 

strain parameter £ .

In the following derivations, it is noted that any terms with the subscript f /c  should be 

treated as two separate variables i.e ./an d  c relating to the fine and coarse component 

respectively.

H f j /c is a function that varies from 1 to 0 with the increasing crack opening parameter 

egj-lc • It represents the proportion of the fully debonded material on a crack plane that is

in contact. The function is derived to simulate the observed phenomena in which the 

transfer of shear across a crack reduces with crack opening.

In the present model, the H ^  function employed in the original Craft model was replaced 

by a modified function (Jefferson et al. 2004). The original H f  function, which was

derived based on the data of Walraven and Reinhardt, was found to overestimate the build 

up of post crack shear and normal stresses at small openings. To remedy this, Jefferson et 

al. (2004) modified the function, in which a new parameter mhi that relates to the

early stages of opening was introduced. The modified function is given as follows

5-4



Chapter Five Dual-Surface Contact Model

H ff u  = n .

Hf f »  HmHg

if eg < eH

1 (rf  e pf ™2 +(1 - r f )e~pf m - f he ^ m
1 - h

\

V

(5.6)

(5.7)

where

-g
g f / c

S q  r  / + 2 E t

H = l - e  flc
g f / c f k = Q - r f )

P f 2 m hif i c

P f \ m fulf / c

e g f / c  e *>g 

m h i f / c £ 0
=

e g f / c  e t>g 

m f u l f / c £ 0

and rf  =0.7 , p fx = 10 , p f2 =5 , cg = 3 , H m =0.995 and ebg =1.1 s t . The H gf/c

function provides a smooth but rapid transition to closed and interlock states. The last 

term in equation (5.7) provides a correction to give a zero initial slope and also makes the 

H  , function continuous at the start of contact reduction.
J J /  c

The H j- function also depends upon the condition of damage and the state of contact 

of the crack plane, as shown in Figure 5.3, which are termed open, interlock and closed.
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Coarse
component

Fine
component

Local shear strain Interlock
region

Closed
region

Local normal strain et

Figure 5.3. Dual-surface contact model

Both interlock and closed functions for each of the components are derived to identify the 

current state of contact,

K n c (e) = m er ~ ^ e 2 +e,2in t f / S f / c

t d f  c ( e )  =  e r +  m gf / c  4 e s 2 + e <2

(5.8)

(5.9)

If (j>ciflc (e) < 0 State = Closed

If <Pdf ,c (e) > 0 and f>,nt//c (e) < 0  and er <e>(//c State = Interlock

If 4>w,j:c (« )s  0 °r er > e State = Open

(5.10)

(5.11)

(5.12)
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The gradient of the two interlock contact surfaces, mgc and can be obtained from

experimental data from tests in which an open crack is subjected to shear loading, efuij-/c

denotes the crack opening strain beyond which no further contact can be gained in shear 

for each component.

The crack opening parameter egj U is related to the components of the effective local 

strain as follows

' 8 f / c  i , 2
I c

!r + mgflc4
2 , 2 

g f / r  \ e s + e t (5.13)

The embedments g f  and g c denote the strain relative to each of the contact surfaces and 

is associated to the local effective strain by the relation

g f u = * , flce (5-14)

The transformation matrix ®dftc depends upon the state of contact as follows

ifState = Open (5.15)

if State = Interlock (5.16)

if State = Closed (5.17)

d f l c =  0

f  /  c
=  <p

df ! c
=  1
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where

g f / c  , , 2
X +  m Sf , c

de de

aV,in t f i c

in t  f U de'

The constitutive relationship for the effective crack plane can now be written as

sf  =  d l i H c e  +  a c H  fc°> Sc  +  0

= D L{HcI  + a cH fcw 0 <lc+ ( \ - a c)Hjrco0df)e = D LM xe = Dlse (5.18)

In the present model, a smooth continuous softening function developed by Jefferson et 

a l. (2004) was employed. The function, as illustrated in Figure 5.4, was derived in terms 

of the fracture stress f s and the strain parameter C, . The function utilises the uniaxial

tensile strength f t , the stress at first damage f ti and the associated strain £ti, the strain at

peak stress s k , and the strain at the effective end of the softening curve s 0, as control

parameters. The damage evolution function is given as follows

/ ,  =rj,< H \ - r c) f , ie - ^ [ a m - b me ~ ^ - c me ~ ™ )  (5-19)
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in which

7] =  — ---------—

*0  — £ ti

f ,

f ,

Varies with characteristic length (wc)

Figure 5.4. Damage evolution function

The term rc provides residual damage strength at the end of the softening curve which, in 

turn, helps to stabilise numerical calculations. The constants c, and p  in (5.19) were set 

to a fixed value of 5. The rest of the constants i.e. am, bm, cm and m were evaluated 

from the following conditions
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L=f,rtri = nk (5-22)

| t t  = 0 at T) = Tjk (5.23)
S i

where the term rjk is 77 at C, -  .

Making use of (5.20), am may be derived as follows

am =\ + bm+cm (5-24)

Utilising (5.21) and (5.24) yields

q ~ bmm + cmmp (5.25)

*0  s tiin which q = — — +1
cieu

Using equations (5.24) and (5.25) to eliminate am and bmi the following expressions for 

c may be derived using conditions (5.22) and (5.23) respectively

atxk m
cm = -LJL---------------------  (5.26)

1 mp , m v 'l -  xk r + pxk - p

5-10



Chapter Five Dual-Surface Contact Model

= -------------  ;---------------  (5.27)
p -1  -  (1 + m)pxkm + (l + mp)xkmp

Finally, equating (5.26) to (5.27) and rearranging gives the following nonlinear equation, 

which may be solved for the unknown m .

—----- 1 -  — (l -  m )l(p -1  -  /?(1 + m)xkm + (1 + pm)xkpm) -  ...
atxk m ' y

1 + — ( l - ( l  + 'w )^ W) l ( l - ^ ,”P ~P  + PXkm)=® (5-28)m J

in which

xk = e cink and at = —
f t

Given that the value of m varies with xk and q , which in turn are functions of a strain 

parameter ratio re , an approximate relationship between m and rE, which is closely 

fitted to the actual function, was derived as follows (Jefferson et al. 2004)

* 1.005 / c ^  n \
m  = z \ + z 2re + z 3re ( 5 -2 9 )
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where

The constants z, , z2 and z3 were evaluated to minimise the error between the 

approximate and actual root functions for m . In the present model, at was set at 0.75, 

while the rest of the constants were set as follows

z, = 0.223098944982796 , z2 =-67.0625617052971 and z3 = 66.4302094339053

5.3 Evaluation of contact parameters

For large opening displacements, the coarse component may dominate the overall stress 

due to the aggregate interlock behaviour, whereas at small opening displacements the fine 

component is also significant. Using the experimental data of Walraven and Reinhardt 

(1981), as shown in Figure 5.5, the mg values for both fine m ^  and coarse mgc

components are determined by assuming the first half of the non-linear curve as being 

dominated more by the fine component, and the second half by the coarse component. In 

the proposed model, m ^  and mgc are taken as 0.2 and 0.4 respectively.
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0.5

S' 0.4 -

0.2 -

0 0.2 0.4 0.6 0.8 1 1.2
Opening displacement (mm)

Figure 5.5. Normal-shear contact relationship (Walraven and Reinhardt 1981)

From the literature, a series of images captured using a Scanning Electron Microscope 

(SEM) at meso-level, as shown in Figures 5.6 and 5.7, were used to obtain average 

measurement of the crack surface roughness (Ollivier 1985; van Mier 1997). The 

procedure for deriving the contact parameters for the dual contact model, with reference 

to Figure 5.8, is as follows

1. A mean reference crack line is drawn parallel to the direction of crack propagation, 

which intersects aggregate particles whose perimeters form part of the crack faces.

2. By taking several sampling points along the crack, the distances between the free 

surface and reference line are measured, i.e. ct and f i for the coarse and fine 

components respectively, where / and j  denote the number of sampling point for the 

coarse and fine particles respectively along the crack reference line.
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3. Thereafter, the average values of the surface roughness m ^  for each of the two

components are obtained. These allow for an estimate of the ratio between the m ^

values of both fine and coarse components, which was found to lie in the range

0.3-0.6.

4. In addition, the proportion of the crack length over which the surface roughness of 

coarse aggregate applies is determined. This provides an estimate of the percentage of 

coarse particles present within the concrete matrix ( a c - l c l L). Having examined a

number of SEM images, it was found that a c falls in the range 0.3-0.4.

Figure 5.6. Formation of cracks in concrete (van Mier 1997)
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Figure 5.7. Crack paths in concrete (Ollivier 1985)

Reference line

Figure 5.8. Derivation of contact parameters

Having determined all the necessary parameters for both contact surfaces, the 

dual-surface contact model can then be easily combined with the plasticity component, as 

discussed in Chapter 4, to form a fully integrated plastic-damage-contact model. The next 

section describes the return mapping algorithm.
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5.4 Stress recovery algorithm

The algorithms described in this section are essentially the same as those given in Chapter 

4, but with some differences in the local matrices. Nevertheless, they are included here for 

completeness.

In the context of a finite element incremental-iterative solution for a time independent 

problem, the stress update is made from the previous converged state. In this section, it is 

noted that the subscripts k and k +1 represents the values of quantities on entry to and 

exit from the return mapping algorithm respectively. A denotes the overall change of any 

quantity from the last converged state and 8  is the change of a quantity within the stress 

update iteration. It should also be noted that the algorithm is presented with the 

assumptions that both yield and fracture criteria have already been violated, i.e. plastic 

yield is active and one or more POD exists.

In order to evaluate the new stresses a k+] for the incremental strain As from the previous 

stresses a k, the following relationships must be satisfied.

• total constitutive relationship
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stress transformation

s / ,* +1 = N ik+xa k *  <5-31)

local stress-strain relationships for all PODs i

s f = D lsi, eilr (5.32)' >k+1 lStk+1 '£+1 v 7

e aiL x i s f ■ s f • (5.33)a‘k+1 lsJ ik+1 J‘k+\

where Clsj- is the local compliance matrix.

flow rule and plastic parameter

A e „ = ^ -  AA (5.34)
* + 1p da

AK = X k̂ AAekJ ^  (5.35)
da *+i

yield function

H « M ,r w ) = 0 (5.36)

total-local function

F = N iL ,a k+]- D l e: =0  (5.37)
<?/* + 1 'A+l " + l ' ^ + i 'A+l v '
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The total-local function is used to ensure that equations (5.30) to (5.33) are 

simultaneously satisfied (Jefferson 2003b). The model adopts an algorithm similar to that 

of the Closest Point Projection (Simo and Hughes, 1998). The numerical solution method 

is chosen for its stability and enhanced rate of convergence. Error measures are 

introduced for the plastic strain and plastic parameter, which, along with the error in the 

yield function and total-local function, are used in a coupled Newton iterative solution 

procedure.

For clarity the overall iteration subscripts will now be dropped, it being assumed that all 

quantities on the right of an equation are those from the previous update iteration (or the 

values from the previous overall finite element increment for the 1st iteration).

The error measures for both plastic strain and hardening parameter are defined as follows

Rr = -As  n + —  Ake p
(5.38)

T  dGR, = - A K  + X A k a T —  
da

(5.39)

From which the iterative corrections are obtained as follows

8s — Rr + 8k
r t da da2 dad/c

(5.40)

8 k  =  a (r k. + A k k J 8 a  + cK8k) (5.41)
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where

a t . = 1 -  AAXa T d 2G 
dadtc

cK = X a T —  
da

and

d X  T dG „ d 2G v dGk n =  a  —  + X — - a  + X —
da da da da

The yield function consistency condition is given by

„ 8 F t  ,  8F .  n F + —  5a + —  8 k  = 0 
da dK

Substituting (5.41) in (5.42) and rearranging gives

F + f J S a  + —  ar Rr +hk.SA = 0
d/c

(5.42)

(5.43)

where
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Using (5.37), the total-local consistency condition can be written as follows

Fe. + N,So + ^ ° ( T S o - — ^ ° e , 8 e i - !? ^ - e i8K-D, ' .8ei =0  (5.44)
da de,. ' ' 8k ' ls‘

in which o denotes a contraction with respect to the ‘in-plane’ components of a third 

order matrix. The third term in the above equation is null here as the orientation of the 

POD remains fixed during the stress update iterations. Then, substituting (5.41) in (5.44) 

yields

Fei + N  AiSa -  D,KjaK(RK + cKSX)~ D„lSei = 0 (5.45)

where

dD,
oe;

dDhi 
DlKi ~ d/e e‘

and

N M = N , - D , KiaKk a ‘ AX

The initial trial stress is given by

<7 =  Z ) . e + Ae -  s p -  ^ N j Te„j 
M J

(5.46)
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after which iterations are performed to satisfy equations (5.30) to (5.36). Since the total 

strain tensor does not change during the iterations, the iterative change in the stress may 

be written as

da = -Z), (5.47)

The iterative change in the added strain ea is given by

= ( / - < , ) & ,  +m'KiSK (5.48)

where

m' = M  Y. +XI XI
dM xi

de;
° e ; and

dMxi
d/c

Utilising (5.40), (5.41) and (5.48) in (5.47) and rearranging yields
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in which

dG d2G A,
S an  ~da oaoK

r) C1
R fyn — R F +  A A c i Rt m  c ^  ^  K KoaoK

A = '  m & G  , d2G ^ a, t , , t a 'A A — — + A A ------- A A a r^  -  > TV,- m^.a^k-  AA
dadK P  J J

-1

da1
D ,

Substituting for 8a from (5.49) in (5.43) and (5.44) gives a set of coupled equations with 

8/1 and 8ei as the unknowns. These are written in the following compact form, in which

i and j  are indices from 1 to np and in which the summation of repeated indices is 

implied. Note that i.j does not here imply differentiation with respect to j  components 

as it would in indicial notation.

Fk = M A8Z + B Aj8ej

f E i  — M  E j 8 A  + B E i j 8 e j

(5.50)

(5.51)
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in which

F x - F - f j A
y T

m 'n aKR,
k=\

d F  D

+ ~dK°

FEt = F ei- N AiA
k=1

M x = f j  A g m , - Z JN kTK ka,c,
k=1

- h .

M Ei = N AiA 8  Em Y ,  ^ k  m  Kfc^K^K 
k=1 ,

Bi j = f / A N Jr ( l - m ' XJ)

B e  =  N a . A N j T ( / - m '  ) +  D l l j J d i j

+ DiK,aKcK

where dt • in the expression for B E is the Kronecker delta.

The overall steps of the return mapping algorithm may now be summarised for the case 

when plastic yield is active and one or more POD exists.
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Box 5.1. Return mapping algorithm

Step Description

1 Initialise AX = 0 and Ak -  0

2 Compute trial stress from (5.46)

3

.....4.....

Evaluate FA,M^,BA,FE,M E,BE from (5.50) and (5.51) and solve for 8X and

* i

Compute 8 g  from (5.49)

5 Update e{ using et = et + 8et and update

6 Compute 8ep , 8k  from (5.40) and (5.41) respectively

7

8 

9

Update plastic terms

s p = £p + Ssp , Aep = Asp + 8sp , AX = AX + SX, k  -  k  + 8k and 

Ak -  Ak + 8k

Compute a new trial stress from 

o = De « - « p - £ j v / ( r - J I / iy )ey
L j=] J

Compute F  , Fei, Re and RK (5.36), (5.37), (5.38) and (5.39) respectively

10

Check for convergence

If M  ^  \F e \  ^  <*«*> W  ^  s m  a n d  K |  *  s ,oi 

Exit iteration

Else

Return to Step 2(1)

End If

Note:

1. Tolerance levels are a tol = f t *10~6 and etol = s t *10-6

5-24



Chapter Five Dual-Surface Contact Model

5.5 Consistent tangent constitutive relationship

The incorporation of consistent tangent operators with return mapping algorithms in 

computational mechanics have been recognised to provide fast convergence, accurate and 

stable solutions. In the solution of an incremental problem, it has been proved essential to 

use a tangent stiffness matrix that is consistent with the integration algorithm employed in 

order to preserve the quadratic rate of asymptotic convergence characteristic of Newton’s 

iterative solution method (Simo and Taylor 1985). An algorithmic tangent constitutive 

matrix is now derived which is consistent with the above stress update algorithm. The 

differential form of equation (5.30) may be written as

The term 5N ■ is the differential of the transformation matrix with respect to the trial

stress components used for the new POD detection. The choice of this trial stress a l is 

considered in greater detail later in this chapter. Thus equation (5.52) may now be written

(5.52)
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Differentiating equation (5.33) yields

= c v ,Ssf , - M  *>Sk (5.54)

in which

c i,f,  = k ~ '  ~ i )Cl and M * i  =  m W  K i

The differential quantities of the plastic strain, plastic parameter and the local stress 

vector may be written as follows

* 3 0  A, 820 S8en = 8 k -----1- Ak  — z-8a + A k -------- 8 k
p d a  d a 2 d a d K

8 k  -  aK[ A kkJ8 a  + c K8 k )

dN-
8 s  f  -  N : 8 a  + ----- l- o  (t , D , 8 s

f i  1 da, 1 1

(5.55)

(5.56)

(5.57)

Making use of (5.54) to (5.57) in (5.53) and rearranging gives

8a = A cA
"£,f T 8N, 8N,

/ - I  N / C „ f  - ± ° o , D , +— ^ ° e  D, 
£  do, do, j

8e

" f { N J T M KJa Kc K)K m - L W j  M *r
j =1

8k (5.58)
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where

Cl\ /  + />„ N j - M KjaKA M j )  + AX
7=1

d2G
+

d2G
-l

do dodrc
aKAAka

The consistency condition for the yield surface may be written as

5F = f KTSa+hKSX = a (5.59)

Substituting for So in (5.59) using (5.58) and rearranging gives

f  7 A I
SX = - y -— CjLJL— & (5.60)

/ r  i

in which

7=1
N / C u f

dNj

j doj

d N /
o OjDj + — — © e„.D

doj d i  l
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Substituting for 8/1 in (5.58), and using (5.60), gives the consistent tangent relationship 

as follows

8c - ^ caS m f  k ^ c A I N Se = Dep8s (5.61)

where Dep is the consistent tangent operator.

5.6 Numerical examples

This section presents the results from numerical simulations undertaken on examples of 

previously tested concrete structural elements. The results were obtained from the 

proposed model, which had been implemented into the constitutive driver as well as the 

finite element program LUSAS. Experimental tests conducted by Walraven and 

Reinhardt (1981) and Hassanzadeh (1991), which involved the application of normal and 

shear loadings on concrete specimens, were chosen for comparisons and to validate the 

proposed model. Table 5.1 gives the material parameters used in the analyses.
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Table 5.1. Material properties used for analyses

Material parameters Example 1 Example 2

E (N/mm2) 30000 50000

V 0.15 0.15

f c (N/mm2) 29.5 40

f,  (N/mm2) 2.5 3

£c 0.0022 0.0023

0.0026 -

Gf (N/mm) - 0.1

mg (coarse / fine) 0.4/0.2 0.4/0.2

mhi (coarse / fine) 3.0/1.5 0.4/0.2

mfui (coarse / fine) 13.5/9.0 2.0/1.0

ac 0.3 0.3

5.6.1 Walraven and Reinhardt’s tension-shear tests

This example involves a numerical simulation based on the normal-shear tests undertaken 

by Walraven and Reinhardt (1981). The tests were carried out on specimens with a shear 

plane of 300x 120 mm2, as illustrated in Figure 5.9. These specimens were tested in a stiff 

testing frame with external restraint bars to control the crack opening displacement. All 

specimens were initially loaded in tension to a set initial crack opening displacement 

before being loaded in shear. The tests were denoted by the code alblc where V  is the 

concrete mix number, *b’ the nominal opening and V  the normal stress at an arbitrary 

crack width of 0.6 mm. The tests involved three different nominal values of opening 

displacement, i.e. 0.0, 0.2 and 0.4 mm, and for each of the three nominal values, two tests 

were carried out.
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X / 7
400

c

150

300

150

Thickness =120 mm

Figure 5.9. Walraven and Reinhardt’s test specimen

The results of two experimental tests with initial opening displacements of 0.2 mm are 

shown in Figures 5.10 and 5.11, along with the numerical results from the constitutive 

driver. Figures 5.10 and 5.11 show the variation of normal and shear stress with the 

corresponding displacement respectively. At the initial stage of loading, the model 

predicts results that are within the bounds of the two experimental curves, after which it 

over-predicts the stress-displacement response. However, at the final stage of loading, the 

response gradually decreases and moves back to within the boundaries.
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-2 -

■a— Exper. 1/0.2/0.4 

-e—  Exper. 1/0.2/1.4 

- a —  Numerical

-4 -

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Normal displacement (mm)

Figure 5.10. Normal stress-displacement relationship

5

4

3

2

a — Exper. 1/0.2/0.4 

■e— Exper. 1/0.2/1.4 

t»t— Numerical
1

0
0 0.5 1 1.5 2 2.5

Shear displacement (mm)

Figure 5.11. Shear stress-displacement relationship
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5.6.2 Hassanzadeh’s tension-shear test

The example presented here is an analysis based on an experimental study undertaken by 

Hassanzadeh (1991). The tests were carried out, utilising feedback loops to link shear and 

normal displacements to the associated loads. Figure 5.12 shows the test specimen which 

has an effective cross-section at the notch level of 40x40 mm . The testing procedure 

involved firstly applying tension to the point of first fracture (at the top of the softening 

curve) and then applying displacements according to u = (tanar)*v. The tests considered 

here are those with a  = 45° and 60°.

The finite element mesh comprises 8-noded quadratic elements. It is noted that relatively 

coarse meshes were used in the analyses, which was inevitable in order to achieve full 

convergence. The solution employed the automatic step size procedure, with an upper 

limit of 0.05 mm placed on the prescribed boundary displacement increment. In this 

example, the target number of iterations was set to 8. During the solution, the step size 

was automatically reduced twice when convergence was not achieved in the maximum 

allowable number of iterations. The convergence tolerance was set to 0.1% for both 

displacement and residual force norms.

The deformed mesh and numerical crack plots at the final step of the analysis are 

presented in Figures 5.13 and 5.14, respectively. Figures 5.15 to 5.18 show the 

distribution of major principal stress and strain. Figures 5.19 to 5.22 give the 

stress-displacement responses and provide comparisons of the numerical predictions with
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that of experimental results. As can be seen in these figures, the trends in the numerical 

results are similar to those of the experimental. However, the model over-predicts the 

initial stiffness of the material.

40 x 40 mm'
unnotched
area

70

<:

60

Thickness = 70 mm

Figure 5.12. Hassanzadeh’s test specimen.

I l l )

Figure 5.13. Deformed mesh plot
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: 1
It: t i i \ u w

L ; i j j
:V -T1: H Li t d y

t "

(a) a=  45‘ (b) cc= 60°

Figure 5.14. Crack plots

LOAD CASE = 59
Inaem ent 59  Load Factor = 0.300E-H)1
RESULTS FILE* 0
STRESS
CONTOURS OF SMax

I -0  40122
I 0
I 0 .4 0 1 2 2

0 .80 2 4 3 9
1 .20366
1 00488
2.0061
2 .4 0 7 3 2
2 .8 0 8 5 4
3 .20976
3.6109®
4 .0122

____ 4 .4 1 3 4 2
4 .81464
5 .21585
5 .6 1 7 0 7

Max 6 .017  at Node 178
Min -0.4030 at N ode 146

Figure 5.15. Major principal stress distribution (a=  45°)
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LOAD CASE = 59
Irvjement 59 Load Factor = 0.300E-*01
RESULTS FILE = 0
STRAIN
CONTOURS OF EMax

6 07992E-3
0 .0 1 2 1 5 9 8
0 0182398
0.0243197
0 0303996
0 0364795
0.0425594
0 0486393
3 05-47193
0 0607992
3 D068791
0 072959
0 0790389
0.0851138
0.0911988

Max 0 .9727E-01 at Node 179 
Min -0.5101E-05at Node 133

Figure 5.16. Major principal strain distribution ( a =  45°)

LOAD CASE = 61
Inaem ent 61 Load Factor = 0 30GE+01
RESULTS FILE = 0
STRESS
CONTOURS OF SMax

-0 234266  
0
0 .234266
0.468531
0 .702797
0 937063
1.17133
1.40559
1.63986
1.87413
2 .10839
2 .34266
2 .5 7 6 9 2
2 .8 1 1 1 9
3.04545
3  27972

Max 3  392 at Node 147 
Min -0.3564 at N ode 187

Figure 5.17. Major principal stress distribution (a =  60°)
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LOAD CASE *  01
Increment 61 Load Factor = 
RESULTS FILE = 0
STRAIN
CONTOURS OF EMax

0 300E+01

0
8 9039E-3 
0 .0178078  
0 .0267117  
0 0  356156  
0 .0445195  
0 .0534234  
0 0623273  
0 .0712312  
0.0801351  
0 .089039  
0 0979429  
0 106847  
0.115751  
0 124655  
0 .133559

Max 0.1425 at Nods 202  
Min -0 4322E -05at N od e293

Figure 5.18. Major principal strain distribution (a=  60°)

4

2

0

•2

•4

•6 ■a— Experimental
-e— Craft
-a— Dual surface8

-10
0.05 0.1 0.15 0.2 0.25 0.3 0.35

Normal displacement (mm)

Figure 5.19. Normal stress-displacement relationship (a=  45°)
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8

•e— Experimental 

-e— Craft 
- a —  Dual surface

6

4

2

0
0 0.1 0.15 0.2 0.25 0.3 0.350.05

Shear displacement (mm)

Figure 5.20. Shear stress-displacement relationship (a=  45°)

4

■q — Experimental 

-e— Craft 

- a —  Dual surface
2

-A A A  A A A  A A-0

■4

0.3 0.4 0.5 0.60 0.1 0.2
Normal displacement (mm)

Figure 5.21. Normal stress-displacement relationship (a=  60°)
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3

-b— Experimental
-e— Craft

-a— Dual surface
E
E 2
z
(A
(Afi
(A

ro 1 0)
-C
CO

0
0.3 0.40.20 0.1

Shear displacement (mm)

Figure 5.22. Shear stress-displacement relationship (a=  60°)

5.7 Conclusions

The proposed dual-surface contact model has been developed based on the original Craft 

model of Jefferson (2003a, b). The addition of a second contact surface was to model the 

build up of stresses at the initial stage of contact. In the proposed model, the local stress in 

the fully debonded component was assumed to be the sum of stresses contributed by 

coarse aggregates and fine particles within the matrix. A new parameter that relates to the 

proportion of coarse particles in a representative volume of the damaged material was 

introduced in the local stress-effective strain relationship. Contact parameters associated 

with each of the damaged components were determined from a series of SEM images.

In the present approach, a modified damage evolution function was employed which 

gives a smooth continuous tensile softening curve (Jefferson et al. 2004). In order to
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model the development of stresses at early stages of crack opening, the original H f

function used in the Craft model was replaced with a modified function, in which 

reduction at both early and later stages were controlled by different control parameters 

(Jefferson et al. 2004).

From the numerical examples presented in Section 5.6, the proposed model has found to 

be able to simulate the behaviour of aggregate interlock in cracked concrete. This 

behaviour is visible, in particular, in the normal-shear tests of Walraven and Reinhardt 

(1981). Although prefect agreement with experimental results was not achieved, the 

model was capable of simulating the build up of shear and normal stresses reasonably. 

Also visible is the capability of model to simulate the observed behaviour that the wider 

the crack the less the shear stress that can be developed with increasing shear 

displacement.

As for the comparisons made with the data of Hassanzadeh (1991), the model was found 

to be more effective than the original Craft model. However, it is noted that the numerical 

analyses had been carried out using relatively coarse finite element meshes as the model 

experienced difficulties when finer meshes were used. Nevertheless, the numerical 

predictions produced by the proposed model were closer to the results observed in the 

experiment.
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Chapter Six 

Smooth Frictional Contact Model

6.1 Introduction

This chapter describes the development of an embedded smooth frictional contact model 

for smooth construction joints within concrete structures. The presence of joints in most 

concrete structures, especially dams and retaining walls, results in embedded planes of 

weakness, which can jeopardise both the strength and response of these structures. 

(Jefferson 1998).

As with the previous model, the smooth frictional contact model was based on the 

original Craft model of Jefferson (2003a, b). What distinguishes the present approach 

from the original is the applicability of the model to simulate local plastic yield due to slip 

between joint surfaces.
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6.2 Local damage-contact relationship

Unlike other interface models, the present model has been formulated in terms of stresses 

and strains rather than the more common terms of stresses and relative displacements. It 

is assumed that the joint has a finite dimension, given by its characteristic length. This 

characteristic length is used to relate strains to the relative displacements.

Recalling equation (4.11) in Section 4.3, the total local stress Sj- is the sum of both

undamaged and fully debonded stress components. In the present model, an additional 

variable is introduced in the fully debonded component to describe plastic frictional 

sliding on the crack plane. The local stress Sj- is expressed as

s /  = H c s * + H f <osd = H cDLe + H f coDL$ d{ e - e s) (6.1)

in which the first component represents the undamaged part of the material, which is 

assumed elastic, and the second component represents the fully debonded part of the 

material, which is frictional. As the current model deals with smooth surfaces, H f  is no

longer a function of the crack opening strain eg and embedment g , as in previous crack 

models. Whilst H ^  is set at 0.995, 4>d equals to 1 when the crack is closed, and 0 for 

opened crack. es denotes the local plastic slip strain vector. The added strain ea is now 

expressed as
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e „ = e - C Lsf  (6.2)

Substituting for the local stress, Sj- in (6.2) using (6.1) gives

e„ = ( l - H c) e - H f(o 0 <t{ e - e s) = { \ - H c) e - h a>( e - e s) (6.3)

6.2.1 Slip function

The model adopts a simplified slip Mohr-Coulomb yield function, which is based on the 

assumption that a limiting condition is reached when the shear stress on a critical plane 

reaches a limiting value, which depends on the normal stress on the plane. The yield 

function is derived in local stress space and has the form

f e s ( Sd )  =  ' / Srfj2 + S d ' *  + f i e s ^d r (6-4)

where ^ es is the friction coefficient.

The local model also uses a non-associated flow rule

Ses = ^ ~ 5 y  (6.5)
dsd
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where y is the positive slip multiplier, and (j)s is the plastic potential function expressed 

as follows

The use of this plastic potential implies that there is no dilatancy, as indicated by the title 

of the model.

6.2.2 Local trial stress computation

In order to compute the initial trial value for the local stress sd , it is necessary to first

evaluate the plastic strain generated from the incremental strain. Consider a local strain 

increment, which starts from open and goes to the closed state, as illustrated in Figure 6.1.

(6.6)

>
Closed region i Open region er 
(Compression) j (Tension)

Figure 6.1. Computation of local trial stress
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With reference to the above figure, the local plastic strain may be computed as

In the case where the local strain increment is already in the closed state, res equals 1. 

Using the form of es given in equation (6.7), the initial trial local stress for the damaged 

component sd may be given as

6.3 Stress recovery algorithm

In this section the stress update is made from the previous converged state. The subscripts 

k and £ + 1 represent the values of quantities on entry to and exit from the return 

mapping algorithm respectively. A denotes the overall change of any quantity from the 

last converged state and S  is the change of a quantity within the stress update iteration. It 

is noted that the algorithm is presented with the assumptions that both fracture and local 

sliding criteria have already been violated.

=«m + (1 -  res )Ae (6.7)

where

sd = D L( e - e s) (6 .8)
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In order to evaluate the new stresses a k+x for the incremental strain As from the previous 

stresses ak, the following relationships must be satisfied.

total constitutive relationship

*  *+ l =  ° e 'Jk+1
(6.9)

stress transformation

Sik+ 1 ^ik + \Ck+\ (6 .10)

local stress-strain relationships for all PODs i

Sik+1 — ^ c i k+] ^ L e ik+\ +  ^coik+\ ^ L ( . e ik+\ ~ e si/c+1) 

e aik+ 1 ~  P  _  ^ c i k+\ }e ik+\ ~ h 0)ik+\ { e ik+\ ~ e sik + \ )

(6 .11)

(6 .12)

• flow rule and plastic parameters for local slip

d0siAesi ds
A/i

dik+1
(6.13)

local slip or yield function

f  ?siSd i k+1) — 0 (6.14)
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• total-local function

^eik+1 — îk+\**k+\ ~ ^ L ^ c eik+1 <̂»ik+\ (eik+\ ~ esik+\^)~ ^  (6.15)

The error measure for the local plastic strains, along with the errors in the slip function 

and total-local function, are used in a coupled Newton iterative solution procedure.

The error in the plastic strain e is defined as follows

R esi = + Ay, arfji.
dsj.

(6.16)

From which the iterative corrections are obtained as follows

f  e <t>s 'Resi+ S y , - ^  + Bc,Se,
OSj,

(6.17)

where
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The sliding yield function consistency condition is written as

T

/ - , + f ^  <&rf, = 0  (6.18)

Utilising (6.8) and (6.17) in (6.18) gives

f e s i  +

T

esi D , Set -  Aci C l  f =  0 (6.19)

The initial trial stress is computed by

a = D, e + A s - ^ N / e ^
j = i

(6.20)

Thereafter, iterations are performed to satisfy equations (6.9) to (6.14). The total strain 

tensor does not change throughout the iterations. This then gives the iterative change in 

the stress as

= (6 .21)
y=i
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The iterative change in the added strain ea is given by

*«./ = (7

where

m
Cl ’ ' d' dCi de, dC, ’ ' ‘ 8e,

Making use of equations (6.17) and (6.22) in (6.21) yields

So = - D eY j N j
j =1

( l - m ' CJ)Sej+haJAcj
80sj '  

Ra J + 6 r J- J - + B tJ& J
SsdJ

Expanding the total-local function in (6.15) as a Taylors’ expansion yields

Fei + NjSa -  D,_ ( i -  hmSesi) = 0

(6.22)

(6.23)

(6.24)
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Utilising (6.17) and (6.23) in (6.24) gives

=  0 (6.25)

The overall procedure results in a set of coupled equations with Sy and Se as the 

unknowns. These could be written in the following compact form, in which i and j  are 

indices from 1 to np and in which the summation of repeated indices is implied. Note that 

i , j  does not imply differentiation with respect to j  components as it would in indicial 

notation.

(6.26)

(6.27)

where
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dd) . d(fis ■ ■
PEi J = N tD . N j ThmJA eJ -  DLhaujA ci J - ^ d tJ

OSd j  d i,j

D l A c A
esi

B
T

= J J jiL  DL( l - A ciBci) 
' dsj.

ds. dsdi

where dtj  in the expression for B E and PE is the Kronecker delta.
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Box 6.1. Return mapping algorithm

Step Description

1 Initialise Ay = 0

2 Compute trial stress from (6.20)

3 Evaluate Fyi B y , Py , FE, B E and PE, from (6.26) and (6.27), and solve 

for 8yt and Set

4 Compute 8a from (6.23)

5 Update et using ei = ei + 8ei and update ^

6 Compute 8esi from (6.17)

7 Update plastic sliding terms

esi = eu + . Aes, = Aesj + Sesi , Ay, = Ay, + Sy,

8 Compute a new trial stress from

<7 = De ,  -  J  N /  [(1 -  H c J  )ej -  haJ (ej -  es .)]
L j=] J

9 Compute f esi, Fei, and Resi from (6.14), (6.15) and (6.16) respectively

10 Check for convergence

I f  | ^ |  ^  <r,oi>\ f e s \ ^ <r,oi an d  | * „ |  ^

Exit iteration

Else

Return to Step 2(1)

End If

Note:

1. Tolerance levels are crtol = f t *10-6 and s tol = s t *10-6.
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6.4 Consistent tangent constitutive relationship

This section describes the derivation of an algorithmic tangent constitutive matrix that is 

consistent with the stress update algorithm formulated in Section 6.3. The use of a tangent 

stiffness matrix that is consistent with the integration algorithm has been proved to 

provide fast and stable solutions by preserving the quadratic rate of asymptotic 

convergence characteristic of Newton’s iterative solution method (Simo and Taylor 

1985).

6.4.1 Method 1

Recalling the total constitutive relationship in equation (6.9), the differential form of the 

equation may be written as

(6.28)

Given that the term SNj  is the differential of the transformation matrix with respect to 

the trial stress <7,, equation (6.28) may now be written as
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Differentiating equation (6.12) yields

The differential quantities of the plastic slip strain may be written as

d2d>f.

5sdi "

Differentiating the damaged stress component in (6.8) yields

*</,■ = -° i

Substituting for in (6.31) and rearranging gives

3 ^ , Sy, +

The iterative change in the added strain ea may be written as

= S e ; - C LSsf .

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
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Substituting for 8e in (6.33) using (6.34) gives

= A c
ddsi Syi + B ci(se„i + C L(Sf .)

Utilising equations (6.30) and (6.35) and rearranging yields an expression of 8ea 

of Ssj- and 8y

d<j>
8ea i =Ccsi8sf .+ C CY. - ^ - 8 y iat cst j  i 1 f is

where

cai = ( <  - hm Ac.Bci)-'( / + haiAclBcl - m'ct)CL 

Cc7, = (mo - h a,AciB ciy ' h alAcl

Substituting for 8ea in (6.29) using (6.36) and given that

ds f = N  :8a + ^ J- o a  ,D,8s  
fl 1 da, 1 1

(6.35)

in terms

(6.36)

(6.37)
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Equation (6.29) may be rewritten as

So = AcA " j C ' r ^ S y j
j =1 J /

(6.38)

where

"p _
I  + ^ N / C n j N j

\  >1
D,

The iterative change in the local stress s f may be written as

<&/,. =DL{m'CiSel - hmiSes,) (6.39)

Utilising equations (6.33) and (6.41) allows both Se and Ses be expressed in terms of 

Ss , and 5y as follows

Ws,Se =Cc r - ^ - S y t +CcaiSs,  
ds 1

(6.40)

Se, = c J - t - 5r ^ c cci&fi (6.41)

6-16



Chapter Six Smooth Frictional Contact Model

where

C«U ={m'c, - K 1,Ac Bc, Y 'CL

Ccci = (/ - A clBe l h j ' A ciBcim'c -'CL

ccSi={t - AciBci<,r'Ky Aci

Now considering the consistency of the slip function /

d f  T
Ssd i = 0 (6.42)

fed,

which can also be expressed as

d f  T
DL{Se,-Ses) =  0 (6.43)

t e di

Making use of equations (6.37), (6.40) and (6.41) in (6.43) and collecting terms gives

Sy, = Si-' ijTiSe (6.44)
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where

o  = d
i,j ds.

T f

V

c cu i N  i AcA N  j  Ccy
J ds.

J J
as, , , 1 cii-< ds, . . i,J‘J IJ

f  j)  c i cA cA + ,da,

C  - C  - Cc*P i CY i eg i

C = C  - Ccui v" cai cci

Hence, by substituting (6.44) in (6.38), the consistent tangent constitutive relationship 

may be obtained as

*  = A a{i ca - za-'r)se = Dep8s (6.45)

where

p dd> .^  -- ^rsjs  = Y , " , Tc
crj

and Dep is the consistent tangent operator.
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6.4.2 Method 2

The following describes an alternative approach to deriving the consistent tangent 

constitutive relationship.

Using (6.30) and (6.33) in (6.29) and rearranging gives

Sg — D,
j =1

'  W sj  ^
I (icJSe + h(0JA Cj— L S r l

ds. 'J J

(6.46)

where

X d N
I = I - Y — J-  oe„ D,e /  i ~  a i l

M  d°!

h c j  = ( r -  m ’c , ) +  h , . , j A c j B C j

Substituting for Ses in (6.43) using (6.33) and rearranging yields

Sy, =

Veu
ds

DL( I ~ A clB ci)

Vest n  . t y .
Se,

d la c
' dsdi

(6.47)
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The total-local consistency condition can be expressed as

+ - h mldesi) = 0  (6.48)
0(7 {

Utilising (6.33), (6.46) and (6.47) in (6.48) and rearranging gives

SeJ = a e.J- 'rei& (6.49)

where

O = N,D,Nj- 1  dcj +

d</>s d f ,
K i A c -  - ~J j  r)vo s d  j  o s d j

d l {i - a cjb c )

d fe s , d f c i1 DLA t 1
ds c j dsd  i

+

m' . —hm. Ar . Br. .C l , J  (Oi , J  C t , J  C i j

d 0 s U  d fesi

d i , j  8 s d i , j

dfesi,j
dsd i j

D L A c , j

80.
‘J

S‘J
dsd‘J

r ei = n ,d c
M

CS j

dNj  

da j
a ,D t
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Hence, substituting (6.47) and (6.49) in (6.46) yields the consistent tangent relationship

6.5 Numerical implementation

The implementation of the proposed constitutive model has been carried out using 

Mathcad. The overall procedure is detailed as follows.

• Initialise the total stress <rt and strain s vectors

• Update total stresses 

g , =  g , +  A g „

where o a is the applied stress increment

• Set the initial value of the out of balance stresses for this increment 

A g  =  <7, -  A c a

• Enter the iteration loop

(6.50)

where
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■ Form consistent tangent matrix Dep. For situations where no crack plane has 

formed, Dep is essentially the elastic matrix De (6.50).

■ Compute strain increment from the out of balance stresses and tangent operator 

using the Gaussian reduction method, and extract ‘reaction’ stress Aarc, if 

required

A£ = Dep~'A<r

■ Update total stress and strain 

o t = <7, + Aa rc, e -  s + As

■ Enter stress recovery loop

♦ Calculate the trial stress a tr .

° , r  =  + D e A £

where a old is the current stress, either from the first increment or

converged stress from previous increment

♦ Check the POD formation criteria. If a new crack has formed, compute the 

transformation matrix using the trial stress (see Chapter 4)

♦ Evaluate the incremental local strain 8ei using (6.26). If there is a change 

in contact (i.e. from open to closed state), evaluate the local trial stress for 

the damaged component sd . from (6.8)

♦ Evaluate the local yield function f esi. If the yield function is less than

zero then the material has not slipped for the current applied load 

increment. If the material has slipped, i.e. f esj > 0

6-22



Chapter Six Smooth Frictional Contact Model

D Evaluate the incremental local strain 8e( and the plastic multiplier 

S/j using (6.26) and (6.27)

D Update the local strain ei and the damage strain

D Update the local plastic strain esj from (6.17) and the total

incremental plastic multiplier A / t 

D Compute the new trial stress and local stress from

M

s d, = D L(e, ~ e si)

° Evaluate the local yield function (6.14), the total-local function 

(6.15) and the error measure for local plastic strain R esi (6.16)

D If converged to within the specified tolerance, exit the stress recovery

loop

■ Compute the out of balance stress

^  = ~0„ew

■ Compute the relative error

\Ag \
m = L—p

N

If converged to within the specified tolerance, exit the iteration loop 

Else return to the start o f the iteration loop 

End of increment loop
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6.6 Numerical examples

This section serves to assess the response of the proposed model to various strain paths. 

Validation of the constitutive model by means of comparisons with experimental data has 

not been carried out as the model is only available in a Mathcad implementation. 

Nevertheless, the consistency between the return mapping algorithm and the tangent 

stiffness operator was verified. The material properties used are listed in Table 6.1 and 

Figure 6.2 illustrates the strain paths used for the test. The results predicted were 

compared to those given by the original Craft model.

Table 6.1. Material properties

E V f so Mes

(N/mm2) (N/mm2)

40000 0.15 2.86 0.002 0.7

The first example was a uniaxial tensile strain path, which is illustrated in Figure 6.3. The 

second example involved a pure shear strain path, which was applied after a crack plane 

has been formed. The result for the shear stress-strain relationship is shown in Figure 6.4. 

Figure 6.5 depicts the numerical results for a combined tensile normal-shear strain path. 

In the fourth example, a uniaxial tensile strain was first applied, followed by a 

compressive strain path. The normal stress-strain response is shown in Figure 6.6. The 

last example was a combined compressive normal-shear strain path. Figure 6.7 shows the 

numerical results for the stress-strain relationships.
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Syy= 0

Example 1

•XX

Example 2 Stage 1 Stage 2

-XX

Stage 1 Stage 2Example 3

•XX

Example 4 Stage 1 Stage 2 •XX

•XX

Syy=  0

Stage 1 Stage 2Example 5

Figure 6.2. Strain paths
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3

■e— Smooth Fric. Contact 

-a -  Craft

E 2 
E
z
xx(0
V)
2! 1

0
0 0.5 1.5 2 2.51

Strain XX (*1000)

Figure 6.3. Example 1 -  Uniaxial tensile response

3

a — Smooth Fric. Contact 

-a — Craft

z
>-
X
(0(O
2! 1

CO

0
0.10 0.2 0.3 0.4

Strain XY(*1000)

Figure 6.4. Example 2 -  Pure shear response

The uniaxial tensile response agrees with those generally observed in experiments. Under 

pure shear loading condition, the model is able to simulate the initial build up of shear up 

to the peak strength, after which it starts to decrease. The Craft model predicts a much
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higher increase in shear due to effect of aggregate interlock. In the third example, a crack 

was first formed, after which it was driven by a combined tensile normal-shear loading 

path. As expected, the damage model predicts softening response in both stress-strain 

relationships.

■b —  Smooth Fric. Contact 

-a— Craft

04
E
E
z

(0woL-
<0

-2 -

Strain XX (*1000)

(a) Normal stress-strain response

-q— Smooth Fric. Contact 

-a — Craft

I 2-
z
>-X(0(0
fl> 1 .

to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Strain XY(*1000)

(b) Shear stress-strain response 

Figure 6.5. Example 3 -  Stress-strain relationships
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In this example, a crack was first opened in tension and then closed by a compressive 

normal strain path. Upon unloading, the model simulates stiffness degradation due to 

damage. The proposed model, as with the Craft model, captures stiffness recovery upon 

full crack closure.

CN
E
E
z
X
XW
ts>8
(/>

-b— Smooth Fric. Contact 

-a— Craft

Strain XX (*1000)

Figure 6.6. Example 4 -  Normal stress-strain relationship

The last example involves crack planes subjected to a combined compressive 

normal-shear loading path. A crack plane was formed in tension, after which a combined 

normal-shear loading was applied. The effect of frictional hardening can be seen in 

Figure 6.7(b). Whilst the normal compressive load was kept constant, the continued 

increase in shear led to the accumulation of plastic slip strains. It is also noted that as 

damage increases, the shear stress tends to -  Mes^xx-
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0.05

Smooth Fric. Contact 

Craft

------

Strain XX (*1000)

(a) Normal stress-strain response

Smooth Fric. Contact 

Craft

0 0.1 0.2 0.3 0.4

Strain XY (*1000)

(b) Shear stress-strain response 

Figure 6.7. Example 5 -  Stress-strain relationships
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6.7 Conclusions

A smooth frictional contact model is presented in this chapter, which applies to the 

numerical simulation of smooth construction joints in concrete structures. The attention 

at this stage is only paid to the behaviour of the local damage-contact model, which was 

developed to simulate the behaviour of cracks formed under loading. The response of 

crack planes formed under uniaxial and multiaxial loadings were considered. Various 

strain paths were used to distinguish the behaviour of crack planes under different loading 

conditions.

In the proposed model, the local plastic term was introduced in the damaged component 

of the local stress-strain constitutive relationship. A plastic slip function was incorporated 

in the model to monitor any local plastic slip on the joints. The embedded contact plane 

was assumed to be smooth and frictional, which is suitable for the simulation of smooth 

construction joints that can be found in large concrete structures.

The proposed model was verified using a number of strain paths via a Mathcad 

implementation. From these numerical examples, it can be concluded that the model has 

shown the potential to predict the typical characteristics of joints at different contact 

states, as well as under different loading conditions.
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Chapter Seven 

Embedded Planes with Local Plasticity Contact Model

7.1 Introduction

This chapter is dedicated to the formulation of a local damage-contact model, with the 

inclusion of local plasticity on embedded crack planes. Experimental evidence has 

proved that permanent strains develop in cracked concrete specimens subjected to cyclic 

loading. Experimental stress-strain curves clearly show the gradual development of 

residual strains throughout the unloading-reloading process. The development of these 

permanent strains is mainly due to the distortion of the particle structure within the 

specimen when it is subjected to applied load.

The same applies to cracks formed when the fracture strength of the material has been 

reached. Cracks that are open during the loading process are unable to close completely 

when the load is fully removed. Hence, it is the aim of this chapter to enhance the local 

damage-contact model of Jefferson (2003a, b) by taking into consideration local plastic 

yielding on crack planes.
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7.2 Local damage-contact relationships

7.2.1 Overall local stress-strain relationships

As oppose to the simplified local stress-strain relationship described in Chapter 4, the 

total local stress Sj- in the present model is expressed as follows

s f = Dl (HcI  + H f a>0ll)erec = D LM xerec = DLM x( e - e  ) = Dls( e - e  ) (7.1)

in which the recoverable strain vector erec is now derived as erec = e - e p where ep is 

the local plastic strain vector. In addition, the new added strain ea is written as

e a = e - e e = e ~ C L S f  C - 2 )

where ee is the local elastic strain vector. Substituting for the local stress Sf  in (7.2) 

using (7.1) yields

e a = e - M x ( e ~ e p )  ( 7 -3 )

Noting that CLD L = I , i.e. the identity matrix. Figure 7.1 describes schematically the 

definition of the local strain vectors used in the present damage-contact model.
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rec

Figure 7.1. Definition of local strain vectors 

7.2.2 Modified softening function

Recalling the softening function employed in the original version of the local 

damage-contact model, as described in Chapter 4, the function is expressed as follows

f s = ( \ - c o ( 0 ) E (  (7.4)

in which
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In the present model, the a> function is modified by incorporating an additional 

parameter a which, in one-dimensional problems, is the ratio between the local plastic

strain ep and ^  -  s t , such that

ep = a P(<Z-s <) (7-5)

This parameter is included to control the amount of damage at a given level of local 

strain. The modified softening function is now expressed as follows

f s  = + o - o
, i l £ L
£0 - e t

- 2 -

(7.6)

in which the parameter ap takes any value ranging from 0 to 1. It is noted that the 

modified function recovers its original form when ap = 0, i.e. local damage-contact 

formulation with no plasticity.

7.2.3 Local yield criterion and flow rule

A local yield function f e is employed within the crack model to simulate plasticity on

crack planes. The yield function takes the same general form as the original damage 

function but is now expressed in stress rather than strain space.
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r /  , ,  ( ^ 2 ~ r^ f :  + W * / r + h  + W ( * / , 2 + , / , 2> ,
= ------------------------------------------- 5--------------------------------------------f s  ( 7 - 0

2  N o ­

f t is the uniaxial tensile strength and ra and fj,a are the relative shear stress intercept 

and the asymptotic friction factor respectively. The convexity of the yield surface is 

preserved with ra > jua . The equivalent fracture stress parameter f s is derived as

-Cl
rcs t +(1 - r c)s te £° £* e E (7.8)

in which rc denotes the residual fracture of tensile strength. The damage function (/>, 

which is the same as that employed in the original model, is expressed as

( \ 2"

t o . O  =  - T 1 + Me
2 S t  7

+ ~ j V<>v2 - +4r( 2(e,2 +e,2) - £ (7.9)

The material constants and ju£ are the strain equivalents of ra and //CT respectively.

It is noted that the shape of the local yield surface is similar to that of the damage surface, 

as illustrated in Figure 7.2.



Chapter Seven Embedded Planes with Local Plasticity Contact Model

Damage surface

Undamaged region
*(e,O <0

(b) Damage surface

+ s

Yield surface

Elastic region
f e ( s f , f x ) < 0

(a) Local yield surface

Figure 7.2. Local yield surface and damage surface

Considering equations (7.7) to (7.9), the dependence of the fracture stress f s on the 

damage parameter ^  implies that both the size of the local plastic yield surface in stress 

space and damage surface in strain space depend upon a single local evolution variable.

A non-associative flow rule is adopted for the local model, which has the form

dg
ds

Sep = S j u (7.10)
/

where /j. denotes the local plastic multiplier. The plastic potential function ge is simply 

derived as follows

s<(I / )  = \ / v , 2 + s / J2 + J / , 2 (7-n )
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This spherical form of plastic potential is different from that normally used in dilatant 

interface models. However, here, the model is not a standard interface model, but a 

contact model between rough surfaces. The plastic strains or deformations need to reflect 

the plastic embedment of one surface into another. This, as may be implied from the work 

of Walraven and Reinhardt (1981), tended to be in the direction of the principal stress. 

The concept is illustrated in Figure 7.3.

Plastic
embedment

Figure 7.3. Concept of plastic embedment on aggregate interlock 

7.3 Stress recovery algorithm

In this section the stress update is made from the previous converged state. The subscripts 

k and k + 1 represent the values of quantities on entry to and exit from the return 

mapping algorithm respectively. A denotes the overall change of any quantity from the 

last converged state and S  is the change of a quantity within the stress update iteration. It 

is noteworthy that the algorithm is presented with the assumptions that global yield and 

fracture criteria, as well as the local yield criterion have already been violated, i.e. global 

plastic yield is active and one or more POD exists with local plastic yield.
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In order to evaluate the new stresses a k+l for the incremental strain As from the previous 

stresses a k, the following relationships must be satisfied.

• total constitutive relationship

1 =  D e - I£k+1 Epk+] L " j  e°jk+x 
j=1

(7.12)

• stress transformation

S f —  N , l  j  ik+1 '* + 1 *+1 (7.13)

local stress-strain relationships for all PODs i 

s f . -  Disik+](eik+1 ~ ep=- .)'*+1 '*+i

^ a >k+l ^ ' sf'k+ l S f  ik+1

(7.14)

(7.15)

where Clsj- is the local compliance matrix.

flow rule and plastic parameters for both global and local plastic yield 

dGAs „ = —  AX
k+1

A V  A 1 TA* = X k+\AXak+\ —
da k+i

A e P i  =
dge,
dsf i

(7.16)

(7.17)

(7.18)
*+i

7-8



Chapter Seven Embedded Planes with Local Plasticity Contact Model

• global and local yield functions

(7.19)

f e ( S f  ik+x>K k + \> i i k + l }  ® (7.20)

• total-local function

^ e i k+1 N i k+1 ° k +1 ^ l % +i ( e ‘k+\ e Pik+\  ̂ ^ (7.21)

Error measures are computed for both global and local plastic strains and plastic 

parameters, which along with the errors in the yield functions and total-local function are 

used in a coupled Newton iterative solution procedure.

For clarity the overall iteration subscripts will now be dropped, it being assumed that all 

quantities on the right of an equation are those from the previous update iteration (or the 

values from the previous overall finite element increment for the 1st iteration).

The plastic strain and hardening parameter errors are defined as follows

Rr — —A e  -\ AA£ p (7.22)

Rk. = - A k  + XAXoT —  
8a

(7.23)

R ep, A e P i + A ^ ‘ d s ‘
J ii

(7.24)
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From which the iterative corrections are obtained as follows

S e n = Rf + S /1 — +  A X — — S a  + A X ---------- S k
p s da da2 dadK

S k  = a K ( R k +  A X k a  S a  + cKSX)

. A 9 Se,& p , = K Pi+Sfii - ^ - L + A ni
fi ds

Ss
fi

(7.25)

(7.26)

(7.27)

where

a , .  =
1

1 -  A X X g
T dzG 

dadK
CK = X*'

dG
da

and

dX T dG „ d 2G v dGka =  g  —  +  X — - g  + X  —
Sg do do da

The global yield function consistency condition is written as

„  dF' dF
F  +  —  Sg  h S k  = 0

dG dK
(7.28)

Substituting (7.26) in (7.28) and rearranging gives
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where

,  dF dF AU . , SF
f K = T ~  + T ~ a‘ A U ‘’ 311(1 hK = - ^ a<CKd a  o k  o k

The local yield function consistency condition is written as

f e. + —  Ssf + - ^ - S k + ^ — ^~ Set = 0 (7.30)
e' ds{ . U dK d£, de;

Substituting for Ssj- using Ssj = N S a , utilising (7.26) in (7.30) and rearranging gives

T  o -  . 8fei „  n  , & e , _  o ,  , dfe , Sf, TF + f eK ‘ So + - ^ - a e R r + ^ J-a KcyS/U  Se,= 0 (7.31)J e ,  J e K, d ] <  K k  5 k  k  k  a

where

f ' " = N , ¥ * -  + %X-ar Aaka
US j - , u f c

Using (7.21), the total-local consistency condition can be written as follows
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d N ■ dDh
F  . +  N:Sa +  — L o g 8g ---------- L o ( e .  - e n.)Se: ...

da de; 1 Pl 1

dDh . dDh .
-  + , »(«, -  ) ( & , - & „ )  (e, -  ep. ) S k  =  0  (7.32)

d ( e , - e pj) n Pl dK

in which ° denotes a contraction with respect to the ‘in-plane’ components of a third 

order matrix. The third term in the above equation is null here as the orientation of the 

POD remains fixed during the stress update iterations. Then, utilising (7.26) and (7.27) in 

(7.32) and rearranging yields

F e, + D i,, ,R ePl ~ Di, ,a, R. + N ei So -  DUiSei + D,p. ^ -Sfi, -  D,Kiak.cK8X = 0  (7.33)
f  i

where

d2g e
H ei = f f ,  + Dlp Afj, ——y N,  -  DlKiaKAAk„‘ 

dsf .

dDh, dDb,D„ = — - ° ( e , - e n ) + ------- - — o (e , - e„  ) + />,,.
8e, Pi d ( e , - e  ) ' Pi ls‘

dD,s
Dl t l = - X - { e l - e pi)

3k 

dDls,D,. =  Z! o1Pi d(e, ~ e p )
(<?, - e p .) + Dh,
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The first trial stress is given by

E + A s - S p - ^ N / e (7.34)

and thereafter iterations are performed to satisfy equations (7.12) to (7.20), throughout 

which the total strain tensor does not change and thus the iterative change in the stress 

may be written as

So = -Z>„
j = \

(7.35)

The iterative change in the added strain ea is given by

= i1 - + ">'Pi SePi ~ (7.36)

where

m ci o c , T
m x. = M , . + -------( e , - e . ) -----  + ...

11 d£, ' Pl de,

d m , . .  . . d £ / T dHf,

Si

d_ %
de,

r \
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m' = M  r. +Pi xi
dH

dgi
8 g ‘d ( e , - e p.) ,

dH,
m I dco

v' 5 k  ' 1 d K

Making use of (7.25), (7.26), (7.27) and (7.36), (7.35) may be rearranged to be

Sg = -A , R exp +
dG d 2G ¥ , atT—  + AA a k.ck, -  > N : m:..ak,ck.
da dodK p  J 1 K

SA +

y=i
SLlLx,, 

~ pj *  ^
. . .

in which

A„ = r ,  „ f 52G d 2G r l
I  + D I ■ ' + -------a A A k

1  ̂da '■v -1 V <7 zlA +

y
h n j

]2Seim'p A fi j  - N -»C,a,.zUA
d 2g

a * , 2 2  r'  ‘  '
7 j ))

-1

D,

d G &  t
R £*p = R s +  f o f a a * R * + z L N J (m 'pjR ePj  ~ m,K j a KR K)

(7.37)
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Substituting for Sg using (7.37) in equations (7.29), (7.31) and (7.32) gives a set of 

coupled equations with 8/1, S/u( and Sei as the unknowns. These are written in the

following compact form, in which i and j  are indices from 1 to np and in which the 

summation of repeated indices is implied. Note that i , j  does not imply differentiation 

with respect to j  components as it would in indicial notation.

Fa = M aSZ + B XjSe j + PXjSfUj (7.38)

(7.39)

(7.40)

in which

dadK
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M E i -  N eiAe +  D U , a *CK

* i j  = f j A eN / ( I - m ' XJ)

B u = f e KiTAeN j r ( I - m ' ) - dfe‘J d^ iJ a .J e K ,  e i  , j >  d e _  , . j

B e, ,  = N eiAeN /  ( /  - * ;  ) + D„. d tJ

P a  = f  J a n  ̂  m dĝ i-A j  j k  e  j  PJ f a

dg
PMiJ = W j  " ' PJ gs

eJ

PEi , = N  .A N j Tm' . - D ,
£ ‘ ;  e, e i  Pj d S r  _ *p , , j  d s  ‘-J

‘f i

where ditj in the expression for B E, and PE is the Kronecker delta.

The overall steps of the return mapping algorithm may now be summarised for the case 

when global plastic yield is active and one or more POD exists with local plastic yield.
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Box 7.1. Return mapping algorithm

Step | Description 

1 Initialise AX = 0, Ak  = 0 and Afj.{ = 0

2 Compute trial stress using (7.34)

3 Evaluate F& Af*, P *  Pf, Af*, B E, PEi FM, Mm, B and P;/ from (7.38) to 

7.40) and solve for SX , and Sei

4 Compute Scr using (7.37)

5 Update et using e( = et + 8ei and update

6

..... 7...."

Compute Ssp , Sk and Sep . from (7.25), (7.26) and (7.27) respectively

Update plastic terms

Ep = £p + , Asp = Asp + Sep , AX = AX+ SX, k  = k  + Sk  ,

zl*r = = e p . + Sep j , Aepj = Aepj + Sep j , Aft, = 4«, + S/ui

8 Compute a new trial stress using 

o = De e - e p - ' Y j N j r {eJ - M x j (eJ - e p j ))
y'=1 J

9 Compute F , / , . ,  F e . ,  , RK and R e p . from (7.19), (7.20), (7.21), (7.22), 

7.23) and (7.24) respectively

1 0 Check for convergence

M  2 < ? ,o b  K l  ^  <7,o l ’ |/e | ^ <7,01 > W  ^  S :ol> K l  5  S < o /a n d  R ep\ ^  S l o l , 

Exit iteration

ilse

Return to Step 2(1)

End If

Note:

1. Tolerance levels are <7tol = f t *10~6 and s tol = s , *10~6.
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7.4 Consistent tangent constitutive relationship

This section describes the derivation of an algorithmic tangent constitutive matrix that is 

consistent with the stress update algorithm derived in Section 7.3. Recalling the total 

constitutive relationship in equation (7.12), the differential form of the equation may be 

written as

The term 5N . is only non-zero for PODs that have formed since the last converged state.

This term is computed from the differential of the transformation matrix with respect to 

the trial stress components used for new POD detection. Equation (7.41) may be rewritten

as

Sa = De S e - d e ^  f ^ N j  T Se„. + SNJ Tea j) (7.41)

(7.42)

in which <Tj is the trial stress. Differentiating equation (7.15) yields
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where

C lt f  ~ J ) C L » M K = m 'x m K a n d  M  p

The differential quantities of both global and local plastic strains, plastic parameter and 

the local stress vector may be written as follows

s . d G  A, d 2G .  A. 8 2G x8s n = OA + AA  —8a + AA  OK
p da da2 dadK

8 k  -  a K (AAka 8a + cK8X)

X  X  A ^  S e i

p‘ = Mi aT ~ M‘ ^ r r 3sf if t ds

(7.44)

(7.45)

(7.46)
f i

dN-
8s f . = IV j 8a + — Lo a jD jSs

da j
(7.47)

Using equations (7.43) to (7.47) in (7.42) and rearranging gives

8a -  A cJ

np (

i=i

T  d S e  i
n ,tm

7 /
(7.48)
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where

II I  + De 2XI'-1 I
C„f j N j  -  M KJaKA A * /  + M v tAp, N

ds
+

j

A. d 2G d 2G A7t  TAX— — + AX--------a^AXk^
da2 dadK K a

j=i
N

dNj d 2g  d N j
Cltfj - ± o fflD I+  M  A/i — 2~~ps

doj ds f daj
1 j

o GjD j
d N , 1 

!> +— J-  °e„D,
da j

_ 8 G  A. d 2G ■&(h r T . ,  \
8m d<r 5g8 k  ° kCk T \ N J M * ja*c*)

The consistency condition for the global yield surface may be written as

d F ‘ dF—  So + — 8k = 0 
da dK

(7.49)

Substituting for 8a and 8k  in (7.49) using (7.48) and (7.45), and rearranging gives

M  = [/»•' Acjgm - k ) 1 f j A cJ ANS e - f KTAcAY j N j rM p ^ S Mj
j=I J ds

(7.50)
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The consistency condition for the local yield surface gives

Ssf  + ^ - S k + ^ - ^ -  Se, = 0  (7.51)
dsf . f i  dK d£, de,

The term Se can be eliminated from the above equation by differentiating equation (7.14), 

which yields

Ssf[ = D l (m'x,Se, - m ' p.Sep. + m'^Sic) (7.52)

Rearranging (7.52) for Se gives

Se, = m'x ~lC LSs/ .  + M p.Sep. - M k,8k  (7.53)

Utilising equations (7.45), (7.47), (7.48), (7.50) and (7.53) in (7.51), and collecting terms 

gives an expression of the local plastic multiplier Sjj. in terms of the global strain Se

SiuJ = a iJ- 'r i8£ (7.54)

where

r , = N 0 ,AcJ aN + / „ , ^ L”<r,Z)/ + f a \ f j A cAg m ~ h K] '  f j A CJ  w
OG j
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A., = { f K e \ f j A cAg m- h K\ ' f J + N ^ A cAN ]TM l
Sgej

j  ds

V ' u  d^ j T „
d£ u  dei,

M V — — daPl'J ds f 'J J i,j

* 0 ! = f „ N ,  + ^ - a KA A k /  M„,a„AXkJ
die dS, de, k  i k   a

Jn‘ ds, dC, de,

r ? ^
I 32g

8s,
>ei

Vet &e, d£l CI. .C. .------------------
d K  d£. de. ^  Ki®K^K ^ 0 i ^ c A &  r

Substituting for S/u in (7.50) using (7.54) gives

5X = ¥ & (7.55)

in which

fic ^ c A ^ A N  / k  AcA T , N
7=1

M p — Q i f ' T j  
pi ds,  ‘'J J 

V J j  J

Using equations (7.54) and (7.55) in (7.48) gives the consistent tangent relationship

*  = A j f M - g J > - 3 Q - ' r ) 5 E  = Dep&  (7.56)
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where Dep is the consistent tangent operator and

np ds .
s  = Y n / m p . - ^

M  '  PJ * f j

7.5 Stress computation procedure

The inclusion of local plastic yield on crack planes has greatly increased the complexity 

of the overall formulation. The proposed model, like previously described contact models 

in this thesis, allows for the formation of multiple crack planes upon violation of the 

fracture criteria. This approach has made solution convergence difficult to achieve for 

some of the finite element examples presented later in this chapter. It was, therefore, 

proposed to use a single crack plane instead. This very much simplifies the overall 

solution procedure. However, it has later been found that the approach of using a single 

crack plane has made the model susceptible to stress locking problems. This hinders the 

ability of the model to solve certain numerical problems, especially under multiaxial 

loading condition.

In order to remedy the shortcomings of the crack plane model, instead of retaining the 

crack plane orientation throughout the loading process, as adopted in previously 

mentioned crack models, the present approach allows for the newly formed crack to 

‘float’ throughout the loading process. In other words, the crack plane is free to rotate 

until later stages along the damage softening region, where its direction is fixed. The
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condition for which the crack plane is fixed is given by cp*s0 , where (p takes the value

ranging from 0 to 1. This approach is similar to that used in the rotating crack model by 

Rots (1988).

Recalling the stress computation procedure described in Chapter 4, the trial stress, upon 

which yield and new POD formation decisions are made, is given by

Upon the completion of the stress recovery procedure for a particular increment, a check 

is performed to see whether the newly formed crack plane is fixed or ‘floating’. If a 

‘floating’ crack is active, the crack is removed from the next trial stress computation. 

Hence, the secant elastic-damage constitutive matrix D{ in (7.57) reduces to the elastic 

constitutive matrix De . The return mapping procedure is again carried out, after which

check is performed on any newly formed crack. Crack in the ‘floating’ stage is however 

included in the consistent tangent matrix.

D,  («* + As -  Epk ) = Dl (8* + ‘te  -  epk ) (7-57)
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Box 7.2. Overall stress calculation procedure

Step Description
Record all state variables on entry 
Compute o,  from (7.57)
If C, <<p*s0 (‘floating’ POD) Then

Remove POD formed from previous increment
D , = D e

Else (fixed POD)
(

D, = I  + Def j N / C ls/N j
7=1

D

End If
If F{o,  , k ) > 0 and I x (of ) < 0 Then

Carry out return mapping with plasticity and existing POD to obtain new 
stress a  
If A/i < 0 Then

Reset state variables and carry out mapping without plasticity 
End If 

Else If (np > 0)
I f / , ( * / , / , )  > 0  Then

Carry out return mapping with local plasticity and existing POD to 
obtain new stress a 
If A / i< 0  Then

Reset state variables and carry out mapping without local 
plasticity 

End If 
End If

Else
0  = 0 ,

End If .................................. _............. .
FOr / 1, flmax

If cr, (o) > f t Then
Form new POD using principal direction of o,
Reset all state variables
Carry out return mapping to obtain new stress o

Else
No new POD, record final stress 

End If 
End For

Notes:

nmax = maximum number of PODs permitted to form
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7.6 Verification of consistent algorithm

A consistent tangent operator with return mapping algorithm has been derived to provide 

efficient integration for constitutive modelling. Verification of the consistent algorithm 

had been carried out using a Mathcad implementation (see Appendix I). The following 

describes the overall procedure undertaken. For simplicity, the case of an applied strain 

increment is considered here.

• Initialise all stresses, strains and state variables

• Apply the strain increment As

• Compute and record the final converged stress a rec

• Form the consistent tangent operator Dep using the converged stress and state 

variables

• Apply a small strain increment Se and compute the corresponding stress increment 

using Dep, i.e. da = DepSs

• Reset all stresses, strains and state variables to their initial values

• Re-compute the final converged stress a new from the updated applied strain 

increment of As + Se

• Evaluate the error measure for the converged stresses using

^  new ~  rec ) — ^m = ----------------------
®new ^rec

The acceptable tolerance for cris about 10*6, which was achieved in the consistency 

verification, as shown in Appendix I.
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7.7 Numerical examples

7.7.1 Single point stress-strain path benchmark

The key element of the proposed model being the local damage-contact component, 

which is used to capture the behaviour of crack opening and closing, as well as shear 

contact from the behaviour of aggregate interlock. In this section, a series of strain paths 

were chosen, which forms the basis of a benchmark, highlighting the characteristics of 

cracked concrete under combined shear and normal loading. The simulations were 

undertaken using a constitutive driver program in which the proposed model has been 

implemented. Table 7.1 shows the data used for the benchmark study.

Table 7.1. Material properties for benchmark study

E

(N/mm2)

V f
(N/mm2)

£o mg mhi mfui

30000 0.2 3.0 0.002 0.3 1.0 3.0

2
In the following simulations, a compressive yy-stress of -3 N/mm is first applied and 

then a crack is opened in the xx-direction to five different opening strains of 0.0002 

(BM1), 0.001 (BM2), 0.002 (BM3), 0.003 (BM4) and 0.007 (BM5). xy-shear strains are 

then applied, whilst the xx-strain and yy-stress are kept constant. Figure 7.4 shows the 

tensile softening response for the same set of properties and indicates the normal opening 

strains for the five cases considered. Figures 7.5 and 7.6 show the overall results obtained 

from the simulations.
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4

BM1

3

BM 22

BM3 BM4 BM5

1

0
0 0.002 0.004 0.006 0.008

Strain XX

Figure 7.4. Tensile softening curve, showing opening points

4

BM3
BM4 BM52

0
0.020.005 0.015

2

•4

■6
Strain XY

Figure 7.5. Variation of normal stress with shear strain
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q n n—q—□ □ _B—g—g

A-&-A A ft O—©

e— BM1 —e— BM2 - * - B M 3  
«— BM4 —x —  BM5

0.005
Strain XY

0.015 0.02

Figure 7.6. Variation of shear stress with shear strain

From the results, it can be concluded that the model is able to describe the characteristics 

behaviour of cracked concrete specimen under normal-shear loading. The gradual build 

up of shear and compressive stresses at early stage of loading, as predicted by the model, 

is consistent with that generally observed in experiments (Hassanzadeh 1991; 

Nooru-Mohamed 1992). Also, at the later stage of loading, these stresses tend to the 

plateau with increasing shear strains. Another key characteristic discernible from the 

results is that the wider the crack the larger the shear strain needed for both normal and 

shear stresses to start to increase.

7.7.2 Single point stress-strain examples

In this section, a number of single point stress-strain path examples are given, which 

provide comparisons with test data. As before, the numerical analyses were undertaken
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using a constitutive driver program. Table 7.2 shows the material properties used for each 

of the example.

Table 7.2. Material properties

Example 1 Example 2 Example 3 Example 4 Example 5

E (N/mm2) 35000 35000 30000 35000 37000

V 0.15 0.15 0.15 0.18 0.15

f c (N/mm2) 40 40 29.5 32 46.9

f t (N/mm2) 3.2 3.2 2.5 2.4 3.0

Sc 0.02 0.0022 0.0022 0.0021 0.0023

So 0.0027 0.06 0.002 0.002 0.003

br 1.15 1.15 1.15 1.15 1.1

Zo 0.5 0.5 0.5 0.5 0.25

V -0.1 -0.1 -0.1 -0.2 -0.3

mg 0.4 0.4 0.425 0.4 0.4

m i 2 2 2 2 2

mfui 10 10 10 10 10

It is noted that the model has been developed with relatively few non-fixed material 

parameters. Each of these chosen parameters relates to a particular physical characteristic 

that could be measured directly from experiment tests. Among these parameters, those 

which are non-standard are as follows; br, Zq, y/, mg, mhi, and /w/u/. The decisions to use 

only a few parameters and to choose only those that could be directly related to a physical 

characteristic were made in order to provide better understanding on the parameters used 

and their respective influence on the overall model behaviour. The recommended method 

of determination of these parameters, as well as their typical values, are given in
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Appendix II.

1.1.2.X Example 1 - Uniaxial tensile test

The first of these tests employed Hordijk’s (1991) uniaxial tensile softening curve. 

Hordijk’s function is recognised to match well a wide range of data, and here the 

numerical results obtained are compared to the data reported by van Mier (1997). In the 

simulation, the fracture process zone is assumed to be of 60 mm and the opening 

displacements are evaluated by removing the elastic deformations from the overall 

displacements. Figure 7.7 shows the results obtained for the uniaxial tensile softening 

path.

■b— Experimental 

-a — Numerical

</>
COo
(/>

0.4 -

0.0
0 40 80 120 160

Crack opening (pm)

Figure 7.7. Uniaxial tension curve
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1.12.2 Example 2 -  Uniaxial cyclic test

The second test considered was to replicate a series of test on notched fracture specimens 

carried out by Reinhardt (1984). The specimens had an effective area at the notch of 

50x50 mm2, as depicted in Figure 7.8. It was the data from the LCLS (Large Compressive 

Lower Stress) tests, which were carried out on narrow specimens, that was used for 

comparisons in this example. The characteristic crack dimension was assumed to be equal 

to the gauge length (35 mm), which was then used to obtain the limiting strain parameter 

so, i.e. by dividing the opening displacement at the end of the softening curve (0.21 mm) 

by the gauge length.

250

Thickness = 50 mm
50

Figure 7.8. Reinhardt’s cyclic testing arrangement
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The results from the experimental test, as well as those from the numerical analysis, are 

shown in Figure 7.9. In contrast to the original crack plane model by Jefferson (2003a), 

which simulates secant unloading-reloading and full crack closure at zero axial strain, the 

present model is capable of capturing local plastic yielding on the embedded crack plane. 

Hence, upon unloading, permanent strains developed. As previously discussed in Section

7.2.2, the model parameter ap introduced in the modified softening function governs the

level of plasticity captured on the damage plane. Figure 7.10 shows the influence of the 

parameter ap on the unloading-reloading process. It is noted that the model predicts full

crack closure at zero axial strain when ap = 0. Also apparent in Figure 7.10 is the smooth

transition from open to closed state.

Experimental

</)
CO
0i— 2 5 5 0 1007 5

Displacement j jr i
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-40 120 16080 200

a  ■ Numerical

Displacement (pm)

Figure 7.9. Uniaxial tension with crack opening and closing

20 5 0 60

-s— ap=0.1 

-e— ap=0.4

Displacement (mm)

Figure 7.10. Influence of parameter ap on crack closure
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7.7.2.3 Example 3 - Normal-shear test

The third test utilised the data obtained from a pair of normal-shear tests undertaken by 

Walraven and Reinhardt (1981). The test specimens, as illustrated in Figure 7.11, had a

'j
shear plane of 300x 120 mm and were tested in a stiff testing frame with external restraint 

bars used to control the crack opening. The tests were carried out with specified initial 

crack opening displacements, and in each case two tests were undertaken with the same 

nominal openings. Once a crack had been formed to the required opening, the specimens 

were then sheared whilst the normal and shear displacements were monitored.

Figures 7.12 and 7.13 show the results of experimental tests with initial opening 

displacements of 0.2 mm, along with the numerical results from the constitutive driver. 

The variation of normal stress with opening displacement, and shear stress with shear 

displacement are shown in Figures 7.12 and 7.13 respectively. As can be seen in these 

figures, the numerical results obtained differ slightly from those produced by the 

experimental data. Also, the numerical predictions are not as accurate with the present 

model, which employs a simplified damage-contact crack plane model, as those predicted 

by the model of Jefferson (2002b), which assumes the fracture process zone as a region 

consisting of four components; material that is undamaged and continuous (i.e. 

undamaged), material that has debonded but still in contact (i.e. bridging), and material 

adjacent to surfaces that has fully debonded and lost all contact (i.e. fully debonded). 

Nevertheless, the present model does simulate the stress free zone before contact, as well 

as the build up of shear and normal stresses reasonably.
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- 0 -

600

Thickness =120 mm

400

Figure 7.11. Walraven and Reinhardt’s test specimen

o

1

2

■3

■a— Exper. 1/0.2/0.4 

-e— Exper. 1/0.2/1.4 

iis— Numerical
•4

5
1.0 1.20.2 0.4 0.6 0.8

Opening displacement (mm)

Figure 7.12. Variation of normal stress with opening displacement
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4 -

E
E
z
V)(/>o
in
k_ra<Dsz. e — Exper. 1/0.2/0.4 

ne— Exper. 1/0.2/1.4 

■h— Numerical

</)

0.0 0.5 1.0 1.5 2.0
Shear displacement (mm)

Figure 7.13. Variation of shear stress with shear displacement

7.7.2.4 Example 4 - Uniaxial and biaxial tests

In the fourth example, a comparison is made with data from a series of biaxial tests on 

plate type specimens by Kupfer, Hilsdorf and Rusch (1969). Uniaxial compressive and 

biaxial tests are chosen and plots given for both axial and lateral strains against the 

uniaxial compressive stress. The results from these comparisons are shown in Figure 

7.14. It is noted that the graphs have been plotted in the compression positive convention 

of the experimental data. As can be seen in Figure 7.14, the response of the proposed 

model to both uniaxial and biaxial compressive loading is shown to match the 

experimental curves closely. These are not significantly different from those of the 

original Craft model but are included to demonstrate that the new constitutive model does 

produce the same response.
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S tress  ratio 1 :0
- 1 ,2

to

to(0tu ■e— Exper. s1 :e1 

-e— Exper. s1 :e2  

A —  Numer. s1:e1  

■g—  Numer. s1 :e2

J-
(/>

20 30-10 0 10

Strain (e)*1000

(a) Uniaxial compression response

Stress ratio 1:1

to

(0
to0) -q— Exper. s1 :e1  

-e— Exper. s1 :e 3  

-a — N um er. s1 :e1  

-e— N um er. s1 :e 3

■2 0■6 -4 2 4
Strain (e)*1000

(b) Biaxial compression response 

Figure 7.14. Comparison with test data from Kupfer, Hilsdorf and Rusch
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1.1.2.5 Example 5 - Triaxial test

The last test utilised the data obtained from a series of triaxial tests carried out by 

Kotsovos and Newman (1979). Data from the triaxial test with a confining pressure of 70 

N/mm2 is used for comparison. Figure 7.15 shows the comparison, in which the graph has 

been plotted in the compression positive convention of the experimental data. The 

comparison shows that the proposed model is able to predict the peak stress but that the 

increasing confinement pressure prevents the numerical response from showing the same 

ductility as the experimental data. Again, the results are not significantly different from 

those of the original Craft model but are included here to demonstrate that the proposed 

model does produce the same response.

CM

E
E

200 -

z

w.
w(/>Q> ■e— Experimental s1:e1 

-e— Experimental s 1 :e2 

-a — Numerical s1:e1 

-e— Numerical s1:e2

100 -

-20 0 20 40 60
Strain (e)* 1000

Figure 7.15. Comparison with triaxial test data from Kotsovos and Newman
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7.7.3 Finite element analysis examples

This section presents results from various numerical simulations undertaken on examples 

of previously tested concrete structural elements. The results were obtained from the 

proposed model, which had been implemented in the finite element program LUSAS via 

the material model interface.

In the following examples, quadratic elements were used, which includes 6-noded 

triangular and 8-noded quadrilateral elements for two-dimensional examples and 

20-noded hexahedral elements for three-dimensional example. Full numerical integration 

was performed for all 2D elements, i.e. 3x3 Gaussian for quadrilateral elements and 6 

point Radau for triangular elements, and Iron’s 14 point rule was used for 3D elements 

(LUSAS 2003).

The solutions all employed an automatic step selection procedure in which the 

displacement or load increment is adjusted according to the number of iterations taken to 

achieve convergence in the previous step. The maximum number of iterations permitted 

before automatic step reduction was set to 10. In some cases this automatic step selection 

procedure was linked to Crisfield’s arc-length method (Crisfield 1981) in which the 

product of iterative nodal displacements is constrained to an arc (LUSAS 2003). Table

7.3 shows the material properties used for each of the following finite element example.
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Table 7.3. Material properties

Example 1 Example 2 Example 3 Example 4 Example 5

E (kN/mm2) 35 30.6 30 25 50

V 0.2 0.15 0.18 0.2 0.15

f c (N/mm2) 40 50 35 53 50

f t (N/mm2) 3.35 2.6 3.2 2.5 3.0

£c 0.0022 0.0035 0.0022 0.003 0.003

- - - 0.005 -

G/(N/mm) 0.1 0.15 0.1 - 0.15

br 1.15 1.15 1.1 1.1 1.1

Zo 0.6 0.6 0.6 0.6 0.6

¥ -0.1 -0.1 -0.1 -0.1 -0.1

mg 0.5 0.5 0.5 0.5 0.5

mhi 0.5 0.5 0.4 0.5 0.5

W fu l 5 5 3 5 1.2

<P 0.005 0.5 0.7 0.5 0.005

7.7.3.1 Example 1 - Direct fracture test

The first example involves comparisons of results obtained from a plane stress analysis of 

a fracture test specimen. The test was carried out by Petersson (1980) on an unreinforced 

fracture specimen. The specimen was loaded in direct tension under displacement 

control. Figure 7.16 illustrates the dimensions of the specimen used and the 

corresponding finite element mesh generated for the numerical analysis is shown in 

Figure 7.17.
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The solution employed the automatic step size procedure, with an upper limit of 0.01 mm 

placed on the prescribed boundary displacement increment. In this example, the target 

number of iterations was set to 10 and the convergence tolerance to 0.1% and 10% for 

displacement and residual force norms respectively. The latter convergence tolerance was 

relatively large but was inevitable in order to obtain full convergence. Nevertheless, most 

of the increments converged to a much tighter tolerance.

The experimental and numerical load displacement responses are shown in Figure 7.18. 

Figure 7.19 shows a crack plot for the mesh at the opening displacement marked. Figures 

7.20 and 7.21 show the distribution of major principal stress and strain, respectively.

Displacement controlled 
loading

t t t t t t

I I I  I I I
'• 50 ! 30

Section A-A

Front elevation (All dimensions in mm)

Figure 7.16. Test specimen
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2D mesh

Figure 7.17. 2D finite element mesh

4

—s— Experimental 

 Numerical
3

2

1

0
0 0.05 0.1 0.15 0.2

Total displacement (mm)

Figure 7.18. Load-displacement response
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Figure 7.19. Crack plot

LOAD CASE = 140C
Increment 1406 Load Factor = 0 .100E+01
RESULTS FILE- 0
STRESS
CONTOURS OF SMax

0 5 9 5 1 8 8

'  • S  ;  2 S

■ 7 8 8 9 B

:  2 3 3 2 -

» •-2 3:
4.75951
B 96909
S 96181
B 98807
' f-2:
'  7 5 3 4 f

I  3 4 f ; 3

2 94282

Max 9.031 at Node 75* 
Min -0 6082 at Node 781

Figure 7.20. Major principal stress distribution
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LOAD CASE = 1406
Inarement 1406 Low) F*oof = 0 100E+01
RESULTS FILE* 0
STRAIN
CONTOURS OF EMax

0
3.34257E-3 
6.68513E-3 
00100277 
0.0133703 
0.0167128 
0.0200554 
0 023398 
0.0267405 
0.0300831 
0.0334257 
0 0367682 
0.0401108 
0.0434534 
0.0467959 
0.0501385 

Max 0.5346E-01 at Node 576 
Min -0 1879E-04 at Nooe 771

Figure 7.21. Major principal strain distribution

7.7.3.2 Example 2 - Cylindrical notched fracture beam

The second example presents results from a three-dimensional analysis of a cylindrical 

notched beam. The tests were carried out by Jefferson and Barr (1995) on an 

un-reinforced concrete beam. In the test, the specimen was loaded via a shaped yoke with 

the load level being controlled by feedback from a clip gauge at the notch tip. The 

specimen was supported on curved cradles, as depicted in Figure 7.22. The finite element 

mesh generated for the analysis, which makes use of double symmetry, is shown in 

Figure 7.23.
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Loading yoke

i
Notch

0.1D f

Section A-A

LVDT
5D

Transducer

D D
, 0.9D : 0.9D
I pL 
1 I 
1

| [
7

1; Lr
f

uI
l
l1

^ St0p X  r

Aluminium
bar

D

r -  Linear 
bearings

D = 150 mm

Figure 7.22. Experimental arrangement of cylindrical notched beam

Figure 7.23. Finite element mesh for notched cylinder
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In the numerical simulation, the load was applied as a uniform load on the curved surface 

above the notch, as illustrated in Figure 7.23, with Crisfield’s arc-length method being 

utilised to allow for the simulation of material softening throughout the loading process. 

It is noted that because symmetry is employed, the actual value of the fracture energy Gy

used in the analysis is half of that quoted in the material properties table given in Table 

7.3. This is because the simulated fracture process zone width is twice of that modelled.

The automatic step size procedure was used, with the boundary displacement increment 

prescribed at an upper limit of 0.1 mm. In this example, the maximum number of 

iterations permitted per increment was set to 10, and the convergence tolerance to 0.1% 

and 5% for displacement and residual force norms respectively. Again, relatively large 

convergence tolerances were needed to obtain a complete solution.

Figure 7.24 shows the experimental and numerical load displacement responses for both 

the Crack Mouth Opening Displacement (CMOD), which is actually the notch mouth 

opening here, and the central deflection. Figure 7.25 depicts the deformed mesh at the end 

of the loading process. From this figure, it is clearly shown that strain localisation occurs 

in the material above the notch, as would be expected for such a test. The agreement 

between the numerical and experimental responses is generally good.
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8
—b— Experimental 

 Numerical

= = f =6

4

2

0
0 0.2 0.4 0.6 0.8 1

Central deflection (mm)

(a) Variation of load with central deflection

8
—a— Experimental 

 Numerical
6

4

2

0
0 0.5 1 1.5 2 2.5

CMOD (mm)

(b) Variation of load with Crack Mouth Opening Displacement (CMOD)

Figure 7.24. Load-displacement responses
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Figure 7.25. Deformed mesh plot (xlO)

1.1.3.3 Example 3 - Single edged notch beam

The third example presents comparisons of results obtained from a well-known single 

notch beam test carried out by Arrea and Ingraffea (1982). This test has been used by a 

number of researchers to assess their numerical models (Rots and de Borst 1987; Rots 

1988). The experimental data has been used in particular to show the sensitivity of crack 

path to the orientation of element local coordinate systems. Figure 7.26 gives the 

dimensions of the test specimen and the corresponding mesh employed for the analysis.
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0.13F Load

397 397

61

61

Section A-A

Front elevation (all dimensions in mm)

Figure 7.26. Test arrangement and finite element mesh

In the numerical analysis, the main load was applied in a patch on the upper edge, as 

shown in Figure 7.26. As with the previous example, Crisfield’s arc-length method was 

utilised to allow for the simulation of material softening. 50 steps were used in the 

solution, with the maximum number of iterations per increment set to 10. During the 

solution, the step size was automatically reduced twice when convergence was not 

achieved in the maximum allowable number of iterations. In this example, the 

convergence tolerance was set to 1% and 5% for displacement and residual force norm, 

respectively.

It is noted that the aim of this example is to validate that the constitutive model is capable 

of predicting a curved crack with softening down to a relatively small proportion of the 

peak load. It is also noted that in order to simulate the curved crack path, the constitutive 

model allowed the POD formed to ‘float’ until the fracture strain reached a value of
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0.5*s> (i.e. a ,  = 0.5).

Figure 7.27 shows the variation of load with the crack mouth sliding displacement 

(CMSD). As can be seen in this figure, the initial response is a little less stiff than that 

observed in the experiment, which was also found by Rots (1988) and Jefferson (2003b). 

Figure 7.28 and Figure 7.29 show the deformed mesh and crack plot at the final step of 

loading respectively. The distribution of major principal stress and strain are illustrated in 

Figure 7.30 and 7.31 respectively.

160

—a— Exp. upper 

—e— Exp. lower 

 Numerical

140

120

£  100

Li.
T 3
ro
5

40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
CMSD (mm)

Figure 7.27. Load-displacement responses
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Figure 7.28. Deformed mesh plot (xlO)

r ~

f;
H

_

. _
:

— —

---- ________ , 1 - _____ ____ ____ ____

■ ------- <4 4 , --- — — — — —

Figure 7.29. Crack plot

LOAD CASE = SO
Incrament SO Load Factor = 0 247E*00
RESULTS FILE * 0
STRESS
CONTOURS OF SMax

I

-12.0031 
-10 7228 
-9.38242 
-8.04208 
-0.70173 
-5.30138 
-4.02104 
-208009 
-1 34035 
0
1 34035 
2.08069 
4.02104 
5 30138 
0.70173 
8 04208 

Max 8 087 at Nod* 894 
Min -13.36 at Noda 87

Figure 7.30. Major principal stress distribution
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LOAD CASE = SO
Increment 50 Load Fador = 0.247E+00
RESULTS FILE = 0
STRAIN
CONTOURS OF EMax

1 744E-3
3 4S8E-3
: :2LE-2
: S 'iE -2
■ n—
: D10404

0013952
3 o-eese
0 .01744
0 019184
3 020928

o.o244ie
0 02616

Wax 0 27S4E-01 a t Node 969 
Min -0.3675E-03 at Node 245

Figure 7.31. Major principal strain distribution

7.7.3.4 Example 4 - Reinforced concrete beam

This example involves the analysis of a rectangular reinforced concrete beam, which has 

been used over many years as a test for numerical models for concrete (ASCE 1982). The 

reinforced concrete beam test was carried out by Bresler and Scordelis (1963). Figure 

7.32 shows the geometry of the concrete beam, and also the finite element mesh used for 

the analysis.

The reasons for having chosen this example amongst the studies are twofold; to evaluate 

the response of the constitutive model to problems in which concrete crushing plays a 

significant role, and to assess the capability of the model to simulate cracking in a 

full-scale reinforced concrete specimen.
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Load -2 N° T28 bars each layer

Elevation of beam showing reinforcement

63.5
63.5

Section A-A (all dimensions in mm)

*

J\

4 L

Finite element mesh

Figure 7.32. Geometry and FE mesh of test specimen
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In this example, the boundary displacement increment was prescribed at an upper limit of 

0.02 mm. 100 steps were used in the solution, with the maximum number of iterations per 

increment set to 10. The step size was automatically reduced twice when convergence 

was not achieved in the maximum allowable number of iterations. In this example, only 

the displacement norm was used here to control solution convergence, which was set to 

1%. It is also noted that the compressive strength was set to 53 N/mm2, as oppose to the 

much lower f c i.e. about half the value, reported in the experimental data. This, again, 

was inevitable in order to get reasonable simulation. Hence, the effect of concrete 

crushing has not been completely modelled in this particular analysis.

Figure 7.33 shows a comparison of the load displacement response. The eventual 

deformed mesh is illustrated in Figure 7.34. Figure 7.35 shows crack plots at the final step 

of loading.

400

^  300
T3re0
1  200
Q.
Clre

°  100 —e— Experimental 

 Numerical

0 42 6 8
Central deflection (mm)

Figure 7.33. Load-displacement response
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Figure 7.34. Deformed mesh plot (xlO)

Figure 7.35. Crack plot

7.7.3.4 Example 5 -  Normal-shear test

The last example was taken from the test series undertaken by Hassanzadeh (1991). 

Figure 7.36 shows the test specimens used for the combined normal-shear test. The 

specimen had an effective cross-section at the notch level of 40x40 mm . The specimen 

was first subjected to a tensile load to the point of first fracture and then shear was applied 

according to the relationship, u = (tana)*v. Only the test with a  = 45° are considered 

here.
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70

40 x 40 mm
unnotched
area 60

Thickness = 70 mm

Figure 7.36. Hassanzadeh’s test specimen

In this example, the boundary displacement increment was prescribed at an upper limit of 

0.1 mm, whilst the maximum number of iterations per increment was set to 10. During the 

solution, the step size was automatically reduced twice when convergence was not 

achieved in the maximum allowable number of iterations. The overall solution 

convergence was controlled by the displacement norm which was set to 1%.

Figures 7.37 and 7.38 give the stress-displacement responses and provide comparisons of 

the numerical predictions with that of experimental results. This example has, in 

particular, proven difficult to simulate by the proposed model. Various attempts were 

made in order to get the best match to the experimental data, which include using 

relatively lenient convergence tolerances, reducing the size of load step increment, and 

modifying model parameters. Over the course of the analyses, it has been found that the
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model tends to predict spurious stress-strain response when the contact changes from 

open to interlock state.

—a— Experimental 

 Numerical

z - 2

Normal displacement (mm)

Figure 7.37. Normal stress-displacement response
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Shear displacement (mm)

Figure 7.38. Shear stress-displacement response
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7.8 Conclusions

The proposed contact model with embedded local plasticity has been developed based on 

the Craft model of Jefferson (2003a, b) and Jefferson et al. (2004). The idea was to 

capture any local plastic yield that occurs on damage planes. In this model, plasticity was 

applied to both damaged and undamaged components of the material. The model also 

employed a return mapping algorithm that fully couples plastic flow to directional 

damage, and ensures that local and global damage constitutive relationships and the 

plastic yield condition are all simultaneously satisfied. A tangent constitutive matrix was 

derived which is consistent with the return mapping algorithm.

The model had been implemented in a constitutive driver program as well as a finite 

element program, from which numerical results obtained were compared with a range of 

experimental data, which includes data from uniaxial tension tests with or without 

unloading-reloading cycles, test in which cracks are formed and then loaded in shear, and 

multiaxial compression test.

The model was found to perform well at the constitutive level, compared to finite element 

analysis on structural test specimen. In the single point stress-strain examples, the model 

simulated reasonably well most of the loading stress paths. The effect of using embedded 

planes with local plasticity is apparent in the analysis of uniaxial cyclic test by Reinhardt 

(1984), in which permanent strains were predicted upon unloading and gradually 

increased as the unloading-reloading process continued.
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The proposed model was also found to be able to simulate well the behaviour of 

aggregate interlock and crack closure. In the analysis of normal-shear test by Walraven 

and Reinhardt (1981), the interaction between both normal and shear component is 

apparent. The sudden build up of shear stiffness was simulated at the early stage of 

loading. The shear strength continued to increase with displacement, up until a point, 

after which it remained unchanged with further displacement. At this later stage of 

loading, the crack was wide opened such that no further contact is possible with 

increasing shear displacement. In the compression test analyses, the frictional hardening 

plasticity component of the model was found to give adequate prediction on the 

compressive behaviour of concrete.

In the finite element analyses, the model experienced difficulties in achieving overall 

convergence. Relatively high convergence tolerances were needed in order to obtain 

complete simulations. Nevertheless, the model was able to represent the 2D direct 

fracture test and 3D cylindrical notched fracture beam reasonably well throughout the 

response range.

The fact that only one crack plane is allowed to form at each integration point is thought 

to have hindered the ability of the model to solve problems in which multiaxial loadings 

are applied, for example in the single notch beam example. In order to overcome this 

problem, an approach was proposed in which the direction of any new crack plane formed 

is not fixed, but is free to rotate until later stages when the damage strain has reached a 

certain limit. This approach was inspired by the rotating crack model of Rots (1988).
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The proposed model was found to be less robust than the other contact models. Complete 

simulation of finite element example is difficult to achieve without the use of relatively 

lenient convergence tolerances, although much of the increments converged to a much 

tighter tolerance. Convergence problems have made it difficult to properly assess the 

performance of the proposed model in some complex finite element examples. Further 

work would involve the implementation of the model in a non-local format, which 

hopefully would allow the full benefits of the model to be realised.
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APPENDICES

Appendix I Verification of consistent algorithm (EPLPC model)

Appendix II Derivation of material parameters



Embedded Planes with Local Plasticity Contact Model (EPLPC)
ORIGIN := 1

Young's modulus 

Poisson's ratio 

Compressive strength 

Tensile strength

Strain at peak uniaxial compressive strength > fc/E 

Strain at end of softening curve 

Factor for end of first section of shear contact function 

Factor for shear contact limiting strain 

Initial position of yield function ( €Z<=1)

Dilatancy factor

Yield function convergence tolerance

POD formation angle tolerance a p —  = 62.068966 degrees
 ̂ IT

Computed material parameters

1 - u
Eef:=  E -----------------------(1+ u){l-2u)
G : = ----- - -----  G =  1.73913 x 104

2{ 1  + u )

Smooth tensile softening curve parameters

at = 1

^ ' ft _  5
Eti : = - r — Eti = 6.866176 x 10

t-e f

fti — at ft fti = 2.9

f‘ - 5
8 t := —  Et = 7.25 x 10h

ebe g := e tj - l . l  ebeg =  7.552794 x  10_

e q -.= if(eo  < 26 e ti ,26-Etj >Eo) eq = 2.7 x 10_ 3

Shear modulus

Proportion of peak tensile strength at which damage starts

Strain at first damage

First damage stress

Elastic strain at peak uniaxial stress

Relative normal displacement at start of contact loss in interlock state 

Put lower limit oneO

Material parameters

e  := 40000 N/mm2

u := 0.15

tc := 40 N/mm2

ft := 2.9 N/mm2

e c := 0 .0 0 2 2  

£0 := 0.0027 

m hi := 0.5 

m fui:=  10 

Z q  := 0.6 

:=  - 0.1

tol := — - —
1000

a n  := — — a D = 1.083308
p 2.9 p
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etui -  m ful‘E0 

ehi = m hi E0 

£0 “  Etirate

ak:

Eti

1.3

c j := 5

Pk- ( ak -  ») 

rate
r a t

qc : =  + 1ci
-ci-rik

Xk := e

e,-ui = 0.027 

e^j = 1.35 x 10

rate = 38.323196  

a k =  1.3

r |k =  7.828157 x 10" 

qc = 8.664639 

x k =  0.961615

Strain beyond which contact is minimum

Strain at end of 1st section of shear contact function

Limiting strain ratios

Factor governing where peak strain occurs relative toeti. 

Primary softening curve factor 

Relative strain at peak of tensile curve

Approximate function for the factor m. Note this must change if 9 is changed

f  0.223098944982796 ^  

dm := 1.005 z := -67.0625617052971

v 66.4302094339053

p :=  5

Final constants for continuous softening curve

m := Zj + z^ rate + z^ rate

1
at'Xk

cm :
, P m r1 -  xk - p + p  xk

qc
bm : =  P'Cm = - 0  089381 am 1 + bm + Cmm
q i  := cj ct2 := m e t I Ct2 = 114.129645

Smooth hardening curve parameters

cc2 -  5

cm = 0.093796

am = 1.004414 

ct3 := m p-cti ct3 = 570.648223

cc l -
cc2 -e

- c c2

1 -  e 

-ccl

K p !- Q;*I0.72-£q

-cc2

(l-e ’" 2) 
ic

2E

cc i = 0.033918274531521

a c =  0.960137261529619 

k n = 0.04336

Constant governing initial platic slope 

Compute other constant to ensure correct peak

Further hardening curve parameter

Plastic parameter limit, from integrating Saenz's equation
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Yield and damage function shape parameters

rc := 1.25

rr  :=  r(
^ G

| i CT := 0.8

P E : =

bc := 1.15 

1

= 2.875

He - 1-84

P :=

y :=  3

f2
— 1 

2 bc -  1

(1 - P )
2P - 1

a  = 0.115385 

y  = 2.12132

cohesion to tensile strength ratio 

y to et ratio

Residual friction factor 

Equivalent friction factor in strain terms 

Biaxial strength/uniaxial ratio 

eccentricity parameter

a constant from Lubliner

y constant from Lubliner

Global and local Elastic D-matrices and Identity and null matrices

a l  := 1 - u oc2:=

De]
1 - u

(1 + o ) •( 1 -  2 u ) J

1 -  2 o "Eef 0 o'

2(1 - u) d l := 0 G 0

v o 0 G,

' 1 a l a l 0 0 0 ^ ' l 0 0 0 0 0^

a l 1 a l 0 0 0 0 1 0 0 0 0
- a l a l 1 0 0 0 0 0 1 0 0 0

16==
_ 0 0 0 a 2 0 0 0 0 0 1 0 0

0 0 0 0 a 2 0 0 0 0 0 1 0

I o 0 0 0 0 a 2 , , 0 0 0 0 0 ly

C L :=

1
E e f

0 0

0 — 0
G

0  0 —
V GJ

r\ 0 o\ 
0 1 0 

V0 0 l y

In u l:-

^ e3x3 E-
1 - u

(1 + u)<l - 2-o)
1 a l  a l  

a l  1 a l  

V al a l  1 )

Nul6x6 :=

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

VO 0 0 0 0 0 J

0 0 0 

0 0 0 

Vo o o j

C:= eti 0.9999999999999 Initialise the damage parameter



Closure and interlock functions

m « := 0.45

<t>cl(e) := ej + mg

<t>gradc|(e) := mg e2[

m g 'e3l

i[(e2)2*(e:

[ h f ' h f ]

♦ in tn M  := m g ' ,  -  * K ) 2

-0.5

■0.5

<t>grad( e) :=

4>grad(e)

| <J)gradCe) |

•t* inter(e) 
g(e) : = ----------- —-<|>grad(e)

1 + ma

d2<(>de(e) := [w^w2]1 + 10
-25

. ( • W

+ 2)

1.5
+ 10

-25

[('2)2+ N 2]u ^ -25 [ t f - u r * " - 25

*8 < e):-_ ± _ (— ..........T
1 + m„

(|)grad(e) -(|)grad(e) + <t> mter(e) d2<|>de(e)

Closure function <j)>0 open,(|)<0 closed

Gradient of closure function

Interlock functional) open,<j)<0 interlock

Gradient of interlock function

Unit gradient



Softening and contact functions

Cf(e):= —

1 +

Me ]

rJ  J

Me

2rc
11 (ei)2 + 4̂ 2[(e2)2 + (e3) l - C

d<t>de( e) :=

1 +

1 + M e

2 To
- ] ( rCT2 -  M a2)  ( s , ) 2 + 4 rG2 [ ( s 2) 2 + ( s j 2]  -  fs 

( rC 2 - M E2)  ( e , )

2 rC2-J(rC2-Me2) (e])2 * 2 + 4-r £

t'J

J u 2- , 82)2'h)2- v [h )2*('3)2]

J ( rC2 - Ms2) (e,)2 + r?2[(e2)2 + (e3)2]

yeqv(e,Q  := J ^ 2 < 2 -  (r<;2 + Me2) ^  + Me^ ) 2

Emdedment damage and intersection functions

egn (e,ee) := ebg < - ebeg 0.9999999999999

Cg ■i— 0

eg e j i f  (<t>inter<ee) < o) (<t>cl(ee) > o) 

eg  <- ebg if («|>cl(ee) <o)  

eg « -  ebg if eg < ebeg

degn(e)
( ] )
0

<0,

Equivalent damage strain

Damage surface

Damage surface in stress space

Damage gradient function

Shear strain check on surface

Normal local strain intersection with interlock surface

Gradient of normal embedment intersection
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gbar(ee) := gbar 0

gbar ♦- —̂:"ltCr< if (bjmebee) < o) (itic |(ee) > 0 )

/ 1 + m (j

gbar <— J(eeij2 + (ee2)2 + (ee3)2 ' f  (<t>cl(ee) ^ ° )

gbar

Contact function

res_ft:= 0.03 Residual fracture of tensile strength i.e. don't let it quite decay to zero

Control amount of damagea p 0.1

MC.k) := r <— res_ft

( c  -  et i)  

11 (e 0 -  eti)

1 i f  C < eti

8ti

C '(l _ »p) + eti ap
+ (1 -  r)

_______ Eti________ -Ctl-T)

_ C '( l  _  2p ) +  e ti ap

KP otherwise

dhd̂ C.K) := r <—  res_ft

(C -  eti)

' (e^ O
0 i f  £  < eti

-r e ti ( l  -  ap)

[ C ’O  ~  3p )  +  Eti -a p j'

+ (1 -  r) ■
Eti - Ct 1 T) -c t l (l ~ ap)

C l 1 ~ f y )  + Eti ap _ £o -  Ed C V  ~ ap] + £(j-ap_

dhdKC(<̂,K) := r <—  res_ft

( c  -  E ti)

11 (£0 -  e t i )

0 i f  C <  e ti

(1 -  r)
eti -q i-T )

- 2  —  
-2 k ,

_ C 'U  -  ap ) +  Eti ■
otherwise

otherwise
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Relative fully debonded area function and derivatives

Smooth closure function

H (eg.Sb) :=

c,, := 3

eg <- ebeg if  eg < ebeg dHdg(eg ,gb)

gb

1 -  e
eg+2 eti

eg * - ebeg if  eg

efi + 2 •£ ti

m :=  0.9 

h f{ c ,K ,e g ,j

dhfk(C,K ,(

f0 := 1 0  fl := 2

h <- ( l -  M C .k )) H(eg ,gb) 

hf <- h 

if eg > ebeg

(eg ~
r|0

ni

fac+-

h f *—

ehi

(eg -

eful

(l - Th)-fl-mhi 
mful'fO

rh-e- fo(nO) (l - rh)- -  fac-e
fyr|0

1 -

hf

dh + - -dhdK c(^,K ) H (e g ,gb)

dhf <r- dh i f  eg < ebeg

i f  eg > e beg

(eg -  ebeg)T|0

T i l

fac<

dhf •

ehi

(eo  -

eful

(l - m) fi mhi
mfulfO
- f o  (nO) / \ -  fj -ti 1 -fo -r |0

Hre + \ \ -  if,J -e -  face

dhf

- ebeg
gb 

eg+2 -£ti

h__
- fac

dh 
1 -  fac

dHdeg(eg ,gb) := dh <- 0 if  eg < ebeg

gb

dh

dh

^g’gb 
(eg + 2 -eti)

eg+2-eti
if  eB > i

dhfz(c, k ,e g ,gb) := dh <- -dhdi^(C ,K ) H (eg , gb) 

dhf +- dh if  eg < ebeg 

if  eg > efeeg 

(eBT(0

Til <"

fac<-

dhf

ehi

(eg ~

eful

( l  -  rh) fl mhi 

mfulfO

rh-e- fo<nO)
0  -  Hr)’

fi-n i r  - fo -v o  
-  face

dhf

dhfg(c,K , eg , gb) '•= h <— ( l -  hc(£ ,K ))

h f < -  h 

if  eg > ebeg

(eg ~ ebeg) 

ehi

(eg -  ebeg)

r|0 <- 

ni +- 

fac<—

h f +-

eful

(l - rh) fl mhi 
mfulfO

h fd H d g (e g ) gb)

-  fac

_h___

-  fac
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dhfesJ(;,K  .e .r ,g b ) h < - ( l  -  hc(C ,K ')) 

d h f < - 0 

i f  eg > ebeg

ee - ebeg
T|0 * 

Til <• 

fac*

h f  + 

d h f

ehi

(eg -  ebeg) 

eful

(l - rh) ■ fl mhi 
mful'fO

rh-e
fo(n O ) f, \ “fl T|1 r “fo no ^1 -  rhj e -  face

h

fac

2 • foT |0 - fo < r iO )  - f l  / \  -  f  1 ti I fac fo  -  fonO
------------ ih-e + --------l , l - r h ) - e  + ---------- e

ehi efui _ ehi

-fO (riO)2 i .  \  -  fl'd l -fO'TlO

1 -  fac
•H (e g ,g b)

+ lie (i-nO- face
1 -  fac

•dH deg(eg ,gb)

d h f

Shear direction function

np := 9 ip := I .. np il:=  1.. 3 Assuming no more than 4 Planes of Degradtion

Generate consistent shear directions

Set global axes to which local s axes is to be made normal (local being r,s,t)

n seq :

( 3̂  
1

V2.

ns. := 0 i7 := 1.. 7ip S( i7 — 1) -3 + il ' nSCqil

Set global axes to which local s axes is to be made normal (local being r,s,t)

idx :=

f 2 3\ 
1 3 

VI 2 J

Component indices for normal vector (r) from which is created for a given ns axis
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Function to generate local s  axis

s ! o c ( i d , rv) := d e n o m  < -  / rv,
ldx

i d ,  1
( i d x

i d ,  2,

out. , <— 0 
id

idr <— id

12
i f  denom  < 10 

idr <— id + 1 

idr <— 1 i f  idr > 3

denom

o u t/.

K d r . l ) * "

K - . r ' " ”

. id ,  rV( idXid ,,2 )H) denom

idr+1 "(id x idr, l)

denom

'out^

o u t,
V 3 J

Invariants and principal stresses

Il(cr) := (cTj + o 2 + CT3j

,. , , ! l(o )  Il(cr) I](o)
sd(a) := a , ----------- a ---------------a , -------------a .  a c a ,

3 2 3  3 3  4 5 6

0 (o ) :=

3V3 •J3(o)
fac<

1.5
J2 (o )  

fac<— 1 if  fac>  1 

fac<— 1 if  f a c < - l  

acos( fad

J 2 ( o ) :=

J3(<7) •-

(°i - "J2+(°2 - “3)"+h  - '’iKJ+h ) 2+h ) 2 * h ) 2

p rl(o ) :=

od <— s d (a )

j^odj -od2 -ad^ + 2 |a d 4 od<. - a d ^  -  ^od ̂  cd^ ad^ + ad2 od^ od^ + ad^ ad^ ad4j

- ^ - ■ ( ^ J2(o )) cos(0(o)) + —J —

=̂--(VJ2(°))‘cosfe(G) - 2t )  + ~~~

-̂•C/ Htntl cosl H(a) + L- ,
3 7 3

^ = - ( V J2 ( o ) ) c o s |^ 0 ( a )  + 2 - ^ - J  +

3 7 3

Il(cr)
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Invarian t g rad ien ts

d J3 (a ) i <— sd (a )

/ \ J2(cf)
a d ,  a d ,  -  a d ,  a d ,  + ---------

V 2 3 5 5/ 3

(odrod3 - od6-od6) J2(o)
3

J2(a)(odrod2-od4-od4; . 3

2 ( 0d 5 '° d 6 - 3 - 4 .

2 I a d , -od

a d ,  -ad ,j 

4  ” “6 — 1 — 5)

2 |a d ^  -adg _ ad^ -ad

a d , a d , j  

2 -6)

d ll := ( 1 1 1 0 0 0 )

d J 2 (a )  := ad  <— sd (a )

a d , a d ,  a d ,  2 a d ,  2 a d ,  2 -ad.

d co s3 T (a ) := 1.5-

J2( a )

d J3 (a )

d 0 (a )  :=
3 s in (3 -0 ( c ) )

•dcos3T (a)

J3(o)̂
1 .5 ---------- d J2 (a )) 2 ( o ) J

'  2 -1 -1 0 0 0^ d a3do (a) := ad < - sd (a )

-1 2 -1 0 0 0 '  o d , ad3 od2
^ 4

-2 -a d 5
° d6 "

1 -1 -1 2 0 0 0 a d 3 ad 2 ° d l ^ 4
a d 5 -2 -o d

0
3 0 0 0 6 0 0

ad od ad - 2 -ad. ad o d ,
0 0 0 0 6 0 2 2 1 3 4 5 6

, 0 0 0 0 0 6 )
3

^ 4 ° d4
-2  -ad

4 - 3 ^ 3 3 o d , 
0 3 a d 5

-2 -a d 5 od5
^ 5

3 ad
0

-3  -ad, 3 -ad , 
4

od - 2  a d . o d . 3 a d . 3 a d . -3  -ad .
V 6 6 6 5 4 2 j

Functions in Principal stress gradient functions which depend on Lode angle. Ip =1, 2 or 3 for principal stre

A 9 (e ,I p )  := A < - co s(9 ) i f  Ip = 1 

A <r- O .5 (-cos(0 ) + ^ 3 s i n ( 0 ) )  i f  Ip = 2

A < O .5(cos(0) + -y3 -s in (0 ))  i f  Ip = 3

A

dA 0(0  ,Ip ) := dA <— sin (0 ) i f  Ip = 1 

dA < - 0 .5 (s in (9 )  + -/3 -c o s ( 0 ) )  i f  Ip = 2 

dA < - O .5(sin(0) -  / 3 c o s ( 0 ) )  i f  Ip = 3 

dA

d2A s3(0  ,Ip ) := -c o s (0 )  3 s in ( 0 ) c o s ( 3 - 0 )
dAs3 <------—— ~7 i f  Ip = 1

s in (3 -0 )2

co s(9 ) -  / 3 s i n ( 9 )  3 (s in (9 )  + / 5 - c o s ( 9 ) )  cos(3 9 )

s in (3 -0 ) 

dAs3 <- 0.5
s in (3 -0 )

dAs3 <— 0.5

dAs3

s in (3 -0 )

co s(9 ) + ^~3 s in (9 ) 3 ( s in (0 )  -  / 3  c o s(0 ))  c o s (3 -0)

sin(3 -0)
s in (3 -0 )

if  Ip = 2

i f  Ip = 3



Combination of Willam-Warnke withLubliner compressive yield surface x=cose

p t : = V 3  + 2 - ^ r  p c : = - / 3 + - p r  p t = 4.181541 pc  -  2.956796 r| := p r| = 0.707107V3 3̂
a : =  I — r | b := 2 -t| -  1 d  := 5 r| -  4 r|

rx(x) := •
2 2 

4  a x  + b

n 2-y 4 a x

drdx(x)

2 a  x + b-y 4 a x + d

(s -a  -x -  2 -a-b ) *J4 -a-x2 + d + 8-a-b-x (4 -a-x2 + d) -  1 6 a  -b-x -  4 - a b  x 

J  4 a x 2 + d -Q -a -x  + b 'J  4 a x 2 + d )

v0.5( 2 2 2̂ ( 2  ̂ ( 2 r
r r l(x )  := \8 -a  x -  2 a-b / -0.5 \4 - a x  + d / -8 a x + \4-a-x + d/ 16 a  -x

( 2  ̂ 2 2 3
rr2(x) := 8 -a -b x -8 -a x  + \4-a-x + d / -8-a-b -  4 8 -a -b-x -  4-a-b

rr3(x) := ^ - a -x 2 + d)

rr4(x) :=

2 -ax  + b - ( 4 a x 2 + d) 

0.5*12

0.5
.5 -(4 -a x 2 + d) -8-i

_2-a-x + b -(4  a  x2 + d) _ -0.5 Cl a x2 + d)

2 -a + b-0.5 

- 0 .5
•8 a x

d2rdx2(x) :=

/ \0 .5 r  / \ 0 .5 i
2

(4 -ax  + d) _2-a-x + b-U -a-x  + d/ •(rr l(x ) + rr2 (x )) - _\8 a x -  2-a-b j  -U-a-x + d j + 8-a-b-x \4  a x + d) -  16 a2 b x3 -  4-a-b3 -x ( it3 (x) + rr4{x))

(4  a x2 + d)
\0 .5

2 a x + b-v4-a-x + d)

Derivatives of Ar(e)

A i(0 ) := pc  rx (co s(0 ))  dA rd0(0) := - s in (0 )-d rd x (c o s (0 ))-p c  d2A rd0(0) := ( -c o s (0 )  -drdx(cos(0)) + s in (0 )2 -d2rdx2(cos(0 )))-pc

Yield function and plastic potential

F (o ,Z ) := Vj 2(ct) Ar(0(cT)) + ( a  + y  j - I l( a )  Z fc Z ( l - a ) G ( a ,Z ) -A r(0 (a ))  + ( a  + ^  ] - I i(a )  -Z -V



Function gradients J 2 to l :=  f p i O 0 t o l := 10

c t e r m s ( a ,Z )  := c < -  ( 0  0  0  )

J2  4-  J 2 ( a )

J3  < -  J 3 ( a )  

t < -  0 ( a )

t < -  0 to l  i f  t  <  0 to l

71 I I 71 _ ,
t  4 0 to l  i f  t >  0 to l

3 3

COS0 < -  co s ( t)

s in 0  <— s in (  t)

s in 3 0  < -  s in (3  t)

A  < -  A i(  t)

d A  < -  d A rd 0 ( t)

Cj 4r-  ̂ a  +  —  | -Z 

i f  J2  >  J2 to l

A  3 V 3 J 3 d A  

s i n 3 0 - 4 J 2 2

- d A - ^ 3  

2 s i n 3 0 J 2

Yield function gradient

d F d o ( a , Z ) : =  | c  < - c te rm s (0 , Z )

I d F d a  < -  c j  -d lI +  c 2 < U 2 (a )  +  c 3 < U 3 (a )

Plastic potential gradient

d G d a ( a , Z )  :=  d F d o ( a , Z - 4 ' )

d 2 F ( a , Z ) : c2  < -  c 2 f ( a , Z )  

c <— c t e m i s ( a ,Z )  

a2  < -  d J 2 ( a )  

a3  <— d J 3 ( a )

N u l6 x 6  +  c d a 2 d a +  c d a 3 d a ( a )  +  c 2 ,  a2  a2T  +  c 2 , a 2 a 3 T  +  c2 „  a3  a2T  +  c2  -a3 a3T

d 2 G ( a , Z )  :=  d 2 F ( a , Z  ■4J ) d 2 G d a Z :=  | a  +  j  |-4> -d ll

Coefficients of 2nd derivative of yield function w .r.t stresses

c2f{ a , 7 . )  :=  " c o e ffs  fo r 2 n d  d e r iv s . c l= c 2 2 ,  c 2 ^ c 2 3 , c 3 = c 3 2 , c 4 = c 3 3 "

c2 s  < -  ( 0  0  0  0  )T  

J2  < -  J2 (c r)

J3 <- J3 (a) 

t 4-  0 (a )

t 4-  0tol if  t < ©tol

t 4 0 to l  i f  1 1| > —
3 ' 3

COS0 4r~ COS( t)

s in 0  < -  s in (  t) 

s in 3 0  4-  s i n ( 3 t )  

co s3 0  4 -  c o s (3  t)

A  4 -  A r( t) 

d A  <— d A rd 0 (  t) 

d 2 A  < -  d 2 A rd 0 ( t) 

d 2 A

• 0 to l

d 2 A s3  4 -  ■
s in 3 0

i f  J2  >  J2 to l  

d c 2 d j2  4-------

3 c o s 3 0 d A

s in 3 0 2

- A  3 J3  -dA

.1.5

d c 2 d j3

d c 3 d j2

d c 2 d 0  4

d c 3 d 0  4 

d 0 d J2  <

d 0 d J3  <

c2Sj

c2s2 
c2s3 
c 2 s .

4 J 2  2 - s in 3 0 J 2 "

■ / j -3 d A  

4 s i n 3 0 J 2 2 

d A - / 3

2 -J2  -s in 3 0

d A  3 4 / 3  J 3  -d2A s3 
 +  —  --------------------

4 - J 2 2
2-fn.
V3 

— — — -d2A s3 
2 J2

3/ 3 -3 J3

2 5
4 - s in 3 0 J 2

-V3
2 s i n 3 0 J 2 1' 5 

d c 2 d j2  +  d c 2 d 0 d 0 d J 2

d c 2 d j3  +  d c 2 d 0 d 0 d J 3

d c 3 d j2  +  d c 3 d 0 d 0 d J 2

d c 3 d 0 d 0 d J 3
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First and second derivatives of principal stress components 
w.r.t cartesian stresses

c2s( v , v re f. Ip)

Ip = Stress component required 
v=variable stress or adjusted strain 
vref = reference stress or strain

aj := dl l a2( v) := dJ2( v) a3( v) ■.= dJ3 ( v )

c ( v ,  v re f, Ip) := v r e f 2 10 10J2 to l 

J2  4 -  J 2 < v)

t 4 -  0 (  V)

J3  4 -  J 3 ( v)

A  4 -  A 0( t , Ip)

c 4 -  ( 0  0  0  )T 

1
C>^7
i f  J2  > J2 to l

i f  ( t > e to l)  •[ t <  —  -  Gtoi

dA  4 -  d A 0 ( t , Ip )

A  3-dA

v  A-----------
3 J2  2 s in (3  t)  J2  

- d A

J2  s in (3  t)

i f  [ ( t <  6 to l)  ( I p  =  1)] +  [ t  > —  -  Gtol ]- (Ip  =  3)

2 JTTi
1

" <— —
3 3-J2

A

JTTl

2-J2

t > —  -  etoi |-[d p  = i) + (ip = 2)] + [ ( t < etoi)  [ ( ip  = 3) + (Ip = 2 ) ] ]

"coeffs for 2nd d e riv a tiv e s . c l  -~c22. c 2 - c 2 3 . c.V c32 . c 4 -c 3 3 "

J2 to l 4 -  v re f2 10 

J2  4 -  J2 ( v) 

t < -  0 (  v)

J3 4-  J 3( v)

A  4 -  A6( t , I p )  

d c2 d 6  4 -  0 

d c3 d 0  4 -  0

c  4 -  ( 0  0  0  0 )  

i f  J2  >  J2 to l

i f  ( t  > eto l) t < I —  -  etoi

d A  4 -  d A 0 ( t , Ip)

d 2 A s 4 -  d 2 A s 3 ( t , I p )

. _ .n dA 3 J3  , 
dc2de 4----------------+  ■ ■ *d2As

dc3de 4-

V7H 2.J22
- d 2 A s

3 -d A J 3 3/ 3 -3 J3

2 ' / 3 - J 2 * '^  s in ( 3 - t ) - ( J 2 ) 2 4  s in (3  t)  J 2 2

3 -d A  -^ 3

- -dc2d0

2 -s in (3 - t) - J 2 2  2 - s in ( 3 t ) - J 2 1' 5

■dc2d0

dA >/3 3 J3
s i n ( 3 t ) - J 2 2  4  s i n ( 3 t ) J 2 2 ' 5

•dc3d0

4 152sin(3t)-J2 

[ ( t < etoi) <ip = i)] + 

- A  J3
c  4-------------------------- + ----------

' 2V3J2U J23

2 2J22

3 3 -J2 2

■dc3de

t -  e to ij -(ip = 3)

2 - / 3 J 2 1

, _ 0toi j [ ( i p  = i) + (ip = 2 ) ] j  + [ ( t  < etoi) -[(ip = 3) + (ip = 2)] ]
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Generalised gradient 2nd differential

dPIda( v , vref, Ip) ca <— c( v , vref, Ip)

ca^ dl 1 + ca^ dJ2( v) + ca^ dJ3( v)

d2PI( v , vref, Ip) := ca <— c( v , vref, Ip) 

cb <— c2s( v , vref, Ip) 

a2 <- a2( v) 

a3 < - a3( v)

T T T T
d2PI < - N ul6x6 + ca^ da2 d a  + ca^ -da3do( v) + cb j a2 a2 + cb2 a2 a3 + cb3 a3 a2 + cb4 a3 a3

d2PI

Hardening function terms

K p fc 0.72 -6C
2 E

K n =  0.04336 p f := 10

Zf( k ) :=

Z <— Z q
+ 0 - Z o ) _ <- c c l . n ( | _ e- c C2.T,) 

ac

X ( a )  := y <------------- + 0.55
fc 0.9

eX + eX_1 + 0.0022

dZdic(K) :=

dZ
( l - Z o )  — cc i-r| |~ (  - c c2 -ti^ - c c2 n ]
----------------e t - c c l ' V l - e  J +  cc2 -e J3c 'Kp

dX dc< a) :=
M(o)

X <-------------- + 0.55fb-O-9
 ̂ dH dy <-------------

fb 0.9

dX < - (eX + eX 0  -dy

dF d Z (o ) := a  — } Il(cr) - - a)

d2G atc( k ) := d2G doZ-dZdK (K )

ck ( c t ,k ) :=  X (ct) ( a  dG d cs(a ,Z f(K ))) 

1
aK(a ,K  ,A X )

-  AX X ( a ) - ( a  d2G daZ) dZdK(K) ] 

ha (a ,K  ,A X ) := dF d Z (o ) dZdK(K) K 0 (CT,Zf(K)) ^ ( a , K  ,AX )

K CT( a , Z )  := ( o  dG do(cT,Z)) dXdo(CT) + X(cr) d 2 G ( a ,Z )  a  + X (a )  d G d a (o ,Z )  

acK-(o ,K  ,A X) := cK (C T,K )aK(a ,K  ,AX )

hK(o ,K  ,A X ) := (dFdZ(CT) dZdK (K )) cK (CT,K) aK(a ,K  ,AX)
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Local yield function

4 r  2 ,  2 ,  2 2 4 2
r*i ro  *‘ti ~ 2 r(j fti fi + M hi

f<C,K ,s )  :=

Local plastic potential function

8(S> *  J (Si f  + (S2>2 * (s3)‘
U  ~  e t i )  

11 (E0 ~  e t i )

f s « -

fe<-

-ctm) kp
Eefres_ fte ti + (1 -  res_fi) \ e t i - e  ”  T' )

( n 2 -  ib 2) - f t i  + 2-m2 Sj + | \ M + 4 -n 2 | s 2j 2 + ( s j 2

d(Qde(e) :=

First and second derivatives of functions

dfeds^.K  ,s) :=

dgds(s) :=

J(Sl)2 + (S2)2 + (S3)‘

1
2

V 3 j

dfedJC.K ,s) r res ft

U  ~ Eti) 

n (e O -  eti)

0 if  C, <

, -C tl -T1 I -Ctl
(* -  r) e -Etj •

EO - Eti
-2-

-  fs

2  2  ’JC - ê j r ,.

2 rC2 J U 2 -  ^E 2)  (e ,) 2 + 4 ^ 2 [ ( e 2) 2 + (e3) 2]

2 •( e_

] ( k2- ^ 2) {',)2 + 4r?2[(e2)2 - (e3)2]
2 |e ,

2 2 )  /  \ 2  . 2 
-  He J  e + 4  rC

1

2  s 2

d2 fed<(C,K,s) :=

’ 0

-1 6 -h 2 {s2) 2 + 2
n  ' <-

0 0 

r M  + 4 - m 2 [ ( s 2 ) 2  +  ( s ‘3 ) 2 ] ]  V A

r  „  2r M  +  4 - n
r  -> i l l 0 -5

[ W 2 * M 2 ] ]

2 , 3

0

. 2 
r M  +  4  n

[ m 2 * m 2 I

e 2 ' s 3 8  41 s2

I 1 ' 5

- 1 6 - j i 2

, 2 
r M  + 4 - m

( s 3 ) 2  +  2

_ ( S 2 ) 2  +  ( S 3 ) 2 ] ]  

r p t 4 , 2 [ ( S 2 ) 2  +  ( s 3 ) 2 ] ]

| \ p  + 4 - n 2
[ w 2 + w 2 ] ] 0 5 .

, 2 
r M  + 4 | i

_ ( s 2 ) 2  +  ( s 3 ) 2 ] .

1 1.5
, 2  

r p  +  4 - | i
, ( s 2 ) 2  +  ( s 3 ) 2 ] ]

d2gds(s) :=

,(Sl)2*(S2)2 + (S3)2.
1.5

W2 + (S3)2 

^2S1 (sl)2+(s3f -*2*1

- s 3 s l -S3 S2 (Sl ) 2 + ( S2 ) 2

dfeck(£ ,K  ,s) :=

•Eef  otherwise

r <— res_ft

(C-Etj) 
(EO “  Eti)

T|

0 if  C < £ti

(1 -  r) A £tj e
■ c n w  ; 2 kp

K p
otherwise
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Normal vectors for all principal stress or strain directions

r_all( v , vref) := r <—(0  0 0 )

for Ip e  1.. 3

N <— dPIdo( v , vref, Ip)

for i e  1.. 3

r. < - 0 i

r. <r- / r  i f  N. > 0 i ^ i l
r <— r i f  N  < 0
2 2 4

r <— r i f  N < 0
3 5 O

r3 - 3 , f  (r2 r3 'N5) < 0

rd . < - r
»P

" Check for clashes"

if  | rd j rd2 | > 0 .01  a  l ^ - r d ^  > 0 .01  a  ( |  rd j rd3 | > 0.01 J 

id *- (1 0 0)T

rd2 < - ( 0  1 0 )

rd3 < - ( 0  0 1 )

otherwise

i f  r d j - r d J  > 0 .01

rd. <— sloci

r d 2  rd ^  x  r d j

i f  r d ^ r d J  > 0 .01

rd2 < - sloc^3, r d j j

rd ^  r d j  x  r d 2

i f  rd j r d J  > 0.01

rdj < - s lo c |2 , rd2j

r d j  <r- r d j  x  r d 2

rd

( \ 2 5^ f 4 61
isq := 2 1 nsq := 2 4 5

b 2 I,3 5 6 ,

' 0 0 0 0 0 o N 'o 0 0^

Nul3x6 := 0 0 0 0 0 0 Nu!3x3 := 0 0 0

, 0 0 0 0 0 0 , , 0 0 0 y

POD unit vector gradients

r_grad( v , vref, Ip) := rgrad  < - Inu i

r <— r_all( v , vref)
Ip

d2Pdv <— d2PI( v , vref, Ip)

dPdvT < - Nu13x6T 

for i e  1.. 3

d P d v T ^  <— - j — d 2 P d v ^  i f  | r . |  > 10 4

otherw ise

dPdvT

dPdvsT

<i) i . . . A nsqi J
2 - r

K.z)
•d2Pdv

lsq
> 10

- 4

i ,2

<i>
j ^  nsq. J )

------------d2Pdv ’ otherw ise

2 r( is q i . 3)

dPdvT
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s g r a d f  v , vref, Ip ,id )  := r <— r_all( v , vref)
Ip

drdv <— r_grad( v , vref, Ip) 

denom
i t 'K d .l) ]  + [r(idxid, 2)]

dsdr <— Nul3x3

idr <r- id

if  denom < 10 ^  

idr <- id + 1 

idr <- 1 if idr > 3

denom

denom3 <— denom"

r  -12 r  -I
V idx.,

+
V idx.,

.  V idr, l/_ \  id r ,2/_

dsdr <—

dsdr •

denom3

denom3

dsdr <— ■
denom3

-'2 'l 0

( rl ) 2 Y ' l  °

0 0 0 .
0 0  o '

-W2

r2 'r3 . 

2"

denom

0 - 1 0

0 -Vr3

('2):

rl r3 0 ( r3J

0 0 0

“( rl ) 2 °  ' rl " 3

denom

1 0 0 
VO 0 0J

0̂ 0 0 N 
0 0 - 1  

<0 1 0 ;

if  idr = 3

if  idr = 1

denom

0 0 1
0 0 0 

V - i  0 OJ
if  idr = 2

dsdr drdv

t_grad( v , v re f ,Ip ,id )  :=

Terms for orthogonally generated PODs. Direction switched whertx proximity introduced

°l[(rl2)2 + (rl3)2.
r_ortho( r l , ro) :=

rG2rlr rl2 - ra3rVrl3

- ror r l i r l2 + r o 2 - ra3.rl2.rl3[(rl3)2+(rll) 

rlr rl3 - ra2rl2rl3+ro3[(rll)2 + (rl2)2].
[ ( rl2 r°3 -  rl3 rCT2) 2 + ( r l 3 r° l  -  r l r ra3) 2 + ( r -l -“ 2 - 2  - U

r l , ra„ -  r l . - r a .

r <— r all( v, vref),
'Ip

s <— sloc(id, r)

drdv <— r_grad( v , vref, Ip)

dsdv <— s_grad( v , vref,Ip ,id)
f . \

dtdr <—

V
f

dtds <-

dtdr drdv + dtds -dsdv

0
S3 _S2

- S3
0 Sj

S2 - S1 0

0
- r3 r2

r3
0 - r ,

“ r2 r l °
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do r!( r l , ra) :=

- r l , rl
[ ( r l 2 ) 2 + ( r l 3) 2 ]  - r l r r l 2

-r' l rl2 [(r,3)2+(r'l)2] -rl2r'

-r,2rl3 [(rll)2 + (r,2)2].~ r l r r l3
[ ( r , 2 r°3 '  r l 3 ra2)2 + ( r l 3 r° l  -  r l l ra3) 2 + ( r l l r°2 ~ r l 2 ra l)

dor2( r l , ra) :=
-r_ o rth o ( r l , ra)

r̂l̂  râ  - rl3ra2j2 + (r,3 rCT1 ~ rlj + (rli ra2 ~ rl2 rCTl)2

drdor( r l , ra) := d o rl(  r l , ra) + dor2( r l , ra)

Terms for PODs at a p to existing

drdra ( r l , ra) := m ul < - 1

mul <------1 i f  r l  r a  < 0

(d o r l(  r l , r a  m ul) + d o r 2 ( r l , ra -m u l)) s in (a p )  mul

t_grado( v , vref, I p , i d , r 1) := r a <— r_all( v , v re^ jp  

r < -  r_ o r th o ( r l , ra)

drdv < - drdoif r l , ra) r_grad( v , vref, Ip) 

s < - s Io c ( id ,r )

dsdv <— s_grado( v , vref, Ip , i d , r 1)

(  0
S3

dtdr < - ^ 3
0

. S2

f  0
- r3

dtds <— r3
0

^ " 2 r l

d tdr -drdv + dtds dsdv

2.(rl3.ra1-r l1.ra3).rl3-2.(rl1ra2-rl2.Ta1).rl2

{ 2 (rl2 r<T3-  rl3 ro2)] rl3+ 2 (rlr r°2- rl2 rCTl) rll 

2 ( r l 2 r° 3 -  r l 3 ro2) r l 2 - 2 ( r l 3 r° l  -  r , r ro3) r l l

s_grado( v , vref, Ip , id , r 1) := r a < - r all( v , v refi,"Ip
r <- r_ortho( r l , ra)

drdv <— drdoif r 1, ra) • r_grad( v , vref, Ip)

denom
_rK d ,l)J  l ' ( idxid,2).

dsdr <- Nul3x3 

idr * -  id

- 1 2
if  denom  < 10 

idr < - id + 1 

idr < - 1 i f  idr > 3

denom

denom  3 <— denom

r  -i 2 r  -i

V idx.
+

V id x .,
.  1 id r, 1/ . 1 idr,2/_

dsdr

dsdr ■

denom 3

-1

-fc)J

( ri ) ‘ Yri 0

denom3

0 0 0. 
0 0 o '

0 -r. r. -(rj2

denom

2 3 

2
(r2)

denom

0 -1 
■ 1 0 

0

0̂ 0 
•00 
U 1

dsdr •
denom3

rl r3 0 0 0

denom
• 0 0
,-1 0

dsdr drdv

0 i f  idr = 3

0,

o N
-1 i f  idr =  1 

0 ,

0 i f  idr =  2

0,
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Gradient functions fora PODs

s_grada( v , vref, Ip , i d , r 1) := ra  <- r_all( v , vref) IP
mul <— 1

mul <------1 i f  r l  ra  < 0

r < - ( c o s ( a p) r l  + s in ( a p) r_ortho( r l , r a  m u l))  mul 

drdv <r- drdra ( r l , ra) r_grad( v , v ref,Ip ) mul

denom
j t ' K d . l ) ]  + [ ' ( id x k i ,2 ) ]

dsdr Nul3x3 

idr < - id

i f  denom  < 10
12

idr <- id + 1

idr

denom  <—
idx.idx

idr,2/_

3
denom 3 <— denom '

dsdr <— ■
-1

denom 3 (r.)' Y ri 0

dsdr < - •
-1

denom 3

0 0 0. 
0 0 0

20 -r2-r3

denom

0 - 1 0  

1 0 0 
V0 0 0J

i f  idr = 3

denom

0 0 0 

0 0 - 1  

V0 1 o ;

i f  idr = 1

dsdr
denom 3

V r3 °  ( ' j )

0 0 0

i T\f  0 -rr r3

'  0 0 1̂ 1
1

+ ------------ 0 0 0
denom

v-1 0 o j

if  idr = 2

dsdr drdv

t_grada( v , vref, I p , id , r 1) := ra  <- r all( v , vref),
-  'Ip

mul <— 1

mul <------1 i f  r l r a  < 0

r <— (c o s (a p )  r l + s in ( a p) r_ortho( r l , r a  m u l))  mul 

drdv <— drdra ( r l , ra) r_grad( v , vref, Ip) mul 

drdv <r- drdra ( r l , ra) r_grad( v , vref, Ip) mul 

s < - sloc( i d , r)

dsdv <— s_grada( v , vref, Ip , i d , r 1)

(  0
S3 ” S2

dtdr <— ^ 3
0

SI

^ S2 ~S1
0

'  0
" r3 r2

dtds * - r3
0

~ r i

v “ r2 f l
0

dtdr -drdv + dtds -dsdv
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dNdv( v , vref, I p , id) r <— r_all( v , vref) 

s <— sloc( i d , r)

Ip

drv <— ( r_grad( v , vref, Ip))

1
dsv <- (s_grad( v , v re f ,Ip ,id ) )  

T
dtv < - t_grad( v , v ref, Ip ,id )

dNdv

2 -rj drv
< l )

l-r^ -d rv
<2>

2 r^ -d rv
<3>

,  <»> a ®2 | r^-drv + ^  -drv

,1 A® A <3>2 | r ,  drv + r^-drv

,, , (l) , <3>2 | r^ -drv + r^ drv

'{r3̂

j  (l> j  <1>Sj -drv + Tj dsv

ŝ drv̂  + r2 dsv̂

 ̂ <3> , (3)s^-drv + r̂  dsv

^ <1) ,  (2> ,, <1> ,  (2>s^-drv + S j-d rv  + -dsv + ly d s v

<2> <3> , <2> . <3>
s  ̂-drv + s2 drv + r̂  dsv + r2 dsv

^  <>> ,  . <1> . <3>s^-drv + Sj drv + r^-dsv + r^-dsv

( A <!> , <lAI t j - d r v  + T j-d tv  I

, <2> , <2>
t2 drv + r2 -dtv

(3> <3>
drv + r^-dtv

, <1> , <2> , (1>  ̂ <2> t2 -drv + t j drv + r2 -dtv + r  ̂ -dtv

, <2> <3> <2> . <3>
drv + t2 <lrv + r^ dtv + r2 <ltv

<1> <3> <1> <3>
drv + t j -drv + r^-dtv + r^ dtv

dNdv

dN d v _ x _ o (v , v ref,Ip ,O m ul .*d) := dN dvar < - dN dv( v , vref, Ip , id)

for ir e  1.. 3

dN  < - 0

for is e  1.. 6

dN  <— dN + dNdvar. . -Omul- 
i r , is 1

for j s  e  1.. 6

dN dv x o. . d N .
  i r , j s  js

dN dv x o

dN dv_x_ef( v , vref, Ip ,e f ,id )  := dN var < - dN dv( v , vref, Ip , id)

for is s  1.. 6

dN < - 0

for ir e  1.. 3

dN < - dN  + dNvar. . -ef 
i r , is ir

for js  e  1.. 6

dN dv x ef. . d N .
-  -  i s , js  js

dN dv x e f

id = POD number
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Orthogonal 2nd and 3rd crack variant

dNdvo( v , v re f ,Ip , id ,  r l )  := ro  <— r all( v , vref).
Ip

r *— r_ortho( r l , ra) 

s < - s lo c fid , r) 

t <— r x s

drov <— ( r_grad( v , vref, Ip))

T
drv < - (drdor< r l , ra) drov)

1
dsv < - (s_grado( v , vref, I p , id ,  r l ) )  

T
dtv < - t_grado( v , vref, Ip , i d , r 1)

dN dv <—

2 -rj -drv
< 1>

2 -r^ -drv
<2)

7 H (3>2 -r -drv

_i . <1> . <2>2 | i'2 'c*rv + r] 'drv
, <2> , <3>

2-1 r^ drv + r^ drv

,  (3> 2 I r^ -drv + r ̂  drv

,  (l> j <1>Sj -drv + rj dsv

, <2> , <2>
s^-drv + r^-dsv

,  <3> ,  <3>Sj-drv + r^dsv

,  ( 1> ,  (2> ,  <1> ,  (2>s^ -drv + Sj-drv + r̂  dsv + r̂  -dsv

<2> <3> <2> . <3>
s  ̂-drv + s^ -drv + r̂  -dsv + r̂  -dsv

, <!> , (3) , (l) h (3)s^-drv + Sj-drv + r^-dsv + r^-dsv

dN dv

dN dv_x_oo( v , vref, I p , o m ul , i d , r l )  :=

, H (l> ^  (l>t j  drv + Tj -dtv

a ®  A ii )t^ drv + -dtv

, .w (3) ^  <3>t^ -drv + r^ dtv

,  ,  (2> <1> ,  <2> t^ -drv + tj-d rv  + r^-dtv + r^ dtv

. . <2> , . <3> <2> <3>t^ drv + t^ drv + r^-dtv + r^-dtv

,, <1> <3> ,  <1> ,  <3>t^-drv + t j -drv + r^-dtv + r^ dtv

dN dvar < - dN dvo( v , vref, Ip , id , r l )

for ir e  1.. 3

dN < - 0

for is e  1.. 6

dN  < - dN  + dNdvar. . -ermul - 
i r , is is

for js  e  1.. 6

dN dv x o. . dN .
  i r , js  js

dN dv x o

d N dv_x_efc(v , v re f ,Ip ,e f , id ,  r l )  := dN var <— dN dvo( v , vref, Ip , i d , r 1)

for is e  1.. 6

dN  < - 0

for ir e  1.. 3

dN <— dN + dNvar. . ef.
i r , is ir

for js  e  1.. 6

dN dv x ef. . < - dN 
i s , js  js

dN dv x e f

ANo( v ,  v re f ,Ip , A c , id ,  r l )  := dN dvar <— dN dvo( v , vref, I p , i d , r l ) 

for ir s  1.. 3 

for is £ 1.. 6

AN.
i r , is

dNdvar. . Ao 
i r , is

AN



For PODs a ta D to  existing

dNdva( v, vref. Ip, id . r l ) := ra  «- r all( v, vref),Ip

mul <— I

mul <-----1 if rl ra < 0

r <— (cos(ap) rl + sin(ap) r_ortho( r l , ra  mul)) mul 

s *- slocf id , r) 

t « -  r x s

drov <r- ( r_grad( v, vref. Ip)) 

drv <— (drdra ( r l , ra) -drov mul

T
dsv <- (s gradaf v, vref,Ip, id, r l))

T
dtv <- t_grada( v , vref, Ip, id , r 1) 

.  . <l >

dNdv ■

<2)
2 - i ^ - d v /

,  j  <3>2-r^-drv

,l <1> . <2>2-| *2 + ri “rv
I , ^2) <3>

2*1 r -drv + r2 ^ Ty

,  (l> H <3>2 [ drv + r^-arv

<i > <i >Sj -drv + dsv

. <2> <2>-drv + dsv

,  <3> ,  <3>s^-drv + r^-dsv

, <1> <2> . <1> . <2) s^drv +Sj*drv + iyasv + iyasv

,  (2> ,  (3> ,  (2> ,  <3>s, -drv + s^drv + r -̂dsv + r^dsv

. <1> . <3> , <1> . <3>s  ̂ drv + S| drv + r -̂dsv + r̂  dsv

dNdv

dN dv_x_ao(v, v re f,Ip ,amui , id, r l)  :=

<l> <1>t j -drv + r  ̂-dtv

,  <2> ( 2)-drv + r^ -dtv

. <3> . <3>
-drv + dtv

. <I> <2> , <l> . <2>t̂ drv + tjdrv + *2 + ri

. <2> . <3> , <2> . <3>
t^-drv + 2̂ ^  + r3 v + r2

,  <»> ,  <3> J <1> ,  <3>drv + t j -drv + r^ -dtv + r^ -dtv

dNdvar <- dNdva( v, v ref,Ip ,id , r l)

for ir e  1.. 3

dN <- 0

for is e 1.. 6

dN <- dN + dNdvar. . a nlui .
ir,is i

for js e  1.. 6

dNdv x a. . <- dN .
—  ir ,js  js

dNdv x a

dNdv_x_eix( v , vref. Ip,ef, id , r l)  := dNvar <— dNdva( v, vref,Ip ,id , r l)

for is e 1.. 6

dN <- 0

for ir e 1.. 3

dN <- dN + dNvar. . ef.
tr, is l r

for js s  1.. 6

dNdv x ef. . dN .
-  -  1S ,JS  js

dNdv x ef

ANa( v, vref,Ip, Aa, id, r l)  := dNdvar «- dNdvaf v, vref,Ip, id, rl)

for ir 6 1.. 3

for is e  1.. 6

AN. . <r- dNdvar. . Aa 
ir,is ir,is

AN
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Stress and strain transformation matrices

N ( r , s ,  t) :=

(ri)2 (r2)2 ('3)2 2 rr r2 2 r2 r3
2 r, r .

N e ( r ,s ,  t)

‘1 ‘2 1 3(0 2 ( t f  ( t f
2 { r l Sl )  2 ( r2 S2) 2 ( r3 S3> r2 Sl + r r S2 r3 S2 + r 2 S3 r l W l

2 ( r l t l)  2 ( r2 ‘2) 2 ( r3 ‘3) r2 t l + r l t2 r3 t2 + r 2 t3 r l ' t3 + r 3 t l

POD direction

POD dir( v , vref, Ip , ipod) := Vpr<- Prl(v) 
r__pod < - r_all( v , v re f )^

s_pod < - s lo c ^ n s .p ^ ,  r_podj

t_pod <— r_pod x s_pod 

/ y p r , r_ P °d , s_pod j t_ p o d jA

vpr2 r_Pod2 s_pod2 t_pod2

vp r3 r_pod3 s_pod3 t_pod3 j

Orthogonal 2nd and 3rd crack variants

POD diro( v , \re f ,  Ip , ip o d , r l )  := vpr < - p r l(  v)

r  a  <r- r  all( v , vref),
' I p

r_pod < - r_ortho( r l , r_o) 

s_pod <— s lo c |n s .^ o^ ,  r_podj

t_pod <— r_pod x s_pod 

vp r, r_ P °d , s_podj t j w d j

vpr2 r_pod2 s_pod2 t__pod2

vpr3 r_pod3 s_pod3 t_pod3 ^

Stress transformation 
matrix

Cartesian to direct

\ 2  1 \ 2  1 \ 2

N p ( r , s , t )

( r i)  ( r2) ( r3) 2 r r r2 2 r2 r3 2 r r r3

( Sl ) 2 ( S2) 2 (S3) 2 2 S1 S2 2 S2 S3 2 S1 S3

( s )  ( ‘2) ( ‘3) 2 t r t2 2 t2 t3 2 t r t3.

Strain transformation 
matrix

Directional transformation matrix of principal axes

T d ( r p ,s p , tp )  :=

n>, rp2 CO
e-

sp , sp2 Sp 3

tp , * 2 * 3 ,

PODs which form a ta D to existing POD I

P O D dira ( v , v re f ,Ip ,ip o d , re , a p )  := vp r < - p r l( v )  

r a  <— r_all( v , vref) Ip
mul <r- 1

mul <— 1 i f  r_o  re < 0

r orth < - r_o rtho (re , r a  m ul)

r_pod <— ( c o s (a p )  re + sin(ctp) r o r th )  mul

s_pod <r- s lo c | ns,p0(j > r_P °dj

t_pod <— r_pod x s_pod

Vpr, r_ P °d , s_pod ] t_podj 

Vpr2 r_pod2 s_pod2 t_pod2

Vpr3 r_pod3 s p o d j t_pod3
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Local dam age parameter update

z e ta (e ,Q  := z < -C f (e )

C < - z i f  z > C,

c

Equivalent strain-local strain rate and local strain related open vector products

a ^ ( £ , e , e e )  :=  ( e e )  -d<t>de(e) a e g ( e , e e )  :=  ( e e ) - d e g n ( e )

Local loss of contact matrix, in terms of total 
local strain

m x ( ^ ,K  ,e g ,ee) := "Set proportion function values" 

gb < - gbar(ee) 

he < - h c(i;,K )

h f  h f (c ,K  ,e g ,gb)

"Open"

W l  i f  (4> in ter(ee) - 0)

"Interlock"

0>h hf-O g(ee) i f  <t>inter(ee) < 0 a  <t>cl(ee) > 0 

"Closed"

d > h < - l i f  l3 i f  (<t>cl(ee) < 0) 

mx i -  hc l3 + O b  

mx

a g (e e ) : dgde •
-1

1 +
1

ee + 10

•<|>grad(ee) i f  (<|> inter(ee) < o) (4>cl(ee) > 0)

•( eej ee2 ee3 j T i f  <|>c l(ee) < 0
10

dgde <— ( 0  0 0 ) i f  <j>intei<ee) > 0 

T
(ee) dgde

Only employed if on yield surface

dm ic(£ ,K  ,e g ,ee) := "Set proportion function values" 

gb < - gbai<ee) 

h e  < -  h c t C .K )  

h f  <— h f { c ,K  ,e g ,gb )

d hcdK  <—  d hd K c (< ^ ,K )

d h fc k  < - d h f ^ ^ . K  ,e g ,gb )

"Open"

d O e h K  < - ( 0  0  0 )  i f  (<t>inteife e ) -  o )

"Interlock"

dOehK < - dhfck d>g(ee) -(ee) i f  (<t>inteKee) < o) (<t>cl(ee) > 0)  

"Closed"

dOehK < -  d h fck  I3 (ee) i f  (<j>c l(ee) < 0)  

dhcdK  (ee) + dO ebx



Rate of loss of contact matrix, in terms of local strain

dnix(t, k ,eg ,e,ee) := "Set proportion function values" 

gb <- gbarfee) 

he <- hc((;,K)

h f< -  hf{c,K  ,e g ,gb)

dhdzc <— 0
d h d zc< -d h d ^ C .K ) if <t»(e,Q > - e toi 

dh£;<- 0

dhf;< - d h f^ .K  ,eg ,gb ) if <i>(e, Q  > - e t0 | 

dhfeg«— dhfe^C.K . eg.gb) 

dhfg <— d h f ^ .K ,  eg ,gb)

"Open"

if (<!>inter(ee) ^ ° )

<D <- Inul 

Inul 

dOhz <- Inul 

dOheg Inul 

d®hg Inul 

"Interlock"

i f  UinteKee) < o) (<|)ci(ee) > 0)

O <- Og(ee)

O h <r~ hf-Og(ee) 

dOhz <- dhf; Og(ee) 

dd>heg <- dhfeg-Og(ee) 

dd>ha *- dhfg-Og(ee)

"Closed" 

if (<t>cl(ee) < 0)

0) <— I3 

O h <- hf-13 

dd>hz <- dhf; i3 

d®]leu <r- dhfeg-I3

dOhg <- dhfg l3 

mx <- he I3 + Oh

dmxz <- (dhdz<; I3 + dOhz) -a^(C, e,ee) 

dmxe t dtPbeg’̂ g fe.ee) 

dmxg <- dOilg ag(ee)

(dnixz + dmxg + dmxe + mx)

Added flexibility with rfact to avoid 0 
added flexibility

et0| := EfIO

dmxp(<^, k , eg ,e,ee) := "Set proportion function values" 

gb <- gbatfee) 

he <- hcIC.K) 

h f< -  hf{c,K  , eg ,g b) 

dhdzc 4— 0
dhdzc <- d h d ^ ^ .K )  if  ^ ( e .Q  > - e tol 

dh£ ;< - 0

d h f ;< - d h f ^ .K .e g .g b )  if  «t>(e,0 > - € tol

dhfg< - d h f ^ .K .e g .g b )

"Open"

if  (4>inter(ee) ^  o)

4* Inul 

^ h  ^— Inul 

dOhg <- Inul 

"Interlock"

if  U inteK ee) < o) (<|)ci(ee) > o)
O  <- O g(ee)

O h  « -  hf-Og(ee) 

dO hg <— dhfg-Og(ee)

"Closed" 

i f  (<l>cl(ee) ^ ° )

O <- I3 

O h <- hf I3 

dOhg <- dhfg l3 

mx <- he I3 + O h 

dmxg * -  dO|lg ag(ee)

(dm xg + nix)

A-25



Local elastic-damage-contact matrices 
Flexibility w.r.t e

Cls(c ,K ,eg,ee):=  m x(^,K ,eg , ee) ' c L 

cit(C.K ,eg ,e,ee) := |dnit «- dmx(< ,̂K ,eg,e,ee) 

for i e  1.. 3

dm t. . <- 10 if  dm t. . < 10 M I i, 11

stiffness w.r.t e

D is k ,*  , eg ,ee ) := D L -m x(c, k , eg , ee)

D k ( c  k  , eg , e, ee) := D l  dnix(d;, k , eg, e, ee)

D its (C K ,e g ,e  ,ee) := D i.m x (c ,K  >eg , ee)

D lpU .K  ,e g ,e ,e e ) :=  DL d m x p ^ .ic  ,e g ,e ,ee )

M p( c ,K ,e g ,e . ee) := dm x(^ ,K  ,e g ,e ,e e )  * dm xp( ^ , k ,eg ,e ,ee )

M K( ; , K , e g ,e ,e e ) :=  dnix(^ ,K  ,e g ,e ,e e )  '  -dm ic^.K  ,eg ,ee)

flexibility w.r.t ef

c i s f k , *  , e g . e e )  := q s ( c ,K  , e g ,e e )  -  C l

tc , e g , e , e e )  := dmx(^,K , e g , e , e e )  ' C l  -  C l

(dm t) C l  

ea(d;,K ,eg ,ee ,e )  := e -  m x(^ ,K  ,e g ,ee) (ee)

Variation of stiffness with plastic parameter k

D k U .K .e g  , ee) := D L -d m K ^ .ic , eg ,ee)

Terms in CPP and consistent matrix 

Form when damage and local plasticity are active. Ip gives the principal stress direction appropriate for a POD number. Only 
applied to new PODs

A dp(np,C >K ,e g ,e ,e e , Ap ,s f , r , s ,  t , Ip) := 16 + Del
nP
■ £  N ( , . . s j . , / ( d m x p ( c . , K , e g . .e . ,e e j )-d2gds( sfj ) .N ( r . ,S j. , j ) ^ j )

U  = i

•De i

NAdp( r, s , t , n p , np rv , A p , C,, k , eg , e , ee, sf. i , Ip) := n (  r . , s . , t .j  + Djp( , k , eg . , e . , ee.j d2gds(sf.j n (  r . , s . , t .j A p . 

CPP terms Damage and local plasticity only

np

Acd p ( n P , sf , A p , ^ , k  , e g , e ,e e ,  r , s ,  t) := k> + Del
j = i

-l
•Del

np

lANdp(nP, n p rv . t f l .a .s f ,  ft>Ap ,£>K ,e g ,e ,e e , r , s ,  t ,Ip ,D e l)  := 16 -  ^

j = Hprv+1

N f r . , s . ,  t .)  ■(citffC-,K ,e g . ,e . ,e e . )  dNdv_x_cj(ai, ft , I p . , o ,  n s .) ...
V J  J J /  V J S J  J J /  . V /  \  J  J  /  \

p^ , k , egj , e ^ .e e j•A p j d2gds|sf.j•dN dv  x cs|ai, ft , Ip^, a ,  n s .j+  M r

d N d v x e ^  a j , f t , Ip j , e a | ^ , k , eg ̂ , e e . , e^ j

fiyp( s f ,A p ,C ,K ,e g ,e ,e e ) := dfedsfC, k , sf)T + d fe d K .ic  ,s f)dO ie(e)T (cit(i;,K  ,eg ,e ,e e ) + M p(c,K  ,e g ) e.ee)-A p d2gds(sf)) 

NOdp(sf, A p , k ,e g ,e ,e e , r , s ,  t ) := fiyp(sf, Ap , £ , k ,e g l e ,e e )-N (r ,s , t)

Elastic damage matrix for trial stress predicion

Del( np.C .ic ,e g ,ee , r , s ,  t) 16 + Dei
np

I  N(rj-sj-‘j) M V ‘ -e*reej)N( v y j))
L j = i

-l
Del Secant

nSjj D ef
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Assemble coupled matrix and R.H.S.

Damage and local plasticity only

Soieji(FE>BE!PE>F|i >Bp >P|i > °p) •- for ip e  1.. np

kl < - 1 + (ip  -  1) 4

R . , P u •kl Mip

for i e  1.. 3

ki i -  1 + (ip  -  1) 4 + i

ki (F£ip)i
for jp e  1.. np

irow «- 1 + ( ip -  1) 4

icol <— 1 + (jp — 1)4

M at. . Pm .. ..
irow.icol H(ip - l)n p + jp

for k e  1.. 3

^ atirow, icol+k [ ^ ^ ( ip - ^  np+jpj^

M at. . . . < - (" Pe , ■ , ,  1irow+k,icol 1_ (ip -lJ n p + jp J ^

elm <r- B e ,.(ip -1) np+jp

for k € 1.. 3

for I e 1.. 3

M at. , . . . + - elm . , 
iro w + k ,ico l+ l k , 1

M at 1 R

Total local consistency

F rh sl^ .K  ,e 0 ,e e ,e ,  r , s ,  t ,E e , ip ,  np) := N (r. ,s. . t. )
p V ip ip ip / Del

nP T

I  N(vsj-‘j) (v •%■“))
j = i

stress^ , k ,e g ,e e ,e ,  r , s ,  t , e e , np) := De]
np

£e _ y  N ( r . , s . , t . )  (e . -  m x k . ,K  ,e o . ,e e .)  ee .) 
4 - i  V J J J /  V J Vs ) ° J  j )  J /

J = 1

Programmes for extracting dfi and local strains

delocfe^(ip , unk) :=

dm iue)i( ip ,  unk) :=

for i e  1.. 3

deloc. < - u n k . . .  . . . .l l + ( i p - 1)4+1

deloc

dm iu <— unk
l + ( i p - l )  4

dm iu

K . ,K ,e„  
\ in

,ee.
ip ip;
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Gaussian Reduction with fixities

n := 4 i := 1 .. n ifx. := 0

Input 
M = nxn matrix y R.H.S ifx = fixities f;

f x  := 0

Gaus( n , M , y , ifx, fx) :=

Output 
x=unknowns rc=reactions

for i e  1.. n 

rc. <- 0
i

x. < - 0i
for j e  i .. n

y . < - y . -  M . . -fx. 
J J J , '  '

i f  ifx. = 0i
piv <— M . .

1,1

for j  e  i + 1.. n 

M .

i f  ifx . 5* 0

i f  i < n

fac<— • J . i
p iv

for k  e  i .. n

M . < - M . -  facM . . 
j , k j , k i , k

y . < - y . -  fac-y.
J J '

for i e  n .. 1 

piv <— M

res <— yl
for j e  i +  1.. n

r e s < -  res -  M . ,-x .
' . J  J

i f  ifx. *  0l
X. <r- f x  

I 1

rc. <— res

i f  i < n

if  ifx. = 0
piv

( x  rc )

= fixed values
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Strain step

Initialise variables

ne := 10 ie := 2.. n

e o .  : =  0  k  : =  0

<Eti ^ f O f ° l f ° l (o') (o')
iset := 1.. 2 elocl. := iset

S © 
o r. := 

iset

o 
o

s. := 
iset

i

, o J tis e t'
0

J ,
ePiset ' 0

, 0 ,
dePiset’

S~ © 
o delocl. . := iset

S" © 
o dp. . := 0 iset

rf. := 1 
iset

C. := e ti 1.0000000001 
iset

A p. := 0 
iset

C p r v C  e§iset _  ^ e g  0-999999 Pjset 0
Koj

R E := ( 0  0 0 0 0 0 )

f ° l f ° l 0.00015 > f ° l f ° l
0 0 0.00001 0 0

0 0 0.00001 0 0

0
E r  =

0
A e  : =

0
eP

0 £P -P rv •- 0

0 0 0 0 0

< 0J l o ; I  0 , , 0 , , 0 ,

Stress calculations

:= £ j + Ae

otr:= Del-£.

T _ - - - " 4 • • ~ - 51.5 x 10 1 x 10 1 x 10 0 0 0J

o tr = (6 .4 8 4 4 7 2  1.614907 1.614907 0 0 0 )

F t r -  F ( o t r , z )  F tr = -4 .6 8 0 6 4 9 K p re v ;-  K

Z := Z f(K )

: P_Pr v E P

Check if a POD forms and its direction

pr 1 (o tr)1  = (6 .484472  1.614907 1.614907 ) ft = 2.9

r_ a :=  r_ a l l(a t r , ft) r_aT 

JPj ■= 1 £e := £- - Ep

POD forms

f O (o) f ° l0 1 0
, 0, J ,

AX := 0 A k  := 0 A e p  := ( 0 0 0 0 0 0 )  Aep. := 0
yoj

sf.

Rv := 0 npod := 0 ee. := elocl. -  en. iset iset nset

cti := a tr Set trial stress

a p r := p r l( a tr )  o prT = ( 6.484472 1.614907 1.614907 )

r ° P T\ rd l Sdl ‘V '  6.484472 N

° P r2 rd2 Sd2 td 2 := POD dir^Gj, f t . I p p  l j ° p r  - 1.614907

v ° P r3 rd3 Sd3 td3 ,
J . 614907 ,

Crack direction based on first trial stress
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npodprv := 0 npod : nC| := 1 ip := 1.. npod jp  := 1.. npod r. := rd 
'P

s. := sd 
'P

t. := tc IP

T
r =

0.952295508549404

0.305177431007984

\

f 'l T
s =

f°l f°l
“

<01 f°l
0 1 1 0.539859

T
t = 0 0 -0 .83996

/ u , v O j . 0 , _ J , J ,V 5.26835606386175 x 10 )

Record variables before enter stress recovery

npod := 1 ip := 1.. npod jp  := 1.. npod < r̂ec := £ Kprev :=  k Ep _ p rv := Ep

£ C p rv := C eg p rv := eg e lo c lp rv ;= elocl e^ jrv := ee eP p rv := ep ^ P p r v := Ap ^ eP p rv :=

Reset all variables

A k  : =  0  k  : =  0

A sp := ( 0  0 0 0 0 0 )  ep : = ( 0  0 0 0 0 0 )

CTt r := De l £ 2

sf. := N |r .  ,s .  , t. )< %
ip V ip ip  ip/

Evaluate the POD consistency

Ftr := F ( o tr, z )  F tr = -4 .680649

F e ^  := Frhs(i^,K  , e g ,e e ,e lo c l,  r , s ,  t ,E e ,ip ,  npod)

%  := fe/c. , k , sf. ) 
n p  A ip ip /

Increment 1 - Iteration 1

Z : = Z f ( K )  AX  := 0  R E := ( 0  0 0 0 0 0 )

T

Rk : = 0

Ee e 2 “  EP

CTtr = (6 .4 8 4 4 7 2  1.614907 1.614907 0 0 0 )

s f  = (6 .4 8 4 4 7 2  0 0 )

F e t = (3 .584472  0 0 )

fe , = 3.584472 C1

Rep
r°) f°l0 0
ko, ,0,

npod

I  I F e . | = 3.584472

j  = l

NAe. := N A d p (r ,s ,  t, npod , npodprv , A p , C, , k  ,e g ,e lo c l ,e e ,s f , ip , lp )

N >P'
N (r. ,s. , t. W h  -  dm x(c ,k ,eo. , elocl. ,ee. ^  

V ip ip ip / V J \ n p  n p  ip ip /j

dfem od  := d f e d ^ .  , k ,s f. V^-N(r. ,s . , t. ) 
ip ip ip / V ip ip ip/

R em ;= R e + d2G aic(K ) A A aK(a tr ,K  ,AA.) R k 

npod

r ek := Rsm  -  ^  (dmi<(Cj , k ,eg . , e e )  ^ ( o t r . K  ,AA.) R K)

j  = l

Ae := Adp(npod,(^,K , eg,elocl,ee, Ap ,s f , r ,s , t , Ip)

N T . := n(V. , s . ,t . V^-dmxpfC- ,K ,e g . , elocl. ,ee. )dgds(sf.
ip V ip ’ ip ’ ip/ PV ip °ip ip ip/ V it

dfemod^ = ( 1 0 0 0 0 0 )

npod

R s x p  r sk  + ^  ^ ( W ' j )  '^rnxP ((’ j ’K ,e g j ’ei° c *j >eej )  ( R e p j )

j = 1
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Form coupled equations

fe . -  dfem od (A e R £Kp)
ip 'P

P U /. . := dfem od (A e -N y .
M( i p - 1) npod+jp  ip V jp

B p , .  . , . := NAe. A e-N E.
( ip - l ) n p o d + jp  ip jp

P p ,.  „  , . := NAe. Ae-N^P.
( ip -1 )  npod+jp  ip jp

B U /. , ,  , . := (dfem od Ae-N E. )T
^ ( l p - l )  npod+jp  I ip jp /

B = B
P ( ip - l ) n p o d + ip  P ( ip - l ) n p o d + ip dfe<^(;ip . k . sfjp) d ^ e l o c l jp)

FEip = Feip ~  NAei p A e R 8 K p - D |K (cip ,K ,e g ip ,ee.p ).aK(ort r ,K >AX).RK + D i p ^ . i c  ,e g .p , elocl. p , ee.p ) Rep.p

BE( ip - l ) n p o d + ip  ~ B E ( i p - l )  npod+ip + D ,t( ^ ip ’ K ’e§ ip ’e' 0C'ip ’eeip)

P e ( i p - 1) npod+ip ~ P E ( i p - l )  npod+ip D,p (^ jp ’K ’Cgip ’ el° C'ip ’eeip) dgds( sfip)

Solve coupled for unknowns

unknown := S o lep (F E , B E. P E. Ep  . B p , p p , npod) d p .p := dm iuep (ip , unknown) delocl.p := deloc% ,('P . unknown) d p j = 8.486765 x 10 deloclj = (8.486765 x 10 0 o)

Update state variables

npod

d o :=  -A e RgKp +

deP]T = (8.486765 x 10 6 0 Oj

y  n (  r . , S j , t j  jT  ^ 1 3  -  d m x ^ j , k  , eg j , e lo c E , e e j j  d e lo cF  + d m x p j ^ , k , eg^ , e lo c E , e e j  d g d s^sf . j  d p  J

L j  = 1

dePiP ;= RePiP + dgds( sfi p ) dEiP + ^ i p ‘d2gds( sfi p ) N( rip ’ sip ’ S p ) ^

ip := eiocii p + d e io c iip := zeK e,ocliP • ^ ^ i p )  AePiP := Aep .P + d e p

e g . := e e n ( e lo c l .  ,e e .  )  e o  =  7.552794
n p  ip ip / °1

do  = ( -4 .0 3 8 1 0 6  -0.712607 -0.712607 0 0 0 )

elocl

ee. := elocl. -  en . 
ip ip n p

x 10

ePjp epprvip + Aep .p

(  - A ( (  - A1.53529411764706 x 10 8.486765 x 10 1.450426 x 10

eloclj = 0 6Pl " 0 e e ,= 0

x 0 0 J 1 0

T ( - 6  \ J  (
A p. := A p. + dp . Ap

ip ' i p  ' i p
= (8.486765 x 10 0 / £ e := e 2 ~ Ep s e = U

C, = 1.535294 x 10

. - 4  . - 5

Eti = 6.866176 x 10

0 0)

o tr  '= stress(^, k , eg ,ee ,e lo c l, r , s ,  t ,£ e , npod)

sf. := n ( r. ,s .  , t. ) o tr 
ip V ip ip ip/

Compute error measures

o tr  = (2 .4 8 1 0 5 4  0.908421 0.908421 0 0 0 )

sfj = (2 .4 8 1 0 5 4  0 0 )

npod

P-epjp “ Aepip + A p .p dgds^sf.p j Repi = ( 0  0 0 )  Fe.p := Frhs(c ,K  ,e g ,ee ,e locl, r , s ,  t , e e , ip , npod) ^  | Fej |  = 0

j = *

CONVERGED! Record converged stress arec = atr

k . := ftfc . ,K ,s f . ) 
ip A ip ip/

fe = -1 .4 8 9 8 9 3  x 10 C1
- 1 0
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Form consistent tangent matrix

A c A :=  A c d p ( n p o d ,s f , A p  , £ , k  , e g ,e l o c l , e e ,  r , s ,  t) DI := D e ]

IcA := IAN d p ( " P o d ,  n p o d p r v ,a i ,C T t r ,s f ,  ft ,A p  , C , k  , e g ) e lo c l .e e ,  r . s ,  t . I p .D l )  N<D.p  := N O d p (s f .p , A p j p , Cj p , k  , eg j p , e lo c l.p , ee .p , r.p , s .p , t jp )

*V,» ' • egip-'l0Clip’“ ip) V '  N®ip A ciM + lnp« d v ^ , , f t,Ip.p,otr,r„ip).DI

n ip;= ■sflp) dJ>i<e'ocljp)'(Mp(«lp-*r-egip-elOClip-“ ip)'dS<1S(sfip)) * N<t>ipT{ AcA N( rip-Sip’,ip)T-Mp(CiP-'C ■e8ip-e,0clip-eeip)-dSdS(Sfip))

D ep:=  AcA

npod
Ic A -  ] T  N ( r . , s . , t J T M p (c j ,K ,e g j ,e lo c l . ,e e J d g d s ( s f j ) - ( n j ) " 1 r .

j  = l

D ep =

-4 .549119  x 10 -802 .785724  -802.785724

-802 .785724  4.077905 x 104 5.996439 x 103

-802 .785724  5.996439 x 103 4.077905 x 104

0 0
0 0
0 0

5.616546 x 103 0

0 1.73913 x 104

0 0

0
0
0
0
0

6.87781 x 103

Add small strain step

d e := (0 .00015  0.00001 0.00001 0 0 0 )  0.000001 daD ep := Dep-de dooep1  = (-6 -9 8 4 2 3 6  x 10 7 3.47337 x 10 ' 3.47337 x 10
. - 7 0 o o)

Reset all to last converged increment

A sp := ( 0  0 0 0 0 0 ) Ak := 0 Z := Z f(ic) A k :=  0 R e := ( 0  0 0 0 o o ; R k  := 0 Rep ,e t := ( °  o o;

ip := 1 -- npod npodprv := 0 npod := 0 C := C p rv  Ap := A p prv elocl := eloclprv ee :=  eeprv e p := e p p rv Aep := Aepprv k := K prev

E2 = £2 + ^E s 2T  = ( 1.500001 x 10 4 1.000001 x 10 5 1.000001 x  10 5 0 0 Oj

° t r D el'e - o tr = (6 .4 8 4 4 7 9  1.614908 1.614908 0 0 0 )

:P := £ P_Prv
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Check if a POD forms and its direction

prl(CTtr)T = (6 .484479 1.614908 1.614908 ) ft = 2.9

r a  := r_all(o tr, ft) r j ?  =

POD forms

f  1 ^ (  -  8 ^ (  - O
'

-1.053671 x 10 -1.053671 x  10
- 81.053671 x 10 1 0

s. 1.053671 X 10~8 , o 1

Ip, := 1 Ee :~ E? "  Ep

:= PODdi r(o i, ft. Ip,

CTPr ] rd , sd i *1  

Opr2 rd2 sd2 td2

v a Pr3 rd3 Sd3 td3 . 

npodprv := 0 npod := 1 nĉ  := 1

T
r =

a p r := p r l(o tr)  o prT = ( 6.484479 1.614908 1.614908 )

(  6.484472 ^

Pr : 1.614907 

V 1.614907

Crack direction based on first trial stress

ip := 1.. npod jp  := 1.. npod

T O r r
0 0

- . 0 , .o;
T

s = 1
vo;

i
v 0 /

0.539858635731268

r. := rd 
IP

tT =

s. := sd 
'P

t. := td IP

f ° l f ° l
0 0 -0.83996

J , J ,

Record variables before enter stress recovery

npod := 1 ip := 1.. npod jp  := 1.. npod (jec:= C, Kp rev := K Ep_prv := Ep

t jf tc  .= C, C p rv '=  C eg p r v := Eg e lo c lp rv = elocl eEprv  ee  ^Pprv = -̂p ^ P p r v := A p Aepp rv^=  Aep

Reset all variables

Ak := 0 k := 0 Z := Z f(K ) AA. := 0

ee. := elocl. -  en .
ip ip Hip

° t r := D e is ,

sf. := N( r. , s. , t. ) crtr
ip V ip ip ip/

eo. := een elocl. ,ee. 
°ip  B V ip ip/

Re := ( 0  0 0 0 0 0 )  

eo. = 7.552794 x 10~5

R k := 0 ReP ise t:= ( 0  0 0 )  Aep := (0  0 0 0 0 0 )  e p := (0  0 0 0 0 0 )T e e := e -  ep

o p  = (6 .4 8 4 4 7 9  1.614908 1.614908 0 0 0 )

s f  = (6 .48447853416149 0 0 )

Evaluate the POD consistency

Ftr := F ( o t r .z )  F tr = -468 0 6 3 2

Fei p := F rh s (c .K ,e g ,ee ,e loc l, r , s ,  t , £ e ,ip , npod)

fe- •'= f^C- , k , sf. ) 
ip v ip ip/

F e T = (3.584479 0 0 )

fe] = 3.584479

npod

I  N
j  = i

3.584479
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Increment 1 - Iteration 1

NAe.p := NA<jp ( r , s ,  t, n pod , npodprv , Ap ,C,, k ,e g ,e lo c l ,e e ,s f , ip ,I p )

N E . := Nl(r. ,s . , t. -  dm xfc . ,K ,e 2. , elocl. ,ee.
ip \  ip ip ip / V V ip e ip ip ip/ /

dfem od  := dfed^C . ,K ,s f .  V ^ W r . ,s . , t. ) 
ip \^ ip  ip / V ip ip ip /

R e m  :=  R e  +  d 2G C T K (K ) A X  aK ( o t r , K  , A A .) R K

npod

R e k  :=  R e iti - d m K ^ , k  , e g j , e e j |  aK (CTtr,K , A A ) - R k |

j = l

Form coupled equations

Ae := A dp(n p o d ,C ,K  , e g ,e lo c l,e e ,A p  ,s f ,  r , s ,  t , Ip)

N 4 \  := N ( r .  ,s . , t. V ^ d m x p fc  , k ,e e . , elocl. ,ee. )d g d s ( s f . ) 
ip V ip ip ip/ V ip s ip ip  ip / \  ip /

dfem odj = ( 1 0  0 0 0 0 )

npod

R ekP := R ek + ] T  N( rj , s . ,  t . )  d m x p (C j, k , e g .,e lo c l. ,e e .) -^ R ePj)

j = l

F p iri := *e;n _  dfem od ( A e R eKp)
'P  'P

p
P ( i p - l )  npod+ jp

B f .. . .  , . := NAe. -Ae-Ns..
E( ip -1 ) -n p o d + jp  ip JP

B P ( i p - 1) npod+ jp  ' (d fem ° d p  Ae N“- Jp) B P ( i p - 1) n p o d + ip ' B P ( i p - 1) -npod+ip y  ed^ i p  ’ K ’ S^ip) ^ ^ ' ^ i p )

:= d fem odpT -(Ae m > jp ) F E .p := Fe.p -  NAe.p A e R eKp -  D ^ . k .e g ip ,ee .p ) ^ ( o t r ,K ,A a)-R k + Dlp( c ip ,K ,e g ip ,e lo c lip ,ee |p ) .R eP|p

B ^ ( i p - 1) npod+ip  _ B ^ ( ip - 1 )  npod+ip + ^ t( ^ ip ’K ’ e®ip ’ e *OC*ip ’ eeip)

P ^ ( i p - 1) npod+ip  P p ( ip -1 )  -npod+ip ^ 1p (<’ ip ’K ’eS jp ’eloc' j p ’eejp) dgds( sf)p )P p , .  , ,  , . := NAe. -Ae-N'F .
E(ip -1 ) -n p o d + jp  ip JP

Solve coupled for unknowns

unknow n := S o le|tl( F E ,B E ,P E .F p  >B p  >p p > nPod) d Pjp := dm iuep(>P. unknow n) delocl.p  := d e lo c fe ^ ip , unknow n)

Update state variables

d p j  = 8.48678 x 10“ -( - 5
delocl, = \  8.48678 x 10 0 0

dcr:= -A e R ekp +

npod

LJ =

I  * r V j ) >  -  dmx^Cj. K . eg j . elocL, ee.)) delocL + dm xp|^., k , eg .̂, elocL, ee. j  dgds(sf.) dp J  

dePip:= RePip + dgds( sfip) dPip + Aptip -cOgdslsf.p) N( rjp , sip , fp j da d e p / = (

e'oc'jp ;= eloclip + deloc,ip ^ip := zeK elocIip ’CPrvip) %  I= AePip + dePip

egip := egn(eloclip’eeip) egj = 7-552794 x  10~5

d a  = (-4 .0 3 8 1 1 3  -0 .712608  -0 .712608  0 0 0 )

deD,T = (8.48678 x 10 6 0 o)

ep ] p ePprVjp + Aep .p

ee. := elocl. -  en . 
ip ip p ip
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( (  - 6 > (  -4^11.53529565294118 x 10 8.48678 x 10 1.450428 x 10

= 0 0 Cei 0

o 0 ) I  0 J
£ = 1.535296 x 10 Eti = 6.866176 x 10

- 5

A p . := A p . + dp.
i p  i p  ^ i p

Ap = (8.48678 x 10 6 o) Ee E_ -  Ep s /  = (1.500001 x 10 4 1.000001 x 10 5 1.000001 x 10 5 0 0 0)

c t r : =  s t r e s s ( ^ , K  , e g , e e , e l o c l ,  r , s ,  t , E e , n p o d )

s f .  := N| r. , s .  , t .  I - a n -  
ip V ip ip ip/

Compute error measures

a tr  = (2 .4 8 1 0 5 4  0.908422 0.908422 0 0 0 )

sfj = (2 .4 8 1 0 5 4  0 0 )

npod
Rep.p := -Aep .p + Ap jp dgds(sf.p ) R ep , = ( 0  0 0 )  Fe.p := F rh sfc , k  , eg ,ee ,e loc l, r , s ,  t , E e , i p ,  npod) |F e j |  = 0

j  = l

CONVERGED!

%  : =  f i f e .  , k  , sf. ) fe , = -1.489888 x lo '
n p  V ip  ip / 1

10

Check error

d a c h k := a t r "  Orec dachkT = (-6 .984235  x 10_ 7  3.47337 x 10_ ?  3.47337 x 10~ 7 0 0 o )

daD epT = (-6 .984236  x 10 7 3.47337 x 10 7 3.47337 x 10 7 0 0 o)

| dachk _ doD ep| 

| dc>chk|
error = 1.242372 x 10

- 7
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Appendix II Derivation of Material Parameters

Appendix II Derivation of Material Parameters

Parameter Description Method for obtaining

fc Uniaxial compressive strength From cube (fc= 0.8f cu) or compressive 

cylinder test (fc = f 'c)

ft Uniaxial tensile strength From peak of softening curve or 

cylinder splitting test (0.9fcy/)

£c Strain at peak of uniaxial 

compressive strength
£ c = f c ' E

*0 Strain at end of softening curve E0 = U 0 / W C

wc = fracture process zone width 

(3 times maximum aggregate size or 

gauge length in tests) 

wo = displacement at end of softening 

curve

Gf Fracture energy r 2
G ,  = f ‘

j  E

Z0 Initial position of yield 

function

From uniaxial compression test; point at 

which nonlinearity becomes significant 

(range 0.4-0.6)

V Dilatancy factor Calibrated from triaxial test

ra Cohesion to tensile strength 

ratio

Based upon data which evaluated the 

shear-normal strength of concrete 

aggregate interfaces

fJ-a Residual friction factor Based upon data which evaluated the 

shear-normal strength of concrete 

aggregate interfaces (range 0.5-1.0)

br Biaxial/uniaxial strength ratio From biaxial and uniaxial tests
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Appendix II Derivation of Material Parameters

m g Contact function parameter From shear-normal curve 

(range 0.3-0.6 for normal strength 

concrete)

m hi Ratio between strains at which 

shear reduction is significant 

and end of softening curve

From normal-shear test

m hi ~  e hi /  £ 0 

e hi =  u u ! w c

Uhi = opening displacement at which 

shear stiffness starts to become 

significant which is associated with the 

lost of contact of the fine aggregate

m ful Ratio between the lost of 

contact and end of softening 

strains

From shear-tension test

m ful -  e  ful  

e ful = U  ful !  W c

Ufui =  opening displacement beyond 

which no shear contact can be attained 

(range 10-20 for aggregate size of 20-30 

mm; range 3-5 for aggregate size of 5-8 

mm)

ac Proportion of coarse 

component in a representative 

volume of fully debonded 

material

Evaluated from the proportion of mortar 

and coarse aggregate along a crack path 

(range 0.3-0.4)


