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ABSTRACT

In the real world, there are many problems requiring the best solution to satisfy 

numerous objectives and therefore a need for suitable Multi-Objective 

Optimisation methods.

Various Multi-Objective solvers have been developed recently. The classical 

method is easily implemented but requires repetitive program runs and does not 

generate a true “Pareto” optimal set. Intelligent methods are increasingly 

employed, especially population-based optimisation methods to generate the 

Pareto front in a single run.

The Bees Algorithm is a newly developed population-based optimisation 

algorithm which has been verified in many fields. However, it is limited to 

solving single optimisation problems. To apply the Bees Algorithm to a Multi- 

Objective Optimisation Problem, either the problem is converted to single 

objective optimisation or the Bees Algorithm modified to function as a Multi- 

Objective solver.

To make a problem into a single objective one, the weighted sum method is 

employed. However, due to failings of this classical method, a new approach is 

developed to generate a true Pareto front by a single run.



This work also introduces an enhanced Bees Algorithm. A new dynamic 

selection procedure improves the Bees Algorithm by reducing the number of 

parameters and new neighbourhood search methods are adopted to optimise the 

Pareto front.

The enhanced algorithm has been tested on Multi-Objective benchmark functions 

and the classical Environmental/Economic power Dispatch Problem (EEDP). 

The results obtained compare well with those produced by other population- 

based algorithms.

Due to recent trends in renewable energy systems, it is necessary to have a new 

model of the EEDP. Therefore, the EEDP was amended in conjunction with the 

Bees Algorithm to identify the best design in terms of energy performance and 

carbon emission reduction by adopting zero and low carbon technologies. This 

computer-based tool supports the decision making process in the design of a 

Low-Carbon City.
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1 INTRODUCTION

1.1 Motivation

In the real world, there are many problems requiring the best solution to satisfy 

numerous objectives where single-objective optimisation is not ideal, hence the 

need for methods such as Multi-Objective Optimisation (MOO) to solve these 

problems. MOO (also called multi-criteria optimisation, multi-performance or 

vector optimisation) can then be defined according to Coello et al. (Coello et al. 

2007) as the search for:

a vector of decision variables which satisfies constraints and optimises a 

vector function whose elements represent the objective functions. These 

functions form a mathematical description of performance criteria which 

are usually in conflict with each other. Hence, the term “optimise” means 

finding such a solution which would give the values of all the objective 

functions acceptable to the decision maker (Coello et al. 2007, p. 5).

The solution to Multi-Objective Optimisation Problems (MOOPs) has been a 

challenge to researchers for a long time. Despite the considerable variety of 

techniques developed in Operations Research (OR) and other disciplines to 

tackle this problem, the complexities of its solution calls for alternative
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approaches such as the population-based Genetic Algorithm (GA). This 

algorithm has been motivated mainly to solve a Multi-Objective Optimisation 

Problem (MOOP) because it allows the generation of several elements of the 

Pareto optimal set (i.e., the set of solutions that are Pareto “efficient”, in other 

word, solutions for which the value for no objective function could be improved 

without causing those of the remaining objective function to worsen) in a single 

run. The complexity of some MOOPs (i.e., very large search spaces, uncertainty, 

noise, disjointed Pareto curves, etc.) may prevent the use (or application) of 

traditional OR MOOP-solution techniques.

Recently, other population-based algorithms such as Particle Swarm 

Optimisation (PSO), Ant Colony Optimisation (ACO) and Artificial Immune 

System (AIS) have been employed to solve MOOPs. While PSO is becoming 

popular, ACO and AIS have not yet seen many applications. More recently, the 

Bacteria Foraging Algorithm (BFOA) and the Bees Algorithm have received 

attention as possible new tools for Multi-Objective Optimisation.

The Bees Algorithm (Pham et al. 2005) is an intelligent optimisation tool which 

is inspired by the natural foraging behaviour of honey bees. The algorithm 

employs a combination of global exploration and local exploitation. However, 

the Bees Algorithm was basically developed for solving a Single-Objective
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Optimisation Problem (SOOP) and it requires a large number of parameters to be 

correctly set before it can be run.

This work introduces a number of ways to solve Multi-Objective problems using 

the Bees Algorithm. It also proposes different improvements to the Bees 

Algorithm as a Multi-Objective solver such as reducing the number of 

parameters needed to run the algorithm. Additional neighbourhood search 

techniques are also developed in order to enhance the Pareto optimal set.

1.2 Research Aim and Objectives

The aim of this research is to evaluate and validate the Bees Algorithm as a 

Multi-Objective solver. The specific objectives are to:

• Survey current population-based Multi-Objective solvers

• Develop new forms of the Bees Algorithm

o To make the algorithm suitable for a MOOP 

o To enhance the Bees Algorithm by reducing the number of 

parameters necessary to run it 

o To enhance the Pareto optimal set
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• Apply the proposed optimisation algorithms to different categories of 

continuous optimisation problems and compare the results obtained with 

other optimisation methods

• Design a multi-fuel energy system for a Low-Carbon City and optimise it 

using the proposed Bees Algorithm

To achieve these objectives, the following methodologies were adopted.

Literature review: the most relevant population-based optimisation algorithms 

will be reviewed in both the basic and Multi-Objective versions. Their 

advantages and disadvantages will be discussed, helping to lay the groundwork 

for the research.

Experiments: The performance of the new versions of the algorithm will be 

evaluated by computer simulation to solve a number of Multi-Objective 

problems. In each case, performance measures will be computed to assess the 

effectiveness of the new methods and comparisons with traditional methods will 

also be carried out.
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1.3 Outline of the Thesis

The thesis is organised as follows.

Chapter 2 begins by laying out the definitions of Multi-Objective problems and 

Pareto optimality. MOOP solvers are enumerated as classical methods and 

intelligent methods. The chapter then provides an overview of the population- 

based Multi-Objective algorithms currently available such as the most popular 

Multi-Objective Evolutionary Algorithms (MOEAs) in Pareto ranking, ACO, 

PSO, AIS, BFOA and the Bees Algorithm. Their advantages and disadvantages 

are briefly discussed.

Chapter 3 describes a Multi-Objective version of the Bees Algorithm adopting 

the weighted sum method. Three different versions of the Bees Algorithm are 

introduced. The proposed algorithms are tested on two different applications: 

nonlinear power system optimisation (the Environmental/Economical Dispatch 

Problem: EEDP) and optimisation of benchmark mathematical functions. Their 

results are compared with those of other optimisation techniques.

Chapter 4 presents a globally and locally enhanced Multi-Objective version of 

the Bees Algorithm with a reduction in the number of parameters needed to run 

the algorithm. In order to enhance the Pareto optimal set by local enhancement of
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the Bees Algorithm, three different types of neighbourhood search methods are 

introduced. The proposed algorithms are also applied to both the EEDP and 

optimisation of benchmark mathematical functions for their validation. Their 

results are also compared with those of other optimisation techniques.

Chapter 5 presents the application of an enhanced version of the Bees 

Algorithm to the design of a ‘Low-Carbon City’. The algorithm is modified for 

three different techniques to satisfy constraints on the balance of power and heat.

Chapter 6 presents the main contributions of this research and suggestions for 

future work in this field.
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2 MULTI-OBJECTIVE OPTIMISATION 

USING SWARM-BASED OPTIMISATION 

ALGORITHMS

2.1 Multi-Objective Optimisation (MOO)

The majority of optimisation problems require the simultaneous optimisation of 

more than one objective function and it is unlikely that the different objectives 

would be optimised by adopting the same set of parameters. The goal of Multi- 

Objective Optimisation (MOO) algorithms is to generate trade-offs between 

objectives. Exploring all these trade-offs is particularly important because it 

provides the system designer/operator with the ability to understand and evaluate 

the different choices available to them.

The general Multi-Objective (MO) problem requiring the optimisation of N  

objectives may be formulated as follows (Lee and El-Sharkawi 2008; Ngatchou 

et al. 2005):

Minimise

y  = f {*)= L / i  ( * ) > / 2 ( *  ) > • • • > / * ( *  ) f  E(»-21

subject to s M ) < 0 , j  = \ X - M ,  

where
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x = [x1,jc2,---,jcJ7' e Q .

y : objective vector 

g j : constraints

x : P-dimensional vector representing the decision variables within a 

parameter space £2 

Q : parameter space

The utopian solution is the solution that is optimal for all objectives and it is 

formulated as follows:

for ze {l,2,*

• N= 1: Single-Objective (SO) problem, utopian solution = global optimum

(always exists, even if it cannot be found)

• N>\: The utopian solution does not generally exist rather, there are non­

dominated solutions

To compare candidate solutions to MO problems, the concept of Pareto 

dominance and Pareto optimality are commonly used. Pareto (Pareto 1906), cited 

in (Kim and de Week 2005), introduced the concept of non-inferior solutions in 

the context of economics and Stadler (Stadler 1979, 1984), cited in (Kim and de 

Week 2005), began to apply the notion of Pareto optimality to the field of

Eq. 2.2
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engineering and science in the 1970s. A solution belongs to the Pareto set if there 

is no other solution that can improve at least one of the objectives without

degrading any other objective. Formally, a decision vector u = [ * q , « 2 , • • • , « / >  F

is said to be a Pareto-dominated vector v = [ v \ , v 2 , v p Y  > in a 

minimisation context, if and only if:

Vz'e {l,--sW },/ . ( « ) < /.(v ) , and 3j e {l,--*,A},/(w)< f t(v\  Eq.2.3

In the context of MOO, Pareto dominance is used to compare and rank decision 

vectors: u dominating v means in the Pareto sense that F(u)  is either better than 

or the same as F(v)  for all objectives, and there is at least one objective function 

for which F ( w )  is strictly better than f ( v ) .

A solution a is said to be Pareto optimal if and only if there does not exist 

another solution that dominates it. The corresponding objective vector f ( 5 ) is 

called a Pareto dominant vector, or non-inferior or non-dominated vector. All the 

Pareto optimal solutions are known as the Pareto optimal set. The corresponding 

objective vectors are said to be on the Pareto front. Figure 2.1 depicts the Pareto 

concept for a bi-objective minimisation problem.
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2.2 Multi-Objective solvers

Solving MO problems has evolved over time. Initial classical approaches 

essentially consisted o f  converting the MO problem into a SO problem 

which can be solved using traditional scalar optimisation techniques. 

Population-based intelligent methods have more recently been used, which 

allows direct generation of trade-off curves in a single run. Taxonomy of MO 

solvers is shown in Figure 2.2.

2.2.1 Classical methods

Classical approaches have been used to convert an MO problem into an SO 

problem by either aggregating the objective functions or optimising the most 

important objective and treating the others as constraints which are geared 

towards finding a singe solution. In order to generate a trade-off curve, the 

solution procedure has to be reapplied after modifying the aggregation modalities 

or design criteria. Although there are many classical methods, the weighted sum 

method is the simplest approach and probably the most widely used. Therefore 

only the weighted sum method is reviewed here.
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Decision Space Objective Space 

Feasible space

better Pareto Front 
►

Minimise f i ,  f2

• Objective space: spanned by the objective vectors

• Feasible space: the subspace of the objective vectors that satisfies 

the constraints

Figure 2.1 Illustration of the Pareto concept for a bi-objective optimisation

problem
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2.2.1.1 Weighted sum method

The weighted sum method scalarizes a set of objectives into a single objective by 

pre-multiplying each objective with a user-supplied weight (Deb 2001). 

Although the idea is simple, the challenge is determining what values of the 

weights to use. It depends on the importance of each objective in the context of 

the problem and also a scaling factor. The utility function of this method is a 

linear combination of the objectives:

Minimise Wj f j (*) with > 0  and ^ = 1, Eq. 2.4
7=1 7=1

where the weights ( w; ) are chosen to reflect the relative importance the Decision 

Maker (DM) attaches to each of the N  objectives.

In order to generate a trade-off curve with the weighted sum method, (Kim and 

de Week 2005) developed the Adaptive Weighted-Sum (AWS) method. This 

focuses on unexplored regions by changing the weights adaptively rather than by 

using prior weight selections and by specifying additional inequality constraints. 

It produced well-distributed solutions, found Pareto optimal solutions in non- 

convex regions and neglected non-Pareto optimal solutions.
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2.2.2 Intelligent methods

Due to the complexity of real-world optimisation problems such as ill-defined 

functions and non-differentiability, it is virtually impossible to find exact 

algorithms. For these types of problems, meta-heuristics are a practical way to 

generate acceptable solutions, even though they cannot guarantee optimality. 

Several variants of meta-heuristic algorithms exist including single-point 

stochastic search algorithms (e.g., simulated annealing (Kirkpatrick et al. 1983; 

Pham and Karaboga 1999)) and population-based algorithms. However, only 

population-based algorithms are reviewed here.

2.2.2.1 Population-based Multi-Objective solvers

This section presents some popular population-based MO algorithms. Recent 

studies on Evolutionary Algorithms have shown that population-based 

algorithms are potential candidates to solve MOOPs. They can be efficiently 

used to eliminate most of the difficulties with classical single objective methods 

such as sensitivity to the shape of the Pareto front and the necessity of multiple 

runs to find multiple Pareto solutions. Although the majority are based on 

Evolutionary Algorithms (EAs), the most recent are inspired from swarm 

intelligence such as Ant Colony Optimisation (ACO) (Dorigo et al. 1996), 

Particle Swarm Optimisation (PSO) (Eberhart and Kennedy 1995; Kennedy and 

Eberhart 1995), Artificial Immune Systems (AIS) (Forrest et al. 1994), Bacteria
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Foraging Optimisation Algorithm (BFOA) (Passino 2002) and the Bees 

Algorithm (Pham et al. 2005).

The general structure of population-based MO solvers is similar to those used for 

SO solvers. However, three different steps are adopted to solve MOOPs.

1) fitness assignment controls convergence, of which there are three 

methods: aggregation-based, criterion-based and Pareto-based. O f these 

the Pareto-based fitness assignment is the most popular and efficient 

technique. Figure 2.3 shows how to generate a Pareto front using 

population-based techniques.

2) diversity mechanisms such as niching are included to determine an 

individual’s fitness in order to prevent premature convergence to a region 

of the front.

3) a form of elitism is applied to prevent the problem deteriorating to the 

point where dominant solutions may disappear from one generation to the 

next.
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Figure 2.3 Pareto front generation using population-based techniques
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2.2.2.1.1 Genetic Algorithms (GAs)

The concept of GA’s developed by (Goldberg 1989; Holland 1992) in the 1970s 

was inspired by the Darwin’s evolutionist theory explaining the origin of species. 

In nature, while weak and unhealthy species are faced with extinction by natural 

selection, the strong or healthier have a greater opportunity to pass their genes on 

to future generations via reproduction. In the long run, species carrying the 

correct combination in their genes become dominant in their population. 

Sometimes, during the slow evolutionary process, random changes may occur in 

genes. If these changes provide additional advantages in the challenge for 

survival, new species evolve from the old ones, but unsuccessful changes are 

eliminated by natural selection. In GA terminology, a solution vector is called a 

chromosome which consists of discrete units called genes and a collection of 

chromosomes which is called a population. In the original implementation of GA 

by Holland, genes are assumed to be binary digits. However, in later 

implementations, more varied gene types have been introduced. Normally, a 

chromosome corresponds to a unique solution in the solution space and it 

requires a mapping mechanism called an encoding mechanism between the 

solution space and the chromosomes. Figure 2.4 illustrates a simplified flowchart 

of GA in which the population is normally randomly initialised. As the search 

evolves, the population eventually converges, which means that it is dominated 

by a single solution. GA uses two operators to generate new solutions from 

existing ones:
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1) Crossover is the most important operator in GA. Generally, two 

chromosomes, called parents, are combined together to form a new 

chromosome called offspring. The parents are selected from existing 

chromosomes in the population with a preference towards fitness so that 

their offspring are expected to inherit good genes. By iteratively applying 

the crossover operator, genes of good chromosomes are expected to 

appear more frequently in the population, eventually leading to 

convergence to an overall good solution.

2) Mutation introduces random changes into the characteristics of 

chromosomes, which are generally applied at the gene level. In typical 

GA implementations, the mutation rate (the probability of changing the 

properties of a gene) is very small, and depends on the length of the 

chromosome. Therefore the new chromosome produced by mutation will 

not be very different from the original one. However, it plays a critical 

role in GA because it reintroduces genetic diversity back into the 

population and assists the search to escape from local optima.

Reproduction involves the selection of chromosome for the next generation. 

There are different selection procedures in GA depending on how the fitness 

values are used. Proportional, ranking and tournament selection are the three 

most popular selection procedures.
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GA for Multi-Objective Optimisation Problems

GA is well suited to solve MOOPs as a population-based approach. The 

crossover operator in GA may exploit the structure of good solutions with 

respect to different objectives to create new non-dominated solutions in 

unexpected parts of the Pareto front. A GA does not require the user to prioritise, 

scale or weigh objectives, therefore it has become the most popular heuristic 

approach to Multi-Objective design and optimisation problems. (Jones et al. 

2002) reported that 90% of the approaches to Multi-Objective optimisation 

aimed to approximate the true Pareto front for the underlying problem. A 

majority of these used a meta-heuristic technique and 70% of all meta-heuristics 

approaches were based on evolutionary approaches. (Deb 2001) and (Coello et al. 

2007) are well documented regarding various versions of Multi-Objective GAs 

and their applications. In addition, (Guliashki et al. 2009; Konak et al. 2006; Lee 

and El-Sharkawi 2008) aptly summarised them. Figure 2.5 shows a GA for 

MOOPs according to their work.
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Figure 2.5 Genetic Algorithm for Multi-Objective Optimisation Problems



• Non-elitist Multi-Objective Evolutionary Algorithms

o Vector-Evaluated Genetic Algorithm (VEGA): (Schaffer 1984) suggested 

VEGA as the first implementation of a real Multi-Objective Evolutionary 

Algorithm in 1984. He separated the selection method for each individual 

objective to fill up a portion of the mating pool, which meant that each 

subpopulation is evaluated with respect to a different objective. Then, the 

entire population is thoroughly shuffled to apply crossover and mutation 

operators.

o Multi-Objective Genetic Algorithm (MOGA): (Fonseca and Fleming

1993) proposed MOGA in 1993, which is the simple extension of a single 

objective GA. The main concept is that all non-dominated individuals are 

assigned the same highest possible fitness value, while dominated ones 

are penalised according to the population density of the corresponding 

region.

o Niched-Pareto Genetic Algorithm (NPGA): (Horn et al. 1994) 

propounded NPGA which uses a tournament selection scheme based on 

Pareto dominance. The basic idea of NPGA is: two individuals are 

randomly chosen and compared against a comparison subset (typically 

around 10% of the population) from the entire population. When one 

candidate is dominated by the set and the other is not, the latter is selected. 

If neither or both candidates are dominated, fitness sharing is used to 

decide selection.
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o Non-dominated Sorting Genetic Algorithm (NSGA): (Srinivas and Deb

1994) postulated NSGA based on several layers of classifications of the 

individuals. Before selection is performed, the population is ranked on the 

basis of non-domination. However, it is not very efficient because Pareto 

ranking has to be repeated over and over again.

• Elitist Multi-Objective Evolutionary Algorithms: The elitist Evolutionary 

Multi-Objective Optimisation (EMOO) methodologies include an elite- 

preservation mechanism in their procedures. The non-elitist EMOO algorithms 

do not use such a mechanism and usually perform worse than the elitist 

algorithms. In the context of Multi-Objective optimisation, elitism usually, 

(although not necessarily), refers to the use of an external population (also 

called secondary population) to retain the non-dominated individuals found 

along the evolutionary process. Following the theory offered by (Zitzler and 

Thiele 1999), most researchers began to incorporate external populations in 

their EMOO algorithms and the use of this mechanism became common 

practice.

o Non-dominated Sorting Genetic Algorithm-II (NSGA-II): (Deb et al. 

2002) introduced NSGA- II as an improved version of NSGA. It adopts a 

Crowding Distance mechanism for diversity. Its elitist mechanism 

combines the best parents with the best offspring obtained, instead of 

using an external memory.
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o Strength Pareto Evolutionary Algorithm (SPEA): (Zitzler and Thiele 

1999) introduced SPEA which uses an archive containing non-dominated 

solutions previously found (the so-called external non-dominated set). At 

each generation, non-dominated individuals are copied to the external 

non-dominated set. For each individual in this external set, a strength 

value is computed. The fitness of each member of the current population 

is computed according to the strengths of all external non-dominated 

solutions that dominate it. Although this approach does not require a 

niche radius, its effectiveness relies on the size of the external non- 

dominated set. If its size grows too large, it slows down the search 

procedure.

o Strength Pareto Evolutionary Algorithm 2 (SPEA 2): This was also 

developed by (Zitzler and Thiele 1999) to address some of the major 

drawbacks of SPEA. It has three main differences with SPEA:

1) It incorporates a fine-grained fitness assignment strategy which takes 

into account for each individual the number of individuals that 

dominate it and the number of individuals by which it is dominated.

2) It uses a nearest neighbour density estimation technique which guides 

the search more efficiently.

3) It has an enhanced archive truncation method that guarantees the 

preservation of boundary solutions.
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o Pareto Archived Evolution Strategy (PAES) algorithm: (Knowles and 

Come 2000) introduced PAES consists of a 1+1 evolution strategy (i.e., a 

single parent that generates a single offspring) in combination with a 

historical archive that records the non-dominated solutions previously 

found. The role of the external archive is limited to storing the non- 

dominated solutions and provides a source of comparison for ranking 

candidate solutions. However, archive members are not involved in the 

mutation and crossover procedures. The interesting feature of this 

algorithm is in the adaptive grid at the heart of its diversity and niching 

mechanisms. The objective space is divided in a recursive manner, thus 

creating a multi-dimensional co-ordinate system, or grid, over the 

objective space. A crowding-based fitness sharing mechanism is applied 

by determining the location of solutions within this grid and estimating 

the density of solutions per cell. Individuals corresponding to solutions in 

the less crowded cells have higher fitness, 

o Pareto Envelope based Selection Algorithm (PESA): (Come et al. 2000) 

suggested PESA which combines the good aspects of SPEA and PAES. 

Like SPEA, PESA carries two populations (a smaller EA population and 

a larger archive population). Non-domination and the PAES crowding 

concept are used to update the archive with the newly created child 

solutions.
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2.2.2.1.2 Ant algorithm

The Ant System (AS) developed by (Dorigo 1992) was the original ant algorithm. 

Since then several improvements to the Ant System have been devised. It was 

inspired by colonies of real ants that deposit a chemical substance on the ground 

called pheromone. This substance influences the behaviour of the ants as they 

tend to take those paths where there is a larger amount of pheromone. 

Pheromone trails can thus be seen as an indirect communication mechanism 

among ants. Three main ideas from actual ant colonies that have been adopted 

are:

• Indirect communication through pheromone trails

• Shortest paths tend to have a greater pheromone growth rate

• Ants have a higher preference (with a certain probability) for paths that 

have a larger quantity of pheromone

Ant Colony Optimisation (ACO) was introduced by (Dorigo et al. 1996) as a 

novel nature-inspired metaheuristic for solving combinatorial optimisation 

problems such as the Travelling Salesman Problem (TSP) which entails the cost 

function to be minimised. The simple ACO can be stated as given by (Bonabeau 

et al. 1999; Camazine et al. 2003; Dorigo and Stutzle 2004; Engelbrecht 2006): 

A combinatorial optimisation problem entails the cost function to be minimised. 

A candidate solution is defined as a sequence of parameters visualised as a path 

through several nodes. Each node corresponds to one of the solution’s
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parameters. Moving from one node (z) to another (/) is carried out by the 

probability (Eq. 2.5).

where

transition probability 

Ty : posterior effectiveness of the move from node z to node j ,  as expressed 

in the pheromone intensity of the corresponding link (z',y) 

rjy: prior effectiveness of the move from z to j  (i.e., the attractiveness or

desirability of the move) and it is computed using some heuristic 

a : parameter to control the influence of Ty

f t : parameter to control the influence of rjtJ

N- : set of feasible nodes for ant k when located on node z

The pheromone concentrations, Ty, indicate how profitable it has been in the

past to make a move from z to j \  serving as a memory of previous best moves. 

Pheromone evaporation is implemented as given in Eq. 2.6. After completion of 

a path by each ant, the pheromone on each link is updated according to Eq. 2.7.

Eq. 2.5

0
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Tij (0 <- (! -  P^ij (t) with p  g [0,1] Eq. 2.6

The constant, p , specifies the rate at which pheromone evaporates, causing ants 

to ‘forget’ previous decisions controlling the influence of search history. For 

example, if p  is a large value, pheromone will evaporate rapidly and vice versa. 

The greater the evaporation, the more random the search becomes which means 

that it is facilitating a better exploration. When p  = 1, the search is completely 

random.

r„(' + l)= r,,(0 + A r„(r) Eq. 2.7

A rf (/) = 2 > r ‘ (r) Eq.2.8
k = \

where

nk: number of ants

A t* (/): amount of pheromone deposited by ant k on link (i,j) at time step 

t.

Figure 2.6 illustrates the flowchart of ACO for solving combinatorial problems. 

ACO for Multi-Objective Optimisation Problems

The first implementations of ACO algorithms utilised only one colony of ants to 

construct solutions. However, multiple colony algorithms have been adapted to 

use multiple colonies, with the main objectives of mitigating stagnation and
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minimising the chances of being trapped in local minima. Multiple colonies have 

also been used to solve MOOPs and it was one of the first applications of 

multiple colony ACO. MOOPs are solved by assigning to each colony the 

responsibility of optimising one of the objectives. If nc objectives need to be 

optimised, a total of nc colonies are used. Colonies cooperate to find a solution 

that optimises all objectives by sharing information about the solutions found by 

each colony. (Tippachon and Rerkpreedapong 2009) adopted this Multiple Ant 

Colony System (MACS) for the optimal placement of switches and protective 

devices in electrical power distribution systems. (Colson et al. 2009) also 

employed this algorithm for solving a Micro-Grid (MG) Multi-Objective power 

management problem.

Another version of ACO for solving MOOPs is Population-based ACO (PACO) 

which was introduced by (Guntsch and Middendorf 2002). (Angus 2007) applied 

this algorithm to Multi-Objective function optimisation. The defining difference 

between PACO and canonical ACO algorithms is the method used for storing 

solutions. Most traditional ACO algorithms store solution information from an 

(artificial) ant in a pheromone matrix only, PACO stores solutions in a 

population and then uses this population to make adjustments to the pheromone 

matrix. However, PACO still uses the core principles of ACO which include 

stepwise construction (solutions are constructed one piece at a time) and the use 

of global information in constructing solutions.
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2.2.2.1.3 Particle Swarm Optimisation (PSO)

Kennedy and Eberhart proposed a population-based stochastic optimisation 

called ‘Particle Swarm Optimisation (PSO)’ in 1995 (Eberhart and Kennedy 

1995; Kennedy and Eberhart 1995) inspired by the collective behaviour of social 

animals such as bird flocking or fish schooling (Engelbrecht 2006; Kennedy et al. 

2001; Van den Bergh 2006). A PSO algorithm maintains a swarm of particles 

and an individual particle, which represents a potential solution, moving through 

a multi-dimensional search space to approach the optima. Figure 2.7 illustrates 

the flowchart for PSO. Initially, the number of particles are randomly created and 

set into motion through the search space (‘Initial population’ in Figure 2.7). A 

particle has its own position and flight velocity, which is constantly adjusted 

during the optimisation process. For a better position (fitness), each particle 

adjusts its position based on its own experiences (personal best: ‘pbest’) as well 

as that of the entire swarm (global best: ‘gbest’) at each generation. Eq. 2.9 

represents the formula to change the position of the particle by adding a velocity, 

^ ( /  + l), to the current position (X ^ t ) ) .  The velocity formula is shown in Eq. 

2 . 10 .

*,.(' + !)= * , ( 0 + ^  + 1) Eq.2.9

where

i ( i=  1, 2 , . . . ,  ri): index of individual particles in the swarm 

n : total number of particles in the swarm
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t: discrete time steps

X t{t + l) : updated position of particle i at next step (/+1) which is 

calculated using the current position with updated velocity 

X t (/): current position of particle i in the search space at step t

Vi( t  +1): updated velocity of particle i at next step (/+1 )

v,j ( ' + 0 = M+Ci'i, (tipbesfj^-x^ {t)\+c2r2] Eq.2.10

where

j  O' -  1 , 2 , . . m): index of dimensional search space 

m : number of dimensional search space

vjy(/ + l): velocity of particle i in dimension j  at step (/+ 1 ) calculated by

using the current velocity and the distance from pbesU to gbestt 

w: inertia weight that controls the impact of previous velocity 

vtj (/): velocity of particle i in dimension j  at step / which is confined to the

range [vmn, ] to control excessive roaming of particles outside

the search space 

xjy(/): position of particle i in dimension j  at step /

ci and eg positive acceleration constants used to scale the contribution of 

the cognitive and social components respectively 

r{j(t) andr2j{t)\ random values in the range [0 ,l] sampled from a uniform

distribution

pbesty (/): personal best position of particle i at step t since the first step 

gbestj(t) : global best position at step /, which is the best position 

discovered by any of the particles to date
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Under the guidance of these two updating rules (Eq. 2.9 and 2.10), the particles 

will proceed toward the best position found so far. This driving force makes the 

PSO algorithm search to find the optimal solutions.

PSO for Multi-Objective Optimisation Problems

The basic PSO cannot be applied directly to solve MOOPs (Engelbrecht 2006). 

This is due to the velocity update equation where the social component causes all 

particles to converge on one point. Changing conventional single objective PSO 

to a Multi-Objective PSO (MOPSO) requires redefining the global best because 

there is no absolute global best in the Multi-Objective PSO procedure, but rather 

a set of non-dominated solutions. Therefore choosing the global best to guide the 

swarm becomes a nontrivial task in the Multi-Objective domain (Abido 2009). 

Many researchers have proposed several PSO-based MO solvers which are 

generally categorised by three methods:

• Aggregation-based methods: One of the simplest approaches to deal with 

MOOPs, is to define an aggregate objective function as a weighted sum of the 

objectives, because uni-objective optimisation algorithms can be applied 

without any changes to the algorithm to find optimum solutions. (Parsopoulos 

and Vrahatis 2002a, b) applied this aggregation method to a number of standard 

benchmarking functions, but there are numerous problems. For example, the
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algorithm has to be applied repeatedly to find different solutions. Even for 

repeated applications, there is no guarantee that different solutions will be 

found. It is also difficult to determine the best weight values because these 

depend totally on the particular problem (Engelbrecht 2006).

• Criterion-based methods: (Parsopoulos and Vrahatis 2002a, b) also developed 

a criterion-based MOPSO for MOOPs with two objectives. With criterion- 

based methods, different stages of the optimisation process use different 

objectives separately instead of considering all objectives simultaneously.

• Dominance-based methods: These make use of Pareto preference to find a set 

of non-dominated solutions. Apart from finding solutions with the best trade­

offs, MOO algorithms should also maintain already found solutions (to ensure 

that they are not lost over time) whilst maintaining diversity of the estimated 

Pareto front. To facilitate diversity and memorisation of located non-dominated 

solutions, dominance-based methods usually use an archive (or repository) to 

store all located non-dominated solutions. These methods are popular among 

researchers therefore there are many versions of MOPSO with various 

applications. For example, some researchers divide the process into multi­

phases to generate the Pareto front. (Mostaghim and Teich 2004) divided the 

process into two phases and they applied it to test functions and antenna design 

problems. In phase 1, the goal is to obtain a good approximation of the Pareto
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front, and in the second, sub-swarms are generated to discover the Pareto front. 

(Kitamura et al. 2005) also sub-divided the Multi-Objective problem into 

partial problems and each partial problem is solved by using MOPSO for Multi- 

Objective energy management systems. Recently MOPSO has been applied to 

solve EEDPs. For example, (Wang and Singh 2006, 2007) developed an 

enhanced PSO which chooses the global best from the fuzzified region using 

binary tournament selection. (Abido 2007, 2009) also proposed MOPSO which 

redefined the global and local best individuals and developed mechanisms for 

the selection of these individuals for the EEDP. In addition, (Cai et al. 2009) 

developed a chaotic MOPSO using 1) an Adaptive Inertia Weight Factor 

(AIWF) to perform global exploration and 2) a Chaotic Local Search (CLS) to 

perform locally oriented search (exploitation).

The greatest advantages of a PSO are its simplicity (both conceptually and at the 

implementation level), its ease of use and its high convergence rate. The 

disadvantages are mainly related to the apparent difficulties to control diversity 

(Coello et al. 2007).

2.2.2.1.4 Artificial Immune System (AIS)

The Artificial Immune System (AIS) is a computational system inspired by the 

principles and processes of the vertebrate immune system. Our immune system 

protects organisms from bacteria, viruses and other foreign pathogens. Its main 

task is to recognise all cells within the body and characterise them into self and
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foreign cells (or antigens). The immune system further characterises foreign cells 

and develops defensive mechanisms against them (i. e., antibodies). If a foreign 

pathogen (i. e., an antigen) enters the body, then the immune system can launch a 

specific response against it. Specialised B cells must interact with Helper T cells 

(specialised white blood cells) to initiate antibody production. Antibodies are 

specific to only one type of antigen, which they immobilise, thus preventing 

infections.

Computationally speaking, the immune system is a parallel intelligent system 

that is able to learn and retrieve previous knowledge (i.e., it has “memory”) in 

order to solve recognition and classification tasks. Due to these interesting 

features, several researchers have developed computational models of the 

immune system to solve various computational problems for mathematics, 

engineering and information technology. AIS began in the mid 1980s with 

(Farmer et al. 1986) and (Bersini and Varela 1991) on immune networks. 

However, it was only in the mid 1990s that AIS become a subject area in its own 

right. (Forrest et al. 1994) and (Kephart 1994) published their first papers on AIS 

in 1994 and (DasGupta 1998) conducted extensive studies on Negative Selection 

Algorithms. Figure 2.8 shows the pseudo code of AIS. The main idea of this 

approach is to construct a population of antigens and a population of antibodies. 

Antibodies are then matched with antigens and a fitness value assigned to each 

antibody (i.e., maximise matching between antigens and antibodies). Finally, a
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conventional Genetic Algorithm is used to replicate the antibodies that best 

match the antigens present.

AIS for Multi-Objective Optimisation Problems

The first direct use of the immune system to solve MOOPs reported in the 

literature is the work of (Yoo and Hajela 1999). This approach uses a linear 

aggregating function to combine objective function and constraint information 

into a scalar value that is used as the fitness function of a GA. The best designs 

according to this value are defined as antigens and the rest of the population as a 

pool of antibodies. (Freschi et al. 2009) gave good reviews regarding Multi- 

Objective Optimisation with Artificial Immune Systems (MOAIS). (Coello et al.

2007) are also well documented regarding MOAIS. More recently, (Tan et al.

2008) developed an Evolutionary Multi-Objective Immune Algorithm (EMOLA) 

to solve several benchmark problems. In order to design an algorithm that is 

capable of exploiting the complementary features of EA and AIS, a few features 

such as archive, an Entropy-based Density Assessment Scheme (EDAS), colonal 

selection and genetic operators are incorporated into the EMOLA.

(Park et al. 2009) also developed a GA-based Immune System to apply to several 

benchmark problems. The main objective of their work is to locate the non- 

dominated Pareto solutions utilising both GA and AIS in the context of a Multi- 

Objective GA. In their design of population, dominated solutions are considered
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Figure 2.8 Pseudo code of Immune System model (fitness scoring)
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as antigens, whereas non-dominated solutions are assigned to antibodies. Affinity 

measures are used to evaluate how many antigens and antibodies are similarly 

matched. A GA-based immune simulation corresponding with a selection or 

reproduction operation used in a conventional GA is also conducted to discover 

new antibodies with a higher degree of non-domination. This results in a positive 

contribution to the identification of Pareto solutions.

(Gao and Wang 2010) developed a Weight-Based Multi-Objective Artificial 

Immune System (WBMOAIS) based on opt-aiNET to several benchmark 

problems. The opt-aiNET algorithm is structured into two nested levels. The 

inner level (exploitation of the fitness landscape) takes into account computing 

the affinity relationship, and stimulating the most promising cells, while the outer 

level (exploration of the fitness landscape) manages the network of cells of the 

system, deleting similar ones and preserving the most promising ones into 

memory.

AIS are relatively simple algorithms with fine properties that make them 

naturally suitable for pattern recognition and classification tasks. Researchers 

have realised that this heuristic can also be successfully adopted for optimisation 

tasks. However, not many researchers have explored this area, since most of the 

current work on Artificial Immune Systems is focused on architecture, models 

and applications not related to optimisation. Although extending an Artificial

40



Immune System can deal with a MOOP, their main weakness is normally the 

additional parameters required (some of which may be difficult to fine tune for 

an arbitrary problem). In fact, some of these parameters may not be obvious at 

first sight (e.g., the proportion of antigens and antibodies in the population, the 

number of clones to be produced, etc.), and can become cumbersome when 

trying to use them (Coello et al. 2007).

2.2.2.1.5 Bacteria Foraging Optimisation Algorithm (BFOA)

BFOA inspired by the social foraging behaviour of bacteria (such as Escherichia 

Coli or E. Coli), has been widely accepted as a global optimisation algorithm. 

Bacteria have the tendency to gather in a nutrient-rich area by an activity called 

chemotaxis. Chemotaxis is cell movement in response to gradients of chemical 

concentrations present in the environment. This movement and the chemical 

substances involved are used by bacteria as a survival strategy that allows them 

to search for nutrients and avoid noxious environments. The chemotactical 

behaviour of bacteria as an optimisation process was modelled for the first time 

by (Bremermann 1974) in the early 1970s. In 2002, a new optimisation algorithm 

based on foraging behaviour of bacteria was introduced by (Passino 2002). This 

novel algorithm which is known as the Bacterial Foraging Optimisation 

Algorithm (BFOA), considers not only the chemotactical strategy but also other 

stages of bacterial foraging behaviour such as swarming, reproduction and 

elimination and dispersal. Bacterial communication acquires great influence on
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the entire process, getting closer to the concept that foraging is a phenomenon of 

a bacterial colony rather than individual behaviour. E. Coli has 8-10 flagella 

placed randomly on a cell body. When all flagella rotate counter clockwise, they 

form a compact, propelling the cell along a helical trajectory, which is called run. 

When the flagella rotate clockwise, they pull on the bacterium in different 

directions, which cause the bacteria to tumble. The three prime steps in BFOA 

are:

Chemotaxis: This process simulates the movement of an E. Coli cell through 

swimming and tumbling via flagella (Liu and Passino 2002). It can alternate 

between these two modes of operation for its entire lifetime. The movement of 

the bacterium in computational chemotaxis is presented by Eq. 2.11.

0 '( / ,£ ,/) :  represents ith bacterium at f h chemotactic, kfh reproductive step

C(i) : size of the step taken in the random direction specified by the tumble 

(run length unit).

Eq. 2.11

where

A : indicates a vector in the random direction whose elements lie in [- l,l]

and f h elimination-dispersal step
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If the cost at O' ( j  + l,k,l) is better than the cost at 6 l (y,&, /), then the bacterium 

takes another step of size C(i) in that direction otherwise it is allowed to tumble. 

This process is continued until the number of steps taken is greater than the 

number of chemotactic loops.

Reproduction: After all chemotactic steps have been covered, a reproduction 

step takes place. The fitness values of the bacteria are sorted in ascending order. 

The lower half of the bacteria with the highest fitness die and the remaining 

healthier bacteria are allowed to split into two identical ones, which are replaced 

in the same location. This keeps the swarm size constant.

Elimination and Dispersal: Since bacteria may get stuck around the initial or 

local optima positions, it is necessary to diversify the bacteria either gradually or 

suddenly so that the possibility of being trapped in a local minimum is eliminated. 

Dispersion takes place after a certain number of reproduction processes. A 

bacterium is chosen according to a probability to be dispersed and moved to 

another position in the search space. These events may effectively prevent a local 

minima trap forming, but can have the undesirable consequence of disrupting the 

optimisation process. Figure 2.9 illustrates the simplified flowchart of BFOA.
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BFOA for Multi-Objective Optimisation Problems

(Guzman et al. 2010) recently developed a novel algorithm based on the 

chemotaxis process of Echerichia Coli to solve several benchmark problems. The 

algorithm used a fast non-dominated sorting procedure, via communication 

between the colony members and a simple chemotactical strategy to change the 

bacterial positions in order to explore the search space to find several optimal 

solutions.

2.2.2.1.6 Bee-inspired Algorithms

During the last decade, the intelligent behaviour of bee swarms has inspired 

researchers to develop new algorithms. Some of these have been utilised as 

algorithms and are illustrated in Figure 2.10. For example, the Marriage Process 

in Honey Bees (MBO) algorithm (Abbass 2001) and the Honey-Bees Mating 

Optimisation (HBMO) algorithm (Haddad et al. 2006) were inspired by the 

mating behaviour of bees. The BeeHive algorithm (Wedde et al. 2004; Xu et al. 

2007) evolved from the communicative and evaluative methods and procedures 

of honey bees. Passino (Passino et al. 2008) was influenced by nest-site selection 

behaviour of honey bees and found numerous similarities in the functional 

organisation of vertebrate brains and honey bee swarms with decision making. 

However, foraging behaviour is the most interesting and numerous algorithms 

have developed from this behaviour such as the Bees System (BS) (Lucic and 

Teodorovic 2001; Sato and Hagiwara 1997), the Bee Colony Optimization
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(BCO) algorithm (Teodorovic and Dell’Orco 2005), the Honey Bee Algorithm 

(Nakrani and Tovey 2004; Tovey 2004), BeeAdhoc (Wedde et al. 2005), Bee 

Swarm Optimisation (BSO) (Drias et al. 2005), the Artificial Bee Colony (ABC) 

algorithm (Karaboga 2005; Karaboga and Basturk 2008), the Virtual Bee 

Algorithm (VBA) (Yang 2005), the Honey bee social foraging algorithms 

(Quijano and Passino 2010), the Honey Bee Foraging (HBF) algorithm (Baig and 

Rashid 2007), the Honeybee search algorithm (Olague and Puente 2006) and the 

Bees Algorithm (Pham et al. 2005). More detailed reviews regarding bee- 

inspired algorithms can be found in (Karaboga and Akay 2009) and (Bitam et al. 

2010).

In this section, only the Bees Algorithm and its applications are considered. 

Table 2.1 shows the list of its applications.
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Bee behaviour Bee-inspired algorithms Application

Mating <
Communicating

Nest selecting

Comb building

Colony thermo 
regulating

Nest defending

Foraging

MBO (Marriage Process in__
Honey Bees) algorithm
HBMO (Honey-Bees Mating. 
Optimisation) algorithm

BeeHive Algorithm

3-SAT problem

Optimal operation policy for 
a single reservoir

Routing problems in packet 
switching networks

(Kevin M Passino, Thomas D Seeley 
and P Kirk Visscher 2008)

BS (Bees System)

BCO (Bee Colony 
Optimisation) algorithm

Honey Bee Algorithm 

BeeAdhoc------------

BSO (Bee Swarm ______
Optimisation)
ABC (Artificial Bee______
Colony) algorithm

VBA (Virtual Bee ____
Algorithm)

Honey bee social ____
foraging algorithms

HBF (Honey Bee Foraging)

Honeybee Search algorithm

The Bees Algorithm  -

Travelling Salesman Problem (TSP) 

Transportation problems

Dynamic allocation of internet services 

Routing in mobile ad hoc networks

Maximum Weighted SATisfiability 
(Max-W-SAT) problem

Continuous optimisation problems

Continuous optimisation problems

Optimal resource allocation problems

Multi-modal functions and benchmark 

Three-dimensional Reconstruction 

Table 2.1

Figure 2.10 Bee behaviour and algorithms
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Applications

Mathematical benchmark function optimisations (Pham and 

Castellani 2009; Pham et al. 2006a)

Mechanical design (Pham et al. 2007b; Pham et al. 2008c; 

Pham et al. 2009b; Pham et al. 2007h)

Control system tuning (Pham et al. 2008b; Pham et al. 2009a; 

Pham et al. 2008d)

Continuous Pattern classifier training (Pham et al. 2006b)
problems

Chemical engineering process (Pham et al. 2008e)

Clustering problems (Pham et al. 2008a; Pham et al. 2007f)

Environmental/Economic Power Dispatch Problems (EEDP) 

(Lee and Haj Darwish 2008)

Spiking Neural Networks (Sahran 2007)

Support Vector Machines (Pham et al. 2007e)

Job scheduling (Pham et al. 2007c)

Combinatorial Manufacturing Cell Formation (Pham et al. 2007a)

problems Printed Circuit Board (PCB) (Pham et al. 2007g)

Feature Selection (Pham et al. 2007d)

Table 2.1 Applications of the Bees Algorithm
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The Bees Algorithm is inspired by the honey bees’ natural foraging behaviour 

(Camazine et al. 2003; Oldroyd and Wongsiri 2006) and it has been developed 

by (Pham et al. 2005, 2006a). Figure 2.11 illustrates the natural food processing 

procedures of honey bees. The food processing procedure in the colony consists 

mainly of two parts; one by middle-aged workers inside the hive (Figure 2.11) 

and the other by foraging bees outside the hive. In the hive, middle-aged workers 

receive the nectar from foragers, which is either distributed for immediate 

consumption or processed into honey and stored in special honey cells. The 

foraging process is conducted by scout bees which are sent to flower patches to 

search for a food source. When they return to the hive, they regurgitate the nectar 

to the middle-aged workers and then assume one of the three following roles: 1 ) 

foraging without advertisement of their found patches, 2 ) foraging with 

advertisement of their findings for recruitment or 3) abandoning their found 

nectar source to exploit new sources. To advertise their findings, bees conduct a 

‘waggle dance’ (Seeley 1996) which contains important information regarding a 

flower patch they have found and it guides unemployed foragers to go precisely 

to the found flower patches. Unemployed foragers have a greater attraction to the 

more lucrative patches thus more bees are sent to the most fruitful sites 

(Camazine et al. 2003). This enables the colony to gather food much quicker and 

more efficiently.
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The Bees Algorithm only adopts the second and third roles. Role 2 is called a 

‘Neighbourhood search’ (or ‘Local search’) and role 3 is called a ‘Random 

search’ (or Global search). A flowchart is shown in Figure 2.12. The algorithm 

requires a number of parameters to be set, namely:

1 ) number of scout bees: n,

2 ) number of sites selected out of n visited sites: m,

3) number of best (or elite) sites out of m selected sites: e,

4) number of bees recruited for the best e sites: we,

5) number of bees recruited for the other (m-e) selected sites: nm and

6 ) patch size which includes the site and its neighbourhood: ngh.

The algorithm starts with the n scout bees being placed randomly into the search 

space. The fitness of each site visited by the scout bees is evaluated and bees 

with the best fit are chosen as ‘selected bees’ and sites visited by them are picked 

for a ‘Neighbourhood search’ (or ‘Local search’) in Figure 2.12. Then, the 

algorithm conducts searches in the neighbourhood of the selected sites, assigning 

the most suitable bees to search in the vicinity of the best sites ( e ). The bees are 

selected directly according to the fitness associated with the sites they are 

visiting. Alternatively, the fitness values are used to determine the probability of 

the bees being selected. Searches in the neighbourhood of the best sites (<e) which 

represent the more promising solutions are enhanced by recruiting more bees to
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follow them than the other selected bees (m-e). Together with scouting, this 

differential recruitment is a key operation of the Bees Algorithm. However, for 

each patch, only the bee with the highest fitness will be selected to form the next 

bee population, although there is no such restriction in nature. This restriction is 

introduced here to reduce the number o f points to be explored. The remaining 

bees in the population are assigned randomly around the search space scouting 

for new potential solutions, called ‘Random search’ (or ‘Global search’) in 

Figure 2.12. These procedures are repeated until a stopping criterion is met.

Refinements to enhance the performance of the Bees Algorithm include:

• (Ghanbarzadeh 2007) introduced the interpolation and extrapolation of 

mating of the unselected bees. He also proposed the shrinking method for 

neighbourhood size by introducing ‘abandon sites without new 

information’ when stuck in a local optimum.

• (Pham and Sholedolu 2008) proposed the hybrid PSO-Bees Algorithm to 

prevent premature convergence in the basic PSO algorithm. He employed 

an adaptive neighbourhood search (shrinking method) and also added 

random particles to conduct a global search.
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• (Haj Darwish 2009) developed an enhanced Bees Algorithm with Fuzzy 

Logic (Zadeh 1965) to reduce the number of parameters. It employed a 

fuzzy greedy system to select local search sites. He further improved the 

Bees Algorithm using the Kalman Filter (Kalman 1960; Russell and 

Norvig 2004), cited in (Haj Darwish 2009), as an alternative to the 

random neighbourhood search to guide worker bees rapidly towards the 

optima of local search sites.

Recently, (Pham and Castellani 2009) compared the effectiveness of the Bees 

Algorithm with that of three state of the art biologically inspired search methods, 

i.e., EA, PSO and ABC algorithm (Karaboga and Basturk 2008). Four algorithms 

were tested on a range of well-known benchmark function optimisation problems 

and the experimental results proved the reliability of the bees foraging metaphor. 

Compared to the other three algorithms, the Bees Algorithm was highly 

competitive in terms of learning accuracy and speed.

The Bee-inspired algorithm for Multi-Objective Optimisation Problems

Although various Bee-inspired algorithms have been developed to solve Single

Objective Optimisation Problems (SOOPs), only three algorithms, the Bees 

Algorithm, ABC algorithm and BCO algorithm, have been employed to solve 

MOOPs. Newly developed algorithms from these three algorithms and their 

applications are as follows:
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• The Bees Algorithm

o (Ghanbarzadeh 2007; Pham and Ghanbarzadeh 2007) introduced 

the Multi-Objective Bees Algorithm to solve the welded beam 

design problem which involves two nonlinear objective functions 

and seven constraints. In his work, the Bees Algorithm requires 

four parameters to be set such as n, m, nm and ngh. However, he 

added two strategies namely ‘shrinking neighbourhood size’ and 

‘abandon sites without new information’ into the basic (or 

standard) Bees Algorithm, which means that it requires at least 

one additional parameter. For example, bees need to decide when 

they will abandon sites. For solving MOOPs, the m non­

dominated sites are designated as ‘selected sites’ for the 

neighbourhood search. If there are more than m non-dominated 

sites in the population, the first m sites will be selected. Contrary 

to this, if there are less than m non-dominated sites, the others will 

be selected from those which have been dominated only once and 

this procedure is repeated until a sufficient number of sites are 

selected. When conducting a neighbourhood search, the 

representative bee in each selected patch will be the original one 

or it is displaced by a new dominant recruited bee, which is the 

same as that for the basic Bees Algorithm. One more step was
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added to create a Pareto set in every iteration as for other swarm 

intelligent algorithms used as a MO solver, 

o (Lee and Haj Darwish 2008) also applied the standard Bees 

Algorithm with the weighted sum method to solve the 

Environmental/Economic Dispatch Problem (EEDP) for power 

systems which involves two objective functions and two 

constraints. This method generates a unique solution (the fittest) 

at the end of the optimisation process. To approximate the Pareto 

front, the algorithm is run numerous times with different weights. 

Although their method obtained better results than other 

approaches in the literature, it is not guaranteed to converge to a 

true Pareto front. Since the number of solutions corresponds to the 

number of repeated runs, the size of the solution set is constrained 

by the algorithm running time, 

o (Sayadi et al. 2009) proposed the Bees Algorithm-assisted Multi 

Objective Optimisation Problem (BAMOP), which is based on 

Pham (Pham and Ghanbarzadeh 2007), for a Multiple Input 

Multiple Output Multi Carrier-Code Division Multiple Access 

(MIMO MC-CDMA) system, 

o (Mohamad Idris et al. 2009) also proposed the Multi-Objective 

Bees Algorithm (MOBA), which is also based on (Pham and 

Ghanbarzadeh 2007), for the optimal allocation of Flexible AC
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Transmission System (FACTS) devices in restructured power 

systems.

o (Leeprechanon and Polratanasak 2010) also proposed the 

Multiobjective Bees Algorithm (MBA), which is based on the 

Bees Algorithm (Pham et al. 2006a), to solve the EEDP. Fuzzy C- 

Means (FCM) clustering (Dunn 1973; Matteucci) was employed 

to find m best solutions for neighbourhood search.

• Artificial Bees Colony (ABC) algorithm

o (Omkar et al. 2011) proposed Vector Evaluated Artificial Bee 

Colony (VEABC) algorithm for Multi-Objective design 

optimisation of composite structures. It is a Multi-Objective ABC 

method inspired by the concept and main ideas of VEGA 

(Schaffer 1985) algorithm and Vector Evaluated Particle Swarm 

Optimisation (VEPSO) (Omkar et al. 2008) algorithm. It is similar 

to two single objective functions being separately evaluated by 

separate artificial bees.

• Bee Colony Optimisation (BCO) algorithm

o (Low et al. 2009) proposed the Multi-Objective Bee Colony 

Optimisation (MOBCO) algorithm to solve ZDT (Zitzler et al. 

2000) series of benchmark problems and Automated Red
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Teaming (ART) which is a technique frequently used by the 

Military Operational Analysis community to uncover 

vulnerabilities in operational tactics, 

o (Zeng et al. 2010) proposed the Autonomous Bee Colony 

Optimisation (A-BCO) algorithm for solving Multi-Objective 

numerical problems. In contrast with BCO algorithm, A-BCO 

utilizes a diversity-based performance metric to dynamically 

assess the archive set.

2.3 Summary

This chapter has reviewed background material relevant to the work presented in 

this thesis. The notations as well as the basic concepts of Multi-Objective 

Optimisation and Pareto optimality were surveyed. Multi-Objective solvers of 

both the classical and intelligent types, in particular population-based 

optimisation algorithms, were discussed. Specific attention was given to the Bees 

Algorithm and its theory, in order to provide general background information for 

the research in subsequent chapters of this thesis.
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3 THE PARETO-BASED BEES ALGORITHM 

WITH MEMORISED SOLUTIONS FOR 

MULTI-OBJECTIVE PROBLEMS

3.1 Preliminaries

This chapter presents a newly developed Pareto-based Bees Algorithm for 

solving Multi-Objective Optimisation Problems (MOOPs). The algorithm is 

tested on two different applications:

1) nonlinear power system optimisation (the Environmental/Economic 

Dispatch Problem: EEDP) and

2) Multi-Objective optimisation of benchmark mathematical functions.

The bees in the new algorithm can ‘remember’ good locations discovered in the 

last harvest season. This memory is introduced to address shortcomings with 

existing techniques for Multi-Objective optimisation. Simulation results are 

compared to those obtained using other approaches to show the effectiveness of 

the proposed Bees Algorithm.

The Section 3.2 describes the two applications: the EEDP and benchmark 

mathematical functions. In Section 3.3, the proposed Pareto-based Bees
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Algorithm with memorised solutions is described. Results are tabulated in 

Section 3.4 and the summary of this work is in Section 3.5.

3.2 Applications

3.2.1 The Environmental/Economic Dispatch Problem (EEDP)

Traditionally, solutions of the classical economic dispatch problem have focused 

on minimising the total fuel cost. However, due to rising public concerns about 

the environmental impact of fossil-fuelled electric power stations, a solution 

based only on the minimisation of the economic cost can no longer be considered 

acceptable. There are several strategies to reduce harmful atmospheric emissions 

such as installing pollution control equipment, switching to low-emission fuels, 

replacing aged fuel-bumers and generators with more efficient ones, and 

emission dispatching (Abido 2006). The first three strategies can involve 

considerable costs. Moreover, due to the time-consuming procedures for the 

installation and modification of equipment, they can be regarded only as long­

term solutions. For these reasons, the emission dispatching strategy has 

represented an attractive short-term alternative in recent years. In this case, the 

economic dispatch problem is re-stated, taking into account emissions as well as 

the fuel costs. As a result, the problem is treated as a Multi-Objective 

optimisation task with non-commensurable and conflicting goals.
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The traditional way of solving a Multi-Objective optimisation problem consists 

of representing the goals via a single-objective (SO) function, and minimising 

this function whilst maintaining the physical constraints of the system (Lee and 

El-Sharkawi 2008). The evaluation result for the candidate solutions is thus 

expressed as a single value reflecting a compromise between the various 

conflicting goals. In the case of the economic dispatch problem, the SO function 

takes the form:

f { x )  =  wr f c(x) +  W2 - f e(x) Eq. 3.1

where x = {x1, .. .,x l?} is an ^-dimensional vector of decision variables

representing a feasible solution. f c and f e are respectively the fuel cost and 

emissions and wy and u>2 are user-defined weights. Although this technique is 

relatively simple to implement, it is not suitable for Multi-Objective applications 

because engineers may need to evaluate the detailed fitness of a solution for all 

the optimisation goals (fc and f e in the economic dispatch problem). In general, 

the set of solutions of a Multi-Objective optimisation problem lies on a hyper­

surface formed by the best trade-offs (or Pareto front) which satisfy the multiple 

conflicting goals. In contrast to aggregation-based methods, intelligent 

techniques such as population-based algorithms are naturally suited to the direct 

generation of a Pareto front. This is because these methods work simultaneously 

to achieve solutions for the individual search objectives, and also evaluate 

multiple potential solutions in a single iteration. Therefore this generated Pareto
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front can help a Decision Maker (DM)/Engineer to know all possible solutions 

throughout the various ranges. However, the challenge for intelligent techniques 

is to guide the search towards the Pareto optimal set whilst maintaining 

population diversity to prevent premature convergence.

Abido (Abido 2003a, b, c, 2006, 2007, 2009) pioneered research into applying 

intelligent Multi-Objective search techniques to the EEDP. He optimised the 

standard IEEE 30-bus system using the Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) (Ah King et al. 2005, 2006), Strength Pareto 

Evolutionary Algorithm (SPEA) (Abido 2003a), and Multi-Objective Particle 

Swarm Optimisation (MOPSO) (Abido 2007, 2009). All the above meta­

heuristic techniques successfully address the limitations of classical approaches 

because they allow concurrent explorations of different points of the Pareto front, 

and also generate multiple solutions in a single run. Their main drawback is 

performance degradation as the number of objectives increases, since there are 

no computationally efficient methods to perform Pareto ranking. Furthermore, 

additional parameters (such as the ‘sharing factor’ and the number of Pareto 

samples) need to be introduced and tailored to suit (Lee and El-Sharkawi 2008).

In this chapter, test runs, utilising the proposed Bees Algorithm, were performed 

on the standard IEEE 30-bus 6 -generator test system using the proposed Bees 

Algorithm. Figure 3.1 shows the test system layout.
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Figure 3.1 Single-line diagram of IEEE 30-bus test system

63



3.2.1.1 Objective functions

The EEDP for power generation requires the simultaneous achievement of two 

objectives:

1) Fuel cost objective

The requirement is to minimise the total fuel cost while satisfying the total 

demand. The equation used to determine the optimal combination for this 

problem is (Ah King et al. 2005):

n : number of generators.

2) NOx emission objective

This objective is necessary to minimise the total NOx emission. The total NOx 

emission created by burning fossil fuels is expressed as:

Eq. 3.2

where

f  : total fuel cost ($/hr),

ai , t ci : fuel cost coefficients of generator /,

*Gi: power output by generator /, and

Eq. 3.3

where

f e : total NOx emission (ton/hr),

aiN, bn , ciN, diN, and e<» are NOx coefficients of the Ith generator emission 

characteristics.
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3.2.1.2 Constraints

Two constraints need to be satisfied:

1) Power balance constraint

The total power generated must supply the total load demand plus the 

transmission losses expressed as:

'ZPai-PD-Pl = 0 Eq. 3.4
/=1

where

pd : total load demand and 

pl : transmission losses.

For this work, pl was assumed to be 0.

2) Generation limits constraint

The power generated P a  by each generator is constrained between its minimum 

and maximum limits stated as:

^ G im in  — ^ G i  ~  ^ G /m a x  E q .  3.5

where 

/>Girmn: minimum power generated by generator /, and
p
G'max: maximum power generated by generator /.

3.2.1.3 Multi-Objective formulation

The Multi-Objective Environmental/Economic Dispatch optimisation problem is 

therefore formulated as:
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Minimise{fc, f e\ Eq. 3.6

n
subject to: £  pG. -  pD = o (power balance), and

/= i

p a m in -  p g , ^  (generation limits).

3.2.1.4 System parameters

The power system is interconnected by 41 transmission lines and the total system 

demand for the 21 load buses is 2.834(p.u.). Fuel cost and NOx emission 

coefficients for this system are given in Tables 3.1 (Yokoyama et al. 1988).

3.2.2 Benchmark mathematical Multi-Objective functions

In order to test the sensitivity of the shape of the Pareto front, the proposed 

algorithm was applied to three different function optimisation problems (Deb et 

al. 2002; Guzman et al. 2010). The equations of Multi-Objective function 

optimisation are shown in Table 3.2. While Schaffer’s function (SCH) is a 

convex function, Fleming’s study (FON) is concave. In addition, both SCH and 

FON have no constraints, while Tanaka et. al.’s study (TNK) is conducted with 

constraints.
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Unit / a i b, c i
P

Gi min PrGi max

1 1 0 2 0 0 1 0 0 0.05 0.50

2 1 0 150 1 2 0 0.05 0.60

3 2 0 180 40 0.05 1 . 0 0

4 1 0 1 0 0 60 0.05 1 . 2 0

5 2 0 180 40 0.05 1 . 0 0

6 1 0 150 1 0 0 0.05 0.60

(a) Fuel cost coefficients

Unit i a iN C iN d i N e iN

1 4.09 le-2 -5.554e-2 6.490e-2 2.0e-4 2.857

2 2.543e-2 -6.047e-2 5.638e-2 5.0e-4 3.333

3 4.258e-2 -5.094e-2 4.586e-2 1 .0 e- 6 8 . 0 0 0

4 5.326e-2 -3.550e-2 3.380e-2 2.0e-3 2 . 0 0 0

5 4.258e-2 -5.094e-2 4.586e-2 1 .0 e- 6 8 . 0 0 0

6 6.13 le-2 -5.555e-2 5.151e-2 1.0e-5 6.667

(b) NOx emission coefficients

Table 3.1 Coefficients for the test system
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Problem n Variable bounds Objective functions Optimal solutions/Constraints

SCH

(Convex)
1 - 1 0 3 < x < 1 0 3

Minimise F  = (/, (x), / 2 (x)), where 

A(x)  = x 2 

M  x) = ( x - 2 ) 2

x e [ 0 ,2 ]

FON

(Non-
convex)

3
-  4 < x, < 4  

/ = 1,2,3

Minimise F  = (/, ( X ) , f 2 ( X )), where

(  n (  V ^
/ i ( x )  = l - e x p  — j =\

^ -jn J )

(  « (  1 

/ 2 (x )  = l - e x p  U , + - 7=
feiV -Jn)  )

X, = x 2 = x3 e [-l/V3,l/V3]

TNK

(with
constraints)

2
x(. e [Q,k] 
*‘ = 1 ,2

Minimise F = (/, ( X ), / 2 ( X )), where

/ . ( * )  = *■

A (X )  = x 2

Subjected to

g,(x) = x,2+ x22-l-0 .1 c o s f  16arctan—  >0
I * 2  )

^ 2 (X) = (x ,-0 .5 )j +(x2 -0 .5 )2 S0.5

Table 3.2 Equations for Multi-Objective mathematical function optimisation



3.3 The Pareto-based Bees Algorithm with memorised 

solutions

The basic Bees Algorithm described in Chapter 2 is generally limited to SO 

applications. In order to apply the Bees Algorithm to a Multi-Objective problem, 

especially to generate a Pareto set, the complete food processing procedure of 

honey bees in the colony should be taken into account. The work by Lee and 

Darwish (Lee and Haj Darwish 2008) showed some shortcomings such as 

repetitive runs with different weights giving results which are not true Pareto 

solutions. Therefore a new parameter called ‘memorised solutions’ is introduced 

in this chapter. The new algorithm with memorised solutions consists of the 

following. A number of different combinations of weights wj and W2 are defined 

for the SO function described in Eq. 3.1. For each combination of weights, the 

standard Bees Algorithm is run once. When one harvesting season is over (i.e., 

one run for a given pair of weights w; and W2 is completed), the “bees” memorise 

the best locations (i.e., solutions). Each season, new locations will be memorised. 

This process of storing good solutions is reminiscent of the honey-making 

procedure which is carried out naturally by worker bees inside the hive. At the 

end of the last run of the standard Bees Algorithm, all memorised solutions will 

be used to generate the Pareto set. The number of locations that is memorised at
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the end of each run is set by the user. The greater the number of memorised 

locations, the larger the Pareto set generated.

In this study, three ways to select the number of memorised locations will be 

evaluated, namely ‘the best one’, V  (corresponding to the number of elite sites) 

and ‘m’ (corresponding to the number of selected sites). Three different 

algorithms will be developed by utilising these three selection ways, namely 

‘Weighted Sum Bees Algorithm (WSBA)’, ‘Weighted Sum Bees Algorithm with 

e sites (WSBA-e)’ and ‘Weighted Sum Bees Algorithm with m sites (WSBA-m)’. 

Figure 3.2 illustrates the concept for the Bees Algorithm with memorised 

solutions in the nature and objective space. Each ‘flower patch’ (from zonei to 

zone„) represents a given pair of weights wj and W2 and ‘the best one’, V  or ‘m’ 

selected sites are stored every iteration in each ‘flower patch’ to generate the 

Pareto set at the end.

Figure 3.3 shows the flowchart of the proposed Pareto-based Bees Algorithm 

with memorised solutions for MOOPs. The stopping criterion corresponds to the 

number of harvesting seasons (i.e., successive runs using different weighting 

combinations).
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(Minimise/ /  and f 2)

(b) Multi-Objective optimisation in the objective space 

Figure 3.2 Illustration of the concept for the Bees Algorithm with

memorised solutions
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•  the best one

Stored solutions
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•  WSBA (not true Pareto)
•  WSBA-e (e-Pareto)
•  WSBA-m (m-Pareto)

Harvesting Season
(Standard Bees Algorithm)

Figure 3.3 Flowchart of the proposed Pareto-based Bees Algorithm with

memorised solutions
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3.4 Results

3.4.1 Results of the EEDP

Table 3.3 shows the main parameter values used in this study for the proposed 

Pareto-based Bees Algorithm with memorised solutions. Two sets of respectively 

11 and 22 parameters are given for the weight W2. To achieve good diversity, 11 

of these are selected alternately. For the first set, the standard Bees Algorithm is 

iterated 1 1  times (harvesting seasons), and in the second it is iterated 2 2  times. 

The total generated power was required to satisfy the power balance constraint 

within an accuracy of ±0 . 0 0 0 0 1  (p.u.).

In the first set of tests, the effect of varying the initial patch size ngh (i.e., the 

breadth of the local search procedure (Abido 2006)) was evaluated. Three 

different combinations of ngh for the m selected and e best sites were tested and 

they are shown in Table 3.4 (a).

In the second set of tests, the effect of varying the number of memorised 

locations was studied. The five settings described in Table 3.4 (b) were evaluated. 

WSBA(22) (i.e., setting 1) in Table 3.4 (b) is similar to (Lee and Haj Darwish 

2008)’s work because the final optimal solutions are formed by each of the best
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fit solutions from every weight combination instead of domination sorting. It is 

only included here to compare performance with the proposed Bees Algorithm 

such as WSBA-e and WSBA-zw, although the final results cannot be claimed to 

be true Pareto solutions.

For each of the three combinations of patch sizes, four tests were carried out 

varying the duration (i.e., number of learning cycles) of one harvesting season 

(see Figure 3.3), and five tests were also carried out depending on the number of 

memorised solutions set. Thus, a total of sixty tests were undertaken. To obtain 

the average performance of the algorithm, 2 0  independent runs were carried out 

for each test to evaluate the statistics based on the average of two extreme 

solutions for minimum fuel cost and NOx emissions from all the non-dominated 

solutions of the Pareto set (Abido 2003b, c, 2007, 2009; Ah King et al. 2005).

3.4.1.1 Comparison of Multi-Objective Optimisation Algorithms

The performance of the proposed algorithm is compared to that of three state-of- 

the-art Multi-Objective optimisation methods, namely NSGA- II (Ah King et al. 

2005), SPEA (Abido 2003a), and MOPSO (Abido 2007, 2009). Table 3.5 

describes the shared symbols and values from Table 3.6 to Table 3.12.
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n : the number of scout bees 2 0

e: the number of elite sites 3

m : the number of selected sites 8

ne: the number of recruited bees for elite sites 1 0

nm\ the number of recruited bees for selected sites 5

ngh: patch size for neighbourhood search 0 .0 1 ; 0 . 0 2

itr: the number of iterations 10; 15; 20; 25

(a) Parameters of the Bees Algorithm

set W] 1

'

1 W2 ( 1 1 )
1; 50; 100; 500; 900; 1,400; 3,000; 5,000; 10,000; 30,000; 

70,000

2 W2 ( 2 2 )

1; 25; 50; 75; 100; 300; 500; 700; 900; 1,100; 1,400; 2,000; 

3,000; 4,000; 5,000; 7,000; 10,000; 15,000; 30,000; 50,000; 

70,000; 100,000

(b) Parameters of weighted sum method 

Table 3.3 Parameters for the Environmental/Economic Dispatch Problem
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ngh setting elite sites (e) selected sites (m)

1 0 . 0 2 0 . 0 1

2 0 . 0 1 0 . 0 2

3 0 . 0 2 0 . 0 2

(a) settings regarding patch size

setting

Algorithm
(the number of 

weight 
combination)

Memorised 
solutions (per 

run)

Number of evolutions

z'/r= 1 0 itr= 15 itr= 2 0 itr=25

i WSBA(22) The best one 15,180 22 ,550 29,920 37,290

2 WSBA-e(22) e 15,180 22,550 29,920 37,290

3 W SB A -e(ll) e 7,590 11,275 14,960 18,645

4 WSBA-/w(22) m 15,180 22,550 29,920 37,290

5 W SBA-m (ll) m 7,590 11,275 14,960 18,645

(b) settings regarding the number of memorised solutions 

Table 3.4 Test settings
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Tables 3.6 and 3.7 show the average value of the best cost and emission results 

from 20 independent runs by the proposed Bees Algorithms. Data which 

correspond with MOPSO are denoted in bold type, whilst those which 

significantly outperform are highlighted in bold and underlined. All Data, (from 

20 independent runs in 60 tests respectively), o f f c, Corr. f e and Corr. f c do not 

violate the assumption of normality, hence, a One-Sample t-test (Moore 2000) 

using SPSS program is carried out for a 5% alpha level of significance to 

compare the mean values with the results from MOPSO. All mean values of f c 

are equal to or better than MOPSO’s, but all mean values of Corr. f e are worse 

than MOPSO’s, when the number of iterations is 15, 20 and 25. For 20 iterations, 

the proposed Bees Algorithm outperforms MOPSO in ‘ngh setting2’, and only 

4WSBA-e(22)’ and 4WSBA-/w(22)’ outperform MOPSO in "ngh setting3\

However, data of f e violates the assumption of normality, therefore it cannot be 

compared to the mean value with other algorithms using a One-Sample t-test. 

Thus, if the average of f e is exactly the same as other algorithms such as MOPSO, 

NSGA- II and SPEA which obtain the same best emission value of 0.1942 ton/h, 

it is highlighted and underlined in Table 3.7. When the number of iterations is 10, 

only ‘WSBA(22)\ 4WSBA-e(22)’ and 4WSBA-m(22)’ in 4ngh settingl’ found 

the best emission value, although after 15 iterations, most of them found the best 

emission value which is exactly the same as the other algorithms.
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In Tables 3. Symbols Definition

6 , 8 , 9 and 11 fc
the average of the best fuel cost (USS/h) from 20 
independent runs

6 , 9 and 11 Corr.fe the average of NOx emissions (ton/h) 
corresponding to f c from 2 0  independent runs

7, 10 and 12 Corr. f c the average of fuel cost (US$/h) corresponding to 
f e from 2 0  independent runs

7, 10 and 12 fe
the average of best NOx emissions (ton/h) from 
2 0  independent runs

6  and 7 bold type not significantly different to

6  and 7 bold and 
underlined significantly better than

6  and 7 plain and 
underlined

the average value is equal to other algorithms 
such as MOPSO, NSGA- H and SPEA

8  to 1 2 V
significantly better (significantly lower mean or 
median value of f c, f e, Corr. f e, and Corr. f c from 
2 0  independent runs)

8  to 1 2 - not significantly different1 ... .. . . . . .

! 8  to 1 2

i

X

significantly worse (significantly higher mean or 
median value off c, f e, Corr. f e and Corr. f c from 
2 0  independent runs)

(a) Symbols and their definitions

j In Table 3. Symbols Values

j  6 f c and Corr. f e by MOPSO
600.1200 (S/h) and 0.22160 (ton/h) 
(Abido 2007)

!  7 Corr. f c and f e by MOPSO
637.4200 ($/h) and 0.19420 (ton/h) 
(Abido 2007)

! 8 The best off c by NSGA- H
600.1550 ($/h) (Ah King et al. 
2005)

8 The best o i fc by SPEA 600.1500 ($/h) (Abido 2003a)

(b) Best cost and emission values from the literature

Table 3.5 Symbols used in Table 3.6 to 3.12
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ngh setting 1 ngh setting2 ngh setting3

itr Algorithm fc Corr. f e fc Corr. f e fc Corr.fg

10 WSBA(22) 600.1317 0.22182 600.1989 0.22148 600.1351 0.22176

WSBA-e(22) 600.1317 0.22182 600.1989 0.22148 600.1328 0.22170

WSBA-e(l 1) 600.1377 0.22173 600.2157 0.22120 600.1413 0.22165

WSBA-m(22) 600.1317 0.22182 600.1989 0.22148 600.1328 0.22170

WSBA-m(ll) 600.1377 0.22173 600.2157 0.22120 600.1413 0.22165

15 WSBA(22) 600.1216 0.22207 600.1202 0.22192 600.1210 0.22215

WSBA-e(22) 600.1186 0.22204 600.1199 0.22197 600.1207 0.22222

WSBA-e(l 1) 600.1217 0.22208 600.1238 0.22205 600.1208 0.22219

WSBA-m(22) 600.1186 0.22204 600.1199 0.22197 600.1207 0.22222

WSBA-m(ll) 600.1217 0.22208 600.1238 0.22205 600.1208 0.22219

20 WSBA(22) 600.1216 0.22202 600.1141 0.22207 600.1193 0.22208

WSBA-e(22) 600.1190 0.22207 600.1137 0.22209 600.1179 0.22203

WSBA-e(l 1) 600.1201 0.22225 600.1137 0.22209 600.1184 0.22202

WSBA-m(22) 600.1190 0.22207 600.1137 0.22209 600.1179 0.22205

WSBA-m(ll) 600.1201 0.22225 600.1137 0.22209 600.1184 0.22202

25 WSBA(22) 600.1186 0.22213 600.1132 0.22204 600.1170 0.22202

WSBA-e(22) 600.1168 0.22208 600.1123 0.22207 600.1161 0.22201

WSBA-e(l 1) 600.1171 0.22219 600.1123 0.22207 600.1164 0.22210

WSBA-/w(22) 600.1168 0.22208 600.1123 0.22207 600.1161 0.22201

WSBA-m(ll) 600.1171 0.22219 600.1123 0.22207 600.1164 0.22210

Table 3.6 Comparison of results between MOPSO and the proposed Bees 

Algorithm for finding the best fuel cost (fc)
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....... ■

ngh setting 1 ngh setting2 ngh setting3

itr Algorithm Corr. f c fe Corr. f c fe Corr.fc fe

10 WSBA(22) 637.1675 0.19420 636.4224 0.19424 637.4160 0.19421

WSBA-e(22) 6373976 0.19420 636.4224 0.19424 637.6859 0.19421

WSBA-e(ll) 636.5366 0.19423 636.6893 0.19433 637.3291 0.19421

WSBA-/w(22) 6373976 0.19420 636.4224 0.19424 637.6859 0.19421

WSBA-m(ll) 636.5366 0.19423 636.6893 0.19433 637.3291 0.19421

15 WSBA(22) 637.2134 0.19420 6373715 0.19420 637.1717 0.19420

WSBA-e(22) 637.5483 0.19420 637.5877 0.19420 637.6600 0.19420

WSBA-e(l 1) 637.0711 0.19420 636.6990 0.19421 637.1015 0.19420

WSBA-m(22) 637.5483 0.19420 637.5877 0.19420 637.6801 0.19420

WSBA-m(ll) 637.0711 0.19420 636.6990 0.19421 637.1015 0.19420

20 WSBA(22) 637.0418 0.19420 637.2242 0.19420 637.1780 0.19420

WSBA-e(22) 637.4282 0.19420 637.4719 0.19420 637.6399 0.19420
l

WSBA-e(l 1) 636.8169 0.19420 636.9291 0.19420 637.0424 0.19420

WSBA-/w(22) 637.4282 0.19420 637.4719 0.19420 637.6928 0.19420

WSBA-m(ll) 636.8169 0.19420 636.9842 0.19420 637.1621 0.19420

25 WSBA(22) 637.1686 0.19420 637.1450 0.19420 637.2277 0.19420

WSBA-e(22) 637.5284 0.19420 637.3859 0.19420 637.6420 0.19420

WSBA-e(l 1) 636.9622 0.19420 637.0305 0.19420 637.1220 0.19420

WSBA-/n(22) 637.5312 0.19420 637.3859 0.19420 637.6666 0.19420

I

WSBA-m(ll) 636.9622 0.19420 637.1656 0.19420 637.1494 0.19420

Table 3.7 Comparison of results between MOPSO and the proposed Bees 

Algorithm for finding the best NOx emissions (fe)
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Overall, the results after 15 iterations are equal to or better than MOPSO for both 

best cost and emission values. Therefore, only the result from 10 iterations is 

compared with other algorithms such as NSGA- II and SPEA, especially for the 

best cost (fe), and Table 3.8 shows the comparison results. According to One- 

Sample t-test, the results obtained from the proposed algorithm are equal to or 

better than those from both NSGA- II and SPEA for the best cost (fc), except 

with ‘ngh setting2 ’.

3.4.1.2 Effect of patch size

All the AN OVA (for normally distributed data with homogeneous variances) or 

Kruskal-Wallis (for non-parametric data) tests using the SPSS program are 

carried out for a 5% alpha level of significance to compare mean or median 

values from 2 0  independent runs.

In Table 3.9, when the number of iterations is 10, ‘ngh settingl’ and ‘ngh 

setting3’ outperform ‘ngh setting2’ for the best cost, but the results from 20 and 

25 iterations are totally opposite to the results from 10 iterations. In 15 iterations, 

there are no significant differences regarding setting of neighbourhood size for 

the best cost.

For the best emissions, when the number of iterations is small (i.e., 10) in Table 

3.10, ‘ngh settingl’ and ‘ngh setting3’ outperform ‘ngh setting2\ However, after
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i
Compared with NSGA- II Compared with SPEA

ngh
settingl

ngh
setting2

ngh
setting3

ngh
settingl

ngh
setting2

ngh
setting3

| itr Algorithm fc fc f fc fc fc

WSBA(22) V X V V X V

i

WSBA-e(22) V X V V X V

10 WSBA-e(ll) V X V V X -

WSBA-/w(22) V X V V X V

i
i WSBA-w(ll) V X V V X -

Table 3.8 Comparison of results between NSGA- II, SPEA and the proposed 

Bees Algorithms (i7r=10) for the best cost ifc)
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WSBA
(22)

WSBA-e
(22)

w s
0

BA-e
ID

WSBA-m
(22)

WSBA-m

(ID

itr ngh
setting fc

Corr
■fe

fc
Corr

■fe
fc

Corr
■fe

fc
Corr

■fe
fc

Corr
■fe

1 V ~ V ~ V " V ~ V

10 2 X X ~ X - X ~ X ~

3 V - V ~ V - V ~ V ~

1

15 2

3

1 X - X X - X ~ X ~

20 2 V - V - V - V ~ V ~

1 3 X - X - X - X ~ X -

■

1 X X - X - X ~ X -

25 2 V V - V - V ~ V -

3 X - X - X - X ~ X -

Table 3.9 Comparison of results regarding neighbourhood size for the best

cost (fc)
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WSB
( 2 2

A WSBA-e
(2 2 )

WSB>
( i r

K-e WSB/
(2 2 '

v - m WSB/i
(ID

-m

itr ngh
setting

Corr.
fc fe

Cor
r . f fe

Corr
■ f fe

Corr
■f fe

Corr
■f fe

1 0

1 - V - V - V - V - V

2 V X V X - X V X - X

3 X V X V - V X V - V

15

1

2

3

1

2 0 2

3

25

1

2

i
3

Table 3.10 Comparison of results regarding neighbourhood size for the best

emissions (/*)
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15 iterations, there are no significant differences regarding setting of 

neighbourhood size for the best emission.

In conclusion, when the number of iterations is small (i.e., 10), "ngh settingl’ 

and ‘ngh setting3’ outperform ‘ngh setting2’ for both the best cost and emission 

values but ‘ngh setting2’ outperforms the others in using larger (i.e., 20 and 25) 

numbers of iterations for only the best cost. In other words, if ngh for e sites is 

bigger than or equal to m’s ngh, it outperforms using a lower number of 

iterations for both the best cost and emissions, but if  ngh for e is smaller than m’s 

ngh, it outperforms using a higher number of iterations for the best cost only.

3.4.1.3 Effect of number of memorised solutions

Tables 3.11 and 3.12 show comparison results regarding memorised solutions for 

the best cost and emissions. The results show there are no significant statistical 

differences regarding the use of e or m or different numbers of weights ( 2 2  or 1 1 ) 

to find the best cost in all iterations.

However, finding the best emission in ‘ngh settingl’ and ‘ngh setting2’ from 10 

iterations, ‘WSBA(22)\ ‘WSBA-e(22)’ and ‘WSBA-m(22)’ outperform 

‘W SBA-e(ll)’ and ‘WSBA-/w(l 1)’. After 15 iterations, there is no significant 

statistical difference regarding the use of e or m or different numbers of weights 

( 2 2  or 1 1 ) to find the best emission.
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n g h  s e tt in g l n g h  se ttin g 2 n g h  setting3

i t r A lgorith m f c C o r r . f e f c C o r r .  f e f c C o r r . f e

WSBA(22) - - - - - -

WSBA-e(22) - - - - - -

10 WSBA-e(l 1) - - - - - -

WSBA-/w(22) - - - - - -

WSBA-m(ll) - - - - - -

WSBA(22) - - - - - -

WSBA-e(22) - - - - - -

15 WSBA-e(ll) - - - - - -

WSBA-/n(22) - - - - - -

WSBA-m(ll) - - - - - -

WSBA(22) - - - - - -

WSBA-e(22) - - - - - -

2 0 WSBA-e(l 1) - - - - - -

WSBA-m(22) - - - - - -

WSBA-m(ll) - - - - - -

WSBA(22) - - - - - -

WSBA-e(22) - - - - - -

25 WSBA-e(l 1) - - - - - -

WSBA-m(22) - - - - - -

WSBA-m(ll) - - - - - -

Table 3.11 Comparison of results regarding memorised solutions for the

best cost (/c)
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ngh settingl ngh setting2 ngh setting3

itr Algorithm Corr. f c / . C o rr .f / . Corr.fc / .

WSBA(22) X V - V - -

WSBA-e(22) X V - V - -

10 WSBA-e(l 1) V X - X - -

WSBA-m(22) X V - V - -
WSBA-m(ll) V X - X - -
WSBA (22) - - X - - -

WSBA-e(22) X - X - X -

15 WSBA-e(l 1) V - V - V -

WSBA-/n(22) X - X - X -

WSBA-/w(l 1) V - V - V -

WSBA(22) V - X - - -

WSBA-e(22) X - X - X -

2 0 WSBA-e(l 1) V - V - V -

WSBA-/n(22) X - X - X -

WSBA-m(ll) V - V - - -

WSBA(22) - - V - -

WSBA-e(22) X - X X -

25 WSBA-e(l 1) V - V V -

WSBA-w(22) X - X X -

WSBA-m(ll) V - V V

Table 3.12 Comparison results regarding memorised solutions for the best

emissions (fe)
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In conclusion, the use of e or m or different numbers of weights (22 or 11) does 

not affect finding the best cost in all iterations and it also has no affect on finding 

the best emissions using 15, 20 and 25 iterations. However, it is noteworthy that 

the number of evaluations of ‘W SBA -e(ll)’ and ‘W SBA-m(ll)’ are only half 

the number of ‘WSBA(22)\ 4WSBA-e(22)’ and ‘WSBA-w(22)\ which shows 

that the proposed algorithms (WSBA-e and WSBA-zw) can find the best cost and 

emissions with less effort than by ‘WSBA(22)’ and the work by (Lee and Haj 

Darwish 2008).

3.4.1.4 Comparison of the number of solutions and Pareto fronts

Table 3.13 shows the average number of solutions from each of the 20 

independent runs. The number of solutions from ‘WSBA(22)’ is the same as the 

number of weight combinations because the final solution is formed from the 

best fit for every weight combination. The results show the number of solutions 

from m memorised solutions is always larger than e memorised solutions and 

using 2 2  weight combinations is almost double the number of solutions when 

using 11 weight combinations. However, the number of Pareto solutions from the 

proposed algorithm is less than MOPSO (Abido 2009) which obtains 147.

Figure 3.4 graphically shows the final result of solutions from each proposed 

approach in objective space. All data is taken from test number 3 of 20 runs in 

‘ngh setting3’ of neighbourhood size when the number of iterations is 25.
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The average number of solutions

itr Algorithm ngh settingl ngh setting2 ngh setting3

1 0 WSBA(22) 2 2 2 2 2 2

WSBA-e(22) 40 28 41

WSBA-e(ll) 23 18 24

WSBA-/w(22) 41 30 44

WSBA-w(ll) 25 2 2 27

15 WSBA(22) 2 2 2 2 2 2

WSBA-e(22) 53 47 55

WSBA-e(ll) 28 26 29

WSBA-w(22) 56 55 67

WSBA-/w(ll) 34 35 40

2 0 WSBA(22) 2 2 2 2 2 2

WSBA-e(22) 56 59 58

WSBA-e(l 1) 29 30 30

WSBA-w(22) 6 6 83 8 6

WSBA-m(ll) 41 48 48

25 WSBA(22) 2 2 2 2 2 2

WSBA-e(22) 58 62 60

WSBA-e(ll) 30 31 31

WSBA-/w(22) 80 97 1 0 0

WSBA-w(ll) 48 54 55

Table 3.13 The average number of solutions for each 20 independent runs
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/ .  : Total fuel c t» l <S/Hr)

(a) Result by WSBA(22)

505 610 620 625 630 635

Total fuel cost(V hr)

(b) Pareto front by WSBA-e(22)

0.22

0.215

0.205

0.195

630 635615600 605 610

(c) Pareto front by WSBA-e(l 1)

Figure 3.4 The result of the EEDP
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0.225

0.22

0.215

0.21

0.205

0.2

0.195

0.19
605 615 620 625

f c: Total fuel cost ($/hr)

635 640600 610 630

(d) Pareto front by WSBA-w(22)

0.225

0.22

0.215

0.21

0.205

0.195

0 .19

640630 63562 0

/ c: Total fuel cost ($/hr)

625600 605 610 615

(e) Pareto front WSBA-w(l 1) 

Figure 3.4 continued
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Although the final solution of WSBA(22) (Figure 3.4 a) resembles a Pareto front, 

all solutions are not globally non-dominated solutions because they are generated 

by the fittest one in each weight combination without domination sorting. 

However, the final solutions of the other approaches (Figure 3.4 b to e) are 

Pareto fronts generated by globally non-dominated solutions. They show good 

diversity throughout the objective space.

3.4.2 Results of benchmark mathematical functions

In order to evaluate the sensitivity to the shape of the Pareto front, three different 

functions are tested. Table 3.14 shows all parameters used in this work and Table 

3.15 shows the number of evaluations and the number of Pareto solutions from 

the results which are depicted graphically in Figure 3.5 to 3.7. In convex function 

like SCH, all proposed approaches (i.e., WSBA, WSBA-e and WSBA-m) 

perform well. However, for non-convex functions such as FON and TNK, the 

WSBA-m is superior, which means that it is less sensitive for the Pareto front 

profile.
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Parameters SCH FON and TNK

n 30 30

e 2 3

m 5 8

ne 1 0 1 0

nm 5 5

ngh 0 . 0 1 0 . 0 1

itr 30 30

Wj 1 -W2

w2
0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4; 0.45; 0.5; 0.55; 

0.6; 0.65; 0.7; 0.75; 0.8; 0.85; 0.9; 0.95; 1.0

Table 3.14 Parameters of the Bees Algorithm for benchmark mathematical

functions
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Number of evolutions Number of Pareto solutions

Algorithm
(the number of 

weight combination)
Memorised solutions (per run) SCH FON TNK SCH FON TNK

WSBA(20) The best one 36,600 46,800 46,800 2 0 2 0 2 0

WSBA-e(20) e 36,600 46,800 46,800 801 173 138

WSBA-w(20) m 36,600 46,800 46,800 2 , 2 1 0 196 275

Table 3.15 Results for benchmark mathematical functions
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Figure 3.5 The results by WSBA(20)
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(a) SCH (convex with no constraints)
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(b) FON (non-convex with no constraints)
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Figure 3.6 The Pareto fronts by WSBA-^(20)
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(a) SCH (convex with no constraints)

0.8  

CS 0.6 
0.4
0.2

1.20.2 0.4 0.6 0.8 1

fl

(b) FON (non-convex with no constraints)

0.8 

a  o.6
0.4

0.2

1.210.6 0.80.2 0.4

(c) TNK (with constraints)

Figure 3.7 The Pareto fronts by WSBA-/w(20)
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3.5 Summary

This chapter has described a newly developed Pareto-based Bees Algorithm for 

solving Multi-Objective optimisation problems. The algorithm was tested on 

two different applications: nonlinear power system optimisation (the

Environmental/Economic Dispatch Problem: EEDP) and optimisation of 

benchmark mathematical functions.

The proposed algorithm generates a large and varied set of globally dominant 

Pareto solutions via successive multiple runs. Due to its capability to generate 

many solutions per run, it improves on the Bees Algorithm with memorised 

zones and other classical Multi-Objective optimisation methods. Thanks to the 

wider set of solutions, the algorithm is also less sensitive to the shape of the 

Pareto front profile. Moreover, it can be faster than existing approaches because 

it uses fewer evaluations. The results obtained show that the proposed algorithm 

delivered a good Pareto front with excellent diversity whilst proving to be stable 

and robust.

Therefore, this work has confirmed the suitability of the Bees Algorithm for 

solving Multi-Objective optimisation problems.
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4 AN ENHANCED BEES ALGORITHM FOR 

MULTI-OBJECTIVE PROBLEMS

4.1 Preliminaries

This chapter presents a globally and locally enhanced Bees Algorithm for solving 

MOOPs. The algorithm is tested on the same two applications as in Chapter 3

1) nonlinear power system optimisation (EEDP) and

2) Multi-Objective optimisation of benchmark mathematical functions 

(additional functions are also tested here than in the previous chapter).

The results of the proposed algorithm are compared with MOPSO (Abido 2009), 

NSGA-II (Ah King et al. 2005) and SPEA (Abido 2003a). They are also 

compared with the results of the Pareto-based Bees Algorithm with memorised 

solutions in Chapter 3.

This chapter is organised as follows: Section 4.2 presents a brief description of 

the two applications and the proposed enhanced Bees Algorithm is developed in 

Section 4.3. The results of test runs and their comparisons with other existing 

methods are carried out in Section 4.4. The final conclusions are presented in 

Section 4.5.
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4.2 Applications

4.2.1 The Environmental/Economic Dispatch Problem (EEDP)

In order to compare results with the Pareto-based Bees Algorithm with 

memorised solutions from Chapter 3, the proposed algorithm in this chapter is 

tested on the same application which is the EEDP. All equations, system 

parameters and conditions are exactly the same as those used in Chapter 3.

4.2.2 Benchmark mathematical Multi-Objective functions

In the context of Multi-Objective optimisation, sufficient obstacles must be 

presented in test functions to impede the search for Pareto optimal solutions (Tan 

et al. 2008). Several characteristics have been identified by (Deb 1999) that may 

challenge an algorithm’s ability to converge and maintain population diversity. 

Multi-modality, convexity, discontinuity and non-uniformity of the Pareto front 

may prevent population-based heuristics from finding a diverse set of solutions 

(Tan et al. 2008).

Test problems are employed from past studies in this area, which consists of 12 

benchmark problems: SCH, FON, POL, KUR, ZDT1, ZDT2, ZDT3, CONSTR, 

SRN, TNK, WATER and the three-objective functions problem.
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Firstly, seven problems without constraints were chosen. These seven problems 

can be categorised into two groups, which are convex and concave functions. 

Table 4.1 outlines convex problems and Table 4.2 outlines concave problems. 

Tables also show the number of variables, their bounds, the Pareto-optimal 

solutions and the nature of the Pareto optimal front for each problem. Although 

(Zitzler et al. 2000) proposed six test problems (ZDT1 to ZDT6 ), only three ZDT 

test problems, identified as ZDT1, ZDT2 and ZDT3, are employed in this chapter. 

The characteristics of each function are as follows:

• Convex functions

o Schaffer’s study (SCH) (Schaffer 1984, 1985)

o ZDT1 has a convex Pareto front with a large number of variables 

to be optimised.

o ZDT3 has a disconnected convex Pareto front with a large number 

of variables to be optimised.

• Concave functions

o Fonseca and Fleming’s study (FON) (Fonseca and Fleming 1998) 

challenges the algorithm’s ability to find and maintain the entire 

trade-offs curve uniformly which is characterised by an optimal 

Pareto front that is non-convex and disconnected.

o Poloni’s study (POL) (Poloni 1995)

o Kursawe’s study (KUR) (Kursawe 1991) is also characterised by 

an optimal Pareto front that is non-convex and disconnected. It
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contains three distinct disconnected regions in the final trade-offs 

and it is difficult to discover the decision variables which 

correspond to the global trade-offs because they are also 

disconnected in the decision variable space (Tan et al. 2008). 

o ZDT2 has a non-convex Pareto front with a large number of 

variables to be optimised.

Secondly, four test problems with constraints that have been used in earlier 

studies were selected, and they are described in Table 4.3. Their characteristics 

are as follows:

• CONSTR: a part of the unconstrained Pareto optimal region is not 

feasible. Thus, the resulting constrained Pareto optimal region is a 

concatenation of the first constraint boundary and also with some part of 

the unconstrained Pareto optimal region.

• SRN was used in the original study of NSGA (Srinivas and Deb 1994) 

and the constrained Pareto optimal set is a subset of the unconstrained 

Pareto optimal set.

• TNK was suggested by (Tanaka et al. 1995) and has a discontinuous 

Pareto optimal region, falling entirely on the first constraint boundary.

• WATER is a five-objective with seven-constraints problem which (Ray et 

al. 2001) attempted to solve. With five objectives, it is too complex to
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discuss the effect of the constraints on the unconstrained Pareto optimal 

region.

Finally, Table 4.4 outlines a three-objective function problem to find the global 

Pareto front in the three dimensional objective space (Seshadri 2006 ).

Many researchers still use these problems to validate their algorithms. For 

example,

• (Deb et al. 2002; Seshadri 2006) applied NSGA- I I ,

• (Seshadri 2006) applied MOEA,

• (Tan et al. 2008) applied Evolutionary Artificial Immune System,

• (Park et al. 2009) applied GA and Artificial Immune System (AIS) and

• (Guzman et al. 2010) applied Bacterial Chemotaxis Multiobjective 

Optimisation Algorithm (BCMOA).

Therefore these problems should serve as good test samples for a fair comparison 

of different Multi-Objective algorithms.
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Problem n Variable bounds Objective functions Optimal solutions Comments

SCH 1 - 1 0 3 < x < 1 0 3

Minimise F  = (/, (x), f 2 ( x ) ) , where 

f x(x) = x 2 

/ 2 (x )  = ( x -  2)2

x  g [0 ,2 ] Convex

ZDT1 30 x f e {0,1}

Minimise F  = (/, [ X ), f 2 ( X )), where 

/ , ( * )  = *,

f 2 ( x , g ) = g ( x ) ( i - J f i / g ( x ) )

g(X) = l + ^ ^ x ,
»“ l w

x , g [0,1]

x, =  0, 

i = 2 , . . . , n

Convex

ZDT3 30 X,  e {0,1}

Minimise F  -  (/j ( X ), f 2 ( X )), where 

M X )  = x t

9 v- g(X) = 1+ -5>/
M-l i=2

X, G [0,1]

x, =  0,  

i =  2, . . . , «

Convex,
disconnected

Table 4.1 Convex functions without constraints



Problem n Variable bounds Objective functions Optimal solutions Comments

FON 3
-  4 < x; <4  
i = 1,2,3

Minimise F  = (/, ( X ), f 2 ( X )), where

(  n (  V ^
/ i M = i - « p - Z U — r

 ̂ <=i V V« /  J

" f  1 Y 'l
/ 2W  = l-ex p  - Z  jc. +_r

^ f=! V 'Jn J )

X 1 = * 2  = *3
e [-1/V3J/V3]

Non-convex

POL 2 -71 < Xy,X2 <7T

Minimise F  = (/, (x,, x2), / ,  (x,, x2)), where 

/ ,  (x,, x2) = 1 + (A, -  fi, ) 2 + (A2 -  B2 f

f i  (*. ,*i) = (x \ + 3 ) 2 + f a  + ' ) 2

Al = 0.5 sin 1 -  2 cos 1 + sin 2 -1.5 cos 2,
A2 = 1.5sinl-cosl + 2sin2-0.5cos2,
Bx = 0.5 sin x, -2cosx, + sinx2 -1.5cosx2, 
B2 =1.5 sin x, -  cos x] +2 sin x2 -  0.5 cos x2

Non-convex, 
disconnected (2 
Pareto curves)

Table 4.2 Non-convex functions without constraints



Problem n Variable bounds Objective functions Optimal solutions Comments

KUR 3
-  5 < x t <5, 

* = 1,2,3

Minimise F  = (/, ( X ), f 2 ( X )), where 

/ i ( ^ )  = Z ( - 1 0 exp(-0 .2 x ^ , 2 + x l , ))
;=l

/ 2W  = Z (jx ,|0 8 + 5 s in ^ )
/=1

Non-convex, 
disconnected (3 
Pareto curves)

ZDT2 30 6  {0 ,1}

Minimise F  = (/, ( X ), f 2 ( X )), where 

f ( X )  = Xi

f  (  f  Y 1

/ i ( * . « ) = * ( * ) • 1 ,'Y]

# > = ! + -
n - 1 j=2

X, €E [0,1] 

Xi = o, 
j = 2 , . . . , «

Non-convex

Table 4.2 continued



Problem n Variable bounds Objective functions Constraints

CONSTR 2
xx G  [0.1,1.0] 
x2 G  [0,5]

Minimise F  = (/, ( X ), f 2 ( X )), where

/ . ( * ) = * .

/ 2 ( X )  =  (1 +  ^)/jc ,

Subjected to 

g x(x )  = x2 +9xx > 6

Si (x ) = ~x2 + 9*i ^ 1

SRN 2
x t e [ -  20,20] 
/ = 1,2

Minimise F  = (/, ( X ), f 2 ( X )), where 

f , ( x )  = (xl - 2 f + ( x 2 - i ) 2+2 

/ 2 (X) = 9 x ,- (x 2 - 1 ) 2

Subjected to

g x (X) = xf + x\  < 225 

g 2(x)  = xx -  3x2 < 10

TNK 2
x, e  [0 ,/r] 
i = 1 , 2

Minimise F = ( f  ( X ) ,  f 2 ( X )), where 

f , ( X )  =  x,

/ , ( * )  =  *2

Subjected to
f  \

g x(x )  =  xf  +x 2 - l - 0 .1 cos 16arctan—  > 0

V X 2 )

g 2 ( x )  =  (xx -  0.5)2 +  ( j c 2 -  0.5)2 <  0.5

Table 4.3 Functions with constraints



Problem Variable bounds Objective functions Constraints

WATER

0.01 < jc, <0.45 
0.01 < x 2 <0.10 
0.01 < * 3 <0.10

Minimise
F = (f, (x\f2(x\f}(x),f,(x),f5(x)),
where
f\x) = 106780.37(x2 + *3) + 61704.67 
f 1(X) = 3000*, 
f ( y \ -  (305700)-2289*,/

J}  ̂ /  (0.06x2289)°6
f , (X)  = (250) • 2289exp(- 39.75*, + 9.9* 3 + 2.74) 
/ s(x )  = 25(l.39/(x, x2)+4940*5 -8 0 )

1.65

Subjected to
g ,(x )  = 0.00 139/(jc, • *2) +4.94*3 - 0 .0 8 S I 
g 2 (x ) = 0.000306/(x, • x2) +1.082*3 -  0.0986 < 1 
g3 (x) = 1 2.307/(x, ■*,)+4940824*3 + 4051.02 S 50000 
g4(x) = 2.098/(x, x2)+ 8046.33*, -696.71 < 16000 
g5(X) = 2.13ty(x, *2)+ 7883.39*3 -705.04<10000 
g 6 (x) = 0.417 ■ (x, ■ x2 )+ 1721.26*3 - 136.54 < 2000 
g, (X) = 0.164/(x, ■ * 2) + 631.13 * 3  -  54.48 < 550

Table 4.3 continued

Problem Variable bounds Objective functions

Three-
functions

0 < x t. < 1, 

/ = !,.. . , 1 2

/ ,  (x) = (1 + g(jc)) cos(0.5/dc,) cos(0.5/dc2 ) 
f 2 (*) = (1 + g(*)) 008(0.5^:,) sin(0.5^c2) 
/ 3 (x) = (1 + g(x)) sin(0 .5^,)

g ,(x ) = £  (* ,-0 .5 ) 2

(=1

Table 4.4 Three-functions optimisation



4.3 An enhanced Bees Algorithm for solving Multi- 

Objective Optimisation Problems

4.3.1 Enhancements

The proposed Bees Algorithm is globally and locally enhanced for solving 

MOOPs with the enhancements described as follows.

4.3.1.1 Global enhancements

Two global enhancements are introduced here. The first global enhancement of 

the Bees Algorithm is the introduction of ‘dynamic procedure for site selection 

using domination sorting in the objective space’ instead of selecting a ‘static 

number of elected sites with the fittest sites in the search space’. The proposed 

selection method only accounts for non-dominated sites therefore it requires no 

effort to perform Pareto ranking which overcomes the main drawback of meta­

heuristic techniques (Lee and El-Sharkawi 2008).

Also, according to (Pham and Ghanbarzadeh 2007)’s work, it needs extra efforts 

to find a static number of selected sites. The reason being that if there are 

insufficient numbers of selected sites (m), the candidate solutions from rank 1 

which have been dominated once, are utilised until a sufficient number of 

selected sites necessary to conduct a neighbourhood search are found. The
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proposed algorithm does not need to use this extra effort. The number of selected 

sites in the proposed algorithm is not static because it depends on the number of 

non-dominated sites.

The second global enhancement is the reduction in the parameters. While the 

basic Bees Algorithm uses 6  parameters («, e, we, /w, nm, ngh), the proposed Bees

Algorithm requires only 3 parameters to be set, namely:

• the number of scout bees w,

• the number of recruited bees nm and

• patch size ngh.

In (Pham and Ghanbarzadeh 2007)’s work, there are 4 parameters (i.e., w, w, nm 

and ngh) and they did not use the e and ne parameters because elite sites are hard 

to identify especially in Multi-Objective space. Therefore, the proposed 

algorithm does not use them, and also due to introducing the ‘dynamic procedure 

for site selection’, the m parameter is no longer required to be set before the 

program runs.

4.3.1.2 Local enhancements

In this section, three different neighbourhood search methods are introduced:

1) basic neighbourhood search (basicNGH) method,
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2) random neighbourhood search (randomNGH) method and

3) weighted sum neighbourhood search (wsNGH) method.

4.3.1.2.1 Basic neighbourhood search (basicNGH) method

When using the basic neighbourhood search method with the basic Bees 

Algorithm for solving single objective optimisation problems (SOOPs), a 

recruited bee is sent to a selected patch and its fitness evaluated. The recruited 

bee is then compared with the existing scout bee and the fittest one retains as the 

scout bee for this patch. This procedure is repeated until the last recruited bee is 

sent. The final retained bee will represent this flower patch to form a new 

population for the next iteration.

The proposed method adopts this principle, but it differs slightly. The difference 

being is that the selected bee will be replaced by the dominant recruited bee in 

the objective space instead of the fittest bee in the search space. However, the 

other principle of sending bees one by one is exactly the same as the basic Bees 

Algorithm, thus the proposed neighbourhood search method is called the ‘basic 

neighbourhood search (basicNGH) method’.

Figure 4.1 depicts its flowchart, and Figure 4.2 graphically illustrates the concept. 

Z (•) in Figure 4.2 is one of the dominant solutions after finishing the arbitrary 

iteration and represents the selected site in which to conduct a neighbourhood
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search. Figure 4.2 (a) shows the basic information before a neighbourhood search 

starts. Z (•)  is surrounded by a neighbourhood zone according to patch size 

(ngh) and the zone can be sub-divided into four areas (1 to 4). It is assumed that 

the number of recruited bees (nm) is five and their sending orders are explained 

in Figure 4.2 (a). The whole procedure is illustrated in Figure 4.2 (b to g). In the 

basicNGH method, a dominant recruited bee replaces the in situ bee until all the 

recruited bees (here five bees) have been sent to the site, which means that only a 

recruited bee in area 3 can replace the selected bee as in (b and d). Otherwise, the 

existing dominant bee is retained as in (c, e and f). The reason is that the values 

o ff i  and f 2 from a non-dominated bee (A ) are simultaneously lower than Z’s, 

which means that Z is dominated by A. If a new recruited bee replaces the 

selected bee as in (b), the neighbourhood zone is also redefined by ngh size as 

shown in (c) and the next recruited bee (■) will be sent into this new 

neighbourhood zone. However, if  the next recruited bee is sent to areas 1 (★), 2

(■) or 4 (+), it cannot replace neither the existing dominant bee nor change its

neighbourhood zone. Finally, after finishing the neighbourhood search, the third 

recruited bee (# )  becomes the new representative bee in this flower patch as in 

(g) to form a new population for the next iteration.
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Figure 4.1 Flowchart for the basicNGH method
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#  2: Non-dominated bee (Circle shape)
▲ First recruited bee (Triangle shape)
■  Second recruited bee (Square shape)
•  Third recruited bee (Pentagon shape)
+  Fourth recruited bee (Cross shape)
★  Fifth recruited bee (Star shape)
1 (Neighbourhood area 1): (/Xarea 1) >/XZ)) & (/Xarea 1) > /<Z))
2 (Neighbourhood area 2): (//(area 2) < fi(Z)) & (/Xarea 2) > /XZ))
3 (Neighbourhood area 3): (/Xarea 3 ) </XZ)) & (/Xarea 3 ) </XZ))
4 (Neighbourhood area 4): (/Xarea 4) >/XZ)) & (/Xarea 4) </XZ))

<Bi-objective space: minimise/  and/>

(a) Before neighbourhood search

2 | 1it3 L _ ^ 4

f i

(b) The first recruited bee is sent
f i

(c) The second recruited bee is sent

f ,

(d) The third recruited bee is sent (e) The fourth recruited bee is sent

3 L _ ^ ^ 4

I

Represented bee before 
neighbourhood search

■4. Z (old)
Z(n<^ !

Represented bee after 
neighbourhood search

(f) The fifth recruited bee is sent (g) After neighbourhood search

Figure 4.2 The concept of basicNGH method

114



4.3.1.2.2 Random and weighted sum neighbourhood search (randomNGH 

and wsNGH) methods

The previous basicNGH method has the advantage to converge quickly to 

the minimum both for f j  and f 2 due to updating the neighbourhood zone 

and its representative bee simultaneously. However, there is a risk with 

exploring for a large range o f / /  and f 2, because it accounts only for 

neighbourhood area 3. Therefore, further approaches are introduced in this 

section, namely the random neighbourhood search (randomNGH) method 

and the weighted sum neighbourhood search (wsNGH) method. Figure 4.3 

illustrates their concepts. Instead o f posting recruited bees to a selected 

patch one at a time, the both randomNGH and wsNGH methods involve 

sending all the nm recruited bees to the dominant patch simultaneously and 

then evaluating their fitness. In this case, three scenarios can occur.

• Scenario 1: all recruited bees are dominated by the in situ bee Z (•). 

Figure 4.3 (a)

• Scenario 2: Only one recruited bee dominates the other recruited and the 

existing dominant bee Z (•). Figure 4.3 (c)

• Scenario 3: There is more than one dominant bee in the neighbourhood 

zone. Figure 4.3 (e)
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Scenarios 1 and 2 are the same as those for the basicNGH method described 

previously. Scenario 3 represents a major advantage over the basicNGH method. 

In this scenario, where there is more than one dominant bee only one can be 

selected to become the representative in this flower patch as in Figure 4.3 (g; h). 

Two selection methods are introduced here:

1 ) the random selection method and

2 ) the weighted sum selection method.

If there are two or more dominant bees in the randomNGH method, one of them 

will be chosen at random to replace the existing scout bee. In the wsNGH 

method, where there are two or more dominant bees, a linear combination of the 

objective functions (Eq. 3.1) is used to decide which one of the dominant bees is 

to be selected. The latter method concentrates on a specific search area utilising a 

user-defined weight combination, therefore it quickly finds a better solution in 

this specific search area. Both of these methods have more chances to divert to 

various objective spaces when compared to the basicNGH method, because they 

consider more neighbourhood areas, e.g., areas 2 and 4. Thus, they should find 

more Pareto solutions through the large range. Figure 4.4 shows the flowchart for 

the both randomNGH and wsNGH methods.
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Scenario 
1

All recruited bees are 
. dominated by Z

3 |____

I

(a) Recruiting

Z (new) = Z (old)

fi

(b) After neighbourhood search

Scenario
2

2 ^ ★ i

Only one non-dominated 
bee in this patch

•  Z

Z (ne'

I.
(c) Recruiting (d) After neighbourhood search

Scenario
3

★ i iii
i :

!0

Local non-dominated bees 
(Local Pareto set)

(e) Recruiting

f i

(f) Candidate solutions

Randomly selected one

iZ (ne1

fi

Selected the best one using 
weighted sum method

f i

(g) The randomNGH method (h) The wsNGH method

Figure 4.3 The concept for the both randomNGH and wsNGH methods
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Figure 4.4 The flowchart for the both randomNGH and wsNGH methods
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4.3.2 The proposed algorithms

The algorithms proposed in this chapter also take into account the complete food 

processing procedure of honey bees in the colony to generate the Pareto front. 

Two different types of Bees Algorithm are presented in this section: the Single- 

Cycled Bees Algorithm (SCBA) and the Multi-Cycled Bees Algorithm (MCBA).

4.3.2.1 The Single-Cycled Bees Algorithm (SCBA)

There are three different Single-Cycled Bees Algorithms regarding a 

neighbourhood search method, i.e., the basicNGH method, the randomNGH 

method and the wsNGH method. Figure 4.5 shows the SCBA flowchart. The 

main procedure is similar to the basic Bees Algorithm for solving SOOPs but the 

major differences use the newly developed neighbourhood search methods (box 

A Figure 4.5) and add an additional step (box B Figure 4.5) to create the Pareto 

front as a MO solver. The algorithm starts with n scout bees which are randomly 

sent to the search space. After fitness evaluation, those patches with dominant 

scout bees are designated “selected patches” for a further neighbourhood search 

to be conducted in them. With the basic Bees Algorithm, the number of selected 

patches ‘/w’ and their locations are always static within a neighbourhood area for 

each iteration. However, the proposed algorithm is totally dynamic for both the 

number of selected patches and also their locations in each iteration. After this
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neighbourhood search, only the one bee is elected by the basicNGH method, 

randomNGH or wsNGH methods to each of the selected patches to form the next 

bee population. The remaining bees in the population are randomly assigned in 

the search space for new potential solutions. The remaining number of bees is 

also dynamic as their total fluctuates with the number of dominant bees. These 

steps are repeated until a stopping criterion is met. The Pareto optimal set is 

created from all the non-dominated bees in each iteration. The proposed 

algorithm conducts only one cycle of the Bees Algorithm, therefore it is named 

the Single-Cycled Bees Algorithm (SCBA). Additionally, depending on the 

neighbourhood search method used, it is identified as the SCBA-basicNGH, the 

SCBA-randomNGH and the SCBA-wsNGH respectively.
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Figure 4.5 The flowchart of the Single-Cycled Bees Algorithm (SCBA)
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4.3.2.2 The Multi-Cycled Bees Algorithm (MCBA)

This algorithm uses the wsNGH method and Figure 4.6 illustrates its concept. 

Each sub-Pareto front (Figure 4.6 A, B, C) is generated by each SCBA-wsNGH 

with various user-defined weight combinations. Whilef j  is more weighted than/? 

to concentrate on finding a better / /  value in sub-Pareto front ‘A’, f 2 is more 

heavily weighted than/ ;  in sub-Pareto front ‘B \ In sub-Pareto front *C \fj and 

are evenly weighted. If these three sub-Pareto fronts are combined into one, they 

will create an ideal Pareto front ‘D \ The Multi-Cycled Bees Algorithm (MCBA) 

is proposed in this section with Figure 4.7 showing its flowchart. The process of 

storing sub-Pareto set is reminiscent of the honey-making procedure which is 

carried out naturally by worker bees inside the hive. After the final run of the 

SCBA-wsNGH, the ideal Pareto front will be generated.
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B) Sub-Pareto front with weight wj

CJ Sub-Pareto front with weight w t

A) Sub-Pareto front with weight w,

Final Pareto front
m-

<Bio-objective space: minimise f j  and fj>

Figure 4.6 The concept of the Multi-Cycled Bees Algorithm (MCBA)
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4.4 Results

4.4.1 Results of the EEDP

Tables 4.5 and 4.6 show the parameter values used for testing the EEDP. The 

SCBA-basicNGH and the SCBA-randomNGH only require the parameters given 

in Table 4.5, but for both SCBA-wsNGH and MCBA-wsNGH need extra 

weights parameters as shown in Table 4.6. The total generated power must 

satisfy the power balance constraint within an accuracy of ± 0 . 0 0 0 0 1  (p.u.) which 

is the exactly the same to that used in Chapter 3.

Seven different settings were tested regarding n and itr for both the SCBA- 

basicNGH and SCBA-randomNGH as shown in Table 4.5. Eleven different 

settings were tested regarding n and itr for both SCBA-wsNGH and MCBA- 

wsNGH as shown in Table 4.6. Thus, a total of 58 settings were performed. In 

order to obtain the average performance of the algorithm, 2 0  independent runs 

were carried out in each setting. At the end of each run, the performance of the 

various algorithm configurations was evaluated taking two extreme solutions for 

minimum fuel cost and NOx emissions from the Pareto set. Performance was 

also evaluated taking into consideration the range and quality of the Pareto fronts 

plus the number of solutions and evaluations.
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SCBA-basicNGH and SCBA-randomNGH

setting
Parameters

n nm ngh itr

1 1 0 0

2 150

3 1 0 0 2 0 0

4 1 0 0 . 0 1 300

5 400

6

2 0 0

2 0 0

7 400

n: number of scout bees 
ngh: patch size
nm: number of bees allocated to dominant patches 
itr: number of iterations

Table 4.5 Parameter settings for the SCBA-basicNGH and the SCBA-

randomNGH
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SCBA-wsNGH and MCBA-wsNGH

setting
Parameters

n nm ngh itr W] W2

1

25
25

2 50

3
30

30

4 40

5 25
1 •

6

50
1 0 0 . 0 1 30 1

1 , 
1 ,0 0 0 ; 

1 0 0 , 0 0 0

7 50

8 1 0 0

9 80 25

1 0

1 0 0

25

1 1 50

wf. weight for fuel cost
wf. weight for NOx emissions

Table 4.6 Parameter settings for the SCBA-wsNGH and the MCBA-wsNGH
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4.4.1.1 Comparison of two extreme Pareto solutions

To evaluate the performance of the various algorithm configurations, two 

extreme solutions for minimum fuel cost and NOx emissions from the Pareto set 

are compared. These two Pareto solutions from 20 independent runs were 

compared with the other existing Multi-Objective optimisation algorithms such 

as MOPSO (Abido 2007, 2009), NSGA-H (Ah King et al. 2005) and SPEA 

(Abido 2003a). They were compared with each other regarding the 

neighbourhood search methods proposed in this chapter.

4.4.1.1.1 Comparison of Multi-Objective Optimisation Algorithms

The Tables from 4.7 to 4.14 show the comparison of two extreme Pareto 

solutions. Most of the data sets for f Ci Corr. f e and Corr. f c from 20 independent 

runs do not violate the assumption of normality according to analysis by the 

SPSS program, therefore, a One-Sample t-test was conducted to compare the 

mean value with MOPSO, NSGA- II and SPEA. The symbols and values used in 

Table 4.7 to Table 4.14 are the same to those as shown in Table 3.5, except four 

additional symbols:

1) n/a (Tables 4.8, 4.9, 4.12 and 4.13) indicates that the data sets are non 

applicable to compare mean values using the One-Sample t-test because 

most of the data sets of f e from 2 0  independent runs violate the assumption 

of normality. The average value itself is compared to the other algorithms 

instead of using the One-Sample t-test.
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2 ) n/a+: the average value is higher (worse) than the other algorithms

3) n/a*: the average value is the exact same to the other algorithms

4) n/a ’: the average value is lower (better) than the other algorithms

Table 4.7 shows the comparison of two extreme Pareto solutions between 

MOPSO (Abido 2007, 2009), the SCBA-basicNGH and the SCBA-randomNGH. 

According to the results, the average value of the best cost (fc) from setting7 in 

the SCBA-randomNGH is not significantly different to MOPSO, but the others 

are significantly inferior to MOPSO. The average values of the best emission (fe) 

from setting5 and setting7 in the SCBA-randomNGH is equal to MOPSO.

Table 4.8 shows the comparison between the NSGA-II (Ah King et al. 2005), 

the SCBA-basicNGH and the SCBA-randomNGH. The average value of the best 

cost (fc) from setting7 in the SCBA-basicNGH correspond to the NSGA- I I , 

however, the other settings are significantly worse than the NSGA-II. The best 

emission (fe) from all settings in the SCBA-basicNGH is also worse than for the 

NSGA- I I . The average value of the best cost (fc) from settings 5, 6  and 7 in the 

SCBA-randomNGH is significantly better than those of the NSGA- I I . The best 

emission values (fe) from settings 5 and 7 in the SCBA-randomNGH are exactly 

the same as the NSGA- I I .
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Algorithm setting
The best cost The best emissions

fc Corr. f e Corr. f c / .

1 600.28222 0.21892 633.60390 0.19434

2 600.26478 0.21894 633.71762 0.19433

3 600.28184 0.21873 634.16988 0.19431
SCBA-

basicNGH 4 600.21972 0.21949 634.44370 0.19428

5 600.23763 0.21907 634.86058 0.19427

6 600.22327 0.21941 634.34729 0.19429

7 600.19393 0.21989 635.08662 0.19426

1 600.29912 0.22033 635.40831 0.19430

2 600.16638 0.22100 636.63751 0.19423

3 600.14706 0.22121 637.34353 0.19422
SCBA-

randomNGH 4 600.14455 0.22104 637.49389 0.19421

5 600.12784 0.22152 637.58761 0.19420

6 600.14084 0.22109 637.03869 0.19421

7 600.12083 0.22179 637.73237 0.19420

Table 4.7 Comparison between the SCBA-basicNGH, the SCBA- 

randomNGH and MOPSO
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Algorithm setting
The best cost The best emissions

fc Corr.fe Corr.fe f

1 X V V X

2 X V V X

3 X V V X

SCBA-
basicNGH 4 X V V X

5 X V V X

6 X V V n/a+

7 - V V n/a+

1 X V V n/a+

2 - V V n/a+

3 - V V n/a+
SCBA-

randomNGH 4 - V V n/a+

5 V V V n/a*

6 V V V n/a+

7 V - V n/a *

Table 4.8 Comparison between the SCBA-basicNGH, the SCBA- 

randomNGH and NSGA- II
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Table 4.9 shows the comparison between the SPEA (Abido 2003a), the SCBA- 

basicNGH and the SCBA-randomNGH. The average value of the best cost (fc) 

from all settings in the SCBA-basicNGH is significantly inferior to the SPEA 

and the best emissions (fe) from all settings is also worse than SPEA. However, 

the average value of the best cost (fc) from settings 2, 3, 4 and 6  in the SCBA- 

randomNGH have no significant difference to the SPEA and those from settings 

5 and 7 are significantly better than the SPEA. The best emissions (fe) from 

settings 5 and 7 are exactly the same as the SPEA.

Tables 4.10 and 4.11 show the comparison of two extreme Pareto solutions 

between MOPSO (Abido 2007, 2009), the SCBA-wsNGH and the MSBA- 

wsNGH.

• SCBA-wsNGH (w2=l)

o the best cost (fc): the average value from setting5 is not significantly 

different to MOPSO, but settings 2, 4, 6 , 7, 8 , 9 and 11, are significantly 

better than MOPSO. The average value of the best cost (fc) from setting 10 

is lower (i.e., better) than for MOPSO 

o the best emission (fe): the average value from all settings is higher (i.e., 

worse) than for MOPSO

• SCBA-wsNGH (w2= l,000)

o The average values from all settings for both the best cost (fc) and the best 

emissions (/*) are inferior to those for MOPSO
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Algorithm setting
The best cost The best emissions

fc Corr.fe C o rr .f fe

1 X V V X

2 X V V X

3 X V V X

SCBA-
basicNGH 4 X V V X

5 X V V X

6 X V V n/a+

7 X V V n/a+

1 X V V n/a+

2 - V V n/a+

3 - - V n/a+
SCBA-

randomNGH 4 - V V n/a+

5 - V n/a*

6 - V V n/a+

7 V X V n/a*

Table 4.9 Comparison between the SCBA-basicNGH, the SCBA- 

randomNGH and SPEA
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Algorithm setting
The best cost The best emissions

fc Corr.fe Corr.fc fe

SCBA-
wsNGH

0 2 = 1 )

1 600.16340 0.22197 637.19952 0.19527

2 600.11231 0.22216 636.15354 0.19494

3 600.12046 0.22192 637.08929 0.19497

4 600.11312 0 . 2 2 2 1 2 637.10332 0.19499

5 600.12394 0.22219 636.66324 0.19489

6 600.11519 0.22215 637.72327 0.19475

7 600.11247 0 . 2 2 2 1 1 636.47811 0.19467

8 600.11117 0.22217 636.58825 0.19458

9 600.11586 0 . 2 2 2 2 2 638.20259 0.19474

1 0 600.11576 0.22209 636.34602 0.19472

1 1 600.11215 0.22217 637.07723 0.19460

SCBA-
wsNGH

(w2=
1 ,0 0 0 )

1 601.04174 0.22014 635.19579 0.19508

2 601.01857 0.22018 635.14119 0.19485

3 601.14447 0.21949 636.42977 0.19474

4 600.99740 0.21958 634.83457 0.19501

5 601.01486 0.21930 636.05503 0.19484

6 600.82951 0.21930 635.91738 0.19471

7 600.67160 0.22049 636.67998 0.19464

8 600.61981 0.22084 636.52948 0.19448

9 600.78007 0.22194 636.97182 0.19477

1 0 600.67790 0.21988 635.78992 0.19469

1 1 600.44556 0.22122 636.37855 0.19455

Table 4.10 Comparison between the SCBA-wsNGH and MOPSO
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Algorithm setting
The best cost The best emissions

fc Corr.fe Corr.fe fe

1 601.55247 0.22148 637.54095 0.19423

2 601.12214 0.22074 637.93431 0.19420

3 601.06146 0.22077 637.48582 0.19421

4 601.14147 0.22207 637.72784 0.19420

SCBA- 5 600.87293 0.22101 637.29410 0.19422
wsNGH

(w2=
1 0 0 ,0 0 0 )

6 601.07212 0.22114 637.74397 0.19420

7 600.67790 0.22107 637.92438 0.19420

8 600.56921 0.22159 638.05104 0.19420

9 600.85501 0.22115 637.38361 0.19421

1 0 600.74773 0.22115 637.72211 0.19420

1 1 600.60059 0.22167 638.00395 0.19420

1 600.16340 0.22197 637.54095 0.19423

2 600.11231 0.22216 637.93431 0.19420

3 600.12046 0.22192 637.48582 0.19421

4 600.11312 0 . 2 2 2 1 2 637.72784 0.19420

MCBA-
wsNGH

5 600.12394 0.22219 637.29410 0.19422

6 600.11519 0.22215 637.74397 0.19420

7 600.11247 0 . 2 2 2 1 1 637.92438 0.19420

8 600.11117 0.22217 638.05104 0.19420

9 600.11586 0 . 2 2 2 2 2 637.38361 0.19421

1 0 600.11576 0.22209 637.72211 0.19420

1 1 600.11215 0.22217 638.00395 0.19420

Table 4.11 Comparison between the SCBA-wsNGH, the MSBA-wsNGH and

MOPSO
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• SCBA-wsNGH (w2=100,000)

o the best cost (fc): the average value from all settings is worse than for 

MOPSO

o the best emissions (fe): the average values from settings 2, 4, 6 , 7, 8 , 10 and 

11 are exactly the same as those for MOPSO

• MCBA-wsNGH (w2=l; 1,000; 100,000)

o the best cost (fc): the average value from setting5 does not differ 

significantly to MOPSO, but settings 2, 4, 6 , 7, 8 , 9 and 11 are significantly 

better than for MOPSO. The average value from settinglO is lower (i.e., 

better) than MOPSO

o the best emissions (fe): the average values from settings 2, 4, 6 , 7, 8 , 10 and 

11 are exactly the same as those for MOPSO

Tables 4.12 and 4.13 show the comparison of two extreme Pareto solutions 

between the NSGA-II (Ah King et al. 2005), SPEA (Abido 2003a), the SCBA- 

wsNGH and the MSBA-wsNGH. The results of SPEA are identical to those for 

the NSGA- I I .

• SCBA-wsNGH (w2=l)

o the best cost (fc): the average value from setting 1 is not significantly 

different to the NSGA-II, but settings 2, 4, 5, 6 , 7, 8 , 9 and 11 are
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significantly better than for the NSGA- I I . The average value from settings 

3 and 10 is lower (i.e., better) than NSGA- II 

o the best emissions (/*): the average values from all settings are statistically 

worse than for the NSGA- II

• SCBA-wsNGH (w2= l,000)

o The average values from all settings for both the best cost (fc) and the best 

emissions (fe) are worse than those for the NSGA- II

• SCBA-wsNGH (w2= 100,000)

o the best cost (fc): the average values from all settings are worse than for the 

NSGA- n

o the best emissions (fe): the average values from settings 2, 4, 6 , 7, 8 , 10 and 

11 are exactly the same as those for the NSGA- II

• MCBA-wsNGH (w2=l; 1,000; 100,000)

o the best cost (fc): the average value from setting 1 has no significant 

difference to those for the NSGA- II , but settings 2, 4, 5, 6 , 7, 8 , 9 and 11 

are significantly better than for the NSGA- I I . The average values from 

settings 3 and 10 are lower (i.e., better) than for the NSGA- II 

o the best emissions (fe): the average values from settings 2, 4, 6 , 7, 8 , 10 and 

11 are exactly the same as for the NSGA- II
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Algorithm setting
The best cost The best emissions

fc Corr.fe Corr.fe fe

1 - - - X

2 V X V X

3 n/a' - - X

4 V X - X

SCBA-
5 V X - X

wsNGH 
(w2= 1 )

6 V X - X

7 V X V X

8 V X V X

9 V X - X

1 0 n/a" X V X

1 1 V X V X

1 X V V X

2 X V V X

3 X V V X

4 X V V X

SCBA-
5 X V - X

wsNGH 
(w2= 1 ,0 0 0 )

6 X V V X

7 X V - X

8 X V V X

9 X - - X

1 0 X V V X

1 1 X - V X

Table 4.12 Comparison between NSGA-II, SPEA and the SCBA-wsNGH
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Algorithm setting
The best cost The best emissions

fc C orr.fe Corr.fc fe

1 X - V n/a+

2 X V < nidi

3 X - n/a' n/a+

4 X - V n/a*

SCBA- 5 X - V n/a+
wsNGH 

(wf= 100,00 
0)

6 X - V n/a*

7 X - V n/a*

8 X - V n/a*

9 X - V n/a+

10 X - V n/a*

11 X - V n/a*

1 - - V n/a+

2 V X V n/a*

3 n/a' - nidi n/a+

4 V X < n/a*

5 V X V n/a+
MCBA-
wsNGH 6 V X >1 n/a*

7 V X V n/a*

8 V X V n/a*

9 V X V n/a+

10 n/a' X V n/a*

11 V X V n/a*

Table 4.13 Comparison between NSGA-II, SPEA, the SCBA-wsNGH and

the MSBA-wsNGH

139



4.4.1.1.2 Effect of neighbourhood search methods

In order to evaluate the performance of the proposed neighbourhood search 

methods such as the SCBA-basicNGH, the SCBA-randomNGH, the SCBA- 

wsNGH and the MCBA-wsNGH, seven settings from each neighbourhood 

search method were taken. Although all data sets, except for f e, do not violate the 

assumption of normality, they do violate the assumption of homogeneity of 

variances. Therefore the Kruskal-Wallis test was carried out to compare the 

median values regarding neighbourhood search methods. The results from the 

Kruskal-Wallis test show, there is a significant difference in all data sets. The 

box plot of the best cost and the best emissions for all settings regarding 

neighbourhood search methods was compiled as shown in Figures 4.8 and 4.9.

For the best cost (fc), the SCBA-randomNGH for setting5 only (Figure 4.8 (e)) 

has no significant difference to both the MCBA-wsNGH and the SCBA-wsNGH 

(w2=l). Other then this, both the MCBA-wsNGH and the SCBA-wsNGH (w2 =l) 

outperform the SCBA-basicNGH, the SCBA-randomNGH, the SCBA-wsNGH 

(w2= 1,000) and the SCBA-wsNGH (u>2= 100,000) in all settings.

To determine the best emission value (fe), the SCBA-randomNGH in settings 3, 4, 

6  and 7 (Figure 4.9 c, d, f  and g) have no significant differences to both, the 

MCBA-wsNGH and the SCBA-wsNGH (w2= 100,000). However, there are 

significant differences between the SCBA-randomNGH, the MCBA-wsNGH and
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the SCBA-wsNGH (w2= 100,000). In setting5, Figure 4.9 (e), the SCBA- 

randomNGH outperforms all the other neighbourhood search methods. For both 

settings 1 (Figure 4.9 a) and 2 (Figure 4.9 b), the MCBA-wsNGH and the SCBA- 

wsNGH (w2= 100,000) outperform the other methods.

4.4.1.1.3 Effect of settings

Table 4.14 shows the result of statistic analyses regarding settings by the SPSS 

program.

• For finding the best cost (fc): Only the SCBA-wsNGH (w2= 1,000) does not 

violate the assumption of homogeneity of variances, as a result an ANOVA 

test was carried out to compare the mean value. It can be seen there is a 

significant difference for at least one setting. Therefore a Bonferroni test was 

carried out. Kruskal-Wallis tests were conducted on all the other methods 

resulting in significant differences between them. Hence, box plots (Figure 

4.10) were drawn:

o The SCBA-basicNGH: There is no significant difference in all data sets 

regarding settings.

o The SCBA-wsNGH (w2= 1,000): There is no significant difference amongst 

all settings except for settings 3 and 7. The setting7 is significantly better 

than setting3.

o The SCBA-randomNGH in Figure 4.10 (a): settings 2, 3, 4, 5 and 6  are not 

significantly different from each other and settings 5 and 7 have no
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significant differences between each other. Settings 2 to 7 have significant 

differences, with setting7 outperforms the others, 

o The MCBA-wsNGH and the SCBA-wsNGH (w2=T) Figure 4.10 (b and c): 

settings 2, 4 and 7 have no significant and they outperform the remaining 

settings.

o The SCBA-wsNGH (w2= 100,000) Figure 4.10 (d): settings 5 and 7 have no 

significant difference and they outperform the remaining settings.

• For finding the best emissions (fe): All neighbourhood search methods violate 

the assumption of homogeneity o f variances therefore they were tested by 

Kruskal-Wallis. There are significant differences hence box plots Figure 

4.11 were drawn:

o The SCBA-basicNGH: There is no significant difference in all data sets 

regarding settings.

o The SCBA-randomNGH for settings 2, 3, 4, 5, 6  and 7 in Figure 4.11 (a) 

are not significantly different to each other and they all outperform setting 1 . 

o The MCBA-wsNGH and the SCBA-wsNGH (w2=100,000) Figure 4.11 (b 

and e): settings 2, 4, 6  and 7 have no significant differences from each 

other and also they outperform the remaining settings, 

o The SCBA-wsNGH (w2= l) and the SCBA-wsNGH (w2=l,000) Figure 4.11 

(c and d): settings 2, 3, 4, 5, 6  and 7 have no significant differences from 

each other and they outperform setting 1 .
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The best cost The best emissions

Algorithm fc Corr.fe Corr.fc fe

SCBA-basicNGH — = = =

SCBA-randomNGH * * *

MCBA-wsNGH = *

SCBA-wsNGH (w2= l) * = =

SCBA-wsNGH (w2 =l,000) = = i1

SCBA-wsNGH (w2=100,000) = *

= not significantly different regarding settings

^  significantly different at least one setting

Table 4.14 The result of statistic analyses regarding settings by SPSS
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4.4.1.2 Additional comparisons

The number of evaluations, program running times, Pareto solutions and Pareto 

fronts from all runs were compared with each other together with the settings in 

order to evaluate the performance of the various algorithm configurations. Table 

4.15 shows the average number of evaluations, program running times and the 

number of Pareto solutions. All data sets violate the assumption of homogeneity 

of variances therefore the Kruskal-Wallis test was carried out to compare the 

median values. The results show all data sets are significantly different and 

therefore box plots were drawn as shown in Figures 4.12, 4.13 and 4.14. The 

MCBA-wsNGH method requires a significantly lower number of evaluation and 

program running times as compared to those of the SCBA-basicNGH and the 

SCBA-randomNGH. The SCBA-randomNGH method obtains a significantly 

larger number of Pareto solutions.

Figure 4.15 shows the Pareto fronts from the first test of 20 independent runs of 

three different neighbourhood search methods. Setting7 for both the SCBA- 

baiscNGH and the SCBA-randomNGH obtains the best extreme values for the 

best cost and the best emissions hence their Pareto fronts were plotted. Setting8  

for the MCBA-wsNGH also drew the same conclusion and its Pareto front is 

shown in Figure 4.15 (c).
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A good Multi-Objective Optimisation (MOO) algorithm will attempt to generate 

an approximate set with a uniform distribution of trade-off points which is that 

simultaneously covers the largest range in the objective space very close to the 

Pareto front. Therefore solving MOOPs is in itself a Multi-Objective problem 

(Lee and El-Sharkawi 2008).

Although all Pareto fronts generated by the proposed Bees Algorithms are very 

close to each other (Figures 4.15), the objective space range scoured by the 

random selection method and weighted sum neighbourhood search method is 

wider than for the basic neighbourhood search method. However, it is noticeable 

that the required number of evaluations in the MCBA-wsNGH is almost three or 

four times less than the others.

Figure 4.16 shows the comparison o f Pareto fronts for the weighted sum 

neighbourhood search methods with regard to cycles. The SCBA-wsNGH (w2=l) 

focuses on searching for the best cost Figure 4.16 (a) and the SCBA-wsNGH 

(w2=1,000) focuses on searching for the middle of the Pareto front Figure 4.16

(b). The SCBA-wsNGH (w2= 100,000) focuses on searching for the best 

emissions Figure 4.16 (c), whilst the MCBA-wsNGH takes only dominant 

solutions to generate an enhanced Pareto front by combining the three Pareto 

fronts.
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BA ngh method setting Evaluations Times (s) Solutions
1 26,776 3,555 2 2

2 42,711 5,596 25

3 59,390 7,002 27
basicNGH 4 94,945 9,951 29

5 130,545 13,081 31

6 89,149 14,763 33

SCBA
7 194,882 27,837 40

1 21,524 3,597 297

2 32,703 5,552 403

3 43,768 7,492 491

randomNGH 4 65,025 11,035 600

5 86,664 14,537 689

6 67,515 15,111 525

7 135,266 30,171 742

1 8,209 591 96

2 17,567 1 , 2 1 1 234

3 11,016 876 1 2 0

4 15,066 1,134 179

5 11,677 1,499 117

MCBA wsNGH 6 14,407 1,556 149

7 24,645 2,649 275

8 52,058 5,172 511

9 15,239 2,522 131

1 0 17,440 2,915 143

1 1 36,377 5,557 329

Table 4.15 The average number of evaluations, program running times and

number of Pareto solutions
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4.4.1.3 Comparison between WSBA- m  and MCBA-wsNGH methods

To compare the performances of the proposed Bees Algorithm in Chapter 3, 

data sets which outperform MOPSO considered. The WSBA-w(22) method with 

‘ngh setting2’ and the number of iterations 20 and 25 Tables 3.4 was selected to 

compare with the MCBA-wsNGH settings 7, 8  and 11 Table 4.6. According to 

the SPSS outcome, there is no significant difference for finding the best emission 

value ife\  but there is a significant difference when finding the best cost (fc), 

Table 4.16. The box plots Figure 4.17 and the results indicate that settings 2, 7 

and 1 1  have no significant differences from each other and they all outperform 

setting 1. Setting8  is significantly different to the others and it outperforms the 

remaining settings. However, setting8  requires a greater number of evaluations 

than the others as in Figure 4.18 (a). The number of Pareto solutions from all 

settings in the MCBA-wsNGH are much greater than for the WSBA-w(22) 

method as shown in Figure 4.18 (b). A comparison between their Pareto fronts 

after a similar number of evaluations such as setting2 from WSBA-w(22) method 

and settingl 1 for the MCBA-wsNGH is shown in Figure 4.19. They approximate 

closely with each other but the Pareto front of the MCBA-wsNGH covers a 

slightly larger range in the objective space than those of WSBA-m(22).

In summary, it has been shown that the proposed Bees Algorithm is ideally 

suited to the EEDP in obtaining the Pareto front. Pareto optimality required just 

the one single program run to achieve a satisfactory number of solutions,
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whereas the Bees Algorithm with weighted sum (Lee and Haj Darwish 2008) 

method needed numerous runs to obtain a suitable outcome. It also alleviates one 

of the drawbacks of intelligent techniques for the MOOP because it requires only 

half the number of parameters which need to be adjusted as those for the Bees 

Algorithm (Pham et al. 2005, 2006a) which needs to be adjusted. The three 

proposed new neighbourhood search methods (basicNGH, randomNGH and 

wsNGH) demonstrated good diversity. However, the randomNGH and the 

wsNGH covered the widest range in the objective space for Pareto optimality 

whilst achieving the greatest number of solutions in comparison with the basic 

neighbourhood search method (basicNGH).
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The best cost (fc) The best emissions (fe)

K r u s k a l-  W a llis A N O V A A N O V A K r u s k a l- W a llis

fc C o r r . f e C o r r . f c fe

1 = 1 =

= not significantly different 

^ significantly different

Table 4.16 The result of statistical analyse of two extreme Pareto solutions
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Figure 4.17 Box plots of the best cost between the WSBA-/w(22) and the
MCBA-wsNGH
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Figure 4.18 Comparison between the WSBA-/w(22) and the MCBA-wsNGH
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4.4.2 Results of benchmark mathematical functions

More Multi-Objective functions with various characteristics are tested and 

compared with those of Chapter 3. To evaluate the proposed Bees Algorithm, 

and in particular the SCBA-randomNGH was employed because it has a smaller 

number of parameters requiring adjustment. Table 4.17 gives the parameters 

used and Table 4.18 the results o f the average number of evaluations and Pareto 

solutions from each function. Especially, SCH, FON and TNK functions which 

were tested in Chapter 3, were compared with the results from the SCBA- 

randomNGH. The SCBA-randomNGH requires a smaller number of evaluations, 

although it generates a fewer number of Pareto solutions than those tested in 

Chapter 3.
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Function n ngh nm itr

SCH 50 1 5 1 0 0

ZDT1, ZDT3, FON, POL, 

CONSTR, SRN and TNK
50 0 . 1 5 50

KUR 2 0 0 0 . 1 5 2 0 0

ZDT2 1 0 0 0 . 0 1 1 0 50

WATER 50 0 . 0 1 5 2 0 0

3 functions 50 0 . 0 1 5 2 0 0

Table 4.17 Parameters for the Bees Algorithm
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Function
The average number of

Evaluations Solutions

SCH 6,161 ( 6  times less)* 234 (9 times less) *

ZDT1 12,494 2,440

ZDT3 6,799 890

FON 3,574 (13 times less) * 90 (2 times less) *

KUR 44,840 107

POL 4,734 2 0 2

ZDT2 50,100 4,991

CONSTR 4,950 185

SRN 10,670 963

TNK 5,122 (9 times less) * 90 (3 times less) *

WATER 44,958 2,967

3 functions 45,678 1,495

*: than WSBA-w(20) in Table 3.15

Table 4.18 The result of the number of evaluation and Pareto solutions
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Figure 4.20 shows the Pareto fronts for convex functions without constraints. All 

the Pareto fronts are well defined and cover all ranges in the objective space. 

Figure 4.21 shows the Pareto fronts for non-convex functions without constraints. 

They also show good definition and cover all ranges in the objective space. 

Therefore, it can be stated that the SCBA-randomNGH is less sensitive to the 

shape of the Pareto front profile. Figure 4.22 shows the Pareto front of a three- 

objective function without constraints and Figure 4.23 illustrates the Pareto 

fronts of functions with constraints. They are also well shaped and cover all 

ranges in the objective space. Figure 4.24 depicts a comparison of the Pareto 

fronts generated from the WSBA-m(20) and the SCBA-randomNGH. Both fronts 

deliver good shapes and cover all ranges in the objective space. It should be 

noted that the shape of the Pareto front from the SCBA-randomNGH has better 

definition and required 9 times less effort than those of the WSBA-m(20) in TNK 

function Figure 4.24 (c).
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Figure 4.20 Pareto fronts of convex functions without constraints
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4.5 Summary

This chapter has described a globally and locally enhanced version of the Bees 

Algorithm to solve Multi-Objective Optimisation Problems (MOOPs) with a 

view to achieving Pareto optimality. The number of parameters utilised was half 

of that used for the basic Bees Algorithm through the introduction of a dynamic 

procedure as a global enhancement, and it required much less effort than existing 

algorithm.

Three different methods of conducting neighbourhood searches were developed, 

namely, the basic neighbourhood search (basicNGH) method, the random 

selection neighbourhood search (randomNGH) method and the weighted sum 

neighbourhood search (wsNGH) method, especially the both randomNGH and 

wsNGH were developed as a local enhancement to enhance the Pareto front. 

Two algorithms were proposed by utilising these three neighbourhood methods, 

namely, the Single-Cycled Bees Algorithm (SCBA) and the Multi-Cycled Bees 

Algorithm (MCBA) and they were tested on the Environmental/Economic power 

Dispatch Problem (EEDP) and benchmark mathematical functions. From the 

results obtained, all three neighbourhood search approaches delivered 

satisfactory outcomes. In particular, the minimum fuel cost and minimum 

emission values obtained using the MCBA-wsNGH were superior to those of the 

other existing approaches. Moreover, the proposed Bees Algorithm also gave a
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Pareto frontier with an excellent diversity for achieving Pareto optimality whilst 

proving to be both stable and robust.

In summary this work has confirmed the suitability of the Bees Algorithm for 

solving Multi-Objective optimisation problems.
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5 OPTIMISATION OF MULTI-FUEL ENERGY 

SYSTEMS FOR A LOW-CARBON CITY 

USING THE BEES ALGORITHM

5.1 Preliminaries

Issues of global warming and greenhouse gas emissions are increasingly 

becoming some of the major technological as well as important societal and 

political challenges (Klemes and Pierucci 2008). These challenges are related to 

energy generation and usage and all nations face them (Karlsson et al. 2009). 

Cities are responsible for nearly 75% of the world’s energy consumption and 

about 90% of future growth will occur in urban areas (Bhatt et al. 2010). In 

regions with a high population increase due to rapid economic growth (e.g., 

China and India) a requirement for new cities and urban areas will arise in the 

future (Bouvy and Lucas 2007; Day et al. 2009). One crucial factor for the 

optimal development of such areas is to satisfy the total electrical, thermal and 

cooling energy demands. Energy usage in the building sector is increasing 

rapidly, and there is the necessity to reduce fossil fuel consumption. Fossil fuel 

usage for building applications results in dwindling energy resources and 

deteriorating environmental conditions. Two approaches can be used to mitigate 

these two effects: enhancing the energy saving features of buildings (e.g., Zero
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Energy House: ZEH) and using renewable energy sources like solar, wind and 

biomass (Zhu et al. 2009).

A system designed to allow the operator to choose between multiple energy 

sources is referred to as a multi-energy system (or hybrid energy system). These 

systems are currently receiving increasing attention as they represent a valuable 

means of exploiting renewable energy sources and options for facility companies. 

There are various types of multi-energy systems, using different combinations of 

thermal and electric equipment such as co-generators, electric chillers, engine- 

driven chillers, gas or steam absorption chillers, fuel cells, traditional boilers, 

wood burning appliances, thermal solar collectors, photovoltaic collectors, 

thermal and photovoltaic collectors, etc. A multi-energy system is therefore fed 

by a combination of various energy sources, both renewable and non-renewable, 

to meet the thermal and electric loads o f a building with the maximum efficiency. 

Several examples of multi-energy source building systems can be found in the 

literature (Dalton et al. 2009a, b; Hawkes and Leach 2005; Ooka and Komamura 

2009). Recently researchers are more interested in large scale energy systems 

such as an island (Koroneos et al. 2004) and urban (Aki et al. 2003; Bhatt et al. 

2010; Sugihara et al. 2004; Zhu et al. 2008) and remote communities (Favrat and 

Pelet 2007; Henning et al. 2006; Pelet et al. 2005). (Bhatt et al. 2010) received 

good reviews regarding integrated energy and environmental systems analysis 

methodology to facilitate a Low-Carbon City.
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The design of multi-energy systems involves resolving problems such as: the 

correct sizing and the efficiency o f the different systems and the cost and 

availability of different energy wares. Another important design and operational 

problem concerns the mismatch between the energy demand (the load) and the 

energy supply (both renewable and conventional energy sources) which is 

usually addressed through the integration of storage and/or a back-up energy 

source and connection to the power network. Since there are many adoptable 

configurations, it is important to carry out an optimisation study between the 

energy demand, the energy supply, the converters, the storage and the back-up 

sources characteristics when designing and operating a multi-energy system 

(Fabrizio et al. 2010). The conflicting criteria regarding the cost and CO2 

emissions leads to a large number of structural and operational variants to be 

taken into consideration (0stergaard 2009). Moreover traditional research has 

been more concerned with operating cost rather than capital cost, but the initial 

capital cost of renewable systems is considerably more expensive than 

conventional power systems, and the Decision Maker (DM) or an engineer 

cannot easily design their installation and capacity. Hence the design process for 

the planning engineer is complex and time consuming (Hobbs 1995). Thus 

computer based tools in the design phase are essential (Bouvy and Lucas 2007).

Consequently many researchers developed or employed design models such as 

MODEST (Henning et al. 2006) and refined them using various optimisation
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algorithms such as GA (Ooka and Komamura 2009) and the Queuing Multi- 

Objective Optimiser (QMOO) (Leyland 2002; Molyneaux 2002) or tools such as 

HOMER (Dalton et al. 2009a, b). Further reforms include:

• (Hemandez-Aramburo et al. 2005) and (Mohamed 2008; Mohamed and 

Koivo 2007a; Mohamed and Koivo 2007b) introduced the Micro-Grid (MG) 

system which combined a variety of power sources.

o The MG system in (Hemandez-Aramburo et al. 2005) consists of two 

reciprocating gas engines, a Combined Heat and Power (CHP) plant, a 

photovoltaic (PV) array and a wind generator. The optimisation is aimed at 

minimising the fuel consumption of the system and constraining it to fulfil 

the local electrical and thermal energy demands whilst providing a certain 

minimum reserve power. A penalty is applied for any excess heat produced. 

It was considered only as an economic dispatch problem as it did not take 

any environmental factors into consideration, 

o The MG system in (Mohamed and Koivo 2007a; Mohamed and Koivo 

2007b) was applied as an environmental/economic problem because the 

model considered the operational and maintenance costs as well as the 

emissions, NOx, SO2 and the reduction of CO2 . It consists of a wind turbine, 

a micro turbine, a diesel generator, a PV array and fuel cell. In this model 

the only constraint considered was total load demand.
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• (Henning 1997) introduced a Model for Optimisation of Dynamic Energy 

Systems with Time-Dependent Components and Boundary Conditions 

(MODEST) which uses linear programming to minimise the capital and 

operational costs of energy supply and demand-side management. However, 

the capital cost can be no longer the sole consideration due to rising 

environmental restrictions.

• MERIT (Bom 2001; Bom et al. 2001a; Bom et al. 2001b; Clarke et al. 2007) 

has been developed as a quantitative appraisal tool for assisting decision­

makers to design and plan renewable and low energy systems using detailed 

hourly demand and supply data. One key feature of this tool is its matching 

facility, which uses a statistical method to evaluate how closely the hourly 

demand and supply profiles can be matched. Two coefficients, an inequality 

coefficient and a correlation coefficient, are employed to analyse the 

differences in magnitude and change of phase between demand and supply 

profiles. The correlation coefficient establishes the phase matching between 

demand and supply, while the inequality coefficient ascertains the matching 

magnitude. A detailed description of this methodology can be found 

elsewhere (Scheaffer and McClave 1982; Williamson 1995). Normally, a user 

manually tries to find a good match rate which will not be an optimal solution 

in terms of capital cost and CO2 emission.

• The Renewable Energy System (RES) software HOMER (Lambert et al. 

2004) was developed by The National Renewable Energy Laboratory in the
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US and is utilised as an assessment tool with modelling performed from 

hourly load data input. It considered capital cost and CO2 emissions separately. 

The selection criteria are frequently in conflict so different objective functions 

lead to differing results, especially for economy versus energy or 

environmental objective functions. Hence this problem needs to be handled as 

a Multi-Objective problem.

The aim of this work is to design an optimisation tool to provide an optimal 

approximate capacity for a multi-fuel energy system in conjunction with a 

MERIT program for a Low-Carbon City. To design the optimisation tool as a 

Multi-Objective solver, the Bees Algorithm is applied to minimising total capital 

cost and total CO2 emissions simultaneously. It can also provide Pareto solutions 

which obtain total feasible solutions satisfying the peak thermal and power 

demands.

The chapter is organised as follows: Section 5.2 describes the design of a multi­

fuel energy system. The three proposed techniques are developed in Section 5.3. 

Test runs using these techniques and comparisons with each other are carried out 

in Section 5.4. The final conclusions are presented in Section 5.5.
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5.2 The proposed system model

This study is to know which of the renewable energy systems are best suited and 

which combinations of technologies are cost-effective in the new city context. It 

is also to establish an economically viable strategy of distributed energy systems 

for each district. Since Renewable Energy (RE) systems are intermittent and 

weather-dependent supply resources, it is crucial to identify the realistic 

efficiency of these systems. The aim of the project was to identify the best design 

and technical options in terms of energy performance and carbon emission 

reduction whilst adopting zero and low carbon technologies.

The study comprised the following:

• Implementing an analysis in context of the local climate and site of the city.

• Establishing the databases of the hourly demand profiles (i.e., heating, hot 

water and electricity) and supply systems specifications (e.g., PV cell, solar 

collector, wind turbines, heat pumps, CHP systems, etc.).

• Developing analysis tools for performance assessment and optimisation of 

zero and low carbon energy systems.

• Testing the performance of RE systems in the local climate context.

• Optimising analysis of zero and low carbon energy systems in terms of the 

capital cost and the carbon emission.
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Figure 5.1 shows the outline plan for the new town AS AN in Korea, which is 

sub-divided into ten districts labelled ‘A ’ to ‘J ’, regarding the district’s layout. It 

is assumed that each district installs an independent multi-fuel energy system 

which does not interfere with any other district and Figure 5.2 depicts the 

overview. It is first necessary to determine what the multi-fuel energy system 

should consist of. Efficient renewable energy systems should be considered in 

conjunction with the weather profile and the geographic location of ASAN. Due 

to the intermittency and high cost of renewable energy systems, fuel-based 

energy systems are dependable energy supply systems and able to meet the large 

scale energy demands of a city, therefore they should not be ignored. The 

feasibility of each renewable system’s performance in this region is studied by 

MERIT using an hourly-based annual weather profile and more detail is shown 

in the Appendix. This feasibility study led to the selection of the multi-fuel 

system shown in Figure 5.3. The annual average efficiency of a wind turbine in 

this region is approximately 3% which is insufficient, therefore it was eliminated. 

The renewable systems consist of solar thermal collector (Tl), geothermal heat 

pump (T2), air source heat pump (T3), fuel cells (GT2) and PV cell (Gl), whilst 

the fuel-based energy systems consist of grid power (G2), natural gas boiler (T4) 

and natural gas CHP (GT1). It is assumed that the electricity input for T2 and T3 

are supplied by G2, therefore their CO2 factors are taken into consideration in G2 

and their input is taken as a further electricity demand in G2. All system input 

parameters for the optimisation tool such as unit cost, CO2 factor, Coefficient of
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Performance (COP) and power/heat ratio, are surveyed and researched 

worldwide with their details shown in the Appendix. The CO2 reduction ratio 

will be calculated for a conventional system such as a boiler for peak thermal 

demand and grid power for peak electrical demand. Unfeasible solutions will be 

discarded regarding the CO2 reduction requirement and budget limitations.

Only ‘H’ district is considered in this work, and Table 5.1 shows its peak thermal 

and electrical demands which operate as constraints for the system. These also 

affect the maximum capacity for each system except for the PV cell and the solar 

thermal collector because it is assumed that they are installed on the roof. 

Therefore total roof areas were calculated to determine the maximum capacities 

of the PV cell and solar thermal collector.
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Figure 5.1 Outline plan for ASAN new town



I nput

Survey

• Unit cost and
CO2 factor o f
whole systems

• COP o f  air
source heat
pump and
geothermal heat
pump

• heat/power ratio
o f  CHP and Fuel
cell

Database in Server \

■irfSn .
k d t 'S -

Demand and weather i
profile o f  ASAN

Weather profile 
(1 year)

Thermal demand 
profile (1 year)

MERIT program 

1 _

Electricity demand 
profile (1 year)

Total building 
roofs’ area

Peak
Electricity

demand

Demand Supply

Peak
Thermal
demand

Average efficiency 
o f  PV, Solar 

thermal collector 
and air heat pump 

for a year

Optimisation tool using the Bees Algorithm  

Thermal & Electric power systems

C l G2 T1 T2 T3 T4 GT1 GT2 \

PV Grid Solar thermal Geothermal Air heat pump Boiler Gas turbine Fuel cell
\ \ SSs ’

Output

30% C 0 2  reduction Feasible solutions 
obtained the capacity o f  each system

T4 I GT1 I GT2G1 G 2 I T1 I T2

I Budget limit T2 I T3 I T4 I GT1 I GT2

Cost

Pareto front

Figure 5.2 Overview of the procedure for this work

187



T1 Solar thermal

i i
T4 Boiler

T3 Air heal pump

Total
generated
thermal

Peak thermal 
demand

T2 Geothermal heat pump

GT1 Gas turbine

Total
generated

power

Peak Electricity 
demand

Figure 5.3 Multi-fuel energy system configuration

Peak electrical demand 
(kW/hr)

Peak thermal demand 
(kW/hr)

Total roof areas (nr)

51,000 129,000 652,848

Table 5.1 Peak dem ands and total roof areas
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5.3 Proposed techniques

One crucial factor for the optimal design is to satisfy the energy demands. The 

energy supply system must be sufficient to meet peak demands for security 

reasons, therefore peak thermal and electricity demands become the constraints 

used. Three proposed techniques are introduced to tackle the constraints 

simultaneously, namely ‘Simultaneous Technique (ST)’, ‘Sequential Technique 

with Single Optimisation (STSO)’ and ‘Sequential Technique with Multi- 

Optimisation (STMO)’. Pareto optimal solutions are generated by the Bees 

Algorithm using these techniques and the results are compared with each other 

and analysed.

5.3.1 The Simultaneous Technique (ST)

This is used to identify the optimal design in terms of total capital cost and CO2  

emissions, when they are equal to peak thermal and electricity demands 

simultaneously. The structure for the system model is shown in Figure 5.4. It 

consists of three different system categories:

• power systems: PV cell (G l) and grid power (G2)

• thermal systems: solar thermal collector (T l), geothermal heat pump (T2), 

air source heat pump (T3) and natural gas boiler (T4)

• combined heat & power systems: natural gas CHP (GT1) and fuel cell 

(GT2)
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G l, G2, GT1 and GT2 generate sufficient electric power to meet the power 

balance constraint, whilst T l, T2, T3, T4, GT1 and GT2 produce thermal energy 

satisfying the thermal balance constraint. Electric power input for T2 and T3 is 

supplied from G2 and their CO2 factors are considered with G2.

Figure 5.5 shows the flowchart o f this approach using the Bees Algorithm. First 

of all, n numbers of scout bees are initialised, their fitness evaluated and then 

dominant bees are chosen as selected patch sites. The recruited bees (nm) are 

sent to these dominant sites to conduct neighbourhood searches around them and 

the remaining bees continue to conduct random searches until the criterion is met. 

All dominant sites are stored after every iteration in order to generate the Pareto 

front. Equations (5.1) to (5.19) show all relevant equations used for this 

technique.

The total capital cost objective is given in Eq. (5.1) and the total CO2 emission 

objective by Eq. (5.2).

U l = & C ffl X I/C J+  £ ( c ,  x l/c „ )+  X (C G„  x u c an) (KRW) Eq. (5.1)
/' = 1 7 =  1 *' =  1

f ,,u  = £ (Q, XC02Fa )+ £ (c„ x C02FV)+ £ (CGn x CO!Fcn) (ton) Eq. (5.2)
i= i 7=1 *=1
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Optimisation using the Bees Algorithm
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Figure 5.4 System structure of Simultaneous Technique (ST)
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Eq. (5.3) is the thermal balance constraint equation, where the total produced 

thermal energy produced should match the sum of the peak thermal demand plus 

the total thermal transmission losses. The total thermal energy produced from the 

thermal systems is determined by Eq. (5.4) and the total produced thermal energy 

from combined heat & power systems in Eq. (5.5), where Tlt is taken as zero.

Eq. (5.6) is the power balance constraint equation, where the total electrical 

output should match the peak electrical demand + the electrical inputs to the 

geothermal and air source heat pumps + the total electrical transmission losses. 

Total generated electricity from the electrical systems is determined by Eq. (5.7) 

and the total generated electricity from combined heat & power systems in Eq. 

(5.8), where PLE is taken as zero.

Eq. (5.3)

i x = i(Q x ^ )+ i;(c 7)x ^ x c ’o p j (m w ^ Eq. (5.4)

^  7 GTk ~  ^  ( ( 0 ; 7 *  X  0GTk  V  P H R GTk )  ( M W t h ) Eq. (5.5)

^  ^  PGTk (PDE + RPTi + RPt4 ) PlE 0 Eq. (5.6)

193



Eq. (5.7)

Eq. (5.8)
k=i k=0

Those maximum and minimum limits for each system are shown in Table 5.2. 

The maximum capacity boundary of the thermal systems, excepting the solar 

collector, is determined by the peak thermal demand. For the electrical systems 

the boundary is determined by the peak electrical demand with the exception of 

the PV cell. The peak thermal demand in Korea is typically much greater than 

the peak electrical demand, thus peak thermal demand is given higher priority 

here. Determination of the maximum capacity boundary for the CHP and fuel 

cell is dependant on the peak thermal demand.
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System Lim its Equations o f  m inim um  and 
m axim um  capacity  boundary

Solar
thermal

collector

(T l)

V̂lmin ~ C n  ^ CVlmax 

(MW*)

Grimm = 9

G7 imax = 'Xallownacerx
™ a slc

Eq. (5.9)

Boiler

(T2)

c <c <c72 mm — W 2 — W 2max

(MW*)

CT, = 072mm

Tc  _ DT7 2 max — „
P ti

Eq. (5.10)

Geothermal 
heat pump

(T3)

Ĝ min — 7̂'3 ~ Gr3max

(MW*)

Gr3min = 0

T
Cr3max = y - -----—------ r x allowance, ,

( A ^ C O /^ )  n

Eq. (5.11)

Air source 
heat pump

(T4)

c <c <c74min — ^74 — ^74 max

(MW*)

Gf 4 min = 9

T
Gr 4 max ---- —------zXallowanceT,

(J3T4x COPt4) r4

Eq. (5.12)

CHP

(G T1)

c <c <cG71min — '“'G71 — '-'Grimax

(MW*)

Gcrimm = 0

_  (̂ D7 X P H R qrl )
G71 max 0

PcT\

Eq. (5.13)

Fuel ce ll 

(G T2)

c <c <cG72min — *-'G72 — Ĝ72max

(MW*)

c  = 0G 7 2 m in  u

^ (Td t  x P H R gt2 ) „
G72max= « x allowanceGT2 

PgT2

Eq. (5.14)

Grid

(G l)

c <c <cG lm in — '- 'G l  — '- 'G lm a x

(MWe)

G l min
G l

p  (^D£ ■*" ^ 7 3 m ax ^ 7 4  m a x )

GlmaX _  <*GX

Eq. (5.15)

PV

(G2 )
i

c <c <cG2min — '- 'G 2  — ' “'G 2m ax

(MWe)

G ( j  2  mm =  9

GG2max = x allowance G2 
™apv

Eq. (5.16)

Table 5.2 Limit of each system
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The Multi-Objective equation for the multi-fuel system is formulated as in Eq. 

(5.17).

M inim is4fcALL> fe A L L  1
subject to

Eq. (5.17)

Thermal balance: f r TJ + X T a n -T m -T lt =0
j =1 *=1

Nr. N r,
Power balance: + 2 > on -  (P0£ + rpt3 + RpTi) -p L£=0

/=1 k=\

Limit:

^ G i nun ~  C Gi — ^ G i  max 0  ! > • • • »  ^ 6 )

CT <CT <CT (j = 1, . . Nr)7/min 7/ 7) max V  > ’ x ‘ /

^G T kxm a  — ^ G T k  ~  ^ G T k m a x  _  * * *> ^ G r )

To calculate the percentage of CO2 reduction (Eq. 5.18) for each Pareto solution 

(p) from the proposed multi-fuel energy system, the absolute CO2 quantity Eq. 

(5.19) is calculated for the conventional systems, i.e., a natural gas boiler 

provides peak thermal demand and grid power peak electrical demand.

C02RRp =100- 100 x —  
AC02

Eq. (5.18)

(
AC02 = — xC02F,

a r

A
T2

\ H T 2

+ — xC O lF ,
V ^ G \

C l (ton/hr) Eq. (5.19)
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5.3.2 The Sequential Technique with Multi-Optimisation 

(STMO)

This technique solves the problem by handling the thermal balance and power 

balance constraint sequentially. Figures 5.6 and 5.7 show its structure and 

concept, and share the same identifiers ®  —► ®  and ®  —► The Pareto ®

front of thermal systems is generated first and this can be categorised into two

groups: partial Pareto ©  and © .  The ©  group of solutions do not need any 

additional electrical systems because they are satisfying the two demands

simultaneously. However, the ©  group of solutions are not able to meet the 

electrical demand, thus they need additional electrical suppliers. While the

thermal and combined heat & power systems from the ©  group of solutions 

hold their capacities Figure 5.6 ® , the additional electrical capacity necessary is 

determined by the total of the electrical demand plus the geothermal and air 

source heat pump electrical inputs. When all the individual components of the 

system have been identified its fitness in terms of the total capital cost and CO2 

emissions are calculated. Only then are dominant patch sites selected for 

neighbourhood searches and the remaining bees conduct random searches until 

the criterion is met. To reduce the number of evaluations, the second criterion is 

one-tenth of the first one. Each individual solution of system ®  is optimised by 

the Bees Algorithm respectively, therefore multi-optimisation is required and
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multi-Pareto fronts of entire system are also generated as in Figure 5.7 (iii). At 

the end, the Pareto ©  front is generated from the systems (Figure 5.7 iv). Finally,

the Pareto @ front is generated by combining the partial Pareto ©  front and the 

Pareto ©  front. Figure 5.8 illustrates its flowchart and Eqs. (5.20 to 5.24) show 

all relevant equations used in this technique.

5.3.2.1 Equations for the Pareto ©  front

The Pareto ©  front of the thermal systems was evaluated by using Eqs. (5.20 to 

5.23). Its objective of total capital cost is Eq. (5.20) and its CO2 emissions 

objective is Eq. (5.21). Although grid power (G l) is one of the electrical systems, 

the assumption is made that the electrical input for the geothermal and air source 

heat pumps is supplied from G l. Consequently, Eqs. (5.20 to 5.22) include G l. 

The thermal balance constraint is the same as that of the ST Eqs. (5.3 —► 5.5), 

and the limitations for the thermal and heat & power systems is also the same as 

the ST Eqs. (5.9 —► 5.14). However, the capacity of G l is dependant on the 

electrical inputs required for both the geothermal and air source heat pumps (Eq. 

5.22) and Eq. (5.23) is the Multi-Objective equation.

NT .  V ngt
fcm  = (Co x f / C j + X f o  y-UCTj)+ Y .( C Gn x UCcn ) (K R W ) £q. (5.20)

j = 1 *=1

f.TH = (Co xC02Fcl)+ f;(C 5 x C02F tj)+ % (C Gn xC02Fcn) (ton/hr) Eq. (5.21)
j=1 *=1
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First optim isation using the Bees Algorithm

Total produced therm al 
energy =  peak thermal 

dem and
Peak thermal demand

T2

Sun
T3 T otal capital cost

G rid pow er —►

GT1 T otal CO 2 em ission
Natural gas

Pareto front o f  therm al
system s

Partial Pareto front w hich is 
insufficient for the electrical demand

Partial Pareto front which 
exceeds the electrical demand

Total generated ] 
(peak electricity 
+ electrical inpu

Total produced therm al 
energy  =  peak  therm al 

dem and

Total capital cost

T otal CO 2 em ission

Create final Pareto front

Total generated  pow er 
> =  (peak electricity  

dem and +  electrical input 
for T3 an d  T4)

Peak electricity  dem and -----

G rid  pow er —

Sun  ►

Representative Pareto front o f  entire 
system  (therm al +  electric)

Total produced thermal 
energy =  peak therm al 

demand

Total capital cost

Total CO2 emission

power = 
demand 

m put for T3 
and T4)

M ulti-optim isation using the 
A lgorithm

 * ..........
M ulti-Pareto fronts o f  entire 
system  (therm al +  electric)

Figure 5.6 Structure of the Sequential Technique with Multi-Optimisation

(STMO)
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Figure 5.7 Concept of the Sequential Technique with Multi-Optimisation (STMO)
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Figure 5.8 Flowchart of the Sequential Technique with Multi-Optimisation

(STMO) using the Bees Algorithm
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RPT 3 + RPT4
C g i  m in = — ^ ---- 11 Eq. (5.22)

Gl

Minimise [ f  cTH, f eTH ] Eq. (5.23)

subject to

• Thermal balance: Ttj + TG75t -  Tdt -  Tlt = 0
7=1 *=1

• Thermal and heat & power systems limits

o CT <  CT <  C r .  ( /  =  1 ,  . . . .  N t)7/mm — 7) — 7)max V ’ • • • 5 i /

°  ^ G T k v n m  ~  ^ G T k  — ^G 7*m ax —

5.3.2.2 Equations for the Pareto @ front

Among the optimal solutions from the Pareto ®  front, only these solutions 

which did not satisfy the electrical demand carried out the following procedure. 

The objectives of total capital cost and CO2 emissions are the same as for the ST 

Eqs. (5.1 and 5.2). The power balance equations are also the same as the ST Eqs. 

(5.6 —► 5.8) and the electrical systems limits are also the same as the ST Eqs. 

(5.15 and 5.16). As the thermal and heat & power systems satisfy the thermal 

balance constraint, and their capacities are defined from the Pareto ©  front, there 

is no need to check the thermal balance constraint and limitations again. Hence,
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the Multi-Objective form of this technique is formulated as Eq. (5.24). The 

equation for the CO2 reduction is also the same as that of the ST Eq. (5.18).

M in im is ^ fcALL, f eALL ] Eq.(5.24)

subject to

N g t

• Power balance: £ PGl + '£ P c n -  (PDE + RPT1 + RPT4)-P Le= 0
i=l *=1

Limitation:

°  ^G /m in  — ^ G i  — Q ? /m ax  0  =  • • •» ^ g )

5.3.3 The Sequential Technique with Single Optimisation 

(STSO)

This technique also solves the problem sequentially just as the previous one 

(section 5.3.2), but this technique optimises the designed system only once, and 

solely for thermal systems only. Figures 5.9 and 5.10 show the system structure 

and concept of this technique. Most of the procedure is similar to the previous 

technique with the exception of (iii) in Figure 5.10. Instead of generating 

individual Pareto fronts as in STMO, this technique determines the capacity of 

the electrical systems within their limits to meet peak demand. This capacity is 

determined from the difference between the peak requirement plus both heat
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pump inputs, minus the total of the outputs of the other systems, i.e., CHP and 

Fuel cells. The number of candidate solutions ®  in Figures 5.9 and 5.10, 

depends on the number of Pareto ©  solutions with lower electrical demand 

values. For example, there are three Pareto ®  solutions with lower electricity 

demand in Figure 5.10 ( ii). Therefore only three candidate solutions can be 

generated Figure 5.10 (iii). The final Pareto ©  front is identified by combining

partial Pareto ©  front and ®  candidate solutions. Figure 5.11 shows its 

flowchart.

All equations for thermal systems Pareto front of and entire systems are exactly 

the same as sections 5.3.2.1 and 5.3.2.2 with the exception of the Multi- 

Objective form in section 5.3.2.2. In this technique, optimisation for entire 

systems (system ®  in Figure 5.9) is not required, thus the Multi-Objective 

equation is redundant.

5.3.4 System parameters

Table 5.3 shows the parameters regarding the multi-fuel energy systems with 

further details shown in the Appendix.
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Figure 5.9 Structure of the Sequential Technique with Single Optimisation

(STSO)
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Figure 5.10 Concept of the Sequential Technique with Single Optimisation (STSO)
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(STSO) using the Bees Algorithm
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\ P a
uc

(KRW)
C 0 2 F COP PH R allownace

(m2/kW )
™as,c

(m2/kW)

C max

(kW)
A C 0 2

(ton/hr)

G l - 1.0
72 (Korea Energy 

Management 
Corporation 2009)

0.448 - - - - - 101,264

G2 - 0.15 10,578,000 0 - - 0.5 8 - 40,803

T1 0.12 - 3,144,500 0 - - 0.5 - 3.31 98,617

T2 0.65 - 1,270,158 0 3.4 - 0.5 - - 29,186

T3 0.9 - 916,090 0 3.4 - 0.5 - - 21,078 50.92

T4 0.85 -
150,000 (Energy 
Technologies Unit 

2007)
0.185 - - - - - 151,765

GT1 0.85 1 . 0

1,643,095 (Energy 
and Environmental 

Analysis 2008b)

0.185
(Carbon 

Trust 2008)
- 0.5 - - - 75,882

GT2 0.98 1 . 0

6,852,000 (Energy 
and Environmental 

Analysis 2008a)
0 - 1.25 0.5 - - 82,270

Table 5.3 Parameters of the proposed multi-fuel energy system



5.4 Results

The optimal capacities of the power and thermal systems were optimised by the 

Bees Algorithm with the randomNGH method. For each of the three techniques, 

two different settings were tested, regarding the number of scout bees and 

iterations as in Table 5.4. Thus, a total o f six tests were performed. To obtain the 

average performance of the algorithm, 10 independent runs were carried out. At 

the end of each test, the performances of the various algorithm configurations 

were evaluated, using the two extreme solutions for minimum capital cost and 

CO2 emissions from the Pareto set. The Pareto fronts, the number of solutions, 

number of evaluations and program running time are compared with each other.

5.4.1 Comparison of two extreme solutions

To compare the two extreme solutions, each average value of 10 independent 

runs is taken as shown in Table 5.5. For statistical analysis, the SPSS program is 

also used in this chapter and the A N  OVA (for data with normal distribution and 

homogeneous variances), the Kruskal-Wallis (for non-parametric data) test and 

the t-test are all carried out for a 5% alpha level of significance to compare the 

mean or median values. Two extreme solutions will be compared, the first 

regarding techniques and the second with regard to settings.
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■
Name of parameters setting 1 setting2

n : number of scout bees 50 1 0 0

nm: number of recruited bees allocated to non­

dominated patch sites
1 0 1 0

ngh: patch size 50 50

itr: number of iterations 50 1 0 0

Accuracy (MW) 0 . 1 0 . 1

Table 5.4 Parameter setting for the Bees Algorithm
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Technique setting fc Corr.fe Corr.fc fe C02RRc C02RRe

ST
setting 1 89,940 41.39 726,258 13.72 18.72 73.05

setting2 67,072 42.56 662,906 13.19 16.43 74.10

STMO
setting 1 62,562 40.53 719,262 6.95 20.42 86.35

setting2 48,079 44.85 843,956 6.97 11.94 86.31

STSO
setting 1 88,774 38.60 792,577 7.27 24.21 85.73

setting2 81,324 39.88 830,427 7.14 21.69 85.97

f c: the average of the best cost (MKRW)

C orrf: the average of emissions corresponding to f  (ton) 

Corr.fc. the average of cost corresponding to f e (MKRW) 

f e: the average of the best emissions (ton)

C02RRc: the average of CO2 reduction rate for f c (%) 

C02RRe: the average of CO2 reduction rate for f e (%)

Table 5.5 The average of two extreme solutions from 10 independent runs



5.4.1.1 Effects of techniques

Before comparing the mean or the median values, all required assumptions (such 

as normal distribution and homogeneous variances) of data sets were checked. 

The SPSS results show all data sets (f:  best cost, Corr.fe\ emission corresponding 

to f C9 Corr.fc. cost corresponding to f e and f e: best emission) from 6  different tests 

are satisfied with the assumption of normal distribution. They are also satisfied 

with the assumption of homogeneous variances except for the f c data set in 

setting2. Therefore, a Kruskal-Wallis test was carried out for this f  data set to 

compare its median values and the other data sets were tested by ANOVA test to 

compare their mean values.

5.4.1.1.1 Settingl

According to the ANOVA test as shown in Table 5.6 (a) , fc and f e are significantly 

different, but Corrfe and Corrfc have no significant difference. A Bonferroni test 

was carried out to identify the most appropriate technique for the best mean 

values off c and f e as shown in Table 5.6 (b). There is no significant difference 

between technique 1 (ST) and technique3 (STSO) in finding the best cost (fc). 

However, technique2 (STMO) is significantly different to the other two and the 

mean values from technique2 are much lower than for the others. Technique2 

outperforms techniques 1 and 3 in finding the best cost. The best emissions (fe) 

from technique 1 is significantly different to techniques 2 and 3, but they are not 

significantly different to each other. The mean values from techniques 2 and 3
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are much lower than for technique 1 , therefore they outperform technique 1 

regarding finding the best emission.

5.4.1.1.2 Setting2

Two different tests were carried out in setting2. First of all, an ANOVA test was 

carried out to compare the mean values of Corr.fc Corr.fc and f e. The results in 

Table 5.7 (a) show the mean values of Corr.fe have no significant differences 

between the techniques, but the mean values of Corr.fc and f e do have significant 

differences. To find out which one is significantly different, a Bonferroni test 

was also carried out and Table 5.7 (b) shows the results. For finding Corr.fc, 

technique 1 outperforms techniques 2 and 3, but for f e, techniques 2 and 3 

outperform technique 1 in finding the best emission. For the best cost (fc\  there is 

a significant difference between the techniques according to the Kruskal-Wallis 

test shown in Table 5.7 (a). Therefore a box plot was drawn as Figure 5.12. 

Technique3 is shown to be significantly different to techniques 1 and 2, but there 

is no significant difference between techniques 1 and 2  which both outperform 

technique3.

5.4.1.2 Effect of settings

To check the effect of a setting, a t-test was carried out and Table 5.8 shows 

there is no significant difference for all data sets (fc, Corr.fc Corr.fc and f e), with 

ST. For the best cost (fc) in both sequential techniques, there is also no significant 

differences, but for the best emissions (fe), there is a significant difference with
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setting fc Corrfe Corr.fc fe

settingl 4 = = 4

(a) Result by AN  OVA test

Dependent Variable (I) technique (J) technique Mean Difference (I-J)

2 27378.600*
1 (ST)

3 1166.800

1 -27378.600*
fc 2 (STMO)

3 -26211.800*

1 -1166.800
3 (STSO)

2 26211.800*

2 6.77100*
1 (ST)

3 6.45300*

1 -6.77100*
f 2 (STMO)

3 -.31800

1 1 -6.45300*
j 3 (STSO)
1

i
2 .31800

(b) Result by Bonferroni test

= not significantly different 
4 significantly different
*. The mean difference is significant at the 0.05 level.

Table 5.6 Statistical result in settingl
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setting fc C o rr f Corr.fc fe

setting2 1 = 1 *

(a) Result by AN  OVA and Kruskal-Wallis tests

Dependent Variable (I) technique (J) technique Mean Difference (I-J)

1 (ST)
2 (STMO)

3 (STSO)

-181049.400*

-167520.700*

C o rrf 2 (STMO)
1 (ST)

3 (STSO)

181049.400*

13528.700

\\

i

3 (STSO)
1 (ST)

2 (STMO)

167520.700*

-13528.700

1 (ST)
2 (STMO)

3 (STSO)

6 .2 2 0 0 0 *

6.04700*

fe 2 (STMO)
1 (ST)

3 (STSO)

-6 .2 2 0 0 0 *

-.17300

I
I 3 (STSO)

1 (ST)

2 (STMO)

-6.04700*

.17300

(b) Result by Bonferroni test

= not significantly different 
4- significantly different
*. The mean difference is significant at the 0.05 level.

Table 5.7 Statistical results in setting2
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Figure 5.12 Box plot of the best cost (fc) regarding techniques in setting2
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fc Corr.fe C o r r f fc

= = = =

(a) result of the ST

fc Corr.fe C o r r f fe

(settingl is better than 
setting2 )

(settingl is better than 
setting2 )

(b) result of the STMO

fc
1

C o rr f C o r r f fe

1! *

(setting2  is better than 
settingl)

(c) result of the STSO

= not significantly different 
i- significantly different

Table 5.8 Statistical result from t-test regarding setting
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regard to setting. Settingl has a better result than setting2 for the STMO, but 

setting2 result is better than settingl in the STSO.

5.4.2 Comparison of Pareto fronts

Among 10 independent program runs from each test, one test result is arbitrarily 

selected to compare Pareto fronts. Figure 5.13 shows two Pareto fronts from 

settingl ( ♦ )  and setting2 (■ )  and most of the Pareto solutions of setting2 

dominate those of settingl. This confirms that setting2 outperforms settingl. 

Solutions near each end of the Pareto front and their near turning points as shown 

in Figure 5.13 were taken to construct the charts, Figures 5.14 and 5.15 depicting 

the individual proportions of the energy system making up the multi-fuel energy 

system with the ST. When the CO2 reduction is low Figures 5.14 and 5.15 (a), 

the boiler and grid power provide the bulk o f the energy (over 75%) to the 

system where both their inputs exceed 50MW. When the CO2 reduction is 

around 60%, as Figures 5.14 and 5.15 (b) the CHP is the major energy provider. 

However, when the CO2 reduction exceeds 70% as Figures 5.14 and 5.15 (c), the 

solar thermal collector entirely contributes almost as much as the others 

combined (i.e., = 50%).

Figure 5.16 shows two Pareto fronts from settingl ( # )  and setting2 (A) with the 

STMO and their shapes resemble the letter ‘L \  They look similar but the Pareto
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front of setting2 is better, especially the left side from the tuning point. Figures

5.17 and 5.18 show the individual fuels comprising the multi-fuel energy system 

with the STMO. When the CO2 reduction is lower than 75% Figures 5.17 and

5.18 (a; b), its pattern is similar to that Figures 5.14 and 5.15 (a; b) in the ST. 

However, when the CO2 reduction is high (around 85%) as Figures 5.14 and 5.15 

(c), the capacity of the fuel cell is much greater, being more than double the 

capacity of the ST.

Figure 5.19 depicts two Pareto fronts with the STSO from settingl ( • )  and 

setting2 (A ) respectively which have similar profiles. The energy inputs of each 

individual energy system are illustrated in Figures 5.20 and 5.21 which is similar 

to the STMO. They show the proportions of the energy system regarding CO2  

reduction. Figure 5.22 shows Pareto fronts from all three techniques and Figure 

5.23 the pie charts of each system using a cluster of each technique (arrowed). 

System combinations from all three techniques show similar patterns.

Figure 5.24 shows a comparison between the Pareto front from the ST and the 

partial Pareto front of the thermal systems exceeding electrical demand. The 

former consists of entire systems where their total output and the peak demand 

match within accuracy limits. In the latter case thermal output matches thermal 

demand within acceptable limits, but generates a surplus of electricity, despite 

which, its Pareto front prevails especially on the right hand from the turning
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Figure 5.13 Pareto fronts of the Simultaneous Technique (ST)
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point. When this surplus generated electricity is returned to the grid, it will 

enhance profits.

Overall, the turning point of the Pareto front in the ST is around 60% of the C 0 2 

reduction whereas the turning points for both other techniques are approximately 

70%. The total capital cost of a 70% C 0 2 reduction with the ST is = 600,000 ~

700,000 (MKRW: million Korean won) where the largest contribution is 

provided by the solar thermal collector (=  90MW). The total capital cost of a 

70% C 0 2 reduction for the other two techniques is = 100,000 ~ 200,000 

(MKRW) where the highest input is from the CHP system (=  50 ~ 60MW). 

Although the C 0 2 reduction is similar, total capital costs and the combination of 

energy types contributing to a multi-fuel energy system can differ widely 

depending upon which technique is employed.

5.4.3 Additional comparisons

Final comparisons are made o f  the num ber o f Pareto solutions, evaluations 

and program running times. Table 5.9 shows the average values from 10 

independent program  runs. All data sets (solutions, evaluations and times) 

violate the assumption o f  homogeneous variances according to the result 

from SPSS  program, therefore a Kruskal-W allis test was carried out to 

compare their median values. The results show there are significant
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differences in all data sets regarding techniques, hence box plots were 

drawn as shown in Figures 5.25 and 5.26. While the number of Pareto 

solutions and evaluations from the STMO are noticeably higher than for the ST 

and the STSO, the program running time is significantly shorter than that of the 

ST. The number of Pareto solutions and evaluations from the STSO is marginally 

higher than for the ST, but the program running time is much shorter. Their 

Pareto fronts were compared in Figure 5.22 and the Pareto front of the STSO was 

superior to those of the ST. Therefore it can be claimed that the STSO is superior 

to the ST with a similar number o f evaluations.
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Technique setting
Number of 

Pareto 
solutions

Number of 
evaluations

Program 
running times 

(second)

ST
settingl 45 8,077 24,543

setting2 60 23,636 109,667

STMO
settingl 488 71,488 32

setting2 1,346 424,476 188

STSO
settingl 63 11,699 30

setting2 146 34,621 142

Table 5.9 The average values from 10 independent program runs
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Figure 5.25 Box plots of results with settingl
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(c) Program running times 
Figure 5.26 Box plots of results with setting2
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5.5 Summary

This chapter has discussed the identification of the best design and technical 

options in terms of energy performance and carbon emission reduction in 

adopting zero and low carbon technologies for the ASAN new town in Korea. To 

enable this, an analysis tool was developed for performance assessment and 

optimisation of low carbon energy supply systems in terms of the capital cost and 

the carbon emissions, whilst satisfying the thermal and power balance constraints 

simultaneously. Three different techniques were introduced, namely the 

‘Simultaneous Technique (ST)’, the ‘Sequential Technique with Multi- 

Optimisation (STMO)’ and the ‘Sequential Technique with Single Optimisation 

(STSO)’. The Bees Algorithm with random neighbourhood search (SCBA- 

randomNGH) from Chapter 4 was adopted as a Multi-Objective solver due to the 

small number of parameters to be set before the program runs.

Each technique was tested with two different parameter settings, and all results 

showed a good diversity of Pareto fronts. Optimal Pareto solutions were obtained 

for their CO2 reduction and the average CO2 reduction from 18% to 90%. 

Although the CO2 reduction was similar, the total capital cost and the system 

proportions varied with the technique applied. The STMO required a greater 

number of evaluations but obtained a better Pareto front with a higher number of
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Pareto solutions with less running time. Overall, it outperformed other 

algorithms in finding the best cost and the best emissions.

Therefore, this work has confirmed the suitability of the Bees Algorithm for 

designing a Low-Carbon City, and achieving financial savings.
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6 CONCLUSION

6.1 Contributions

The research introduced a number of developments to the Bees Algorithm for 

application to Multi-Objective Optimisation Problems (MOOPs). It has also 

enhanced the Bees Algorithm in terms of its ease of use, robustness and speed.

The main contributions are:

• Developing new Multi-Objective versions of the Bees Algorithm (WSBA, 

WSBA-e and WSBA-m) to run in conjunction with the weighted sum 

method to generate Pareto optimality, whilst being less sensitive to the 

Pareto front profile.

• Developing a dynamic Multi-Objective Bees Algorithm with a reduced 

number of parameters.

• Proposing new ways (basicNGH, randomNGH and wsNGH) of 

performing local search in the Bees Algorithms enhancing the sensitivity 

and diversity of the Pareto front.

• Obtaining optimal solutions to the Environmental/Economic power 

Dispatch Problem (EEDP).
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• Designing a multi-fuel hybrid energy system for a Low-Carbon City.

•  Developing new multi-constraint optimisation techniques (ST, STMO 

and STSO) for identifying the optimum energy permutations of a multi­

fuel system.

6.2 Conclusions

The feasibility of utilising the Bees Algorithm to solve Multi-Objective 

optimisation problems such as the EEDP, optimising benchmark mathematical 

functions, and in the design of a Low-Carbon City formed the basis for the 

research presented in this thesis. The proposed Bees Algorithm versions which 

have been presented improve upon the current state of the art of the Bees 

Algorithm. The key conclusions for each topic analysed are:

• The Bees Algorithm employing the weighted sum method (WSBA, 

WSBA-e and WSBA-m) generates a good Pareto front from a single 

program run. The EEDP results proved the robustness of the algorithm. 

The Pareto fronts from WSBA-e and WSBA-m were more diverse and 

less sensitive to the Pareto front profile.

• The number of parameters was reduced from six to three in the SCBA- 

basicNGH and the SCBA-randomNGH, and four in the SCBA-wsNGH 

and the MSBA-wsNGH. The EEDP results were superior for the
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proposed algorithm. The new neighbourhood search methods enhanced 

the Pareto fronts.

• Applying the proposed Bees Algorithm (SCBA-randomNGH) to Multi- 

Objective function optimisation showed that it performed very well even 

for a disconnected Pareto front and non-convex set.

• Both the simultaneous and sequential approaches (ST, STMO and STSO) 

employing the proposed Bees Algorithm (SCBA-randomNGH) generated 

a good diversity of Pareto fronts. However, they proved to have 

contrasting advantages and disadvantages permitting the decision maker 

to choose technique according to specific requirements.

• A CO2 reduction from 20% to 90% was achieved by the designed multi­

fuel energy system. The results indicate that a Low-Carbon City with 

cheaper capital cost could be designed by the Bees Algorithm.

Therefore this work confirms the suitability of the Bees Algorithm to Multi- 

Objective problems.
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6.3 Suggestions for future research

The following are possible extensions that can be made to this work:

• A diversity mechanism could be developed to obtain a more uniform 

spread o f solutions along the Pareto front.

• A mechanism to calculate the distance between the approximation set and 

the true Pareto front could be introduced.

• A procedure to select the best compromise Pareto solution could be 

developed to support the decision-making process.

• Due to insufficient data, only one linear system was tested in the 

continuous search space. There are many energy conversion systems 

which may not have linear capital cost and CO2 emissions. More data 

regarding types of energy converters is necessary in developing the Bees 

Algorithm in a discontinuous search space.

• For the Low-Carbon City, only capital cost was considered, which is 

more expensive than conventional systems. The running costs of 

renewable systems are almost zero. Therefore at the design stage, 

economic analysis should be considered over a long period.
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APPENDIX

Details of the multi-fuel energy systems discussed in

Chapter 5
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1. Solar thermal collector

a. Efficiency

Model Manufacturer Ground conditions No./100m2 IDEAL generation (MWh)

Msc-32
American Energy 

Technologies, Inc.
Normal 33 703.392

SX-600 Solarmax Inc. Normal 33 724.0444

Table 1 Specifications of selected model of solar thermal collector in MERIT
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South East North West

Model
Energy
generated Efficiency

Energy
generated Efficiency

Energy
generated Efficiency

Energy
generated Efficiency

Tilt Msc-32 114.30 16.25% 114.30 16.25% 114.30 16.25% 114.30 16.25%

@ 0 SX-600 91.61 12.65% 91.61 12.65% 91.61 12.65% 91.61 12.65%

Tilt Msc-32 125.82 17.89% 87.20 12.40% 78.96 11.23% 113.97 16.20%

@30 SX-600 1 0 1 . 6 6 14.04% 68.39 9.45% 59.64 8.24% 92.36 12.76%

Tilt Msc-32 121.42 17.26% 75.73 10.77% 62.84 8.93% 107.23 15.24%

@40 SX-600 97.89 13.52% 58.41 8.07% 44.98 6 .2 1 % 86.47 11.94%

Tilt Msc-32 108.53 15.43% 55.01 7.82% 35.19 5.00% 88.51 12.58%

@ 60 SX-600 83.78 11.57% 40.53 5.60% 19.73 2.72% 69.59 9.61%

Total average of solar thermal collector efficiency 1 1 .8 8 %

Table 2 Efficiency of solar thermal collector using weather profile in MERIT



b. Required unit area

Model Collector length (m) Collector width(m)

MSC-32-no 2.491 1 . 2 2 1

MSC-32-nol 2.491 1 . 2 2 1

SX-600-1 2.494 1.232

SX-600-2 2.491 1.323

Average 2.492 1.249

Average area (m2) 3.11

Required solar thermal collector unit area (m2 /kW) 3.31

Table 3 Required solar thermal collector unit areas in MERIT

c. Unit cost

Type Capacity (in2) Installation unite 
cost (KKRW/m2)

Flat plate solar collector 1 930

Single vacuum tube solar collector 1 980

Double vacuum tube solar collector 1 940

Average of unit cost (KKRW/m2) 950

Unit cost (KRW/kW) 3,144,500

Table 4 Unit cost of solar thermal collector from Korea Energy 

Management Corporation (KEMCO)
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2. Boiler

a. Efficiency and unit cost

Capacity(kWth) Cost (KRW) Unit cost (KRW /kW th) Efficiency (%)

20,000 2,000,000 100,000 85

1,000 150,000 150,000 85

250 50,000 200,000 85

Average o f unit cost (KRW /kW) 150,000

Table 5 Unit cost and efficiency of boiler from  UK Biomass Strategy 2007

(Energy Technologies Unit 2007)

Natural gas heat plant (=boi!er)

2,500,000

y = 9 8 .1 04x + 38429
2,000,000

£  1,500,000

o  1,000,000

500,000

0
25,00020,00015,00010,0005,0000

Capacity (kWth)

Figure 1 G raph of cost vs. capacity of boiler from  UK Biomass Strategy

2007



3. Geothermal heat pump

a. Unit cost

Company and type Capacity (kW) Total cost (KKRW)
Unit cost 

(KKRW/Kw)

KEMCO
Vertical tight 1 1,140 1,140

Open type 1 1 , 0 1 0 1 , 0 1 0

KongkanKorea

10(10RT) 14,300 1,430

20(20RT) 2 2 , 0 0 0 1 , 1 0 0

40(40RT) 36,300 908

50(50RT) 41,800 836

Kyung Jin TRM

20(20RT) 23,650 1,183

29(29RT) 34,650 1,195

40(40RT) 40,040 1 , 0 0 1

45(45RT) 52,800 1,173

54(54RT) 58,300 1,080

Topsol

55(15RT) 20,350 370

70(20RT) 26,400 377

100(30RT) 36,300 363

140(40RT) 50,600 361

Average of unit cost (KKRW/kW) 902

Table 6 Unit cost of geothermal heat pump in Korea
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Geothermal heat pump

70,000

60,000 y = 293.25x + 1744;

50,000

I 40,000

20,000

10,000

16060 80 100 120 1400 20 40

Capacity (kW)

Figure 2 G raph of cost vs. capacity of geothermal heat pump in Korea
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4. Air source heat pump

a. Efficiency

Model Manufacturer Type Rated heating 
capacity (kW)

trane 1 0 0 0 Trane Air source 7.678

Table 7 Model of air source heat pump in MERIT

Energy generated (MWh) Ideal generation 
(MWh)

Efficiency
(%)

January 3.76 5.71 65.82%

February 4.10 5.16 79.46%

March 5.32 5.71 93.13%

November 5.11 5.53 92.44%

December 4.36 5.71 76.32%

Table 8 Efficiency of air source heat pump using weather profile in MERIT
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b. Unit cost

Fine Enertec

Capacity (kW) Cost (KKRW) Unit cost (KKRW/Kw)

1 2 20,350 1,696

17 24,734 1,455

23 30,855 1,342

29 36,075 1,244

36 41,129 1,142

47 55,440 1,180

61 64,680 1,060

71 74,030 1,043

Average of unit cost (KKRW/Kw) 1,270

Table 9 Unit cost of air source heat pump in Korea

251



Air source heat pump

80,000

y = 916.81X + 9489.4
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Figure 3 Graph of cost vs. capacity of air source heat pump in Korea



5. CHP

a. Unit cost

Cost component System 1 System 2 System 3 System 4 System 5

Nominal turbine capacity 
(MW)

1 5 1 0 25 40

Equipment (1,000,000 of 2007 KRW)

Combustion turbines 1,218 3,280 7,322 15,300 28,440

Electrical equipment 493 648 784 1,248 1,890

Fuel system 199 2 1 2 226 301 430

Water treatment system 89 216 352 444 499

Heat recovery steam 
generators

610 738 935 1,236 1,489

SCR, CO, and CEMS 0 0 0 0 0

Building 0 0 0 0 0

Total equipment 2,608 5,095 9,618 18,528 32,748

Construction 923 1,682 3,082 5,936 10,493

Total process capital 3,530 6,778 12,700 24,464 43,241

Table 10 Specific cost of CHP from Energy and Environmental Analysis (an 

ICF International Company) (Energy and Environmental Analysis 2008b; 

US Environmental Protection Agency 2008)
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Nominal turbine capacity 
(MW)

Capital cost 
(MKRW)

Unit cost 
(MKRW/MW)

1 3,530 3,530

5 6,778 1,356

1 0 12,700 1,270

25 24,464 979

40 43,241 1,081

Average of unit cost(MKRW/MW) 1,643

5 0 .0 0 0

4 5 .0 0 0

4 0 .0 0 0

”c  3 5 ,0 0 0  
o
|  3 0 ,0 0 0

|  2 5 ,0 0 0  
o
3  20,000 
a
o  1 5 ,0 0 0

10.000 

5 ,0 0 0

0

Figure 4 G raph of cost vs. capacity of CHP
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Table 11 Unit cost of CHP

Gas CHP

y = 997 .41  x + 1984 .5

0  5  10  15  2 0  2 5  30  35  40  45

Nominal capacity (MW)



6. Fuel cell

a. Unit cost

Installed cost components System 1 System 2 System 4 System 5

Fuel cell type PAFC PEM MCFC MCFC

Nominal capacity (MW) 200 10 300 1,200

Equipment

Fuel cell package 
(MKRW)

5.40 9.60 4.80 4.64

Heat recovery and other 
equipment (MKRW)

0.10 0.00 0.07 0.04

Interconnect/electrical
(MKRW)

0.18 0.60 0.14 0.05

Total equipment (MKRW) 5.68 10.20 5.02 4.72

0.00 0.00 0.00 0.00

Labor/materials (MKRW) 0.40 0.72 0.35 0.34

Total process capital 
(MKRW/MW)

6,072 10,920 5,364 5,052

Average of unit cost 
(MKRW/MW)

6,852

Table 12 Unit cost of fuel cell from Energy and Environmental Analysis (an 

ICF International Company) (Energy and Environmental Analysis 2008a)
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7. PV

a. Efficiency

Model Manufacturer Capacity(W) Type No/100m2 Ideal (MWh)

PV1 Yingli 110 Poly 100 96.36

PV2 Yingli 110 Mono 115 110.814

PV3 BP 130 Poly 90 102.492

PV5 Yingli 160 Poly 78 109.3248

PV6 PSE 160 Mono 79 110.7264

PV7 SE 189 Mono 80 132.4512

PV8 SE 240 Poly 62 130.3488

PV9 SE 250 Poly 62 135.78

Table 13 Specification of PV model in MERIT
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Annual generation (MWh)
South East North West

Model Energy
generated Efficiency Energy

generated Efficiency Energy
generated Efficiency Energy

generated Efficiency

PV1 12.65 13.1% 12.73 13.2% 12.73 13.2% 12.82
PV2 11.53 10.4% 11.75 10.6% 11.74 10.6% 12.02 10.8%
PV3 12.81 12.5% 12.92 12.6% 12.91 12.6% 13.04 12.7%

Tilt PV5 14.32 13.1% 14.4 13.2% 14.4 13.2% 14.5 13.3%
@ 0 PV6 14.23 12.9% 14.32 12.9% 14.31 12.9% 14.42 13.0%

PV7 17.55 13.3% 17.65 13.3% 17.64 13.3% 17.75 13.4%
PV8 17.24 13.2% 17.33 13.3% 17.33 13.3% 17.44 13.4%
PV9 18.05 13.3% 18.15 13.4% 18.14 13.4% 18.26 13.4%
PV1 18.03 18.7% 15.74 16.3% 14.52 15.1% 17.56 18.2%
PV2 14.17 12.8% 13.51 12.2% 12.69 11.5% 14.86 13.4%
PV3 17.85 17.4% 15.79 15.4% 14.6 14.2% 17.57 17.1%

Tilt PV5 20.49 18.7% 17.85 16.3% 16.44 15.0% 19.91 18.2%
@30 PV6 20.33 18.4% 17.73 16.0% 16.34 14.8% 19.77 17.9%

PV7 25.3 19.1% 21.94 16.6% 20.2 15.3% 24.5 18.5%
PV8 24.76 19.0% 21.52 16.5% 19.82 15.2% 24.01 18.4%
PV9 26 19.1% 22.56 16.6% 20.77 15.3% 25.19 18.6%

Table 14 Efficiency of PV using weather profile in MERIT



258

Annual generation (MWh)
South East North West

Model Energy
generated

Efficiency Energy
generated Efficiency Energy

generated Efficiency Energy
generated Efficiency

Tilt
@40

PV1 18.11 18.8% 15.38 16.0% 13.89 14.4% 17.47 18.1%
PV2 13.96 12.6% 13.2 11.9% 12.3 11.1% 14.64 13.2%
PV3 17.88 17.4% 15.42 15.0% 13.99 13.6% 17.45 17.0%
PV5 20.59 18.8% 17.43 15.9% 15.72 14.4% 19.81 18.1%
PV6 20.42 18.4% 17.31 15.6% 15.62 14.1% 19.67 17.8%
PV7 25.44 19.2% 21.43 16.2% 19.3 14.6% 24.39 18.4%
PV8 24.89 19.1% 21.02 16.1% 18.94 14.5% 23.9 18.3%
PV9 26.15 19.3% 22.03 16.2% 19.85 14.6% 25.07 18.5%

Tilt 
@ 60

PV1 17.19 17.8% 14.17 14.7% 12.4 12.9% 16.45 17.1%
PV2 13.031 11.8% 12.24 11.0% 11.31 10.2% 13.7 12.4%
PV3 16.93 16.5% 14.22 13.9% 12.56 12.3% 16.42 16.0%
PV5 19.55 17.9% 16.05 14.7% 14.03 12.8% 18.66 17.1%
PV6 19.39 17.5% 15.94 14.4% 13.95 r 1 2 .6 % 18.53 16.7%
PV7 24.17 18.2% 19.73 14.9% 17.2 13.0% 22.97 17.3%
PV8 23.64 18.1% 19.35 14.8% 16.89 13.0% 22.51 17.3%
PV9 24.84 18.3% 20.28 14.9% 17.68 h 13.0% 23.62 17.4%

Total average of PV efficiency 15.1%

Table 14 Continued



b. Required unit area

PV Panel

Name Nominal power (kW) Panel height(m) Panel width(m)

100W Ploy 100 1.32 0.66

110W Mono 110 1.32 0.66

115W MIT Poly 115 1.5 0.67

120W MIT Poly 120 1.5 0.67

125W MIT Poly 125 1.5 0.67

130W BP Mono 130 1.38 0.81

130W MIT Poly 130 1.5 0.67

130W Mono 130 1.38 0.81

165W SP Poly 165 1.58 0.83

167W SP Poly 167 1.58 0.83

30W Poly 32.5 0.83 0.5

50W Poly 51.2 0.96 0.5

60W Poly 60 1.11 0.5

Average value 110.44 1.343 0.675

Panel area (m2) 0.907

Required PV unit area (m2/kW) 8

Table 15 Required unit areas for PV cell in MERIT
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c. Unit cost

Type Capacity
(kW)

Installation unit cost 
(KKRW)

General
building

Fixed PV 1 9,240

Tracking PV 1 10,900

Building integrated 
photovoltaic (BIPV) 1 14,960

Solar house 1 7,210

Average of unit cost 10,578

Table 16 Unit cost of PV in K orea Energy M anagem ent Corporation

(KEM CO)
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8. Wind power generator

a. Efficiency

Model Manufacturer Capacity (kW) Type Hub height (m) Ideal generation (MWh)

Abacus 5kW Abacus Korea 5 Vertical 2.5 43.80

Airdophin lkW Semplice Energy 1 Horizontal 10 8.76

Proven 15kW Proven 15 Horizontal 15 131.40

Nordex 800kW Nordex 800 Horizontal 46 7,008.00

REPower 5MW REpower System 5,000 Horizontal 117 43,800.00

Table 17 Specifications of wind power generator model in MERIT



Surrounding surface type

type 1 W ater Surface

type 2 Open terrain with smooth surface

type 3 Open agriculture with little shelter

type 4 Open agriculture well sheltered

type 5 Very tough and uneven terrain

type 6 Village / small town

type 7 Large city with tall buildings

type 8 Very large city with tall buildings and skyscrapers

Table 18 Surrounding surface type of wind power generator

2 6 2
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Surrounding 
surface type

Min (16m) Average(40m) Max(l 18m)

Model
Energy
(MWh)

Efficiency Energy
(MWh) Efficiency Energy

(MWh) Efficiency

type 1

Abacus 5kW 1.03 2.35% 1.29 2.95% 1.64 3.74%

Airdophin lkW 0.28 3.24% 0.33 3.76% 0.40 4.60%
Proven 15kW 7.27 5.53% 8.17 6 .2 2 % 9.67 7.36%
Nordex 800kW 102.32 1.46% 114.10 1.63% 136.66 1.95%
REPower 5MW 1,080.00 2.47% 1 , 1 2 0 . 0 0 2.56% 1,250.00 2.85%

type 2

Abacus 5kW 0.92 2 . 1 0 % 1.24 2.83% 1.65 3.77%
Airdophin lkW 0.27 3.06% 0.32 3.64% 0.41 4.63%
Proven 15kW 6.91 5.26% 7.99 6.08% 9.75 7.42%
Nordex 800kW 99.50 1.42% 113.27 1.62% 142.47 2.03%
REPower 5MW 1 , 1 0 0 . 0 0 2.51% 1,150.00 2.63% 1,330.00 3.04%

type 3

Abacus 5kW 0.82 1 .8 8 % 1.16 2.65% 1 . 6 6 3.79%
Airdophin lkW 0.25 2.81% 0.31 3.50% 0.41 4.68%
Proven 15kW 6.48 4.93% 7.80 5.94% 9.87 7.51%
Nordex 800kW 94.61 1.35% 112.41 1.60% 145.85 2.08%
REPower 5MW 1 , 1 1 0 . 0 0 2.53% 1,190.00 2.72% 1,380.00 3.15%

Table 19 Efficiency of wind power generator using weather profile in MERIT
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Surrounding 
surface type

Min (16m) Average(40m) Max(l 18m)

Model
Energy
(MWh)

Efficiency
Energy
(MWh)

Efficiency Energy
(MWh) Efficiency

type 4

Abacus 5kW 0.46 1.06% 0.91 2.09% 1.76 4.02%

Airdophin lkW 0.17 1.93% 0.26 2.97% 0.43 4.90%

Proven 15kW 4.88 3.71% 6 . 8 8 5.24% 10.39 7.91%

Nordex 800kW 81.41 1.16% 105.17 1.50% 165.57 2.36%

REPower 5MW 1 ,2 1 0 . 0 0 2.76% 1,340.00 3.06% 1,690.00 3.86%

type 5

Abacus 5kW 0.46 1.06% 0.91 2.09% 1.76 4.02%

Airdophin lkW 0.17 1.93% 0.26 2.97% 0.43 4.90%

Proven 15kW 4.88 3.71% 6 . 8 8 5.24% 10.39 7.91%

Nordex 800kW 81.41 1.16% 105.17 1.50% 165.57 2.36%

REPower 5MW 1 ,2 1 0 . 0 0 2.76% 1,340.00 3.06% 1,690.00 3.86%

type 6

Abacus 5kW 0.46 1.06% 0.91 2.09% 1.76 4.02%

Airdophin lkW 0.17 1.93% 0.26 2.97% 0.43 4.90%

Proven 15kW 4.88 3.71% 6 . 8 8 5.24% 10.39 7.91%

Nordex 800kW 81.41 1.16% 105.17 1.50% 165.57 2.36%

REPower 5MW 1 ,2 1 0 . 0 0 2.76% 1,340.00 3.06% 1,690.00 3.86%

Table 19 continued
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Surrounding 
surface type

Min (16m) Average(40m) Max(118m)

Model
Energy
(MWh)

Efficiency Energy
(MWh) Efficiency Energy

(MWh) Efficiency

type 7

Abacus 5kW 0.37 0.85% 0.87 1.98% 1.77 4.04%

Airdophin lkW 0.15 1.76% 0.25 2.83% 0.43 4.95%

Proven 15kW 4.52 3.44% 6.65 5.06% 10.53 8 .0 1 %

Nordex 800kW 78.45 1 . 1 2 % 104.17 1.49% 170.66 2.44%

REPower 5MW 1,230.00 2.81% 1,370.00 3.13% 1,780.00 4.06%

type 8

Abacus 5kW 0.30 0.69% 0.80 1.82% 1.79 4.09%

Airdophin lkW 0.14 1.54% 0.24 2.73% 0.44 5.06%

Proven 15kW 4.08 3.11% 6.34 4.82% 1 0 . 6 6 8 . 1 1 %

Nordex 800kW 73.27 1.05% 103.08 1.47% 176.59 2.52%

REPower 5MW 1,250.00 2.85% 1,420.00 3.24% 1,870.00 4.27%

Total average efficiency of wind generator 3.31%

Table 19 continued



b. Unit cost

Capacity (kW) Cost (KKRW) Unit cost (KKRW/Kw)

3 18,120 6,040

5 25,120 5,024

6 36,240 6,040

8 43,240 5,405

9 54,360 6,040

1 0 50,240 5,024

1 2 72,480 6,040

15 75,360 5,024

16 86,480 5,405

18 108,720 6,040

2 0 100,480 5,024

24 129,720 5,405

25 125,600 5,024

27 163,080 6,040

30 150,720 5,024

50 251,200 5,024

80 432,400 5,405

Average o f unit cost (KKR/kW) 5,472

Table 20 Unit cost of wind power generator in Korea
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Wind generator
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Figure 5 G raph  of cost vs. capacity of wind power generator

10. Carbon

Conversion to CO2 (gross CV basis)

Energy source Units Kg CO2 per unit

Natural gas kWh 0.184

Table 21 C arbon factor from  C arbon T rust (C arbon T rust 2008)
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