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Abstract

Recent estimates of global sea level rise indicate mean values around 3.1 mm 
yr'1. As a result, many coastlines face an increasing risk of coastal erosion, and the 
threat of flooding is becoming a major concern. Unfortunately, coastal defences can 
be very costly; with recent estimates as high as £5000 per metre length of seawall in 
the UK. There is a need to consider more economically feasible options, and by 
accounting for the ability of saltmarshes to absorb wave energy, reduce flow 
velocities and stabilise sediments, the costs o f coastal defence structures may be 
significantly reduced. But first, an improved understanding of the implications of 
saltmarsh vegetation on hydrodynamics is fundamental to their inclusion in the design 
of coastal protection schemes. This includes the influence of saltmarsh vegetation on 
velocity and turbulence structures and the drag forces that arise due to the obstruction 
to the flow created by the vegetation.

Two contrasting areas of coastal saltmarsh were selected for the location of a 
field survey to identify typical field conditions, such as bed gradients, submergence 
levels, vegetation types and densities. The two sites differ in that the first was non­
grazed, while the second was heavily grazed to assess the impact of sheep farming on 
vegetation characteristics. The vegetation species, stem densities and submergence 
levels observed during the field survey were used as a guideline for designing a series 
of laboratory experiments to investigate the impact o f saltmarsh vegetation on 
hydrodynamics.

Uniform cylinder models are widely used to simulate vegetation canopies in 
hydrodynamic studies, yet the cylinder model can lead to an oversimplification of 
vegetation morphology. A comparison was made by conducting experiments under 
uniform flow conditions where uniform cylinder arrays and vegetation canopies were 
installed onto a flume bed at stem densities of 800, 1160 and 1850 stems m‘2. There 
were differences in velocity and turbulence structures through the two types of 
canopy. For the same stem density, the proportion of the total flow passing through 
the canopy region was approximately 10% greater for the uniform cylinder arrays. 
The foliage found in the upper part of vegetation canopies resulted in a considerably 
higher level of obstruction and contributed towards reducing velocities and Reynolds 
stresses within the canopy. Reynolds stress penetration depths were up to 15 times 
greater for the uniform cylinder arrays compared to the vegetation canopies.

Computational fluid dynamics models can be a useful tool for predicting the 
impact of saltmarsh vegetation on hydrodynamics for coastal management. Applying 
such models to vegetated flows requires knowledge o f the drag coefficient to 
determine the drag term in the Navier-Stokes equations. However, in the absence of 
measured data, such models are often applied with the assumption that the drag 
coefficient is constant in value, and commonly used values include ‘1.0’ and ‘1.2’. 
Such assumptions may be easily linked to the uniform cylinder model. However, drag 
coefficients calculated for Common Cordgrass ranged between 0.4 and 1.7. Values 
were dependent on numerous parameters, including the Reynolds number, the 
submergence level, the stem density and the maturity of the vegetation.

Instead of the traditional drag-force approach for determining canopy 
hydrodynamics, a method for predicting velocity and turbulence structures based on 
the projected area of the vegetation was proposed. For the emergent canopy, the mean 
velocity was estimated by relating to a reference canopy of known projected area and



mean velocity. For the submerged canopy, the surface flow layer velocity was 
determined effectively using the Manning’s roughness approach and the depth- 
averaged canopy velocity was a function of the surface layer velocity and the canopy 
density. Velocity profile shapes for both canopies were obtained by linking the mean 
canopy velocity to the projected area profile. Reynolds stresses for the emergent 
canopy and lower part of the submerged canopy were negligible and a function of 
depth-averaged canopy velocity. For the upper part o f a submerged canopy, Reynolds 
stresses were a function of the depth-averaged surface layer and canopy velocities. 
The proportion of the submerged canopy region experiencing higher Reynolds 
stresses is also a function of the vegetation density.
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Nomenclature

The following symbols are used in this thesis:
a = projected area of obstruction per unit volume (m '1)

a = depth-averaged projected area of obstruction per unit volume
of a canopy (m '1)

ax,a 2 = depth-averaged projected area of obstruction per unit volume
o f ‘Canopy 1’ and ‘Canopy T  (m '1)

d  = projected area of obstruction per unit volume based on
projected area visible in a photograph o f a canopy cross- 
section (m2)

a = projected area of obstruction per unit volume at a reference
elevation (m_1)

aF = projected area of obstruction per unit volume o f the leaf
portion of the canopy (m*1)

as = projected area of obstruction per unit volume of the stem
portion of the canopy (m '1)

A = flow area (streamwise cross-section) (m )

Ac = projected area per unit width of canopy (m)

A, = total area of horizontal layer i (m )

Ap = projected area of obstruction (m2)

Api = projected area of obstruction in horizontal layer i (m )
# y

Ap' = visible projected area o f obstruction (m )
 ̂ 2 

Ap = hidden projected area of obstruction (m )

B = flume width (m)

C = Chezy resistance factor (-)

CD = drag coefficient (-)

CD = bulk one dimensional drag coefficient for a vegetation canopy
or array of cylinders (-)

Cd\ ’ ^ 0 2  ~ bulk one dimensional drag coefficient for ‘Canopy 1’ and
‘Canopy 2 ’ (-)

CD' = bulk one dimensional roughness coefficient for a vegetation
canopy of an array of cylinders (m*1)
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C D = bulk two dimensional drag coefficient for a vegetation canopy
or an array of cylinders at a reference elevation (-)

C D 2d = bulk two dimensional drag coefficient for a vegetation canopy
or an array of cylinders (-)

d  = stem or cylinder diameter (mm)

d 0 = basal stem diameter (mm)

d loo = the stem diameter at a distance of 100 mm of the base of a
plant stem (mm)

D  = flow depth (m)

D x = flow depth for ‘Canopy 1 ’ (m)

DAcd = tidal flow depth Above Chart Datum (m)

D aod = tidal flow depth Above Ordinance Datum (m)

Z)max = the flow depth at the time o f a high tide event Above
Ordinance Datum (m)

D mu = the flow depth at the time o f a high tide event at Mumbles
Above Ordinance Datum (m)

Z)max = the flow depth at the time of a high tide event at Swansea
Above Ordinance Datum (m)

E = Young’s Modulus of Elasticity (MPa)

/  = Darcy-Weisbach friction factor (-)

/  = frequency (Hz)

F = load (N)

Fs mm = load required to cause a 5.0 mm deformation (kg m s '2)

Fd = drag force (kg m s'2)

Fd ' = drag force per unit volume (kg m '2 s'2)

Ffaii = force required to cause material failure (kg m s'2)

Fg = fluid body weight component acting along the longitudinal
plane (N)

Fs = shear force (N)

Fr = Froude number (-)

g  = gravitational acceleration (ms'2)

G = Lateral gradient in longitudinal velocity (s'1)

Gs = surface-flow layer fluid body weight component acting along
the longitudinal plane (N)

xv
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1 Introduction to the Research

1.1 Context of the Current Research

Sea levels are rising due to global warming (UK Climate Impacts Programme, 

2002), and the associated flooding of coastal communities is an issue of major 

concern. Only relatively recently has the importance of saltmarshes as a natural means 

of coastal defence been fully appreciated. Saltmarsh vegetation is capable of 

modifying water currents, dampening waves, promoting the deposition of suspended 

sediments in the flow, stabilising settled sediments, as well as providing an 

environment for numerous organisms (Shi et al. 1995). A recent report by the UK 

Environment Agency (EA, 1996) claimed that an 80m width of saltmarsh fronting a 

sea wall could reduce the costs of flood defences from £5000 to £400 per metre.

Vegetated flows are encountered in many environmental problems, yet the 

dominant processes characterising them are not fully understood. Studies conducted 

using natural vegetation are not as common as those that use simulated vegetation 

based on arrays of uniform rigid cylinders. The latter model may lead to an over 

simplification of the canopy morphology and hence, the complex flow structure 

associated with real vegetation cannot be fully reproduced. A better understanding of 

the velocity and turbulence structures through vegetation is fundamental for a better 

appreciation of the influence of riverine and marine plants on aquatic ecosystems.

Spartina anglica is one of the saltmarsh plant species investigated in this 

thesis. The species is found along parts of the British coastline and has been the 

subject of a number of studies. The effects of this particular species on the velocity of 

the flow through and over the canopy have been investigated by a number of 

researchers (Pethick et al., 1990; Shi et al., 1995; Shi et al., 1996). The 

aforementioned studies were conducted using real vegetation rather than simulated 

vegetation (e.g. Kouwen and Unny, 1973; Nepf, 1999; Wu et al., 1999 and others) 

and show reductions in flow velocities within the canopy. Pethick et al. (1990), Shi et 

al. (1995) and Shi et al. (1996) have identified that a better understanding of flow 

dynamics through saltmarsh canopies is required to formulate a cohesive sediment 

transport model applicable to saltmarsh environments. Although the consideration of 

sediment transport is beyond the scope of this study, the processes are dependent on 

the critical velocities or bed tractive forces required to keep sediment particles in

1



The Influence o f Saltmarsh Vegetation on Hydrodynamics

suspension (Yalin, 1972). Uncertainties arise when attempting to predict the effects of 

vegetation on flow dynamics. A drag force term was widely used for this purpose by 

various authors (e.g. Dunn et al., 1996 and Nepf, 1999).

Saltmarshes display a complex interaction between chemical, biological, 

hydrological and geological processes. An in-depth study o f the ecosystem requires 

some level of consideration to be paid to each of these areas. However, due to the 

nature of research relevant to the aforementioned mechanisms, each o f these areas is 

considered as a specialist subject, and there is a tendency to differentiate rather than 

unite these processes (Frey and Basan, 1978).

The purpose of the research presented in this thesis is to investigate the 

influence of saltmarsh vegetation on velocity and turbulence structures to improve the 

understanding of how saltmarshes can act as a form o f natural sea defence. The 

objectives of this thesis can be listed as follows:

1. To identify what constitutes ‘typical saltmarsh conditions’, including the types 

of species that can be encountered and the common range o f bed gradients.

2. To identify what constitutes ‘typical flow conditions’ for typical saltmarshes, 

including the common ranges of flow velocities and flow depths.

3. To identify and characterise the vegetation properties that are most likely to 

affect velocity structure, turbulence structure and the hydraulic resistance of a 

saltmarsh.

4. To identify factors that may influence the vegetation properties, either 

spatially across a site, or seasonally over the duration o f the year and to 

determine the extent of any such influence.

5. To investigate the influence of typical saltmarsh vegetation covers on velocity 

and turbulence structure.

6. To characterise the hydraulic resistance o f saltmarsh canopies by linking 

properties of the vegetation to the resulting velocity and turbulence structures.

7. To evaluate the suitability of uniform cylinder models that are widely used to 

simulate natural canopies in physical laboratory and hydrodynamic numerical 

modelling studies.

8. To propose methods for the prediction of velocity and turbulence properties of 

the flow for typical saltmarsh canopies.
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1.2 The Use of Saltmarshes in Coastal Management

1.2.1 Climate Change and Rising Sea Levels

Climate change can be a controversial topic of debate with experts divided 

over the contribution of human activities to changes in climate. For instance, it is 

uncertain whether a more pronounced elevation in global temperatures in recent years 

is attributed to short-term variability, or to longer-term trends (e.g. Intergovernmental 

Panel on Climate Change, 2008). Nevertheless, Hulme et al. (2002) reported a rise in 

global temperature of 0.6 °C over the course of the twentieth century, 0.4 °C of which 

occurred.since the 1970s, and the 1990s was the warmest decade globally. As a result 

of rising temperatures, sea levels are also rising. This arises from two main processes; 

first, the rising temperatures result in the expansion of the water volume contained in 

the globe’s oceans. Secondly, the elevated temperatures result in the melting of 

glaciers and icecaps as well as the Greenland and the Arctic ice sheets.

The Intergovernmental Panel on Climate Change (IPCC) reported global sea 

level rise estimates of 1.7 + 0.5 mm yr'1 over the 20th century, 1.8 + 0.5 mm yr'1 

between 1961 and 2003, and 3.1 + 0.7 mm yr'1 between 1993 and 2003 (IPCC, 2008). 

This may potentially affect coastal systems in a number of ways. For example, coastal 

erosion is likely to occur as higher-elevation stretches o f land previously not prone to 

tidal inundation becomes inundated regularly; it may result in more extensive coastal 

inundation and higher storm-surge flooding and changes to surface and groundwater 

quality are likely to be observed. The impacts of such changes and their severity will 

inevitably vary spatially and temporally due to the wide variability of coastlines. 

These environmental impacts will result in related socioeconomic consequences, 

including: the loss of property and coastal habitats; an increase in flood risk and the 

potential loss of life; damage to coastal protection works and other infrastructure; and 

an increase in disease risk, such as diarrhea and cholera (IPCC, 2001).

1.2.2 Approaches to Coastal Management

The Department for Environment, Food and Rural Affairs (DEFRA) proposes 

four approaches for local authorities to manage the coastlines under their jurisdiction: 

No active interventions, advance the line, hold the line or managed realignment 

(DEFRA, 2006).
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“No active interventions” involve doing nothing to combat the effects of 

coastal erosion and allowing the profile o f the coast to be modified naturally in 

response to wave action and rising sea levels. This is not practical where there are 

developments (e.g. housing or industrial) near the coast. However, from an 

environmental point of view, this may be the most sensible course o f action as coastal 

evolution is very difficult and expensive to prevent or reverse.

“Advance the line” involves significant land reclamation. However, the 

reclaimed land will usually lie on areas that have been previously eroded and as such, 

will require significant protection, or at least, can be expected to follow a similar 

course over time. This approach is very site specific and not widely used.

“Hold the line” involves sustaining the coast at its current level by maintaining 

the current level of sea defence or introducing a new one. This process is very costly 

and requires careful assessment to determine if the benefits are significant enough to 

justify the ongoing maintenance of existing defences.

“Managed realignment” (or managed retreat) involves the removal of an 

existing sea defence and allowing the sea to flood the area behind it, and rebuild 

natural saltmarshes, often on areas of previously reclaimed saltmarsh. There are a 

number of ways to achieve this; either by removing all or part o f a sea wall, or by 

incorporating a pipe or spillway into the existing sea wall (Edmunds and Robertson, 

2005).

1.3 A Brief Overview of Saltmarshes

1.3.1 Saltmarsh Topography

Coastal saltmarshes are defined as vegetated flats colonised by halophytes 

(salt-tolerant plants) and occurring in the intertidal zone, and as such, experience 

regular tidal inundation (Allen, 2000). The vegetation cover usually varies between 

the lower, middle and upper saltmarshes. The upper saltmarsh is the most inland and 

highest in elevation. The lower saltmarsh experiences longer periods o f inundation 

rendering the conditions more suitable to different species than would be found in the 

middle and upper saltmarshes, as the frequency of tidal inundation will determine the 

salinity and the moisture of the substrate. Thus, conditions will be more suited to 

different species at different elevations (Gray, 1992). Morris et al. (2002) showed that
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there is an increase in the production of organic material in Spartina alterniflora 

production with increasing depth below mean high tide, until an optimal depth is 

reached below which, no vegetation can sustain life.

The greatest level of sediment deposition can be observed along the lower 

marsh as this region is flooded for longer periods and hence, sediment settling takes 

place over a longer period. Since the middle and upper marshes are submerged for 

shorter periods, a wider range of plant species grow in competition, and so, these 

regions can be more diverse in flora (e.g. Gray 1992; Boorman, 1999). The lower 

saltmarsh is predominantly, if not entirely, populated with halophytes (species that 

thrive iu  saline soils, widely accepted as saltmarsh vegetation types). At higher 

elevations, glycophytes (plants intolerant of salt), associated with inland, non-saline 

environments are common (Rodwell, 2000). Due to the high level of variability in tide 

magnitudes, durations of tidal inundation, and site topography, it is difficult to assign 

clear boundaries between the different levels of marshes as quite often they tend to 

blend into each other (Frey and Basan, 1978). Saltmarshes are often encroached with 

channel networks known as creeks. These can vary in size and density for different 

saltmarshes and tend to diminish in size with distance in the landward direction.

Below the lower saltmarsh, there often lie expansive stretches of mudflats. 

These provide ideal feeding sites for wildfowl and wading birds due to the mud being 

rich with invertebrates. These mudflats are also rich in sediment, some of which is 

suspended during tidal cycles and carried onto the saltmarshes. Once settled, the 

sediments are stablised by the vegetation and less likely to be resuspended. Through 

this process, saltmarshes have demonstrated an ability to gain elevation, and in the 

face of rising sea levels, they may be able to maintain their position within the 

intertidal zone (e.g. Beeftink, 1977).

1.3.2 Saltmarshes in Context

Until the 1980s, saltmarshes have been considered areas of coastal wasteland, 

and the land was often reclaimed for various purposes including agriculture, industrial 

developments, caravan sites and coastal marinas (e.g. King and Lester, 1995; 

Boorman, 1999). For many reasons, saltmarshes today are considered to be extremely 

valuable assets. Moreover, King and Lester (1995) discussed the difficulties in putting 

a value to coastal wetlands, since some of their functions are difficult to quantify in

5



The Influence o f Saltmarsh Vegetation on Hydrodynamics

terms of economic gain. Aside from their function as a sea defence, and their 

conservational value due to the provision of habitats for many plant and animal 

species, and the provision of sites for many wildfowl and wading birds each winter, 

saltmarshes are valuable for a number o f other purposes. These include recreational 

use and locations for educational or research activities. Saltmarsh vegetation can also 

improve water quality by acting as a filter for pollutants and excess nutrients (e.g. 

Vemberg, 1993; Boorman, 1999 and others).

Of particular interest to the current study is the ability o f coastal wetlands to 

function as sea defences. Their effectiveness is highlighted by the figures presented by 

the Environment Agency (1996) demonstrating that an 80m width o f saltmarsh 

fronting a sea wall can reduce the cost of the wall from £ 5000 m-1 to £ 400 m '1 (Table

1-1), although the figures vary depending on the local conditions (King and Lester, 

1995). The width of saltmarsh needed will depend on the level o f exposure o f the site, 

which will be influenced by the topography, and on the nature o f the vegetation cover. 

These complex ecosystems vary in terms of species composition, creek morphology 

and saltmarsh edge morphology, all of which will affect the ‘defensive’ wave energy 

dissipation capabilities of a saltmarsh.

Due to the expense associated with traditional sea defences, particularly with 

the continuing rise in sea levels, alternative methods for coastal management, such as 

managed realignment, or the recreation of intertidal wetlands are becoming more 

economically attractive, particularly as many sea walls are near the end o f their design 

lives (Moller et al., 1996).

Table 1-1 Effectiveness of saltings in coastal defence (taken from Environment Agency, 1996)
Width of saltings 

(m)
Height of crest wall 

(m)
Cost per metre o f seawall 

(£)
0 12 5000
6 6 1500

30 5 800
60 4 500
80 3 400

1.3.3 The Variability of Saltmarsh Vegetation

Numerous studies have been conducted on the influence o f uniform cylinders 

on the hydrodynamics o f canopy flow for a uniform array (e.g. Li and Shen, 1973; 

Nepf et al., 1997a; N epf et al., 1997b; Nepf, 1999; Stone and Shen, 2002 and others).
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Whilst their dimensions, volumes, distribution and structure can be more accurately 

and easily determined, they are not representative of the complex morphology 

associated with natural vegetation, such as saltmarsh vegetation. It is useful to 

characterise the structure and distribution of vegetation material in a way that can be 

related to the hydraulic processes taking place. Numerous species are usually 

encountered on a natural wetland. These need to be considered separately, as they will 

vary in material properties (e.g. stiffness) and physical properties (e.g. stem diameter, 

leaf shape and size) and will consequently have different effects on the flow.

Saltmarsh vegetation varies both spatially and temporally. Spatial variation 

can occur either due to the nature of the location (e.g. with proximity to creek 

networks or with ground elevation), or the natural variation in the species. Temporal 

variation occurs due to the seasonal variations associated with the growth and dieback 

cycle of the species (Collinson, 1988). Such variations may be reflected in the height 

of the canopy, the diameter of the stem, or the density of the vegetation, where density 

may be quantified by determining the stem density or mass per unit bed area.

Traditionally, ecologists whose primary aim is the identification of the 

different species and investigating their adaptation and competition within the 

environment, have conducted classification of vegetation. Ecologists may also be 

interested in characteristics of a saltmarsh that reflect its history (Boorman, 1999). 

Saltmarsh vegetation classification reviews were presented by Shimwell (1971) and 

Whittaker (1973). Since then, a system of classification o f natural habitats according 

to the vegetation they accommodate has been developed for all vegetation types and 

species. This is known as the National Vegetation Classification (NVC) and was 

published as the fifth volume of the British Plant Communities (Rodwell, 2000).

In the context of coastal management, a study is likely to focus on either the 

velocity and turbulence structure through the saltmarsh canopy, or the associated 

sedimentary processes (e.g. sediment transport, suspension and deposition). 

Classification of the vegetation solely based on the species type is not sufficient for 

the purposes of the study. Instead, a more physical means o f quantification is 

necessary to relate the vegetation structure and quantity to the resulting 

hydrodynamics (Neumeier, 2005). The quantification approach will depend on the 

vegetation structure and the nature of the study. Gacia et al. (1999) found a good 

correlation between the ratio of projected leaf area to ground area of sea grass to the 

amount of sediment retention, whilst Leonard and Luther (1995) found a good
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correlation between the stem density of emergent Juncus roemerianus and Spartina

alterniflora canopies and the turbulence intensity within the vegetation (see Figure 

2.26b in Section 2.4.2). The physical quantification of vegetation used in this study 

through consideration of various parameters such as the projected area of obstruction, 

stem density and canopy height is discussed in Chapter 4.

Seasonal variation patterns were shown by Morris and Ffaskin (1990) for Sp. 

alterniflora in South Carolina (Figure 1-1). The study shows that the vegetation has a 

maximum density towards the late summer months and a minimum early in the year. 

The density was parameterised in terms of biomass density. Although these 

observations may be linked to longer hours of sunlight exposure, vegetation growth is 

affected by many factors such as the salinity of the soil, its redox potential (readiness 

to gain electrons and hence, become reduced) and the depth of the water table 

(Sanchez et al., 1996). It is also affected by the nutrient and sediment loading, oxygen 

availability, and competition between plant species (Pennings and Callaway, 1992). 

Rainfall and mean sea level will affect plant growth, as these will influence the 

salinity of the sediment, and for every species, there is an optimal salinity range 

within which production is most intense, whilst a particularly high salinity level can 

be fatal even for halophytes (Morris and Haskin, 1990). High salinity levels can arise 

where evapotranspiration is high in the absence of regular flooding (Phleger, 1971).
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Figure 1-1 Monthly vegetation density and stem density m easurem ents for Sp. alterniflora (taken 
from Morris and Haskin, 1990)
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1.3.4 The Loss of Saltmarshes due to Coastal Squeeze

Coastal saltmarshes can adapt to rising sea levels through two mechanisms. 

The first mechanism, mentioned in 1.3.1, involves the long-term sediment deposition 

across the saltmarsh surface resulting in an increase in ground elevation over time 

(e.g. Beeftink, 1977). Secondly, as the mean sea level rises, the saltmarsh is forced to 

move inland onto higher ground. Although the land originally occupied by the 

saltmarsh may be eroded, the saltmarsh itself survives the increase in water level and 

continues to provide coastal protection and to promote biodiversity. Most saltmarshes 

in the UK are backed by seawalls that prevent them from migrating inland. Hence, 

with rising sea levels, a considerable area of saltmarsh may be lost (Boorman et al., 

1989). This is known as the concept of ‘coastal squeeze’, and a considerable 

proportion of the saltmarshes along the coasts of the UK are at risk of disappearing.

1.3.5 The Implications of Saltmarshes on Coastal Hydrodynamics

Saltmarshes can modify the local hydrodynamics in a number of ways to 

provide protection to the coastline. Saltmarsh vegetation is capable of both reducing 

flow velocities within the vegetation region so that the settlement of sediment 

particles is more readily achieved (e.g. Pethick et al., 1990; Christiansen et al., 2000), 

and stabilising settled sediments by binding the substrate together through their roots 

(e.g. Boorman, 1999). During more extreme storm events, the front of a saltmarsh is 

eroded; however the eroded material remains along the adjoining mudflats and is 

available for subsequent deposition during calmer periods. This may extend the length 

of mudflats fronting the saltmarshes (Pethick, 1992).

Ultimately, the most effective mechanism through which saltmarshes provide 

protection to adjoining seawalls is through the absorption of wave energy. An 80m 

length of saltmarsh can result in a 40% reduction in wave heights through the 

reduction of flow depth, wave breaking and frictional losses (Brampton, 1992). 

Moller et al. (1996) compared wave energy dissipation over 200 metres o f mudflat 

and 200 metres of the adjoining saltmarsh along Stiffkey saltmarshes along the North 

Norfolk coast in eastern England. The measurement transect was positioned normal to 

the coastline and experienced a decrease in energy of between 1.9% and 55.3% for the 

mudflat compared to 47.4% and 100% for the saltmarsh. In a similar study along the 

same saltmarsh, where the transect was positioned normal to the direction of the
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dominant wave approach, Moller et al. (1999) observed a 29% reduction in energy 

over the mudflats compared to 82% over the saltmarsh.

Photographs of typical saltmarshes taken during this study are presented in 

Figure 1-2 and Figure 1-3 as an example for the reader of the field situation.

Figure 1-2 An area of saltm arsh divided by a flooded creek

Figure 1-3 A saltmarsh becoming submerged with an incoming tide
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1.4 Basic Definitions

Some commonly used terms are defined at this point to avoid confusion.

1.4.1 Saltings

The term is synonymous with ‘saltmarshes’, sometimes also referred to by 

some authors as ‘salt marshes’, and refers to coastal wetlands located in the intertidal 

zone and hence, experience both dry and inundated periods frequently due to tidal 

patterns. The vegetation located on these wetlands is halophytic, meaning that they 

require a saline environment to survive.

1.4.2 ‘ Submergence’

A number of different variations of the terms ‘submerged’ and ‘emergent’ 

have been used by different authors to describe situations where the flow depth is 

greater or less than the vegetation height respectively. Throughout this thesis, the term 

‘emergent’ is used to describe the former scenario, where the flow depth is less than 

the vegetation height, see Figure l-4a, whilst ‘submerged’ is used to describe the 

latter, where the flow depth is greater than the vegetation height, see Figure l-4b. 

Furthermore, the term ‘submergence’, denoted as H, is defined as the ratio of flow 

depth, D, to vegetation height, T, to characterise this property. The parameter is more 

meaningfully used to characterise submerged canopies as the exact canopy height 

under emergent conditions may be unknown and in rigid vegetation does not affect 

the hydraulic resistance and hence, the flow characteristics.
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Emergent Submerged

[a] [b] vi L

7

Figure 1-4 The notations used to describe the canopy height, T, and flow depth, D, under [a]: 
emergent and [b]: subm erged conditions.

1.4.3 The ‘Canopy’

Biologists use the term ‘canopy’ in reference to the leaves of the vegetation. 

However, as confirmed by various sources within the literature, engineers commonly 

use the same term in reference to the entire vegetation layer above soil level (e.g. 

Wilson and Shaw, 1977; Shi et al., 1996; Ackerman and Okubo, 1993 and others). 

This latter approach is adopted in this thesis, and the leaf part of the canopy is referred 

to as the ‘foliage’. For submerged conditions, the region above the canopy (where the 

water elevation is greater than the canopy height in Figure l-4b) is referred to as the 

‘surface flow layer’, and the top of the canopy is referred to as the ‘canopy-surface 

flow layer interface’. The region close to the bed where foliage is usually absent or 

scarce is referred to as the ‘stem’ region. This is illustrated in Figure 1-5.

ZZ —  water surface 

surface flow layer

— canopy-surface flow layer interface

V foliage region

stem region

Figure 1-5 The terminologies used to describe the canopy and surface flow layers.
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1.5 Concluding Remarks

1.5.1 Research Objectives and Methodology

The aim of the research presented in this thesis is to investigate the effects of 

saltmarsh vegetation canopies on flow dynamics, and particularly how the obstruction 

due to the vegetation gives rise to drag forces and affects the turbulence structure of 

the flow, which in turn affects the velocity profile shapes. First, some consideration 

was given to quantifying the vegetation, which can be complicated due to the 

heterogeneous structure of vegetation canopies, however, this is important to relate 

the canopies to the resulting flow dynamics. A fieldwork programme was then 

designed and executed to quantify vegetation and other parameters, such as bed 

gradients and water depth profiles. The findings were used to design laboratory 

experiments that are representative of typical saltmarsh environments to facilitate the 

investigation of the flow dynamics. Experiments were conducted using vegetation 

samples collected during the summer and winter periods to investigate the 

significance of the variation in vegetation properties on flow dynamics. Some of the 

experiments were also repeated using arrays of plastic straws to evaluate the 

suitability of uniform cylinder arrays for simulating vegetation canopies. By 

considering drag forces and the turbulence structures in relation to the velocity 

profiles for various stem densities, bed gradients and submergence levels, a series of 

empirical relationships are suggested for predicting the velocity profile through 

vegetation canopies.

1.5.2 Thesis Layout

In Chapter 2, a detailed account is presented of research conducted that is 

relevant to vegetated flows, particularly in the context of saltmarsh vegetation. The 

results from an extensive fieldwork programme are presented in Chapter 3. Practical 

methods for the quantification of vegetation are discussed in Chapter 4. The 

methodology for the laboratory programme is described in Chapter 5, the results from 

a comparison between the impacts of uniform cylinder arrays and Spartina anglica 

canopies on hydrodynamics is presented in Chapter 6, and a more in-depth study of 

the hydrodynamics through Spartina anglica canopies is presented in Chapter 7. In 

Chapter 8, a prediction method applicable to the velocity and turbulence profiles
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through vegetation canopies is proposed. The final conclusions to the thesis are 

presented in Chapter 9 along with recommendations for further work.
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2 A Review of Flows through Vegetation in Open Channels

2.1 Flow Resistance due to Bed Roughness

2.1.1 Flow Over a Rough Bed

A number of empirical resistance coefficients are used to characterise the 

surface roughness of open channels, pipes and floodplains. Such coefficients combine 

all sources of resistance, such as bed friction and drag due to the presence of physical 

obstructions producing a single parameter e.g. Chezy’s resistance factor, C, Darcy- 

Weisbach friction factor, f  and Manning’s n. Flow resistance arises due to bed 

friction when the flow passes over a rough surface, although depending on the 

context, other factors may also contribute to this, such as the bed geometry, bed forms 

and meandering of a channel in the case of open channel flow. Where roughness 

elements protrude into the flow domain, (e.g. reed beds), some of the resistance is due 

to the drag force arising from the plant stems obstructing the flow. The magnitude of 

the flow resistance may also depend on the vegetation type and height in relation to 

the flow depth. Although the aforementioned coefficients represent all sources of 

resistance, by definition, these formulae are only applicable where the roughness 

elements do not protrude significantly into the flow and resistance is mainly due to 

bed roughness. The formulae were developed on the assumption that the flow is 

uniform such that the longitudinal weight component of the flow is equal to the force 

of the resistance. The roughness parameters are commonly functions of the area-mean 

velocity, U, the bed gradient, So, and the hydraulic radius, R (the ratio of flow area to 

the wetted perimeter):

U
[Equation. 2.01]

u2 [Equation. 2.02]

[Equation. 2.03]
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Manning’s n and the Chezy coefficient are only applicable where the flow is 

fully turbulent (e.g. Chadwick and Morfett, 1986). O f these coefficients, Manning’s n 

is the most widely used, and values are available for a number o f different surfaces 

e.g. wood, clay, gravel and grass beds (e.g. Chow, 1959). Application of these 

formulae is common for flow over rough beds, which is characterised by a 

logarithmic velocity profile (Section 2.1.2) above the laminar boundary layer, within 

which the effects o f the bed roughness take effect. For flow over a rough surface, the 

thickness of this boundary layer is usually very small compared to a vegetated flow 

where the logarithmic profile is displaced starting above the vegetation canopy 

(Stephan and Gutknecht, 2002). Within the vegetation layer, the velocity profile will 

be affected by the vegetation quantity, structure and morphology. These 

characteristics are difficult to represent through an empirical resistance coefficient.

2.1.2 Logarithmic Velocity Profiles

Above a rough bed, or in the surface flow layer above the canopy in the case 

of vegetated flows, the velocity profile shape can be described using a logarithmic 

relationship for a fully developed flow. This can be described mathematically through 

Prandtl’s logarithmic law as modified by Nikuradse (e.g. Chow, 1959; French, 1985 

and others) as follows:

—  = — In -— h $ [Equation. 2.041
w* k  k s

where u  is the longitudinal velocity at a given elevation, z, k  is the von Karman 

constant (typically 0.4), k s  is the equivalent sand-grain roughness, ^ is an integration 

constant and w* is the shear velocity. The shear velocity is defined as:

[Equation. 2.05]

where r 0 is the shear stress at the boundary, which can be either the bed in the case of 

a rough bed, or the deflected vegetation height in the case o f a submerged canopy
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(Stephan and Gutknecht, 2002), and p  is the fluid density. The parameter is referred 

to as a velpcity due to its units, but is actually a measure of shear stress.

Further work has been conducted on Prandtl’s logarithmic law to apply it to 

the surface flow layer above a vegetation canopy, and different authors have proposed 

a number of modified versions. In addition to the parameters included in the original 

law in Equation 2.04, some of the modifications may also include the deflected height 

of the vegetation, z", the difference between the deflected vegetation height and the 

zero-plane displacement, z' (Figure 2-1), a parameter referred to as kp which is 

similar to the equivalent sand grain roughness, ks in concept but applicable to plant

canopies, the hydraulic radius and a modified von Karman constant. Stephan and 

Gutknecht (2002) provide a comprehensive summary of the different modifications 

applied to Prandtl’s logarithmic law.

measured 
velocity profile

D
D

logarithmic 
velocity profile

0

zero-plane
displacement

Figure 2-1 Longitudinal velocity profile above submerged vegetation, where T is the deflected 
height of the vegetation, z" is the zero-plane displacement, zf is the difference between the 
deflected height of the vegetation and the zero-plane displacement, D  is the flow depth and u is 
the longitudinal velocity (taken from Stephan and Gutknecht, 2002).

The variations proposed on the original logarithmic law operate on the basis 

that Equation 2.04 can be modified with a zero-plane displacement i.e. the distance 

from the bed above which the velocity profile shape can be described as being 

logarithmic (see Figure 2-1). This approach assumes that a state of equilibrium is 

achieved, where the rate of turbulence production and dissipation are balanced along
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the point where the iog law profile commences (Lopez and Garcia, 1997). This has 

been demonstrated by a number of authors (e.g. Lopez and Garcia, 1997; Nepf, 1999 

and others), who have considered the dissipation rate and wake production terms 

within the turbulent kinetic energy budget (Section 2.5.6). The authors have shown 

the production and dissipation to be of similar magnitudes and they suggest that this 

indicates that the balance between the two terms controls turbulence levels within the 

canopy.

2.1.3 Uniform Flow Conditions

The experiments conducted in this study (Chapters 6 and 7) have all been 

conducted under uniform flow conditions whereby the total energy line, which is an 

imaginary line consisting o f the depth of flow and the velocity head, is parallel to the 

bed slope. For uniform flow over a rough bed, the weight component o f the water 

body acting along the plane o f the bed and the opposing shear force must balance each 

other (Figure 2-2) such that:

tqBL = pgAL sin 0  [Equation. 2.06]

p g A L

Figure 2-2 Body force diagram for uniform flow over a rough surface, where L is the reach 
length of a unit volume, U  is the depth-averaged longitudinal velocity, A is the flow area, 6 is the 
angle of the bed slope, and r 0 is the bed shear stress (taken from Chadwick and Morfett, 1998)
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where To is the bed shear stress, p is the fluid density, g  is the gravitational 

acceleration, A is the cross-sectional area of the flow domain in the longitudinal 

direction, B is the flume width, L is a unit length of flow domain, and sin# (often 

denoted as S0 throughout this thesis) is the bed slope.

2.1.4 Three-Dimensional Shallow Flows

Momentum conservation for fluid flow is described by the Navier-Stokes 

equations. These can be simplified for flow in the longitudinal direction by the x- 

directionmomentum equation as follows:

du du2 duv duw „ 1 dP < /= 2~ a2~ =2
—  + -----+ ----- + -------= gS0 ----------+ —
dt dx dy dz p  dx p Kdx2 dy2 dz2 j

[Equation 2.07]

where u, v and w are the velocity components in the longitudinal (x), lateral (y) and 

vertical (z) directions respectively, g  is the gravitational acceleration, S0 is the bed 

gradient, p  is the fluid density, P is the hydrostatic pressure of the fluid (due to the 

height of the water column) and p  is the dynamic viscosity. For shallow flows, 

particularly in natural vegetated environments such as saltmarshes and wetlands, 

where pressure difference is the main driving force o f the flow, advective 

accelerations (in the x, y  or z directions) are often negligible, and Equation 2.07 can be 

simplified in terms of the local acceleration:

du 1 dP Fd
—  = gS0   --  [Equation 2.08]
dt p  dx p

to  = g5o V  [Equation2.09]
dt p  dx p

^ 7  = gSa - g ^ - - —  [Equation 2.10]
dt dx p

where rj is the water depth (Figure 2-3) and FD' is the drag force per unit volume due 

to the vegetation or other obstacles obstructing the flow (Section 2.2.6).
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water surface

channel bed

/  /  /  /  7  /  /  /  y ~7 /  V  Z ~Zt o *

dx

Figure 2-3 Schematic diagram illustrating pressure driven shallow flows (taken from Chow, 
1959)

2.2 Physical Obstruction of the Flow

2.2.1 Characterising the Flow Regime

the transition of a flow from the laminar to the turbulent state (e.g. Chadwick and 

Morfett, 1986) showed that the onset of turbulence was dependant on the fluid 

velocity and viscosity, and a length scale. Thus, the Reynolds number, Re, was 

introduced as a dimensionless parameter (with no units) to characterise this property 

as follows:

where p  is the fluid density (approximately 1000 kgm'3 for water between 0°C and 

30°C), p  is the dynamic viscosity (approximately 0.001 kgm-1 s '1 for water at 20°C), u 

is the velocity, and / is the turbulence length scale. The size o f the turbulence length 

scale depends on the flow conditions. For instance, in open channel flows, the length 

scale is often the channel width or depth, or the hydraulic radius, whilst for pipe 

flows, the diameter o f the pipe is often used.

The Reynolds number is a measure o f the ratio o f inertial to viscous forces 

within the fluid. Viscous forces arise due to the friction between fluid particles as they 

move past each other, whereas inertial forces are the result o f the acceleration of the 

fluid in accordance with Newton’s second law. For a laminar flow, the Reynolds

The experiments conducted by Reynolds in the late 19th century investigating

[Equation 2.11]
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number is relatively low, and viscous forces predominate, whereas for a turbulent 

flow, the Reynolds number is higher, and inertial forces predominate (Prandtl, 1935).

For flow through a rough channel, two different types of turbulence length 

scales can be defined to charaterise the flow : a minimum and a maximum turbulence 

length scale. The minimum length scale for a rough bed is the equivalent sand grain 

roughness which characterises the size of the roughness elements responsible for 

turbulence generation. The maximum length scale is the hydraulic radius, which for a 

wide channel is equivalent to the flow depth. This characterises the maximum 

theoretical size of turbulent structures that may form within the flow.

When considering flow past a cylinder, and particularly in the context of a 

cylinder array, it is common to use the stem Reynolds number (Re</) whereby the stem 

diameter is the length scale since any large scale eddies are disrupted by the stems and 

replaced by eddies formed within the stem wake at the scale of the stem (Nepf et a l , 

1997b). This is given by:

Re^ - P ud  [Equation 2.12]

where d  is the average stem diameter. In fact, Zavistoski (1994) showed that the width 

and length of a wake forming downstream of a single cylinder is a function of the 

cylinder diameter. The diameter is therefore equivalent to the minimum turbulence 

length scale. For dense arrays of cylinders, the size o f the wake may be limited by 

downstream cylinders, and for the turbulent structures forming within the wakes, the 

maximum length scale is the spacing between the cylinders.

2.2.2 General Concept of Flow around an Obstruction

When a flow field is physically obstructed by an object, two different types of 

drag force arise: frictional (or viscous) and form (or pressure) drag. Frictional drag 

arises in the region immediately adjacent to the surface of the body (the boundary 

layer, see Figure 2-4) resulting in a reduction in velocity due to the boundary’s skin 

friction and is therefore a function of the total surface area of the object. As the flow 

becomes more laminar (below a stem Reynolds number of 200 for a single cylinder, 

see Section 2.2.4), frictional drag, which is responsible for the dissipation of flow
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energy without the generation of turbulence, becomes more important (e.g. Douglas et 

al., 1979). The second type, form drag, arises due to the pressure difference created 

across the obstructing body in the longitudinal direction and is dependant on the form 

of the object. It is therefore a function of the projected area o f the object.

It is common to consider the cumulative effects o f frictional and form drag 

simultaneously, the sum of which is referred to as the profile drag. The drag force 

created by a body in a flow stream, FD, is given by the formula:

Fd = ^ p C DA U 2 [Equation. 2.13]

where CD is a drag coefficient, p  is the fluid density, U is the area mean velocity in 

the free stream (where the flow is not affected by the bed, walls, or the cylinder 

wake), and A is the projected area of the body. The drag coefficient is expressive of 

the drag force and hence, is dependant on the body shape, stiffness, size, surface 

roughness and the flow regime (turbulent, laminar or transitional) as indicated by the 

stem Reynolds number (Section 2.2.1). It is a measure o f the reduction in velocity 

caused by the obstruction making it a useful parameter for evaluating the drag 

associated with a given obstacle.

As the flow accelerates to move around an obstacle, and moves with higher 

velocities near its perimeter, there is a drop in dynamic pressure along the surface of 

the object compared to the pressure at the upstream face, termed the stagnation point 

due to minimal fluid movement at this location (Figure 2-4). At the downstream end, 

the magnitude o f the pressure is less than the upstream value due to energy dissipation 

in the turbulent wake region (Figure 2-4), except for situations of laminar flow (below 

a stem Reynolds number of 0.5). The pressure difference results in a drag force 

opposing to the flow direction, and along with frictional forces on the boundary, also 

results in flow reversal giving rise to vortices, and a separation point in the flow is 

established downstream o f the body (Figure 2-4). Consequently, the wake structure is 

closely associated with the turbulence level of the flow and hence, is dependant on the 

Reynolds number. A larger wake results in a greater form drag.
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1 -  Stagnation point
2 -  Separation points 
3 - Wake
4 - Vortices
5 -  Boundary layer

Flow direction

Figure 2-4 Flow structure around an immersed body (taken from Douglas et aL, 1979)

2.2.3 Flow Structure past a Single Emergent Cylinder

Flow past a single cylinder has been widely researched and is presented in 

many fluid mechanics text books (e.g. Schlichting, 1955; Douglas et a l , 1979 and 

others). The relationship between the drag coefficient, CD, and the Reynolds number, 

Re, referred to here as the CD - Re^ curve, where Re^ is the Reynolds number 

where the cylinder diameter is used as the characteristic length scale (Section 2.2.1), 

is presented in Figure 2-5. Changes in wake structure with increasing Reynolds 

number, which have been identified through flow visualisation using tracers, are 

presented in Figure 2-6. Velocity measurements through Spartina canopies indicate 

that velocities were generally between 0.01 ms"1 and 0.01 m s'1 in the vegetation layer 

(e.g. Shi et al., 1995; Christiansen et a l,  2000; Neumeier and Ciavola, 2004 and 

others). Stem diameters for Spartina anglica were determined in this study and 

generally ranged between 4 mm and 6 mm depending on the time of year. For these 

values, it is predicted that stem Reynolds numbers in Spartina saltmarsh vegetation 

would range between values of 40 and 600.
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Form drag
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Figure 2-5 Variations in the drag coefficient, CD, with the stem Reynolds number, Re^ for a 
single cylinder (reproduced from Schlichting, 1955)

At very low Reynolds numbers (Re^ < 0.5), the flow remains laminar and no 

energy dissipation takes place, hence the pressure is equal on both upstream and 

downstream faces o f the cylinder. Pressure drag is therefore negligible, and the total 

drag is nearly entirely due to skin friction drag. Due to the low velocities of the flow 

in this Reynolds number range, there is significant contact between the fluid and the 

cylinder resulting in a high level of resistance due to friction corresponding to 

relatively high CD values. This corresponds to region 4A ’ in Figure 2-5 and Figure 

2- 6 .

At slightly higher Reynolds numbers (2 < Re^ < 30), the boundary layer 

separates at the separation point resulting in a curvature in the CD -  Rerf curve

(region 4B’ in Figure 2-5 and Figure 2-6), and vortices begin to form within the wake 

which are initially symmetrical, circulating in opposing directions, and remain 

stationary downstream o f the cylinder. The symmetrical eddies are elongated with

24



Chapter 2 - A Review o f Vegetated Flows

increasing Reynolds number and begin to oscillate at values of around 90 (Douglas et 

al., 1979).

Flow Direction

A R e. < 0.5 B 2 < R e. < 30

C 90 < Red < 10 D 103 < R e d < 2 x l0 5

E 2x10 < Re,

Figure 2-6 The different sages of the development of a fully turbulent wake with increasing stem 
Reynolds number for flow past a cylinder (taken from Douglas et al., 1979)

For low Reynolds numbers (2 < Rerf < 30), bed shear is small, and the

pressure, which diminishes in value as the fluid accelerates around the object, returns 

to a relatively similar value at the downstream surface with a small negative pressure 

gradient across the cylinder in the direction of the flow. Secondary currents arise due 

to a positive pressure gradient in the vertical plane on the downstream face of the 

cylinder due to a large near-bed velocity gradient as the flow passes over the rough 

bed (Vogel, 1994). Nepf et al  (1997b) observed this through visualisation by 

releasing a dye stream near the base of a single cylinder.
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With further increasing values of the Reynolds number ( Re^ ), up to 10 , the

vortices break away from the cylinder and are washed downstream (region ‘C’ in 

Figure 2-5 and Figure 2-6). Williamson (1992) suggested that vortex shedding for a 

single cylinder commences around a stem Reynolds number o f 50, whilst Gerrard 

(1977) suggested a range between 55 and 70 and Douglas et a l  (1979) suggested a 

stem Reynolds number o f 90 as shown in Figure 2-6. For a higher Reynolds number, 

vortices are released with greater intensity from both sides o f the cylinder forming a 

‘vortex street’.

The production o f turbulence in the wakes o f cylinders is a process through 

which the mean kinetic energy (MKE) o f the flow is converted to turbulent kinetic 

energy (TKE) as large turbulent motions are broken down into smaller structures 

(Wilson and Shaw, 1977). These are defined as:

MKE = p(» + w  ) [Equation. 2.14]

TKE = P(U' +^' +W' ) [Equation. 2.15]

where u, v and w are the instantaneous longitudinal, lateral and vertical velocity 

components respectively, u\ v' and w' are the average root mean squares of the 

instantaneous fluctuations in the respective velocity components and p  is the fluid 

density.

‘Dissipation’ (e) is the process through which TKE is converted to other forms 

of energy, e.g. heat and sound, and through this process, energy is effectively 

removed from the flow. Up to a Reynolds number (R erf ) of 103, an increase in the

Reynolds number corresponds to an increase in the turbulence level within both the 

free stream and the cylinder wake. As the turbulence levels in the free stream 

increase, the contribution o f the cylinder wake to the total turbulence level of the flow 

(the total turbulence level o f both the free stream and the cylinder wake) decreases. 

Thus, the contribution o f the cylinder wake towards reducing the energy o f the flow 

through dissipation becomes less significant. The cylinder becomes less effective as a 

source of resistance to the flow, and this corresponds to a reduction in CD (Figure 

2-5).
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For a Reynolds number (R erf) up to a value of 2 x 105, the vortices become

less organised until they eventually disappear and the wake becomes fully turbulent 

(region ‘D’ in Figure 2-5 and Figure 2-6). At this stage, the total drag on the cylinder 

is nearly entirely due to form drag. Above this value, the boundary layer becomes 

turbulent prior to separation, the separation point moves further along the downstream 

end of the cylinder resulting in a considerable drop in CD (region ‘E’ in Figure 2-5 

and Figure 2-6). Thus, since the drag coefficient for a single cylinder is affected by 

the wake structure, its magnitude is a function of the stem Reynolds number (Nepf, 

1999).

Li and Shen (1973) characterise the separation of the boundary layer around 

the cylinder into three regimes: sub-critical, critical, and supercritical, and hence, the 

regimes are dependent on the Froude number defined as:

Fr = ~^L= [Equation 2.16]
fgd

where U is the mean velocity, g  is the gravitational acceleration, and d  is the cylinder 

diameter, which can be substituted for an alternative length scale depending on the 

context. The dimensionless parameter is a function of the ratio of inertial to 

gravitational forces (e.g. Chow, 1959; French, 1985; Chadwick and Morfett, 1986 and 

others). The three regimes correspond to values less than unity for sub-critical flow, 

equal to unity for critical flow, and greater than unity for supercritical flow. Li and 

Shen (1973) observed that the angle of separation of the boundary layer downstream 

of the cylinder varies according to the regime as follows: between 72° and 90° for sub- 

critical flow, approximately 135° for critical flow, and 110° for supercritical flow.

Another mechanism contributing to plant canopy turbulence occurs on the 

upstream face of cylinders of plant stems near the base. A rigid obstruction in a flow 

field results in an adverse pressure gradient. This creates a separation point near the 

bed in the flow upstream of the object with an upward rotation resulting in a 

‘horseshoe’ shaped vortex wrapped around the bottom of the obstruction accompanied 

by a bulge in the longitudinal velocity profile downstream of the cylinder (Figure 2-7 

from Sumer et al., 1997). Baker (1979), Niederoda and Dalton (1982) and Dargahi, 

(1989) conducted reviews of work on the formation of horseshoe vortices.
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Waves

$

Figure 2-7 Formation of a ‘Horseshoe’ vortex (taken from Sumer e ta l,  1997)

2.2.4 The Laminar -  Turbulent Transition

After examination o f the velocity irregularities associated with ‘vortex 

shedding’ within the wake, Williamson (1992) proposed that for an isolated cylinder, 

the transition from a laminar to a fully turbulent wake occurs at a Reynolds number 

(R erf ) o f 180 while others suggest a value of 200 (e.g. Nepf, 1999). The flow around

a cylinder is ‘laminar’ at very low Reynolds numbers (below a value of approximately 

two). Above this value, and up to the transition value, the turbulence structure within 

the wake develops with increasing Reynolds number as outlined in Section 2.2.3. 

However, the wake is not considered to be fully turbulent within this range, and is 

therefore the transition range. Within the transition range, vortices are two- 

dimensional and act in the longitudinal and lateral planes. Above the transition value, 

the wake becomes ‘turbulent’ whereby the vortices develop into three-dimensional 

structures spanning the longitudinal, lateral and vertical planes.

The flow structure around a cylindrical element obstructing the flow, such as a 

plant stem, is characterised, as mentioned previously, by the stem Reynolds number 

(Section 2.2.1), and also by the Strouhal number (Str). The Strouhal number is 

important when analysing unsteady flow problems and is the ratio o f inertial forces to 

the unsteadiness o f the flow due to the obstruction created by the cylinder or stem. 

This is defined as (e.g. Douglas et al., 1979):
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Str = —  [Equation. 2.17]
u

w here/is the frequency of the vortex shedding, d  is the cylinder diameter and u is the 

velocity of flow. The parameter describes oscillating flow mechanisms, and is a 

measure of the frequency of vortex shedding in the wake of the cylinder.

Besides changes to the flow structure in the free stream, the flow within the 

wake of a cylinder will also vary through the different stages of transition. When the 

free stream flow is laminar, and the Reynolds number is sufficiently large 

(R erf >30), two organised rows of vortices are formed downstream of the cylinder

(Section 2.2.3). In the laminar range (R erf <180), two forms of shedding can occur, 

namely ‘parallel’ and ‘oblique’ (Williamson, 1992). Parallel shedding (Figure 2-8a) 

occurs at much lower stem Reynolds numbers (R erf <65). For a given Reynolds

number, oblique shedding occurs at a lower frequency compared to parallel shedding 

as indicated by a lower Strouhal number for the former type (see Figure 2-9 where the 

solid curve is presented for reference). There is a sudden shift from parallel to oblique 

shedding corresponding to a discontinuity in the Strouhal-Reynolds relationship 

around a stem Reynolds number of 65.

[a] 50<R e^ <65

Vv>/$

[b] 65 < R e. <180
Figure 2-8 [a]: Parallel and [b]: oblique shedding of vortices in the wake of a cylinder in the
laminar range below a stem Reynolds number, R erf , of 180. The dotted lines have been added to
better illustrate the alignment of the vortices (produced based on information presented in 
Williamson, 1992)

Williamson (1992) illustrated how changes in the modes of three-dimensional 

shedding within the wake with increasing Reynolds number correspond to 

irregularities in the Strouhal-Reynolds number relationship as demonstrated in Figure
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2-9. For an isolated cylinder, vortex shedding, illustrated previously in Figure 2-6 by 

regions ‘C \  ‘D’ and ‘E \  commences between regions ‘B’ and ‘C \  corresponding to a 

Reynolds number range between values of 30 and 90. In the same context, 

Williamson (1992) reported that above a Reynolds number of 180, the flow becomes 

turbulent. At a value up to 260, finer-scale longitudinal vortex structures begin to 

form. Between Reynolds numbers of 230 and 360, there is a transition between the 

aforementioned modes o f vortex shedding corresponding to a second discontinuity in 

the Strouhal-Reynolds relationship. This is not as abrupt as the first discontinuity 

(Figure 2-9), as the vortex shedding alternates between the two forms within the 

transition range. Beyond the second discontinuity, the wake becomes fully turbulent 

consisting of fine scale turbulence.

0.20

0.18
2nd discontinuityParallel shedding

1st discontinuity
0.16

Oblique shedding
0.14

Laminar 3-D

0.12
60 100 140 180 220 260

RQd
Figure 2-9 The relationship between the Strouhal number, Str, and the stem Reynolds number, 
Re^, over the laminar and transitional range (taken from Williamson, 1992). The solid curve is 
presented for reference to show the Strouhal values for parallel shedding above the transition 
stem Reynolds number value of 65.

2.2.5 Flow Structure for Emergent Cylinder Pairs

When two cylinders are considered, the problem becomes more complicated 

as the wake from the upstream cylinder may have an impact on the downstream 

cylinder depending on the proximity of the two cylinders. The effect of the wake on
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the velocity and turbulence around the downstream cylinder is referred to as ‘wake 

interference’. Due to the turbulent nature of the wake, a significant proportion of the 

mean kinetic energy of the flow is converted to turbulent kinetic energy (as mentioned 

in Section 2.2.3), and the downstream cylinder experiences a lower impact velocity on 

its upstream face. Furthermore, the wake of the upstream cylinder may cause the 

separation point (Figure 2-4) on the downstream cylinder to be shifted further 

downstream. Both these mechanisms contribute to a reduction in the pressure gradient 

across the cylinder, and hence, a reduction in drag corresponding to a lower drag 

coefficient (Zukauskas, 1987; Luo et al., 1996; Nepf, 1999). This is the concept of the 

‘sheltering’ effect described by Raupach (1992).

Nepf (1999) proposed that this applies to cases where the Reynolds number is 

above a value of 200 and hence, turbulent wake production is significant. Below this 

value, wake turbulence is negligible, and Nepf (1999) believes that further work is 

required to understand the implications on wake interference and the effects on bulk 

drag coefficients representative of groups of cylinders or plants (to be discussed in the 

next section).

Zdravkovich (1977) presented a review of previous work conducted on pairs 

of cylinders in various arrangements. The researcher reported that data available is 

limited and is usually collected to investigate a specific engineering problem and is 

therefore rather fragmented. Wake interference is dependent on numerous parameters 

e.g. cylinder diameter and spacing, surface roughness, angle of stagger and Reynolds 

number. Nevertheless, Zdravkovich (1977) observed that the effects are very evident, 

particularly where the cylinders are only a few diameter spacings apart.

A further mechanism can occur in staggered arrays, or in situations where the 

stem spacings are relatively small (less than three diameters) and the downstream 

cylinder is slightly offset such that it does not fall within the wake of the upstream 

cylinder (Zdravkovich, 1977). This forces the flow into the wake of the upstream 

cylinder, as illustrated in Figure 2-10b (Figure 2-10a shows a greater lateral distance 

between the cylinders whereby the wake is unaffected by the downstream cylinder). 

Due to the acceleration of the flow, there is a reduction in pressure on the inner sides 

of the cylinders resulting in an overall positive pressure difference giving rise to ‘lift’, 

causing the cylinders to be pulled towards each other. Depending on the flexibility of 

the cylinders, resonance may occur.
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b.

Figure 2-10 Two staggered cylinder arrangements where [a] the lateral distance is large enough 
such that the downstream cylinder does not affect the wake from the upstream cylinder, and [b]: 
the lateral distance is relatively smaller causing the free flow to be entrained into the path of the 
upstream cylinder’s wake (taken from Zdravkovich, 1977)

2.2.6 Flow Structure through Groups of Emergent Cylinders

In Section 2.2.2, the drag equation (Equation 2.14), for an object obstructing a 

flow field was introduced. Researchers working on uniform cylinder arrays simulating 

vegetation canopies (e.g. Dunn et al., 1996; Nepf, 1999 and others) have proposed 

that the equation is modified to quantify the total drag force per unit volume, FD \  as 

follows:

Fd ’ = p  CD a U 2 [Equation. 2.18]

where CD is a bulk drag coefficient that is characteristic of the array properties (e.g. 

cylinder diameter, spacing and arrangement), a is the projected area o f obstruction 

per unit volume, p  is the fluid density, and U  is the mean free stream velocity. In the 

context of a single object obstructing the flow, a refers to the frontal projected area 

visible in a cross-section o f the flow area, and not the total surface area of the object, 

since the drag is dominated by form-drag. While the total drag force per unit volume, 

Fd ', includes the form and friction drag components, friction drag is negligible within 

the transitional and turbulent flow regimes ( 200 < Re^ ).

In situations where the stem density is unknown, or the projected area cannot 

be determined, it is common to group the projected area per unit volume, a , and use
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the bulk drag coefficient, CD , (e.g. Kadlec, 1990; Wu et al., 1999 and others) to 

define a bulk roughness coefficient as follows:

CD' = aC D [Equation. 2.19]

Raupach (1992) suggests that for sparse arrays, where the projected area of 

obstruction per unit volume approaches zero, the interaction of cylinder wakes with 

downstream cylinders (Section 2.2.5) can be ignored. However, for higher stem 

densities, up to a ratio of basal stem area to total ground area of 0.1, it is reasonable to 

assume that any given cylinder is only affected by the wake of the closest upstream 

cylinder. Above this value, wake interference becomes even more complex as the 

drag on a particular cylinder will be affected by the wakes of numerous cylinders 

positioned upstream, or even lateral to the cylinder. For a given flow rate, the number 

of stem wakes within the flow volume per unit bed area is directly proportional to the 

stem density, which in turn, can influence the turbulence level of the flow since 

turbulence in vegetated flows is generated at the stem scale (Nepf et al., 1997b). 

However, there will be a greater drag force with increasing stem density, and hence, a 

decrease in the mean velocity (accompanied by an increase in flow depth) 

corresponding to a lower Reynolds number which is associated with less turbulence. 

Nepf et al. (1997b) demonstrated that the relationship between stem density and the 

fraction of the bed area occupied by turbulent wakes is non-linear (Figure 2-11).

Nepf et a l (1997b) conducted a statistical analysis based on the random 

positioning of cylindrical stems with a prescribed projected area of obstruction and 

wake size associated with each stem. The researcher’s model demonstrated that the 

proportion of the plan-view area of the flow domain occupied by stem wakes 

increased linearly with stem density for low stem densities, and the range for which 

this is applicable is dependant on the ratio of turbulent wake area to stem area (the 

wake ratio), and hence, the Reynolds number (Figure 2-11). For higher stem densities, 

where exact values will also depend on the Reynolds number, the wakes overlap, and 

the increase becomes non-linear. This is also evident at low stem densities where the 

wake size is large, as indicated by higher ‘wake ratios’, which are defined as the ratio 

of turbulent wake area to stem area (Figure 2-11).
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Figure 2-11 The relationship between the ‘wake area fraction’, defined as the fraction of the plan 
area occupied by turbulent wakes, and the ‘basal area index’, defined as the fraction of the plan 
area occupied by stems, for a range of ‘wake ratios’, defined as the ratios of turbulent wake area 
to stem area, which is dependant on the stem Reynolds number. The dotted line shows a linear 
relationship for a wake ratio of 10 for illustrative purposes (taken from Nepf et aL, 1997b)

The non-linear relationship between stem density and flow structure was 

shown by N epf (1999), who considered the variation in normalised longitudinal 

velocity, U, (Figure 2-12a), and turbulent kinetic energy, the, (Figure 2 -12b), with the 

array density, ad. Values were normalised using the non-vegetated mean velocity, UQ,

and turbulent kinetic energy, tke0. The results presented by the author are averages of

five measurements distributed laterally across the flume at the longitudinal midpoint 

of the array to correct for heterogeneity of the flow field at the scale o f the cylinders. 

The array density parameter, ad, is a dimensionless parameter that accounts for the 

total quantity o f vegetation, which is the product o f the projected area per unit 

volume, a, and the stem diameter, d.

An increase in ad  caused an increase in hydraulic resistance, and hence, a 

reduction in flow velocity (Figure 2-12a). For relatively low array densities, the 

turbulent kinetic energy increases with ad, but then decreases at higher values (Figure

2-12b). This is due to the contrasting effects of a reduction in turbulent kinetic energy 

associated with the lower velocities, and an increase in turbulent kinetic energy

Wake Ratio
40

,30

2 0
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associated with the presence of the obstruction. The latter effect dominates for sparse 

vegetation ( 1 0 -6 < ad < 1 0 -4).

the
the.

0.1
1 0 *

adad

Figure 2-12 Comparison of [a]: flow velocity and [b]: turbulent kinetic energy under vegetated 
and non-vegetated flow conditions for three ratios of depth to stem diameter (h/d). A subscript of 
(O) denotes the non-vegetated cases (taken from Nepf, 1999)

Li and Shen (1973) considered the effects of various parallel and staggered 

cylinder setups on velocity and drag by the linear superposition of the velocity defect 

due to each cylinder and applying the drag equation (Equation 2.19) with a constant 

drag coefficient value of 1.2. The authors proposed a mathematical model 

incorporating a “wake superposition approach”, whereby the decay of each cylinder 

wake was determined independently of any effects due to nearby cylinder wakes. The 

approach velocity on each cylinder was calculated, from which the associated drag 

forces were determined from the drag equation (Equation 2.19) using the drag 

coefficient for a single cylinder (Figure 2-5). The analysis was conducted for stem
a

densities ranging between 0.16 and 0.43 stems m' , and for stem Reynolds numbers 

between 1 0 0 0 0 0  and 160000 (the analysis was conducted for large cylinders with 152 

mm diameters hence the low stem densities and high stem Reynolds numbers). The 

results demonstrated the significance of cylinder positions on the overall resistance to 

the flow, and that staggered arrangements created the largest flow resistance due to 

less wake sheltering. Based on observations for cylinder pairs, whereby drag 

coefficients decrease as the stem spacings decrease, Nepf (1999) used a numerical
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model to extrapolate these observations to estimate cumulative sheltering effects and 

bulk drag coefficients for groups of cylinders. The author predicted that the bulk drag 

coefficients were equal for both random and staggered arrays at very low stem 

densities (lower than 245 stems m ' 2 for 6.4 mm diameter dowels equating to an ad 

value of up to 0.1 approximately). However, as the stem density increased above this 

density, there was a more rapid decrease in the bulk drag coefficient for the staggered 

arrays, where cylinders were aligned and wake sheltering was more significant 

compared to the random array (see Figure 2-13).

1.2

0.8

1/2
0.4

10-110-2
ad

Figure 2-13 The bulk drag coefficient, CD , as predicted based on a wake interference model for
random (solid line) and staggered (dashed lines) arrays, n is the staggered arrays pitch (ratio of 
longitudinal to lateral row spacing), (taken from Nepf, 1999)

Kiya et al. (1980) demonstrated that an increase in the vorticity (a measure of 

the rotation or circulation of the flow) of a shear flow, synonymous with the shear 

arising due to the presence o f upstream cylinders, delays the onset of vortex shedding 

(the shedding o f vortices downstream of a cylinder). The magnitude o f the vorticity of 

a shear flow increases with stem density. The critical stem Reynolds number when 

vortex shedding commences increases nearly linearly with the magnitude of shear in 

the flow (Figure 2 -14a). The shear parameter, K , was defined as:

U [Equation. 2.20]
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where U is the mean longitudinal velocity, d  is the cylinder diameter and G is the 

lateral gradient of the longitudinal velocities (see Figure 2-14b). Nepf et a l (1997a) 

also demonstrated this in a study on cylinder arrays at stem densities of 280, 430 and 

1700 stems m ’2 (corresponding to basal area indices of 0.008, 0.012 and 0.048 

respectively), where vortex shedding commenced at stem Reynolds numbers of 300, 

330 and 360 respectively. Meanwhile, Nepf et a l (1997b) reported initial vortex 

shedding between stem Reynolds numbers of 150 and 200 for stem densities between 

200 and 2000 stems m"2 (corresponding to basal area indices of 1.2 and 24 

respectively).
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Figure 2-14 [a]: Boundary between vortex shedding and no vortex shedding in shear flow where 
K is the shear parameter (non-dimensional vorticity of the shear flow) Experiments were 
conducted on a horizontal bed (taken from Kiya et al., 1980) [b]: A birds-eye view of a flow 
section characterising the shear parameter, K, which is calculated using the lateral gradient in 
longitudinal velocity, G.

In Section 2.2.4, the transition from a laminar to turbulent wake was discussed 

and related to a decrease in drag coefficient with increasing stem Reynolds number. 

For a single cylinder, the transition was stated to occur around a stem Reynolds 

number of 200. However, as shown by the work of Kiya et a l (1980), the different 

stages of the development of the turbulence structure can be delayed within a group of 

cylinders, whereby the critical Reynolds number value above which vortices are 

produced in the wakes of stems resulting in a turbulent flow is dependant on the stem
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diameters and the stem spacings. Furthermore, in the context o f a natural vegetation 

canopy, Nepf (1999) suggests that the transition may not be as abrupt as an array of 

uniform cylinders due to the variability in stem diameters, and may span over a range 

of Reynolds numbers.

2.3 Natural Vegetated Flows

2.3.1 Longitudinal Variability of Vegetation Canopies

Plant properties (e.g. stem density, stem diameter and canopy height) can vary 

significantly spatially due to natural variability. In vegetated flows, this will directly 

affect the velocity and turbulence structure within, and in the case o f submerged 

canopies, above the vegetation. Therefore, there is a possibility that a limited number 

o f velocity measurements will be unrepresentative o f the ‘typical’ flow structure 

through the vegetation. This uncertainty may be remedied through the concept of 

‘double-averaging’.

In double-averaging, flow parameters such as flow velocities and velocity 

fluctuations, are averaged both in time and space. The concept o f spatially-averaging 

was introduced by Wilson and Shaw (1977) to attempt to account for the suppression 

o f turbulence by vegetation, as well as the extraction o f momentum from the flow. For 

best results, averaging should be conducted over a large section to minimise the 

influence o f the heterogeneity o f the vegetation and background turbulence in the 

flow. The double-averaging approach was later formalised by Raupach and Shaw 

(1982). The concept is thought to be fundamental to the study o f wake production, 

which is defined as the process of converting mean kinetic energy (MKE) and large 

scale turbulent kinetic energy already in the flow into turbulent kinetic energy (TKE) 

at the stem scale (Wilson and Shaw, 1977) (Section 2.2.3).

Instantaneous and time-averaged velocities can be defined as follows:

where u, v and w refer to the instantaneous longitudinal (x-direction), lateral (y- 

direction) and vertical (z-direction) velocity components respectively, u , v and w

(w,v, w )=  (u ,v ,w )+ (u ',v ’,w')

(u ,v ,w )  = (< u >,< v >,< w >) + (u ,v,w )

[Equation 2.21] 

[Equation 2.22]
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are the time-averaged velocities, u' , v' and w' are the fluctuating components of the 

time-averaged velocities, < u > , < v > and < w > are the double-averaged velocities 

in time and space, u , v and w are the spatial fluctuations of the respective time- 

averaged velocities.

Products of the fluctuating components give rise to terms that describe the 

shear stresses in the flow. These include the Reynolds stress, -  p  <u'w' > , and the 

term, - p  < u w > , which has been coined the ‘form-induced’ stress (Gimenez-Curto 

and Comiero Lera, 1996), although it was originally referred to as the ‘dispersive 

stress’ by Wilson and Shaw (1977). The form-induced stress components < u >  and

< w > are a measure of spatial variation in time-averaged velocities and may serve as 

a measure of the spatial variation of the time-avaerged streamwise and vertical 

velocity components. For unidirectional flow, shear stress components acting along 

the x-z plane are the most significant. These will be discussed in Section 2.5.2.

2.3.2 Vertical Variability of Vegetation Canopies

The hydraulic resistance due to vegetation is dependant on plant morphology 

(the form and structure of a plant). In Figure 2-15, flow conditions that occur for 

different types of vegetation are illustrated in the form of schematic diagrams. For 

each situation, typical velocity profiles that may occur are shown. The shapes of the 

profiles reflect the level of physical obstruction at different depths within the flow 

field. For atmospheric flows, a reversal in the wind velocity gradient such as that 

illustrated in Figure 2-15 c and d has been observed in forest canopies (Shaw, 1977) 

resulting in a bulge in the velocity profile lower down in the canopy.
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Figure 2-15. Flow conditions for different types of vegetation: a) submerged conditions, b) 
emergent conditions, c) emergent conditions with canopy and bottom flow, d) submerged 
conditions with canopy and bottom flow (taken from Bolscher et al., 2005)

The vertical variation of vegetation also influences the turbulence structure. In 

a laboratory investigation, Anderson and Charters (1982) introduced both laminar and 

turbulent flows to a canopy of Gelidium nudifrons; a bushy aquatic vegetation species 

that grows on coastal rocks. For an initially laminar flow, turbulent vortices were 

generated downstream of vegetation fronds for flow velocities above a critical value 

(0.13 m s'1 for Gelidium) forming a vortex street, which was observed by releasing a 

tracer upstream of the canopy. The vortices formed at every frond, collectively 

leaving the canopy. Anderson and Charters (1982) proposed that this was the means 

for canopy-induced turbulence. For an initially turbulent flow, drag forces from the 

interaction with the fronds of the plants resulted in the absorption of energy from the 

flow, and hence, turbulence from the incoming flow was removed.

Neumeier (2005) investigated methods for the quantification of plant material 

and its vertical distribution within the canopy. Figure 2-16 shows some of his results. 

The lateral obstruction plots quantify the vegetation density and how it varies with 

elevation within the canopy. When compared to the measured velocities, the effects of 

the vertical distribution of plant material on the flow are evident, whereby with 

increasing elevation, as the vegetation obstruction decreases, the velocities increase.
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There is also a significant increase in velocity above the canopy where there is no 

vegetation obstruction.
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Figure 2-16. Examples of the vertical variation of vegetation obstruction for two different 
locations (H3: Sp. anglica marsh, G3: Salicornia/ Suaeda marsh). On the right hand side of the 
figure are examples of the velocity profiles measured at each location, (taken from Neumeier, 
2005)

2.3.3 Effects of Vegetation Flexibility

Finnigan (1979) proposed that where a vegetation element displays some 

tendency to bend, oscillation will occur when turbulent eddies are released by 

upstream stems at a similar frequency to the relaxation period of the stem causing it to 

resonate. Oscillation may be magnified when a stem vibrates rapidly due to the vortex 

street of an upstream wake (Blevins, 1977). This may contribute to a further 

augmentation of turbulence levels as the oscillating stems effectively absorb kinetic 

energy from the flow, and release it as turbulent kinetic energy half an oscillation 

cycle later (Ackerman and Okubo, 1993). This was observed by Ackerman and 

Okubo (1993) in a Zostera marina canopy (a type of sea grass), whereby large 

turbulent eddies entering the canopy were broken down and their energy was 

absorbed by the vegetation resulting in an oscillation of the vegetation stems and 

smaller scale eddies formed due to ‘mechanical’ turbulence from the vibrating 

vegetation. The production of turbulence is accompanied by energy dissipation,
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whereby turbulent kinetic energy is converted to other energy forms, such as heat 

(Raupach and Thom, 1981).

The flexibility o f natural vegetation may also influence the hydraulic 

roughness of the canopy. This can vary seasonally depending on whether the 

vegetation is dormant or in growth (Kouwen, 1988). For a flexible canopy, such as a 

sea grass or a willow canopy, an increase in flexibility or flow velocity may increase 

the amount of bending in the plants resulting in a reduction in the height of the 

canopy. However, the resulting shorter canopy may become more densely packed 

with vegetation material and in turn increase the degree o f obstruction.

In submerged flows, Kouwen and Li (1980) characterised flow resistance 

based on the relative roughness (the ratio of the deflected height to the flow depth). 

Stephan and Gutknecht (2002) investigated this for different macrophyte species 

(marine plants) and showed the deflected height to be o f the same order o f magnitude 

as the equivalent sand grain roughness, ks . Hence, they conclude that the deflected

height can be used to describe the plant characteristics in place o f ks in Prandtl’s 

logarithmic law (Section 2.1.2) to predict the velocity profile above the canopy.

Kouwen and Unny (1973) linked the stiffness o f a vegetation canopy to the 

hydraulic roughness by introducing the MEIparameter to characterise the vegetation’s 

resistance to deformation under different flow conditions, where M  is the stem 

density, and the product of E, the Young’s modulus of elasticity, and /, the second 

moment o f area is equivalent to the vegetation’s flexural rigidity. The researchers 

created simulated vegetation covers using flexible plastic strips of different 

thicknesses and material to vary the average stiffness o f the canopies, which ranged 

for the flow conditions implemented between ‘erect’, ‘waving’ and ‘prone’ states. In 

Figure 2-17, the Manning’s roughness coefficient, n, is plotted against the product of 

the flow velocity, U, and the hydraulic radius, R. The plot effectively shows the 

relationship between the Manning’s roughness coefficient and the Reynolds number. 

The magnitudes o f n were similar where the ratio of the apparent vegetation height, z", 

to the flow depth, D, was similar. The findings highlight the importance of the 

deflected height of the vegetation in characterising the bed roughness.
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Figure 2-17 Variation of the Manning’s roughness coefficient, n, with the relative height of the 
roughness, z" is the apparent vegetation height, and h is the flow depth (taken from Kouwen and 
Unny, 1973)

Kouwen (1988) suggests collective consideration of the components of MEI as 

a single parameter as they are often difficult to determine individually due to the high 

variability in natural vegetation. The researcher determined MEI estimates in field 

conditions through a ‘drop board’ method, whereby a board of known weight and 

dimensions was allowed to fall onto the vegetation and the amount of compression 

within the vegetation was used to characterise its physical properties. This was 

achieved by comparison with the compressions resulting from dropping the board on 

a number of grass linings of known MEI values, which were determined by the author 

from flow resistance data. The researcher showed there is a strong correlation between 

MEI and the non-compressed vegetation height.

Vegetation canopies are often simulated in laboratory studies using rigid 

uniform cylinders (e.g. Dunn et a l, 1996; Nepf et a l,  1997a; Nepf et a l ,  1997b; 

Fairbanks, 1998; Nepf, 1999 and others). Such models usually aim to depict stiff 

vegetation, which simplifies the complex morphological structure o f plant canopies by 

avoiding the influence of vegetation flexibility on hydraulic resistance. Flexible 

canopies were simulated using flexible elements in a number of studies (e.g. Kouwen 

et a l, 1969; Kouwen and Unny, 1973; Dunn et a l,  1996; Nepf and Vivioni, 2000; 

Ghisalberti and Nepf, 2002 and others). The vertical variability of vegetation 

flexibility was also considered in some studies. Nepf and Vivioni (2000) fitted
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flexible strips above a rigid cylinder base to simulate the more flexible upper region 

of the canopy, whilst Wilson et al. (2003) used flexible rods with and without frond 

attachments to simulate the larger momentum absorbing surface area associated with 

the increase in leaf content at higher elevations. The increase in projected area 

resulted in a greater reduction in flow velocities. The fronds also altered the transfer 

of momentum between flow within the canopy and the surface-flow layer, and thus, 

the flow structure varied significantly over the flow depth between the two scenarios.

2.3.4 Effects of Submergence

The hydraulic roughness of a vegetation cover is strongly dependent on the 

level of submergence o f the vegetation as the velocity and turbulence structure 

through the canopy vary significantly between the emergent and the submerged states, 

and continue to vary with increasing submergence. This was shown by Wu et al. 

(1999) in a study whereby they proposed that the bushes and shrubs found on 

wetlands could be simulated using a horsehair mattress. Although the horsehair 

mattress created a porous medium for the investigation, there is no structural 

relationship between the mattress and the vegetation. In Figure 2 -18a, flow velocities 

and roughness coefficients for various flow depths are presented for four canopy 

heights: 15, 30, 45 and 60 mm, and a bed gradient o f 0.01025 under both emergent 

and submerged conditions. The researchers derived an expression for Manning’s 

roughness coefficient, n, by equating the standard drag equation (Equation 2.19) to the 

Manning’s equation (Equation 2.01) for uniform flow conditions:

for emergent and submerged conditions respectively where D  is the flow depth, CD' 

is the bulk roughness coefficient (Section 2.2.6), a is the projected area per unit 

volume of the canopy, CD is the bulk drag coefficient, g  is the gravitational

[Equation 2.23]

[Equation 2.24]
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acceleration, S0 is the bed gradient and for submerged conditions, T is the vegetation 

height which is characteristic of the canopy roughness..
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Figure 2-18 - (a) Variations of flow velocity and Manning’s roughness coefficient, n, with Flow 
Depth, Z), for various vegetation heights, T, and a bed slope of 0.01025; (b) Four sub regions of 
the n curve (taken from Wu et aL> 1999)

Wu et al. (1999) proposed that the shape of the Manning’s roughness 

coefficient curve can be characterised into four regions according to the extent of 

submergence as shown in Figure 2-18b. For emergent conditions (Region ‘1’), the 

submerged part of the canopy, and hence, the hydraulic resistance increases with flow 

depth causing a reduction in flow velocity. The relative increase in flow depth 

compared to flow velocity results in an apparent decrease in the Manning’s roughness 

coefficient, n.

For submerged conditions, a shear layer arises around the canopy-surface flow 

layer interface (Section 2.5.1). For low submergence levels (below 1.4 and 

corresponding to Region ‘2’), an increase in flow depth results in a relatively low 

increase in velocity. In Region ‘3’, the longitudinal weight component of flow 

exceeds the shear force along the interface, flow velocity increases, and the roughness 

coefficient decreases. As the submergence level increases further (Region ‘4’), the 

roughness coefficient converges towards an asymptotic value specific to each canopy 

(Wu et al., 1999). Kadlec (1990) presented similar trends based on the roughness

coefficient, CD' (Section 2.2.6) for different canopies (Figure 2-19).
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Figure 2-19 The exponential decrease in the vegetation resistance coefficient, C D\  with flow 
depth, D, for a range of vegetation types from various studies (taken from Kadlec, 1990)

2.3.5 A One-Dimensional Drag Coefficient

For vegetated conditions, friction along the bed and the walls o f the flume are 

considered negligible in comparison to the drag force due to the vegetation. 

Therefore, for emergent vegetation, and under uniform flow conditions (Section 

2.1.3), the weight component of the water body acting along the bed slope, FGi must 

equate to the drag force due to the vegetation, FD (Figure 2-20):

Fd = Fg [Equation 2.25]

1 ---- 9—pAp CDUc = pTBLg sin 6 [Equation 2.26]

1 _   ,
—p a C DUc = pg  sin # [Equation 2.27]

—  2  g  sin 0
Cd -  ~ - tt2— [Equation 2.28]a U c
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Figure 2-20 Body force diagram for uniform flow through a vegetation canopy, where FD' is the 

drag force balancing the weight component of the flow through the vegetation layer, Gs is the 

gravitational force component due to the surface flow layer along the flow plane and Fs ' is the 
shear force along the top of the canopy balancing the weight component of the surface flow layer.
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where CD is the bulk drag coefficient, p  is the fluid density, T is the height of the 

emergent vegetation canopy, B and L are the lateral and longitudinal dimensions of 

the flow volume (see Figure 2-20), Uc is the depth-averaged velocity, 6 is the angle

formed between the bed and the horizontal, Ap is the total projected area of

obstruction, and a is the projected area of obstruction per unit volume. It is important 

to note that when applying this formula to groups of cylinders or natural vegetation, 

the projected area of the vegetation refers to the total plant material area and includes 

the ‘hidden’ cylinders or ‘hidden’ plant material behind the cylinder or plant material 

directly in contact with the flow. Fathi-Maghadam and Kouwen (1997) commented on 

the significance of ‘hidden’ vegetation, the area of which plays a significant role in 

momentum absorption. For submerged conditions, a shear force, Fs , arises along the

canopy-surface flow layer interface to balance the gravitational force, Gs , due to the 

surface layer (Wu et al., 1999) (Figure 2-20). The force balance becomes:
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Fd ~ Fq + Fs [Equation 2.29]

[Equation 2.30]

[Equation 2.31]

where hs is the depth o f the surface flow layer (see Figure 2-20).

For regular emergent and submerged cylinder arrays (see Figure 2-21), Stone 

and Shen (2002) demonstrated that the velocity through regions o f constricted flow 

area, Ux, (where the flow velocity is maximum), was more appropriate for 

determination o f vegetation drag than the velocity through sections containing no 

cylinders, U2 (where the flow moves with an apparent vegetation layer velocity). 

Using the maximum flow velocity through the vegetation, U l , resulted in little 

variation in the drag coefficient for a wide range o f stem densities, stem diameters and 

Reynolds numbers. Substitution for the average vegetation layer velocity, U2, yielded 

a wide range o f drag coefficient values for the same range o f flow and canopy 

conditions. Under such circumstances, the depth-averaged velocity, U, in Equations 

2.24 and 2.27 must be defined carefully. However, for high stem densities 

implemented in vegetation studies (e.g. 200 to 2000 stems m ’2 in N epf (1999) and 800 

to 1610 stems m ' in current study), it is difficult to distinguish between constricted 

and non-constricted regions as a number o f stems had to be removed to accommodate 

an Acoustic Doppler Velocimeter (ADV) head. An ADV is an instrument that 

measures flow velocity and turbulence data through the Doppler principle. This is 

discussed in more detail in Section 5.2.7.
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Figure 2-21 The difference between constricted (Ux) and non-constricted ( U2) velocities
through regular or staggered grid arrays (taken from Stone and Shen, 2002)

2.3.6 Roughness Coefficient Variation with Reynolds Number

Based on the CD -  Re curve for a single cylinder (Section 2.2.3), a number of 

researchers demonstrated that roughness coefficients also have distinguishable 

relationships with the Reynolds number for different arrangements of obstacles such 

as arrays of cylinders, plastic strips (e.g. Kouwen et al., 1969), grass beds (e.g. Ree 

and Palmer, 1949), or horsehair mattresses as used by Wu et al. (1999). Ree and 

Palmer (1949) introduced the n-UR design curves whereby the Manning’s roughness 

coefficient was plotted against the product of the flow velocity, U, and the hydraulic 

radius, R. The product parameter (UR) is equivalent to the Reynolds number and the 

plots show the variation in Manning’s roughness coefficient depending on the level of 

turbulence in the flow. The shape and position of each plot was unique to the bed 

roughness, and as such, provided that the bed roughness can be characterised and 

matched to one of the curves, the resistance properties can be predicted for different 

flow conditions. As with the n-UR curves, the CD -  Re curves may reach asymptotic 

values at higher Reynolds numbers (Wu et al., 1999). This can be seen in the standard 

CD -  Re curve for a single cylinder above a stem Reynolds number o f 103 where the 

curve converges towards a drag coefficient value of unity (Section 2.2.3).

Wu et al. (1999) produced plots of CD' - R e T, where CDf is the roughness 

coefficient (Section 2.2.6), and Rer is the canopy height Reynolds number for 

different types of vegetation cover. When using the vegetation height as the 

turbulence length scale, the flow structure can be characterised as laminar for a
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Reynolds number below 500, transitional up to a value o f 12,500, above which the 

flow becomes fully turbulent (Kadlec, 1990). Figure 2-22 shows the plot produced by 

the researchers for emergent canopies o f different types o f grasses and a horsehair 

mattress used by W u et al. (1999) to simulate a dense vegetation cover. The plots, 

which are presented along logarithmic axes, suggest that similar vegetation types 

result in log-plots with similar gradients (or exponents if  non-logarithmic axes are 

used), and a decrease in bed gradient results in a vertical shift in the positions of the 

plots towards the x-axis. Tsihrintzis et al. (2001) produced a similar plot incorporating 

a wider range o f conditions, such as bed gradients, vegetation types and a greater 

Reynolds number range up to 240000, and this is reproduced here in Figure 2-23. 

Both plots are based on the data reported in the studies listed in Table 2-1.

For the range o f Reynolds numbers examined in the studies presented in

Figure 2-22 and Figure 2-23, the decrease in CD' with increasing Re7  was 

exponential. The relationship between the two parameters, as proposed by Wu et al. 

(1999), can be represented as follows:

CD' q c  R er ~* [Equation 2.32]

where Wu et al. (1999) suggested the exponent, k, is specific to the vegetation type, k 

is a useful parameter because it enables the calculation o f the bulk roughness 

coefficient for a given Reynolds number.

For the dense wheat crops studied by Turner and Chanmeesri (1984), the 

values of k ranged between 0.33 and 0.52 for bed gradients between 0.002 and 0.003. 

These were lower in magnitude than the k values for the canopies examined by Chen 

(1975) and Kadlec (1990) at similar Reynolds number ranges (see Table 2-1). For the 

natural turf surface examined by Chen (1975), k was around 1.5 for bed gradients 

between 0.001 and 0.316. For the sedge cover studied by Kadlec (1990), k ranged 

between 1.15 and 1.26 for bed gradients between 0.000001 and 0.001. For the 

horsehair mattress used by Wu et al. (1999), k was around unity for bed gradients 

between 0.00383 and 0.041.
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Table 2-1 Details of studies considered in Figure 2-22 & Figure 2-23.

Study Study
Type

Reynolds Numbers 
Rer(-)

Flow Regime as 
defined by Kadlec 

(1990)

Roughness Surface *(-)

Chen (1976) Lab 100 <Rer< 30000 Laminar, Transitional 
& Turbulent

Natural turf surfaces 1.33 •

Chiew & Tan (1992) Field 400 <Rer< 2000 Laminar & 
Transitional

2 densities of Cow grass (Axonopus 
Compressus). To achieve dense cover, 
vegetation was allowed to grow for one 
month

0.98-1.04

Fathi-Maghadam & Kouwen 
(1997)

Lab 5000 <Rer < 240000 Transitional & 
Turbulent

Pine & cedar tree saplings 0.20 -  0.77

Hall & Freeman (1994) Lab 5000 <Rer < 30000 Transitional & 
Turbulent

Reeds (400 & 800 stems m'2) 1.03-1.16

Kadlec (1990) Field 1 <Rer< 10000 Laminar & 
Transitional

Sedge cover. Bed slopes = 0.001, 0.0001, 
0.00001,0.000001

1.15-1.26

Ree & Palmer (1949) Lab 3000<Rer < 10000 Transitional Natural turf surfaces 1.4

Turner & Chanmeesri (1984) Lab 200<Rer < 10000 Laminar & 
Transitional

Wheat crops. Densities (stems m'2): A = 
2190, B = 1650, D = 1650, E = 1630, G = 
1020, H = 1020. Bed slopes: A = 0.002, B 
= 0.002, D = 0.0025, E = 0.0028, G = 
0.003, H = 0.0027

0.33-0.52

Wu et a l  (1999) Lab 20 < Rer < 3000 Laminar & 
Transitional

Horsehair mattress 1.00
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Figure 2-23 Relationship between the roughness coefficient and the canopy Reynolds number for Emergent Conditions (taken from Tsihrintzis et al., 2001). Data 
from current study included.
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2.3.7 Vertical Variation of the Drag Coefficient

As previously discussed, the bulk drag coefficient, CD , is dependant on 

canopy properties such as the level of wake sheltering (Section 2.2.5), vegetation 

flexibility (Section 2.3.3), submergence level (Section 2.3.4), the quantity of material 

(Section 2.2.6) and its vertical variability (Section 2.3.2).

The vertical variation in the drag force due to the vegetation was investigated 

in more detail by Dunn et a l  (1996), who defined a two-dimensional drag coefficient, 

CD 2d, which can vary in the longitudinal and vertical directions depending on the 

morphology of the vegetation and the canopy structure. For emergent vegetation, it is 

often assumed that the drag coefficient is constant over the height o f the canopy 

presuming the vertical variation in projected area o f obstruction is “relatively 

insignificant” (Lightbody and Nepf, 2006a).

Where there is considerable variation in vertical vegetation structure, or where 

the flow dynamics become more complex for submerged conditions due to the shear 

near the top o f the canopy (Section 2.3.4), Dunn et a l  (1996) derived an expression 

for CD 2D from the x-direction momentum equation. This is rewritten to include terms 

for the total shear stress, r  , and the drag force due to the vegetation:

du du du 1 dP 1 dr  0  1 _ ,
— + « — + w— = -----—  + ——  + gS0 ——Cp 2d au [Equation. 2.33]
ot ox oz p  ox p  oz 2

where t is time, u, v and w are the instantaneous longitudinal, lateral and vertical 

velocity components respectively, x and z  are distances along the longitudinal and 

vertical axis, P  is pressure, r  is the total shear stress, which includes the bed, viscous 

and turbulent shear stresses, g  is the gravitational acceleration, S0 is the bed gradient, 

and a is the projected area per unit volume occupied by the plants.

Substituting the velocity terms in Equation 2.32 to include time-averaged and

fluctuating components (Section 2.3.1) gives rise to a product term ( -  pu'w') known 

as the Reynolds stress (or turbulent stress). This equates to the momentum transfer 

due to turbulence which is the Reynolds stress associated with the x-z plane. Similar 

stresses occur along the x-y and y-z planes, although for steady uniform unidirectional 

flows, these are considered negligible. The derivation presented by Dunn et a l (1996)
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is summarised in Appendix I, and the expression for the two-dimensional 

horizontally-averaged drag coefficient is:

In the formulation developed by Dunn et a l (1996), the drag force was added 

independently to the conservation of momentum equation as a body force. Wilson and 

Shaw (1977) argue that whilst this will achieve a representative momentum balance, 

the equation cannot be used to examine the complex turbulent structures of the flow. 

They argue that to achieve this, the general stress equation, which is derived from the 

conservation of momentum equation, must be examined. The stress equation contains 

higher-order terms that have been associated with various processes including wake 

production, turbulent kinetic energy production and transport by a number of 

researchers (e.g. Wilson and Shaw, 1977; Raupach and Shaw, 1982; Lopez and 

Garcia, 1997; Finnigan, 2000 and others).

2.4 Velocity Profiles through Real Vegetation Canopies

2.4.1 Laboratory Studies of Flow through Spartina Canopies

Due to the difficulties of working in field conditions, a considerable number of 

studies on natural vegetation have been carried out in the laboratory, under controlled 

conditions. This is useful for investigating the complex flow dynamics that are 

influenced by many factors, such as the vegetation height, density, structure, flow 

depth, bed slope and the Reynolds number of the flow. Some of the difficulties 

associated with working under field conditions are discussed briefly in Section 2.4.2.

Pethick et al. (1990) attempted to investigate the flow processes that occur 

within saltmarsh canopies that may be linked to the failure of the vegetation to 

colonise the mudflats adjacent to the marsh. Sp. anglica was planted in vast quantities 

across the Humber estuary between 1940 and 1962. At the time of publication, the 

authors reported that the vegetation was concentrated in two-metre diameter patches 

located in ‘hollows’ in the surrounding mudflat. They installed a 5.5 m length of Sp.

gS« - ^ f u'w )
[Equation 2.34]
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anglica in a laboratory flume (0.3 m wide and 7.5 m long). The vegetation was 

collected during late summer with an average height of 0.45 m and installed at a stem 

density of 400 stems m ' 2 in a regular grid formation. Estuarine water containing 

sediment of known concentration and particle sizes (150 ppm and 10-100 jum 

respectively) was allowed to flow through the vegetation at a depth o f 0.4m and a 

velocity of 0.05 m s'1. The researchers measured a series o f velocity profiles within the 

vegetation.

The flow was characterised by a two-stage velocity profile consisting of a 

lower, and an upper profile, separated by a discontinuity. In the upper profile, shear 

stresses were greater than the critical values required to maintain suspension for 

sediment transport. Critical shear velocity values are dependant on the particle size 

and density because heavier particles require a greater shear stress for them to remain 

suspended. In the lower profile, much lower shear stresses were achieved, and hence, 

settling of sediments occurred more readily. Pethick et a l  (1990) suggest that the total 

amount o f suspended sediments can be related to the height o f the water column (the 

total flow depth), although they argue that the height o f the sub-layer (the lower 

region of the water column where shear stresses are sub-critical) is more important.

Shi et a l  (1995) investigated the effects of Sp. anglica on flow dynamics 

whereby vegetation samples collected were chopped down to 0.3m, equal to the 

average height o f the canopies measured in the Humber estuary. These were used to 

cover a 2.0m length o f a flume at a stem density of 350 stems m '2. The experiments 

were conducted with the vegetation at 20%, 40%, 60%, 80% and 100% o f its original 

height by cutting part of the canopy to investigate the velocity profiles for different 

levels of submergence. The experiments were conducted at area mean flow velocities 

not exceeding 0.051 ms ' 1 corresponding to the mean value measured by the 

researchers in the field and within a range of stem Reynolds numbers between 110 

and 200. Velocity profiles from the experiments, which were measured at a distance 

of 1.3m from the leading edge of the canopy, are presented in Figure 2-24.

At the lower submergence levels (1.160 and 1.442), Shi and his fellow 

workers compared the profile shapes to an ‘S’ shape due to a maxima arising around 

the mid-canopy depth, and minima near the top of the canopy. This feature was not 

observed at submergence levels of 1 . 8 8  or greater highlighting the problems 

associated with the scaling method implemented to achieve higher submergence 

levels. For a submergence level o f 1.16, the vegetation was in its natural form, and for
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1.44, only 20% of the vegetation had been cut from the top of the plants. The ‘S’ 

shaped profiles were attributed to higher levels of obstruction associated with greater 

foliage content in the upper part of the canopy, although they may be associated with 

the non-uniform flow conditions under which the study was conducted. The authors 

concluded that the velocity gradient-reversal is a feature of flow within a saltmarsh 

canopy. This feature was not visible in flow through submerged uniform cylinder 

arrays (e.g. Dunn et al., 1996; Lopez and Garcia, 1997; Fairbanks, 1998; Finnigan, 

2000 and others). A semi-logarithmic profile was also observed above the canopy.
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Figure 2-24 Longitudinal velocity profiles for experiments of flow through submerged Spartina 
anglica conducted by Shi et al (1995) for submergence levels of 1.16, 1.44, 1.89, 2.85 and 5.53. 
The dashed lines indicate the top of the vegetation. Five velocity profiles over five different 
heights of canopy were measured. H  is the submergence level, z is the elevation, T is the canopy 
height, u is the longitudinal velocity and 2/, is the mean longitudinal velocity at the canopy- 
surface flow layer interface. Plots reproduced from Shi et al (1995).

In an extension to their previous study, Shi et al. (1996) considered a greater 

range of stem densities (133, 200 and 350 stems m’2) based on measurements along 

the Humber estuary, and linked the vertical velocity profile and associated shear 

velocity in and above Sp. anglica to the deposition of cohesive suspended sediments. 

Velocity profiles were measured at three different distances from the leading edge of
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the canopy (0 .7 m, 1 .2 m and 1 .7 m) to monitor the development o f the profile shape 

with distance into the vegetated region.

A higher stem density resulted in a greater velocity reduction and a smaller 

bed shear stress, which the authors suggest, may enhance the deposition of cohesive 

suspended sediments. They proposed that the distribution o f suspended sediments was 

also affected by the morphology o f the plants as their stems and leaves can trap or 

retain suspended particles.

The laboratory studies discussed above were conducted under non-uniform 

flow conditions (Section 2.1.3). Although this is more representative of field 

conditions, the influence o f the vegetation on flow dynamics is more difficult to 

evaluate due to the significance o f the hydrostatic pressure term in the conservation of 

momentum equation (Section 2.1.4). Furthermore, variation in velocity profiles with 

distance from the leading edge of the canopy is usually assumed to be solely due to 

the development o f the boundary layer and hence the separate effects of the 

heterogeneity o f the vegetation are difficult to assess.

2.4.2 Field Measurements of Flow through Saltmarsh Canopies

Although laboratory studies are useful for evaluating flow through vegetation 

under controlled conditions, it is difficult to recreate the complexity o f a vegetation 

canopy in the natural environment. For reconstructed laboratory models, plants are 

often cleaned, trimmed and arranged evenly along a flume section. Furthermore, it is 

difficult to examine the vegetation under fully submerged conditions, a condition that 

commonly occurs along coastal wetlands, since laboratory flumes are often too 

shallow to achieve this without cutting down the vegetation and altering its structure. 

Most of the studies presented in this section focus on the collection o f field data to 

improve the understanding o f flow characteristics and mechanisms through saltmarsh 

vegetation.

Field studies on flow through saltmarsh canopies have been very limited due 

to the difficulties associated with working on coastal wetlands. The velocities 

encountered are extremely low, usually between 0 . 5  and 5 . 0  cm s' 1 such that a high 

spatial resolution of readings is necessary (Neumeier and Ciavola, 2004) to detect the 

influence of the vegetation cover on velocity and turbulence characteristics. Also, 

tidal currents are extremely variable, and measurements need to be collected in a short
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space of time, whilst the surrounding vegetation and cohesive substrate must not be 

disturbed during the installation and usage of the measuring equipment. Furthermore, 

most of the data collected relates to sites similar in characteristics in terms of low tidal 

ranges and dominating vegetation species, usually Spartina alterniflora or Juncus 

roemerianus (Leonard and Reed, 2002). UK based studies have focused on a species 

similar to Spartina alterniflora, namely Spartina anglica which is common along 

British coastal saltmarshes (e.g. Neumeier, 2005; Neumeier and Amos, 2004).

Leonard and Luther (1995) measured flow velocities in and above canopies of 

Spartina alterniflora, Juncus roemerianus and Distichlis spicata. The researchers 

used hot-film anemometry probe arrays to monitor velocity characteristics, and 

recorded the highest flow velocities during the flooding and the ebbing of the tide, 

although values were generally below 0 .1  ms-1, and the flow was usually within the 

transitional range. The velocity profile shapes were non-uniform over the height of the 

vegetation, and were closely linked to the morphology of the vegetation (Figure 2-25). 

Distichlis spicata was more consistent in structure over the height of the canopy, 

whereas Juncus roemerianus consists of a denser foliage region that commences 

around 50mm above the bed, which the authors attributed to a minimum velocity 

occurring around 1 0 0  mm above the bed.
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Figure 2-25 Velocity Profiles through (a) a submerged Distichlis spicata canopy, and (b) and 
emergent Juncus roemerianus canopy (reproduced from Leonard & Luther, 1995)

During the slack water (the period between the flood and the ebb), flow 

velocities were considerably lower. Saltmarshes prone to two types of tidal conditions
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were investigated by the authors: semidiurnal, where high tides (as well as low tides) 

occur twice during a tidal day and slack water was defines as periods when velocities 

were below 0.005 m s'1; and diurnal, where only one high tide occurs during a tidal 

day and the minimum recorded velocities were around 0.0075 ms Furthermore, flow 

velocities decreased with distance into the canopy from the edge as the boundary layer 

develops, and the lowest velocities were recorded in the regions with the highest stem 

densities. This was also observed for turbulence intensity, which is indicative of the 

turbulent kinetic energy o f the flow (Figure 2-26).
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Figure 2-26 Reduction of turbulence intensity, normalised by the turbulence intensity at the 
edge of the canopy u \ (a) with increasing distance into a marsh canopy and (b) as a function of 
plant type and density (reproduced from Leonard & Luther, 1995)

Christiansen et al. (2000) considered the relationship between velocity and 

turbulence structure and sediment transport over a Sp. alterniflora saltmarsh. 

Sediment deposition occurred during the rising of a tide, regardless o f magnitude, and 

once settled, no remobilisation of sediments took place due to low bed shear stresses. 

Fine sediments were subject to flocculation due to hydrogen bonding and thus, settled 

at higher rates than if  they had settled individually. This was thought to be facilitated 

by low turbulence levels and flow velocities, which were below 0.1 ms ' 1 (Figure 

2-27). Numerous other studies have been conducted on sediment deposition across 

saltmarshes investigating the vegetation’s ability to stabilise sediments and protect 

against bed erosion as well as the relevance o f site topography, particularly the 

locations of creek networks near which, sediment deposition is greater, and sediment
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resuspension is more common (e.g. French et al., 1995; Leonard and Luther, 1995; 

Boorman et a l,  1989; Brown, 1998).
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Figure 2-27 Velocity profile through a Spartina alterniflora canopy during a rising tide with an 
amplitude of 85 cm (reproduced from Christiansen et al, 2000)

Leonard and Reed (2002) argued that the velocity and turbulence structures 

over saltmarshes could vary considerably for different sites, even when the sites 

experience similar tidal ranges and host similar vegetation species. The researchers 

examined a number of data sets from different saltmarsh sites from the United 

Kingdom and across the United States with various tidal ranges and dominant 

vegetation species, including Spartina alterniflora and Atriplex portuloides canopies 

(Figure 2-28). Velocity profile shapes were non-uniform within the canopy, and 

varied due to differences in vegetation properties and structure. For example, the 

velocity profiles through the Atriplex portuloides canopy were less ‘predictable’ and it 

was suggested that this was due to the vegetation being more vine-like in nature and 

buoyant, thus moving with increasing water depth during each flooding event. 

However, the researchers did not consider quantification of the plant canopies in each 

study to relate the morphology of the canopies to the velocity profiles and the 

canopies were simply characterised by identifying the dominant species.
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Figure 2-28 Longitudinal velocity profiles through (a) a submerged Spartina alterniflora canopy 
and (b) an emergent Atriplex portuloides canopy in (b), ■ and •  represent profiles that were 
collected during separate and consecutive inundation events respectively (Leonard & Reed, 2002)

Neumeier and Ciavola (2004) measured flow velocity profiles at two locations 

over a Spartina maritime saltmarsh in Portugal. The researchers quantified the 

vegetation based on the mass of material per unit ground area to relate the profile 

shapes to the quantity o f the vegetation. Velocity profiles were recorded at various 

stages during a tidal cycle covering the vegetation in both its emergent and submerged 

states (Figure 2-29).

The researchers identified that for emergent conditions (e.g. B l, B2, B3 and 

B4), the velocity profiles were often linear, occasionally increasing in magnitude 

towards the top of the profiles (e.g. B4 and C4). The increase occurs for greater flow 

depths, where the upper part of the canopy, which contains less vegetation material, 

becomes submerged. The velocity profiles for submerged conditions (e.g. B7, B8, B9, 

B10, B ll  and B12) had similar shapes to the emergent cases within the canopy 

region, and increased logarithmically above the vegetation. During the early stages of 

a flooding tide, or near the end of an ebbing tide (e.g. B10), flow velocities in the 

surface flow layer were relatively low, and a logarithmic profile was less obvious. By 

monitoring two locations along the same saltmarsh, the authors identified that there 

was a significant difference in the tidal currents due to the topography o f the site.
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2.4.3 Prediction of Velocity Profiles in Vegetated Flows

Some authors have considered sediment deposition and transport along 

saltmarshes and how they are affected by the vegetation (e.g. Christiansen et al., 

2000; Leonard and Reed, 2002; Neumeier and Ciavola, 2004 and others). However, to 

successfully predict saltmarsh evolution in terms o f  erosion and deposition, it is 

necessary to be able to predict the velocity profile based on the vegetation 

characteristics. From the velocity profiles, the advection and dispersion o f  particulate 

matter can be estimated to predict sediment transport through a saltm arsh environment 

(Lightbody and Nepf, 2006b). This will have implications on the levels o f  sediment 

settling and resuspension near the bed which can be linked to either bed erosion or the 

increase in elevation o f the bed level.

Plate and Quraishi (1965) emphasised the importance o f  accounting for the 

three-dimensionality o f the flow when attempting to predict velocity distributions 

through and above a vegetation canopy. Based on wind-tunnel measurements, the 

authors proposed a two-layer flow approach in which the flows within and above the 

canopy are considered separately. They identified the difficulties associated with 

velocity predictions within the region between the edge o f  the vegetation cover and 

the longitudinal distance into the vegetation canopy where the velocity profiles are 

fully developed, and in the transition region near the top o f  the vegetation where the 

two layers link.

Once the velocity profiles are fully developed, the authors proposed that by 

plotting the normalised elevation within the vegetation (norm alised by the vegetation 

height) against the normalised flow velocity (normalised by the flow velocity at the 

top of the vegetation), a unique curve can be obtained for different types o f  crops. The 

flow above the vegetation can be characterised by PrandtFs logarithmic law (Section 

2.1.2), or a power law synonymous with flow over a rough surface with a zero plane 

displacement equivalent to the deflected height o f  the vegetation.

Kouwen et al. (1969) attempted to characterise the velocity profile through 

and over the vegetation using a formulation based on the Darcy-W eisbach formula 

(Section 2.1.1). The formula, applied to the top o f the deflected vegetation as a 

reference height, was subtracted from the formula applied for any elevation within the 

flow depth. This gave rise to two constants which, based on the data from a number of 

drainage canals in the Netherlands, were dependent on the stiffness o f the vegetation
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and its density respectively. This indicated the significance of vegetation properties on 

influencing velocity structure.

Lightbody and Nepf (2006a) introduced a method for predicting velocity 

profiles within emergent canopies based on the vertical variation in the vegetation 

structure, provided that the velocity and vegetation characteristics, specifically the 

projected area and drag coefficient at a reference elevation are known. In Figure 2-30, 

a velocity profile normalised by the velocity at an elevation of 150 mm from the bed 

is presented alongside the vertical variation for the Spartina alterniflora canopy. The 

drag coefficient was assumed to be constant over the height of the canopy. This is 

considered reasonable for natural canopies because it has been suggested that the drag 

coefficient shows little variation for a wide range of Reynolds numbers and stem 

densities (Nepf, 1999; Stone and Shen, 2002). Neglecting bed friction, the vegetation 

drag is equated to the pressure head and the momentum equation is reduced to:

where CD is the bulk drag coefficient, a is the projected area per unit volume, U is 

the depth-averaged longitudinal velocity, g  is the gravitational acceleration, x is the 

longitudinal distance and t] is the height of the water surface. Pressure head is

independent of elevation, and hence, CDau2 is constant over the flow depth, where u 

is the longitudinal velocity at a given elevation. Therefore:

u cc 5-----  [Equation 2.36]

where CD2D is the two-dimensional drag coefficient (Section 2.3.7). Normalising 

using the momentum balance at a reference elevation (Equation 2.36) gives:

[Equation 2.35]

[Equation 2.37]
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where CD is the drag coefficient at the reference elevation, and d is the projected 

area per unit volume at the reference elevation. Since the drag coefficient is assumed 

constant over the canopy height, CD and CD2D cancel out. The procedure can yield 

good results for emergent canopies, but for submerged conditions, where the 

Reynolds stress becomes significant within the vegetation layer (Section 2.5.3), • 

velocity predictions are likely to be less representative of actual velocities.
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Figure 2-30 (a) the average stem frontal area density and (b) a longitudinal velocity profile for 
flow through a Spartina alterniflora canopy, (taken from Lightbody & Nepf, 2006a)

For submerged conditions, the logarithmic law has been used extensively to 

describe the velocity profile shapes in the surface-flow region above the vegetation 
canopy (Section 2.1.2).

2.5 M ix in g  L a y e rs  in S u b m e rg e d  C a n o p ie s

2.5.1 The Complexity of Flows through Submerged Vegetation

For submerged vegetation, the effects of the roughness sub-layer created due 

to the presence of the canopy extend beyond the top of the canopy and into the free 

surface (Raupach and Thom, 1981). The turbulence structure is complex and requires 

the consideration of various factors, such as the hydrodynamic drag, vortex 

production (magnitude and frequency), viscous dissipation and turbulent kinetic 

energy (Finnigan, 2000). Flow through the vegetation is dominated by large-scale 

coherent turbulent structures forming in the wake region of plant stems and
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decreasing in intensity with distance in the downstream direction (Raupach and 

Thom, 1981). These structures are complex patterns of pressure, velocities and water 

particle movements. The mechanisms of their creation, dissipation and interaction 

with the foliage of a plant canopy are fundamental to the understanding of flow 

through vegetation (Raupach and Thom, 1981; Finnigan, 2000).

A second characteristic of the turbulence structure of a submerged canopy is 

associated with the existence of a ‘skimming’ flow above the canopy. The flow in the 

surface flow layer, which is not obstructed by vegetation, flows at considerably higher 

velocities than the flow in the obstructed vegetation layer. This can give rise to a large 

velocity gradient across the canopy-surface flow layer interface, and high levels of 

Reynolds stress (Section 2.5.2). This is the basis on which a ‘mixing layer’, initially 

introduced by Raupach et a l (1989), forms (Section 2.5.4). The effects of the 

‘skimming’ flow on the turbulence structure are not restricted to the region around the 

canopy-surface flow layer interface, and can protrude into the canopy.

2.5.2 General Concept of Shear Stresses

The total shear stress of a fluid, x , can be defined as follows:

x = xv -  p  < u'w' > - p  <uw > [Equation 2.38]

whereby xv is the viscous stress, and the terms ‘ -  p  < u'w' > ’ and ‘ -  p  <uw  > ’,

which arise from the procedure of double-averaging in space and time (Section 2.3.1), 

correspond to the Reynolds stress and the form-induced stress respectively.

Viscous shear stresses occur when the flow is laminar and the fluid moves 

along individual planes. For flow over a rough surface, a boundary layer forms near 

the bed. Within this layer, flow is strongly affected by the resistance of the surface, 

flow velocities are very low, and the flow is laminar in the sub-layer (Schlichting, 

1955). According to boundary-layer theory, the fluid particles immediately adjacent to 

the surface are assumed stationary, and velocity increases with elevation in the 

boundary layer until the flow is no longer laminar at the outer edge of the layer. The 

edge of the boundary layer may also be characterised as the elevation at which the 

fluid adopts a longitudinal velocity equal to that of the flow. Within the laminar 

boundary layer, as two layers of fluid move parallel to each other, the velocity of the
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upper layer is reduced due to friction between the two layers, and a shear stress arises 

as a result o f this loss o f velocity. The viscous shear stress is defined as:

xv = [Equation 2.39]
dz

* -3 ~2where y. is the dynamic fluid viscosity, the value o f which is 1.00 * 10 Nsm at a 

temperature o f 20°C, and du/ dz  is the longitudinal velocity gradient in the vertical 

plane.

The “form-induced” stress (Section 2.3.1) is associated with a flow passing 

through a heterogeneous medium such as a vegetation canopy. The magnitude o f the 

form-induced stress can therefore be indicative o f  the spatial variability, or the 

heterogeneity o f the canopy.

At higher Reynolds numbers, when the flow is turbulent, Reynolds stresses 

occur due to the random turbulent fluctuations in fluid momentum. According to N epf 

(1999), these are significant at stem Reynolds numbers above 200, although according 

to Kadlec (1990), the flow is not fully turbulent until the stem Reynolds number 

exceeds 1000. However, N epf (1999) acknowledges that in a vegetation canopy, shear 

in the flow due to the presence o f upstream obstructions can delay the onset o f  vortex 

shedding (Sections 2.2.3 and 2.2.6).

The Reynolds stress peaks in magnitude near the top o f  the canopy, where 

there is a strong discontinuity between the high resistance vegetation layer and the 

unobstructed surface flow layer causing a steep velocity gradient across the interface 

(Tsujimoto et al., 1992). N epf and Vivioni (2000) showed that the flow had a 

tendency to seep upwards from the canopy and into the surface flow layer causing a 

decrease in the drag coefficient near the top o f the canopy. The researchers claim that 

the upward transfer o f  momentum results in further amplification o f turbulence levels, 

and a peak in Reynolds stress is observed near the top o f the canopy.

2.5.3 Reynolds Stress Penetration

A number o f studies on submerged vegetated flows have identified a peak in 

Reynolds stress accompanied by an inflection point within the velocity profile at the
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top of the submerged canopy (e.g. Tsujimoto et al., 1992; Ikeda and Kanazawa, 1996; 

Finnigan, 2000; Jarvela, 2005 and others). Furthermore, Finnigan (2000) identified a 

peak in wake production just below this level. Nepf (1999) defined the wake 

production as the work done against the drag force resulting in the conversion of 

mean kinetic energy into turbulent kinetic energy.

The influence of a large longitudinal velocity gradient across the canopy- 

surface flow layer interface is not usually limited to the region around the interface, 

and elevated Reynolds stress values can often be detected at lower elevations within 

the canopy (e.g. Tsujimoto et al., 1992; Ikeda and Kanazawa, 1996; Finnigan, 2000; 

Jarvela, 2005 and others). The depth of the aforementioned ‘influence’ can depend on 

the magnitude of the peak Reynolds stress near the interface and the density of the 

vegetation. The elevated Reynolds stress is absorbed with increasing distance into the 

vegetation, often reaching negligible levels near the bed. Nepf and Vivioni (2000) 

attempted to parameterise the distance required to absorb the Reynolds stress and 

reduce it to such a negligible level, and defined the ‘penetration depth’ as the distance 

from the top of the vegetation layer to the depth within the canopy where the 

Reynolds stress equals 10% of the peak value (Figure 2-31). The authors found the 

penetration depth to increase with submergence depth. Below the ‘penetration depth’, 

vertical momentum exchange was negligible, and the flow can be determined by the 

consideration of the pressure and bed gradients, and the vegetative drag. Above the 

‘penetration depth’, vertical momentum exchange was more significant and the flow 

structure was more difficult to predict.

In studies where uniform cylinders were used to simulate vegetation canopies 

(e.g. Dunn et al., 1996; Fairbanks, 1998), Reynolds stress penetration was very 

significant, often reaching the bed. This is illustrated in Figure 2-32 where some of 

the data from Fairbanks (1998) is presented. This shows the significance of plant 

foliage which is absent in uniform cylinder models towards the Reynolds stress 

penetration characteristics.
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Figure 2-31 A schematic diagram  illustrating [a]: flow through a submerged vegetation canopy 
and the associated [bj: velocity and [c|: Reynolds stress profiles, z  is the distance from the bed, D 
is the flow depth, T is the vegetation height, U is the longitudinal velocity Zo.i is the distance from 
the bed to the elevation where the Reynolds stress, —pu'w', is 10%, — p u 'w lQO/o,
maximum value, — pu'w'
depth is m arked on the Reynolds stress plot by means of a faint dotted line.

max and hpen is the Reynolds stress penetration depth. The penetration

[a] 2 r

z/T  (-) 1

V

° 0 * * 

f  .
0 0.5
-  p  < u (-)

[b] 2

0 0.5
- p  < u (-)

Figure 2-32 Normalised Reynolds stress profiles for experiments conducted by Fairbanks (1998) 

on rigid dowels coated with [a] fine and [b] coarse sand paper. The bold dotted line denotes the 

top of the vegetation, whilst the faint dotted line indicates the depth of shear penetration.

2.5.4 The Mixing Layer Analogy

Instability arises due to a strong inflection point in the longitudinal velocity 

profile along the canopy-surface flow layer interface. This characteristic of canopy
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flows is thought to render the ‘mixing layer’ analogy, initially introduced by Raupach 

et a l (1989), more applicable than treating the canopy region as an extension of the 

boundary layer from the rough bed (Finnigan, 2000). Furthermore, Raupach et al. 

(1996) investigated the turbulence structure within and above a range of natural and 

artificial vegetation canopies. The authors observed mean velocity, Reynolds stress 

and velocity standard deviations to decay towards the bed, and identified the inflexion 

in mean velocity at the top of the canopy. Comparing the top of the canopy to the 

region above the vegetation, there was a decrease in velocity standard deviations and 

an increase in the correlation coefficient (defined as the ratio of the Reynolds stress

per unit mass, u'w' , to the product of the time-averaged RMS velocity fluctuating 

components [«'] and [w'] ). This suggests that the turbulence structure was more 

organized above the canopy. Skewness of the velocity fluctuating components within 

the canopy indicated that the main turbulent movements were those o f ‘sweeps’ (see 

Section 2.5.5 for definition). The aforementioned characteristics identified by 

Raupach et al. (1996) render the ‘mixing layer’ analogy more appropriate for 

characterising the flow through a submerged canopy. The concept of momentum 

transport by means of ‘ejections’ and ‘sweeps’ in rough boundary flows was 

originally introduced by Townsend (1961).

Raupach et al. (1989) defined the ‘mixing layer’ as a shear layer that forms 

along an interface between two adjacent fluid bodies moving with different velocities. 

The layer is dominated by large-scale coherent turbulent structures (Brown and 

Roshko, 1974), and its thickness can be defined as the depth of flow over which the 

longitudinal velocity profile gradient is a maximum. Although this analogy was 

initially introduced for terrestrial vegetation, it is thought to be valid for submerged 

vegetated flows across the canopy-surface flow layer interface (Ghisalberti and Nepf, 

2002).

Finnigan (2000) summarised the stages of the development of the coherent 

structures dominating the mixing layer. First, as the shear due to the inflexion in the 

longitudinal velocity exceeds a threshold, an instability known as the primary Kelvin- 

Helmholtz instability arises from the background turbulence (Figure 2-33a). In the 

second stage, transverse vortices form at a similar wavelength to the initial instability, 

denoted by Xx (Figure 2-33b). In the third stage, ‘kinking’ results in the vortex
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structures, longitudinal instabilities are amplified and coherent structures form in both 

the lateral and longitudinal directions (Figure 2-3 3c).

Figure 2-33 Stages of the development of the mixing layer (taken from Finnigan, 2000)

2.5.5 The Q uadrant Analysis

Lu and Willmarth (1973) introduced the ‘quadrant-hole technique’ to identify 

coherent structures in the flow by associating them with certain patterns in velocity 

data. To identify and assess rotations in the vertical plane, the turbulent fluctuations in 

the vertical and longitudinal components of the velocity profile are plotted as 

illustrated in the schematic diagram presented in Figure 2-34. Points falling in the 

second quadrant (when the turbulent fluctuations of the longitudinal and vertical 

velocity components are u'<0 and 0 < w' respectively) correspond to ejections 

whereby parcels of water are transported upwards and out of the canopy. Points 

falling in the fourth quadrant (0 <u' and w'< 0 ) correspond to sweeps whereby the 

water parcels are swept downwards and into the vegetation layer.

This approach has been used by a number of researchers (e.g. Raupach and 

Thom, 1981; Finnigan, 2000) to characterise the rotating vortices by the direction of
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the longitudinal and vertical turbulent fluctuations. If the vegetation is flexible, a 

travelling wave, which has been termed ‘monami’, has been observed along the top of 

the plants and it has been suggested that this is a reaction to these motions (Fonseca 

and Kenworthy, 1987; Ackerman and Okubo, 1993; Grizzle et a l ,  1996; Ghisalberti 

and Nepf, 2002).

+

0

Figure 2-34 Schematic diagram illustrating the *quadrant-hole technique’

2.5.6 The Turbulent Kinetic Energy Budget

An in-depth consideration of the turbulence characteristics of the flow through 

vegetation canopies is beyond the scope of this study. Turbulence modelling is a 

complicated research area in its own right whereby numerous researchers have 

developed various numerical models to understand and predict such complex 

processes (e.g. Rodi, 1980).

A number of authors considered the mechanisms affecting the conversion of 

mean kinetic energy per unit mass, MKE, and turbulent kinetic energy per unit mass, 

TKE (e.g. Raupach, 1992; Lopez and Garcia, 1997; Finnigan, 2000 and others). 

Raupach et a l (1996) suggest the turbulent kinetic energy budget can be summarised 

as consisting of the following mechanisms:

— ^  +V +W ) = Ps + Pw + Pb + Tt + Tp - e [Equation2.40]
dt 2
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Where Ps is the shear production, Pw is the wake production, Ph is the buoyant 

production (the vertical movement o f the fluid due to differences in temperature 

which affects the fluid density), Tt is the turbulent transport, Tp is the pressure

transport, and e  is the dissipation. Buoyancy effects are negligible where the fluid 

density is consistent i.e. where salinity and temperature are relatively constant. The 

actual terms are derived by applying time and volume averaging (Equation 2.21 and 

Equation 2.22) to the parameters in the conservation o f momentum equation 

(Equation 2.07). The resulting equation for adiabatic flow (where the effects of heat 

transfer are ignored) is adapted from Finnigan (2000) and presented using the notation 

from Section 2.3.1:

 h < w >
dt dz

< u'u' >= d < u > h z z  du g-----------( u w — ) +  —  < w '0 ' >
dz \ d z  Tn

Pb

_ d < w u u / l >  d<u'u'w '>  d < p ' w ' >  d 2<u'u'>/2 /du'du'\
dz dz dz dzdz \ d z  d z ]

Td Tt Tp Tv e

+ waving terms [Equation 2.41 ]

The schematic diagram in Figure 2-35 illustrates how each component varies 

with elevation within and above the canopy for submerged conditions (Finnigan, 

2000).
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Ps : shear production 
Pw: wake production 
Pb: buoyant production 
Tt : turbulent transport 
Tp\ pressure transport 
£ : turbulence dissipation

canopy top

-ve 0 +ve

TKE (kgm'V2)
Figure 2-35 Schematic diagram of the turbulent kinetic energy (TKE) budget for submerged 
vegetated flow. The horizontal dotted line denotes the top of the vegetation layer. T is the canopy 
height and z is the elevation above the bed (reproduced from Finnigan, 2000)

Turbulent transport (Tp) is significant within the canopy layer, and in the 

region immediately above the vegetation, whereby the negative values near the top of 

the canopy indicate a loss, and the positive values over most of the canopy height 

indicate a gain. This suggests that turbulence within the canopy is not locally 

generated (Raupach et a l 1996). Shear production (Ps) peaks near the top of the 

canopy due to the peak in shear stress associated with the inflexion point in the 

velocity profile near the interface. Below the interface, wake production (Pw) is the

dominant production term and accounts for the conversion of mean kinetic energy 

(.MKE) to turbulent kinetic energy (TKE) (Finnigan, 2000). Turbulence generated 

within the canopy is rapidly converted to other energy forms, such as heat and sound 

energy, corresponding to a large dissipation ( s )  (Raupach et a l 1996). At elevations 

considerably above the canopy (Raupach et al. (1996) propose z > 27), there is a 

balance between shear production (Ps) and dissipation ( s ) ,  and the budget reduces to:

■IT

0

P.=e [Equation 2.42]
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For emergent conditions, turbulence production within the stem wakes, (Pw), far 

exceeds that due to bed shear over most o f the flow depth (Nepf et al., 1997a) and the 

budget reduces to:

Pw = s  [Equation 2.43]

2.6 Concluding Remarks

Research conducted on vegetated flows is very broad in nature due to the large 

variation in morphology o f aquatic vegetation and the flow conditions they are 

exposed to. For instance, studies in the literature were conducted on a wide range of 

vegetation covers including bushes (e.g. Righetti and Armanini, 2002), macrophytes 

(e.g. Stephan and Gutknecht, 2002) and flexible grasses. However, in this thesis, the 

theory and studies most relevant to vegetated flows in the context of coastal 

saltmarshes, and particularly Spartina anglica saltmarshes were presented.

One o f the greatest challenges in evaluating the hydraulic resistance of 

vegetated flows is the characterisation of the level of obstruction o f a canopy and 

relating it to the morphology o f the vegetation and its physical properties to link it to 

the resulting velocity and turbulence structures. This can be most conveniently 

achieved by considering the bulk drag coefficient which can be either one or two- 

dimensional depending on whether drag forces and mean velocities are evaluated for 

the canopy layer or for individual point elevations within it respectively. This varies 

from the drag coefficient for a single cylinder in that it accounts for the effects of 

adjacent plants. Such effects are significant within a canopy particularly where the 

‘sheltering effect’ takes place. The impact velocity on the upstream face o f a plant is 

reduced due to the wake o f an upstream plant causing a reduction in the drag force. 

The probability o f ‘wake sheltering’ taking place increases with stem density since the 

stem spacings become smaller. The bulk drag coefficient, and hence, the drag force, 

are strongly affected by the turbulence structure and as such, are a strong function of 

the Reynolds number.

A key focus o f this review was on the influence o f simulated canopies on 

velocity and turbulence structures, although it is suggested that uniform cylinder 

models often lead to oversimplifications of the complex morphology associated with
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vegetation. For instance, within a natural canopy, the velocity and turbulence structure 

usually vary both longitudinally (in the direction of the flow) due to the natural 

variability of the vegetation, and vertically due to the variation in canopy structure 

between the stem and the foliage regions. The material stiffness of the vegetation and 

the submergence level also influence the hydraulic resistance of the canopy.

For submerged canopies, the turbulence structure is considerably more 

complex than for emergent conditions. The turbulence structure for a submerged 

canopy is largely influenced by the formation of a ‘mixing layer’ along the canopy- 

surface flow layer interface due to the mean velocity of the surface flow layer being 

considerably higher than the adjacent canopy layer. Thus, rotational vortices form in 

the vertical plane, an inflexion in the longitudinal velocity profile can be seen, and a 

peak in the Reynolds stress takes place near the canopy-surface flow layer interface 

which results in an elevation of the Reynolds stress within the upper part of the 

canopy.

The theory and literature presented in this review attempt to provide an 

account of the relevant fluid dynamics principles required to understand a study 

investigating the influence of coastal saltmarsh vegetation canopies on velocity and 

turbulence structure, and the drag forces that arise due to the obstruction that they 

create in tidal flows.
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3 Field Monitoring Programme

3.1 Introduction

A field study was conducted at two saltmarsh sites: the Llanelli saltmarsh, 

located along the northern coast of the Loughor estuary, and the Gower saltmarsh, 

located along its southern coastline. The vegetation cover along the first site is 

relatively dense compared to the latter saltmarsh, where grazing occurs by sheep and 

horses. The key vegetation species dominating the saltmarsh was identified as 

Spartina anglica. The majority of the field work was conducted between July 2005 

and June 2006. For each month, the sampling collection conducted across the field 

sites is referred to as a ‘sampling event’.

Due to the importance of the vegetation cover to the nature of this thesis, a 

separate chapter was devoted to the characterising vegetation properties (Chapter 4). 

In this chapter, firstly bed levels and bed gradients were determined from LiDAR 

data. Bed gradients are useful for calculating one-dimensional roughness coefficients 

such as the Manning’s roughness coefficient.

Secondly, water elevations were measured using floating buoys and pressure 

transducers and used to characterise the inundation profile across the saltmarshes 

during high tide events. The information was used to determine submergence levels, 

which are known to influence the hydraulic resistance properties of vegetation. A 

submergence predictor is developed in this chapter that can be used to predict the 

submergence levels for a large area of saltmarsh simultaneously.

The findings presented in this chapter were used later in Chapter 7 to design a 

series of laboratory studies within a range of conditions that is representative of the 

natural saltmarshes monitored.

3.2 Site Description

3.2.1 The Loughor Estuary

Two sites along the Loughor Estuary were monitored; the Llanelli site (N51° 

40’, W4° 8’), and the Gower site (N51° 38’, W4° 11’) (Figure 3-1). The Llanelli site is
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relatively small (approximately 2 km by 0.5 km), compared to the Gower site 

(approximately 6 km by 1.5 km). It is covered by the Wildfowl and Wetlands Trust 

(WWT) National Wetland Centre Wales, and is home to numerous wildfowl and 

migrating bird populations. Consequently, the site is strictly managed and experiences 

little human presence, thus providing a convenient environment for monitoring local 

vegetation species in an undisturbed environment. The key vegetation species 

identified along the Llanelli saltmarsh was Spartina anglica. Along the Gower site, 

sheep and horses heavily grazed the vegetation. The vegetation cover was 

considerably shorter than the non-grazed vegetation along the Llanelli site throughout 

the year.

Burry Port •

Llanelli site
Loughor Estuary

Gower site
5 km

100

Figure 3-1 [aj: Location of the study area on the map of Wales. [b |: The study sites highlighted 
along the Loughor Estuary. Plot produced from data collected by O rdinance Survey.

3.2.2 Remote Sensing Data for the Loughor Estuary

3.2.2.1 Aerial Photographs

A number of black and white aerial photographs taken of the Llanelli and 

Gower saltmarsh sites over different periods are available from the Air Photograph 

Unit of the National Assembly for Wales. Photographs are available from 1946, 1947, 

1978 and 1994, and Landsat images acquired by satellite were available for 1990 and 

2000. These were analysed by Williams (2004) visually to determine changes in the 

land occupied by saltmarsh vegetation, and the ground coverage was determined 

through a Geographical Information System package (GIS). Considering the
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photographs were in black and white, the accuracy of this approach is uncertain. The 

areas of saltmarsh at the Llanelli site between 1946 and 2000 as determined by 

Williams (2004) are presented in Table 3-1. The aerial photographs from 1947, 1978 

and 1994 are presented in Figure 3-2, along with the outlines of the Spartina anglica 

coverage according to Williams (2004). The most significant increase in land 

occupied by vegetation was observed between 1947 and 1978 compared to other 

consecutive photographs. The area of saltmarsh land also increased on the North 

Gower site despite an average sea level rise of 1.7 mm yr'1 + 0.3 according to tide 

gauge data between 1950 and 2000 (Church and White, 2006). However, by 

considering the period between each photograph, there is clearly a decrease in the 

level of increase in area up to 1978 (see Table 3-1). This is followed by a continuous 

decrease in saltmarsh area beyond 1978. This may be due to ‘coastal squeeze’ (see 

Section 1.3.4).

Table 3-1 Surface area of saltmarsh at the Llanelli site between 1946 and 2000 (taken from 
Williams, 2004)__________________________________________________________________

Year Area of saltmarsh (km ) Increase in Area per year
1946 2.21
1947 2.31 10.0%
1978 3.29 3.2%
1990 3.17 -1.0%
1994 3.16 -0.2%
2000 3.10 -1.0%

Williams (2004) also considered a section of saltmarsh along the southern 

bank of the Loughor estuary; however, this did not coincide with the Gower site 

monitored here. However, for the site considered by Williams (2004), following a 

dramatic increase in saltmarsh ground area between 1947 and 1978, there was a slight 

decrease in the ground area covered by saltmarsh in the images recorded during the 

following years. The author attributed the changes in saltmarsh areas along the two 

sites to deposition and erosion. The field survey conducted here revealed high levels 

of grazing along the Gower site, whereby a gradual decrease in saltmarsh area was 

observed from 1978 onwards which was greater than the decrease in area observed for 

the Llanelli site where grazing was negligible. Saltmarshes are known to have the 

ability to maintain their position within the intertidal zone through promoting 

sediment deposition and stabilising settled sediments (e.g. Shi et al., 1995; Shi et al., 

1996 and others).
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% Loughor Estuary

fjS Field Centre ®f lt

Loughor Estuary
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Loughor Estuary

N

1 km t
Figure 3-2 A erial pho tog raphs of the Llanelli saltm arsh from  1947, 1978 and 1994. The land 
covered by sa ltm arsh  vegetation is highlighted by the black outline (from  W illiam s, 2004)
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3.22.2 LiDAR Data Set

Light Detection and Ranging (LiDAR) data was obtained for the Loughor 

Estuary from the Environment Agency (Figure 3-3). LiDAR is an airborne optical 

remote sensing technology in which the scatter in reflected laser signals is analysed to 

determine the distance from an aircraft to the ground. The technology involves the 

determination of the distances to objects based on the delay between transmission of 

laser pulses, and the detection of the reflected signals. For the Llanelli and Gower 

sites, LiDAR data was collected on the 30th January 2003, at a 2-metre grid resolution. 

The Environment Agency quotes all data collected using this procedure before 

September 2004 at an accuracy of +/- 0.25m in the vertical direction. The results of 

the ground-truthing survey conducted by the agency shows that the data met this 

accuracy (Figure 3-4).

#  Field Centre elevation (m)

Loughor Estuary

Loughor Estuary

Figure 3-3 LiDAR data presented according to elevation above ordinance datum  (AOD) through 
a GIS package (ArcGIS) for [a]: Llanelli site; [bj: Gower site. Plots produced from LIDAR data 
collected by the Environment Agency.
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5.0 7.06.0

7.0

z0 AOD (m) 
(from survey)

6.0

7.05.0 6.0
z0 AOD (m) (from LIDAR data) z0 AOD (m) (from LIDAR data)

Figure 3-4 G round tru th ing  verification of LiDAR data for [a]: Llanelli site; |b ]: G ow er site. The 
graph is reproduced from  a plot provided by the Environm ent Agency to accom pany the filtered 
data. The solid line denoted LIDAR surface heights equal to GPS ground survey heights, and the 
dotted lines denote a range of + 0.25m of the GPS ground survey height. (Supplied by the 
Environm ent Agency).

The LiDAR data was provided in two main formats at a 2 m grid resolution. In 

the first format (Digital Surface Model, or elevation model), the elevations of the 

cover, consisting of vegetation, buildings or bare ground, were calculated based on 

their distances from the plane carrying the remote sensing instrumentation, and the 

elevations quoted above ordinance datum (AOD). Secondly, data from the Digital 

Surface Model was filtered to strip away all objects, particularly buildings and 

vegetation, to determine the elevation of the ground level (Digital Terrain Model, or 

bare-earth model). Details of the algorithm used to process the data was kept 

confidential and no information could be obtained from the Environment Agency. 

Although the algorithm was successful in isolating buildings and the dense vegetation 

species identified as Halimione portulacoides which bordered saltmarsh creeks, the 

wide stretches o f Spartina anglica covers were not captured by the processing 

algorithm.

The mean bed elevations above ordinance datum (AOD) were 2.46m + 0.1 lm 

for the Llanelli site, and 1.72m + 0.11m for the Gower site. The distributions of bed 

levels across the two sites are presented in Figure 3-5a for the Llanelli site and in 

Figure 3-5b for the Gower site.
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Figure 3-5 Bed elevation distributions for the [a]: Llanelli site; [b]: Gower site, based on the 
LiDAR data

3.2.2.3 Bed Gradients Calculated from LiDAR Data

Bed gradients were calculated across the monitored sites based on the LiDAR 

data. A series of transects were investigated along the Llanelli and Gower saltmarshes 

to determine the range of bed gradients encountered. A range of directions were 

evaluated, e.g. North-South and across the width of the site as illustrated in Figure 

3-6. Also, a range of transect lengths were investigated to compare the local and the 

global bed gradients, indicating little dependency of the bed gradient on the transect 

size.

The field work monitoring for this study was conducted along five transects: 

two along the Llanelli saltmarsh (transects A and B), and two along the Gower 

saltmarsh (transects D, E and F). In the region of transect A, the steepest bed gradients 

were observed in the north to south direction. These were in the order of 1:100 to 

1:300 (Figure 3-6). Similar values were observed perpendicular to the coastline (i.e. in 

the northeast to southwest direction), although gradients down to 1:1000 were also 

common. The shallowest gradients were observed along the width o f the site (in the 

east to west direction), particularly in locations further inland with values significantly 

less than 1:1000.

The analysis was repeated along the Gower site. Bed gradients in the region 

around transect D are presented in Figure 3-7. The steepest gradients observed were in 

the southwest to northeast direction, and these ranged between 1:300 and 1:600. 

Shallower gradients were observed in the south to north, and in the east to west
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directions, with values ranging between 1:500 and 1:1300, whilst in the northwest to 

southeast direction, gradients were significantly shallower with values less than 

1:2500.

Transect A 
Coastline

1:350000_ ]  

1:5000 I
1:10000

Loughor Estuary

Figure 3-6 Bed gradients around transect A as calculated from LiDAR data

1:10000

1:54000

Transect D

fe -

:500

1 km<--------------------------------------
Figure 3-7 Bed gradients around transect D as calculated from LiDAR data
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3.2.3 Monitoring Locations

Five transects were monitored during the field study: two along the Llanelli 

saltmarsh (transects A and B), and two along the Gower saltmarsh (transects D, E and 

F). Each transect consisted of a number of sampling locations, and each location 

consisted of four or five sampling points within close proximity to each other. The 

sampling locations were selected along a North-South direction which was usually 

equivalent to the maximum gradient as shown by the LiDAR data presented in 

Section 3.2.2.3. Where data was collected to characterise the vegetation, four 

sampling points; ‘a’, ‘b’, ‘c’, and ‘d’, were arranged in a square formation with 5.0m 

edges at each location, and each point distinguished by a coloured marker. This is 

illustrated in the schematic diagram of Transect B presented in Figure 3-8. In some 

cases, additional sampling was conducted at a fifth sampling point; ‘e’, although this 

was not marked, and varied in position with each sampling event as discussed later. 

Results from the characterisation of the vegetation are presented in Chapter 4. Despite 

the smaller size of the Llanelli site, two transects were monitored to determine the 

consistency of the vegetation cover across the site, namely, transects A and B (Figure 

3-9). Transects D, E and F were monitored along the Gower site (Figure 3-10). The 

first point along each transect (A1,B1,D1,E1,F1) were the most inland whilst points 

A6, B7, D4, E4 and F6 were the closest to the estuary.

B1V

B l‘b’ 0  #  B i d'
•  B 1V

B1V

B3V
•

B3‘b? 0 0 B3‘d’
#  B3V

B3V

B4V

0  B4 V  
B4 V  0  0 B4'd’

0
B4V

Figure 3-8 A schematic diagram illustrating Transect B, and the four sampling locations where 
Sp. anglica was monitored: B l, B3 and B4. Each sampling location consisted of four main points 
labelled ‘a ’, ‘b’, ‘c’ and ‘d ’ as well as a fifth sampling point, ‘e’ which was chosen at random 
during each sampling event and at each sampling location.
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The dominant species o f vegetation identified at the Llanelli site was Spartina 

anglica (common cordgrass). This is consistent with the findings o f the Salt Marsh 

Survey o f Great Britain County Report for West Glamorgan and Llanelli (Burd, 

1989), although according to the report, a number o f other species were identified 

along the Eastern, Western and Northern peripherals o f the site. These locations fell 

outside the region where the fieldwork was conducted, the focus o f which was to 

characterise the most significant species encountered on the sites. A second species, 

namely Salicornia, was identified during the spring in areas dominated by Spartina 

anglica, although in relation to the high concentration o f Sp. anglica in these regions, 

Salicornia was relatively insignificant. A third species was identified as Halimione 

(sea purslane), however, this was restricted to the banks o f creeks.

Even at the local scale, variability in vegetation, to some extent, was likely. 

Hence, Sp. anglica sampling was repeated at sampling points ‘a’, ‘b ’, ‘c ’ and ‘d’ for 

each monitoring location to attempt to capture the level o f heterogeneity in the 

vegetation. Following sampling at a fifth position, namely ‘e’, the vegetation sampled 

was harvested and the sample quantified in the laboratory according to the weight of 

plant material (Section 3.3). The exact location o f point ‘e ’ at each sampling location 

varied slightly during each sampling event, but was chosen within the vicinity of 

points ‘a ’, ‘b ’, ‘c ’ and ‘d ’. Samples were measured at the four points, and sample ‘e’ 

harvested during each sampling event, which was approximately every month over 

the duration o f the 12-month field survey. The sampling and analysis procedures 

applied for examining point ‘e’ were more demanding in terms o f laboratory 

resources, namely oven space and containers to hold the vegetation, and only one 

sample could be analysed for each sampling location.
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Field Centre

500m

Figure 3-9 Transects A and B on the Llanelli site. Plot produced from LIDAR data collected by 
the Environment Agency.

Numerous species were identified along transects D, E and F on the Gower 

site. According to the Salt Marsh Survey of Great Britain County Report for West 

Glamorgan and Llanelli (Burd, 1989), the most dominant of these include Puccinellia 

(common saltmarsh grass), Salicornia (glasswort), Sp. anglica (common cordgrass), 

Festuca (blue fescue), Plantago (plantains) and Limonium Armenia (sea lavender). 

The vegetation species grow in various combinations and quantities across the site 

(Burd, 1989). At some locations, particularly where the vegetation was not easily 

accessible to grazing animals, such as sampling point F7, Sp. Anglica was identified. 

However, most of the saltmarsh land covering the North coast of the Gower was very 

heavily grazed, and identifying the species of plants was difficult. Vegetation was too 

short to harvest, and a sampling point ‘e’ was not designated as described earlier for 

the Llanelli site. Only sampling points ‘a’, ‘b’, ‘c’ and ‘d’ were designated to each 

sampling location along transects D, E and F.
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500m

Figure 3-10 T ransects D, E and F on the Gower site. Plot produced from LIDAR data  collected 
by the E nvironm ent Agency.

3.3 Tidal Inundation of Spartina anglica Saltmarshes

3.3.1 The Significance of Vegetation Submergence

Submergence is defined as the ratio of flow depth to vegetation height. The 

hydraulic resistance of a vegetation cover is strongly dependant on the level of 

submergence (see Section 2.3.4). The aim of the work presented in this section is to 

determine the range of submergence levels that may be encountered along a natural 

saltmarsh. Based on these findings, the submergence levels implemented in a 

laboratory investigation designed to investigate the effects of Sp. anglica canopies on 

hydrodynamics (see Chapter 7) will be selected to fall within this range.

3.3.2 C h art D atum  and O rdinance Datum

Two different datum levels are used for referencing water depths during a tidal 

cycle and ground elevations known as Chart Datum and Ordinance Datum 

respectively (Figure 3-11). Tidal levels are quoted relative to chart datum (CD); 

approximately the lowest water level due to astronomical effects, particularly the 

positions of the sun and the moon relative to the earth, but excluding meteorological 

effects, such as wind and rain. Chart datum varies for different locations, and is
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assigned to avoid negative values, and tide levels are quoted above chart datum 

(ACD).

Ordinance datum, OD, is a vertical datum used to derive altitudes on maps, 

and is commonly equivalent to the mean sea level. In Great Britain, ordinance datum 

is defined as the mean sea level at Newlyn in Cornwall, and elevations are quoted 

above ordinance datum (AOD). The difference between ordinance datum and chart 

datum varies for different locations, and is equal to 5.00m at Mumbles, near Swansea 

(Figure 3-12).

water surface

AODACD

Ordinance Datum (OD)

Chart Datum (CD)

Figure 3-11 Schematic diagram of water depth for a typical tidal event, quoted above ordinance 
datum, Daod , and above chart datum, Dacd

#  Llanelli

Swansea

The Gower

Mumbles

Loughor Estuary

Swansea Bay

10km

Figure 3-12 Map showing the locations of the Loughor Estuary in relation to Swansea and 
Mumbles. Map produced from Ordinance Survey data.
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3.3.3 Tides and Tidal Cycles

Predictions o f high tide magnitudes are presented for numerous towns and 

cities located along the British coastline in the Admiralty tide tables. The closest 

location to the study sites where predictions are available is the city o f Swansea (see 

Figure 3-12). Historic sea level data is also available from the British Oceanographic 

Data Centre and are logged at most major ports around the country. The nearest port 

to the monitored sites where data is available is Mumbles, which is approximately 5.7 

km from the city o f Swansea (see Figure 3-12). The data for the monitoring period is 

presented in Figure 3-13. In Figure 3-13a, water levels are presented for the month of 

July 2005 to illustrate variation in high tide and low tide magnitudes. Two Spring 

tides occur, approximately around the 8th and the 23rd o f the month, and between
tHthem, a Neap tide occurs around the 15 . The two Spring tides differ in magnitude as 

the second one, which occurred around the 23rd is considerably greater (9.987m 

compared to 8.704m on the 8th). Similarly, when the annual tidal cycle is considered 

(Figure 3-13b), water levels vary from one month to the next, with the largest high 

tide over the sampling period occurring in late March 2006 (known as the vernal 

equinox) with a measured magnitude o f 10.628 m. The Spring tide magnitudes peak 

again in late summer around September (known as the autumnal equinox), where in 

2005, water levels reached 10.261m above sea level.

The frequency o f sea levels during high tide during the monitoring period is 

summarised in Figure 3-14. The mean sea water level during high tide was 8.48 m 

Above Chart Datum (ACD), whilst the maximum sea water level was 10.26 m ACD. 

The most common range o f sea water levels was between 8.50 m to 9.0 m whereby 

144 high tide magnitudes fell within this bracket. This is equivalent to 19.7% of the 

high tides during the monitoring period (between July 2005 and June 2006).
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Figure 3-13 Sea water levels at Mumbles (a) for July 2005 and (b) for the monitoring period
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Figure 3-14 High W ater Levels (HWL) during high tide at Mumbles (Above C hart Datum). 
Levels are divided into classes with a range of 0.5 m and the frequency per annum  of each class is 
shown.
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3.3.4 W ater Level M easurem ents

3.3.4.1 A pparatus used for W ater Level M easurem ents

Variation in water depth during a tidal cycle will determine the extent of 

vegetation submergence, which in turn will affect the hydraulic resistance of the 

vegetation cover (Section 2.3.4). The flow depth is dependent on the water level in 

relation to the ground elevation at any given point. Two types of water level 

monitoring were conducted: maximum water depth measurements using floating 

buoys (Figure 3-15b), and pressure transducer logs (Figure 3-15a). The floating 

buoys, discussed in Section 3.3.4.2, offered a means of measuring the maximum water 

depths at numerous locations across the field sites during a single tidal event. The 

pressure transducer logs, discussed in Section 3.3.4.3, provided a means of continuous 

water level monitoring over the duration of tidal events at two different locations. The 

results were used to predict the submergence profile for an area of saltmarsh which 

can have a range of bed elevations and vegetation canopy heights resulting in a wide 

range of water depths and inundation periods across the site during a single tidal 

cycle.

Vented Cable

Marker

Transducer 
Buoy —

Figure 3-15 [a|: Pressure transducer with a vented cable; |b |:  Floating buoy and water level 
marker.
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3.3.4.2 Maximum W ater Levels

Floating buoys were used to measure the maximum water levels across the 

monitored transects (Figure 3-16 and Figure 3-17), for a number of tidal events. 

Sampling points at the north and south ends of each transect were selected for water 

level monitoring as well as a third sampling point near the midpoint of the transect. 

The buoys were deployed at the measurement points and were left to rise and fall with 

the tide along a guiding pole, whilst forcing a foam marker to the maximum level 

attained (Figure 3-15b).

250 m
Loughor Estuary

Figure 3-16 Locations of maximum water level measurements using floating buoys along 
transects A and B. Plot produced from Environment Agency LiDAR data.

•  WWT Centre

Figure 3-17 Locations of maximum water level measurements using floating buoys along 
transects D, E and F. Plot produced from Environment Agency LiDAR data.
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The maximum height was measured and recorded during the following visit, 

and the marker was reset to the starting position. Measurements are presented for 

transects ‘A’ and ‘B’ in Figure 3-18 and for transects ‘D’, ‘E’ and ‘F* in Figure 3-19. 

For transects ‘A’ and ‘B’ where the measurements were more abundant, the 

relationships between the flow depths and high tide magnitudes predicted at Swansea 

in the Admiralty tide tables for each sampling point were linear. For transects ‘D’, ‘E’ 

and ‘F’, the data was more limited, and relationships were less apparent due to scatter 

in the data. This is likely due to meteorological factors which may affect the water 

depth along the transects compared to the high tide magnitudes at Swansea near the 

field sites (Section 3.3.1). Flow depths across transects varied greatly.

3
Al
A3
A6

2

l

o
3 4 6

□ B1 
m B4 
■ B7

3 4 5 6
h (  nfl h ( m )

Figure 3-18 The relationship between the predicted m agnitude of a high tide AOD, It (from 
easytide.com), and the flow depth, D, at the locations of w ater level monitoring points along 
transects A and B
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Figure 3-19 The relationship between the magnitude of a high tide AOD, h (from easytide.com), 
and the flow depth, D, at the locations of water level monitoring points along transects D, E and 
F

3.3.4.3 Continuous W ater Level Monitoring

Two pressure transducers were used to log water depths at different sampling 

points simultaneously. Level TROLL 500 instruments (manufactured and supplied by 

In Situ Inc.) were used. The accuracy of the instruments is quoted as +/-0.05% at 

15°C. Water depths of up to 1.5 m were measured for some tidal events, although 

larger tidal events were avoided because the vented cables on the pressure transducers 

(see Figure 3-15a) must remain above the water surface.

The continuous water level monitoring was conducted for 36 high tide events 

between 01/04/2007 and 20/05/2007. The monitoring was conducted along the 

Llanelli saltmarsh close to Transect A, and was labelled Transect Z (Figure 3-20). 

Although transect Z is at a different locality to transects A and B, the location is
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representative of the Llanelli saltmarsh. Also, the water monitoring was conducted to 

investigate the inundation profile around creeks, and the vicinity o f transect Z is more 

suitable for this due to the presence of a clear creek network (see Figure 3-20).One 

pressure transducer was installed at location Z l, whilst the second was alternated 

between Z2, Z3 and Z4. Elevations of the monitoring locations were determined from 

LiDAR data (see Section 3.2.2.2). Examples of the typical pairs o f water level logs 

recorded using the pressure transducers are presented in Figure 3-21 for locations Zl 

and Z2, Figure 3-22 for locations Zl and Z3 and in Figure 3-23 for locations Zl and 

Z4.

Transect A -

250 m

N

!

Loughor Estuary
Figure 3-20 Locations where continuous w ater level m onitoring was conducted. Plot produced 
from Environment Agency LiDAR data.
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- 2.0 1.0 0.0 1.0

Z2

- 2.0 1.0 0.0 2.01.0

t Airs') t fhrs)
Figure 3-21 Sim ultaneous w ater level measurements at locations Z l and Z2 during 03/05/2007 
(High Tide at 19:59). Time is in hours from high tide and the depth is in m etres Above Ordinance 
Datum. Dotted lines show the bed level for each sampling location.
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Figure 3-22 Simultaneous water level measurements at locations Zl and Z3 during 17/05/2007 
(High Tide at 07:16). Time is in hours from high tide and the depth is in metres Above Ordinance 
Datum. Dotted lines show the bed level for each sampling location.
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Figure 3-23 Simultaneous water level measurements at locations Zl and Z2 during 04/04/2007 
(High Tide at 08:15). Time is in hours from high tide and the depth is in metres Above Ordinance 
Datum. Dotted lines show the bed level for each sampling location.

3.3.4.4 Characterising the Inundation Profile

Each inundation cycle taking place over a high tide event conformed to a 

parabolic profile which was described by means of a symmetrical second-order 

polynomial trend line centred about the y  axis, and intersecting it at a value of unity. 

The equation of the trend line can be described as follows:
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D
A

= A
 ̂t tHT  ̂

2t'
+ 1 [Equation 4.01]

where D  is the water depth at time t, and the maximum water depth, Z)max, occurs at a 

time of tHT, 2f  is the duration o f tidal inundation, and A is the trend line coefficient.

To derive general equations applicable to different tide magnitudes, the water 

depth was normalised by the maximum value, and the time parameter by the tidal 

event duration i.e. the duration over which the water level was greater than the ground 

level for a given location. In Figure 3-24, an inundation profile from sampling point 

Zl is presented as an example.

D
A

(-)

1.0

0.5

0.0
-0.5 0 0.5

t - t HT

2t' (-)

+ + + + + data points 

trend line

D
A

= -3 .9
t - t HT

V t'
+ 1

R 2 =0.9977

Figure 3-24 Temporal variation of flow depth elevation at monitoring point Zl on 01/04/2007 
where high tide occurred at 19:08. D  is the flow depth, Dmax is the maximum flow depth which

occurs at tHT, the time of high tide, t is the time during a tidal event, t ’ is the total duration of

the tidal event, and R 2 is the coefficient of determination.

The procedure for describing the profile shapes was repeated for each 

sampling point individually by investigating the trend lines for all events during 

which pressure logs were collected. There was little variation in the value of the 

constant, A, between the different sampling points, as presented in Table 3-2.
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Table 3-2 Summary of Inundation Profile Shape trend line statistics

A

Zl -3.9 + 4.4%
Z2 -4.1 + 1.7%
Z3 -4.5 + 5.0%
Z4 .4.2 + 4.4%

It was mentioned earlier that one pressure transducer was maintained at 

location Zl whilst a second transducer was rotated between the remaining locations 

and inundation profiles were therefore available for location Zl for all high tide 

events monitored. Hence, the flow depth at locations Z2, Z3 and Z4 could be equated 

in terms of the flow depth at Zl as shown in Figure 3-25. Meanwhile, the maximum 

flow depth at location Zl could be determined based on the available High Water 

Level measurements recorded by the British Oceanographic and Demographic Centre 

at Mumbles (Figure 3-26).

The high tide flow depths, Dm , were determined for different tidal events, as 

presented in Figure 3-26, and related to the inundation period, t\ for each sampling 

point (Figure 3-27). The flow depth increased at any given location increased 

according to the following relationship:

t'= 2.5 D°h* [Equation 4.02]

2

D {m)

1

0
0 1 2 0 1 2 X 20

Dz, (m) DZ] (m) Dzl (m)
Figure 3-25 Water elevations (D) calculated from pressure logs for pairs of sampling points along 
transect Z. The relationships presented are for predicting the water elevation at locations Z2, Z3 
and Z4 from the water elevation at location Zl.
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Figure 3-26 Flow depth for High Water Levels at Zl ( D zx ) in relation to the levels recorded at
Mumbles as obtained from the British Oceanographic and Demographic Centre ( D MV )•
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Figure 3-27 the relationship between the duration of inundation if) and the maximum depth 
attained ( DHT ) during the cycle for each sampling point
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In Figure 3-28, the flow depths across transect Z for a high tide of 9.5m 

magnitude at Swansea are illustrated as an example.

1.5

Z4
1.0

Z3D (  m)
Z2

0.5

0.0
■2 -1 0 1 2

t - t HT (hrs)

Figure 3-28 Inundation model for a tidal event with a high tide of magnitude 4.5m AOD

3.3.4.5 Predicted Vegetation Submergence Profiles

The variation in vegetation submergence level over the duration of a high tide 

event could be predicted from the bed elevation, inundation profile and canopy height. 

Vegetation canopy heights were quantified and the results are presented in the 

following chapter in Section 4.3.3. For demonstrating the relationship, an average 

Spartina anglica canopy height of 308 mm is assumed based on the mean 90th 

percentile canopy height from the data. A bed elevation of 2.455m was imposed based 

on the mean bed elevation for the Llanelli saltmarsh as determined from the LiDAR 

data in Section 3.2.2.2. Based on the 12-month tide data presented in Section 3.3.3, 

the model was applied for the mean high tide level of 8.48 m Above Chart Datum 

(equivalent to 3.48 m Above Ordinance Datum) and the maximum high tide level of 

10.26 m ACD (equivalent to 5.26 m AOD). The mean high tide and maximum high 

tide result in the profiles presented in Figure 3-29a and Figure 3-29b respectively. For 

a mean high tide event, where the sea level is 3.48 m AOD during high tide, tidal 

inundation of the ground at the mean bed elevation level is estimated to last 1.8 hours 

during the tidal event and the maximum submergence level during high tide is
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estimated to be 1.9. For the maximum tide magnitude o f 5.26 m AOD, tidal 

inundation is estimated to last 3.9 hours and the maximum submergence level is 

estimated to be 5.4.
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Figure 3-29 Submergence model results for a bed elevation of 2.455 m, a canopy height of 0.308 
m and [a]: a mean high tide of 3.48 m AOD; [b]: a maximum high tide of 5.26 m AOD.

3.3.4.6 Estimated Annual Vegetation Submergence Levels

The relationship presented in the previous section was applied to two o f the 

sampling points monitored along transect A (A3 and A6) for the monitoring period 

(July 2005 to June 2006). For the model, monthly canopy heights were selected based 

on the 90 percentile canopy heights for Spartina (see Section 4.3.3). Water levels for 

the monitoring period were obtained from the British Oceanographic and 

Demographic Centre and are presented in Section 3.3.3, and bed elevations were 

determined from the LiDAR data presented in 3.2.2.2. For A3 and A6, the bed 

elevations were 3.483m and 3.075m AOD respectively. Results are presented in 

Figure 3-30 where submergence levels were divided into classes with a range of 0.25, 

and the duration o f the submergence level falling within each class during the 

monitoring period is shown. As expected, A3, which is higher in elevation, 

experienced considerably lower submergence during the monitoring period. To 

quantify this property, the parameter ‘submergence hours’ is introduced. This is 

defined as follows:
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[Equation 4.03]
/=!

where i is the class number, n is the total number of classes, is the submergence

level of a class and tt is the duration in hours during a twelve-month period that the

aforementioned submergence is observed at a sampling points. Values calculated for 

A3 and A6 were 1400 and 2910 hours respectively indicating that submergence at A6 

was considerably more significant.
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Figure 3-30 Results from the submergence model applied to A3 and A6 along transect A.

3.4 C o n c lu d in g  R e m a rk s

Bed gradients and elevations and water levels were monitored enabling the 

characterisation of the bed conditions and the flow patterns that are characteristic of 

the saltmarshes monitored. The information collected was used in the design of the

105



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

laboratory experiments to recreate conditions which are relevant to the field sites. The 

results from the laboratory investigation are reported in Chapter 7.

The results reported from the field survey highlight the complexity o f field 

conditions. Examination o f the local geography o f  the sites indicated a wide range of 

bed gradients, ranging from negligible gradients to gradients o f  up to 0.01, and the 

saltmarshes were overridden by a complex network o f creeks that varied in size and 

density across the sites. These affected the abundance and location o f certain 

vegetation species.

Submergence is determined by the bed elevation, water elevation and the 

height o f the vegetation. The bed elevation varies across a saltmarsh and generally 

increases away from the coast. The water elevation varies continuously during a tidal 

cycle, and every tidal cycle varies from the ones preceding and proceeding it. Some of 

the smaller high tide magnitudes do not result in any tidal inundation o f the 

saltmarshes monitored during the tidal cycles, whilst others can result in significant 

inundation with flow depths over 2.5m above the bed recorded at some locations. The 

vegetation height varied both spatially and temporally although this is presented in the 

following chapter. For the mean vegetation canopy height (308 mm) and the mean 

bed elevation (2.455m AOD), during the mean high tide magnitude based on the 

available data (3.48m AOD) inundation o f the ground is estimated to last 1.8 hours 

and the maximum submergence level is estimated to reach 1.9. For the maximum high 

tide of the year (5.26m AOD), inundation o f the ground is estimated to last 2.9 hours 

and the maximum submergence level is estimated to reach 5.4.

A submergence predictor was applied to transect A along the Llanelli 

saltmarsh. The difference in elevation between tow o f the points along the transect, 

namely A3 and A6, was only 0.4m, yet if  the results from the model were averaged 

for the inundated periods (i.e. ‘dry’ periods are ignored), then the estimated average 

submergence level at the two points are 1.93 and 2.59 respectively. The predicted 

maximum submergence levels at A3 and A6 are approximately 7.5 and 9.0 

respectively, and the total periods o f inundation are 725 and 1125 hours respectively. 

This illustrates the wide range o f flow conditions that can be observed on a single 

saltmarsh.
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4 Vegetation Quantification

4.1 Introduction

In two dimensional depth-averaged numerical modelling studies, vegetation 

resistance is often simplified and characterised through bulk parameters, such as a 

bulk drag coefficient (e.g. CD in this study, Hammer and Kadlec, 1986; Jenkins and 

Greenway, 2005 and others), a Manning’s roughness coefficient (Somes et al., 1999), 

or a Darcy-Weisbach friction factor (Fiedler and Ramirez, 2000). In three- 

dimensional numerical models, vegetation is often assumed to be homogeneous and 

modelled as an array of uniform cylinders with a constant projected area and drag 

coefficient over the canopy height (e.g. Fischer-Antze et al., 2000; Kang and Choi, 

2006; Li and Yan, 2007 and others). In such studies, the authors often argue that the 

models were capable of predicting flow patterns across large stretches of vegetated 

wetlands and claimed that their results conformed well with measured data. However, 

in a number of other three-dimensional numerical modelling studies, authors agreed 

that a more accurate representation of the vegetation should account for the vertical 

variability in the projected area of the vegetation (e.g. Wilson et al., 2006a; Wilson et 

al., 2006b). This approach is more useful in studies concerned with the complexity of 

the flow structure through and over the vegetation, and how it is affected by the 

variability in plant morphology. In these studies, the prediction of the velocity profile 

is an important part of the research.

The quantification of vegetation in the current study refers to the concept of 

characterising the physical properties of a vegetation canopy obstructing a flow field 

that are most likely to affect the velocity and turbulence structures. Such properties 

include the projected area of obstruction, porosity, material stiffness, stem density per 

unit bed area and stem diameter. Such properties are likely to vary considerably with 

elevation over the height of a canopy, and may affect the flow structure in different 

ways. For instance, a greater level of ‘wake sheltering’ (Section 2.2.5) is likely for 

larger stem diameters which can be attributed to larger stem wakes, and for higher 

stem densities where the stems are more closely spaced together. Quantification of 

vegetation properties is often neglected in hydrodynamic studies due to the difficulty 

in measuring the parameters and the high level of variability associated with natural
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materials. However, vegetation quantification is necessary to evaluate the obstruction 

of the flow created by the canopy.

In this chapter, the quantification o f vegetation canopies encountered during 

the field study presented in Chapter 3 is considered. Variation in the density o f Sp. 

anglica was quantified over the height o f the canopy using two methods employed by 

Neumeier and Amos (2004). In one method, vegetation obstruction was quantified 

using digital photographs o f canopy cross-sections, and for the second approach, the 

mass of material in consecutive 20 mm sections along the canopy height was 

determined. The photographic method offered a more rapid approach for the 

collection of large amounts o f data. The method was non-destructive; hence, monthly 

repetition o f the sampling procedure at the same locations was possible. From the 

photographs, the relative obstruction, total projected area and percentile canopy 

heights were determined. Local, spatial and temporal variation in the vegetation was 

also studied.

4.2 The Photographic Method

4.2.1 The Structure of a Spartina anglica canopy

The morphology o f the vegetation was classified into three regions. In the 

lower 50 mm of the canopy closest to the bed, the projected area o f obstruction was 

largely composed o f the plant stalks and this was referred to as the stem region 

(Figure 4-1). In contrast, the higher part o f the canopy, above an elevation o f 100 mm, 

was composed mainly o f foliage and hence is referred to as the foliage region. In the 

section of canopy between the stem and foliage regions, there is a gradual increase in 

projected area o f obstruction as the quantity o f leaf volume increases steadily with 

elevation and in this thesis, this is referred to as the transition region.
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4.2.2 Concept and Methodology

The distribution of vegetation material was difficult to quantify due to the 

complexity of its natural structure. It was achieved in the field and laboratory 

investigations by using a photographic method similar to that used by Neumeier 

(2005). To ensure results were representative of the vegetation’s natural form and 

structure, analysis was conducted in situ to ensure the canopy was not disturbed. The 

vegetation was photographed and the images were analysed to determine the amount 

of plant material present. The method was non-destructive so that the monitoring 

could be repeated at the same locations monthly to determine any temporal variations 

in the quantity of plant material.

For a given unit volume, the projected area of obstruction was assumed to be a 

function of the vegetation density, where vegetation density is defined as the 

vegetation mass per unit volume. On this basis, the vegetation density was assessed by 

analysing photographs of canopy cross-sections that were 100mm in thickness (Figure

Chapter 4 -  Vegetation Quantification 

\

Foliage Region

y

Transition Region 

Stem Region

Figure 4-1 The morphology of a Spartina anglica canopy. The divisions are provided as a 
guideline and may vary from canopy to canopy and with the time of year.
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4-2). The photographs were taken using a digital Canon Powershot A80 camera at a 

reasonably high resolution of 4.0 mega pixels. A 0.6m wide and 0.8m tall red- 

coloured background was used for easy distinction of the green vegetation.

Direction of 
photograph

C a m era
canopy thickness 

■4---- ►) 100 mm

C olou red
b ack g ro u n dMirror

T riangulai^ 
w ood fram e

Figure 4-2 -  a) setup for taking lateral photographs of the canopy using an oblique m irro r and a 
downward-looking cam era (from Neumeier, 2005) b) a 100 mm thickness of canopy.

4.2.3 Projected Area of Obstruction

Given that the cross-sectional photographs were taken for a 100mm thickness 

of canopy, and the width of the background was 600mm, the sampling volume of each 

photograph, V, is given by:

F = 0.6x0.1xAz [Equation 4.01]

where Az is the height of the sample volume. Vegetation occupies a proportion of this 

volume, and from a two-dimensional photograph, the visible projected area of the 

vegetation can be determined. Furthermore, a proportion of the total projected area of 

the canopy remains hidden behind the visible part of the canopy. Where the stem 

densities are known, the total projected areas can be estimated to account for hidden 

plant material (see Section 5.3.2). However, where the photographic method was used 

to quantify vegetation canopies in the natural environment in the fieldwork 

programme presented, the stem densities were unknown, and demonstrated 

considerable variation (Section 4.4.4), thus, only the visible projected areas are 

presented. To distinguish between the two parameters here, d  denotes the visible
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projected area per unit volume, whilst a denotes the estimated total projected area per 

unit volume.

The projected area of obstruction is indicative of the amount of vegetation 

material. Whilst determination of the volume and the absolute porosity (the proportion 

of a sample volume occupied by voids) of plant material from a photograph were 

difficult, the projected area of obstructing material per unit volume was easily 

determined. The porosity of the material is a function of this parameter, provided that 

the sampling section is of a small thickness, and that the vegetation is evenly 

distributed over the sampling volume.

The amount of vegetation material obstructing the flow was determined from 

the photographs by considering the pixel content to determine the proportion of 

vegetation to the total area of the photograph. The cross-section was considered in 

horizontal layers of 20 mm thickness to determine the obstruction levels at different 

elevations within the canopy (Figure 4-3). The analysis was conducted using Adobe 

Photoshop 6.0, where the pixel content of each layer was examined to determine the 

number of pixels void of vegetation. The pixel analysis for all the slices was 

combined to determine the distribution of plant material over the height of the canopy 

(e.g. Figure 4-3).

0 0.2 0.4 0.6 0.8 1

A p ' ! A l

Figure 4-3 Proportion of area occupied by vegetation for horizontal sections of a canopy cross- 
section based on a photograph taken in-situ where z  is the elevation of a layer above the bed,
A f  is the visible projected area of vegetation for a given layer, and AL is the total sample area 

of the layer
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Presented in Figure 4-3 is a cross-section photograph o f  a natural saltmarsh 

canopy. In Figure 4-4, profiles o f total projected area per unit volume are presented 

for artificially constructed canopies o f  Spartina anglica, and plastic drinking straws. 

The profiles o f projected area vary because in the laboratory, stems were installed in 

an orderly, upright fashion and the more developed plants were selected because they 

were easier to install (Section 5.2.4.2). Selection o f the more developed plants also 

helps to achieve some consistency between the plants used to construct the three 

vegetation canopies with stem densities o f 810, 1160 and 1850 stems m ’2. In a natural 

environment, plants exist in a wider range o f sizes accompanied by decomposing 

material and other loose plant parts that often fall and are retained near the bottom of 

the canopy. Furthermore, the vegetation experiences periods o f  regular tidal 

inundation during which the canopy may be affected by the impact o f  the flow, and 

the plants are not always fully vertical. All these factors contribute to differences 

between the shapes o f the projected area profiles for the natural and constructed 

canopies (Figure 4-4a). In a natural canopy, there is a steady increase in obstructing 

material towards the bed, whereas in the constructed canopy, there is a clear decrease 

in the lower part o f the canopy where there is an absence o f  smaller plants, leaves, or 

other loose debris. For more flexible species, the morphology o f  the vegetation may 

vary with the level o f inundation however, based on observations during the 

laboratory investigation presented in Chapter 7, alterations to the structure o f Spartina 

anglica was negligible with the level o f submergence due to its rigid nature. The 

projected area is constant with elevation for the uniform array.

The amount o f vegetation within a photographed canopy will depend on both 

the stem density and the thickness o f the canopy photographed. A more meaningful 

parameter for quantifying the plant material density, which takes into account the 

thickness of the canopy, Ax (defined in Figure 4-2), is the projected area of 

obstruction per unit volume, a (m '1) given by:

A.
* = 7^Ax [Equation 4.02]

where Ap is the total projected area o f the canopy. AL is the total flow area 

occupied by the canopy, and Ax is the thickness o f the canopy photographed, which
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in this case was maintained at 100 mm. This thickness allowed for a reasonable 

section of the canopy to be analysed such that the results were more representative of 

the vegetation, yet not too thick so that the background was visible to enable the 

distinction between the projected areas occupied by vegetation compared to those 

void of vegetation.

(m)

0.2

0.3

(m)

0.2

0.1

Figure 4-4 The ratio of total projected area, Ap, to the flow area, AL •> for a given elevation for

[a]: a constructed Spartina anglica canopy; [bj: a uniform array  of plastic drinking straws. Both 
plots are for 1850 stems m'2 canopies, z  is the elevation above the bed, and the solid line in [a) 
shows a typical profile for a natural Sp. anglica saltmarsh canopy

constructed
canopy

0.0 0.2 0.4 0.6 0.8 1.0

<->

natural
canopy
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The relative vegetation obstruction at a given elevation, Op , was defined as 

the percentage of the flow area A, , at elevation z, occupied by the projected area of 

the canopy, Api. This can be equated as follows:

O = — xlOO [Equation 4.03]
'  4

A typical relative obstruction profile from the current study (Location A2, July 2005) 

is presented along with an equivalent profile presented by Neumeier (2005) in Figure 

4-5. The canopies monitored along the Llanelli saltmarsh appear to be taller and more 

obstructive than those monitored by Neumeier (2005) on the North-West shore of the 

Wash (east England).

z(m)

0 50

Op (%)
Figure 4-5 Profiles of vegetation obstruction, Op , from |a |:  Neumeier (2005) and |b |:  the 

current study (Location A2, July 2005).

4.2.4 Sensitivity Testing of the Photographic Method

During field-application of the photographic method, a number of factors can 

give rise to variations in the analysed results. These include the canopy depth, the 

brightness of daylight (this may vary between cloudy and clear days), and the angle 

the mirror forms with the ground. Sensitivity of the calculated vegetation obstruction,
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Op (percentage flow area occupied by vegetation), to slight variations in each of the

three variables was investigated. Figure 4-6 shows the different results obtained from 

the photographic method for a 0.08m, 0.10m and 0.11m canopy thickness, dx , 

(Figure 4-7) for the same sample of vegetation during one of the sampling events. The 

error, e , was normalised using a canopy depth correction factor, J3C, which corrects

for the magnitude of deviation from the recommended canopy thickness of 0.10m 

(Neumeier, 2005). The correction factor is defined as follows:

[Equation 4.04]

100mm
0.6

110mm 

80mm

0.2

0.0
0 50 100

+10mm

-10mm

-20% 0 20%

Op(%) s/dx (%) 
Figure 4-6 Sensitivity of the photographic method to the canopy thickness

Coloured
backgroundMirror

Figure 4-7 Instrument set-up used in the photographic method for quantification of vegetation, 
and the definition of the canopy thickness, dx. The image is taken from Neumeier (2005)
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Results from the sensitivity testing for different factors are summarised in 

Table 4-1. Brightness levels were dependent on weather conditions and daylight 

hours. This was likely to be the most significant cause for errors, especially as it 

cannot be controlled. The mean ‘brightness error’, calculated based on the projected 

area o f obstruction, determined from a number o f photographs taken o f the same 

canopy cross-section for a range o f daylight conditions was + 3%. The user error, 

which was + 1.8%, refers to the difference in results obtained when the analysis was 

repeated for the same photograph three times and the difference in results compared. 

Differences were incurred because before analysis o f  the photographs can be 

conducted, considerable photograph editing is required to substitute the red 

background in the photograph for a more consistent and identifiable red colour 

recognisable during the pixel analysis. A sensitivity level o f  “ 15” was usually used in 

Photoshop, although this had to be reduced in the darker regions close to the bed. 

Errors associated with variations in the thickness o f the canopy, d x , from the 

recommended value o f 0.10m (Neumeier, 2005), equated to + 4.2% for a dx value of

0.02m. Although the canopy thickness could not be controlled accurately due to the 

arrangement o f the vegetation, this was usually within 0.01m o f the required distance. 

A 0.01m increase in canopy depth resulted in a smaller error o f  1.7%. Variations in 

the angle the mirror formed with the ground o f up to + 5° from the 45° position were 

explored, although this resulted in a relatively small mean error o f  up to ±  1.2%.

Table 4-1 - Sensitivity testing results for the photographic method

* (-)
i /=« 
- ? , *  (-)

Canopy thickness (+/- 0.1m) -1 4 .1 % -1 8 .4 % + 4.2%
Brightness -5.1 -9 .7 % + 3.0%
Mirror angle (+/- 5°) -8.7% -  5.4% + 1.2%
User error -8 .2 -3 .5 % + 1.8%
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4.2.5 Local, Spatial and Seasonal Variations in Obstruction Profiles

The photographic method was used to quantify Spartina anglica canopies 

along transects A and B on the Llanelli site, and the grazed saltmarshes at the Gower 

site covered by transects D, E and F (Section 3.2.3). The data revealed three types of 

variation in the vegetation: local, spatial and temporal.

1. The ‘local’ component refers to the variation in the vegetation canopy around 

each sampling location according to the data collected at the four sampling points; 

‘a’, ‘b ’, ‘c’ and ‘d’ e.g. A2a, A2b, A2c and A2d.

2. The ‘spatial’ component refers to the variation between the sampling locations 

along a transect e.g. A2, A3, A4, A5 and A6.

3. The ‘temporal’ variation refers to variation in the vegetation over the monitoring 

period (from July 2005 to June 2006), whether at a single location, or a whole 

transect.

4. The ‘large-scale’ variation is defined as the variation between the vegetation 

along different transects e.g. transect A compared to transect B.

Details of how the variation terms are calculated are presented in Appendix II. 

As explained in Section 4.2.3, the relative vegetation obstruction (Op ) was

determined for 20 mm layers over the canopy height. In Figure 4-8, the relative 

vegetation obstruction of the canopy is presented for location A2 for each month 

during the sampling period with the associated ‘local’ variations, which were 

calculated according to Equation 10.03 and are represented by the horizontal bars. 

The twelve-month average relative vegetation obstruction was included as a reference 

on each monthly plot to better illustrate the variation in the canopy over the sampling 

period. The canopy had the highest level of obstruction between the months of August 

and November, and the lowest obstruction between February and May. Similar trends 

were observed across the rest of the transect as shown by the average relative 

vegetation obstruction along the entire transect (transect A) for the twelve-month 

monitoring period in Figure 4-9, where the ‘spatial’ deviations were calculated 

according to Equation 10.09 and are also represented by horizontal bars.
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In Figure 4-10, the mean vegetation obstruction at each location is presented, 

where temporal variations were calculated according to Equation 10.07. The relative 

vegetation obstruction approached a value of 100% near the bed for all canopies 

examined, and diminished in value with elevation. The reduction was approximately 

linear over the lower 300 mm o f canopy height, and above this level, there was a 

significant decrease in relative vegetation obstruction with elevation. The physical 

quantification o f the canopy is considered in more detail in Section 4.2.6.

Sp. anglica was monitored at five sampling locations (A2, A3, A4, A5 and 

A6) along transect A. The ‘local’ variation of the relative vegetation obstruction along 

the transect and with time is summarised in Figure 4-11. The standard deviations of 

the relative vegetation obstruction levels determined for the four sampling points at 

each sampling location (‘a’, ‘b ’, ‘c’ and ‘d’) over the twelve-month sampling period 

are presented in Figure 4-1 la  to represent the spatial difference in ‘local’ variation 

across the transect (refer to Equation 10.04). In Figure 4-1 lb , the monthly standard 

deviations o f the four sampling points at each sampling location, averaged over the 

five locations monitored along transect A are presented to represent the temporal 

difference in ‘local’ variation (refer to Equation 10.05). According to the analysis, of 

the five locations that were monitored, and over the twelve-month period of 

monitoring, ‘local’ variation was greatest at locations A3 and A4, and during the 

month o f October 2005.

The ‘temporal’ and ‘spatial’ variations in the relative vegetation obstructions 

across transect ‘A ’ and over the course o f the monitoring period are summarised in 

Figure 4-12. These were calculated according to Equations 10.07 and 10.09 

respectively. The most amount o f ‘temporal’ variation was observed at the most 

inland locations, namely, ‘A2’ and ‘A3’, whilst the highest amount o f ‘local’ 

variability was observed during October and November 2005 for most o f the canopy 

height.
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Figure 4-8 Vertical profiles of the monthly relative vegetation obstruction, Op > at location A2. The solid line denotes the twelve-month average, and horizontal 

bars denote the ‘local’ variation, z is the elevation above the bed.
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Figure 4-9 Vertical profiles of the monthly relative vegetation obstruction, Op »for Transect A. The solid line denotes the twelve-month average, and horizontal

bars denote the ‘local’ and ‘spatial’ variation, z  is the elevation above the bed.
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Figure 4-13 Mean Local ( <JL ), Temporal (<rT ) and Spatial (<TS ) variability with standard 
deviations in Spartina anglica vegetation across the Llanelli site

4.2.6 Seasonal Variation in Canopy Height and Density

The total ‘size’ of the canopy is affected by the height of the vegetation and 

the relative vegetation obstruction of the vegetation over the canopy height. To 

quantify this property, the total projected area per unit width of canopy, Ac , is 

defined as:

Ac = — H 90 V  —— [Equation 4.05]
n m A,

where Api is the projected area of a given layer, i, based on a photograph of a canopy 

cross-section, At is the total area of the layer, n, is the number of layers forming the 

canopy, and H go is the 90th percentile canopy height. Whilst profiles of the relative 

vegetation obstruction, Op , was considered over the canopy height, the total projected
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area per unit width, Ac , quantifies the obstruction over the canopy height as a single

quantity. This is more convenient for inter-canopy comparisons to evaluate seasonal 

variations from the monthly analysis conducted on the vegetation canopies.

Temporal variations in Ac are shown over the monitoring period in Figure

4-14 for non-grazed Sp. anglica sites studied in this research project along transects 

‘A’, ‘B’ and location ‘F 7 \ The latter location was inaccessible to sheep and horses as 

it was separated from the rest o f the saltmarsh by a stretch o f mudflats. The remainder 

of transect F was grazed. In most cases, there was a peak in Ac near the months of 

September and October, which coincided with the peaks in canopy height as indicated 

by the 90th and 99th percentile heights presented in Figure 4-15. The parameters Ac ,

H go and H 99 were smallest in magnitude around the months o f March and April.

One limitation o f this approach, which is based on the photographic method, is 

that it does not reflect the physical characteristics o f the plants. For instance, it does 

not distinguish between dormant and non-dormant plant material, or the proportions 

of the stems (which are stiff and bulky) and the leaves (which are flexible and flat). 

Also, it attempts to predict the amount o f obstruction, which is in fact a volume of 

plant material within a unit sampling volume, based on the projected area o f the 

obstruction. However, this method enabled sampling to be repeated at the exact same 

location since it is a non-destructive method, which is critical in assessing seasonal 

trends in vegetation growth.
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Figure 4-14 The total projected area per unit width of canopy, Ac » for non-grazed Sp. anglica 
monitored along transects A, B and F using the photographic method.

Variations in the appearance of the canopy are illustrated in Figure 4-16 where 

canopy photographs at sampling point ‘A2’ are presented for three different sampling 

events during the months of December 2005, March 2006 and June 2006. There was a 

large contrast in the canopies between the months of March and June. In June, fresh 

green plant shoots were observed. Based on the results presented, and the canopy 

cross-section photographs taken, the shoots appeared to grow through the summer 

months peaking in height and density around September. This was indicated by H90,

H 99 and Ac (Figure 4-14 and Figure 4-15). Although not visible in the photographs,

in December, the vegetation lost its green colouration and became yellow and more 

brittle. Around March, the canopy height and canopy density reached minimum 

values. Being a perennial plant, the vegetation was dormant around this time of the 

year.
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Figure 4-15 / / 9Q and / / 99 values for non-grazed Sp. anglica along transects A, B and F
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Figure 4-16 Photographs of a typical sampling point on the Llanelli site illustrating local and 
temporal variations in the vegetation structure

The vegetation on the Gower site displayed less temporal variation in the 

projected area of obstruction throughout the year. Examples of vegetation 

photographs from transect D and transect E are shown in Figure 4-17 and Figure 4-18 

respectively. The vegetation was shorter during the winter months, which was also 

reflected in the H 90 and H 99 values (Figure 4-19) and in Ac values (Figure 4-20).

This may be associated with increased sunlight exposure in the summer, and may 

have also been associated with increased sheep grazing in the winter period. Linnane
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et al. (2001) observed seasonal grazing patterns amongst Kerry cows in Ireland. The 

author concluded that although daily grazing times remained constant over most of 

the grazing season, the cows grazed more frequently with decreasing day length. A 

number o f studies reported that an increase in environmental temperature and day 

length were accompanied by a decline in grazing time amongst sheep as the animals 

adapted to poor forage during the winter by grazing for longer periods and dispersed 

more widely (e.g. Shinde et a l., 1997; Ashuto et al., 2002 and others). However, in 

sheep farming, it is common to provide supplements in the form o f other food sources 

to meet their needs during the autumn and winter when the grass cover becomes 

mature and less digestible (DEFRA, 2007). This is likely to reduce the intensity of 

grazing on the marshes.

In a study on annual above-ground growth on a Typha latifolia marsh, 

Dickerman and Stewart (1986) observed peaks in the total dry mass o f vegetation 

during the months o f  July and August for the years 1978 and 1979. The mass per unit 

ground area was relatively low between November 1978 and May 1979. Fresh 

Spartina anglica shoots were observed around this period during the field program 

(e.g. see Figure 4-16). Thus, lower vegetation densities across the Gower site during 

winter; between 22nd December and 21st March, and spring; between 21st March and 

21st June, may, to some extent, be linked to variations in grazing patterns. However, 

this is more likely to be the effect of the decline in vegetation quality commonly 

observed during the cooler periods. The natural seasonal variation o f the plant height 

for the Llanelli site was more marked than the seasonal variation, which was 

influenced by grazing patterns, along the Gower site.
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Figure 4-17 Photographs of a typical sampling point along transect D on the Llanrhidian site 
illustrating local and temporal variations in the vegetation structure
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E l (a)
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Figure 4-18 Photographs of a typical sampling point along transect E on the Llanrhidian site 
illustrating local and tem poral variations in the vegetation structure
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Figure 4-20 The total projected area per unit width of canopy, Ac , along transects D,E and F over the monitoring period.
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The differences in vegetation properties such as vegetation height, relative 

vegetation obstruction, and seasonal patterns, offer possibilities for comparisons 

between the effectiveness of grazed versus non-grazed marshes in protecting the 

coast. Average values of the ninetieth percentile height ( H 90) and the total projected

area per unit width ( Ac ) are summarised in Figure 4-21 and Figure 4-22 respectively 

for both the Llanelli saltmarsh, and for the heavily grazed vegetation cover along the 

Gower saltmarsh. The heavy use of the Gower saltmarsh for grazing was reflected in 

the shortness of the vegetation (smaller H90 values), which in turn resulted in a much

lower relative vegetation obstruction, Op. Average 90th percentile heights for the 

vegetation across the Gower site varied between 0.028m + 49.8% and 0.083m + 

38.6%.
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Figure 4-21 Average monthly 90th percentile canopy height, / / 90, for the Llanelli and Gower 
sites.
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Figure 4-22 Average projected area per unit width of canopy, Ac , for the Llanelli and Gower 
sites.

The 90th percentile canopy height, H 90, and the projected area per unit width,

Ac , indicated similar trends of vegetation growth over the monitoring period (Figure

4-23). H90 values indicated a thicker vegetation cover than Ac for the non-grazed

vegetation (Figure 4-23b). However whereas for grazed vegetation, where there was 

less variability in the morphology of the vegetation, both parameters indicated a 

similar vegetation cover (Figure 4-23a).
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Figure 4-23 Seasonal variation over the monitoring period in the 90th percentile canopy height, 
Z /90, and the projected area per unit width, A c , for [a]: the Gower saltmarshes, and [b]: the 
Llanelli saltmarsh.

4.3 Quantification of Vegetation based on the Mass of Material

4.3.1 Concept and Methodology

Vegetation samples were quantified based on the mass o f material within a 

unit volume. To conduct this analysis, samples o f Spartina anglica were collected by 

cutting the stems at the base o f the plants. Each sample covered a circular ground area
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with a diameter of 375 mm as dictated by the size of a hollow cylinder used to contain 

the vegetation sample prior to cutting it for collection. Samples were rinsed to remove 

the majority of the mud contained within the vegetation, and the plants were left to 

dry on paper towels to remove any excess moisture.

Each sample was cut into 25 mm sections starting from the base and moving 

up the height of the stem. All vegetation material contained within each 25 mm 

section of the canopy were transferred into a pre-weighed aluminium container to 

form a sub-sample, and the containers were weighed to determine the natural mass of 

the vegetation ( M w et)- The containers were arranged into oven trays and heated in 

ovens at 80 °C for 48 hours. The containers were cooled and re-weighed to determine 

the dry mass of the vegetation ( M d r y )  and relate this to the natural mass to determine 

the moisture content and how this varies over the height of the canopy.

A typical example of the results obtained from the analysis are presented in 

Figure 4-24. This illustrates a cross-sectional photograph of a sample in situ before 

the vegetation was cut and collected, and the mass of the vegetation material in 25 

mm high sections both before and after drying.

0.5
z (  m)

0.4

0.3

0.2

0.1

0.0
0.00 0.02 0.04 0.06 0.08 0.00 0.02

M w et  (kg m 2) M d r y  (kg m‘2)
Figure 4-24 Mass of vegetation m atter before and after drying and a photograph of the sample

4.3.2 The Relationship between Mass of M aterial and Projected Area

The projected area of obstruction as determined from the photographic method was 

compared to the vegetation density determined from the mass of vegetation material, 

both before and after drying. The two quantification methods were discussed in the 

previous sections. A number of Sp. anglica samples were quantified according to 

these methods and the results are summarised in Figure 4-25.
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Figure 4-25 Comparison between the visible projected area of obstruction per unit volume, d , 
and the mass of material in the natural (M WET ) and the dry (M DRY ) states between August 2005 
and June 2006.

The samples were collected from locations along transects A and B along the 

Llanelli saltmarsh (see Section 3.2.3) on eight different occasions over the period 

spanning between August 2005 and June 2006. On each occasion, eight samples of 

Sp. anglica were photographed, harvested and the two quantification methods were 

applied.

Where the mass of vegetation was determined, all the vegetation matter 

covering the sampling area was collected for quantification regardless of plant sizes or 

condition. Mean values over the sampling period are presented in Figure 4-26. The 

vegetation mass profiles determined from the natural and dried material showed very 

similar shapes. Moisture content, m , is defined as:

m -  — — — ^ DRY [Equation 4.06]
M,DRY

where M ^ r is the natural mass and M DRY is the dry mass of a sample volume.

Moisture content was higher near the base of the plants and there was less difference 

between the natural and dried weights of the vegetation for the upper parts of the
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plants. The moisture content o f the vegetation ranged between 0.75 near the base and 

0.45 at the top o f the canopy at an elevation o f 0.65 m from the bed.

z  (m) o,3

10 0.20.10

d  ( rn 1) A/wet (kg m )

o.i
-2>M dry (kg m )

Figure 4-26 One-year average profiles of the distribution of vegetation material with elevation 
according to [a]: the visible projected area of obstruction per unit volume; [b]: the natural mass 
of material; [c]: the dry mass of material; and [d]: the percentage distribution of moisture 
content during the sampling period between August 2005 and June 2006

The profile o f mean projected area per unit volume for the monitoring period 

according to the photographic method is presented in Figure 4-26a. The proportion of 

the total vegetation as a function o f elevation is presented according to the natural and 

dried weights in Figure 4-26b and Figure 4-26c respectively. The projected area 

profile indicates that a greater surface area o f vegetation is located in the upper part of 

the canopy (between an elevation o f 0.3m and 0.6m above the bed) which is 

negligible in mass as shown by the profiles o f vegetation mass. This can be attributed 

to the heterogeneous nature o f the vegetation morphology whereby the relationship 

between the projected area and the mass o f plant material varies considerably between 

the foliage region in the upper canopy and the stem region near the bed.

The lower part o f  the canopy comprised mainly stems and was greater in mass, 

but due to its compact and more organised arrangement, appears to occupy less of the 

flow domain when quantified using the technique to determine the projected area (the 

photographic method). At an elevation o f 76 mm above the bed, a 25 mm horizontal 

section contains 8.2% o f the vegetation according to the photographic method 

compared to 11.4% and 10.3% according to the natural and dry mass quantification 

methods. The mass quantification o f the vegetation in its natural state suggests a 

slightly larger proportion o f the vegetation is located lower down in the canopy 

compared to the dry mass. This is because a greater amount o f moisture is retained in 

the upper part o f the canopy giving the impression that there is a greater mass of 

vegetation material.
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As a comparison between the two quantification methods, profiles of projected 

area of obstruction and vegetation mass (natural and dry) were normalised by the 

basal values at the lowest point in the canopy. The normalised vegetation mass values 

are presented as a ratio o f the normalised projected area values over the height of the 

canopy in Figure 4-27. The normalised profiles show that the vegetation mass 

quantification leads to an under-prediction of the quantity of vegetation in the lower 

region of the canopy compared to the photographic method, and an over prediction 

higher up in the canopy. For the most extreme cases, the vegetation mass 

quantification method produces an estimate of the proportion of material in its natural 

state ( M wet ) at an elevation of 88 mm above the bed 50.6% greater than the

photographic method. After drying, the peak vegetation mass occurs at an elevation of 

113mm, and the proportion from the vegetation mass quantification is 77.5% greater. 

Higher up in the canopy, at an elevation of 438 mm, the proportion of the vegetation 

material according to the mass quantification was 61.0% less than the photographic 

method, compared to 31.5% less at an elevation of 413 mm after drying.

Although the photographic method (Section 4.2.2) was capable of quantifying 

the surface area of obstruction, it does not distinguish between the cylindrical stems in 

the region near the bed and the flat foliage higher up in the canopy. The quantification 

of plant material based on its mass was therefore employed as an attempt to make this 

distinction in quantitative terms.
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Figure 4-27 Comparison between the quantification of a canopy according to the projected area 
per unit volume profile and the distribution of the [a]: natural mass of material; and [b]: the dry 
mass of material using the one-year averages.
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For field data collection, the mass o f  a sample is much more convenient to 

determine than the stem density, which can be time consuming. Yet the stem density 

of a canopy has a strong influence on the hydrodynamics o f canopy flows (see Section 

2.2.6). Thus, based on the data collected, the trend presented in Figure 4-28 relate the 

vegetation mass covering a unit bed area to the stem density.
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Figure 4-28 The relationship between dried mass per unit bed area, M DRY and the stem density 
of natural Spartina anglica canopies. M  is the stem density.

4.3.3 Determination of Canopy Height

Due to the variability in the heights o f individual stems, there is some degree 

of uncertainty when defining the canopy height. Instead, the 90 and 99 percentiles 

were used to compare the canopy height at different locations across the monitored 

sites as well as for different times o f the year. These equate to the heights below 

which 90 and 99 percent o f the total vegetation obstruction were contained in the 

sample. The 90 and 99 percentiles were calculated for total cross-sectional areas of 

obstruction ( / / 9 0  and H99) and the vegetation mass (D9 0  and D9 9) (Figure 4-29).

M  = S90M dry +380 
R2 = 0.31
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Percentile heights were calculated for the data from the sample analysis 

presented earlier in Section 4.3.2. The 90th and 99th percentile heights based on 

projected area, natural and dried masses of vegetation are presented for the samples 

analysed in Figure 4-30. The average 90th percentile height calculated from the 

projected area of obstruction was 0.347 m + 2.3%. The values calculated based on the 

vegetation samples in their natural and dried states were 0.249 m + 2.7% and 0.280 + 

3.3% respectively. The 99th percentile height determined from the projected area of 

obstruction was 0.529 m + 3.4%, whilst based on the mass of the vegetation, the 

values were 0.297 + 4.4% and 0.430 + 4.7% for the vegetation samples in their 

natural and dried states respectively.

Canopy heights determined for the samples summarised in Figure 4-30 based 

on the photographic method and the mass of vegetation in the wet and dry states were 

compared. Heights determined based on the mass of plant material were consistently 

smaller than those calculated from the projected areas of obstruction (the 

photographic method). The top part of the canopy is largely composed of leaf tips 

with a large surface area for a relatively small amount of material. This is why the 

canopy height based on the projected area of obstruction is greater than the height 

based on the mass of material.

As the values presented above show, there was a considerable difference in the
th th90 and 99 percentile values for both the projected area and mass quantification 

methods. As shown by the plots presented in Figure 4-29, there is relatively little 

increase in projected area and mass of plant material above the 90th percentile level 

and up to the 100 percent level due to the sparseness of vegetation material in this 

region (between 90% and 100%). Hence, it is proposed that the 90th percentile height 

is used as an index height to characterise canopy height.
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Figure 4-29 Percentile heights of Spartina anglica based on 12 months of measurements across two transects based on [a]: projected area and [b]: mass of material. 
n refers to the n  ̂layer, which is the layer of the canopy at any given elevation, Ap is the projected area of the canopy, A is the flow area occupied by the canopy,

Api is the projected area of layer i of the canopy, Ai is the flow area of layer i , M DRY is the dry mass of the canopy, M DRY, is the dry mass of layer i of the 
canopy.



Chapter 4 -  Vegetation Quantification

0.8

z (m)

0.4

0.0 
0.8

z (m)

0.4 

0.0
Aug Oct Nov Dec [ Feb Apr May Jun

2005 i 2006
Figure 4-30 90 and 99 percentile heights of Sp. anglica vegetation along Llanelli saltmarsh 
according to the photograph and vegetation mass quantification methods

4.4 Q u a n tif ic a tio n  o f  th e  P h y sica l P ro p e r t ie s  o f  th e  V eg e ta tio n

4.4.1 Stem Diameter and its Variation with Elevation

Stem diameters were measured at the base and at an elevation of 100 mm from 

the base along individual plant stems using an electronic vernier calliper. This was 

conducted for two samples of 160 stems each collected during May and June 2006 

respectively from the Llanelli saltmarsh during the fieldwork programme, and for 

three samples collected during August 2006 at the Peterstone Wentlooge saltmarsh for 

the laboratory study (Figure 4-31). Average values for all samples analysed are 

presented in Table 4-2. The three samples collected during August 2006 were used to 

construct vegetation canopies in the laboratory with stem densities of 800, 1160 and 

1850 stems m’2 respectively. These are referred to in Table 4-2 as samples 1, 2 and 3 

respectively and the stem diameters were measured for 200 stems from each sample. 

Unfortunately, the range of values collected was not sufficient to identify seasonal 

variations in stem diameters. Although stem diameters were not collected for the full

90th Percentile Heights □  photographic method (area)
□  natural vegetation (mass)

^  dried vegetation (mass)

99* Percentile Heights
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monitoring period, they provide an indication of typical stem diameters encountered. 

This enabled calculation of typical stem Reynolds numbers, Re^ = Ud/v where U is 

the flow velocity, d  is the stem diameter, and v is the kinematic viscosity. d0 and dm 

are used to denote the basal stem diameter, and the stem diameter at an elevation of 

100 mm from the base of the plant respectively.

Newport

Peterstone Wentlooge

Cardiff •
Bristol Channel

Figure 4-31 Location maps for saltm arsh near Peterstone W entlooge. Plots produced from data 
collected by O rdinance Survey.

Table 4-2 - Average stem diam eters at the base of the plants, d0t and 100mm from the base of 

the stems, dm  , during May, June and December 2006, and Septem ber 2007

dQ (m m ) ^ioo (mm)
May 2006 4.01 + 1.50 4.39 ±0.69
Jun 2006 4.61 ±0.45 2.76 ±0.89

Aug 2006 (Sample 1) 4.26 ± 0.48 4.43 ± 1.05
Aug 2006 (Sample 2) 5.72 ±0.42 5.03 ±0.97
Aug 2006 (Sample 3) 5.51 ±0.47 4.58 ±1.10

To assess the variation in stem diameters with elevation along the stem, the 

stem diameters of 70 stems collected in August 2006 were measured at 20 mm 

intervals from the base of each stem. Diameters were measured using a Vernier 

caliper and measurements were recorded for the orientations resulting in the widest 

and narrowest diameters and the values were averaged. The stems were selected from 

a number of larger samples that were harvested as part of the field-work (Section 

4.3.1) so that they were representative of the range of stem diameters observed across 

the Llanelli saltmarsh (Section 4.2.1). Stems shorter than 0.2m were excluded; 

including them is likely to result in greater stem diameter variations. However, the
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main purpose of this analysis was to determine the dimensions of larger plants. These 

were used in laboratory studies aimed at evaluating the hydrodynamics through 

canopies of relatively consistent plant sizes along the longitudinal reach of the test 

section (Chapter 7). The values are presented in Figure 4-32. The average basal stem 

diameter, do, at a distance of 20 mm from the base was 5.4 mm + 4.4%. The stem 

diameters along the stems were related to the basal stem diameter, and the percentage 

decrease in diameter is presented in Figure 4-32. This model was used as a basis to 

predict the stem diameters at various elevations within the canopy based on the basal 

stem diameter. The stem diameter decreased with elevation above the bed. There was 

a considerably more significant decrease in diameter above an elevation of 140 mm 

above the bed.

0.3

0.2
HDh

CHz(m)

o.i O

0 42

d  (mm)
50% 100%

(d -  d 0 ) /d 0 (-)

Figure 4-32 Variation in stem diameter at different elevations within a canopy, d  is the stem 
diameter and do is the basal stem diameter.

4.4.2 Porosity of the Vegetation

The porosity o f a material is defined as the ratio of the volume of voids to that 

of the sample volume. The volumes of Sp. anglica samples were determined by a 

British Standards method in (BS 1377-2 (1990)). This is a standard procedure for 

determining the bulk and dry densities of a soil sample by measuring the mass of a 

sample and its water displacement. The volume was determined by immersion in a 

tank of water and the water displacement of water was measured. An apparatus 

similar to that described in BS 1377-2 (1990) (Figure 4-33) was assembled for this 

procedure.
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may be used provided thet the essential requirements ere fulfilled.

Ml dimensions ere in millimetres.

Figure 4-33 Apparatus used to determine water displacement of a sample (from BS1377-2,1990)

To determine the volume occupied by each sample, the 99th percentile height, 

H 99, was used (Section 4.3.3). The samples were collected from a circular bed area of

375 mm diameter. From this value, along with the volume o f vegetation, Vveg, as

calculated from the volume o f water displaced by the sample, the porosity of the 

vegetation, p , was calculated. Values for the months o f May and June 2006 are 

summarised in Table 4-3. Despite the vegetation appearing to be densely packed, 

porosity values were very high (99.6 + 0.1% for May 2006 and 99.4 + 0.1% for June 

2006). This indicates that it is reasonable to ignore the volume occupied by the 

vegetation when calculating the force due to the body weight o f the fluid when 

performing a force balance (see Section 2.3.5).

Average porosities for Sp. anglica canopies can be related to results obtained 

from the photographic method. The method assumes that variations in the projected 

area of obstruction over the canopy height are proportional to the quantity o f material 

creating the obstruction. Predicted variations in porosity with elevation through the 

canopy are presented for sampling points A4 and A5 for the months o f May and June 

2006 in Figure 4-34.
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Table 4-3 Porosity values for Sp. anglica samples collected in May and June 2006, where H99 is 
the 99th %ile canopy height, V is the volume of vegetation, and p is the porosity of the vegetation

H99 (m)
May 2006 

F(m 3) P (') H99 (m)
June 2006
Fyejs (m ) P (-)

A2 0.505 2.899 x lO 04 0.9948 0.510 2.638 x lO-04 0.9953
A3 0.470 1.448 x 10‘04 0.9972 0.425 2.614 x lO'04 0.9944
A4 0.485 2.251 x lO'04 0.9958 0.440 2.358 x lO'04 0.9951
A5 0.474 1.770 x lO’04 0.9966 0.425 2.360 x lO'04 0.9950
A6 0.425 1.014 x lO'04 0.9978 0.488 2.581 x lO'04 0.9952

B1 0.603 2.045 x lO'04 0.9969 0.343 2.976 x lO'04 0.9921
B5 0.351 2.368 x lO'04 0.9939 0.470 2.797 x lO*04 0.9946
B7 0.681 2.765 x lO’04 0.9963 0.363 2.899 x lO’04 0.9928

o
June 2006 oo
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P

Figure 4-34 The porosity of Sp. anglica based on eight samples collected from Llanelli saltmarsh 
in each of the months of May and June 2005

4.4.3 Stiffness of the Vegetation

The three-point bending test (BS 2782-10, 1977) can be used to determine the 

Modulus of Elasticity, E, its flexural stress, cr, flexural strain, e , and the stress-strain 

response curve o f a material. The preparation and testing of the material is relatively 

simple. This was conducted on vegetation segments to determine the stiffness of the 

material. For each test, a 50 mm length of stem was installed into the apparatus 

illustrated by the schematic diagram presented in Figure 4-35. The instrument was 

connected to a computer and operated automatically, gradually increasing the load, F, 

to the centre o f the segment and recording the maximum deflection within the 

segment, Ax for each increment. A typical load-displacement diagram is presented in 

Figure 4-36a showing the increase in displacement in the direction of the load up to

z(m )

0.20

0.00

Q
May 2006 G

O
G

O
O

o
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MX
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147



The Influence o f Saltmarsh Vegetation on Hydrodynamics

five millimetres. Under sufficient loading, a brittle material will eventually fail 

corresponding to a sharp drop in the load-displacement curve, although the tests were 

terminated before reaching this value. Segments were only tested up to a load large 

enough to cause a five millimetre deflection. Within the context of coastal 

saltmarshes, failure of the material is not of primary concern since the vegetation will 

not experience loads of large enough magnitude for failure to take place. Also, fresh 

vegetation is not very brittle and it is difficult to identify the point of failure as the 

material is strongly bound together and gradually breaks under a large loading.

Blunt Load

segment

supports

50 mm

deflection

Figure 4-35 Schematic diagram  illustrating the three-point bending test

The stress-strain curve is also presented in Figure 4-36b. At lower loads, 

deformation in the segment is elastic and removing the load would return the segment 

to its original shape. At this stage, the stress-strain relationship is linear. With 

increasing load, the deformation becomes plastic and the stress-strain relationship 

becomes curved. The stress, a, and strain, e, for a cylindrical span are given by:

Fl
cr =  j- [Equation 4.07]

71 r

6Axd
£ = —~2— [Equation 4.08]

where / is the span of the segment, the value of which was 50 mm for these tests, r  is 
the radius and d is the diameter.
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Figure 4-36 [a]: A typical force-displacement curve; [b]: the associated stress-strain curve based 
on a three-point bending test conducted on a 50 mm span of a Sp. anglica stem

The three point bending test was conducted on a sample of 50 stems of Sp 

anglica collected in October 2007. For each stem, five segments, each 60 mm in 

length were tested (the span length for the testing was 50 mm). The 60 mm segments 

were measured starting from the base, such that the edges of the segments were at 

distances of 0 mm, 60 mm, 120 mm, 180 mm, 240 mm and 300 mm from the base. 

The mean diameter and the force of failure values for each section of the plants are 

summarised in Table 4-4. The maximum force required to cause a five millimetre 

deflection in each segment tested decreased with distance from the base due to a 

decrease in the diameter of the segment.

Table 4-4 Summary of statistics from the three-point bending test analysis
section from diameter Ffail E El
base (mm) (mm) (N) (MPa) (Pa m4)

0 -6 0 4 .8 1 + 5 .6 % 7.32+15.4% 395 + 22.5 % 9.559 x 10'3 + 16.0 %
60 -120 4.65 + 5.3 % 6 .01+21.5% 411 + 19.3% 9.304 x 10'3+ 19.6%
120-180 4.30 + 5.8 % 4.53 + 20.4 % 508 + 19.3 % 8.210 x 10'3+ 18.8%
180 -240 3.78 + 6.7% 4.28 + 24.2 % 710 + 22.6% 6.854 x 10’3 + 22.0 %
240 - 300 3.43 ± 7 .4 % 3.88 ± 19 .3% 882 + 23.4% 5.769 x 10'3 + 22.2 %

The Young’s Modulus of Elasticity, E, is a measure of the stiffness of a 

material and is defined as the slope of the stress-strain curve within the elastic region. 

It can be determined from the slope of the force deformation curve where the
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relationship is linear (i.e. elastic). Plant stems are assumed to be circular in cross- 

section, and the Young’s Modulus o f Elasticity for a circular section is given by:

E = — = — —------= [Equation 4.09]
s  12Ax;zr4 Y l n r

where r is the radius o f the circular section and m is the slope o f the force-deformation 

curve within the elastic part o f the curve which follows Hooke’s law. Modulus of 

Elasticity values for the segments tested are summarised in Table 4-4.

With increasing distance from the base o f the plants, the total ‘flexural 

stiffness’, as characterised by E l decreased indicating that the plants were stiffer near 

the base and hence, less prone to deflexion. E l is the product o f  the Modulus of 

Elasticity, E, and the second moment o f area, I  (defined as / r r 4/4  for a cylinder, 

where r is the cylinder diameter). The plant stems consist o f  a stiffer outer shell, and a 

more flexible inner membrane. For the smaller segments typically found higher up in 

the plants, more o f the stem is made up o f the stiffer membrane hence a higher 

Modulus of Elasticity, E, is observed. Near the bed, the stems contain more of the 

flexible membrane and the Modulus o f Elasticity values are lower although the stems 

are considerably larger in diameter, thus although the material is more flexible in this 

region, the overall stiffness o f the stems is greater compared to the foliage at the top 

of the canopy. Hence, the parameter E l gives a more realistic representation of the 

apparent stiffness o f the material regardless o f the size o f the sample. A plot o f the El 

values for all the stem segments investigated is presented in Figure 4-37 showing a 

general increase with the size o f the segment diameter. E l values are also summarised 

in Table 4-4.
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Figure 4-37 The increase of the ‘flexural stiffness’ of plant stem segments (El) with diameter.

The analysis was repeated to compare samples collected during December 

2006 and September 2007. In September 2007, the vegetation was green and the 

plants were relatively larger in diameter and height, and the plant leaves appeared 

longer and larger in surface area. During December 2006, the vegetation appeared 

dormant with a loss of its green colouration, appearing yellow and becoming more 

brittle. To assess the contrast in material properties between the September and 

December vegetation, the three-point bending test was applied and the results are 

presented in Figure 4-38.

The 50 mm segments required for the test were taken from the middle of each 

stem. The moduli of elasticity (E) calculated for the summer vegetation were 

significantly higher than those for the winter vegetation. For the September 2007 

vegetation, segments had a mean diameter of 4.5 mm + 16.9%, had a mean modulus 

of elasticity of 460 MPa + 19.3%, and a mean El of 8.757 xlO-3 Pa m4 + 19.2%. 

Contrastingly, the December 2005 vegetation segments averaged 4.0 mm ± 30.4% in 

diameter, had a mean modulus of elasticity of 242 MPa + 32.6%, and a mean El of 

3.120x1b-3 Pam4+ 32.3%.
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Figure 4-38 Flexural stiffness (El) values for summer and winter vegetation, d  is the stem 
diameter.

4.4.4 Stem Density

Vegetation samples were collected from sampling locations along transects A 

and B throughout the monitoring period (see Section 3.2.3). A tube was used to 

isolate the vegetation covering a circular ground area with a diameter o f  375 mm, the 

plants were trimmed at the ground level, and the number o f stems was counted. Stem 

densities calculated from the samples are presented in Figure 4-39. Sampling was 

conducted monthly, and the monitoring period commenced in the summer of 2005 

and ended in the spring o f 2006. For the entire monitoring period, the average stem 

densities observed were 835 stems m '2 + 6.8% for transect ‘A ’, and 947 stems m ■2 ± 

16.4% for transect ‘B \  Stem densities demonstrated large fluctuations both spatially 

and temporally over the monitoring period. In the seaward direction, and with 

decreasing elevation, there was an increase in stem density along transect A, and a 

decrease along transect B. The spatial variations are more likely reflective o f the large 

degree of heterogeneity o f vegetation. The densities recorded are similar to those 

observed by Morris and Haskin (1990) in Spartina alterniflora saltmarshes, and by 

Neumeier (2005) in a Spartina anglica saltmarsh (Figure 4-40). Trends observed in

■ September vegetation *
□  December vegetation

■ ■

|p " f l  

&

□

a & t
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seasonal stem densities in Figure 4-39, where the lowest stem densities observed 

during the Autumn, and the highest stem densities during the summer, were likely to 

be associated with the lifecycle of the species. During the summer period, the 

vegetation was largest in size as demonstrated by greater H 90 and Ac values (Section 

4.2.6).

The stem density has been used often as a means of characterising the 

densities of vegetation material in the canopy, particularly in comparing results from 

flume investigations on cylinder arrays to vegetated flows (e.g. Li and Shen, 1973; 

Nepf et al., 1997a; Nepf et al., 1997b and others). This can be useful as an indicator 

of the quantity of vegetation, particularly where canopies are similar in morphology. 

Furthermore, the stem density dictates the stem spacings, which determine the 

likelihood of wake interference with downstream stems. Densities reported varied 

between 130 and 2500 stems m' for different sites where Spartina alterniflora was 

the key species (e.g. Morris and Haskin, 1990; Leonard and Luther, 1995 and others) 

(see Figure 4-40 and Table 4-5). Stem densities recorded by Neumeier (2005) along a 

Spartina anglica saltmarsh were similar to the stem densities observed along the 

Llanelli saltmarsh in the current study.

Table 4-5 Details of the studies presented in Figure 4-40
Author Site Location Key Species
Darke & Megonigal (2003) Gleason Marsh 

Walkerton Marsh

Virginia, US 

Virginia, US

Pontedaria cordata 
Leersia orizoides 
Zizania aquatica 
Pontedaria cordata 
Leersia orizoides 
Zizania aquatica 
Spartina cynosuroides

Gambi et al. (1990) San Juan Island Washington, US Zostera marina

Leonard & Luther (1995) Bayou Chitigue 
Old Oyster Chitigue 
Cedar Creek

SE Louisiana, US 
SE Louisiana, US 
WC Florida, US

Spartina alterniflora 
Spartina alterniflora 
Juncus roemerianus

Morris & Haskin (1990) Goat Island Site 
Oyster Landing Site

S Carolina, US 
S Carolina, US

Spartina alterniflora 
Spartina alterniflora

Neumeier (2005) Freiston Shore The Wash, UK Spartina anglica

Current Study Llanelli Marsh S Wales, UK Spartina anglica
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Figure 4-39 Spartina anglica stem densities counted at sampling locations on transects A and B and categorised by the four seasons. The bold line denotes the year- 
average for a given location with standard deviations shown, and the dotted lines show the stem densities implemented in the laboratory study presented in Chapter 
7. The seasons are defined as follows: Summer is between 21st June and 22nd September; Autumn is between 22nd September and 22nd December; Winter is between 
22nd September and 21st March; Spring is between 21st March and 21st June.
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4.5 Concluding Remarks

The vertical variation in Spartina anglica was quantified using two different 

methods. First, it was quantified according to its projected area o f obstruction, and 

secondly, according to the mass of plant material. Both parameters were quantified for 

sections of small increment along the height of the canopy to determine the distribution 

of plant material. Both methods identified that there was a large volume of plant material 

lower down in the canopy, and this gradually decreased with elevation up to the top of 

the vegetation.

The top o f the canopy was difficult to identify as each stem o f vegetation varied 

randomly in height. Choosing the tallest stem would have been unrepresentative of the 

total canopy. Instead, the 90th and 99th percentiles were determined for each parameter to
  tVi •

facilitate the comparison o f different samples. Taking the 90 percentile as an index 

height, Sp. anglica canopy heights varied between 0.27m (+ 8.2 %) and 0.34m (+ 5.9 %) 

at different times o f the year. Values were based on an average value across the Llanelli 

saltmarsh. For the 99th percentiles, the range o f values determined was between 0.42m (+

15.0 %) and 0.54m (±15.1 %). The higher standard deviations reflected the higher level 

of uncertainty associated with using the 99th percentile. It is proposed that the 90th 

percentile height is a good guide to the canopy height.

The photographic method did not distinguish between variations in plant parts. A 

stem of Sp. anglica typically had a lower projected area o f obstruction near the base due 

to the exclusive presence of the plant stem, whereas higher up in the canopy, where a 

large proportion of the canopy was composed o f leaves, the projected area was much 

higher, but the plant material was much more flexible.

Results from the photographic method can be used to distinguish between the 

morphologies of natural canopies, constructed canopies in the laboratory environment 

and uniform cylinder arrays. The amount of vegetation material in a natural canopy 

steadily increased towards the bed due to the presence o f fallen or decomposing plant 

parts, smaller shoots, or even other vegetation species growing near the bed. Constructed 

canopies would usually consist of neatly arranged larger plants resulting in an organised
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canopy with a clear stem region near the bed, and a higher projected area of obstruction 

at the mid-height due to a higher concentration of plant foliage.

The quantification of the canopies based on the mass of vegetation material 

produced slightly different profiles compared to the projected area profiles. The mass 

quantification showed a decrease in the amount of material near the bed, and a peak 

approximately 100 mm above the bed. The projected area method suggested the amount 

of material continued to increase towards the bed. Furthermore, the mass quantification 

method results suggest that the canopies were slightly shorter than the heights determined 

from the photographic method. The thinner plant parts near the top of the canopy were 

low in mass but high in projected area.

Stem densities were counted for Sp. anglica samples collected across the Llanelli 

saltmarsh over the monitoring period. Average densities observed varied between 589 

stems m' during the Autumn and 1174 stems m‘ during the Summer. Stem diameter 

measurements were only taken for the months of May, June, September and December. 

The smallest average diameter was observed in June (2.76 mm) reflecting the new 

offspring of fresh vegetation. In September, the diameters were largest with an average 

value of 4.65 mm following a period of intensive growth. The average diameter decreases 

to 4.12 mm during December when the vegetation begins to decay.

The vegetation appeared greener and healthier during the summer months 

compared to the period between January and April when the vegetation became yellow in 

colour and more brittle. This was reflected in values of Young’s Modulus of Elasticity, 

which were determined for samples of Sp. anglica collected during September and 

December. Average values of 460 MPa and 242 MPa were observed respectively 

highlighting the decrease in stiffness of the plant stem as the vegetation ages.

The Sp. anglica canopies were considerably taller during the summer months. 

The vegetation grew in size from June, reaching a maximum spatially averaged height of
th0.34 m + 5.9% (90 percentile height), and decreasing steadily in height between 

September and November. A minimum 90th percentile canopy height of 0.27 m + 8.2 % 

was observed during March, although the canopy height was fairly consistent at this level 

for the remainder of the year (between November and May). Trends observed in canopy
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heights reflect the change in the quantity of vegetation, which also increased in density 

during the summer months.

Ultimately, it is difficult to simulate a natural plant stem with an artificial material 

that varies significantly in morphology and uniform cylinder arrays are often 

implemented on the assumption that the plants resemble the cylinders. In the case of 

Spartina anglica, that can only be justified for the stem region near the bed. Hence, due 

to the large contrast in morphology between vegetation and simulated canopies, the 

hydraulic resistance characteristics determined from experimental studies on uniform 

cylinder models and the associated velocity and turbulence structures cannot be easily 

adapted to the natural environment.
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5 Laboratory Investigations: Setup and Methodology

5.1 Introduction

A range of laboratory experiments were conducted to investigate the influence 

of different canopies on velocity and turbulence structures. Details of the experiments 

and the apparatus used are presented in this chapter. Different procedures for 

recording measurements that are applied in the experiments are also described.

A range of bed gradients, stem densities, emergence and submergence levels 

were imposed. Values for these variables were selected based on the findings of the 

field monitoring programme presented in Chapter 4, so that the experiments were 

conducted for a range of conditions that were representative of typical saltmarshes. 

The submergence level, H, was defined as the ratio of flow depth, D, to vegetation 

height, T. Values of H  less than unity indicate an emergent condition meaning that the 

vegetation canopy projects through the water surface, whilst values of H  greater than 

unity indicate a submerged condition with the flow depth being greater than the 

canopy height.

The experiments were conducted using three different types of canopy: 

uniform cylinder arrays, constructed vegetation canopies using vegetation collected 

during August 2006 (non-dormant or summer vegetation), and constructed vegetation 

canopies using vegetation collected during February 2007 (dormant or winter 

vegetation). The characterisation of the vegetation canopies is also considered in this 

chapter. Details of the experiments conducted for each type of canopy are summarised 

in Table 5-1, Table 5-2 and Table 5-3 respectively.

Table 5-1 Details of experiments conducted using uniform cylinder arrays
Test No. Stem 

Density 
[stems m‘2]

Bed
Gradient

So

Vegetation 
Height 
T [ m]

Reynolds
Number

Red

Flow 
Depth 
D  [m]

Submergence 
Level 

H = D / T
S-1000 800 1/1000 0.15 430 0.20 1.33
M-1000 1160 1/1000 0.15 330 0.20 1.33
D-1000 1850 1/1000 0.15 230 0.20 1.33
S-0300 800 1/300 0.15 840 0.20 1.33
M-0300 1160 1/300 0.15 560 0.20 1.33
D-0300 1850 1/300 0.15 420 0.20 1.33
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Table 5-2 Details of the experiments conducted using Sp. anglica plants during Aug 2006
Test
No.

Stem 
Density 

[Stems m'2]

Bed
Gradient

s b r - i

Vegetation 
Height 
T[ m]

Flow 
Depth 
D [  m]_

Reynolds
Number

Re*/

Submergence

H = D / T

Flow
Rate

Q G8' 1] -
S-T12 800 1/300 0.53 0.25 420 0.47 7.0
S-Tll 800 1/300 0.53 0 . 2 0 430 0.38 5.3
S-Mll 800 1/300 0.15 0 . 2 0 450 1.33 6 . 8

S-Sll 800 1/300 0 . 1 0 0 . 2 0 600 2 . 0 0 12.9
S-V10 800 1/300 0.05 0.15 890 3.00 13.9
S-T22 800 1 / 1 0 0 0 0.53 0.25 2 0 0 0.47 3.4
S-T21 800 1 / 1 0 0 0 0.53 0 . 2 0 230 0.38 2.7
S-M21 800 1 / 1 0 0 0 0.15 0 . 2 0 250 1.33 3.9
S-S21 800 1 / 1 0 0 0 0 . 1 0 0 . 2 0 350 2 . 0 0 7.4
S-V20 800 1 / 1 0 0 0 0.05 0.15 360 3.00 8 . 0

M-T12 1160 1/300 0.53 0.25 340 0.47 5.5
M-Tll 1160 1/300 0.53 0 . 2 0 360 0.38 4.2
M-Mll 1160 1/300 0.15 0 . 2 0 340 1.33 5.3
M-Sll 1160 1/300 0 . 1 0 0 . 2 0 480 2 . 0 0 1 0 . 6

M-V10 1160 1/300 0.05 0.15 770 3.00 12.4
M-T22 1160 1 / 1 0 0 0 0.53 0.25 160 0.47 2 . 6

M-T21 1160 1 / 1 0 0 0 0.53 0 . 2 0 160 0.38 1.9
M-M21 1160 1 / 1 0 0 0 0.15 0 . 2 0 2 1 0 1.33 3.1
M-S21 1160 1 / 1 0 0 0 0 . 1 0 0 . 2 0 260 2 . 0 0 5.8
M-V20 1160 1 / 1 0 0 0 0.05 0.15 440 3.00 6 . 8

D-T12 1850 1/300 0.53 0.25 250 0.47 4.4
D-Tll 1850 1/300 0.53 0 . 2 0 270 0.38 3.5
D-Mll 1850 1/300 0.15 0 . 2 0 240 1.33 4.6
D-Sll 1850 1/300 0 . 1 0 0 . 2 0 370 2 . 0 0 10.7
D-V10 1850 1/300 0.05 0.15 480 3.00 10.9
*D-T22 1 OCfiI OJv -1 / 1 0 0 0 q 5 3 f luv«il> J 4-60 2S
*D-T21 48S0 -1 / 1 0 0 0 q 5 3 flTflXI •JL\J 470 q 3 3

D-M21 1850 1 / 1 0 0 0 0.15 0 . 2 0 1 1 0 1.33 2 . 2

D-S21 1850 1 / 1 0 0 0 0 . 1 0 0 . 2 0 180 2 . 0 0 5.5

"“Tests D-T22 and D-T21 were excluded from this report due to an error incurred in the adjustment 
of the flume bed gradient.

Table 5-3 Details of the experiments conducted using Sp. anglica plants during Feb 2007
Test No. Stem 

Density 
[Stems m'2]

Bed
Gradient

So

Vegetation 
Height 
T[ m]

Flow 
Depth 
D [  m]

Reynolds
Number

Re*/

Submergence 

H = D /T

Flow
Rate

Q [ i s 1]
S-T21m 800 1 / 1 0 0 0 0.53 0 . 2 0 410 0.38 6 . 8

S-M21m 800 1 / 1 0 0 0 0.15 0 . 2 0 600 1.33 10.7
S-S21m 800 1 / 1 0 0 0 0 . 1 0 0 . 2 0 760 2 . 0 0 17.8
S-V20m 800 1 / 1 0 0 0 0.05 0.15 1 0 0 0 3.00 19.2
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5.2 Laboratory Setup

5.2.1 Flume Description

The flume studies were conducted in a 0.3m wide, 0.3m deep and 10m long 

slope-adjustable flume with glass sidewalls (see Figure 5-1). At the upstream end, a 

head tank provided a consistent flow at the upstream boundary over the flow depth. A 

50 mm length of honeycomb flow-straightener was used to minimise turbulence in the 

inflow. Flow depth through the flume was controlled at the downstream end by a 

lever-adjustable weir, downstream of which, the flow funneled into a large storage 

tank.

A manual lever controlled the bed gradient. The flume bed was repeatedly 

levelled following minor bed slope adjustments until the two bed gradients of 0.001 

and 0.003, which were imposed in this study were achieved. The lever setting was 

marked for future reference.

The glass walls of the flume in which the experiments were conducted are 

smooth and would create negligible resistance to the flow. Furthermore, flow 

parameters were measured along the centreline of the flume to reduce the impact of 

wall effects on measurements. A width to depth ratio greater than 6.0 is normally 

required for wall effects do to be negligible. Values for the experiments were much 

lower than this value, ranging between 1.2 and 2.0 for flow depths of 0.15m, 0.20m 

and 0.25m. However, for flow through dense vegetation, boundary effects due to the 

roughness of the bed and the walls can usually be neglected.

10 m

Vegetation Canopy

Constant
Head
Tank

0.3 m

Flow ___
straightener

Storage
Tank

Figure 5-1 Schematic diagram outlining the flume setup used for the experiments.
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5.2.2 Discharge Measurement

A pump controlled by a digital flow meter facilitates discharge through the 

flume. The flow meter was calibrated by testing the pump for a number of flow 

settings, and compared against the measured volumetric flow rate, which was 

calculated based on the duration required to fill a 100.8 litre container. The procedure 

was repeated three times to obtain an average value from which the measured flow 

rate, (^measured, was calculated. In Figure 5-2a, the flow meter readings, 0 f i ow meter, are 

compared to the measured flow rates. At lower flows, the two conformed well, whilst 

at higher values, there was an increase in the underestimation o f the flow rate by the 

flow meter. However, at the highest flow rate of 13.5 1/s (0fiow meter), the time required 

to fill the bin was 5.8 ±  0.1s compared to 53.6 + 0.5s for the lowest flow rate o f 1.7 

1/s. At higher flow rates, the sampling periods were considerably shorter, and the 

likelihood o f error was significant. For instance, a difference o f  1.5s in the recorded 

time for the highest flow rate would have rendered a value equal to that displayed by 

the flow meter.

Errors in the flow meter readings based on the calculated measurements are 

shown to increase with flow rate in Figure 5-2b. It is therefore uncertain whether the 

errors are due to an increase in human error at higher flow rates, or due to the flow 

meter. However, the flow meter readings were only used to determine the setting 

required for uniform flow, and the values were not used in any calculations. Thus, 

instead o f calculating an area-mean velocity based on flow rate, a depth-averaged 

velocity was calculated based on measured velocities. Flow rates for the experiments 

on the August vegetation (see Table 5-2) ranged between 1.9 1/s and 13.9 1/s, 

(although flow rates for the February vegetation were as high as 19.2 1/s, see Table 

5-1), hence, most o f the experiments were covered by the range o f  flow rates used in 

the flow meter calibration.
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Figure S-2 [a]: Comparison between flow meter readings and measured volumetric flow rates for 
the flume pump; [b]: Errors in the flow meter readings for different flow rates

5.2.3 Flow Depth Measurement

A water level gauge was installed onto a platform mounted onto the railings of 

the flume. The vernier scale on the gauge enabled precise readings to the nearest 0.1 

mm. The gauge was used to measure the water surface level relative to a datum at five 

locations: 3.5m, 4.5m, 5.5m, 6.5m and 7.5m along the length of the flume. These 

distances were measured from the upstream end of the flume. The datum was set to 

the flume bed elevation for convenience. The measurement locations were selected so 

as to cover a representative length of the flume, whilst avoiding the upstream and 

downstream regions where the flow is likely to be more significantly affected by the 

inlet and outlet boundaries.

Elevations of the flume bed were also recorded at the measurement locations. 

These varied slightly due to either the positioning of the railings with respect to the 

underlying flume, or the profile of the flume bed. The variations were within 0.3mm 

of the mean bed level and were corrected for when determining the water surface 

level. The measurements were used to determine the average flow depth and the water 

surface gradient.
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5.2.4 Installation of the Cylinders and Vegetation

5.2.4.1 Uniform Cylinder Arrays

Uniform cylinder arrays were created by installing 170 mm long plastic 

drinking straws into 20 mm deep plastic honeycomb sheets. The plastic straws were

6.0 mm and the honeycombe pores were 6.2 mm according to the design 

specifications o f the material.

To minimise turbulence generation due to the perforated bed surface, 

aluminium foil was glued onto the honeycomb sheets using Solvitol heavy-duty spray 

adhesive. The foiled honeycomb sheets were screwed onto plastic bases for support, 

and the surface marked and pierced at the desired stem density for each experiment 

(800, 1160 and 1850 stems m '2). The stem densities were selected within the range of 

values observed at the Llanelli and Lanrhidian field sites (Section 3.2.3). The specific 

values were determined by the pore spacings. For the stem densities investigated, the 

stems were spaced four, five and six pores apart in the diagonal direction along the 

honeycomb sheets (Figure 5-3). These equated to diagonal stem spacings o f 32.0mm, 

38.4mm and 44.8mm respectively (Table 5-4). The plastic bases supporting the 

prepared Sp. anglica canopies were also attached to the base o f the flume using silicon 

sealant.

o o o o o 
o o o o o o

°  °  . R .  °  °

o o c>—o  o o

Longitudinal direction 
of the flow

o o o o o
o o o o o o

Figure 5-3 The longitudinally staggered array arrangement implemented in the flume 
experiments. The plastic honeycomb sheets used to hold the Spartina anglica stems influenced the 
pattern, s is the distance between the stems.
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Table 5-4 Stem spacings for each stem density implemented in this study.
Canopy density (stems m'2) s (mm)

800 38.0
1160 31.5
1850 25.0

The aluminium lining created a smooth bed surface in regions void of 

vegetation to reduce bed generated turbulence over the hollow honeycomb pores. In 

emergent vegetated flows, turbulence production within the stem wakes far exceeds 

that due to bed shear over most of the flow depth. It is thought that the influence of 

the bed is limited to within a distance of one stem diameter (Nepf et al., 1997a).

5.2.4.2 Constructed Vegetation Canopies

Vegetation samples used in this laboratory study were collected near 

Peterstone Wentlooge along the Severn Estuary between Cardiff and Newport (Figure 

5-4). The site was chosen for convenience due to its proximity, and the abundance of 

Spartina anglica, the species of interest. During collection, the vegetation was cut at 

the base of each stem. Plants were installed in a similar method to the one described in 

Section 5.2.4.1 for the uniform cylinder arrays and silicon sealant was used to hold the 

stems in place.

':kj \  
Newport

u ah ish e n

° Roath 

° C a r d i f f

Peterstone 
Wehttooge

saltmarsh site

JJanrumne^................

:
!-----------

R u rrm y  I    Z
...

Figure 5-4 [a]: location map of Peterstone Wentlooge with respect to the nearby cities of Newport 
and Cardiff; (bj: location of the saltmarsh near Peterstone Wentlooge. Maps were taken from 
www.maps.google.co.uk

The effects of fresh summer and mature winter vegetation on flow structure 

were compared. In the northern hemisphere, by convention, summer is accepted as the
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period between the summer solstice (~21st June), and the autumn equinox (~22nd
• ndSeptember). Winter is the period between the winter solstice (-22  December), and 

the vernal equinox ( - 2 1st March) (Her Majesty’s Almanac Office, 2000). The 

majority o f the experiments were conducted during August 2006, and some were 

repeated during February 2007. Therefore, by convention, plants collected during 

these periods were representative o f summer and winter vegetation.

To achieve a range o f submergence levels throughout the experimental 

programme (Table 5-2), the vegetation was trimmed from its full height to 150 mm, 

100 mm and 50 mm. Therefore, for all experiments conducted for submerged 

canopies, the vegetation was ‘cropped’ in nature and does not truly represent the 

natural morphology, however, this was necessary to achieve submerged conditions in 

the flume available for this investigation (see Section 5.2.1). A steel tube was 

suspended from a platform using string, and the platform was mounted onto the flume 

railings. The elevation o f the steel tube was adjusted to the required canopy height. 

This was used as a guide along the flume to trim the top o f the vegetation using a pair 

of large scissors. The trimmed segments were removed during the process to avoid the 

accumulation o f loose material within the canopy.

5.2.5 Rating Curves and Establishment of Uniform Flow Conditions

In open channels, continuous discharge measurements are impractical. Instead, 

relationships are commonly developed between the stage, or the flow depth, and the 

discharge. These are often called the ‘rating’, or the ‘stage-discharge relationship’, 

and may be plotted to produce a stage-discharge, or a rating curve. Stage-discharge 

curves relate the flow rate to the flow depth for a given channel. When compared for 

different channels, the curves indicate the difference in flow resistance. For similar 

flow rates, a greater flow depth is achieved in a channel with a higher flow resistance.

All experiments conducted here were for uniform or nearly uniform flow 

conditions. For each flow condition, where alterations were made to the bed gradient 

or the vegetation canopy (stem density or vegetation height), a stage-discharge curve 

was produced. Flow conditions are listed in Table 5-2. A number o f flow rates were 

implemented, the magnitudes o f which varied for different canopies. Stage-discharge 

curves were produced covering the required flow depths to achieve the desired 

submergence level for each experiment (Table 5-2). For each flow rate, the water
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surface gradient relative to the cannel bed was determined as described in Section 

5.2.3. Six.weir height settings were implemented resulting in three positive and three 

negative water surface gradients. For a positive gradient, the flow depth is greater at 

the downstream end of the flume. The six gradients were used to determine the 

required weir setting to achieve a zero-gradient surface water profile.

5.2.6 Changes in Vegetation Hydraulic Properties during the Experiments

For each stem density of the constructed vegetation canopies (see Section

5.2.4.2),,a range of bed gradients and vegetation heights were examined, and the 

experiments were conducted over a period of up to nine days. This was in addition to 

a day for collection and a day for installation of the vegetation. There was concern 

that the vegetation properties may be modified significantly as plant matter 

decomposed over the duration of the study of each stem density. Decomposition was 

likely affected by a number of factors, particularly the room temperature, water 

temperature, water quality and the duration and extent to which the vegetation was 

immersed in water. An appropriate period over which the hydraulic resistance of the 

vegetation remained relatively constant is therefore difficult to define, as this will 

depend on the laboratory conditions at the time the experiments were conducted. To 

assess change in the hydraulic resistance of the vegetation, a canopy was created at a 

density of 800 stems m' and stage-discharge curves were determined at two-day 

intervals. The curves are presented in Figure 5-5 and indicate that over a 13-day 

period, there was little variation in the vegetation’s resistance properties.
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Figure 5-5 Variations in the stage-discharge relationship for an emergent, sparse Spartina anglica 
canopy with a stem density of 800 stems m~2 over a two-week period. D is the flow depth and Q is 
the flow rate. Error bars indicate the errors in flow rates based on the pump reliability 
evaluation conducted in Section 5.2.2. The error in flow depth measurements is estimated at + 0.1 
mm.

5.2.7 Measurement of Velocity and Turbulence Statistics

Three dimensional velocity components (u, v and w) corresponding to the x, y  

and z-axes were measured using two 25 Hz Nortek Acoustic Doppler Velocimeters 

(ADVs). The instruments operate on the Doppler principle, whereby the echo of short 

acoustic pulses o f known frequencies is detected, and the shift in frequency between 

the transmitted and received pulses is used to determine the water velocity (Nortek 

AS, 1997). The instruments were used to measure velocity statistics over a three- 

minute period. The duration was selected following a number o f trial runs where 

measurements were conducted over longer periods o f up to 20 minutes. This 

determined the size o f the sample required to minimise the error in the cumulative 

time-averaged velocity sufficiently e.g. Figure 5-6. The longitudinal velocity
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calculated based on a three-minute period resulted in an error of less than 1.2% from 

the cumulative time-averaged value after 10 minutes. At 25Hz, over a three-minute 

period, 4500 measurements were recorded for each parameter. The measured data 

was saved and then processed through the WinADV software to extract time-series 

data and calculate time-averaged values of the velocity (w, v, w) and turbulence (e.g. 

u\ w\ u'w' etc.) parameters.

0.16

j t
-]Tw  (ms’1) 0.14
t 0

0.12
0 3 5 10

t (min)

Figure 5-6 Cumulative time-averaged longitudinal velocities over periods of up to 10 minutes 
highlighting the larger errors associated with a sampling period of one minute. The velocities 
were recorded at an elevation of 30mm above the bed for vegetation collected in February 2007, a 
stem density of 800 stems m~2, a canopy height of 100 mm and a bed gradient of 1/1000. t is time, 
u is the instantaneous velocity at time, f.

Each ADV comprises a transmitter and three acoustic receivers (Nortek AS, 

1997). The receivers are mounted on three short arms at equal spacings surrounding 

the transmitter (see Figure 5-7). The cylindrical sampling volume, 9 mm in height and 

15 mm in diameter, is located approximately 50 mm from the transmitter. The path 

between the sampling volume and the transmitters must remain unobstructed. Due to 

the high density of the vegetation canopies, it was necessary to clear some of the 

vegetation to accommodate the ADVs.
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Acoustic Transmitter

Sampling V olum e----------------------^  j

Figure 5-7 Schematic Diagram showing the components of an Acoustic Doppler Velocimeter 
(ADV) head (taken from Nortek AS, 1997).

The strength o f the signal echo is quantified in terms o f the signal-to-noise 

ratio (SNR) (Nortek AS, 1997). According to Nortek AS (1997), to ensure the data is 

of good quality, this must be equal to or greater than 15 dB. The SNR may fall below 

this value if  there are not enough suspended particles in the water to scatter the 

acoustic signals, in which case it is necessary to add more seeding material. Seeding 

material was added to the water supply to maintain the SNR above this level, and 

compressed air was used to aerate the water storage tank to minimise settling of the 

seeding material.

Two different ADVs were used: one with an upward-facing sensor, and one 

with a downward-facing sensor, to measure a vertical profile at 5mm increments over 

the full flow depth. For flow depths o f 0.20m and 0.25m, the overlap between the two 

instruments was located at the mid-flow depth. For a depth o f 0.15m, the lowest 

elevation at which the upward facing sensor was capable o f recording measurements 

was 85mm above the bed. Hence, the overlap was located 95mm above the bed. An 

overlap of 10 mm was measured by both upward and downward facing ADV to 

ensure the measurements were consistent.
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5.2.8 Time-averaged and Spatially-averaged Parameters

To account for the effects due to the heterogeneity of the vegetation on the 

flow, velocity and turbulence parameters were measured at a number of different 

locations along the flume. Whilst four velocity profiles were measured for each 

constructed vegetation canopy, only two profiles were measured for the uniform 

cylinder arrays. This was thought to be appropriate since the arrays were uniform in 

structure.

At each measurement location along the length of the flume, a full profile was 

measured extending from approximately 5.0 mm above the bed, up to 5.0 mm below 

the water surface. For the constructed vegetation canopies, the four profiles were 

spaced 0.65m apart at distances of 3.50m, 4.15m, 4.80m and 5.45m from the upstream 

end of the flume. For the uniform cylinder arrays, profiles were measured at distances 

of 4.15m and 5.45m from the upstream end. Velocity and turbulence statistics were 

spatially averaged over the four profiles to minimise features of the flow profiles that 

may be associated with the local flow structure (Section 2.3.1). Nevertheless, it should 

be stressed that considering the high level of variability in vegetation, four profiles 

cannot ensure the elimination of bias from the data, and ideally a much greater 

number of profiles should be used. The focus of this study was to investigate the flow 

structure, rather than the level of bias in the measurements hence, a compromise was 

made to investigate a wider range of variables as outlined in Section 5.1.

In Figure 5-8, the time-averaged longitudinal velocities at the four profiles and 

their spatially-averaged values are presented as an example to illustrate the spatial 

variability. In Figure 5-9, the temporal-average RMS (root mean square) of the 

turbulent fluctuations in the longitudinal velocity for the same experiment at the four 

individual profiles, and the spatially-averaged profile are presented. Fluctuations in 

both parameters within the canopy and the surface flow layers highlight the 

importance for recording measurements at multiple locations. Variation between the 

longitudinal velocities at the four profile locations were small and this can be 

attributed to the uniform flow conditions implemented. Variation was more significant 

between the fluctuating components of the longitudinal velocities because these are 

associated with turbulent structures within the flow which are random in nature.
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Figure 5-8 a: Single-point time-averaged and; b: double-averaged longitudinal velocities for a 
1850 stems m‘2 canopy, 0.001 bed gradient, and vegetation height of 150 mm where X  is the 
longitudinal distance along the flume. “ Bars” indicate the standard  deviation of the spatial 
variation.
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Figure 5-9 a: Single-point time-averaged and; b: double-averaged RMS values of instantaneous 
fluctuations in longitudinal velocities for a 1850 stems m '2 canopy, 0.001 bed gradient, and 
vegetation height of 150 mm where X  is the longitudinal distance along the flume. “ Bars” indicate 
the standard deviation of the spatial variation.

For comparison of the results from experiments conducted for different bed 

gradients, for different stem densities, and at different submergence levels, velocity 

and turbulence parameters were normalised by the depth-averaged longitudinal 

velocity, U, unless specified otherwise. This is defined as follows:

[Equation 5.01]
z=D

u = —  f< w > d z
D J
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where z is the elevation and D  is the flow depth. An alternative parameter for 

normalising is the area-mean velocity calculated from the flow rate and the cross- 

sectional flow areas (see Section 5.2.2). Although both parameters were very similar 

in value, the depth-averaged velocity based on measurements recorded along the 

centreline of the flume is less likely to be affected by the flume walls (Section 5.2.1) 

and is more accurate than the discharge measured by the flow meter (see Section

5.2.2). Despite difference in flow regime between the cropped canopy and surface 

flow layers, the depth-averaged velocity was used for normalising the entire flow 

depth to'facilitate comparison between flow structures within the two layers.

5.3 Quantification of the Vegetation Canopies

5.3.1 The Spartina anglica Species

The most abundant species identified along the saltmarshes monitored during 

the field study (see Chapter 3), was Spartina anglica. This species was in the 

laboratory investigations conducted to study the effects of saltmarsh vegetation on the 

velocity and turbulence structures. Sp. anglica is described by Fitter et al. (1984) as 

an often abundant, loosely clustered creeping perennial (having a lifecycle lasting 

longer than two years), commonly planted to stabilise coastal mud. Its stems stout to 

130 cm. Its leaves are yellow-green in colour and can be either flat or channelled, and 

up to 15 mm in width. Its inflorescence (the arrangement of flowers on the axis) is in 

a cluster up to 35 cm in length and consisting of 3 to 6 spikes with the axis ending in a 

50 mm bristle well above the top spike. Spikelets are one-flowered and unawned 

(non-bristled). The anthers are 8-12 mm and flower between July and November. It 

commonly occurs along wet coastal mud and according to the optimum range of 

growth conditions for the species, it is most likely to be found along most English and 

Welsh coastlines. The plant is illustrated in Figure 5-10.
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Figure 5-10 Spartina anglica [aj: a schematic diagram  taken from Keeble M artin  (1965) |b |: a 
sample of stems collected from one of the study sites (cj: a Spartina anglica canopy on the Llanelli 
saltmarsh

5.3.2 Sheltering Effect of the Vegetation

C r o ss -se c t io n a l p h o to g ra p h s o f  v e g e ta t io n  c a n o p ie s  c a n  b e  u s e d  to  d e term in e

the p ro jected  area  o f  a  c a n o p y  ( s e e  S e c t io n  4 .2 ) .  H o w e v e r , th e  v is ib le  p ro jec ted  area

o f  ob stru ctio n  d o e s  n o t tru ly  rep resen t th e  a m o u n t o f  v e g e ta t io n  m a ter ia l w ith in  the

sec tio n . D u e  to  th e  o v e r la p p in g  o f  th e  v e g e ta t io n , part o f  th e  c a n o p y  rem a in s  h id d en

b eh in d  oth er  p lan t parts. F or lab ora tory  c o n str u c te d  c a n o p ie s ,  w h e r e  s te m  d e n s it ie s  are

k n o w n , th e to ta l p r o je c te d  area  o f  o b str u c tio n  o f  th e  c a n o p y  c a n  b e  d e term in ed  by

q u a n tify in g  th e  p r o je c te d  area  o f  e a c h  s te m  in d iv id u a lly , an d  c a lc u la t in g  th e  su m  o f

the p ro jected  areas o f  a ll s te m s  w ith in  a  s e c t io n  o f  c a n o p y . A  sa m p le  o f  5 6  s te m s  o f

Spartina anglica w a s  s e le c te d  and  th e  s te m s  w e r e  q u a n tif ie d  in d iv id u a lly  a c c o r d in g  to

the p h o to g ra p h ic  m e th o d  (S e c t io n  4 .2 )  to  d e te r m in e  a  v e r t ic a l p r o f ile  o f  p ro jec ted  area

for ea ch  stem . T h e  s te m s  w e r e  th en  in sta lle d  in to  a  s h e e t  o f  p la s t ic  h o n e y c o m b e  to

create three 1 00  m m  th ic k  c a n o p ie s  w ith  s te m  d e n s it ie s  o f  8 0 0 , 1 1 6 0  an d  1 8 5 0  ste m s  

-2
m ‘ (5 6  s tem s w a s  th e  n u m b er  o f  s te m s  req u ired  to  crea te  a  1 0 0  m m  th ick  se c t io n  at 

the h ig h est  s te m  d e n s ity ) . T h e  c a n o p y  th ic k n e s s  w a s  s e le c te d  b a se d  o n  th e  th ic k n e ss  

im p lem en ted  in  th e  p h o to g r a p h ic  m e th o d  an d  th e  s te m  d e n s it ie s  w e r e  s e le c te d  b a sed  

on  the c a n o p ie s  im p le m e n te d  in  th e  lab oratory  e x p e r im e n ts . A fte r  th e  c a n o p ie s  w ere  

constructed , th e p h o to g r a p h ic  a n a ly s is  w a s  c o n d u c te d  a g a in  to  d e te r m in e  th e v is ib le  

projected  area for  e a c h  c a n o p y . T h e  actu a l p r o jec ted  area  o f  e a c h  ca n o p y  w a s
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calcu lated  b y  ad d ition  o f  the projected  areas o f  the stem s w ith in  each  canopy. The  

average projected  area o f  ob stru ction  per stem  is  p resented  in  F igu re 5-1 la .

0.6

z (m )

□ 8 0 0  stem s m '2

■ 1160  s tem s m '2

■ 1850  s tem s m -2

o.oo o.oi 0.02
a/ M  (m  s t e m ')

Figure 5-11 [a]: Average projected area of obstruction per stem used to construct three canopies 
with stem densities of 800, 1160 and 1850 stems m'2 to investigate variations in the degree of 
vegetation overlap, a is the projected area per unit volume, M  is the number of stems per unit 
bed area, and z  is the elevation above the bed. [b]: a typical Spartina anglica stem.

E xp erim en ts w ere  co n d u cted  at f lo w  dep th s o f  up to  2 5 0  m m  (S ectio n  5 .1). 

The projected  area o f  ob stru ction  w a s  fa irly  u n iform  in  m agn itu d e from  the bed lev e l  

up to an e le v a tio n  o f  2 8 0  m m  a b o v e  the bed. V a lu es  o f  p rojected  area per stem  

averaged over  th is  se c t io n  o f  th e ca n o p y  (0  -  2 8 0  m m ) w ere  for 8 0 0  stem s m '2: 1.605  

m ’1 +  2 .0  %, for 1 1 6 0  ste m s m '2: 1 .5 9 7  m '1 +  3 .2  %, and for 1850  stem s m '2: 1 .546  m '1 

+  1.7 %. A b o v e  th e  2 8 0  m m  le v e l, the p rojected  area rap id ly  d ecrea ses  w ith  e leva tion  

up to  5 6 0  m m , w h ic h  w a s  th e h e ig h t o f  the ta llest p lan ts u sed  in  th is an alysis. A  

typ ical Spartina anglica s tem  is  sh o w n  in F igure 5-1 lb . D u e  to  the h eterogen eity  o f
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the vegetation, there was a large variation in the heights o f individual plants. 

Furthermore, towards the top o f the plants, leaves become thinner towards the tip, 

giving rise to the decrease in projected area observed.

For the constructed canopies, the total projected area o f  obstruction, Ap,

which is the sum o f the projected area o f each stem used to construct a 100 mm thick 

canopy, is given by:

Ap = Ap'+Ap [Equation 5.02]

where Ap' is the visible projected area in a photograph o f 100 mm thickness of

canopy, and A is the hidden area o f vegetation. The total projected area o f the

vegetation, Ap , is required at a later stage when the drag forces due to the obstruction

of the flow by the vegetation are considered as the hidden plant parts also contribute 

to such drag forces.

The projected areas o f obstruction determined from both the cross-section 

photographs (A p'), and from the summation o f the projected areas for the individual

stems (A p) are presented in Figure 5-12a and Figure 5-12b respectively for the 800,

1160 and 1850 stems m '2 canopies. The values increased with stem density in both 

cases indicating an increase in the amount o f plant material.

The relationship between the amount o f hidden material in a 100 mm cross- 

section photograph and the amount o f visible material was investigated as presented 

in Figure 5-12d. The amount o f hidden material increased with stem density, as shown 

in Figure 5-12c. For the lower 300 mm of canopy above the bed, the average amount 

of hidden material as a proportion of the total projected area o f plant material was 

30.8%, 58.0% and 76.1% for sections with stem densities o f 800, 1160 and 1850 

stems m' respectively. Due to the increase in the amount o f hidden material with stem 

density, the total projected areas per unit volume presented in Figure 5-12b, indicated 

a significantly greater increase in projected area compared to the visible projected 

area per unit volume profiles presented in Figure 5-12a. The increase from 800 stems 

m'2 to 1160 stems m‘2, corresponding to an increase o f 45.0% in stem density, and 

from 800 stems m '2 to 1850 stems m*2, corresponding to an increase o f 131.3% in
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stem  d en sity , resu lt in  d ep th -averaged  in creases o f  150 .8%  and 4 6 6 .0 %  resp ectiv e ly  

in the total projected  area per unit v o lu m e .
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Figure 5-12 [a]: Visible projected area of obstruction, Ap , [bj: total projected area, Ap, and

[cj: hidden projected area, Ap, per unit height of canopy, A z, for a 100mm thickness of canopy 

and [d]: the ratio of hidden to visible projected area for 800,1160 and 1850 stems m'2.

T he am ou n t o f  h id d en  p lan t m aterial per unit v o lu m e  w ith in  a can op y  sectio n  

can be estim ated  from  th e  d ep th -averaged  v a lu es o f  the v is ib le  p rojected  area per unit 

v o lu m e, a' for a g iv e n  stem  d en sity . T h is is  determ ined  from  100 m m  cro ss-sectio n  

photographs o f  Spartina anglica ca n o p ies  d ep en d in g  on  the stem  d en sity  through the  

linear tren d -lin e  p resen ted  in  F igure 5 -1 3 . T he m eth od  is  u sed  throughout the th esis  to
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evaluate the total projected area o f obstruction, Ap , and to calculate the projected area

per unit volume, a , except in the case o f the field work where the stem densities were 

unknown.

f l-y = 0 .0 1 7 6 A f-1 1 .1 3 8 ,20

15

10

0
200015001000500

Stem density (stems m '2)

Figure 5-13 The average amount of hidden plant material as a function of the stem density of a 
canopy, a  is the total depth-averaged projected area per unit volume, a ' is the visible depth- 
averaged projected area per unit volume of a canopy based on a 1 0 0  mm cross-section 
photograph and M is the stem density.

5.3.3 Area Quantification Parameters

For the laboratory investigations, four vegetation canopies were constructed. 

Three canopies were constructed using vegetation collected during August 2006 for 

stem densities o f 800, 1160 and 1850 stems m"2. A fourth canopy was constructed 

using vegetation collected during February 2007 for a stem density o f 800 stems m‘ . 

The projected areas o f obstruction were determined for each canopy using the 

photographic method (see Section 4.2). The visible projected area profiles determined 

from the photographs are presented in Figure 5-14a. These were corrected for hidden 

material according to the methodology discussed in Section 5.3.2. For each stem 

density, the photographic method was applied to four cross-sections o f canopy taken 

at each of four locations where velocity and turbulence profiles were measured 

totalling 16 cross-sections for each canopy. The amount o f hidden or sheltered 

material for each stem density is presented in Figure 5-14c, and the projected area of 

obstruction per unit volume for each canopy following correction is presented in 

Figure 5-14b. For the region up to 250 mm above the bed, average values were 7.2 m'
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l, 11 .4  m '1 and 16 .7  m '1 for the 8 0 0 , 1 1 6 0  and 1 8 5 0  stem s m '2 ca n o p ies  o f  A u gu st  

vegeta tion  resp ec tiv e ly . T he proportion  o f  the total p ro jected  area h id d en  for the three 

stem  d en sities w a s  eq u iv a len t to  3 0 .8 % , 58 .0%  and 7 6 .1 %  resp ec tiv e ly . T he p rofiles  

sh o w  the h igh  le v e l o f  variation  in  v eg e ta tio n  structure s in c e  th ey  d o  not adopt 

con sisten t shapes.
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■ 1 1 6 0  stem s m '2 , A u g u st 2 0 0 6  v eg eta tio n

■ 1 8 5 0  stem s m ' , A u g u st 2 0 0 6  v eg eta tio n
Figure 5-14 [a]: Visible projected area of obstruction per unit volume, a [b]: total projected area 
of obstruction per unit volume, a\ [cj: hidden projected area of obstruction per unit volume; and 
[d]: projected area of obstruction per stem for 800, 1160 and 1850 stems m'2 Spartina anglica 
canopies

B ased  o n  th e p ro jected  area per unit v o lu m e  p ro file s  and the asso c ia ted  stem  

d en sity  for ea ch  p r o file , th e  a v era g e  p rojected  area per stem  is  presen ted  in  F igure  

5-14d . For the three A u g u s t  v e g e ta tio n  stem  d en sitie s  ex a m in ed , in  in creasin g  order o f  

m agnitude, th e a v era g e  p rojected  areas per unit heigh t per stem  w ere 0 .0 0 8  m  stem '1 +
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25.8% , 0 .0 1 6  m  stem ’1 +  12.3%  and 0 .0 1 5  m  s te m ’1 ±  2 5 .0 %  r e sp e c t iv e ly  (th e  va lu e  

for the February v eg eta tio n  u sed  w a s  0 .0 0 7  m  s te m '1 +  2 4 .8 % ). T h e  1 1 6 0  and 1850  

stem s m ’2 can op ies h ave  v ery  s im ila r  p ro jected  area p er s tem  v a lu e s . T h e  stem s used  

to construct the lo w e s t  stem  d e n s ity  w ere  com p a ra b le  in  s iz e  to  th e v eg eta tio n  

co llected  during February 2 0 0 7 . T h e se  resu lted  in  a c o n s id e r a b ly  sm a lle r  ca n o p y  

projected area than the v e g e ta tio n  u sed  to  con stru ct th e h ig h er  s te m  d e n s ity  ca n o p ie s  

o f  1160 and 1850  stem s m ’2.

T he p ro file s  o f  a v era g e  stem  d iam eter  for the v e g e ta t io n  u se d  for  ea ch  stem  

d en sity  are p resen ted  in  F igu re 5 -1 5 . V a lu e s  w ere  e s tim a te d  b a se d  o n  th e  vertical 

variation  in  s tem  d iam eters o b serv ed  in  S ec tio n  4 .4 .1 . P r o f ile s  fo r  th e  fo u r  ca n o p ies  

w ere estim ated  u s in g  a v era g e  b asal s tem  d ia m eter  v a lu e s  d e term in ed  from  

m easu rem en ts o n  a sa m p le  o f  2 0 0  stem s from  ea ch  c a n o p y . A n  e le c tr o n ic  vernier  

caliper w a s u sed  for ta k in g  th e m ea su rem en ts . A v e r a g e  b a sa l s te m  d ia m eter  v a lu e s  for  

the A u g u st ca n o p ie s  in  a sc e n d in g  order o f  s tem  d e n s ity  w e r e  5 .5 1  m m  +  8 .5% , 5 .7 2  

m m  +  7 .4%  and 4 .2 6  m m  +  11.3%  re sp e c tiv e ly . T h e  s te m s  u s e d  to  co n stru ct the 8 0 0  

and 1160  stem s m '2 c a n o p ie s  w ere  re la tiv e ly  s im ila r  in  b a sa l s te m  d ia m eter . T h e stem s  

u sed  for the 1 8 5 0  s te m s m '2 ca n o p y  w ere  c o n s id e r a b ly  sm a lle r  in  d ia m eter  and m ore  

com parab le to  the v e g e ta tio n  c o lle c te d  du rin g  F ebruary , w h ic h  o n  a v era g e  w a s  4 .1 2  

m m  in basal d iam eter.
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Figure 5-15 Stem diam eter profiles for four constructed canopies

N e p f  (1 9 9 9 )  d e f in e s  v e g e ta t io n  d en sity  K ad? a s  th e prod u ct o f  th e  projected  

area o f  ob stru ction  per u n it v o lu m e  and the a v era g e  stem  d iam eter . O n e feature o f  th is
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param eter is  that it is  d im en sio n le ss . Furtherm ore, it a cco u n ts  for both  the am ount o f  

m aterial cau sin g  an ob stru ction  to  the f lo w , and the stem  d iam eter. In the co n tex t o f  

vegetated  flo w s , the stem  d iam eter is  the turbulent len g th  sc a le  s in ce  large-sca le  

turbulent structures are broken d o w n  and sm aller  v o rtex  structures form  w ith in  the  

w ake o f  cy lin d ers or stem s. P aram eterisin g  the d en sity  in  term s o f  the v o lu m e  o f  

m aterial and the stem  d iam eter d o e s  n o t take in to  co n sid era tio n  th e  sp a c in g  o f  stem s  

w h ich  m ay be u se fu l in  d eterm in in g  the lik e lih o o d  o f  w a k e-in ter feren ce . T he ‘ad’ 

p rofiles for the three ca n o p ie s  are p resen ted  in  F igu re 5 -1 6 . In creases o f  45 .0%  and 

131.3%  in stem  d en sity  from  8 0 0  to  1 1 6 0  stem s m ‘2 and from  8 0 0  to  1850  stem s m '2 

can op ies resp ectiv e ly  g iv e  rise  to  161%  and 21 7 %  in crea ses  in  the depth-averaged  

va lu es o f  the d en sity  param eter ‘ad\

0.3

0.2

z(m )

o.i

to ■■
m  f
cm m
□ □ ■ ■
□ □ ■ ■

□ □ ■ ■
□ □ ■
□ □ ■

- □ □ ■ I
□ □ ■ ■
□ m ■ ■
□ □ s ■
0  mu

0.1
ad{r)

0.2

n 8 0 0  stem s m ' (February vegeta tion )  

D 8 0 0  stem s m '2 (A u g u st v egeta tion )

■ 1 1 6 0  stem s m '2 (A u g u st vegeta tion )
■ 1 8 5 0  stem s m"2 (A u g u st vegeta tion )

Figure 5-16 Profiles of the vegetation density param eter, ad, for three constructed canopies

5.3.4 Projected Areas of Stems and Foliage

From  the total p rojected  area and stem  d iam eter  p r o file s  p resen ted  in  S ectio n  

5 .3 .3 , it w a s p o ss ib le  to  e stim a te  the p rop ortion  o f  s tem s to  le a v e s  at d ifferent  

elevation s. It w a s  a ssu m ed  that the p rojected  area near the bed  w a s  co m p rised  entirely  

o f  vegeta tion  stem s. T h e p ro jected  area d u e to  s tem s w a s a ssu m ed  to  d ecrease  w ith  

e leva tion  in  accord an ce  w ith  the trends ob serv ed  for the stem  d iam eters in  Figure  

5-15 . I f  the p rojected  area  o f  ob stru ction  due to  the p lant s tem s is  subtracted from  the 

total projected  area o f  o b stru ctio n  for ea ch  can op y , th en  the p rojected  area o f  

obstruction  due to  th e  le a v e s  in  th e  ca n o p y  can  b e  determ ined . T h e p rojected  area o f
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obstruction due to  the stem s and th e  le a v e s  for th e  fou r co n stru c ted  ca n o p ie s  are 

presented in F igure 5 -1 7 .

For the three A u g u st  v e g e ta t io n  c a n o p ie s , th ere w a s  so m e  v ar ia tion  in  the  

am ount o f  fo lia g e  as a p rop ortion  o f  th e  total p ro jected  area  as p resen ted  in  F igure  

5 -1 8 , w h ich  is  d u e to  th e  natural v a r ia b ility  o f  the v e g e ta tio n . F or th e  February  

vegetation , the fo lia g e  fo rm s a co n sid era b ly  greater p ro p o rtio n  o f  th e  ca n o p y , 

particularly at h ig h er  e le v a t io n s , and th is is  in  part d u e to  th e  s ig n if ic a n t ly  sm aller  

diam eters o f  th e  s te m s  (S e c t io n  5 .3 .3 ) . In the upper part o f  th e  c a n o p y  w ith  the  

ex a m p le  o f  the F ebruary v e g e ta tio n , 50%  or m ore o f  th e  c a n o p y  is  c o m p o se d  o f  

fo lia g e .
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Figure 5-17 Projected area of obstruction per unit volume due to stems (as ) and leaves (aF ) for 

three constructed canopies, a is the total area per unit volume.
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Figure 5-18 The projected area of the foliage, aF , as a proportion of the total projected area, a , 
for 800,1160 and 1850 stems m"2 canopies

There is  a large variation  in  the p h y s ic a l p rop erties o f  s tem s and lea v es, and  

so , d ifferent proportions o f  each  co m p o n en t and th eir  to ta l q u an tities w ith in  a can op y  

w ill a ffect the f lo w  d yn am ics through  th e  ca n o p y . A n  un d erstan d in g  o f  their 

distributions throughout the ca n o p y  m a y  aid  in  th e  u n d erstan d in g  o f  the f lo w  

h yd rod yn am ics and turbulence ch aracteristics en co u n tered .

5.4 Concluding Remarks

D eta ils  o f  the laboratory p roced u res im p le m e n te d  and the apparatus used  in  

the fo llo w in g  tw o  chapters w ere  ou tlin ed . Furtherm ore, so m e  o f  the quantification  

m ethods presen ted  in  C hapter 4  for f ie ld  c a n o p ie s  w ere  ap p lied  to  the constructed  

vegeta tion  ca n o p ies  u sed  in  the laboratory ex p er im en ts .

O ne o f  the a d van tages o f  w o rk in g  in  a lab oratory  en v iron m en t is  that the  

w orker has con tro l o v er  n u m erou s factors w h ic h  in  a natural en v iron m en t w o u ld  be 

d ifficu lt, i f  n ot im p o ss ib le  to  con tro l. For co n stru cted  v e g e ta tio n  ca n o p ies  in  the  

environm ent, stem  d e n s itie s  can  b e  cou n ted  e a s ily , and th e  to ta l projected  area o f  the  

can op y can a lso  b e  d eterm in ed  b y  q u a n tify in g  ea ch  stem  w ith in  a sam p le  sec tio n  o f  

the can op y  in d iv id u a lly . It is  th erefore  p o ss ib le  to  correct p ro file s  o f  ‘v is ib le ’ 

projected area for  an y  ‘h id d e n ’ m aterial n o t v is ib le  in  th e  ph otograp h s, and thus 

produce p ro file s  o f  th e  ‘to ta l’ projected  area o f  ob struction . T h is procedure w as  

applied  to the Spartina anglica ca n o p ies  constructed  for the p u rp ose o f  the laboratory  

in vestiga tion . T h e  ex p er im en ts  w ere  con d u cted  for a range o f  f lo w  depths and
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‘cropped’ vegetation heights and the tallest vegetation canopies used were 0.25m tall. 

For this height o f canopy, whereas the visible projected area per unit volume was 4.83 

m '1, 7.99 m_1 and 7.00 m '1 for stem densities o f 800, 1160 and 1850 stems m '2 

respectively, the total projected area for the three stem densities were 7.25 m"1, 11.4 

m’1 and 16.7 m '1 respectively.

Natural variation in the vegetation was significant as highlighted by the 

inconsistency o f the plant sizes used to construct three different canopies using 

vegetation samples collected during August 2006, where the proportion o f increase in 

the total projected area per unit volume was not proportionally consistent with the 

increase in stem density.
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6 Laboratory Investigation I: Simulating Vegetation

6.1 Introduction

Artificial materials are often used within the literature to simulate natural 

vegetation (e.g. Kouwen et al., 1969; Dunn et al., 1996; Wu et al. 1999; Nepf, 1999). 

Artificial materials can be more convenient to source and install in such studies, and 

they can simplify the morphology of a canopy by eliminating vertical or spatial 

variation. In such studies, it is often assumed that such canopies provide an accurate 

representation of vegetation species that may vaguely resemble the artificial canopies. 

For instance, one might assume that a rigid grass-type vegetation, such as Spartina 

anglica, which is the subject of this study, may be simulated using arrays of uniform 

cylinders due to its cylindrical and upright stemmed nature.

The velocity and turbulence structures through submerged Spartina anglica 

canopies are compared to uniform cylinder arrays to evaluate the suitability of the 

cylinder model as a means of simulating the natural plants. Contrary to the 

assumptions mentioned above, Spartina anglica shows considerable vertical and 

spatial variation in projected area as identified during the field study (see Section

4.2.3). The comparison is conducted using non-dormant vegetation collected during 

August 2006.

One of the key differences in morphology between vegetation canopies and 

uniform cylinder arrays is the presence of plant ‘foliage’ in the vegetation canopies. 

The influence of foliage on velocity and turbulence structures is to be investigated. 

Furthermore, real vegetation displays a significant level of variation of vegetation 

material due to its heterogeneous nature. The amount of vegetation material within the 

canopy is usually higher in the foliage region compared to the stem region. Such a 

distribution of material will likely affect the velocity structure throughout the canopy. 

For submerged conditions, the higher velocities within the surface flow layer are 

likely to affect the flow in the canopy region differently for the vegetation and the 

uniform cylinders. Distinguishing between the influence of the mixing layer (Section

2.5.4), and the influence of the variability of the vegetation on the resulting velocity 

profiles may be difficult. For a uniform cylinder array, variability in the vegetation is 

absent enabling a more focused examination of the shear layer flow. Details of the
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experim ents con d u cted  for th is  c o m p a r iso n  u s in g  u n ifo rm  c y lin d e r  arrays and  

constructed  vegeta tion  c a n o p ie s  are p resen ted  in  T a b le  6-1 and  T a b le  6 -2  re sp ec tiv e ly .

Table 6-1 Details of experiments conducted using uniform cylinder arrays
Test No. Stem 

Density 
[stems m'2l

Bed
Gradient

So

Vegetation 
Height 
T [  m]

Reynolds
Number

R

Flow 
Depth 
D [  m]

Submerg 
Leve 

H  = D,
S-1000 800 1/1000 0.15 430 0.20 1.33
M-1000 1160 1/1000 0.15 330 0.20 1.33
D-1000 1850 1/1000 0.15 230 0.20 1.33
S-0300 800 1/300 0.15 840 0.20 1.33
M-0300 1160 1/300 0.15 560 0.20 1.33

Table 6-2 Details of experiments conducted using Sp. anglica plants during Aug 2006
Test
No.

Stem 
Density 

[Stems m'2]

Bed
Gradient

Sof-1

Vegetation 
Height 
T [  m]

Flow 
Depth 
D [  m]

Reynolds
Number

Re</

Submergence

H = D / T

Flow
Rate

Q [  i s 1]
S-Mll 800 1/300 0.15 0.20 450 1.33 6.8
S-M21 800 1/1000 0.15 0.20 250 1.33 3.9
M-Mll 1160 1/300 0.15 0.20 340 1.33 5.3
M-M21 1160 1/1000 0.15 0.20 210 1.33 3.1
D-Mll 1850 1/300 0.15 0.20 240 1.33 4.6
D-M21 1850 1/1000 0.15 0.20 110 1.33 2.2

6.2 A  C o m p a r iso n  b e tw een  V e g e ta tio n  a n d  C y l in d e r  M o rp h o lo g y

T h e structure o f  th e  con stru cted  v e g e ta tio n  c a n o p ie s  w a s  h ig h ly  variab le  over  

the h e igh t o f  the c a n o p y  (F ig u re  6 - la )  co m p a red  to  th e  c y lin d e r  arrays w h ic h  had a 

very  un iform  structure o v er  the h e ig h t o f  th e  c y lin d e r s  (F ig u re  6 - lb ) .

Figure 6-1 Typical examples of constructed canopies consisting of |a |:  Spartina anglica and |b |: 
uniform cylinders.
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Many of the uniform cylinder model experiments documented (e.g. Nepf et 

al., 1997a; Nepf et al., 1997b; Fairbanks, 1998; Nepf, 1999 etc.) were conducted for 

emergent conditions. In these studies, the time-averaged velocity structure was 

relatively constant over most of the flow depth, although longitudinal velocities tend 

to decrease towards the bed due to the boundary.

Figure 6-2 and Figure 6-3 present the depth-averaged projected area 

characteristics for the canopies and show the contrasting nature of the constructed 

vegetation canopies and the uniform cylinder arrays. The canopies constructed of real 

plant material displayed an increase in projected area in the foliage region in the upper 

canopy for the August samples. This was not observed for the February sample where 

the foliage was considerably smaller in surface area. Despite the similarity in stem 

densities and basal diameters, the uniform cylinder arrays were considerably lower in 

projected area. This was due to the absence of plant foliage despite the mean stem 

diameters being slightly smaller (5.51 mm, 5.72 mm and 4.26 mm for stem densities 

of 800, 1160 and 1850 stems m'2) compared to the 6.00 mm diameter cylinders.

■ Spartina anglica (August) 
x Spartina anglica (February) 
□ Uniform arrays

500 1000 1500 2000
Stem density (stems m'2)

Figure 6-2 Variation of the depth-averaged projected area per unit volume, a  , with stem density 
for Spartina anglica canopies, and uniform cylinder arrays.

For the higher stem densities (1160 and 1850 stems m'2), the constructed 

vegetation canopy had at least twice the projected area per unit volume over most of 

the canopy height. Even compared to the February constructed vegetation canopy and 

the lowest stem density of 800 stems m'2, the projected area of the uniform cylinder

20

a (m*1)

10
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array was also significantly lower. The difference between the projected areas o f the 

uniform cylinders and the August vegetation canopies was even more pronounced 

with increasing stem density. This can be attributed to the increase in the amount of 

foliage in the vegetation canopies. This highlights the difference in canopy structure, 

and suggests that the uniform cylinder model may not always represent vegetation 

canopies accurately as assumed by numerous authors (e.g. Dunn et al., 1996; Nepf et 

a l , 1997a; Nepf et a l ,  1997b; Fairbanks, 1998; Nepf, 1999 etc.).

Sp. artelica (August): 800 1160 1850
stems m' 2 stems m' 2 stems m’2

0.15

0.10

z(m )

0.05

Uniform cylinder arrays

|----  1850 cylinders mf2

-----  1160 cylinders m' 2

'----  800 cylinders m‘2
0.00

40

Figure 6-3 Projected area per unit volume profiles for the constructed vegetation canopies (■) 
and uniform cylinder arrays (solid lines). In increasing order of magnitude, the August canopies 
and the uniform cylinder arrays correspond to stem densities of 800,1160 and 1850 stems m'2.

6.3 One-Dimensional Measurements

6.3.1 Stage-Discharge Relationships

The experiments were conducted for uniform flow conditions (see Section

5.2.5). Stage-discharge curves for the uniform cylinder arrays and constructed 

canopies listed in Section 6.1 are presented in Figure 6-4. The plots show the 

relatively lower hydraulic resistance of a uniform cylinder array compared to a
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constructed  v eg e ta tio n  can op y  for an eq u al stem  d en sity  and b ed  gradient. T he low er  

h y d ra u lic ' resistan ce  o f  the cy lin d er  arrays can  b e  attributed to  a le sser  degree o f  

obstruction  (F igure 6 -2 ). For a f lo w  depth  o f  0 .2 0  m  (eq u iv a len t to  a subm ergence  

lev e l, H, o f  1 .3 3 ), the d isch arge for th e  u n iform  cy lin d er  arrays w a s  b e tw een  27%  and 

42%  h igher than for the con stru cted  v e g e ta tio n  c a n o p ie s  for an eq u al stem  d en sity  and  

bed gradient. T he p ercen tage  in crea se  in  d isch a rg e  in crea sed  w ith  in creasin g  stem  

density  and w ith  b ed  gradient.

S0= 1 /1 0 0 0 So = 1 /3 0 0

0.25
Constructed & /  

Canopies /  £  P /

D{m )

0.20

m l

i i  P.: Uniform
6 r:.-A P

d/••■'/ // m
A / •' /HL

Arrays

Constructed .♦/ /
Canopies /

/ /  ©P □
/ * / / ’ & /  

*>' A'

' / /  /  Bf 
, W A' /  Uniform 

a /' Arrays
o' / A ^

u.u
0 5 , 10 15 0 5 , 10 15

QOs'1)
Stem Density So Hydraulic Radius Stem Diameter Canopy
(stems m'2) Reynolds number Reynolds number

■ 800 1/1000 5600 < Re* < 6200 400 < Rerf < 440 Uniform Array
A 1160 1/1000 3300 < Re* < 4400 230 < Re  ̂<310 Uniform Array
• 1850 1/1000 2900 < Re* < 3300 200 < Red < 230 Uniform Array
O 800 1/300 11000 <Re*< 12300 770 < Re</ < 860 Uniform Array
A 1160 1/300 7000 < Re* < 7900 490 < Re  ̂< 550 Uniform Array
O 1850 1/300 5700 < Re* < 6200 400 < Red <  440 Uniform Array
m 800 1/1000 3700 < Re* <6100 210 < Re</ < 320 Constructed Canopy
A 1160 1/1000 2400 < Re* <4100 140 < Red <280 Constructed Canopy
0 1850 1/1000 1600 < Re* < 4000 100 < Rerf < 150 Constructed Canopy
m 800 1/300 6700 < Re* < 11300 380 <Rec/< 580 Constructed Canopy
A 1160 1/300 4200 < Re* < 7200 240 < Re</ < 480 Constructed Canopy
• 1850 1/300 3400 < Re* < 6600 200 < Re,/ < 320 Constructed Canopy

Figure 6-4 Stage-Discharge relationships for the submerged 150 mm uniform cylinder arrays and 
constructed vegetation canopies for stem densities of 800, 1160 and 1850 stems m'2 and bed 
gradients of 1/300 and 1/1000. D is the flow depth, Q is the flow rate according to the flowmeter, 
and So is the bed gradient. Re# is the hydraulic radius Reynolds number, Re^ is the stem diameter 
Reynolds number, and Reynolds num ber ranges are given for the canopy region.
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6.3.2 One-Dimensional Bulk Drag Coefficient

Previously in Section 2.2.6, the average drag force per unit volume produced 

by vegetation over the depth o f the canopy, FD%, was characterised by Equation 2.18. 

In studies where drag coefficients were calculated for uniform cylinder arrays, the 

parameter a was used which was equivalent to the projected area per unit volume 

occupied by the cylinders, a measure o f the array density (e.g. staggered arrays by 

Dunn et al, 1996; or randomly arranged arrays by Nepf, 1999 etc.). The definition 

allows the projected area o f a group o f ‘uniform’ obstructions to be parameterised in a 

convenient manner. For submerged conditions, a shear force arises at the canopy- 

surface flow interface and this is accounted for in the force balance calculation in 

Equation 2.30 (see Section 2.3.5).

To apply the drag formula to a vegetation canopy, the parameter a was 

determined from cross-sectional photographs by determining the visible projected 

area and estimating the amount of hidden vegetation area (see Section 5.3.2). 

However, where the projected area o f the vegetation cannot be determined easily, it 

may be convenient to group the projected area per unit volume, a , and the drag

coefficient, CD , into a single parameter (see Equation 2.18). In this thesis, the product

of a and CD is termed the ‘roughness coefficient’ and denoted by CD'. Wu et al. 

(1999) claim that the one-dimensional roughness coefficient varies with vegetation 

type. Furthermore, for a given vegetation type, CD' also varies with vegetation 

density.

One-dimensional bulk drag coefficients, presented in Figure 6-5a, showed 

little variation with values ranging between 0.9 and 1.3 for the uniform arrays, and 

between 1.0 and 1.7 for the constructed canopies. Values reflect the natural variability 

in the case o f the constructed canopies, as well as variation in turbulence structure. 

One-dimensional roughness coefficients presented in Figure 6-5b increased 

consistently with stem density for both the constructed canopies and the uniform 

arrays reflecting an increase o f total obstruction to the flow despite the effects of the 

turbulence structure at the stem scale.
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Figure 6-5 One-dimensional bulk drag coefficient, CD , and one-dimensional roughness

coefficient, CD', for submerged uniform cylinder arrays and constructed vegetation canopies for 
a submergence level of 1.33, for bed gradients of 1/1000 and 1/300, and for stem densities of 800, 
1160 and 1850 stems m'2. S0 is the bed gradient.

6.4 T w o -D im en sio n a l M e a su re m e n ts

6.4.1 Double-Averaged Parameters

V e lo c ity  and turbulence param eters are c a lcu la ted  b a sed  o n  m easurem ents  

averaged  sp atia lly  a lo n g  the flu m e  len g th  as w e ll  as tem p o ra lly  o v er  the three m inute  

period o f  A D V  operation . Four p ro file s  w ere  m o n ito red  for th e  con stru cted  vegeta tion  

can op ies and tw o  p ro file s  for th e  u n iform  cy lin d er  arrays ( s e e  S e c tio n  5 .2 .7  for m ore  

detail).

6.4.2 Longitudinal Velocity Profiles

L ongitu d in a l v e lo c ity  p r o file s  are p resen ted  for the u n iform  cy lin d er  arrays in  

Figure 6 -6  and F igu re 6 -8  (fo r  b ed  grad ients o f  0 .0 0 3  and 0 .001  resp ec tiv e ly )  and for  

the constructed  v e g e ta tio n  c a n o p ie s  in  F igure 6 -7  and F igure 6 -9 . su b m erged  Spartina 

anglica ca n o p ie s  in  (F ig u res  5 .2 4  and 5 .2 5 ). T he p ro file s  appear to  h ave  tw o  k ey  

features that d ifferen tia te  th e  v e lo c ity  structure through the cy lin d ers from  that 

through the con stru cted  v e g e ta tio n  can op y. F irstly , the v ertica l variab ility  in  the
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velocity profiles observed for flow through the Sp. anglica canopies is absent for the 

cylinder arrays. Such variability, which appears in the form o f ‘kinks’ and ‘bulges’, is 

associated with the uneven distribution o f plant material over the height o f the 

canopy.

Secondly, for the uniform cylinder arrays, the velocity profiles displayed a 

small increase in longitudinal velocity with elevation over the lower section of the 

canopy (below an elevation o f 0.1 m above the bed). This feature is seen more clearly 

for a bed gradient o f 0.003 (Figure 6-6), where the experiments were conducted at 

higher flow velocities compared to a bed gradient o f 0.001, and surface flow 

velocities were considerably higher, exceeding 0.2 ms”1 over parts o f the surface flow 

layers.

800 stems m '2 1160 stems m”2 1850 stems m '2
0.2 0.2 0.2

0.15 0.150.15

z (  m) 0.1

0.05 0.05 0.05

0.1 0.2 
< u > (ms”1)

0.30.3 0.3 0.1 0.2 
< it > (ms”1)

0.1 0.2 
< u > (ms”1)

Figure 6 - 6  Longitudinal velocity (u) profiles for submerged uniform cylinder arrays with a stem 
diameter of 6.0 mm, submergence level of 1.33, a bed gradient of 1/300, stem densities of 800, 
1160 and 1850 stems m'2. The bold dotted lines denote top of the canopy.

800 stems m”2 1160 stems m”2 1850 stems m”2
0.2 0.2 0.2

0.15 0.150.15

z(m ) 0.1 0.1

0.05 0.05 0.06

0.2 0.4 0.60.6 0.2 0.4 0.6 0.2 0.4

< u > (ms*1) <u > (ms”1) < u > (ms*1)

Figure 6-7 Longitudinal velocity (u) profiles for submerged constructed vegetation canopies for a 
submergence level of 1.33, a bed gradient of 1/300, stem densities of 800,1160 and 1850 stems m'2. 
The bold dotted lines denote top of the canopy.
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800 stems m'2 1160 stems m'2 1850 stems m'2
0.2 0.20.2

0.15 0.150.15

z(m)

0.050.05 0.05

0.30.1 0.2 

<u > (ms'1)
0.1 0.2 

< u > (ms'1)
0.3 0.1 0.2 

< u > (ms'1)
0.3

Figure 6 - 8  Longitudinal velocity (u) profiles for submerged uniform cylinder arrays with a stem 
diameter of 6.0 mm, submergence level of 1.33, a bed gradient of 1/1000, stem densities of 800, 
1160 and 1850 stems m'2. The bold dotted lines denote top of the canopy.

800 stems m'2 1160 stems m'2 1850 stems m'2
U .20.2 0.2

0.150.15 0.15

z(m)

0.05 0.05 0.05

0.4 0.6 0.60.2 0.4 0.2 0.4

< u > (ms'1)
0.6

< u > (ms'1)
Figure 6-9 Longitudinal velocity (u) profiles for submerged constructed vegetation canopies for a 
submergence level of 1.33, a bed gradient of 1/1000, stem densities of 800,1160 and 1850 stems m' 
2. The bold dotted lines denote top of the canopy.

6.4.3 Normalised Longitudinal Velocity Profiles

The normalised longitudinal velocity profiles, for both uniform cylinder arrays 

and constructed vegetation canopies, are presented in Figure 6-10 and Figure 6-11 for 

bed gradients of 0.003 and 0.001 respectively. The normalised velocity profiles are 

fairly uniform for the uniform cylinder arrays until the canopy-surface flow layer 

interface is approached. This is in contrast to the constructed vegetation canopy where 

the velocity profiles reflect the heterogeneous nature of real vegetation.
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800 stems m-2 1160 stems m-2 1850 stems m-2
0.2

015

2 (m)
0.1

0.05

K)Elm

< u >/< U  > (-) < u >/< U > (-) < u >/< U > (-)
Figure 6-10 Normalised longitudinal velocity (u) profiles for submerged uniform cylinder arrays 
with a stem diameter of 6 . 0  mm (□) and constructed vegetation canopies (■), for a submergence 
level of 1.33, a bed gradient of 1/300, and stem densities of 800,1160 and 1850 stems m*2. U  is the 
depth-averaged longitudinal velocity for the flow depth. The bold dotted lines denote the top of 
the canopy, and the faint vertical lines denote a longitudinal velocity equal to the depth-averaged 
value, U.
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Figure 6-11 Normalised longitudinal velocity (u) profiles for submerged uniform cylinder arrays 
with a stem diameter of 6 . 0  mm (□) and constructed vegetation canopies (■), for a submergence 
level of 1.33, a bed gradient of 1 /1 0 0 0 , and stem densities of 800, 1160 and 1850 stems m'2. U  is 
the depth-averaged longitudinal velocity for the flow depth. The bold dotted lines denote the top 
of the canopy, and the faint vertical lines denote a longitudinal velocity equal to the depth- 
averaged value, U.

For the uniform cylinder arrays, the normalised depth-averaged longitudinal 

velocities ranged between 0.8 and 0.9 over most o f the canopy layer and decreased in 

magnitude with increasing stem density. This is shown more clearly in Figure 6-12a, 

whilst the increase in the normalised depth-averaged longitudinal velocity of the 

surface flow layer with stem density is shown in Figure 6 -12b. The trends in both 

figures were linear for a bed gradient of 0.001 where canopy and surface flow layer 

velocities were considerably lower (Section 6.4.1). However, for a bed gradient of 

0.003, where velocities were higher compared to the shallower gradient, the trends 

between normalised depth-averaged velocities in the surface or canopy layers and the
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stem density were non-linear. The constructed vegetation canopies followed similar 

trends in both figures.

[a]

u c / u

(-)

2 SO090

0 85

0.80 2.00

1.75
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Canopy Bed Gradient 
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1/300

Bed Gradient 
1/1000 
1/300

500 1000 1500

Stem density (stems m'2) 
Canopy

■ Uniform Arrays 1/1000 * Constructed Canopies
o Uniform Arrays 1/300 o Constructed Canopies

Figure 6-12 Variation in normalised depth-averaged longitudinal [a]: canopy layer ( Uc ), and

[b]: surface flow layer ( U s ) velocities with the stem density for uniform cylinder arrays and
constructed vegetation canopies for a submergence level of 1.33. U is the depth-averaged 
longitudinal velocity for the flow depth.

Nepf et al. (1997b) also observed a similar feature for emergent uniform 

cylinder arrays, whereby longitudinal velocities were relatively constant for most of 

the flow depth. A selection of velocity profiles measured by the authors is presented 

in Figure 6-13 for stem densities between 200 and 2000 stems m' . Experiments were 

repeated for each stem density by implementing a range of flow rates resulting in 

depth-averaged velocities ranging between 0.032 and 0.131 ms’1 (equivalent to stem 

Reynolds numbers between 190 and 790). There was little variation in the shapes of 

the mean velocity profiles for the different stem densities considered.
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Figure 6-13 Profiles of normalised mean longitudinal velocity for emergent uniform cylinder 
arrays with densities of 0 (null), 200, 500 and 2000 stems m'2. z is the elevation, D is the flow 
depth, u is the longitudinal velocity and ui0 is the longitudinal velocity at an elevation of 1 0 0  mm 
for the null condition. Taken from Nepf et al. (1997b).

6.4.4 Reynolds Stress Profiles

The normalised Reynolds stress profiles for the uniform cylinder arrays and 

constructed vegetation canopies are presented in Figure 6-14 and Figure 6-15 for bed 

gradients of 0.003 and 0.001 respectively. Peak values were detected very close to the 

canopy-surface flow layer interface.

For the steeper bed gradient o f 0.003, the experiments were conducted at 

higher flow rates and the longitudinal velocities, and hence the associated velocity 

fluctuations, were considerably higher. As would be expected, the Reynolds stress 

values were considerably higher, particularly near the canopy-surface flow layer 

interface and in the region immediately above the canopies. For the uniform cylinder 

arrays, Reynolds stress values within the canopy were considerably higher for the 

higher stem density o f 1850 stems m '2 compared to the sparser density o f 800 stems 

m' where a greater difference in zonal velocities between the canopy and surface 

flow layers was observed even though longitudinal velocities were marginally lower 

for a higher stem density (see Section 6.4.2). For the constructed vegetation canopies, 

Reynolds stresses within the canopy decreased with increasing stem density where it 

is possible that the increase in projected area due to the foliage may contribute to the 

reduction of Reynolds stresses.
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To evaluate the influence of the peak Reynolds stress above a canopy on the 

underlying flow within the canopy, the Reynolds stress penetration depth was 

determined. This is defined as the distance from the top of the vegetation to the 

elevation within the canopy where the Reynolds stress is 10% of the peak value (see 

Section 2.5.3). For the constructed vegetation canopies, the Reynolds stress 

penetration depth decreased with increasing stem density. The increase in projected 

area due to the plant material may be associated with a reduction in the magnitude of 

the penetration. However, for the uniform cylinder arrays, Reynolds stress penetration 

was greater for the higher stem densities (1160 and 1850 stems m'2). For a bed 

gradient of 0.001 (see Figure 6-15), there was little difference between the penetration 

depths for the 1160 and 1850 stems m ' canopies, for which the peak Reynolds stress
1 Ovalues were also very similar (0.4 kg m‘ s' ). Although only three stem densities were 

examined, the results may suggest that the peak Reynolds stress and its penetration 

depth reach asymptotic values with increasing stem density for similar flow 

conditions. This may be associated with the flow regime; stem Reynolds numbers 

ranged between 200 and 650 for the three stem densities compared to between 150 

and 520 for the constructed canopies. Nevertheless, the data shows a relatively deeper 

Reynolds stress penetration in a uniform cylinder array compared to a constructed 

vegetation canopy.

800 stems m"2 1850 stems m'2u.z

z ( m )

0.0
0.0 1,00.5 0.0 0.5 1.0

<u'W > /< u 'w '> mm (-) <u'W >l<u 'w '>mn (-)
Figure 6-14 Normalised Reynolds stress profiles for submerged uniform cylinder arrays with a 
stem diameter of 6 . 0  mm (□), and constructed vegetation canopies (■) for a submergence level of 
1.33, bed gradient of 1/300 and stem densities of 800 and 1850 stems m'2. The bold dotted lines 
denotes Reynolds stress penetration for constructed vegetation canopies and faint dotted line 
denotes penetration for uniform cylinder arrays. Solid lines denote the top of the canopy.
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Figure 6-15 Normalised Reynolds stress profiles for submerged uniform cylinder arrays with a 
stem diameter of 6 . 0  mm (□), and constructed vegetation canopies (■) for a submergence level of 
1.33, bed gradient of 1/1000 and stem densities of 800,1160 and 1850 stems m’2. The bold dotted 
lines denotes Reynolds stress penetration for constructed vegetation canopies and faint dotted 
line denotes penetration for uniform cylinder arrays. Solid lines denote the top of the canopy.

Due to the higher longitudinal velocities implemented for the steeper bed 

gradient of 0.003, the flow was more turbulent (stem Reynolds numbers ranged 

between 340 and 1200 for the three stem densities) and peak Reynolds stress values 

were considerably higher compared to the experiments conducted for a bed gradient 

of 0.001 (values range between 0.9 and 1.5 kg m’V 2). For these relatively higher 

values, the turbulence structure, and hence the Reynolds stress profiles were 

inconsistent in shape over the canopy height when compared to other stem densities. 

Relating the stress penetration depth to the stem density was more difficult.

Dunn et al. (1996) conducted similar experiments on uniform cylinder arrays 

with considerably lower stem densities ranging between 90 and 780 stems m’2 and a 

similar stem diameter to the experiments presented herein (6.35 mm). Stem Reynolds 

numbers varied between 900 and 4700 within the canopy region for the range of 

experiments. The Reynolds numbers were considerably higher than the values for the 

uniform cylinder arrays in the current study, for which ranged between 200 and 860 

(see Figure 6-4). The peak Reynolds stress values for submerged conditions were also 

considerably higher than those observed in the current study ranging between 1.96 

and 14.2 kg nT1 s’2. As would be expected, for the higher stem densities implemented 

in this study, Reynolds stress penetration into the uniform cylinder arrays was 

considerably lower than that observed by Dunn et al. (1996).
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6.4.5 Two-Dimensional Drag Coefficients

Profiles of the two-dimensional drag coefficient, CD 2d, are presented in 

Figure 6-16 and Figure 6-18 for the uniform cylinder arrays (for bed gradients of 

0.003 and 0.001 respectively) and in Figure 6-17 and Figure 6-19 for the constructed 

vegetation arrays. The profiles for the uniform cylinder arrays indicate that values 

were relatively constant over most of the canopy height. Depth-averaged values of the 

drag coefficient over the height of the arrays, CD2d, were 0.8 + 0.1 (standard 

deviation), 1.3 + 0.2 and 1.2 + 0.2 for cylinder densities of 800, 1160 and 1850 

cylinders m'2 respectively. These values were similar to those for the constructed 

vegetation canopies, which were 1.3 + 0.4, 1.0 + 0.5 and 1.2 + 0.3 for the equivalent 

stem densities. There was considerably greater variation in the drag coefficients over 

the height of the constructed vegetation canopies as highlighted by the greater 

standard deviations.

For the uniform cylinder arrays, CD 2d values fluctuated in the upper part of 

the canopy due to the combined effects of changes in both the longitudinal velocity 

and Reynolds stress magnitudes. With the exception of the 1160 stems m'2 canopy for 

the steeper bed gradient of 0.003, there was a peak in CD 2d a short distance below 

the top of the canopy. The peaks correspond to a sharp increase in Reynolds stress 

with elevation as illustrated in Figure 6-20 for a bed gradient of 0.003. A large 

gradient in Reynolds stress is indicative of turbulence production. Through turbulence 

production, the mean kinetic energy is converted into turbulent kinetic energy and this 

is reflected in higher drag coefficients. Above the peak in Reynolds stress, drag 

coefficients decreased towards the top of the canopy due to an increase in longitudinal 

velocity and Reynolds number. Although the profiles for the vegetation were variable 

over the canopy height, there was no evidence of any recurring patterns in the drag 

coefficients near the top of the canopy for the canopies considered. This can be 

attributed to lower Reynolds stresses within the canopies as observed in Section 6.4.4, 

which was attributed to the dense foliage cover found in natural vegetation.
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Figure 6-16 Two-dimensional bulk drag coefficient profiles for submerged uniform cylinder 
arrays with a stem diameter of 6.0 mm, submergence level of 1.33, a bed gradient of 1/300, stem 
densities of 800,1160 and 1850 stems m'2.
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Figure 6-17 Two-dimensional bulk drag coefficient profiles for submerged constructed vegetation 
canopies for a submergence level of 1.33, a bed gradient of 1/300, stem densities of 800,1160 and 
1850 stems m~2.
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Figure 6-18 Two-dimensional bulk drag coefficient profiles for submerged uniform cylinder 
arrays with a stem diameter of 6.0 mm, submergence level of 1.33, a bed gradient of 1/1000, stem 
densities of 800,1160 and 1850 stems m’2.
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Figure 6-19 Two-dimensional bulk drag coefficient profiles for submerged constructed vegetation 
canopies for a submergence level of 1.33, a bed gradient of 1/1000, stem densities of 800,1160 and 
1850 stems m‘2.
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Figure 6-20 The vertical gradients in Reynolds stresses for submerged uniform cylinder arrays 
with a stem diameter of 6.0 mm, submergence level of 1.33, a bed gradient of 1/300, stem densities 
of 800,1160 and 1850 stems m‘2.

For the uniform cylinder arrays considered by Dunn et al. (1996) (see 6.4.4), 

CD2d values ranged between 0.6 and 1.8 over the canopy height. There was 

considerably more variation in the two-dimensional drag coefficient over the canopy 

height for the uniform cylinder arrays implemented by Dunn et al. (1996) compared 

to those implemented here. This can be attributed to a number of factors, namely that 

the uniform cylinder arrays in this study were considerably higher in stem density, the 

peak Reynolds stress above the canopy was lower and the Reynolds stress penetration 

was smaller. Depth-averaged drag coefficients (C D2d) ranged between 1.1 and 1.5. 

The span of the range was relatively small, particularly when the wide range of peak 

Reynolds stress values near the canopy-surface flow layer interface (1.96 kg m 'V 2 -

14.2 kg m 'V 2) and depth-averaged canopy layer velocities (0.19 m s'1 - 0.63 ms'1) are 

considered. The depth-averaged values were of a similar order of magnitude to the 

depth-averaged drag coefficients ( CD 2d) calculated in this study for uniform cylinder 

arrays with densities of 1160 and 1850 cylinders m' (1.3 and 1.2 respectively).
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6.5 Concluding Remarks

A range of experiments were conducted for both constructed vegetation 

canopies and uniform cylinder arrays under submerged conditions. The main 

objective of the experiments was to address the differences between the velocity and 

turbulence structures between the two types of canopy.

The difference between the hydraulic resistance of the constructed vegetation 

canopies and the uniform cylinder arrays was reflected in the stage-discharge curves. 

Comparison of the curves showed that discharge for the uniform cylinder arrays was 

between 27% and 42% higher for a flow depth of 200 mm depending on the stem 

density. The experiments were conducted to the three stem densities o f 800, 1160 and 

1850 stems m'2 and the percentage value increased with stem density. The difference 

in hydraulic resistance was also reflected in the Manning’s roughness coefficient 

values for the 150 mm tall canopies. Values for the uniform cylinder arrays ranged 

between 0.062 and 0.106 for the three stem densities whilst for the constructed August 

vegetation canopies, values ranged between 0.087 and 0.151.

The lower projected area of obstruction per unit volume of the uniform 

cylinder array relative to the constructed vegetation canopy resulted in a lower 

hydraulic resistance for all the stem densities examined. For the submergence level 

examined, the discharge was a factor of 1.3 -  1.4 times larger for the uniform cylinder 

array than the constructed vegetation canopy. This is based on a flow depth of 0.2 m, 

which was implemented for all experiments. For the stem densities examined, this 

corresponds to Manning’s n values of between 0.07 -  0.12 for the uniform cylinder

arrays and 0.09 -0 .1 5  for the constructed canopies. . The bulk drag coefficient ( CD ), 

which is characteristic of the drag force per stem within the canopy, ranged between 

0.04 and 0.2 for the constructed August vegetation canopies and between 0.9 and 1.4

for the uniform cylinder arrays. The roughness coefficient (C D'), which is 

characteristic of the total drag force of a vegetation canopy, varied between 4.1 m*1 

and 16 m'1 for the uniform cylinder arrays, and between 11 m'1 and 48 m'1 for the 

constructed August vegetation canopies for a submergence level (H) of 1.33

For the uniform cylinder arrays, there was little variation in the longitudinal 

velocity over the depth of the canopy compared to the constructed canopies. The 

longitudinal velocities increased marginally with elevation. The increase in 

longitudinal velocity with elevation was not observed in the constructed vegetation
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canopies. The foliage may have contributed to reducing the effects of the “skimming” 

flow associated with a higher velocity surface flow layer on the underlying canopy 

layer.

There was greater vertical movement within the flow in the canopy layer for 

the constructed vegetation canopies compared to the uniform cylinder arrays as 

reflected by the greater magnitude of vertical velocities. Within the canopy layer, 

vertical movement was generally in the upward direction, particularly close to the 

canopy-surface flow layer interface due to vortices in the shear layer along the 

interface.

The depth of Reynolds stress penetration was deeper into the canopy layer for 

the uniform cylinder arrays than for the constructed vegetation canopies. The depth of 

Reynolds stress penetration increased with increasing stem density, particularly for a 

bed gradient of 0.001. For the constructed vegetation canopies, although the velocities 

did not consistently increase in the canopy layer with elevation, there were 

fluctuations in the form of ‘bulges’ due to the uneven distribution of vegetation 

material over the canopy height. The Reynolds stress penetration decreased with 

increasing stem density for the constructed vegetation canopies, particularly for 

relatively low Reynolds numbers (below a stem Reynolds number of 640), but 

increased for the uniform cylinder arrays. Foliage in the constructed canopies was 

believed to contribute to the reduction of Reynolds stress penetration into the canopy. 

This was despite the foliage having a lower mass per unit volume than the stem 

region.

With increasing stem density, the amount of foliage in the constructed 

vegetation canopy also increased and hence the reduction of Reynolds stress 

penetration. This was reflected in a greater percentage increase in total projected area 

for the constructed vegetation canopies than for the uniform cylinder arrays. For 

instance, a 131% increase in stem density (from 800 to 1850 stems m'2) resulted in an 

increase in a 289% increase in the depth-averaged projected area per unit volume for a 

150 mm tall canopy (from 7.4 m'1 to 28.9 m'1), but only a 131% increase for the 

uniform cylinder arrays (from 4.8m'1 to 11.1m'1).

In the absence of foliage for the uniform cylinder arrays, an increase in stem 

density resulted in a greater relative difference in hydraulic resistance between the 

canopy and surface flow layers, and hence, a stronger shear layer along the interface 

between the two layers. For the lowest stem density (800 stems m '), the peak
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Reynolds stress magnitude was identical for both the constructed vegetation canopy 

and the uniform cylinder array. For the middle stem density (1160 stems m ') the peak 

Reynolds stress was 99% higher for the uniform cylinder array, and for the highest 

stem density examined (1850 stems m‘2), it was 115% higher. For the same 

submergence level, the depth-averaged longitudinal velocities were consistently 

between 30% and 40% higher for the uniform cylinder arrays than the constructed 

canopies. However, the observed peak Reynolds stress was between 100% and 120% 

greater for the uniform cylinder arrays for the higher stem densities of 1160 and 1850 

stems m’2 (there was negligible difference in peak Reynolds stress magnitudes for the 

lowest stem density of 800 stems m'2). For a higher stem density, the magnitude of the 

peak Reynolds stress above the canopy was greater, and without the dampening effect 

of foliage, Reynolds stress penetration into the canopy was deeper.

There was less variation in the two-dimensional drag coefficient ( CD 2d) over 

the canopy height for the uniform cylinder arrays with depth-averaged values ranging 

between 0.8 and 1.3. Cd 2d values were of a similar magnitude to those for the 

constructed vegetation canopies which ranged between 1.0 and 1.3, however there 

was considerably more variation over the canopy height. For the uniform cylinder 

arrays, there was a peak in CD 2d a short distance below the canopy top. The peak is 

attributed to the change in magnitude of Reynolds stress below the interface. The 

location of the peak in CD 2d is linked to the high level of turbulence production in the 

shear layer.

Uniform cylinder laboratory models are useful for evaluating the 

hydrodynamics through a canopy under controlled conditions, and with little 

variability in the structure of the canopy. However, such models fail to simulate the 

complex morphology associated with vegetation, which result in more complex 

velocity profiles and turbulence structures. The vegetation cover along a saltmarsh 

can be variable in terms of the concentration and size of the plants. Furthermore, the 

vertical distribution of plant material in vegetation canopies is usually non-uniform 

and unlike the uniform cylinder models.
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7.1 Introduction

In Section 2.4.1, a number of laboratory studies on vegetated flows through 

saltmarsh canopies were discussed. Canopies in such studies were often short in 

length, spanning 5.5m or less according to the studies reported in Section 2.4.1. 

Velocities were usually measured at locations where the flow structure may not have 

been fully developed (e.g. Pethick et al., 1990; Shi et al., 1995; Shi et al., 1996 and 

others). This may give rise to uncertainties when determining the impact of the 

vegetation on the hydrodynamics. Vegetation canopies were used in the studies listed 

above, however, vegetated flow studies are often performed on uniform cylinder 

models which are used to simulate vegetation canopies (e.g. Li and Shen; 1973; Nepf 

et al., 1997a; Nepf et al., 1997b; Nepf, 1999; Stone and Shen, 2002 and others). 

Consequently, the impact of the non-uniformity in plant material on the velocity 

profile and turbulence structure has seldom been looked at.

A laboratory programme was designed to investigate the effects of a common 

saltmarsh species, namely Spartina anglica, on the velocity and turbulence structure 

of fully developed uniform flows. Sp. anglica was a key vegetation species identified 

at the Llanelli and Lanrhidian field sites (Section 3.2.3). Plant morphology will be 

linked to the velocity structure using the measured velocity and turbulence data 

presented in the current chapter (Section 7.3) and the results from the vegetation 

quantification (Section 5.3).

The velocity and turbulence structure through vegetation canopies was 

examined by evaluating the time-averaged velocities in the longitudinal and vertical 

directions and the associated fluctuating components for each mean velocity. These 

were used to determine other parameters that characterise the flow such as the stem 

Reynolds number, the “form-induced” stress and the Reynolds stress. Linking plant 

morphology to the resulting hydraulic resistance was achieved by introducing a one­

dimensional bulk drag coefficient, CD , characterising the hydraulic resistance 

properties of a canopy over the height of the vegetation. A two-dimensional 

counterpart, CD 2d, was used to characterise the hydraulic resistance of the vegetation
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at a given elevation within the canopy. This is given by Equation 2.34, the derivation 

of of which is presented in Appendix I.

The one-dimensional drag coefficient, CD , offers a less complex approach for 

evaluating the hydraulic resistance of the entire canopy. This is more convenient for 

comparisons of the hydraulic resistance due to vegetation under different conditions 

such as stem densities, bed gradients and submergence levels. However, the two- 

dimensional coefficient, Cd 2d, is more suitable for examining a single canopy in 

more detail by evaluating the variation in vegetation characteristics and flow structure 

(velocity and turbulence structure) with elevation. The latter parameter could 

potentially be used to predict velocity profiles within the canopy, which would be 

extremely relevant to the study of vegetated flows. Both parameters are dependent on 

the morphology of the vegetation, although CD 2d is also dependent on the Reynolds 

stress in the canopy. The Reynolds stress is not used in the one-dimensional 

calculation of CD .

A range of bed gradients, stem densities, emergence and submergence levels 

were imposed. Values for these variables were selected based on the findings of the 

field monitoring programme presented in Chapters 3 and 4, so that the experiments 

were conducted for a range of conditions that were representative of typical 

saltmarshes. The submergence level, H, was defined as the ratio of flow depth, Z), to 

vegetation height, T. Values of H  less than unity indicate an emergent condition 

meaning that the vegetation canopy projects through the water surface, whilst values 

of H  greater than unity indicate a submerged condition with the flow depth being 

greater than the canopy height. Canopies constructed from vegetation samples 

collected during August 2006 and February 2007 were studied through a series of 

experiments. The aim was to distinguish between the material properties of younger 

summer and mature winter plants. Summer vegetation collected during August 2006 

was examined for a wide range of flow conditions (Table 7-1). A selection of these 

tests was repeated using mature winter plants collected during February 2007 (Table 

7-2). The contrast in stiffness between the relatively flexible August vegetation, and 

the relatively brittle February vegetation was discussed in Section 4.4.3 based on 

samples collected during September 2007 and December 2006. There was 

considerable variation in the Reynolds number, Re<*, for the experiments, however,
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values were consistently within the vortex shedding range of values between 90 and 

1000 (sefe Section 2.2.3).

Table 7-1 Details of the experiments conducted using Sp. anglica plants during Aug 2006
Test
No.

Stem 
Density 

[Stems m’2]

Bed
Gradient

So[-]

Vegetation
Height
T[m]

Flow 
Depth 
D [ ml

Reynolds
Number

Red

Submergence

H = D / T

Flow
Rate

Q[  is'1]
S-T12 800 1/300 0.53 0.25 420 0.47 7.0
S-Tll 800 1/300 0.53 0 . 2 0 430 0.38 5.3
S-Mll 800 1/300 0.15 0 . 2 0 450 1.33 6 . 8

S-Sll 800 1/300 0 . 1 0 0 . 2 0 600 2 . 0 0 12.9
S-V10 - 800 1/300 0.05 0.15 890 3.00 13.9
S-T22 800 1 / 1 0 0 0 0.53 0.25 2 0 0 0.47 3.4
S-T21 800 1 / 1 0 0 0 0.53 0 . 2 0 230 0.38 2.7
S-M21 800 1 / 1 0 0 0 0.15 0 . 2 0 250 1.33 3.9
S-S21 800 1 / 1 0 0 0 0 . 1 0 0 . 2 0 350 2 . 0 0 7.4
S-V20 800 1 / 1 0 0 0 0.05 0.15 360 3.00 8 . 0

M-T12 1160 1/300 0.53 0.25 340 0.47 5.5
M-Tll 1160 1/300 0.53 0 . 2 0 360 0.38 4.2
M-Mll 1160 1/300 0.15 0 . 2 0 340 1.33 5.3
M-Sll 1160 1/300 0 . 1 0 0 . 2 0 480 2 . 0 0 1 0 . 6

M-V10 1160 1/300 0.05 0.15 770 3.00 12.4
M-T22 1160 1 / 1 0 0 0 0.53 0.25 160 0.47 2 . 6

M-T21 1160 1 / 1 0 0 0 0.53 0 . 2 0 160 0.38 1.9
M-M21 1160 1 / 1 0 0 0 0.15 0 . 2 0 2 1 0 1.33 3.1
M-S21 1160 1 / 1 0 0 0 0 . 1 0 0 . 2 0 260 2 . 0 0 5.8
M-V20 1160 1 / 1 0 0 0 0.05 0.15 440 3.00 6 . 8

D-T12 1850 1/300 0.53 0.25 250 0.47 4.4
D-Tll 1850 1/300 0.53 0 . 2 0 270 0.38 3.5
D-Mll 1850 1/300 0.15 0 . 2 0 240 1.33 4.6
D-Sll 1850 1/300 0 . 1 0 0 . 2 0 370 2 . 0 0 10.7
D-V10 1850 1/300 0.05 0.15 480 3.00 10.9
*D T0 0 i qca1 OJv 1 / 1 0 0 0 q  53 q 2 5 +60 0t47 2t9
♦D-T21 1 Q<Q1 OJv 1 / 1 0 0 0 0  53 q 2 0 +70 q  33
D-M21 1850 1 / 1 0 0 0 0.15 0 . 2 0 1 1 0 1.33 2 . 2

D-S21 1850 1 / 1 0 0 0 0 . 1 0 0 . 2 0 180 2 . 0 0 5.5
D-V20 1850 1 / 1 0 0 0 0.05 0.15 240 3.00 5.9

*Tests D-T22 and D-T21 were excluded from this report due to an error incurred in the adjustment 
of the flume bed gradient.

Table 7-2 Details of the experiments conducted using Sp. anglica plants during Feb 2007
Test No. Stem 

Density 
[Stems m'2]

Bed
Gradient

So

Vegetation 
Height 
T[ m]

Flow
Depth
£>[m]

Reynolds
Number

Rê

Submergence

H = D / T

Flow
Rate

Q [is'1]
S-T21m 800 1 / 1 0 0 0 0.53 0 . 2 0 410 0.38 6 . 8

S-M21m 800 1 / 1 0 0 0 0.15 0 . 2 0 600 1.33 10.7
S-S21m 800 1 / 1 0 0 0 0 . 1 0 0 . 2 0 760 2 . 0 0 17.8
S-V20m 800 1 / 1 0 0 0 0.05 0.15 1 0 0 0 3.00 19.2
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7.2 One-Dimensional Measurements

7.2.1 Stage-Discharge Relationships

7.2.1.1 Emergent Vegetation

In Figure 7-1, stage-discharge curves (Section 5.2.5) are presented for 

emergent conditions where the August vegetation was long enough to protrude 

through the water surface (test numbers S-T21, M-T21, S-T12, M-T12 and D-T12, 

see Table 7-1 for details). Discharge rates in Figure 7-1 were determined using the 

flowmeter readings. One curve represents the February vegetation case for which the 

stem density was 800 stems m‘2 (test number S-T21m). This stem density is 

equivalent to the sparsest of the stem densities investigated using vegetation harvested 

in the summer. A decrease in flow resistance within the canopy due to decreasing 

stem density is indicated by the downward transposition of the curves. This meant that 

for a given flow depth, greater discharge could be conveyed with decreasing stem 

density and hence, flow velocities were greater.

As one would expect, for a steep slope, a greater discharge was conveyed for a 

given flow depth. The effects of changes in stem density and bed gradient on the flow 

depth are summarised in Table 7-3 for the canopies examined. Although increasing 

the bed gradient appeared to have a more significant effect on the flow depth, the 

relative difference between the two bed gradients investigated was significantly 

greater than the differences between the three stem densities. The increase from a bed 

gradient of 0.001 to 0.003 is equivalent to an increase of 233%, which is considerably 

greater than the percentage increases from 800 stems m‘2 to 1160 stems m‘2 (45%) or 

from 800 stems m’ to 1850 stems m" (131%). A winter vegetation canopy was also 

considered which created significantly less flow resistance than that created by the 

summer vegetation canopy with the same bed slope of 0.001 and stem density of 800 

stems m‘2. As mentioned earlier in Section 7.1, the Reynolds number ranges for each 

canopy, which are presented in Figure 7-1, varied for the different canopies, however, 

they fell within the range of values that are characteristic of vortex shedding (between 

90 and 1000).
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Table 7-3 The effects of increasing bed gradient and decreasing stem density on the flow depth
First canopy Second canopy Percentage difference Effect on 

flow depth 
AD  (%)

So(r) Stem density 
(Stems m'2)

So(~) Stem density 
(Stems m'2)

So(-) Stem density 
(Stems m'2)

0.001 800 0.003 800 233% - 54.4%
0.001 1160 0.003 1160 233% - 54.4%

0.001 1160 0.001 800 _ -31.0% -25.8%
0.003 1160 0.003 800 - -31.0% -25.6%

0.003 1850 0.003 800 - -56.8% -36.8%

0.3

D
(m)

0.2

0.1

Emergent Conditions

>b
v  A

A xP

O >tl
A

Q (is1)
10

Stem Density So Season Hydraulic Radius Stem Diameter
(stems m'2) Reynolds number Reynolds number

X 800 1 / 1 0 0 0 Winter 4300 < Re* < 7700 290 < Re</ < 300
■ 800 1 / 1 0 0 0 Summer 2800 < Re* < 3800 210 < Rê  <230
A 1160 1 / 1 0 0 0 Summer 2500 < Re* < 2800 160 < Re</< 170
□ 800 1/300 Summer 4500 < Re* < 8500 470 < Rê  < 490
A 1160 1/300 Summer 4100 < Re* <6300 360 < Rea < 390
O 1850 1/300 Summer 3600 < Re* < 5300 230 < Rê  < 240

Figure 7-1 Stage-Discharge curves for emergent Spartina anglica canopies for stem densities of 
800,1160 and 1850 stems m' 2 and bed gradients of 1/300 and 1/1000. D is the flow depth, Q is the 
flow rate, and S0 is the bed gradient.
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7.2.1.2 Submerged Conditions

Stage-discharge curves (Section 5.2.5) are presented in Figure 7-2, Figure 7-3 

and Figure 7-4 for 50mm, 100mm and 150mm cropped canopy heights respectively 

with stem densities of 800, 1160 and 1850 stems m’2 and bed gradients of 0.001 and 

0.003. For a given flow rate, the uniform flow depth increased with increasing stem 

density and decreasing bed slope as observed in section 7.2.1.1 for emergent 

conditions.
The trends associated with variations in bed gradients and with stem density 

are summarised in Table 7-4 and Table 7-5 respectively. The statistics in Table 7-4 

indicate that the percentage increase in uniform flow depth with bed gradient was 

similar for both canopy heights of 100 mm and 150 mm. There was also little 

variation in the percentage increase in uniform flow depth for each o f the three stem 

densities investigated, particularly for the two lower densities. Based on the statistics 

presented in Table 7-5, a greater decrease in stem density resulted in a greater increase 

in uniform flow depth, and the increase was greater for the 150 mm canopy, compared 

to the 100 mm canopy.

Table 7-4 Percentage increase in uniform flow depth associated with an increase in bed gradient 
from 1/1000 to 1/300 (233%) for canopies with stem densities of 800, 1160 and 1850 stems m'2,

Increase in flow depth (%)
Stem density (stems m'2) 800 1160 1850
150 mm canopy 43.9% 43.9 % 50.3 %
100 mm canopy 40.2 % 42.4 % 47.2 %

Table 7-5 Percentage increase in uniform flow depth associated with an decrease in stem density
from 1160 to 800 stems m'z (31.0%), and from 1850 to 800 stems m~2 (56.8%)

Canopy height
Increase in stem density 

%
Increase in flow depth (%) 

S0 = 0.001 s0 = 0.003
150 mm -31.0% 16.6% 16.5 %

-56.8 % 29.8 % 20.7 %
100 mm -31.0% 10.6% 13.8%

-56.8 % 18.0% 10.6%

Similar trends were difficult to determine for a canopy height of 50mm 

(Figure 7-2). Reynolds numbers for flow through the 50 mm cropped canopy (450 < 

RQd < 2190) were considerably greater than those for the 100 mm (250 < Re  ̂< 1480), 

150 mm (150 < Re<* < 1000) and emergent (140 < Re</ < 490) canopies. Stem
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Reynolds numbers were calculated based on the area mean velocity, Ua, and the basal 

stem diameters.

The Stage-discharge relationships for the 50 mm height canopy presented in 

Figure 7-2 did not converge with decreasing flow rate towards a flow depth equal to 

the canopy height as observed for the 100 mm and the 150 mm canopies in Figure 7-3 

and Figure 7-4 respectively. This is likely a feature of the considerably higher 

Reynolds number ranges for flows through the 50 mm canopies, which were therefore 

excluded from the comparisons discussed in this section.

0.3

0.2

D im )

0.1

Submerged Conditions

10
Q Os'1) 20 30

Stem Density So Season Hydraulic Radius Stem Diameter
(stems m*2) Reynolds number Reynolds number

■ 800 1 / 1 0 0 0 Summer 10500 < Re* < 23500 810 < Re</< 1430
A 1160 1 / 1 0 0 0 Summer 10100 <Re*< 23000 780 < Rerf< 1410
•  1850 1 / 1 0 0 0 Summer 7200 < Rê  < 18800 450 < Rê  < 890

□ 800 1/300 Summer 16500 < Re* < 34200 1340 <Red< 2190
A 1160 1/300 Summer 15800 < Rê  < 33300 1280 <Rerf< 2180
°  1850 1/300 Summer 11200 <Re*< 32900 740 < Re^< 1590

Figure 7-2 Stage-Discharge relationships for a submerged 50 mm cropped canopy for stem 
densities of 800, 1160 and 1850 stems m' 2 and bed gradients of 1/300 and 1/1000. D is the flow 
depth, Q is the flow rate, and S0 is the bed gradient.
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■ 800 1 / 1 0 0 0 Summer 3900 <Re*< 15000 310 < Re</< 880
▲ 1160 1 / 1 0 0 0 Summer 3600 < Re* < 14400 290 < Re* < 860
• 1850 1 / 1 0 0 0 Summer 4300 < Re* < 11700 250 < Re* <540
□ 800 1/300 Summer 14000 < Re* < 24600 960<R e,<  1480
A 1160 1/300 Summer 9600 < Re* < 22800 700 < Re</ < 1400
O 1850 1/300 Summer 8500 < Re* < 19400 490 < Re</ < 930

30

Figure 7-3 Stage-Discharge relationships for submerged 100 mm tall Spartina anglica canopies 
for stem densities of 800,1160 and 1850 stems m*2 and bed gradients of 1/300 and 1/1000. D is the 
flow depth, Q is the flow rate, and 5*0 is the bed gradient.
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Figure 7-4 Stage-Discharge relationships for submerged 150 mm tall Spartina anglica canopies 
for stem densities of 800,1160 and 1850 stems m' 2 and bed gradients of 1/300 and 1/1000. D is the 
flow depth, Q is the flow rate, and S0 is the bed gradient.

7.2.2 One-Dimensional Drag Coefficients

7.2.2.1 Coefficients for Emergent Conditions

Drag and roughness coefficients were described in Section 2.2.6. One­

dimensional bulk drag coefficients, CD , and one-dimensional roughness coefficients,

CD', are presented for emergent canopies in Figure 7-5a and Figure 7-5b respectively 

for flow depths of 0.20m and 0.25m. For the emergent canopies, there was little
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variation in the coefficients with flow depth for any given stem density. Between 

0.20m and 0.25m depths, there was little change in the average canopy resistance over 

these flow depths. Variations in one-dimensional drag coefficients with degree of 

submergence, although small, were not consistent as demonstrated by the experiments 

conducted on the August vegetation. For a bed gradient of 0.001 and with increasing 

submergence, the drag coefficients increased for the 800 stems m'2 canopy, but 

decreased for the 1160 stems m‘2 canopy. For a bed gradient of 0.003, the drag 

coefficients decreased for stem densities of 800 and 1160 stems m'2, but remained 

relatively constant for the higher stem density of 1850 stems m*2. These trends 

reflected the high level of variation in the morphology of the vegetation. They also 

reflected the difference in the distribution of the vegetation material within the canopy 

as demonstrated by the projected area of obstruction profiles presented in Section 

3.4.3.

For a given bed gradient, a reduction in CD with increasing stem density was 

indicative of two main phenomena. Firstly, for a canopy with a higher stem density, 

the stem spacings were smaller. Therefore, the likelihood of stem wakes interacting 

with downstream stems and reducing the momentum of the flow was higher (Section 

2.2.6). Secondly, the longitudinal weight component due to the flow was balanced by 

a drag force created by a larger number of stems. Although the canopy resulted in a 

greater resistance to the flow, each stem experienced a smaller proportion of the 

weight of the flow. This is also shown by the increase in the roughness coefficient

(CD') profile with stem density for each bed gradient in Figure 7-5b. CD' represents 

the total resistive effect of the canopy on the flow.

For the steeper bed gradient of 0.003, the flow velocity through the canopy 

layer was higher and the drag coefficients were lower when compared to the canopies 

at a bed gradient of 0.001. This is likely to be because of the higher Reynolds number 

at which the steeper bed experiments were conducted. Stem Reynolds numbers for 

emergent summer vegetation canopies ranged between 160 and 230 for a bed gradient 

of 0.001, and between 230 and 490 for a bed gradient of 0.003 (see Figure 7-1). Drag 

coefficients increase in magnitude with the Reynolds number, particularly within the 

laminar and transitional ranges (Re^<1000), as frictional drag becomes 

insignificant, and the turbulence of the flow increases.
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Figure 7-5 [a]: bulk drag coefficient, CD , and [b]: the one-dimensional bulk roughness

coefficient, CD', for emergent Spartina anglica canopies for flow depths, Z), of 0 .2 0 m and 0.25m, 
at bed gradients of 1/1000 and 1/300, stem densities of 800, 1160 and 1850 stems m'2, and 
vegetation collected during the months of August and February. S0 is the bed gradient.

Values of the Manning’s roughness coefficient, n, (Section 2.1.1), are 

presented in Figure 7-6 for the emergent canopies studied. Values were determined 

for each flow case individually as the flow was unlikely to be fully turbulent. Values 

ranged between 0.13 and 0.20 for the August canopies. For a given bed slope, 

Manning’s increased with stem density. The February canopies resulted in the 

lowest Manning’s n value of 0.10.
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Figure 7-6 Manning’s roughness coefficients, n, for the emergent Spartina anglica canopies 
studied. D is the flow depth, H  is the submergence level and So is the bed gradient.

7.2.2.2 Coefficients for Submerged Conditions

Drag and roughness coefficients are presented for submerged canopies in 

Figure 7-7c and Figure 7-7d respectively for submergence levels of 1.33, 2.00 and

3.00. There was a large increase in the projected area component, BLD/A with

submergence level, H  (see Figure 7-7a; B, L, and D  are the lateral width, longitudinal 

length and vertical depth of the flow volume respectively, and Ap is the total

projected area of obstruction). The parameter BLD/Ap is effectively the reciprocal of 

the projected area per unit volume (1/ a 2 ) of which the bulk drag coefficient is a 

function (refer to Equation 2.28). Meanwhile, the velocity component, l /t /(2. , 

demonstrated a significant decrease in magnitude with submergence level (see Figure 

7-7b; Uc is the depth averaged velocity for the canopy layer). The bulk drag

cefficient is also a function of the reciprocal velocity parameter \ /U 2c .

Despite the large projected areas of obstruction and high stem densities of the 

canopies investigated, the volume of the plants were negligible compared to the 

volume of the flow (Section 3.4.5). Subtraction of the former from the latter had no

significant effect o f the values of the coefficients CD and CD\  The longitudinal 

weight component of the water volume in the flow direction for a given flow depth
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was approximately equal for different stem densities because the porosities of the 800, 

1160 and 1850 stems m'2 canopies were close to unity (see Section 3.4.5).
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Figure 7-7 Parameters used for the calculations of the one-dimensional bulk drag coefficient, 
C D , and the one-dimensional bulk roughness coefficient, C D', for submerged Spartina anglica 
canopies at submergence levels, // ,  of 1.33, 2.00 and 3.00, at bed gradients of 1/1000 and 1/300, 
stem densities of 800, 1160 and 1850 stems m'2, and vegetation collected during the months of 
August and February. A p is the total projected area of obstruction, B L D  is the unit flow

volume, where B  is the flow width, L  is the length longitudinal reach, and D  is the flow depth, 
U c is the depth-averaged velocity through the canopy layer, and S 0 is the bed gradient.
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Values of the Manning’s roughness coefficient, n, (Section 2.1.1), are 

presented in Figure 7-8 for the submerged canopies studied. As observed for the 

emergent conditions in Section 7.2.2.1, Manning’s n increased with increasing stem 

density for a given bed slope with values ranging between 0.02 and 0.15 for August 

vegetation canopies, but values decreased with increasing submergence level. This is 

attributed in part to the cropping of the vegetation and reducing the canopy height to 

achieve a higher submergence level (see Section 5.2.4.2). The lowest values were 

observed for the February vegetation canopies ranging between 0.02 and 0.06. The 

Manning’s n values calculated for the constructed vegetation canopies were usually 

within the range of values documented by Chow (1959) for floodplains covered by 

brush (bushes and shrubs), which was between 0.035 and 0.160 depending on the 

density of the brush and the time of year.
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Figure 7-8 Manning’s roughness coefficients, n, for the submerged Spartina anglica canopies 
studied. D is the flow depth, H  is the submergence level (D/T) and S0 is the bed gradient.

7.2.3 The CD' - Re^ Relationship

Based on the concept o f the drag coefficient -  Reynolds number curve for a 

single cylinder (see Section 2.2.3), Wu et al. (1999) produced similar relationship 

curves for vegetation canopies. The authors replaced the drag coefficient for a single

cylinder, CD, for a roughness coefficient, CD' (Equation 2.19). The roughness
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coefficient is more conveniently applied to vegetation canopies, particularly where the 

projected area is difficult to determine or is unknown. The CD' -Re  ̂ curve was 

discussed in Section 2.3.6, and the concept is applied here to the Spartina anglica 

canopies implemented in the present study.

Based on the flow data collected for the stage-discharge curves (see Section

7.2.1.1), CD' -Rer curves are presented in Figure 7-9 for emergent Spartina anglica

canopies. An increase in stem density resulted in an upward shift of the CD' -Re  ̂

curves indicating a higher drag coefficient for a given Reynolds number. This can be 

attributed to a greater drag force due to a greater amount of vegetation material. 

However, for all the emergent canopies considered, there was little variation in the 

roughness coefficient with changing Reynolds number for the range of Reynolds 

numbers examined.

too

c.7'
(m-1)

10

1
1000 10000 100000

Rer(-)

Figure 7-9 The relationship between the bulk roughness coefficient, CD' , and the canopy height 
Reynolds number, Rer, for the emergent Spartina anglica canopies implemented in this study. S0 
is the bed gradient.
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A So = 1/300 , 1160 stems m'2 , August 
° S0 = 1/300 , 1850 stems m‘2 , August
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To characterise the CD' -Rer relationships for different canopies, Wu et al. 

(1999) proposed comparing values of the exponent of the curves, k, as given in 

Equation 2.32. Wu et al. (1999) suggested the exponent, k, is specific to the 

vegetation type. A: is a useful parameter because it enables the calculation of the bulk 

roughness coefficient for a given Reynolds number.

Values of k  calculated for the emergent Spartina anglica canopies examined 

are presented in Table 7-6. The k values indicate that within the range of Reynolds 

numbers examined, asymptotic values were reached for a number of experiments 

where k is equal to or approximately zero. These include the experiments on the 

February vegetation canopy (bed gradient of 0.001 and stem density o f 800 stems m* 

2), and for some of the August vegetation canopies (bed gradient of 0.003 and stem 

densities of 1160 and 1850 stems m'2).

Bed Slope 
(-)

Stem Density 
(stems m‘2)

k
(-)

February vegetation 1 / 1 0 0 0 800 0 . 0 0

August vegetation 1 / 1 0 0 0 800 0.46
1 / 1 0 0 0 1160 0.14
1/300 800 0.15
1/300 1160 0 . 0 0

1/300 1850 0 . 0 0

Wu et al. (1999) and later, Tsihrintzis et al. (2001), produced CD' -Rer plots 

for a wide range of natural and artificial canopies from a number of different studies 

(see Section 2.3.6). The CD' -Re r relationships produced for the wheat canopies 

investigated by Turner and Chanmeesri (1984) were of closest resemblance to the 

canopies in this study (see Figure 7-10). The wheat canopies had similar stem 

densities, ranging between 1020 and 2190 stems m‘2, to the stem densities 

implemented in this study, k  values for the wheat canopies ranged between values of 

0.33 and 0.52. Pine and cedar tree saplings investigated by Fathi-Maghadam and 

Kouwen (1997) resulted in similar k values ranging between 0.20 and 0.77. But 

otherwise, k values determined for the Spartina anglica canopies in this study were 

considerably lower compared to values for most of the emergent canopies presented 

by Wu et al. (1999) and Tsihrintzis et a l (2001) (see Section 2.3.6). The lower k

values observed in this study correspond to a smaller variation in CD' with Reynolds
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number. This may be associated with the dense vegetation arrays implemented, since 

the stem’ densities examined were considerably higher than many of the canopies 

presented by the aforementioned authors, as well as the high Reynolds numbers 

implemented.

100

C '
(m 1)

10 & Kouw 
(0.20 < 1

Hall & Freeman (1994) 
„ (1.03 < k < 1.16)

K i &  O O t f r  1 TV,
Turner & 
Chanmeesri (1984)

F athi-M aghadam 
en (1997) 
< 0.77)

10000 100000
Rer(-)

X S0 =  1/1000 , 800 stems m‘2 , February
■ S0 =  1/1000 , 800 stems m‘2, August
a S0 =  1/1000 , 1160 stems m'2, August
□ S0 =  1/300 , 1850 stems m‘2, August 
A So = 1/300 , 1160 stems m‘2 , August
O S0 =  1/300 , 1850 stems m‘2 , August

Figure 7-10 The relationship between the bulk roughness coefficient, CD' , and the canopy 
height Reynolds number, Rer, for the emergent Spartina anglica canopies implemented in this 
study and some of the data presented in Tsihrintzis et al. (2001). S0 is the bed gradient.

In keeping with Tsihrintzis et al. (2001), for the data from the present study, 

an increase in stem density resulted in a vertical upward shift in the CD' -Rer curve

(for a given Reynolds number, a higher CD' value was observed). However in 

disagreement with Tsihrintzis et al. (2001), data from this study shows that the 

parameter k is affected by stem density. The parameter k decreases with increasing 

stem density (see Table 7-6). This implies that for denser canopies, there would be 

less variation in the drag coefficient with Reynolds number. This is supported by 

other data sets, for example the data set for Wheat crops from Turner and Chanmeesri 

(1984).
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7.3 Two-Dimensional Measurements

7.3.1 Double-Averaged Parameters

Velocity and turbulence parameters are calculated based on measurements 

averaged spatially along the flume length as well as temporally over the three minute 

period of ADV operation. Four profiles were monitored for each constructed canopy 

(see Section 5.2.7 for more detail).

7.3.2 Emergent Conditions

7.3.2.1 Longitudinal Velocities

The longitudinal velocity profiles for experiments where the vegetation was 

emergent for a bed gradient of 0.003 is presented in Figure 7-11 and for a bed 

gradient of 0.001 in Figure 7-12. The longitudinal velocities for the emergent 

condition were relatively constant over the flow depth compared to the submerged 

cases presented later in Section 7.3.3.1. Fluctuations in velocity magnitudes over the 

height of the canopy are attributed to the variation in the level of obstruction due to 

different ‘concentrations’ of plant material with elevation. The longitudinal velocity 

profiles for each of the two bed gradients examined contain similar features in the 

form of maxima and minima for any given stem density, regardless of the flow depth. 

For the steeper gradient (0.003), the experiments were conducted at considerably 

larger flow rates (see the stage-discharge relationships shown in Figure 7-1), the 

overall velocities were significantly higher, and such features in the profiles were 

much more pronounced.

Over the height of the canopy, the vegetation varied in material properties (e.g. 

modulus of elasticity, see Figure 3.27), in the quantity of plant material per unit 

volume (e.g. projected area per unit volume and mass of material, see Figure 3.7), and 

‘type’ of plant material. In the upper, ‘leafy’ part of the canopy, the vegetation was 

thinner and more flexible, but also much larger in surface area. The smaller frontal 

area of the stem region near the bed created less physical obstruction, and hence, flow 

velocities were greater when compared to velocities at the mid-flow depth. Projected 

area per unit volume profiles are shown in Figure 7-13 for the three stem densities of
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800, 1160 and 1850 stems m-2 of Spartina anglica canopies which were considered in 

Figure 7-11 and Figure 7-12.
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Figure 7-11 Longitudinal velocity profiles for emergent flow and a bed gradient of 1/300 for flow 
depths of 0.2 m and 0.25 m.
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Figure 7-12 Longitudinal velocity profiles for emergent flow and a bed gradient of 1/1000 for 
flow depths of 0.2 m and 0.25 m.
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Differences in the profile shapes between the three stem densities are 

attributed to the variation in the vegetation samples used to construct each canopy. 

The vegetation was highly heterogeneous in nature, as demonstrated by the projected 

area per unit volume profiles presented in Figure 7-13. The 1850 stems m'2 canopy 

had the greatest level of variation in projected area over the height of the canopy, 

however, it also had the greatest magnitude of projeted area resulting in greater flow 

resistance and hence, lower velocities. Due to lower velocity magnitudes within the 

canopy, the variation observed in projected area was less apparent in the velocity 

profiles which appear to be the most uniform of the three stem densities considered.
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Figure 7-13 Profiles of projected area per unit volume for three Spartina anglica canopies with 
stem densities of 800, 1160 and 1850 stems m'2. Z is the elevation above the bed and a  is the 
projected area per unit volume of the vegetation.

13.2.2 Normalised Longitudinal Velocity Profiles

For flow through a given canopy at a given flow depth, there was a strong 

similarity in the shapes of the normalised longitudinal velocity profiles. This was 

despite the difference in flow rates imposed for different bed gradients (see Figure 

7-14 for a bed gradient of 0.003 and Figure 7-15 for a bed gradient of 0.001). Many 

of the features in the profiles, i.e. maxima and minima, were visible for both bed 

gradients examined. Their magnitudes were proportional to the depth-averaged 

longitudinal velocity.
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Figure 7-14 Longitudinal velocity profiles normalised by depth-averaged velocities for emergent 
flow conditions and a bed gradient of 1/300 for flow depths of 0.2 m and 0.25 m.
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Figure 7-15 Longitudinal velocity profiles normalised by depth-averaged velocities for emergent 
flow conditions, a bed gradient of 1/1000 and flow depths of 0.2 m and 0.25 m.
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7.3.3 Submerged Conditions

7.3.3.1 Longitudinal Velocity Profiles

The measured longitudinal velocity profiles demonstrated the canopy’s ability 

to modify flow structure within the canopy layer. This was more apparent for 

submerged conditions compared to the emergent conditions as there was a strong 

contrast between the highly resistive vegetation layer and the unobstructed surface 

flow layer (Figure 7-16 and Figure 7-17). As one would expect, flow velocities within 

the canopy region were considerably lower in magnitude compared to the surface- 

flow region. Within the canopy layer, the longitudinal velocity was fairly constant 

with elevation except for a submergence level, H, of 3.00. A significant amount of the 

upper plant foliage was removed for this submergence level.

The time-averaged longitudinal velocity profiles measured for the three stem 

densities (800, 1160 and 1850 stems m* ) and the three submergence levels are 

presented in Figure 7-16 for a bed gradient of 0.003 and in Figure 7-17 for a bed 

gradient of 0.001. For the highest submergence of 3.00, the 0.05m cropped canopy 

possessed marginal foliage content and plant stalks dominated the vegetation 

structure. The corresponding velocity profile increased with elevation within the 

canopy layer. At the lowest submergence level of 1.33, the 0.15m cropped canopy 

possessed the largest proportion of leaf content and the greatest projected area of 

obstruction, and the flow was relatively uniform over the canopy layer. Differences in 

velocity profiles for the three stem densities were observed because the ability of 

turbulence to penetrate the vegetation is a function of the vegetation density. This is 

discussed later in Section 7.4.4. Above the canopy layer, the profiles adopted a 

logarithmic shape and the velocity increased towards the water surface. This 

illustrated the influence of plant foliage in determining the longitudinal velocity 

structure within the canopy layer.

The experiments for each of the three vegetation canopies, with cropped 

canopy heights o f 0.05 m, 0.10 m and 0.15 m, were performed for two different bed 

slope conditions (Figure 7-17 and Figure 7-16). This is reflected in the Reynolds 

number ranges for which the experiments were conducted (Figure 7-18). As would be 

expected for a given submergence, the stem Reynolds numbers are shown to increase 

with increasing bed slope. Furthermore the stem Reynolds numbers increase with 

increasing degree of submergence and decrease with increasing stem density.
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Nonetheless, values were consistently within the range of stem Reynold numbers 

characteristic of vortex shedding (between 90 and 1000) as discussed in Section 2.2.3.

1160 stems m"2800 stems m'2 1850 stems m‘2

0.2 0.4 0.6 0.2 0.4  0.6

< u > (ms'1) <u > (ms'1) < u > (ms'1)

Figure 7-16 Longitudinal velocity profiles for submerged flow conditions and a bed gradient of 
1/300 for submergence levels, H, of 1.33, 2.00 and 3.00. The dashed line indicates the top of the 
cropped canopy.

The magnitudes of the velocities were greater for the experiments conducted 

for a bed gradient of 0.003. However, for a given submergence level and stem 

density, the ratio of the canopy to surface flow layer velocity showed little variation 

with bed gradient (Figure 7-19). Increases in the ratio of mean longitudinal canopy to 

surface flow layer velocities were inconsistent with the order of submergence levels 

for each stem density. This was due to a significant modification of the canopy 

morphologies with increasing submergence level by cropping the vegetation (see 

Section 5.2.4.2). Due to the vertical variability of the vegetation (see Section 3.4.4), 

with each reduction of the cropped canopy height, a significant proportion of the
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canopy foliage was removed. Consequently, for the highest submergence level of

3.00, the mean projected area of the cropped canopy was significantly lower than the 

lower submergence levels (1.33 and 2.00) and the canopy created less obstruction to 

the flow. As a result, longitudinal velocities through the cropped canopy layer, and 

hence, the ratio of mean canopy to surface flow layer velocity were high (see Figure 

7-19).
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Figure 7-17 Longitudinal velocity profiles for submerged flow conditions and a bed gradient of 
1/1000 for submergence levels, A/, of 1.33, 2.00 and 3.00. The dashed line indicates the top of the 
cropped canopy.

For some of the experiments shown in Figure 7-16, a ‘kink’ in the longitudinal 

velocity profiles was observed near the water surface. This was observed for most of 

the experiments conducted for the higher submergence levels of 2.00 and 3.00 and for 

a bed gradient of 0.003; these experiments being where the longitudinal velocities 

were highest. Higher surface flow velocities, particularly near the water surface, 

resulted in higher Reynolds numbers. This can also be seen in higher values of the
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fluctuating component of the vertical velocity, w\ which is presented later in Section 

7.4.5.2. Hence, a turbulent coherent structure may have been the cause for the 

aforementioned inconsistencies in the longitudinal velocity profiles.

August 2006 vegetation
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Figure 7-18 Stem Reynolds number ranges for experiments conducted for submerged conditions.
Re^ is the stem Reynolds number, S0 is the bed gradient, and 77 is the submergence level.
Data points were offset about the stem density values to avoid overlapping of the standard 
deviation bars to improve the presentation of this plot.
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Figure 7-19 The ratio of the depth-averaged velocity within the canopy layer, Uc , to that within 

the surface flow layer, Us , for experiments conducted under submerged conditions. S0 is the 

bed gradient, and 77 is the submergence level.
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7.3.3.2 Normalised Longitudinal Velocity Profiles

The similarity in shape between the longitudinal velocity profiles for the two 

bed slopes of 0.003 and 0.001 for a given submergence level can be seen in the 

normalised profiles presented in Figure 7-20 and Figure 7-21 respectively. For some 

cases, a higher normalised longitudinal velocity was observed a small distance above 

the bed compared to the velocities near the mid-flow depth. This was observed most 

clearly for the lowest submergence level of 1.33 where the bed gradient is 0.003. This 

is where the least amount of plant foliage was removed and there was greater 

variability in the vegetation structure over the height of the cropped canopy. A greater 

difference in the vegetation morphology was observed between the stem region near 

the bed, and the foliage region near the canopy-surface flow layer interface (Figure 

3.17b). A lower projected area per unit volume of the vegetation resulted in lower 

flow resistance in the region close to the bed causing elevated flow velocities (Figure 

7-20).
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Figure 7-20 Longitudinal velocity profiles normalised by the depth-averaged longitudinal 
velocities for submerged flow conditions and a bed gradient of 1/300 for submergence levels, //, 
of 1.33,2.00 and 3.00. The dashed line indicates the top of the vegetation layer.
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Near the top of the vegetation, there were considerably large Reynolds stresses 

in the flow due to a relatively steeper velocity gradient across the canopy-surface flow 

layer interface for submerged conditions. Gradient profiles for the longitudinal 

velocity are presented in Figure 7-22 for a bed gradient of 0.001 to illustrate this. 

These correspond to the Reynolds stress profiles shown later (see Figure 7-31 and 

Figure 7-32). The difference in longitudinal velocities in the canopy and surface flow 

layers arose due to the difference in the level of obstruction to the flow; at the canopy 

top, flow resistance is high, whereas within the surface flow layer, resistance is 

negligible. The difference between velocities near the top and bottom of the 

submerged canopies increased with the level of submergence; this was thought to be 

associated with the decrease of foliage in the cropped canopies with increasing 

submergence level. At the highest submergence level of 3.00 where there was very 

little foliage in the cropped canopy, the relative increase in longitudinal velocity was 

apparent over most of the flow depth.
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Figure 7-21 Longitudinal velocity profiles normalised by the depth-averaged longitudinal 
velocities for subm erged flow conditions and a bed gradient of 1/1000 for submergence levels, H, 
of 1.33,2.00 and 3.00. The dashed line indicates the top of the vegetation layer.
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7.4 The Shear Stress in Vegetated Flows

7.4.1 Components of the Total Shear Stress

The shear stresses acting on a fluid were discussed in Section 2.5.2. Products 

of the fluctuating components from the time-averaged and spatially-averaged 

velocities (Section 2.3.1) are associated with the acceleration and deceleration of fluid 

particles giving rise to shear stresses. The most significant components o f the total 

fluid stress, r , for a unidirectional flow are given by Equation 2.38. The terms

p  < w V  > ” and p  < uw > ” correspond to the Reynolds stress and the “form- 

induced” stress respectively (refer to Section 2.5.2 for an explanation o f the different
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types o f stresses). Where flow is in the laminar regime, such that the stem Reynolds 

number is below a value of two (Section 2.2.3), the fluid particles move along 

organised planes around obstructions. Hence, turbulent perturbations in the flow are 

thought to be non-existent or scarce and the laminar viscous stresses need to be 

considered. However, for the experimental study presented in this chapter, these were 

found to be negligible (see Section 7.4.2).

For submerged conditions, the magnitude of the total shear stress, which is 

dominated by Reynolds stresses, peaks above the canopy (Section 7.4.4). For a 

comparison between the stresses through different canopies, where Reynolds or 

“form-induced” stresses were considered, the profiles were normalised by the 

maximum total fluid stress value over the flow depth, Tmax. However, for emergent 

conditions, Reynolds stresses were considerably smaller in magnitude as observed by 

Lightbody and Nepf (2006a). These were normalised by the depth-averaged total fluid 

stress, f .

7.4.2 Flow Regime

Within a vegetation canopy, it is thought that the canopy breaks down large 

turbulent structures, and turbulence is regenerated within the stem wakes (Nepf et aL, 

1997b). The stem diameters are commonly used as the length scale when 

characterising the flow (Section 2.2.1). Stem Reynolds numbers were calculated based 

on the longitudinal velocities presented in Sections 7.3.2.1 and 7.3.3.1, and the stem 

diameter profiles presented in Section 3.4.2. These are presented in Figure 7-23 and 

Figure 7-24 for a bed gradient o f 0.003, and in Figure 7-25 and Figure 7-26 for a bed 

gradient of 0.001.

Stem diameter profiles used were based on measurements along the plant 

stems. Hence, the calculated Reynolds number profiles were based on the assumption 

that the plants resembled cylinders varying in diameter with elevation. It is 

acknowledged that a proportion of the Spartina anglica canopy in the upper region is 

composed of foliage that is flat and relatively greater in surface area than the basal 

stem diameter (Figure 3.20). However, diameters were measured for the stem part of 

the canopy for simplicity and used to characterise the flow.

For the dense vegetated conditions encountered in saltmarsh canopies, where 

flow velocities are commonly below 0.01 m s'1 (Section 2.4.2), flow through the
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vegetation is likely to be laminar. However, as explained in Section 2.2.3, based on 

the range o f flow velocities and stem diameters observed along saltmarshes, stem 

Reynolds numbers are estimated to range between 40 and 600 within the vegetation. 

Hence, the experiments conducted for this study usually fall within this range. 

Transition from laminar to turbulent flow occurs over a Reynolds number range that 

varies depending on the canopy characteristics. Higher values are associated with 

higher stem densities due to the effects o f wake-interference (Section 2.2.6). For a 

number o f cylinder arrays ranging in density between 200 and 2000 stems m ' , Nepf 

et al. (1997b) observed vortex shedding from stem Reynolds numbers between 150 

and 200. Based on the upper limit, the flow within the canopy layers in this study was 

either transitional or turbulent. The transition between laminar and turbulent flow, 

assumed at a stem Reynolds number o f 200 for the stem densities o f 800, 1160 and 

1850 stems m 2 studied, is marked on the plots.

Vortex shedding within the vegetation canopy is assumed to commence 

around a stem Reynolds value o f 200 as observed by N epf et al. (1997b) (Section

2.2.4). Hence, based on the calculated stem Reynolds numbers from the current study, 

the flow is thought to be turbulent for the experiments conducted for the emergent 

condition and for a bed gradient of 0.003 (Figure 7-23). In Figure 7-25, where the 

experiments were repeated for a bed gradient o f 0.001, stem Reynolds numbers were 

close to the 200 value for most of the flow depths indicating the flow was likely to be 

in the transitional range.
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Figure 7-23 Stem Reynolds num ber profiles for flow through emergent vegetation for three stem 
densities, flow depths of 0.20 m and 0.25 m and a bed gradient of 1/300. The dashed line marks a 
stem Reynolds num ber of 200; the value around which lam inar to turbulent transition occurs for 
dense vegetation.
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Figure 7-25 Stem Reynolds number profiles for flow through emergent vegetation for three stem 
densities, flow depths of 0.20 m and 0.25 m and a bed gradient of 1/1000. The dashed line marks a 
stem Reynolds number of 200; the value around which laminar to turbulent transition occurs for 
dense vegetation.
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Laminar shear stresses are likely to be greatest in magnitude for the emergent 

condition and for a bed gradient of 0.001 (Figure 7-25), where flow velocities through 

the canopy were the lowest ranging from between 25 and 60 mm s’1. For the 

submerged canopies, flow velocities in the canopy layers were considerably higher 

(Figure 7-16 and Figure 7-17). To demonstrate their lack of importance to the velocity 

field, viscous stresses are plotted alongside the total shear stresses for flow depths of 

0.20 m and 0.25 m, and a bed gradient of 0.001 in Figure 7-27. The total shear stress 

consists of the Reynolds stress, “form-induced” stress and viscous stress (Equation 

2.38).
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Figure 7-27 Profiles of viscous shear stress, T v , denoted by ‘ * ’ and total shear stress, T ,
denoted by 4 □ ’ for flow through emergent vegetation for three stem densities, flow depths of 
0.20m and 0.25m, and a bed gradient of 1/1000.

7.4.3 The ‘Shearing’ Effect of the Surface Flow Layer

As will be shown in the following section, Reynolds stress profiles for 

submerged conditions show a peak near the canopy-surface flow layer interface. This 

is largely attributed to the movement of fluid either side of the interface with different 

velocities. This feature is a characteristic of the ‘mixing layer analogy’ (see Section

2.5.4). Instead of considering the ratio of the surface to canopy layer velocity to assess 

the strength of the ‘mixing layer’, the ratio of the surface layer velocity, Us , to total
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depth averaged velocity, C/, presented as functions o f the submergence level, H, in 

Figure 7-28 yielded better results.
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Figure 7-28 Variation in the ratio of the mean surface-flow layer longitudinal velocity, Us, to the 
mean longitudinal velocity for the total flow depth, (/, with submergence level, H, for
experiments conducted for bed gradients of 0.001 and 0.003, and for stem densities of 800, 
1160 and 1850 stems m'-2

Data from experiments on winter vegetation harvested during February 2007, 

which had a lower projected area per unit volume, are also included. The data from 

these experiments is discussed in more detail in Section 7.5. The plots indicate a 

decrease in Us / U  with increasing submergence level, H, due to an increase in

longitudinal velocities through the canopy layer. This is due to the scaling method 

which resulted in modification o f the canopy morphology by cropping a significant 

proportions o f the canopy foliage and hence reducing its hydraulic resistance. For 

each submergence level, Us /U  increased with increasing stem density due to a

reduction o f longitudinal velocities within the canopy due to a higher level of 

obstruction. The February canopy, which was even lower in projected area compared 

to August canopy with equal stem densities (see Section 7.5.2), had the lowest Us /U  

values due to higher longitudinal velocities in the canopy layer. There was little 

variation in Us / U  for different bed gradients except for the higher stem densities of

1160 and 1850 stems m '2. However, Us / U  increased with bed gradient for the first 

case, and decreased for the latter, thus showing no consistent relationship.
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7.4.4 Reynolds Stress Profiles

For emergent conditions, the Reynolds stress profiles are presented in Figure 

7-29 for a bed gradient o f 0.003, and in Figure 7-30 for a bed gradient of 0.001. 

Reynolds stresses were small in magnitude for emergent vegetation, with less 

variation over the flow depth compared to the submerged canopies presented later in 

Figure 7-31 for a bed gradient of 0.003, and in Figure 7-32 for a bed gradient of 

0.001. For the emergent cases, the magnitude of peak Reynolds stress ranged between 

0.01 and 0.15 kg m '1 s’2, compared to 0.17 and 2.46 kg m’1 s'2 for the submerged 

canopies. The variability observed in the Reynolds stress profiles in Figure 7-29 and 

Figure 7-30 may be attributed to the variation in wake generation at different 

elevations.
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Figure 7-29 Reynolds stress profiles, normalised by the depth-averaged total fluid stress, f , for 
flow through emergent vegetation for three stem densities, flow depths of 0.20 m and 0.25 m and 
a bed gradient of 1/300.
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The Reynolds stress profiles through submerged vegetation reach a maximum 

value a small distance above the top o f the canopy in the surface flow layer. This is 

shown in Figure 7-31 for a bed gradient o f 0.003, and in Figure 7-32 for a bed 

gradient o f 0.001. This was also observed by other researchers (e.g. Gambi et al., 

1990; Lopez and Garcia, 1997; Nepf and Vivioni, 2000). The shear layer resulted in 

elevated Reynolds stresses in the upper parts o f the canopies, decreasing into the 

canopy and reaching negligible and relatively constant values. This was seen most 

clearly for the lower submergence levels o f 1.33 and 2.00 in Figure 7-3la  and Figure 

7-3lb  respectively for a bed gradient of 0.003, and in Figure 7-32a and Figure 7-32b 

for a bed gradient o f  0.001.
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Figure 7-31 Reynolds stress profiles, normalised by the maximum total fluid stress over the flow
depth, rmax for flow through submerged vegetation for three stem densities, submergence levels
of 1.33, 2.00 and 3.00, and a bed gradient of 1/300. The fainter dotted line corresponds to the 
turbulent stress penetration depth, and the bold dotted line corresponds to the top of the canopy.

Negligible Reynolds stresses were not only observed near the bed, but within 

the lower flow depth. To investigate the extent of shear penetration, the penetration 

depth as defined by N epf and Vivioni (2000), (Section 2.5.3), was evaluated and 

shown in Figure 7-31 and Figure 7-32 by faint dotted lines. This was defined as the 

distance from the top o f the cropped canopy to the elevation within the canopy layer 

where the Reynolds stress is 10% of the peak Reynolds stress value.
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Figure 7-32 Reynolds stress profiles, normalised by the maximum total fluid stress over the flow 
depth, r max, for flow through submerged vegetation for three stem densities, submergence levels
of 1.33, 2.00 and 3.00, and a bed gradient of 1/1000. The fainter dotted line corresponds to the 
turbulent stress penetration depth, and the bold dotted line corresponds to the top of the canopy.

For higher submergence conditions, the vegetation was cut down and 

significant amounts o f the foliage cover were removed (see Section 5.2.4.2). For the 

lowest submergence level (H = 1.33), where the cropped canopy contained a 

considerable amount o f foliage, Reynolds stress penetration was negligible. However, 

for deeper submergence levels of (H =  3.00), where most o f the foliage was removed, 

and the stems were more comparable to an array o f cylinders, penetration was much 

deeper. For any given ‘cropped’ vegetation height, there was a tendency for the 

penetration depth to decrease with increasing stem density. This is believed to be 

attributed to the increase in projected area o f foliage in the upper part o f the canopy 

which significantly reduces Reynolds stresses within the canopy layer.

The results from a number o f studies on uniform cylinder arrays indicated that 

Reynolds stress penetration extended deeply into the canopy, often to the bed (e.g.
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Dunn et al ., 1996; Fairbanks, 1998). Further results are also presented in Chapter 6 

where uniform cylinders were compared to vegetation canopies and showed similar 

results. This highlights the significance of plant foliage in reducing Reynolds stress 

penetration. The arrays studied by Fairbanks (1998) had a closer resemblance to the 

canopies created for the current study if both the projected area per unit volume, a , 

and the product parameter, a d 0, are considered (Table 7-7). d0 is the basal stem

diameter. As discussed in Section 3.5.4, different quantification parameters may be 

misleading when two different canopies are compared. This is particularly the case 

when the difference in morphology is significant, for instance, when comparing 

uniform cylinder arrays to vegetation canopies. However, for the cylinder arrays 

employed by Fairbanks (1998), a and ad0 were 3.15 m '1 and 0.02 respectively.

These were more comparable to the values calculated for the Spartina anglica 

canopies used in this study, particularly for the vegetation canopies constructed using 

plants collected during the month o f February (Table 7-7).

For the uniform cylinder models considered by Fairbanks (1998), Reynolds 

stress penetration extended to the bed level (see Section 2.5.3). Experiments 

conducted by Dunn et al. (1996) also indicated that penetration often extended close 

to the bed (Figure 7-33). The plots presented are for a sample of the arrays examined 

by Dunn et al. (1996), for which the bed gradient and submergence levels resembled 

the conditions employed in the current study most closely. Densities of the arrays for 

which results have been presented are given in Table 7-7, in terms of a and ad0. The

values indicate that the arrays used by Dunn et al. (1996), were considerably lower in 

“plant material density” than the arrays investigated by Fairbanks (1998) and the Sp. 

anglica canopies considered in the current study.

Lower plant material densities, as parameterised by a or ad0, may allow a

deeper shear stress penetration. Yet, even for the arrays used by Fairbanks (1998), 

which were higher in density than the arrays studied by Dunn et al., 1996, the 

penetration depth was much greater compared to the Sp. anglica canopies examined 

here. The Sp. anglica canopies had greater a and ad0 values than both studies. Shear

penetration into the arrays examined by Dunn et al. (1996) extended close to the bed, 

except for the array with the largest projected area, a , and for the lower submergence
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level of 1.82. At a higher submergence level o f 3.33, where flow velocities and the 

Reynolds stress magnitudes were greater, penetration was close to the bed.

The higher projected area in the upper part o f the Sp. anglica canopies may be 

fundamental in absorbing the turbulent kinetic energy generated from the shear layer. 

For the lowest submergence o f 1.33 in Figure 7*3la  and Figure 7-32a, where the 

vegetation was 150 mm tall, the foliage demonstrated an ability to shelter the canopy 

layer to the extent where penetration of turbulent shear into the canopy layer was 

negligible. For a submergence level of 3.00, where the vegetation was cropped to a 

height o f 50 mm most closely resembling arrays o f uniform cylinders, the penetration 

extended deeper into the canopy as seen in Figure 7-3 lc  and Figure 7-32c.

Table 7-7 Canopy and submergence characteristics for the current study and a selection of 
plastic straws experiments conducted by Dunn etal. (1996), and dowel experiments conducted by 
Fairbanks (1998)_______________________________________________________________

Test Ref. stem density 
(stems m'2)

H
(-)

s
(mm)

a
(m-')

a d 0
(-)

Current m-SM21 800 (Feb) 1.33 39.6 6.484 0.025
study m-SS21 800 (Feb) 2 . 0 0 39.6 6.729 0.027

m-SV20 800 (Feb) 3.00 39.6 7.260 0.030
SM21 , SMI 1 800 (Aug) 1.33 39.6 7.444 0.038
SS21, SS11 800 (Aug) 2 . 0 0 39.6 7.179 0.039

SV20, SV10 800 (Aug) 3.00 39.6 6.616 0.036
MM21 , MM11 1160 (Aug) 1.33 33.0 17.263 0.092
MS21 , MSI 1 1160 (Aug) 2 . 0 0 33.0 16.313 0.091
MV20, MV10 1160 (Aug) 3.00 33.0 14.007 0.080
DM21 , DM11 1850 (Aug) 1.33 26.4 28.931 0.139
DS21 , DS11 1850 (Aug) 2 . 0 0 26.4 25.990 0.131
DV20, DV10 1850 (Aug) 3.00 26.4 2 2 . 2 2 0 0.115

Dunn et Exp. 01 340 2.85 76.2 1.090 0.007
al. (1996) Exp. 02 340 1.95 76.2 1.090 0.007

Exp. 06 90 2.27 152.4 0.273 0 . 0 0 2

Exp. 08 780 3.33 50.8 2.46 0.016
Exp. 09 340 1.82 50.8 2.46 0.016
Exp. 11 190 2.65 1 0 1 . 6 0.615 0.004

Fairbanks
(1998)

FS#3 , FS#4 500 1.57 44.9 3.15 0 . 0 2
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Figure 7-33 Normalised Reynolds stress profiles for arrays of plastic straws (from Dunn el a/., 
1996) over a bed gradient of 0.0036 and at submergence levels similar to the values of 1.33, 2.00 
and 3.00 implemented in this study, a  refers to the projected area per unit volume, the bold 
dotted line refers to the top of the array, and the faint dotted line refers to the depth of shear 
penetration.

The extent o f shear penetration into the cropped canopy was related to the 

amount of plant material in the canopy. In Figure 7-34, the relative penetration, based 

on all the data considered above, is shown to decrease with increasing plant material 

within the volume occupied by the canopy. This was characterised by the parameter 

a T, where T is the height o f the canopy. The penetration depth is influenced by the 

magnitude o f Reynolds stress along the canopy-surface flow layer interface which in 

turn is a function o f the longitudinal velocity gradient across the interface. This is 

shown in Figure 7-35, where penetration depth is shown to decrease with an increase 

in the depth-averaged longitudinal velocity of the surface flow layer, Us .
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hpenI T  0.6 
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Dunn et al. (1996) 
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Figure 7-34 Variation in Reynolds stress penetration as a proportion of canopy height with the 
product of the projected area per unit volume and the canopy height for three Spartina anglica 
canopy densities at submergence levels of 1.33, 2.00 and 3.00, two bed gradients, and for uniform 
cylinders based on the results from Dunn et al. (1996) and Fairbanks (1998) using 6.35 mm 
diameter cylinder arrays.

Stem Density

n / T

(stems m ) 

Current Study (August)

Bed Gradient 
(-)

■ 800 1 / 1 0 0 0

A 1160 1 / 1 0 0 0

• 1850 1 / 1 0 0 0

□ 800 1/300
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Current Study (February) 
x 800 1/1000

Other Studies (Uniform Cylinders)
+ Dunn et al. (1996)

40-400 0.0036-0.0161
0 1 2  3
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Figure 7-35 Variation in Reynolds stress penetration as a proportion of canopy height with the 
normalised surface flow layer, Us / £/, depth averaged velocities, where U is the total depth- 
averaged velocity. Results are presented for three Spartina anglica canopy densities at 
submergence levels of 1.33, 2.00 and 3.00, two bed gradients, and for uniform cylinders based on 
the results from Dunn et al. (1996) using 6.35 mm diameter cylinder arrays.
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7.4.5 Instantaneous Param eters and Coherent Structures

7.4.5.1 Form ation of a Shear Layer

For submerged conditions, a large longitudinal velocity gradient was observed 

across the canopy-surface flow layer interface (shown in Section 7.3.3.1). Within the 

canopy, the vegetation reduced the longitudinal velocities. This gave rise to the 

generation of a horizontal shear layer (see Section 2.5.4), along the canopy-surface 

flow layer interface in which coherent turbulent structures were produced as 

illustrated in Figure 7-36. Researchers have suggested that these are Kelvin- 

Helmholtz waves (Poggi et al., 2004; Ghisalberti and Nepf, 2002; Finnigan, 2000; 

Nepf and Ghisalberti, 2008). These instabilities occur when velocity shear is present 

within a fluid and take the form of travelling waves such as those seen travelling on 

the surface of a liquid (see Section 2.5.4). They can develop into more turbulent 

structures hence it is common for vortices to occur within the shear layer near the 

canopy -  surface flow layer interface. Furthermore, it has been observed in cylinder 

arrays that wake production is usually higher in the upper part of the canopy and 

accounts for the conversion of mean kinetic energy into turbulent kinetic energy 

resulting in a high level of energy dissipation (e.g. Lopez and Garcia, 1997; Finnigan, 

2000 and others).

Surface flow LayerHigh Velocity
Flow Rotation

Canopy-surface flow 
layer interface

Low Velocity
p.:/' i 1

Figure 7-36 Schematic diagram  illustrating the rotation that occurs in the flow along the canopy- 
surface flow layer interface.
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7.4.5.2 Rotational Capacity of the Vortices

The rotational capacity o f the Kelvin-Helmholtz vortices (as shown in Figure 

7-36) is defined as the magnitude o f the circular motions o f the vortices in the vertical 

plane at the canopy-surface flow layer interface. More specifically, this refers to their 

magnitude about the elevation where the maximum turbulent stress occurs, which is 

marginally above the top o f the vegetation (this will be further discussed in Section

7.4.4). Several researchers have defined the rotational capacity o f the vortices by the 

presence o f relatively high instantaneous longitudinal velocity fluctuations (e.g. Lu 

and Wilmarth, 1973; Raupach and Thom, 1981; Finnigan, 2000 and others), 

particularly where these correspond to peaks in the Reynolds stress (Ghisalberti and 

Nepf, 2002). Vortices were very small and scarce for a submergence level o f 1.33 

(Figure 7-37a). Vortices were more pronounced and frequent for the higher 

submergences o f 2.00 and 3.00. For these submergence levels, the longitudinal 

velocities and Reynolds stress magnitudes were higher such as the example presented 

in Figure 7-37b and c. In this study, the normalised root mean square o f the double­

averaged fluctuations in the vertical velocity component, < w' > , were implimented as 

a measure o f the rotational capacity of the flow to assess vertical movement of the 

flow about the canopy-surface flow layer interface. Fluctuations in the longitudinal

velocity component, <u' >,  produced profiles with similar shapes to the vertical 

component indicating that they may also serve as an indicator o f rotational capacity. 

Afterall, for a unidirectional flow, the Reynolds stress is most significant along the 

longitudinal-vertical plane, thus consisting o f a product function containing the two

terms ( < u '>  and < w' >).

A high degree o f rotation was observed near the canopy-surface flow layer 

interface for a bed gradient of 0.003 in Figure 7-38, and for a bed gradient o f 0.001 in 

Figure 7-39. However, for the lowest submergence level o f 1.33, the rotation was 

considerably smaller in magnitude. The rotational capacity about the interface was 

directly proportional to the difference between the zonal velocity within the canopy 

( Uc ) and the surface flow layer ( U s ) as shown in Figure 7-40. In Figure 7-38, the

peaks observed in < w '>  near the water surface for higher submergence levels for the 

steeper bed gradient o f 0.003, correspond to the peaks observed in the longitudinal 

velocity within the same region in Figure 7-20. These were associated with higher
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Reynolds numbers and hence, a higher level of turbulence as discussed in Section 

7.3.3.1.

-10

-20

20

u (cm's' )

wW (cm s' ) ,10

-20

20

u (cm s' )

wV (cm s' )
-10

-20
120 130 140 150100 110

f(s)
Figure 7-37 One-second moving average time series of the longitudinal velocity, ii, and the 
Reynolds stress, u V , at the canopy-surface flow layer interface over a 20 second period for a 
1850 stems m~2 canopy, a bed gradient of 0.001, and submergence levels, // , of [a]: 1.33; [b]: 2.00; 
[cj: 3.00
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Figure 7-38 Profiles of the vertical velocity fluctuating component, w \ normalised by the depth- 
averaged velocity, U., for a bed gradient of 1/300, and submergence levels of 1.33, 2.00 and 3.00. 
The dashed line denotes the top of the canopy.

For some o f the experiments, such as when the bed gradient was 0.003 and 

the submergence 3.00, a peak was observed in the fluctuating component o f the 

vertical velocity, w \  a short distance below the water surface. These correspond to the 

‘kinks’ in the longitudinal velocity profiles discussed earlier in Section 7.3.3.1 which 

may be associated with turbulence in the flow. The effects o f these structures did not 

appear to affect a significant amount o f the flow depth, whereas the peaks observed

along the canopy-surface flow layer interface were accompanied by elevated <w' > 

values above and below the interface.
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Figure 7-39 Profiles of the vertical velocity fluctuating component, w\ normalised by the depth- 
averaged velocity, f/, for a bed gradient of 1/1000, and submergence levels of 1.33, 2.00 and 3.00. 
The dashed line denotes the top of the canopy.
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Figure 7-40 The relationship between the vertical velocity fluctuating component at the canopy- 
surface flow layer interface, w \ and the difference between the zonal velocity of the surface flow 
layer, Us, and that of the canopy layer, Uc, for 800, 1160 and 1850 stems m' 2 canopies at bed 
gradients of 1/300 and 1/1000. The results presented are for submergence levels of 1.33, 2.00 and 
3.00.
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For the highest submergence of 3.00, where most of the foliage had been 

removed from the cropped vegetation (see Section 5.2.4.2), the time-averaged 

fluctuating component of the vertical velocity increased with elevation for most of the 

canopy height. Comparison of the profiles for different stem densities indicated that 

for the 800 and 1850 stems m '2 canopies, an increase in the time-averaged fluctuating 

component o f the vertical velocity near the canopy top from the mid-flow depth 

values was apparent over a greater section of the canopy. The 800 stems m'2 canopy 

had the lowest stem density, whilst the 1850 stems m‘2 canopy was constructed using 

the plants with the smallest basal stem diameter (Section 4.3.2.5 - ‘Sample 1* refers to 

the vegetation sample used to construct the 1850 stems m’2 density canopy). The 

increase in the time-averaged fluctuating component of the vertical velocity was most 

apparent for a submergence level of 2.00, where the velocity gradient across the 

canopy-surface flow layer was considerably higher, giving rise to a relatively higher 

magnitude o f Reynolds stress. Furthermore, the cropped canopy height and foliage

content were large, thus facilitating low <w' > values over the lower section of the 

canopy.

7.4.5.3 Q uadran t Analysis

In this section, turbulent fluctuations in the longitudinal and vertical directions 

are presented based on the quadrant analysis method developed by Lu and Willmarth 

(1973) (Section 2.5.5). The plots are presented for experiments conducted for a bed 

gradient of 0.003 where the Reynolds stress, particularly within the upper part of the 

canopy was greatest (Section 7.4.4). Plots of the fluctuations in the vertical and 

longitudinal velocity components are presented for elevations equal to 10%, 50% and 

100% of the vegetation height above the bed for vegetation heights of 50mm, 100mm 

and 150mm in Figure 7-41, Figure 7-42 and Figure 7-43 respectively. Flow 

parameters were measured at four different cross-sections along the flume length (see 

Section 5.2.8). However, the measurements were not recorded simultaneously, and 

therefore, the results in this case are presented for the most upstream profile at a 

distance of 3.5m from the upstream end of the flume.

To assess the turbulence structure in the region close to the bed where the 

influence of the vortices from the canopy-surface flow layer interface may be 

negligible, a ratio of elevation to canopy height equal to 10% was considered. Data
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points along the w' versus u' plot were centred closer to the origin with some spread 

along the u' axis as indicated in Figure 7-4 lc , Figure 7-42c and Figure 7-43c. Near the 

mid-height of the canopy, where there is more influence from the high Reynolds 

stress at the top o f canopy, the plots were more rounded in shape. This indicated that 

the longitudinal and vertical fluctuations were more equal in magnitude as shown in 

Figure 7-4lb, Figure 7-42b and Figure 7-43b.

800 stems m‘ 1160 stems m-2 1850 stems m‘

[b]

0 .5

w / u  0 
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-0.5
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1 1
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-1

■0.5

-1

z / T

100%

50%

-1

10%

u'/U (-) u'/U (-) u'/U (-)
Figure 7-41 Quadrant plots at 10%, 50% and 100% of the vegetation height for three stem 
densities, a vegetation height of 50mm and a bed gradient of 1/300. Fluctuating velocity 
components, «' and w' are normalised using the depth-averaged longitudinal velocity, U. The 
submergence level for these experiments was 3.00 (i.e. the flow depth was 150mm and the canopy 
height was 50mm).

Along the canopy-surface flow layer interface (100% elevation o f the 

vegetation height), where the vortices were relatively greater in size compared to 

other elevations within the canopy, scatter in the quadrant plots was greater. The 

points were distributed around the ly  = -x’ diagonal passing through the second and 

fourth quadrants. Points in the second quadrant correspond to upward and backward 

motions, also known as ‘ejections’ (u' = -ve, w' = +ve). Points falling in the fourth
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quadrant correspond to downward and forward moving ‘sweeps’ (w' = +ve, w' = -ve). 

Together, these particle movements are indicative of a shear layer (e.g. Raupach and 

Thom, 1981; Finnigan, 2000 and others). This was observed most clearly for 

submergence levels o f 2.00 and 3.00 in Figure 7-4la, Figure 7-42a, where the 

longitudinal velocity gradient was large across the canopy-surface flow layer interface 

(Section 7.3.3.1). For the lowest submergence of 1.33, this effect was only visible for 

the highest stem density of 1850 stems m"2 in Figure 7-43c. For the aforementioned 

canopy, there was the greatest amount of flow resistance in the upper part of the 

canopy. This created a higher velocity gradient across the interface. However, the 

concentration of data points along the *y = -x’ diagonal was less pronounced 

compared to the higher submergence levels of 2.00 and 3.00 in Figure 7-42a and 

Figure 7-4la  respectively.
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Figure 7-42 Quadrant plots at 10%, 50% and 100% of the vegetation height for three stem 
densities, a vegetation height of 100mm and a bed gradient of 1/300. Fluctuating velocity 
components, *#' and w' are normalised using the depth-averaged longitudinal velocity, U. The 
submergence level for these experiments was 2 . 0 0  (i.e. the flow depth was 2 0 0 mm and the canopy 
height was 1 0 0 mm).
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For a submergence level o f 1.33, the plots appeared more rounded in shape 

near the interface (100% elevation o f the vegetation height). There were fewer 

congregations between the second and fourth quadrants for the lower stem densities of 

800 and 1160 stems m '2 as shown in Figure 7-43a. For the lowest submergence of 

1.33, the thickness o f the surface flow layer was shallower forming only 33% of the 

cropped canopy height, compared to 50% and 75% o f the flow depth for submergence 

levels of 2.00 and 3.00 respectively. Longitudinal velocities throughout the depth 

were lower (Section 7.3.3.1) and the surface flow layer conveyed less momentum. 

Furthermore, the longitudinal velocity gradients were lower across the interface, and 

hence, shear between the two layers was relatively smaller in magnitude. Ejections 

and sweeps for such conditions were more difficult to distinguish based on the 

quadrant analysis due to their smaller sizes. They were less visible amongst other 

turbulent fluctuations in the longitudinal and vertical velocity components u' and w'.
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Figure 7-43 Quadrant plots at 10%, 50% and 100% of the vegetation height for three stem 
densities, a vegetation height of 150mm and a bed gradient of 1/300. Fluctuating velocity 
components, u' and w' are normalised using the depth-averaged longitudinal velocity, U. The 
submergence level for these experiments was 1.33 (i.e. the flow depth was 200mm and the canopy 
height was 150mm).
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The ratio of the root mean squares of the vertical fluctuating velocity 

component, < w' > , to the longitudinal component, < «' > , are presented in Figure 

7-44 for a bed gradient o f 0.003, and in Figure 7-45 for a bed gradient of 0.001. The 

profiles indicate the extent of deviation of the scatter along the quadrant plots from a 

distribution centred along the x or jy-axis. Values closer to unity indicate an equal 

distribution o f points along both axes, most likely to form a circular distribution 

around the origin. Lower values indicate a greater spread of the distribution along the 

x-axis, and that the fluctuations in the longitudinal component, «' were considerably 

greater than those in the vertical component, w\
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Figure 7-44 Profiles of the ratio of the vertical velocity component fluctuations, w\ to the 
horizontal component, w\ over a bed gradient of 1/300, three stem densities, and submergence 
levels of 1.33,2.00 and 3.00. The dashed lines denote the top of the vegetation.

Values were consistently lower than unity since the longitudinal velocities, u, 

and their fluctuating components, u\ were considerably greater in magnitude than the

vertical components, w and w'. However, there was an increase in the <w'>/<u'>
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ratio with elevation within the canopy region due to a relative increase in < w' >

compared to <u'>. This is illustrated by the more rounded quadrant plot distributions 

at the mid-canopy heights in Figure 7-4lb for the 50 mm tall cropped canopy, and in

Figure 7-42b for the 100 mm tall cropped canopy. The peaks in <w' >/<u' > 

occurred a short distance below the top of the vegetation, which was identified by 

Finnigan (2000) as the region of the canopy where wake production is largest in 

magnitude for atmospheric flows through plant canopies.
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Figure 7-45 Profiles of the ratio of the vertical velocity component fluctuations, w \ to the 
horizontal component, over a bed gradient of 1 /1 0 0 0 , three stem densities, and submergence 
levels of 1.33,2.00 and 3.00. The dashed lines denote the top of the vegetation.

The profile shapes were similar for any given submergence regardless of stem 

density or bed gradient based on the range of parameters examined. For the 150 mm

cropped canopy height (submergence level of 1.33), the magnitude of < w' >/< «' > 

decreased into the canopy from the peak value towards an approximately constant 

minimum value over the lower part of the canopy up to an elevation of about 100 mm
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above the bed. This is presented in Figure 7-44a for a bed gradient of 0.003, and in 

Figure 7-45a for a bed gradient of 0.001. For the shorter cropped canopy heights of 

100 mm which corresponds to a submergence level of 2.00 (Figure 7-44b and Figure 

7-45b) and 50 mm (Figure 7-44c and Figure 7-45c), a constant minimum value over a 

section of the lower canopy was not achieved. This may be attributed to the lack of 

foliage in the cropped 50mm and 100mm canopies (see Section 5.2.4.2). Furthermore, 

the full extent of the mixing layer and its effect on the turbulence structure within the 

canopy layer could not be determined for the 50 mm cropped vegetation 

(submergence level of 3.00) because the flow structure is not fully developed 

vertically (the longitudinal velocity has not reached a minimum value as observed for 

the 1.33 submergence level).

7.4.6 “Form-induced” Stresses

“Form-induced” stresses are a measure of the spatial fluctuations in time- 

averaged parameters as a result of the variability of the vegetation obstruction (see 

Section 2.5.2). Profiles of “form-induced” stresses are useful because they can be used 

as an indicator of level of heterogeneity of a vegetation canopy. Values were 

calculated based on measurements at four locations. Considering the heterogeneity of 

vegetation, care must be taken when evaluating the data. More measurements were 

required to reliably characterise the flow in terms of time-averaged velocity and 

turbulence parameters.

“Form-induced” stress profiles for selected experiments on emergent canopies 

are presented in Figure 7-46 corresponding to a bed gradient of 0.001. For emergent 

conditions, the “form-induced” stresses were more significant throughout the canopy 

compared to the submerged condition. Selected results are shown in Figure 7-46. 

Comparison with the Reynolds stress profiles discussed in Section 7.4.4 indicated that 

for emergent conditions, the “form-induced” stresses offered a slightly greater 

contribution towards the total stress budget than the Reynolds stresses (Section 7.4.1). 

For submerged conditions, the Reynolds stresses predominated and “form-induced” 

stresses were relatively insignificant. The normalised “form-induced” stresses are 

considerably greater within the emergent canopies compared to the submerged 

canopies as seen in Figure 7-47 due to the insignificance of the Reynolds stresses in 

the absence of a ‘shearing’ layer along the top of the canopy layer.
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Figure 7-46 “Form-induced” stress profiles, normalised by the depth-averaged shear stress, T , 
for flow through emergent vegetation for three stem densities, flow depths of 0.20 m and 0.25 m 
and a bed gradient of 1 /1 0 0 0 .
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Figure 7-47 “Form-induced” stress profiles, normalised by the maximum shear stress over the 
flow depth, rmax, for flow through submerged vegetation for three stem densities, submergence 
levels of 1.33,2.00 and 3.00, and a bed gradient of 1/1000.
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7.5 The Impact of Seasonality on Flow Parameters

7.5.1 The Summer-Winter Comparison

A sample of the experiments conducted using vegetation collected during the 

month of August 2006 (Section 7.3), were repeated using vegetation collected during 

February 2007. Seasonal variations in vegetation morphology were linked to the 

velocity and turbulence structures. Plant properties, such as stem density, stem 

diameters, plant stiffness and the amount of foliage varied temporally (Section 4.3). It 

is thought that these physical properties will impact on the flow resistance of a 

canopy. Spartina anglica samples collected in August 2006 and February 2007 were 

used to represent a typical ‘summer’ and ‘winter’ vegetation sample. Full details of 

the experiments repeated using February vegetation were listed in Section 7.1. 

Experiments were only repeated for a bed gradient of 0.001 and a stem density of 800 

stems m'2.

7.5.2 Variation between August and February Vegetation

In Section 3.4.3, quantification of the projected area of the canopy for the 

vegetation used in the experiments was discussed. The projected area per unit volume 

was greater above the bed region for the August vegetation due to a greater amount of 

foliage (Figure 7-48). The projected area for the August canopy was lower in the 

region near the bed. However, stem diameter measurements on selected sub-samples 

chosen from the August and February vegetation samples showed that the latter had 

the smaller plant stems. The average basal stem diameter was 4.12 mm for the 

February vegetation compared to 5.51 mm for the August vegetation (used for the 800 

stems m'2 canopy as reported in Section 4.3.2.5 -  ‘Sample 3’ refers to the sample used 

to construct the 800 stems m"2 density canopy).
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Figure 7-48 [a]: Visible projected area of obstruction per unit volume ( a ') and |b): total 
projected area of obstruction per unit volume ( a )  for 800 stems m"2 canopies of February and 
August vegetation.

7.5.3 Longitudinal Velocity Profiles

T o rep lica te  the p rev io u s  exp er im en ts  co n d u c te d  u s in g  v e g e ta tio n  sa m p les  

c o lle c te d  in A u g u st, the sam e f lo w  d ep th s w e r e  u sed . A  h ig h er  d isch a rg e  w a s  

n e c e ssa r y  to  ascerta in  th is  f lo w  depth  w h ic h  co rresp o n d s to  a h ig h er  lon g itu d in a l 

v e lo c ity  for  the th in n er February ca n o p y  ex p er im en ts.

T h ere  w a s  greater spatia l variation  in  the v e lo c ity  p r o file s  for the February  

v e g e ta tio n  co m p a red  to the A u g u st v e g e ta tio n  a s  in d ica ted  b y  the “ fo rm -in d u ced ” 

stress p r o file s  p resen ted  later in S ec tio n  7 .5 .5 . T h is  m a y  p o s s ib ly  in d ica te  a greater  

d egree  o f  v a r ia b ility  in the v eg e ta tio n , d u e to  in d iv id u a l p la n ts  w ith in  a can op y  

“m atu rin g” d u rin g  th e  w in ter  at d ifferen t rates. H o w e v e r , the h ig h er  “ fo rm -in d u ced ” 

stresses  are m o re  lik e ly  a sso c ia ted  w ith  the h igh er  f lo w  v e lo c it ie s  im p lem en ted , and  

the a sso c ia te d  h ig h e r  le v e ls  o f  tu rb u len ce  in the f lo w .

T h e n o r m a lise d  p r o file s  p resen ted  in  F igu re 7 -4 9  for the em erg en t ca n o p ie s  

revea led  a con trast b e tw e e n  th e  v e lo c ity  structure th rou gh  th e  February and A u g u st  

v egeta tion . F or th e  F ebruary  v e g e ta tio n , the lo n g itu d in a l v e lo c ity  is  r e la tiv e ly  con stan t  

over the f lo w  dep th . For th e A u g u st  v eg e ta tio n , the n o rm a lised  lo n g itu d in a l v e lo c ity  

d ecreases w ith  d ista n ce  from  th e bed . F lo w  resista n ce  w a s  greater in  th e  upper part o f  

the can op y  due to  a greater p ro jec ted  area o f  p lant fo lia g e  co m p a red  to  th e  February  

canopy (se e  F igu re 7 -4 8  and S e c tio n  3 .4 .3 ) .
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For submerged conditions, the normalised longitudinal velocity profiles 

presented in Figure 7-50 for February and August vegetation were similar in shape. 

This indicates that they were not significantly affected by the differences in plant 

properties.

February vegetation August vegetation
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Figure 7-49 Profiles of normalised longitudinal velocity for emergent February and August 
vegetation canopies, a bed gradient of 1 /1 0 0 0 , a stem density of 800 stem m‘2 and a flow depth of 
0.20m. U is the depth-averaged longitudinal velocity.
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Figure 7-50 Profiles of normalised longitudinal velocity for submerged February and August 
vegetation canopies, for a bed gradient of 1 /1 0 0 0 , a stem density of 800 stem m' 2 and 
submergence levels of 1.33, 2.00 and 3.00. The dashed line marks the top of the vegetation. U is 
the depth-averaged longitudinal velocity.
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7.5.4 Reynolds Stress

For emergent conditions, flow through the February canopies was more 

turbulent than that through the August canopies. The average stem Reynolds numbers 

over the flow depths for the two canopies were 360 and 250 respectively. For the 

August canopy, values were generally around a stem Reynolds number of 200 

throughout the canopy height (Figure 7-26), above which vortex shedding is thought 

to be initiated within dense canopies, as observed by Nepf et al. (1997b) (Section 

2.2.6). The normalised Reynolds stress profiles are presented in Figure 7-51. The 

Reynolds stress formed a considerably greater proportion of the total stress budget for 

the February vegetation. Average stem Reynolds numbers over the canopy depth for 

submergence levels of 1.33, 2.00 and 3.00 were 510, 650 and 960 respectively for the 

February canopies, compared to 280, 400 and 540 for the August canopies. The 

higher Reynolds stress values are a result of the changes in gradient of the 

longitudinal velocity profiles which therefore produce greater spread in the 

normalised Reynolds stress magnitudes.

February vegetation August vegetation
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0
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Figure 7-51 Profiles of normalised Reynolds stress (normalised by the depth-averaged total shear 
stress values) for emergent February and August vegetation canopies, a bed gradient of 1/1000, a 
stem density of 800 stem m' 2 and a flow depth of 0 .2 0 m. r is the depth-averaged total shear 
stress.

The thinner plant stems together with the lower projected area of the plant 

material has resulted in a greater depth of Reynolds stress penetration for the February 

canopy (see Figure 7-52).
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Figure 7-52 Profiles of normalised Reynolds stress (normalised by the maximum shear stress 
values) for submerged February and August vegetation canopies, a bed gradient of 1/1000, a stem 
density of 800 stem m' 2 and submergence levels of 1.33, 2.00 and 3.00. The bold dashed line
marks the top of the canopies, the faint dashed line marks the shear penetration depth, and rmax
is the peak total shear stress value over the flow depth.

7.5.5 “Form-induced” Stress

“Form-induced” stress profiles were discussed in Section 7.4.6 for three stem 

densities of August vegetation (800, 1160 and 1850 stems m'2). As discussed 

previously, a significant “form-induced” stress is indicative of large variations in flow 

velocities at different locations within the canopy. This may be attributed to variation 

in the vegetation structure. Compared to an 800 stems m‘ canopy of August 

vegetation, “form-induced” stress magnitudes were greater through February 

vegetation as shown in Figure 7-53 for emergent conditions, and in Figure 7-54 for 

submerged conditions. This, in part, may be due to the higher Reynolds number range 

of the flow through the February vegetation canopies (Section 7.5.4), where the flow 

was more turbulent due to the higher flow velocities imposed. Variations in flow
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velocities due to turbulence production in the wakes of the heterogeneous vegetation 

may have therefore been amplified compared to the August vegetation canopies. 

“Form-induced” stresses were also high above the canopies for submerged February 

canopies in Figure 7-54.
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Figure 7-53 Profiles of normalised “form-induced” stress for emergent February and August 
vegetation canopies, a bed gradient of 1 / 1 0 0 0 , a stem density of 800 stem m' 2 and a flow depth of 
0 .2 0 m. r  is the depth-averaged total fluid stress.
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Figure 7-54 Profiles of normalised “form-induced” stress for submerged February and August 
vegetation canopies, a bed gradient of 1 /1 0 0 0 , a stem density of 800 stem m' 2 and submergence 
levels of 1.33, 2.00 and 3.00. The bold dashed line marks the top of the canopies. rmax is the peak 
total fluid stress over the flow depth.
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7.6 Two-Dimensional Drag Coefficients

7.6.1 Two-Dimensional Drag Coefficient Definition

In Section 7.2.2, the one-dimensional bulk drag coefficient was determined for 

the experiments conducted to assess how bed gradient, stem density, Reynolds 

number, submergence level and seasonality affected canopy flow resistance. A similar 

comparison is presented here, except the variation in drag coefficients over the height 

of each canopy was evaluated using a two-dimensional definition of drag coefficient 

which includes the Reynolds stress term (Section 2.3.7).

Lightbody and Nepf (2006a) highlighted the difficulties in predicting velocity 

profiles for submerged conditions due to the large magnitudes of Reynolds stress that 

affect the flow structure within the canopy layer. In Section 7.2.2.1, where the one­

dimensional bulk drag coefficient, CD', was calculated for submerged canopies, the 

shear force at the canopy-surface flow layer interface was included in the force 

balance to resolve for the magnitude of the drag force due to the canopy. Similarly, to 

determine the two-dimensional drag coefficient, CD 2d, for a given elevation within 

the canopy, where the shearing is dominated by the Reynolds stress, the Reynolds 

stress term must be included in the calculation. The derivation proposed by Dunn et 

al. (1996) has been used in this study where the two-dimensional drag coefficient is 

given by Equation 2.34, the derivation of which is presented in Appendix I. The 

derivation is conducted with the assumption of a fully-turbulent uniform, 

unidirectional flow with negligible sidewall effects and a viscous sublayer. The total 

shear stress is assumed to follow a linear relationship from a minimum value at the 

water surface level to a maximum value at the bed level, whereby the Reynolds stress 

is suppressed wthin the canopy layer due to the drag force created by the vegetation.

The CD 2d coefficient is used to characterise the magnitude of the hydraulic 

resistance due to the vegetation at any given elevation within the canopy layer. The 

coefficient is dependant on the vegetation characteristics, such as the stem size and 

spacing, and the stiffness of the vegetation, as well as the flow characteristics, namely 

the velocity and Reynolds stress.
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7.6.2 Emergent and Submerged Conditions

For emergent conditions, the variation in Reynolds stress over the canopy 

height was negligible (Figure 7-29). Hence, there was little variation in the turbulence 

structure over the flow depth. Profiles of the two-dimentional drag coefficients are 

presented in Figure 7-55 for a bed gradient of 0.003 and in Figure 7-56 for a bed 

gradient of 0.001. Vertical variation in the coefficients profiles was more likely due to 

variation in the vegetation structure such as the projected area or the difference in 

properties between the stem region near the bed and the foliage region higher up in 

the canopy. For a bed gradient of 0.001, the 1850 stems m' canopy experienced a 

smaller range of Reynolds numbers over the flow depth compared to the 800 and 

1160 stems m‘ canopies (Section 7.4.2). This resulted in less variation in coefficient 

calues over the canopy height.

Profiles of CD 2d for submerged conditions are presented in Figure 7-57 for a

bed gradient of 0.003 and Figure 7-58 for a bed gradient of 0.001. The decrease in the 

magnitudes of CD 2d at higher elevations and at the higher submergence level of 3.00 

can be in part attributed to the removal of plant foliage in the cropping process to 

scale the vegetation down as outlined in Section 5.2.4.2. This resulted in a lower 

projected area of obstruction at the top of the canopy and hence, higher longitudinal 

velocities and Reynolds numbers.
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Figure 7-55 Cd 2 D profiles for emergent flow conditions and a bed gradient of 1/300 for flow 
depths, 2), of 0.20 m and 0.25 m
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Figure 7-57 CD 2 D profiles for submerged flow conditions and a bed gradient of 1/300 for 
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Figure 7-58 C D 2 D profiles for submerged flow conditions and a bed gradient of 1 / 1 0 0 0  for 
submergence levels, H, of 1.33,2.00 and 3.00

In Figure 7-59 and Figure 7-60, the one-dimensional bulk drag coefficient, 

CD and the depth-averaged two-dimensional drag coefficient, CD 2d, are compared 

for emergent and submerged conditions respectively. The key difference between the 

two methods is in the depth of flow over which the water body weight and the 

vegetation drag force are resolved to determine the drag coefficient. In the one­

dimensional approach, which is used to calculate CD , the forces are resolved over the 

entire flow depth meaning that the weight of the surface flow layer is included in the 

calculation (refer to Section 2.3.5).

In the two-dimensional approach, Cd 2d is calculated for thin horizontal 

sections of the canopy and averaged over the height of the canopy. By definition, the 

CD 2d calculation cannot be used for the surface flow layer where there is no 

obstruction of flow (refer to Equation 2.34). In theory, inclusion of the Reynolds 

stress term in the two-dimensional approach compensates for the turbulent stress 

within the flow in the canopy layer, which to a large extent is influenced by the higher
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velocity surface flow layer. This concept was shown through the evaluation of 

Reynolds stress penetration into submerged canopies in Section 7.4.4. However, the 

results presented in Figure 7-60 suggest otherwise, and the reason that one­

dimensional drag coefficients are usually higher for a given canopy than the two- 

dimensional counterpart is that the drag force is calculated by resolving against a 

larger water body which includes the surface flow layer. Hence, for the emergent 

cases, where CD 2d was averaged for the entire flow depth in the absence of a surface 

flow layer, there was very close resemblance between the one-dimensional and two- 

dimensional coefficients.
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Figure 7-59 A comparison between the bulk drag coefficient, CD , and the depth-average of the
two-dimensional drag coefficient, C D' 2 D for emergent Spartina anglica canopies for flow depths 
of 0.20m and 0.25m, and for August and February vegetation canopies.
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Figure 7-60 A comparison between the bulk drag coefficient, CD , and the depth-average of the

two-dimensional drag coefficient, CD 2d for submerged Spartina anglica canopies for 
submergence levels of 1.33,2.00 and 3.00, for August and February vegetation canopies.

7.7 Concluding Remarks

A series of laboratory experiments were performed in which a 10m long 

laboratory flume was vegetated with a typical saltmarsh species commonly found 

along coastal saltmarshes in Great Britain, namely Spartina anglica. A range of stem 

densities (800, 1160 and 1850 stems m'2) and bed gradients (0.001 and 0.003) were 

investigated under both emergent and submerged conditions. The experiments were 

conducted under uniform flow conditions.

Based on a comparison between the stage-discharge curves for the submerged 

and emergent canopies for a flow depth of 0.02 m, a reduction in submergence level 

from 2.00 to an emergent state could result discharge reductions between 20% and 

42%. The percentage reduction in discharge increased with increasing stem density 

and decreased with increasing bed gradient. A reduction in submergence level from

3.00 to an emergent canopy could result in reductions in discharge of between 60% 

and 74%. However, it should be noted that due to the scaling method applied to the 

vegetation, the canopy structure was altered significantly with changes to the 

submergence level.
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Longitudinal velocity profile shapes were influenced by the vertical 

distribution of vegetation material. The magnitudes of longitudinal velocities in the 

stem region near the bed were often greater than values for higher elevations in the 

canopy where vegetation foliage results in a greater level of obstruction to the flow.

The flow structure at the canopy-surface flow layer for submerged conditions 

is complex. Longitudinal velocities were significantly higher in the surface flow layer 

compared to the canopy layer. The ratio of the depth-averaged velocity of the surface 

flow layer to the depth-averaged velocity for the total layer, Us / U , was examined to

evaluate, the distribution of the flow between the canopy and surface flow layers. For 

higher submergence levels, where the vegetation was shortened and foliage was 

removed from the canopy, the hydraulic resistance of the canopy was reduced, 

velocities through the canopy layer were higher and the Us /U  ratio was smaller.

Furthermore, Us /U  increased with increasing stem density as this resulted in an 

increase of the hydraulic resistance of the canopy.

The interface between the canopy and surface flow layers resulted in a highly 

turbulent region near the interface between the two layers. Reynolds stress profiles 

showed a peak a short distance above the interface, and the magnitude was reduced 

significantly a short distance into the canopy (except where a significant amount of 

foliage had been removed). Reynolds stress penetration decreased with increasing 

stem density and with decreasing submergence level because in both cases, the 

amount of foliage within the canopy increased. Foliage is believed to play a 

significant role in dissipating turbulence from the interface region and reducing the 

impact of the higher velocities in the surface flow layer on the velocities near the bed.

Across the canopy-surface flow layer interface, the longitudinal velocity 

gradient is large and a shear layer is generated which is dominated by vortices acting 

along the vertical plane. Quadrant analysis was used to show the upward and 

downward movements of particles and it was found to be significant at the interface 

region, and to a lesser extent, at the mid-canopy height. The rotational capacity of the 

vortices increased with the velocity gradient, which was greater for a steeper bed 

gradient and a higher submergence level. The effects of the shear layer appeared to be 

effective over a greater depth of the canopy with increasing submergence level, 

although this was related to the removal of plant foliage by shortening the canopy
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since the foliage had been shown to reduce Reynolds stress penetration into the 

canopy.

The one-dimensional drag coefficient, CD, and two-dimensional drag 

coefficient, Cd2d , provided a quantitative method for characterising the hydraulic

resistance of the canopy. CD values ranged between 0.6-1.3 for emergent conditions 

and increased with decreasing stem density due to a higher level of resistance 

contributed per unit volume of vegetation. For submerged conditions, values ranged 

between 0.4-0.6 for the February vegetation (800 stems m'2 and a bed gradient of 

0.001) and between 0.7-1.7 for August vegetation within the ranges of stem density 

and bed gradients listed above. Drag coefficients were lower for the February 

vegetation due to thinner plants within the canopy and higher Reynolds numbers due 

to the higher velocities that the winter canopy were conducted at. However, for the

submerged condition, the correlation between CD and the stem density and bed 

gradient was weaker compared to the emergent condition due to significant 

differences in the flow regimes between the submerged canopies. The range of values 

observed was of a similar order of magnitude to the drag coefficient for a single 

cylinder ranging between Reynolds numbers of 100 and 100000, which usually 

ranged between 1.0 and 2.0.

The impact of the Reynolds number on one-dimensional drag coefficients 

must be accounted for when comparing the drag coefficients calculated for different 

canopies due to the difference in flow conditions (e.g. flow rates and submergence 

levels) implemented. It would therefore be convenient to compare the drag 

coefficients for different canopies at similar Reynolds numbers, and by doing so, the 

increase in hydraulic resistance, corresponding to an increase in drag coefficient, can 

be observed with increasing stem density and decreasing bed gradient. However, if 

the experiments on different canopies were conducted for the same Reynolds 

numbers, then the flow depth or flow rate would not be the same.

Gradients of the drag coefficient -  Reynolds number curves were considerably 

greater for the submerged canopies indicating that drag coefficient values are strongly 

dependant on the Reynolds number. For the emergent canopies, despite the average 

Reynolds numbers of the flows being considerably lower, the curve gradients were 

considerably smaller indicating that coefficient values were relatively constant over a 

wide range of Reynolds numbers. The mean Reynolds values for all the experiments
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fell within the range that is characteristic of vortex shedding which is shown by zone 

C in Figures 2-5 and 2-6.

The increase in hydraulic resistance with increasing total amount of vegetation 

material was observed more clearly for both submerged and emergent conditions

when the parameter CD' was considered, which combines the drag coefficient, CD , 

and the projected area of obstruction per unit volume of the canopy, a, into a product 

parameter. The parameter quantifies the total drag force resulting from a vegetation 

canopy due to both the vegetation characteristics (e.g. stiffness and stem diameter) 

and the quantity of the vegetation (e.g. the stem density and the projected area of 

obstruction per unit volume). Values ranged between 5 and 20 m'1 for emergent 

canopies, 7 and 49 m'1 for submerged August canopies, and 2 and 4 m'1 for

submerged February canopies. Magnitudes of CD' consistently increased with the 

quantity of vegetation material, as characterised by the projected area per unit volume, 

a, regardless of whether the increase was due to a higher stem density, or larger stem 

diameters, whereby stem diameters were larger for August vegetation compared to 

February vegetation.

Although there were differences in the material properties of the August and 

February vegetation, it was the difference in plant sizes that was the main cause for 

the difference in hydraulic resistance between the two canopies. The August plants 

were larger (larger stem diameters and a bigger leaf surface area), thus resulting in a 

greater level of obstruction, and greater hydraulic resistance.

The two-dimensional drag coefficient, Cd 2d, which varies over the canopy 

height, characterises the vertical variation in drag force over the canopy height. This is 

influenced by the projected area profile which reflects the difference between the stem 

and foliage regions, and the Reynolds number which is linked to the velocity and 

turbulence structures and is also variable over the canopy height. For the highest 

submergence level of 3.00, a decrease in Cd 2d was observed towards the top of the 

canopy and this was linked to the removal of foliage in the scaling process. With less 

foliage in the upper part of the canopy, there was less obstruction to the flow and 

longitudinal velocities were higher which corresponds to higher Reynolds numbers. 

For the lower subergence levels of 1.33 and 2.00, there was less consistency in the 

two-dimensional drag coefficient profile shapes and this could be linked to the 

heterogeneity of the vegetatioon.
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Depth-averaged two-dimensional drag coefficient values were of similar 

magnitudes to the one-dimensional parameter, particularly for the emergent condition 

where Reynolds stresses were negligible. For submerged canopies, the difference was 

linked to the treatment of the surface flow layer in the one-dimensional parameter and 

the Reynolds stresses in the two-dimensional parameter.
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8 Velocity and Turbulence Structure Prediction Methods

8.1 Introduction

In this chapter, the data collected in the laboratory experiments presented 

earlier in Chapter 7 will be used to reveal trends relating the canopy characteristics 

(e.g. stem density and projected area) to the velocity profiles and turbulence structures 

of the flow. If such trends can be verified successfully, they may be applied to 

saltmarsh environments to predict velocity and turbulence structures for cases where 

the vegetation canopies resemble the constructed vegetation canopies used to develop 

the relationships. This can be useful considering the difficulty of collecting field data 

to characterise the flow velocity and turbulence structure through saltmarsh canopies. 

The relationships are developed from the experiments conducted on non-dormant 

Spartina anglica vegetation collected during August 2006, for stem densities of 800, 

1160 and 1850 stems m ', for both emergent and submerged canopies (refer to Section

7.1 for full details).

The prediction method presented enables the user to predict velocity and 

Reynolds stress profiles for both emergent and submerged conditions for uniform 

flow conditions. The profile shapes and magnitudes can be predicted effectively using 

this method. In the process of predicting the profiles, relationships are presented for 

calculating mean canopy layer velocities and Reynolds stresses. For the submerged 

canopies, relationships have also been presented for calculating the mean surface flow 

layer velocities, peak Reynolds stress over the flow depth and the shape of the 

Reynolds stress profile in the upper section of the canopy where the increase in 

Reynolds stress with elevation is significant.

The relationships and formulae will be developed empirically using data 

presented in Chapter 7. Verification of the formulae will be conducted using data 

outside the empirical domain. A selection of the dataset for the August vegetation was 

reserved for the validation process as listed in Figure 8-1 where the datasets used for 

derivations and validations are listed separately. In this chapter, the data will be 

presented followed by a working example demonstrating how the relationships 

developed from the data can be applied to predict velocity and Reynolds stress 

magnitudes and profile shapes through vegetation canopies. An appropriate regression 

curve will be fitted to the data in each case.
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Figure 8-1 The range of tests from which data was used to derive and verify the relationships 
presented in this chapter for submerged canopies, a is the projected area per unit volume and
R erf is the stem Reynolds number calculated based on the mean canopy layer velocity.
Test No. Vegetation Stem Density 

(stems m'2)
Bed 

Gradient (-)
T

(m)
D

(m)
a

(nf1)
R e , (-)

The following canopies were used for deriving the relationships

♦D-Tll August 1850 1/300 Emergent 0 . 2 0 29.8 252

S-V10 August 800 1/300 0.05 0.15 6 . 6 145
S-Sll August 800 1/300 0 . 1 0 0 . 2 0 7.2 70
S-Mll August 800 1/300 0.15 0 . 2 0 7.4 42
S-V20 August 800 1 / 1 0 0 0 0.05 0.15 6 . 6 42
S-S21 August 800 1 / 1 0 0 0 0 . 1 0 0 . 2 0 7.2 24
S-M21 August 800 1 / 1 0 0 0 0.15 0 . 2 0 7.4 13

**M-V20 August 1160 1 / 1 0 0 0 0.05 0.15 14.1 34
**M-S21 August 1160 1 / 1 0 0 0 0 . 1 0 0 . 2 0 16.3 13
**M-M21 August 1160 1 / 1 0 0 0 0.15 0 . 2 0 17.3 9

D-V10 August 1850 1/300 0.05 0.15 2 2 . 1 36
**D-S11 August 1850 1/300 0 . 1 0 0 . 2 0 25.9 24
D-Mll August 1850 1/300 0.15 0 . 2 0 28.9 1 1

D-V20 August 1850 1 / 1 0 0 0 0.05 0.15 2 2 . 1 9
D-S21 August 1850 1 / 1 0 0 0 0 . 1 0 0 . 2 0 25.9 5
D-M21 August 1850 1 / 1 0 0 0 0.15 0 . 2 0 28.9 2

The following canopies were usedfor verification of the relationships

S-T21 August 800 1 / 1 0 0 0 Emergent 0 . 2 0 7.4 252
S-T22 August 800 1 / 1 0 0 0 Emergent 0.25 7.3 251
M-T21 August 1160 1 / 1 0 0 0 Emergent 0 . 2 0 17.7 183
M-T22 August 1160 1 / 1 0 0 0 Emergent 0.25 18.3 196
D-T21 August 1850 1 / 1 0 0 0 Emergent 0 . 2 0 29.8 156
D-T22 August 1850 1 / 1 0 0 0 Emergent 0.25 29.9 164

M-V10 August 1160 1/300 0.05 0.15 14.1 103
M-Sll August 1160 1/300 0 . 1 0 0 . 2 0 16.3 42

***M-M11 August 1160 1/300 0.15 0 . 2 0 17.3 23

** Data used for both derivation as well as validation for the ‘shape coefficient’ in Section 8.6.4.

*** Data used for both derivation as well as validation for mean canopy velocities for submerged 
canopies in Section 8.5.2.

8.2 Defining a Representative Canopy

Based on the canopies quantified in Section 5.3, the middle density of 1160 

stems m' will be taken as a representative stem density of a Spartina anglica canopy. 

The projected area profile for a stem density of 1160 stems m'2 based on 16 profiles is 

presented in Figure 8-2. The range of projected areas for stem densities between 800
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9 _and 1850 stems m’ are also shown. The values were determined from 16 cross- 

sections for each stem density. The mean basal stem diameter of non-dormant plants, 

based on measurements on samples collected during August 2006, is 5.2 mm. A mean 

canopy height of 0.3m is assumed based on the mean 90th percentile height of the 

vegetation over a twelve-month monitoring period. The quantification parameters 

used in this chapter and typical values are listed in Table 8-1.

0.3

0.2

z (m )

0.1

0
0 10 20 30 40

a (m'1)

Figure 8-2 A profile of the projected area per unit volume over the canopy height for a stem 
density of 1160 stems m'2. The error bars show the range of values encompassed by stem densities 
ranging between 800 and 1850 stems m~2.

Parameter Value
Stem density 1160 stems m 2
Canopy Height (7) 0.3 m
Stem spacing (5) 0.0315 m
Stem diameter (d) 5.2 mm
Projected area per unit volume (a ) 18.2 m’1
as 0.6
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8.3 Velocity Profiles for Emergent Canopies

8.3.1 The Mean Longitudinal Velocity through the Canopy

The one-dimensional drag-force equation (Equation 2.28), can be used to 

determine the roughness or drag coefficient for uniform flow conditions, can be 

rearranged for an expression of the mean velocity through the canopy. Consider two 

different canopies: ‘Canopy 1’ and ‘Canopy 2’. The bed gradients for the canopies are 

Sx and S2 respectively, the projected area per unit volume for each canopy is ax and

a2 while the respective bulk drag coefficients are CDX and CD2. ‘Canopy 1* will be 

taken as a reference canopy for which the parameters Ux and ax are known for one 

flow depth, Dx. Rearranging Equation 2.28 for the velocity term and applying it to the 

two canopies yields:

Ucx = [Equation 8.01]
a\ Cd\

Uc2 = _ g  2 [Equation 8.02]
a2 C02

A plot of the drag coefficient against the Reynolds number for emergent 

canopies is reproduced from the bulk roughness coefficient, CD\  against Reynolds 

number plot presented in Figure 7-9. For emergent canopies with similar properties, 

the variation in drag coefficient was relatively small when compared to the variations 

in roughness coefficients, particularly for stem Reynolds numbers above 100.
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1160 stems m'
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1/1000

1/1000
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Figure 8-3 Variation in the drag coefficient with the stem Reynolds number for emergent 
canopies.

Based on these observations, drag coefficient values for emergent canopies 

with similar stem densities and Reynolds numbers close to or above the transition 

value of approximately 200 (see Section 2.2.4) are assumed to be similar in 

magnitude. It has been suggested that the drag coefficient is not a strong function of 

stem density or Reynolds number for rigid vegetation for stem densities below 3000 

stems m'2 and Reynolds numbers below 10000 (Koch and Ladd, 1997; Nepf, 1999; 

Stone and Shen, 2002). The following step is adapted from the Lightbody and Nepf 

(2006a) method for determining velocity profile shapes through the canopy (see 

Section 2.4.3). Equation 8.02 is then divided by Equation 8.01 to give:

U.C 2 2gS2 CDl
Ucl2 a2CD2 2gS, aS,CD 2 a2S ,

[Equation 8.03]

which can be rearranged to give an expression that can be used to calculate the mean 

velocity of a uniform flow through an emergent canopy, UC2, if the bed gradient, S2,

and projected area per unit volume, a2, are known (Equation 8.04). All values for the 

reference canopy ( Uc l, S l , 5j) must also be known. The projected area per unit 

volume can be determined from the photographic method (Section 4.2.2) and bed

281



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

gradients can be calculated based on bed levels determined from LiDAR data (Section 

3.22.2).

£/ = Ur , I——  [Equation 8.04]
c \ d 2S }

For an emergent canopy with a stem density of 1850 stems m*2, bed gradient 

of 0.003 and a flow depth of 0.20m, the depth-averaged projected area per unit 

volume is 29.8 m'1. From the measured velocity values presented in Section 7.3.1.1, 

the mean longitudinal velocity was 0.059 ms*1. These values will be used for the 

reference canopy (Canopy 1). The values are used in Figure 8-4 to implement the 

method proposed above to predict the depth-averaged velocity through the emergent 

canopies for which the flow depth is 0.25m. The estimated values are consistently 

within 10% of the averaged measured values.

Figure 8-4 Prediction of mean longitudinal velocities through emergent canopies. S0 is the bed 

gradient, D is the flow depth, a is the projected area per unit volume and Uc is the mean 
velocity through the canopy.___________________________________________________________
Stem Estimated Measured Error
Density So D a Uc Uc P s )
(stems m'2) (-) (m) On1) (ms'1) (ms'1) (-)
800 1/300 0.25 7.28 0.089 0.093 -4.4%
800 1 / 1 0 0 0 0.25 7.28 0.046 0.046 1 .2 %
1160 1/300 0.25 18.3 0.069 0.073 -5.4%
1160 1 / 1 0 0 0 0.25 18.3 0.031 0.034 -8.5%
1850 1/300 0.25 29.9 0.059 0.059 0.9%

8.3.2 Velocity Profile Shapes and Magnitudes

As mentioned in the previous section, Lightbody and Nepf (2006a) proposed a 

method for predicting the velocity at an elevation within emergent canopies using a 

reference velocity and reference projected area per unit volume at a reference 

elevation within each canopy (see Section 2.4.3). The method assumes the projected 

area of obstruction profiles over the canopy height to be directly linked to the shapes 

of the longitudinal velocity profiles. Results from the experiments conducted on 

constructed vegetation canopies and uniform cylinder arrays in Chapters 6 and 7
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showed that the vertical distribution of material in the canopy is indeed closely linked 

to the velocity profile shapes.

The prediction method involves estimating the longitudinal velocity for any 

elevation based on the fluid momentum balance and on the velocity profile varying 

inversely with the canopy morphology. The method can then be used to predict the 

longitudinal velocity at a particular elevation provided that the projected area per unit 

volume at that particular elevation is known, and as long as the longitudinal velocity 

and the projected area per unit volume are also known for a reference elevation within 

the canopy. Lightbody and Nepf (2006a) used a reference elevation of 0.15m above 

the bed.

A similar concept is applied here, but instead of using values for a reference 

elevation, the estimated depth-averaged value of the velocity through the canopy, Uc ,

and the depth-averaged projected area per unit volume, a , are used and the 

longitudinal velocity at an elevation within the canopy, u, is given by Equation 8.05. 

A profile of projected area per unit volume for the canopy and the mean velocity 

through the canopy must be known.

u = U, [Equation 8.05]

where a is the projected area per unit volume at the elevation where u is to be 

determined. The projected area per unit volume profiles are known for the canopies 

considered in this study (see Section 5.3.3) and can be averaged for the height of the 

submerged part of the canopy to determine a . Values of Uc are estimated according

to the method outlined in Section 8.3.1 and used to determine the predicted profiles, 

which are presented in Figure 8-5 for the canopies with stem densities of 800, 1160 

and 1850 stems m‘ , for a flow depth of 0.25m and a bed gradient of 0.003. For the 

application of this method, vertical variation in the drag coefficient is assumed to be 

insignificant compared to the variation in projected area (see Section 7.6.2). It should 

be noted that the Reynolds stress term in the two-dimensional drag coefficient 

equation is negligible in emergent conditions (Equation 2.37).
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Figure 8-5 Measured (□) and predicted (■) longitudinal velocity profiles and the errors incurred 
in the predicted values for emergent Spartina anglica canopies, for stem densities of 800, 1160 
and 1850 stems m'2, a flow depth of 0.25m and a bed gradient of 1/300.
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Errors in the predictions are also presented and on average, the predicted 

values were within 7.4%, 13.9% and 17.1% of the measured values for the three stem 

densities respectively.

8.4 Reynolds Stress Profiles for Emergent Canopies

It is generally accepted that Reynolds stresses within emergent canopies are 

negligible in magnitude (e.g. Lightbody and Nepf, 2006a). For the sake of 

completeness, the magnitude of the mean Reynolds stress over the canopy height, 

-  pu'w'c , is related to the mean canopy velocity, Uc , in Figure 8-6.

Stem density S0 (-) 
(stems m'2)

■ 1160 1/1000

▲ 1850 1/1000

□ 800 1/300
O 1160 1/300
& 1850 1/300

0.00 0.02 0.04 0.06 0 08 0.10

Uc (ms'1)
Figure 8-6 The relationship between the mean canopy Reynolds stress, — pu'w'c , and the mean 

velocity, Uc , for emergent canopies with stem densities of 800, 1160 and 1850 stems m'2, flow
depths of 0.20m and 0.25m, and bed gradients of 1/1000 and 1/300. For each stem density and 
bed gradient, the higher mean Reynolds stress value corresponds to a flow depth of 0.20m, and 
the lower value corresponds to a flow depth of 0.25m. The vertical bars show the standard 
deviations.

Mean Reynolds stress values for the emergent canopies ranged between 0.002 

kg m 'V 2 and 0.010 kg m_1s'2 and standard deviations were large ranging between 

50% and 300%. However, the mean Reynolds stress values observed for the emergent

-  pu'w'c = 0.15C/c117
/ 2 — 0.84)

0.015

0.005
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canopies were significantly smaller than the peak values observed for the submerged

A power function was assigned to the data for the emergent canopies as follows:

Due to the limited data available, this is verified later in Section 8.6.3 using 

data from the lower part o f the submerged canopies.

8.5 Velocity Profiles for Submerged Canopies

8.5.1 Mean Surface Flow Layer Velocities

Above the canopy, the flow is usually turbulent, and if  the surface flow layer 

is considered separately from the canopy layer, then the roughness, which is caused 

by the vegetation, does not protrude into the surface flow layer. The Manning’s 

equation is applied to determine values of ns , the Manning’s roughness coefficient

specific to the surface flow layer where the top o f the vegetation is treated as the bed 

roughness. Because the sidewalls of the flume are smooth, the surface flow domain is 

treated as a wide channel and the hydraulic radius is taken to be equal to the depth of  

the surface flow layer, hs :

Roughness at the bottom of the surface flow layer is likely to be a function of 

the density o f  the vegetation beneath. This is characterised here by the dimensionless 

product parameter as , where a is the mean projected area per unit volume of the 

canopy and s is the stem spacing.

canopies which ranged between 0.17 kg m’V 2 and 2.46 kg m 'V 2 (see Section 7.4.4).

-  pu'w'c = 0.\5UC] 17 [Equation 8.06]

[Equation 8.07]
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(m'1/3s)
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Figure 8-7 The relationship between the Manning’s roughness coefficient specific to the surface 
flow layer, ns, and the vegetation density parameter, as, where a is the mean projected area

per unit volume of the canopy and s is the stem spacing. S0 is the bed gradient, T is the canopy
height and H  is the submergence level. Data is presented for stem densities of 800, 1160 and 
1850 stems m'2, submergence levels of 1.33,2.00 and 3.00, and bed gradients of 1/1000 and 1/300.

The value o f ns decreased for a shorter canopy height, particularly for the

shortest canopy (the 0.05m tall canopy). This is most likely due to the cropping of the 

vegetation which resulted in less foliage with decreasing canopy height. The 

following relationships were deduced for each canopy height, T:

For T — 0.05 m: 

For T=  0.10 m: 

For T=  0.15 m:

—  \ 0.22ns = 0.042(a^) 

ns = 0.048(fl.y) 

ns = 0.053(^5 )029

0.20

R2 = 0.86 [Equation 8.08]

R2 = 0.67 [Equation 8.09]

R2 = 0.95 [Equation 8.10]

Substituting into Equation 8.07 gives the following expressions for the mean canopy 

velocity for each canopy height

h % s / *
For T = 0.05 m: Us = ’ 5 \o 22 [Equation 8.11]

0.042(as)
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For T=  0.10 m: Us = [Equation 8.12]
0.048(^5 )

h ^
For T = 0.15 m: Us = — s 0 ^  [Equation 8.13]

0.053(tfs)

The data presented in Figure 8-8 was reserved for validation o f the relationships 

developed above. Estimated values o f the mean surface flow layer velocity were 

within 5% of the averaged measured values. Where a value o f as is unknown, a value 

of 0.6 is suggested based on the canopy presented in Section 8.2 (a stem density of 

1160 stems m'2 and a canopy height o f 0.3 m).

Figure 8 - 8  Prediction of mean longitudinal velocities in the surface flow layer above submerged 
canopies, s is the stem spacing, SQ is the bed gradient, T is the canopy height, D  is the flow

depth, a  is the projected area per unit volume, ns is the Manning’s roughness coefficient

specific to the surface flow layer and U s is the mean surface flow layer velocity.

Stem Density 
(stems m'2)

s
(m)

So
(-)

T
(m)

D
(m)

a
(m-1)

ns
(m‘1/3s)

Estimated

Us
(ms’1)

Measured
Us

(ms’1)

Error
(Us)

0
1160 0.0315 1/300 0.05 0.15 14.3 0.044 0.355 0.356 0 .1%
1160 0.0315 1/300 0 . 1 0 0 . 2 0 16.3 0.072 0.296 0.283 -4.5%
1160 0.0315 1/300 0.15 0 . 2 0 17.3 0 . 1 1 2 0.177 0.174 -2 .1%

Based on the available data, it will be assumed that the mean surface flow 

layer velocity above an uncropped Spartina anglica canopy can be characterised by 

Equation 8.13 for the 0.15 m canopies which contained the greatest surface area of 

foliage in the upper canopy compared to the 0.05 m and 0.10 m canopies. There is 

also an indication, according to Figure 8-7, that for cropped canopies with a height of 

0.10m or greater, there was relatively little difference in the surface flow layer 

Manning’s roughness coefficient.

8.5.2 Mean Canopy Layer Velocities

For a given vegetation height, the morphology o f the vegetation was similar 

for the different stem densities. Hence, the parameter most likely to affect the ratio o f  

the mean velocity through the canopy, Uc , to the mean velocity through the surface
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flow layer, Us , for uniform flow conditions, is the stem density. The stem density can 

be characterised by the stem spacing, 5 , which decreases with increasing stem density. 

A linear relationship was realised between the mean canopy layer velocity, Uc , and

between the product o f the mean surface flow layer velocity, Us , and the stem 

spacing, s. This is shown in Figure 8-10 and the relationship is defined as follows:

Uc =10AsC/5 [Equation 8.14]

The mean surface flow layer velocity, Us , can be determined as demonstrated 

in the Section 8.5.1. Using the estimated values of Us presented in Figure 8-8, the

mean canopy layer velocities are estimated within 15% of the averaged measured 

values (see Figure 8-9).

Figure 8-9 Prediction of mean longitudinal velocities through the canopy for submerged 
canopies, s is the stem spacing, S0 is the bed gradient, T is the canopy height, D is the flow

depth, Us is the mean surface flow layer velocity and Uc is the mean velocity through the

Stem 
Density 
(stems m'2)

S

(m)
So
(-)

T
(m)

D
(m)

Estimated

Us Uc
(ms'1) (ms’1)

Measured

Uc
(ms’1)

Error

(Uc)
(-)

1160 0.0315 1/300 0.05 0.15 0.355 0.116 0.134 -13.3%
1160 0.0315 1/300 0.10 0.20 0.296 0.097 0.086 12.7%
1160 0.0315 1/300 0.15 0.20 0.177 0.058 0.064 -9.2%

Errors in the estimated mean canopy layer velocity values can be reduced by 

considering the 0.15m canopy separately (see Figure 8-11) and determining a 

relationship between the canopy and surface flow layer velocities. This is because the 

difference in morphology between the three vegetation heights considered in Figure 

8-10 was significant and grouping them together to produce a comprehensive 

relationship can lead to larger errors. The new relationship specific to the 0.15m 

canopy is defined as follows:

Uc =11.25(7, [Equation 8.15]
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Equation 8.15 is used to estimate mean canopy layer velocities within 10% of 

the averaged measured values using mean surface flow layer velocities estimated 

using Equation 8.13 (see

Figure 8-12).

S 0 (-) H  {-)

■ 1/1000 1.33

▲ 1/1000 2.00

•  1/1000 3.00

□ 1/300 1.33

A 1/300 2.00

O 1/300 3.00

0.000 0.005 0.010 0.015 0.020
sUs (m V 1)

Figure 8-10 The relationship between the mean canopy layer velocity, U c , and the product

parameter sUs for submerged canopies, where S  is the stem spacing and Us is the mean
surface flow layer velocities. Data is presented for stem densities of 800,1160 and 1850 stems m‘2, 
submergence levels of 1.33,2.00 and 3.00, and bed gradients of 1/1000 and 1/300.

Uc
(ms'1)

0.15

0.10

0.05
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U c
(ms'1)

0.10

0.05

Uc = \\.2sU  
(R2 = 0.97)

0.00
0.000 0.005 0.010

S o O  H <r)

1/1000 1.33

1/300 1.33

sUs (m V 1)

Figure 8 - 1 1  The relationship between the mean canopy layer velocity, Uc , and the product

parameter sUs for 0.15m tall submerged canopies, where s is the stem spacing and Us is the
mean surface flow layer velocities. Data is presented for stem densities of 800, 1160 and 1850 
stems m' 2 and bed gradients of 1/1000 and 1/300.

Figure 8-12 Improved predictions of mean longitudinal velocities through the canopy for 
submerged 0.15m tall canopies, s is the stem spacing, S0 is the bed gradient, T is the canopy

height, D  is the flow depth, Us is the mean surface flow layer velocity and Uc is the mean 
velocity through the canopy.___________________   ________

Stem 
Density 
(stems m'2)

S

(m)
S o

(-)

T
(m)

D
(m)

Estimated

u s u c

(ms'1) (ms'1)

Measured

U c
(ms'1)

Error

[ u c )

(-)
800 0.038 1/300 0.15 0.20 0.355 0.091 0.134 4.6%
1160 0.0315 1/300 0.15 0.20 0.296 0.062 0.086 -2.4%
1850 0.025 1/300 0.15 0.20 0.177 0.046 0.064 -9.1%

8.5.3 Velocity Profiles through the Canopy

The adapted version of the Lightbody and Nepf (2006a) method used to 

predict velocity profiles for the emergent canopies in Section 0 is applied to the 

submerged canopies. By definition, the approach is inappropriate for submerged 

conditions since the Reynolds stress term becomes more significant within the upper 

section of the canopy. However, it was demonstrated in Section 7.4.4 that the foliage
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in the upper part of a vegetation canopy plays a significant role in reducing the 

magnitude o f the Reynolds stress within the canopy. Therefore, Reynolds stresses 

within most of a submerged canopy remain negligible and the approach proposed by 

Lightbody and Nepf (2006a) may be applicable to submerged canopies.

The predicted profiles are presented in Figure 8-13 for stem densities o f 800, 

1160 and 1850 stems m'2 where the cropped vegetation is 0.15m tall, the flow depth is

0.20m and the bed gradient is 0.003. Errors in the predictions are also presented and 

on average, the predicted values were within 13.2%, 9.1% and 16.5% o f the measured 

values for each canopy. Errors in the profile shapes and velocity magnitudes increased 

for the 0.05m and 0.10m canopies, particularly for the shortest canopy, and it is 

believed that this is due to the cropping of the vegetation whereby most o f  the foliage 

of the vegetation was removed to achieve the shorter canopies (For the sake of 

brevity, these are not shown here). As explained above, the reason this method was 

applied successfully to the 0.15m canopies was due to the presence o f plant foliage 

which reduced the Reynolds stress within each canopy significantly. In the absence of 

foliage, particularly for the 0.05m tall canopies, Reynolds stresses, and consequently 

drag coefficients, varied significantly within the canopy (see Sections 7.4.4 and 7.6.1).
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0.15

o.io

z(-)

0.05

0.00

0.15

0.10

z(-)

0.05

0.00

1160 stems m

800 stems m'

□ measured 
■ predicted

0.15

o.io

z(-)

0.05

0.00

1850 stems m

0.00 0.05 0.10 01 5

u (ms'1)
-100% -50% 0%  5Q°A

Error (%)
100%

Figure 8-13 Measured (□) and predicted (■) longitudinal velocity profiles and the errors incurred 
in the predicted values for submerged Spartina anglica canopies, for stem densities of 800, 1160 
and 1850 stems m'2, a canopy height of 0.15m, a flow depth of 0.20m and a bed gradient of 1/300.
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8.6 Reynolds Stresses in Submerged Canopies

8.6.1 Peak Reynolds Stress Magnitudes

The peak in Reynolds stress occurring around the interface between the 

canopy and surface flow layers is a feature o f the mixing layer analogy which 

characterises the region between two bodies o f fluid moving adjacent to each other 

with different velocities (see Section 2.5.4). To characterise this relationship, the peak 

Reynolds stress term, -  u'w'max, was related to the square o f the difference between 

the mean surface flow and canopy layer velocities:

= 0-043(Us - U cf  [Equation 8.16]

Data used to develop the relationship:
0.003

- U  w

0.002

-  UW

(m2s'2)

0.001

▲ •

0.000

0.00 0.02 0.04 0.06

Stem density S0 (-) T (m) //(-)
(stems m )

■ 800 1 / 1 0 0 0 0.05 3.00
■ 800 1 / 1 0 0 0 0 . 1 0 2 . 0 0

■ 800 1 / 1 0 0 0 0.15 1.33
▲ 1160 1 / 1 0 0 0 0.05 3.00
▲ 1160 1 / 1 0 0 0 0 . 1 0 2 . 0 0

▲ 1160 1 / 1 0 0 0 0.15 1.33
•  1850 1 / 1 0 0 0 0.05 3.00
•  1850 1 / 1 0 0 0 0 . 1 0 2 . 0 0

•  1850 1 / 1 0 0 0 0.15 1.33
□ 800 1/300 0.05 3.00
□ 800 1/300 0 . 1 0 2 . 0 0

□ 800 1/300 0.15 1.33
o 1850 1/300 0.05 3.00
o 1850 1/300 0 . 1 0 2 . 0 0

O 1850 1/300 0.15 1.33

Data used for validation:
Stem density S0 (-) Tim) //(-)
(stems m )

a 1160 1/300 0.05 3.00
A 1160 1/300 0 . 1 0 2 . 0 0

A 1160 1/300 0.15 1.33

(Us - U cf  (m V 2)

Figure 8-14 The relationship between the peak Reynolds stress term above a submerged canopy, 
-w'w'majj, and the square of the difference between the mean canopy layer ( U c ) and surface

flow layer ( U s ) velocities. Data is presented for stem densities of 800, 1160 and 1850 stems m~2, 
submergence levels of 1.33,2.00 and 3.00, and bed gradients of 1/1000 and 1/300.
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The mean surface flow layer velocity, Us , and canopy layer velocity, Uc , can

be estimated from Equations 8.13 and 8.14 respectively. Using the estimated values 

presented in Sections 8.5.1 and 8.5.2 respectively, the peak Reynolds stress term, 

-  w'w'max, was predicted within 30% of the peak values determined from measured 

results.

Figure 8-15 Prediction of peak Reynolds stress magnitudes above submerged canopies. S0 is the 

bed gradient, T is the canopy height, D  is the flow depth, Us is the mean surface flow layer 

velocity, Uc is the mean velocity through the canopy and — u'w'maK is the peak Reynolds stress 
term.
Stem 
Density 
(stems m'2)

So
(-)

T
(m)

D
(m)

Us
(ms'1)

Estimated

Uc
(m s1)

-W'w'max 
(m2 s'2)

Measured 

-W'w’max 
(m2 s’2)

Error 
(—u'w' )V max /  

(-)
1160 1/300 0.05 0.15 0.355 0.116 2.45 x 10'3 1.88 x 10‘3 30.3%
1160 1/300 0.10 0.20 0.296 0.097 1.70 x 10'3 2.18 x 10’3 -22.1%
1160 1/300 0.15 0.20 0.177 0.058 6.11 x IQ-4 7.47 x 10'3 -18.3%

8.6.2 The Reynolds Stress Penetration Elevation

The Reynolds stress penetration depth into the canopy, hpen, is defined as the

distance from the top of the canopy to the elevation within the canopy where the 

Reynolds stress is 10% of the peak Reynolds stress value (Nepf and Vivioni, 2000). 

Below this level, there was significantly less vertical variation in the Reynolds stress 

(see Section 7.4.4). The peak Reynolds stress occurs close to the top of the canopy, 

usually within the surface flow layer. The penetration depth is affected by the strength 

of the shear layer occurring along the canopy-surface flow layer interface and the 

density of the vegetation cover. The shear layer strength is characterised here by the 

ratio of surface layer to canopy layer mean velocity, Us/U c , and the canopy density

is characterised by the parameter a 2s , where a is the projected area per unit volume 

and s is the stem spacing. The following linear relationship is proposed to 

characterise the depth o f penetration:

= 0.156-^--0.334
U c

[Equation 8.17]
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=pen —2 „a s
0.156— -0 .3 3 4

Ur-
[Equation 8.18]

The mean surface flow layer velocity, Us , and canopy layer velocity, Uc , can

be estimated from Equations 8.13 and 8.14 respectively. The R-squared value for the 

relationship described by Equation 8.17 was low (R2 = 0.63) and this may be linked to 

the high level o f uncertainty associated with turbulence prediction. It may also be 

linked to the significant difference in morphology between the canopies used to 

develop the relationship. The Reynolds stress penetration elevation, z0 l , is defined as 

the distance from the bed to the location o f the Reynolds stress penetration depth:

' 0.1 = T - h pen

* 0.1 — T _a 2s
0.156 ̂ - - 0 .3 3 4

Ur-

0.5

0.4 (R = 0.63)

=0.156 i.334
pen

0.2

0.1

0.0
0.0 2.0 4.0 6.0

U f
(-)

[Equation 8.19]

[Equation 8.20]

Data used to develop the relationship:
Stem density S0(~) T (m) //(-)
(stems m*2)

■ 800 1 / 1 0 0 0 0.05 3.00
■ 800 1 / 1 0 0 0 0 . 1 0 2 . 0 0

■ 800 1 / 1 0 0 0 0.15 1.33
A 1160 1 / 1 0 0 0 0.05 3.00
▲ 1160 1 / 1 0 0 0 0 . 1 0 2 . 0 0

▲ 1160 1 / 1 0 0 0 0.15 1.33
• 1850 1 / 1 0 0 0 0.05 3.00
• 1850 1 / 1 0 0 0 0 . 1 0 2 . 0 0

• 1850 1 / 1 0 0 0 0.15 1.33
□ 800 1/300 0.05 3.00
□ 800 1/300 0 . 1 0 2 . 0 0

□ 800 1/300 0.15 1.33
O 1850 1/300 0.05 3.00
O 1850 1/300 0 . 1 0 2 . 0 0

O 1850 1/300 0.15 1.33

Data used for validation:
Stem density 50(-) T (m) //(-)
(stems m )

A 1160 1/300 0.05 3.00
A 1160 1/300 0 . 1 0 2 . 0 0

A 1160 1/300 0.15 1.33

Figure 8-16 The relationship between the dimensionless parameter, ash , and the ratio of 

mean surface flow layer (U s) to canopy layer (U c ) velocity, a  is the projected area per unit 

volume, s is the stem spacing and h is the Reynolds stress penetration depth. Data is
presented for stem densities of 800,1160 and 1850 stems m'2, submergence levels of 1.33,2.00 and 
3.00, and bed gradients of 1/1000 and 1/300.
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Validation of Equation 8.20 is presented in Figure 8-17 for the estimated mean 

surface flow layer and canopy velocities determined in Sections 8.5.1 and 8.5.2 

respectively. A larger error was observed for the 50 mm canopy, although 

significantly smaller errors were observed for the lesser cropped canopies (100 mm 

and 150 mm) with the error for the tallest canopy being less than 2%.

Figure 8-17 Prediction of the Reynolds stress penetration elevation for submerged canopies, s is 
the stem spacing, S0 is the bed gradient, T is the canopy height, D  is the flow depth, Us is the

mean surface flow layer velocity, Uc is the mean velocity through the canopy, hpen is the

penetration depth and (z0,) is the penetration elevation.

Stem 
Density 
(stems m'2)

S

(m)
So
(-)

T
(m)

D
(m)

Us
(ms*1)

Estimated

Uc hpen
(ms’1) (m)

*0.1
(m)

Measured

*0.1
(m)

Error

(*0.1) 
(-)

1160 0.0315 1/300 0.05 0.15 0.355 0.116 0.018 0.032 0.025 36.5%
1160 0.0315 1/300 0.10 0.20 0.296 0.097 0.024 0.076 0.085 -10.4%
1160 0.0315 1/300 0.15 0.20 0.177 0.058 0.012 0.138 0.141 -1.7%

8.6.3 Reynolds Stresses below the Penetration Depth

Below the Reynolds stress penetration height, Reynolds stress values showed 

relatively little variation with elevation. Mean values were predicted using Equation 

8.06, which was proposed for estimating mean Reynolds stress values for emergent 

canopies. The predicted values were within 20% of the averaged measured values (see 

Figure 8-18).

Figure 8-18 Prediction of the mean Reynolds stress below the penetration elevation for 
submerged canopies. S0 is the bed gradient, T is the canopy height, D  is the flow depth and

— pu'Wc is the depth-averaged Reynolds stress term for the section of canopy below the 
penetration elevation._________________ __________________________________ ___________
Stem Estimated Measured Error
Density S0 T D Uc -  pu'w'c — pu'w'c (-pu'Wc)
(stems m"2) (-) (m) (-) (ms’1) (kg m s'2) (kg m s'2) (-)
800 1/1000 0.15 0.20 0.061 0.00452 0.00515 -12.2%
1160 1/1000 0.15 0.20 0.033 0.00290 0.00337 -13.8
1850 1/1000 0.15 0.20 0.025 0.00201 0.00248 -18.7%
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8.6.4 Reynolds Stress Profile Shapes

A typical Reynolds stress profile is illustrated in Figure 8-19 for Experiment 

S-S21 (see Table 5-1 in Section 5.1), where the Reynolds stress penetration elevation 

(see Section 8.6.2) is marked by a faint dotted line. Below the penetration elevation, 

there is relatively little variation in the magnitude o f Reynolds stress. Above the 

penetration elevation, there is a large gradient in the Reynolds stress, which increases 

significantly with elevation towards a peak Reynolds stress value which is often 

located a small distance above the canopy.

0.20

0.15

]
z (-) 0 .10

0.05

0.00
0.0 0.5 1.0

« v /« v _  (-)
Figure 8-19 A typical normalised Reynolds stress (w'w') profiles for a submerged Spartina 
anglica canopy, where the canopy height is 0 . 1  m, the flow depth is 0 . 2 0  m, the bed gradient is 
1/1000 and the stem density id 800 stems m*2. w'w'max is the peak Reynolds stress value, z is the
elevation, the bold dotted line denotes the top of the vegetation canopy, and the faint dotted line 
denotes the Reynolds stress penetration height.

The region between the penetration depth and the canopy top, marked by the 

bold dotted line, for Experiment S-S21 is shown in Figure 8-20, where the shape of 

the profile can be approximated to a logarithmic relationship. The penetration 

elevation, z01, was taken as the datum, and the elevation was normalised by the 

canopy height, T.
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0.4

0.3

0.2

*1* + A J \
UW-  -0.151n(0.l)

::
(R2 = 0.98)

z - z .
= 0.15 Ino.i u w

o.o
o.o 0.5 1.0

U'w'/u'w' ^  (-)

Figure 8-20 The Reynolds stress (u'w') profile shape within the Reynolds stress penetration 
depth for a submerged Spartina anglica canopy, where the canopy height, T, is 0 . 1  m, the flow 
depth is 0 . 2 0  m, the bed gradient is 1 / 1 0 0 0  and the stem density id 800 stems m '2- w ' w 'max * t h e  

peak Reynolds stress value, z  is the elevation, z01 is the Reynolds stress penetration height, the
bold dotted line denotes the top of the vegetation canopy, and the faint dotted line denotes the 
Reynolds penetration depth.

Logarithmic trend lines were fitted to all normalised Reynolds stress plots for 

the experiments conducted on submerged Spartina anglica canopies, where the 

vegetation was collected during August 2006. The trend lines, which were adjusted to 

pass through the 0.1 mark along the normalised Reynolds stress axis at the datum 

level (equivalent to 10% of the peak Reynolds stress), were of the form:

[Equation 8.21]

where ^ is a coefficient which varies according to the level of submergence and will 

be referred to as the ‘Reynolds stress profile shape coefficient’ or simply the ‘shape 

coefficient’ from hereon forth. The values of the shape coefficient, (f) , can be related 

to the depth-averaged velocity, U, through a power law relationship as presented in 

Figure 8-21. Two power law equations are proposed which relate to the bed gradients 

investigated.

z - z 0.1 = (/>\n u w

max J
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0.4

0.3

0.2

For So = 1/300: 
x c/) = \ . W X59 

(R2 = 0.94)

0.1

0.3 0.40 0.1 0.2

U (ms'1)

Data used to develop the relationships: Data used to verifV the relationships:

Stem density 
(stems m'2) ’ So (-) T {m ) H i - ) Stem density 

(stems m'2) Soi-) T i m ) H i - )

■ 800 1/1000 0.05 3.00 A 1160 1/1000 0.05 3.00

800 1/1000 0.10 2.00 A 1160 1/1000 0.10 2.00
800 1/1000 0.15 1.33 A 1160 1/1000 0.15 1.33
1850 1/1000 0.05 3.00 A 1160 1/300 0.10 3.00

1850 1/1000 0.10 2.00 A 1160 1/300 0.10 2.00

1850 1/1000 0.15 1.33 A 1160 1/300 0.10 1.33
□ 800 1/300 0.05 3.00
□ 800 1/300 0.10 2.00
□ 800 1/300 0.15 1.33
o 1850 1/300 0.05 3.00
o 1850 1/300 0.10 2.00
O 1850 1/300 0.15 1.33

Figure 8-21 The relationship between the shape coefficient, 0 ,  and the depth-averaged
longitudinal velocity, U  for submerged Spartin a  anglica  canopies, for stem densities of 800, 1160 
and 1850 stems m'2, bed gradients of 1/1000 and 1/300 and submergence levels, //, of 1.33, 2.00 
and 3.00. T is the canopy height and R2 is the goodness of fit for each power trend line.
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For bed gradients of 0.001 and 0.003 respectively, the relationship between 

the shape coefficient, (f) , and the mean flow velocity, U, is characterised by the 

following two equations:

<p = 2.27U132 [Equation 8.22]

0 = 1 .8 f/'59 [Equation 8.23]

According to mass continuity of the fluid, the depth-averaged velocity of the 

flow can be estimated from predicted values of the mean velocities through the 

surface flow layer (U s ) and the canopy (Uc ) (see Sections 8.5.1 and 8.5.2 as follows:

U = ^ s^s [Equat ion 8.24]

where hs , T and D are the depth of the surface flow layer, the height of the canopy 

and the total flow depth. Using estimated values of U, the shape function, was 

estimated for the middle density canopies with a stem density of 1160 stems m'2 (see 

Figure 8-22). Errors were significant in some cases, and this may be linked to the 

accumulated errors in predicting Us and Uc , the significant difference in

morphology between the canopies used to develop the relationships as well as the 

uncertainty associated with predicting turbulence properties.

Figure 8-22 Prediction of the Reynolds stress profile shape coefficient for submerged canopies, s 
is the stem spacing, SQ is the bed gradient, T is the canopy height, D is the flow depth, U is the 
mean flow velocity and (f) is the shape coefficient.

Stem 
Density 
(stems m'2)

So
(-)

T
(m)

D
(m)

Estimated

u  <i>

(ms'1)

Measured

*
Error

W
w

1160 1/300 0.05 0.15 0.276 0.232 0.226 2.4%
1160 1/300 0 . 1 0 0 . 2 0 0.196 0.135 0.075 79.6%
1160 1/300 0.15 0 . 2 0 0.088 0.038 0.059 -36.3%
1160 1/300 0.05 0.15 0.150 0.186 0.193 -3.7%
1160 1/300 0 . 1 0 0 . 2 0 0.107 0.119 0.068 76.8%
1160 1/300 0.15 0 . 2 0 0.048 0.041 0.044 -5.2%
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8.7 Worked Example

8.7.1 Scenario

To illustrate the application o f the prediction method proposed in this chapter, 

a worked example is presented. Consider a Spartina anglica canopy which 

experiences inundation during a high tide. A mean 90th percentile height of 0.3m is 

taken as the height o f the vegetation based on a typical Spartina anglica canopy 

(Section 0). The bed gradient is 0.001, and for this example, the problem is simplified 

by assuming a steady-uniform flow. The velocity and Reynolds stress profiles are to 

be determined for the canopy at the following two stages o f the inundation cycle:

1. when the flow depth is 0.2m and the vegetation is therefore emergent

2. when the flow depth is 0.4m and the vegetation is therefore submerged

8.7.2 The Canopy Characteristics

The canopy is assumed to possess the properties o f  the mid-range (1160 stems 

m*2) canopy in this study, including the projected area per unit volume profile 

presented in Section 8.2. The depth-averaged projected area per unit volume of the 

canopy is 18.2 m'1, and the 90th percentile height o f 0.3m is taken as the height o f the 

vegetation.

8.7.3 Velocities and Reynolds Stresses through the Emergent Canopy

An index canopy was described in Section 8.3.1 for which the projected area

per unit volume is 29.8 m'1, the bed gradient is 0.003 and the mean velocity is 0.059
1 • 2  ms' . The same index canopy is used here. For the lower 0.20m o f a 1160 stems m'

canopy, the projected area per unit volume, which is determined from the profile

presented in Section 0, is 18.2 m'1. From Equation 8.04, the mean velocity can be

determined as follows:
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§ H  = 0 . 0 5 9 , F * ^  = 0.Q41 ms'1
Va2S, V 18.2x0.003

The mean velocity (Uc =0.041 ms*1) and projected area per unit volume

(a = 18.2 m '1) are used with the profile of projected area (presented in Section 0) to 

predict the velocity profile up to an elevation of 0.20m above the bed level using 

Equation 8.05. The predicted velocity profile is presented in Figure 8-23a.

The mean Reynolds stress, which for an emergent canopy is relatively 

constant over the flow depth, can be estimated using Equation 8.06:

-p u 'w 'c = 0A5Uc l 17 =3.61x10 3 kgm*1 s"2

The predicted Reynolds stress profile is presented in Figure 8-23b.

0.3

z(m)

0.2

0.1

0.0
0.06 0.080.040.020.00 0.00 0.040.02 0.06 0.08

u (ms*1) -  pu'w' (kg m 'V 2)
Figure 8-23 Predicted [a]: velocity and [b]: Reynolds stress profiles for a uniform flow through 
an emergent Spartina anglica canopy with a stem density of 1160 stems m'2, for a flow depth of 
0 .2 m and a bed gradient of 1 /1 0 0 0 .

8.7.4 Velocities and Reynolds Stresses through the Submerged Canopy

For the stem density of the canopy (1160 stems m*2), the mean stem spacing, s, 

is 31.5 mm. For the submerged canopy, the projected area per unit volume, d , for the

0.3m height of the canopy, is 18.4 m*1. Foe a flow depth of 0.4m, the depth of the
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surface flow layer, hs, is 0.1m. First, the surface flow layer velocity is estimated 

using Equation 8.13:

h /ts /i  0 .1̂ 0.001^
* 0.053(asfM 0.053(18.4x0.0315)°29 ' mS

Then the mean canopy layer velocity, Uc , can be estimated using Equation 8.15:

Uc =11.2sUs =11.2x0.0315x0.151 = 0.053 ms*1

The mean velocity (U c = 0.053 ms’1) and projected area per unit volume (a  = 18.4

m'1) are used with the profile o f projected area (presented in Section 0) to predict the 

velocity profile using Equation 8.05. The predicted velocity profile is presented in 

Figure 8-24a. The values o f Us and Uc can then be used to estimate the peak 

Reynolds stress term occurring above the canopy using Equation 8.16:

- « V max =0.43(f/s - U cf  = 0.43(0.151-0 .027)2 = 4 .1 2 x l0 ~ 3 m ¥

The Reynolds stress is achieved by multiplying by the fluid density:

= 0-412 kg m 'V 2

The Reynolds stress penetration can also be estimated by applying Equation 8.18:

= — 2„  a s
0 .1 5 6 -^ --0 .3 3 4  

Un

1

18.42 x 0.0315 

= 0.010 m

J

r 0 151 ^
0.156 ̂ ^ - - 0 . 3 3 4

v 0.053 /

The penetration elevation, z0,, is the distance from the penetration depth to the bed:
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zQA= T - h pen= 0 3 - 0 . 0 \  = 0 2 9 m

The Reynolds stress profile is described by Equation 8.21 for which the shape 

coefficient, (j>, is required. To determine the shape coefficient, the depth averaged 

velocity of the flow is required. This can be estimated using estimated values of the 

mean canopy ( Uc ) and surface flow layer (Us) velocities using Equation 8.24 as 

follows:

UCT + Ushs 0.053x0.3 + 0.151x0.1 . _iU = — -̂------ 2-2- = ------------------------------- = 0.078 ms 1
D  0.4

The shape coefficient can be calculated using Equation 8.22:

^ = 2.27 x U h32 = 2.27 x 0.078132 = 0.078

Substituting values of (j) , z01 and w V max into Equation 8.21 facilitates the prediction

of the Reynolds stress profile between the penetration elevation and the top of the 

canopy. Below the penetration elevation, the Reynolds stress is estimated using the 

estimated mean canopy velocity, Uc , with Equation 8.06:

- pu'w'c = 0A5UC" 7 = 4.87xlO"3 kgm'1 s'2

The predicted Reynolds stress profile is presented in Figure 8-24b.
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Figure 8-24 Predicted [a]: velocity and [b]: Reynolds stress profiles for a uniform flow through a 
submerged Spartina anglica canopy with a stem density of 1160 stems m'2, for a flow depth of 
0.4m and a bed gradient of 1/1000. The canopy is 03m tall and the flow depth is 0.4m.

8.8 Concluding Remarks

A method was proposed for the prediction o f  longitudinal velocity and 

Reynolds stress profiles for Spartina anglica canopies. The method was based on the 

approach proposed by Lightbody and Nepf (2006a) for emergent vegetation. The 

longitudinal velocity is assumed to vary inversely with the canopy morphology, thus a 

greater projected area results in greater obstruction to the flow and in lower 

longitudinal velocities. The same approach was applied to emergent canopies in this 

study, and also to the lowest submergence level o f  1.33 and resulted in reasonable 

predictions o f the longitudinal velocity in the range o f 0.02 to 0.13 ms*1. Reynolds 

stresses were relatively low for both o f these conditions compared to the higher 

submergence levels o f 2.00 and 3.00 investigated in this study.

The Lightbody and Nepf (2006a) approach utilises a reference elevation 

within a canopy for implementing the prediction method where the projected area per 

unit volume and velocity are known. However, velocity measurements may not be 

readily available; hence, a similar concept to the Lightbody and Nepf (2006a) 

approach was implemented here to estimate the mean velocity through a Spartina 

anglica canopy using a reference canopy for which the mean velocity and obstruction 

area are known.
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For the submerged canopies, an alternative approach was adopted to estimate 

mean canopy velocities. First, the surface layer was treated as an open channel with a 

rough bottom, and the bottom roughness, which in fact corresponds to the top of the 

vegetation canopy, was characterised using a Manning’s roughness coefficient. This 

enabled estimation of the mean surface layer velocity with reasonable accuracy. The 

mean canopy layer velocity was a linear function of the mean surface layer velocity 

and the stem density and could therefore be estimated.

The Lightbody and Nepf (2006a) approach, which the authors suggest is only 

applicable to emergent vegetation where Reynolds stresses are negligible within the 

canopy, was applied with similar success to the 0.15m submerged canopies as it was 

to the emergent canopies in this study. Due to the dense foliage cover in the 0.15m 

canopies, Reynolds stresses remained negligible over most of the canopy height. As 

with the emergent canopies, the depth-averaged values of projected area and 

estimated velocity were used as a reference.

For higher submergence levels (2.00 and 3.00), Reynolds stresses through the 

canopy were more significant, however, it is believed that this is strongly linked to the 

severely cropped nature of the vegetation at these submergence levels. Large 

Reynolds stresses affected velocity profiles and drag coefficients, hence the prediction 

methods which were reasonably successful for the emergent canopies and the 0.15m 

cropped canopies were not suitable for application to the shorter 0.05m and 0.10m 

cropped canopies.

A relationship was developed for predicting the shape of the Reynolds stress 

profile in the region where the Reynolds stress is considered significant. The 

Reynolds stress profile relationships were specific to each of the two bed gradients 

implemented because the flow regime, as characterised by the Reynolds number, 

varied significantly with bed gradient. The peak Reynolds stress above a submerged 

canopy and the Reynolds stress penetration depth were both functions of the 

relationship between the mean surface layer and mean canopy velocities. The 

penetration depth was also a function of the vegetation density.
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9 Conclusions and Recommendations for Further Research

The conclusions presented in this section summarise the findings from the field

investigation and the laboratory studies presented in this thesis.

9.1 Conclusions

1. A survey of two saltmarsh sites revealed the complexity of field conditions and 

identified contrasting vegetation canopy properties with a wide range of bed 

gradients, stem densities and vegetation species. The saltmarsh sites also 

contained complex creek networks, and the most significant difference between 

the two sites was that one of them is part of a bird sanctuary and remains 

relatively undisturbed throughout the year, whilst the other is used for sheep 

farming throughout the year. The effects of grazing were evident for the latter site 

and the vegetation cover was very short with annual monthly average canopy 

heights ranging between 28 mm and 83 mm (compared to between 260 mm and 

390 mm where the vegetation was undisturbed), resulting in considerably less 

obstruction to tidal flows compared to the undisturbed vegetation.

2. A range of parameters for characterising the physical properties of vegetation 

canopies were considered to determine how different canopies can influence the 

hydrodynamics of the flow. Such parameters include stem diameters and densities, 

the material stiffness of the vegetation, the mass and projected area per unit 

volume. Determination of projected area per unit volume profiles was achieved 

using photographs of canopy cross-sections. A linear relationship was established 

linking the mass per unit volume to stem density of the vegetation. Due to the 

complex morphology of vegetation, characterisation of the amount of plant 

material obstructing the flow is difficult to perform using a single parameter. 

Parameters which have been used for characterising the degree of obstruction for 

uniform cylinder array models are not appropriate for real vegetation canopies. 

Profiles of projected area per unit volume and stem densities were considered 

together for characterising and evaluating the degree of obstruction for the 

constructed vegetation canopies in this thesis.
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3. One limitation o f the photographic method is that the projected area determined 

from the photographs only relates to the plants closest to the camera, and does not 

represent the total amount o f vegetation in the cross section. Hidden plant parts 

formed a significant proportion o f the total obstruction, and there was a greater 

surface area o f hidden vegetation for a greater stem density. Correction for hidden 

material was possible for the constructed canopies used in the laboratory 

experiments. This was necessary to relate the total amount o f vegetation to its 

hydraulic resistance and therefore ascertain the impact o f  the physical properties 

of a vegetation canopy on the velocity and turbulence structures. The proportion 

of the total projected area o f obstruction that was hidden increased with stem 

density. For three canopies considered with stem densities o f  800, 1160 and 1850 

stems m'2, 30.8%, 58.0% and 76.1% of the total projected area was hidden 

respectively. Furthermore, the photographic method does not account for 

variations in stem diameter such that two canopies with different stem densities 

can have similar projected areas due to the difference in the sizes o f the plant 

stems. As one would expect, the turbulence structure can vary significantly 

between the two canopies as a higher stem density with a smaller average stem 

diameter will give rise to a greater number o f narrower wakes and the stem 

spacing will be smaller, thus increasing the likelihood o f wake interference with 

downstream stems.

4. Lateral variation in the vegetation was assessed by considering ‘local’, ‘spatial’ 

and ‘temporal’ variability in the vegetation obstruction. ‘Spatial’ variability was in 

part related to the geographical location, such as the elevation above mean sea 

level or the proximity to creek networks. However, ‘spatial’ variability was less 

significant than ‘temporal’ variability due to the seasonal variation in the 

vegetation size, and to ‘local’ variability due to the random variation in the 

vegetation. The mean 90th percentile Spartina anglica canopy height was 308 mm, 

although minimum and maximum values were 145 mm and 360 mm during the 

winter and summer periods respectively. ‘Local’ variability in the projected area 

per unit volume o f the vegetation was demonstrated by applying the photographic 

method to 16 vertical cross-sections o f canopy for three constructed vegetation 

canopies with stem densities o f 800, 1160 and 1850 stems m'2. Average standard
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deviations in the projected area per unit volume between the 16 cross-sections for 

the three canopies were 25.8%, 12.3% and 25.0% respectively.

5. Determination of seasonal variation in vegetation density can depend on the 

parameters used to quantify the density. Vegetation was quantified in this study 

according to the mean stem diameter, canopy height, stem density, projected area 

per unit volume and mass per unit bed area. The vegetation became dormant 

during the winter period, and young shoots were observed in the spring. The mean 

stem diameter for a sample of Spartina anglica collected during February 2007 

was 4.12 mm, compared to 5.16 mm for samples collected during August 2006. 

Mean moduli of elasticity were up to 2.3 times greater for summer vegetation, 

reflecting the stiffer nature of the vegetation. Such variation in the physical 

properties is difficult to recreate in laboratory studies. The seasonal variation in 

vegetation characteristics can affect the hydraulic resistance properties of the 

canopy significantly, especially as the largest high tides of the year occur around 

the months of September and March, for which the canopies show the greatest 

contrast in terms of stem diameters, stiffness, stem density, canopy height and 

projected area per unit volume. During September, the vegetation appears green 

and abundant following the long days of sunlight exposure during the summer 

months, whereas during March, the vegetation was in the dormant state, whereby 

stem diameters were smaller and the foliage cover was scarce. For the 800 stems 

m'2, the average projected area per unit volume for the foliage region between 

elevations of 0.15 m and 0.20 m above the bed was 35% greater for the summer 

canopy. Consequently, the level of protection against sediment erosion is 

considerably less around March.

6. The submergence level of a vegetation canopy is dependant on the height of the 

vegetation, the bed elevation and the sea level. Submergence levels can therefore 

vary considerably for a saltmarsh due to a wide range of values encountered for 

each of these parameters. A predictor was developed to estimate the submergence 

levels for the saltmarshes considered in the field study. Based on the collected and 

available data, the mean 90th percentile Spartina anglica canopy height was 308 

mm and the mean bed elevation for the Llanelli saltmarsh was 2.455 m Above 

Ordinance Datum (AOD). The mean high tide magnitude for the twelve-month
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monitoring period was 3.48 m AOD, for which tidal inundation o f the mean bed 

elevation level would last 1.8 hours and the submergence level during high tide 

would reach 1.9. For the maximum magnitude high tide o f the year (5.26 m 

AOD), inundation would last 3.9 hours and the submergence level would reach 

5.4. 16.7% of high tides during the monitoring period (July 2005 to June 2006) 

ranged between 8.0 m and 8.5 m AOD in magnitude (this is equivalent to 122 high 

tides), whilst only 2.7% (equivalent to 20 high tides) fell ranged between 10.0 m 

and 10.5 m AOD.

7. Flume experiments were conducted to compare the velocity and turbulence 

structures in submerged vegetation canopies and uniform cylinder arrays for 

uniform flow conditions. Uniform cylinders with a 6.0 mm diameter were used 

due to the similarity with the basal diameters o f the plants and the same stem 

densities were implemented for each type o f canopy. It was difficult to replicate a 

similar level o f area o f obstruction to the flow. There were significant differences 

in the canopy physical structures between natural canopies in situ, constructed 

canopies in the laboratory using real vegetation stems, and artificial canopies of  

uniform cylinder arrays. Natural canopies contained loose plant parts near the bed, 

smaller plants and secondary species o f vegetation, which contributed to an 

increase in the amount o f vegetation near the bed. Constructed canopies were 

primarily composed o f larger plant stems o f Spartina anglica, resulting in clearly 

distinguishable stem and foliage regions. Plant foliage was abundant in both 

canopies, but was not represented in the uniform cylinder models, which had 

considerably lower projected areas per unit volume for similar stem densities 

compared to the real vegetation. For constructed August vegetation canopies with 

stem densities o f 800, 1160 and 1850 stems m'2, the total projected area per unit 

volume was 55%, 148% and 161% higher respectively compared to the uniform 

cylinder arrays.

8. Reynolds stress penetration was considerably greater for the uniform cylinder 

arrays where foliage was absent compared to the constructed vegetation canopies. 

Whilst an increase in stem density in the constructed vegetation canopies resulted 

in a reduction o f Reynolds stress penetration, the same increase in stem density 

resulted in an increase in Reynolds stress penetration for the uniform cylinder
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arrays. For the constructed vegetation canopies, an increase in stem density 

resulted in an increase of plant foliage in the canopy which is believed to reduce 

the penetration of Reynolds stress into the canopy. However, for the uniform 

arrays, an increase in stem density resulted in a greater difference in hydraulic 

resistance between the canopy layer, where the flow resistance increases, and the 

surface flow layer, where resistance is negligible. Hence, this gave rise to a 

‘stronger’ shear layer along the canopy-surface flow layer interface, and in the 

absence of plant foliage, the penetrative effect of the shear layer extended deeper 

into the canopy.

9. Flume experiments were conducted under uniform flow conditions to investigate 

the influence of the structure of constructed vegetation canopies on hydraulic 

resistance, velocity and turbulence structures. Some of the experiments were 

repeated for vegetation samples collected during the summer and winter seasons 

to assess the significance of the variations in vegetation properties and 

morphology. The experiments were conducted for a range of stem densities, bed 

gradients and submergence levels based on measurements conducted during an 

eighteen month field survey. Stage discharge curves were determined for the 

different canopies investigated. The curves are useful for quantifying the flow 

resistance due to the different vegetation canopies. The flow depth for most of the 

experiments conducted in the laboratory investigation was 200 mm. At this flow 

depth, a decrease in submergence level (the ratio of flow depth to canopy height) 

from 2.00 to an emergent condition resulted in a decrease of 20% to 42% in 

discharge (the percentage reduction increased with increasing stem density). 

Going from a higher submergence level of 3.00 to an emergent condition may 

result in a decrease of 60% to 74% in discharge. Increasing the stem density from 

800 to 1160 stems m'2 resulted in a reductions of 20.5% and 34.1% in discharge 

for bed gradients of 0.003 and 0.001 respectively. However, a further increase in 

stem density to 1850 stems m'2 did not result in any significant further reduction 

in discharge.

10. One of the most significant features of real vegetation canopies, which are rarely 

represented in simulated canopies in the laboratory, is the vertical variation in
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projected area associated with the complex structure of the plant canopy. There 

was a considerable difference in canopy structure between the stem region near 

the bed and the foliage region higher up in the canopy. This was identified by the 

photographic method, which was applied to thin horizontal layers of the canopy to 

quantify the vertical variation in projected plant area per unit volume. Although 

the vegetation in the foliage region was considerably thinner, and hence, had a 

much lower mass per unit volume compared to the plant at its base, the surface 

area of the canopy was significantly higher in the foliage region, resulting in a 

greater level of obstruction to the flow. This was evaluated by introducing a 

‘uniformity coefficient’ as a measure of vertical variation in the canopy. Standard 

deviations in the total projected area per unit volume over the canopy height for 

constructed vegetation canopies were approximately + 25% of the depth-averaged 

value for the canopies considered which ranged between 800 and 1850 stems m‘ 

in stem density. For submerged conditions, it was demonstrated that the 

magnitude of Reynolds stress remains negligible for vegetation canopies with a 

relatively dense foliage cover. This was attributed to the influence of plant foliage 

on reducing the penetration of the Reynolds stress into the canopy.

11. A two-layer flow occurs for submerged conditions whereby the longitudinal 

velocities within the canopy layer are significantly lower than those in the surface 

flow layer. The depth-averaged velocity of the canopy layer was between 30% and 

42% of the depth-averaged surface flow layer velocity for stem densities of 800 

and 1160 stems m' . For the highest stem density of 1850 stems m , depth- 

averaged canopy layer velocities were even lower ranging between 23% and 30% 

of the surface flow layer velocity. A large gradient in longitudinal velocity occurs 

between the two layers as a result. Along the canopy-surface flow layer interface, 

a shear layer arises that is dominated by rotating vortices indicated by large values 

of fluctuations in the instantaneous longitudinal and vertical velocity components 

(«' and w'). Effects of the vortices on the turbulence structure were also evident at 

the mid-canopy height for the sparser stem densities of 800 and 1160 stems m ‘2 as 

identified by a quadrant analysis showing a concentration of instantaneous 

velocity fluctuation measurements within the second and fourth quadrants. For the 

highest stem density of 1850 stems m'2, a more obstructive foliage cover in the
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upper part of the canopy is believed to reduce the penetration of the vortices into 

the canopy.

12. For submerged conditions, a peak in Reynolds stress was observed a short 

distance above the top of the canopy. The influence of plant foliage on the 

turbulence structure in submerged canopies was shown more clearly by evaluating 

the Reynolds stress penetration into the canopy. The Reynolds stress penetration 

depth as a proportion of the canopy height was shown to decrease with increasing 

stem density and decreasing submergence level. With an increase in stem density, 

the total surface area of foliage naturally increases, and due to the scaling method 

implemented, for lower submergence levels, the canopy was taller and contained 

more foliage. The Reynolds stress penetration depth as a proportion of the canopy 

height ranged between 2 % and 1 2% for a canopy height of 150 mm, and between 

30% and 76% for a canopy height of 50 mm.

13. There was more variation in longitudinal velocity profiles through constructed 

vegetation canopies compared to uniform cylinder arrays. This is attributed to the 

non-uniform vertical distribution of plant material in the vegetation canopy. For 

the uniform cylinder arrays, longitudinal velocities through the canopy were more 

influenced by the ‘skimming’ flow due to a higher velocity surface flow layer 

above the canopy layer and a positive gradient was observed in velocity 

magnitude with elevation above the bed. This was not observed for the vegetation 

canopies where a dense foliage cover is believed to reduce the effects of the 

surface flow layer on velocities within the canopy layer.

14. The key species considered in this study (<Spartina anglica) was relatively stiff and 

remained upright for the wide range of flow conditions examined. The material 

stiffness did not seem to be influential in characterising the hydraulic resistance of 

the plant canopy.

15. The values of CD are dependent on the Reynolds number because the resistance 

of the canopy is affected by the wake structure, the amount of wake sheltering, 

and the total amount of turbulence in the flow, which can affect the significance of
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turbulence generation in the stem wakes towards energy dissipation. Thus, CD 

values need to be quoted along with the associated range of Reynolds numbers. 

For instance, for a stem Reynolds value of 250, CD values for emergent canopies 

are estimated at 0.622, 0.927 and 1.278 for stem densities of 800, 1160 and 1850 

stems m'2. For submerged canopies and a stem Reynolds number of 400, CD 

values are estimated at 0.886, 1.002 and 1.517 for the respective stem densities.

16. Under certain circumstances, such as where the canopy structure and density are 

unknown or difficult to determine, or where the Reynolds stress within the canopy 

is significant (e.g. in submerged canopies), there are advantages to using the bulk

roughness coefficient, CD'. This is the product of the projected area per unit

volume, a , which quantifies the vegetation density, and the bulk drag coefficient,

CD . Application of CD' does not require knowledge of the canopy density and

had a better correlation with the projected area per unit volume of the canopy than

CD , which is affected by the influence of the turbulence structure and the

contribution of individual stems towards the total resistance o f the canopy.

17. A method was proposed for the prediction of longitudinal velocity and Reynolds 

stress profiles. The velocity prediction was based on the method proposed by 

Lightbody and Nepf (2006a) for emergent canopies using a reference elevation 

within the canopy for which the projected area and velocity are known. The 

method was adapted and the mean projected area and estimated canopy layer 

velocity were used. For a submerged canopy containing a large amount of foliage, 

the application of the method produced satisfactory predictions of longitudinal 

velocity profiles. Where Reynolds stress penetration was significant, longitudinal 

velocity profiles were more difficult to predict. Relationships were also developed 

for the Reynolds stress profiles within the penetration depth, however, these were 

specific to the flow regime. Where experiments were repeated for a different bed 

gradient and the Reynolds numbers were significantly different, a different 

relationship was assigned. Furthermore, these relationships, which were developed 

using constructed canopies from August, were not compatible with constructed
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February vegetation canopies or with uniform cylinder arrays due to a significant 

difference between the morphologies of the three types of canopy.

9.2 R ecom m end ation s for Further Research

1. In the flume experiments, variables such as bed gradients, submergence levels and 

stem densities, were studied for a limited number of values within the range 

observed on two coastal saltmarshes. This facilitated the consideration of a greater 

number of variables, and the results were useful for identifying the impact of 

variations in the aforementioned variables on the velocity and turbulence 

structures. However, examination of such variables for a greater number of values 

can be useful for identifying and confirming trends in the data and the effects of 

these variables on hydraulic resistance.

2. The laboratory experiments in this work were conducted under uniform flow 

conditions, which was particularly useful where the hydraulic resistance 

characteristics of the vegetation were unknown. The flow velocities implemented 

to achieve uniform flow conditions for the range of submergence levels 

investigated were considerably greater than those observed in saltmarsh 

environments, which were often below 0.1 ms' 1 (Section 2.42). Since bulk drag 

coefficients are strongly influenced by the Reynolds number and are likely to be 

significantly greater in magnitude for lower flow velocities, it would be useful to 

determine drag coefficient values at low velocities that are more typical of natural 

saltmarsh conditions.

3. The flume used for the experiments could only support a maximum flow depth of 

around 0.25m after installation of the constructed canopies. Therefore, the 

vegetation had to be trimmed to reduce the canopy height and hence, facilitate 

greater submergence levels. This scaling method resulted in considerable 

modification to the morphology of the canopy, due to the significant difference in 

structure between the lower stem region, which was not affected by any of the 

scaling conducted, and the upper foliage region, which was gradually removed 

with the progressive decrease in canopy height. Conducting the experiments in a 

deeper flume so that the vegetation does not need to be cut down would provide
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more representative results of a natural Spartina anglica canopy on the 

hydrodynamics in a coastal environment.

4. Using uniform cylinder arrays to simulate Spartina anglica canopies can lead to 

over simplification of the morphology of the canopy. The use of real vegetation 

for such studies can produce more realistic results that are representative of the 

natural environment. However, constructed vegetation canopies can also lead to 

alteration of the vegetation cover morphology in a natural environment. Firstly, 

constructed canopies usually consist of neatly organised large plants, whereas 

natural canopies can consist of plants at various stages o f the growth cycle, as well 

as fallen plant parts accumulating near the bed leading to a significantly different 

canopy structure. Secondly, the constructed canopies implemented were 

constructed entirely of Spartina anglica, and areas dense in Halimione 

portulacoides were identified adjacent to creek networks during the field survey. 

For a better understanding of the velocity and turbulence structure, the latter 

species also needs to be considered. Furthermore, there is often a lack of a clear 

boundary between the two species on the saltmarshes surveyed. Hie influence of 

the different species in various proportions is another recommended area for 

further study.

5. The relationships relating the vegetation morphology to the velocity and 

turbulence structure, were developed using the data collected for the August 

vegetation canopies. Verification of these trends was then attempted using data 

collected for February canopies and uniform cylinder arrays. This did not always 

yield good results, and should be conducted using data collected for vegetation 

samples that are similar in morphology to the original canopies for which the 

relationships were developed.

6 . Determination of the properties and density of the vegetation cover on coastal 

wetlands from Geographic Information Systems (GIS) data can be useful for 

evaluating the total protection offered by a saltmarsh to a coastline. This can be 

achieved by comparing measured vegetation properties (e.g. stem densities, 

projected areas per unit volume, canopy heights etc.) to the vegetation properties 

determined from remotely sensed data. Such data can be used to characterise the
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boundary conditions in a hydrodynamic numerical model. Although this topic has 

been explored briefly during the work using LiDAR data supplied by the 

Environment Agency, higher resolution data was required to differentiate between 

the bed level and the top of the vegetation. Streutker and Glenn (2006) 

successfully used LiDAR data to detect and characterise vegetation covers with 

relatively similar morphologies to the Spartina anglica canopies observed at the 

study sites (e.g. sagebrush, horsebrush wheatgrass, Plain’s reedgrass etc.) with a 

vertical error of + 50 mm.
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10 Appendix I: Derivation of the Two-Dimensional Drag 

Coefficient Equation

This derivation is taken from Dunn et al. (1996). It is included for the sake of 

completeness due to the importance of this equation in the context of this thesis.

For incompressible turbulent flow, the Navier-Stokes equations (momentum 

equations) for the x, y  and z planes are defined as follows:

x-momentum:

du d(w2) d(uv) d{uw) dPp —  + p —-— L + p ——- + p —— - = ------ + u
dt dx dy dz dx

d2u d2u d2u >+ +
dx dy dz' + P8x

[Equation 10.01]

y-momentum:

dv d(uv) d(v2) 5(vw)p —  + p — —- + p - A— L + p ——- =
dt dx dy dz

dP
dx

+ p ( d 2v 8 2v  8 2v ^+ +
dx dy dz4

[Equation 10.02]

z-momentum:

dw ^  d(uw) [  ̂d(vw)  ̂ ^  d(w2)
p —  + p

dt dx
+ p

dz
dP + p
dx

r d2w d2w d2w^+
dx dy'

+
dz' + Pg2

[Equation 10.03]

where g x, g y and g z are the components of the gravitational acceleration in the x, y  

and z directions, p  is the dynamic viscosity, p  is the fluid density and P is the 

hydrostatic pressure. The continuity equation is defined as follows:

OH. + ̂  + —  = 0 [Equation 10.04]
dx dy dz

Assuming a uniform, steady, incompressible flow, the time-averaged y-momentum
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and z-momentum equations become insignificant. The time-averaged x-momentum 

equation becomes:

n d (  du —o = p g x + - \ f i — - p u '  
dx \ dx

\  a /  a-.  '\ q /

dy
du —

. dy

[Equation 10.05]

The time-averaging procedure gives rise to a number of mean products of fluctuating

velocities that relate to the Reynolds stresses (Section 2.3.1). The -  p u ’w' Reynolds 

stress component associated with the x-z plane normal to the bed is dominant in fully 

turbulent uniform flow and Equation 10.05 can be approximated with a simpler 

streamwise momentum equation:

r
o S p g x + dz

du \

dz j

(\ dro = p g x + —dz

[Equation 10.06] 

[Equation 10.07]

where duT = p — -p u 'w ' = rv +T' 
dz

[Equation 10.08]

where rv is the viscous stress and r, is the Reynolds stress. The Reynolds stress

profile for a fully turbulent uniform flow in a wide channel is illustrated in Figure 

1 0 -1, showing that the mean total shear stress varies linearly and follows the equation:

r = r, ' l - L '
D j

[Equation 10.09]

where rb is the bed shear stress and is given by the following equation:

Tb = pgDS0 [Equation 10.10]
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Equations 10.09 and 10.10 can be obtained by integrating Equation 10.07 from the 

bed to the free surface. The total stress at the water surface is negligible.

: Reynolds stress 
t v ; Viscous stress 
x : Total shear stress 
Tb: Total bed shear stress

Figure 10-1 Stress partition for fully turbulent flow with a viscous sublayer in a wide rectangular 
channel (taken from Dunn et al., 1996)

The viscous stress is negligible for most of the flow depth (except for the region 

adjacent to the bed) and the turbulent stress dominates such that:

r = - pu ' w' [Equation 10.11]

Vertical variation in the total stress outside the viscous region near the bed can 

therefore be characterised as follows:

which is consistent with Figure 10-1. In the presence of a uniform cylinder array, the 

Reynolds stress profile is illustrated in Figure 10-2, where T is the height of the 

cylinders. Actual measurements usually indicate lower values of the Reynolds stress 

than the theoretical values in the surface flow, and this is attributed to secondary 

currents and other components of the Reynolds stress tensor. The magnitude of these 

effects is a function of the width-to-depth ratio of the surface flow (Nezu and 

Nakagawa, 1993).

dz dz
[Equation 10.12]
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Reynolds stress

D

Total shear stress 
and Reynolds stress

\
\

\
\

Total shear stress-̂ " \

0 3 - gDS0
p

Figure 10-2 Expected effect of canopy on total stress and turbulent shear stress (taken from 
Dunn et al., 1996)

Within the canopy region, the difference between the total theoretical shear 

stress and the Reynolds stress is due to the stresses imposed by the form drag of the 

cylinders. Equation 9.05 is modified to include the stress partitioned to the cylinder 

drag. This is achieved by longitudinally averaging the Navier-Stokes equations as 

described by Raupach and Shaw (1982) and results in an additional term for the drag 

force per unit volume, FD'. [Equation 9.12] becomes:

where CD 2D is the vertically-varying drag coefficient, and a is the projected area per 

unit volume (Section 2.2.6). Substituting Equation 10.14 into Equation 10.13 gives:

[Equation 10.13]

where the drag force per unit volume is defined as:

[Equation 10.14]
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q !___v j
— («' w'j=gS0  CD2dOU2 [Equation 10.14]
dz 2

Rearranging Equation 10.14 gives the following expression for the vertically-varying 

drag coefficient:

gS0
CD 2D = --------7 3 ------- [Equation 10.15]

% u 2
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11 Appendix II: Local, Spatial and Seasonal Variation in 

Vegetation Obstruction

The different types of variation in the relative vegetation obstruction that have 

been implemented are described by the equations presented below. Three types of 

variation are classified: ‘spatial’ variation, crs , and ‘temporal’ variation, crT. The 

terms are calculated from the obstruction of a vegetation canopy which is defined as 

the percentage of the flow area A, , at elevation z, occupied by the projected area of

the canopy, Api. This can be equated as follows:

The reader is reminded that along transect A, Spartina anglica was 

monitored at five locations, namely A2, A3, A4, A5 and A6 , each of which consists of 

four sampling points labelled ‘a’, ‘b’, ‘c’ and ‘d’. In the following equations, each 

parameter is proceeded by a pair of brackets, the contents of which refer to the 

vicinity followed by the time period to which the parameter refers. The vicinity can be 

a sampling point (e.g. A2a, A2b etc.), a sampling location (e.g. A2, A3 etc.) or a 

transect (e.g. A, B etc.). The months of the monitoring period (July 2005 to June 

2006) were numbered from 1 to 12 such that (A2,l) refers to sampling location A2 

during the first month of monitoring (July 2005) and (A,l:12) refers to the twelve­

month average for transect A. Now consider the relative vegetation obstruction at 

location A2 for July 2005. This is the ‘local’ average of the relative vegetation 

obstructions at four sampling points (A2a, A2b, A2c and A2d) such that:

O xlOO [Equation 10.01]

[Equation 10.02]

The ‘local’ variation of the relative vegetation obstruction at A2 during July 2005 is 

equivalent to the standard deviation of the four sampling points such that:



Appendix II

a  (, 1) I ( ° p  { A 2 a ’V) ~  ° p + ' ^ + ( ° p  ( A 2 d ’l )  ~  ° r  ( A 2 ’l ) f

[Equation 10.03]

The long-term and large-scale effects of the ‘local’ variations were assessed in two 

ways. Firstly, the average ‘local’ variation for a single location were averaged 

‘temporally’, and secondly, they were averaged for the sampling locations across a 

transect for any given month of sampling. For the first approach, the ‘local’ variation 

at location A2  for the twelve-month monitoring period is simply the average of the 

‘local’ variations calculated for each month such that:

o l{A2,\ : 12)= V l(a_21 )+ V l(A2,2)+- - + <tl(A2,\2) [Equation 10.04]

To assess the amount of ‘local’ deviation across transect A each month, the values 

calculated for the five monitoring locations along the transect during July 2005 are 

averaged as follows:

~ / A1\ <j l (A2,\)+crL (>43,1)h— + cr,(,46,l) __ .<JL(A, 1) = — 9- I ---LV ’ } ^ — ’- I  [Equation 10.05]

Now consider the twelve-month average relative vegetation obstruction for a 

sampling location, in this case, location A2:

[Equation 10.04]

This is used to calculate the ‘temporal’ variation in relative vegetation obstruction at 

location A2, which is effectively the standard deviation of the monthly values 

calculated in Equation 4.02 as follows:
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(.12,112) [ K ( A2’l) - ° A A2’l ' l2 ) f  + -  + ( 0 M 2 , l 2 ) - 0 p(A 2,l:i2)f

[Equation 10.07]

The relative vegetation obstruction for transect A, in this case for July 2005, can be 

calculated as follows:

o.<*.)- °M»h°,U»ho,Uvh°,U»hoM«) [E,„ tion R0!]

This is used to calculate the ‘spatial’ variation of the relative vegetation obstruction at 

transect A during July 2005 as follows.

cr, .(A, l) =

To summarise the results obtained from the analysis described above, mean ‘local’, 

‘temporal’ and ‘spatial’ relative vegetation obstructions were calculated from the data. 

The mean ‘local’ relative vegetation obstruction was obtained by averaging the 

twelve-month average ‘local’ values calculated for each locations across the transect 

(from Equation 4.04) as follows.

cr,
7  a LC^2,l: 12) +crL(v43,l :12)+ -- + <t l(A6, 1:12) . 1A1/V1(A, 1:12) = —^ —  ------ L-——   L--------——   L [Equation 10.10]

The mean ‘temporal’ relative vegetation obstruction was calculated by averaging the 

twelve-month average ‘temporal’ values calculated for each locations across the 

transect (from Equation 4.07) as follows.

; 12) = (^2,1:12) + Q-r(^3,k 12)+• • ■ + crr(^6,1:12) [Equation iq.H]
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The mean ‘spatial’ relative vegetation obstruction was calculated by averaging the 

twelve-month average ‘spatial’ values calculated for the transect during each of the 

monitoring months (from Equation 4.09) as follows:

12-) = ^ s ( ^ h c r L(A,2)+ -  + a s (A,l2) [Equation 10.12]

328



12 References

Ackerman, J.D., and Okubo, A. (1993). “Reduced mixing in a marine macrophyte 
canopy.” Functional Ecology, 7, 305-309.

Allen, J.R.L. (2000). “Morphodynamics of Holocene salt marshes: a review sketch 
from the Atlantic and Southern North Sea coasts of Europe”. Quaternary Science 
Reviews, 19, 1155-1231.

Anderson, S.M., and Charters, A.C. (1982). “A fluid dynamics study of seawater 
flow through Gelidium nudifrons.” Limnology and Oceanography, 27(3), 399-412.

Ashutosh, O., Dhanda, P., and Singh, G. (2002). “Changes in grazing behaviour of 
native and crossbred sheep in different seasons under semi-arid conditions.” 
Tropical Animal Health and Production, 34, 399-404.

Baker, C.J. (1979). “The laminar horseshoe vortex.” Journal o f Fluid Mechanics, 
95(2), 347-367.

Beeftink, W.G. (1977). “Salt-Marshes” In: Barnes, R.S.K. (Ed.) The Coastline. John 
Wiley & Sons, 93-121.

Blevins, R.D. (1977). “Flow-induced vibration”. Litton Educational Publishing, New 
York.

Bolscher, J., Ergenzinger, P., Obenauf, P., and Schnauder, I. (2005).
“Conclusions.” In: Bolscher, J., Ergenzinger, P., and Obenauf, P. (Eds). Hydraulic, 
sedimentological and ecological problems of multifunctional riparian forest 
management (RIPFOR) (2005). Berliner Geographische Abhandlungen.

Boorman, L.A. (1999). “Salt marshes -  present functioning and future change.” 
Mangroves and Salt Marshes, 3, 227-241.

Boorman, L.A., Gross-Custard, J.D., and McGrorty, S. (1989). Climate change, 
rising sea level and the British coast. Her Majesty’s Stationary Office, London, UK.

Brampton, A.H. (1992). “Engineering significance of British saltmarshes.” In: Allen, 
J.R.L. and Pye, K. (Eds) Saltmarshes: morphodynamics, conservation and 
engineering significance. Cambridge University Press, Cambridge, UK.

Brown, S.L. (1998). “Sedimentation on a Humber saltmarsh” In: Black, K.S., 
Paterson, D.M. & Cramp, A. (eds.) Sedimentary processes in the intertidal zone. 
Geological Society, London, Special Publications 139, 207-222.

Brown, G.L., and Roshko, A. (1974). “On density effects and large structure in 
turbulent mixing layers.” Journal o f  Fluid Mechanics, 64(4), 775-816.

BS 1377-2: 1990. “Methods of test for soils for civil engineering purposes -  part 2: 
classification tests.”

329



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

BS 2782-10: Method 1005:1977, EN 63:1977. “Methods o f testing plastics. 
Determination o f flexural properties. Three point method.”

Burd, F. (1989). “Saltmarsh survey o f Great Britain: an inventory o f British 
saltmarshes.” Joint Nature Conservation Committee.

Burke, R.W., and Stolzenbach, K.D. (1983). “Free surface flow through salt marsh 
grass.” MIT Sea Grant Report MITSG 83-16 Cambridge, Massachusetts, US.

Chadwick, A., and Morfett, J. (1986). “Hydraulics in Civil and Environmental 
Engineering.” HarperCollins Academic, UK.

Chen, C., (1976). “Flow resistance in broad shallow grassed channels.” Journal o f  the 
Hydraulics Division, 102(HY3), 307-322.

Chiew, Y., and Tan, S. (1992). “Frictional resistance o f overland flow on tropical 
turfed slope.” Journal o f  Hydraulic Engineering, 118(1), 92-97.

Chow, V.T. (1959). “Open-Channel Hydraulics.” McGraw-Hill, Japan.

Christiansen, T., Wiberg, P.L., and Milligan, T.G. (2000). “Flow and sediment 
transport on a tidal salt marsh surface.” Estuarine, Coastal and Shelf Science, 50, 
315-331.

Church, J.A. and White, N. (2006). “A 20th century acceleration in global sea-level 
rise.” Geophysical Research Letters, 33(L01602), 1-4.

Collinson, A.S. (1988). “Introduction to World Vegetation.” Springer, USA.

Dargahi, B. (1989). “The turbulent flow field arund a cirular cylinder.” Experiments 
in Fluids, 8, 1-12.

Darke, A.K., and Megonigal, J.P. (2003). “Control o f sediment deposition rates in 
two mid-Atlantic Coast tidal freshwater wetlands.” Estuarine, Coastal and Shelf 
Science, 57, 255-268.

DEFRA (2006). “Shoreline management plan guidance. Volume 1: Aims and 
requirements.” DEFRA, UK.

DEFRA (2007). “Determining environmentally sustainable and economically viable 
grazing systems for the restoration and maintenance o f heather moorland in England 
and Wales. BD1228, Annex 2.1 -  Sheep Grazing.”

Dickerman, J., and Stewart, A.J. (1986). “Estimates o f net annual aboveground 
production: sensitivity to sampling frequency.” Ecology, 67(3), 650-659.

Douglas, J.F., Gasiorek, J.M., and Swaffield, J.A. (1979). Fluid Mechanics. 
Longman, UK.

Dunn, C., L6pez, F., and Garcia, M. (1996). “Mean flow and turbulence in a 
laboratory channel with simulated vegetation.” Hydraulic Engineering Series No.

330



References

51, U1LU-ENG-96-2009. Department of Civil Engineering, Univ. of Illinois, 
Urbana-Champaign.

Edmunds, M., and Robertson, P. (2005). “Working with the sea: the new approach 
to coastal management.” In\ Conservation Land Management Spring 2005. RSPB, 
UK, 4-8.

The Environment Agency (1996). “East Anglian salt marshes -  The meadows of the 
sea.” The Environment Agency, UK.

Fathi-Maghadam, M., and Kouwen, N. (1997). “Nonrigid, nonsubmerged, 
vegetative roughness on floodplains.” Journal o f Hydraulic Engineering, 123(1), 
51-57:

Fairbanks, J.D.(1998) “Velocity and turbulence characteristics in flows through rigid 
vegetation.” Master’s thesis, Virginia Polytechnic Institute & State University.

Fern, K. (1997). Plants for a Future: Edible & Useful Plants for a Healthier World. 
Permanent Publications.

Fiedler, F.R., and Ramirez, J.A. (2000). “A numerical method for simulating 
discontinuous shallow flow over an infiltrating surface.” International Journal for 
Numerical Methods in Fluids, 32, 219-240.

Finnigan, J.J. (1979). “Turbulence in waving wheat.” Boundary Layer Meteorology, 
16, 181-211.

Finnigan, J.J. (2000). “Turbulence in plant canopies.” Annual Review o f Fluid 
Mechanics, 32, 519-571.

Fischer-Antze, T., Stoesser, T., Bates, P., and Olsen, N.R.B. (2001). “3D numerical 
modelling of open-channel flow with submerged vegetation.” Journal o f Hydraulic 
Research, 39(3), 303-310.

Fitter, R., Fitter, A. & Farrer, A. (1984). Grasses, Sedges, Rushes and Fems of 
Britain and Northern Europe. Harper Colins.

Fonseca, M.S., and Kenworthy, W.J. (1987). “Effects of current on photosynthesis 
and distribution of seagrasses.” Aquatic botany, 27(1), 59-78.

French, R.H. (1985). “Open-Channel Hydraulics.” McGraw-Hill International 
Editions, Singapore.

French, J.R., Spencer, T., Murray, A.L., and Arnol, N.S. (1995). “Geostatistical 
analysis of sediment deposition in two small tidal wetlands, Norfolk, U.K.” Journal 
o f Coastal Research, 11(2), 308-321.

Frey, R.W., and Basan, P.B. (1978). “Coastal salt marshes” In: Davis, Jr. R.A. (Ed.) 
Coastal Sedimentary Environments. Springer-Verlag, New York, 101-169.

331



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

Gacia, E., Granata, T.C., and Duarte, C.M. (1999). “An approach to measurement 
of particle flux and sediment retention within seagrass (Posidonia oceanica) 
meadows.” Aquatic Botany, 65, 255-268.

Gambi, M.C., Nowell, A.R.M., and Jumars, P.A. (1990). “Flume observations on 
flow dynamics in Zoster a marina (eelgrass) beds.” Marine Ecology Progress Series 
61, 159-169.

Gerrard, J.H. (1977). “The wakes of cylindrical bluff bodies at low Reynolds 
number.” Philosophical Transactions o f  the Royal Society o f  London A, 288, 383- 
643.

Ghisalberti, M., and Nepf, H.M. (2002). “Mixing layers and coherent structures in 
vegetated aquatic flows.” Journal o f  Geophysical Research, 107(C2), 3.1-3.11.

Gimenez-Curto, L.A. and Corniero Lera, M.A. (1996). “Oscillating turbulent flow 
over very rough surfaces.” Journal o f  Geophysical Research, 101(C9), 20745- 
20758.

Gray, A.J. (1992). “Saltmarsh plant ecology: zonation and succession revisited” In: 
Allen, J.R.L. & Pye, K. (Eds.) Saltmarshes -  Morphodynamics, Conservation, and 
Engineering Significance. Cambridge University Press, Cambridge, 63-79.

Grizzle, R.E., Short, F.T., Newell, C.R., Hovenc, H., and Kindblom, L. (1996).
“Hydrodynamically induced synchronous waving of seagrass: ‘monami’ and its 
possible effects on larval mussel settlement.” Journal o f  Experimental Marine 
Biology and Ecology,206, 165-177.

Hall, B.R., and Freeman, G.E. (1994). “Study of hydraulic roughness in wetland 
vegetation takes new look at Manning’s The Wetlands Research Program 
Bulletin, U.S. Army Corps of Engineers, Waterway Experiment Station, 4(1), 1-4.

Hammer, D.E., and Kadlec, R.H. (1986). “A model for wetland surface water 
dynamics.” Water Resources Research, 22(13), 1951-1958.

Her Majesty’s Almanac Office (2000). “The astronomical almanac for the year 
2001.” Stationary Office. London.

Hulme,M., Jenkins,G.J., Lu,X., Turnpenny,J.R., Mitchell,T.D., Jones,R.G., 
Lowe,J., Murphy,J.M., Hassell,D., Boorman,P., McDonald,R., and Hill,S. 
(2002). “Climate change scenarios for the United Kingdom: The UKCIP02 
scientific report.” Tyndall Centre for Climate Change Research, School of 
Environmental Sciences, University of East Anglia, Norwich, UK.

Ikeda, S., and Kanazawa, M. (1996). “Three-dimensional organised vortices above 
flexible water plants.” Journal o f  Hydraulic Engineering, 122(11), 634-640.

Intergovernmental Panel on Climate Change (2001). “Climate change 2001: 
impacts, adaptation and vulnerability.” Cambridge Univeristy Press.

Intergovernmental Panel on Climate Change (2008). “Technical paper on climate 
change and water.” World Meteorological Organisation, Geneva, Switzerland.

332



References

Jarvela, J. (2005). “Effect of submerged flexible vegetation on flow structure and 
resistance.” Journal o f  Hydrology, 307, 233-241.

Jenkins, G.A., and Greenway, M. (2005). “The hydraulic efficiency of fringing 
versus banded vegetation in constructed wetlands.” Ecological Engineering, 25, 61- 
72

Kang, H., and Choi, S. (2006). “Turbulence modelling of compound open-channel 
flows with and without vegetation on floodplain using the Reynolds stress model.” 
Advances in Water Resources, 29, 1650-1664.

Kadlec, R.H. (1990). “Overland flow in wetlands: vegetation resistance.” Journal o f 
Hydraulic Engineering, 116(5), 691-706.

Keeble Martin, W. (1965). The Concise British Flora in Colour. Ebury Press.

King, S.E., and Lester, J.N. (1995). “The value of salt marsh as a sea defence.” 
Marine Pollution Bulletin, 30(3), 180-189.

Kiya, M., Tamura, H., and Arie, M. (1980). “Vortex shedding from a circular 
cylinder in moderate-Reynolds-number shear flow.” Journal o f Fluid Mechanics, 
141(4), 721-735.

Koch, D.L. and Ladd, A.J.C. (1997). “Moderate Reynolds number flows through 
periodic and random arrays of aligned cylinders.” Journal o f Fluid Mechanics, 349, 
31-66.

Kouwen, N. (1988). “Field estimation of the biomechanical properties of grass.” 
Journal o f Hydraulic Research, 26(5), 559-568.

Kouwen, N., and Li, R. (1980). “Biomechanics of vegetative channel linings.” 
Journal o f  the Hydraulics Division, 106(HY6), 1085-1103.

Kouwen, N., and Unny, T.E. (1973). “Flexible roughness in open channels.” Journal 
o f the Hydraulics Division, 99(HY5), 713-728.

Kouwen, N., Unny, T.E., and Hill, H.M. (1969). “Flow retardance in vegetated 
channels.” Journal o f  the Irrigation and Drainage Division, 95(IR2), 329-342.

Leonard, L.A., and Luther, M.E. (1995). “Flow hydrodynamics in tidal marsh 
canopies.” Limnology and Oceanography, 40(8), 1474-1484.

Leonard, L.A., and Reed, D.J. (2002). “Hydrodynamics and sediment transport 
through tidal marsh canopies.” Journal o f Coastal Research, SI 36, 459-469.

Li, R., and Shen, H.W. (1973). “Effect of tall vegetation on flow and sediment.” 
Journal o f  the Hydraulics Division, 99(HY5), 793-814.

Li, C.W., and Yan, K. (2007). “Numerical investigation of wave-current-vegetation 
interaction.” Journal o f  Hydraulic Engineering, 133(7), 794-803.

333



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

Linnane, M.I., B re reton, A.J., and Giller, P.S. (2001). “Seasonal changes in 
circadian grazing patterns of Kerry cows (Bos Taurus) in semi-feral conditions in 
Killamey National Park, Co. Kerry, Ireland.” Applied Animal Behaviour Science, 
71,277-292.

Lightbody, A.F., and Nepf, H.M. (2006a). “Prediction of velocity profiles and 
longitudinal dispersion in emergent salt marsh vegetation.” Limnology and 
Oceanography, 5(1), 218-228.

Lightbody, A.F., and Nepf, H.M. (2006b). “Prediction of near-field shear dispersion 
in an emergent canopy with heterogeneous morphology.” Environmental Fluid 
Mechanics, 6 , 477-488.

L6pez, F., and Garcia, H. (1997). “Open-channel flow through simulated vegetation: 
Turbulence modelling and sediment transport.” Wetlands Research Program Rep. 
WRP-CP-10, U.S. Army Corps of Engineers, Washington, D.C.

Lu, S.S., and Willmarth, W.W. (1973). “Measurement of the structure of the 
Reynolds stress in a turbulent boundary layer.” Journal o f  Fluid Mechanics, 60(3), 
481-511.

Luo, S.C., Gan, T.L., and Chew, Y.T. (1996). “Uniform flow past one (or two in
tandem) finite length circular cylinder(s).” Journal o f  Wind Engineering, 59, 69-93.

Moller, I., Spencer, T., and French, J.R. (1996). “Wind wave attenuation over 
saltmarsh surfaces: preliminary results from Norfolk, England.” Journal o f  Coastal 
Research, 12(4), 1009-1016.

Moller, I., Spencer, T., French, J.R., Leggett, D.J., and Dixon, M. (1999). “Wave 
transformation over salt marshes: a field and numerical modelling study from North 
Norfolk, England.” Estuarine, Coastal and Shelf Science, 49, 411-426.

Morris, J.T. (1995). “The mass balance of salt and water in intertidal sediments: 
results from North Inlet, South Carolina.” Estuaries, 18, 556-567.

Morris, J.T., and Haskin, B. (1990). “A 5-yr record of aerial primary production and 
stand characteristics of Spartina alterniflora.” Ecology, 71(6), 2209-2217.

Morris, J.T., Sundareshwar, P.V., Nietch, C.T., Kjerfve, B., and Cahoon, D.R. 
(2002). “Responses o f coastal wetlands to rising sea level.” Ecology, 83(10), 2869- 
2877

Nepf, H.M. (1999). “Drag, turbulence, and diffusion in flow through emergent 
vegetation.” Water Resources Research, 35(2), 479-489.

Nepf, H.M. and Ghisalberti, M. (2008). “Flow and transport in channels with 
submerged vegetation.” Acta Geophysica, 56(3), 753-777.

Nepf, H.M., Mugnier, C.G., and Zavistoski, R.A. (1997a). “The effects of 
vegetation on longitudinal dispersion.” Estuarine, Coastal and Shelf Science, 44, 
675-684

334



References

Nepf, H.M., Sullivan, J.A., and Zavistoski, R.A. (1997b). “A model for diffusion 
within emergent vegetation.” Limnology and Oceanography, 42(8), 1735-1745.

Nepf, H.M., and Vivioni, E.R. (2000). “Flow structure in depth-limited, vegetated 
flow.” Journal o f Geophysical Research, 105(C12), 28547-28557.

Neumeier, U. (2005). “Quantification of vertical density variations of salt-marsh 
vegetation.” Estuarine, Coastal and Shelf Science, 63(4), 489-496.

Neumeier, U., and Amos, C.L. (2004). “Turbulence reduction by the canopy of 
Spartina salt-marshes.” Journal o f  Coastal Research SI 39/1, pp. 433-439 
(Proceedings of the 8th International Coastal Symposium, Itajai, SC -  Brazil)

Neumeier, U., and Ciavola, P. (2004). “Flow resistance and associated sedimentary 
processes in a Spartina maritime salt-marsh.” Journal o f Coastal Research, 20(2), 
435-447.

Nezu, I. and Nakagawa, H. (1993). “Turbulence in Open-channel Flows”. IAHR 
Monograph series. A.A. Balkema, Rotterdam, Netherlands.

Niedoroda, A.W. and Dalton, C. (1982). “A review of the fluid mechanics of ocean 
scour”. Ocean Engineering, 9, 159-170.

Nortek AS (1997). “ADV Operation Manual.”

Pennings, S.C., and R.M. Callaway (1992). “Salt-marsh plant zonation -  the relative 
importance of competition and physical factors.” Ecology, 73(2), 681-690.

Pethick, J.S. (1992). “Saltmarsh geomorphology.” In: Allen, J.R.L. & Pye, K. (Eds.) 
Saltmarshes -  morphodynamics, conservation and engineering significance. 
Cambridge University Press, Cambridge.

Pethick, J., Leggett, D., and Husain, L. (1990). “Boundary layers under salt marsh 
vegetation developed in tidal currents.” In: Thornes, J.B. (ed.) Vegetation and 
erosion. John Wiley & Sons Ltd.

Petryk, S., and Bosmajian III, G. (1975). “Analysis of flow through vegetation.” 
Journal o f  the Hydraulics Division, 101(HY7), 871-884.

Phleger, C.F. (1971). “Effect of salinity on growth of a salt marsh grass.” Ecology, 
52, 571-577.

Plate, E. J., and Quraishi, A. A. (1965). “Modelling of velocity distributions inside 
and above tall crops.” Journal o f  Applied Meteorology, 4, 400-408.

Poggi, D., Porporato, A., Ridolfi, L., Albertson, J.D., and Katul, G.G. (2004).
“The effect of vegetation density on canopy sub-layer turbulence.” Boundary- 
Layer Meteorology, 111, 565-587.

Prandtl, L. (1935). “The mechanics of viscous fluids” In: Durand, F. (Ed) 
Aerodynamic Theory, Vol. I l l  Springer, Berlin, 57-109.

335



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

Raupach, M.R. (1992). “Drag and drag partition on rough surfaces.” Boundary-Layer 
Meteorology, 60, 375-395.

Raupach, M.R., Finnigan, J.J., and Brunet, Y. (1989). “Coherent eddies in 
vegetation canopies.” Heat and Mass Transfer 1989: 4th Australian Conference, 75- 
90.

Raupach, M.R., Finnigan, J.J., and Brunet, Y. (1996). “Coherent eddies in 
vegetation canopies: the mixing-layer analogy.” Boundary-Layer Meteorology, 78, 
351-382.

Raupach, M.R., and Shaw, R.H. (1982). “Averaging procedures for flow within 
vegetation canopies.” Boundary-Layer Meteorology, 22, 79-90.

Raupach, M.R., and Thom, A.S. (1981). “Turbulence in and above plant canopies.” 
Annual Review o f  Fluid Mechanics, 13, 97-129.

Ree, W.O., and Palmer, V.J. (1949). “Flow of water in channels protected by 
vegetative linings.” Tech. Bull. No. 967. Soil Conservation Service, US Agriculture, 
Washington, DC.

Righetti, M., and Armanini, A. (2002). “Flow resistance in open channel flows with 
sparsely distributed bushes.” Journal o f  Hydrology, 269, 55-64.

Rodi, W. (1980). “Turbulence models and their application in hydraulics.” 
International Association for Hydraulics Research, Delft.

Rodwell, J.S. (2000). “British plant communities, vol. 5: maritime communities and 
vegetation of open habitats.” Cambridge University Press, Cambridge, UK.

Sanchez, J.M., Izco, J., and Medrano, M. (1996). “Relationships between 
vegetation zonation and altitude in a salt-marsh system in northwest Spain.” Journal 
o f Vegetation Science, 7(5), 695-702.

Schlichting, H. (1955). “Boundary-layer theory.” McGraw Hill, US.

Shaw, R. (1977). “Secondary wind speed maxima inside plant canopies.” Journal o f  
Applied Meteorology, 16,514-521.

Shi, Z., Pethick, J.S., Burd, F., and Murphy, B. (1996). “Velocity profiles in a salt 
marsh canopy.” Geo-Marine Letters, 16, 319-323.

Shi, Z., Pethick, J.S., and Pye, K. (1995). “Flow structure in and above the various 
heights of a saltmarsh canopy: a laboratory flume study.” Journal o f  Coastal 
Research, 11(4), 1204-1209.

Shih, S.F., and Rahi, G.S. (1982). “Seasonal variations of Manning’s roughness 
coefficient in a subtropical marsh.” Transcriptions o f  the American Society o f  
Agricultural Engineers, 25(1), 116-120.

Shimwell, D.W. (1971). “The description and classification of vegetation.” Sidgwick 
& Jackson, London, UK.

336



References

Shinde, A.K., Karim, S.A., Patnayak, S.A., and Mann, J.S. (1997). “Dietary 
preference and grazing behaviour of sheep on Cenchrus ciliaris pasture in a semi- 
arid region of India.” Small Ruminant Research, 26, 119-122.

Somes, N.L.G., Bishop, W.A., and Wong, T.H.F. (1999). “Numerical simulation of 
wetland hydrodynamics.” Environment International, 25(6/7), 773-779.

Stephan, U., and Gutknecht, D. (2002). “Hydraulic resistance of submerged flexible 
vegetation.” Journal o f  Hydrology, 269, 27-43.

Streutker, D.R. and Glenn, N.F. (2006). “LiDAR measurement of sagebrush steppe 
vegetation heights.” Remote Sensing o f Environment, 102, 135-145.

Stone, B.M., and Shen, H.T. (2002). “Hydraulic resistance of flow in channels with 
cylindrical roughness.” Journal o f Hydraulic Engineering, 128(5), 500-506.

Sumer, B.M., Christiansen, N., and Fredsoe, J. (1997). “The horseshoe vortex and 
vortex shedding around a vertical wall-mounted cylinder exposed to waves.” 
Journal o f Fluid Mechanics, 332, 41-70.

Townsend, A. A. (1961). “Equilibrium layers and wall turbulence.” Journal o f Fluid 
Mechanics, 11, 97-120.

Tsihrintzis, V.A. Wu, F., Shen, H. W., and Chou, Y. (2001). “Variation of 
roughness coefficients for unsubmerged and submerged vegetation.” Journal o f 
Hydraulic Engineering, 127(3), 241-245.

Tsujimoto, T., Shimizu, Y., Kitamura, T., and Okada, T. (1992). “Turbulent open- 
channel flow over bed covered by rigid vegetation.” Journal o f Hydroscience and 
Hydraulic Engineering, 10(2), 13-25.

Turner, A.K., and Chanmeesri, N. (1984). “Shallow flow of water through non­
submerged vegetation.” Agricultural Water Management, 8 , 375-385.

UK Climate Impacts Programme (2002). Climate Change Scenarios for the United 
Kingdom -  The UKCIP02 Briefing Report.

Vernberg, F. J. (1993). “Salt-marsh processes: a review.” Environmental Toxicology 
and Chemistry, 12,2167-2195.

Vogel, S. (1994). “Life in moving fluids.” Willard Grant, Boston, US.

Whittaker, R.H. (1973). “Ordination and classification of communities.” Junk, The 
Hague.

Williams, G.J. (2004). “The spread of Spartina anglica on the saltmarshes and 
mudflat of the Burry Inlet.” Master’s Thesis, University of Glamorgan, UK.

Williamson, C.H.K. (1992). “The natural and forced formation of spot-like ‘vortex 
dislocations’ in the transition of a wake.” Journal o f  Fluid Mechanics, 243, 393- 
441.

337



The Influence o f  Saltmarsh Vegetation on Hydrodynamics

Wilson, C.A.M.E., Stoesser, T., Bates, P.D., and Batemann Pinzen, A. (2003).
“Open channel flow through different forms of submerged flexible vegetation.” 
Journal o f Hydraulic Engineering, 129(11), 847-853.

Wilson, C.A.M.E., Yagci, O., Rauch, H., P., and Olsen, N.R.B. (2006a). “3D
numerical modelling of a willow vegetated river/floodplain system.” Journal o f  
Hydrology, 327, 13-21.

Wilson, C.A.M.E., Yagci, O., Rauch, H., P., and Stoesser, T. (2006b). “Application 
of the drag force approach to model the flow-interaction of natural vegetation.” 
International Journal o f  River Basin Management, 4(2), 137-146.

Wilson, N.R., and Shaw, R.H. (1977). “A higher order closure model for canopy 
How” Journal o f  Applied Meteorology, 16(11), 1197-1205.

Wu, F., Shen, H. W., and Chou, Y. (1999). “Variation of roughness coefficients for 
unsubmerged and submerged vegetation.” Journal o f  Hydraulic Engineering 125(9), 
934-942.

Yalin, M.S. (1972). “Mechanics of sediment transport.” Pergamom Press, Canada.

Zavistoski, R. (1994). “Hydrodynamic effects of surface piercing plants.” Master’s 
thesis. Massachusetts Institute of Technology.

Zdravkovich, M.M. (1977). “Review of flow interference between two circular 
cylinders in various arrangements.” Journal o f  Fluids Engineering, 99, 618-633.

Zukauskas, A. (1987). “Heat transfer from tubes in cross flow.” Advances in Heat 
Transfer, 18, 87-159.


