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ABSTRACT

In the real world, there are many problems requiring the best solution to satisfy
numerous objectives and therefore a need for suitable Multi-Objective

Optimisation methods.

Various Multi-Objective solvers have been developed recently. The classical
method is easily implemented but requires repetitive program runs and does not
generate a true “Pareto” optimal set. Intelligent methods are increasingly
employed, especially population-based optimisation methods to generate the

Pareto front in a single run.

The Bees Algorithm is a newly developed population-based optimisation
algorithm which has been verified in many fields. However, it is limited to
solving single optimisation problems. To apply the Bees Algorithm to a Multi-
Objective Optimisation Problem, either the problem is converted to single
objective optimisation or the Bees Algorithm modified to function as a Multi-

Objective solver.

To make a problem into a single objective one, the weighted sum method is
employed. However, due to failings of this classical method, a new approach is

developed to generate a true Pareto front by a single run.



This work also introduces an enhanced Bees Algorithm. A new dynamic
selection procedure improves the Bees Algorithm by reducing the number of
parameters and new neighbourhood search methods are adopted to optimise the

Pareto front.

The enhanced algorithm has been tested on Multi-Objective benchmark functions
and the classical Environmental/Economic power Dispatch Problem (EEDP).
The results obtained compare well with those produced by other population-

based algorithms.

Due to recent trends in renewable energy systems, it is necessary to have a new
model of the EEDP. Therefore, the EEDP was amended in conjunction with the
Bees Algorithm to identify the best design in terms of energy performance and
carbon emission reduction by adopting zero and low carbon technologies. This
computer-based tool supports the decision making process in the design of a

Low-Carbon City.
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1 INTRODUCTION

1.1 Motivation

In the real world, there are many problems requiring the best solution to satisfy
numerous objectives where single-objective optimisation is not ideal, hence the
need for methods such as Multi-Objective Optimisation (MOO) to solve these
problems. MOO (also called multi-criteria optimisation, multi-performance or
vector optimisation) can then be defined according to Coello et al. (Coello et al.

2007) as the search for:

a vector of decision variables which satisfies constraints and optimises a
vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term “optimise” means
finding such a solution which would give the values of all the objective

functions acceptable to the decision maker (Coello et al. 2007, p. 5).

The solution to Multi-Objective Optimisation Problems (MOOPs) has been a
challenge to researchers for a long time. Despite the considerable variety of
techniques developed in Operations Research (OR) and other disciplines to

tackle this problem, the complexities of its solution calls for alternative



approaches such as the population-based Genetic Algorithm (GA). This
algorithm has been motivated mainly to solve a Multi-Objective Optimisation
Problem (MOOP) because it allows the generation of several elements of the
Pareto optimal set (i.e., the set of solutions that are Pareto “efficient”, in other
word, solutions for which the value for no objective function could be improved
without causing those of the remaining objective function to worsen) in a single
run. The complexity of some MOOPs (i.e., very large search spaces, uncertainty,
noise, disjointed Pareto curves, etc.) may prevent the use (or application) of

traditional OR MOOP-solution techniques.

Recently, other population-based algorithms such as Particle Swarm
Optimisation (PSO), Ant Colony Optimisation (ACO) and Artificial Immune
System (AIS) have been employed to solve MOOPs. While PSO is becoming
popular, ACO and AIS have not yet seen many applications. More recently, the
Bacteria Foraging Algorithm (BFOA) and the Bees Algorithm have received

attention as possible new tools for Multi-Objective Optimisation.

The Bees Algorithm (Pham et al. 2005) is an intelligent optimisation tool which
is inspired by the natural foraging behaviour of honey bees. The algorithm
employs a combination of global exploration and local exploitation. However,

the Bees Algorithm was basically developed for solving a Single-Objective



Optimisation Problem (SOOP) and it requires a large number of parameters to be

correctly set before it can be run.

This work introduces a number of ways to solve Multi-Objective problems using
the Bees Algorithm. It also proposes different improvements to the Bees
Algorithm as a Multi-Objective solver such as reducing the number of
parameters needed to run the algorithm. Additional neighbourhood search

techniques are also developed in order to enhance the Pareto optimal set.

1.2 Research Aim and Objectives

The aim of this research is to evaluate and validate the Bees Algorithm as a

Multi-Objective solver. The specific objectives are to:

e Survey current population-based Multi-Objective solvers
e Develop new forms of the Bees Algorithm
o To make the algorithm suitable for a MOOP
o To enhance the Bees Algorithm by reducing the number of
parameters necessary to run it

o To enhance the Pareto optimal set



e Apply the proposed optimisation algorithms to different categories of
continuous optimisation problems and compare the results obtained with
other optimisation methods

e Design a multi-fuel energy system for a Low-Carbon City and optimise it

using the proposed Bees Algorithm

To achieve these objectives, the following methodologies were adopted.

Literature review: the most relevant population-based optimisation algorithms
will be reviewed in both the basic and Multi-Objective versions. Their
advantages and disadvantages will be discussed, helping to lay the groundwork

for the research.

Experiments. The performance of the new versions of the algorithm will be
evaluated by computer simulation to solve a number of Multi-Objective
problems. In each case, performance measures will be computed to assess the
effectiveness of the new methods and comparisons with traditional methods will

also be carried out.



1.3 Outline of the Thesis

The thesis is organised as follows.

Chapter 2 begins by laying out the definitions of Multi-Objective problems and
Pareto optimality. MOOP solvers are enumerated as classical methods and
intelligent methods. The chapter then provides an overview of the population-
based Multi-Objective algorithms currently available such as the most popular
Multi-Objective Evolutionary Algorithms (MOEAs) in Pareto ranking, ACO,
PSO, AIS, BFOA and the Bees Algorithm. Their advantages and disadvantages

are briefly discussed.

Chapter 3 describes a Multi-Objective version of the Bees Algorithm adopting
the weighted sum method. Three different versions of the Bees Algorithm are
introduced. The proposed algorithms are tested on two different applications:
nonlinear power system optimisation (the Environmental/Economical Dispatch
Problem: EEDP) and optimisation of benchmark mathematical functions. Their

results are compared with those of other optimisation techniques.

Chapter 4 presents a globally and locally enhanced Multi-Objective version of
the Bees Algorithm with a reduction in the number of parameters needed to run

the algorithm. In order to enhance the Pareto optimal set by local enhancement of



the Bees Algorithm, three different types of neighbourhood search methods are
introduced. The proposed algorithms are also applied to both the EEDP and
optimisation of benchmark mathematical functions for their validation. Their

results are also compared with those of other optimisation techniques.

Chapter S presents the application of an enhanced version of the Bees
Algorithm to the design of a ‘Low-Carbon City’. The algorithm is modified for

three different techniques to satisfy constraints on the balance of power and heat.

Chapter 6 presents the main contributions of this research and suggestions for

future work in this field.



2 MULTI-OBJECTIVE OPTIMISATION
USING SWARM-BASED OPTIMISATION
ALGORITHMS

2.1 Multi-Objective Optimisation (MOO)

The majority of optimisation problems require the simultaneous optimisation of
more than one objective function and it is unlikely that the different objectives
would be optimised by adopting the same set of parameters. The goal of Multi-
Objective Optimisation (MOO) algorithms is to generate trade-offs between
objectives. Exploring all these trade-offs is particularly important because it
provides the system designer/operator with the ability to understand and evaluate
the different choices available to them.

The general Multi-Objective (MO) problem requiring the optimisation of N
objectives may be formulated as follows (Lee and El-Sharkawi 2008; Ngatchou

et al. 2005):

Minimise
j}zﬁ(i):[fl(x)’fz(f)a’fN(x)]T Eq. 2.1

bjectto E1F)S 0.7 =120 M,

where



5

T
x=[x,%,x,] €Q.
y : objective vector

g, : constraints

X : P-dimensional vector representing the decision variables within a
parameter space

Q : parameter space

The utopian solution is the solution that is optimal for all objectives and it is

formulated as follows:
X,*e Q:Vie Q, f(x% *)< £.(¥) Eq.2.2
for ie {1,2,---,N}
e N=1: Single-Objective (SO) problem, utopian solution = global optimum
(always exists, even if it cannot be found)

e N>1: The utopian solution does not generally exist rather, there are non-

dominated solutions

To compare candidate solutions to MO problems, the concept of Pareto
dominance and Pareto optimality are commonly used. Pareto (Pareto 1906), cited
in (Kim and de Weck 2005), introduced the concept of non-inferior solutions in
the context of economics and Stadler (Stadler 1979, 1984), cited in (Kim and de

Weck 2005), began to apply the notion of Pareto optimality to the field of



engineering and science in the 1970s. A solution belongs to the Pareto set if there

i1s no other solution that can improve at least one of the objectives without
degrading any other objective. Formally, a decision vector i = [u),up,,up [

is said to be a Pareto-dominated vector v = [v;,v2,,vpF , in a

minimisation context, if and only if:

Vie {l,--,N}, ,(#)< £,(¥), and Jje {1, N}, £ &)< £.(%) Eq.2.3

In the context of MOO, Pareto dominance is used to compare and rank decision
vectors: # dominating V means in the Pareto sense that F(i) is either better than
or the same as F(v) for all objectives, and there is at least one objective function
for which F(i) is strictly better than F(¥).

A solution a is said to be Pareto optimal if and only if there does not exist
another solution that dominates it. The corresponding objective vector 7(z) is

called a Pareto dominant vector, or non-inferior or non-dominated vector. All the
Pareto optimal solutions are known as the Pareto optimal set. The corresponding
objective vectors are said to be on the Pareto front. Figure 2.1 depicts the Pareto

concept for a bi-objective minimisation problem.



2.2 Multi-Objective solvers

Solving MO problems has evolved over time. Initial classical approaches
essentially consisted of converting the MO problem into a SO problem
which can be solved using traditional scalar optimisation techniques.
Population-based intelligent methods have more recently been used, which

allows direct generation of trade-off curves in a single run. Taxonomy of MO

solvers is shown in Figure 2.2.

2.2.1 Classical methods

Classical approaches have been used to convert an MO problem into an SO
problem by either aggregating the objective functions or optimising the most
important objective and treating the others as constraints which are geared
towards finding a singe solution. In order to generate a trade-off curve, the
solution procedure has to be reapplied after modifying the aggregation modalities
or design criteria. Although there are many classical methods, the weighted sum
method is the simplest approach and probably the most widely used. Therefore

only the weighted sum method is reviewed here.
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Figure 2.1 Illustration of the Pareto concept for a bi-objective optimisation

problem
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2.2.1.1 Weighted sum method

The weighted sum method scalarizes a set of objectives into a single objective by
pre-multiplying each objective with a user-supplied weight (Deb 2001).
Although the idea is simple, the challenge is determining what values of the
weights to use. It depends on the importance of each objective in the context of
the problem and also a scaling factor. The utility function of this method is a

linear combination of the objectives:

N -
Minimise Z = ijfj(x) with w, 2 0 and iwj =1, Eq. 2.4
j=l

J=l

where the weights (w,) are chosen to reflect the relative importance the Decision

Maker (DM) attaches to each of the N objectives.

In order to generate a trade-off curve with the weighted sum method, (Kim and
de Weck 2005) developed the Adaptive Weighted-Sum (AWS) method. This
focuses on unexplored regions by changing the weights adaptively rather than by
using prior weight selections and by specifying additional inequality constraints.
It produced well-distributed solutions, found Pareto optimal solutions in non-

convex regions and neglected non-Pareto optimal solutions.

13



2.2.2 Intelligent methods

Due to the complexity of real-world optimisation problems such as ill-defined
functions and non-differentiability, it is virtually impossible to find exact
algorithms. For these types of problems, meta-heuristics are a practical way to
generate acceptable solutions, even though they cannot guarantee optimality.
Several variants of meta-heuristic algorithms exist including single-point
stochastic search algorithms (e.g., simulated annealing (Kirkpatrick et al. 1983;
Pham and Karaboga 1999)) and population-based algorithms. However, only

population-based algorithms are reviewed here.
2.2.2.1 Population-based Multi-Objective solvers

This section presents some popular population-based MO algorithms. Recent
studies on Evolutionary Algorithms have shown that population-based
algorithms are potential candidates to solve MOOPs. They can be efficiently
used to eliminate most of the difficulties with classical single objective methods
such as sensitivity to the shape of the Pareto front and the necessity of multiple
runs to find multiple Pareto solutions. Although the majority are based on
Evolutionary Algorithms (EAs), the most recent are inspired from swarm
intelligence such as Ant Colony Optimisation (ACO) (Dorigo et al. 1996),
Particle Swarm Optimisation (PSO) (Eberhart and Kennedy 1995; Kennedy and

Eberhart 1995), Artificial Immune Systems (AIS) (Forrest et al. 1994), Bacteria

14



Foraging Optimisation Algorithm (BFOA) (Passino 2002) and the Bees

Algorithm (Pham et al. 2005).

The general structure of population-based MO solvers is similar to those used for

SO solvers. However, three different steps are adopted to solve MOOPs.

1) fitness assignment controls convergence, of which there are three
methods: aggregation-based, criterion-based and Pareto-based. Of these
the Pareto-based fitness assignment is the most popular and efficient
technique. Figure 2.3 shows how to generate a Pareto front using

population-based techniques.

2) diversity mechanisms such as niching are included to determine an
individual’s fitness in order to prevent premature convergence to a region

of the front.

3) a form of elitism is applied to prevent the problem deteriorating to the
point where dominant solutions may disappear from one generation to the

next.
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2.2.2.1.1 Genetic Algorithms (GAs)

The concept of GA’s developed by (Goldberg 1989; Holland 1992) in the 1970s
was inspired by the Darwin’s evolutionist theory explaining the origin of species.
In nature, while weak and unhealthy species are faced with extinction by natural
selection, the strong or healthier have a greater opportunity to pass their genes on
to future generations via reproduction. In the long run, species carrying the
correct combination in their genes become dominant in their population.
Sometimes, during the slow evolutionary process, random changes may occur in
genes. If these changes provide additional advantages in the challenge for
survival, new species evolve from the old ones, but unsuccessful changes are
eliminated by natural selection. In GA terminology, a solution vector is called a
chromosome which consists of discrete units called genes and a collection of
chromosomes which is called a population. In the original implementation of GA
by Holland, genes are assumed to be binary digits. However, in later
implementations, more varied gene types have been introduced. Normally, a
chromosome corresponds to a unique solution in the solution space and it
requires a mapping mechanism called an encoding mechanism between the
solution space and the chromosomes. Figure 2.4 illustrates a simplified flowchart
of GA in which the population is normally randomly initialised. As the search
evolves, the population eventually converges, which means that it is dominated
by a single solution. GA uses two operators to generate new solutions from

existing ones:

17



1) Crossover is the most important operator in GA. Generally, two
chromosomes, called parents, are combined together to form a new
chromosome called offspring. The parents are selected from existing
chromosomes in the population with a preference towards fitness so that
their offspring are expected to inherit good genes. By iteratively applying
the crossover operator, genes of good chromosomes are expected to
appear more frequently in the population, eventually leading to

convergence to an overall good solution.

2) Mutation introduces random changes into the characteristics of
chromosomes, which are generally applied at the gene level. In typical
GA implementations, the mutation rate (the probability of changing the
properties of a gene) is very small, and depends on the length of the
chromosome. Therefore the new chromosome produced by mutation will
not be very different from the original one. However, it plays a critical
role in GA because it reintroduces genetic diversity back into the

population and assists the search to escape from local optima.

Reproduction involves the selection of chromosome for the next generation.
There are different selection procedures in GA depending on how the fitness
values are used. Proportional, ranking and tournament selection are the three

most popular selection procedures.
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GA for Multi-Objective Optimisation Problems

GA is well suited to solve MOOPs as a population-based approach. The
crossover operator in GA may exploit the structure of good solutions with
respect to different objectives to create new non-dominated solutions in
unexpected parts of the Pareto front. A GA does not require the user to prioritise,
scale or weigh objectives, therefore it has become the most popular heuristic
approach to Multi-Objective design and optimisation problems. (Jones et al.
2002) reported that 90% of the approaches to Multi-Objective optimisation
aimed to approximate the true Pareto front for the underlying problem. A
majority of these used a meta-heuristic technique and 70% of all meta-heuristics
approaches were based on evolutionary approaches. (Deb 2001) and (Coello et al.
2007) are well documented regarding various versions of Multi-Objective GAs
and their applications. In addition, (Guliashki et al. 2009; Konak et al. 2006; Lee
and El-Sharkawi 2008) aptly summarised them. Figure 2.5 shows a GA for

MOOPs according to their work.
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e Non-elitist Multi-Objective Evolutionary Algorithms

o Vector-Evaluated Genetic Algorithm (VEGA): (Schaffer 1984) suggested
VEGA as the first implementation of a real Multi-Objective Evolutionary
Algorithm in 1984. He separated the selection method for each individual
objective to fill up a portion of the mating pool, which meant that each
subpopulation is evaluated with respect to a different objective. Then, the
entire population is thoroughly shuffled to apply crossover and mutation
operators.

o Multi-Objective Genetic Algorithm (MOGA): (Fonseca and Fleming
1993) proposed MOGA in 1993, which is the simple extension of a single
objective GA. The main concept is that all non-dominated individuals are
assigned the same highest possible fitness value, while dominated ones
are penalised according to the population density of the corresponding
region.

o Niched-Pareto Genetic Algorithm (NPGA): (Horm et al. 1994)
propounded NPGA which uses a tournament selection scheme based on
Pareto dominance. The basic idea of NPGA is: two individuals are
randomly chosen and compared against a comparison subset (typically
around 10% of the population) from the entire population. When one
candidate is dominated by the set and the other is not, the latter is selected.
If neither or both candidates are dominated, fitness sharing is used to

decide selection.
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o Non-dominated Sorting Genetic Algorithm (NSGA): (Srinivas and Deb
1994) postulated NSGA based on several layers of classifications of the
individuals. Before selection is performed, the population is ranked on the
basis of non-domination. However, it is not very efficient because Pareto
ranking has to be repeated over and over again.

eElitist Multi-Objective Evolutionary Algorithms: The elitist Evolutionary
Multi-Objective Optimisation (EMOO) methodologies include an elite-
preservation mechanism in their procedures. The non-elitist EMOO algorithms
do not use such a mechanism and usually perform worse than the elitist
algorithms. In the context of Multi-Objective optimisation, elitism usually,
(although not necessarily), refers to the use of an external population (also
called secondary population) to retain the non-dominated individuals found
along the evolutionary process. Following the theory offered by (Zitzler and
Thiele 1999), most researchers began to incorporate external populations in
their EMOO algorithms and the use of this mechanism became common

practice.

o Non-dominated Sorting Genetic Algorithm-II (NSGA-II): (Deb et al.
2002) introduced NSGA-II as an improved version of NSGA. It adopts a

Crowding Distance mechanism for diversity. Its elitist mechanism
combines the best parents with the best offspring obtained, instead of

using an external memory.
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o Strength Pareto Evolutionary Algorithm (SPEA): (Zitzler and Thiele
1999) introduced SPEA which uses an archive containing non-dominated
solutions previously found (the so-called external non-dominated set). At
each generation, non-dominated individuals are copied to the external
non-dominated set. For each individual in this external set, a strength
value is computed. The fitness of each member of the current population
is computed according to the strengths of all external non-dominated
solutions that dominate it. Although this approach does not require a
niche radius, its effectiveness relies on the size of the external non-
dominated set. If its size grows too large, it slows down the search
procedure.

o Strength Pareto Evolutionary Algorithm 2 (SPEA 2): This was also
developed by (Zitzler and Thiele 1999) to address some of the major
drawbacks of SPEA. It has three main differences with SPEA:

1) It incorporates a fine-grained fitness assignment strategy which takes
into account for each individual the number of individuals that
dominate it and the number of individuals by which it is dominated.

2) It uses a nearest neighbour density estimation technique which guides
the search more efficiently.

3) It has an enhanced archive truncation method that guarantees the

preservation of boundary solutions.
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o Pareto Archived Evolution Strategy (PAES) algorithm: (Knowles and
Corne 2000) introduced PAES consists of a 1+1 evolution strategy (i.e., a
single parent that generates a single offspring) in combination with a
historical archive that records the non-dominated solutions previously
found. The role of the external archive is limited to storing the non-
dominated solutions and provides a source of comparison for ranking
candidate solutions. However, archive members are not involved in the
mutation and crossover procedures. The interesting feature of this
algorithm is in the adaptive grid at the heart of its diversity and niching
mechanisms. The objective space is divided in a recursive manner, thus
creating a multi-dimensional co-ordinate system, or grid, over the
objective space. A crowding-based fitness sharing mechanism is applied
by determining the location of solutions within this grid and estimating
the density of solutions per cell. Individuals corresponding to solutions in
the less crowded cells have higher fitness.

o Pareto Envelope based Selection Algorithm (PESA): (Come et al. 2000)
suggested PESA which combines the good aspects of SPEA and PAES.
Like SPEA, PESA carries two populations (a smaller EA population and
a larger archive population). Non-domination and the PAES crowding
concept are used to update the archive with the newly created child

solutions.
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2.2.2.1.2 Ant algorithm
The Ant System (AS) developed by (Dorigo 1992) was the original ant algorithm.
Since then several improvements to the Ant System have been devised. It was
inspired by colonies of real ants that deposit a chemical substance on the ground
called pheromone. This substance influences the behaviour of the ants as they
tend to take those paths where there is a larger amount of pheromone.
Pheromone trails can thus be seen as an indirect communication mechanism
among ants. Three main ideas from actual ant colonies that have been adopted
are:

e Indirect communication through pheromone trails

e Shortest paths tend to have a greater pheromone growth rate

e Ants have a higher preference (with a certain probability) for paths that

have a larger quantity of pheromone

Ant Colony Optimisation (ACO) was introduced by (Dorigo et al. 1996) as a
novel nature-inspired metaheuristic for solving combinatorial optimisation
problems such as the Travelling Salesman Problem (TSP) which entails the cost
function to be minimised. The simple ACO can be stated as given by (Bonabeau
et al. 1999; Camazine et al. 2003; Dorigo and Stutzle 2004; Engelbrecht 2006):
A combinatorial optimisation problem entails the cost function to be minimised.
A candidate solution is defined as a sequence of parameters visualised as a path

through several nodes. Each node corresponds to one of the solution’s
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parameters. Moving from one node (i) to another (j) is carried out by the

probability (Eq. 2.5).

A0
PO Dl WM 28

0 if je N(r)

where
p5(¢): transition probability
7, : posterior effectiveness of the move from node i to node j, as expressed

in the pheromone intensity of the corresponding link (i, j)

1, prior effectiveness of the move from i to j (i.e., the attractiveness or

desirability of the move) and it is computed using some heuristic

« : parameter to control the influence of 7,
B : parameter to control the influence of n;

N!: set of feasible nodes for ant k when located on node i

The pheromone concentrations, 7, indicate how profitable it has been in the

past to make a move from i to j, serving as a memory of previous best moves.
Pheromone evaporation is implemented as given in Eq. 2.6. After completion of

a path by each ant, the pheromone on each link is updated according to Eq. 2.7.
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7,(6) = (-p), ()  with pe0,] Eq. 2.6

The constant, p, specifies the rate at which pheromone evaporates, causing ants
to ‘forget’ previous decisions controlling the influence of search history. For
example, if p is a large value, pheromone will evaporate rapidly and vice versa.
The greater the evaporation, the more random the search becomes which means

that it is facilitating a better exploration. When p =1, the search is completely

random.

ry‘(t'*'l):tg'(t)"'Ary(t) Eq. 2.7

At;(r)=) A7;(r) Eq.2.8
k=1

where

n, : number of ants

Az'; (t) : amount of pheromone deposited by ant k on link (i, j) at time step

L.

Figure 2.6 illustrates the flowchart of ACO for solving combinatorial problems.

ACO for Multi-Objective Optimisation Problems

The first implementations of ACO algorithms utilised only one colony of ants to
construct solutions. However, multiple colony algorithms have been adapted to

use multiple colonies, with the main objectives of mitigating stagnation and
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minimising the chances of being trapped in local minima. Multiple colonies have
also been used to solve MOOPs and it was one of the first applications of
multiple colony ACO. MOOPs are solved by assigning to each colony the
responsibility of optimising one of the objectives. If nc objectives need to be
optimised, a total of nc colonies are used. Colonies cooperate to find a solution
that optimises all objectives by sharing information about the solutions found by
each colony. (Tippachon and Rerkpreedapong 2009) adopted this Multiple Ant
Colony System (MACS) for the optimal placement of switches and protective
devices in electrical power distribution systems. (Colson et al. 2009) also
employed this algorithm for solving a Micro-Grid (MG) Multi-Objective power

management problem.

Another version of ACO for solving MOOPs is Population-based ACO (PACO)
which was introduced by (Guntsch and Middendorf 2002). (Angus 2007) applied
this algorithm to Multi-Objective function optimisation. The defining difference
between PACO and canonical ACO algorithms is the method used for storing
solutions. Most traditional ACO algorithms store solution information from an
(artificial) ant in a pheromone matrix only, PACO stores solutions in a
population and then uses this population to make adjustments to the pheromone
matrix. However, PACO still uses the core principles of ACO which include
stepwise construction (solutions are constructed one piece at a time) and the use

of global information in constructing solutions.
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Figure 2.6 Flowchart of Ant Colony Optimisation algorithm
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2.2.2.1.3 Particle Swarm Optimisation (PSO)

Kennedy and Eberhart proposed a population-based stochastic optimisation
called ‘Particle Swarm Optimisation (PSO)’ in 1995 (Eberhart and Kennedy
1995; Kennedy and Eberhart 1995) inspired by the collective behaviour of social
animals such as bird flocking or fish schooling (Engelbrecht 2006; Kennedy et al.
2001; Van den Bergh 2006). A PSO algorithm maintains a swarm of particles
and an individual particle, which represents a potential solution, moving through
a multi-dimensional search space to approach the optima. Figure 2.7 illustrates
the flowchart for PSO. Initially, the number of particles are randomly created and
set into motion through the search space (‘Initial population’ in Figure 2.7). A
particle has its own position and flight velocity, which is constantly adjusted
during the optimisation process. For a better position (fitness), each particle
adjusts its position based on its own experiences (personal best: ‘pbest’) as well
as that of the entire swarm (global best: ‘gbest’) at each generation. Eq. 2.9
represents the formula to change the position of the particle by adding a velocity,

V,(¢+1), to the current position (X, (z)). The velocity formula is shown in Eq.

2.10.

X,(e+)=X,()+V,(e+1) Eq. 2.9
where
i(i=1,2, ..., n): index of individual particles in the swarm

n: total number of particles in the swarm
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t. discrete time steps

X,(t+1) : updated position of particle i at next step (r+1) which is

calculated using the current position with updated velocity

X, (¢): current position of particle i in the search space at step ¢

V,(+1): updated velocity of particle i at next step (++1)

v, (t+)=wy (0)+crn, (\pbest(t)-x, () +c,n, (0| gbess(t)—x,(r)] Eq.210
where

Jj({=1,2, ..., m): index of dimensional search space

m: number of dimensional search space
v, (t+1): velocity of particle i in dimension j at step (#+1) calculated by

using the current velocity and the distance from pbest; to gbest;

w: inertia weight that controls the impact of previous velocity

v, (¢): velocity of particle i in dimension j at step ¢ which is confined to the
range [v,,,v,.,. ] to control excessive roaming of particles outside
the search space

X (t): position of particle i in dimension j at step ¢

c; and c,: positive acceleration constants used to scale the contribution of
the cognitive and social components respectively

r,,(¢) andr,,(¢): random values in the range [0,1] sampled from a uniform
distribution

pbest, (t): personal best position of particle i at step ¢ since the first step

gbest (t) : global best position at step #, which is the best position

discovered by any of the particles to date
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Figure 2.7 Simpli