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1 Summary

For many years industry has considered RE PA design to be a “black art”. This 

perception has been held due to the lack of availability of meaningful 

information for analysis and design. Due to the emergence of large signal 

waveform based measurements and increased understanding in the literature, it is 

now possible to characterise devices and correlate the information for enhanced 

PA design in terms o f efficiency, linearity and/or reliability. This has been well 

documented and demonstrated using on-wafer devices but where this thesis work 

begins, little work had been done in expanding this capability to higher more 

meaningful power levels using packaged devices.

This work has successfully addressed both of these limitations and extended 

visibility of time domain waveform data to higher power levels. Thus, allowing 

for the uncovering o f world record efficiency levels of 77 % (4W output power) 

for Si LDMOS devices at S band frequencies using waveform engineering based 

procedures, in this case Class F. A feat previously only reported at L-band 

frequencies. Other waveform based designs such as inverse Class F and Doherty 

modes of operation are also successfully demonstrated in this thesis. In both of 

these cases, voltage related issues affecting reliability were uncovered that merit 

further consideration in the design process.

Waveform engineering was made possible by applying de-embedding the 

measured current and voltage waveforms to the current generator plane. That is 

the plane at which the device is free from any device and package parasitics with 

the current and voltage waveforms seen to be in good agreement with those 

typically found in literature. These were successfully applied at high power 

levels (110W) previously not reported.

To further demonstrate the relevance of waveform de-embedding, a non-linear 

charge conservative model based on industry standard modelling techniques was 

compared against time-domain measurements conducted in several classes of
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operation. This form of model verification is often overlooked and provides a 

unique insight into the model’s accuracy highlighting new areas of improvement. 

In most cases the model was shown to be in good agreement with measured data, 

providing a high level of confidence in the application o f waveform engineering 

principles within the CAD domain. Thus providing the PA designer the facility 

to apply waveform engineering on both the test bench and within the CAD 

domain.
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3 Glossary of Terms

In order of appearance

RF Radio frequency

TDMA Time division multiple access

FDMA Frequency division multiple access

CDMA Code division multiple access

LTE Long term evolution

OFDM Orthogonal frequency division multiplexing

PA Power amplifier

CAD Computer aided design

VNA Vector network analyzer

DUT Device under test

POI Points of interest

CW Continuous wave

FET Field effect transistor

BJT Biplolar junction transistor

LDMOS Laterally diffused metal-oxide semiconductor

HEMT High electron mobility transistor

Si Silicon

GaN Gallium Nitride

MOSCAP Metal-oxide semiconductor capacitor

MAG Maximum available gain

MSG Maximum stable gain

EM Electro-magnetic

Ft Frequency at unity small signal gain

NVNA Non linear vector network analyzer

EER Envelope elimination and restoration

ET Envelope tracking

R o p t Optimum resistance for output power

TP Transition point
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4 Introduction

Over the last ten years, the wireless communications industry has grown 

exponentially with ever increasing users and applications. At the centre of this 

growth has been the constant requirement for communication and trade within a 

global “24/7” environment. The consequence of this has been the need for 

instant access to voice and internet services at home, the office and on the move 

with an estimated 2.5 billion mobile users worldwide [1]. This has been enabled 

by the combination o f improvements in hardware and software as well as the 

injection of large amounts of financial investment within the mobile 

infrastructure.

The hardware improvements in digital processing power, speed, memory 

capacity and device miniaturisation allows for the implementation of complex 

algorithms at speeds previously not possible in a case size no larger than the 

palm of an individual’s hand. This has been supplemented with improvements in 

active radio frequency (RF) technology such as power transistors, with higher 

gain values and higher frequencies of operation. In parallel, software and 

algorithm improvements and an increased effectiveness in the application of 

these processes in hardware have allowed for the quick transfer of mathematical 

processes into a commercially viable solution. This has led to the introduction of 

enhanced communications systems that simultaneously boost the numbers of 

users and data rates. This initially started with GSM leading to its enhanced 

version GSM Edge, both of which are still highly prevalent within the developed 

and developing world. These were based on time division multiple access 

(TDMA) based techniques that allowed for a vast enhancement in user compared 

to it’s predecessor, frequency domain multiple access (FDMA), but the vast 

increase in network users led to the implementation of code division multiple 

access (CDMA) based techniques.

The introduction o f CDMA allowed for vast increases in users and data rates 

typically around the hundreds of kilobytes to a couple of megabytes per second,
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and is currently being used in developed countries with an estimated 400 million 

mobile internet users worldwide [2]. Future systems such as long term evolution 

(LTE) and mobile Wi-Max now based on orthogonal frequency division 

modulation (OFDM) based techniques allow for even higher data rates in the 

hundreds of megabytes per second. With these increases in data rates, the 

wireless communications industry has brought in significant shifts in not only 

mobile but also fixed infrastructure.

This has reduced the need for extensive optical based fibre networks, previously 

touted as the best method of achieving high data rates to each home. The data 

rates offered by optical based communications systems still far supersede that 

offered by the wireless systems but the added costs and major planning 

requirements in the building of a complete fibre based infrastructure make it 

prohibitive to cover every household. This has led to a newer model for 

improved communications whereby a fibre based back bone network is 

supplemented by a local wireless network that will deliver data to the end user.

As the numbers of users and requirements have increased the design and 

implementation complexities have also increased. In addition to that, the wireless 

communications systems designer has also had to contend with outside factors, 

such as costing and energy consumption to ensure the product not only has mass 

appeal but is also seen to be working at the peak in efficiency. This is because of 

the great infrastructure power consumption levels which account for 

approximately 2-3 % of the total global carbon emissions [2] and due to the high 

demands of these networks, this is expected to double by 2020. This has also 

been supplemented by significant increases in electricity costs. One of the 

components found to be the most power consuming is the power amplifier [3].

The power amplifier (PA) is the last stage prior to the antenna that amplifies the 

output signal to output power levels typically in excess of 100W for mobile base 

stations. The added complexity of modulation signals with large peak to average 

power ratios (PAPR) and increasing signal bandwidth have to be optimised,
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whilst working within the tight controls on spectrum space [4]. This spectral 

requirement takes precedent in the design process, resulting in the power 

amplifier being operated in a backed off ‘linear’ mode of operation. The average 

efficiency of these amplifiers in these modes o f operation are usually in the 

region of 20-30 %, which leads to the requirement of approximately 400 W of 

DC power plus the additional power required for cooling the amplifier in the 

form of air or liquid based systems. This makes the power amplifier one of the 

most power consuming circuits within the entire communications system and 

with around 51,000 base stations currently in deployment around the UK [5] the 

potential savings both in carbon and electricity costs are immense.

As outlined earlier, the design of efficient power amplifiers is a pivotal topic and 

has attracted a large amount of interest in both academic and industrial research 

and development centres. The research in efficiency enhancement techniques can 

be split into two distinct brackets [6], The first can be identified as peak power 

efficiency enhancement techniques, whereby the amplifier is operating as close 

as possible to the ideal figure of 100 % efficiency at peak output power. This is 

when all of the inserted DC energy is transferred to the output of the transistor at 

RE. The second group of efficiency enhancement techniques are described as 

efficiency enhancement with dynamic range in power, whereby the amplifier is 

operated at a higher level of efficiency over an extended range of power levels. 

There is also the possibility of an amalgamation of the two previously explained 

research threads but little work has been achieved in this regard. In all cases, the 

design of efficient power amplifiers has one consequence and that is an increased 

amount of non-linear distortion in both harmonic and “in band” intermediate 

frequency (IF) components. However, with the introduction of adaptive digital 

signal processing techniques it has been possible to produce linearization 

techniques that can adhere to the strict government controls on spectrum on PAs 

which were previously deemed unusable [7]. With these developments in mind, 

it provides encouragement to look further into high efficiency PA design.
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In general, the theory behind PA design has always centred on the analysis of 

input and output current and voltage waveforms. For simplification purposes, the 

input stimulus is always assumed to contain content at just the fundamental. 

However, the output will invariably contain signals at the desired fundamental 

frequency and its higher harmonics, which will distort the output current and 

voltage waveforms. However, whilst it is not desirable to distort the PA for 

linearity purposes, in the case of efficiency it is the manipulation of higher 

harmonic current and voltage components that produce significant strides 

towards the desired target of 100 % operating efficiency. The first mode of high 

efficiency operation was first demonstrated by Snyder [8]. Snyder, 

mathematically demonstrated that by applying Fourier series analysis to the 

desired output current and voltage waveforms it was possible to achieve 100 % 

operating efficiency in a mode referred to as class F. This emphasis on the 

waveforms provided a unique and rational insight not previously discussed in the 

literature. Further work has been done on other high efficiency modes of 

operation such as inverse class F and class E [9]. In the case of class E, high 

efficiency operation was achieved through the design of a charge storage circuit 

that operated similar to a switch. However, the explanation of class E operation 

is best described using the output current and voltage waveforms. These two 

examples emphasize the unique insight that waveforms present into PA design in 

explaining high efficiency operation.

The second stream of efficiency enhancement is focussed on improving 

efficiency over a large range of output power. This form of efficiency 

enhancement has attracted more interest in the commercial communications 

domain due to the large peak to average ratios exhibited in 3G and 4G signals. 

One of the first proposed methods was demonstrated by Doherty [13] in the 

Doherty PA. The Doherty PA produced a region of high efficiency over the peak 

6 dB of output power through the process of active load pull. This is done by 

controlling the ratio of the two currents being generated at the output node of 

each device, which consequently alters the load impedance being seen by either 

device. Other techniques have also been investigated such as the Chireix out

14
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phasing amplifier as well as envelope elimination and restoration [2]. Again in 

both cases the use of waveform analysis provides a unique insight in the design 

and optimisation process.

In recent times, the PA designer has shifted away from analysing the output 

current and voltage waveforms. Part of the reason is due to the design process 

focussing more on providing high output power and linearity and with a smaller 

focus on efficiency. More recent effort has been put into high efficiency PA 

design, however, without the use of waveforms it becomes difficult to confirm 

whether the optimum mode of operation is achieved in the design. This is 

because an overdriven amplifier biased in class B can produce efficiencies in 

excess of 70 % together with high output power and gain [3]. Producing a design 

that is only 10% percent lower than the optimised designs typically reported in 

the literature [10-12]. Whilst this difference is not majorly significant in terms of 

efficiency, there could be other consequences such as reliability. By looking at 

the input and output waveforms it becomes possible to not only quantify the 

performance but also more precisely account for other factors that may be 

overlooked in the design process.

Another reason for the lack of use of waveforms, is due to the lack of access to 

non-linear components in both the measurement and computed aided design 

(CAD) domains. Historically, power meters and spectrum analysers have been 

used to collect RF data, which are scalar measurements. These are typically 

combined with the use of vector network analyzers (VNA), to allow for s- 

parameter measurements. Whilst this data provides a good insight into device 

and PA behaviour there is not enough information present to extract waveforms. 

To achieve this nonlinear VNA functionality, the forward and reverse travelling 

wave data collected must be fully vectorial and referred to a common phase 

reference for correct alignment of the current and voltage waveforms. In addition 

to that the data must be collected over a large enough bandwidth spanning 

multiple harmonics. Such systems are only available in a handful of locations 

and the costs involved in procuring such equipment can be three to five times
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higher than more traditional characterization facilities. This consequently affects 

the CAD simulations, where the device models are only fully validated against 

pseudo scalar/vector measurements, questioning the use of these models within a 

full vector based domain.

Having access to waveform data will allow the PA designer to investigate the 

device’s performance in a more thorough and detailed manner. Through a 

process of current and voltage analysis and control at the input and output 

terminals it is possible to apply procedures such as class F. The application of 

these theoretical procedures in the field of PA design is called waveform 

engineering. Waveform engineering is a topic of high recent interest [14] and has 

provided the missing information about how high efficiencies are attainable 

device and frequency independent [11, 15].

Waveform engineering has typically been demonstrated on small devices usually 

in an on-wafer environment where package and device parasitics are kept to a 

minimum. This allows for the direct application of waveform based procedures 

such as [8] and has led to further developments as outlined in [16]. However, 

small devices have a limited application domain such as mobile handsets or other 

short range systems where the added complexity in design yields a small saving 

of power.

When these procedures are applied at higher power levels the savings in power 

become more tangible. However, the application of these procedures at high 

power, have yielded limited results [10] with high efficiencies so far achieved in 

medium power devices and at L-band frequencies. Part of the reason for this is 

due to the higher losses at high frequencies but the more significant reason is the 

lack of access to the appropriate current and voltage waveforms in the design 

process. For this to successfully occur, the waveform data has to be taken at the 

correct reference plane. The waveform data captured in time-domain based 

measurement systems [17] and in commercially available CAD based models are 

at a calibrated reference plane at the input and output tabs of the device. The
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waveforms captured at this plane are altered by the device parasitics, which in 

this case consist of inductances and capacitances that add reactive content to the 

generated current and voltage waveforms. As the device size and frequency of 

operation increase, the size of the parasitic elements and their effect on the 

waveforms escalate rendering the waveforms of little or no use for waveform 

engineering. This is especially the case in high power devices, where direct 

probing the die is not possible and measurements have to be taken at the output 

of package. It is to be noted that the waveforms still contain all of the 

information required for design, such as the power and efficiency as well as 

impedances for matching network design. To cancel these effects, it is required 

to move to a reference plane within the device where waveform engineering can 

be more effectively applied. This and the validation of the de-embedded results, 

forms the first main body chapter of this thesis. There has been a lot of effort put 

into passive modelling of the package [18], however what has not been 

established is the complexity of package modelling required for accurate 

waveforms with regards to increasing size and operating frequency. Another 

factor for consideration is the extent of de-embedding necessary. Classical s- 

parameter based modelling techniques [19] have found it necessary to separate 

out the passive and active components to fully describe the transistor’s 

behaviour. However, waveform engineering has typically been applied on-wafer 

yielding positive results. This provides a first reference point for de-embedding 

the waveforms, but with larger devices the actual device parastics such as the 

output capacitance CdS scale linearly with size and could have a greater effect in 

high power devices. Two particular examples are cited, a 5 W device and a high 

power 110 W device.

To enable confidence in the use of waveforms at an internal reference plane, 

there is also a need for validating the results. For initial purposes, this is done by 

comparing the de-embedded current and voltage waveforms with theory. Whilst 

this provides a start point, this work has highlighted that high power devices can 

be affected by outside issues previously not considered necessary, such as the 

system impedance and how they generate higher harmonic content. Without
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taking these factors into consideration, the valid de-embedded results can 

produce waveforms that initially look incorrect, which can cause an unnecessary 

repeat exercise in device and package network validation. One particular 

example discussed in Chapter 6, is the affect of the measurement system 

impedance environment, which stays constant at 50 H whilst the optimum 

impedances of the devices reduce to below 1 O. This is further investigated 

when the impedance transformation of the package network, transforms the 50 Q 

system impedance to complex impedances at an internal plane of reference. 

These complex impedances can have substantial effects on the waveforms and 

the fundamental performance of the device.

Now with increased confidence in the resultant de-embedded waveforms, 

waveform engineering is demonstrated using Si LDMOS devices. Chapters 7 

and 9 focus on providing evidence of the increased awareness and design 

knowledge waveform engineering provides to the PA designer. Chapter 7 is 

based on implementing high efficiency waveform engineering, in particular class 

F and inverse class F modes of operation. Chapter 9 focuses on the Doherty 

amplifier, looking at how the de-embedded waveforms can be utilised for firstly 

confirming Doherty modes o f operation and for enhanced single device 

investigations that provide the designer all o f the relevant information for 

matching network design. Both chapters showcase the enhanced insight 

waveform engineering provides the designer that can subsequently be used for 

design.

Chapter 8, validates a commercially available large signal model against 

measured time-domain data. To date large signal models have only been 

validated and evaluated using scalar measurements such as output power and 

operating efficiency. There has been little or no validation of models in the time 

domain especially at power levels more relevant for base-station applications. 

Large signal models consist o f many layers, the intrinsic device, the extrinsic 

device parasitics and the package. This provides several reference points at 

which to validate the entire model.
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Overall, the focus o f this work is to forward the concept of waveform 

engineering to high power devices to provide a more thorough understanding of 

the PA mode of operation. This will provide the designer with more information 

and allow for more prompt optimisation of designs for efficiency and/or linearity 

in both the measurement and simulation domains.
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5 Time Domain De-embedding

To date high power devices have typically been characterised using load-pull/ 

source-pull based measurement systems that are used to locate points of interest 

(POI) such as the impedance for maximum output power, maximum efficiency 

and maximum gain [20]. These impedance points can be found by conducting 

continuous wave (CW) load pull measurements, with the addition of multi-tone 

load pull features, the linearity of a device can also be measured [17, 21]. This 

form of characterisation can be done over a large input power dynamic range 

offering the PA designer vital information as to how the device will function 

with load and source impedance and input drive. More importantly, this data 

gives ample information to the RF PA designer, to design full input and output 

matching networks that should enable “first run” success. More recently, load 

pull has been used for sensitivity analysis, to aid in calculating the minimum 

tolerance levels o f matching networks in the production phase.

Whilst load pull information has led to many successful PA designs [22, 23], 

there is very little information being presented in terms of describing device 

behaviour. Using data collected from load pull, the behaviour of a device can at 

best be “inferred” by cross analysing the DC parameters with the RF 

measurements at the fundamental and higher harmonics. For example it can be 

assumed that the device is functioning in class A, if the gain is rolling off 

steadily with increasing drive, the harmonic content is very low and the 

efficiency is typically no higher than 30% at ldB gain compression. However, if 

the device was originally biased at a lower quiescent current value and the 

efficiency performance is lower than expected, it will be difficult to explain why 

the device is operating as inefficiently as these numbers suggest unless there is 

access to the RF dynamic current and voltage waveforms.

Access to the dynamic current and voltage waveforms allows for the 

identification of many device features, such as RF knee walkout [24] typically 

found in Gallium Nitride (GaN) HEMTs (High Electron Mobility Transistors).

20



Aamir Sheikh High Power Waveform Engineering

This is when the RF current and voltage characteristics no longer correspond 

with the boundaries defined by the static DCIV characteristics of the device. 

There are also many other interesting features, such as determining the effect of 

feedback at the input. However, to date these investigations have typically been 

conducted using on wafer devices that are more often than not very small in both 

size and output power.

Whilst this information is useful and in most cases scalable [18], there are some 

extra factors that need to be taken into account. The first is related to the thermal 

effects o f larger devices and its affect on the performance of the device. The 

second is the affect of the packaging with regards to the splitting of the input RF 

signal at the input tab of the device and the combining of the amplified RF 

output signal at the output tab. The third is the supplementary affect of the 

increased packaging, which increases the undesired displacement currents and 

voltages introduced by the parasitics in the transistor. The result being 

significantly altered current and voltage waveforms at the output tab of the 

device, rendering them almost useless for immediate waveform analysis.

This is shown in Fig. 5-1, which consists of a measured dynamic drain current 

vs. drain voltage (load line) waveform of an 110W Si LDMOS device (taken at 

the output tab) clearly transgressing beyond the bounds o f the DCIV [25] of the 

device. These measurements were done using the high power waveform 

measurement system developed at Cardiff University [17].The dynamic IV is 

shown to go well beyond the knee voltage o f the device showing inductance 

induced displacement voltage and the current is shown to dip below zero Amps, 

which shows the presence of capacitance induced displacement current. In 

addition to these lossless charge storing components the package could also 

contain losses such as resistive losses in the bonding wires, package tab and the 

transistor itself.
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Fig. 5-1 Measured dynamic IV taken at the output tab, overlaid against the static DC IV 
obtained via simulation o f the MET model

For design or analysis purposes the waveforms shown in Fig. 5-1 are of little or 

no use. This issue can be overcome with the introduction of large signal de­

embedding procedures that mathematically negate the effects of these parasitic 

components introduced by the package and the device imperfections. This allows 

for the visualisation of waveforms at a plane within the packaged device, such as 

the device plane or the current generator plane (Igen)- The resultant waveforms 

can then be used to characterise and optimise device performance for efficient or 

linear modes of operation using procedures currently being applied on smaller 

devices.

Chapter 5 looks at how certain components typically found in packaged devices 

affect the current and voltage waveforms based on an ideal transistor and then 

moves onto de-embedding a 5W Si LDMOS device. After this, time-domain de­

embedding is applied to a high power 110W Si LDMOS device.

5.1 The A ffect o f Parasitic C om ponents to T im e-D om ain  
W aveform s

Packaged transistors can be broken into two main components, the package and 

the device or die. In terms of the device, there are many proposed networks used 

for modelling FET based devices [18, 19, 26-27]. These components are 

combined using a segmented approach that allows for complete characterization 

of the input, output and feedback components present in the transistor. This is 

shown in Fig. 5-2 which breaks down the individual components of the device. 

At the measurement/package plane the device contains all of the parasitic
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components but by removing the package layer, it is possible to obtain access to 

the waveforms at the extrinsic device plane. This is similar to where low power 

on-wafer measurements take place. Similarly, by cancelling the effects of the 

extrinsic and intrinsic network, it is possible to obtain access to the current 

generator, which is where the currents and voltages can be directly compared to 

the boundaries defined by the device. With access to this plane it is possible to 

directly apply waveform based engineering procedures often shown in literature

[3].

The extrinsic and intrinsic components are typically modelled as lumped 

components and made to fit s-parameter measurements. The transistor package 

can similarly be modelled using lumped components but a lot of recent work has 

focussed on modelling these components using 3D or planar electro-magnetic 

(E-M) based simulators [18, 28-29]. This section focuses on providing a 

description of the effects of these components in terms of the current and voltage 

waveforms.

Measurement/package plane

Extrinsic plane

Intrinsic plane 

l-gen plane

G a te  | 
E x trin s ic s

G a te  P a c k a g e  
& M anifold

D rain
E x trin s ic s

D rain  P a c k a g e  
& M anifold

S o u rc e
E x trin s ic s

Fig. 5-2 Block diagram o f a FET and the various reference planes accessible for waveform
engineering
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5.1.1 Intrinsic and Extrinsic Lumped Com ponent Passive Device 
M odelling

There has been a large amount of work presented in the literature, relating to the 

equivalent circuit models typically used in device modelling [18, 19, 26-27]. 

This section focuses on the lumped components typically found in devices, such 

as capacitors, inductors and resistors and looks at their effects at the input, output 

and in terms of feedback.

5.1.1.1 Capacitors

Capacitors are common parasitic components found within transistors that store 

charge and release it as displacement current. This is modelled as a function of 

the time derivative o f the voltage flowing across its capacitance (charge) as 

shown in (5-1). This is added onto the generated current Igen from the transistor’s 

current source to form Imeas, which is the current at the measurement port as 

shown in (5-2). The capacitance typically found in solid-state devices is 

dependent on the semiconductor material and the physical size of the device [3]. 

Some semiconductor materials have shown to contain a variable capacitance that 

is dependent on the drain and gate voltages. This has been widely reported in Si 

LDMOS devices [28, 30] and is discussed later.

I  = c —  
dt

1 meas ^  disp ^  gen

In terms of the waveforms, the measured current at the output of the device will 

now contain the extra displacement current generated by the capacitor. To 

demonstrate this more clearly a simulation is done with an ideal device (no 

parasitic components) operating in class B (all higher harmonics set to short 

circuit). This is shown in Fig. 5-3(b) where the measured current waveform of a 

device operating in ideal class B drops below 0mA and follows the displacement 

current curve generated by the capacitor when in the off-state part of the RF 

cycle. In other words, the capacitor is effectively “smoothing” the current 

waveform where the displacement current is the smoothing component. It is

(5-1)

(5-2)
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interesting to note that if the capacitance is increased further it is possible to 

produce a measured current waveform that no longer resembles the initial 

generated current waveform. This could be the case for high power transistors 

where the intrinsic capacitance can be in the tens of pico-Farads. The inserted 

capacitor has no effect on the voltage waveform.

■gen iO

I
“T “ *

Tldisp

Vr

(a)

2.5 —I r  25
—  V m eas

I gen / 1 m ea s  / 1 disp

2 .0 - -  20

1 . 5 -<
c
1 1.0 -o

0 . 5 -
-  5

0 .0 -

1.0x1 O'90.0 0.2 0.4 0.6 0.8
Time (ns)

(b)

Fig. 5-3 (a) The circuit diagram denoting the currents at various parts o f the circuit (b) The 
current and voltage waveforms before and after the capacitor

For optimum performance in terms of power at the Igen plane, it is required to 

cancel the effects of the capacitor. If this is not done the output power of the 

device drops according to the phase offset at the Igen plane given by the reactive 

component, which in this case is the capacitor [16]. To compensate for this, the 

impedance at the measurement plane is adjusted to negate the reactive effect of 

the capacitor as shown in Fig. 5-4. Since the capacitor is a parallel component, 

the impedance will vary along a contour of constant admittance. In this case an 

impedance of 8.69 + 1.59j Q is required to produce a real impedance of 9 Q at 

the Igen plane.
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gam_gen

gamjneas

Fig. 5-4 The optimum impedance for power at the Igen plane and at the measurement plane with a 
capacitor connected at the output o f the current generator (Y0 = 1/9 S)

Now, considering a “non-linear” capacitor sensitive to the drain voltage. Non­

linear capacitors are typically used to model the intrinsic capacitors of 

semiconductor devices. The profile of the capacitor varies according to the 

device technology and the physical layout of the device. For analytical purposes, 

consider a capacitor modelled as a function of the reciprocal of the drain voltage 

(as shown in Fig. 5-5(a)). This dynamic capacitance behaviour is then simulated 

in the same environment described earlier with the results Fig. 5-5(b) showing a 

more significant deviation to the originally generated current waveform. The 

difference in the current waveform is highlighted more clearly in the 

displacement current generated when the RE current is high. This coincides with 

a low drain voltage, which causes an increase in the dynamic capacitance that 

generates a larger displacement current component. Despite the dynamic 

behaviour of the capacitor it is still possible to match to the “average” 

capacitance, which can be determined with respect to the voltage waveform 

being applied across it. For example in the case of a sinusoidal voltage waveform 

this results in a slight increase in capacitance.
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Fig. 5-5 (a) The dynamic capacitance’s sensitivity to voltage (b) The current waveforms at the 
Igen plane and at the measurement plane with a linear and non-linear capacitor.

Typically, device models consist of intrinsic charge generators (otherwise known 

as trans-capacitance) [18]. These charge generators behave in a capacitive 

manner but are functions of both the gate and drain voltages and are usually very 

complex. A specific implementation of a charge generator will be discussed 

later.

5.1.1.2 Inductors

Similar to capacitors, all semiconductor devices contain some form of 

inductance due to device metallization. The inductance found in devices are 

series components, which store charge to release it as displacement voltage. This 

is modelled as a function of the inductance and the time differential of the 

current waveform (5-3), leaving the current component unperturbed. The 

displacement voltage (Vgen) is then added onto the voltage presented at the Igen 

plane to form Vmeas as shown in (5-4). The inductance in semiconductor devices

27



High Power Waveform Engineering 5. Time Domain De-embedding

is typically linear and usually accompanied with some resistive loss which will 

be discussed later.

V = L —
-  dt

V = V  +  Vmeas gen disp

(5-3)

(5-4)
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Fig. 5-6 (a) The circuit diagram denoting the voltages at various parts o f the circuit (b) The 
current and voltage waveforms before and after the inductor

A simulation is done with an ideal device biased in class B and sinusoidal 

voltage being applied at the current source. The voltage waveforms in Fig. 5-6(b) 

highlight the affect of the displacement voltage on the output voltage waveform 

(Vmeas). The displacement voltage discharges when the RF current is turned on 

and has no affect when the RE current is off. It is important to note that the 

voltage waveform at the measurement plane (Vmeas) is sinusoidal in shape and 

not at the Igen plane (Vgen). This is because of the real only impedance (at f0, 

short circuit at higher harmonics) being presented at the measurement plane,
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which forces the voltage to be sinusoidal. The inductance then alters the 

impedance being presented at the Igen plane, which forces the voltage to become 

non-sinusoidal.

The reactive component introduced by the inductor can be negated by inserting a 

negative reactive impedance along a contour of constant resistance. In this case 

to produce a real impedance of 9 Q at the Igen plane, it is required to present 9 -  

2.7j f2 at the measurement plane as shown in Fig. 5-7. In reality, the first 

instance of inductance occurs in the extrinsic circuit of the device model after the 

intrinsic capacitances. This makes the displacement voltage a function of the 

total current at the intrinsic plane.

gam_gen

gam_meas

Fig. 5-7 The optimum impedance for power at the Igen plane and at the measurement plane with 
an inductor connected at the output o f  the current generator (Z0 = 9(2)

5.1.1.3 Resistors

Resistors are used to model the series loss of the line metallization and are 

placed in the extrinsic part of the device model. Since it is placed in series the 

resistor drops voltage as a function of current as determined by Ohm’s law as 

shown in (5-7) and (5-8) as well as Fig. 5-8(b). This loss of voltage across the 

resistor reduces the output power and efficiency being measured. However, the 

resistance is typically small in high power devices due to the large number of 

cells connected in parallel. It is also important to note that the series resistor is
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the only component that affects the DC content of the waveforms. Due to the DC 

source originating from an outside source, the actual DC voltage at the Igen plane 

is the supply voltage Vdd subtracted against the DC voltage loss across the 

resistor.

V,„,=iR

V -  V  +  Vmeas gen loss

(5-6)

(5-7)

To compensate for the resistance it is required to reduce the resistance along a 

contour of constant reactance. In this case, this is done by reducing the 

impedance at the measurement plane from 9 Q to 7 O.
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Fig. 5-8 (a) The circuit diagram denoting the voltages at various parts o f the circuit (b) The 
current and voltage waveforms before and after the resistor

5.1.1.4 Feedback / Feed forward Components

The feedback / feed forward components in a device are lumped component 

based capacitors, inductors, mutual inductances and resistors. The types of
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feedback are limited to what is typically reported in literature [18, 19, 26-27]. 

However, it is important to note that when used in a feedback orientation the 

voltage and current used in the calculation is now the difference between the two 

connecting ports. This is shown in Fig. 5-9.

The feedback components can have a significant effect at the input port. Due to 

the large current and voltage swings at the output port of the device, the 

expressions Vdiff and idifr can be significantly larger than the currents and voltages 

at the input port. In this case the effect of feedback can be separated into two 

components, the fundamental and the higher harmonics. At the fundamental 

frequency of operation the feedback often negates the input stimulus resulting in 

a drop of gain. At the higher harmonics, the feedback introduces unwanted 

higher harmonics in the input stimulus that could have a positive or negative 

effect on the device’s performance.

5.1.2 Packaging Com ponents Passive Device M odelling

The package is a critical component of high power devices for thermal 

dissipation of heat and for electrical addition of the current from separate 

transistor cell blocks. The aim of the package is to have low loss to ensure 

maximum power transfer from the transistor die to the output tab, which is where 

measurements typically take place [18]. In medium power transistors, this 

includes the use o f bonding wires, which bridges the transistor die and the output 

tab. In high power Si LDMOS devices, there is also the addition of metal-oxide- 

semiconductor (MOS) capacitors, which eases the requirements for matching 

network design [18, 23]. Recent work done by Wood et al [18, 26], has shown 

that there is also a need to incorporate the device manifold. Again, this is 

especially applicable to high power Si LDMOS devices, due to their large device 

periphery, which produces a large spread in phase of the load being presented to 

the individual transistor cells.
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I  disp ~  C

where

d v .diff

dt

V , =  v  — Vdiff gen II

(a)

(5-8)

'gen gen

Vdisp ~  L '

where

did ijf

dt

l d iff ~  l gen h (5-9)

(b)

Fig. 5-9 (a) The circuit diagram denoting currents and voltages for a capacitive feedback circuit 
(b) The circuit diagram denoting currents and voltages for an inductive feedback circuit

5.1.2.1 Device Manifold

The device manifold connects the individual transistor cells and acts as a signal 

separator at the input and a signal combiner at the output and exists as part of the 

die. The device manifold is behaves like a transmission line with some small 

amounts of loss with increasing frequency. This in theory has very little effect 

on the waveforms other than a phase delay. In practice due to the large device 

periphery of high power transistors, the device manifold becomes very large and 

produces a spread in phase between individual cells in a transistor die [18]. This 

spread in phase at the output terminals makes it difficult to provide a constant 

impedance to each of the transistor dies, which makes it problematic in 

providing specific impedance terminations such as short and open circuits 

typically used in high efficiency PA design. To illustrate this, a simulation is 

done in Agilent ADS™ planar simulator Momentum™ of a device manifold for 

a 4.8mm Si LDMOS device supplied by Freescale Semiconductor Inc. The 

results in Fig. 5-10 show the phase variation that would happen if an open circuit 

was provided at the output port of the manifold at 6GHz. The impedances being
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provided to the device is shown to vary by 0.3 ± 1500j Q. The zoomed in polar 

plots in Fig. 5-11, show the phase spreading with increasing frequency. The 

phase difference at 2GHz is 3°, which provides a “good enough” open circuit to 

the device, but at 10GHz the phase difference is approximately 16°. This 

consequently increases the difficulty in providing the fixed impedances typically 

required for high efficiency PA design [29].

S., Radius=1.0S,. Radius=1.0

-j50

Fig. 5-10 (a) Device manifold layout within ADS Momentum™ (b) The phase difference 
between ports at 6GHz with an open circuit presented at the output o f the device manifold

(a) (b) (c) (d)

Fig. 5-11 (a) Zoomed in polar plot o f  the phase difference at 2GHz (b) Zoomed in polar plot o f 
the phase difference at 4GHz (c) Zoomed in polar plot o f the phase difference at 6GHz (d) 

Zoomed in polar plot o f the phase difference at 10GHz

5.1.2.2 Bondwires

Bondwires are utilised to connect the device to the device output tab or to 

internal matching networks within the package. A bondwire is a metal wire with
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a small radius, usually made of gold for high conductivity or for cost cutting 

purposes made of aluminium. At high frequencies, the bondwire can be 

modelled as a series inductance with a small of amount of resistance and a 

capacitance to ground to model the contact with the tab or die [18]. This is 

shown in Fig. 5-12, where a 3D simulation of the input and output bondwires 

within an H-block fixture [18, 32] is conducted in Ansoft HFSS™. The s- 

parameter results in Fig. 5-13 show a high level of agreement between the circuit 

model and the 3D simulation over a large bandwidth of frequency. Since the 

principle component of a bondwire is a series inductance, the voltage waveform 

will be altered as shown in Fig. 5-6.

Fig. 5-12 (a) HFSS simulation o f  the input and output bondwires (b) Equivalent circuit o f a
single bondwire

/ V W
485 pH 120 mQ

(a) (b)

S21 Ri

-jli

jl

S ., Radius=1.0

S11 sim / S11 cir 
S22 sim / S22 cir 
S21 sim / S21 cir1250

-j50

Fig. 5-13 S-parameters o f  the 3-D EM simulation and the equivalent circuit model
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In high power transistors, multiple bondwires are necessary due to the large 

amounts of current present at the drain terminal of the device. These bond wires 

then start to interact in the form of mutual inductance. This has been shown to 

slightly increase the overall inductance of the sub-network [18]. Mutual 

inductance is also present between the input and output bondwires which as a 

consequence increases the amount of feedback present within the device. With 

all of these complex interactions, the level o f difficulty in modelling these 

structures using lumped models increases significantly. Instead, it is preferred to 

conduct 3D E-M simulations that allow for the drawing of arbitrary shapes [33] 

or to conduct s-parameter measurements of the structures within a controlled 

measurement environment [7].

5.1.2.3 MOS Capacitors

Metal-oxide semiconductor capacitors (MOSCAPs) are usually inserted into 

high power transistors for pre-matching at the input or output of the transistor die 

[34]. These in combination with the inductances introduced by the bondwires 

allow for the transformation of the low impedances at the die to higher 

impedances at the package tab. This lowers the magnitude of the reflection 

coefficient required for matching network design, which eases the design process 

especially for communications based applications where the bandwidth of 

operation is in the tens o f megahertz.

The behaviour of a MOSCAP is defined in [33] which is effectively a lossy 

capacitance. In terms of the waveforms the MOSCAP will affect the current 

waveform when used in series. Some high power devices utilize the MOSCAP in 

parallel with the output tab. MOSCAPs are usually modelled using 3-D 

simulations due to the complexity of the substrates and the skin depth effects that 

occur at high frequencies.

5.1.2.4 Package Tab and Lid

The device package is a critical component in high power devices. The package 

consists o f a metal tab that connects to the measurement or PA fixture and the 

bondwires and can be modelled as a wide microstrip line with low characteristic 

impedance [18]. The effect on the waveforms is similar to the device manifold, 

with a small phase perturbation and a spreading of phase to each of the
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individual bondwires. In addition to that the package has a ceramic lid that 

encloses the device as shown in Fig. 5-14. This introduces some feedback 

between the input and output ports of the package. Newer high power devices 

are housed in plastic packages, which reduces the cost of the overall package but 

as a consequence the feedback is shown to increase [18].

Fig. 5-14 Cross section o f  a packaged device, shown within Ansoft HFSS™

5.1.3 C ircu it com binations and  some possible side-effects

So far the discussion of parasitic components has been centred on one 

component at a time. However, in reality due to the sequential cascading of these 

components, the overall package network may feature unexpected properties that 

will not be obvious at first sight.

5.1.3.1 Low Pass Filtering

The first and most commonly found possible circuit combination is the low pass 

filter. This is often found in transistors and is the primary cause for the drop in 

maximum available gain (MAG) of transistors with frequency. This feature is 

usually attributed to the input series network rg, cgs. At the output port, there is 

another low pass filter network which coupled with the input filter network 

defines the overall transistor gain drop with frequency. However, the output 

filter network has a second effect, which is more visible in large signal 

measurements. At higher frequencies, the drain low pass filtering network starts
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to dissipate power, which as a consequence lowers the fundamental output power 

and drain efficiency at the output measurement port. This is shown in Fig. 

5-15(b), where a 0.5 dB loss in power and a 5% drop in efficiency occurs over 

the frequency sweep, using the network in Fig. 5-15(a). In this simulation the 

input stimulus has been held constant and the same impedance of 9 f t  ( R o p t )  has 

been presented at the Igen plane. This can have a major effect in broadband 

applications where the output performance of the device can be significantly less 

at the higher frequencies of operation. This can also be problematic for multi­

harmonic matching networks, especially when attempting to provide specific 

circuit terminations at the higher harmonics.

This is investigated further with the simulation results in Fig. 5-16, the 

simulation involves conducting a reactive impedance sweep with a constant 

magnitude of T (=1) at the measurement plane (at Imeas/Vmeas) as a function of 

frequency. As the frequency increases, the circle of possible impedances reduces 

significantly to less than half of the Smith chart by 9GHz. In this case, the 

network inhibits the ability to provide high impedances at the Igen plane, at higher 

frequencies. This could have severe implications for certain high efficiency 

modes of operation such as class F where an open circuit is required at the third 

harmonic.

1 Q
4 -r ---------- 1— W V  <  a
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1

I
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Fig. 5 -15(a) The output network being simulated (b) The output power and efficiency 
performance against frequency with constant input stimulus

Fig. 5-16 Smith chart at the Igen plane outlining the reduction in impedance matching capabilities
with increasing frequency

5.1.3.2 Circuit Resonances

The two circuit resonances possible are either series or parallel LC networks. 

Series LC networks can occur between the output drain-source capacitance and 

the source inductance within the device or intentionally inserted in the form of 

internal matching networks [23]. Parallel LC networks can occur between the 

source inductance and the any external capacitance, for example in the form of a
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bond pad capacitance that is not on the device die. This sort of resonance 

behaves like a band stop filter. Typically, due to the source inductance being 

very small (<20pH) in mass produced devices, the likelihood of circuit 

resonances effecting the device performance is very low. Another possible 

circuit resonance could be due to the microstrip properties of the device tabs. 

However, due to the small length of the tab, this will typically be well beyond 

the device’s operational range.

This concludes the summary of device and package components. The work in 

the next two subsections covers two specific examples of time-domain de­

embedding of actual measurements based on lumped and 3-D passive modelling 

techniques.

5.2 Time-Domain De-embedding of a Medium Power Device

Expanding from the basic concepts shown earlier, a complete input and output 

network will be derived using E-M simulations and cold-FET measurements and 

used to de-embed the waveforms obtained at the measurement plane. The device 

used in this investigation is a 4.8mm 7 generation Si LDMOS device provided 

by Freescale Semiconductor Inc., measured within an H-block fixture [18, 32]. 

The H-block fixture as shown in Fig. 5-17(a) is a clean safe measurement 

environment, that allows for high power measurements with less parasitic 

components than high power devices with packaging. This provides a relatively 

“simpler” environment for de-embedding large devices whilst using established 

passive and active modeling techniques as outlined in [18]. As discussed earlier 

the de-embedding is separated into two stages, the package and the device. These 

are all constructed together using the segmented approach outlined in [18]. The 

waveform based measurements were taken at the plane outlined in Fig. 5-17(b), 

this was done using a multi-line TRL calibration [35] to allow for a wide 

frequency bandwidth of measurements covering multiple harmonics.
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Output

C alibrated  ref. p lanes

(a) (b)

Fig. 5-17 (a) A picture o f the H-block measurement fixture (b) The calibrated plane at which 
time-domain measurements were taken

Before applying any de-embedding, it is worth looking at the currents and 

voltages being measured. This allows for a qualitative measure of the effects of 

the parasitic components on the waveforms compared to what would be expected 

in literature. This is done using measured time domain data collected with the 

high power measurement system developed at Cardiff University [17]. The 

measured current and voltage waveforms are taken at the impedance for peak 

output power at ldB compression with the device biased at Uq = 5 mA/mm. The 

measured waveforms in Fig. 5-18, show a sinusoidal drain current waveform 

dropping below zero Amps and a drain voltage waveform centred around the 

drain bias voltage of 28V with a large fundamental component and some 

noticeable amounts of higher harmonic content. The sinusoidal current swing 

provides ample evidence of a sizeable amount of capacitance, which is 

significantly altered from the expected half-rectified voltage. Whilst the shape of 

the voltage swing is close to what is expected in theory, the amplitude of the 

swing is a lot smaller than what would have been predicted using load-line 

theory [3].

At the gate terminals both the current and voltage are sinusoidal in shape, which 

suggests the presence of little or no feedback. However, the voltage swing is 

shown to be smaller than would have been expected. However, it is still worth 

noting that whilst these waveforms are not showing the expected theoretical
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behaviour, they do contain all of the useful information for design, such as 

output power, drain efficiency as well as the fundamental and harmonic 

impedances.
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Fig. 5-18 (a) Measured current and voltage waveforms at the input terminals (b) Measured 
current and voltage waveforms at the output terminals

5.2.1 Passive m odeling of the device

The passive model of the entire device is begun by modeling the package. In this 

case the package network consists of an input and output bonding wire with a 

small wide-microstrip feed line as shown in Fig. 5-17. To model this accurately, 

the dimensions of the bondwire were measured under a precision microscope in 

the “x”, “y” and “z” directions. This 3-D structure was then simulated using 

HFSS as shown in Fig. 5-12(a) over a wide frequency bandwidth (300MHz -  

12GHz). The simulation was set to model the features of the individual bonding 

wires as well as the mutual inductance between the input and output bonding
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wires [26] using internal ports in the simulator. Due to the difficulty in 

simulating these structures at lower frequencies, the BONDW tool in ADS™ 

was used to predict the DC performance of the bondwires. By removing these 

effects the measurements are effectively being conducted at the device plane, 

which is equivalent to an on-wafer measurement setup. The input and output 

device manifolds were separately simulated using Sonnet EM™ from DC to 

12GHz. In this case, each of the fingers were designated as a single port to 

reduce to simulation time. Both of these package components are highly 

repeatable which provides a high level of confidence when applied to other 

devices of the same type.

The next stage involves determining the extrinsic components of the device, 

which was done using cold-FET small signal S-parameter measurements [26]. 

The network and the component values of the extrinsic circuit used in the model 

are shown in Fig. 5-19 and is based on the classical FET architecture. However 

there is one major addition and that is the incorporation of on device mutual 

inductance. The mutual inductance models the inductive coupling between the 

drain and gate fingers of the device and allows for improved fitting of the 

forward and reverse transmission s-parameters. The comparison between the 

measured and model s-parameters is shown in Fig. 5-20. The extrinsic model is 

shown to fit both S ( l,l)  and S(2,2) over a large frequency bandwidth. In turn 

S(2,l) and S(l,2) are shown to agree with measured data from 2GHz up to 

6GHz. After that there is shown to be an increasing difference between the 

measured and model S(1,2) and S(2,l) phase. After further optimizing the values 

it was found that these component values represented the best overall fit in S- 

parameters considering the fundamental frequency of operation of 2.1GHz. 

Whilst it is important to note this difference in phase, the actual effect of this 

inaccuracy is not expected to be large due to a low fj of 7.5GHz [15].

The drain and gate charges were then determined by conducting Root model 

based measurements [36] and fitting the charges to the measured data as outlined 

in [37]. This form of charge extraction incorporates the effects of both the input
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and output voltages in a fully charge conservative manner. This part of the de­

embedding procedure was completed by Freescale Semiconductor Inc and now 

allows for access to the current and voltage waveforms at the Igen plane.

mutual inductance =10.5pH

C™h=30 fF

Lg=74 pH

Cna=149 fF

Fig. 5-19 Cold FET circuit diagram that is used to model the extrinsic components o f the device
[26]
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Fig. 5-20 (a) Measured and model S-parameters at the extrinsic device plane shown on a Smith 
chart (b) Forward and reverse transmission measured and model S-parameters at the extrinsic

device plane
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5.2.2 O bta in ing  w aveform s at the I-gen plane

Now that a suitable network has been developed for the package and the device 

extrinsic and intrinsic components, the next step in the process is to validate the 

de-embedding network. Traditionally this is done using biased s-parameters and 

is shown in Appendix A l. In this case the de-embedding network is evaluated in 

terms of its ability to produce the waveforms often shown in literature. Starting 

with the waveforms shown in Fig. 5-18, which are taken at the calibrated 

reference plane, the measured current and voltage waveforms are imported into 

Agilent ADS™ with the “anti-packaging” network placed in series using 

negative components or the built in s-parameter based de-embed component to 

negate the effects of the package and device. To maintain a consistent current 

and voltage relationship, an identical network is placed straight afterwards but 

with positive component values and original package s-parameters. This negates 

the anti-packaging network by providing a zero phase ideal thru line. However, 

in between the two packaging networks, the user is able to analyze the current 

and voltage waveforms at an internal reference plane. This is shown in Fig. 5-21.

m easured i
Anti­

packaging
network

J_

7
v

Packaging
network

V
measured

l-V  W aveform s at internal 
plane

Fig. 5-21 Block diagram outlining the de-embedding o f  measured waveforms to an internal
reference plane

The first task is to remove the effect of the package. This produces the 

waveforms shown in Fig. 5-22, which shows an expansion and small phase shift 

in the voltage waveforms but minimal effect on the current waveforms. This is 

expected due to the majority inductive effects of the bonding wire. The input 

voltage swing is now varying between - IV to 6.5V and the output voltage swing 

is now between 5.5V to 50.5V, each centred at their DC bias points.
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Fig. 5-22 (a) Measured input current and voltage waveforms at the device plane (b) Measured 
output current and voltage waveforms at the device plane

The next step is to remove the effects of the device extrinsic components, which 

as shown in Fig. 5-19, consists of series inductances and resistances with some 

small shunt capacitances and small feedback components. The waveforms shown 

in Fig. 5-23 confirm the expected change in the voltage waveforms and small 

changes in the current waveforms. The waveforms are now at the intrinsic plane, 

which implies that the only form of further de-embedding required is the 

cancellation of the input and output capacitive components. This can be 

confirmed by visually examining the output current waveform in Fig. 5-23(b), 

and comparing it to an ideal class B waveform (see Fig. 5-8(b) for more details). 

This also implies that the voltage waveform correction is now complete.

45



High Power Waveform Engineering 5. Time Domain De-embedding

0 .3 -1

0 .2 -

0.1 -<
0 .0 -

- 0.1 -

- 0 .2 -

-0 .3  —I
0.0 0.2 0.4 0.6 0.8

Tim e (ns)

(a)
1 .2 —1 r  60

1.0 -
-  50

0 .8 -

-  400 .6 -<
0 . 4 - -  30
0 .2 -

-  200 .0 -

-0.2- - 10
- 0 . 4 -

—f  0
1.0x1 O'90.0 0.2 0.4 0.6 0.8

Tim e (ns)

(b)

Fig. 5-23 (a) Measured input current and voltage waveforms at the intrinsic plane (b) Measured 
output current and voltage waveforms at the intrinsic plane

The next stage of de-embedding involves the removal of the input and output 

capacitors which are modeled as charge generators, to produce a charge 

conservative model [39]. This will allow for visualization of the results at the Igen 

plane as shown in Fig. 5-24. The input waveforms show the same voltage 

waveform as before but a very small amount of gate current, which can be 

attributed to the accuracy of the measurement system used [39]. This is because 

Si LDMOS transistors do not contain any real current sources typically found in 

other device technologies such as GaAs and GaN [18]. At the output port, the 

current waveforms show a half-rectified current waveform with some bifurcation 

and the same voltage waveform as before. The current waveform is shown to be 

flat and at 0A in the off region, which indicates that the drain charge generator 

has been accurately modeled.
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So far, based on the results shown the waveforms have shown a good agreement 

with theory. For further confirmation of the de-embedding the dynamic RF load 

lines at the various references planes are overlaid the device’s static DCIV in 

Fig. 5-25. As the packaging and device parasitic components are removed the 

interaction of the dynamic load lines with the DCIV becomes clear. The dynamic 

load line at the Igen plane clearly indicates interaction with the DCIV boundary, 

in this case the dynamic load line is shown to clearly interact with the device 

knee in the high current low voltage region, which leads to the slight bifurcation 

of the current waveform and small amounts of current in the high voltage, low 

current region. The results shown have provided a large amount of confidence in 

the ability to de-embed the measured results, this allows for the possibility to 

analyze device performance at the input and output and if possible optimize 

device performance to attain optimal performance in power, efficiency or gain.
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Fig. 5-24 (a) Measured input current and voltage waveforms at the Igen plane (b) Measured output 
current and voltage waveforms at the Igen plane
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Fig. 5-25 (a) Dynamic RF load lines at the various reference planes plotted over static DCIV o f the 
device (b) Dynamic RF transfer characteristic at the Igen plane

An alternative means of tracking the effect of the de-embedding is to analyze the 

movement of the fundamental impedance as each layer is removed. This is 

shown in Fig. 5-26 where the impedance movement is plotted on a Smith chart 

for each stage of the de-embedding process. At the gate package plane (see Fig. 

5-2 for more details), the impedance measured is a high reflect. After first 

removing the package and manifold the impedance shifts clockwise and slightly 

outwards due to the removal of loss. The last component is the large capacitive 

charge at the intrinsic plane which produces a near open circuit at the Igen plane. 

This is typically what is expected at the input port for FET based transistors. At 

the load port, the same network is shown to have a much smaller affect in terms 

of phase movement but it can be seen that only by completely removing the 

parasitic effects of the package and the device does the load impedance being 

presented to the Igen plane become a majority real impedance. The fundamental 

load impedance of the Igen load line is 57 -lOj Q, which is close to the calculated
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60 O load for maximum output power based on the DCIV as outlined in [3]. 

However, this small unexpected imaginary component is not typically reported. 

The result of this complex impedance is shown clearly in Fig. 5-25 where the 

load line is shown to contain some “looping”. The reasons for this could be due 

to a possible error in the de-embedding network or due to the affect of the higher 

harmonics on the fundamental performance. This will be discussed further in this 

chapter and in the next chapter. However, what this shows is that with a robust 

de-embedding procedure, it is possible to achieve successful de-embedding of 

time-domain waveforms thus allowing for more in depth investigations into 

enhanced PA modes of operation.

S2, Radius=1.0 S ., Radius-1
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[Zpower opt at Igen plane

-j250
-jlO

-jlOO-j25

Device plane

Intrinsic plane

Zin at Igen plane

Zin at measurement plane

Zpower opt at measurement plane

-j50

Fig. 5-26 The impedance movement when de-embedding from the measurement plane to the Igen
plane

5.2.3 Q uantify ing  the effects of feedback in a real device

Using the derived de-embedding network, it is possible to quantify the effects of 

the feedback network in both a forward and reverse direction. This is done by 

simply enabling and disabling the feedback components in the network. In this
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device it was found that the major form of feedback was caused by the ‘on- 

device’ mutual inductance. Using the waveforms shown earlier at the impedance 

for optimum power at ldB compression, the effect of feedback in terms of the 

voltages are shown in Table 5-1.

Harmonic Gate Voltage (mag(V)) Drain Voltage (mag(V))

Feedback On Feedback Off Feedback On Feedback Off

F0 4.08 4.20 23.85 23.92

2F0 0.29 0.25 3.00 3.00

3F0 0.02 0.04 1.71 1.70

Table 5-1 Summary o f  input and output voltages at the intrinsic plane with and without feedback

At the gate terminals, it can be seen in Table 5-1 that the feedback components 

can have a significant effect on the input voltage. By switching the feedback 

network off the input stimulus is shown to increase by 3% (or 0.26dBV). Whilst 

this is a relatively small number in this device, it should be noted that this effect 

will rise with increasing frequency or mutual inductance. The effect at the higher 

harmonics is shown to be both positive and negative. At the second harmonic the 

mutual inductance increases the second harmonic voltage, but reduces the third 

harmonic voltage. This is due to the non linear phase variation at the output 

current source which when passed through the feedback network can either 

destructively cancel or constructively add with the higher harmonics present at 

the input.

At the drain port, the feedback network is shown to have a similar effect at the 

fundamental frequency o f operation. However, in this case the effect is only 

0.3%, which is due to the large voltage swing being presented to the device. At 

the higher harmonics, the effect of the feedback network is shown to be 

negligible. This effectively means that the output load network can exclusively 

be used for load based investigations as the feedback effects in this case have 

been shown to be very small. At the input this is not the case because of the 

relative size of the two voltage components.
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5.3 Uncertainty Analysis

As mentioned earlier in this chapter, one potential doubt in the effectiveness of 

the de-embedding is the uncertainty in the network and component values. This 

is investigated by varying the component values in the circuit by ±10%. This will 

produce a window of uncertainty in the de-embedding and provides a means of 

assessment as to how much further investigation is required for effective time- 

domain de-embedding.

The results are shown in Fig. 5-27 where the voltage waveforms at the drain and 

gate ports, shown to vary by a very small amount but the current waveforms 

exhibiting a more noticeable change. This demonstrates a low level of sensitivity 

to the series based de-embedding that affects the voltage waveform and a 

significant sensitivity o f the current waveform to the drain and especially the 

gate charge generators. This is because the drain and gate charge generators are 

the most significant “shunt to ground” parallel component in this device and 

behaves in a non linear fashion. The increased reliance of an accurate charge 

model is more evident at the gate terminals due to the lack of a current generator 

at the gate port, which provides a well defined means of evaluation, i.e. Ig = 0 A. 

With the gate charge generator in its original state the gate current at the Igen 

plane is always close to 0A with noise like variation, but with the ±10% variation 

the gate current shows periodic behaviour. At the drain terminal, the variation in 

drain charge is shown to have less of an overall impact on the drain current 

waveform at the Igen plane. However, by further examining the waveforms, the 

sensitivity of the charge generators to the drain voltage can be seen, especially in 

the high current, low voltage region of the waveforms. This can be seen more 

clearly in the impedances at the Igen plane as shown in Table 5-2, which shows a 

large variation in the reactive impedance component but little variation in the 

real impedance.
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Fig. 5-27 (a) Gate current and voltage waveforms at the Igen plane with a ±10% variation in the 
parasitic network (b) Drain current and voltage waveforms at the Igen plane with a ±10% variation

in the parasitic network

-10% Original ±10%

7̂Igen 56.7 -  3.4j Q 57.0-10.3j O 5 5 .6 -  17.0jQ

Table 5-2 Impedances at the Igen plane with a ±10% variation in component values

5.4 T im e-D om ain  D e-em b ed d in g  o f  a High Pow er D evice

With the success in medium power time domain de-embedding, the procedure is 

now applied to a high power device, more suited to communications base station 

applications. In this case the measured waveforms of an 110W device supplied 

by Freescale Semiconductor Inc. measured at 2.1GHz are de-embedded to the 

Igen plane. However, before de-embedding is applied to the measurements it is 

worth discussing the added complexity of de-embedding high power devices.

5.4.1 Po ten tia l issues w ith high pow er de-em bedding

This first potential issue with high power de-embedding is the added complexity 

in modelling introduced by the inclusion of a large package, multiple die and
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internal matching networks as shown in Fig. 5-28. These structures are 

physically large, which require extensive modelling of the package tab, bond 

wire arrays and the mutual coupling between the input and output ports, which 

increase the complexity of the 3D simulations by many magnitudes. The 

simulation complexity is further increased due to the high number of port 

designations, required due to the large number of bond wires and device fingers, 

which makes the procedure highly prohibitive in terms of computing resources 

and time. To make this more viable, simplifications are done to the simulation, 

such are “mirroring” and reducing the port number designations. Whilst this 

reduces the complexity o f the simulation, this comes at a cost in accuracy and 

information. In terms o f the device extrinsic and intrinsic components there is a 

large amount o f work already published [18] that have described the scaling 

relationships of each component in a typical transistor network.

Now delving deeper into device related issues, a high power device typically 

consists of many multiple cells that are all fed in parallel along an input tab and 

then combined on the output tab of the package. This procedure introduces paths 

of different phase delays, thus presenting different impedances to the individual 

cells of each die at both the input and output terminals. The effect of this 

procedure is that the separate transistor cells are functioning out of phase and in 

different output and thermal states [40]. Another by product of this is the 

possibility of interaction between cells, which when combined with the effects 

outlined earlier could reduce the output power and operating efficiency of the 

entire device from what would be expected when linearly scaling. Whilst it is 

possible to model these networks with a reasonable amount of accuracy, it is 

hard to predict the viability o f conducting these simulations due to potential 

convergence problems caused by the differing thermal and electrical states of 

operation.
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Bond wire to Bond wire to 
MOSCAP

Die A MOSCAPs Die B

Fig. 5-28 - A photo outlining the components o f a typical high power Si LDMOS device

Some other potential issues with de-embedding high power devices is the ability 

to measure the higher harmonic components. The stronger low pass filter 

properties of the high power device and package will effectively suppress the 

higher harmonics, making them difficult to measure. In practice the second and 

third harmonics are approximately 30-3 5dB below the fundamental, which is 

within the dynamic range of the measurement system. However, the fourth and 

fifth harmonics are usually lower than 45dB below the fundamental component 

and these readings could be affected by the noise inherent in the system. Whilst 

three harmonics describe a large proportion of the total output, it will be difficult 

to produce waveforms as informative as shown earlier in this chapter.

5.4.2 D e-em bedding a high pow er device

In this case the network was supplied by Freescale Semiconductor Inc. and 

describes the package tab, bond wires and the die in a simplified way, which will 

enable the viewing of waveforms at the Igen plane across an entire die. The first 

stage was to negate the effects of the package tab and bond wires. The package 

tab was simulated as a three port structure, which can not be de-embedded using 

ADS™. To overcome this difficulty, the package tab was simplified to a two
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port structure under the assumption that the two internal ports are symmetrical. 

This is explained further in Appendix A2. The one disadvantage of this approach 

is that only half of the device will be simulated. However, in this case due to the 

high level of symmetry between the two internal ports it is plausible to assume 

that the same performance is being achieved across the second die.

The waveforms were taken at the impedance for optimum power whilst at ldB 

compression. As a first check of the de-embedding the impedances at each stage 

of the de-embedding process were recorded as shown in Table 5-3. The 

impedances at each plane are shown to be consistently low with a final 

impedance of 2.44+1.35j Q which is close to the predicted 2 Q power optimum 

based on load line theory, however with a relatively more significant imaginary 

impedance component. As a result the expected current and voltage waveforms 

will have a large overlap region.

Calibrated
Die plane Inside tab reference plane

Igen plane seeing Zdev seeing Zpack seeing Zout
seeing Z cur-gen

Device ! MOSCAP + 
parasitics ! bonding wire

Fig. 5-29 Physical cross section o f  a high power device outlining the location o f the internal
reference planes

Zlgen Zdie Zpack Zout

2.444 + 1.352j Q. 1.096+  1.583j n 2.682 -  4 .818j Q 2.125 -4.098j to

Table 5-3 Impedances at the various internal reference planes
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The next step is to look at the measured and de-embedded current and voltage 

waveforms, which are shown in Fig. 5-30 and Fig. 5-31. The measured current 

and voltage waveforms at both the gate and drain ports exhibit sinusoidal 

behaviour which as mentioned earlier is due to the low pass filtering properties 

of the device and package. The measured voltage swing at the drain (Fig 5-31 

(b)) is shown to swing as low as -17V and as high as 71V, which is clearly 

beyond a device’s boundary of operation. This demonstrates the large amount of 

displacement voltage being generated in the device and package especially when 

compared to the medium power device shown earlier.
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Fig. 5-30 (a) Measured gate current and voltage waveforms (b) measured drain current and
voltage waveforms
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Fig. 5-31 (a) De-embedded gate current and voltage waveforms at the Igen plane (b) de-embedded 
drain current and voltage waveforms at the Igen plane

The de-embedded waveforms at the Igen plane show some similarity to the 

medium power device, especially in terms of the voltage waveforms. At the gate 

port (Fig 5-31 (a)), the voltage is shown to vary between -IV and 7V, which is 

similar to the voltage swing shown in Fig. 5-24(a). The voltage waveform at the 

drain is also showing a high level of similarity to Fig. 5-24(b), whilst the de­

embedding is for only half a device, the voltage waveform is assumed to be 

constant at both dies and provides an encouraging result. However, the current 

waveform is not showing the same properties as expected. The gate current is 

shown to be harmonically rich and to vary between -4 to 4A which shows a large 

margin of error when compared to the medium power device. At the drain port 

the current swing is sinusoidal in shape with no half rectification. However, the 

amplitude is approximately what would be expected for half a device, which 

suggests that the de-embedding has been applied correctly at the fundamental 

frequency of operation.
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Whilst this work has shown that the de-embedding is functioning correctly for 

the voltage waveforms, there is further work required to produce the expected 

current waveforms. Possible improvements in the extraction of the charge 

generators are necessary but this can only be done if there is an accurate package 

network to begin with. Whilst this work has highlighted some encouraging 

results for a high power device, there is still a need for further investigations into 

high power devices and the effects of these structures in terms of the current and 

voltage waveforms.

5.5 Conclusions

This chapter has outlined the need to de-embed time domain based measurement 

data for improved insight into device operation and comparison with classical 

literature. This begins with a basic discussion about the effects of lumped 

components in terms o f displacement current and voltage generation and then 

proceeds onto more complex structures such as bond wires and device 

manifolds. Once this was completed the de-embedding of measured time-domain 

waveforms is successfully demonstrated on a medium power device with very 

little sensitivity on the voltage waveform but more sensitivity on the current 

waveforms. Finally, the same procedure was applied to a high power device and 

found to be successful in terms of the voltage waveforms but the current 

waveforms were not what was expected. Further improvement in high power de­

embedding could be achieved by increasing the level of depth in the passive and 

active modelling process, in order to better describe the interactions between the 

various elements o f the entire transistor.
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6 The Affect of System Impedance on High Power 
Measurements

High power device measurements above 20 W in output power typically involve 

large current and voltage swings, which in general produce optimum load 

impedances for power at the Igen plane much below 20 £2 when using load line 

theory [3]. As the devices increase in output power in particular output drain 

current the optimum load impedance for power can drop dramatically down to 

sub 1 £2 impedances for devices greater than 100 W output power. However, as 

devices are moving towards higher output powers the one constant variable 

when characterising high power devices is the characteristic system impedance, 

which is conventionally 50 £2.

The characteristic impedance of 50 £2 was standardised due to it being the best 

compromise between cable loss and peak power handling in a co-axial cable of 

relative dielectric one and is described in more detail in [41]. As a consequence 

many measurement systems have been built with a 50 £2 system impedance for a 

variety of applications. In this case the measurement system being used is the 

high power measurement setup developed at Cardiff University [17], which 

allows for the measurement of time-domain waveforms. The system was initially 

developed using low power on wafer devices, with small current levels, typically 

leading to optimum impedances well above 100 £2. In this case the system 

impedance is shown to have very little effect on the performance of low power 

devices [16]. This is because the 50 £2 system impedance at the higher harmonics 

is below the fundamental and thus, limiting the generation of higher harmonic 

voltage components relative to the fundamental. This enables the device to 

function better in classical modes of operation such as class B etc. With high 

power devices, the higher harmonic impedances are now above the optimum 

fundamental impedance for power, which is the opposite to what was occurring 

before hand. In this case the higher harmonic impedances generate unwanted 

higher harmonic voltage components due to Ohm’s Law, that can significantly 

alter the waveforms at the measurement plane and in addition affect the
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fundamental performance of the device. The end result is the synthesis of 

waveforms that are often different to what is presented in literature.

In reality, high power devices are housed in packages and contain significant 

parasitic effects that have been shown to change the waveforms. As shown in 

Chapter 5, these parasitic components can drastically transform the impedance at 

the measurement plane and present complex impedances at the Igen plane. These 

complex impedances now not only affect the magnitude of the higher harmonic 

voltages but also the phase, which can distort the shape of the waveforms even 

further.

There has been some work [42, 20] presented using broadband impedance 

transformers that transforms the 50 Q system impedance to 7 H as presented in 

[20]. However, the primary purpose for the work was to ease the requirements 

for fundamental load pull in both passive and active load pull measurement 

systems. This in theory will cancel out the effects of the higher harmonics but in 

practice it becomes prohibitive to construct very low impedance transformers 

due to the large transmission line widths and possible discontinuities when 

connecting to a device. Another method of limiting the effects of higher 

harmonics is to use harmonic load pull. This will allow the user to set short 

circuit impedances at the higher harmonics to cancel out the effects of the higher 

harmonics. However, in the case of both passive and active load pull systems 

harmonic load pull is both costly, complicated and in the case of active load pull, 

time consuming.

This chapter first looks into a practical example that demonstrates the affect of 

the higher harmonic impedances. After that the affect of the higher harmonic 

impedances is analyzed more theoretically based on the waveforms at the drain 

port of the device, first by comparing the scenarios, a low power device and a 

high power device. This is assumed using a perfect, 50 Q characteristic system 

impedance and then applies some of the possible solutions to an ideal high 

power device. Then the work is expanded into looking at the waveforms of a 20
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W LDMOS device and applying the de-embedding knowledge leamt beforehand 

to visually quantify this effect. After this, the affect of complex higher harmonic 

impedances are calculated and analyzed in terms of the current and voltage 

waveforms. Then the theory is applied to a 5 W Si LDMOS device as a means of 

confirmation.

6.1 A High Power Device Measurement in Two Different 
Impedance Environments

To help clarify the issue, a practical experiment is conducted where a high power 

Gallium Nitride (GaN) device is measured in two different impedance 

environments of 50 Q and 10 O. The device was biased in class AB and at a 

drain voltage o f 16V using the high power measurement system [17] at a 

frequency of 2.1 GHz. This was achieved through the use of broadband 

impedance transformers [20]. The impedance at the fundamental was set for 

maximum output power whilst the higher harmonic impedances were kept 

constant. Once this was achieved a power sweep was conducted allowing for a 

comparison of the performance in terms of output power, gain efficiency and the 

output current and voltage waveforms.

To begin with the device was measured in a 10 Q impedance environment and 

the results are shown in Fig. 6-1. The device is shown to have flat gain at low 

power and a peak drain efficiency of 63 % whilst delivering 42.3 dBm of output 

power, which is expected for a device biased in class AB and is in agreement 

with the expected output power based on load line analysis [3]. The current and 

voltage waveforms at the measurement plane are both sinusoidal and clean of 

any higher harmonic components. The optimum impedance for maximum output 

power was found to be 6.8 -  1 lj Q.
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Fig. 6-1 (a) Output power and gain profile o f  a high power GaN device measured in 10 Q with 
input power (b) PAE and drain efficiency o f  a high power GaN device measured in 10 Q with 

input power (c) Current and voltage waveforms at the measurement plane at ldB compression in
output power

The same device was then measured in a 50 O environment and the results are 

shown in Fig. 6-2. The peak output power is found to be 42.3 dBm, which is the 

same as before but the gain and efficiency profiles are distinctly different than in 

a 10 £2 measurement environment. The gain is shown to compress from the 

lowest power in the sweep and the peak drain efficiency is found to be 53%, 

which is 10% lower than when measured in a 10 £2 impedance environment. 

Such a large change in drain efficiency can have a negative impact on the device, 

which in this case could be thermally damaging. The current waveform is similar 

to before but the voltage waveform is now showing an increase in higher 

harmonic content. The optimum impedance for power has now changed to 6 -  

6.4j Q.
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Fig. 6-2 (a) Output power and gain profile o f  a high power GaN device measured in 50 Q with 
input power (b) PAE and drain efficiency o f  a high power GaN device measured in 50 G with 

input power (c) Current and voltage waveforms at the measurement plane at ldB compression in
output power

From the two sets of results it is clear to see that the higher harmonic 

impedances can affect the performance of a device. In this case the drain 

efficiency of the device was found to be severely affected with a 10% difference 

in performance between the two impedance environments. This makes it critical 

to account for the affects of the higher harmonic impedances to ensure accurate 

and “fair” characterisation of high power devices.

In addition to that the voltage waveforms at the drain port were shown to be 

different because of the higher harmonic components that are generated by the 

higher system impedance, which could cause the drop in drain efficiency 

observed in the 50 £2 measurements. Another interesting observation is that the 

optimum impedance for power was shown to be different in both cases.
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Ultimately leading to the question of which impedance value is correct? All of 

the above issues will be looked at in the following sections.

6.2 T he A ffec t o f  H igh er H arm onic T erm inations (R eal only)

This section discusses the effect of the higher harmonic terminations by 

comparing the waveforms typically measured using a low power device with a 

high power device within a system impedance of 50 Q. To demonstrate the low 

power case, the DCIV of a 70 mW GaAs HEMT device is simulated within 

Agilent ADS™ with the device biased at pinch off (class B). Here the 

fundamental impedance has been set to 250 D, whilst the second and third 

harmonics are set to a short circuit. This is done to emulate the measurement 

conditions (i.e. 3 harmonic active load pull) available using the measurement 

system developed at Cardiff University. The higher harmonics are left at 50 D, a 

factor of 5 below the fundamental impedance. The results presented in Fig. 6-3 

show that the higher harmonic terminations have no visible effect on the 

waveforms. In this case the fourth and fifth harmonic voltages are 35.4dB and 

39.4dB below the fundamental voltage component.

12 T

10-- -  50

8-->
s>1o> 4 - -

2-- - 10

0.0 0.5 1.0 1.5 2.0
Time (ns)

Fig. 6-3 Class B waveforms for the low power case with the higher harmonics 1:5 times lower 
than the fundamental, i.e. = 250 Q and Z4fo, 5fo.. = 50f2

Based on DC-IV data, the 20 W device has an optimum impedance of 11 D. 

Using the DC-IV data as the basis of a model, a similar simulation was 

conducted with the device biased in class B with the same harmonic impedances 

presented to the on-wafer device. It should be noted that this time the higher 

harmonic terminations are now a factor of 5 above the fundamental impedance. 

Fig. 6-4 shows the voltage waveform is no longer sinusoidal, due to the presence
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of large amounts of higher harmonic voltage content consisting of both odd and 

even components. The fourth and fifth harmonic voltage components are now 

7.8dB and 19.6dB below that of the fundamental. Despite this, the device 

provides 21W of output power at a drain efficiency of 61.8%. It should be noted 

that this effect on the waveforms will be further magnified for larger devices.
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s  40"
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5 . . .
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2.5x1 O'90.0 0.5 1.0 1.5 2.0
Time (ns)

Fig. 6-4 Class B waveforms for the high power case with the higher harmonics 5:1 times higher 
than the fundamental, i.e. = 11 £2 and Z4ro, 5fo.. = 5012

For further clarification of the impedances being presented in the two cases, a 

Smith chart of the low and high power device impedances at the fundamental is 

plotted in Fig. 6-5. The affect of these impedances is signified in the spectral 

content of the two sets of waveforms shown earlier. These are shown in Fig. 6-6 

and Fig. 6-7. The current spectra are similar in both the high power and low 

power scenarios. The short circuit terminations at the second and third harmonics 

remove any voltage content at the second and third harmonics. However, the 

difference can be clearly seen at the higher harmonics where the higher harmonic 

(fourth harmonic onwards) voltage content is significantly different in the high 

power simulation.
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Fig. 6-5 -  Smith chart showing the impedances being presented to the low and high power 
devices at the fundamental and the higher harmonics set by the measurement system
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Fig. 6-7 (a) Current spectrum o f a high power device (b) Voltage spectrum o f a high power
device
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A simulation can be performed to verify that if the higher harmonics are set to a 

similar impedance ratio as the low power case, then the voltage waveform in the 

high-power case will recover to a clean sinusoid, as shown in Fig. 6-8. In this 

case the fourth and fifth harmonic voltage components are both more than 30dB 

below the fundamental. The fundamental output power and efficiency are 

slightly higher than before with 21.5 W output power and 63% drain efficiency. 

Interestingly, to maintain the same fundamental to harmonic impedance ratio the 

measurement system would have to have a characteristic impedance of 2C1. This 

is clearly not feasible using off the shelf components.
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Fig. 6-8 Recovered Class B waveforms for the high power case with the higher harmonics 1:5
times lower than the fundamental

This basic simulation has shown that the system impedance is a critical obstacle 

for understanding and using waveform measurements at the Igen plane. This is 

attributed to the ratio of impedances between the fundamental and the higher 

harmonics. In terms of fundamental output power and efficiency, the 

performance is not greatly affected, but in terms of linearity the higher 

harmonics need to be taken into account.

The general conclusion in solving this issue is to lower the characteristic system 

impedance. One possible method is to design and build a low impedance 

measurement system. Whilst this will produce the desired results, it will be 

difficult to source components such as couplers, dc bias tees with characteristic 

impedances that are not 50 Q and will instead require special custom made 

components that could be very costly. The other alternative is to construct a
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broadband impedance transformer that will transform the 50 fl system 

impedance to a lower (in this particular case) impedance. Most broadband 

impedance transformers have a high pass characteristic [43, 44] and are able to 

provide the low impedances shown to be required to a number of higher 

harmonics. However, broadband impedance transformers can have a significant 

impedance variation in the non-operational region [43], which can lead to the 

device seeing impedances that could lead to potential device instabilities or 

possible oscillation. Another possibility is to extend load pull capability to the 

higher harmonics. The results in Fig. 6-9 demonstrate that 9 harmonic load pull 

capability will be required to sufficiently quell the effect the effect of the higher 

harmonics. In practice due to cost and the increased complexity in implementing 

multi-harmonic passive and active load pull systems, make this solution difficult 

to apply. Out of the three possible solutions, the most preferred is a broadband 

impedance transformer but these are difficult to characterise and verify when 

transforming to impedances below 10 O due to the increased tab width.
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Fig. 6-9 Voltage waveforms with increasing harmonic load pull capability

However, high power device measurements are not taken at the device plane but 

after a packaging network. This complicates the impedances being presented at 

the device plane. The uncontrolled higher harmonic impedances will now consist 

of both resistive and reactive components due to the transformation process in 

the packaging. The result of this is a more complex voltage waveform that now 

varies in both phase and magnitude at the uncontrolled higher harmonics.
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The same simulation is now extended to include a simplified device and package 

network typically used for a 20W device as shown in Fig. 6-10 [45]. The 

fundamental, second and third harmonic impedances at the outside of the device 

are set such that the intrinsic device sees the optimum impedance at the 

fundamental and short circuits at the second and third harmonics. The higher 

harmonics are set to 50Q at the measurement plane. The resultant impedances 

presented at the intrinsic plane and the waveforms are shown in Fig. 6-11.
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Fig. 6-10 Simplified device and package network
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Fig. 6-11 (a)Impedances presented at the intrinsic plane when 50 Q is presented at the 
measurement plane (b) Current and voltage waveforms at the intrinsic plane

The voltage waveform in Fig. 6-11(b) is shown to be similar to the waveforms 

shown in Fig. 6-4, but with some change in the magnitude and phase of the 

higher harmonics. In this case the harmonic distortion caused by the fourth and 

fifth harmonics is 12.2dB and 17.2dB below the fundamental voltage. There is 

also an increase in the sixth harmonic voltage component that is 15.8dB below 

the fundamental voltage component. The impedance presented at the fourth
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harmonic is shown to be approximately 28 ft which is almost a factor of two 

below the system impedance and is predominantly a real only impedance. This 

explains the 4.4dB reduction in the fourth harmonic voltage. The impedance 

presented at the fifth harmonic is shown to decrease slightly but is still relatively 

close to 50 f t which has interestingly resulted in an increase in fifth harmonic 

voltage. At the sixth harmonic the impedance is shown to be above 50 ft, which 

produces the expected increase in voltage swing. This result shows that it is 

important to emphasize that the variation in impedance caused by the package 

network can cause significant alterations to the voltage waveforms and needs to 

be taken into consideration when attempting to reproduce “textbook” high power 

waveforms.

6.2.1 The Effect o f System  Im pedance in a High Power Si LDMOS 
Device

Earlier in this chapter a high power GaN device was characterised in two 

different impedance environments and the performance was found to be 

significantly different. In addition to that the voltage waveform in a 50 ft 

impedance environment at the measurement plane was found to contain higher 

harmonic components. Part of this difference in performance has already been 

explained above. Now a 20 W Si LDMOS device is measured in a 50 ft 

impedance environment at a frequency of 900 MHz. Si LDMOS is the current 

device technology of choice in high power base-station applications. The 

captured waveform data is de-embedded to the current generator plane, to allow 

for accurate visualisation of the affect of the higher harmonic impedances on the 

waveforms. The measurement involved presenting the optimum impedance for 

power at the fundamental and short circuits at the second and third harmonics at 

the Igen plane, using the de-embedding network shown in Fig. 6-10. The 

waveforms are shown in Fig. 6-12.
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Fig. 6-12 The de-embedded current and voltage waveforms at the Igen plane

The voltage waveform in Fig. 6-12 is near sinusoidal and is in good agreement 

with the DC-IV boundaries. There is some harmonic content in the voltage 

waveform, consisting of second (due to an imperfect short) and fourth harmonic 

voltage components which create the slight distortion in the waveform. The 

current waveform is shown to be half rectified and due to the distortion in the 

voltage waveform it too contains minor artefacts.

In this case the affect of the higher harmonics has been limited due to the large 

device output capacitance, which is approximately lOpF. This effectively 

provides an immediate short circuit to the current generator at high frequencies, 

as a result cancelling the effects of the higher harmonic terminations. As the 

device size and output power increases, the dampening effect of the large drain 

capacitance can come into affect at the lower harmonics, i.e. second and third. 

Thereby producing waveforms readily presented in literature for classical modes 

of operation. In GaN devices the device output capacitance is usually much 

lower, which consequently allows for the generation of unwanted higher 

harmonic voltage components as shown earlier. In this case, more consideration 

of the correct measurement impedance environment is required together with a 

thorough understanding of the effect of the complex higher harmonic 

impedances typically being presented at the Igen plane.

6.3 T he A ffect o f  the H igher H arm onics (R eactive only)

The previous section focussed on analyzing the affect of real only impedances 

on a device’s waveforms. In reality as discussed earlier, the current generator 

will be exposed to complex impedances due to the impedance transformations
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caused by the package and device parasitic components. This section now looks 

into the effects of imaginary only impedances on a device’s waveforms. Lossless 

complex impedances will affect only the phase relationship of the waveforms, in 

particular the amount o f overlap between the generated current waveform and 

the synthesised voltage waveform. In terms of fundamental performance, this 

can have a significant effect, because maximum output power in conventional 

modes of operations can only occur when the phase offset (p of the product 

between the current and voltage is equal to zero [31]. This is shown below, 

where the power is expected to roll off as the phase offset increases. This carries 

on until (p = 90° when no power will be delivered to the load.

However, the equation given in (6-1) represents the performance at just the 

fundamental. What hasn’t been considered before is the role of the higher 

harmonics and what affect they have on the performance of the device at the 

fundamental. It is important to note that the affect of these complex impedances 

will be applicable to devices o f all sizes. The one difference between high and 

low power devices, could be the extremity of this effect and this will be 

discussed later.

6.3.1 Sim ulation

To best illustrate the effect of complex higher harmonic impedances, a load pull 

simulation was done of an ideal device biased in class B with no parasitic 

components. The performance will be assessed in terms of output power only. 

This is to avoid the added complication of reactive based efficiency enhancement

where,

(6-2)

(6-3)
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techniques such as class E [11]. As a point of reference a load pull simulation of 

an ideal device biased in class B (all higher harmonics short circuited) was 

conducted. The load pull contours (in red) are shown in Fig. 6-13(a). The 

optimum impedance for power is shown to be 71 Q with the contours centred 

around the real axis. The optimum real only impedance and the elliptical shapes 

of the load pull contours are in good agreement with theory [3, 46]. Another load 

pull simulation was conducted but with a different fixed impedance at the second 

harmonic (higher harmonics still set to short circuit). The resultant contours (in 

black) shown in Fig. 6 -13(a) are now centred off the real axis at 71 + 71j Q with 

the contour shapes no longer elliptical and the spacing between power levels no 

longer uniform. The reason for this is due to the presence of a reactive second 

harmonic impedance o f 0 -  83j Q (all other higher harmonics are short 

circuited), resulting in the generation o f a “reactive” second harmonic voltage 

component. This new voltage component significantly alters the voltage 

waveform and it’s interaction with the current, but the output performance of the 

device is the same, i.e. identical output power (37.15dBm) and drain efficiency 

(75.2%). The current and voltage waveforms for both cases are shown in Fig. 

6-13(b).

In both cases the current waveform is half rectified and identical. This is because 

the current waveform is a function of bias and assumed to be independent of the 

load impedance. Meanwhile the voltage waveform is a function of load 

impedance at all o f the harmonics and is shown to be vastly different in both 

cases. The ideal class B voltage waveform is sinusoidal as expected due to the 

short circuits being applied at the higher harmonics. However, with the 

introduction of a reactive second harmonic termination, the voltage waveform 

has become half rectified and is shown to increase in amplitude by a factor of the 

square root of two producing current and voltage waveforms that are similar to a 

class J mode of operation [1]. The reactive fundamental termination introduces 

an overlapping region between the current and voltage waveforms resulting in 

the loss of power and efficiency. However, the combination of a larger voltage 

swing at the fundamental and reactive impedance offset (which in this case is
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cos(45°) = 1/V2), produces a cancelling effect that results in the same output 

power and drain efficiency as observed in a conventional class B mode of 

operation.

 Ideal Class B
 Class B bias with reactive 2nd harmonic
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Fig. 6-13 (a) Load pull contours for output power of an ideal device biased in class B with 
different impedance terminations at the 2nd harmonic (0.25dBm step size) (b) Current and voltage 

waveforms at peak output power o f  an ideal device biased in class B with different impedance
terminations at the 2nd harmonic

As a further check, fundamental load pull sweeps were conducted with different 

second harmonic impedances and the higher harmonic impedances all set to 

short circuit. Maximum output power can be maintained over a range of second 

harmonic impedances as shown in Fig. 6-14(a). However, optimum power
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performance is only achieved within a certain range of second harmonic 

impedances. This range is given by ± 1. 16R o p t  (normalized) where R o P t  is the 

optimum impedance for power at the fundamental and is highlighted in Fig. 

6-14(b). By closer analysis of the waveforms in Fig. 6-14(c), it becomes clear in 

that as the reactive second harmonic impedance increases the voltage waveform 

starts to come out o f phase with the current waveform and increase in amplitude. 

Once the reactive component of the second harmonic impedance increases above 

1. 154R o p t  the voltage waveform starts to interact (due to an increasing amount of 

second harmonic voltage) with the knee boundary of the device. This in turn 

starts to produce a bigger phase overlap between the current and voltage with 

little extra increase in the amplitude of the voltage swing. This results in a loss of 

power at the fundamental that in this case can not be recovered by adjusting the 

fundamental impedance.

This effectively means that a device is sensitive to both real and imaginary 

impedances at the higher harmonics. However, the difference in this case is that 

the performance of the device can be recovered by changing the impedance at 

the fundamental. It is important to quantify this effect and to determine the 

relationship between the higher harmonics and the fundamental. In this 

controlled simulation only the second harmonic was investigated but in practice 

the impedances at all the higher harmonics need to be considered. The next sub 

section looks in to quantifying the affect of the complex impedances on the 

fundamental and how they change the waveforms.
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Fig. 6-14 (a) Smith chart showing the movement o f the maximum output power contours with 
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impedance (c) Current and voltage waveforms with varying 2nd harmonic impedance
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6.3.2 Theory

The theory used to explain this change in optimum impedance has been 

explained by Rhodes [47]. In the paper, Rhodes has derived an expression for an 

ideal device biased in class B (even harmonics only), that calculates the voltage 

as a function of the reactive higher harmonic terminations. This expression is 

given by

^  - 1 ; , 4 , - ,  sin[(2, - 1)0]
v D C  J L V D C  n = m

where,

C =
X(2 n)

{An - 1)
sin[2 n0\-X X r ,- .  cos[(2? -  \)0]

9=1

(6-4)

(6-5)
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and,

=
2 n

(m + 1)
cot (2n-X)n -c o t (2 n +1 )k

2(m + X) 2 (m +1)
(6-6)

Where, V d c  is the drain bias voltage, A  is the normalized (to V d c ) amplitude of 

the odd harmonic ‘q ’ and Imax is the peak current value. In (6-5) X is the reactive 

component of the higher harmonic impedance ‘n \  In (6-6) m is the number of 

odd harmonic components that are set to open circuits (in this case m=l). The

m

n # ] -  £ b „ , 2 „ _  |  c o s [ ( 2 < 7  - 1 ) 0 ]

q = 1

, describes the even harmonic voltage components 

generated due to the reactive higher harmonic impedances. The interesting point 

to note is that Rhodes, mathematically proved that the fundamental impedance 

had to be changed to compensate for the reactive higher harmonic terminations 

and this is shown below;

equation outlined in (6-5) C = X(2n)
(An - 1) L

z ~ . = T * l ( 4 + J X . )  (6-7)
m ax

X m = - ^ Y  X{^ n) - Bn „ (6-8)
" ^ DC£ ; ( 4 « 2 - i )

Where Xm is the total reactive offset produced by the higher harmonics, which is 

a function of the reactively terminated even harmonic voltage waveform. Using 

these expressions and conditions defined by the simulation, the linear current and 

voltage waveforms can be calculated together with the optimum impedance as a 

function of the reactive higher harmonics terminations. The theoretically 

predicted waveforms shown in Fig. 6-15, directly overlay the waveforms 

produced in the simulation. This provides a positive indication, that this theory is 

a valuable tool in quantifying the affect of the higher harmonic impedances on 

fundamental performance and the consequential effect on the waveforms.
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Fig. 6-15 Theoretical and simulated current and voltage waveforms with a reactive second
harmonic termination

6.3.3 M easu rem en t C om parison

To further prove the validity of the theory provided by Rhodes, a measurement 

comparison of the waveforms and the optimum impedance for power is shown 

using a 5W 7th generation Si LDMOS device provided by Freescale 

Semiconductor Inc. The device was biased at a drain voltage of 28V and a 

quiescent current of 24mA, which corresponds to a minimum in 3rd harmonic 

current, thereby producing the closest possible ideal half rectified class B current 

waveform [16]. The measurements were done at 900MHz and were conducted 

using the high power waveform based active harmonic load pull measurement 

system developed at Cardiff University [17]. Using this measurement system, the 

higher harmonic impedances are inherently constant throughout the 

measurement process, which allows for a direct comparison with theory and 

simulation. In order to provide a common point of reference in all cases the 

measurements in particular the system impedances being provided to the device 

were collected and de-embedded to the Igen plane. This was done using the de­

embedding network implemented in Chapter 5.

Before the measurements were started the even harmonic impedances (up to and 

including the eighth harmonic) were measured at the output of the device (i.e. 

the calibrated reference plane). These were then de-embedded to the current 

generator plane and applied to theory. The predicted optimum impedance for 

power using theory was 68.6 + 20.7j with linear output power of 36.4dBm.
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The ideal device was adjusted to approximate the knee boundary of the device. 

The load pull contours at the current generator plane are shown in Fig. 6-16.

Fig. 6-16 Output power contours o f  a measured device at the I-gen plane and a simulation o f an 
ideal device with the same higher harmonic impedances both with 0.25dBm step size

The load pull contours shown in Fig. 6-16, show two similarly centred load pull 

contours. The de-embedded load pull contours are centred at 63.3 + 12.3j Cl, 

whilst outputting 36.4dBm. The optimum impedance is slightly different than 

predicted in theory and this is due to the presence of odd harmonic current 

components in the real device that have not been taken into consideration in 

Rhodes analysis. These are introduced at higher power levels when the transfer 

characteristic shows compressive characteristics that introduce third harmonic 

current components. In addition to that, the device has a soft knee characteristic, 

which introduces a large area of high output power [3], thereby affecting the 

shape of the load pull contours.

By conducting a similar analysis now based on the device’s DCIV, the simulated 

optimum impedance for output power is 68.3 + 12.3j Cl. This is confirmed in 

Fig. 6-17 where the optimum impedance is now in agreement. There is still some 

disagreement over the shape of the contours, which could be due to errors in the 

measurement data. This shows that the maths needs to be further developed to 

incorporate the affect of the odd harmonics. Further work has been done by

S21 Ra S., Radius=1.0

 Simulated load pull contours using an ideal device
 Measured load pull contours at the Igen plane
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Cripps et al. [48] to factor in the odd harmonic current components, which will 

make the maths more applicable to other modes of operation. The predicted, 

simulated and measured waveforms at peak output power are shown in Fig. 6-18. 

The current waveform in the ideal device case is different due to the non linear 

characteristics of the device’s transfer characteristic, which is shown in the 

simulated current waveform. There is also some compression in the measured 

and simulated current waveforms with a slight splitting of the main body into 

two constituent parts, which is not entirely expected at ldB of power 

compression. The voltage waveforms in all three cases are showing a high level 

of agreement. There are some minor differences in the low voltage region and 

around the dc bias point where the measured voltage waveform shifts in the 

opposite direction to what was predicted, which is again due to the 

aforementioned points. This could be due to the effect of lossy higher harmonic 

terminations together combined with reactive components, which will have to be 

investigated in the future. However, overall there is a good level of correlation 

between theory and the de-embedded measured waveforms.

S21 Raa»'c=i n j50 Q  B o d i n c = |  Q

-i 1C

jl<

 Measured load pull contours at the Igen plane
 Simulated load pull contours using device DCIV

I
-jlUO
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Fig. 6-17 Output power contours o f  a measured device at the I-gen plane and a simulation o f the 
device DCIV with the same higher harmonic impedances both with 0.25dBm step size
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Fig. 6-18 Predicted and de-embedded measured current and voltage waveforms at ldB
compression at the Igen plane

The actual shape of the voltage waveform is shown to be partially sinusoidal in 

all cases, with some noticeable deviations in the mid-voltage region. Since this 

device has a much smaller device output capacitance than in the 20W Si 

LDMOS device the affect of the higher harmonics is more clearly observed. This 

signifies the affect of the higher harmonic impedances in terms of the 

waveforms.

In the case of higher power devices, it is possible that the reactive affect of the 

higher harmonic impedances will become more prevalent. This is similar to the 

reasons argued when considering a real only system impedance. As the 

fundamental optimum impedance reduces, the window of optimum performance 

within which the second harmonic can be situated also reduces when operating 

in a system impedance of 50 Q. Thereby, increasing the likelihood of the second 

harmonic impedance being outside of the allowable range, which results in a loss 

of peak output power. As mentioned earlier one possible solution is to lower the 

system impedance environment, which will ensure that the second harmonic 

impedance will lie within the allowable range. However, this has to be carefully 

managed as a very low impedance environment could be transformed to 

impedances outside the allowable range of values due to the bondwire 

inductance in the package.

Another possibility is that the larger device output capacitance in high power 

devices will sufficiently assure that the higher harmonic impedances are within 

their allowable ranges, which can be assumed for Si LDMOS devices where the
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capacitance is high. For GaN devices this could not be enough at L-band 

frequencies resulting in a compromise of performance. In all cases for an 

accurate and fair assessment of the performance and waveforms it is important to 

take this into consideration the higher harmonic impedances in combination with 

the package in terms of both the real and reactive components.

6.4 Conclusions

This chapter has highlighted how factors previously left ignored such as the 

device package and measurement system impedance could significantly alter the 

fundamental output device performance, which as a consequence also affects the 

output current and voltage waveforms. When comparing the de-embedded 

waveforms to similar results achieved at low power or typically presented in 

theory, there are differences in the current and voltage waveforms. Whilst small 

differences such as a slight bifurcation in the current waveform can be more 

readily explained, other more disconcerting features such as the shape of the 

voltage waveform and the phase relationship with the current waveform can raise 

doubts over the accuracy in the de-embedding network.

A first example is given where a high power GaN device is shown to achieve 

similar output power in two different impedance environments but with 

significantly different efficiency performance. In addition to that, there was a 

noticeable difference in the optimum impedance for maximum output power. 

This provides a significant measurement dilemma, especially when attempting to 

provide load pull information for use in PA design. One clear difference in the 

two voltage waveforms was the presence of higher harmonic voltage 

components when the device was measured in a 50 O environment

This following section describes the cause of the difference in the voltage 

waveforms. Initially, focussing on the difference between a high power device 

and a low power device measured within a fixed 50 Q three harmonic controlled 

measurement system. Whilst the low power device produced the desired 

waveforms, the high power device generated spurious higher harmonic voltage
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components. These were shown to be mitigated by either increasing the order of 

harmonic control or by reducing the impedance environment. This was then 

applied to a 20 W Si LDMOS device, which was shown to provide little 

sensitivity to the higher harmonics. This was found to be due to the large output 

capacitance found in Si LDMOS devices which dampens the affect of the higher 

harmonics by providing near short circuits at the Igen plane. However, with the 

emergence o f GaN devices with higher power densities and thus lower drain 

capacitance, this issue can now be seen more clearly at communication band 

frequencies.

As high power devices are housed in a package, the system impedance will be 

transformed to complex impedances that introduce phase rotation in the higher 

harmonic voltage components. Whilst this is simply applying Ohm’s Law, what 

was not previously clearly understood was the affect of these reactive higher 

harmonic terminations on the fundamental voltage component and the optimum 

impedance for maximum output power. Using maths developed by Rhodes, it 

was shown that the higher harmonic impedances have a significant effect on the 

voltage waveform and the fundamental impedance for maximum output power. 

This goes against the popular held notion that the optimum waveforms for power 

of a device biased in class B, are a half rectified current waveform and a 

sinusoidal voltage waveform with a real only fundamental impedance.

This has allowed for a re-assignment of waveform goals for confirmation of the 

de-embedding network. By knowing the higher harmonic impedances being 

presented to the current generator, the waveform goals for successful de­

embedding can be adjusted accordingly. This increases the likelihood of 

producing a much more universally reliable output circuit model of the device’s 

intrinsic and extrinsic parasitic components. This allows for the effective 

implementation of known waveform design procedures highlighted in [1], In 

addition to that, the effects of the intrinsic and extrinsic parasitic components can 

be quantified, leading to the identification of potential dangers such as electrical 

or thermal breakdown.
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Further work can be done to account for other modes of operation such as class 

AB, which are used more often in industry. A class AB bias will introduce odd 

harmonic current components that will also have an effect on the fundamental 

performance. The second additional feature is to quantize the effect of lossy 

higher harmonic impedances in terms of the current and voltage waveforms and 

the overall performance of the device. This will represent a much more relevant 

scenario found within matching networks.
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7 Waveform Applications -  Waveform Based High 
Efficiency Modes of Operation

The previous chapters have outlined a framework within which to better interpret 

the waveforms in terms of acquiring information regarding performance and 

identify possible perturbations within the measurement environment. The next 

step is to now utilise the ability to access the Igen plane for improved device 

related investigations. This chapter will focus on two aspects of waveform 

utilisation. The first topic is single device based efficiency enhancement, in 

particular class F and inverse class F.

7.1 Efficiency Enhancement

Efficiency enhancement has been a topic of high interest in recent times due to 

the increasing price of energy and use of wireless systems. There are many 

possible modes o f operation, such as class A, class AB etc [3], which are set by 

the conduction angle (a) o f the current waveform. Class A has a conduction 

angle of 360 ° and class B has 180 °. In between class A and B is class AB and 

when the conduction angle moves below 180 ° the device is functioning in class 

C. Class A typically has high output power and gain but low efficiency. As the 

conduction angle decreases, the efficiency increases due to a reduction of the 

average DC component but the device gain and in the case of class C peak 

output power reduces. Typically a class AB bias is applied in high power PAs, 

due to a compromise in efficiency, output power and gain. For more information 

about the traditional modes of operation see reference [3].

Whilst class AB is the current most popular mode of operation, with a typical 1 

dB compression drain efficiency of 60 % there is still further room for 

improvement in terms o f efficiency. To improve this further, there are many 

techniques that have been shown in literature to produce a theoretical operating 

PA efficiency of 100 % and more. The best method in improving PA efficiency 

is through waveform based analysis of the current and voltage waveforms. This 

allows for an objective investigation into optimizing efficiency by either
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increasing the RF output power at the fundamental or by reducing the DC power 

requirements. These are class D, class F, inverse class F and class J. There is one 

exception and that is class E, which reactively loads the transistor to allow for 

separate current and voltage generation [49]. All of these modes of operation 

will be discussed in the next section to provide a general summary of the current 

trends in performance.

7.1.1 Class D

Class D is a switch mode of operation that works involving two devices 

connected in parallel through a resonant filter network [3, 50]. The resonant filter 

network allows content at the fundamental frequency of operation through and 

provides an open circuit at the higher harmonics to provide a sinusoidal 

(fundamental only) current swing. Class D amplifiers have been shown to be 

highly efficient with typical values of drain efficiency around 85-90 %. The 

waveforms of a typical class D mode of operation, involve a square voltage 

waveform and a sinusoidal current swing where the device functions as a voltage 

source. However, these designs have been achieved at low frequencies of 

operation around 1 MHz. At higher frequencies, the parasitic reactances [51], 

limit the effectiveness of class D amplifiers, due to power losses in the output 

capacitance. This has been negated by inverting the amplifiers to function in a 

current mode of operation, in other words as a current source, with the topology 

shown in Fig. 7-1(a). This avoids the loss of energy through the capacitor as the 

filter removes any simultaneous current and voltage content, thereby reducing 

losses in the transistor. This has allowed for the design and fabrication of highly 

efficient power amplifiers around a fundamental frequency of 1 GHz using all 

three major device technologies.
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Fig. 7-1 (a) Circuit schematic o f  a current mode class D amplifier, (b) current and voltage 
waveforms o f  an ideal class D amplifier

7.1.2 Class E

Class E is another switch mode of operation that functions around the concept of 

a reactive LC tank that resonates out the fundamental frequency. The process 

begins with the LC network charging when RE current is flowing in conjunction 

with zero RF voltage. When there RF current is in the off cycle, the LC network 

discharges its current (reactive component only) with the voltage now in its on 

state [9]. The voltage waveform is a function of the reactive current component, 

which results in a half-rectified shape. Assuming the resonant network is 

completely reactive there is a loss in output power being delivered to the load but 

no loss in efficiency. This ensures that class E can offer 100% efficiency in 

theory assuming the ideal waveforms can be achieved in practice. Like class D, 

class E is a circuit based topology but has the advantage of being easier to apply 

at higher frequencies of operation, with a large amount of literature available that 

can facilitate high efficiency class E design [52]. This is due to the advantageous 

use of the device and package parasitics such as the output capacitance within 

the design procedure. This does introduce some limitations in the design 

procedure depending on the device technology being used and the expected 

output power level requirements. For example high power devices have large 

output capacitance values that limit the maximum frequency of operation.
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However, with the introduction of GaN device technology, the frequencies of 

operation are being pushed to higher bands of operation [53].

V dc

L o a d  n e tw o rk
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Fig. 7-2 (a) Circuit schematic o f  a class E amplifier, (b) current and voltage waveforms of an
ideal class E amplifier

7.1.3 Class F and  Inverse C lass F ( F 1)

Classes F and F '1 are unlike classes D and E in that they are not switch modes of 

operation. However, they both offer high output power and 100% drain 

efficiency. The main difference lies in the method of achieving optimum 

performance. Class F was originally conceived by Snyder [8], where a thorough 

explanation is given in comparison to class B. He also laid the foundations for 

class F '1 but this was not fully explained until Raab [54]. Class F and F '1 achieve 

high efficiency through manipulating the current and voltage waveforms by 

current conduction angle and load impedance control through the process of 

waveform engineering. These waveform based procedures, improve efficiency in 

two ways by simultaneously reducing the DC requirements and by increasing the 

RF output power. The actual method of efficiency will be explained in terms of 

class F. As mentioned earlier class F is based on class B mode of operation, 

where the current waveform is assumed to be half rectified with no odd 

harmonic components. Assuming peak linear output power, class B operates at 

78.5% drain efficiency. Class F improves this by shaping the voltage waveform 

to be square in shape when operating in compression, whilst being 90° out of 

phase with the current waveform to ensure zero loss. The square voltage 

waveform pulls the current waveform out of compression and increases the
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fundamental voltage component. The voltage waveform is shaped by providing 

open circuit impedances at the odd harmonics and short circuit impedances at the 

even harmonics. This is done by synthesizing open or short circuit impedances. 

To maintain the same current swing as class B the load impedance at the 

fundamental is increased by a factor of 1.27. A simplified circuit and the current 

and voltage waveforms are shown in Fig. 7-3. In the case of inverse class F, the 

shape of the currents and voltages are reversed to a square current waveform and 

a half rectified voltage waveform. Again, this is achieved through bias control 

and load impedance synthesis, with the device biased in class A to ensure 

symmetrical clipping and the half rectified voltage waveform synthesized by 

presenting even harmonic open circuits and odd harmonic short circuits.

Fig. 7-3 (a) Circuit schematic o f  a class F amplifier, (b) current and voltage waveforms o f an
ideal class F amplifier

Class F and inverse class F amplifiers have been successfully made at L-band 

and S-band frequencies [10, 11, 55]. These have been made by designing multi­

harmonic matching networks that provide the high reflects required to produce 

open and short circuit impedances. In practice, due to the increased complexity 

in designing multi-harmonic matching networks and the difficulty in producing 

high reflects at higher frequencies of operation, most realized PAs typically 

incorporate up to three harmonics. This has led to operating efficiencies greater 

than 80% at S-band frequencies typically when utilizing GaN devices.

L o a d  n e tw o rk

A/4 t r a n s m is s io n  line

(a) (b)
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7.1.4 Sum m ary

To summarize the previous discussion, the peak efficiency performance of each 

mode of operation whilst outputting at least 5 W of output power is presented in 

Table 7-1*.

Class o f  

Operation

Pout (dBm) Efficiency (%) Frequency

(GHz)

Device

technology

D [56] 47.8 78 0.9 GaN

E [57] 40 74 2 GaN

F [58] 42.1 85 2 GaN

F'*[59] 38 85 1.2 GaN

Table 7-1 Summary o f  peak efficiency performance achieved in various classes o f operation

The results in Table 7-1 show that class F and class F '1 PA designs have 

achieved the best peak efficiencies. Both of these designs achieve 85% 

efficiency which is 7% better than the next best which is the class D PA. 

However, the class D PA has a greater output power of 47.8dBm (60W) but the 

frequency of operation is the lowest in the table. The class E PA has a reasonable 

efficiency of 74% but this is because of the higher frequency of operation, which 

has higher losses in the matching network. The class F PA was realised with a 

direct connection to the die, through bonding wires. This eases the complexity 

requirements of the matching network due to a reduction of the parasitic 

components and allows for the incorporation of higher harmonics, which in turn 

increases the peak attainable efficiency [54].

Another trend worth noting is the exclusive use of GaN transistors in all of the 

leading high efficiency PA designs. GaN transistors offer a higher power density 

than the more established semiconductor materials such as Si LDMOS and GaAs 

[60]. This in turn produces smaller devices, which are housed in smaller 

packages, which reduces both the device and package parasitic effects. The end 

result is an easing of matching network complexity and thus allowing for the 

realisation of higher efficiency PAs. However, providing access can be obtained

* Table 7-1 is correct at time o f  publication.
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at the Igen plane, waveform engineering procedures can be applied to any device 

technology. This allows for the realisation of high efficiency PA design that is 

not technology dependent. The following work, outlines a waveform based 

engineering procedure that has been applied to a 5W Si LDMOS device. In 

comparison with GaN devices, Si LDMOS devices have a much lower power 

density and comparatively lower frequency performance such as unity gain (F t) 

frequencies in the region of 5-6GHz.However, despite these performance 

shortcomings, Si LDMOS is the current device technology of choice in the 

communications sector due to low cost and high linearity. If high efficiency Si 

LDMOS device based PA structures can be realised, it is more likely such 

designs can be used in industry provided there are means for improved 

linearization techniques such as digital predistortion (DPD) [3] that can cancel 

out the increase in inter-modulation (IMD) products.

7.2 W a v efo rm  E n g in eer in g  o f  Si L D M O S D evices for H igh  
E ffic ien cy  M o d es o f  O p eration

As mentioned earlier, all o f the leading high efficiency PAs have been realized 

using GaN technology. A large amount of high efficiency PAs have been 

realized using Si LDMOS, however these have been achieved at lower 

frequencies of operation in the L-band around 1GHz [10, 61]. These have 

typically achieved efficiencies in the mid to high 70 % region with nominally 

10W output power. Similar high efficiency LDMOS based designs have also 

been realized, but these have typically produced drain efficiencies in the low 60 

% region [61], which is effectively no better than typical class AB/B 

performance. The reasons for this loss in efficiency were put down to the low 

frequency of maximum gain (F t) of Si LDMOS devices and the high device 

output capacitance Cds, which limits the ability to produce ideal impedances 

required for high efficiency modes of operation. However, no proof has been 

given on whether these arguments are valid. This work investigates, the 

feasibility of producing high efficiency modes of operation when using LDMOS 

devices at S-band frequencies. The procedure first starts by investigating the 

behaviour at L-band frequencies to ascertain a reference of the device’s 

performance. This is then replicated at the higher frequency of operation and the
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differences compared. The mode of operation being investigated in this case is 

class F, in particular focusing on the methodology outlined in [16].

The design methodology outlined in reference [16], involves two stages of 

waveform engineering. The first step focuses on manipulating the current 

waveform. This is done by adjusting the gate bias, which in turn adjusts the 

conduction angle o f the output current waveform. As outlined by the original 

class F paper written by Snyder [8], class F is based on a half rectified current 

waveform, which consists of even only harmonics. In practice, it is difficult to 

optimize the gate bias to produce a current null in all of the higher order odd 

harmonics, so this step is tailored towards producing a null in the third harmonic 

current (the most significant undesired current component). Once the current 

waveform has been ascertained, the next step is to focus on the voltage 

waveform. In this case the voltage waveform is made to be square in shape. The 

work in [16] was conducted on a small device in a ‘clean’ on wafer environment, 

where the optimum impedances were found to be open and short circuits. 

However, as demonstrated in Chapter 5, the optimum impedance of larger 

devices has to be embedded out to the measurement plane where the 

measurements/ matching network design are done. This can confidently be done 

when the package and device networks are known and satisfactorily verified.

This work is focused on the 5W Si LDMOS device supplied by Freescale 

Semiconductor Inc, which was de-embedded successfully in Chapter 5. 

Waveform engineering is demonstrated at both 0.9GHz and 2.1GHz using the 

high power active harmonic load pull measurement system developed at Cardiff 

University [17]. To begin with an s-parameter measurement was conducted to 

investigate the frequency behaviour of the device. The device was biased at 

24mA and a frequency sweep from 500 MHz to 11 GHz was done. From this the 

MAG was extracted and the result is shown in Fig. 7-4, where the MAG region 

starts from approximately 2GHz and is shown to cross OdB close to 10GHz. 

However, this is due to the limited accuracy of the measurement system at low 

power levels. For this reason the MAG region is extrapolated as shown by the
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dotted line and crosses OdB at around 8GHz. With a fundamental frequency of 

2.1GHz there should be enough scope to engineer up to three harmonics. This 

bandwidth limit has implications on the maximum achievable efficiency. As 

outlined in [47], a three harmonic class F design can have a maximum efficiency 

of 90.5%. This and the knee voltage will have to be taken into consideration 

when calculating the expected peak class F efficiency of the device based on 

load line analysis outlined in [1] and shown in (7-1).

= 0.905* 100 = ° ,5(F |~ K*)/ ' *0.905* 100% = 80.9% (7-1)
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Fig. 7-4 (a) MSG/MAG o f MB3 device over a large frequency range (b) DCIV o f the MB3
device

Based on the DCIV characteristic shown in Fig. 7-4(b) and a fundamental 

voltage expansion of 1.154 (based on a limited bandwidth system of three 

harmonics [47]) compared to class B [47], the expected class F efficiency is
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approximately 81 % (assuming a class B current waveform). This now provides a 

benchmark in the expected performance of the device at a plane that is frequency 

invariant, i.e. the DCIV. With this in mind the next step is to utilize the prior 

knowledge in de-embedding obtained in Chapter 5 and apply it to a single device 

design and to confirm class F mode of operation.

7.2.1 D e-em bedding to the C u rre n t G enera to r Plane

As mentioned earlier a key requirement for waveform engineering is for 

procedures to be applied at the current generator plane. Only at this plane is there 

a direct correlation of the waveforms to the DCIV plane and the performance 

expected using load line theory [3]. An outline of the package and device de­

embedding network is shown in Fig. 7-5. The package and device model, 

consists of a manifold/bond pad capacitance, bonding wire inductance combined 

with a charge conservative nonlinear model for input and output charges. For 

more details of the de-embedding network, refer to Chapter 5. The de­

embedding applied in this case was at the drain port only.

"Measurement7package^plane 

Extrinsic plane

Intrinsic plane 

l-gen plane

Gate | 
Extrinsics

Gate Package 
& Manifold

Drain
Extrinsics

Drain Package 
& Manifold

Source
Extrinsics

Fig. 7-5 Block diagram o f a FET and the various reference planes accessible for waveform
engineering
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The parasitic model allowed for the calculation of output impedances required at 

the measurement plane to present the desired real, open or short circuit 

impedances at the current generator plane. The required open and short circuit 

impedances are shown in Table 7-2. Thus, allowing waveform engineering of 

class F behavior at the current generator plane.

Frequency 2nd Short 2nd Open 3nd Short 3rd Open

0.9GHz 0-10. lj£2 0+48.7jO 0-13.8jQ 0+31.5jQ

2.1GHz 0-20. lj f i 0+10.1jQ 0-23jQ 0+1.2jO

Table 7-2 - Summary o f  the impedances required at the measurement plane to produce short and 
open circuit terminations at the current generator plane.

7.2.2 Class F Investigation

As mentioned earlier the class F investigation is focused around the procedure 

developed in [19], with the first step being a gate sweep. The second step 

involves harmonically optimizing the voltage waveform and a third step 

involving a fundamental real impedance sweep is also conducted to identify the 

best compromise for output power and efficiency.

7.2.2.1 Gate sweeps

A gate sweep of the device was conducted by presenting a real impedance of 

60Q at the fundamental and short circuits at the second and third harmonics, all 

at the Igen plane. The input power was set to ldB output compression at all bias 

settings in the sweep. This was set to emulate the input drive conditions required 

for typical class F operation. The harmonic current components were plotted (up 

to the 5 harmonic) and the data for the gate voltage sweep at 900 MHz is shown 

in Fig. 7-6. The gate voltage sweep shows a clear third harmonic minimum at 

around 2.37V, which is slightly above pinch off. The fifth harmonic minimum is 

at 3 V. Since the harmonic minima are over 0.6V apart the third harmonic null is 

chosen as the preferred bias point, due to its more significant contribution in 

class F efficiency degradation. The more familiar characteristics such as output 

power, gain and drain efficiency are plotted in Fig. 7-7 with the peak in drain 

efficiency occurring in the same region as the third harmonic minimum.
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Fig. 7-6 -  De-embedded drain current variation with gate voltage sweep at a fundamental 
frequency o f  0.9 GHz with the second and third harmonics set to short
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Fig. 7-7 -  Output power, gain and drain efficiency variation with gate voltage sweep at a 
fundamental frequency o f  0.9GHz with the second and third harmonics set to short circuits

The same procedure was performed at 2.1 GHz with the results shown in Fig. 

7-8. At 2.1GHz the third harmonic minimum does not occur at the same gate 

voltage as 900 MHz. As well as that the third harmonic current minimum is no 

longer as clearly defined as it was at 0.9GHz. In this case a minimum third 

harmonic current is observed at a gate voltage of 2.25 V. The reason for this 

could be due to the increased effects of feedback occurring within the device or 

package. Now that the optimum gate bias values are located, the next step in the 

process can be applied.
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Fig. 7-8 -  De-embedded drain current variation with gate voltage sweep at a fundamental 
frequency o f  2.1 GHz with the second and third harmonics set to short

12.2.2 Harmonic Optimization

The harmonic terminations applied at the current generator plane were 

determined using the device and package parasitic network derived in Chapter 5. 

However, due to uncertainties in determining the parasitic components, second 

and third harmonic load impedance phase sweeps were conducted at the two 

frequencies of operation, with a constant reflection coefficient (T) magnitude set 

to one, which is possible due to the multi-harmonic active load pull based 

measurement system. To begin with a second harmonic phase sweep was done 

with the third harmonic passively terminated to 50fl Once the optimum was 

determined for the second harmonic a similar phase sweep was done around the 

third harmonic with the second harmonic now locked to its optimized value. This 

was first done at 0.9 GHz and then repeated at 2.1 GHz, with the results at the 

measurement plane shown in Fig. 7-9(a) and (b).

The results at 0.9 GHz show a low sensitivity of the second harmonic, which is 

due to the large device output capacitance of the device. This effectively already 

provides the low impedance termination required for producing a short circuit to 

the Igen plane. The open circuit condition at 0.9 GHz, shows a much higher level 

of sensitivity, which is again due to the large device output capacitance, which 

has a very high Q-factor and therefore requires a precise termination for it to be 

resonated out.
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Fig. 7-9 -  (a) Phase sweeps at the measurement plane o f  the second and third harmonic 
impedances at a fundamental frequency o f  0.9GHz, (b) Phase sweeps at the measurement plane 

o f the second and third harmonic impedances at a fundamental frequency o f  2.1GHz

At 2.1 GHz the second harmonic becomes even less sensitive to phase, which is 

due to the increasing effect of the output capacitance. In turn the performance 

sensitivity of the open circuit condition is much greater, this is shown by the 

increased sharpness of the efficiency response at 2.1 GHz than seen at 0.9 GHz. 

This increased sensitivity in producing an open circuit is one possible reason for 

the difficulty in achieving the high efficiencies at S-band frequencies. A
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summary o f the simulated and measured optimum impedances are shown in 

Table 7-3.

Frequency 2nd Short 

(simulated)

2nd Short 

(measured)

3nd Open 

(simulated)

3rd Open 

(measured)

0.9GHz O-lO.ljO 0-14.4jfi 0+31.5jO 0+28jQ

2.1GHz 0-20. ljQ 0-24jQ 0+1.2jO 0+3.5jQ

Table 7-3 - Summary o f  the simulated and measured impedances required at the measurement 
plane to produce short and open circuit terminations at the current generator plane.

The optimum impedances for drain efficiency found through measurement were 

in good agreement with the simulated short and open circuits. The small 

differences in the short circuit can be attributed to errors in the series inductances 

and the affect of the higher harmonic impedances [47]. The discrepancies in the 

open circuit impedance are due to the difference in the drain voltage sensitive 

large signal capacitance [18] and the simulated static capacitor. This produces a 

slightly dissimilar ‘average’ output capacitance to the small signal derived value.

7.2.2.3 Fundam ental Im pedance Sweep

Now that the design has been optimized in terms of its harmonic current and 

voltage composition, the next step was to enhance the performance of the device 

at the fundamental. This requires varying the load presented at the fundamental 

frequency of operation. The desired real impedance was achieved at the current 

generator plane by accounting for the package network. This real intrinsic load 

was then swept over a range o f values to determine the optimum fundamental 

impedance in terms o f power added efficiency. Typically, higher drain 

efficiencies are possible at high fundamental load impedances as the effect of the 

knee is minimized. However, in this case the power added efficiency (PAE) is 

used to ensure that the amplifier has sufficient gain. The results are shown in Fig. 

7-10.

The results show that there is an expected decrease in power with load increase 

but the PAE only noticeably increases up to a fundamental load impedance of 

110 Q For this reason a fundamental load of 110 Q, is chosen as this also
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provides 36dBm (4W) of output power. This impedance of 110 fl at the current 

generator plane was found to be 54.2+52.6j Q at the measurement plane.

The same process was applied at 2.1GHz, but it was quickly realized that the 

performance was not the same as at 0.9 GHz. This was due to the increased 

sensitivity and complexity of the output capacitance de-embedding, which 

becomes more important at higher frequencies. The device output capacitance is 

a non-linear function of drain voltage [18], hence is not fully accounted for when 

using a simple linear approximation. To improve the calculation of the required 

measurement plane impedance, the ‘average’ dynamic capacitance was 

determined in large signal conditions at the fundamental frequency using the 

charge conservative model determined in Chapter 5. This simulation involves 

inserting the charge model into a non linear simulation and exciting the model 

with a square voltage waveform, from here the capacitance can be extracted at 

the fundamental frequency using classical s-parameter based techniques. The 

improved measured 2.1GHz results, now achieved, when sweeping real 

fundamental load impedance at the current generator plane are shown in Fig. 

7-10.
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Fig. 7-10 -  (a) Fundamental real only load sweep at the current generator plane measured at 
0.9GHz, (b) Fundamental real only load sweep at the current generator plane measured at

2.1GHz

The results in Fig. 7-10 now outline the same performance variation at both 

frequencies but with a lower gain. This gain reduction was expected due to the 

relatively low f jo f  the device. The PAE at a fundamental impedance of 110 12 at 

the current generator plane was 75 %. This was three percent lower than 

expected and also produced less output power than at 0.9 GHz.

To further optimize the results obtained in Fig. 7-10, a high-density fundamental 

load pull sweep was conducted around the peak PAE area of 110 12. The 

resulting optimum impedance for PAE was found to be 13.9+30. lj Q at the 

measurement plane. This corresponds to a complex impedance of 99.7+25.9j 12 

at the current generator plane. The real component is close to the 110 Q 

fundamental impedance used at 0.9 GHz. It is believed that the additional 

reactive component is required to accommodate the complex impedances being 

presented at the higher harmonics. This occurs due to the 50 12 system 

impedance at the higher harmonics being transformed to complex impedances at 

the current generator plane. For indicative purposes, the second and fourth 

harmonic impedances were inserted into the equation outlined by Rhodes in [47], 

which predicted an optimum fundamental impedance of 100 + 10.5j 12. This 

correctly indicates that the affect of the higher harmonics have impacted the 

optimum fundamental impedance for efficiency and provides the designer with a
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target impedance that is closer to the optimum impedance for class F. This new 

impedance was then used to measure the performance of the device in class F.

7.2.3 Class F Results

With all o f the information obtained by the investigation outlined previously, the 

device was put into the conditions at the measurement plane as outlined in Table 

7-4. A summary of the results at both frequencies at ldB power compression is 

shown in Table 7-5 and the large signal response at 0.9 GHz and 2.1 GHz is 

shown in Fig. 7-11. The results at ldB power compression show similar 

performance at both frequencies of operation, outlining the relevance of 

performing the waveform based investigation outlined earlier. It is also worth 

noting that the efficiencies measured at 2.1 GHz are the highest achieved 

efficiencies when using Si LDMOS devices* and the work has been published in 

[23].

Frequency V g(V ) Z(f0) Z(2f0) Z(3f0)

0.9GHz 2.37 54.2 + 52.6jfi 0-14.4JQ 0+2 8jQ

2.1GHz 2.25 13.9 + 30.1jQ 0-24jQ 0+3.5j £2

Table 7-4 -Summary o f  device and impedance settings for optimized class F performance at 0.9
GHz and 2.1 GHz

Frequency Pout (dBm) Gain(dB) PAE (%) Drain Eff (%)

0.9GHz 36 24.1 77.4 77.6

2.1GHz 35.4 19.1 74.8 75.7

Table 7-5 - Summary o f  the class F performance at 0.9GHz and 2.1GHz at ldB compression

The results at 0.9 GHz show peak efficiency at 4dB compression with a peak 

power added efficiency of 78%, whilst outputting approximately 4W of output 

power at greater than 20dB power gain. These results are in agreement with 

previously published work on Si LDMOS devices [10, 61]. It is important to 

note that due to the gate bias being close to the threshold voltage the gain profile 

exhibits gain expansion at lower power levels. What is also worth noting is that 

the device provides a region of flat high efficiency when in compression.

* At time o f  writing
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Fig. 7-11 -  (a) Large signal performance o f  class F operation at 0.9 GHz, (b) Large signal 
performance o f class F operation at 2.1 GHz

At 2.1 GHz, the device exhibits much of the same performance trends as at 0.9 

GHz, but due to the gain roll off characteristics inherent in the device, the gain 

drops and subsequently affects the power added efficiency. The device achieves 

peak power added efficiency of 77.1 % PAE at 2 dB compression with 35.9 dBm 

of power being delivered to the load. The main difference is that the flat peak 

efficiency region at 0.9 GHz was not replicated at 2.1 GHz. This is due to the 

increased sensitivity of the output drain capacitor to the voltage swing at the 

higher third harmonic frequency of 6.3 GHz. This makes it harder to produce the 

required ideal open circuit for optimum class F operation with drive as the 

‘average’ capacitance is increasing with the voltage swing extending into the 

knee region and spending more time in the low voltage region where the drain 

capacitance is at its highest [30]. For confirmation of class F operation, the 

current and voltage waveforms at the Igen plane at 1 dB power compression are 

shown in Fig. 7-12.
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Fig. 7-12 -  Measured voltage and current waveforms at 1 dB compression at the current 
generator plane at 0.9 GHz, (b) Measured voltage and current waveforms at 1 dB compression at

the current generator plane at 2.1 GHz

In both cases the current and voltage waveforms at the Igen plane shown in Fig. 

7-12 are confirming class F operation. In both cases the voltage waveform is 

square in shape. At 0.9 GHz the voltage waveform has a slightly large third 

harmonic component than at 2.1 GHz. Again, in both cases the current waveform 

is half rectified, there are some extra harmonic components in both cases due to 

a small amount of compression. In both cases the waveforms are more ‘well- 

defined’ at 0.9 GHz than at 2.1 GHz but this is due to the limited bandwidth of 

the measurement system, which accounts for twelve harmonics at 0.9 GHz and 

only five harmonics at 2.1 GHz.

7.2.4 Conclusions

Through the use of de-embedding and active harmonic load pull, the 

demonstration of a Si LDMOS device in class F operation has been shown at 

both 0.9 GHz and 2.1 GHz. This has led to achievement of record levels of 

efficiency at S-band frequencies. This was made possible by de-embedding to
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the current generator plane, which allowed for the application of waveform 

engineering at a plane that is frequency invariant. The current and voltage 

waveforms were shaped to optimize class F behaviour at both intended 

frequencies of operation. Whilst the performance was correctly replicated at both 

frequencies of operation, it should be noted that the increased sensitivity of the 

device output capacitance, coupled with the non-linear characteristics raises the 

difficulty in designing a class F amplifier at 2.1 GHz. This was indicated by the 

drive dependent behaviour of the device at 2.1 GHz, a feature not seen at 0.9 

GHz. This and the difficulty in synthesizing highly reflective impedances makes 

Si LDMOS based high frequency class F PA designs difficult to achieve in 

practice.

7.3 Comparing Class F and Class F'1 using Time-Domain 
Waveforms

Both class F and inverse class F offer the same characteristics of high efficiency 

and high power and are of great recent interest in the field of PA design. 

However, whilst there have been numerous publications using both 

implementations [10-11, 16, 30, 61], there has been no conclusive evidence of 

why a certain mode of operation is chosen over the other. In addition to that, 

there have been many variations in implementation of both modes of operation 

and a lack of measured waveforms leave uncertainty as to whether optimum 

performance has been achieved. This work focuses on the same 5W Si LDMOS 

device used earlier and emulates the conditions required for class F and inverse 

class F for a more realistic comparison of their performance.

In order to compare class F and inverse class F modes this work presents the 

emulation of the design conditions optimised using waveform engineering at the 

Igen plane. This is done using the active harmonic load-pull measurement system 

developed at Cardiff University [17] based at a fundamental frequency of 0.9 

GHz. In this experiment the measurement system has been used to explore 

identical transistor parts in optimal bias and load conditions for the class F and 

inverse class F modes, but with the output matching network emulated up to the 

third harmonic. This allows for an excellent reproducibility of results and
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removes any implementation uncertainties, making it an extremely fair method 

of comparing a particular device’s performance in a given mode of operation. 

Before moving onto the results, a brief theoretical overview of the effect of 

limited bandwidth in both modes of operation is given.

7.3.1 The Effect o f Limited Bandwidth

In order to understand the results, it is useful to quantify the peak attainable 

efficiencies o f class F and inverse class F operation using this device. In both 

cases three harmonic active load pull was applied, which limits the peak 

performance of the device [3, 54]. The value of the knee voltage is the same in 

both cases.

In a class F configuration the maximum efficiency possible using three 

harmonics is 90.6% [54]. This value assumes that the current waveform is 

shaped by the device’s conduction angle (controlled by the dc gate bias point) 

and therefore contains an infinite number of even harmonics, dependant on the 

device’s fj. This device has an fx in the region of 7.5 GHz, which allows the 

current waveform to consist of eight harmonics describing up to 98.9% of the 

total performance. Assuming a knee voltage of 2.5V and dc bias voltage of 28V 

the peak attainable efficiency for class F is shown in (7-2).

( y  - V  )
rjF = 1 0 0 * ^ -5£-----— * 0.906 * 0.989 = 81.6% (7-2)

' D C

In a three harmonic implementation of an inverse class F configuration, the 

voltage waveform can only be shaped by the second harmonic and fundamental 

components. The current waveform in this case is assumed to be squared by 

hitting the current device boundaries in a symmetrical fashion, thus generating 

only odd harmonic components. In this case a similar current harmonic limit is 

defined in terms of the device fr and is assumed to contain seven harmonics 

describing 97.5% of the total performance. This results in the peak attainable 

efficiency shown in (7-3).
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(V - V  )
„  , = 100 *  *1 * 0.926 * 0.975 = 82.2% (7-3)'F V

v  D C

Based on these ideal uncompressed waveform based calculations it can be said 

that the inverse class F mode of operation is 0.6% more efficient than class F. 

Whilst this is not a major difference, this coupled with the comparative ease of 

implementing an open circuit termination at the second harmonic frequency (as 

opposed to the third harmonic in class F), make inverse class F appear a more 

attractive mode of operation.

7.3.2 Results

Using the waveform based class F methodology outlined earlier and a similar 

inverse class F procedure [56], the device conditions for optimum operation were 

determined. These are outlined in Table 7-6. As discussed earlier the bias point 

for class F is close to class B, slightly above the threshold voltage. For inverse 

class F, the gate bias is much higher and closer to class A, this is done to provide 

symmetrical clipping of the current waveform to ensure a square shaped output. 

The fundamental impedance of inverse class F is also different to class F, which 

is due to the larger voltage swing at the fundamental.

Mode o f  operation V g(V ) Z(f0) Z(2f0) Z(3f0)

Class F 2.37 54.2 + 52.6jQ 0 -  14.4jn 0 + 28jQ

Class F*1 3.5 55.4 + 56.7jQ 0+71.8jQ 0 -  14.1jfi

Table 7-6 - Summary o f  device settings for class F and inverse class F performance

7.3.2.1 Class F

The results for class F are shown in Fig. 7-13 (a), which are the same as shown 

earlier in this chapter. The de-embedded waveforms at ldB power compression 

are shown in Fig. 7-13 (b), which correctly indicate that class F behaviour has 

been achieved.
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Fig. 7-13 -  (a) Class F power sweep results (b) Measured class F output waveforms at the Igen 
plane when at 1 dB power compression

132 .2  Inverse Class F

The results for inverse class F are shown in Fig. 7-14 (a), which show a peak 

drain efficiency of 74%. The de-embedded waveforms at ldB power 

compression are shown in Fig. 7-14 (b), which show a square current waveform 

and a half rectified voltage waveform, correctly indicating inverse class F 

behaviour.
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Fig. 7-14 (a) Inverse class F power sweep results (b) Measured inverse class F output
waveforms at the Igen plane when at 1 dB power compression

7.3.2.3 Comparison of Results

The most striking result is that class F has significantly higher peak drain 

efficiency (78.8%) compared with inverse class F (74.2%). Drain efficiency is 

used in these comparisons since class F has inherently lower linear gain due to 

the reduced conduction angle bias point and therefore PAE will be skewed 

towards inverse class F. The gain profile of the class F power sweep is flat over a 

large dynamic range. The inverse class F gain profile starts to compress much 

earlier due to the class A bias point. However, in both cases the gain profiles 

could be linearised using modem digital predistortion methods. In addition, both 

modes of operation produce a region of high efficiency over a large dynamic 

range. This region of high efficiency is a useful observation for modulation 

schemes without constant envelopes such as GSM-EDGE and CDMA. The 

plateau in drain efficiency simply occurs as the output waveforms are 

compressed against the device characteristics. However, further input drive will 

yield little extra power (i.e. the gain is simply dropping further into compression) 

and this plateau region will disappear if power added efficiency is considered.

The efficiency of class F is very close to the calculations shown earlier with only 

a 3% drop in peak efficiency. However, for inverse class F there is an 8% 

difference between the theoretical maximum and the measured value. Further 

analysis of the waveforms has shown that this is due to the voltage swing 

approaching the voltage breakdown of the device, which generates current in the
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high voltage region and consequently lowering the drain efficiency. This is 

shown in Fig. 7-15, where the current starts to increase in the off-state region at 

higher input drive levels. Due to the relatively large output drain capacitance the 

effect of the higher harmonic impedances is small enough to not be considered in 

this study.

It can also be seen that inverse class F generates higher peak output powers. This 

is because the inverse class F mode extends the output voltage swing, which is 

possible due to the lack of a hard upper voltage boundary until catastrophic 

breakdown is reached. At the 28V drain bias used in this experiment the 

breakdown limit for these devices has not been fully reached. In class F the 

extension is seen in the current waveform. However, the current waveform is not 

able to extend beyond the hard I m a x  boundary that limits the current at about 

600mA in these devices.
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Fig. 7-15 - Measured inverse class F output current waveforms at the I^n with increasing drive

7.3.3 Inverse C lass F  P erform ance O ptim isation

This work has compared the performance of a Si LDMOS device, biased at the 

same drain bias point, operating in identically bandwidth limited class F and 

inverse class F circuit conditions. It was found that higher peak drain efficiency 

was achieved in class F, although inverse class F generated more output power 

and had higher gain. Both modes were shown to maintain good efficiency into 

power saturation over a good dynamic range of output powers. The lower peak 

drain efficiency in inverse class F is due to the voltage breakdown effects of the 

device. Further measurements were done at a lower drain bias of 18V to remove

Current increase at high input drive levels
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the possibility of any voltage breakdown. The waveforms are shown in Fig.

7-16, where the current waveform behaving much flatter in the off region. At 

this drain bias setting the device achieved a peak drain efficiency of 79%, which 

is slightly higher than the efficiency obtained in class F as well as being much 

closer to what theory dictates.
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Fig. 7-16 Measured inverse class F output waveforms at the Igen plane at ldB power
compression with VD = 18V

7.4 C onclusions

This chapter has highlighted how access to the waveforms at the Igen plane 

allows for the realisation of high efficiency modes of operation, irrespective of 

device technology and frequency. In this chapter, it was demonstrated that class 

F performance was achieved using a Si LDMOS device at 0.9 GHz and 2.1 GHz 

using multi-harmonic active load pull system developed at Cardiff University. 

The latter, producing a world record efficiency of 78% when using Si LDMOS 

devices. This was made possible by obtaining access to the Igen plane, which 

allowed for comparison at a plane that is invariant with frequency. This provided 

a firm base for applying known waveform based procedures that could be 

applied with confidence. The resulting systematic investigation, provided near 

identical performance at both frequencies of operation and some valuable 

evidence as to why it is difficult to produce highly efficient modes of operation 

with Si LDMOS devices. Namely, the difficulty in accounting for a large 

dynamically varying output capacitance. This makes it difficult to sustain class F 

behaviour at various drive levels, due to a shift in the impedance requirements 

for presenting an open circuit at the Igen plane.
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The second half o f this chapter, looked into comparing two waveform based high 

efficiency modes o f operation, class F and inverse class F. This investigation was 

conducted on a Si LDMOS device at 0.9 GHz and in a limited bandwidth system 

of three harmonics. The resulting theoretical analysis, provided evidence that 

inverse class F was slightly more efficient than class F, however this was 

initially not found to be the case when put into practice. After further 

investigations, it was found that the device was moving into current breakdown 

due to the high voltage swing inherent in inverse class F. As a result the device 

was dissipating energy at high voltages and causing a reduction in drain 

efficiency. The drain voltage was then reduced from the device data sheet value 

of 28V to 18V and the drain efficiency had recovered to beyond that achieved by 

class F. This highlights the importance of considering the device’s features when 

implementing high efficiency modes of operation and the need for obtaining 

access at the Igen plane for identifying such issues that would be very difficult to 

identify otherwise.
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8 Waveform Applications -  Waveform Based 
Verification of a Charge Conservative Model

The previous chapter outlined how access to the Igen plane can allow for 

improvements in high efficiency PA design. Now this chapter utilises the ability 

to de-embed time-domain based data to various reference planes within the 

device for passive and active model verification in the time domain and thus 

assessing the model’s ability to conduct waveform engineering for high 

efficiency PA design. Such a comparison has not been well covered in the 

literature due to the limited availability of high power time domain data and 

limited access to the internal workings of a model, making this a topic of high 

relevance for both the modelling engineer and the PA designer.

8.1 In tro d u ctio n

The use of CAD based non-linear models is an essential part of the microwave 

power amplifier (PA) design process. Through the use of models the design 

cycle time could be drastically reduced, significantly cutting costs and resources. 

However, this saving in time-to-market is greatly dependent on the flexibility 

and accuracy o f the model [18].

Device models can be separated into two main categories, the first being 

structural models, based on the physical properties of the materials and the 

layout. Whilst these models offer a high level of flexibility and accuracy, the 

long simulation time and difficulties in drawing the physical topology make 

them highly difficult to use. This is especially applicable in the high power PA 

domain where the devices are physically large and the fundamental frequency of 

operation is always increasing.

In contrast behavioral models are faster and less draining on computing 

resources. Behavioral models use polynomial equations that are fitted to a certain 

set o f device measurements. They are often split into two groups, either physical 

models or empirical models [62]. Physical models describe the individual
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passive and active components that exist within a typical equivalent circuit 

description allowing for an account of the relationship between the currents and 

voltages. Empirical models treat the device as a “black box” and accounts for the 

relation between the input and output content.

The model being tested in this case is a physical behavioral model based on an 

energy and charge conservative approach. This ensures that the model functions 

within a stable physical environment allowing for increased confidence in the 

reliability o f the model. The intrinsic non-linear model called the FET2 model is 

based on established passive and active modeling procedures as outlined in [18, 

26, 36-37]. The complete device architecture containing the non-linear electro­

thermal charge conservative intrinsic device model is shown in Fig. 8-1. The 

FET2 model has been enhanced to allow for improved extrapolation of the drain 

and gate charges outside o f the original measured region using artificial neural 

networks (ANN) to model the reactive current sources. The real current source is 

modeled using a function proposed by Fager et. al [64], which has been shown to 

improve prediction o f the distortion products and can be adjusted to account for 

current breakdown properties. The extrinsic network and package consists of s- 

parameter measurements and electro-magnetic simulations (EM) which were 

explained in more detail in Chapter 5 but will be revisited briefly again within a 

modeling context.

Gate Manifold/ 
Bond-pad Intrinsic Model Drain Manifold 

Bond-pad

Gate 
Extrinsic 
network

Dram 
Extrinsic 
networkSource

Extrinsic
network

Extrinsic Shel Thermal
sub-network

Fig. 8-1 -  Block representation o f  the transistor model architecture
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The nonlinear electro-thermal FET2 model has been shown to accurately predict 

traditional large-signal power behavior of Si LDMOS devices at 2.1GHz [37]. 

However, this paper focuses on providing more detailed verification of the FET2 

model using time-domain waveforms. Time-domain current and voltage 

waveforms allow for a more intuitive look into how the device hence model 

works [24]. It allows for a means o f determining how well the model is 

predicting the power performance at the fundamental and the higher harmonics. 

One extension o f this is in the field of high efficiency PA design, where 

waveform engineering o f the higher harmonic currents and voltages has been 

utilized to produce highly efficient modes of operation that are device and 

frequency independent [3, 65-66]. These modes allow for an assessment of the 

model’s sensitivity to bias, input and output voltage stimuli at planes that 

frequency dependent and independent. Thus, allowing for a means of assessing 

the effectiveness o f the model for different modes of operation. This chapter first 

focuses on providing verification of the device model through established 

techniques and then moves onto comparing measurements and model voltages 

and currents in fundamental and harmonically enhanced modes of operation.

8.2 T h e  B en efits  o f  T im e  D o m a in  M od el V a lid a tion

To enable confidence in the use of the model it is vital to have the model 

validated according to the needs of the user. In this case the non-linear device 

model is to be used for high power PA design and must show sensitivity to the 

higher harmonic impedances and the thermal measurement environment. 

Typically, non-linear models are validated using continuous wave (CW) and 2- 

tone measurements within a load-pull/source-pull setup. The measurements 

collected consist o f scalar power values and vector impedances. This allows for 

an investigation into the performance of the device and model in terms of output 

power, drain efficiency, gain, harmonic distortion (CW) and inter-modulation (2- 

tone) as well as the sensitivity o f the device and model performance with respect 

to the fundamental load/source impedance. Whilst this has been the established 

technique for model validation there can still be an element o f doubt as to how 

the model is predicting these results. This is because of the unknown
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composition o f the current and voltage content. When measuring using a vector 

network analyzer and scalar power meter it is not possible to determine the 

current and voltage content in both magnitude and phase. This is because the 

measured power being delivered to the load consists of just the real component 

as pointed out in (8-1). To do this, requires the use of a non-linear vector 

network analyzer (NVNA).

Z = 4  (8-1)
I

PM = y e a l { v i * )  (8-2)

NVNA based systems allow for time-domain capture of the current and voltage 

waveforms, which contains all o f the magnitude as well as phase information 

over a large frequency bandwidth spanning multiple harmonics. This allows for 

an improved insight for device characterization and power amplifier design [3, 

24]. From the modeling perspective, this enables an in depth investigation of the 

high frequency time-domain properties of the charge conservative model. Thus, 

providing a measured dynamic environment where the model’s real and reactive 

current generation capabilities can be tested and investigated to gain further 

insight into the accuracy o f the predicted device behavior [65].

8.3 M ea su rem en t a n d  M o d e l U n certa in ties

Before an accurate comparison o f the measurement and model waveforms is 

conducted it is important to assess the possible sources of error present in both 

the measurements and the model. In the case of measurements the main source 

of error is determined by the accuracy of the equipment being used for data 

capture. In this case the NVNA based measurement system developed by Cardiff 

University [66] relies on data captured using the Tektronix sampling 

oscilloscope which has an absolute accuracy o f approximately ±0.02dBV [67]. 

Assuming a IV forward travelling wave, this equates to an error o f magnitude 

±0.0 IV or ±0.01Vmeas. The measured voltage and the associated error is given 

by (8-3), which is determined by the individual travelling waves.
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Vt =(a, + b l \Jz~0 (8-3)

M  = (|a. |± K I  + h l ± K lX /z 7  (8-4)

1̂ . I = (d«. I + IM)± ()a „ I + |A6 |)X/z7 (8-5)

Assuming that the ‘a ’ and ‘b ’ travelling waves are of a similar magnitude and Zo 

is exactly 50ft the total error in the measured voltage will be ± 2%. Likewise, the 

same error margin o f ± 2% is determined for the current. Using this error in the 

voltage and current components the port power is calculated using (8-2). The 

total error in the power is shown in (8-7).

\F\ = ^ re a l (V I* )± 2 .% %

(8-6)

(8-7)

The total error in the power is determined to be 2.8%, in terms of dB this equates 

to ±0.13dB which is in line with the accuracy of commercially available power 

meters. Thus, providing significant confidence in the system’s ability to 

accurately measure waveforms.

The second most influential source o f error is in the description of the 

measurement conditions. In this case the measurement conditions are outlined by 

the electrical and thermal environment of the test setup. If these conditions are 

not accurately transferred into the simulation within the model, the model could 

produce results that could be significantly different in both output power and 

waveform content.

The third most significant source o f uncertainty is in the accuracy of the model. 

The model’s physical parameters are measured to sub mm accuracy and the 

circuit parameters are first fitted and then validated using small and large-signal
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based measurement data. This places a significant requirement on the original 

measured data to be both accurate and repeatable.

8.4  M o d el V a lid a tio n  R esu lts

The device used in this investigation is a 4.8mm 7th generation Si LDMOS 

device provided by Freescale Semiconductor Inc. and measured within an H- 

block fixture [18]. The time-domain measurements were conducted at 2.1 GHz 

in CW conditions in various classes o f operation such as class AB and class F 

using the high power multi-harmonic active load-pull system developed at 

Cardiff University [17]. The measurements were collected at the input and 

output terminals o f the transistor.

The FET2 model was compiled through a segmented approach consisting of the 

package and manifold, device extrinsic components and the intrinsic device 

model as shown in Fig. 8-1. The first stage was to simulate the package, which 

consisted of input and output bonding wires. These were simulated using Ansoft 

HFSS™, a finite-element based electromagnetic simulator. The simulation was 

set to model the features o f the individual bonding wires as well as the mutual 

inductance between the input and output bonding wires [28] over a large 

frequency range. The device manifold was simulated using Sonnet’s EM™ and 

was also simulated over a large frequency range.

The next stage involved determining the extrinsic components of the device, 

which was done using cold-FET measurements [19]. The extrinsic network used 

to fit the cold-FET measurements is described in [26]. After this, pulsed I-Vs and 

S-parameters were taken to extract the real and reactive current sources, which 

were then modelled as described in [37]. The resultant transistor model is 

inclusive o f all input, output and feedback components.

For an accurate comparison o f the results it is important to maintain the same 

electrical and thermal conditions in the simulator as was measured on the test 

setup. This was done by ensuring that the model was operating at the same
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quiescent current (IDq) and drain voltage as the measured device. The source and 

load higher harmonic impedances up to the 5th harmonic were inserted into the 

model schematic to maintain the same RF impedance environment [45]. The 

thermal conditions were emulated by adjusting the thermal resistance (Rth) until 

there was an agreement between the measured and modeled DC-I Vs. Since this 

investigation was based on CW measurements the thermal capacitance (Cth) was 

set to zero.

8.4.1 Results com parison at the transistor outptit term inals

The FET model was inserted into the measurement conditions outlined earlier 

and then simulated using Agilent ADS™. Initial comparisons were done with the 

device biased in class AB (Idq = 5mA/mm) in terms of load pull contours at ldB 

compression as shown in Fig. 8-2. This was done to establish confidence in the 

use of both the model and the measurements. At ldB compression the 

impedance for maximum output power is shown to differ by a small amount with 

the measured output power 36.5dBm and the model output power 36.7dBm, 

therefore showing a high level o f agreement between measurement and model.

The input and output waveforms both measured and modelled at the impedance 

for maximum output power are shown in Fig. 8-3 (a) and (b). The measured and 

modelled output current and voltage waveforms respectively show excellent 

agreement with each other. Similarly the input current and voltage waveforms 

shown in Fig. 8-3 (b) are in excellent agreement. There is a slight difference in 

the gate voltage waveform and this is due to a discrepancy in the source 

impedances between the measurements and the model. To avoid this issue, all 

further waveform based comparisons will be based upon the procedure outlined 

in [9]. This paper outlines the use o f pre-defined voltages at both the input and 

output ports o f the device rather than the more traditional approach of 

impedances, which are difficult to measure on the source port when measuring in 

forward operation. This approach is also more suited to model validation as the 

current output o f FET based intrinsic models are formulated as functions o f the 

input and output voltage stimuli. In addition to that, whilst these results are very 

encouraging, the individual voltage and current components are not directly
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relatable to what the intrinsic model is doing. For this comparison it is necessary 

to de-embed the measured current and voltage components to the intrinsic model 

as shown in Fig. 8-1.
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Fig. 8-2 Measured and model output power contours at 1 dB compression with 0.25 dB step size
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Fig. 8-3 (a) Measured and model drain current and voltage waveforms at the output o f the
transistor, (b) Measured and model gate current and voltage waveforms at the input o f the transistor

8.4.2 Results com parison  a t the in trinsic device plane

For accurate comparison of the measured intrinsic waveforms, the waveforms 

were de-embedded using the passive and extrinsic transistor model network 

determined earlier. The method used is outlined in [26, 45, 68-69] and involves 

the cancellation of the parasitic package and device extrinsic components 

through the use of negative lumped components and the s-parameter based de- 

embed component in Agilent ADS™. The FET2 model was altered to allow for 

access of internal currents and voltages at various nodes of the transistor. With 

access to the current and voltage waveforms at the intrinsic plane it is possible to 

do a more thorough examination of the model’s capability in generating the 

correct current content at both the gate and drain terminals. As mentioned earlier, 

the input and output voltage measured waveforms are inserted (and de­

embedded) instead of multi-harmonic impedances. The input and output intrinsic 

waveforms are shown in Fig. 8-4 (a) and (b).

The waveforms shown in Fig. 8-4 (a) and (b) exhibit a greater level of agreement 

than shown earlier. The input and output voltage swings have increased with a 

fundamental swing 24.5Vpk at the drain (Fig 8-4 (a)) and 3.4Vpk at the gate 

(Fig8-4 (b)). The two gate voltages are shown to overlap each other except at the 

extreme peaks. The drain voltage waveforms are showing more harmonic 

content, with signs of some interaction with the device knee, which is 

approximately 3.5V. The drain current in Fig. 8-4 (a) also shows more harmonic
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behaviour than before with the current swing spending less time below OmA, 

indicating that the device is biased in class AB. The gate current is still 

sinusoidal as before but with a slightly smaller amplitude swing.
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Fig. 8-4 -  (a) Measured and model drain current and voltage waveforms at the intrinsic plane, (b) 
Measured and model gate current and voltage waveforms at the intrinsic plane

8.5 F urther A n a lysis  o f  the M od el’s Individual C om ponents

A typical intrinsic device model consists of real and reactive current generators 

at both the input and output terminals. These current generators are a function of 

both the input and output voltage content. In the case of Si-LDMOS devices the 

gate terminal consists of just a charge generator Qg [18]. This is because of the 

lack of any diode at the input port, which is commonly found in other device 

technologies. The difference between the measured and model gate current is 

always less than 10mA, which is within 2.5% of the peak to peak current swing 

in Fig 8-4 (b).
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For analysis o f the drain terminal, the real current is taken as the reference case 

and subtracted against the measured current at the intrinsic plane, leaving what 

should be the reactive portion from the measurements as highlighted in (8-8). 

This is compared against the reactive current generator at the drain port Qd 

calculated in (8-10) with the results shown in Fig. 8-5.

^  react-m eas ^ in t  -m eas ^  d - m od

1 react-m o d  Q d  i^ g s O  ’ ̂ g s  * ^dsO  ’ ̂ d s )

d _

d t

Vgs

\ [ c m (V£S 5 K s o  ) “  C g d  ( V gs ’ VdsO t y v g s
VgsO

Vds

yds o

+ e A r * . K * )

(8-8)

(8-9)

(8-10)

The charge current generated in both cases is very similar, to correlate the slight 

differences between the two, the differential of the measured and model drain 

voltages is shown in Fig. 8-5 (b). The link is pointed out in (8-10) where the 

reactive current generator is shown to be a function of the differential of the 

drain and gate voltages. The differences in Fig. 8-5 (b) correlate very well with 

the differences in the charge current and could be one of the sources of error. 

This provides a high level of confidence in the intrinsic device model for 

fundamental frequency design procedures.
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Fig. 8-5 (a) Measured and model drain charge current waveforms, (b) The differential o f the
measured and model drain voltages

8.6 T he M o d el’s A b ility  to  C ond uct High Efficiency W aveform  
E ngineering

As previously demonstrated waveform based engineering procedures are proving 

to be highly successful in optimizing high efficiency modes of operation [3, 66]. 

In single device high efficiency modes of operation, efficiency enhancement is 

achieved through manipulation of the higher harmonic currents and voltages. In 

this case the high efficiency modes of operation being applied are class F and 

inverse class F [3, 11, 15-16, 52, 60]. Both of these modes of operation offer 

high efficiency and high output power but more importantly test the model’s 

flexibility to different drain voltage waveforms. For this to be done, the intrinsic 

device model was split into the real and reactive current generators allowing for 

separate assessment of the two current components. This allowed for access to 

the real current generator where these waveform engineering procedures have 

been shown to work most effectively [11, 15, 60] as shown in Fig. 8-6.

8.6.1 Class F
The waveform based engineering procedures presented in [15, 65] are applied 

for a class F mode of operation using the model. The first step was to conduct a 

bias sweep to identify the third harmonic null in the current waveform. This was 

found to be at a gate bias of 2.25V which matches what was found with 

measurement. The next step was to insert the model with the same impedances
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as were determined in [15]. The intrinsic drain waveforms at ldB compression 

are shown in Fig. 8-7.

The current and voltage waveforms at the intrinsic plane show good overall 

agreement. The voltage waveform is square in both cases and the model’s 

current is always in close proximity to the measured current. The charge current 

shown in Fig. 8-8 highlights some differences not seen earlier. By looking at the 

differential of the drain voltages as shown in Fig. 8-9, the differences in the 

intrinsic current can be attributed to the increase in harmonic content of the 

voltage waveform, which the model fails to predict as well as shown earlier.
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Fig. 8-6 -  Block diagram o f  a FET and the various reference planes accessible for waveform
engineering
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Fig. 8-7 The measured and model class F drain current and voltage waveforms at the intrinsic plane
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Fig. 8-8 -(a) Measured and model drain charge current waveforms, (b) The differential o f the
measured and model drain voltages

8.6.2 Inverse  C lass F

A similar waveform based procedure was applied to the device [11] through bias 

and load impedance control. The optimum bias point was found to be 3.6V, 

which corresponds to the optimum amount of third harmonic current within a 

limited bandwidth system [52]. The model was inserted into the same
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impedances as were determined in measurement. The intrinsic drain waveforms 

at ldB compression are shown in Fig. 8-9.

The drain current and voltage waveforms are shown to be in good overall 

agreement. The model’s drain voltage is showing a similar amplitude swing as 

observed in the measurements but differs in the low voltage region, in particular 

the interaction with the device knee. The intrinsic drain current is shown to differ 

because of the difference in behaviour in the low voltage area. By looking at Fig.

8-10 (a) and (b) it becomes clear that the extra features seen in the measured 

charge are being generated by the differentials of the measured voltage are again 

not present in the model voltage.

To further analyse the affect of the voltage swing on the charge generator Qd. A 

further plot is presented in Fig. 8-11 where the difference in the charge 

generator’s response becomes a lot clearer. The smooth features of the model 

voltage produce a smooth response in the model’s charge current. However, the 

sharper features in the measured voltage response produces a greater level of 

fluctuation in the charge generator’s response. This is very clear at low voltage 

levels where the measured charge current peaks close to 2A.
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Fig. 8-9 -  The measured and model inverse class F drain current and voltage waveforms at the
intrinsic plane
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Fig. 8-10 (a) Measured and model drain charge current waveforms, (b) The differential o f the
measured and model drain voltages
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Fig. 8-11 -  The measured and modelled drain charge generator (Qd) plotted against the drain voltage
(Vds)

The results in Fig. 8-11, further signify the sensitivity of the charge generator’s 

response. One of the possible causes for the voltage variation is likely to be due 

to the bondwire inductance, which could have had a lower inductance value than 

that derived for the model. However, to confirm or deny this, the charge 

generator is exposed to the measured voltage at the intrinsic plane. The response
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in Fig. 8-12, shows good agreement between the model and measured charge 

current. This suggests that the charge generator is functioning correctly and leads 

to questioning the accuracy of the real current generator.
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Fig. 8-12 The modelled and measured charge generator current with the same inverse class F
drain and gate voltage waveforms
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Fig. 8-13 -  The measured and modelled real current generator with the same inverse class F drain
and gate voltage waveforms

The measured and modelled real current generators are showing similar 

behaviour at low current and high voltage levels but once the drain voltage 

swings close to the knee region, the modelled and measured current waveforms 

start to deviate significantly. The largest deviation in current is in the negative 

region where the model is predicting a negative current of -1.5A whilst the 

measured current is around -0.4A. This significant difference in the current 

waveform identifies the real current generator as the primary cause for the 

difference in performance observed here.
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Now that there has been a difference identified in the two real current generators, 

the results seen in Fig. 8-9 can be explained more clearly. Despite identical input 

and output voltage waveforms being applied at the measurement plane the real 

drain current generator in the model provides a different response than what is 

actually being measured. This in turn, causes a change in the drain voltage 

waveform at the intrinsic plane that is now different to what was de-embedded. 

Whilst these changes present room for improvement in the model’s performance, 

it should be noted, that the extreme conditions found here, such as a large 

voltage swing and the intrusion into a negative drain voltage region has pushed 

the model beyond the vast majority o f design applications.

The level o f agreement in large signal performance between measurements and 

models is found to be in high in both class F and inverse class F. Table 8-1 

summarizes the results at 1 dB compression. Except for the PAE in inverse class 

F the model accurately predicts the performance of the device to allow for a high 

level of confidence for high efficiency PA design. This work highlights that 

despite the similarities in large-signal performance, the time-domain current and 

voltage waveforms show that there is room for improvement in the model’s 

ability to generate waveforms.

Class F Class F 1

Measured Model Measured Model

Pout (dBm) 35.78 35.68 37.55 37.48

PAE (%) 76.62 74.65 67.34 74.51

Gain (dB) 18.69 20.71 20.12 19.92

Table 8-1 -  Summary o f  high efficiency performance comparison

8.7 Conclusions

CAD based device models are becoming increasingly used and relied upon in the 

design process to save time and cost. The complexity of models have progressed 

from linear lumped element based models to complex non linear models that 

have been verified against realised designs. However, as RF PA designers move 

into the time domain, these models are now being tested in an unproven domain.
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This chapter has successfully verified the use o f a charge conservative model 

within the time domain. Model validation within the time-domain offers a more 

in depth insight into the model’s sensitivity to the input and output voltage 

stimuli. This allows for an individual assessment of the real and reactive current 

generators of the intrinsic device model.

To begin with the model was verified using existing techniques to provide the 

confidence to proceed further. Initially the model current and voltage waveforms 

were compared against the measured waveforms at the calibrated reference plane 

with the device biased in class AB. The high level of agreement between the 

measured and modelled waveforms at the calibrated reference plane was further 

demonstrated at the intrinsic device plane.

The next step was to proceed into the application of waveform engineering 

within the CAD domain. The model was operated in class F and inverse class F 

and verified against measurements. In both modes of operation, the model was 

able to predict the power and efficiency values in line with the measurements. 

There was a high level o f agreement seen in the class F waveforms with some 

minor differences observed in both the current and voltage higher harmonic 

components. However, there were larger differences observed when applying 

inverse class F operation to the model. These differences were identified to be 

primarily due to differences in the model’s real drain current generator, which 

had a knock on effect in changing the model’s voltage waveform seen at the 

intrinsic plane. This presents some room for improving the model, but it should 

be noted that the model was still able to produce large signal results that were in 

line with those found in the measurements. Nevertheless, despite these minor 

differences the FET2 model is shown to be an effective tool in enabling 

waveform engineering within a CAD environment.
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9 Waveform Applications -  Waveform Based Doherty 
Design

This chapter now shifts focus onto waveform engineering of a multiple device 

based PA. The specific PA architecture being discussed in this case is the 

Doherty amplifier, which was initially originated in 1936 [13]. Due to the 

emergence of variable amplitude modulation schemes (GSM-EDGE, IS-95, 

WIMAX) and increases in requirements of ACPR, EVM and total spectrum 

mask. The PA has been forced to operate in highly backed off conditions, 

typically in excess o f 6 dB below the 1 dB compression point [3]. This 

effectively negates the benefits o f producing highly efficient amplifiers such as 

class F and inverse class F previously discussed as they revert back to a more 

linear, conduction angle based mode o f operation. For example, a class F 

amplifier operating 6 dB backed off will revert to a class B mode of operation. 

Assuming an ideal device in class B (Vknee = OV), is operated at 6 dB back off 

the PA efficiency drops from 78 % to 39 %. This drop in efficiency is due to a 

reduction in the voltage swing that reduces the area being utilised by the 

dynamic IV. This is further demonstrated in Fig. 9-1(b). There is also a reduction 

in the current swing, but the DC to RF ratio is always maintained when the 

device is in linear operation.

Due to the PA being the most significant portion of the transmit system’s energy 

requirements, operating the PA in a less efficient state can severely reduce the 

overall system efficiency and due to the large amounts of dissipated power, there 

is also a need for complicated cooling systems to ensure reliable operation of the 

devices. This then produces a very different requirement not highlighted 

previously and that is efficiency improvement at lower levels of output power.
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Fig. 9-1 -  (a) Current and voltage waveforms o f  an ideal device biased in class B at 1 dB 
compression and at 6 dB back off, (b) Dynamic load line at 1 dB compression and 6 dB back off, 

(c) Typical power and efficiency performance with input o f  an ideal device biased in class B

Efficiency enhancement at lower power levels has been a topic of high interest in 

literature. There are two basic methods in improving efficiency with the drive 

and these are by dynamically varying the drain bias or by dynamically varying 

the load impedance presented to the device [3]. Either method maximises the 

voltage swing to the limits of the IV plane, i.e. the knee region of the transistor. 

The first method of bias control, measures or extracts the IF component of the 

input signal amplitude and dynamically alters the bias and/or IF input signal
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through an IF amplifier on the drain feed line of the RF PA. This procedure is 

called envelope elimination restoration (EER). There is also a simpler derivative 

that measures the input signal amplitude and dynamically controls the DC drain 

voltage and this procedure is called envelope tracking (ET). The process o f load 

modulation is achieved by the Doherty PA. The Doherty PA involves two 

separate devices connected in parallel through an impedance inverter, with the 

second “auxiliary” device operating at only high power levels and once 

operational, load modulating the “main” always on device. The end result is a 

flat gain until both devices reach saturation.

At present the current architecture of choice for high power basestation 

amplifiers is the Doherty amplifier. This is due to the simplicity of the Doherty 

amplifier when compared to the EER amplifier. The Doherty amplifier circuit 

exclusively involves RF design with the second device controlled by adjustment 

of the gate bias. Whilst EER and ET circuits involve the use of detector circuits 

and additional control circuitry that must dynamically control the IF and drain 

DC bias. These circuits further increase in complexity with more complicated 

modulation schemes that have higher data rates and thus higher IF bandwidths. 

This leads to the realisation o f quite complex circuitry that has the added need of 

a highly efficient IF amp and the added difficulty of phase alignment to the RF 

signal before being fed to the RF PA. Whilst there has been a large amount of 

work on EER and ET, there are a very limited number of high power basestation 

amplifiers shown to be utilising EER and ET techniques, whilst the Doherty PA 

has led to many publications [70, 71] and greater use within industry.

This chapter briefly explains the operation of a classical Doherty PA and outlines 

the current performance being achieved in the literature. The next section looks 

into the preferred design strategy applied for high power Doherty PAs and 

examines the behaviour o f the PA in terms of current and voltage waveforms. 

After these observations a waveform based design procedure is applied, where 

both devices are investigated separately to see how waveforms can facilitate 

enhanced Doherty design. Finally a brief analysis is given, which identifies the
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possible outcome o f producing destructive Doherty amplifiers if careful design 

considerations are not applied.

9.1 In tro d u ctio n

The classical Doherty amplifier shown in Fig. 9-2 consists of two active devices 

a “main” and an “auxiliary” connected in a parallel arrangement with outputs 

that are directly connected via a simple A/4 impedance transformer. The 

intentional interaction can be considered as a form of active load-pull, which has 

the effect of dynamically modifying the impedance environment presented to 

both devices. The quarter-wave transformer at the output of the “main” device 

inverts the load impedance o f R<,pt/2 at the structure output to 2Ropt at the output 

of the main device. The additional quarter-wave transformer placed before the 

“auxiliary” device provides the required phase alignment that allows the main 

and auxiliary device contributions to sum in correct phase at the load.

Main A/4 transformer Zt = Ropt

Vin

A u x ilia ryA/4 transform er

Fig. 9-2 -  Schematic layout o f  a classical Doherty amplifier

The behaviour o f the Doherty amplifier can be described in two distinct low and 

high-power regions o f operation, separated by a notional transition point (Tp) 

shown in Fig. 9-3. The low-power region involves only the main device, which, 

in the absence o f any contribution from the auxiliary device operates into a load 

impedance environment o f 2 R o p t .  The high-power region begins at the transition 

point, and extends typically 6dB to the point of maximum power. As power is 

increased past Tp, the auxiliary device begins to conduct current and actively 

load-pulls the main device. The overall effect is that the main device experiences
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a load impedance that decreases from 2Ropt towards Ropt with increasing input 

drive, thus producing a constant main device voltage state and an efficiency 

plateau that extends typically over 6dB of dynamic range. In turn, the auxiliary 

device sees in an impedance variation from oo to Ropt. The interaction between 

the two devices is described in (9-1) to (9-3). There is a more detailed 

description of the operation of Doherty amplifiers outlined in ref [3, 69, 72].

2 * R2
R ^  ='main /

Ropt 1+ *L
when Zt = Ropt (9-1)

R =  oo

R aux =  R opt

/  I . 'j main

\  I  aux y

0 < Pin < Pin, max/4

Pin, max/4 <" Pin ^Pin, i

(9-2)

(9-3)

4 5 P o u t
E ffic ien cy  
C la s s  B E ffic ien cy4 0

-  6 0
|3 9 %  E ffic ien cy  Im p ro v e m e n t]

-  4 0

2 5 -
- 20

20-
1 5 - 1 (-0

-10 -5 0 5 10
P in  (dB m )

Fig. 9-3 -  Output power and efficiency plotted against input power

The typical performance of an ideal Doherty amplifier is shown above in Fig. 

9-3 where there is a linear increase in output power with drive and an efficiency 

plateau for the highest 6 dB of operation. When compared with the efficiency 

performance of a single device in class B there is an efficiency improvement of 

39% at 6 dB back off in input drive. One potential imperfection in Doherty 

amplifiers are the performance requirements of the auxiliary device. Due to the 

delayed turn on requirements of the auxiliary device, the device is typically 

biased much below threshold in a deep class C bias. However, the consequence 

of biasing in class C is a reduction in peak output current and gain at the
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fundamental. To overcome this, the auxiliary device is forced to be larger in size, 

which poses several problems in solid-state designs, where a separate matching 

network will have to be designed using a separate set of load pull data, which 

increases cost, complexity and time in the design process. There have been 

several possible methods proposed to overcome these features, such as 

separately controlling the input power o f the two devices [3] or by adjusting the 

gate voltage o f the auxiliary to control the output current of the auxiliary [72, 

73]. However, both o f these techniques require the use of actively monitoring 

and controlling components, which increase the overall complexity of the 

Doherty amplifier. A third technique more commonly used in high power 

applications is the use o f an asymmetric input power splitter, which is designed 

to increase the input power to the auxiliary [74]. This helps overcome the gain 

drop when biased in class C at a cost in the overall gain of the entire amplifier. 

Another benefit o f this approach is that it maintains the simplicity o f the Doherty 

amplifier when compared to the other efficiency enhancing techniques outlined 

earlier.

Due to the increasingly complex modulation signals the peak to average (PAR) 

ratios have increased further to beyond the 6 dB offered by a classical Doherty 

amplifier. Signals such as W-CDMA have a PAR around 8.3 dB and newer 

OFDM signals can have a PAR much closer to 10 dB [75]. These larger PAR 

signals reduce the effectiveness o f implementing a classical Doherty PA since 

the majority of the signal will be applied with just the main device in operation 

and operating below its saturating point. To overcome this, there are two distinct 

implementations, both functioning by extending the load modulation of the main 

device to a value higher than the 2*Ropt used originally [76]. These procedures 

can extend the dynamic range to a much larger extent than the 6 dB initially 

shown. However, both methods increase the role of the auxiliary in producing 

the required load modulation and in producing the peak output power.

This first method expands the dynamic range of Doherty amplifier by increasing 

the size o f the auxiliary device. Due to the increased impedance modulation of
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the main device ( > 2 * R o p t  to R o p t ) ,  the auxiliary device needs to provide a much 

larger amount o f current to load pull the main device down to the optimum 

impedance Ropt. This puts the requirements of the auxiliary device to not only 

have a larger gain than the main device to provide the gain expansion, but to now 

also have a higher peak output current. This higher peak current output 

combined with the same voltage swing, delivers a combined output power that is 

greater than the classical Doherty amplifier. The first successful demonstration 

of this was done in [77] and the theory has been further outlined in [73] and [76]. 

Whilst, this method has been successfully demonstrated at low power levels, the 

extension of this procedure at high power levels has been limited. For example, a 

classical Doherty amplifier with a combined output power of 200W will require 

two single 100W devices. If the same main device of 100W is utilised and the 

dynamic range is increased to 9 dB, the auxiliary device size is forced to increase 

to 200W. If a 12dB dynamic range o f efficiency enhancement is preferred, the 

auxiliary device increases to 300W and this is assuming that the auxiliary device 

is already compensating for the expected gain drop when biased in class C.

The second method o f extending the Doherty amplifier’s dynamic range has 

been demonstrated by attaching extra “auxiliary” devices to the classical 

Doherty. This is best explained as an example, where the amplifier functions in 

three different modes o f operation. The first being at low power, where the main 

device is operational and the two auxiliary devices are turned off. The medium 

power region where the first auxiliary power amplifier is turned on and load 

modulation starts to occur and a high power region, when the second auxiliary 

device turns on [78]. There have been some successful attempts in 3-way 

Doherty amplifiers but with mixed results, some have shown improvements in 

linearity [79] but no great improvement in efficiency, whilst others have 

successfully managed to increase the dynamic range but with increased 

complexity [80].

The current state o f the art performance in Doherty amplifiers depend on the 

output power levels and semiconductor device’s being utilised. In the majority of
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high power Doherty amplifiers for basestation applications, the benchmark for 

performance is around 40 % drain efficiency at the mean output power level 

(depending on the modulation scheme applied e.g. 7 dB from Pmax for CDMA) 

[23]. This is using high power Si LDMOS devices, where a single device, will 

have peak drain efficiency around 50% when biased in class AB. With the 

emergence of high power GaN devices, higher mean efficiencies greater than 

50% have been achieved [81]. However, due to relative ease in linearising Si 

LDMOS based devices when compared to GaN, there has been limited up take 

of GaN devices in the commercial domain. The next section outlines the design 

of a high power Doherty amplifier using current design techniques and links 

these load pull based designs with waveforms.

9.2 D esig n  o f  a H ig h  P o w e r  D o h er ty  A m p lifier

9.2.1 Design Procedure

The Doherty amplifier being designed is for a 6 dB enhancement of efficiency 

with drive and is done using the Cardiff LUT model [68, 82], which is a 

measurement based model o f a device utilising vector based data for complete 

capture of the current and voltage waveforms. The measurements were 

conducted using the high power measurement system developed at Cardiff 

University [17]. The device being used is a 100W Si LDMOS device developed 

for 3G UMTS band operation and the measurements were collected at 2.15 GHz.

Before starting the Doherty matching network design, a brief investigation of the 

main device and its performance variation with load and input drive has to be 

done. Below is a plot o f the output power contours with reducing input drive, 

showing the optimal impedance transition for a linear increase in output power. 

What Fig. 9-4 shows, is that the impedance trajectory is away from the real axis 

and to compensate for this a matching network will be required transform the 

complex impedance into a real impedance, where Doherty operation can occur. 

A second point worth noting is the impedance movement the matching network 

is required to accommodate over 6dBs of input drive.
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Fig. 9-4 Peak output contours with varying input drive

The two points of interest are the impedances for peak output power at peak 

input power and peak power added efficiency at 6dB back off. Based on the 

analysis of an ideal device [572], the main device has to provide a 3 dB increase 

in output power once the auxiliary device is in operation. This additional 

information provides a basis of locating the two boundary impedance values 

between which the main device impedance modulates. The impedances for the 

two points of interest are shown in Table 9-1. The job of the matching network is 

to match the real only impedance where the Doherty load modulation is 

occurring, to the impedances outlined in Table 9-1. The matching network was 

designed as outlined in [74] using ideal transmission lines of characteristic 

impedance 120. and an offset line of 55.04°. Using this matching network 

design process, it was observed that the matching network was unable to match 

to the required low power impedance point. The closest impedance achieved and 

expected performance is appended in the last row of Table 9-1.

Pin Impedance Pout (dBm) Gain (dB) PAE (%)

Pin max 2.01 -3 .3 1 jH 49.74 15.54 49.35

Pinmax -  6dB 3.72 -  0.89jQ 46.80 18.51 51.38

Pinmax - 6dB M/N 3 .2 6 -2 .0 1 jn 46.99 18.75 48.89

Table 9-1 - The impedances and performance at peak output Power and 6dB back off

Radius^ 1.0 S., Radius=1.0

Z0 = 7.15 Ohms

Pinmax (49.8 dBm) 
Pinmax - 1 dB 
Pinmax - 2 dB 
Pinmax - 3 dB 
Pinmax - 4 dB 
Pinmax - 5 dB 
Pinmax - 6 dB
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As a start point the same network was applied to the auxiliary device, with no 

adjustment in the offset line. This network provided the required open circuit 

condition at where the real (only) load modulation occurs for ideal Doherty 

operation. The input network was matched to Tjn, when the load impedance for 

the main device was set to an impedance of 3.26 -  2.0 ljQ. This impedance 

corresponds to the mean output power level of the PA when inserting a CDMA 

based input signal.

For investigation and optimisation purposes, the input of the Doherty has been 

split into two ports. This approach is called input attenuation and has been 

originally proposed by Lees et. al, in [72]. A block based diagram of the Doherty 

amplifier is shown in Fig. 9-5. To take advantage of the two input ports, the 

Doherty amplifier will be implemented using the input attenuation mode of 

operation [3]. Input attenuation works by controlling the input power delivered 

to the auxiliary device. The benefit o f this method is that the auxiliary device can 

be of the same size as the main device due to the flexibility in the input power, 

which can be altered to suit the auxiliary bias setting applied. Other potential 

benefits, could be a more detailed understanding of the AM-PM effects of each 

individual device and their effect on the overall behaviour of the Doherty 

amplifier [73].

Zo = Ropt unless stated
MainPin

mail

E = 90°

AuxPin
aux

O/P

O/P

I/P

I/P

Fig. 9-5 - Schematic o f  a complete high power Doherty PA with 2 independent input ports
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The designed Doherty was then simulated within ADS with the main device 

biased in deep class AB (Idq = 950mA) and the auxiliary device biased in class B 

(I d q = 0mA). The input power of the main device was set to increase linearly and 

the transition point (Tp) at which the auxiliary device turned on was set to 

28.2dBm. The input drive o f the auxiliary was set to increase in a quadratic 

mode as outlined in [3]. The first step was to optimise the offset line in terms of 

efficiency and this was updated to 40.3°. This was required because of the 

unaccounted effect o f the drain output capacitance of both devices. The results 

are shown in Fig. 9-6.

9.2.2 Results

The initial results show that the there is a plateau region of 4.3dB with a drain 

efficiency above 50%, 52.4dBm total output power and 1.7dB gain compression. 

This confirms that Doherty operation has been achieved in this simulated PA. 

Also this Doherty PA produces a 14% increase in drain efficiency when 

compared to a single device operating in class AB for a peak to average envelope 

of 6.5dB. The gain profile shows a variation of approximately 1.5 dB, but there 

is a sharp deviation at around 30 dBm input drive, which is when the auxiliary 

device starts to have a more significant effect on the overall performance of the 

Doherty PA.
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Fig. 9-6 - Output power, drain efficiency and gain o f  the simulated Doherty power amplifier

To further analyse the interaction of the two devices, the load impedance 

movement was tracked with input drive and this is shown in Fig. 9-7. The main
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device is shown to start at the impedance provided by the matching network at 

back off and then move towards Zopt in small steps with increasing drive. For the 

auxiliary device, the device sees an open circuit at low power levels and then 

proceeds towards Zopt in very large steps at first and then smaller steps at higher 

input drive levels. However, it should be noted that the LUT model used here is 

extrapolating beyond its original measured impedance region. This can also 

explain for the heavy kink shown in the gain in Fig. 9-6.

S , .  R a d i u s - 1.0 S , , R a d i u s - !

Auxiliary load movement
j 2 5 0

Main load movement

5

Fig. 9-7 -  Impedance movement seen by the main and auxiliary device within a Doherty 
amplifier with increasing input drive
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Fig. 9-8 - Output power and drain efficiency performance variation with varying gate bias on the
auxiliary

The next step taken was to conduct a gate bias sweep of the auxiliary device and 

examine its effect on the Doherty PA, the results are shown in Fig. 9-8. As the 

gate bias of the auxiliary is changed to Vg= 1.35 V (Idq= 0mA class C), there is an
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increased region o f 6.5dB input dynamic range where a high efficiency above 

50% is achieved but this comes at the price of a larger amount of gain 

compression and a lower total output power of 52dBm. The opposite occurs 

when the gate bias is increased to a deep class AB bias of Vg= 2.2V (Idq= 

950mA). This produces a lower efficiency profile, which is 38% at Tp but 

manages to provide 52.7dBm output power which is double the output power of 

a single device. Out o f the three bias settings shown, Vg= 1.75V (Idq= 0mA) is 

showing to be a good compromise of high efficiency and high output power.

To show the added flexibility o f the two input approach, a phase sweep was 

conducted at the input of the auxiliary device to optimize the overall efficiency 

of the Doherty PA. The results are shown in Fig. 9-9, which shows a peak 

efficiency of 52% at a phase angle of 88°. This is expected due to the same 

output matching network being used in both devices. In the case where a 

different output network is used in both devices, such a technique could provide 

vital information in providing optimal performance.
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Fig. 9-9 -  Input signal phase sweep o f the auxiliary device with power

The next step is to analyse the current and voltage waveforms. This is done by 

utilising the LUT model’s potential for high power waveform design. However, 

before that can be done, it is necessary to incorporate large signal de-embedding. 

As outlined in Chapter 4, the measured current and voltage waveforms are
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significantly altered due to the presence of large parasitic components in the 

package and the device. To overcome this the waveforms, are de-embedded 

using the device package parasitic derived for a 100W Si LDMOS network and 

the simulation based technique of extracting the current and voltage waveforms 

at the I-gen plane described in Chapter 4, to provide a means of assessing the 

true behaviour o f the Doherty PA. The results are shown in Fig. 9-10.
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Fig. 9-10 - The fundamental voltages and currents o f  the main and auxiliary device in Doherty 
operation for half the device at the I-gen plane

Fig. 9-10 shows the fundamental voltage and current components with input 

drive. The profile of the voltages and currents are very close to what is required 

in theory. A closer inspection reveals that the voltage waveform is not as large 

in magnitude as originally expected and the current waveform is larger than 

expected. However, the fundamental voltage and current are correctly indicating 

the presence o f Doherty behaviour in both the main and the auxiliary device. 

Further work will be necessary to improve on the de-embedding of these large 

devices to provide more accurate and reliable current and voltage waveforms, 

thus improving the waveform engineering design capabilities offered by the LUT 

model. For a more comprehensive understanding of Doherty operation based on 

current and voltage waveforms, a similar analysis is conducted on the 10W Si 

LDMOS device, where this package de-embedding problem as described in 

Chapter 5 has been fully addressed.
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9.3 W a v e fo r m  B a sed  D oh erty  D esign

9.3.1 Design O utline

Consider now the waveform based investigation of a Doherty PA, again using 

the Cardiff LUT model, now based on a 10W Si LDMOS device. This will 

produce a 20W Doherty PA that could be utilised within the smaller “femto” 

cells. In this case the design process has been altered to provide more correlation 

with the ideal analysis outlined earlier in the chapter. This is achieved by 

synchronously providing real only impedances at where Doherty load 

modulation is occurring and also at the Igen plane. This puts a specific emphasis 

on the output matching network to not only cancel the effects o f the package but 

to also provide a real to real impedance transformation between these two 

reference planes with some phase delay. It should be noted that this can only be 

done with prior knowledge o f the package device parasitic network. A block 

diagram of the proposed output schematic is shown in Fig. 9-11.

E = 90

Packaging

Packaging Matching
network

Matching
network

Fig. 9-11 -  Output schematic o f  waveform based Doherty PA

With prior knowledge of the package network, it is possible to derive the 

required impedance route with input drive for both the main and auxiliary
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devices. The real to real impedance transformation requirements of the output 

matching network are shown in Fig. 9-12. Using this information the output 

matching network was designed at 2.1 GHz within ADS. Due to the limited 

availability o f measurement data for processing the LUT model, both devices 

were biased in class AB and implemented as a two input Doherty PA using the 

input attenuation method outlined earlier. After analysing measured data, it was 

found that the device had a PldB at approximately 8.5W of output power. This 

means that the 20W Doherty PA has to be revised down to 17W to ensure there 

is minimal voltage clipping of the main device, ensuring optimal Doherty 

operation [72].

ZO = 500hms

Real axis at device output tab 
Real axis at I-gen plane

Fig. 9-12 -  Impedance transformation requirements o f  the matching network at the package
plane

9.3.2 R esults

The simulated results are shown in Fig. 9-13. The results show a region of high 

efficiency for the top 5 dB of input drive. Below this the auxiliary device is 

having to rely upon the extrapolation algorithm of the simulator and this is 

clearly showing to have an adverse effect on the results at lower power levels. 

Focussing in the period where the simulation is functioning, the complete
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Doherty PA delivers 42.3 dBm (17W) of output power with a peak efficiency of 

55 % and less than 1 dB of gain compression. At 5dB back off the efficiency is 

slightly below 50 %.

The dynamic I-V load lines at the Igen plane are shown in Fig. 9-14, where the 

main voltage swing is fixed in (a) with the current swing increasing at high input 

drives. In turn the auxiliary device shows an increase in both current and voltage 

with input drive. With deeper analysis of the auxiliary loadlines, it can be seen 

that the gradient (i.e. inverse of the load impedance) is becoming steeper, which 

correctly indicates that the auxiliary device impedance is following Doherty 

theory. At peak power, the main and auxiliary devices have identical waveforms. 

The impedance movement at the two planes is shown in Fig. 9-15, where both 

the main and auxiliary device impedances are very close to the real axis of the 

Smith chart. It also highlights the failure of the simulation extrapolation at lower 

power levels, where it assumes that the load impedance of the auxiliary device 

tends to an open circuit at the measurement plane as opposed to where the 

matching network was designed for. To continue use of the LUT model it would 

be necessary to conduct extra measurements to cover the expected impedances of 

use and more importantly at lower power levels and at various bias levels. This 

was unfortunately not possible at the time.

Doherty Operation

20 10
18 20  22 24 26 28  30

P a v s  (d B m )

Fig. 9-13 -  Simulated output power, power added efficiency and gain o f  the 17W Doherty
amplifier
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Fig. 9-14 -  Simulated dynamic load lines at the Igen plane for the (a) main and (b) auxiliary devices
within a Doherty configuration

Z0 = 50Ohms

Main device (I-gen) 
Aux device (I-gen) 
Main device (Output) 
Aux device (Output)

Pavs = 25.35dBm

Fig. 9-15 -Simulated impedance movement o f the main and auxiliary devices at the output and Igen
planes
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9.4 M ea su rem en t D riven  D oherty PA D esign

The chapter will now focus on an alternative measurement based technique for 

optimising Doherty PA design. This is done by using load pull to emulate the 

conditions of each individual device in a Doherty configuration. The 

measurement approach provides a more definitive answer to how a device will 

function within the Doherty PA. The measurements are done on a 5 W Si 

LDMOS device at 2.1 GHz using the active load pull system developed at 

Cardiff. The analysis will concentrate at the fundamental frequency of operation 

with the second harmonic set to a short circuit at the Igen plane. The focus will 

start on the main device and then proceed on to the auxiliary device. The 

analysis will focus on the peak 6dB of input drive of a classical Doherty PA.

9.4.1 Main Device

This measurement involves using the load pull system to enable optimal Doherty 

operation of the main device i.e. maintaining a constant voltage swing with 

increasing current swing. Focussing solely on just the main device, this would 

produce a region o f constant efficiency and a constant gain reduction of 0.5 dB 

per 1 dB increase in input drive leading to a total of 3 dB gain compression. This 

is outlined in Fig. 9-16. This measurement has previously been conducted at an 

on-wafer level in [83] using a Gallium Nitride device.

38 l i t n I tiit  |it t  »t- 70
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Fig. 9 -1 6 -  Theoretical performance outline o f  an ideal main device implemented within a
Doherty PA
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9.4.1.1 Results

The power performance and dynamic load lines are shown below in Fig. 9-17 (a) 

and (b). The device maintains a constant efficiency of 60 % for the top 4 dB of 

input drive but starts to lose efficiency at lower power levels. The gain of the 

device drops by 2.5 dB in total. By looking at the dynamic load lines it becomes 

clear that the efficiency drop at lower power levels is due to the lack of current 

clipping at higher voltages and the reduction in voltage swing. The reduction in 

voltage swing is due to a drop in gain. Due to the non-ideal gain characteristics 

of the Si LDMOS transistors, it is not possible to produce the same dynamic gm 

at various load impedances. In this case as the load impedance increases the 

transistor produces a drop in gain of 0.5 dB when compared to an ideal 

transistor. There could be some compensation applied, either by reducing the 

dynamic range within optimal Doherty operation is applied or by increasing the 

load modulation to a value higher than 2*Ropt over 6 dB. In turn the current 

swing is seen to double over the 6 dB of operation shown in Fig. 9-17 (b) with a 

peak current output below 700 mA (0.39 A RMS), which is 100 mA below the 

peak output current o f the device. This reduction in current gives the auxiliary 

device a change to match the current output of the main device despite being in a 

class C bias.
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Fig. 9-17 -  (a) Power performance o f  the emulated main device (b) Dynamic load lines at the Igen
plane o f  the emulated main device

9.4.2 A uxiliary  Device

The same measurement approach is now applied to the auxiliary device. In this 

case changing the impedance from an open circuit (at the Igen plane) to Ropt over 

6 dB of input drive. The approach taken here is now based on a classical Doherty 

amplifier rather than input attenuation as discussed earlier in the simulations. 

This has been done to mimic the design process applied in practical Doherty 

amplifiers, where the simplicity of a passive power splitter has been preferred 

whilst also keeping the same transistor used for the main.

As mentioned before, the role o f the auxiliary device is to provide the current 

necessary to load pull the main device to a lower impedance, thus preventing 

compression and maintaining a linear Pin-Pout characteristic. The ideal auxiliary 

device characteristics are shown in Fig. 9-18 (a) and (b). The gain of the 

auxiliary device is always expanding up to the peak output power required and 

the efficiency is shown to increase linearly with drive (when in dBm). The 

fundamental current and voltage magnitudes are shown to also increase linearly 

with input drive. This is due to the input power being plotted in logarithmic 

form. As stated earlier, an identical main and auxiliary device will not produce a 

fully functioning Doherty amplifier, so the amplifier will be “tweaked” in terms 

input drive and gate bias until an optimum solution can be achieved. For device 

safety and measurement accuracy purposes the open circuit measurement will be 

conducted at an impedance of 300 Q at the Igen plane.

152



Aamir Sheikh High Power Waveform Engineering

40 —i r  80

£  3 0 -

1
COT3

I 20-

-  60

-  40
Pout 
Gain 
Drain Eft£ 10-

0- - 0
8 9 10 11 12 13 14 15

Pin (dBm)

(a)
3 0 - | i -  0.5

V o u tjd e a l
lo u tjd e a l2 5 - -  0.4

20-
s
»  1 5 -  

10-

-  0.3

-0.15 -

0 - -0.0
9 158 10 11 12 13 14

Pin (dBm)

(b)

Fig. 9-18 -  Theoretical performance outline o f  an ideal auxiliary device implemented within a 
Doherty PA in terms o f  (a) power performance (b) voltage and current at the fundamental

9.4.2.1 Results
As a start point, the device was operated with no modifications and according to 

classical Doherty theory, i.e. identical input drive as the main and biased in class 

C to turn on at the transition point. In this case the input voltage at Tp was 0.81 

Vpk with a pinch off voltage o f 2.22 V. Using the equation outlined in (9-4), this 

set the gate voltage to 1.41 V. The results are shown in Fig. 9-19.

V - V  - Vr  gs r  th  V inTp
(9-4)
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Fig. 9-19 Performance o f  the emulated auxiliary device when biased in class C and with the same 
input drive as the main device (a) power performance (b) fundamental voltage and current at the Igen

plane

As expected, when implemented in this way, the auxiliary device does not 

provide the current required to load pull the main device. The voltage and 

current output at the fundamental is shown to be less than half of what is shown 

in Fig. 9-18. There is a discrepancy in the voltage swing at low power levels and 

that is due to the combination of a small amount of current present at the lowest 

power level and a high impedance being presented at the fundamental. However, 

the profile o f the output power, efficiency and gain performance closely matches 

to what is required in theory. The next step taken is to insert an asymmetric 

power split. This is done in two stages, with a 1:1.5 split and a 1:2 split. In both 

cases the split is taken into account from the start and the power is then stepped 

up in 1 dB steps. The results for the 1:1.5 split are shown in Fig. 9-20 and the 

results for the 1:2 split are shown in Fig. 9-21.

154



Aamir Sheikh High Power Waveform Engineering

4 0 - . r  80Pout 
Gain 
Drain Eff

S ' 30 -5 -  60

2 0 -

g. 1 0 -

0 -
8 10 12 14 16 18

Pin (dBm)

(a)

3 0 - i r  0.5

Vds [1]
Ids [1]

2 5 -
0.4

- 0 .3

-  0.2> 1 0 -

0.15 -

0 - - 0.0

98 10 11 12 13 14 15 16 17 18
Pin (dBm)

(b)

Fig. 9-20 Performance o f  the emulated auxiliary device with an asymmetric split o f  1:1.5 (a) 
power performance (b) fundamental voltage and current at the Igen plane
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Fig. 9-21 Performance o f  the emulated auxiliary device with an asymmetric split o f  1:2 (a) 
power performance (b) fundamental voltage and current at the Igen plane

The asymmetric split has been shown to provide an increase in output power and 

efficiency. In the case of a 1:1.5 split, the emulated auxiliary amplifier is 

providing 34.8 dBm of output power and 56% drain efficiency. The gain profile 

of the device is 18 dB at peak power and is shown to still be expanding at peak 

input drive. However, the current output of the device does not quite reach the 

requirements of the auxiliary amplifier. The 1:2 asymmetric split provide 36 

dBm of output power and has a peak efficiency of 62%. However, the gain 

profile is showing that the device is starting to compress from about 2 dB back 

off. More interestingly, it can be seen that the device is able to produce 0.35 

A r m s  of current at peak input drive, which suggests that these auxiliary 

conditions will be able to produce a fully functional 6 dB Doherty amplifier. 

However, there is a note of caution required and that is at the low input drive 

level. At around Tp the auxiliary device turns on, which produces the undesirable 

event of a high impedance being presented to a device generating current. This 

results in the generation of large voltage swings at the fundamental. In this case, 

a voltage swing of 24 V is not detrimental to the device but it is possible to 

envisage similar scenarios where higher voltage swings can be generated.

To further optimise the auxiliary device, the next step is to analyse the effect of 

increasing the gate voltage on the overall performance. These measurements are 

implemented with a symmetrical split at the input drive. The measurements are 

conducted at Vgs = 1.61 V and Vgs = 1.81 V. The expected effect will be an
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increase in gain and output power against the potentially detrimental situation of 

earlier device turn on. The results are shown in Fig. 9-22 and Fig. 9-23.
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Fig. 9-22 -  Performance o f  the emulated auxiliary device at a gate voltage o f  1.61 V (a) power 
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Fig. 9-23 Performance o f  the emulated auxiliary device at a gate voltage o f 1.81 V (a) power 
performance (b) fundamental voltage and current at the Igen plane

In both cases an increase in gate voltage increases the output power and gain of 

the device, with a total increase in gain of 1.5 dB compared to the reference case. 

This is also observed in the output current and voltage values, which are tending 

towards the required current value at peak input drive. However, as observed 

with the asymmetric splitter, an increase in gate voltage also has an adverse 

effect at low drive levels with an increasing voltage component at high current 

levels. Before an optimised design is presented, another adjustment is made in 

terms of the drain voltage, which is being increased to 32 V. In theory, this 

should provide no benefit in terms of performance but due to a finite output 

conductance, the device’s characteristics improve in terms of the gm at higher 

drain voltages. To demonstrate this, another sweep is conducted with an adjusted 

impedance range. The results shown in Fig. 9-24 confirm a 1 dB increase in gain 

at the higher drain voltage.
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Fig. 9-24 Performance o f  the emulated auxiliary device at a drain voltage o f  32 V (a) power 
performance (b) fundamental voltage and current at the Igen plane

This now leads to the optimised result, which will have a combination of the 

three factors to produce the required performance. The combination applied here 

will be a drain voltage o f 32 V, a gate voltage of 1.61 V and an asymmetric split 

of 1:1.5. The results are shown below in Fig. 9-25.
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Fig. 9-25 Performance o f  the emulated auxiliary device in the optimised settings o f a drain 
voltage = 32 V, gate voltage = 1.61 V and an asymmetric split o f  1:1.5 (a) power performance 

(b) fundamental voltage and current at the Igen plane
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The results in Fig. 9-25, show that this implementation of the auxiliary device is 

able to produces a similar amount of output power as the main device with a 

small amount o f gain compression at the highest power level. The drain 

efficiency at peak power is 66 %, which is slightly higher than the main device. 

Examining the currents and voltages, it can be seen that the current at the peak 

output power is comparable to the main device value, which implies that full 

Doherty load modulation o f the main device can be achieved. The voltage also 

increases linearly. Again at low power levels, due to the higher gate bias and 

larger input stimulus, the resulting fundamental voltage is approximately 30V. 

This is now approaching a critical level when using Si LDMOS technology, 

which typically has a high voltage breakdown limit of around 75 V. The peak 

voltage value achieved by the device is 69 V. This is shown more clearly in Fig. 

9-26, where the individual current and voltage waveforms are shown instead of 

dynamic load lines to emphasize the large voltage swing at the lowest power 

level. Whilst this auxiliary setup will function correctly to apply the required 

conditions for Doherty operation, there is now an increased risk in the continued 

functioning of the PA. Applying a process variability of 10 % to the breakdown 

voltage will produce a voltage breakdown value in the range of 67.5 -  82.5 V, 

which produces a risk when mass producing a Doherty PA, with such an 

optimisation. Whilst this is not the focus of this work, this should be investigated 

further to provide an increased insight into reliable Doherty PA design.
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Fig. 9-26 -  (a) Current and voltage waveforms at the Igen plane o f the emulated auxiliary device, 
(b) ) Dynamic load lines at the Igen plane o f  the emulated auxiliary device

9.5 C on clu sion

This chapter has outlined the efficiency benefits of implementing a Doherty PA 

within the high power base station market for 3rd and 4th generation based 

systems. Third and fourth generation systems support higher number of users as 

well as higher data rates, with a consequence of increased signal complexity and 

high peak to average ratios typically in the region of 6 -  9 dB. For linearity 

purposes these devices are operated backed off with a consequence of lowering 

the operating efficiency. A Doherty PA overcomes this, by providing an 

efficiency plateau over an extended region of input drive that can be varied from 

6- 12 dB depending upon the arrangement applied.

To begin with a 200 W Doherty PA was designed using established matching 

network design techniques based on the measurement based Cardiff LUT model. 

This was shown to provide a region of high efficiency extending up to 6 dB with 

a 14 % increase in efficiency at 6.5 dB back off when compared to a single 

device in class AB operation. This was investigated further by de-embedding to 

the Igen plane to see if Doherty mode of operation is achieved in the design. This 

was applied to each device and it was found that the fundamental voltage and 

current profiles with drive were correctly indicating Doherty operation of both 

the main and auxiliary devices. However, the exact voltage and current values 

were found not to be totally accurate.
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To gain a further insight, the same procedure was applied on a lower power 

device, with less package parasitics to provide more accurate current and voltage 

components with drive. This was shown to confirm true Doherty operation for 

the peak 5 dB o f input drive. For lower drive levels, the model was found to be 

operating outside its original measured region forcing the simulator to 

extrapolate. However, the added clarity o f the current and voltages at the Igen 

plane provided enough proof that Doherty operation was achieved within both 

devices.

An alternative approach based on the active load pull waveform based 

measurement system was employed by utilising the load pull system to emulate 

the conditions required for Doherty operation. This procedure provides useful 

information o f assessing the device’s capabilities for design and more 

importantly allows the user the opportunity to optimise the design of a Doherty 

PA in real time, simultaneously visualising the device’s mode of operation. This 

was first applied on the main device where a constant voltage constraint was 

applied to the device over the peak 6 dB o f input drive and compared against 

theory. The device used showed a close match to theory but with some reduction 

in the voltage swing at lower power levels, which was attributed to a non ideal 

gm property o f the device. The same procedure was applied to the auxiliary 

device, where it was necessary to apply “tweaks” to achieve optimum operation. 

This was done by emulating an asymmetric power split and by increasing the DC 

gate and drain voltages. However, one potential drawback of these modifications 

was the presence o f  high voltage swings at low input drives due to the early turn 

on of the auxiliary device. These voltage swings were shown to be comparable to 

the voltage swings when at full output power and in some cases extending to 

high voltages that could potentially damage the device and lower the reliability 

of the PA. By applying these “tweaks” the designer now has all o f the 

information required to produce a fully operational Doherty PA. In both the 

simulation and measurement domain, it has been shown that access to the 

currents and voltages at the Igen plane provides an invaluable source of 

information in the design o f Doherty PAs.
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10 Conclusions

The work undertaken in this thesis has provided the PA designer a route back to 

the origins o f PA design, i.e. the manipulation of currents and voltages for 

optimum performance in efficiency, power and gain. This has been outlined, by 

the achievement o f world record efficiency values of 77% when using high 

powered Si LDMOS devices at S-band frequencies. However, before this was 

made possible it was important to first establish the complexity of the de­

embedding required and the confidence to apply waveform based procedures. 

This was achieved by applying established techniques in package and device 

modelling and taking into account external factors such as the harmonic 

impedance environment. The results achieved provided access to the current 

generator plane, leading to the correlation of currents and voltages with theory at 

power levels previously not possible. These procedures were extended to two 

other examples o f access to the current and voltage waveforms, the first being 

the confirmation o f Doherty behaviour in high power designs and the second 

being the successful verification o f a large signal model.

Large signal de-embedding, was initially applied on a 5W Si LDMOS device at 

2.1 GHz. To begin with an accurate package and device model was formulated 

using 3D modelling and established measurement based techniques. The package 

was modelled based on physical measurements o f the package and imported into 

a 3D simulation package. The device manifold was simulated using well-defined 

layer stacks o f the silicon die. Both o f these procedures were applied with 

confidence and have been validated using established techniques [18]. The 

extrinsic and intrinsic device properties were determined using measurement 

based techniques [19, 37] and modelled using physically derived equations that 

are fully charge conservative. The waveform data captured at the calibrated 

reference plane were de-embedded to various internal planes. It was found that 

only by completely removing all o f the parasitic effects of the package and 

device to the current generator plane, were the current and voltage waveforms 

relatable to what is described theoretically in the literature [3]. The resultant

163



Aamir Sheikh High Power Waveform Engineering
waveforms at maximum output power were shown to correctly indicate that the 

device was biased in deep class AB and a sinusoidal voltage swing. The majority 

real impedance at the Igen plane was also found to be close to the optimum 

resistance for maximum output power.

A similar procedure was applied to a 110W Si LDMOS device, however with 

less success than for the smaller device. The waveforms achieved at the Igen 

plane for half o f the device produced a voltage waveform that was correctly 

sinusoidal, however the current waveform did not show any rectification and did 

not indicate the deep class AB bias setting. This was due to the increased 

complexity o f package and device modelling required that can not be modelled 

using linear scaling rules. Further work is necessary in producing high power 

waveforms that could be more relevant for high power PA design.

The use o f waveforms in high power devices has until now not been fully 

explored. This work has uncovered that high power waveforms are more 

susceptible to outside factors not previously thought necessary for consideration. 

In this case the major issue was the ratio of the higher system impedance to the 

fundamental optimum impedance o f the device. On wafer devices have 

fundamental optimum impedances in excess of the standard system impedance 

of 50 Q, therefore presenting a pseudo short circuit to the higher harmonics. In 

high power devices, this situation is reversed, in that the higher harmonics see 

impedances that are higher than the fundamental optimum. The consequence of 

this effect is the generation o f higher harmonic voltage components that can 

severely distort the waveforms, ultimately questioning the de-embedding 

process. This effect was first investigated using real only higher harmonic 

impedances and expanded to complex impedances. From this work, it was found 

that complex higher harmonic impedances not only affected the waveforms but 

also affected the optimum impedance for power by forcing a reactive shift at the 

Igen plane. This investigation was validated to a high level of agreement using 

measured data o f a 5W Si LDMOS device, therefore providing current and 

voltage waveforms relevant for design at high power levels.
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The next step was to apply this feature of accessing the internal waveforms for 

further use. The first application of waveforms at the Igen plane was shown with 

the demonstration o f class F mode of operation on a 5W Si LDMOS device at 

2.1GHz leading to world leading efficiencies of 77 % when using Si LDMOS 

devices [15]. Si LDMOS devices are the current device technology o f choice in 

the commercial domain due to low cost and high linearity. However, due to the 

high output capacitance, it has been very difficult to achieve high efficiency 

designs that have efficiencies comparable to the more costly GaN technology 

based PAs. [84]. This now provides the PA designed with two viable choices in 

device technology when designing high efficiency PAs with little difference in 

performance, but a large difference in linearity and cost. Previously class F or 

inverse class F operation was achieved at L-band frequencies but there was little 

success demonstrated in the literature at higher frequencies [49]. With access to 

the waveforms at the Igen plane, waveform engineering principles were applied to 

provide the optimum current and voltage waveforms at two different frequencies 

of operation for class F operation as demonstrated in Chapter 7.

A further demonstration o f the added insight of access to the waveforms was 

presented with the uncovering o f voltage breakdown when implementing inverse 

class F using Si LDMOS devices. Inverse class F and class F both provide the 

desired theoretical 100% drain efficiency. However, the switching o f the current 

and voltage profiles can have some performance degrading effects if  the design 

has not been fully thought through. When applying the recommended 28V drain 

bias, the voltage swing o f inverse class F expands up to a peak value o f 81 V in a 

limited bandwidth implementation. This is clearly in excess of the 65 V voltage 

breakdown limit specified in Si LDMOS device datasheets 65 V [85]. In 

practice, the voltage breakdown was found to be approximately 75 V and was 

proven with the presence o f an increasing current component at high voltages 

leading to a drop in drain efficiency and an increased risk of device failure. 

When the drain bias voltage was reduced to 18 V, the performance of the inverse 

class F implementation was slightly above that found in class F, whilst 

producing the same output power.
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A second application o f waveform de-embedding was the validation of a 

commercially available, charge conservative large signal model. To date, models 

for use within CAD have been validated using load pull measurements where the 

impedance is a vector and the output power is a scalar value. Whilst this 

procedure has led to many successful designs, such a validation is not sufficient 

for waveform engineering within a CAD environment. The investigation 

conducted in this thesis has highlighted that the large signal model was in 

excellent agreement with measured data in class AB, with little difference in 

output power and in the current and voltage waveforms at the intrinsic reference 

plane. When implementing the same procedures in multi-harmonic designs, the 

model was shown to be in good overall agreement with the measured data, with 

little difference in output power and efficiency. The slight differences in the 

current waveforms were noted to be due to the higher harmonic components. 

However, this successful validation has promoted the concept o f applying 

waveform engineering within a CAD environment.

The last chapter follows on a similar theme to the class F work, but is now 

expanded to a multiple device structure. The Doherty amplifier is the current PA 

architecture o f choice for base-station applications. In the case of the Doherty 

amplifier, waveform de-embedding was applied to confirm true Doherty 

operation using both high and low power devices, using established matching 

network design methodologies [70]. The initial high power Doherty amplifier, 

showed encouraging signs o f Doherty operation but due to the limited 

confidence in the de-embedding a similar procedure was applied to a medium 

power design, where Doherty operation was fully validated at the Igen plane, 

within the device m odel’s simulation range. The second part o f this chapter 

outlined how waveform engineering and active load pull can be utilised to 

provide an enhanced insight into Doherty design. Using active load pull to 

mimic the other device, an individual device was investigated to provide the 

optimum performance when functioning as either the main or auxiliary. This was 

initially based on the main device where the voltage was shown to be constant 

over an extended input range. To provide these conditions for the main, the 

auxiliary device was optimised in terms of gate and drain bias as well as input
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power split to provide the ideal design conditions for a 6 dB Doherty power 

amplifier. However, in all cases, it was noted that there was a risk of generating 

large voltage swings at the transition point and this needs to be investigated 

further within realised designs to better identify the reliability risks of these 

design tweaks.

As outlined earlier, this thesis has demonstrated the value of waveform 

engineering in providing an added insight in the measurement, design and 

validation parts o f a PA design process. Whilst the classical power meter and 

spectrum analyser based techniques have provided an accurate means of 

assessing PA performance, the added insight in seeing the relevant current and 

voltage waveforms provides a means o f rationally optimising performance and 

producing reliable designs for mass usage.
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11 Future Work

The work, outlined in this thesis has provided a significant step forward in 

enabling high power waveform engineering and introduced the considerations 

required to produce accurate waveforms. This section outlines the further work 

necessary in moving forward the work undertaken in this thesis. At the time of 

writing, much o f the logically following future application based work has been 

undertaken within the research group. For instance, a high efficiency inverse 

class F high power amplifier [11] and an efficiency enhanced octave band high 

power amplifier [86]. However, the two topics outlined below would usefully 

extend this work and increase understanding of some novel questions raised in 

this thesis.

11.1 F u rth er  D e v e lo p m e n ts  in  H igh  P o w er  M o d ellin g

The package and device model used for the high power de-embedding was a 

simplified approach to what was utilised in the 5W device case. This approach 

was taken due to the prohibitive effects o f the increased complexity and 

simulation resource requirements. However, the waveforms produced were not 

fully indicative o f the device’s behaviour, as demonstrated by the current 

waveform at the Igen plane not showing any signs of rectification. This section 

outlines how to remedy this problem for producing more meaningful waveforms 

at the Igen plane in the case o f large devices in complex packages.

One of the primary reasons for this is the large die size that is now representing a 

device periphery that is greater than 50mm, which can be greater than the 

wavelength at the fundamental frequency o f operation. The exact affect on the 

ability to de-embed waveforms is not fully known, but the waveforms produced 

at this plane were not o f the same quality and clarity as in the smaller device. 

This could be minimised by dividing the device periphery into smaller units and 

increase the simulation complexity by adding multiple paths to a single die as 

shown in Fig. 11-1 (b). For demonstration purposes a single die is broken into 

five separate sections, which can also be inverted using an extended t-parameter 

conversion. The drawback in this approach is the increased complexity required
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in physically modelling the package and it’s several bond wires the increased 

simulation time it will take in simulating a 3D model of the package over an 

extended bandwidth. To save simulation complexity the process can be mirrored 

across both die as the effects will be symmetrical, however this does overlook 

the mutual and capacitive coupling between two individual die and their 

bondwire networks.

Port number Port number

Fig. 11-1 -  (a) Package model adopted in this thesis, (b) Proposed package model for future work
considerations for a single die

This increased complexity must also be replicated on the silicon die. This can be 

done by applying the same cell divisions on the die when simulating the device 

manifold. From here the extrinsic and intrinsic parameters can be extracted based 

on existing techniques. Initially these cells can be treated in isolation, however 

the more stringent approach would be to incorporate the mutual coupling effects 

on the die as well and tailor these effects depending on the location of the cell on 

the die. For example the mutual effects on cell 5 will in practice be different than 

the mutual coupling found in cell 3 and the extrinsic and/or intrinsic device 

model must reflect this in some way.
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Once this procedure is applied, it should be possible to insert this more detailed 

structure within the CAD simulations outlined in Chapter 7. However, the 

danger is that due to the increased complexity and undefined solution space, 

there is a risk that the simulator will not produce meaningful results or may not 

even compile. This is due to the differing non-linear responses of each of the 

cells which occurs due to the variation in phase lengths and how they interact 

with each other. For this reason, it maybe more beneficial to investigate this in 

more detail in high power devices. With the successful verification of a unit cell 

described in this work, the issues o f scaling can be explored and characterised in 

more detail. This can initially be done against the complete output response but 

more information is likely to be gathered by investigating the individual cells 

within the transistor. One method o f doing this is by probing within the package. 

This could be done using the voltage probe outlined in [87], which can measure 

the response at various parts o f the transistor that can be compared against the 

relevant cell in the model. This provides accurate and verifiable means of 

assessing the cell to cell interaction and for providing the boundary conditions 

within which the simulator can function. From this the performance of the 

individual cells can be assessed and de-embedded further to the Igen plane if 

desired. Other possibilities could be a more detailed understanding of the 

transistor’s performance, which can lead to possible improvements in transistor 

layout for better power combination leading performance levels typically found 

in lower power devices.

11.2 D o h er ty  R e lia b ility  In v estig a tio n s

The Doherty power amplifier is the current PA architecture o f choice for third 

and fourth generation basestation systems, making its reliability for mass 

deployment a critical factor. As was pointed out in Chapter 9, the voltages 

generated in the auxiliary device can hit the break down voltage of the device 

when operating close to the transition point. If this process is repeated the 

auxiliary transistor will be susceptible to breakdown, disabling the power 

amplifier and requiring extra expense in the form of replacement transistors and 

engineering time. Since the mean operation point of 3G systems is around 7dB 

backed off from peak power, the probability o f this occurring over time becomes
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significantly greater. To mitigate this from occurring, it is necessary to first 

understand how this can occur within the Doherty amplifier to then aid in 

providing an effective solution.

To begin with, the scenario identified in Chapter 9 is discussed further. The 

dynamic load lines o f the optimised auxiliary settings are shown in Fig. 11-2. In 

this case the peak voltage swing is at the transition point at which the auxiliary 

device should turn on and start load pulling the main device. As no gate voltage 

control is applied, the asymmetric power splitter starts to drive the auxiliary 

device at a lower than desired input power level. This starts to generate drain 

current, whilst operating at a high impedance, resulting in the generation of high 

voltages. Such a scenario is possible in reality, as the incorporation of an 

asymmetric power splitter has resulted in many successful designs [70]. In 

addition, the optimising process can lead to higher gate voltage settings where 

output power and efficiency will be seen as the key driving factors. One possible 

solution to this would be to adopt an adaptive gate bias approach as highlighted 

in [73], where the gate voltage will only turn up at the correct power level. 

However, due to the increasing modulation frequencies and bandwidths, the 

design complexity makes it very similar to the difficulties encountered in 

envelope elimination and restoration and envelope tracking.

1000-r

800 - -

6 0 0 - -<
E Vbr
C
I
d

4 0 0 - -

200

40 60 80200
Voltage (V)

Fig. 11-2 -  Dynamic load lines at the Igen plane o f  the emulated auxiliary device
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The majority o f Doherty amplifiers designed in industry are intended for 

extended operation beyond the classical designs of 6 dB. As discussed earlier, 

these designs require the auxiliary device to inject current levels greater than the 

main device. For this to occur, ideally the auxiliary device should be of a larger 

periphery. In reality, the same device is used and a compromise in performance 

is achieved, where the auxiliary device turns on earlier to achieve an early peak 

value in efficiency but reduce in overall efficiency at higher power levels. This 

performance is deemed to be more beneficial as the amplifier will be operating at 

back off for the majority o f its life. However, the reliability repercussions could 

be significant and need to be further explored.
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A 1  - S m a l l  S i g n a l  V e r i f i c a t i o n  o f  C h a r g e  C o n s e r v a t i v e  
M o d e l

The small signal model is verified against measured data taken at the input and 
output ports of the device. This is achieved using a broadband TRL calibration. 
The verification process is done in two stages, the first stage involves cold FET 
measurements to analyse the passive performance match. The second stage looks 
at the active device performance with the device biased at 5mA/mm.

A 1.1 - C old  FE T  M easurem en ts

frea . Hz frea . Hz
(a) (b)

Fig. A 2  -  Measured and modelled s-parameters, (a) S21, (b) S22

Good match between the model and measurements. Now looking at the vector 
based measurements. There is some discrepancy in S ll and S22 around 9.5 
GHz.
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Fig. A 1 Measured and modelled s-parameters, (a) SI 1, (b) S I2
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fre q =  2 .100G H z \
S m o d e l(1 ,1 )= 0 .9 6 7  / -141 
im p e d a n c e  = ZO * (0 .0 1 9

m 2 \ T “
fre q = 2 .1 0 0 G H z  \
S m e a s ( 1 ,1 ) = 0 .9 5 9 / -1 4 2 .7 5 4  \
im p ed an c e  = ZD * (0 .0 2 3  - j0 .3 3 7 )'

freq (900.0MHz to 9.900GHz) r̂ec1 (9 0 0 .0 M H z  to  9 .9 0 0 G H z )

(a) (b)
Fig. A 3 Measured and modelled s-parameters, (a) SI 1, (b) S 12

S21 S 22

f re q = 2 .1 0 0 G H z  \
S m o d e l(2 ,2 )= 0 .9 0 5  / - 1 4 2 .9 4 6  
im p e d a n c e  = Z 0  * (0 .0 5 6  -  j0 .3 3 4 )

f re q = 2 .1 0 0 G H z  
S m e a s ( 2 ,2 ) = 0 .8 8 9  /  -1 4 3 .6 0 2  
im p e d a n c e  = Z 0  * (0 .0 6 5  - j0 .3 2 8 )

^ 0 1 ^ 0 0 2 / 0  03 -0 04 -CL

freq  (9 0 0 .0 M H z  to  9 .9 0 0 G H z )

(a)
freq (900.0MHz to 9.900GHz)

(b)
Fig. A 4 -  Measured and modelled s-parameters, (a) S21, (b) S22

Good vector based match in all cases. Slight discrepancy in S I2.
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A 1.2- B iased S -p aram eters

11. Future Work

freq (900.0MHz to 9.900GHz)

m3 m4
freq=2.100GHz freq=2.100G H z
SM eas(1 ,1 )=0.958 / -166.276 S (1 ,1 )= 0 .9 6 2 / -166 .644
impedance = Z0 * (0.022 - j0 .120) impedance = Z0 * (0 .020  - j0 .1 17]

Fig. A 5 Measured and modelled SI 1

CN
^  _________

-0.020 -0.015 -0.010 -0.005 0.( 00 0.005 0.010 0.015 0.020

freq (900 .0M H z to 9 .900G H z)

Fig. A 6 -  Measured and modelled S12
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c \i^

M

freq (900.0MHz to 9.900GHz)

Fig. A 7 Measured and modelled S 21

SK*raCi.
S</)

freq (900.0MHz to 9.900GHz)
m7 m8
freq=2.100GHz freq =2.100GHz
SMeas(2,2)=0.931 /-142.666 S (2 ,2)=0.910/-140.826
impedance = Z0 * (0.040 - j0.337) impedance = Z0 * (0.053 - j0.355)

Fig. A 8 -  Measured and modelled S22

As outlined earlier there is a good match between the model and measurments. 
The model is predicting slightly more gain than what has been measured.
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A2 - Simplification of a 3-port Network for Successful 
De-embedding

Due to the nature o f transmission and ABCD parameters, it is not possible to 
convert the 3 port s-parameter data into either o f these invertible formats. 
Directly inverting s-parameters does not solve the problem due to the 
relationship of s-parameters to the characteristic impedance of the system. 
Transmission and ABCD parameters do not have this link with the characteristic 
system impedance but it is not possible to define a three port transmission or 
ABCD matrix.. One possible solution is to split the 3 port file into three 2 port 
matrices but this did not reproduce the same results as the original 3 port file. For 
this reason an alternative approach is required and this is outlined below.

Start with generic 3 port s-parameter matrix

(A) 1
V

i

5
* sa

1
Cl

o
f

1
ja

i

= A, s22 A , a z

A . A . sa S 3 3  _

Assuming the structure is symmetrical, i.e.

511 =S22

S31 = S32 = S23 = S13

512 = S21

Then al = a2 and bl = b2

V A . s a - 
1 i

o
'

i

= A i ^ 2 2 a i

A . A . S n S 3 3  _ _ * 3 _

(A) 2 

(A) 3 

(A) 4

(A) 5

Take two of the equations out of three and then insert back into matrix form to 
produce a simplified 2 port file.

*̂11 + *̂12 1̂3 
*̂31 + *̂32 *̂33

a.
a,

(A) 6

Now the matrix can be converted into transmission or ABCD parameters for 
inversion and then re-converted into s-parameters.


