
MDSSF - A Federated Architecture
for Product Procurement

Jaspreet Singh Pahwa

Ph.D. 2009

UMI Number: U5852B3

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585233
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

MDSSF - A Federated Architecture
for Product Procurement

Jaspreet Singh Pahwa

School of Computer Science
Cardiff University

This thesis is submitted in partial fulfillment of the
requirement for the degree of Doctor of Philosophy

July 2009

DECLARATION

This work has not previously been accepted in substance for any degree and is not
concurrently submitted in candidature for any degree.

Signed
D ate............ lo°S> .

(candidate)

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of
 r h j i * (insert MCh, MD, MPhil, PhD etc, as appropriate)

l i f t * I ,

(candidate)Signed......
D ate.............

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where
otherwise stated.
Other sources are acknowledged by explicit references.

Signed n M L f ...(candidate)
D ate 2&>5>,

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside
organ i sat i<

Signed ...SipErVj... (candidate)
D ate ^ Q ^ . S ĉ M w .

Summary

In the AEC (Architecture / Engineering / Construction) industry, large construction projects
are tackled by consortia of companies and individuals, who work collaboratively for the
duration of the project. The consortia include design teams, product suppliers, contractors
and inspection teams who must collaborate and conform to predefined scheduling
constraints and standards. These projects are unique, complex and involve many
participants from a number of organisations.

Construction projects require consortia to procure supplies such as building materials and
furniture from product suppliers. In large AEC projects, procurement of products, services
and construction materials is an important and time consuming activity. Materials are
sourced on a global basis from a large number of suppliers. The scale of the purchases
made in large projects show that their procurement is a non-trivial exercise. Therefore,
consortia members or the contractors require access to a large body of information about
products or material information to aid procurement decision making.

Web based communication and network technologies play an increasingly important role in
supporting collaboration in AEC projects. However collaborative working in the
construction industry is still restricted by the current limitations of network and
communication technologies and their system architectures which are usually client/server
based. The construction industry has been examining how the advancements in distributed
computing technologies such as the Grid computing can remove some of the existing
limitations and enhance collaboration.

This research investigated how the procurement challenges such as accessing up-to-date
product information available from a large number of products suppliers in an integrated
manner using standard means could be addressed. A novel solution to the procurement
challenges in the form of a distributed information sharing architecture is presented. The
architecture uses the concepts of federated databases such as distribution of data and
autonomy of databases and couples it with Grid computing to facilitate information
exchange in a collaborative, coherent and integrated way to address the product
procurement challenges.

Acknowledgements

I am deeply grateful to everyone who provided support and encouragement during the
time I have been studying for my Ph.D. I am particularly grateful to:

Professor Alex Gray and Professor John Miles - this work would not have been possible
without their unflinching support. They helped, supported and encouraged me in all
possible ways and provided all the needed resources to help me achieve my aim. I am
also thankful to the Head of Department Professor Nick Fiddian for his support.

My colleagues at the COVITE project Liviu Joita, Pete Bumap and Professor Omer Rana
with whom I enjoyed working and for their invaluable support, feedback and motivation.

I would like to give special thanks to Wendy Ivins and Omnia Allam with whom I had
numerous discussions about my research and they provided me with guidance and
support whenever needed.

Finally, I would like to thank my parents and family, and particularly my wife Neeta for
her unwavering support, encouragement and patience during my years of study.

To my daughter Kirpa and nephew Veer
who were born during the time 1 was

studying for my Ph. D. They have
brought immense happiness in our lives.

Acronyms

ACL Agent Communication Language
AEC Architecture / Engineering / Construction
ANSI American National Standards Institute
APSL ActivePlan Solutions Limited
BASIS Biology o f Ageing e-Science Integration and Simulation system
B2B Business to Business
BBQ Blended Browsing and Querying
BDW Biodiversity World
CAD Computer-aided Design
CAS Common Access System
CDM Common Data Model
CIS Cooperative Information System
COIN COntext INterchange
CORBA Common Object Request Broker Architecture
COVITE Collaborative Virtual Teams
CSCW Computer Supported Cooperative Work
DBI Database Implementer
DBS Database System
DDL Data Definition Language
DBMS Database Management System
DDXMI Distributed Database Xml Metadata Interface
DIKE Database Intensional Knowledge Extractor
DIOM Distributed Interoperable Object Model
DISCO Distributed Information Search Component
DSS Database Search Service
DTD Document Type Definition
EDI Electronic Data Interchange
EFIS Engineering Federated Information Systems
EPC Engineer-Procure-Construct
ESS Extensible Services Switch
FDBMS Federated Database Management System
FDBS Federated Database System
FIS Federated Information Systems
FM Facilities Management
GAM GeneGrid Application Manager
GARM General AEC Reference Model
GSH Grid Service Handle
GSI Grid Security Infrastructure
GUI Graphical User Interface
GUID Globally Unique Identifier
HDDBMS Heterogeneous Distributed Database Management System
HERMES HEterogeneous Reasoning and MEdiator System
HOSQL Heterogeneous Object Structured Query Language
HTML Hyper Text Mark-up Language
HTTP Hyper Text Transfer Protocol
IAI International Alliance for Interoperability
ID Identification

IDL Interface Definition Language
IFCs Industry Foundation Classes
IIS Internet Information Server
IQL Interface query Language
IRO-DB Interoperable Relational and Object DataBases
IRMA Information Reference Model for Architecture, Engineering, and

Construction
ISO International Standards Organisation
IT Information Technology
IT/IS Information Technology/ Information Systems
JDBC Java Database Connectivity
KB Knowledge Base
KQML Knowledge Query and Manipulation Language
KRBL Knowledge Representation Base Language
LDL Logical Data Language
LIM Loom Interface Module
MASS Mirroring Application Support Scheme
MBIS Mediator-based Information Systems
MDB Multidatabase
MDBS Multidatabase System
MDSS Multiple Database Search Service
MDSSF Multiple Database Search Service Federation
MGS Master Grid Service
MIST Model Integration Semantic Tool
MRDS Multics Relational Data Store
MVDB Multi V iewDataBase
MVDL Multiple View Definition Language
ODBC Open Database Connectivity
ODL Object Definition Language
OEM Object Exchange Model
OGSA Open Grid Services Architecture
OGSA-DAI Open Grid Services Architecture-Data Access and Integration
OGSI Open Grid Services Infrastructure
OML Object Manipulation Language
OQL Object Query Language
PCD Product Class Database
PDF Portable Document Format
PKI Public Key Infrastructure
PSCD Product Supplier Catalogue Database
PSE Problem solving environment
RDBMS Relational Database Management System
SD Supplier Database
SDAI Standard Data Access Interface
SEEK Science Environment for Ecological Knowledge
SME Small-to-medium Enterprise
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPCD Supplier-side Product Class Database
SQL Structured Query Language
STEP STandard for Exchange of Product data

SWQL Semantic Web Query Language
T-SQL Transact-SQL or Transact - Structured Query Language
TSIMMIS The Stanford-IBM Manager of Multiple Information Sources
UK United Kingdom
UML Unified Modelling Language
VDD Virtual Distributed Database
VO Virtual Organisation
VR Virtual Reality
webDDL Web Data Definition Language
WSQL WebSemantics Query Language
WSRF Web Services Resource Framework
WWD-QL World Wide Database Query Language
WWW World Wide Web
XMF XML-based Mediation Framework
XMAS XML Matching and Structuring Language
XML extensible Markup Language

Table of Contents

Declaration/Statements... i
Summary.. ii
Acknowledgements.. iii
Acronyms... v

1. Introduction...1
1.1 Background and Context for the Research.. 1
1.2 Procurement Challenges...3
1.3 The PSCD Application...4
1.4 Research Hypothesis and Objectives..7

1.4.1 Objective 1...7
1.4.2 Objective 2 ...8
1.4.3 Objective 3... 10
1.4.4 Objective 4 ... 10

1.5 Chapter Summary..10
1.6 Thesis Contents... 11
1.7 Chapter Conclusions... 13

2. The MDSSF Information Sharing Architecture.. 14
2.1 Introduction.. 14
2.2 The Functional Areas of the COVITE Research..15

 2.2.1 Data Management and Grid-enabled Distributed Database Search................16
2.3 The MDSSF Information Sharing Architecture... 17

 2.3.1 The Product C lass ..19
2.3.2 The PCD System... 20

 2.3.3 The SPCD and the SD systems... 20
2.3.4 The Multiple Database Search Service (MDSS) System............................... 21

2.4 Novelty of the Proposed Information Sharing Architecture......................................22
2.5 Chapter Conclusions..23

3. Construction Procurement.. 24
3.1 Introduction.. 24
3.2 Background.. 26

 3.2.1 The Construction Supply Chain.. 26
 3.2.2 The Engineer-Procure-Construct (EPC) Projects.. 27
__________ 3.2.2.1 Engineering/Design Phase..28
__________ 3.2.2.2 The Construction Phase.. 28
 3.2.3 The Need for Improvement in the Construction Industry................................ 29

3.3 Procurement...29
 3.3.1 Sub-Contracting Arrangements.. 31
 3.3.2 A Brief Overview of Building Procurement Systems......................................33

3.4 The Role of Information in the Construction Supply Chain......................................34

3.4.1 Information is a Strategic Resource...35
3.4.2 Flow of Goods and Services...35
3.4.3 Linking Actors in Construction Supply Chain..36
3.4.4 Coordination and Collaboration... 37
3.4.5 Sellers and Purchasers..37
3.4.6 Role of Information in Other Areas of Construction.......................................38

3.5 Role of Technology in Construction Supply Chain..38
3.5.1 Use of IT is Widespread in the Construction Industry....................................39
3.5.2 IT enables Cooperation and Information Sharing and Communication 40
3.5.3 Technology Accelerates the Rate of Information Flow.................................. 41
3.5.4 Competitive and Strategic Advantage.. 41
3.5.5 Inter-Organisational and Organisational Efficiency..42
3.5.6 Small Firms... 43
3.5.7 Web Technologies... 44

3.6 How MDSSF Can Benefit Construction Procurement.. 45
3.6.1 Organisations Depend on External Companies for Procurement................... 46
3.6.2 Communication is Important for Procurement... 47
3.6.3 Suppliers in Different Supply Chains.. 47
3.6.4 Full Knowledge of Equipment Specification...47
3.6.5 Each Construction Project is Unique... 48
3.6.6 Data Sharing in e-Business Models..49
3.6.7 Partnerships and Collaborative Working... 50
3.6.8 Relationship Management.. 51
3.6.9 Small Firms.. 52
3.6.10 Supply Chain Operations and Logistics... 53
3.6.11 Changing Environments and Globalisation...54
3.6.12 Decision Making in Strategic, Tactical and Operational Levels.................. 55
3.6.13 The World Wide Web and Associated Technologies.....................................56
3.6.14 Marketing o f Supplier Products.. 56

3.7 Product Procurement...57
3.7.1 The Traditional Paper Based System..57
3.7.2 Supply Chain and Critical Chain Project Management....................................58
3.7.3 An Approach of Smarter Selection for Procurement.. 59
3.7.4 Procurement using E-Commerce Systems... 63

________ 3.7.4.1 Limitations of E-Commerce...64
3.7.5 The E-Union Framework... 65
3.7.6 Keyword Searching for Products.. 66

3.8 Chapter Conclusions...66

4. Information Sharing in Distributed Environments...68
4.1 Introduction...68
4.2 Sharing of Information in Autonomous Environments...69
4.3 Information Mediators.. 70

4.3.1 Information Integration Using Mediators.. 71
4.3.2 Resource Wrappers... 72
4.3.3 The Data Model and Query Language..73
4.3.4 Ontologies.. 74
4.3.5 Knowledge Based Information Sharing Systems.. 75
4.3.6 Section Summary...76

4.4 Database Interoperability and Schema Integration...79
4.4.1 Mediator vs. Schema Integration Based Systems... 83

4.5 Federated Database Systems and Federated Information Systems........................... 83
4.5.1 Federated Information Systems..87

4.6 Grid-based Systems...90
4.6.1. USECA Properties.. 93

4.7 Other Information Sharing Systems..94
4.8 Chapter Conclusions.. 95

S. The Product Classes.. 97
5.1 Introduction..97
5.2 Product Classes.. 97
5.3 Composition of Product Class... 99

 5.3.1 Unit Specification...100
 5.3.2 Specification Group... 100
 5.3.3 List Specification..101
 5.3.4 Table Specification.. 101
 5.3.5 Sub-Product Class Specification..102

5.4 Versioning of Product Classes.. 103
5.5 AEC Industry Information Modelling/Management System/Standards.................103
5.6 Chapter Conclusions.. 105

6. The MDSSF System Architecture.. 106
6.1 Introduction.. 106
6.2 Product Data Definition and Management in the PSCD Application...................... 107

 6.2.1 The Product Class Database (PCD) System... 108
__________6.2.1.1 Modular Approach of PCD... 110
__________6.2.1.2 Product Class and Product Class Version Entities............................. 111
__________6.2.1.3 Versioning Support in PCD.. 112
__________6.2.1.4 Table Specification and Associated Entities....................................... 113
__________6.2.1.5 Default Values and Measurement Units...114
__________6.2.1.6 PCD Category Management.. 115
__________6.2.1.7 The Other Features of the PCD System...116
 6.2.2 Supplier Product Data Management... 116
__________6.2.2.1 SPCD and Subscription of Product Classes.. 117
__________6.2.2.2 The SD System.. 119

x

6.2.3 Section Summary...122
6.3 MDSS - a Virtual Distributed (VDD) of MDSSF.. 123

6.3.1 MDSS System Architecture... 126
6.3.2 Distributed Database Search Using MDSS... 128

________6.3.2.1 Search Criteria..129
________6.3.2.2 Search Space... 129
________6.3.2.3 Available Grid Resources for a Search..130
________6.3.2.4 Data Aggregation...132

6.3.3 SD Web Interface... 133
6.3.4 MGS and DSS Architectures.. 133

________6.3.4.1 MGS..133
________6.3.4.2 DSS..136

6.3.5 Section Summary..137
6.4 Software Development Process..138
6.5 Chapter Conclusions.. 139

7. System Testing, Verification and Validation of the MDSSF Architecture 140
7.1 Introduction.. 140
7.2 System Testing of Prototype..140

 7.2.1 Test Objective 1..141
__________7.2.1.1 Identification of machines.. 142
__________7.2.1.2 Installation of MDSSF System Components...................................... 143
________________ 7.2.1.2.1 Set-up Grid enabled MDSS...144

7.2.1.2.2 Set up MDSSF Databases and
________________________ Supplier Web Service Interface... 146
 7.2.2 Test Objective 2 ..147
__________7.2.2.1 Creating a Product Class... 147
__________7.2.2.2 Assigning a Product Class... 150
__________7.2.2.3 Creating a New Specification..150
__________7.2.2.4 Versioning Support in MDSSF Databases...151
__________7.2.2.5 Product Class Subscription in SPCD... 153
__________7.2.2.6 Creation of Product Information in SD..153
 7.2.3 Test Objective 3 ... 154
__________7.2.3.1 Testing MGS... 155
__________7.2.3.2 Testing of DSS.. 160
__________7.2.3.3 Testing the MDSS as a Single System...161
 7.2.4 Test Objective 4 ...164
 7.2.5 Section Summary...166

7.3 MDSSF Demonstration...167
7.4 Verification and Validation of the MDSSF Architecture... 168

 7.4.1 Benefits to the Construction Industry..168
 7.4.2 MDSSF Information Sharing Architecture.. 170
__________ 7.4.2.1 Grid Support.. 170
__________ 7.4.2.2 Federated Architecture Supporting Competing Product Suppliers...l71

________7.4.2.3 MDSSF’s Cooperation Model..171
________7.4.2.4 Schema Integration..171
________7.4.2.5 Subscription-based Approach..172
________7.4.2.6 A Standard Method of Information Storage and Exchange...............172

7.4.3 The Software Components of the MDSSF... 173
________7.4.3.1 Software Components at Supplier Side..174
________7.4.3.2 MDSSF Supports a Single RDBMS and Schema...............................175
________7.4.3.3 Linking of Databases at the Supplier Side.. 176
________7.4.3.4 Consistency Checks and Data Constraints.. 176
________7.4.3.5 Need for the Support of Additional Database Operations..................177
________7.4.3.6 The Grid-based Search...178
________7.4.3.7 The Grid Middleware... 179

7.4.4 System Testing and Evaluation of the MDSSF..179
7.5 Chapter Conclusions... 180

8. Conclusions... 181
8.1 Introduction.. 181
8.2 Achievement of Research Objectives..181
8.3 Research Contributions.. 185

 8.3.1 Research Publications..185
 8.3.2 Novelty of the Proposed Approach... 185

8.4 Applicability of MDSSF in Other Domains...187
8.5 Future Work.. 188

Appendix 1: Performance Criteria of the Hong Kong based Study........................... 191
Appendix 2: Representation of Product Information in MDSSF................................192
Appendix 3: Information System Comparison Tables... 218
Appendix 4: Setting-up MDSSF in a Distributed Environment................................. 240
Appendix 5: MDSSF System Code.. 248
References.. 441

Table of Figures

Figure Description Page
2.1 The conceptual view of the distributed architecture of the new Grid-

based PSCD application.
15

2.2 The conceptual view of the MDSSF. 17
2.3 Relationship between the SPCD and the SD systems at the product

supplier end.
21

3.1 Key phases of the construction supply chain. 27
3.2 Procurement. 30
3.3 Proposed model of decision support system for optimising

procurement protocols and complementary operational sub-systems as
identified by Kumaraswamy et al. [KumOO].

62

4.1 The global schema integration process identified by Parent and
Spaccapietra [Par98].

80

5.1 The Product class and its various specification types. 100
5.2 An example showing a Specification Group. 101
5.3 An example showing product attributes arranged in rows and columns. 102
6.1 Database diagram of the PCD system. 110
6.2 The reduced version of the PCD System identifying the three level

hierarchy implemented in the system.
113

6.3 Relationship between the SPCD and the SD systems at the product
supplier end.

120

6.4 Database diagram of the SD System. 121
6.5 The conceptual view of the MDSSF. 124
6.6 The MDSSF system architecture. 128
6.7 An example search criteria identifying the ID of the product class. 129
6.8 A snapshot of the XML document identifying the product supplier

databases to search.
130

6.9 XML document identifying a subset of available Grid services
which can be used to perform distributed database search.

131

6.10 A snapshot of the product data returned from an SD System. 132
6.11 UML class diagram of the MGS system component of the MDSS. 134
6.12 UML class diagram of the DSS system component of the MDSS. 136
7.1 The MDSSF system architecture. 142
7.2 The MDSSF system components and the machines in which they were

installed.
144

7.3 The Grid Service Handle (GSH) of a DSS Grid service deployed in
machine bouscat.cs.cf.ac.uk.

145

7.4 An example stored procedure execution code showing how to execute
proc CreateNewProductClass stored procedure in PCD.

149

7.5 The stored procedure execution code showing how a new
specification can be created and assigned to a product class.

151

Figure Description Page
7.6 A snapshot of Electric Bed version 1.0 product class showing two

versions of Type List Specification.
152

7.7 An example search criteria identifying the ID of the product class. 156

7.8 A snapshot of supplierString XML document identifying the product
supplier databases (SD systems) to search.

156

7.9 A snapshot of XML document identifying a subset of available Grid
services via their GSH which can be used to perform distributed
database search.

157

7.10 This figure shows how the execute Job method of the MasterGridlmpl
class in the MGS distributes database search jobs to DSS nodes.

158

7.11 A snapshot of code from executeJob method of the MasterGridlmpl
class, which shows how the method allocates database search jobs by
creating jobExecution threads in a fo r loop.

159

7.12 A snapshot of product data returned from SD systems. 160
7.13 A snapshot of supplierString XML document identifying the product

supplier databases (SD systems) to search.
162

7.14 An exception generated by DatabaseSearchlmpl class of DSS system
when it fails to retrieve product data from an SD system.

166

xiv

MDSSF System Code (Appendix 5)

Table of Contents
1. Product Class Database System (PCD) Code... 248
2. Supplier's Product Class Database (SPCD) System Code.............................. 326
3. Supplier Database (SD) System Code.. 369
4. Master Grid Service (MGS) System Code...416
5. Database Search Service (DSS) System Code.. 431

xv

1. Introduction

1. Introduction

1.1 Background and Context for the Research
In the AEC (Architecture / Engineering / Construction) industry, large projects are

tackled by consortia of companies and individuals, who work collaboratively for the

duration of the project. These projects are usually unique, very complex and involve

many participants from a number o f organisations acting collaboratively. In order to

tackle the complexity, consortia members provide a range of skills to the project from

its inception to completion. The consortia include design teams, product suppliers,

contractors and inspection teams who must collaborate and conform to predefined

scheduling constraints and standards. These participants also work concurrently, thus

requiring real time collaboration between the geographically remote participants. A

typical consortium member is often providing similar services to multiple projects

simultaneously involving different partners.

Construction projects range in size from design and construction of a single building, to

the creation o f a large national infrastructure such as airports, dams, and highways. The

planning, implementation and running of these AEC industry projects thus requires the

formation of virtual organisations (VOs)-computing infrastructures, which enable

collaboration between its geographically dispersed members by sharing project

information and resources. The VOs formed to enable the members of a consortium to

work together for the duration o f a project are electronically networked organisations,

where technology plays an important role in coordinating the various activities [Bur99].

An important feature of the consortia is that they are dynamic in nature and are formed

for the lifetime of the project only. Members can participate in several consortia at the

same time and can join or leave a consortium as the project evolves.

Web based communication and network technology and distributed computing is

beginning to play an increasingly important role in supporting collaboration in AEC

projects, particularly by enabling the project management (or team) to identify the

current state of a project, its activities, and the constraints on these activities and their

schedules. However collaborative working in the construction industry is still restricted

by the current limitations of network and communication technologies and their system

1

1. Introduction

architectures which are usually client/server based. The construction industry has been

examining how the advancements in network and distributed computing technologies

can remove some of the existing limitations and improve the management of these

projects [Mil02]. This will involve researching and creating new software tools.

In the construction industry a consortia procures supplies, such as building materials

and furniture from suppliers, who specialise in manufacturing or retailing these

products. In large AEC projects, procurement o f products, services and construction

materials is an important and time consuming activity. Materials are sourced on a global

basis from a large number of product suppliers. The procurement process involves

obtaining desired products from a wide range of products available from a large number

of product suppliers. In large projects a large quantity of various kinds of construction

material is required. For example a typical UK hospital has 8000 rooms. Each room

needs items such as a light, a door, floor and ceiling, floor and ceiling coverings,

furniture, power socket, some form of ventilation such as windows (possibly optional),

walls and wall covering. Multiplying these requirements by 8000 rooms shows that a

huge amount o f product purchasing is necessary to build a hospital [Bur05]. The scale

of the purchases required for building large artefacts shows that their procurement

process is a non-trivial exercise. Hence the consortia members or the contractors require

access to a large body o f information about products and material information to aid

procurement decision making.

In order to address the procurement challenges and improve the efficiency of the

construction processes, the School o f Computer Science and the School of Engineering,

Cardiff University along with an industrial partner ActivePlan Solutions Limited

(APSL) [Aps09] initiated a research project called COVITE (Collaborative Virtual

TEams) [Mil02]. An important aim of the COVITE project was to investigate how

recent advances in network and distributed computing technology and in particular the

Grid-based distributed computing technology could be used to address procurement

challenges. APSL made contributions to the project by providing their expertise in

relation to the procurement processes in the construction industry. APSL also provided

the COVITE research team with a software system called the Product Supplier

Catalogue Database (PSCD) application (see Section 1.3) which was developed to

2

1. Introduction

support product procurement. The author got an opportunity to be a member of the

project team and to address the challenges and requirements identified in the project

proposal. Although the COVITE project proposal [Mil02] identified a number

challenges in areas such as security, user and application management, there are three

procurement challenges, which are important to this research.

1.2 Procurement Challenges

• Procurement of supplies for construction projects has now become a global

phenomenon where materials are sourced from suppliers operating in different

parts of the world. Product suppliers usually deal with a wide range of products

and for a given product or a range of products and there are a large number of

competing suppliers. These suppliers operate in both regional and international

markets, but there is no single integrated means of accessing the product

information available from these different sources. Because of this lack of an

infrastructure, consortia members have a limited possibility of reaching the large

number o f potential suppliers, let alone searching their databases for required

products. Hence there is a requirement for an integrated information sharing

system, because “None o f the existing construction industry information services

have an adequately comprehensive database, largely due to the fact that they

are information intermediaries and the number o f individual products available

in the construction means that the scale o f this task is huge” [Mil02].

• The consortia members require up-to-date information about products which can

be acquired from the external product suppliers, so that information, such as

product specifications, availability, delivery time and cost can be taken into

account in procurement planning. Providing up-to-date product information to

the consortia members during the early stages (i.e. the conceptual and design

stages of the construction project life cycle) o f the construction processes is

crucial, because 80% of the construction costs are fixed during this stage

[Mil02]. However providing up-to-date product information at later stages is

also crucial, as most of the actual procurement takes place during the

construction phase. The need for up-to-date product information is also

important from another perspective, namely to aid contractors in their decision

3

1. Introduction

making processes through out the project lifecycle. For example a contractor in

the middle of a construction activity may discover that a given product has a

revised delivery date, which will cause significant delays to the project. Hence,

it is necessary to quickly source an equivalent product from an alternate supplier

within the given cost and with a suitable delivery date.

• Different product suppliers use different ways of managing product information.

Although a large amount of product information is available from several

suppliers, their responses have to be coordinated so that the information is

presented in a coherent fashion to the consortium members to enable easy

comparison of the competing products. Some suppliers have complex product

information IT systems in place, whereas others store information as PDF files.

Thus, there is heterogeneity in the way suppliers manage information about their

products. Unless a standard mechanism is adopted by all the product suppliers to

store information about their products, it is not possible to provide this

information to contractors or consortia members in a standard way. Providing

information in a standard way is important for integrated access because it aids

comparison, when information about the same or similar products is supplied by

different product suppliers. This then helps contractors to identify the suppliers,

who are in the best position to meet the needs of a consortium given the

constraints of availability, cost and delivery time.

1.3 The PSCD Application
The client/server based PSCD (Product Supplier Catalogue Database) application is an

APSL software product, which supports collaborative working of consortia members,

such as product suppliers and contractors. It uses a web-based technology and is

concerned with making available to the members of a consortium information about

products, which have to be acquired from external suppliers so that availability, delivery

and cost can be taken into account in the procurement planning. This application

provides a product database, which stores information about the products available from

different suppliers. It allows products to be grouped under different categories according

to their nature, and provides a mechanism to define simple product specifications. The

application, via its front-end web based interface, makes product information (stored in

4

1. Introduction

the central back-end database) available to buyers and contractors. The functionality of

the PSCD application (provided to the project team by APSL at the start of the COVITE

project [Mil02]) is limited. This restricted its ability to address the procurement

challenges identified in Section 1.2. The limitations of the PSCD application important

to this research are summarised here.

• The PSCD application provides a centralised database for storing and managing

product information. A central database cannot overcome the challenges of

Section 1.2 because the application domain is inherently distributed and consists

of independent, autonomous and far flung industry actors who are continually

updating this information. There are a large number of product suppliers

operating in different parts of the world and dealing in a huge variety of different

types o f products. Secondly, the local autonomy of product suppliers must also

be maintained, as it allows suppliers to manage their product information

without any external influence. Product suppliers usually do not share their

product related sensitive information, such as costs, specifications and delivery

time with their competitors. They only share this information with potential

buyers or contractors. Therefore they will not be willing to provide this

information in a database which is not controlled by them because there is a risk

of such information being accessed by a competitor. Additionally, product

suppliers are also competitors and are competing with each other when they

provide product information to contractors. There is a possibility that

information about the same or similar products can be supplied by more than

one product supplier. Therefore it should not be possible for a supplier to view

the sensitive information o f a competitor, as it may give an advantage to this

supplier over another in bidding for orders. The centralised database of the

PSCD application does not provide adequate mechanisms to restrict sharing of

product information between product suppliers.

• The database o f the PSCD application does not provide mechanisms to manage

complex product information. It only provides mechanisms to define products

having simple specifications (such as height, width and weight of a product) and

allow them to be grouped according to a given criteria. However, products used

5

1. Introduction

in the construction industry are usually complex, having a large number of

different types of specifications. The high degree of complexity is a feature of

construction industry products, where bespoke products are built from standard

items, which can be assembled in several different ways. The degree of product

complexity is far higher than the degree of complexity found in the automotive

industry, and the problems are further aggravated because there is no mass

production in the construction industry [Bur05]. Each solution designed is

unique and is made in accordance with a customer’s requirement or its

anticipated use, although it is usually constructed from simpler parts.

• Managing a large amount of product information from different product

suppliers is a difficult problem. This problem is further aggravated when there is

heterogeneity, due to different product suppliers using different ways of

managing product information. This makes it difficult to collaborate at the

information level. Heterogeneity is an obstacle to information sharing, which

also makes it hard to present the information in an integrated way using a

standard means for comparison purposes or for matching a project’s constraints

with the supplier conditions. Additionally, new products or a new range of

existing products are introduced by suppliers on a regular basis, as they enhance

features and functionality. Often, the supplier also provides different versions of

the same or a similar product providing different or additional features. The

centralised database of the supplied PSCD application does not provide

mechanisms to describe products as they evolve to give enhanced features and

functionality. Hence in the PSCD application, it is not possible to distinguish

different versions o f a product according to the features they support and

represent them using standard methods. This is because the schema of the

database is built to a fixed structure, which does not support product evolution.

These challenges and the need to address the limitations of the PSCD application, led to

the research hypothesis and research objectives presented in the next section.

6

1. Introduction

1.4 Research Hypothesis and Objectives
It is possible to create an information sharing architecture which addresses the

procurement challenges o f construction consortia in a Grid-based distributed

computing environment.

In order to address the procurement challenges and limitations of the PSCD application

several research objectives can be outlined. They are:

1.4.1 Objective 1:

To identify how the new information sharing architecture will benefit

construction industry actors.

The aim of this research objective is to identify a solution to the procurement challenges

identified in Section 1.2 via an information sharing architecture which uses

technological options to enable information sharing and enhance collaborative working.

The requirements o f the new information sharing architecture were set by industrial

collaborators APSL and project supervisor Professor John Miles who have considerable

experience and expertise in the area o f construction procurement. These requirements

were to address procurement challenges and limitations of the PSCD application

described above via a new information sharing architecture. However, new models of

information sharing cannot be brought into existence without understanding the present

role of information and technology in the construction industry. From this perspective

and for the purpose o f adaptability, looking at the existing role of information,

technology and practices that drive construction procurement is vital. It is important to

look into these methods and practices to identify how a new information sharing

architecture will benefit construction industry actors in their desire to make better

procurement decisions.

7

1. Introduction

1.4.2 Objective 2

To develop a distributed information sharing architecture meeting the

procurement challenges.

As identified in Section 1.3, client/server based applications such as the PSCD

application with its present limitations cannot address the procurement challenges,

because the domain is inherently distributed consisting of a large number of actors

operating in different parts of the world. Therefore, a distributed system architecture is

needed to address these preset limitations. Secondly, a distributed architecture is also

needed from another perspective, to enable product suppliers to manage their product

information autonomously and protect this information from being viewed by a

competitor. A suitable distributed architecture should ensure that a product supplier is

able to share information only with those contractors who are responsible for

procurement planning, such as buyers and contractors. Additionally, from the

contractors’ perspective the distributed architecture should present information on

similar products but available from several suppliers in an integrated way. This will

allow suppliers to compare product information available from several sources and

identify the most appropriate source of procurement by considering factors such as

project needs, product specifications, cost and delivery dates.

In a distributed information sharing architecture, information sharing in a coherent

manner cannot take place unless standard methods of information sharing between

different industry actors, such as product supplier and contractors are adopted. This

means that common mechanisms are needed, which can be adopted by all suppliers, so

that their products are described in a standard way. The rationale behind this approach is

to promote standardisation, right from the beginning at the data exchange level, so that

the inconsistencies, which heterogeneity brings, can be avoided in the first place and

thus lead to improved collaboration in the consortium. The importance of collaboration

between different consortia members, whilst managing construction activities cannot be

overlooked. The consortia include design teams, product suppliers, contractors and

inspection teams, who must collaborate and conform to predefined and pre-scheduled

constraints and standards for efficient management and timely delivery of construction

projects. Collaboration at the systems level leads to efficient collaboration of actors at

8

1. Introduction

the user level, for example it can aid contractors to identify procurement sources and

collaborate with only those suppliers, who are able to meet the project’s constraints.

Secondly, standardisation is important from the perspective of small-to-medium

enterprises (SMEs), who form a large proportion of the construction workforce, to

enable them to contribute their expertise and provide specialised input to construction

projects whilst competing with their larger counterparts.

One of the principal aims of the COVITE project was to investigate how the advances

in distributed computing and particularly Grid computing can be used in the domain of

the construction industry to address some of its procurement challenges and aid the

procurement processes [Mil02]. An important cause of limitations of PSCD application

is its client/server based architecture, which is not able to take advantage of newer

technology, such as the Grid’s advanced distributed computing infrastructure, which

provides greater support for collaborative working. The planning, implementation and

running of construction projects and managing procurement processes is a complex

task, in which distributed computing and Grid technology has been identified as

potentially an important infrastructure in the future. The Grid is perceived as providing

additional functions which will enhance the existing functionalities of the internet. It

offers features such as enhanced security infrastructure including single sign-on

capability, security between consortia, distribution of computationally intensive jobs

across multiple distributed processors and resource information sharing. The COVITE

project aimed to provide a Grid-based solution to the construction procurement

challenges by using the Grid middleware Globus Toolkit available from the Globus

project [Glo09] - the de facto standard for open source Grid computing infrastructure

[Glo09a]. Therefore an important aim of the COVITE project was to investigate “how

best to re-implement ” the PSCD application so that it can utilise the advanced features

of the Grid infrastructure and be deployed in a Grid environment by using Grid

middleware [Mil02].

9

1. Introduction

1.4.3 Objective 3

To show empirically the viability o f the new distributed information sharing

architecture by designing and implementing its various software components

which address the procurement challenges at the data management and sharing

level.

Research and development efforts are required to bring together autonomous contractors

and suppliers by developing a distributed information sharing system which is based on

the new architecture. The information sharing system should provide software

components to manage product information at the suppliers’ side and allow access to it

using a distributed database search mechanism which searches all the relevant product

supplier databases to retrieve product information. This product information (retrieved

from several supplier databases) should then be presented to contractors in an integrated

manner. The aim of this objective is to demonstrate that the present limitations of the

PSCD application can be addresses and the procurement challenges met by means of a

prototype system.

1.4.4 Objective 4

To verify and validate the new information sharing system and its architecture

against the research hypothesis, research objectives and determine its strengths

and weaknesses.

The software components o f the new information sharing system will be tested to

ensure that it enables product data management meeting the requirements of the

contractors and suppliers. The new information sharing architecture will also be verified

and validated for its ability to address the procurement challenges and achievement of

research objectives.

1.5 Chapter Summary
The construction industry will benefit from an information sharing architecture, which

allows members of consortia such as contractors to view up-to-date product information

in a coherent presentation, where this information is provided by suppliers using a

common structure. The research will investigate, whether it is possible to address the

10

1. Introduction

procurement challenges by creating a new distributed information sharing architecture,

which allows contractors to access information from a large number of suppliers, and to

identify what products and services best suit the project requirements taking into

consideration information, such as product specifications, material costs and delivery

time. This information sharing architecture should bring together construction industry

actors, such as contractors and product suppliers and facilitate information exchange in

a collaborative, coherent and integrated way to address the product procurement

challenges. The architecture should allow sharing of product information by product

suppliers using standard means with potential buyers and contractors. The architecture

should also allow product suppliers to manage their product information independently

in their own databases without any external influence and to protect their local

autonomy. It should allow contractors to search the databases of a large number of

product suppliers and present the information (which is retrieved from several supplier

databases) in an integrated way to allow contractors to judge competing products based

on the project requirements. This will create a new model of information sharing using

this architecture and a prototype system will be created to evaluate the approach. The

new distributed information sharing architecture developed in this research is called the

MDSSF (Multiple Database Search Service Federation) and is introduced in Chapter 2.

1.6 Thesis Contents
The new information sharing architecure created in this research uses the concepts of

federated databases linked with distributed compting features provided by Grid

technology. Chapter 2 introduces this new information sharing architecture and its

components which address procurement challenges. It also shows how this new

information sharing architecture can be used for client/server based applicaitons such as

the PSCD application.

Chapter 3 provides background information on construction procurement. The chapter

provides an overview of the construction supply chain, introduces construction

procurement and its importance and the role o f information and technology in modem

information-driven construction environments. The chapter also identifies how the

information sharing architecture proposed as part of this research can benefit

11

1. Introduction

organisations in different organisational scenarios when making procurement related

decisions. It describes the present approaches to construction procurement.

In order to highlight the novel features of the new distributed information sharing

architecture, Chapter 4 provides a review of different information sharing

systems/architectures and schema integration methodologies. It reviews the key features

of information sharing and integration approaches to identify their scope and

functionality against the domain specific requirements of the new architecture.

Chapter 5 describes the concept of product classes in greater detail which is introduced

in Chapter 2. Product classes provide a mechanism for defining and managing products

in a standard way. The chapter identifies the composition of product classes and

presents a description of version support needed to support product class evolution. The

chapter also provides a brief summary and critique of some of the important and

competing product modelling/management systems and reference architectures

currently used in the AEC industry for the management of product data.

Chapter 6 describes the architecture of MDSSF in detail. This explains how the data

management and Grid enabled distributed database search issues of the PSCD

application were used to address the challenges of product procurement through the

MDSSF architectural components. In this chapter the architecture of the MDSSF is

described through its architectural components.

Chapter 7 is dedicated to the evaluation of the project and the testing of the MDSSF

architectural components. It identifies the distinctive features of the MDSSF

architecture, which provide a novel means of information sharing between construction

industry actors such as product suppliers and contractors. The chapter critically

evaluates the MDSSF architecture for its ability to address the procurement challenges

for which it is designed.

Chapter 8 presents conclusions. The chapter provides a review of the research and

highlights the research objectives achieved against the research hypothesis. The chapter

also provides a summary of the contribution to research and learning and confirms the

12

1. Introduction

research hypothesis. The future work section of the chapter identifies potential areas for

further research.

1.7 Chapter Conclusions
The main achievement of this research has been the development of a novel information

sharing architecture which addresses the product procurement challenges through the

criteria established in the research and thereby increases collaboration between

construction industry actors, such as product suppliers and contractors. The new

distributed information sharing architecture was used to build a new prototype PSCD

application which enabled it to use federated database concepts and distributed

computing features provided by Grid technology. These features benefited the

application by giving autonomy to product suppliers and providing scalability support.

The second achievement of this research is the design and devlopment of the MDSSF

architecture’s software components which address procurement challenges at the data

management level in order to empirically test the viability of such an architecture. The

third achievement has been the evaluation of the MDSSF information sharing

architecture in terms of the reserarch hypothesis and research objectives.

13

2. The MDSSF Information Sharing Architecture

2. The MDSSF Information Sharing Architecture

2.1 Introduction
Information access and its management is an important area of research when creating

new models of information retrieval and sharing to meet information needs of business

organisations. Network technologies such as the Grid and Web Services together with

federated database architectures provide a new means of collaboration and information

exchange between the actors within a given industry. One of the features of the Grid is

that it provides middleware to enable distributed computing in a particular domain to

achieve high-end computational capabilities and high-throughput computing [Fos99].

Web Services is a paradigm for enabling computation in distributed and heterogeneous

environments [Fos02]. Federated database architectures provide mechanisms to protect

local autonomy and at the same time allow data to be shared with external users

[She90]. Research in the area o f Engineering Federated Information Systems (EFIS) has

recognised Grid computing as an emerging area for building new models of data

exchange [Wys03].

An important research objective of the COVITE project was to identify how Grid

technology can be used to improve the collaboration between different industry actors

by addressing the procurement challenges identified in section 1.2. The Grid

enablement process investigated the applicability and advances in the distributed

computing area in recent years to identify how such advances can be used in the sphere

of the construction industry, and particularly in procurement planning. The test bed for

this investigation and research was the prototype PSCD application (and the expertise of

the industrial collaborator APSL) which provided the COVITE team with the necessary

knowledge of construction procurement processes. The client/server based PSCD

application and particularly its product database were found to be inadequate for the

planned Grid enablement and therefore the application and its database were redesigned

to take advantage of advanced distributed computing features provided by Grid

middleware and to enable a standard mechanism of product data management and

exchange. The client/server based PSCD application was transformed into a distributed

application to effectively utilise the Grid middleware to provide scalability support

14

2. The MDSSF Information Sharing Architecture

when accessing a large number of supplier databases for required products. Figure 2.1

shows the conceptual view of the new Grid-enabled version o f the PSCD application.

Specification Designersini Product Class Supplier Databasesauct u a s s buppuer L ■ ■■■ification creation
management keep

rsuoto date
NET Web

M m eu

Mu top it
Database
Search
Service
(MDSS)

computer}PioAict Ckjj
Database
(PCD)
Master Data

Master

ServiceSecurity
Service

_ Search for
products by

_ specifyrigthe
search criteria

Users/User Groups

NET Web
Services

Supplier Databases managed by Suppliers

Figure 2.1 The conceptual view of the distributed
architecture of the new Grid-based PSCD application.

Source: Bumap et al. [Bur05]

2.2 T he F unctional A reas o f the C O V IT E Research

In the COVITE project, the research work for the Grid enablement o f the PSCD

application had been broadly split into three different functional areas which were also

inter-related and interdependent. The functional area of security management

investigated the security aspects o f the application in order to provide secure access to

the PSCD application via a user friendly web interface. Research in this area was led by

the COVITE team member Liviu Joita. The security architecture designed in the project

is explained in greater detail in [Joi04a], [Ran05]. The second functional area of user

management was led by Pete Bumap. This functional area investigated what happens to

a user once they have accessed the system and it determines what resources and services

they are offered. Research in the user management functional area is presented in

[Bur03], [Bur04], [Joi04a], [Bur05]. The author’s research efforts were mainly

concentrated in the third functional area o f data management and the Grid enablement

of the distributed database search o f the new Grid-based PSCD application. This is a

research contribution in the area o f federated information sharing architectures and

Grid-based architectures. The author’s research is introduced in section 2.2.1.

15

2. The MDSSF Information Sharing Architecture

2.2.1 Data Management and Grid-enabled Distributed Database Search

The author’s contribution to research in the area of federated information sharing

systems occurred in the enhancement of the PSCD application. The author addressed

the data management and Grid-enabled distributed database search issues of the PSCD

application which led to the design o f the novel federated information sharing

architecture. The new distributed PSCD application is based on a new federated

information sharing architecture. Figure 2.1 shows the conceptual view of the new Grid-

enabled PSCD application and its various system components. In this PSCD1

application, user groups such as contractors interact with the application in order to

search for required product data available from several supplier databases. The other

user group called specification designers interact with the application to create product

data definitions to aid suppliers describe the products in their Supplier Database (SD)

systems.

An important component of the PSCD application is the Multiple Database Search

Service (MDSS) which lies in the core o f the PSCD application and provides the

functionality to federate a large number o f supplier databases in a Grid environment.

The MDSS is introduced in section 2.3. Since the MDSS federates a large number of

supplier databases via a Grid based search, the novel federated information sharing

architecture is termed the MDSS Federation (MDSSF). The author developed the

MDSSF architecture as part o f this research to Grid-enable the PSCD application and

address data management challenges. The architecture was developed to support the

need to provide product information to consortia for procurement of products and

supplies, where this information is coming from several different product suppliers. A

consortium continually needs up-to-date product information from several different

suppliers so that they can make informed decisions about which product to use in

construction projects. A new approach is needed if this information is to be provided in

an integrated way so that several different suppliers can supply their product related

data to contractors and potential buyers using a common standard via a single system.

The approach must protect the autonomy of product suppliers, allow competing

products to be located, compared and judged on the basis of their specifications against

the project requirements. It must also protect the confidential information of different

1 The PSCD application from this point onwards refers to the new Grid-based PSCD application.

16

2. The MDSSF Information Sharing Architecture

product suppliers. The MDSSF information sharing architecture exists through its

components, section 2.3 therefore introduces the architecture through its architectural

components.

2.3 The MDSSF Information Sharing Architecture
The MDSSF information architecture brings together autonomous contractors and

suppliers. Figure 2.2 provides a conceptual view of the architecture. The architecture

enables the creation of a Virtual Distributed Database (VDD) of product information

where product information is supplied by a large number of suppliers using a standard

data representation for each type of product. The VDD allows suppliers to provide

product information, whilst holding this information locally in their local autonomous

databases. A local product database system managed by a supplier supplies information

in response to a request from a virtual database user such as a contractor. This local

supplying o f data will protect it and also ensure that it is up-to-date.

Grid Enabled M ultiple Database Saaxrh Snvicc
(Virtual Distributed Database)

Web Service InterfaceWeb Service InterlaceWeb Service Interface

W e b A p p lic a tio n

Product Supplier 1 Product Supplier 2 Product Suppher n

Figure 2.2 The conceptual view of the MDSSF

The architecture of the MDSSF is developed by utilising the features of federated

database architectures, such as distribution of data and autonomy of local database

systems (DBS) [She90] and coupling them with Grid technology to provide scalability

support. In the VDD the federation of a large number of autonomous product supplier

databases is achieved via a Grid based search to provide a scalable solution to

contractors searching a large number of supplier databases. It provides a mechanism to

perform a distributed database search o f supplier databases in a Grid environment to

17

2. The MDSSF Information Sharing Architecture

retrieve product information of interest to contractors. The MDSSF federation model

adopts a service oriented architecture for flexibility in retrieving data from the suppliers’

databases and sharing it with contractors.

The information sharing architecture also supports a subscription based approach to

address heterogeneity issues by providing product suppliers with access to a standard

product data model. The subscription based approach can be defined as a mechanism

using which product suppliers can gain access to standard product definitions and a

product database. The product definitions, which are based on the schema of the

standard product data model identify a set of criteria for product data management in

local product supplier databases. A product supplier can use these product definitions by

subscribing to them (i.e. downloading product definition criteria) and using them to

store information about products in the local product database in a standard way. The

subscription based information sharing architecture allows autonomous product

suppliers to manage their product information but also make this information available

to federation users such as contractors via the VDD. The subscription based approach is

required for two important reasons:

• First, it tackles the issue of heterogeneity by providing product suppliers with a

pre-defmed and pre-designed product database and standard product definitions

which can be readily used by them to provide product related information in

their database by describing the product’s features/specifications in terms of

product definition criteria.

• Second, the VDD of the federation can contain a large number of product

definitions to support different types of products - all of them may not be

required by an individual product supplier. For example a furniture supplier may

require only those product definitions which allow the supplier to describe

furniture equipment in its local database. A product supplier therefore, based on

need subscribes to a certain number of product definitions only and then uses

these to create and publish product information in the VDD of the federation.

The above means that publication of product information by product suppliers in the

VDD enables the creation of a real time product catalogue system which contains

18

2. The MDSSF Information Sharing Architecture

product data provided by a large number of autonomous product suppliers. This creates

an environment for product suppliers to compete with each other in a virtual market

place based on the product information provided by them. This VDD can only be built

using federated database concepts as the autonomy of the product suppliers must be

protected. The aim of this research is not to build a product catalogue system but to

create a new information sharing architecture based on federated database architecture

concepts (which enables such product catalogues to be built) in order to support product

procurement processes in the construction industry.

To address the procurement challenges, the development of various system components

occurred as part of the MDSSF architecture. These components provide mechanisms for

product data definition by industry experts, management of product data by suppliers,

and for making it available via a Grid enabled distributed database search to contractors.

Thus the components o f the novel federated information sharing architecture address the

requirements o f the three fundamental areas of the PSCD application such as data

definition, data management and data search. This section introduces these components.

2.3.1 The Product Class

A mechanism is required to create standard product definitions which can be used by

the product suppliers to describe products in their databases. These product definitions

are called product classes. Product classes provide a set of criteria for product data

management by product suppliers. A product class is made up of several different

specifications to allow description o f different product attributes in a supplier’s SD

System. The concept o f product class acts as the fundamental means and provides the

logical basis to address the heterogeneity problem and a standard means to exchange

product data in MDSSF. A product class can be used by a large number of product

suppliers to describe product features from the specifications in their databases. The

concept of product class and its specification types is described in greater detail in

Chapter 5. Section 7.2.2 describes in detail how a product class is created by means of

examples.

19

2. The MDSSF Information Sharing Architecture

2.3.2 The PCD System

The product classes are created in the PCD (Product Class Database) system. The PCD

system is a database centric tool which allows its users, the independent and

knowledgeable industry specification designers and/or industry experts to create

different types o f specifications as part of creating a product class by using the

constructs of the PSCD front-end web application and the stored procedures of the

back-end PCD system. These specifications provide a mechanism to define different

attributes which a product may have. For example a product class corresponding to

furniture item, such as a chair, can have a number of specifications such as width,

height, weight, chair description, wood type (in case of a wooden chair). A product

supplier of furniture equipment can then use these specifications to describe the features

of a product and so populate the predefined specifications with values describing the

actual product. Hence the PCD system enables specification designers to create new

product classes or new versions of existing product classes. The PCD system stores

information regarding product classes, product categories and product specifications and

uses these to facilitate the description of actual products by product suppliers. The PCD

system supports the creation o f different types of product classes to describe different

types o f construction industry products with the aim that these product classes will be

used by product suppliers to describe products in their databases and allow search for

these products by contractors. In the MDSSF it is a requirement that all product

suppliers adhere to the schema o f the PCD system to describe products in their

databases. In this respect the schema o f the PCD system acts as the common data model

(CDM) of the MDSSF. The architecture of the PCD system is described in greater detail

in Section 6.2.1.

2.3.3 The SPCD and the SD systems

The PCD System enables the creation o f product classes which are subscribed by the

product suppliers in their locally installed PCD system. This PCD system is called the

Supplier-side PCD (SPCD) system. Subscribing to a product class means downloading

the specifications and its values from the central PCD system and populating these in

the local SPCD system which is managed and controlled by the autonomous supplier.

Once a product class is downloaded into the SPCD system, product suppliers can

describe the features or specifications of their products in their Supplier Database (SD)

20

2. The MDSSF Information Sharing Architecture

systems by referring to the product class specifications downloaded in the SPCD

system. It is a requirement of the PCD System that all product suppliers use databases

which are identical to the PCD system i.e. they conform to the schema o f the PCD

system. This occurs because product classes can only be downloaded to the database

system if it has a schema which is identical to the schema of the PCD System. Therefore

standard SPCD and SD systems were designed for this purpose with the aim of

providing suppliers with a readily available means to describe their product data in a

structured and standard way. The schema o f the SD system is also similar to the schema

of the PCD system for the reasons given above. Hence in order to describe products,

product suppliers require two databases, the SPCD system and the SD system. The

relationship between the SPCD and the SD systems is illustrated in Figure 2.3 and these

systems are described in greater detail in Section 6.2.2.

Product supplier subscribes
to products class and stores
them in the SPCD system.

Product Supplier

Product supplier creates product
descriptions in the SD system based on
the product classes subscribed in the
SPCD system.

SPCD System SD System

Product data in the SD System
corresponds to their corresponding
product classes in the SPCD system.

Figure 2.3 Relationship between the SPCD
and the SD systems at the product supplier end

2.3.4 The Multiple Database Search Service (MDSS) System

The MDSS System retrieves product data from a large number of autonomously

managed SD systems belonging to individual organisations. The MDSS provides a Grid

service solution for processing large amount of data by utilising the Grid middleware

Globus Toolkit [Fos98] 3.0.2 (Core) which is based on the Open Grid Services

Architecture (OGSA) [Fos02]. It invokes a dynamic selection of relevant supplier

21

2. The MDSSF Information Sharing Architecture

databases to extract, in real time, detailed information about the products which the user

wishes to acquire. Figure 2.2 provides a conceptual view of the MDSSF where the Grid-

enabled MDSS at the core (middle layer) enables formation of a virtual distributed

database (VDD) to provide product data from the product suppliers to the contractors in

the standard schema o f the PCD system. The VDD is so named because it is a search

facility and does not store any product data but provides such data when requested by

the contractors by querying the SD systems in real time. An important requirement of

the PSCD application is that product suppliers retain full control of their data so it

cannot be replicated outside their domain. The architecture of the MDSS system is

described in greater detail in Section 6.3.

2.4 Novelty of the Proposed Information Sharing Architecture
The MDSSF is made up of different system components. These system components

gives certain distinctive features to the architecture, which are part of its novelty and

provide a new federated information sharing model enabling a novel type of

collaboration between construction industry actors. MDSSF is designed to provide Grid

technology support for retrieving product information and sharing it with contractors in

real time. It provides an integrated way to access product information from a large

number o f product suppliers using a single system. MDSSF adopts a different model of

cooperation from traditional FDBS architectures, which enables data sharing between

the component DBSs participating in the federation. The MDSSF model of cooperation

does not allow sharing o f data between component DBSs supplying the data (i.e.

between the SD systems o f the product suppliers). In the MDSSF architecture product

suppliers share their data with the contractors only. This is because product suppliers

are business organisations, who do not wish to disclose their product related sensitive

data to their competitors, who are participating in the same federation. They only

cooperate with the centralised MDSS so that appropriate information about their

products is retrieved and sent to the contractors in the standard data structure of the

VDD. The MDSSF information sharing model is different from other federated

database or mediator based architectures with respect to schema integration. In MDSSF,

unlike other information sharing systems (see Section 4.4) the sharing of data takes

place between contractors and the supplier databases without the need to create

federated, integrated or external schemas. This schema integration is not required in the

22

2. The MDSSF Information Sharing Architecture

MDSSF approach, because of the homogeneous nature of the product data which is

exchanged in MDSSF. The MDSSF is also a novel information sharing architecture

from the perspective of its data model and data subscription. The architecture (via its

architectural components) allows subscription to the data model of the federation and

product classes by the product suppliers (see Section 6.2.2.1). This subscription based

approach provides product suppliers with readily available mechanisms to manage their

product data in a structured way by using the standard specifications of product classes

to describe product features and in this manner tackle the issue of heterogeneity. The

novel features of the MDSSF are described in greater detail in Section 7.4.2.

2.5 Chapter conclusions
This chapter introduced the MDSSF information sharing architecture through its

architectural compoents. The MDSSF information sharing architecture is a key

contribution of this research. The MDSSF federates a large number of supplier

databases and allows them to be searched via a Grid-based distributed database search.

The aim of the MDSSF is to address the procurement challenges identified in Section

1.2. For this purpose it provides components for data defmtion, data management, and

data search in a Grid-based distributed environment. The next chapter provides

background information on construction procurement, the role of information and

technology in modem information-driven construction environments and some of the

potential benefits o f this research.

23

3. Construction Procurement

3. Construction Procurement

3.1 Introduction
Construction procurement plays an important role in this research. Construction

procurement is considered as an exemplar study area to identify how new models of

information sharing can bring about increased benefits to actors who are associated with

procurement related activities. The construction industry has made significant advances

in recent years to embrace technological options which enable information sharing. This

sharing of information has not only led to increase in the efficiency and physical output

of the industry as a whole, but has also paved the way to bring about changes in work

practices and ways of collaboration. New ways of information sharing cannot be created

or brought into practice without understanding the existing and well-established

information related modes and practices prevalent in the industry. From this

perspective, understanding the role o f information in the construction industry is

fundamental to this research.

It is also important to understand the role technology plays in the construction industry

because it enables information sharing. Modem technology provides advanced means of

sharing and managing information via electronic means, which enable its quick

dissemination. The volume of information generated by construction projects is so

large, that using IT to handle it is highly beneficial. Technological options available via

computer-based systems enable creation of information systems to meet the information

needs of the organisations. Information systems provide a means of managing a large

amount of information and sharing it with appropriate people. Therefore, to fully

appreciate the role of information in the construction industry, it is important to

understand the role technology plays in making information available at the right place

and time to serve the crucial purpose of aiding decision making.

Last, but not least, the role of various information system based techniques,

mechanisms, approaches that are currently used for procurement as part of the different

traditional and modem procurement systems used in the construction industry also

cannot be ignored or underestimated. The applications developed, based on the

information sharing architecture proposed as part of this research, will have to find their

24

3. Construction Procurement

place alongside these information systems to aid the existing procurement systems in

the construction industry, if this research is to be put to use. From this perspective and

for the purpose of adaptability, looking at the existing information systems and practices

that drive construction procurement is vital. This chapter therefore has two objectives.

The first is to identify, how the existing procurement systems could benefit from an

integrated mechanism for sharing product information from different suppliers. This

includes identifying the technological options and information systems designed and

used for procurement and the information tools which will be used to create the

proposed information sharing architecture. The application developed based on the

proposed architecture, should use similar technological options for the purpose of

compliance, and should integrate with the existing systems with minimum effort. This

will enable existing applications or procurement systems to use the services of the

information sharing architecture proposed as part of this research in order to retrieve

product data from a large number o f supplier databases. The second objective which is

more crucial is to establish, whether there is a real need for such data sharing

architectures. As part o f this objective we address how the proposed data sharing

architecture can benefit contractors and procurement managers in their desire to make

better procurement decisions.

In this chapter a review o f the current material procurement strategies used for E-

Commerce systems is provided. It will look at the present procurement methods and

techniques and identify how the proposed procurement mechanism relates to the

existing procurement methods. To improve the performance of Engineer-Procure-

Construct (EPC) projects, a number of engineering models can be used. Some of the

models identified by Yeo and Ning [Yeo02] include: fast-track, concurrent engineering,

JIT Logistics Management, Business Process Re-engineering and Partnering. In this

research we looked at the product procurement models that are used in the construction

industry. The aim is not to introduce a new model of the procurement process but to aid

the existing models by proposing a new model o f information sharing and collaboration.

The chapter is organised as follows. Section 3.2 provides an overview of the

construction supply chain. Section 3.3 focuses on procurement, and identifies the

importance of procurement and sub-contracting in construction. It provides a brief

25

3. Construction Procurement

overview of different procurement systems. Section 3.4 identifies the role of

information in the construction supply chain and in Section 3.5 we learn the role

technology plays in modem information-driven construction environments. An

important role of technology is to interconnect various processes of the supply chain to

provide its actors with information about the flow of goods and services so that

decisions can be made about various aspects of the project. In Section 3.6 we identify

how the MDSSF information sharing architecture proposed in this research can benefit

organisations in different scenarios when making procurement-related decisions.

Section 3.7 describes different approaches for product procurement, which are used by

construction industry practitioners or proposed by researchers in the literature. In this

section, how the MDSSF data sharing architecture can fill some of the gaps in the

procurement systems and approaches is described. Chapter conclusions are presented in

Section 3.8.

3.2 Background
3.2.1 The Construction Supply Chain

Supply Chain Management is a process managing the movement of resources from the

source of supply to the point of use [Chr98]. Baily et al. [Bai05] define supply chain as:

“The supply chain includes all those involved in organising and converting materials

through the input stages (raw materials), conversion phase (work-in-progress), and

outputs (finishedproducts). ”

A construction supply chain links all the parties that are participating in a construction

project [CheOl]. The construction process involves all activities, whether technical,

managerial or strategic which interact to bring about the realisation of the project, where

a physical facility actually appears [Row99]. Within the construction industry, there are

different types of supply chains for each o f its specialised areas, and these overlap with

each other. Some of the major supply chains include construction integration,

professional services, materials, equipment and labour [Cox02]. Figure 3.1 shows the

key phases of a construction supply chain as identified by Edum-Fotwe [EduOl]. The

phases define the lifecycle of a facility from its conception to decommissioning and

give a high level view of the activities that may take place in these phases. This research

26

3. Construction Procurement

does not take into account all these phases of a construction supply chain. It only

focuses on the procurements aspects of the construction supply chain to identify how a

new model of collaboration for data sharing can provide benefit to the construction

industry actors who are involved in procurement related activities.

3.2.2 The Engineer-Procure-Construct (EPC) Projects

In the construction supply chain, EPC projects are complex undertakings, which consist

of a large number o f interconnected subsystems and components requiring considerable

human efforts and financial commitments [Yeo02]. An EPC project is unique; complex

in nature because of involvement of players from different institutions; generally with a

long duration period; and is contractual, where a contract is made between a client and a

contractor which identifies delay, cost and other project specifications [Mah04]. It is

the increasing magnitude, complexities and risks associated with major construction

projects, which bring together organisations having diverse strengths and weaknesses to

form a joint venture or consortia to collectively bid for and tackle these large scale

projects which, cannot be handled individually [KumOO]. These large scale projects

require new technologies, knowledge o f local practices, financial strengths, specialist or

experienced staff, and integrated procurement arrangements [KumOO]. In order to bring

together all this expertise and knowledge requires different organisations who are

Operation of
facility and
maintenance

Commission

Construction/
procurement

Refurbishment
or replacement

Conceptual
and design

De-commission
or
abandonmentEffective

demand by
client

Figure 3.1 Key phases of the construction supply chain
Source: Edum-Fotwe et al. [EduOl]

27

3. Construction Procurement

specialist in their area to work together by forming consortia. The activities of EPC

projects are time-phased according to a specified precedence, resource requirements and

constraints. A brief description of the engineering/design and construction phase of EPC

projects follows, while the construction procurement and related activities are described

in Section 3.3.

3.2.2.1 Engineering/Design Phase

In the Engineering/Design phase, the needs o f an owner or a developer are defined,

quantified and qualified into clear requirements, which are later communicated to

builders or contractors [Yeo02]. Detailed engineering designs and plans are made by

designers and architects. It progresses in stages, namely client briefing, conceptual

design, preliminary design and detail design [Bla92]. As this phase has the highest level

of influence on the project, key decisions regarding the design o f the building or a

facility are made at this stage. Commitment o f funds and resources required for carrying

the project to a successful completion are made at this stage. Early cost commitment

may be made on the basis of incomplete documents which will go through redesign and

design iterations based on concepts such as value engineering and constructability

analysis until the contractor and sub-contractors have a cost-effective construction

document [Pie97]. The construction activities may start before the design is completed.

The contractor is selected before the completion of working drawings and

specifications, and some speciality contractors can also be hired before the final

agreement about price is reached [Pie97]. At this stage, in addition to having access to

cost related information of other project aspects it is important for the contractor and

sub-contractors to have access to the cost of materials and products, which need to be

procured and which will be used for constructing the required facility.

3.2.2.2 The Construction Phase

The construction phase starts when the contractor begins to construct specified facilities

according to the work packages prepared during the engineering phase and use

equipment and materials obtained during the procurement phase. The outcome of this

phase is a completed building or facilities which is fit for a given purpose and meets the

client’s requirements identified before the start of the construction phase or while the

construction is in progress.

28

3. Construction Procurement

3.2.3 The Need for Improvement in the Construction Industry

Although the UK construction industry has been described as leading-edge in its ability

to deliver challenging and pioneering projects, it is still perceived as under achieving

[Ega98]. It has low profit margins and there is little investment in terms of research,

development, training and capital [Ega98]. Agapiou et al. [Aga98] identify that the

profit margin on construction work is just 1-2% of the construction price. There is still

considerable room for improvement of the processes and operations of the industry as a

whole, which needs to improve its productivity and increase its efficiency and solve its

problems such as budget overruns, delays, poor quality work and failure in meeting

client’s requirements. The Egan report [Ega98] proposed that the UK construction

industry should reduce its annual construction cost and construction time by 10%. The

Latham report [Lat94] called for an improvement in productivity by as much as 30%.

Although many of the challenges identified in the Egan and Latham reports have been

addressed or are in the process of being addressed what has not changed is the

complexity of construction projects and procurement planning and there is always a

need to increase efficiency. A good proportion of procurement is still paper-based and

the use of catalogues, referrals and personal contacts is widespread. In order to reduce

costs, increase productivity and improve efficiency the role of IT is recognised as

essential [Ega98]. Considerable benefits can be gained by using IT effectively. This will

help in eliminating waste and rework, and enable rapid exchange of information

[Ega98]. There has already been a widespread adoption of technological options and e-

Business within the construction industry to replace the traditional methods of working

and relationships between construction partners [Sfc02]. These technological options

can bring about efficiency; economy and speed; improved business relationships; and

improvements in the products, processes and operations [Sfc02].

3.3 Procurement
In Section 3.2.1 we identified that within the construction industry there are different

types of supply chains such as construction integration, professional services, materials,

equipment, and labour. In all these supply chains, procurement plays an important part,

as it is a channel for sourcing all the needed input to transform the architectural plans

and drawings into a physical product based on a client’s requirements. In simple terms

procurement can be defined as an activity that deals with acquisition of project

29

3. Construction Procurement

resources for the realisation of a constructed facility [Row99]. An important objective

of procurement is to ensure that all the resources are acquired effectively [HarOl].

Procurement can be conceptually illustrated (Figure 3.2) [International Labor Office

[Aus84]]. The figure illustrates that a construction project can require different types of

resources which can include human and physical resources in the form of skills,

expertise, construction equipment, materials brought by different members of the

consortium or construction industry participants who come together to undertake the

project.

Consultants
and/or

ministry of
works

The
Construction

Project
Client’s own

resources

Sub
contractors SuppliersContractors

Figure 3.2 Procurement
Source: International Labor Office [Aus84]

This shows that procurement can play an important role in the construction supply chain

as it provides a mechanism to assemble required resources from various sources for

delivering the industry’s physical output. However acquisition of resources for

constructing a specified facility forms only part of the entire procurement process.

Important activities of procurement also include sourcing, purchasing, contracting, on

site material management and a host o f other activities. These activities are identified by

Barrie and Paulson [Bar92] in their elaborate definition of procurement:

30

3. Construction Procurement

“Procurement includes purchasing o f equipment, materials, supplies, labour and

services required fo r construction and implementation o f a project. It also includes

related activities o f tracking and expediting, routing and shipment, materials and

equipment handling, accountability and warehousing, final acceptance documentation,

and ultimate disposal o f surplus items at jo b end. ”

Important aspects of procurement also include selecting professional teams and

contractors to undertake construction projects, and dealing with contractual attributes

which impact construction time, cost and quality [HarOl]. A contractor procures project

equipment and construction materials during the procurement phase after the receipt of

engineering drawings, specifications and other relevant documents [Yeo02]. Depending

on the needs o f the construction project, the procurement related activities are carried

out in all phases of a project starting from the design phase through to the completion

phase, during which the constructed facility is ready for operation and is handed over to

the client [Bar92]. In some projects, procurement related activities such as procurement

of project specific equipment, products and materials are carried out after the

completion of the design phase and before the start of construction phase. Procurement

activities may also be carried out by owners after the completion phase for facility

maintenance and upgrade. Most of the procurement occurs during the construction

phase whilst the construction is taking place. In certain circumstances, procurement

takes place at the last possible moment so that an accurate quantity of required materials

and products is sourced. This eliminates wastage of resources and reduces warehousing

or inventory costs. In any construction project there are many stakeholders such as

owner, designer, contractor and sub contractor. Major procurement for construction can

be handled by one competent stakeholder or can be split between the stakeholders.

3.3.1 Sub-Contracting Arrangements

A high degree of specialisation has taken place in the construction industry for the

provision of various goods and services which has led to a network of supply chains that

include multiple layers of sub-contractors and interlinked suppliers [KumOO]. Edum-

Fotwe et al. [Edu99] also identify that the use o f subcontracting arrangements in the

construction industry is quite extensive. Organisations focus on their core competencies

to achieve higher productivity gains and value added niches in their area and outsource

31

3. Construction Procurement

all other subsidiary functions to other organisations, which are better in performing

these functions. This has also led to the inter-linking of different organisations in the

construction supply chain, when undertaking a construction project.

In sub-contracting arrangements, the main contractor appoints sub-contractors to deliver

certain “packages ” in a given time frame, which are then integrated in the “solution”

[Cox02]. Sub-contracting is vital because the work that takes place in the industry is

very diverse in nature and structure and requires the expertise of many specialists who

come together for the duration of a construction project. It is not possible for the main

contractor to have all the expertise and knowledge of the many aspects of a construction

project, therefore the majority of the work is outsourced to different small-size firms

through subcontracting arrangements and the main contractor only retains a small

portion of the work [Edu99]. The main contractor tends to keep the staff employed for

construction projects to a minimum because the workload can fluctuate greatly from one

project to another. Additionally construction projects are not confined to a specific

geographic area; movement of labour and other resources to new sites is required. Since

all these factors can add to the cost, subcontracting arrangements with local sub

contractors or suppliers can help to keep the costs down. Multiple layers of sub

contracting have evolved in many countries which means that even sub-contractors can

allocate or outsource portions of work packages allocated to them to external specialists.

Product suppliers who usually feed these sub-contractors or sub-sub-contractors may

themselves be customers of other specialist suppliers hence extending the construction

supply chain even further.

Sub-contracting arrangements are an important part of the procurement to be performed

at several levels. Major equipment such as capital equipment from national/international

suppliers which has a longer lead time may be ordered in advance by the owners in

order to ensure timely arrival. The items o f a less critical nature which do not require

heavy capital investment, such as furniture items and electrical fittings are ordered by

the contractor or sub-contractors involved in the program. Specialist sub-contractors

involved in the project, such as lift installers, air conditioning experts and electricians

use their own channels for procurement. The field office at the construction site

normally procures supplies, incidental rentals and other requirements as required for

32

3. Construction Procurement

day-to-day construction work [Bar92]. Construction materials typically account for 40-

45% of all costs of construction work [Aga98]. Therefore in order to make the best

decisions different actors use their knowledge and expertise to procure products and

services from the wide range of available suppliers. Hence the responsibility of

procurement is split between various actors depending on the role and the level in which

they participate in the construction supply chain.

Procurement is usually made from the best available sources. One way of selecting the

best available suppliers is via the process of bidding. Whilst procuring supplies for a

construction project a general contractor may receive bids from subcontractors, material

suppliers and equipment manufacturers who refer to the completed plans and

specifications before bidding and are in a position to supply the products needed

according to these specifications [Bar92]. Requests for quotation can also be made by

the owners to a potential contractor or sub contractors. This can include advertising in

the local trade journal to request potential contractors/sub-contractors to submit their bid

package. For this the owner or designers acting on behalf of the owner may provide

plans, specifications and other contract documents fully identifying all aspects of the

proposed purchase [Bar92]. A contract may be awarded to a supplier or a consortium of

suppliers who make the most competitive bid and are able to meet project requirements

such as costs and delivery time. Sub-contracts may also be awarded by the contractor or

manager to undertake on-site work [Bar92].

3.3.2 A Brief Overview of Building Procurement Systems

There are different types of procurement used in the construction industry. Harris and

McCaffer [HarOl] and Masterman [Mas02] have defined four different types of building

procurement systems in current use: separated, integrated, management-oriented and

discretionary systems. Franks [Fra98] has also identified building procurement systems

which are similar to these. In the separated procurement systems separate organisations

such as design consultants, architects, quantity surveyors, contractors, structural

engineers and planning supervisors are responsible for the design and construction

work. The client has the overall responsibility o f funding and managing the project and

is also responsible for the operation of the facility after it is completed [Mas02].

Traditional contracts come under this category [HarOl]. In integrated procurement

33

3. Construction Procurement

systems there is one organisation with the entire responsibility for the design and

construction of a facility and therefore the client only has to deal with one organisation

for its needs. Some of the systems in this category include design and build, develop

and construct, and package deal [Mas02] [HarOl]. In management-oriented

procurement systems, the construction manager or managing contractor gets involved

with the professional team at early stages before the start of the construction work and

helps in the overall construction programme and its work packages. The management

takes an active part in the project, right from its inception to ensure that the project

finishes on time, within budget and is of acceptable quality and serviceability [HarOl].

Examples in this category include: construction management, management contract, and

design and management [HarOl]. In discretionary systems the client has a greater

involvement in the administration of the project and also has the discretion to choose

the most suitable procurement system from the three categories identified above

[Mas02]. The aim is to ensure that clients are able to define and express their needs

right from the start and that the building or facility which is developed matches a

client’s expectation and is fit for purpose. Partnering, alliances and joint venture are

some examples which are in this category [HarOl].

Edum-Fotwe et al. [Edu99] identified that all the procurement systems described above

are dependent on sub-contracting arrangements. These sub-contracting arrangements are

made between the principal contractor and a number of sub-contractors, who are

responsible for delivering the work packages in their area of expertise. In the

construction supply chain these contractors and sub contractors are ultimately chained

to the suppliers (directly or via other intermediaries such as sub-sub-contractors and

procurement agents) for the procurement of products and services. Therefore the sharing

of information via the MDSSF architecture proposed, as part of this research can be

beneficial to all the building procurement systems identified by Harris and McCaffer

[HarOl] and Masterman [Mas02] by providing contractors or sub-contractors with

access to product related information from suppliers.

3.4 The Role of Information in the Construction Supply Chain
Information plays a vital role in all the processes within the construction industry. In

this section we will identify from various perspectives the role information plays in

34

3. Construction Procurement

bringing together the construction industry processes and enabling smooth functioning

of its operations. The aim of providing this information here is to show the current role

of information in the construction supply chain. It is only by understanding the current

role of information that the case for new ways of presenting information can be

justified, which bring increased benefits to industry participants. Another important aim

is to identify how the MDSSF data sharing architecture can provide benefit to

contractors, procurement agents and other actors in the construction industry who wish

to procure products from a wide range o f product suppliers. From the arguments

presented below it will be established that information plays a vital role in the

construction industry. Hence a new way of providing information using an integrated

approach such as the MDSSF can benefit construction industry actors performing

procurement-related activities, by providing relevant and timely information.

3.4.1 Information is a Strategic Resource

The role information plays in the construction supply chains has shifted from a passive

function in decision making to a strategic resource, the effective utilisation of which

enables the smooth operation of various processes in a supply chain and has a direct

impact on the competitiveness of an organisation [EduOl] [HarOl]. The elevation of the

role of information to a resource from a mere enabler of processes in a supply chain

took place over the last two decades [EduOl]. McCreadie and Rice [McC99] view

information as a resource which can be “produced\ purchased, replicated, distributed,

manipulated, passed along, controlled, traded, and sold”. Information is a resource

within the construction industry because it exists in diverse forms such as drawings;

specifications; and in a communication mode which provides conditions, explanations

and clarifications between parties [EduOl]. [EduOl] further identifies that it forms the

bedrock of the construction industry’s production activity. If up-to-date information

from different sources is presented in an integrated way it will become a strategic

resource for practitioners to refer to and use to assist in decision making.

3.4.2 Flow of Goods and Services

Construction is an information transaction process [EduOl]. It is not just a material

conversion process where input materials are converted into a final product such as a

constructed facility or a building but it is also a process in which information as a

35

3. Construction Procurement

resource is combined with other resources to generate physical products [EduOl]. In this

respect the flow of information within the various processes of the construction industry

and between its key players at various stages o f a supply chain is equally important as

the flow of physical goods and services. It plays an important role in procuring the right

kind of materials for a given construction project from across a large number of

suppliers. Saunders [Sau97] identifies that personnel in purchasing and supply

management are, from one perspective information processors as they receive, analyse,

make decisions and distribute information in order to manage the flow of goods and

services in a supply chain.

“At the heart o f the transactions that take place in supply chains within construction is

information. ” - Edum-Fotwe et al. [EduOl].

“Information allows, forbids and directs the physical flows, and also enables the

checking and confirming as well as provides p ro o f and audit trails fo r transactions. ”

- Edum-Fotwe et al. [EduOl].

“Executives in the industry implicitly accept that information is a key management

resource and underpins the processes and operations o f every construction company. ”

- Haris and McCaffer [HarOl].

3.4.3 Linking Actors in Construction Supply Chain

In the Architecture, Engineering and Construction (AEC) industry, a typical large

project requires the direct and indirect participation of many specialised firms, each in

charge of a functional task in the design or construction process [Pie97]. Hence a

construction supply chain brings together different stakeholders known as actors who

are working in its different phases. Actors such as contractors, project managers,

suppliers, financial institutions and regulatory bodies participate in the construction

phase [EduOl]. These actors are connected to each other via the information links and

communication channels for disseminating information about various aspects of a

project. A list of actors participating in various phases of a construction supply chain is

identified by [EduOl] as information actors who “generate and provide or acquire and

process information to facilitate the activities o f the particular phase in which they

36

3. Construction Procurement

participate”. These actors also use information available from several external sources

such as trade journals, newspapers and supplier catalogues to learn more about the

market conditions and remain competitive.

3.4.4 Coordination and Collaboration

Sharing of information in the construction industry pertaining to different aspects of

projects is vital to coordinate its development. This sharing takes place between the

organisations which come together and undertake a shared responsibility to develop a

facility. The information which was previously considered sensitive and confidential is

also increasingly shared through arrangements such as partnering to achieve

improvements both at the company level and throughout the supply chain [EduOl]. The

importance of various types of information is further reflected by the growth of

information sources in the past decade. There has been an exponential growth of

information sources available to technical and managerial executives, which reflects the

growing importance of information to the operational success of organisations [EduOl].

“Emphasis these days is on information sharing between systems o f different

organizations. It is expected that enabling information sharing between different parties

in the construction material procurement process can facilitate improved information

communication and coordination, better strategic planning and decision making, and

rapid and flexible supply chain m a n a g em en t- Kong et al. [Kon04].

Information sharing enables buyers and suppliers to conduct their relationship in a

better way thereby developing mutual trust and collaboration in an objective manner in

the face of uncertain circumstances and no knowledge of the motives of the party at the

other side [Cox02].

3.4.5 Sellers and Purchasers

Information sharing brings together sellers and purchasers. Kong et al. [Kon04] identify

that both purchasers and sellers can benefit from information sharing as purchasers can

get more comprehensive information about the materials they wish to buy and the

sellers can have information on the current market situation. The current market

environment actually promotes and encourages different organisations to work together

37

3. Construction Procurement

to optimise the flow in a supply chain. Organisations along a supply chain are linking

their information systems in order to form inter-organisational systems [Kon04]. These

systems are networks of systems which allow organisations to share information

between each other and interact via an electronic means across organisational

boundaries.

“By enabling information sharing between different E-commerce systems for

construction material trading, buyers and sellers may operate with lower levels o f

ambiguity and uncertainty due to the provision o f greater volumes o f timely and

accurate information, thereby enabling them to make more efficient and effective

decisions” - Kong et al. [Kon04].

3.4.6 Role of Information in Other Areas of Construction

In addition to the areas identified above, information also plays an important role in

other areas of construction such as in the design and construction phases. At the design

phase, exchange of information enables interaction between clients and construction

industry actors such as architects, structural engineers, and quantity surveyors to capture

the scope and requirements of the project and outline the plans, which then become the

basis for design documents [HarOl]. Similarly, at the construction stage, information

transactions take place between various actors to transform the designs into a

constructed facility. For example, information transaction between contractor and a sub

contractor; a sub-contractor and material suppliers, etc. [HarOl]. These information

transactions enable coordination of various aspects of the construction project and aid in

the timely delivery of the construction phase [HarOl]. Even in these areas involvement

of suppliers and access to the information pertaining to their products and services is

essential so that right from the conceptual stage, accurate decisions can be made by

contractor and sub-contractors, by taking into account external factors such as

availability of products and services, their specifications, cost, quality, and delivery

time.

3.5 Role of Technology in the Construction Supply Chain
IT and e-business have already “radically transformed” many operations in the

construction sector, but there is still a vast scope for improvements [Sfc02].

38

3. Construction Procurement

Technological options enable getting the right kind of information for making crucial

decisions, which impact the progress and performance of the processes of the

construction supply chain. IT has now become a technology of strategic significance in

modem business from a position of being a support technology [Bet99]. In the

construction sector, like any other sector, IT is now being applied in all application

areas for a variety of functions and for communication between organisations [Bet99].

Understanding the role technology plays to manage different types of information in the

construction industry is vital to this research, because the MDSSF information sharing

architecture presents a technology based solution which brings together and provides an

integrated view of product data from several supplier databases. New technology-based

solutions cannot be designed without understanding how modem technology is helping

construction practitioners achieve their objectives. Understanding the role of

technology is also important from the perspective of identifying new ways of addressing

current challenges, such as dealing with the large amount of information which is

available from several different autonomous sources. In this section, we present an

overview of the role technology plays in managing construction industry information

from several different perspectives.

3.5.1 Use of IT is Widespread in the Construction Industry

Pietroforte [Pie97] identifies that the introduction of IT in the AEC industry has

significantly shortened the development of new products by allowing the simultaneous

implementation of different functional designs and engineering tasks. It is one of the

reasons behind the widespread use of IT for several different purposes. Construction-

related documents, spread sheets, image files, CAD drawings, blue-prints, specification

documents, database files are widely created, used and shared between project

members, through the use of different types of software packages. Sharing of

information means communication with project members various types of information

such as drawings, design documents, specifications, calculations, cost estimates and

schedules. There has also been a widespread increase in the use of technology for data

related functions such as data storage, data mining, data archiving and data analysis and

communication to inform various processes o f the construction supply chain. The use of

internet or intranet to provide access to electronic notice boards gives the potential to

effectively provide up-to-date project status information to project participants

39

3. Construction Procurement

[Wal99a]. Completed projects also leave a trail o f enormous amounts of information in

the form of written, graphic and numeric documents, which must be preserved for future

reference and use through IT systems. Additionally, technologies for Electronic Data

Interchange (EDI), bar coding, visualisation (including CAD, Virtual reality (VR) and

Augmented Reality), communication (including data/video conferencing, intranets,

electronic mail, file transfer, telnet) and integration technologies (for project document

management, data warehousing, and development of industry wide information

repositories) are widely used across many spheres of construction activities [HarOl]. IT

is also being applied actively in automation of contract administration [Pie97].

3.5.2 IT enables Cooperation and Information Sharing and Communication

Pietroforte [Pie97] recommends that technology should be used for establishing

electronic links to enable inter-activity, simultaneous two-way information exchange

and flexibility of communication formats. These should network all the project

participants despite their geographic dispersion and time limitations. Increasingly large

investments are being made by major construction firms in IT and engineering

technology. The use of IT gives the potential of closer cooperation between buyers and

suppliers in the product design and development process, of sharing logistics

information, such as demand and stock levels in order to develop more responsive

supply capabilities in meeting customer requirements [Sau97]. The use of technology

by various actors in a construction supply chain to share information is unprecedented.

Widespread use of technology has enabled availability of information and resource

sourcing on a global level [EduOl]. Acquiring information from websites has become

vital for contractors as more and more procurement websites are available on the

internet [Dze05]. Pietroforte [Pie97] further identifies that the focus of new information

technologies should be broadened from controlling contractual compliance to

facilitating communication and interaction among project participants.

“...communication with other organisations is an essential requirement for purchasing

and supply management. Scope fo r adopting IT approaches in this external role is

increasing through techniques that have come to be known as ‘electronic data

interchange ’ - with EDI as the accepted acronym. ” - Saunders [Sau97].

40

3. Construction Procurement

3.5.3 Technology Accelerates the Rate of Information Flow

An important essence of supply chain management is to employ IT/IS to accelerate the

information flowing in both intra and inter organisations [Han99]. Fast flow of

information between processes in a supply chain can provide rapid or real time

information on market conditions, availability o f materials from certain suppliers and

reduces decision making time. Yeo and Ning [Yeo02] identify that information system

management is one o f the components of supply chain management which enables real

time information sharing. An important component of the advanced level of supply

chain systems is information links which bring together the critical competencies of

supply chain partners [Yeo02]. These information links enable an accelerated pace of

information flow.

3.5.4 Competitive and Strategic Advantage

Technological developments have also contributed to enhance the importance of

information and make it a strategic resource. In modem business organisations, business

planning is not only about market share and returns on investments but increasingly

business organisations also take consideration of concepts such as competitive

advantage and strategic positioning by relating them to their business goals [Bet99].

According to Betts [Bet99], competitive advantage can be gained by using techniques in

the areas of human resource management; marketing; product design; services;

distribution methods; research and development; use of advanced technology; and

information and information (knowledge) management. Enabling the use of techniques

in these areas requires the application of IT, which then enables an organisation to gain

competitive advantage. Lysons [LysOO] identifies the benefits of using IT to gain

competitive advantage in terms of reduction of costs when producing goods and service.

IT enhances an organisation’s capability by creating new linkages between the activities

it performs both within and outside the company and also allows coordination of actions

more closely with their buyers and suppliers to gain strategic advantages over

competitors. Hence IT should be viewed as part o f a long-term strategy rather being for

short-term financial returns and therefore appropriate IT strategies are vital for rapid and

effective communication of ideas, plans and data [Wal99].

41

3. Construction Procurement

3.5.5 Inter-Organisational and Organisational Efficiency

Use of IT enables inter-organisational efficiency by reducing costs, an enterprise incurs

in dealing with external organisations, for example suppliers and subcontractors. Lysons

[LysOO] has identified the following examples of a gain in inter-organisational

efficiency due to IT:

a) Allowing purchasers to “shop" and check the status of potential suppliers

electronically.

b) Facilitating the inexpensive electronic transmission of purchase orders.

c) Improving control and co-ordination of suppliers with vendors e.g. arranging

deliveries in more economical lifts and at time required by purchaser.

d) Monitoring supplier performance.

The concept of improved operational efficiency and functional effectiveness can be

extended beyond the boundaries of a single firm via use of inter-organisational

information systems [Bak86]. Inter-organisational systems provide opportunities for

better coordination between customers and suppliers in order to make operations more

efficient for the benefit of all participants. They allow firms to integrate information

related activities without disturbing the legal boundaries of the entities involved

[Bak86]. According to Bakos and Treacy [Bak86] one example is to couple the product

planning system of a firm with the order entry system of suppliers to lower the amount

of inventory in process and the turnaround time for new orders. Another area which is

part of this research is linking an organisation’s systems with an external system which

provides up-to-data information on product availability by accessing the information

systems of several different suppliers in real time. In the construction industry, such

efficiency gains can only be achieved by linking the information systems of various

stakeholders to perform a set of related activities which requires information exchange

between the parties involved. One way of linking different organisations to achieve

inter-organisational efficiency is via project extranets. Project extranets provide access

to information repositories set up by the organisations via the web. This allows project

participants to view or update information. Links inside an organisation of the

information systems of various departments and sections can be set up via the intranet,

42

3. Construction Procurement

which allow members of an organisation to access information available from different

sources inside an organisation [HarOl].

An interesting scenario is presented by Walker and Betts in their paper [Wal97]

published in 1997, which identified how IT will be used in global construction in the

year 2001 to improve organisational efficiency. The scenario identifies how video

conferencing available via the World Wide Web will link project participants to conduct

project meetings, which will save time and cost. Using the web, databases could be

updated on the spot and various options affecting the time could be investigated using

the project planning system. By setting up video links on-site construction problems

could be investigated by project participants remotely. GUI based systems will assist in

easy understanding of project control documents by graphically representing various

aspects of the project, for example representing project milestones achieved against

agreed time in the form of a bar chart. The web will enable monitoring of work

activities via permanent point cameras to provide a quick review of the state of affairs

without having to walk to the construction site. The web will also provide access to

daily supervisor reports and automatically catalogue them and provide the facility to

retrieve them when required by searching the information bank. As more and more

companies use the internet, it will be easier to link various stake holders’ web resources

for effective communication and making valuable information available. This scenario

is presented in greater detail in [Wal97].

3.5.6 Small Firms

Although technology has an important role to play in larger firms to manage complex

organisational operations, it has an equally important role to play in smaller

construction firms, who also are exposed to market forces, such as increasing

competition from local and overseas firms, rising costs, enlarged markets and threats of

being taken over by larger firms. In order to ensure their survival in this competitive

environment, smaller firms have also made increasing use of IT. This not only enables

them to remain competitive and profitable, but also take on projects which until the

recent past were run and managed by their larger counterparts [Edu99]. Tools and

techniques available through IT infrastructure are enabling them to compete directly

with the larger firms. Edum-Fotwe et al. [Edu99] have further identified that increasing

43

3. Construction Procurement

availability of IT at lower costs and the low operating costs of the smaller firms due to

their smaller size is changing the nature of competition in the industry in a way which is

yet to be understood. Larger firms are also increasingly contracting out their non-core

operations to small firms by forming strategic alliances [Edu99].

The construction industry in the UK is highly fragmented [Ega98]. In the presence of a

large number of construction firms in the UK, most of which are small and medium

scale enterprises, integration of teams specialising in different areas from different

organisations is very crucial for efficient project implementation. An important strategic

target set in the Strategic Forum for Construction report [Sfc02] is that 20% of

construction projects by value should be undertaken by integrated teams and supply

chains by the end of 2004. This figure should rise to 50% by the end of 2007. To create

such integrated teams for the required work the role of an integrated IT approach is very

crucial [Sfc02].

3.5.7 Web Technologies

Computer-based technologies such as the internet and web technologies enable linking

of business information to a global network and provide a common standard for

transmitting and displaying information in a cost effective way [Kon04]. There is

potential to “drastically reduce ” the cost of infrastructure by adopting and making a

wider use of technological options such as internet and e-Procurement [Sfc02]. Web

technologies can also be used for effective communication. For example, web-based

email systems provide a reliable and efficient mechanism for sending messages to

different members of the team very quickly. The web also provides access to resources

such as electronic libraries and search tools which can be effectively used for finding

information. By using web technologies such as blogs, wikis, podcasts or by using

website creating tools, information can be easily and quickly published on the web and

can then be accessed from almost anywhere in the world. Walker and Rowlinson

[Wal99a] identify that construction professionals can use the web to gather estimating

and forecasting information. The web can also be used for undertaking research

activities by accessing various resources available online. For example, links can be

established with supplier data files for identifying cost information, to bureau of

statistics data for marketing plans, or to the bureau of meteorology for finding weather

44

3. Construction Procurement

information [Wal99a]. Construction professionals can also use the web for promotional

purposes to make potential clients aware o f the company’s profile, capabilities and

services, which are offered in the same way as currently marketing and promotional

materials are offered.

3.6 How MDSSF Can Benefit Construction Procurement
The importance of advancing the use o f technology to achieve greater benefits is well

identified in the literature. This research proposes a data sharing architecture for

managing product data, which allows buyers and contractors to access product data

made available by several different suppliers in an integrated way. The aim is to aid

practitioners, when they make procurement related decisions and to provide product

information. However, procurement is a very wide subject area, and therefore proposing

a data sharing architecture is simply not sufficient. As identified in Section 3.3

procurement is not just about meeting on-site construction requirements by sourcing

equipment, raw materials, products and services from suppliers. In order to carry out

procurement related activities effectively, organisations also consider many other

factors having wider influences, scope and implications on themselves and on the

construction industry as a whole. Organisations spend considerable resources and time,

and form different types of collaborations and partnerships, not only to ensure timely

delivery of project outputs, but also to make further improvements, for example by

introducing innovative techniques, by making changes based on lessons learned from

past projects, by seeking greater specialisation to reduce costs and outsourcing non-core

functions. Therefore it is important for this research to look into several different

factors, which influence procurement from the perspective of identifying, how the

MDSSF data sharing architecture can be of benefit to organisations in different

organisational scenarios. In this section the author identifies some of the important

factors and scenarios, which influence procurement and how the MDSSF can be of

benefit in those scenarios by providing an integrated access to product data from several

autonomous supplier databases, which ensures the authenticity of the information

source.

45

3. Construction Procurement

3.6.1 Organisations Depend on External Companies for Procurement

Yeo and Ning [Yeo02] identify that the function of procurement is highly dependent on

external companies such as suppliers and sub-contractors. In this respect, it is important

for a contractor to have access to product information held by suppliers and sub

contractors in order to select the appropriate materials. The construction industry is

fragmented and there is a diverse supply market in which clients can perform

procurement [Cox02]. Cox and Ireland [Cox02] further identify that technological

advances and advances in the field of construction products and services, now provide a

wide range of different sourcing options. Due to these advances, the construction firms

now use the expertise of external suppliers to provide construction related services,

previously managed by firms internally.

Having access to product information from a large number of suppliers not only enables

selection of appropriate materials from a vendor to meet the constraints of the project,

but it also accelerates the decision making process. The MDSSF information sharing

architecture can be used to provide practitioners with external information about

potential suppliers, and products they can offer in an integrated way. An important

objective in providing information in an integrated way is to achieve cost reduction and

selection of the best available supplier, by taking into consideration the project

constraints. Because the UK construction industry operates on a low margin [Cox02],

there is increasing pressure on the industry as a whole to reduce costs. Procurement can

be made for high value and low value items. Cox and Ireland [Cox02] identify that

purchasing large value items regularly from a supplier to whom an organisation is a key

customer can aid cost saving. However purchasing low value items from a “powerful

supplier’’ can sometimes result in a waste of time and effort. In such circumstances

finding an appropriate supplier with fewer overheads, such as administration costs and

transportation can help in cost savings. In order to identify such suppliers

comprehensive information is required which is collected from different sources and

presented to decision makers. The MDSSF architecture has the potential to provide such

information in a convenient fashion.

46

3. Construction Procurement

3.6.2 Communication is Important for Procurement

In procurement, there is a greater degree of communication and negotiation with

suppliers and sub-contractors [Yeo02]. The ability of a supplier to meet given

requirements also leads to a higher degree of communication, as the contractor then

negotiates with the supplier regarding details such as pricing, product specifications,

bulk discount, delivery and payment method. We believe that an online system built

using the MDSSF architecture can play a significant role in this negotiation process by

incorporating negotiation options alongside product information.

3.6.3 Suppliers in Different Supply Chains

Since there are different types of supply chains in the construction industry such as

labour, material, equipment and professional services, procurement professionals face

challenges and difficulties in sourcing from these supply chains [Cox02]. One of the

challenges is the availability of large amounts of scattered information, available from

diverse sources, such as individual suppliers in these supply chains. This makes it

increasingly difficult for procurement professionals to keep themselves abreast of the

available information. In this respect, a system built using the MDSSF architecture can

provide a mechanism to present up-to-date information in an integrated way to aid

procurement professionals with their selection process. The MDSSF architecture has

the potential to serve as a channel providing effective information to construction firms,

which allows them to choose their suppliers. It can aid in finding the right suppliers by

providing information about them and the products and services they supply to the

construction industry. This will allow contractors or sub-contractors to judge the

competency o f suppliers by their ability to supply the required products as per the

project requirements.

3.6.4 Full Knowledge of Equipment Specification

A buyer or contractor may require full knowledge of equipment specification before

making a purchase. It is necessary to know about equipment cost, quality and delivery

time, but also to know about the detailed technical specifications of equipment, which a

contractor may wish to acquire. For example capital equipment are costly and takes a

long lead time to manufacture and procure [Yeo02]. Technical specifications of capital

equipment may interrelate with the technical specifications of other equipment sourced

47

3. Construction Procurement

from different suppliers [Yeo02]. Information on technical specifications can help in

planning, provisioning, and checking compatibility, if they are sourced from more than

one supplier. By using an online system, the right kind of equipment can be identified

and correlated with the technical specifications of other equipment. Applications built

using the MDSSF data sharing architecture can provide suppliers with options for

specifying product specification in detail, which can help practitioners to take into

account such information, when making procurement decisions.

“It is also important that firm s are fu lly aware o f the products and services that they

purchase. Research by the authors in industries ranging from construction and

financial services has demonstrated that practitioners are not always in possession o f

the information that will allow them to act in a professional and effective manner. ” -

Cox and Ireland [Cox02].

3.6.5 Each Construction Project is Unique

Cox and Ireland [Cox02] identify that there is no generic answers to problems and

situations in the construction industry. Each engineering project is unique and therefore

procurement planning is also unique for each project [Yeo02]. Also the circumstances

under which the construction firms operate keep changing. Social, economic and

political changes all have an impact on the construction business and the construction

practitioners have to take account of these changes in order to remain competitive. They

also have to take into consideration market conditions, which change and evolve

swiftly, and adopt different strategies based on the changing environment [Cox02]. Not

only is every project and its environment unique, but different actors in the supply chain

may need to be brought together to create “each individual solution” [Cox02].

Therefore a single business strategy or a single solution cannot be used in different

scenarios. Industry practitioners need information from various sources to help them

devise new strategies to meet these changes. The requirements for each project may

differ depending upon the site, client’s demands, and how the constructed facility will

be used in the future. Taking into consideration project requirements, different suppliers

may be chosen, who have the ability to supply the right kind of materials for the project.

In this respect having access to a resource such as the MDSSF, which provides

48

3. Construction Procurement

comprehensive information about different suppliers and the products they can supply is

very crucial for the contractor and the project.

3.6.6 Data Sharing in e-Business Models

Cheng et al. [CheOl] propose an e-business model for improving communication and

coordination, and encouraging mutual sharing of inter-organisational resources and

competencies in the construction supply chain. In the e-business model, the importance

of communication and coordination is emphasised and therefore in this respect the role

of IT is pivotal. The e-business model proposed by Cheng et al. enables “improved flow

o f information and other resources in terms o f speed, quantity and the level o f

confidentiality across the boundaries o f all parties, and ensures a cooperative

relationship between construction parties”. The e-business model provides a

comprehensive infrastructure and considers various aspects in the construction industry.

The components of the e-business model are described by Cheng et al. as:

1. A cooperative virtual network structure that is associated with a hierarchical

contracting structure, resulting in a value added construction supply chain

infrastructure.

2. A supply chain infrastructure. This structure consists o f six core functional

elements - resource planning, teamwork, tools and techniques, information

management, training and development, and performance measures.

3. Change management (which will require the implementation o f human,

organisational, and cultural enablers) so that the organisations’ employees

can adapt to the e-business environment.

4. Organisational adaptation, which is the ability o f management and employees

to learn and respond to changes in the external environment.

The author believes that the MDSSF data sharing architecture can aid such e-business

models by providing the actors in the core functional elements identified, by Cheng et

al., with supplier related information. The prototype MDSSF application uses open

communication standards for data communication, using XML based Web Services for

interoperability and therefore can become a part of a virtual cooperative network of

49

3. Construction Procurement

organisations seeking information from external suppliers when making crucial

decisions.

3.6.7 Partnerships and Collaborative Working

In a partnering relationship, two or more organisations work together to improve

performance with the aim of achieving mutual objectives and in this process devise

plans for dispute resolution, continuous improvement, progress measurement and

sharing the gains [Ega98]. The need for forming partnering relationship collaborations

between organisations undertaking large construction projects is strongly emphasised in

the literature. Construction projects bring together architects, designers, project

managers, surveyors, contractors, builders and others to form partnering relationships.

Komelius and Wamelink [Kor98] identify that co-operation and inter-organisational

coordination is a common practice in the construction industry. High levels of

performance can be achieved, when organisations bring together their resources and use

networking techniques [Pat99]. Lamming [Lam93] identifies that individual

companies cannot face challenges, when working globally without forming strong

collaborations. Edum-Fotwe et al. [Edu99] also call for a closer partnership of

organisations, who are involved in the construction supply chain beyond existing

practice by taking advantage of IT to face up to the increasing challenges in the

construction business at the global level. This is because such collaborations lead to

effective utilisation o f resources and eliminate duplication of efforts [Lam93].

Collaboration between buyers and suppliers is an important requirement when creating

an agile supply chain, which is responsive to market demands [Cox02]. The importance

of partnering in construction has also been strongly recognised in the Egan [Ega98] and

Latham [Lat94] reports. From the above it is clear that a strong partnering relationship

is very important for success in construction projects. The MDSSF architecture can aid

the process of building partnership relationships for procurement by providing

information on available suppliers in the market or region. Once partnership

relationships are established the MDSSF architecture can facilitate sharing of product

data between project partners.

Edum-Fotwe et al. [Edu99] further identify that because of the increasing globalisation

and emerging enlarged markets and the resulting competitive forces which these trends

50

3. Construction Procurement

create, there is a greater need for collaboration and co-operation in the construction

industry to ensure a firm’s continued survival. A new approach to procurement, and a

greater degree of coordination is also required between organisations and the alliances

they form via subcontracting arrangements, if the project supply chain is to be managed

effectively [Edu99]. This collaboration can be achieved by the integration of processes

in the construction industry by making effective use of IT [Cox02]. A key technology

identified by Walker and Rowlinson [Wal99a], which has potential to change

procurement systems completely is the concept of virtual collaboration where designs

may be posted and manipulated in cyber space by the collaborating groups of designers,

consultants and contractors. The MDSSF architecture has the potential to create virtual

collaborations and process integration between contractors and suppliers, which will

allow contractors to retrieve product information from supplier databases when desired.

Interfaces provided by the MDSSF application can be hooked to the information

systems of contractors using different IT tools available for different platforms. In this

way, an integrated system can be created to access product data from supplier databases.

3.6.8 Relationship Management

In the construction business, forming alliances with different organisations to undertake

a construction project is crucial. Therefore it is important for organisations, if they wish

to succeed globally in an increasingly competitive environment to efficiently manage

their relationship [Edu99] both at the management and operations level. In this respect

information sharing, for example between contractors and suppliers by using

information sharing architecture such as the MDSSF, plays important roles by bridging

the information gap, thereby allowing the participating organisation to fully learn about

the organisations with whom they wish to form alliances. In order to remain competitive

companies are constantly faced with challenges to reduce time-to-market, improve

product quality and slash production costs and lead times [KumOO]. Kumaraswamy et

al. [KumOO] further identify that these challenges cannot be effectively met by merely

changes within specific organisations or organisational units as they heavily depend on

relationships and interdependencies between the different parts, that are internal or

external to an organisation.

51

3. Construction Procurement

3.6.9 Small Firms

The role of small firms in the construction industry cannot be ignored. The profitability

o f larger firms is linked with the efficient performance of the smaller firms and

therefore it is important that both these types of firm work together in the construction

supply chain in a collaborative and cooperative fashion [Edu99]. According to Small

Firms in Britain 1995 report [Dti95], more than 10 million people in the UK are

employed in small firms. 60% of construction jobs are in organisations having less than

10 employees, and there are 1.2 million more small firms than in 1979. According to the

Egan report [Ega98], published in 1998, there are 163000 construction companies listed

on the Department of Environment, Transport and the Regions’ (DETR) statistical

register, and most of them employ fewer than eight people. The Institute of

Employment Studies, in their survey of Small to Medium Enterprises (SMEs) of 2005

[Ies05] have identified that 10% of SMEs in the UK (in the survey sample of 8640) are

in the construction industry.

The construction industry itself has made radical shifts in its strategies from 1990

onwards, in response to competition both at the regional and global level. The strategies

before the 1990s, although growth oriented, also had features of rigidity which meant it

took a long time for organisations to respond to the changing business environment

[Edu99]. In order to take advantage of large-scale economies, organisations adopted

strategies o f vertical and horizontal integration [Edu99], which is an important cause of

rigidity both at the organisational level and at the level of its many systems. However

the construction industry has responded to increasing competition and the dawn of the

information age by working towards achieving greater flexibility. In order to achieve

flexibility firms have adopted vertical and horizontal disintegration and outsourced

activities which do not form a core part of the business to external suppliers [Edu99],

which has given rise to an increasing number of small and medium firms in the

construction business. The larger firms now work with smaller or medium counterparts

in construction projects where the work is sub-divided into packages or sub-packages

and sub-contracted to individual organisations based on their expertise. Because of this

disintegration, smaller or medium scale firms who supply products and services now

play equally important roles. The construction industry presently has a large number of

smaller organisations which provide services to larger counterparts via sub-contracting

52

3. Construction Procurement

arrangements [Edu99]. The presence of smaller firms in the construction industry makes

the role of data sharing architectures all the more important, as it provides an

opportunity to smaller firms to make themselves known to their larger counterparts by

participating in data sharing federations such as the MDSSF. Smaller firms, because of

their small budgets cannot often make large investment on IT systems, which prevents

them gaining competitive advantage against their competitors. As we have seen, the use

of IT is vital in the increasingly information driven business environments of modem

construction. The MDSSF application can provide small and micro scale suppliers with

information systems to manage their product data using a subscription based approach

(see chapter 6). Hence the MDSSF application can serve two vital purposes for small

and micro firms: manage product data, and share it with potential buyers and

contractors.

3.6.10 Supply Chain Operations and Logistics

One of the important roles of an organisation’s information system is to support the

smooth and effective functioning of supply chain operations and logistics. According

to a report by the Strategic Forum for Construction, much of the waste in the UK

construction industry occurs due to poor logistics [Sfc02]. This report calls for a greater

emphasis on improving the supply chain operations and logistics by facilitating

integrated working. Porter and Millar [Por98] identify that the effective performance of

an organisation is related to the effective management of its supply chain operations.

Yeo and Ning [Yeo02] identify that real time information sharing, coordinated

procurement processing in the whole chain and collaborative attitude among all chain

members are important drivers of supply chain management. Since many organisations

come together in a construction project, the efforts of all these organisations need to be

coordinated to ensure effective collaboration. Within a given project the responsibility

of procurement may lie with many project participants working in their specialised

areas, as part of different supply chain operations, such as inventory management, sales

and purchases. Therefore managing the flow o f information across a supply chain and

ensuring availability of up-to-date information on project status and supplier data to

these different participants is vital. In this respect an application designed using the

MDSSF data sharing architecture can provide up-to-date product data in real time from

a large number of supplier databases for different project participants working in the

53

3. Construction Procurement

different areas of supply chain operations. The MDSSF architecture can also provide

information on product availability and delivery time to improve supply logistics.

3.6.11 Changing Environments and Globalisation

Edum-Fotwe et al. [Edu99] have identified that the changes in the construction industry

that have taken place from 1990s onwards are the result of the “strategic factors ”,

which have come together and affected the construction industry. The factors include

changes in the clients and their requirements. Construction industry clients now have

high expectations and demand more in return for their money. There has been a

widespread increase and improvement in construction productivity with the application

of concepts such as lean construction, benchmarking and total quality management

[Edu99]. There have also been changes in the business of construction. It is no longer a

process of transforming raw materials into a finished product. It has adopted a more

service oriented approach, where some contractors only facilitate the process [Edu99],

whereas the actual work is done by specialised groups to achieve cost savings by

selecting the best resources available from a large number of available suppliers.

Additionally, globalisation has also had a considerable impact on the industry as a

whole. The contractors not only procure from domestic markets but also turn their

attention to international markets for sourcing expertise and suppliers. The contractors

also increasingly bid for international projects as part of a larger consortia and form

partnerships with local (to the project) organisations to take advantage of local

knowledge and keep the costs associated with labour transfer to a minimum [Edu99].

An important change brought about by globalisation and an enlarged market is that

smaller firms are now exposed to a greater degree of competition [Edu99]. Previously

they only had to compete with local firms, but now they are increasingly threatened by

overseas suppliers who are in a position to supply similar or better quality products on

very competitive terms by taking advantage of low labour costs and abundant natural

resources. These firms also have to face up to increasing client demands [Edu99] to

deliver better quality products and services at very competitive prices. In these

circumstances it becomes very important for the smaller firms not only to reduce costs

to remain profitable but also to find new markets for their products and services in order

to increase their market share.

54

3. Construction Procurement

Developments in technology have also been an important factor in bringing change to

the global construction business. It put pressure on the structure and processes of the

construction industry to change and has helped in the development of a global market

[Edu99]. Many firms whether large or small operating in different parts of the world can

be quickly reached using web technologies and search tools and communication can be

established by exchanging email messages. Use of IT has brought in virtual proximity

and given rise to electronic commerce and tele-working in the construction industry

[Edu99]. Edum-fotwe et al. [Edu99] have also identified that the impact of IT on

procurement is expected to be considerable. This is because IT can facilitate electronic-

bidding and negotiation for projects, allowing suppliers from all over the world to take

part in the bidding process, and collaborative teams can be assembled which use the

best resources available worldwide. Hence, in these changing environments and with

increasing globalisation, the role of a data sharing architecture, such as the MDSSF,

becomes more important. For example, before bidding for an international project, a

consortium might need information on available local suppliers with whom they can

form an alliance to enable calculation of cost estimates. This will not only allow them to

submit a competitive bid proposal, but to assess the current market conditions and

identify potential challenges, problems, and opportunities in advance. Although the

MDSSF application only serves a role of providing supplier related information, such

information can be used by organisations in several different ways to achieve their

objectives.

3.6.12 Decision Making in Strategic, Tactical and Operational Levels

The integrated data sharing architecture proposed in this research will bring together

product information from different suppliers. This is required to optimise supply chain

performance decision making at strategic, tactical and operational levels in the

construction industry [KumOO]. Kumaraswamy et al. [KumOO] further identify that at

the tactical level the main emphasis is typically focussed on supplier evaluation,

supplier selection and supplier negotiation, while at the operational level the tasks are

more administrative in nature, pertaining to purchase requisitions, quotations and the

issue of purchase orders. The strategic level is concerned with issues such as

outsourcing, supplier base reduction, formation of collaborative relationships and

supplier development [KumOO]. The aim of the data sharing architecture proposed in

55

3. Construction Procurement

this research is to aid construction industry practitioners in their decision making at all

levels: strategic, tactical and operational, by providing information about the suppliers

and the products they supply.

3.6.13 The World Wide Web and Associated Technologies

Walker and Betts [Wal97] identify that information technology is fundamentally

changing the global construction business, and that the internet and World Wide Web

(WWW) [WWW07] will be key to this change. The construction industry can use web

technologies to gain strategic and competitive advantage [Wal99a]. The three ways,

identified by Walker and Rowlinson [Wal99a], o f achieving this are:

a) Web and internet technologies can reduce communication transmission costs. This

will bring productivity gains and reduce multiple-handling of information in the

supply chain.

b) Web technologies provide the ability to allow clients already using these

technologies to communicate with the construction industry using common

communication technologies.

c) There is a possible gain in quality of service advantage, if the use of these

technologies is well thought out. The good use of these technologies can offer

online current-status information on projects.

The MDSSF application is fully compliant with prominent web technologies, such as

Web Services [Gra02], and it uses industry standard communication formats, such as

XML making it interoperable with other web-oriented and desktop-based applications

available, across different platforms. In this respect, the MDSSF architecture has the

potential to provide competitive advantage via the use of web technologies in the three

areas identified by Walker and Rowlinson [Wal99a].

3.6.14 Marketing of Supplier Products

Organisations constantly seek new channels to market their products to potential buyers

and contractors. Advertisement of products and services using media such as news

papers, trade journals, magazines, product catalogues, television, radio, hoardings,

banners, sponsorships and internet is a common practice. From a supplier’s perspective,

56

3. Construction Procurement

MDSSF architecture provides a mechanism to share product information with potential

buyers and contractors and it therefore gives suppliers an opportunity to market their

products. By participating in the MDSSF federation, a supplier can disseminate product

information, which is retrieved by the MDSSF application from the supplier’s database

when a search is made. Hence the MDSSF application has the potential to make buyers

or contractors aware of the existence of suppliers whom they may contact.

3.7 Product Procurement
This section identifies different approaches for product procurement, which are used by

construction industry practitioners or are proposed by researchers. The MDSSF

information sharing approach cannot be compared directly with these procurement

systems or the product procurement approaches presented in this section since it is only

an information sharing architecture and not a complete solution for procurement.

However it has the potential to be part of a procurement process, as implemented and

demonstrated in the COVITE application. In this respect, MDSSF can aid existing

procurement systems or approaches by providing product and supplier information.

MDSSF can provide certain functionalities which can be used by buyers, contractors

and suppliers in combination with existing procurement systems, but it cannot

completely replace existing procurement systems. With this view, we present some of

the important procurement approaches and systems and identify how the MDSSF data

sharing architecture can fill some of the gaps in these existing approaches and systems.

3.7.1 The Traditional Paper Based System

The traditional method of procurement includes a paper based system for procuring

materials, where paper based product catalogues provided by suppliers are searched for

required materials and orders are placed using telephone and fax [Kon04]. It involves

generation, copying and transfer of paper documents, such as material requisitions,

purchase orders and quotations [Cal95].

Kong et al. [Kon04] have identified problems with traditional construction material

procurement systems. Some of the problems identified by [Kon04] can be summarised,

as:

a) Paper based systems are costly, error prone and time consuming.

57

3. Construction Procurement

b) Such systems can only operate during specified business hours.

c) In such a system a purchaser can only work with a limited number of suppliers.

d) Use of such systems limit the amount of information that can be collected about

suppliers and their products.

e) Paper based catalogues are cumbersome to use, become outdated very quickly and

require a large storage area.

f) It difficult to search for products and make comparisons between different products

using catalogues.

These limitations make it difficult for a contractor to stay up-to-date with market

conditions and products.

3.7.2 Supply Chain and Critical Chain Project Management

Yeo and Ning [Yeo02] present an approach to product procurement management which

couples the concepts of Supply Chain Management and Critical Chain Project

Management and draw ideas from constraint theory. Constraint theory is used to

understand the systems performance by identifying the constraints that limit output. The

critical chain method, when applied with constraint theory, offers an enhanced

approach, which manages risks and uncertainty associated with the project in the project

value chain. This enables improved performance in project time management [Yeo02].

The framework for improved engineering procurement also highlights the importance of

the partnering relationship in selecting reliable materials and equipment suppliers. It

also proposes a mechanism of feeding buffers (provisioning of extra time in case of

delay in procurement) to deal with procurement uncertainties caused by logistic

processes and risks associated with procurement of major items. In the framework

proposed, feeding buffers are added to the procurement process for major materials and

equipment procurement parallel chains. In their approach, Yeo and Ning aim to improve

present practices in Engineer-Procure-Construct (EPC) projects. They identify the

importance of partnering relationships for selection of reliable materials and equipment

suppliers. In order to create new partnering relationships, it is vital to have information

on available players. The paper does not address how new organisations can be found,

based on products they can supply. The MDSSF architecture can fill this gap by

providing information about available suppliers and products they supply. This can aid

58

3. Construction Procurement

the procurement approach of Yeo and Ning, by adding techniques to identify new

partners.

3.7.3 An Approach of Smarter Selection for Procurement

Kumaraswamy et al. [KumOO] and Kumaraswamy and Dissanayaka [KumOl] identify

the importance of an improved selection process for procurement of construction

products for buildings or civil engineering infrastructure. We describe their work here to

give the reader an overview of their procurement system. They conducted a Hong Kong

based study, which confirmed the importance of ‘smarter’ project formulation in

deciding factors, such as project scope and work packaging. The importance of more

informed decision making in assembling appropriate procurement frameworks, which

suit the needs o f a particular project is discussed [KumOl]. They identify that intelligent

choices in overall procurement system design should be related to the project scenario

rather than being based on familiarity or convenience. In the study, five principal sub

systems of the procurement system were identified. They are: work packaging,

functional grouping, payment modalities, contract conditions and selection

methodologies. They identify that selection of these procurement subsystems are critical

procurement aspects that should be tailored to match the current project objectives.

Additionally, holistic approaches are also required in construction procurement, in order

to achieve a synergistic balance between the procurement subsystems. The holistic

model should extend from critical work packaging decisions at the outset, through

appropriate risk, and functional allocations to selection methodologies adopted in

choosing various procurement sub-systems [KumOO]. It should enable decision makers

to make “smarter ” choices (for example by choosing sub-systems and assembling

appropriate project specific procurement systems). Therefore, in order to select

appropriate procurement and operational systems and make optimal selection of project

participants (such as joint venture partners, consultants and contractors), there is a need

to make “smarter ” choices and not use a purely price based selection. This study

identified 11 key performance criteria against which a construction project performance

can be assessed (see Appendix 1). They also identified that significant improvements in

procurement processes in addition to improvements to managerial processes are

necessary to achieve greater performance gains.

59

3. Construction Procurement

There is an underlying demand to access and analyse large amounts of industry data,

past project information and expert knowledge in order to make the choice of an

appropriate procurement system. Kumaraswamy et al. identify that rapid growth in

IT/IS potential will make it possible to do this in the future. They identify that

knowledge based decision tools are required to meet these demands in order to improve

the selection processes in the construction industry supply chain which will lead to

gains in productivity in the construction industry.

Kumaraswamy et al. [KumOO] propose a knowledge based decision support system that

will help its users make more informed procurement decisions, and select appropriate

supply chain structures and people, whilst simultaneously suggesting synergistic

operational processes that would meet client priorities, project-specific (internal)

conditions and industry-specific (external) conditions. The system will enable capturing

and consolidating experiences from previous projects and will also provide the facility

of harnessing decision rules used by experts having a broad overview of procurement

systems. IT/IS and artificial neural network aids were used to capture and analyse

available experiential knowledge, in order to make intelligent procurement and

operational choices [KumOO]. These aids were needed to develop more structured

approaches which use comprehensive databases and knowledge bases. The aim of the

system is to provide “advice” pertaining to procurement matters, which takes into

account project specific scenarios. The proposed model of this decision support system

is illustrated in Figure 3.3. It consists of three knowledge bases in its core. The

knowledge bases are designed to capture and incorporate any “causal” relationship

which links project performance (which is measured using the 11 key performance

criteria) against variables such as: project specific internal conditions, procurement

options and external conditions.

The knowledge based system identified by Kumaraswamy et al. for making

procurement decisions takes into account various aspects of a construction industry

supply chain as identified in the figure to select an appropriate procurement system for a

given project. An important distinction can be identified between the decision support

system and the MDSSF architecture in the area of information sharing. The MDSSF

provides an information sharing mechanism only and therefore does not take into

60

3. Construction Procurement

account the wider perspectives achieved by incorporating the several areas associated

with procurement identified by [KumOO] and [KumOl]. The MDSSF architecture does

not take into account all these construction industry aspects, because they are not

relevant when providing product specific information to contractors from a large

number o f product suppliers. However we believe that the software systems developed

using MDSSF can aid such knowledge based decision support systems by providing

information on industry specific (external) conditions such as resource availability from

a wide range of product suppliers to decision makers enabling better choices to be

made.

61

3. Construction Procurement

©
PROJECT -SPECIFIC

(INTERNAL) CONDITIONS:
CLIENT AND PROJECT

CHARACTERISTICS

CLIENT OBJECTIVES:
(PROJECT-SPECIFIC) CRITICAL

PERFORMANCE CRITERIA
AND PRIORITIES

I

INDUSTRY-SPECIFIC (EXTERNAL)
CONDITIONS MARKET CONDITIONS,

RESOURCE AVAILABIIJTIES,
EXPERIENCE LEVELS. GENERAL

ATTITUDES ETC

PROJECT PROFILE - AS ELICITED BY EXPERT SYSTEM FRONT-END
(THROUGH INTERROGATION OF USER)

©

KNOWLEDGE BASE I
OF RELATIONSHIPS BETWEEN
VARIOUS PROJECT - SPECIFIC

INTERNAL CONDITIONS
AND

I (A) COMPATIBLE
i PROCUREMENT OPTIONS

1(B) EXPECTED PERFORMANCE
AGAINST COMMON CRITERIA

KNOWLEDGE RASE 2
OP RELATIONSHIPS

BETWEEN DIFFERENT
PROCUREMENT OPTIONS

AND

EXPECTED PERFORMANCE
AOAINST COMMON

CRITERIA

I

KNOWLEDGE BASE 3
OF RELATIONSHIPS BETWEEN
VARIOUS INDUSTRY - SPECIFIC

EXTERNAL CONDITIONS
AND

3(A) COMPATIBLE
PROCUREMENT OPTIONS

3(B) EXPECTED PERFORMANCE
AOAINST COMMON CRITERIA

r SHORTLISTED POTENTIAL PROCUREMENT SYSTEMS 1
(e.g.: THREE POSSIBLE PROCUREMENT SYSTEMS IN ORDER
o f p r e f e r e n c e) - each containing a compatible combination

of appropriate options from each sub-system
. (i.e. from within the WP, FG. PM, SM, CC sub-systems) .

I
.APPROPRIATE PROCUREMENT SYSTEM
(i.e. recommended options in WP. FG.

PM. SM, CC sub-systems)

APPROPRIATE OPERATIONAL SUB SYSTEMS
(e.g.: strengthened communication sub

systems/ planning and scheduling, monitoring
and control sub-systems, co-ordination, quality*,

safety • to complement chosen procurement
systems and address any special problems

ABBREVIATIONS

CC - CONTRACT CONDITIONS FG - FUNCTIONAL GROUPING
PM - PAYMENT MODALITIES SM - SELECTION METHODOLOGIES

„ WP - WORK PACKAGING
K.cy:
I - USER INPUTS
I, - MODE LUNG PRESENT PROJECT PARAMETERS
12 - CHECKING WHETHER ANY PROJECT PARAMETERS (INTERNAL OR EXTERNAL CONDITIONS) COULD CRITICALLY

affect the effec tiv en ess o f c e r t a in pr o c u r e m e n t o ptio ns (These are temporary input requirements at
the *F' interfaces, which will be later replaced by additional knowledge base modules)

IJ - RE • CHECKING THE COMPATIBlLmES AND ANY POSSIBLE SIDE-EFFECTS OF THE SHORTLISTED PROCUREMENT
OPTIONS

 EXPERT SYSTEM BOtrNDARIMS

F - FOR FLTURE KNOWLEDGE BASE DEVELOPMENT

Figure 3.3 Proposed model of decision support system for optimising procurement protocols
and complementary operational sub-systems as identified by Kumaraswamy et al. [KumOO]

Source: Kumaraswamy et al. [KumOO]

62

3. Construction Procurement

3.7.4 Procurement using E-Commerce Systems

The E-commerce systems that have emerged in recent years for construction material

procurement have become e-trading market places, through which manufacturers,

suppliers, agents and purchasers can buy and sell construction materials [Kon04]. E-

commerce technologies enable electronic trading of goods and services, online delivery

of digital content, electronic fund transfer between bank accounts, invoicing, generation

of receipts for goods bought or sold, confirmation of payments, online sourcing, and

procurement [HarO 1].

These E-commerce systems are owned and managed by individual manufacturers,

suppliers, agent companies and application service providers [Kon04]. However the

construction material information in these individual information systems is limited and

the information systems are isolated with no interaction between them [Kon04].

Using an E-commerce system for construction materials, different kinds of information

can be shared such as material information, supplier information, manufacturer

information, buyer information, agent information, information on the amount of sales

for different materials, buying patterns, buyer’s comments on products and services

[Kon04]. Many organisations use e-Commerce systems when doing business [Kon04].

E-Commerce systems provide an environment for direct communication between

buyers and suppliers and an expanded market place for doing business [CheOl]. Online

construction material trading markets are readily accessible to buyers and are not bound

by geographical limitations. A buyer can quickly locate a desired product using a key

word search or by browsing through the categories and sub-categories. E-Commerce

usually provides a larger variety of products with different ranges, sizes and style and

does not suffer limitations such as limited store space [Kon04]. Direct communication

between a buyer and suppler eliminates middlemen and reduces procurement costs

[Kon04]. Organisations such as Home Depot and Lowe's in the US construction

industry utilise E-Commerce in their retail business. They are also developing B2B

solutions so that information between customers, stores, suppliers and employees can be

shared [Kon04].

63

3. Construction Procurement

3.7.4.1 Limitations of E-commerce

IT/IS is playing an important role in linking together different systems and sub-systems

and enabling the flow of information to effectively manage the procurement process.

However this network of information systems does not provide enough support for

enabling new business models in which suppliers have more control of their data. These

information systems also do not provide tools for managing information pertaining to

product or material specification effectively. An important requirement of new or

emerging business models is to enable virtual collaborations, where data models of the

virtual environment can be shared between the participants. The existing technological

options used in the construction industry enable linking of information systems to share

data but the option of sharing data models by creating virtual environments is not

widely used. According to Kong et al. [Kon04] E-commerce systems for construction

material procurement serve two crucial functions: supplying construction material

information and facilitation of transactions and trade. They further identify that some E-

commerce systems can be owned and operated by individual suppliers, manufacturers or

agents and a buyer usually has to visit more than one E-commerce system to procure all

the necessary construction materials.

Different E-commerce systems usually adopt individual methods of publishing and

managing information about construction materials. The web sites adopt different

methods for searching and displaying information and use different attributes for

construction materials [Kon02]. There is heterogeneity in the way a similar type of

information is managed by different suppliers. This also creates a problem for buyers as

they have to remember and maintain a list of web addresses and understand the

semantics and navigation methods of each web site to find the right kind of material

[Kon04]. This is a time consuming process for the buyers. From a seller’s point of view,

the E-commerce system they are using is closed, which means they cannot provide

information from other E-commerce systems and therefore comprehensive market

information for making key decisions on production and distribution cannot be made

using a single system [Kon04].

Web based e-markets provide contractors with more business opportunities and a

greater selection of suppliers, however, it has also created a challenge for contractors as

64

3. Construction Procurement

they have to manage a large amount of electronic information [Dze05]. Construction

companies provide information on a large number of products via a single web site. But

a contractor may not find all the required products in a single web site. For procuring all

the materials required, a contractor may have to visit a number of web sites. Since

product information is supplied individually by the construction companies on their web

sites, it is difficult for a contractor to make a comparison of different products and

choose the best product to meet project constraints.

“There are many limitations with the current use o f IT in construction. The IT tools that

are used are standalone systems, many o f which were originally designed for the

engineering design/production process.” - Betts and Clark [Bet99a].

MDSSF can address these issues, since it enables sharing of product data using a

subscription based approach, which allows sharing of data models with the suppliers so

that they can create product representations in their systems using a single, agreed

format for data sharing. This addresses the issue of heterogeneity. By using a single data

representation for data sharing a large amount of product information from different

suppliers can be integrated and presented to the buyer or contractor in a coherent

fashion. In this way all the information from several suppliers can be presented via a

single system so that the contractor does not have to visit several different systems to

find product information. The structure of MDSSF’s data model is described in Section

6 .2 .

3.7.5 The E-Union Framework

E-Union framework [Kon04] provides value-added services by enabling information

sharing between E-commerce systems for construction material procurement. In this

framework, for the purpose of inter-communication and information interchange, a

number of different construction material trading sites are joined together by an

application provided in their information system. The framework enables a buyer to

access material information at other E-commerce sites by using one of the E-commerce

websites [Kon04]. The framework links together all the participating E-commerce

systems using an E-Union server which acts as a data centre for collecting information

from its members and passing it to requesting members [Kon04]. The presence of

65

3. Construction Procurement

frameworks such as the E-Union demonstrates that there is a need for such data sharing

systems in the construction industry. There are similarities in the challenges the E-

Union and MDSSF frameworks are trying to address. Both systems address the issue of

information sharing within the construction industry. Important features of the E-Union

framework are explained in greater detail in chapter 4 where the two architectures are

compared and contrasted in greater detail through their architectural features.

3.7.6 Keyword Searching for Products

Dzeng and Chang [Dze05] propose a learning model which provides a mechanism to

improve search effectiveness, when searching for construction products using keywords

on websites. This mechanism guides a user’s search using three approaches: correction,

specification and extension. The correction guide corrects misspelled or misused words.

The specification guide constrains the search by adding words such as “AN D ” to

keyword phrases or by replacing a keyword with a more specific term. The extension

guide extends the search criteria by adding keywords such as “OR ” or by suggesting

keywords for subsequent searches. [Dze05]

3.8 Chapter Conclusions
This chapter identified the role information and technology plays in the construction

supply chain to enable its various processes. We looked at the importance of

procurement in the construction industry and how information systems can be used to

improve procurement planning. Approaches of information sharing and product

procurement, ranging from traditional paper based systems to modem systems which

use computer-based technologies to provide users with quick access to information and

perform procurement related activities were also identified. Based on the arguments

presented in this chapter, the MDSSF data sharing architecture has the potential of

providing benefits to construction industry practitioners by presenting up-to-data

supplier data in an integrated way and in real time. In this the MDSSF can also act as an

important support tool for existing systems and can be integrated with existing

procurement systems. The MDSSF should not be seen as replacing existing

procurement systems. With this objective, we believe that the scope of information

sharing for product procurement can be improved by bringing about collaboration of the

main actors involved in the process of product procurement via the MDSSF data sharing

66

3. Construction Procurement

architecture. The next chapter presents a review of information sharing models which

provide information to users in an integrated way from different types of information

sources which use different approaches.

67

4. Information Sharing in Distributed Environments

4. Information Sharing in Distributed Environments

4.1 Introduction
There is an increasing requirement to make information more readily available for sharing

from various sources via a single system using integration techniques in a structured way so

that it is readily usable. The traditional approach is a federated database system with

mediator based information integration systems or architectures, which provide

mechanisms for information sharing but have a limited scope since the users need to have

prior knowledge of the information sources they wish to access. The data sources which are

integrated or federated usually have interoperability issues due to various types of

heterogeneity. Alternatively the dynamic and open environments of the World Wide Web

(WWW or simply web) provide access to a large number of heterogeneous information

sources in different formats. Keyword based search mechanisms provided by internet

search engines allow users to locate required information. However it is still a time

consuming task even with the aid of search engines to retrieve related information from a

given domain. We need a domain focussed search technique which enables its users to

access relevant information from the available data providers and integrate the resulting

data. This technique should take advantage of the traditional federated and other

information integration approaches, the current information sharing approaches using the

web (and its associated technologies and protocols), and provides information to user using

an agreed format so that it can be readily analysed and used by users for decision making in

the given domain. The application domain for which a solution is being designed has a vital

impact on the choice of the federated architectures [Con99]. In this research the specific

domain is provision of product information from a large number of product suppliers to

contractors to aid procurement related decision making.

The MDSSF is a database-centric information sharing architecture which federates a large

number of product supplier databases to present product information to contractors in an

integrated way based on a common data model (CDM). In this chapter the author presents a

review of information sharing models which provide information to their users in an

68

4. Information Sharing in Distributed Environments

integrated way from different types of information sources using different approaches. In

order to highlight the novel features of MDSSF, 40 different information sharing systems

covering different areas and several schema integration approaches or methodologies were

reviewed. The features of the information sharing models researched are categorised into

14 different criteria and are presented in tabular format (see Appendix 3). This chapter

reviews the key features of the information sharing and integration approaches to identify

their scope and functionality in the light of the MDSSF’s domain specific requirements.

The information sharing models are analysed in the context of the author’s present research

only. The reader is encouraged to refer to the corresponding information sources

(publications or websites) for further and fuller details.

The chapter is divided into a number of sections. Each section groups related information

sharing models together and collectively identifies their strengths or key features from the

perspective of the MDSSF information sharing model and also justifies why such features

are applicable or not applicable to MDSSF based on the requirements it aims to address.

We also identify key features in some models which strengthen this research. Section 4.2

provides a brief summary of the need for sharing information in autonomous environments.

Section 4.3 describes the role of information mediators in integrating data from different

sources. This section also identifies the role of resource wrappers, data model and query

languages, ontologies and knowledge bases which address various information sharing

issues. Section 4.4 provides a review of schema integration based approaches for

information sharing and identifies some of the different schema integration methodologies

described in the literature. Section 4.5 reviews federated database systems and federated

information systems for information sharing. Section 4.6 identifies Grid based approaches

to information sharing, and Section 4.7 reviews other systems not fitting into these

categories of information sharing models. Finally in Section 4.8 conclusions are drawn.

4.2 Sharing of Information in Autonomous Environments
The past two decades have seen a phenomenal increase in availability of information from a

variety of autonomous sources, because of its use in various information related activities in

different industry sectors. The rise of the internet is also an important contributing factor

69

4. Information Sharing in Distributed Environments

which has led to the availability of information on a large scale. As identified in Chapter 3

the widespread use of information by different business organisations to gain competitive

advantage has elevated the role of information from a mere enabler of process to a strategic

resource - something which is indispensable to a modem organisation in an information

economy. However availability of information from different sources also gives rise to a

number of challenges. This increasing amount of information is available but in

heterogeneous ways conforming to different formats and requires the support of different

languages and/or tools for its access or manipulation. Different sources presenting

information in different and isolated ways makes it difficult to analyse information using

integrated and standard means.

An important challenge is how to view information available from different heterogeneous

sources in an integrated way to derive benefits from it. This information integration

challenge also brings other challenges with it such as how to resolve different types of

structural, semantic and other forms of conflicts so that the information can be presented to

the user in an integrated way when it comes from several different autonomous and

heterogeneous information sources. Sharing of information in autonomous and distributed

environments is a key element of this research. However, in this research an approach to

information integration is not considered when providing an integrated view of information

from several autonomous sources, due to the use of the common data model (CDM) by

product suppliers. This provides product information in a standard way based on pre

defined criteria and therefore makes the MDSSF a federated information system for

homogeneous databases. However understanding the information integration challenge is

important to this research as it reveals the obstacles to information sharing and why some

of these obstacles do not arise in the novel architecture of the MDSSF. Research efforts in

this area have largely been focussed on establishing standard ways based on standard

criteria, language and tools to enable interoperability in these heterogeneous environments.

4.3 Information Mediators
Mediators are software modules which enable “intelligent and active” use of information

by presenting data from various sources in a useful way by using techniques such as

70

4. Information Sharing in Distributed Environments

abstractions, transformation and integration to aid decision making [Wie92]. They are used

to integrate heterogeneous information sources [Pap95]. Wiederhold [Wie93] presents a

three layer architecture for intelligent integration of information (13) using mediators. The

objective of the architecture is to assist end user applications “with information obtained

through selection, abstraction, fusion, caching, extrapolation, and pruning o f data”

[Wie93]. A fundamental step to achieve intelligent integration of information is to address

the issues of heterogeneity when bringing together information from several sources

because “joining heterogeneous data is essential when trying to generate information"

[Wie93]. Mediators together with wrappers address various types of heterogeneities

including structural, semantic and other forms of conflicts to provide integrated access to

heterogeneous information sources including those which are semi-structured and

unstructured. Table 1 (see Appendix 3) describes various features of the 19 mediator and/or

wrapper based systems reviewed as part of this research. Column 16 of Table 1 provides a

short description of how these systems handle heterogeneity within their environments.

According to Tomasic et al. [Tom98] an important advantage of a mediator based

architecture is that different specialised components handle different aspects of the system

and user requirements independently [Tom98] by providing common standards.

Additionally mediator based architectures also specialise in providing information from

related data sources (for example, TSIMMIS [Gar97] and DISCO [Tom98]) and thus

address the schematic and semantic issues of a given domain. They provide location

transparency to information sources managed by different data providers [Pal03]. In order

to access information from several sources mediators divide user queries into several sub

queries - one for each information source and then integrate the query results from

information sources before sending it back to the user. Mediators also process queries over

integrated data representations [Tom98]. All these features lead to a flexible and extensible

system.

4.3.1 Information Integration Using Mediators

From the perspective of this research understanding the concept of a mediator based

architecture is important because this architecture provides a mechanism to access several

71

4. Information Sharing in Distributed Environments

autonomous information sources in an integrated way. The MDSSF approach also provides

integrated access to several autonomous product supplier databases. However mediator

based architectures also address certain issues which are not required for the MDSSF

approach of information sharing. Mediators are used in information sharing environments,

where intelligent integration of information is required because “data is obtained from

many diverse and heterogeneous resources” [Wie93]. Therefore intelligent integration is

the combination of heterogeneous data by resolving various types of conflicts and

mismatch between data elements and presenting the results to the user in a readily usable

form. For example, an important step in information integration could be fusion of objects.

This process identifies semantically equivalent entities retrieved from different information

sources for the purpose of semantic integration [Pap96a]. Section 4.4 discusses the problem

of integrating information from heterogeneous sources (based on schema integration

approaches) in detail and identifies some of the approaches described in the literature to

address this issue. Out of 40 systems surveyed, 15 supported information integration or

integrated access using mediators or provided “mediator-like ” [Pal03] or mediated access

to heterogeneous resources as identified in Table 1. Information mediators have been

implemented in many different ways to suit different application domains and several

different designs of information integration have been proposed. However the fundamental

concept behind all these approaches is the same, namely integration of information or

provision of integrated access to diverse sources and making heterogeneous systems

interoperable in order to present information in a readily usable form. Table 1 identifies the

key features of these information sharing approaches, their domain of operation, key

implementation/middleware technologies, how they resolve different types of conflicts and

other features of the mediator based information sharing approaches.

4.3.2 Resource Wrappers

In mediator based information systems, mediators accept a user query and decompose it

into many sub-queries one for each information source [Gar99]. These sub-queries are then

sent to individual information sources via their wrappers. The mediators access data

through resource wrappers, which combine or integrate data retrieved through several

wrappers and provide applications/users with an integrated view [Pap96]. Wrappers are

72

4. Information Sharing in Distributed Environments

commonly used to hide heterogeneity at the data source level and provide a standard

interface. Wrappers provide a standard set of operations or a CDM to information from the

underlying heterogeneous information sources so that they can be conveniently accessed in

a uniform manner. Wrappers which are also known as translators [Pap96] also provide the

functionality to convert data from different sources into the CDM of the system which

corresponds to an agreed or desired format. One exception here is the resource wrappers of

the BiodiversityWorld (BDW) [Pah06] [Pah06a] system which do not convert data into the

CDM of the system but hide data heterogeneity by using specialised data types within its

environment. The system provides tools at the client side to deal with heterogeneous data.

Wrappers perform query and data transformation in order to deal with different query

languages and individual data sources [Tom98]. In different systems wrappers are

implemented or used in different ways. The TSIMMIS [Gar97] uses wrappers for

converting user queries into data source specific queries. In order to address data source

heterogeneity and describe the functionality of the underlying data sources the DISCO

[Tom98] system provides a wrapper interface which supports an “algebraic machine o f

logical operators”. When implementing a new wrapper the DBI (Database Implementer)

chooses a subset of algebra (capabilities of wrapper) to support. The DBI also registers the

specifications of the capabilities of the wrapper such as the subset of the algebra it supports

to aid mediators when queries are posed. The COIN [Bre97] framework also provides

wrapper interfaces to information sources so that they can be accessed using a uniform

protocol. Table 1 (Column 16) provides a short description of wrapper functions in several

systems which use wrapper-based techniques.

4.3.3 The Data model and Query language

Almost all of the 40 systems or architectures reviewed and presented in Table 1, 2 and 4

(except the Grid based systems in Table 3) provide access to heterogeneous data sources

via a CDM. The Grid based systems provide a standard mechanism for accessing

heterogeneous data sources and not necessarily a CDM. For example the workflow based

BDW [Pah06] [Pah06a] system uses a datatype approach to encapsulate heterogeneous

data. The OGSA-DAI [Atk05] [Ogs07] framework provides standard perform documents

operations to access different relational databases available in the Grid environment. On the

73

4. Information Sharing in Distributed Environments

other hand the XML [XML07] based systems reviewed (in Table 1) such as MIX [Bar99],

XML Media [Gar99] and XML Data Integration System [Alm04] use XML as the CDM

and XML based query languages. The mediator based systems use a mediator language and

its associated data model to provide data from heterogeneous sources based on the given

structure and semantics of the middleware layer. The CDM and the associated query

language provide a standard mechanism and an interface to users to view information from

different sources without the need to know the native data model and query language of the

individual information sources. The CDM of mediator architectures helps to achieve

integration of information from several heterogeneous information sources by resolving

different types of heterogeneity. In some cases the CDM approach also serves additional

purposes. For example the CDM and query language of TSIMMIS [Gar97] supports a rich

collection of structures, handles missing information in an information source and also

provides meta information about the heterogeneous information sources it supports. The

common query language, in addition to querying data sources also enables joining of

different mediators to provide additional functionality. In the case of the COIN [Bre97]

framework its logical inference based context mediation approach provides a common

vocabulary and a mapping which the individual data elements of different sources refer to.

The DISCO [Tom98] system uses common standards at the middleware layer to provide

query optimisation facilities to solve mismatches between the DISCO system and

underlying data sources and a mechanism for defining cost of operation in terms of time,

tuples produced, size of data returned in bytes and the number of distinct attribute values.

The SIMS [Are93], [Are97] system uses a semantic data model to describe the application

domain and to help users determine which information sources contain relevant data.

Column 14 of Tables 1, 2, 3 and 4 identifies the CDM of the various information sharing

models reviewed as part of this research.

4.3.4 Ontologies

Ontologies represent concepts in the form of classes, relations and functions which have

agreed definition and relationships among them in a given domain [Gru91], [Gru93]. A

number of approaches reviewed use ontologies to aid information retrieval, processing and

sharing. For example the SIMS [Are93], [Are97] system provides an application domain

74

4. Information Sharing in Distributed Environments

ontology which specifies the terms and relations users can use to query information

sources. The InfoSleuth [Bay97] system is designed to address information sharing in

open and dynamic environments where there is no centralised management and a request

for information can be represented in generic terms. Therefore the system uses ontologies

to provide a concise, uniform and declarative description of semantic information about

information sources which is used by broker agents to semantically match a user’s

information needs with the available resources. The Carnot system [Woe93], [Sin97]

which is identified as one of the pioneers of an ontology-based approach to interoperation

relates different database schemas to a common ontology to establish semantic relations

between schemas for the purpose of interoperability. The XML data integration approach

proposed by Lehti and Frankhauser [Leh04] uses the Web Ontology Language OWL

[Bec04] as a global schema and mapping language for integrating multiple heterogeneous

data sources. The approach identifies how the semantic relationship features provided by

OWL can be used to map heterogeneous data sources to the common global schema and

how the reasoning facilities of OWL can be used to check the consistency of these

mappings.

4.3.5 Knowledge Based Information Sharing Systems

Knowledge based systems differ from traditional DBMS, in that they provide rule-based

processing services which are triggered when users invoke certain methods [Su95]. They

are characterised by rich representational structures, inference and reasoning mechanisms,

deductive rules and integrity constraints for efficient management and access to knowledge

bases and concept descriptions [Myl96]. Out of 40 systems surveyed, 8 use knowledge

bases or knowledge based or reasoning techniques to aid information management for

information sharing. The Infomaster [Gen97] system uses a knowledge base for storing

rules and constraints to describe information sources from which data is retrieved and to

perform data translation to effectively answer user queries. HERMES [Sub95] is a system

for semantic integration of information from heterogeneous data sources and reasoning

systems. DIKE [Pal03] provides support for building inter-schema knowledge by providing

support for extracting knowledge patterns. This then aids the derivation of useful and

complex relationships between concepts in two or more input databases to establish data

75

4. Information Sharing in Distributed Environments

semantics. In the SPICE [JonOO], [Xu02] system the Common Access System (CAS)

knowledge repository provides information on which databases to query based on a user’s

requests. In the COIN [Bre97] framework the context mediators resolve semantic conflicts

among heterogeneous systems through comparison of contexts which are associated with

data sources engaged in data exchange. This context based mediation uses logical

inferences which are stored as context knowledge and provide a common knowledge

structure for the COIN queries and this aids resolution of semantic conflicts. SIMS

[Are93], [Are97] uses a knowledge representation system to describe domains holding

information in information sources. This covers structure and contents. In SIMS a

knowledge representation model is required to identify the content and structure of the

information sources and to determine complex relationships between information requested

and data available from various sources before queries are made. Additionally the SIMS

system integrates information from both knowledge bases and databases. The knowledge

discovery methods of the Carnot [Woe93], [Sin97] framework are used to infer “patterns

and regularities ” (for consistency purposes) from the enterprise information sources using

knowledge discovery tools. The framework also provides a knowledge base for storing

commonsense knowledge of specialised domains, which is then used to establish

relationships between different databases. Another knowledge based tool called KRBL

(Knowledge Representation Base Language) is used to represent and access ontologies.

HODFA [Kar95] framework uses a knowledge directory to maintain information about

processing requirements, which is used to transform heterogeneous information systems

onto a homogeneous environment.

4.3.6 Section Summary

“One o f the main difficulties in supporting global applications over a number o f localized

databases is to cope with heterogeneities o f these systems. These systems were not

originally designed to facilitate any cooperation and there is no general model for

interoperability among such isolated software systems. Should these systems exist under a

homogeneous environment, global applications built upon a common set o f tools and

services can be developed much more efficiently.” - Karlapalem et al. [Kar95].

76

4. Information Sharing in Distributed Environments

Ontology based approaches show that ontologies can be used to establish relationships

between different concepts to aid global users to view information in an integrated way, by

aiding the resolution of semantic mismatches or grouping semantically equivalent concepts

together. An important reason to use ontology based approaches is to address heterogeneity

problems which build up over time in an information system’s life, as administrators or

local users have autonomy to customise a system according to their needs. Although it is

important that local users have autonomy so that they use the system according to their

needs, this feature implemented at a local level poses difficult challenges at the global level,

where information from several autonomous sources is required for global decision making.

Knowledge based approaches are also required for integrated information retrieval in

environments with little or no centralised control or in heterogeneous environments.

Knowledge based systems provide reasoning mechanisms to support intelligent retrieval of

information for a user query by providing reasoning and inference capabilities. They

provide several benefits as identified in the systems reviewed. It can be inferred from

Section 4.3.3 that even though information sharing systems operate in heterogeneous

environments, it is extremely important to integrate these systems through a common

platform, so that standard mechanisms can be used to access information from all sources

despite heterogeneity. Therefore in most of the systems surveyed, a common data model

and common query language approach, or other common techniques are used. In fact the

models use a variety of techniques to tackle heterogeneity - wrappers, ontologies,

mediators, knowledge and schema integration (see Section 4.4) to achieve the goal of

integrated access via standard means.

WebFINDIT [Bou00][Bou94] describes an approach to information sharing by creating

coalitions (a group of databases storing information pertaining to a common domain of

information) and linking them via service links. The WebFINDIT approach to sharing

information is appropriate, if a number of web-accessible databases are willing to be linked

via the service links. However in MDSSF service links cannot be established between web-

accessible supplier databases, because product suppliers are business rivals and do not wish

to share their sensitive product information with other competing suppliers on the grounds

of privacy and protection of trade secrets. In WebFINDIT, a query can navigate through a

77

4. Information Sharing in Distributed Environments

number of coalitions via service links to find relevant information. This is also not

applicable in MDSSF, as there are no links between product supplier databases. The

architecture of the WebFINDIT System, is not suited to MDSSF as it is not extendable as

“the number o f participating databases in the coalition is usually very small” [BouOO]. In

contrast, the MDSS System incorporates in its federation a cluster of machines in a Grid

network to access a large number of web-accessible supplier databases simultaneously. In

their paper [BouOO] have 19 service links for 13 databases grouped into 4 coalitions. We

believe that an increase in databases and coalitions in this model will bring about a higher

increase in service links which are not only difficult to manage but are using a less efficient

technique to access information from a large number of databases.

In MDSSF the need to establish relationships between different concepts does not arise, as

the product supplier databases do not interoperate with each other. Additionally different

product suppliers use the same data model, therefore there are no semantic conflicts. Also

since the MDSSF is based on a CDM the issue of addressing heterogeneity does not arise.

All approaches surveyed use a common data model at the middleware level to provide

access to heterogeneous resources via standard means. MDSSF also uses a CDM, but it is

not required at the middleware level because product suppliers already provide information

to the federation users in the CDM of the federation. Ahmed et al. [Ahm91] recognise that

“One approach to reduce the number o f mappings between diverse data systems is to define

a common data model and language”. This means data conversion techniques are not

required in MDSSF. This fact has also been identified by Tomasic et al. [Tom98] who state

that: “There are several approaches to handling the source capability problem. One

approach is based on standardization - all underlying data sources are required to have

the same functionality or conform to the same communication standard\ Because of the

use of a standardised and homogeneous data model, a standardised communication

mechanism and a loosely coupled approach no changes are made to the components of the

MDSSF architecture (at the middleware level), that access data from several data sources.

The assumption of a CDM for the federation allows product suppliers to manage their

product data, provides an opportunity to design a novel database federation model which

uses a Grid based search mechanism at its core in place of wrappers and mediators to

78

4. Information Sharing in Distributed Environments

aggregate information from different product supplier databases without worrying about

heterogeneity issues.

4.4 Database Interoperability and Schema Integration
Database interoperability is an important research issue and is applicable in environments

where data held in more than one database needs to be interoperated to provide

information. Distributed and federated database systems support such database

interoperability. This is achieved by integrating data available from participating databases

and this process creates a virtual database which is logically defined but not physically

centralised [Par98]. The virtual database is created by integrating schemas of databases

into a schema of the virtual database called the global schema. In the process of database

integration a single unified description of schemas called an integrated schema (or global

schema) is created from the set of input schemas. A global schema provides a mechanism

enabling access to data from several data sources in an integrated way, where the integrated

access is achieved via the mapping information, which associates an integrated schema

with the input schemas [Par98]. Parent and Spaccapietra [Par98] identify three steps for

developing an integrated schema (Figure 4.1):

• The Pre-integration step transforms input schemas and makes them more

homogeneous syntactically and semantically. The outcome of this step is

representations of input schemas in the same data model called the common data

model (CDM) of the virtual database.

• Correspondence identification At this stage identification and description of inter

schema relationships is undertaken to establish commonalities between databases.

Two databases have something in common when the real world facts they represent

have common elements or are interrelated in some way.

• Integration of input schemas is the final step which resolves inter-schema conflicts

and unifies corresponding items to create an integrated schema.

79

4. Information Sharing in Distributed Environments

local heteroeeneous schemas

O

A
DBA

local homogeneized schemas

Interschema correspondence
assertions

schema transformation

correspondence investigation

schema integration

transform ation
rules

sim ilarity
rules

integration
rules

Integrated schema and
mappings

Figure 4.1 The global schema integration process identified by
Parent and Spaccapietra [Par98]

Source: Parent and Spaccapietra [Par98]

Several different approaches to schema integration were studied with the aim of

understanding how they integrate data so that their potential could be assessed for use in

this project. A summary of these approaches identifying the key features and schema

integration strategies adopted is presented in Table 5 (see Appendix 3). Some of the

important reasons for schema integration identified by Batini et al. [Bat86] include different

perspectives of user groups in modeling the same object, equivalence among constructs of

the model, incompatible design specifications, common concepts which have different

representations, and semantic and structural incompatibilities. Batini et al. [Bat86] provide

a comparison of 12 different methodologies for database schema integration with different

solutions to schema integration problems. For the sake of brevity they are not listed here.

However fundamental problems identified by them, and addressed by these schema

integration methodologies apply to the resolution of semantic and structural differences in

schemas.

The schema integration strategies reviewed are used in different contexts and scenarios to

enable database interoperability in heterogeneous environments. The aim of the review was

to identify reasons for schema integration. The need for schema integration arises when

80

4. Information Sharing in Distributed Environments

legacy data having different representations are to be presented to the user in an integrated

way conforming to a set of rules for its uniform analysis and interpretation. The schema

integration approaches identified in Table 5 (Appendix 3) address these issues in various

ways. Although the aim of this research is not to present a new schema integration

approach but to understand existing approaches, a study of these is necessary as this helps

understanding of how to build information sharing systems. The second reason for this

work was to distinguish between information sharing models, which use schema integration

approaches and the MDSSF approach to information sharing, which does not use a schema

integration approach, in order to highlight the MDSSF’s novel architecture.

Of the 40 different information sharing systems reviewed 14 systems or architectures (see

Appendix 3 Table 2 Column 10; and Table 1 Column 3) supported a schema integration (or

data or view integration) approach for providing integrated access to heterogeneous

resources. Although the mediator based systems support data integration, they generally do

not use schema integration techniques because mediator based systems support structured,

semi-structured and unstructured resources. The two XML and mediator based information

sharing models (XML-based Mediation Framework (XMF) [Lee02] and the XML Data

Integration System [Alm04]) support XML based schema integration to create a global

schema. This aids query formulation and retrieval of data from appropriate sources and

provides a homogeneous view over heterogeneous XML data. Another XML based system

MIX [Bar99] uses XML DTDs (Document Type Definition) of mediator views (which are

effectively mediator schemas in XML), in an integrated way for construction of queries in

an intuitive way [Bar99]. MVDS [Duw96] system provides multiple integration views to

support integration of the same information distributed across multiple sites in various

ways tailored for different users and applications.

Schema integration is required to meet many different user requirements and the approach

chosen will vary with the aim. For example, the key concept behind the DATAPLEX

[Chu90] approach is to enable sharing of information in environments where a standardised

model for data management using a single DBMS cannot be adopted because of diverse

and specialised user requirements, which a single DBMS approach cannot satisfy, such as

81

4. Information Sharing in Distributed Environments

system constraints (for example some DBMS can only run on specialised computers) and

rapid technological evolutions. In such environments where different DBMS have to

coexist to meet specialised user requirements and retain different types of autonomies,

integration of heterogeneous databases is one of the most appropriate solutions to achieve

an integrated access to several databases. The mediator-like DIKE [Pal03] system provides

a mechanism for identification of sub-schema similarities, resolution of conflicts such as

naming conflicts (homonyms and synonyms), type conflicts and structural conflict to

establish inter-schema relations. The mediator and wrapper based Garlic [Car95] system

supports different types of information from heterogeneous information sources, therefore

it requires the approach of schema integration and wrappers to share data in a uniform

manner. A notable exception is the MRDSM [Lit85] which is a relational multi-database

management system which do not use schema integration as it provides techniques for joint

manipulation of different databases via a single query.

' ...to define a global schema over a large number o f databases should typically be at least

a very complex task. Also, users may not wish a global administrator, even i f the

distributed database may be created technically. These reasons seem in particular most

responsible fo r the lack o f distributed database systems in service, despite the large

research effort during the last decade. ” - Litwin [Lit85]

As well as the DATAPLEX, DIKE and Garlic approaches, the other information sharing

models or reference architectures, identified in Table 1 and 2 (see Appendix 3) also have

similar problems caused by the heterogeneous data models, query languages and

specialised user or system requirements which makes it necessary for these approaches to

use schema integration techniques. However in MDSSF, structural and semantic

heterogeneity does not occur in the standard data model and a common query mechanism is

adopted throughout the federation. For example, if a contractor is retrieving information for

a particular product from several sources the data providers (suppliers) will provide

information for that product only using a representation which is used by all the suppliers.

Because of the small level of heterogeneity, various types of conflicts, such as

classification, naming, semantic, syntactic do not arise in MDSSF. Lack of such conflicts in

82

4. Information Sharing in Distributed Environments

the MDSSF provided the author with an opportunity to look into novel ways of building

federated database-based information models without using schema integration techniques.

We believe this is necessary to support new business models for collaborative working, of

which the PSCD application is one example. The PSCD application provided us with an

opportunity to test the applicability and use of the MDSSF architecture in such business

models.

4.4.1 Mediator vs. Schema Integration Based Systems

An important advantage of mediator based architectures over schema integration based

architectures is that mediator based architectures provide scalability to incorporate a

growing number of information sources in dynamic information sharing environments. In

global schema integration based approaches, every time a new data source has to be added,

it may require a DBA to change the global schema and add new definitions. This can be a

challenging and hard problem to address in dynamic environments with a growing number

of data sources. This is also recognised by Lie and Pu [Lie95] in:

“As the number o f databases participating in the interoperable database system increases,

the design o f an integrated schema involving n different systems requires to reconcile an

order o f n 2possibly conflicting representations (i.e., heterogeneity in semantics or in data

formats). Such activities are time consuming and can be aggravated when incorporating

the system evolution issue with the integration strategies. ” - Liu and Pu [Liu95]

4.5 Federated Database Systems and Federated Information Systems
“Distributed databases may be either homogeneous or heterogeneous. Homogeneous

distributed databases require that every underlying database conforms to the same data

model and query language. Heterogeneous distributed databases relax this restriction and

permit each underlying database to have different data models, query languages, and thus,

different functionality. ” - Tomasic et al. [Tom98].

83

4. Information Sharing in Distributed Environments

An FDBS is a collection of cooperating but autonomous component database systems

(DBSs) [She90]. The component DBSs take part in a federation to serve the data needs of

federation users. Creating an FDBS involves resolving various issues such as data

distribution, heterogeneity and autonomy. It provides an integrated and transparent

mechanism of accessing information from a number of component DBSs for different

classes of federation users. The author investigated the existing FDBS architectures and

federated information systems to identify their applicability in the MDSSF model of

information sharing.

The two important characteristics of FDBS identified by Sheth and Larson [She90] and

applicable to the MDSSF are distribution and autonomy. In the MDSSF, product data is

distributed across several product supplier databases. Although several types of autonomies

such as design, communication, execution and association have been identified, not all of

them are presently supported because of the nature of the challenge the MDSSF aims to

address. For example the MDSSF does not support design autonomy because the MDSSF

is built on the assumption that product suppliers will subscribe to the standard PCD system

and provide product descriptions based on its constructs. Heterogeneity in an FDBS is

primarily caused by design autonomy among component databases [She90]. Since the

MDSSF provides a fully designed and implemented DBS system to the product suppliers, it

does not allow changes to its data model by product suppliers. The communication

autonomy is also restricted in the MDSSF architecture. The product suppliers do not

communicate with other product suppliers as they do not share their product related

sensitive data with their competitors. However the MDSSF supports execution and

association autonomy of product suppliers to allow them to perform local operations on

their databases without any external interference, and exercise their right to associate or

disassociate from the federation at their will. The third characteristic of FDBS called

heterogeneity is presently not applicable to the MDSSF as it does not support

heterogeneous product data representations in its environment. The homogeneous MDSSF

supports only product data representations which conform to its standard product class data

model.

84

4. Information Sharing in Distributed Environments

The author has reviewed a number of information sharing systems, which are built using

federated database concepts (i.e. they support three different characteristics - distribution,

autonomy and heterogeneity). Almost all the systems identified in Table 2 (see Appendix 3)

under the category of schema integration belong to this group and all these systems also

support data manipulation operations in addition to database access operations. However

an exception to this rule are the last two systems in this category the XML Data Integration

with OWL [Leh04] and the MVDS [Duw96] system which provides data access operations

only. The XML DATA Integration system (which supports access to data resources

accessible via the web) uses the Web Ontology Language OWL of W3C [Bec04], as its

global schema definition language. This provides semantic mapping features so that

heterogeneous data resources can be accessed using a common vocabulary. The MVDS

system supports the creation of multiple integration views to support user or application

requirements, which may need access to the same data in different ways. Another exception

to this rule is the multi-tier federated approach of the SPICE system [JonOO], [Xu02] which

does not integrate schemas, but wraps the heterogeneous taxonomic databases to a fixed

schema of the wrappers. This provides a standard interface based on a common data model

and hides database heterogeneity.

We also reviewed FDBS architectures which do not support global schema integration

(identified in Table 4 (see Appendix 3)). The federated database architecture proposed by

Heimbigner and McLeod [Hei85] is based on a loosely coupled approach which enables

information sharing between office information systems. This information sharing

approach, which unites a collection of independent database systems, is based on three

schemas: export schema, import schema and private schema. The approach allows users to

specify information they wish to share with other users via their export schemas and define

import schemas to gain access to information available from other databases (via their

export schemas). The information described using private schemas is not shared. The

MRDSM [Lit85] system is also based on a loosely coupled approach of managing

relational databases without the need for schema integration. An important objective of the

approach is joint manipulation of different databases via a single query without the need for

a global schema. The paper identifies that a global schema integration is not conducive

85

4. Information Sharing in Distributed Environments

because users are unlikely to understand all the schemas in a “reasonable” learning time

and typical users do not usually deal with all the data of an enterprise. It is also identified

that schema integration imposes additional constraints and denies users the flexibility to

model their universe according to their needs. Heimbigner and McLeod’s [Hei85]

federation approach does not support schema integration in order to minimise the role of

central authority. The federated database models proposed by Hsiao [Hsi92] [Hsi92a]

outlines five different approaches to data sharing which are largely based on database

conversion and mapping techniques to address different types of heterogeneities.

The extended schema architecture of the INFINITY [Har97] FDBS prototype is based on

not only having a CDM over local heterogeneous schemas but also a common schema

structure provided by the ISO’s standard for the exchange of product (STEP) [IS094],

[Gle89] data. In the two-step process adopted by the system, the system first achieves the

“data-model homogenized” schema (equivalent to the CDM of the FDBS [She90]) and the

second step resolves semantic conflicts to create a “schema-structure homogenized”

schema. The extended schema architecture approach of INFINITY [Har97] strengthens this

research by demonstrating that there is a need for a CDM and common schema structure

approach in order to achieve flexible access to heterogeneous databases. Although both

systems use different product data standards, they are based on the similar concept of

providing access to underlying databases using a CDM approach. The MDSSF already

provides a CDM in the product class data model, whereas INFINITY uses a two-step

approach of schema integration to resolve data model and schema heterogeneities and

correspond to the STEP standard in order to create the CDM of the system. Other

distinctions can also be identified in the two approaches on the basis of MDSSF’s Grid

based search and subscription based approach.

Although the MDSSF possesses FDBS characteristics such as distribution and autonomy it

cannot be called a fully fledged FDBS, because the tasks required for building a FDBS such

as schema translation and schema integration are not required for the MDSSF approach

because of the use of a CDM. The five level schema architecture of an FDBS proposed by

Sheth and Larson [She90] integrates multiple export schemas to create a federated schema.

86

4. Information Sharing in Distributed Environments

Since MDSSF does not support schema integration, the approaches identified by various

federated systems reviewed here are not suitable for building MDSSF. Another important

task relevant to FDBS, transaction management, is also not relevant to the MDSSF, as it

provides database access operations only. The FDBS systems (and also some of the

mediator based systems, such as DIKE [Pal03]) are created to share data between

independent systems [She90], [Hei85], which is also not the case in MDSSF as data sharing

between the independent product supplier databases does not occur. From our evaluation of

traditional FDBS systems it can be concluded, that the traditional FDBS architectures lack

functionality and scope to meet the needs of new information sharing models.

4.5.1 Federated Information Systems

In recent years the concept of federated information systems (FIS) has been introduced in

research aimed at building interoperation solutions for heterogeneous and autonomous

information systems [Bus99], [Wys03], [HasOO], [Con99]. An important characteristic of

FIS systems is that they are constructed by creating an integrating layer over the existing

legacy applications and databases [Bus99]. These federated information systems can be

classified into three different types: loosely coupled information systems, federated

databases and mediator-based information systems [Bus99]. Busse et al. [Bus99] further

identify that “evolvability” of information systems is an important aspect that characterises

federated information systems. According to the definition of FIS by Busse et al. MDSSF

can be classified as a FIS to a certain extent with the Grid based search mechanism at the

core of MDSSF considered as the federation layer providing uniform access to autonomous

supplier databases. MDSSF also supports the evolution feature of an FIS as it provides a

versioning capability to describe new product data with enhanced features and

functionality. A key research area of FIS is “the systematic development o f interoperable

solutions for autonomous, heterogeneous systems covering both database sources and also

non-database information sources, providing (structured or semi-structured) files,

multimedia data, or proprietary systems’ d a t a [HasOO]. Based on the focus of FIS

research, identified by Hasselbring et al. [HasOO] and Busse et al. [Bus99], distinctions

between FIS and MDSSF can also be identified on the grounds of: interoperability (and

therefore exchange of data) between the participating supplier databases which MDSSF

87

4. Information Sharing in Distributed Environments

does not support; absence of wrappers because of the adoption of a common data model

approach; and use of only database systems product data cannot be stored in files because

of their complex hierarchical structure and interdependency.

Another class of information system identified by Busse et al. [Bus99] is loosely coupled

information systems which do not offer a federated schema. Busse et al. also identify that

loosely coupled information systems do not offer location or schema transparency.

Although MDSSF does not provide a federated schema it offers location and schema

transparency. In MDSSF contractors do not need to know the physical location of supplier

databases. They are also not required to be aware of the product class schema (which

provides mechanisms to describe different product descriptions) as product data is

presented to them in a readily usable form. Distinctions between the three types of FIS have

been identified by Busse et al. based on thirteen different classification criteria. These are

presented in the Table 6. The author has extended the table by adding an extra column in

the end, which identify the features of MDSSF, to distinguish between MDSSF and other

FIS types.

88

4. Information Sharing in Distributed Environments

Classification
criteria

Loosely coupled
Information
Systems

Federated
Databases

Mediator-based
Information
Systems

MDSSF

Types of
heterogeneity
addressed

Only technical and
language
heterogeneity

All, except query
restriction
heterogeneity;
schema integration
difficult for
schematic
heterogeneity

All. None. Based
on common
data model

Loss of
autonomy?

Execution
autonomy

Execution
autonomy;
notification of
schema changes

Execution
autonomy

Design and
communication

Transparency Language Location, schema
and partly language

Location, schema
and partly language

Location,
schema and
language

Kind of
component

Structured Structured Any Structured

Access methods Query language Query language Any Web browser
Access
restrictions

No No Yes Yes

Write access? Yes Yes No No
Tight vs. loose
integration

Loose Tight Tight Loose

Kinds of semantic
integration

Collection Collection and
fusions

Collection, fusion1,
sometimes
abstraction

Collection

Necessary
metadata

Technical,
infrastructural

Logic, technical,
semantic

Logic, technical,
semantic

Technical,
infrastructure

Bottom-up vs.
top- down

Not applicable. Bottom-up Top-down Not applicable.

Virtual vs.
materialised

Virtual Virtual Virtual Virtual

Evolvability High Low High High

Table 6: Types of FIS as identified by Busse et al. [Bus99]
Source: Busse et al. [Bus99]

(Note: The last column of MDSSF in the table is added by the author for comparison)

The table identifies the distinct features of MDSSF, in comparison with other FIS. These

distinct features are required to address the needs of new information sharing models whose

conception has been made possible by industry requirements, information explosion,

ubiquity of the internet and development of Grid technology (see Section 4.6) which

1 Fusion is the process which identifies semantically equivalent entities retrieved from different information
sources [Pap96a].

89

4. Information Sharing in Distributed Environments

provide ways to access different types of resources (computational and software) for

analysing and processing large scale information outside the boundary of information users

or providers such as contractors and product suppliers.

4.6 Grid-based Systems
Information access and its management is an important area of research when creating new

models of information retrieval and sharing to meet the needs of business paradigms whose

conception has been made possible by the emergence of network technologies such as the

Grid and Web Services. An important aspect of the Grid concept is “coordinated resource

sharing and problem solving in dynamic, multi-institutional virtual organizations” [FosOl].

Middleware infrastructure available via the Grid environment enables the creation of

distributed and scalable virtual organisations (VO) for sharing and utilising resources in a

particular domain [Fos02]. Web Services are a paradigm enabling computing in distributed

and heterogeneous environments [Fos02]. Research in the area of Engineering Federated

Information Systems (EFIS) has recognised “GRID” computing as an emerging area for

building new models of data exchange [Wys03].

This research creates a Grid enabled solution to federate a large number of autonomous

databases, where the Grid layer provides a scalable solution to search a large number of

databases in real time in response to contractor requests for required product information,

available from a large number of supplier databases. In this context, understanding Grid

technology and the benefits it can provide is important to this research. A novel feature of

this research is large scale information retrieval, information processing and analysis in the

Grid environment and sharing via collaborative means and in an integrated way, in

federated database environments with participants such as suppliers and contractors

belonging to different organisations. In such complex information sharing environments,

Grid computing is perceived to be an important way, to provide the necessary infrastructure

to support such information sharing models, which bring together actors from several

autonomous organisations. Grid environments provide additional functions to the existing

functionalities of the Internet. As well as high speed networking, it offers features such as

enhanced security infrastructure including single sign-on capability, security between

90

4. Information Sharing in Distributed Environments

consortia, simple setting up of networks to support VOs, distribution of computationally

intensive jobs across multiple distributed processors and resource information sharing. As

part of this research the author reviewed various Grid based systems, middleware and

toolkits, which provide different functionalities for enabling information processing in

distributed environments. Table 3 (see Appendix 3) identifies four such Grid based

systems.

European Data Grid's Data Management Work Package [Eur03] [Gag02], provides a

mechanism to access relational databases in a Grid environment with the aid of the Spitfire

System [Spi03] [Bel02]. The Spitfire project is optimised to support common database

operations from the Grid environment. It allows simple access patterns to a database where

access is required to a number of rows in a lookup operation. This approach is useful when

data is retrieved from one or a small number of database systems. Spitfire does not address

the issue of data retrieval from a large number of autonomous databases.

The OGSA-DAI [Atk05], [Ogs07] is a middleware which allows access to relational and

XML databases in a Grid environment. Using the tools provided by the middleware a

standardised mechanism can be created to access different RDBMS. The MDSS component

of MDSSF accesses product suppliers’ databases in a Grid environment. Although the

facilities provided by the OGSA-DAI middleware could have been used for MDSS, the

approach and means of accessing databases via OGSA-DAI was not found suitable for

MDSSF. Based on our evaluation of OGSA-DAI’s framework against MDSSF

requirements, the approach was found to be complex, adding an extra layer of complexity

without giving any significant benefits. In the OGSA-DAI framework requests for data

from a given data resource are specified in perform documents which identify database

operations, the framework should perform on behalf of the client. The framework provides

a set of pre-defined activities, which are specified in perform document. These activities

identify the SQL queries, the user wishes to execute on databases. In MDSSF, the user does

not specify queries via SQL statements. The user identifies the products for which

information is required and then SQL statements are executed as part of stored procedures

at remote supplier databases. Additionally in the OGSA-DAI framework, each Data

91

4. Information Sharing in Distributed Environments

Service Resource component (which is part of the OGSA-DAI core), supports a single data

source only. Therefore providing access to a large number of databases via the Data

Service Resource component would require setting up a large number of instances of these

components and creation of a large number of perform documents to query a large number

of supplier databases in real time. This would be a complex approach to meeting the

MDSSF requirements. Although the framework provides mechanisms for Data Service

Resource components to access multiple data resources at a time, this access is provided via

a JDBC interface, which is also not suitable for our approach. In fact, access to RDBMS in

the OGSA-DAI framework is only provided via JDBC interfaces. This is appropriate when

the databases are available in a Grid environment, whereas in MDSSF the product

databases are not available in a Grid environment. In MDSSF product databases are

subscribed to and managed by independent product suppliers, therefore a JDBC based

approach is not appropriate because of security, scalability and interoperability reasons. In

MDSSF access to supplier databases is provided via web services, which allow invocation

of underlying database operations in a platform independent way. The MDSS Grid (which

is the core of the MDSSF) only has database access operations for accessing a large number

of databases because the supplier databases are not part of the Grid environment, whereas

the OGSA-DAI approach is more suitable to scenarios where databases are available as part

of a Grid environment.

The workflow based GeneGrid [Kel05] [Jit05] system provides access and integration of

disparate and heterogeneous applications and datasets from across the globe through the

creation of a ‘Virtual Bioinformatics Laboratory’. It provides access to resources and tools

to biologists interested in the development of antibodies and drugs. The Biodiversity World

(BDW) system [Pah06], [Pah06a] is also a workflow based system which provides access

to biodiversity resources in its Grid environment for analyzing biodiversity patterns. In

addition to the Grid based middleware and systems identified in Table 4 (see Appendix 3)

other Grid based systems such as myGrid [Gob03], BASIS [Gil05], SEEK [Sek06] and

Chimera [Fos02a], were reviewed, in order to learn about the data sharing approaches these

systems use and the functionalities they provide. Clear distinctions can be drawn between

these approaches, which provide integrated access to diverse resources and the approach

92

4. Information Sharing in Distributed Environments

used in MDSSF. However for the sake of brevity these approaches are not elaborated here.

In recent years the portal based approaches have also become popular for providing access

to Grid environments via web browsers. Pegasus [Sin05], GENIUS [Gen07] and P-Grade

[Gra07] are examples of popular portal based approaches.

4.6.1 USECA Properties

According to Ling and Pu [Liu95] large scale, dynamic and interoperable database systems

should have Five properties, referred to as USECA (Uniform access, Scalability, Evolution,

Composability and Autonomy) which are critical for a system to be useful. The USECA

properties proposed by Liu and Pu [Liu95] and Lee et al. [Lee97] in the DIOM system are

applicable in the MDSSF model of information sharing because MDSSF has the potential

to be deployed in large-scale and dynamic environments. MDSSF provides “uniform

access ” to a large number of supplier DBS using a single system. The architecture provides

“scalability ” by supporting a growing number of suppliers who wish to join the federation

using a subscription based approach. It also provides Grid technology support, so that a

large number of supplier databases can be searched in real time in response to a

contractor’s query. The architecture supports an “evolution” property by providing

evolvable data structures to meet the changing requirements of suppliers to manage new

and evolving products, whilst maintaining backward compatibility to old and existing

products. The DIOM architecture supports a “Composability ” property to manage the

incremental design and construction of interoperable interfaces so that data could be

integrated in many ways to produce different kinds of integrated systems. Since MDSSF

does not support interoperation between supplier DBSs the property of “composability”

has been considered from a different perspective in our research. In the MDSSF

environment, the Product Class data model allows composition of different types of product

classes to manage different types of product data whilst retaining similar interfaces and

without the need of making changes to the underlying data structures. Because the

underlying data model does not change the interface constructs for viewing and sharing

data also do not change. Finally in MDSSF the “autonomy” property is supported as the

autonomous product suppliers retain full control of their product data.

93

4. Information Sharing in Distributed Environments

4.7 Other Information Sharing Systems
In addition to the mediator based and schema integration based systems other information

sharing systems were reviewed, which provide access to information from different

resources in their environment. Two important systems which fall in the context of this

research and which also provide some similar features are the E-Union [Kon04] framework

and the Information Manifold [Lev96] system. These are briefly described here.

E-Union [Kon04] provides a "platform” for information sharing between E-commerce

systems for construction material procurement by linking different E-commerce systems

together. Its key framework feature is that it allows linking of different material trading

sites so that a buyer can also view information provided by the other websites, when

accessing a website which is part of the E-Union framework. Although both MDSSF and

the E-union frameworks bring together construction supply chain actors for procurement,

the systems use different approaches. The E-union framework is suitable for environments

where partnering relationships exists between different suppliers because it allows inter-

organisational information sharing. However MDSSF is built on the concept that product

suppliers do not share their product information with their competitors on the grounds of

privacy. Therefore it does not allow inter-organisational sharing of information. MDSSF

links different construction supply chain actors from a different perspective. It can be

perceived as a service provider whose services can be used by any autonomous contractor

or supplier (by subscribing to the PCD data model in the case of a supplier). Whereas the E-

union framework only caters to a group of organisations who wish to combine their

systems together to aid buyers to view information using a single website. It can also

promote products available at other websites.

Information Manifold (IM) [Lev96] provides uniform access to more than 100 structured

but heterogeneous information sources, many of them available via the web. There are

interesting similarities between MDSSF and IM, however the approach adopted is different.

The IM system demonstrates the applicability of information sharing models in real world

scenarios. The important similarities and differences between the two approaches are now

discussed.

94

4. Information Sharing in Distributed Environments

In both systems relational data models which also have object oriented features are used in

order to describe the information content in greater detail. For example, in both information

entities can be defined in terms of a class with a super class and a set of attributes. In IM a

subclass “UsedCar” belongs to the superclass “Car” and has simple attributes such as

Model, Year and Category. However in MDSSF, in order to describe complex construction

industry product data, the Product Class Database (see chapter 5) provides different types

of specifications so that a large amount of information about a given entity (and its different

versions) can be specified hierarchically. Hence, unlike IM, MDSSF handles complex

attributes. In IM, the data model of relations and classes is used as a schema (known as

“world view” - a collection of virtual relations and classes) against which a user poses

queries without needing to create an integrated schema. A similar approach of posing

queries by using the Product Class schema without an integrated schema is adopted in the

MDSSF. However unlike the “world view” schema (which does not store any data) the

Product Class schema of MDSSF is used to store actual product data by suppliers and not

to describe the contents of the information sources only. Since “world view” does not store

any data, IM requires an additional step to relate the contents of information sources to the

classes, attributes and relations in the world view, whereas in MDSSF this step is not

required. Another fundamental and conceptual difference lies in the challenges, MDSSF is

trying to address. MDSSF is built on the assumption that the product information will be

retrieved by contractors or potential buyers. Therefore it is incumbent on product suppliers

to actively participate in the federation (by subscribing to the Product Class data model) in

order to gain the opportunity to sell their products. However the objective of IM is to

provide integrated access to heterogeneous data sources using standard methods.

4.8 Chapter Conclusions
Several different information sharing models or reference architectures were reviewed,

which had several different approaches to sharing information in an integrated way when

the information is available from different autonomous sources. Several schema integration

approaches were also reviewed to understand their scope and applicability to new

information sharing models such as MDSSF. Various different methods have been

suggested in the literature covering different approaches, such as ontologies, knowledge

4. Information Sharing in Distributed Environments

bases, mediators, wrappers, CDM, schema integration, CIS, FDBS, FIS and Grid-based.

These address different types of conflicts and enable interoperability of information

systems and/or provide information in an integrated way for different purposes. Although

all these surveyed approaches provide useful techniques, none of the information sharing

models or reference architectures (which use these approaches) fully met the requirements

set for MDSSF’s model of information sharing. MDSSF shares certain features with other

models, but there are also clear distinctions, which highlight the novel features of the

MDSSF. These novel features (see Section 7.4.2), such as its subscription based approach,

its Grid based distributed database search, its virtual environment which allows suppliers to

compete with each other, its cooperation model, its model of aggregating information from

several databases without the need for schema integration techniques, allow MDSSF to

meet the requirements identified for the new model of information sharing in construction

industry domain.

96

5. The Product Classes

5. The Product Classes

5.1 Introduction
Chapter 2 introduced the concept of product classes which are created using the Product

Class Database (PCD) system. The prototype PCD system of the PSCD application

supports the creation of product classes. The aim is that these will be utilised by the

product suppliers to provide the description of their products in the Supplier Database

(SD) system. This chapter explains product classes at the conceptual level. The

architecture of MDSSF system components which enable creation and subscription of

product classes; and creation of production information based on product classes is

presented in chapter 6. Section 5.2 describes product classes and the benefits they

provide. Product classes are composed of one or more different specifications which

conform to individual specification types. Section 5.3 identifies different specification

types that were developed as part of this research to support the description of product

features. Section 5.4 provides a description of the versioning support that is required for

the evolution of product classes and their specifications. In section 5.5 a brief summary

is given of some of the important competing product modelling/management systems or

reference architectures used in the AEC industry. These provide similar features to the

product class concept. Finally Section 5.6 presents chapter conclusions.

5.2 Product Classes
Product classes enable the creation of standard product definitions which can be used by

product suppliers to provide descriptions of products, they can supply to consortia

members or contractors. These product definitions are called product classes. The

creation of product classes is a basic task which must occur before products can be

described in the common data structure of the MDSSF by product suppliers in their SD

systems. It is anticipated that product classes will be created by industry knowledgeable

specification designers, who have a full understanding of the features that are used by

product suppliers to describe their products. Alternatively product classes based on the

standards that are used industry wide or agreed by the user community can be created.

In this respect product classes provide a benefit to product suppliers by describing their

products using the industry defined or agreed standards and storing these standard

descriptions in structured format in their SD systems.

97

5. The Product Classes

A product class can be defined as an entity made up of a number of specifications. The

specifications can be of several types and are created as part of creating a product class.

The specifications correspond to pre-defined specification types and provide a

mechanism for defining the properties of a product. In other words a product class is a

template having a set of pre-defined attributes, which can be used by product suppliers

to describe actual products and their features. Each product has a corresponding product

class. For example a supplier dealing in furniture can subscribe to product classes such

as the Chair product class, Filing Unit product class and Desk product class. A product

class can be used to create descriptions of a number of products conforming to it in the

SD System. For example, using a Desk product class, description of different kinds of

desks (products) such as roll top and office desk can be created in an SD System.

Product classes thus defined can be used to create product descriptions in SD systems

by product suppliers who give values for the specifications defined for the product

class. In this way product descriptions can be rapidly created once product classes are

available.

To enable all product suppliers to adopt a standard mechanism for supplying product

information in their databases, the notion of the product class was adopted. An

important advantage of product classes is that they provide product suppliers with a

readily available means to describe their product features in a standard and structured

way. The concept of product class thus addresses the heterogeneity problem in MDSSF

by providing a standard way for exchanging product data. It is envisaged that product

suppliers will subscribe to the product classes that correspond to the products they

supply. It is also expected that industry standards will be developed and standard

criteria established by the industry actors for product class creation and their evolution.

The product database of the original PSCD application provides support for describing

features of products by assigning specifications to product descriptions. However this

support is limited to assigning atomic specification only to product descriptions. The

construction industry products usually have complex specifications which cannot be

described using simple attribute-value constructs in a database system. Hence, in

redesigning the PSCD application and to provide product suppliers with a facility to

describe their complex product features, which goes beyond simple atomic descriptions,

98

5. The Product Classes

new specifications were introduced, as part of this research, to further the development

of the product class concept. These specifications are described next.

5.3 Composition of Product Class
Defining a product class requires the definition o f its specifications, as a product class is

made up of a number of specifications. The specifications can conform to one of several

specification types available in the PCD system, and are created as part of the product

class design process by specification designers. These specifications are created from

pre-defined specification types, and this provides a mechanism for defining the

properties that a product class can have. For example, a window product class can have

specifications (properties), such as width, height, weight, wood type, panel shape and

glazing configuration. A particular product can conform to only one product class at a

given time. A product conforms to a product class, when it uses the specifications

defined for the class to store product information.

Designing a product class requires the creation of its specifications from pre-defined

specification types. These specifications are independently created and are then

assigned to the product class being designed. A product class is thus made up of a

number of individually and independently created specifications. From a technical

perspective this design model provides an important advantage. Since specifications are

individually created, they can be assigned to more than one product class. This enables

specification reuse and rapid product class development, as they are not required to be

created during each product class design process. A specification designer creates a new

specification only if it is not already available in the PCD system, otherwise an existing

one is used. For example, if a unit specification such as width already exists in the PCD

system, it can be assigned to table, chair or other product classes, which require such a

specification, when they are created.

Figure 5.1 shows the five different specification types identified as part of this research.

This also includes the unit specification whose concept was adapted from the product

database of the original PSCD application. As identified in Figure 5.1, some

specification types can be further decomposed into a number of sub-specification types.

Decomposing specification types into sub-types, enables the description of complex

99

5. The Product Classes

product attributes/features. The type of specification used for a product depends upon

the product feature description requirements and the degree of complexity involved.

Simple features can be described using the unit specification type, whereas complex

features can be described using the other specification types, described here.

Value

ValueValue

Table Spec

List Specification

List Specification

Unit Specification

Product Class

Table SpecificationSpecification GroupUnit
Specification

Product Class
Specification

Sub-Specification
Group

Sub Product Class
Specification

List o f Column
Specifications where
each column
specification has list
o f values relative to
other column
specification values.

Figure 5.1 -The Product class and its various specification types

5.3.1 Unit Specification

The UnitSpecification specification type holds a single value. For example a

specification Manufacturer's Name (which corresponds to a UnitSpecification

specification type) holds the name of the manufacturer, as its value. The value of a

specification can also optionally correspond to a measurement unit (such as centimetres,

inches and degree) which identify its size, quantity and degree.

5.3.2 Specification Group

This SpecificationGroup specification type is used, when a number of different

specifications need to be grouped. The need for grouping specifications may arise when

a number of specifications, as part of industry standards need to be addressed as a single

unit, or when they are commonly used across more than one product class. Grouping

specifications also makes the development of new product classes easier, as it supports

the benefit of reuse and rapid assignment of grouped specifications to new product

classes (using a single operation) which saves effort and time. This is particularly

100

5. The Product Classes

important when creating complex specification groups, which group several different

specifications together. A specification group can be made up of individual

specifications, sub-specification groups, product class specifications, list specifications

and table specifications. The example (see Figure 5.2) shows a simple specification

group. The name of the specification group is Performance Criteria (which corresponds

to SpecificationGroup specification type) o f an air conditioning fan coil unit and is

made up of a list specification (see Section 5.3.3) and a number of unit specifications.

Performance Criteria
Electrical Supply: 240v, lph, 50 hz.
Chilled Water Flow Temp: 6 Degrees C.
Chilled Water Return Temp: 12 Degrees C.
External Static Pressure:_____ 30 Pa.__

Figure 5.2 An example showing a Specification Group

5.3.3 List Specification

In Figure 5.2, the Electrical Supply list specification corresponds to the

ListSpecification specification type, which contains three values with their

corresponding measurement units. List specifications are used to describe product

features which have multiple values. List specifications can also be used to provide

product suppliers with a list of pre-defined options from which one option can be used.

For example, in a furniture equipment product class, the wood type list specification,

can contain values, such as oak, pine and cherry.

5.3.4 Table Specification

A TableSpecification specification type comprises of a number of column

specifications, where each column specification has a list of values. Specification values

in each row are part of a collection, where each value describes some aspect of a

product. A table specification can be used in a product class to represent technical

details of the product in the form of rows and columns. Figure 5.3 is a table

specification representing specification values of a series of fan coil units.

101

5. The Product Classes

dmtab'
HMffi S arin 300

GUM
Ml

MIRO*
U U tft/S)

MAX DUTY MAIAME MtQFF12X JtfMUU
HHIMG

WHY
(KWh

\ N X
<A|

VMM.
CTffllp
WJTYfCW)

mma
COOUNG

duttocw)

< TODU.
COOUNG

D u n r p w }
COOUNG

m
30 110 1.71 1.45 1.56 1.35 1.80 0.72

32 115 1.77 1.50 1.64 1.42 1.85 0.74

201 35 130 1.95 1.67 1.85 1.60 1.99 0.78

37 140 2.07 1.77 1.99 1.72 2.08 0.80

40 165 2.39 2.06 2.35 2.03 2.33 0.06

Figure 5.3 An example showing product attributes arranged in rows and columns. These
can be represented in PCD by using the Table Specification specification type.

5.3.5 Sub-Product Class Specification

The SubProductClass specification type is in fact a complete product class. It is named,

in order to distinguish between hierarchically defined product classes. For example a

Chair product class can be made up of product classes such as Caster, and Frame. Here

the Caster product class is a complete class in itself but is called a sub-product class in

the context of the Chair product class. In the construction supply chain certain

individual items, (even though they are part of a fuller or complete product) can be

manufactured/supplied individually by different suppliers. These items can be supplied

directly to contractors or to other intermediaries, who then assemble (by procuring

different items from different suppliers) or value-add the items. The mechanism of

assigning a product class to another product class helps the description of complex

products whose individual parts or components may be supplied by different suppliers.

This allows the description of products in an SD system, where information about

certain product components is available from other suppliers or other external sources.

SubProductClass specification types also enable product class reuse. For example a

Caster product class can be used across a number of different Chair product classes. A

sub product class can be made up of one or more specifications of each type. There is no

limit on how many levels deep, a product class can be defined. For example a Door Set

product class can be made up of Door Closer, Door Lock, and Door Handle sub

product classes, where each of these sub-product classes, (in the context of the Door Set

product class), itself can be complex entities made up of a number of different

specifications.

102

5. The Product Classes

5.4 Versioning of Product Classes
New products or a new range of existing products are introduced by suppliers on a

regular basis, as they enhance features and functionality. These changes to products

cannot be defined within the scope of the existing product classes - as they cannot

support these extra features. Hence, with the evolution of the products, the product

classes need to evolve as well. It is therefore necessary to allow new versions of

existing product classes to be created. A new version of product classes allows the

product suppliers to describe new products with enhanced features.

Versioning of a product class, requires versioning of the different specifications, which

a product class is made up of. As a product evolves through its lifecycle only some of

its features, parts or components may change whilst other may remain unchanged in the

new version. Hence only those specifications that support the extra features or changes

need to be versioned. This allows reuse of existing specification versions together with

the newly created specification versions, when designing new versions of existing

product classes. Versioning of product classes not only facilitates rapid creation of new

product classes, but also provides backward compatibility. For example a list

specification Wood Type with version ID 1.0 can have a number of values such as

Alder, Cherry, Fir, Hemlock and Mahogany. Once Wood Type version 1.0 list

specification is created, it should remain persistent throughout its lifetime. There could

be more than one Door, Window or other furniture equipment product classes using the

Wood Type version 1.0, list specification as part of its composition. When a need is

identified to expand the Wood Type list specification, a new version can be created with

enhanced values.

5.5 AEC Industry Information Modelling/Management

Systems/Standards
In the AEC industry there are various modelling standards, languages, information

reference models and data exchange formats available for information exchange

between different industry actors. A modelling language provides syntax and semantics

to create data representation of real world objects [Lui93]. The EXPRESS modelling

language developed by the International Standards Organisation (ISO 10303 Part 11)

[IS094a], [Wil98] as part of the STEP (STandard for the Exchange of Product data)

103

5. The Product Classes

[IS094], [Gle89] is based on an entity-attribute modelling approach and provides a rich

set of facilities for defining complex data types [Nin97] [Lui93]. However this

modelling language only supports creation of abstract data models as opposed to the

implementation of specific data models which are created using a database design

process [Nin97]. The IRMA (Information Reference Model for Architecture,

Engineering, and Construction) [Lui93] is a framework for conceptual modelling and

provides mechanisms for identifying relationships between entities such as products,

activities, resources and participants in a building project via its modelling constructs.

IRMA can be used to represent generic concepts and high level relationships between

the entities. GARM (General AEC Reference Model) [Gie89] provides generic

modelling concepts for defining product models in the AEC industry. The International

Alliance for Interoperability (IAI) provides the AEC/FM (Facilities Management)

community with a model for exchanging information among project participants

throughout the lifecycle of a facility, via the Industry Foundation Classes (IFCs)

[Wix98] and the aecXML [WenOl] schemas. IFCs provide data elements to represent

parts of buildings, processes and relationships between them which can be used to

create building models, that can be shared among project participants. aecXML supports

B2B transactions over the internet via a common data format. A number of

implementations of IFC specifications are also available from leading software

companies to meet end user requirements.

The product class concept enables modelling of product attributes, so that product

suppliers can provide product descriptions, using a standard and structured approach

enables interoperability and enhances collaboration between different industry actors.

The concept of product class is developed and enhanced in this research to support the

data management needs of the PSCD application. Similarities and distinctions exist

between the product class approach and some o f the existing approaches identified in

this section. However these similarities and distinctions are not explored in this

research, because they do not fall within its scope. This research explores the creation of

a new information sharing architecture (MDSSF) to address the procurement

challenges, by providing support for various new distinctive features identified in

Section 7.4.2. And in this research the MDSSF information sharing architecture has

adopted product modelling techniques, based on the product class concept. Hence the

104

5. The Product Classes

product class approach of modelling product attributes can be considered, as one of the

competing approaches for product data management in comparison with other

modelling standards, languages, information reference models and data exchange

formats used in the AEC industry.

5.6 Chapter Conclusions
This chapter described product classes and the different types of specifications which

have been developed to aid product suppliers create their product descriptions in their

SD systems. Versioning support is developed to enable description of new products

with enhanced features. A short summary of some of the existing product

modelling/management approaches was provided to familiarise the reader with some of

the competing information management approaches used in the AEC industry. This

chapter provided a conceptual view of the product class concept. The next chapter

describes how these concepts are implemented in the PCD system. In the next chapter

we also show how the MDSSF architecture addresses the challenges identified in

Section 1.2.

105

6. The MDSSF System Architecture

6. The MDSSF System Architecture

6.1 Introduction
The contributions to the PSCD application were mainly in its data management area and

in the Grid-enablement of the application. The data management area were created to

aid industry specification designers create standard mechanisms for storing product data

(in the form of product classes) and to aid product suppliers who by using these

standard mechanisms could manage product data within their databases. The need to

adopt standard mechanisms, identified in Chapter 1, was to increase the collaboration

between different industry actors, such as suppliers and contractors at the user level and

to achieve interoperability at the system level. The research in this area aims to address

the third challenge identified in Section 1.2.

This research also investigated how the advanced distributed computing facilities

provided by Grid technology can be used in construction industry domain and to

support procurement activities. This led to the creation o f distributed database search

services called MDSS (Multiple Database Search Service) which uses Grid middleware

provided by the Globus toolkit, from the Globus project [Glo09] - the de facto standard

for open source Grid computing infrastructure [Glo09a]. MDSS lies at the core of the

PSCD application (see Figure 2.1) and provides scalability support, when accessing

product data from several supplier databases. The research in this area aims to address

the first and second challenges, identified in Section 1.2, i.e. to provide an integrated

means of accessing a large number of supplier databases for up-to-date information

about products available from external product suppliers. This allows information, such

as product specifications, availability, delivery time and cost, to be taken into account in

procurement planning.

Research efforts in the design and development of the data management and the Grid

based database search components of PSCD identified this need, and led to the

development of a novel federated information sharing architecture based on the

federated database concepts called MDSSF - the main contribution this research. A

distributed information sharing system/application cannot be realised without a well

defined architecture that identifies its various system components. These components

106

6. The MDSSF System Architecture

provide necessary features and functionalities, and interact with each other to address

user requirements. For example Sheth and Larson [She90] have proposed various FDBS

architectures and identified various multi-DBMS/FDBS systems that correspond to

these architectures. In this respect the components of the PSCD application (particularly

the data management and database search components) are a manifestation of the

MDSSF architecture. This chapter describes the novel architecture of MDSSF through

its components. The proposed architecture is novel because it provides certain

architectural features and functionalities to achieve information sharing between

product suppliers and contractors, which address some of the construction industry’s

procurement challenges (see Chapter 1).

MDSSF’s data sharing architecture brings together autonomous contractors and

suppliers. Through the architecture product suppliers share their product data with the

contractors. The architecture does not allow competing suppliers to see each other’s

data. The architecture is created by utilising features of FDBS architecture, such as

distribution of data and autonomy of local database systems (DBS) [She90] and

coupling them with Grid technology to provide scalability support. The federation

model adopts a service oriented approach (using Web Services [Gra02] technology) to

provide flexibility in retrieving data from the databases of several suppliers and share it

with contractors. Section 6.2 describes the architecture o f the data management

components of MDSSF for product data management in the PSCD application. Section

6.3 describes the architecture of the Grid-enabled MDSS which provides a mechanism

to perform a distributed database search in this Grid environment by invoking and

searching databases of several product suppliers to retrieve the required product

information. Section 6.4 provides a brief description of the software development

process used to develop the components of MDSSF’s architecture as part of the PSCD

application. Section 6.5 presents the chapter conclusions.

6.2 Product Data Definition and Management in the PSCD Application
Product data definition and data management area of the PSCD is concerned with how

the mechanisms of product data definition, its description and management can be

achieved within the application and at the supplier’s end. It incorporates an

infrastructure comprising the Product Class Database (PCD) system, the Supplier’s side

107

6. The MDSSF System Architecture

PCD (SPCD) system and the Supplier Database (SD) system. This section describes

these system components at the architectural level. As part of system testing in Chapter

7 (see Section 7.2) we describe how a product class can be created and subscribed; and

how product suppliers can describe product information in their SD systems by means

of an example.

6.2.1 The Product Class Database (PCD) System

The product classes are created in the PCD system, which implements the product

classes described in Chapter 5. PCD is a database centric tool which allows its users, the

independent and knowledgeable industry specification designers to create different

types of specifications, as part of creating a product class by using the interfaces and

application modules of the PSCD front-end web application. The PSCD web application

calls the stored procedures of the back-end PCD system1 to perform the actual task of

creating product classes and its specifications. These specifications provide a

mechanism to define the different attributes a product may have. For example a product

class corresponding to furniture equipment, such as a chair, can have a number of

specifications, such as width, height, weight, chair description and wood type (in the

case of a wooden chair). A product supplier, who supplies furniture equipment, can use

these specifications to describe the product features by inputting the required product

data or use the feature’s default specification values as part of a product’s data

description in their database. Thus the PCD system stores information about product

classes, product categories and product specifications to facilitate the description of

actual products by product suppliers. It enables specification designers to create new

product classes or new versions of existing product classes, when required. It supports

the creation of different types of product classes to describe different types of products,

with the aim that these product classes will be used by product suppliers to describe

products in their databases. This will allow searching of these products by contractors.

In MDSSF, it is a requirement that all product suppliers adhere to the schema of the

PCD system to describe products in their databases. Hence, the schema of the PCD

system acts as the common data model (CDM) of MDSSF.

1 The PSCD web application was designed and implemented by other members of the COVITE team and
is not a part of author’s research.

108

6. The MDSSF System Architecture

The PCD system is implemented using the SQL Server 2000 RDBMS [Mic07a]. Figure

6.1 is the implementation level database diagram (logical database design) of the PCD

system. In the figure entities are linked using relationship edges (lines), where the entity

with a “key” endpoint denotes a parent entity and the entity with “figure-eight” endpoint

is a child entity to establish parent-child relationships (i.e. one to many relationship).

The PCD system provides several different stored procedures, which enable the creation

of a product class and its various specification types. These stored procedures aid the

web application modules of the PSCD application to perform database operations. All

the data insert operations are handled by these stored procedures, because of the degree

of complexity involved. The stored procedures help to maintain integrity, consistency

and dependency of data in the PCD system. For example, creating a product class

requires insertion of data into more than one table and therefore a specified order for

inserting data is followed, to ensure that the PCD system’s integrity constraints are not

violated. Section 7.2.2.1 demonstrates how a product class can be created in the PCD

system. Some of the important features of the PCD system are:

a) Create new product classes and specifications,
b) Create new versions of existing product classes and specifications,
c) Reuse existing product classes and specifications when creating new product classes,

and,
d) Build complex product classes consisting of different types o f specifications.

109

6. The MDSSF System Architecture

Category _SubCategory

' ^ SpeclficattooGrOliverston

T ableDefinition 10

SpecificationCategory _ProductCias!

ProductCiass

ListVersion

PCOSpecifkationValue

SpecificatmnGroup

Category

Figure 6.1 Database diagram of the PCD system

6.2.1.1 M odular Approach of PCD

In order to manage the complexity of describing a large number of product features via

their specifications, the PCD system adopts a modular approach, which allows the

creation of a product class independent of its specifications. This means a product class

or its specifications can be created separately and in any order. For example a designer

may wish to create a product class first, then create its specifications, and then link them

together, or vice versa. A modular approach also provides the benefit of product class

and specification reuse. A particular specification can be linked to more than one

product class. Linking specifications in this way enables creation of complex product

classes, which provides a way of describing different product features via specifications.

The support for linking specifications is provided in PCD by using a number of stored

procedures which perform specification assignment operations. This enables creation of

a parent-child relationship between a product class and a specification. For example, a

given version of a product class, such as a Chair can be assigned a unit specification

called height. Section 1 2 2 2 describes assignment of product class specifications to

110

6. The MDSSF System Architecture

product classes by means of an example. Once a relationship between a product class

and a specification is established, it is expected to remain persistent throughout the life

time of the product class. PCD supports the creation of such relationships as part of the

product class or specification creation process. This means that a new specification can

be created and linked to an existing product class, as part of a single process by

invoking a single stored procedure. The system also supports the creation of such

relationships as separate processes to enable specification reuse. This allows the linking

of existing specifications to existing or new product classes. For example, an existing

specification such as height (previously linked to the Chair product class) can be linked

to a new product class, such as Table in the furniture equipment category. The

following sections explain some of the important entities of the PCD system identified

in Figure 6.1 and its other architectural features.

6.2.1.2 Product Class and Product Class Version Entities

The ProductClass entity stores information about a product class, such as its ID

(identification number), product class name and product class description. This is the

highest level entity in PCD, which stores the standard name of a product. The name of a

product class corresponds to the actual product name. Since it is the highest level entity

in PCD, it only provides a general description of the product class. The specifications

that a product class may have are therefore not directly linked to this standard product

class entity. The specifications of a product class are linked to its specific versions and

the information regarding product class versions is stored in the ProductClassVersion

entity. This is because a particular class can have several versions (one-to-many

relationship) and each of these versions may support different types of specifications.

As described in Chapter 4, versioning of a product class enables its evolution, which

allows product suppliers to create product descriptions with enhanced features. PCD

provides stored procedures for creating new product classes and new versions of

existing product classes. Creating a product class requires generation of a new product

class ID and then insertion of values (specified by the specification designer) into the

ProductClass and the ProductClassVersion tables. Every time a new product class is

created, its default version (with version ID 1.0 or the ID specified by the designer) is

automatically generated so that different types o f specifications can be assigned to it.

I l l

6. The MDSSF System Architecture

6.2.1.3 Versioning Support in PCD

PCD provides a three level hierarchy to support the definition of a product class and the

definition of its specifications. These definitions supported by the entities

ProductClassDefinition, SpecificationGroupDefinition, List Definition, and

Table Definition (see Figure 6.2) identify in complete detail the individual specifications

a particular product class version is composed of (in the case of a product class), and the

individual sub-specifications a particular specification is composed of (in the case of a

specification). In other words, the definition of a particular version of a product class

identifies the versions of its specifications which are linked to it. The definition of a

particular specification version identifies the sub-specification versions linked to it in

greater detail. PCD supports the versioning of both the product class and its

specifications. Hence in order to enable versioning of a product class and its

specifications the three level hierarchy is introduced and implemented in PCD (Figure

6.2). This is a reduced version of the PCD database diagram identifying this hierarchy.

As shown in the figure, a product class {ProductClass entity, level 1) can have several

versions {ProductClassVersion entity, level 2) and each of these versions, via the

ProductClassDefinition entity are linked to different specification versions (such as

ListVersion, SpecificationGroupVersion and TableVersion entities, level 3). Hence a

particular product class can have different versions, and each of these versions can

support different types of specifications. The three level hierarchy also applies to all the

specifications defined in PCD, except the lowest level unit specification

{UnitSpecification) which does not require versioning support, as it only supports a

single value when defined under a given product class. As illustrated in Figure 6.2, the

ListSpecification entity is linked to the ListVersion entity, which is then linked to the

ListDefinition entity. This also occurs for the TableSpecification and the

SpecificationGroup specification entities. A sub-product class specification is not

shown in Figure 6.2, because it is a complete product class assigned to another product

class. Hence a sub-product class specification is a product class (i.e. a top level entity),

which can have further specifications. A product class is called a sub-product class

specification in the context of the product class to which it is assigned. For this reason

there are two links (i.e. two parent-child relationships, see Figure 6.1) between the

ProductClassVersion and the ProductClassDefinition entities. The first link identifies

the definition of a particular version of a product class and the second identifies a sub

112

6. The MDSSF System Architecture

product class specification (like any other specification) linked to the particular version

of the product class. For similar reasons there are two links between the

SpecificationGroupVersion and SpecificationGroupDefinition entities. These extra links

(and other entities) are not shown in the database diagram (Figure 6.2) as it only

presents a simplistic view of PCD, to illustrate the three level hierarchy mechanism. The

three layer hierarchy implemented in PCD enables the creation of different product class

versions and in this process provides a mechanism to support product class versioning.

The system also supports assignment of different specification versions to product class

versions to allow creation of complex product classes, which can manage different types

of product features. Section 7.2.2.4 describes versioning support in MDSSF databases

by means of an example.

ProductClass

Figure 6.2 The reduced version of the PCD System identifying the three level
hierarchy implemented in the system

6.2.1.4 Table Specification and Associated Entities

In PCD, the support for describing product features in a tabular format when product

features can be organised in the form of rows and columns, is provided by the

TableSpecification, TableVersion and a number of Table Definition entities. PCD

provides a mechanism for storing product data in a tabular format in pre-existing tables

such as Table Definition2 to Table Definition 10 (see Figure 6.1). For database

administration reasons, individual database tables cannot be created every time a

product data specification needs to be stored in tabular format. Giving users the

113

6. The MDSSF System Architecture

flexibility to create new database tables would also introduce different types of

heterogeneities in PCD. Hence the concept of table specification is introduced in PCD

with the aim of allowing product suppliers to describe product features (such as

technical details) in the form of rows and columns, without creating actual database

tables. For example if a specification designer requires a table specification with 5

columns, then the Table Definitions entity (in addition to TableSpecification and

TableVersion entities) is used to create the new version of the table specification having

5 columns. Thus all table specification versions which use 5 columns are defined using

the Table Definitions entity. This design is also important from an efficiency point of

view. For example a large amount of tabular data for different table specification

versions can be stored in these few pre-defined tables. In the table definition entity, each

individual row is uniquely identified and links the row to its table specification version,

which has between 2 and 10 columns. The table definition entities also provide the

facility to store table header information in addition to storing table data. Presently PCD

supports the creation of table specification versions with 10 columns maximum (see

Figure 6.1). The system does not support creation of a table specification version with 1

column, as this is a list specification version.

In addition to the ProductClass and TableSpecification entities, other specification

entities, such as ListSpecification and SpecificationGroup (and their associated entities)

enable the creation of different versions of list specifications and specification groups,

respectively. The ListSpecification entity enables the description of product features in

the form of a list and the SpecificationGroup entity groups different product class

specifications. The three level hierarchy is also implemented for these specifications to

provide versioning support.

6.2.1.5 Default Values and Measurement Units

PCD also provides a mechanism which specifies default values for a specification.

Providing default values allows the suppliers to readily select values available in PCD,

in order to describe a particular product feature. For example list specification Wood

Type can have a number of default values such as Alder, Cherry, Fir, Hemlock and

Mahogany. One of these values can be chosen by a product supplier to describe the

product feature of products such as furniture equipment. The SGDSpecificationValue

114

6. The MDSSF System Architecture

(Figure 6.1) entity stores the default values a unit specification may have, which are

grouped as part of a given specification group version. Whereas the

PCDSpecificationValue entity stores the default values a unit specification may have.

This is defined for a given product class version. The default values of other

specification types are stored in their respective specification definition entities. The

PCD system also provides mechanism to create measurement units. This information is

stored in the MeasurementUnit entity. Measurement units can be assigned to different

specification types (these links are not shown in Figure 6.1 for clarity).

6.2.1.6 PCD Category Management

PCD also provides a category management system so that product classes can be

categorised under different groups. For example, all furniture equipment related product

classes can be categorised under the Furniture category. The system also supports

hierarchical definition of categories by allowing the definition of sub-categories under

existing categories. For example, sub-categories such as Home Furniture and Office

Furniture can be created under Furniture. A product class can be assigned to a category

or sub-category. Further, PCD also supports assignment of product classes to more than

one category. This design allows, provision of links to a particular product class version

from more than one category, which lets product data be accessed from more than one

category. For example, certain types of furniture equipment can be used both in offices

and homes. Although a given furniture equipment product class is defined only once in

PCD, by providing more than one link it enables categorisation based on factors such as

product features, usage domain and target audience.

In the same way as a product class can appear under different categories, a category can

also be assigned to more than one category. For example, it is possible to assign the

category Office Furniture to the category Office, which is already assigned to the

category Furniture. This flexibility is offered by PCD with the aim of allowing

specification designers and product suppliers to categorise product classes and

categories in the most appropriate way using the factors identified above or other

factors. Figure 6.1 identifies the category entities in PCD. The two entities

CategorySubCategory and Category Super Cate gory with their associated stored

procedures enable the creation or assignment of a category to more than one category.

115

6. The MDSSF System Architecture

The entity Category SubCategory lists all the categories that are defined under a given

or specified category and the entity Category SuperCategory identifies the super

categories that are available for a given category. A general description and category

name of all the categories is stored in the Category entity. Each of the

Category SubCategory and Category SuperCategory entities are linked twice with the

Category entity. The first link identifies a given category and the second link the sub or

super categories defined for the given category. The entity Category ProductClass

enables identification of categories under which a given product class appears.

6.2.1.7 The Other Features of the PCD System

PCD provides error notification support. If input values are not specified correctly or if

database operations terminate abnormally, then the stored procedures raise error

statements to notify users of the location, where the error occurred and the error code.

The stored procedures also provide notification, if they execute successfully. Creating

product classes or specifications requires inserting values in more than one table. The

system provides transaction management support to ensure that all the database insert

operations are carried out as part of a transaction so that if an error occurs the entire

transaction is roll backed in order to avoid leaving the database in an inconsistent state.

If all database insert operations are successful then the transaction is committed.

PCD also provides an ID generation system, which prefixes a three digit code to the IDs

of product classes and specifications. This allows identification of whether an entity is a

product class or a specification by analysing its ID. For example, the three digit code of

a product class is 103. This functionality is used to assign specifications and ensure they

are correctly assigned. For example, a product class can only be assigned to a category,

specification group or another product class. If an attempt is made to assign a product

class to any other specification, then an error is raised. The three digit code helps to

identify which specification is being assigned to what specification and ensures that

only correct assignments are made.

6.2.2 Supplier Product Data Management

The specification designers create product classes in PCD with the aim that these will

be used by the product suppliers to manage product data at their side and so make the

116

6. The MDSSF System Architecture

data available to contractors via the MDSSF’s VDD (Virtual Distributed Database),

which provides a distributed database search facility (see Section 6.3). In order to

manage product data at the supplier side an infrastructure, is required which allows

product suppliers to access the product class data available locally and use this data,

which provides specifications for describing actual product features. Thus, an important

aim in developing product data management support at the supplier side, is to provide

product suppliers with a readily available way to describe product data in a structured

and standard way. In MDSSF, access to the product class data is provided to product

suppliers using a subscription based approach, in which suppliers subscribe to relevant

product classes. For example, product suppliers dealing with furniture equipment would

subscribe to the furniture related product classes available in PCD.

6.2.2.1 SPCD and Subscription of Product Classes

In order to enable subscription to product classes, a data management infrastructure was

developed for the product suppliers, which consists of two database systems. The first is

called the Supplier’s side Product Class Database (SPCD) system. This has a repository

of product classes subscribed to by a product supplier. The features and functionality of

SPCD system are similar to those of PCD. To a large extent the SPCD system can be

considered as a replica of PCD, as PCD and SPCD provide the same entities, which are

linked in the same way. However, distinctions can also be identified between PCD and

SPCD. For example, the stored procedures in PCD are oriented towards the design of

product classes, and it provides an extra set of stored procedures to assign different

specifications to new or existing product classes to produce new product classes, or new

versions of existing product classes. This feature is not available in SPCD, as it was

mainly developed to support the need to manage product classes at the supplier’s side,

so that they can be used to create product descriptions. Hence, SPCD provides

mechanisms for inserting product class data available from PCD as part of creating

product classes locally at the supplier’s side.

Using standard mechanisms to manage product data is one of the challenges addressed

in this research. It is thus a requirement of MDSSF architecture that all product

suppliers have databases, which are identical to the PCD system, i.e. they conform to

the schema of PCD as this allows product classes to be downloaded. This can only

117

6. The MDSSF System Architecture

happen if the database systems have identical schemas to PCD. Since the schema of

SPCD is identical to the schema of PCD, the product classes can be subscribed in

SPCD. Subscribing a product class can be defined as the process of downloading the

product class and specification values from the central PCD system and putting these in

the local SPCD system, which is managed and controlled by an autonomous supplier.

The subscription of product classes can be achieved using two steps:

Step 1: Download the SPCD system into the local computing environment at the

product supplier’s side and install the system by following the SQL Server 2000

RDBMS database installation process [VieOO]. By using the functionality

provided by the RDBMS, it is possible to convert the database into a file (by

performing the database backup task) which can be downloaded by product

suppliers. Once the file is downloaded the database can be restored to its original

form by performing the database restoration task in the local computing

environment. Since data in the PSCD application is managed using the SQL

Server 2000 RDBMS, all the product suppliers must use this RDBMS to manage

product data. This step needs to be performed only once, when a product

suppliers joins MDSSF.

Step 2: Once SPCD is installed in the local environment, this step downloads the

relevant product classes available from the PCD. At the data management level,

downloading the product classes can be described as a process, where all a

product class’ relevant data is inserted into the SPCD system by using the stored

procedures provided as part of SPCD. Hence, as in the PCD system, so in the

SPCD system all the database insert operations are performed using the stored

procedures. This maintains database consistency and integrity. In SPCD a number

of stored procedures are provided which enable the creation of the product classes

and their specifications which are subscribed by the product suppliers. This

process is similar to the creation of product classes and specifications in PCD (see

Section 6.2.1).

118

6. The MDSSF System Architecture

6.2.2.2 The SD System

The second database system developed as part of the product data management

infrastructure at the product suppliers’ end is called the Supplier Database (SD) system.

This database stores the actual product data. Once a product class is downloaded into

the SPCD system, product suppliers can enter descriptions of the features or

specifications of their products into the SD system by using the product classes

downloaded into the SPCD system. The relationship between the SPCD system and the

SD system is illustrated in Figure 6.3. The need for a separate database system to store

the product data occurs, because the SPCD system is designed to store only product

classes and not the actual product data, which corresponds to these product classes.

Thus SPCD identifies the specifications that a product can use, whereas the SD system

uses these specifications to store actual product information. Product suppliers usually

supply several products corresponding to a given product class. Although these products

usually have the same features, they can still be differentiated on the basis of criteria

such as colour, material used, dimension and weight. The SD system allows the

description of several products corresponding to a given product class, where each

product description can have different values from other descriptions. For example,

there can be two chair products, corresponding to a Chair product class version, with

each of the chair products possibly having different specification values for dimension,

weight and wood type. Keeping the product information separate from its product

classes also supports two important features namely the subscription of product classes

and the description of products based on product classes, which are performed

individually and independently.

119

6. The MDSSF System Architecture

Product Supplier

Product supplier
subscribes to product
classes and stores them in
the SPCD system.

Product supplier creates product
descriptions in the SD system based on
the product classes subscribed in the
SPCD system.

SPCD System SD System

Product data specifications in the SD system correspond to
the corresponding product classes in the SPCD system.

Figure 6.3 Relationship between the SPCD
and the SD systems at the product supplier end

The need for a separate database system to store the actual product information in the

SD system was identified because unlike the PCD system, the SD system does not

require a three level hierarchy to enable versioning support. Figure 6.4 is the

implementation level database diagram of the SD System. Versioning support is

implemented in SD using a two level hierarchy only as the products that are described

in the SD system, correspond to a particular version of a given product class. The

products cannot conform to a general top level product class because it has no

specifications assigned to it (see Figures 6.1 and 6.2). Specifications are assigned to a

particular version of a product class (see Section 6.2.1.2). Thus products conform to a

particular version of a product class, which identifies different types of specification to

describe its features. Hence in the two level hierarchy mechanism implemented in SD,

the top level Product entity (See Figure 6.4), provides product information, such as

product name and product description and is linked directly to the other specifications

as shown in the figure. The specifications also support the two level hierarchy

mechanism. As shown in the figure a product can have different unit specifications

(stored in entity ProductSpecification) and other specifications (stored in entities such

as ListSpecification, SpecificationGroup, TableObject and Product for sub-product

specifications). These different specifications that a product has are linked to a product

description (stored in Product entity) through the ProductDefinition entity to manage

120

6. The MDSSF System Architecture

different product feature values. Each o f these specifications (as part of a two level

hierarchy mechanism) is then linked to definition entities (such as ListDefinition,

SpecificationGroupDefmition and a number o f table definition entities) to provide

versioning support and manage different product feature values for a given product. The

unit specifications, which are stored in entity ProductSpecification are not versioned

because these unit specifications store single values only. The unit specifications that

are defined as part o f a specification group are stored in the SGSpecification entity. The

category management system implemented in SD is similar to the category management

system of PCD (see Section 6.2.1.6).

Category
©Category
©CategoryClass
CategoryName
CategoryOesc

Category _ProductClass

d ©Category
©Prod

Category _SubCategory Category _SuperCategc

d©Category
©SubCategory d©Category

©SuperCat egocy

ProductSpecification
©ProdSpec
ProdSpecName
ProdSpecValue
ProdSpecDesc
MeasUnitName
©Prod

ListDefinition
©List

' ListVaiue
' IDMeasUmt

ListSpecification
13 ©list

©ListClass
©ListVer
ListName

—
ListOesc

Product
9 IDProd

IDProdlntemal
©ProdClass
©ProdClassVer
ProdName
ProdDesc

§ §
ProductDefinition

©Prod
IDSpecGroip
©TableObj
©List
IDSubProd

TableDefmition2
IDTaWeObj A

ICfcow
CoiumnlVal V

TableDefmition3
©TableObj A

©Row
CoiumnlVal V. . . .

TableDefinition9
©TableOb)
IDRow
CoiumnlVal

— o ■

— O ■

SpecificationGroup
9 ©SpecGroup

IDSpecGroupClass
©SpecGroupVer
SpecGroupName

—
SpecGroupOesc

TableOb ject
9 ©TableOb)

©TableSpecClass
©TabieSpecVer
NunOfRows
NumOfColumns
TableObjName
TableObpesc

§1

SGSpecification
9 IDSGSpec

SGSpecName
SGSpecValue
SGSpecDesc
MeasUnitName
©SpecGroup

SpecificationGroupDefmition
©SpecGroup
IDProd
©TableOb)
©List
©Sub SpecGroup

T

TableDefmition4
©TableObj A

IDRow *
CoiumnlVal
’nar------' lUW^t

TableOefimtion8
©TableObj A

©Row
CoiumnlVal V

TableDefinition5
©TableObj A
IDRow J i
CoiumnlVal

V

TableDefinition7
©TableObj A

IDRow
CoiumnlVal V

TableOefmibon6
©TableOb) A
©Row
CoiumnlVal

TableDefinitionlO
_ ©TableObj a

 ©Row
CoiumnlVal

Figure 6.4 Database diagram of the SD System

Because o f the two level hierarchy mechanism implemented in SD, the schema does not

strictly correspond to the PCD schema. A number o f version entities, such as

121

6. The MDSSF System Architecture

ListVersion, Table Version, SpecificationGroupVersion and ProductClassVersion

identified in Figure 6.1 and 6.2 appearing in the PCD and the SPCD systems, are

missing in the SD system schema. In the SD system, the version information is provided

in top level entitites, such as Product, ListSpecification, TableObject and

SpecificationGroup. For example, the attribute IDProdClassVer in the Product entity

(see Figure 6.4) identifies the given version of a product class, which the product

conforms to. Despite differences in the schemas, which is primarily a design decision,

the SD system fully conforms to the product class concepts described in Chapter 4 and

provides mechanisms to describe product features based on product classes created

using PCD.

The SD system provides 22 entities for managing product data at the supplier’s end. As

for the PCD and the SPCD system databases, insert operations are performed via stored

procedures, which provide transaction management support to maintain data

consistency and integrity. When inserting data describing product features in an SD, it is

important that product suppliers refer to the product class data subscribed in their local

SPCD system. Presently, this reference of product class is limited to identifying product

class data using manual means (i.e. performing database select operations on the SPCD

system). The recorded product class specification information in SPCD is then used to

perform database insert operations in the SD system via stored procedures. This ensures

that correct specifications are assigned to the products in SD. However, the current

manual process is also prone to errors because a user may inadvertently insert wrong

data or assign a specification to a product, where this specification does not exist in the

corresponding product class. Further research in this area is required to develop a way

of linking product classes in SPCD with the actual products (in SD), which ensures

improved accuracy and consistency in the product description process.

6.2.3 Section Summary

The product data management infrastructure of the PSCD application uses the concept

of product classes as the underpinning way of managing product data using standard

definitions which can evolve via the versioning support. As part of this research, three

database systems were developed to support the product data management

infrastructure. Approximately 10000 lines of code have been written to create this

122

6. The MDSSF System Architecture

infrastructure. As identified in Chapter 3, the UK construction industry is highly

fragmented with large number of construction firms, most of which are small and

medium scale enterprises. Many such enterprises still do not use IT systems for product

data management, because of the complexity and cost, and make their data available

using unstructured file formats such as PDF. It is anticipated that this research will

provide these enterprises with a cost effective solution for managing their product data

which also makes this data available to contractors using a distributed database search

(see Section 6.3). Thus, standardisation plays a key role in the MDSSF architecture, and

supports data sharing in a standard and integrated way. This addresses the third

procurement challenge (see Section 1.2).

6.3 MDSS - a Virtual Distributed Database (VDD) of the MDSSF
In Chapter 1, an important aim of the COVITE project was identified, as investigating

how advances in distributed computing and particularly in Grid computing can be used

in the construction industry, to address the procurement challenges and improve the

procurement processes [Mil02]. The first two procurement challenges (see Section 1.2)

were addressed via the design and implementation of the MDSS (Multiple Database

Search Service). The MDSS retrieves product data from a large number of SD systems

in response to a contractor’s query. These SD systems are autonomously managed by

individual product suppliers. The MDSS provides a Grid based solution by utilising the

Grid middleware Globus Toolkit [Fos98] 3.0.2 (Core) which is based on the Open Grid

Services Architecture (OGSA) [Fos02].

Figure 6.5 provides a conceptual view of MDSSF. The Grid-enabled MDSS at the core

(middle layer) enables the formation of a VDD to provide product data to contractors in

the standard schema format of the PCD system. The VDD provides a single, integrated

way of accessing product data which is made available by product suppliers through

their SD systems. The VDD can be queried by contractors to find required product

information. VDD is so named, because it does not store any product data, but provides

such data when requested by a contractor by querying product supplier databases (SD

systems) in real time. Hence VDD provides up-to-date information about products from

external suppliers, so that the latest product specifications, availability and deliver)' time

can be taken into account in procurement planning. The architecture of the Grid enabled

123

6. The MDSSF System Architecture

MDSS system is described here. However before describing the architecture in greater

detail we identify the requirements of MDSS, the rationale for using Grid technology to

support the MDSSF system components, and the benefits, MDSS provides to the PSCD

application.

Grid Enabled M ultiple Database Search Service
(Virtual Distributed Database)

Web Service InterfaceW eb Service Interface Web Service Interface

Web Application

Product Supplier 1 Product Supplier 2 Product Supplier n

Figure 6.5 The conceptual view of the MDSSF

An important feature of the Grid is that it provides middleware to enables distributed

computing in a particular domain to achieve high-end computational capabilities and

high-throughput computing [Fos99]. In the PSCD application, the Grid support is

provided to its MDSS system component to achieve system scalability . This is

achieved by using computational resources to perform distributed database searches.

Providing Grid support to the MDSS component is natural, because an important

requirement of MDSS is to retrieve appropriate product data from a large number of

supplier databases and support information sharing between contractors and suppliers in

real time. There can be a large number of suppliers participating in an MDSS federation

and a particular product can be supplied by several suppliers. Therefore, in response to a

contractor’s request, all the SD systems are searched that meet the current search criteria

specified by the contractor. Thus by using Grid middleware in the MDSS system

component the database access operations are Grid enabled so that a large number of

2 The Grid support is also provided in the PSCD application to develop a secure access mechanism. The
Globus toolkit [Fos98] for developing Grid enabled applications also provides tools to enable secure
access to the resources in a Grid environment. The security features of the Globus toolkit were used by
other members of the COVITE team to develop secure access to the PSCD web application. The security
architecture of the application is explained in greater detail in [Joi04a], [Ran05].

124

6. The MDSSF System Architecture

these operations can be performed in real time to invoke a large number of SD systems

to retrieve product data.

The Grid-enabled MDSS provides the benefit of integrated access to the large amount

of product data available from several SD systems, through the use of a single system. It

provides the scalability and computational capability that is required to access such

information. The Grid-enabled MDSS also provides another important benefit as it

enables the building of a large and comprehensive product data repository (the VDD).

There is a high degree of probability that the information available in the VDD is

accurate and up-to-date. This is due to the product data being decentralised and

autonomously managed by the several product suppliers who are responsible for

managing their own product data. It is anticipated that product information provided by

product suppliers has the potential to influence procurement planning and procurement

decision making by contractors. Thus, due to market forces and the need to compete

with other product suppliers, who may also be participating in MDSSF and supplying

similar or identical products, the product supplier will ensure accurate and up-to-date

descriptions of their products in their SD.

In MDSSF, product suppliers share their product data with external users through the

MDSS. The MDSS component of the MDSSF operates outside the boundary of supplier

databases. By providing data access operations to the external MDSS system operating

in the Grid environment, the data owners contribute to the analysis or processing of

their product data by the Grid application. This benefits both the product suppliers and

contractors. Product suppliers constantly are looking for new channels, which enable

them to quickly disseminate product information to potential buyers as a reduction in

the time to market is a competitive advantage [Mah04]. Hence by participating in

MDSSF, product suppliers gain the opportunity to market their products through

MDSS. This benefits contractors by providing a single, integrated means of accessing a

large amount of product information from several supplier databases.

From a technical perspective, providing Grid technology support to the PSCD

application at the middleware level (see Figure 6.5) also ensures that users of the

application do not have to deal with the complexity of managing such an infrastructure.

125

6. The MDSSF System Architecture

The Grid support is provided outside the boundary of the autonomous SD systems, and

therefore product suppliers do not have to deal with the Grid complexities. On the other

hand, the PSCD application provides a browser based access to its users (contractors

and specification designers) and so hides the complexities of the Grid infrastructure.

6.3.1 MDSS System Architecture

The MDSSF data sharing architecture brings together autonomous contractors and

suppliers through MDSS. The name of the architecture (MDSSF) is derived from its

MDSS system component, because MDSS plays a significant role in the overall

architecture. In MDSSF, several SD systems are federated through MDSS. This

provides a means for contractors to search a large number of supplier databases, and

enables the creation of a federated information sharing system through its VDD. This

section describes the MDSS system architecture, which was designed and implemented

to operate in the Grid environment, and search for desired products based on search

criteria submitted by contractors. Searching for products requires searching all supplier

databases that have subscribed to the product classes corresponding to the products

requested. MDSS queries a dynamic selection of relevant supplier databases to extract,

in real time, information about the products, which the contractor wishes to acquire.

As identified above, the MDSS provides a Grid service solution for processing large

amount of data by utilising the Grid middleware Globus Toolkit [Fos98] 3.0.2 (Core)

which is based on the Open Grid Services Architecture (OGSA) [Fos02]. OGSA

provides a set of standards, services and tools for building Grid services and supports an

infrastructure to enable “sharing and coordinated use o f diverse resources in dynamic,

distributed” virtual organisations [Fos02]. OGSA is based upon OGSI (Open Grid

Services Infrastructure) [Tue03] specifications “which defines mechanism for creating,

managing, and exchanging information among entities called Grid services”. Grid

services are created to perform a required functionality in the Grid environment. OGSA

integrates Grid technologies with Web Service mechanisms, in order to create a

distributed computing framework which is based on OGSI [Tue03] specifications. The

Globus Toolkit version 3.0.2 is an implementation of the OGSI Version 1.0 [Tue03]

specifications. The GT3 core component of the Globus Toolkit provides a set of system

level services and a hosting environment for running the Grid services (i.e. a container

126

6. The MDSSF System Architecture

for Grid services) [Fer03]. The GT3 core framework can be deployed in the Apache

Tomcat servlet container [Apa07], to expose the Grid services to a client and allow

access via the XML based SOAP [Gra02] messaging protocol. In order to access Grid

services via the SOAP protocol, the functionality of Apache AXIS [Apa07a], is also

required as it is responsible for creating and exchanging SOAP messages over the

HTTP protocol [Fer03]. The GT3 core framework, in addition to other external tools

also provides Apache Axis system libraries. Once the Grid services are deployed in the

hosting environment, access to these services is achieved using a factory mechanism

which instantiates Grid services [Fer03]. Hence before Grid services can be accessed

they must be instantiated to provide the required functionality to the client. Once these

services are used, these instances have to be destroyed to free the system’s resources

(such as memory consumption and CPU) where they are deployed. An important

advantage of the factory mechanism is that several of these Grid service instances can

be created and each individual instance can be assigned to individual clients to meet

their needs. The factory mechanism is used in MDSS to create individual Grid service

instances which search supplier databases.

Figure 6.6 shows the architectural components of the MDSSF architecture. The two

important components of MDSS are the MGS (Master Grid Service) and a number of

DSSs (Database Search Services). These components are implemented using Java (Java

2 SDK 1.4.102) [Jav07]. The DSS components o f MDSS are exposed as Grid services

by deploying them in the GT3 hosting environment in the Apache Tomcat servlet

engine. The MGS component is deployed as a Web Service for interoperability reasons.

MGS is accessed by the PSCD web application (Figure 6.6), which is designed and

implemented using the Microsoft .NET [Mic07] technology platform. The Globus

toolkit does not provide client side Grid service access support for the .NET platform.

Therefore MGS is deployed as a Web Service to allow its access from the PSCD web

application modules via the SOAP messaging protocol. The components of MDSS are

exposed as Grid services using the createBottomUpGridService tool [Glo09b], which is

provided as part of the Globus Toolkit 3.0.2 (core) distribution, to generate Grid service

support code [Glo09b]. The tool automatically generates the stubs, bindings, service

locators, deployment descriptor, and an operation provider that delegates calls to Java

127

6. The MDSSF System Architecture

code which provides the actual Grid service functionality, i.e. the code of the DSS in

this case.

W eb Application Metadata
Contractor/Buyer * — ► (Search Criteria Specified Here) ---------% Repository

«-------- — _

M aster Grid Service
* Metadata Query *Job Allocation Grid Service * Collation of datasets

Grid Enabled Multiple Database
Search Service

(Virtual Distributed Database)

1
D atabase Search

Service 1

i
D atab ase Search

Service 2

Product Suppliers

Figure 6.6 The MDSSF system architecture

D atabase Search
Service n

Web Service Web Service Web Service Web Service Web Service
Interface Interface Interface Interface Interface

6.3.2 Distributed Database Search Using MDSS

MDSS consists of two important components identified earlier as: the MGS and a

number of DSSs. The MDSS Grid environment consists of a number of machines. One

machine is used for the MGS Web Service and the other machines host DSS Grid

services (see Figure 6.6). MGS is responsible for the overall coordination of DSS Grid

services, which perform the searching of supplier databases. MGS divides the search

task into roughly equal portions and allocates these to available DSS Grid service nodes

which then work collaboratively to retrieve product data from several SD systems. The

MGS also collates the result sets returned by these individual DSSs and sends the search

result in a single XML document to the requesting contractor. In order to run a

distributed database search in the Grid environment, MGS service is invoked by the

PSCD web application with three input parameters. These are described in the following

sections.

128

6. The MDSSF System Architecture

6.3.2.1 Search Criteria

MDSS searches for products based on the criteria submitted by a contractor or VO. The

web application provides the search criteria as an XML document, which identifies the

ID of the product class corresponding to which product information has to be retrieved

from SD systems. Figure 6.7 shows an example search criteria which retrieves all

products which conform to product class with ID 10325.

<?xml version="1 0"?>
<searchCriteria>

<ID ProdC lass>10325</ID ProdC lass>
</searchCriteria>

Figure 6.7 An example search criteria identifying
the ID of the product class.

6.3.2.2 Search Space

The search criteria specified in the input is analysed to identify the suppliers that meet

the requirements of the contractor i.e. supply products corresponding to the product

class identified in the search criteria. The search criteria is used for the dynamic creation

of an XML document which contains the list o f all the SD Systems that need to be

searched in response to a user’s request. For example a VO may be interested in

searching for electric beds only. Therefore only those SD Systems that have subscribed

to the Electric Bed product class need to be searched. This makes the search efficient as

only those SD systems which are expected to provide the needed product information

are invoked. The information as to which product suppliers have subscribed to product

classes is stored in the metadata database. This information is used to create the second

XML document (see Figure 6.8), which identifies the supplier databases to invoke via

their Web Services. For example the SupplierWS XML element in the XML document

in Figure 6.8 is the Web Service interface URL of an SD system.

129

6. The MDSSF System Architecture

<°xmlversion—' 1.0" ?>
< Suppliei Data Set >

<Supplier>
< IDSupplier>5 5< IDSupplier>
^Supplier WS>http://l 31.251 42. 40SupplierAppProductSemce. asmx</ Supplier WS>
<DataSetName>SupplieiDataSet< DataSetName>

< Supplier >
<Supplier>

<IDSupplier> 13 2< IDSupplier>
<SupplierWS>http://131.251 42.33 SupplierApp/ProductService asmx</SupplierWS>
<DataSetNaine>SupplierDataSet</DataSetNaine>

< Supplier ^
< /SupplierDataSet>

Figure 6.8 A snapshot of the XML document identifying the
product supplier databases to search

6.3.2.3 Available Grid Resources for a Search

The third important input parameter required is the identification of Grid resources

available in the MDSS Grid environment. The search is performed using these. There

can be more than one grid machine running the DSS Grid service in a distributed

computing environment. Searching a large number o f SD Systems typically takes place

using a cluster of Grid machines, which work collaboratively and invoke supplier

databases to retrieve product information in the form of XML documents. The Grid

resources that are available for undertaking the search are dynamically identified and an

XML document is created on the fly containing a list o f Grid Service Handles (GSH). A

GSH is a permanent network pointer to a particular Grid service instance [Tue03] which

in the present case is the DSS Grid service. Figure 6.9 is an XML document identifying

the Grid services that can be used to perform a search. This information is also obtained

from the metadata repository. The GSH XML element in the XML document identifies

the factory service’s (DatabaseSearchlmplProviderFactoryService) URL, which is used

to create DSS Grid service instances to perform the actual search i.e. invoke SD systems

by sending the search criteria identified, as part of the first parameter in Figure 6.7

(Section 6.3.2.1).

130

http://l
http://131.251

6. The MDSSF System Architecture

<?xml version=“1.0"?>
<GridServiceHandle>

<IDGsh>2</IDGsh>
<GSH>

http://131.251.47.110:18080/ogsa/services/services/uk1/co/activeplan/mdss/impl/
DatabaseSearchlmplProviderFactoryService

</GSH>
<MachineName>bouscat.cs.cf.ac.uk</MachineName>

</GridServiceHandle>
<GridServiceHandle>

<IDGsh>3</IDGsh>
<GSH>

http://131.251.128.7:18080/ogsa/services/services/uk1 /co/activeplan/mdss/impl/
DatabaseSearchlmplProviderFactoryService

</GSH>
<MachineName>agents-comsc.grid.cf.ac.uk</MachineName>

</GridServiceFlandle>

Figure 6.9 XML document identifying a subset o f available Grid services
which can be used to perform distributed database search

In the next stage, MGS which is invoked by supplying three identified input parameters

distributes the database search jobs to the available DSS Grid service nodes in the Grid

cluster in roughly equal proportion. For example if there are 90 SD systems to search

and there are 3 DSS Grid service nodes available then each DSS is allocated 30 SD

systems to search. In order to distribute the search jobs equally in the available cluster,

MGS parses the GridServiceHandle XML document (see Figure 6.9) and invokes each

of the Grid service factory instances to create new DSS Grid service instances. To

invoke operations on SD systems, only a single DSS Grid service instance per node has

to be created for any number of database search operations at a given time. Hence, if a

DSS Grid service is allocated the job o f invoking 30 SD systems, then this job can be

done by creating a single DSS Grid service instance only. This efficiency is achieved by

specifying all the SD systems to be invoked in a single XML document (see Figure 6.8).

The MGS divides the main document into several sub documents - one for each DSS

Grid service instance.

A DSS instance is invoked by MGS by specifying two input parameters: a list of SD

systems to search (which is a subset of the SD systems list identified in Figure 6.8) and

the search criteria XML document (see Figure 6.7). The DSS instance then sends the

search criteria to each SD system identified in the list by invoking it via its Web Service

131

http://131.251.47.110:18080/ogsa/services/services/uk1/co/activeplan/mdss/impl/
http://131.251.128.7:18080/ogsa/services/services/uk1

6. The MDSSF System Architecture

interface. At the supplier side, the Web Service interface parses the XML search

criteria, retrieves product data based on the criteria from the underlying SD and sends

the results (product data) back to the DSS instance operating in the Grid environment as

an XML document.

The division of a database search job into roughly equal portions and allocation of these

to machines in the Grid cluster increases the efficiency of the search and reduces the

overall search time as each of these machines perform its distributed database search job

in parallel with the other machines. It also enhances the system scalability. In order to

gain further efficiency the size of the Grid cluster can be increased by incorporating new

nodes and installing the DSS component of the MDSS software to accommodate an

increasing number of contractor’s request or search an increasing number of SD

systems. Figure 6.10 provides a snapshot of the product data returned from SD systems.

<NewDataSet>
<Supplier IDSupplier="3"

SupplierWsURL="http://131.251.42.40/SupplierApp/ProductService.asmxM>
<Product>

<IDProdlnternal>1143</IDProdlntemal>
<IDProdClass>10325</lDProdClass>
<IDProdClassVer> 1.0000</IDProdClassVer>
<ProdName>Ampio</ProdName>
<ProdDesc>General purpose electric bed model</ProdDesc>

</Product>
</Supplier>
<Supplier IDSupplier="4"

SupplierWsURL=Mhttp://131.251.42 33/SupplierApp/ProductService,asmx">
<Product>

<IDProdlnternal> 1144</IDProdlnternal>
<IDProdClass>10325</IDProdClass>
<IDProdClassVer> 1.0000</IDProdClassVer>
<ProdName>Plano</ProdName>
<ProdDesc>General purpose electric bed model, acute care</ProdDesc>

</Product>
</Supplier>

</NewDataSet>

Figure 6.10 A snapshot of the product data returned from an SD System

6.3.2.4 Data Aggregation

The data returned from the SD systems has to be aggregated, before it is finally sent to

the web application. This aggregation takes place at two levels:

132

http://131.251.42.40/SupplierApp/ProductService.asmxM
http://131.251.42

6. The MDSSF System Architecture

a. At the DSS Grid service level which aggregates product data retrieved from

several SD systems. This is then sent to the MGS (see Figure 6.6).

b. The second aggregation takes place at the MGS Grid service level. The MGS

which earlier divided the total database search jobs into equal proportions

now aggregates the product data returned by each of the DSS Grid service

instance.

MGS finally sends the collated product data retrieved from the relevant SD systems in

response to a contractor’s query to the PSCD web application where it is displayed.

6.3.3 SD Web Service Interface

A Web Service interface for SD was also implemented, so that product data can be

retrieved in a platform neutral way. The Web Service interfaces are implemented using

the .NET technology [Mic07], whereas the MDSS infrastructure is implemented in Java

[Jav07]. The supplier side infrastructure uses .NET technology, as this allows easy

integration of Web Service interfaces with the backend databases due to the common

platform. However MDSS uses Java, because the open source GT3 core of the Globus

toolkit and other associated tools are available as Java libraries. Further, the PSCD web

application is also implemented using.NET technology. Thus, using SOAP based XML

Web Services for communication between different system components in MDSSF is a

sound approach due to the heterogeneous nature o f the system components.

6.3.4 MGS and DSS Architectures

This section describes in more detail, the architectures of the MGS and DSS

components.

6.3.4.1 MGS

Figure 6.11 is the UML class diagram o f the MGS system component. MGS mainly

allocates database search jobs to available DSS Grid service nodes and then collates the

results. The diagram provides a high level view of some of the important functionalities

of each class. Further details are available in the MGS system source code (see

Appendix 5). The diagram shows the ten main classes. The MasterGridlmpl class at the

133

6. The MDSSF System Architecture

middle of the diagram is one of the main classes and it implements the methods defined

in the MasterGrid interface class. The executeJob method of this class is invoked by the

PSCD web application via MGS’s Web Service interface to perform a distributed

database search operation. This method is provided with the three input parameters

identified in Section 6.3.2. The second method (i.e. callTestGridServiceQ) in

MasterGrid interface is used to test whether a particular DSS Grid service instance is

available in the MDSS Grid environment.

get subset o f suppliers'
databases to perform
search get Grid database search

service uode details

get final supplier
database search resultsdelegate supplier

databases search task to
JobExecution thread

Get job execution 1
threads status

aggregate
product data

notify w hen job execution finished 1

aggregate
product data.

get aggregated product data
when all tlu eads finish execution

•recoidJobExecution
ThreadsO

TlireadChecker

callGetAggregateStringQ

executeJobO
callT estGi idServiceO

MasterGrid

• addNodesO
•getAggregateStringO

•Call AddNodesO
• getData Aggi egateO

SupplieiDocuiiientPai ser

getSuppliei SubDocSti 0
getCunentNode()

• peifoi n JobExecutionO
• setTlu eadClieckei 0

JobExecution

• executeJobO
• callT estGi idServiceO

MasterGridlnipl

•getGshO
•getGridServiceDetailsQ

GsliDocumentParser

•getDomObjectO
•getStringObjectO
•getElementCountO

Converter

Figure 6.11 UML class diagram of the MGS system
component of the MDSS

The executeJob method delegates supplier database search tasks to JobExecution class.

It uses the services of the SupplierDocumentParser class to divide the total number of

SD systems to search into roughly equal portions and allocates each portion to an

available DSS instance. The GshDocumentParser parses the XML document to identify

the DSS Grid service details, such as the GSH and other Grid service details, needed to

134

6. The MDSSF System Architecture

perform the search. This information (a sub-set of the SD system list and the DSS

instance) along with the search criteria XML document is then passed to the

JobExecution class by creating a new job execution thread. JobExecution class then

invokes individual DSS instances operating in the Grid environment. The executeJob

method of the MasterGridlmpl class repeats the above process until all the DSS

instances are allocated their portion of the database search jobs. This operation is

performed as a multi-threaded process so that all the DSS instances can run in parallel

in the Grid environment.

JobExecution class use the services of the CallDataAggregate class, so that search

results returned by a single job execution thread can be collated by DataAggregate

class. This operation is performed via the CallDataAgregate class so that access to the

DataAggregate class can be synchronised. In this multi-thread environment more than

one job execution thread may try to access the DataAggregate class at the same time.

Therefore the CallDataAggregate class ensures that all access operations are

synchronised and access is granted to one thread at a time. The responsibility of the

ThreadChecker class is to track the progress o f job execution threads and record the

threads that have finished execution. This is important because the final result can be

sent to the contractor only when all the threads have finished execution. For this

purpose the job execution threads notify the ThreadChecker when they finish execution.

The responsibility of the JobAggregation thread is to get the final result from the

DataAggregate object. This is done only after all threads have finished execution. This

information is obtained by the JobAggregation object from the ThreadChecker object.

Finally the MasterGridlmpl object (which originally initiated the search) gets the final

result from the JobAggregation object which it sends to the PSCD web application.

Objects of the Converter class are used to transform data representation i.e. convert the

XML document to a string (for transportation), or DOM object [Dom05] (to parse XML

document contents), or to identify the number o f elements in a document. Facilities of

the Converter class are also used by several other classes, but these links are not shown

in the diagram.

135

6. The MDSSF System Architecture

6.3.4.2 DSS

Figure 6.12 is the UML class diagram of the DSS system component of MDSS. A

number of DSS components have been deployed as Grid services, in the MDSS Grid

environment. The DSS Grid service instances perform the actual work of invoking

several SD systems to retrieve the product data. This diagram provides a high level view

of some of the important functionalities of each class. Further details are available in the

DSS system source code (see Appendix 5). The diagram shows the five main classes

that comprise DSS.

gets initial supplier
details to peiforai
database search

aggregates
suppliers'
product data

perforins data
conversions

performs data
conversions

perfonns data
conversions

getProductsAsStringO
testGridServiceO

DatabaseSearch

getSupplieiDetailsO

SupplierParser

DatabaseSearchlmpl

•getProductsAsStringO
•testGridServiceO

• addNodesO
•getAggregateStringO

•getDomObjectO
•getStringObjectO
• setElementCountO

Converter

Fig 6.12 UML class diagram of the
DSS system component of the MDSS

The DatabaseSearchlmpl class at the middle o f the diagram is one of the main classes

of DSS and it implements the methods defined in the DatabaseSearch interface class.

The getProductsAsString method of this class is invoked by the job execution thread of

136

6. The MDSSF System Architecture

the JobExecution class of MGS. For this purpose, the thread invokes the factory service

(whose URL is identified by the GSH XML tag, see Figure 6.9) and instantiates the

DSS Grid service instance. Once this instance is created the thread invokes the

getProductsAsString method of the DatabaseSearchlmpl object. This method is

provided with two input parameters to identify the SD systems to search (Figure 6.8)

and the search criteria (Figure 6.7). The second method of the DatabaseSearchlmpl

class is invoked by MGS to test the availability o f a DSS Grid service instance in the

MDSS Grid environment before the search job is submitted.

The DatabaseSearchlmpl class use the services o f the SupplierParser class to get SD

system invocation details, such as the Web Service interface URL which is identified as

part of the SupplierWS XML element of the supplier XML document (see Figure 6.8).

The DatabaseSearchlmpl object then invokes each of the SD systems identified in the

supplier document and aggregates the results using the services of the DataAggregate

class. A large number of XML product data nodes can be retrieved from several SD

systems. However this depends upon the number o f SD systems identified in the

supplier document and the number of products in SD systems which correspond to the

product class identified in the search criteria. Once all the product data is retrieved and

aggregated it is sent to the calling JobExecution thread of MGS. The DSS also provides

error management support by providing details of SD systems from where data could

not be retrieved. This can occur if the URL supplied is incorrect, or malformed, or the

SD system is not online.

6.3.5 Section Summary

This section described in detail the architecture o f MDSS and how it performs

distributed database search in a Grid environment. Data communication between the

components of the MDSS and other PSCD application component such as the PSCD

web application and the SD systems takes place using the XML-based SOAP messaging

protocol, which allows flexible information sharing between the heterogeneous system

components. MDSS provides mechanisms to achieve an integrated and up-to-date

product data access from several product supplier databases with the aim of addressing

the first and second procurement challenges identified in Section 1.2.

137

6. The MDSSF System Architecture

6.4 Software Development Process
A software development process must adopt a well defined methodology for software

development which suits the nature o f the software system being developed. A software

development process incorporates a set o f activities which are result oriented and lead to

the development of a software product [SomOl] meeting the identified requirements. A

number of software process models have been identified by Sommerville [SomOl] such

as the waterfall model, evolutionary development, formal systems development and the

re-use based development. The development and building of MDSSF system

components was carried out as part o f a research project, where different system

functionalities were incrementally added during its development phases. Different

system components were also developed simultaneously because of software

dependency (i.e. the components of MDSS were dependent on the SD system to ensure

that they worked properly) and in order to demonstrate the results achieved. Whilst

developing a distributed system whose components operate in a heterogeneous

environment, it is important to test the functionality o f software components at each

incremental stage to ensure they meet the technical and user requirements. Incremental

addition of functionalities provides mechanisms to test software features and the

interaction between heterogeneous system components. It identifies flaws or bugs on a

functionality basis and addresses them early on and gives a sound basis for further

development. An incremental software development process, which combines the

features of the waterfall model of software development and the evolutionary approach

[SomOl] was adopted, as it suited the development o f the MDSS components of the

MDSSF architecture.

The database development methodology for the physical database design required a

high degree of understanding of the target DBMS and the functionality it provides

[Con05]. The data management infrastructure of the MDSSF architecture is designed

and implemented using the SQL Server 2000 RDBMS. A sound understanding of the

RDBMS and its database language called the T-SQL (Transact-SQL) which is an

extension of the ANSI standard SQL language was gained, to ensure proper methods

are followed for the database development. The databases are normalised to ensure

little or no data redundancy or duplicate data. The stored procedures provide error

management support to give information if errors are generated during data insert

138

6. The MDSSF System Architecture

operations and also to notify the user when stored procedures execute successfully.

Transaction management support is also provided in stored procedures to ensure that

data does not become inconsistent during error states.

6.5 Chapter Conclusions
This chapter described in detail the architecture o f MDSSF through its components and

its architectural features. The MDSSF not only provided a data sharing mechanism but a

fully fledged infrastructure incorporating three different databases based on the well

defined concept of product classes and Grid enabled distributed database search. The

MDSSF architecture provides this infrastructure with the aim of serving data definition,

data management and data search needs o f the construction industry actors. This

infrastructure was developed not only to support the PSCD application but also to

address the wider procurement challenges (see Section 1.2) which the construction

industry presently faces. The next chapter provides information on the test results of the

MDSSF system components; highlights the distinctive features of the architecture

which are part of its novelty and critically evaluates the architecture and its components.

139

7. System Testing, Verification and Validation of the MDSSF Architecture

7. System Testing, Verification and Validation

of the MDSSF Architecture

7.1 Introduction
The new PSCD application is based on the MDSSF architecture and comprises several

individual components. Each of these components was designed and implemented to

provide needed functionality, whilst interacting with other system components. The

three important functionalities provided by the components with respect to the

procurement process are: data definition, data management and data search of

construction industry product data. This chapter describes the testing and evaluation of

the MDSSF system components.

The main contribution of this research is a novel Grid-based federated information

sharing architecture. This architecture provides a novel mechanism of information

sharing, which is generic but was designed for construction industry actors. The

MDSSF architecture is verified and validated against the research objectives and its

ability to address the procurement challenges. Whilst highlighting the distinctive and

novel features, which MDSSF provides, we also highlight and assess the implications of

its potential drawbacks to determine their effect. The chapter consists of: Section 7.2 -

information on system testing of the prototype, Section 7.3 - a description of

demonstration of the PSCD application based on the MDSSF and the interest it

generated in external organisations, Section 7.4 - MDSSF system architecture is verified

and validated against the research objectives, and Section 7.5 draws conclusions on the

chapter.

7.2 System Testing of Prototype
In this research, the original PSCD application supplied by industrial partner APSL

[Aps09] (see Section 1.3) is transformed into a new application utilising the advanced

features of distributed computing provided by Grid technology through the MDSSF

architecture. Information on its design and development is presented in Chapter 6 as

part of the MDSSF system architecture. The principal aim of system testing is to test the

ability of the components of the MDSSF architecture in meeting the procurement

140

7. System Testing, Verification and Validation of the MDSSF Architecture

challenges (see Section 1.2) and addressing the limitations of the original PSCD

application (see Section 1.3). This is achieved by designing a testing strategy, consisting

of 4 test objectives which test architectural components from different perspectives.

7.2.1 Test Objective 1

Test the ability o f MDSSF architecture to function in a distributed computing

environment and utilise the features o f Grid technology.

The centralised database and the client/server based architecture of the original PSCD

application cannot address the procurement challenges, because the domain is

inherently distributed, consisting of a large number of independent, autonomous and far

flung industry actors (see Section 1.3). The MDSSF is based on a distributed system

architecture (see Figure 7.1) and its components function in a distributed computing

environment to address this limitation. The main objective of this test is to set-up the

MDSSF system components in a distributed computing environment, which utilises the

features of Grid technology provided by Grid middleware. The technical details of

setting up the MDSSF in a distributed environment are presented in full in Appendix 4.

This is the first step to be performed as it gives a physical framework for the MDSSF

system components and establishes collaboration between them. The other tests, such as

performing a distributed database search in a Grid environment, are dependent upon the

availability of this framework. To achieve the objectives of this test, several tasks were

identified and undertaken as follows.

141

7. System Testing, Verification and Validation of the MDSSF Architecture

Contractor/Buyer
Web Application

(Search Criteria Specified Here)
Metadata
Repository

Master Grid Service
Metadata Query Mob Allocation Grid Seivice * Collation of datasets

Grid Enabled Multiple Database
Search Service

(Virtual Distributed Database)

1
Database Search

Seivice 1
Database Search

Seivice 2
Database Search

Seivice n

5
Web Service Web Service Web Service Web Service Web Service

Interface Interface Interface Interface Interface

Product Suppliers

Figure 7.1 The MDSSF system architecture

7.2.1.1 Identification of machines

Setting up MDSSF in a distributed computing environment requires participation of

several machines each running different system components. It is important in this test

to install different system components on individual nodes to test domain specific

requirements. For example, product suppliers operate autonomously, therefore supplier

databases (SD systems) were installed in separate nodes. On the other hand, to test

collaboration between different machines in a Grid environment, when searching

product data from across several SD systems, it is important that the Grid middleware is

installed in separate nodes. This enables machines in the Grid environment to perform

the task of searching SD systems only in response to a contractor’s query. Seven

machines were made available to the project team for testing purpose. A list of these

machines is identified in Table 7.1. Out o f these 7 machines, machines 1 to 4 were in a

local area network and the other 3 machines belonged to the Welsh e-Science Centre

(WeSC) [Wel07] and access to them was provided by the centre for testing and

development purposes.

142

7. System Testing, Verification and Validation of the MDSSF Architecture

1 tennis.cs.cf.ac.uk
2 cognac.cs.cf.ac.uk
3 violin.cs.cf.ac.uk
4 legend.cs.cf.ac.uk
5 arsenic.cs.cf.ac.uk (WeSC machine)
6 bouscat.cs.cf.ac.uk (WeSC machine)
7 agents-comsc.grid.cf.ac.uk (WeSC machine)

Table 7.1 List of machines which were used to set-up system
components of the MDSSF architecture in a Distributed Environment

7.2.1.2 Installation of MDSSF System Components

Once the machines were identified the next step was to install MDSSF system

components on them to set up MDSSF in a distributed computing environment. The

MDSSF architecture consists of several system components. Figure 7.2 gives a list of

these components and the machines on which they were installed. Each of these

components is designed and implemented independently to provide the required

functionality, whilst collaborating with other system components in a distributed

environment. The MDSSF system components are dependent on prerequisite software

tools which are also required to be installed. These software tools include the Grid

middleware Globus Toolkit [Fos98] 3.0.2 (Core); hosting tools such as Apache Tomcat

[Apa07] and Microsoft Internet Information Server (IIS) 6.0 [Iis09]; Apache Axis

[Apa07a] for enabling collaboration between system components via the Web Services

[Gra02] mechanism; and Microsoft SQL Server 2000 [Mic07a] RDBMS for creating

product classes and managing product data. A full list o f these software tools and their

versions used in the MDSSF is provided in Appendix A4. After the installation of

prerequisite software tools, the MDSSF system components were installed. This task

was broadly split into two parts: set-up the Grid-enabled MDSS system component of

the MDSSF to create a Grid environment; and set-up MDSSF database systems.

143

7. System Testing, Verification and Validation of the MDSSF Architecture

MDSSF Component Installed in machine(s):
1. Database Search Service (DSS)

System
bouscat.cs.cf.ac.uk,
agents-comsc.grid.cf.ac.uk,
violin.cs.cf.ac.uk,
arsenic.cs.cf.ac.uk

2. Master Grid Service (MGS) tennis.cs.cf.ac.uk
3. Product Class Database (PCD)

System
tennis.cs.cf.ac.uk

4. Supplier Database (SD) System tennis.cs.cf.ac.uk,
cognac.cs.cf.ac.uk,
legend.cs.cf.ac.uk

5. Supplier’s Product Class Database
(SPCD) System

tennis.cs.cf.ac.uk,
cognac.cs.cf.ac.uk,
legend.cs.cf.ac.uk

6. Supplier Web Service tennis.cs.cf.ac.uk,
cognac.cs.cf.ac.uk,
legend.cs.cf.ac.uk

7. Metadata Repository tennis.cs.cf.ac.uk

Figure 7.2 The MDSSF system components
and the machines in which they were installed

7.2.1.2.1 Set-up Grid enabled MDSS

The MDSS performs distributed database search to retrieve product data from several

SD systems in response to a contractor’s query. It consists of two system components:

the Master Grid Service (MGS) and the Database Search Service (DSS) systems. The

Grid-enabled DSS System performs the task o f searching and retrieving product data

from several supplier database (SD) systems via their Web Service interface. It is

installed in 4 machines as shown in Figure 7.2. The Grid middleware Globus Toolkit

3.0.2 (core) is also installed in these 4 machines. When installed on a machine, the Java

system code of the DSS system is exposed as a Grid service, which allows the code to

utilise the features of the Grid middleware (see Section 6.3). To create a Grid service,

the DSS system code is run through the createBottomUpGridService tool which comes

as part of the Globus Toolkit 3.0.2 (core) distribution. This tool generates the required

utilities such as the stubs, the service locators, the deployment descriptor fragment, and

an operation provider that delegates its calls to the DSS system code when the DSS Grid

service is invoked for searching SD systems. Hence, the deploying of the DSS system

on 4 machines and exposing them as Grid services by using the Grid middleware,

enabled the creation of a Grid environment for performing the distributed database

search of the SD systems. A DSS system can be referred to as a DSS Grid service, after

144

7. System Testing, Verification and Validation of the MDSSF Architecture

it is deployed in a node in the Grid environment. Once the DSS system is deployed in a

node, it can be accessed via its Grid Service Handle (GSH), which is effectively its Web

Service access URL. The GSH is actually the URL of the DSS factory service, using

which a DSS Grid service instance can be created which then performs the operation of

searching SD systems (see Section 6.3.2.3). Figure 7.3 shows the GSH of the DSS

system deployed in the machine bouscat.cs.cf.ac.uk in the Grid environment. The SD

systems are accessible to DSS Grid services via their Web Service interface, which is

described using the WSDL (Web Service Description Language) [Gra02] (see Figure

7.1). The WSDL is an XML based format for describing network based services, which

can be accessed via the SOAP protocol by exchanging SOAP messages between the

services [Gra02].

Machine Name: bouscat.cs.cf.ac.uk
Access URL (GSH):
http://l 31.251.47.110:18080/ogsa/services/services/uk/co/activeplan/mdss 4/impl/
DatabaseSearchlmplProviderFactorvService

Figure 7.3. The Grid Service Handle (GSH) of a DSS Grid service
deployed in machine bouscat.cs.cf.ac.uk

The DSS Grid services are dependent on a set o f Java classes to create and send SOAP

messages to SD systems and request product data. In a node where the DSS Grid

service is deployed, these classes can be generated by WSDL2Java utility, which is

available as part of the Apache Axis tool [Apa07a]. The classes are compiled and made

available to the DSS Grid service for interacting with SD systems. The complete

procedure of compiling and installing the DSS Systems in a Grid environment involves

performing 14 steps. The technical details of the entire procedure and the steps involved

are described in Appendix A4 (see Section A4.5.3). Every time a DSS system is

deployed in a Grid environment, this procedure is followed. Therefore this procedure

was followed 4 times to install the DSS system in the 4 machines of Figure 7.2.

The second component of the MDSS, i.e. the MGS, divides the total work to be done

into roughly equal portions, and allocates each portion to individual Grid machines,

running DSS instances (see Section 6.3.1). The MGS is deployed in machine

tennis.cs.cf.ac.uk as a Web Service and is accessed by the PSCD web application to

145

http://l

7. System Testing, Verification and Validation of the MDSSF Architecture

submit product data search jobs (see Figure 7.1). The MGS then accesses DSS Grid

service instances using their GSH to perform a distributed database search of SD

systems in the Grid environment. The compiling and deploying of the MGS system

code as a web service is a 7 step process which was performed when installing the MGS

in machine tennis.cs.cf.ac.uk. The technical details of this entire procedure are described

in Appendix 4 (see Section A4.5.4).

7.2.1.2.2 Set up MDSSF Databases and Supplier Web Service Interface

The second part of setting up MDSSF system components in a distributed environment

involved installing its database systems. The MDSSF provides three important database

systems: the PCD, SPCD and SD systems. The SPCD and SD systems and Supplier

Web Service are deployed in three machines (see Figure 7.2). The database

development for the three databases was performed on tennis.cs.cf.ac.uk using the SQL

Server 2000 [Mic07a] RDBMS. The SQL Server Enterprise Manager utility of the SQL

Server 2000 RDBMS allows backing of databases for easy installation of database in

other machines. Thus, by using this utility the two supplier side database systems (i.e.

the SPCD and SD Systems) were installed in the three machines and this procedure was

followed once for each machine and for each database system. The PCD database is

installed in machine tennis.cs.cf.ac.uk. The MDSSF also provides another database

system called the Metadata Repository (see Figure 7.1). This database stores metadata

about product suppliers and product classes subscribed by them. This information is

helpful in identifying which supplier databases to search in response to a contractor’s

query (see Section 6.3.2). The Metadata Repository is also installed in machine

tennis.cs.cf.ac.uk. The Web Service interface at the product supplier’s end is developed

using the Microsoft Visual Studio .NET 2003 [Vis08] development tool. This interface

allows a DSS Grid service to perform database search operations on the underlying SD

system to retrieve product data. The Web Service is hosted in the IIS server and

describes the database search operation which can be performed on the underlying SD

system through the WSDL (see Section 6.3.3).

The above described installing MDSSF system components and prerequisite software

tools in different machines in a distributed environment. The complete technical details

of the installation procedure are available in Appendix A4. These tasks were completed

146

7. System Testing, Verification and Validation of the MDSSF Architecture

successfully and were performed as part o f the first test, to test the ability of system

components of MDSSF architecture to function in a distributed computing environment

and utilise the features of Grid technology.

7.2.2 Test Objective 2

Test the ability o f MDSSF components to manage complex product information

and support its evolution by using standard product definition mechanisms

provided by product classes.

The products used in the construction industry are usually complex having a large

number of different types of specifications. An important requirement of the MDSSF

architecture is to allow product suppliers to manage complex product information

through its databases. The architecture should provide standard means of product data

management at a suppliers’ end, and also provide mechanisms for product data

evolution by providing versioning support. This is achieved in MDDSF through the

concept of product classes. The MDSSF provides data management functionality

through its three databases. These are the PCD, SPCD and SD systems. Section 6.2

explains in greater detail how these database systems were implemented and the

features they provide to support the product data management infrastructure of the

PSCD application. An important objective of creating this infrastructure is to support

product data definition for managing complex product information. In MDSSF, product

data definition provides a mechanism to create product classes in PCD, their

subscription in SPCD and to create product information in SD by referring to the

product classes subscribed in SPCD. Appendix 2 provides complete worked examples

showing how product data definition, subscription and creation of product description is

achieved in MDSSF. The following sections describe how the MDSSF system

components were tested to provide required functionalities.

7.2.2.1 Creating a Product Class

The data definition and data management capabilities of MDSSF’s databases were

tested by using product data from real world products. This section describes one such

product, which is a model of an electric bed product. Section A2.2 (see Appendix 2)

provides a detailed description of this product and its different attributes. Information on

147

7. System Testing, Verification and Validation of the MDSSF Architecture

this product was provided to the COVITE team by its industrial partner APSL. When

creating a product class, the first task is to represent product attributes in terms of

product class specifications. This involves checking product attributes and identifying

suitable specification types to represent them in a product class. For example a product

attribute such as its weight can be represented by using a unit specification type called

Weight in a product class. This allows the description of weight information for a

product in a product class via its Weight specification. This research identified five

specification types which enable description o f complex product information in MDSSF

databases (see Section 5.3). Section A2.3 shows how the electric bed product

represented in the form of a product class uses these specification types to enable

representation of product specification data. In Section A2.3, the attributes of the

electric bed product have been categorised into different specifications of an Electric

Bed product class, so that these can be represented in the PCD, SPCD and SD systems.

This product shows the complexity of managing product data, as the Electric Bed

product class has 42 unit specifications, 7 specification groups, 5 list specifications (out

of which 2 list specifications have more than one version) and 2 sub-product class

specifications. Thus it is a challenging product to represent and represents the more

complex products.

Product classes are created in PCD. This support is provided in PCD through its stored

procedures and functions which enable the creation of a product class and its different

specifications. The PCD provides 55 different stored procedures and functions to

support creation of product classes. Figure 7.4 shows an example of a stored

procedure’s execution code for the procCreateNewProductClass stored procedure. It

specifies a list of input and output parameters. This stored procedure is used to create a

new product class. The actual source code of this stored procedure is available in

Appendix 5. This stored procedure enables the creation of the top level Electric Bed

product class in PCD. After execution o f the proc CreateNewProductClass, no

specifications exist for the Electric Bed product class in PCD. The modular approach

adopted in MDSSF requires execution of further stored procedures to create different

specifications which are assigned to the product class (see Section 6.2.1.1). Therefore,

the creation of the Electric Bed product class and its different specifications (such as

Model, Where Marketed, Type, Patient Controls and Overall Dimensions (see Section

148

7. System Testing, Verification and Validation of the MDSSF Architecture

A2.2)) led to the execution of 47 stored procedures. A selected list of the stored

procedure execution code, their input and output parameters and execution results is

presented in Section A2.4 (see Appendix 2)1. In Figure 7.4 the input and output

parameters of the stored procedure identify the name of the product class, its version, a

general description of the product class and a description of a particular version of a

product class. The IDAssignToSpecTypeDef input parameter identifies the ID of an

entity to which a product class has to be assigned. In this case the value 1024 of this

input parameter is the ID of a category called Bed. Whilst creating the Electric Bed

product class, the stored procedure also assigns it to the Bed category. This functionality

of assignment of entities is also provided to all the specifications of a product class.

declare @IDProdClassDef bigint
declare @IDProcState tinyint
declare @message nvarchar(500)
exec proc CreateNewProductClass
@ProdClassName = 'Electric Bed',
@IDProdClassVer = 1.0,
@ProdClassDesc = 'Electric Beds for hospitals',
@ProdC lass V erDesc = 'Electric Beds for hospitals version 1.0',
@IDAssignToSpecTypeDef = 1024,
@IDProdClassDef =@IDProdClassDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print 'IDProdClassDef:' + cast(@IDProdClassDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Result of executing the stored procedure:
IDProdClassDef: 10526
IDProcState: 0
Product Class Created Successfully. Product Class ID is: 10325.
Product Class Version is: 1.00.

Figure 7.4 An example stored procedure execution code showing how
to execute proc_CreateNewProductClass stored procedure in PCD and
the result obtained after successful execution of the stored procedure.

1 A full list of stored procedure execution code is not provided in Appendix 2 for brevity. The stored
procedure execution code which is not shown in the appendix is similar to the code which is shown but
executed with different input parameters to create different specifications for the product class. In the case
of the SPCD and SD systems also, a selected list is provided for the same reason. However the source
code of all the stored procedures in PCD, SPCD and SD systems is available in Appendix 5.

149

7. System Testing, Verification and Validation of the MDSSF Architecture

7.2.2.2 Assigning a Product Class

A product class is a complex entity having many different types of specification.

Assignment of an entity (such as a unit specification called Weight) to another entity

(such as a product class called Electric Bed) in PCD, SPCD and SD allows linking of

different specifications to create a composite product class (see Sections 5.3 and

6.2.1.1). A product class can be assigned to entities such as a category (For example,

Bed see Figure 7.4), a sub product class or a specification group. The assignment

feature can also be used to assign a specification to another specification. For example,

a specification group called Overall Dimensions (see Section A2.3, Tables 23-26) can

be created by assigning unit specifications such as Length, Width and Height to it This

specification group can then be assigned to a product class such as Electric Bed. This

allows defining attributes of an electric bed, such as length, width and height in terms of

a product class. The assignment feature of MDSSF database systems were tested as part

of creating product class definitions and product descriptions. Sections A2.4, A2.5 and

A2.6 (See Appendix 2) describe tests performed and output result which show how this

feature is implemented at the database level.

1.2.23 Creating a New Specification

Figure 7.4 shows the result obtained by executing the proc CreateNewProductClass

stored procedure. It returns a value 10526 for output parameter IDProductClassDef

This ID identifies a particular version of a product class. In the present case the value

10526 is the ID of Electric Bed version 1.0 product class. When a new specification is

created, it is linked to a product class version through its IDProductClassDef field.

Figure 7.5 shows how a new specification called Model is created and assigned to the

Electric Bed product class via the IDAssignToSpecTypeDef input parameter. The input

value provided to this parameter is 10526. This value is the same as the value of the

output parameter IDProdClassDef of proc CreateNewProductClass in Figure 7.4. In

this example the Model specification is being assigned to the Electric Bed version 1.0

product class, to enable identification of model information for a given electric bed

product.

150

7. System Testing, Verification and Validation of the MDSSF Architecture

declare @IDProcState tinyint
declare @message nvarchar(500)
exec proc CreateNewSpecification
@SpecName
@IDAssignToSpecTypeDef
@IDProcState
@Message

= 'Model',
= 10526,
= @IDProcState OUTPUT,
= @Message OUTPUT

print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Result of executing the stored procedure:
'IDProcState: 0
Specification Created Successfully. Specification ID is: 1004.

Figure 7.5 The stored procedure execution code showing how a new
specification can be created and assigned to a product class

7.2.2.4 Versioning Support in MDSSF Databases

The PCD and SD systems provide versioning support to enable creation of new versions

of existing specifications. This allows specification reuse and evolution of product

classes (see Section 5.4). The following example shows how the versioning support is

tested in PCD as part of the creation of Electric Bed version 1.0 product class. Section

A2.4.5 and A2.4.6 (see Appendix 2) shows stored procedure execution code to create

two versions of a list specification called Type. In Section A2.4.5 the Type version 1.0

list specification is created and assigned to the Electric Bed version 1.0 product class to

enable identification of the type information o f electric bed. This list specification has

two values: General purpose and Acute care. Thus an electric bed product which

conforms to Electric Bed version 1.0 product class can be of type general purpose

and/or acute care. The model of the electric bed product used in this research uses the

‘Type’ attribute to describe patient controls also (See Section A2.2). Therefore a new

version of the Type list specification (i.e. Type version 2.0) is created and assigned to

Patient Controls version 1.0 specification group. This specification group is also

assigned to Electric Bed version 1.0 product class (see Figure 7.6). The list specification

Type version 2.0 has three values: Pendant, Hand control box, and Handset (Nurse

controls mounted at foot end). This shows that the electric bed product which conforms

to Electric Bed version 1.0 product class has three different types of patient controls. A

snapshot of the Electric Bed version 1.0 product class showing the two versions of list

specification Type, their list values and the entities to which they are assigned is

presented in Figure 7.6. In this example, the list specification Type is created only once

and it is extended through the versioning support by creating new versions to describe

151

7. System Testing, Verification and Validation of the MDSSF Architecture

different product attributes. When a need is identified in future, another version of the

list specification such as Type version 3.0 can be created and assigned to describe

additional features of the product class as part of its evolution. This example shows how

the versioning support enables specification reuse to enable description of different

attributes of electric bed product. Versioning support is also provided to other

specification types in PCD to support product class evolution (see Section 5.4).

List Value 2: Acute Care

List Value 1: Pendant

List Specification: Type v. 2.0List Value 1: General Purpose

List Specification: Type v. 1.0

Product Class: Electric Bed v 1.0

List Value 2: Hand Control
Box

Specification Group: Patient Controls v. 1.0

List Value 3: Handset
(Nurse controls mounted at

foot end)

Figure 7.6 A snapshot of Electric Bed version 1.0 product class showing two
versions of Type List Specification (in bold boxes), their list values and the

entities to which they are assigned.

In the above discussion we have shown the capability of PCD to create a new product

class, a specification and assignment of the product class to a category and assignment

of the specification to the product class. In the way a specification is assigned to a

product class, other types of specifications such as ListSpecification,

SpecificationGroup and SubProductClassSpeciflcation can also be assigned to it to

enable definition of the different types of attributes a product may have in terms of

product class specifications. The examples in Section A2.4 (see Appendix 2) provides

test results showing how these specification types have been used when creating the

Electric Bed version 1.0 product class. This discussion has also shown how versioning

support is implemented in PCD.

152

7. System Testing, Verification and Validation of the MDSSF Architecture

7.2.2.5 Product Class Subscription in SPCD

The SPCD and SD are used for product data management at a supplier end. These two

databases are subscribed by product suppliers and managed locally. A product supplier

then subscribes to relevant product classes in SPCD, so that products corresponding to

these can be created in SD. Product classes, which are created in PCD are subscribed in

SPCD by populating it with product class data (see Section 6.2.2.1). The SPCD

provides its functionality through 28 stored procedures and functions. The SPCD

system is installed in three machines in the MDSSF distributed computing environment

(See Figure 7.2). Several tests were conducted to subscribe different product classes in

the SPCD. Section A2.5 (see Appendix 2) provides a list of stored procedures that were

executed to subscribe one such product class, Electric Bed Version 1.0, in an SPCD

system installed in machine tennis.cs.cf.ac.uk. A total of 47 stored procedures were

executed to subscribe this product class and its different specifications in the SPCD

system. However, only a selected number o f these stored procedures are provided in the

appendix for brevity. Since the SPCD system is installed in 3 machines, the same steps

were performed to subscribe the Electric Bed Version 1.0 in the other two machines

also.

7.2.2.6 Creation of Product Information in SD

The Supplier Database (SD) system stores actual product information. The SD system

provides its functionality through 39 different stored procedures and functions. The

functionality of this database was tested by installing it in three machines in the MDSSF

distributed computing environment (See Figure 7.2). Product suppliers can manage

product information in SD by using product classes downloaded in SPCD. This

functionality of the SD system was tested by creating product information. The example

in Section A2.6 (see Appendix 2) shows ETESMI/Plano model of an electric bed

product created in an SD system which is installed in the machine tennis.cs.cf.ac.uk. In

SD, the stored procedure proc CreateNewProduct created a top level product

description for the electric bed product, which referred to the Electric Bed version 1.0

product class in SPCD via IDProdClass and IDProdClassVer input parameters (see

Section A2.6.1). Specifications to this electric bed product were assigned by executing

stored procedures, which created its specifications. Section A2.6 shows how different

types of specifications were created and assigned to the electric bed product. A total of

153

7. System Testing, Verification and Validation of the MDSSF Architecture

47 stored procedures were executed in an SD to create a version of an electric bed

product and its different specifications in the testing process. However, only a selected

number of these stored procedure execution code is provided in Section A2.6 for

brevity. The appendix provides further implementation level description of the creation

of this product. In the testing, eight different models of electric bed products (including

the ETESMI/Plano model demonstrated here) were created for SD systems installed in

the 3 machines . These different models conformed to the Electric Bed version 1.0

product class, but used different specification values for specifications defined in the

product class. These different models of electric bed product in different SDs

demonstrate that when a product search takes place, information on the same or similar

products, can be provided by more than one product supplier.

For testing purposes, in addition to the Electric Bed product class, several other product

classes were also created in the PCD. These product classes were created to describe

furniture related products such as doors, windows and chairs. In addition the product

classes were also created for industrial products such as fan coil units. The product

classes were created for the Cheetah range o f fan coil units [Che08]. Information on this

product was also provided by industrial partner, APSL. The products for which products

classes were created in PCD and their description in SD, ranged from simpler products

having a small number of specifications to more complex products having a large

number of different types of specification. The Electric Bed product class, which has a

large number of specifications, shows the capability o f MDSSF databases to handle

complex product information.

7.2.3 Test Objective 3

Test the ability o f MDSSF components to provide an integrated means o f

viewing product information available from several different suppliers.

The functionality of searching SD systems and aggregating product data retrieved from

several SD systems is provided in MDSSF by its MDSS system component. This

aggregated product data provides an integrated view of product information available

from several different suppliers. The MDSS system is a middleware component in the

2 Out of these eight electric bed products, four products were created by author’s colleague Pete Bumap
who was also a member of COVITE project team and rest four were created by the author.

154

7. System Testing, Verification and Validation of the MDSSF Architecture

MDSSF architecture and is made up of two sub-components: the Master Grid Service

(MGS) and a number of Database Search Services (DSS) operating in a Grid

environment (see Figure 7.1). These two components of the MDSS enable the creation

of a Virtual Distributed Database (VDD) o f product information where the information

is provided by several product suppliers. Section 6.3 describes the architecture of

MDSS and the rationale for providing Grid technology support to it in greater detail. As

part of this testing objective, the MDSS sub-components were tested individually and

then together as a single system to provide an integrated view of product information,

available from several SD systems. Several tests were conducted to test the ability of

MDSS to provide the needed functionality.

7.2.3.1 Testing MGS

The MGS is tested for its ability to:

a) Allocate database search jobs to DSS nodes in a Grid environment

The MGS divides the total number of supplier databases (SD) to search, into roughly

equal portions and allocates a portion (i.e. a sub-set o f the total SDs to search) to each of

the DSS nodes available in a Grid environment. As part of this testing, the MGS

invoked DSS nodes by providing them with a sub-set of total SDs to search and search

criteria. In the MGS, MasterGridlmpl class (See Figure 6.11) provides the functionality

of allocating database search jobs to DSS nodes. This class was successfully run on the

MGS node (i.e. machine tennis.cs.cf.ac.uk). The method executeJob o f this class (via its

Web Service access URL) is invoked by the PSCD front-end web application to

perform a distributed database search of SD systems. The method is invoked by the

front-end application providing three arguments in XML document format. The first

argument searchString identifies the product search criteria. Figure 7.7 shows an

example search criteria, which retrieves all products that conform to a product class

with ID 10325. This is the ID of the product class Electric Bed version 1.0 (see Figure

7.4). The second argument supplierString is the list of supplier databases to search (see

Figure 7.8) and the third argument gshString is a list o f Grid Service Handle (GSH)

URLs, which uniquely identify each DSS node available in a Grid environment (see

Figure 7.9). With the above three arguments and by using the functionality provided by

the other classes of the MGS, the executeJob method initiates database search jobs. The

155

7. System Testing, Verification and Validation of the MDSSF Architecture

MGS provides multi-threading support, so that DSS nodes can perform their operation

of searching supplier databases in parallel. This functionality was also tested as part of

the executeJob method which creates a separate JobExecution thread for each DSS node

available in the Grid environment (see Figures 7.10 and 7.11). The JobExecution thread

is an instance of a JobExecution class and its role is to submit a database search job to a

DSS node and collect product data returned by it. The executeJob method provides

jobExecution threads with the product search criteria, a subset of the supplier databases

to search and one GSH URL. A single jobExecution thread invokes one DSS node

deployed in a separate machine through its GSH URL. Since several jobExecution

threads are run in parallel, several DSS instances running in their individual machines

are invoked in a Grid environment, to collaboratively perform database search jobs by

invoking several SD systems. As part o f the testing process the executeJob method

created four jobExecution threads and each of these threads in turn invoked four DSS

nodes in parallel. This process is shown in Figure 7.10.

<?xml v e r s io n -'1 .0"?>
<searchCriteria>

<ID ProdC lass>10325</ID ProdC lass>
</searchCriteria>

Figure 7.7 An example search criteria identifying
the ID of the product class.

<°xml version-’ 1.0" ?>
<SupplierDataSet>

<Supplier>
<IDSupplier>55</IDSupplier>
<Suppliei WS>http:/ 131.251.42 40/SupplieiAppProdiictSeivice.asnix</SupplieiWS>
<DataSetNanie>SupplieiDataSet</DataSetName>

</Supplier>
<Supplier>

< IDSuppliei > 13 2<7IDSuppliei>
<SupplierWS>http: 7131.251.42.33 SupplierApp'ProductSemce.asmx</SuppherWS>
<DataSetNanie>SupplierDataSet</DataSetNanie>

<■'Supplier >
</SupplieiDataSet>

Figure 7.8 A snapshot of supplierString XML document identifying the
product supplier databases (SD systems) to search.

156

7. System Testing, Verification and Validation of the MDSSF Architecture

<?xml version=“1 .Q"?>
<GridServiceHandle>

<IDGsh>2</IDGsh>
<GSH>

http://131.251.47.110:18080/ogsa/services/services/uk1/co/activeplan/mdss/impl/
DatabaseSearchlmplProviderFactoryService

</GSH>
<MachineName>bouscat.cs.cf.ac.uk</MachineName>

</GridServiceHandle>
<GridServiceHandle>

<IDGsh>3</lDGsh>
<GSH>

http://131.251.128.7:18080/ogsa/services/services/uk1/co/activeplan/mdss/impl/
DatabaseSearchlmplProviderFactoryService

</GSH>
<MachineName>agents-comsc.grid.cf.ac.uk</MachineName>

</GridServiceHandle>

Figure 7.9 A snapshot of XML document identifying a subset of available Grid
services via their GSH which can be used to perform distributed database search.

157

http://131.251.47.110:18080/ogsa/services/services/uk1/co/activeplan/mdss/impl/
http://131.251.128.7:18080/ogsa/services/services/uk1/co/activeplan/mdss/impl/

7. System Testing, Verification and Validation of the MDSSF Architecture

The MGS

\ search criteria,'
' subset of SD,
\ g s h

search criteria, '
subset of SD, *
GSH /

1 search criteria,I ’

i subset of SD,
/ GSH

search criteria,
subset of SD,

' G S H

search criteria,
subset of SD

search criteria,
subset of SD

search criteria,
subset of SD

search criteria,
subset of SD

 ̂ r

The MISS

search
criteria

search
criteria

search
criteria

search
criteria

search
criteria

search
criteria

search
criteria

search
criteria

jobExecution

SD SystemSD System

SD System

SD System

SD SystemSD System

SD System

SD System

jobExecution jobExecution jobExecution

DSS Node DSS NodeDSS Node DSS Node

executeJob

Figure 7.10 This figure shows how the executeJob method of the MasterGridlmpl class in the
MGS distributes database search jobs to DSS nodes. The executeJob method creates four
jobExecution threads (of class JobExecution) and provides each thread with the search
criteria and a subset of SD systems to search, and a GSH of DSS node. These jobExecution
threads then invoke DSS nodes (via their GSH) and provide them with the same
information (i.e. search criteria and subset of SD systems). Invoking DSS nodes
simultaneously as part of a multi-threaded operation enables them to run in parallel in the
Grid environment to collaboratively perform distributed database search. The DSS nodes
then invoke SD systems to retrieve product data by providing them with the search criteria.
A DSS node invokes several SD systems. The DSS nodes invoke SD systems via their Web
Service interface (not shown in the figure for brevity. This is shown in figure 7.1).

158

7. System Testing, Verification and Validation of the MDSSF Architecture

forfint i=0; i<gshCount;i++)
{

jobExecution = new JobExecution(searchString,
supplierDocumentParser.getSupplierSubDocumentStringO,
gshDocumentParser.getGshQ);

jobExecution.setThreadChecker(threadChecker);
Thread thread = new Thread(threadGroup, jobExecution);
thread. startQ;

} // end of for loop.

Figure 7.11 A snapshot of code from executeJob method of the
MasterGridlmpl class, which shows how the method allocates database
search jobs by creating jobExecution threads in a for loop. A jobExecution
object is initialised with three arguments: searchString i.e. searchCriteria; a
subset of SD systems to search provided by SupplierDocumentParser class;
and GSHs of DSS nodes available in the Grid environment. The GSHs are
provided by the GshDocumentParser class. This jobExecution object is then
run as a Java program execution thread. The for loop shown in the figure
creates four such threads, one for each DSS node in the Grid environment
and these four threads run in parallel. See the UML class diagram of MGS
in Figure 6.11 for further details.

b) Aggregate product data retrieved by DSS nodes by searching SDs

The MGS was also tested for its ability to aggregate product data retrieved by DSS

nodes into a single XML document and send the result to the PSCD front-end

application. The functionality of product data aggregation in MGS is provided by the

JobAggregation, CallDataAggregate, DataAggregate classes, which help to accumulate

product data (retrieved from several SD systems) in one central place in the form an

XML document. In MGS, product data collected by individual jobExecution threads, is

aggregated using CallDataAggregate, DataAggregate classes. Once all jobExecution

threads have finished execution, the executeJob method uses the functionality of the

JobAggregation class to send aggregated product data to the PSCD web application to

be displayed to the user. As part of this testing, the product data aggregation classes of

MGS collected electric bed product data returned by DSS nodes and aggregated them

into a single XML document. Figure 7.12 shows a snapshot of an XML document

providing information on product data retrieved from SD systems. In the testing, the

product data corresponding to Electric Bed version 1.0 product class was retrieved from

several product supplier databases. The entire XML document showing product data

retrieved from all SD systems, and data corresponding to different product

specifications is not shown in the figure for brevity. Figure 6.11 shows the class

diagram of the MGS system component, and Section 6.3.4.1 identifies in greater detail

159

7. System Testing, Verification and Validation of the MDSSF Architecture

the other support classes, which provide different functionalities. These were also

tested.

<NewDataSet>
<Supplier IDSupplier="3M

SupplierWsURL="http://131.251.42 40/SupplierApp/ProductService .asmx">
<Product>

<IDProdlnternal>1143</IDProdlnternal>
<IDProdClass>10325</IDProdClass>
<IDProdClassVer> 1.0000</IDProdClassVer>
<ProdName>Ampio</ProdName>
<ProdDesc>General purpose electric bed model</ProdDesc>

</Product>
</Supplier>
<Supplier IDSupplier="4"

SupplierWsURL="http://131.251.42.33/SupplierApp/ProductService.asmx">
<Product>

<IDProdlnternal> 1144</IDProdlnternal>
<IDProdClass>10325</IDProdClass>
<IDProdClassVer>1.0000</IDProdClassVer>
<ProdName>Plano</ProdName>
<ProdDesc>General purpose electric bed model, acute care</ProdDesc>

</Product>
</Supplier>

</NewDataSet>

Figure 7.12 A snapshot of product data returned from SD systems.

7.2.3.2 Testing of DSS

The DSS component of MDSS was deployed in four machines in a Grid environment

(see Figure 7.2). Each DSS component was hosted in a single machine (node). Section

6.3.4.2 describes the architecture of DSS in greater detail and its UML class diagram is

presented in Figure 6.12. The testing of DSS took place by simultaneously invoking

four DSS nodes from the MGS (see Figures 7.10 and 7.11). An important class of the

DSS system is DatabaseSearchlmpl, which is exposed as a Grid service and performs

the task of searching supplier databases. In the testing process, the MGS invoked this

class via its GSH and provided it with a subset of total supplier databases to search and

the search criteria. The DSS node then invoked each of the supplier databases by

sending a SOAP [Gra02] message containing search criteria to the product supplier

database Web Service front-end to retrieve product data. At the product supplier end,

the search criteria is evaluated by the Web Service front-end, which interacts with the

backend SD system to retrieve relevant product data based on the search criteria (see

Figure 7.12). This product data is then sent to the calling DSS node.

160

http://131.251.42
http://131.251.42.33/SupplierApp/ProductService.asmx

7. System Testing, Verification and Validation of the MDSSF Architecture

7.2.3.3 Testing the MDSS as a Single System

The MDSS component of the MDSSF architecture was tested for its data search

capability in the Grid environment. During the testing of the Grid enabled distributed

database search, a typical search used 7 machines. Of these, the SD system was installed

in 3 machines (see Figure 7.2). The MDSS system components, such as MGS was

installed in a single machine and DSSs were deployed in 4 machines. The test involved

submitting a database search criteria, to available DSS Grid service nodes using MGS.

The MGS split the database search operations into roughly equal portions and allocated

these to individual DSS nodes (see Figure 7.1). These DSS nodes executed database

search operations in parallel to retrieve product data from several SD systems, and

presented the retrieved information in an integrated form by aggregating the retrieved

data.

An important element of testing the MDSS was to test its scalability. This involved

testing the ability of the Grid nodes of the MDSS to search a large number of SD

systems in response to a user’s query. However, due to limitation of resources, the SD

systems were deployed in three machines only (see Figure 7.2). This meant that the

MDSS could only invoke these three SD systems to perform a distributed database

search in response to a single query. These three SD systems were clearly not enough to

test the scalability of MDSS. Therefore, a testing scenario was simulated, whereby these

three SD systems were invoked by MDSS several times as part of a single query, under

the assumption that these several SD systems are installed in separate machines. This

was achieved by creating a supplierString XML document which contained several

duplicate entries for an SD system and sending this document to MDSS as one of the

input parameters. Figure 7.13 shows an example XML document where a supplier with

IDSupplier value 2 is entered twice in the document. With this document, the MDSS

invokes this supplier’s Web Service twice and retrieves two sets of the same product

data from its SD system. Therefore, when a supplier is mentioned several times in a

supplierString XML document, the MDSS invokes that supplier that many times as part

of the distributed database search. Thus by using this technique, it was possible to test

the scalability of the MDSS by giving it a large number of SD systems to search (i.e.

three SD systems but mentioned several times in the supplierString XML document).

161

7. System Testing, Verification and Validation of the MDSSF Architecture

<?xml version="1.0"?>
<SupplierDataSet>

<Supplier>
<IDSupplier>2</IDSupplier>
<SupplierWS>http://131.251.42.33/SupplierApp/ProductService ,asmx</SupplierWS>
<DataSetName>SupplierDataSet</DataSetName>

</Supplier>
<Supplier>

<IDSupplier>2</IDSupplier>
<SupplierWS>http://131.251.42 33/SupplierApp/ProductSemce,asmx</SupplierWS>
<DataSetName>SupplierDataSet</DataSetName>

</Supplier>
<Supplier>

<IDSupplier>3</IDSuppiier>
<SupplierWS>http://131.251.42,40/SupplierApp/ProductService ,asmx</SupplierWS>
<DataSetName>SupplierDataSet</DataSetName>

</Supplier>
</SupplierDataSet>

Fig 7.13 A snapshot of supplierString XML document identifying the product
supplier databases (SD systems) to search. In this document a product supplier with
ID 2 is mentioned twice. This technique enables searching an SD system by MDSS
more than once depending upon the number of times it is entered in the XML
document.

Several tests were conducted by providing MDSS with varying numbers of SD systems

ranging from 100 to 400 by using the above technique. When the MDSS was given a

larger set of SD systems to search, it provided an acceptable response time. In a typical

scenario, the MDSS has been tested to retrieve and aggregate product data from up to

400 SD systems in about 35 seconds.3 Table 7.2 shows the approximate time in seconds,

which the MDSS system took to search varying numbers of SD systems. In one such

testing, the MDSS invoked 400 SD systems (i.e. three SD systems invoked 400 times)

by dividing database search jobs among the DSS Grid service nodes. The DSS Grid

service nodes collaborated at system level to retrieve and aggregate product data from

the SD systems. Several of these tests were conducted. The output of this test is product

data which is retrieved from 400 SD systems and aggregated into one XML document.

Figure 7.12 shows a snapshot of this XML document. The Supplier element in the XML

3 The aim of this testing is to demonstrate the scalability of the MDSS system when retrieving data from a
large number of supplier databases in a Grid environment. The Grid support is provided in MDSSF to
achieve system scalability (see Section 6.3). The figures presented in Table 7.2 are for the sole purpose of
demonstrating the ability of MDSS system to search large number of SD systems and aggregate product
data in a reasonable time. In this regard it can be mentioned that the Grid computing (via the Grid
middleware and machines on which it is installed) is used in the present research with the aim to achieve
system scalability and coordinated resource sharing, although Grid computing also provides various other
features [FosOl] [Fos02] [Don06] [Fos99], It is not considered from the perspective of application of Grid
computing in other areas or areas such as High Performance Computing [Hua06] [Dar07] [Don06] which
does not lie in the domain of present research.

162

http://131.251.42.33/SupplierApp/ProductService
http://131.251.42
http://131.251.42,40/SupplierApp/ProductService

7. System Testing, Verification and Validation of the MDSSF Architecture

document of Figure 7.12 differentiates the product data returned by each SD system.

For example, the XML document shows product data returned by product suppliers with

ID 3 and 4. The MDSS is also tested for its ability to perform several product database

search jobs at a time. This demonstrates the ability of MDSS to search a large number

of SD systems and provide an integrated view o f product data retrieved from these SD

systems in a reasonable time. The DSS Grid service nodes of MDSS are deployed in 4

machines only. Therefore, there is a limit to the maximum number of database search

jobs it can handle at a time due to resource limitations (such as CPU and memory). The

improvements which are needed to MDSS architecture to further enhance system

scalability are discussed in Sections 7.4.3.6 and 7.4.3.7 as part of MDSSF evaluation.

Number of SD Systems to Search Approximate Time (in seconds)

100 17

200 23

300 28

400 35

Table 7.2 The number of SD systems searched by MDSS and
approximate time in seconds.

The above discussion describes the testing o f MDSS for its ability to search a large

number SD systems via a technique, where a single SD system is mentioned several

times in the supplierString XML document (see Figure 7.13). The author believes that

from a feasibility point of view, this is a worthwhile approach which tests the

functionality of the prototype system in a reasonable timescale and with the use of finite

resources. Due to limitation of resources, the SD systems were deployed in 3 machines

only. Assuming that a large number o f machines were actually made available to the

project for testing purpose, it would still have been a complex and time consuming task

to set-up SD systems in all these machines. The main aim of this testing is to

demonstrate the ability of MDSS to handle and process a large amount of product and

supplier data in a Grid environment. For this purpose, the presence of several of SD

163

7. System Testing, Verification and Validation of the MDSSF Architecture

systems is not needed. This is because DatabaseSearchlmpl class4 of the DSS system

(and the other classes of MDSS) performs a series of steps when it invokes an SD

system to retrieve product data. It performs these same steps every time and for every

SD system it invokes. Therefore, from a technical point of view and for testing purpose,

it is irrelevant whether the same or a different SD system is invoked every time product

data is requested. Since the MDSS performs same steps for every SD system mentioned

in the supplierString XML document, a large number of SD systems can be specified in

the XML document. This can also contain duplicate entries of an SD system. These

large number of SD systems then help to test the scalability of MDSS because it invokes

each SD system mentioned in the XML document to request product data. An SD

system is invoked that many number of times as it is mentioned in the XML document.

For example if an SD system is mentioned 100 times in a XML document it gets

invoked 100 times by the MDSS. The drawback of this approach is that it retrieves

duplicate data due to duplicate entries of an SD system in supplierString XML

document. As a result the same set of data is returned by an SD system every time it is

invoked for a given search. This is acceptable in a testing environment because the aim

here is to test the ability of MDSS to retrieve and process large amount of product data.

This approach has successfully tested the scalability of MDSS despite limited resources.

Thus, by providing the same supplier information in the supplierString XML document

more than once, a large number of SD systems were invoked in the Grid environment

without needing a large number of SD systems to be installed in separate machines.

7.2.4 Test Objective 4

Test the ability o f the MDSSF architecture to provide up-to-date product

information to consortia members such as contractors.

The MDSSF architecture provides local autonomy to product suppliers and it retrieves

product data from SD systems through the MDSS system. This allows suppliers to

manage their own product information without external influence. This means that the

information available through the MDSS is likely to be accurate and up-to-date. This is

due to the product data being decentralised and autonomously managed by the product

4 The series of steps refer to the functionality provided by the DatabaseSearchlmpl class and the other
classes of the MDSS system for retrieving product data from SD systems (see Section 7.2.3.3). See
Appendix 5 for system code of MDSS.

164

7. System Testing, Verification and Validation of the MDSSF Architecture

suppliers themselves who are responsible for managing their own product data and it is

in their interest to keep it up-to-date. It is anticipated that product information provided

by product suppliers has the potential to influence procurement planning and

procurement decision making by contractors if it is readily available. Thus, due to

market forces and the need to compete with other product suppliers, who may also be

participating in MDSSF and supplying similar or identical products, the product

supplier will ensure accurate and up-to-date descriptions of their products in their SD.

Product information can be updated in an SD by performing database update operations

through SQL queries. The MDSSF architecture does not provide mechanisms to cache

product data. When product data is requested by a user, a new distributed database

search takes place. Therefore changes to product data made by product supplier in their

SD can be reflected immediately in the PSCD application, when the next search takes

place. This ensures that up-to-date product data is retrieved every time. Several tests

were conducted to test this feature of MDSSF by updating product description in an SD

and then performing a distributed database search.

Another important aspect of ensuring that up-to-date information is available, is to

provide notification to users when product information cannot be retrieved from an SD.

This can happen when an SD system is unavailable or is inaccessible due to network

problems or when the Web Service URL is malformed. During such events the

DatabaseSearchlmpl class of the DSS system generates an error message as an XML

element and adds it to the returning XML document (see Figure 7.14). This error

message identifies the SD system from which product data could not be retrieved.

165

7. System Testing, Verification and Validation of the MDSSF Architecture

catch(Exception e)
{

/* This exception is thrown when the stub is unable to invoke the Supplier
* Web Service. When the stub is unable to retried data from Supplie Web
* Service URL then error string is encoded into XML element and added to
* the returned XML document by DataAggregate class. This XML element
* identifies the supplier Web Service from which product data could not be
* retrieved.*/

String errStr = “\n<Error>\n\t<ErrorString>\n\t\tCould not retrieve data from URL" + url.toString() +
"An Either URL is malformed or connection to the web service is \n refused (a web service" +
'may not be available) or access to the database server is denied or is unavailable.\n\t" +
"</ErrorString>\n\t</Error>\n";
supplierDetails[2] = "Error";
dataAggregate.addNodes(errStr, supplierDetails);

} //end of catch.

Figure 7.14 An exception generated by DatabaseSearchlmpl class
of DSS system when it fails to retrieve product data from an SD system.

7.2.5 Section Summary

Section 7.2 described testing of the MDSS system components as part of a testing

strategy which determined if it met the procurement challenges (see Section 1.2) and

addressed the limitations of the original PSCD application (see Section 1.3). In addition

to the tests described in this section, several other tests were also conducted to test the

features of MDSSF components not described in this section. These features include

testing the MDSSF databases for transaction management, error notification, generation

of IDs for entities such as product classes and its specifications and product class

category management (see Sections 6.2.1.6 and 6.2.1.7). The three databases of MDSSF

provide a total of 122 stored procedures - all o f these were tested as part of their

development. The Java classes of the MDSS system were tested individually and as part

of a single system as they were developed. These classes provide other support

functionality, such as parsing of supplier and product data, data aggregation and

transformation, and invoking Web Services (see Section 6.3.4.1 and 6.3.4.2). Tests were

carried out to test these support features of the MDSSF system components. Although

the successful testing of the components of the MDSSF architecture, as part of the

PSCD application demonstrates the viability of the architecture, there is a possibility of

making further improvements to the system to enhance system scalability. This is

discussed in Section 7.4 as part of the evaluation of the MDSSF architectural

components.

166

7. System Testing, Verification and Validation of the MDSSF Architecture

7.3 MDSSF Demonstration
The MDSSF architecture was developed to Grid-enable the PSCD application. Several

demonstrations of the application were given to different audiences during the COVITE

project. The functionalities of the application (and with it the capabilities of MDSSF

components) were demonstrated to the industrial collaborators of the COVITE project

APSL on several occasions. The application was demonstrated to members of staff at

the School of Computer Science, Cardiff University in a departmental seminar. A

demonstration of the application was also given at the UK e-Science All Hands

Conference in Nottingham in September 20045. The demonstration showed the creation

of a product class and its subscription by product suppliers. As part of the

demonstration the product search took place using the MDSS deployed in the Grid

environment. The Grid enabled MDSS System queried a dynamic selection of relevant

supplier databases (SDs) to extract, in real time, information about the products which a

Virtual Organisation (VO) or a contractor wished to acquire. The product search criteria

submitted by a Contractor/VO retrieved - in real time - the available SDs meeting the

search criteria. The SDs meeting the search criteria were then invoked via the XML

based web service using MDSS. Searching a large number of SDs took place using DSS

nodes in a Grid environment, where the nodes worked collaboratively and invoked SDs

to retrieve product information in the form of XML documents. The Components of

MDSSF were deployed in the local computing environment and these were invoked by

the PSCD front-end application remotely from the conference location as part of the

demonstration.

The PSCD application based upon the MDSSF architecture also received potential

interest from external organisations to identify how it could be used to aid procurement

activities. This interest was shown by the e-Procurement department of the Welsh

Assembly Government in November 2005 and Welsh Health Estates in March 2006,

which is also a branch of the Welsh Assembly Government. The e-Procurement

department were interested in the potential use of PSCD to help local authorities

throughout Wales with purchasing. The Welsh Health Estates were interested from the

perspective of procurement and management of health facilities in Wales. It is likely

5 The PSCD application was demonstrated in the 3rd UK e-Science All Hands Conference by another
member of the COVITE team. The other functional areas of the PSCD application (see Section 2.2) such
as security, PSCD front-end application and user management were also demonstrated.

167

7. System Testing, Verification and Validation of the MDSSF Architecture

that these opportunities can be pursued with further research in this area and

participation of the industrial partners who were interested in the system.

The MDSSF system architecture and the prototype system is the outcome of the

research which was undertaken as part of the COVITE [Mil02] project. The project was

funded for two years by the Department o f Trade and Industry (DTI), it started on 01

October 2002 and finished on 30 September 2004. Due to limited external funding, the

project (and author’s research) could not move forward from the current prototype stage

to the next stage. However, there is a possibility of taking this research forward if public

funding becomes available.

7.4 Verification and Validation of the MDSSF Architecture
This section verifies and validates the MDSSSF information sharing architecture in

terms of the research objectives achieved.

7.4.1 Benefits to the Construction Industry

The first objective (see Section 1.4.1) of this research was to identify how the new

information sharing architecture will benefit construction industry actors with the aim of

presenting a solution to the procurement challenges identified in Section 1.2. The

requirements were identified by the industrial collaborator APSL, and the project

supervisor Professor John Miles. These requirements were to address the procurement

challenges and limitations of the PSCD application (see Sections 1.2 and 1.3). This

research successfully met these requirements and proposed a solution to procurement

challenges via a new information sharing architecture. In view of these requirements,

the existing role of information, technology and practices that drive construction

procurement were examined to identify how a new information sharing architecture will

benefit construction industry actors in their desire to make better procurement decisions.

Chapter 3 provides a detailed view on different ways in which the MDSSF information

sharing architecture can benefit construction industry actors.

As part of the first objective of this research, the role of information in the construction

industry was examined (see Section 3.4). It was necessary to understand this role

because the MDSSF provides a new method for information management and sharing.

168

7. System Testing, Verification and Validation of the MDSSF Architecture

The MDSSF, via its software components also provided a technology based solution to

procurement challenges. The volume of information generated by construction projects

is so large, that using IT to handle it is highly beneficial. The role of IT to enhance and

improve construction industry processes is well recognised (see Section 3.2.3). In

section 3.5, this role of technology in construction industry processes is presented in

greater detail. The MDSSF through its software components presented a technology-

based solution and used similar kinds of technological options to those used by other

procurement systems. Section 3.7 identifies in greater detail how the MDSSF, through

its software components, can benefit existing procurement systems or approaches by

providing product and supplier information.

Procurement is a very wide subject area. In order to carry out procurement related

activities effectively, organisations also consider many other factors having wider

influences, scope and implications on themselves and on the construction industry as a

whole. Organisations spend considerable resources and time, and form different types of

collaborations and partnerships, not only to ensure timely delivery of project outputs,

but also to make further improvements, for example by introducing innovative

techniques, by making changes based on lessons learned from past projects, by seeking

greater specialisation to reduce costs and outsourcing non-core functions. This research

also identified different ways in which the MDSSF can benefit practitioners in the

construction supply chain for procurement in different organisational scenarios. Section

3.6 identifies 14 different factors and/or scenarios which influence procurement and

how the MDSSF can be of benefit in those scenarios by providing integrated access to

product data from several autonomous product suppliers. The different factors and/or

scenarios underpin the need for such architectures and the potential benefits it can

provide. The applicability and use of MDSSF in different procurement systems; its role

in information sharing and providing a technology based solution; and the different

ways in which it can benefit practitioners in the construction industry, which are

identified in Chapter 3, confirms that it can provide benefits to industry actors in several

different ways. This also confirms the achievement of the first research objective.

169

7. System Testing, Verification and Validation of the MDSSF Architecture

7.4.2 MDSSF Information Sharing Architecture

The second objective (see Section 1.4.2) of developing an information sharing

architecture which meets the procurement challenges of Section 1.2 was realised

through the MDSSF architecture, which is the main contribution of this research. In

Section 7.2 we discussed the functionality of the different system components of

MDSSF as part of the system testing. The functionality of different system components

gives certain distinctive features to the architecture, which are part of its novelty and

provide a new federated information sharing model enabling a novel type of

collaboration between construction industry actors. This section describes the novel

features of the MDSSF architecture.

7.4.2.1 Grid Support

MDSSF is designed to provide Grid technology support for retrieving product

information and sharing it with contractors in real time. The MDSS system within

MDSSF provides the functionality to distribute a product search across a number of

machines in a Grid network, where the machines collaborate to execute database access

operations. It also provides the functionality to aggregate the data retrieved from a large

number of database systems. The architecture is unique in that it provides Grid

technology support in a federated database environment. The architecture of MDSSF is

also unique from another perspective. It does not Grid enable supplier databases, but

Grid enables database access operations only. The need to Grid-enable database access

operations only was identified, as there are a large number of supplier databases which

need to be accessed and these databases are not normally available in the Grid

environment. These databases are managed and controlled by independent and

autonomous product suppliers. The MDSSF architecture is designed under the

assumption that the autonomy of the SD systems must be maintained, as they are owned

by organisations that do not provide database operations such as data definition, data

insertion and data update to external users but will support access to the databases by

external users to retrieve data. The distinction between this approach and some of the

other Grid related database projects is identified in Section 4.6.

170

7. System Testing, Verification and Validation of the MDSSF Architecture

1 A .2.2 Federated Architecture Supporting Competing Product Suppliers

MDSSF provides an integrated way to access product information from a large number

of product suppliers using a single system. It searches for the same or similar products,

but supplied by different suppliers and provides an integrated view of this information

to contractors. Hence, when the system brings together product information from

different SD systems, it enables product suppliers to compete with each other in a

virtual market place, based on the product information they provide to the federation

users (contractors). It also provides contractors with an opportunity to judge competing

product information against their own project requirements.

7.4.2.3 MDSSF’s Cooperation Model

MDSSF can be described as a federated information sharing system, as it federates SD

systems via the Grid-enabled MDSS and the CDM (Common Data Model), based on

the product class concept. It is recognised in the literature that cooperation among

independent systems is an important characteristic of federated databases (FDBS) for

sharing data [She90]. MDSSF adopts a different model of cooperation from traditional

FDBS architectures, which enables data sharing between the component DBSs

participating in the federation. The MDSSF model of cooperation does not allow

sharing of data between component DBSs supplying the data (i.e. between the SD

systems of the product suppliers). In the MDSSF architecture product suppliers share

their data with the contractors only. This is because product suppliers are business

organisations, who do not wish to disclose their product related sensitive data to their

competitors, who are participating in the same federation. They only cooperate with the

centralised MDSS so that appropriate information about their products is retrieved and

sent to the contractors in the standard data structure of the VDD.

7.4.2.4 Schema Integration

The MDSSF information sharing model is different from other federated database or

mediator based architectures with respect to schema integration. In MDSSF, unlike

other information sharing systems (see Section 4.4) the sharing of data takes place

between contractors and the supplier databases without the need to create federated,

integrated or external schemas. This schema integration is not required in the MDSSF

approach, because of the homogeneous nature of the product data which is exchanged in

171

7. System Testing, Verification and Validation of the MDSSF Architecture

MDSSF. The adoption of standard data exchange methods, based on the product class

concept, provided the opportunity to design a novel database federation model having a

Grid enabled distributed database search mechanism at its core, in place of mechanisms

for resolving schema conflicts. Schema integration is further not required in the MDSSF

approach, because data is not integrated in its environment. Product information

retrieved from several SD systems is only aggregated by MDSS, so that it can be

presented to the user in an integrated and consistent way through the PSCD front-end

web application. The retrieved product information is aggregated into a list but there is

no integration of this information.

7.4.2.5 Subscription-based Approach

The MDSSF is also a novel information sharing architecture from the perspective of its

data model and data subscription. The architecture (via its architectural components)

allows subscription to the data model of the federation and product classes by the

product suppliers (see Section 6.2.2.1). This subscription based approach provides

product suppliers with readily available mechanisms to manage their product data in a

structured way by using the standard specifications of product classes to describe

product features and in this manner tackle the issue of heterogeneity. The approach is

beneficial to the suppliers and particularly SMEs (small to medium enterprises), who

may not use database systems for managing product data and often provide data in the

form of PDF files or use other unstructured mechanisms which are difficult to manage

and search. Thus the subscription based approach can provide SMEs with a database

solution to manage their product data and also make their product information available

to potential buyers and contractors via the MDSS.

7.4.2.6 A Standard Method of Information Storage and Exchange

The second objective of this research also identified the need to develop a standard

method for information storage and exchange to address heterogeneity and allow

suppliers to manage product information using standard means (see Section 1.4.2). The

rationale behind this approach is to promote standardisation from the beginning at the

data exchange level, so that the inconsistencies, which heterogeneity brings, can be

avoided in the first place to enable collaboration. Standardisation plays a key role in the

MDSSF architecture, to support data sharing in a standard and integrated way. This

172

7. System Testing, Verification and Validation of the MDSSF Architecture

objective has been achieved by using the concept of product classes in MDSSF. An

important advantage of product classes is that they provide product suppliers with a

readily available means to describe their product features in a standard and structured

way. It also supports product data evolution. It gives standard product definitions which

can be used by product suppliers to provide descriptions of products, they can supply to

consortia members or contractors. When all product suppliers use standard product

classes to describe the same or similar products, they can be easily compared by a

contractor. The achievement of this research objective both at the conceptual and

implementation level, addresses the third procurement challenge of this research which

was to tackle the issue of heterogeneity by developing a standard means of product data

management and evolution (see Section 1.2).

7.4.3 The Software Components of the MDSSF

The aim of the third objective (see Section 1.4.3) was to empirically show the viability

of the new distributed information sharing architecture by designing and implementing

its various software components, to address the procurement challenges at the data

management and sharing level. This has been achieved by designing and implementing

its various software components. Chapter 6 describes the architecture of the MDSSF.

The data definition and management software components of MDSSF such as the PCD,

SPCD and SD systems provide mechanisms to create product class definitions, product

descriptions and allow their management. The functionality of data search in MDSSF is

provided by its MDSS component.

The MDSS is designed to operate in a distributed environment comprising of several

machines and uses Grid technology to perform a distributed database search of a large

number of supplier databases to retrieve required product information (see Section 6.3).

It provides the benefit of integrated access to the large amount of product data available

from several SD systems, through the use of a single system. This addresses the first

procurement challenge of being able to access product information available from

several suppliers in an integrated manner. The Grid support provides the necessary

scalability and computational capability that is required to access such information. The

MDSS also provides another important benefit as it enables the building of a large and

comprehensive product data repository (the VDD).As identified in Section 7.2.4 there is

173

7. System Testing, Verification and Validation of the MDSSF Architecture

a high degree of probability that the information in the VDD is accurate and up-to-date.

This is due to the product data being decentralised and autonomously managed by

several product suppliers, who are responsible for managing their own product data.

At the data management and exchange level, the software components of the MDSSF

provide all the necessary features to enable product data management and sharing to

meet the procurement challenges. The development of this prototype system to meet

these challenges confirms the achievement of the third research objective.

7.4.3.1 Software Components at Supplier Side

The supplier side product data management infrastructure allows product suppliers to

retain full control of their product data. However this flexibility also brings in a degree

of complexity because setting up and managing the product data management

infrastructure is a non-trivial task. In Section 7.2, as part of system testing, we have seen

the complexity associated with managing product data through product classes. The

infrastructure requires the expertise of a database specialist to ensure that databases are

up and running all the time and efficiently serving the contractor’s request via the Grid

enabled-MDSS. If an SD is down or is unavailable then the MDSS will not be able to

retrieve product information from it. A database specialist may also be required to

perform other database related operations such as downloading product classes and

describing product data using product class constructs. Thus, managing product data at

the supplier side and ensuring that it is always available to serve a contractor’s request

can have implications on the cost and other resources o f product suppliers. An alternate

solution is to outsource the task of product data management to a third party, such as a

product data management service provider. This approach can provide two potential

benefits:

• A service provider can provide a low cost solution to managing all the product

data of all product suppliers participating in MDSSF and making it available to

contractors on behalf of product suppliers. Using this approach, product

suppliers will not have to set-up and manage the complex infrastructure on their

side. Product suppliers can be provided with a simple browser based access to

subscribe to product classes and create product descriptions remotely.

174

7. System Testing, Verification and Validation of the MDSSF Architecture

• This approach is also efficient from the Grid-enabled database search

perspective. In the present approach the Grid-enabled MDSS has to invoke

several supplier web service interfaces to retrieve product data from several SD

systems. If all the product supplier data is available from a central location

(where the service provider manages the product data of several suppliers) then

the search time can be reduced and searches made more efficient, as MDSS will

not have to invoke several supplier databases. This task can then be performed

by requesting all relevant data from the service provider using a single operation

for these SDs.

We believe that this alternate solution will not affect the autonomy of product suppliers,

as they will still be able to retain full control of their product by administering their data

remotely. Contractual agreements between the service provider such as APSL and

product suppliers, and security measures can be set up, which can restrict product data

sharing between product suppliers and its viewing by an unauthorised party. This

solution will also not affect the overall MDSSF architecture and the architecture will

still be able to retain its distinctive features as described in Section 7.4.2.

7.4.3.2 MDSSF Supports a Single RDBMS and Schema

In the prototype system the data management infrastructure at the supplier side is rigid

from the perspective of supporting a single RDBMS only. All three databases in

MDSSF are implemented using SQL Server 2000 [VieOO] RDBMS. It does not offer a

choice to product suppliers to use the RDBMS of their choice or to provide supplier side

databases which conform to an already existing data management platform. Thus,

currently MDSSF imposes the rigidity of having to use the single RDBMS provided to

product suppliers, if they wish to participate. Supporting different RDBMSs will require

implementation of supplier side databases using different RDBMS based on the PCD

schema. Additionally, the prototype only supports the single database schema of the

PCD system. The database schemas of databases at the supplier side (i.e. SPCD and SD)

are also designed and implemented to correspond to the PCD database schema. This is a

design decision for the prototype, where adopting a single schema is necessary to create

standard mechanisms of product data definition, management and sharing in a

reasonable timescale. However supporting a single product data management approach

175

7. System Testing, Verification and Validation of the MDSSF Architecture

via a single schema also restricts the interoperability of the system with other prominent

product data management systems or modelling standards, languages, information

reference models and data exchange formats. Section 5.5 presents some of the existing

information modelling/management systems/standards in the AEC industry. Although

comparing the MDSSF product data management technique with other product data

management infrastructures is not the main focus of this research, significant research

and effort will be required in the future in this direction, to make the MDSSF compliant

with other product data management infrastructures. This will provide a number of

benefits. Among them, an important benefit is that the MDSSF model of information

sharing can also be used to support the other product management schemas or vice

versa. Efforts in this direction are also required to support the migration of product data

from other industry recognised product schemas to the PCD schema to allow product

suppliers with existing databases to evaluate the MDSSF way of managing and sharing

data before fully adopting it. We believe that providing such facilities and features will

encourage wider participation in the product supplier community.

7.4.3.3 Linking of Databases at the Supplier Side

The product data created in a SD refers to its corresponding product class in the SPCD

system (see Figure 6.3). Presently this reference to a product class is limited to

identifying product class data using manual means (i.e. performing database select

operations in SPCD) and then using the product class specification information to

perform database insert operations in SD via the database stored procedures. This

ensures that correct specifications are assigned to products in SD. However the current

manual process is also prone to errors because SPCD and SD are not inter-linked.

Linking these systems together via a software component is necessary to ensure that

product data in a SD is consistent with its corresponding product class in SPCD. This

will ensure a supplier does not inadvertently insert wrong data or assign a specification

to a product where such a specification does not exist in the corresponding product

class.

7.4.3.4 Consistency Checks and Data Constraints

The PCD system in its present form does not perform consistency checks to ensure

specifications are assigned to product classes correctly. For example a sub-product class

176

7. System Testing, Verification and Validation of the MDSSF Architecture

such as Panel cannot be assigned to a product class such as Chair, as it will create an

illogical description in the product class. In addition to consistency checks, there is also

a need to apply constraints to product classes and specifications. It is required to aid

product suppliers to provide correct descriptions of their products and ensure that a

product description is valid and consistent. For example when providing a value for a

specification such as Height assigned to a product class such as Chair, a constraint can

be introduced to ensure that the value lies within a given range, which is typical of the

product feature. The application of constraints is also required to allow product

suppliers to describe compatibility criteria. For example, there is a possibility that

certain types of door handles are compatible with only certain types of doors and

therefore specifications cannot be assigned unless the real world products they represent

are compatible. A possible solution to this problem is building a knowledge repository

which guides its users to ensure correct usage of product classes. The knowledge

repository can provide information on different types of specifications, and how and

when these can be used and the constraints associated with them.

7.4.3.5 Need for the Support of Additional Database Operations

The three databases developed allow creation of product classes, support product class

subscription and description of the actual product data. These database operations in

their present state are limited to providing database insert operations only to enable

creation of product descriptions. There is also a need for other database operations such

as data update and data delete. It is anticipated that a particular product class version

will be reviewed several times by specification designers and industry experts during its

design process. In this process specifications may be assigned, unassigned or reassigned

to meet the requirements of the actual product before the version is finalised and

released for subscription by product suppliers. Database update and delete operations

will be needed in such scenarios to allow specification designers to test various options

and incorporate the feedback or opinion of industry experts. In SD, these database

operations are required to let product suppliers manage their product data effectively by

changing product data values or deleting product data (for old, obsolete or discontinued

products).

177

7. System Testing, Verification and Validation of the MDSSF Architecture

7.4.3.6 The Grid-based Search

MDSS provides an integrated view of the information available from several suppliers

by aggregating this information. It is a search mechanism, but it also enables creation of

a VDD to provide access to product information in real time. MDSS provides a scalable

solution when accessing a large number of SD systems, as it distributes the search

across a number of machines available in a Grid cluster. However further improvements

to its architecture are necessary to provide enhanced support when performing a

distributed database search. This is explained below.

When performing a distributed database search, a system’s physical metrics, such as

CPU speed, memory and storage available and network bandwidth also have to be taken

into account in order to maintain an acceptable level of performance. A database search

job submitted to a DSS instance can be computationally intensive, as it may require

searching several SD systems and aggregating the resulting data. Therefore several such

computationally intensive jobs cannot be submitted to a given machine (running the

DSS service) at the same time without first analysing if the machine would be able to

allocate the required resources to the DSS instance. If several jobs are submitted, then

there is a possibility that the system may become slow, fail to respond and eventually

crash because of system overload. Presently MDSS does not provide any mechanism to

identify whether a given DSS service node will be able to allocate the required

resources (such as CPU and memory) to execute the job submitted. The jobs are

presently submitted by MGS (Master Grid Services) to available DSS nodes without

giving due consideration to the current state of a system’s physical metrics. Thus further

improvements are required to the MDSS system to address this challenge. One possible

solution to address this issue, is to use cluster monitoring toolkits such as Ganglia

[Gan07] to provide information on available nodes, which can potentially be used to

perform the search. The Ganglia toolkit provides information on various metrics such as

CPU speed, available memory, storage available and network I/O. This information can

be used to identify nodes in the cluster which can handle a given job. Additionally

MDSS does not provide fault tolerance and system recovery facilities in the event of

unexpected hardware or software failure. Addressing these system level issues is also

vital, in order to further enhance system scalability, reliability and performance. For

similar reasons further improvements to the architecture are also required in terms of

178

7. System Testing, Verification and Validation of the MDSSF Architecture

increasing the size of the Grid cluster by adding more nodes and increasing the number

of MGS service instances, so that MDSS can handle a large number of user requests at a

time.

7.4.3.7 The Grid Middleware

MDSS is designed using the GT3 core component of the Globus Toolkit [Fos98]

version 3.0.2, available from Globus [Glo09]. The COVITE project was undertaken in

parallel with a development period of Grid technology and Grid middleware. During the

development period of MDSS, version 3.0.2 was the latest Grid middleware toolkit

available from Globus. MDSS was therefore developed with the latest toolkit version

available at the time of its development. However, with the continual evolution and

improvements in Grid technology, the corresponding Grid middleware has also evolved,

and presently version 3.0.2 of the Globus Toolkit is no longer supported by Globus.

Version 3.0.2 is based on OGSI (Open Grid Services Infrastructure) [Tue03]

specifications. These specifications have been refactored to produce new specifications

called the WSRF (Web Services Resource Framework) v l.2 specifications - currently

an OASIS standard [Oas09]. The new specifications, in addition to providing other

features, also take advantage of recent developments in Web Services architectures

[Cza04]. The present stable version of the toolkit is thus a WSRF based Globus Toolkit

which is version 4.2.1. The implication of these changes in Grid middleware to MDSS,

is that MDSS will have to be reengineered to take advantage of the new middleware.

This may involve redesign and implementation of the DSS component of MDSS. Since

version 3.0.2 is no longer supported, further development to MDSS (in terms of

enhancing features and functionality and addressing present issues) cannot be made

unless underlying Grid middleware is changed. Significant effort may be required to

achieve this as part of future work, however these efforts would be worthwhile as it

would allow the utilisation of new features and functionalities of the new toolkit by

MDSS which could be used to enhance its performance and functionality.

7.4.4 System Testing and Evaluation of the MDSSF

The fourth and final research objective of this research had been testing and evaluation

of the new MDSSF information sharing architecture in terms of the research hypothesis

and research objectives achieved (see Section 1.4.4). This chapter presented testing and

179

7. System Testing, Verification and Validation of the MDSSF Architecture

evaluation of the MDSSF with the aim to confirm the achievement of all the research

objectives which were outlined to address the procurement challenges of this research.

The testing of all software components of MDSSF and evaluation of MDSSF from

several different perspectives in this chapter confirms the achievement of the fourth

research objective.

7.5 Chapter Conclusions
This chapter presented details on system testing of the data definition, data management

and data search capabilities of the architectural components of the MDSSF for meeting

research objectives. The MDSSF architecture is the main contribution of this research.

Like any other information sharing architecture, MDSSF also has its share of limitations

which are highlighted as part of the critical evaluation of MDSSF’s architectural

components and the further improvements needed to address these limitations are

identified. Despite these limitations the architecture of MDSSF, through its distinctive

features (see Section 7.4.2) provides a novel mechanism of information sharing in the

construction industry domain which aids product procurement.

180

8. Conclusions

8. Conclusions

8.1 Introduction
This chapter presents a review of the research and highlights the research objectives

achieved against the research hypothesis. Section 8.2 identifies research objectives

achieved and confirms the research hypothesis. Section 8.3 provides a summary of the

contribution of this research to its field. There is a possibility that research methods

developed as part of this research or components of MDSSF architecture can be used in

other domains to improve or enhance collaborative working in those domains. Section

8.4 briefly identifies some of these domains. The future work in Section 8.5 identifies

potential areas for further research and provides a brief description of such a research

area, namely addressing data management challenges in a collaborative problem-solving

environment.

8.2 Achievement of Research Objectives
This research achieved all its research objectives (see Section 1.4) in that it met the

procurement challenges identified in Section 1.2. The procurement process involves

obtaining desired products from a wide range of products available from a large number

of product suppliers. In large projects a large quantity of various kinds of construction

material are required. Chapter 1 identifies the scale of purchases required for building

large artefacts such as hospitals and office blocks, and shows that this procurement is a

non-trivial exercise. Although web based communication and network technology is

beginning to play an increasingly important role in supporting collaboration in AEC

projects, collaborative working is still restricted by the current limitations of network

and communication technologies and the system architectures which are usually

client/server based. In order to address the current limitations and the procurement

challenges, the MDSSF information sharing architecture takes advantage of recent

advances in distributed computing, particularly Grid computing, and couples it with

federated database concepts such as distribution of data and autonomy of databases.

The novel MDSSF architecture via its architectural components provides mechanisms

for data definition, data management and data search. These mechanisms in turn provide

a way to address the procurement challenges identified in Chapter 1, namely to

181

8. Conclusions

• Provide a single integrated means of accessing product information available

from the databases of a large number of product suppliers.

• Provide up-to-date information about products which can be acquired from the

external product suppliers, so that this information, such as product

specifications, availability, delivery time and cost can be taken into account in

procurement planning.

• Develop standard mechanisms for product data management, which address the

issue of heterogeneity, which occurs because different suppliers manage and

present product information differently.

In order to address the procurement challenges MDSSF created a Virtual Distributed

Database (VDD) using Grid enabled distributed database search mechanisms. This

benefited the industry actors, such as product suppliers, by allowing them to retain

control and autonomy of their product data, while allowing them to share product

information with contractors. It also benefited the contractors, as it provided hem with

an integrated means of accessing the product information available from the databases

of a large number of product suppliers. The MDSSF allows product data management

by individual suppliers, so that this information can be managed effectively and is

provided to contractors via the VDD, which utilised Grid technology to provide scalable

support. This addressed the second procurement challenge of providing up-to-date

information about products, which can be acquired from product suppliers. In order to

address the third procurement challenge, the concept of product classes (described in

Chapter 5) is adopted in MDSSF. This provided a mechanism to create standard product

definitions for use by product suppliers to describe products in their databases via a

subscription based approach. The solution to all three procurement challenges is

presented in the form of a novel federated information sharing architecture called

MDSSF.

The various software components of the MDSSF information sharing architecture were

implemented to test the viability of building such an infrastructure. The software

components, which are presently at a research prototype stage, address the procurement

182

8. Conclusions

challenges at a data management level by providing mechanisms for data definition,

data management and data search. Three database systems were developed, namely the

PCD system, the SPCD system and the SD system for data definition and data

management. These databases via database stored procedures enable the creation of

product classes and their specifications by industry knowledgeable specification

designers. Five different types of specification have been identified and implemented in

the PCD system. These can be assigned to product classes to allow description of

different product features in the most appropriate way. Once these product classes are

created, the database stored procedures o f SPCD provide, via a subscription based

approach, a mechanism to download these product classes into SPCD by executing

these procedures. This allows product suppliers to subscribe to all relevant product

classes, which correspond to products they supply. Once the product classes are

subscribed, product data pertaining to actual products can be described in the SD to

enable local data management. A particular benefit, which the product data management

level components provide, is a readily available tool for product suppliers to describe

their product data. As identified in Chapter 2, the UK construction industry is highly

fragmented. There are a large number of construction firms, most of which are small to

medium scale enterprises. Many such enterprises still do not use IT systems for product

data management, because of the complexity and cost, and so make their data available

using unstructured file formats such as PDF. It is anticipated that this research could

provide a cost effective solution which allows such enterprises to manage product data

effectively.

The data search requirements of MDSSF’s information sharing architecture were

achieved by developing the Grid-based MDSS, which provides a mechanism to search a

large number of supplier databases and retrieve product information in response to a

contractor’s query. Grid support is provided to MDSS in order to achieve system

scalability. Providing Grid support to MDSS is important because it retrieves product

information from a large number of supplier databases, which enables information

sharing between contractors and suppliers in real time. The Grid-based MDSS addresses

the computational requirements of the distributed database search. It also provides

another important benefit. It enables the building of a large and comprehensive product

data repository (i.e. VDD), where there is a high degree of probability that the

183

8. Conclusions

information available though VDD is accurate and up-to-date. This is due to the product

data being decentralised and autonomously managed by the product suppliers, who are

responsible for managing their own product data. It is anticipated that the product

information provided by product suppliers has the potential to influence procurement

planning and procurement decision making by contractors from the early design stages.

Thus, due to market forces and in order to compete with other product suppliers, who

may also be participating in MDSSF and supplying similar or the same products, the

product supplier will provide accurate and up-to-date descriptions of their product data,

if they want their products to be selected by the contractors and purchased.

The MDSSF architecture, like any other information sharing architecture also has

limitations, which restrict its scope. Chapter 7 verified and validated the MDSSF

architecture to identify its limitations and identify potential solutions to address these

limitations. The verification and validation process identified the current limitations

such as complexity and rigidity of the product data management infrastructure. The

areas which require further improvements, in terms of providing additional functionality

or to achieve greater efficiency and to reduce the system’s complexity were also

highlighted in the chapter. The verification and validation is performed for both the data

definition and data management components of the MDSSF architecture. The

verification and validation of data search components identified the improvements that

are required to be made to make a Grid based search more efficient and effective. It

identified that the improvements, which need to be made, should also take into

consideration performance related factors of the distributed database search. The

verification and validation also called for changes to the underlying Grid middleware to

take advantage of the new versions of the middleware.

Despite its present limitations, the novel architecture of MDSSF meets the

requirements, because these limitations do not affect its ability to meet the challenges.

This is because these limitations correspond to architectural components and not to the

architecture. The architecture meets the criteria of the hypothesis and addresses the

procurement challenges by providing a novel mechanism of information sharing

between construction industry actors which aids the procurement processes.

184

8. Conclusions

8.3 Research Contributions
8.3.1 Research Publications

The research was undertaken as part of the effort of a collaborative team where different

team members looked into different aspects of the procurement challenges identified in

the COVITE project proposal [Mil02]. The author’s efforts concentrated on addressing

procurement challenges identified in section 1.2. The MDSSF information sharing

architecture, which is the main contribution of this research, addresses these

procurement challenges at the data management level. As a member of the team the

author made contributions to various research publications where the author’s

contributions to publications was the research presented in this thesis. Various aspects

of this research are present in [Bur03], [Bur05], [Joi04], [Mil04], [Pah04]. The

architecture of the MDSSF is presented in [Pah06b]. Further publications will be made

as part of future work.

8.3.2 Novelty of the Proposed Approach

The author reviewed different information sharing models or reference architectures,

which covered several different approaches to share information in an integrated way,

where such information is available from different autonomous sources. Several schema

integration approaches were reviewed to understand their scope and applicability to new

information sharing models. Various different information sharing approaches have

been suggested in the literature covering different technical approaches such as

ontologies [Haj08], [Sar08], knowledge bases [Nak08], [Ahm08], mediators [Qua08],

wrappers [Aka08], [Fan08], CDM [Jun08], schema integration [Fen08], [Koz07],

[Chi08], FDBS [Yan07], [Bon08], [Dal08], [Ber08] and Grid-based [Kra08], [Lyn09],

[Gra08], [Lyn08], [Wan08], [Ahm08a] which are used to address different types of

conflicts and enable interoperability of information systems and/or provide information

in an integrated way. Although all these approaches provide useful techniques to meet

the identified requirements, none of the reviewed information sharing models or

reference architectures fully met the requirements of the MDSSF model of information

sharing. The MDSSF information sharing architecture, shares certain similarities with

other information sharing models/architectures (see Chapter 4). However, clear

distinctions also exist, which highlight the novel features of MDSSF. The MDSSF

architecture was developed with the aim of enabling sharing of product information

185

8. Conclusions

between the construction industry actors, whilst addressing the procurement challenges

identified in Section 1.2. The architecture provided certain distinctive features which

meant it could provide a new federated information sharing model to enable a new form

of collaboration between construction industry actors such as product suppliers and

contractors. The distinctive features o f the MDSSF architecture are presented in

Section 7.4.2 and summarised here.

• MDSSF is designed to provide Grid technology support in a federated database

environment.

• MDSSF enables product suppliers to compete with each other in a virtual market

place, based on the product information they provide to the federation users

(contractors).

• MDSSF adopts a different model of cooperation from traditional FDBS

architectures. The MDSSF model of cooperation does not allow sharing of data

between component DBSs supplying the data (i.e. between the SD systems of

the product suppliers). In the MDSSF architecture product suppliers share their

data with the contractors only.

• In MDSSF, unlike other information sharing systems (see Section 4.4) the

sharing of data takes place between contractors and the supplier databases

without the need to create federated, integrated or external schemas. The schema

integration is not required in the MDSSF approach, because of the homogeneous

nature of the product data which is exchanged in MDSSF.

• The MDSSF adopts a subscription based approach, which provides product

suppliers with readily available mechanisms to manage their product data locally

in a structured way by using the standard specifications of product classes to

describe product features and in this way tackle the issue of heterogeneity.

• Standardisation plays a key role in the MDSSF architecture, to support data

sharing in a standard and integrated way. This distinctive feature is achieved by

using the concept of product classes. An important advantage of product classes

is that they provide product suppliers with a readily available means to describe

their product features in a standard and structured way and support its evolution.

186

8. Conclusions

8.4 Applicability of MDSSF in Other Domains
The MDSSF provides a way to enable collaboration between industry actors in the

construction industry. However there is a possibility that this research can be useful in

other domains. The components of the MDSSF or the methods developed to enable data

definition, data management and data search can be used or applied in areas, where

similar information is available from several information sources and is categorised

according to predefined criteria and shared with its users. There are several domains

where information on related products and services available from independent sources

has to be accumulated, aggregated, compared and analysed to provide users with a

coherent view. This view allows the users to make an informed choice by comparing the

competency or suitability of products or services and choosing according to their

requirements. Several organisations in industry sectors such as travel and tourism,

financial services, automobile industry, insurance, healthcare and real estate provide

information on products and services to their users. For example in the automobile

industry, the components of the MDSSF architecture can be used to represent different

kinds of new and old automobiles by using the constructs of a product class. Product

classes can be defined to allow different vehicle attributes such as make, model, car

type, fuel type, mileage, age, engine size and safety features to be represented using

standard means through different types of specifications. Additionally, complex product

attributes such as safety features having attributes such as first aid box, airbags and seat

belts can be represented using a single SpecificationGroup specification to allow

representation of the safety features of a vehicle as a single entity. Once these product

classes are created, they can be used by sellers to create descriptions of vehicle features

using standard methods. This will also allow buyers to search for vehicles having

desired attributes. The components of MDSSF such as its Grid based MDSS can be

useful in performing this search, when such information on vehicles is available from a

large number of sellers.

There are several information gathering and product comparison organisations such as

Compare.com [Com09], PriceRunner.com [Pri09] which regularly analyse information

from different sources to provide users with a coherent view of similar products or

services, but available from several competing providers. Thus, there is a possibility that

approaches developed in this research have the potential to aid both information sharing

187

8. Conclusions

organisations and the organisations which gather and analyse information to improve or

enhance collaboration. However further research is required to identify how the

methods or the components of the MDSSF can be adapted to the requirements of these

domains.

8.5 Future Work
The research presented in this thesis provides ample scope for further improvements in

related directions to address other challenges. Chapter 7 evaluated the architectural

components of the MDSSF architecture from many different perspectives and also

highlighted the further work that is required to address its present limitations. Therefore

one possible area of further research is addressing the current limitations of the

MDSSF’s architectural components. However, there are other research areas which

have emerged based on the experiences gained from this research. One of these

potential research areas is in the field of data management. We created a federated

information sharing model to address procurement challenges and increase collaborative

working. As part of future efforts, we aim to extend this research into collaborative

environments and address the data management challenges associated with such

environments. We now identify the challenges in this area.

Collaborative Problem-Solving Environments (PSEs) [Lee08], [Bas08] in the AEC

industry and scientific domains are dynamic, geographically distributed, multi-

institutional and multidisciplinary. Members from these different specialist

organisations come together as virtual teams to collaboratively tackle challenges during

a project’s duration. Members of such transient teams are selected by their expertise and

use information systems to represent and exchange their ideas and associated data with

their peers in order to address the challenges. The ideas of the different members should

mesh together in order to build a larger, coherent picture that represents the objective or

outcome the team is trying to achieve. In the same manner, the information constructs

which represent these ideas or manage information pertaining to the team’s objectives

or activities should also mesh together. However currently this is not often the case. A

considerable amount of effort is spent addressing interoperability issues, such as

resolving structural, semantic and other forms of conflict, before the existing

information systems can be made to work together. The literature has a large number of

188

8. Conclusions

research articles that have appeared in the last two decades to address these issues, but

they still persist [Bat86], [Chi08]. The current PSEs also face additional challenges.

Currently, teams and their activities are dynamic in nature. They have to deal with

constantly changing requirements, scope and broadening perspectives. Putting together

the different pieces of information that take into account several different perspectives

often requires re-arrangement and/or modification of existing information/ideas. New

methods of doing things require new ways of managing information, in ways which

adapt to the problem scenario and user requirements. Existing systems are built to a

fixed structure and their semantics often fail to meet the evolving and dynamic

requirements. Recent advances in software development methodologies propose agile

techniques [Amb03], [Sho07] to build information systems. These techniques, although

useful, are oriented towards conceptual modelling and software development only.

Hence the existing complexities and lack of resources restrict a transient team’s abilities

to address the aforementioned challenges in short duration projects.

Sharing of data is a common practice, and is an important way of allowing different

organisations to work together. Many organisations or institutions, which come together

in a collaborative venture, have their own n-tier applications connected to back-end

databases. These information systems and particularly the underlying data models are

rigid in structure. Often structural changes are made to the underlying data models or

altogether new data models are designed and implemented (which is a time consuming

process) in order to meet the new requirements. Because the existing information

systems are inflexible, they can only provide data which is in a format having a

predefined set of relations and attributes. These data models cannot be used to meet the

new data requirements without implementing data transformation algorithms, which

interface them with the other set of data which may conform to a different data model

used in a different member organisation. The occurrence of several types of

heterogeneities in this process restricts members from making existing data readily

available to other members. Therefore in many circumstances, they often resort to using

word processors or spreadsheets to create, store and share information pertaining to

several aspects of their collaborative venture. If these were stored using a structured

approach, there is a higher potential for them to be readily available and more usable in

the later stages of a project. Thus there is a need for new mechanisms to handle new

189

8. Conclusions

data requirements without necessarily making structural changes to the underlying data

model.

Our future research activities aim to benefit the community by providing a new

perspective to information management and representation. This new approach will not

only provide the structural flexibility via the use of adaptable constructs, so that users

can modify the constructs (as well as the information they hold) according to their

needs, but will also have the semantic flexibility, which will allow users to represent

their ideas in a manner, which closely resembles the problem scenario. An important

benefit of this new approach will be that these different constructs (conforming to

individual specifications or format and created or managed by different members in a

team) can be interlinked and shared between team members. This will give members the

freedom to represent their diverse (and evolving) ideas at the information level via

diverse constructs and at the same time link them to build a coherent picture

representing the different perspectives of different team members (and their contribution

to the project) in a readily usable form at the information management level.

190

Appendix 1: Performance Criteria of the Hong Kong Based Study

Appendix 1

Performance Criteria of the Hong Kong Based Study
The Hong Kong based study conducted by Kumaraswamy et al. [KumOO], and

Kumaraswamy and Dissanayaka [KumOl] identified 11 key performance criteria for

optimising project specific procurement. They are mentioned below.

1. Lower capital cost;

2. Lower life cycle costs;

3. Cost certainty;

4. Shorter pre-construction duration;

5. Time certainty;

6. Shorter construction duration;

7. Effective and efficient communication;

8. Higher quality

9. Effective and efficient decision making;

10. Dispute minimisation;

11. Overcall client satisfaction (also including other aspects).

191

Appendix 2: Representation of Product Information in MDSSF

Appendix 2

Representation of Product Information in MDSSF

A2.1 Introduction

This appendix identifies how the product class concept can be used to represent product

information in MDSSF architecture in its three database systems (PCD, SPCD and SD)

developed as part of this research. A model o f electric bed called ETESMI/Plano, which

has different attributes (specifications), has been chosen as an example product to

demonstrate the ability of MDSSF databases to handle complex product information

(see Section 7.2.2). This model of electric bed product is identified from a product

comparison chart document which provides information on different types of general

purpose and critical care electric beds. The product comparison chart is compiled by the

ECRJ Institute (http://www.ecri.org/) - an independent and non-profit health services

research agency.

The product comparison chart document was provided to the COVITE project team by

its industrial partner ActivePlan Solutions Limited (APSL) [Aps09]. The aim of this

appendix is to demonstrate how the attributes of the electric bed product can be

represented as a product class in PCD and SPCD systems and its product description

created in an SD system. The concept of product class is explained in greater detail in

Chapter 5. The architecture of the three database systems is presented in Chapter 6. The

ETESMI/Plano model of electric bed product is represented using a product class for the

purpose of author’s research only. This appendix is organised as follows. Section A2.2

identifies the specifications (attributes) and specification values of the ETESMI/Plano

model of electric bed product from the product comparison chart document. In section

A2.3, various specifications of the product and its values are represented using the

product class concept. Sections A2.4 provides the stored procedure execution code,

which were executed to create a product class for the ETESMI/Plano model of electric

bed product. The stored procedure execution code in Section A2.5 shows how this

product class can be subscribed in an SPCD system at a product supplier’s end. Finally,

the stored procedure execution code in Section A2.6 shows how ETESMI/Plano model

of electric bed product description can be created in an SD system, which refers to its

192

http://www.ecri.org/

Appendix 2: Representation of Product Information in MDSSF
product class subscribed in the SPCD system. Section A2.7 presents appendix

summary.

A2.2 Product Attributes

Table 1: This table shows attributes (specifications) of the ETESMI/Plano model of

electric bed product and its specification values.

Table 1
Electric Bed
Model ETESMI/Plano
WHERE MARKETED Worldwide
FDA CLEARANCE No
CE MARK (MDD) Yes
TYPE General purpose, acute care
PATIENT CONTROLS

Type Pendant, hand control box, handset
NUMBER 6,8,10
FUNCTIONS All positions of the bed

NURSE CONTROLS
Patient control lockouts Yes

Walk-away down No
Full-low indicator No

CPR control Yes
AUTOMATIC CONTOUR Yes
RETRACTABLE Yes
HYPEREXTENSION No
TRENDELENBURG GAUGE No
MANUAL CRANK FUNCTIONS No
Crank Storage NA
SPRING TYPE Sheet metal, radiolucent backrest

Length, cm (in) 200-210(78.7-82.7)
OVERALL DIMENSIONS

L x W, cm (in) 218 x 100 (83 x39)
228 x 100 (90 x 39) (including
bumper)

Height, cm (in) 39-89(15.4-35.3)
SIDERAIL LENGTH(S)

Fraction of overall 4/5
WEIGHT, kg (lb) 250(551.3)
CASTER DIAM, cm (in) 15(6)
CASTER FUNCTIONS Break, steer, lock (total), anti-static
CENTRAL BRAKE SYSTEM Yes
BUMPERS Yes
REMOVABLE HEADBOARD Yes
IV POLE STORAGE No

193

Appendix 2: Representation of Product Information in MDSSF
IV POLE MOUNTS 2
BED SCALE No
ELECTRICAL FEATURES

Power required, VAC 230
Number of motors 3
Double insulation Yes
Frame

Grounded Yes
Isolated (motor ground) Yes

Nonconductive siderails No
Isolated IV pole
Isolated transformer Yes

LISTED FOR USE WITH OXYGEN TENT No
PURCHASE INFORMATION

List price, standard configuration Not specified
Warranty 1 year, labour and parts
Delivery time, ARO Not specified
Year first sold 1992
Fiscal Year January to December

OTHER SPECIFICATIONS Range of accessories and features
available.

A2.3 Representation of the Electric Bed Product Using a Product Class

This section describes how the specifications (attributes) of the ETESMI/Plano model of

electric bed product presented in Table 1 (see Section A2.2) can be represented using

the product class concept. A new product class called Electric Bed and its new version

(i.e. version 1.0) is created in PCD system to represent ETESMI/Plano model of electric

bed product and its different specifications (attributes). The attributes of the electric bed

product have been categorised into the different specifications of the product class so

that these can be represented in the PCD and SPCD system. This product shows the

complexity of managing product data, as the Electric Bed product class version 1.0 has

42 unit specifications, 7 specification groups, 5 list specifications (out of which 2 list

specifications have more than one version) and 2 sub-product class specifications. The

following tables show how the product attributes are represented as product class

specifications. Information on specification assignment (see Section 1 2 2 2) is also

provided with the tables. The stored procedure execution code in Sections A2.4, A2.5

and A2.6 show how the specification assignment is performed when new specifications

are created.

194

_________________ Appendix 2: Representation of Product Information in MDSSF
Table 2: This table identifies the top level product class name and provides a

description of the product class.

Table 2
Product Class Name Electric Bed
Product Class Description This product class provides information on

a range of electric beds.

Table 3: This table identifies the version ID and description of a particular version of a

product class to represent a particular product i.e. ETESMI/Plano model of electric bed

product in the present case.

Table 3
Product Class Name Electric Bed
Product Class Version ID: 1.0
Product Class Version Description: This version identifies specifications of

ETESMI /Plano model of electric bed.

Table 4: The following table identifies a list of unit specifications assigned to Electric

Bed product class version 1.0 (i.e. the product class for ETESMI/Plano model of electric

bed product in the present case). The table also identifies specification values,

description and measurement unit of individual specifications where relevant.

Table 4
Specification Name Specification

Value
Specification
Description

Measurement Unit

Model Plano
Model Range ETESMI

FDA CLEARANCE No

CE MARK (MDD) Yes

AUTOMATIC CONTOUR Yes

RETRACTABLE Yes

HYPEREXTENSION Yes

TRENDELENBURG
GAUGE

No

MANUAL CRANK
FUNCTIONS

No

195

Appendix 2: Representation of Product Information in MDSSF
CRANK STORAGE NA

WEIGHT 250 Kilograms (Kg)

WEIGHT 551.3 Pound (lb)

CENTRAL BRAKE
SYSTEM

Yes

BUMPERS Yes

REMOVABLE
HEADBOARD

Yes

IV POLE STORAGE No

IV POLE MOUNTS 2

BED SCALE No

LISTED FOR USE WITH
OXYGEN TENT

No

OTHER SPECIFICATIONS Range of
accessories
and features
available.

Table 5: The specification Where Marketed is represented as a list specification as it is

likely that there could be more than one value (such as names of countries) for this

specification.

Table 5
List Specification Name: WHERE MARKETED
List Specification Description: A top level list specification.

Table 6: The following table identifies a new version of the WHERE MARKETED list

specification (i.e. version 1.0). Presently there is only one value (i.e. Worldwide) for this

list specification version, however it is likely that there could be more than one values

for this specification, due to which this specification is represented as a list

specification. The WHERE MARKETED list specification version 1.0 is assigned to the

Electric Bed product class version 1.0.

196

Appendix 2: Representation of Product Information in MDSSF
Table 6
List Specification Name: WHERE MARKETED
List Specification Version ID: 1.0
List Specification Version Description: Provides information on places/countries

where the product is marketed.
List Value Measurement Unit
Worldwide

Tables 7 and 8: In the following tables the specification TYPE is represented as a list

specification because there are two values for this specification. Table 7 shows the top

level Type list specification and Table 8 is the new version (i.e. version 1.0) of this list

specification having two list values. The Type list specification version 1.0 is assigned

to the Electric Bed product class version 1.0.

Table 7
List Specification Name: TYPE
List Specification Description: A top level specification.

Table 8
List Specification Name: TYPE
List Specification Version ID: 1.0
List Specification Version Description: Identified the type/usage of the

ETESMI/Plano range of electric beds.
List Value Measurement Unit
General purpose
Acute care

Tables 9 and 10: In the following tables the specification PATIENT CONTROLS is

represented as a specification group because several specifications are categorised under

this specification (see table 1). For this purpose a top level specification group

PATIENT CONTROLS is created in Table 9. Table 10 shows the new version (i.e.

version 1.0) of this specification group. The specification group PATIENT CONTROLS

version 1.0 is assigned to the Electric Bed product class the version 1.0.

Table 9
Specification Group Name: PATIENT CONTROLS
Specification Group Description: A general description for this

specification group.

197

Appendix 2: Representation of Product Information in MDSSF
Table 10
Specification Group Name: PATIENT CONTROLS
Specification Group Version: 1.0
Specification Group Version
Description:

A group of specification identifying the
patient controls.

Table 11: The TYPE specification under the PATIENT CONTROL specification group

(see Table 1) has a list of values, therefore it is represented as a list specification. An

important point to consider here is that the TYPE list specification version 1.0 has

already been created (see Table 7 & 8) to enable identification of the type information

of the ETESMI/Plano model of electric bed. Therefore a second version (i.e. version

2.0) of this specification is created here and this version represents different types of

patient controls (see Section 7.2.2.4). Table 11 shows version 2.0 of the TYPE list

specification having a list of values. The TYPE list specification version 2.0 is assigned

to the PATIENT CONTROLS specification group version 1.0.

Table 11
List Specification Name: TYPE
List Specification Version ID: 2.0
List Specification Version Description: Identified the type of patient controls for

the ETESMI/Plano electric bed model.
List Value Measurement Unit
Pendant
Hand control box
Handset (Nurse controls mounted at foot
end)

Tables 12 and 13 The specification NUMBER is represented as a list specification as it

has more than one value (see Table 1). Table 12 shows the new list specification

NUMBER and Table 13 is the new version (i.e. version 1.0) of the NUMBER list

specification which is assigned to PATIENT CONTROLS version 1.0 specification

group.

Table 12
List Specification Name: NUMBER
List Specification Description: A top level list specification.

198

Appendix 2: Representation of Product Information in MDSSF
Table 13
List Specification Name: NUMBER
List Specification Version ID: 1.0
List Specification Version Description:
List Value Measurement Unit
6
8

Tables 14 and 15: The specification FUNCTIONS is represented as a specification

group because several specifications are categorised under this specification (see Table

1). Table 14 shows the new FUNCTIONS specification group and Table 15 is the new

version (i.e. version 1.0) of the FUNCTIONS specification group which is assigned to

the PATIENT CONTROL version 1.0 specification group.

Table 14
List Specification Name: FUNCTIONS
List Specification Description: A top level list specification.

Table 15
List Specification Name: FUNCTIONS
List Specification Version ID: 1.0
List Specification Version Description:
List Value Measurement Unit
High-low
kneebreak
backrest

Tables 16 and 17: The specification NURSE CONTROLS is represented as a

specification group because several specifications are categorised under this

specification (see Table 1). Table 16 shows the new NURSE CONTROLS specification

group and Table 17 is the new version (i.e. version 1.0) of this specification group,

which is assigned to the Electric Bed version 1.0 product class.

Table 16
Specification Group Name: NURSE CONTROLS
Specification Group Description: A general description for this

specification group.

199

Appendix 2: Representation of Product Information in MDSSF
Table 17
Specification Group Name: NURSE CONTROLS
Specification Group Version: 1.0
Specification Group Version
Description:

A group of specification identifying the
nurse controls for the ETESMI/Plano
model of electric bed.

Table 18: The NURSE CONTROLS specification group categorises a number of unit

specifications (see Table 1). Table 18 shows these unit specifications which are

assigned to NURSE CONTROL Version 1.0 specification group.

Table 18
Specification Name Specification

Value
Specification
Description

Measurement Unit

Pt control lockouts Yes
Walk-away down No
Full-low indicator No
CPR control Yes

Table 19: A product class called SPRING is created for storing spring products in PCD

and SPCD systems. Although the SPRING product class is a full fledged product class,

it is considered a sub product class in context to the Electric Bed version 1.0 product

class (see Section 5.3.5). Tables 19 and 20 create the new SPRING product class and its

new version (i.e. version 1.0) respectively. This product class is assigned to Electric Bed

version 1.0 product class.

Table 19
Product Class Name SPRING
Product Class Description A top level product class for spring

products.

Table 20
Product Class Name SPRING
Product Class Version ID: 1.0
Product Class Version Description: A particular version of the spring product

class.

200

Appendix 2: Representation of Product Information in MDSSF

Table 21: The specification TYPE represents type information of spring product and

has two values (see Table 1). Therefore this specification is represented as a list

specification. However two versions of this specification have already been created (see

Tables 7, 8 and 11). Therefore a new version (i.e. TYPE version 3.0) is created and

assigned to the SPRING product class version 1.0.

Table 21
List Specification Name: TYPE
List Specification Version ID: 3.0
List Specification Version Description: A list specification for holding different

spring types.
List Value Measurement Unit
Sheet metal
Radiolucent backrest

Table 22: This table shows a specification called LENGTH which is represented as a

unit specification for identification of length information. This unit specification is

assigned to the SPRING product class version 1.0. This specification is assigned twice

to enable representation of two different types of measurement units which correspond

to this unit specification.

Table 22
Specification Name Specification

Value
Specification
Description

Measurement Unit

LENGTH 200-210 Centimetre
LENGTH 78.7-82.7 Inches

Tables 23, 24, 25 and 26: The specification OVERALL DIMENSIONS is represented as

a specification group because several specifications are categorised under this

specification (see Table 1). Table 23 shows the new OVERALL DIMENSIONS

specification group and Table 24 is the new version (i.e. version 1.0) of this

specification group, which is assigned to Electric Bed version 1.0 product class.

Table 23:
Specification Group Name: OVERALL DIMENSIONS
Specification Group Description: A top level general definition for

specifying product dimensions.

201

Appendix 2: Representation of Product Information in MDSSF
Table 24:

Specification Group Name: OVERALL DIMENSIONS
Specification Group Version: 1.0
Specification Group Version
Description:

Specification Group version for
specifying dimensions for electric beds

Tables 25 and 26: These tables show unit specifications LENGTH, WIDTH and

HEIGHT, which are assigned to the OVERALL DIMENSIONS specification group

version 1.0. These unit specifications have two set of values (see Table 1) and in each of

these sets, there are two different types of measurement units which correspond to these

unit specifications.

Table 25: Unit specifications for Specification Group OVERALL DIMENSIONS,

version 1.0 (first set of values, in centimetres and inches).

Specification Name Specification
Value

Specification
Description

Measurement Unit

LENGTH 218 Centimetre
WIDTH 100 Centimetre
HEIGHT 39-89 Centimetres
LENGTH 83 Inches
WIDTH 39 Inches
HEIGHT 15.4-35.3 Inches

Table 26: Unit Specifications for Specification Group OVERALL DIMENSIONS,

version 1.0 (second set of values, in centimetres and inches).

Table 26
Specification Name Specification

Value
Specification
Description

Measurement Unit

LENGTH 228 Including
bumper
length

Centimetre

WIDTH 100 Centimetre
HEIGHT 39-89 Centimetres
LENGTH 90 Including

bumper
length

Inches

WIDTH 39 Inches
HEIGHT 15.4-35.3 Inches

202

Appendix 2: Representation of Product Information in MDSSF

Tables 27, 28, 29 and 30 The specification SI DERAIL LENGTH(S) is represented as a

specification group, because several specifications are categorised under this

specification (see Table 1). Table 27 shows the new OVERALL DIMENSIONS

specification group and Table 28 is the new version (i.e. version 1.0) of this

specification group, which is assigned to Electric Bed version 1.0 product class.

Table 27
Specification Group Name: SIDERAIL LENGTH(S)
Specification Group Description: A top level specification group.

Table 28
Specification Group Name: SIDERAIL LENGTH(S)
Specification Group Version: 1.0
Specification Group Version
Description:

Specification group version for
ETESMI/Plano electric bed product
models.

Tables 29 and 30: These tables show FRACTION OF OVERALL list specification and

its new version (i.e. version 1.0) which is assigned to the SIDERAIL LENGTH(S)

version 1.0 specification group.

Table 29
List Specification Name: FRACTION OF OVERALL
List Specification Description: A top level list specification.

Table 30
List Specification Name: FRACTION OF OVERALL
List Specification Version ID: 1.0
List Specification Version Description:
List Value Measurement Unit
4
5

Table 31: A product class called CASTER is created for storing caster products in PCD.

Although the CASTER product class is a full fledged product class, it is considered a

sub product class in context to the Electric Bed version 1.0 product class (see Section

5.3.5). Tables 31 and 32 show the new CASTER product class and its new version (i.e.

203

Appendix 2: Representation of Product Information in MDSSF
version 1.0) respectively. This product class is assigned to the Electric Bed version 1.0

product class.

Table 33 shows a unit specification called DIAMETER which is assigned to the

CASTER product class version 1.0. There are two different types of measurement units,

which correspond to this unit specification (see Table 1). In Tables 14 & 15, the list

specification FUNCTIONS version 1.0 is already created, therefore in Table 34 a new

version of this list specification (i.e. version 2.0) is created and assigned to the CASTER

product class version 1.0.

Table 31
Product Class Name CASTER
Product Class Description A top level product class for caster

products.

Table 32
Product Class Name CASTER
Product Class Version ID: 1.0
Product Class Version Description: A particular version of the caster product

class.

Table 33
Unit Specifications for Product Class: CASTER, version 1.0
Specification Name Specification

Value
Specification
Description

Measurement Unit

DIAMETER 15 Centimetre
DIAMETER 6 Inches

Table 34
List Specification Name: FUNCTIONS
List Specification Version ID: 2.0
List Specification Version Description: Caster functions
List Value Measurement Unit
Break
Steer
Lock (total)
Anti-static (also track)

Tables 35, 36 and 37: The specification ELECTRICAL FEATURES is represented as a

specification group because several specifications are categorised under this

specification (see Table 1). Table 35 shows the new ELECTRICAL FEATURES

specification group and Table 36 is the new version (i.e. version 1.0) of this

204

_________________ Appendix 2: Representation of Product Information in MDSSF
specification group, which is assigned to Electric Bed version 1.0 product class. Table

37 shows a number of unit specifications which are assigned to the ELECTRICAL

FEATURES version 1.0 specification group.

Table 35
Specification Group Name: ELECTRICAL FEATURES
Specification Group Description: A top level specification group.

Table 36
Specification Group Name: ELECTRICAL FEATURES
Specification Group Version: 1.0
Specification Group Version
Description:

Specification group version for
specifying electrical features of
ETESMI/Plano electric bed product
models.

Table 37
Unit Specifications for Specification Group: ELECTRICAL FEATURES, version
1.0
Specification Name Specification

Value
Specification
Description

Measurement Unit

Power required 230 Volt (V)
Number of Motors 3
Double Insulation Yes
Nonconductive
siderails

No

Isolated IV Pole Yes
Isolated transformer Yes

Tables 38, 39 and 40: The specification FRAME is represented as a specification group

because several specifications are categorised under this specification (see Table 1).

Table 38 shows the new FRAME specification group and Table 39 is the new version

(i.e. version 1.0) of this specification group, which is assigned to the ELECTRICAL

FEATURES version 1.0 specification group. Thus, in context to the Electric Bed

product class version 1.0 the FRAME specification group is a sub-sub specification

group. Table 40 shows the two unit specifications which are assigned to the FRAME

version 1.0 specification group.

205

Appendix 2: Representation of Product Information in MDSSF
Table 38

Specification Group Name: FRAME
Specification Group Description: A top level specification group.

Table 39
Specification Group Name: FRAME
Specification Group Version: 1.0
Specification Group Version
Description:

Specification group version for
specifying electrical features of
ETESMI/Plano electric bed product
models.

Table 40
Specification Name Specification

Value
Specification
Description

Measurement Unit

Grounded Yes
Isolated (motor
ground)

Yes

Tables 41, 42 and 43 The specification PURCHASE INFORMATION is represented as

a specification group because several specifications are categorised under this

specification (see Table 1). Table 41 shows the new PURCHASE INFORMATION

specification group and Table 42 is the new version (i.e. version 1.0) of this

specification group, which is assigned to the Electric Bed version 1.0 product class.

Table 43 shows a number of unit specifications which are assigned to the PURCHASE

IN FORMA TION version 1.0 specification group.

Table 41
Specification Group Name: PURCHASE INFORMATION
Specification Group Description: A top level specification group.

Table 42
Specification Group Name: PURCHASE INFORMATION
Specification Group Version: 1.0
Specification Group Version
Description:

Specification group version for
specifying purchase information of
ETESMI/Plano electric bed product
models.

206

Appendix 2: Representation of Product Information in MDSSF
Table 43
Unit Specifications for Specification Group: PURCHASE INFORMATION,
version 1.0
Specification Name Specification

Value
Specification
Description

Measurement Unit

List price, standard
configuration

Not specified

Delivery time, ARO Not specified
Year first sold 1992
Fiscal year January to

December

A2.4 Creation of Electric Bed product class in the PCD System

Section A2.3 showed how different specifications (attributes) of ETESMI/Plano model

of electric bed product can be represented using the Electric Bed version 1.0 product

class. This section identifies the stored procedure execution code using which the

Electric Bed version 1.0 product class was created in the PCD system. A total of 47

stored procedures were executed in the PCD system to create the Electric Bed version

1.0 product class and its different specifications, which are identified in Table 1 (see

Section A2.2). However, only a selected list o f the stored procedure execution code,

their input parameters and output messages is presented in this section for brevity. The

stored procedure execution code which is not provided in this section is similar to the

code which is provided but executed with different input parameters to create different

specifications for the product class. The source code of all the stored procedures of the

PCD system is available in Appendix 5.

A2.4.1 Create product class Electric B ed and its version 1.0:
declare @IDProdClassDef bigint
declare @IDProcState tinyint
declare @message nvarchar(500)
exec proc_CreateNewProductClass
@ProdClassName = 'Electric Bed',
@IDProdClassVer = 1.0,
@ProdClassDesc = 'Electric Beds for hospitals',
@ProdClassVerDesc = 'Electric Beds for hospitals version 1.0',
@IDProdClassDef =@IDProdClassDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print 'IDProdClassDef:' + cast(@IDProdClassDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

207

Appendix 2: Representation of Product Information in MDSSF
Output Message:
IDProdClassDef: 10526
IDProcState: 0
Product Class Created Successfully. Product Class ID is: 10325.
Product Class Version is: 1.00.

A2.4.2 Create Model Specification and assign it to the Electric Bed Product Class
Version 1.0.
The value of the input parameter IDAssignToSpecTypeDef of

procCreateNewSpecification stored procedure is 10526. This is also the value of

output parameter IDProductClassDef outputted by stored procedure

procCreateNewProductClass executed in section A2.4.1. This means that the

specification Model is being created as well as assigned to the Electric Bed product

class version 1.0 in the following stored procedure. This scenario is also applicable in

all the stored procedures executed in Section A2.4 where a specification is both created

and assigned.

declare @IDProcState tinyint
declare @message nvarchar(500)
exec proc CreateNewSpecification
@SpecName = 'Model',
@IDAssignToSpecTypeDef = 10526,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
'IDProcState: 0
Specification Created Successfully. Specification ID is: 1004.

A2.4.3 Create WHERE MARKETED List Specification and its Version 1.0 and
Assign it to the Electric Bed Product Class Version 1.0.

declare @IDListDef BIGINT
declare @IDProcState tinyint
declare @message nvarchar(500)
exec procCreateNewListSpecification
@ListName = 'WHERE MARKETED',
@ListDesc = 'A top level list specification',
@ListVerDesc = 'Provides information on places/countries where the product is
markted',
@ListValues = 'Worldwide###',
@ListIDMeasUnits = '10418 ###',

208

Appendix 2: Representation of Product Information in MDSSF
@IDAssignToSpecTypeDef = 10526,
@IDListDef = @IDListDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print '@IDListDef:' + cast(@IDListDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
@ IDListDef: 1083
'IDProcState: 0
List Specification Created Successfully. List Specification ID is: 1072.
List Specification Version is: 1.0.

A2.4.4 Create PATIENT CONTROLS Specification Group Version 1.0 and assign it
to the Electric Bed product class version 1.0

declare @IDSpecGroupDef BIGINT
declare @IDProcState tinyint
declare @message nvarchar(500)
exec Proc_CreateNewSpecificationGroup
@SpecGroupName = 'PATIENT CONTROLS',
@SpecGroupDesc = 'A general description for this specification group',
@SpecGroupVerDesc = 'A group of specifications identifying the patient
controls',
@IDAssignToSpecTypeDef = 10526,
@IDSpecGroupDef = @IDSpecGroupDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT
print '@IDSpecGroupDef:' + cast(@IDSpecGroupDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message
@IDSpecGroupDef: 10617
IDProcState: 0

Output Message:
@IDSpecGroupDef: 10617
IDProcState: 0
Specification group created Successfully.
Specification Group ID is: 10117. Specification Group Version is: 1.00.

A2.4.5 Create TYPE List Specification Version 1.0 and Assign it to the Electric Bed
version 1.0 Product Class.

declare @IDListDef BIGINT
declare @IDProcState tinyint
declare @message nvarchar(500)

209

 Appendix 2: Representation of Product Information in MDSSF
exec procCreateNewListSpecification
@ListName = 'TYPE',
@ListDesc = 'A top level list specification',
@ListVerDesc = 'Identified the type/usage of the ETESMI/Plano range

of electric beds.',
@ListValues = 'General purpose###Acute care',
@ListIDMeasUnits = '10418### 10418',
@IDAssignToSpecTypeDef = 10526,
@IDListDef = @IDListDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT
print '@IDListDef:' + cast(@IDListDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
@IDListDef: 1084
IDProcState: 0
List Specification Version Created Successfully. List Specification ID is: 1073. List
Specification Version is: 1.00.

A2.4.6 Create a New Version of TYPE List Specification and Assign it to PATIENT
CONTROLS Specification Group Version 1.0.

declare @IDListDef BIGINT
declare @IDProcState tinyint
declare @message nvarchar(500)
exec procCreateNewListSpecificationV ersion
@IDList = 1073,
@ListVerDesc = 'Identified the type of patient controls for the

ETESMI/Plano electric bed model.',
@ListValues = 'Pendant###Hand control box###Handset(Nurse

controls mounted at foot end)',
@ListIDMeasUnits = '10418### 10418### 10418',
@IDAssignToSpecTypeDef =10617,
@IDListDef = @IDListDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT

print '@IDListDef:' + cast(@IDListDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
@ IDListDef: 1085
IDProcState: 0
List Specification Version Created Successfully. List Specification ID is: 1073. List
Specification Version is: 2.00.

210

Appendix 2: Representation of Product Information in MDSSF

A2.4.7 Create SPRING Version 1.0 Product Class and Assign it to the Electric Bed
version 1.0 Product Class.

The SPRING version 1.0 product class is a sub-product class in context to the Electric
Bed version 1.0 product class.

declare @IDProdClassDef bigint
declare @IDProcState tinyint
declare @message nvarchar(500)
exec procCreateNewProductClass
@ProdClassName = 'SPRING’,
@IDProdClassVer = 1.0,
@ProdClassDesc = 'A top level product class for spring products',
@ProdClassVerDesc = 'A particular version o f the spring product class.',
@IDAssignToSpecTypeDef = 10526,
@IDProdClassDef =@IDProdClassDef OUTPUT,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print 'IDProdClassDef:' + cast(@IDProdClassDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProdClassDef: 10527
IDProcState: 0
Product Class Created Successfully. Product Class ID is: 10326. Product Class Version
is: 1.00.

A2.5 Subscription of Electric Bed product class in SPCD System

The stored procedures in SPCD system enable subscription of a product class at product

supplier’s end. This section identifies the stored procedure execution code using which

the Electric Bed version 1.0 product class was subscribed in an SPCD system. A total of

47 stored procedures were executed to subscribe the Electric Bed Version 1.0 product

class in an SPCD system. However, only a selected list of these stored procedures, their

input parameters and output messages is presented in this section for brevity. The

source code of all the stored procedures of the SPCD system is available in Appendix 5.

A2.5.1 Create Electric Bed Product Class Version 1.0.

declare @IDProcState tinyint
declare @message nvarchar(500)
exec proc CreateNewProductClass
@IDProdClass = 10325,

211

 Appendix 2: Representation of Product Information in MDSSF
@IDProdClassVer = 1.0,
@IDProdClassDef = 10526,
@ProdClassName = 'Electric Bed',
@ProdClassDesc = 'Electric Beds for hospitals',
@ProdClassVerDesc = 'Electric Beds for hospitals version 1.0',
@IDAssignToSpecTypeDef = NULL,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
Product Class Downloaded Successfully. Product Class ID is: 10325.
Product Class Version is: 1.00.

A2.5.2 Create FDA CLEARANCE Unit Specification and Assign it to Electric Bed
Product Class Version 1.0.

declare @IDProcState tinyint
declare @message nvarchar(500)
exec Proc CreateNewSpecification
@IDSpec = 1006,
@SpecName = 'FDA CLEARANCE',
@SpecDesc = NULL,
@Spec Value = NULL,
@IDMeasUnit = NULL,
@IDAssignToSpecTypeDef = 10526,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT

print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
Specification Downloaded Successfully.
Specification ID is: 1006.

A2.5.3 Create WHERE M ARKETED List Specification Version 1.0 and Assign it to
the Electric Bed Product Class Version 1.0.

declare @IDListDef BIGINT
declare @IDProcState tinyint
declare @message nvarchar(500)
exec procCreateNewListSpecification
@IDList = 1072,
@IDListVer =1.0,

212

 Appendix 2: Representation of Product Information in MDSSF
@IDListDef = 1083,
@ListName = 'WHERE MARKETED',
@ListDesc = 'A top level list specification',
@ListVerDesc = 'Provides information on places/counteres where the

product is markted',
@List Values = 'Worldwide###',
@ListIDMeasUnits = '10418###',
@IDAssignToSpecTypeDef = 10526,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print '@IDListDef:' + cast(@IDListDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
List Specification Created Successfully. List Specification ID is: 1072.
List Specification Version is: 1.00.

A2.5.4 Create PATIENT CONTROLS Specification Group Version 1.0 and Assign
it to the Electric Bed Version 1.0.

declare @IDProcState tinyint
declare @message nvarchar(500)
exec Proc CreateNewSpecificationGroup
@IDSpecGroup = 10117,
@IDSpecGroupVer = 1.0,
@IDSpecGroupDef = 10617,
@SpecGroupName = 'PATIENT CONTROLS',
@SpecGroupDesc = 'A general description for this specification group',
@SpecGroupVerDesc = 'A group of specifications identifying the patient
controls',
@IDAssignToSpecTypeDef = 10526,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
Specification group downloaded Successfully. Specification Group ID is: 10117.
Specification Group Version is: 1.00.

A2.5.5 Create TYPE List Specification Version 2.0 and Assign it to PATIENT
CONTROLS Specification Group Version 1.0.

declare @IDListDef BIGINT
declare @IDProcState tinyint

213

Appendix 2: Representation of Product Information in MDSSF
declare @message nvarchar(500)
exec proc_CreateNewListSpecification

= 1073,
= 2 .0,
= 1085,
= 'TYPE',
= 'A top level list specification',
= 'Identified the type/usage of the ETESMI/Plano range of

electric beds.',
= Pendant###Hand control box###Handset(Nurse controls

mounted at foot end)',
= '10418### 10418### 10418',

@IDAssignToSpecTypeDef = 10617,
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print '@IDListDef:' + cast(@IDListDef as nvarchar)
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

@IDList
@IDListVer
@IDListDef
@ListName
@ListDesc
@ListVerDesc

@ListValues

@ListIDMeasUnits

Output Message:
@IDListDef: 1085
IDProcState: 0
List Specification Created Successfully. List Specification ID is: 1073. List
Specification Version is: 2.00.

A2.6 Creation of ETESMI/Plano Model of Electric Bed in SD System

Section A2.2 identified how different specifications (attributes) of ETESMI/Plano

model of electric bed can be represented using the product class concept. This product

class is created in the PCD system and subscribed in an SPCD system at product

supplier’s end. After a product class is subscribed, it can be referred to create product

description in an SD system. In this section, the product description of ETESMI/Plano

model of electric bed is created in the SD system which refers to the Electric Bed

product class version 1.0 the SPCD system. A total of 47 stored procedures were

executed to create this product description in the SD system. However, only a selected

list of these stored procedures, their input parameters and output messages is presented

in this section for brevity. In SD system, the entities such as products, categories and

specifications are identified via a globally unique identifier (GUID). The source code of

all the stored procedures of SD system is available in Appendix 5.

214

 Appendix 2: Representation of Product Information in MDSSF
A2.6.1 Create Electric Bed Product.

This product conforms to the Electric Bed product class version 1.0.

declare @IDProcState tinyint
declare @message nvarchar(500)
exec proc CreateNewProduct
@IDProdClass = 10325,
@IDProdClassVer = 1.0,
@ProdName = 'Electric Bed1,
@ProdDesc = 'This version identifies specification of Plano model of

range ETESMI’,
@AssignTo = 'Category',
@IDAssignTo = '4F750336-5949-4C38-A029-87180D22277D',
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
Product Created Successfully.
Electric bed Product GUID is: 3D38E0BE-2F4F-4526-AA7D-96CF1DA0176B

A2.6.2 Create M odel Unit Specification (object) and Assign it to the Electric Bed
product.

declare @IDProcState tinyint
declare @message nvarchar(500)
exec procCreateNewProductSpecificationObject
@ProdSpecName = 'Model',
@ProdSpec Value = ETESMI/Plano,
@ProdSpecDesc = NULL,
@MeasUnitName = 'Unspecified',
@IDProd = '3D38E0BE-2F4F-4526-AA7D-96CF1 DAO 176B',
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
Specification created Successfully. Specification
GUID is: B5BFF072-BFDA-4BAC-9D36-689F78834C34

A2.6.3 Create TYPE List Specification (Object) and Assign to the Electric Bed
product

215

Appendix 2: Representation of Product Information in MDSSF
declare @IDProcState tinyint
declare @message nvarchar(500)
exec procCreateNewList
@IDListClass = 1073,
@IDListVer = 1.0,
@ListName = 'TYPE',
@ListDesc = 'A top level list specification',
@ListValues = 'General purpose###Acute care',
@ListIDMeasUnits = 'Unspecified',
@AssignTo = 'Product',
@ID AssignTo = '3D3 8E0BE-2F4F-4526-AA7D-96CF1 DAO 176B',
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT

print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
List Specification Created Successfully.
List specification GUID is: 8AE79857-C64F-438A-8755-19D123DD9660

A2.6.4 Create PA TIENT CONTROLS Specification Group (Object) and Assign it
to the Electric Bed product

declare @IDProcState tinyint
declare @message nvarchar(500)
exec Proc CreateNewSpecificationGroup
@IDSpecGroupClass =10117,
@IDSpecGroupVer = 1.0,
@SpecGroupName = 'PATIENT CONTROLS’,
@SpecGroupDesc = 'A group of specifications identifying the patient controls',
@AssignTo = 'Product',
@ID AssignTo = '3D38E0BE-2F4F-4526-AA7D-96CF1DA0176B',
@IDProcState = @IDProcState OUTPUT,
@Message = @message OUTPUT
print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
Specification group created Successfully.
Specification group GUID is: 31FE9550-41E5-4D4A-A0B4-D5E7ADDF85E7

A2.6.5 Create TYPE List (Object) and Assign it to the PATIENT CONTROLS
specification group (object).

declare @IDProcState tinyint
declare @message nvarchar(500)

216

Appendix 2: Representation of Product Information in MDSSF
exec procCreateNewList
@IDListClass
@IDListVer
@ListName
@ListDesc

@ListValues

@ AssignTo
@ID AssignTo
@IDProcState
@Message

=1073,
= 2 .0,
= 'TYPE',
= 'Identified the type/usage of the ETESMI/Plano range of

electric beds.',
= 'Pendant###Hand control box###Handset(Nurse controls

mounted at foot end)',
@ListIDMeasUnits = 'Unspecified',

= 'SpecificationGroup',
= '31FE9550-41E5-4D4 A-A0B4-D5E7ADDF85E7',
= @IDProcState OUTPUT,
= @message OUTPUT

print 'IDProcState:' + cast(@IDProcState as nvarchar)
print @Message

Output Message:
IDProcState: 0
List Created Successfully.
List GUID is: F865B8E8-5C7E-46AA-B322-E7B76FFA56A6

A2.7 Appendix Summary

This appendix showed how a real world product can be represented by using product

class concept. The example used in this appendix is the ETESMI/Plano model of

electric bed. The product class Electric Bed version 1.0 and its different specifications is

created in the PCD system to represent this product. This product class is then

subscribed in an SPCD system. The ETESMI/Plano model of electric bed product

description is created in the SD system which refers to the Electric Bed product class

version 1.0 in the SPCD system.

217

____________________________ Appendix 3; Information System Comparison Tables
Appendix 3

Information System Comparison Tables

This appendix provides information on information sharing architectures/models reviewed

as part of this research and schema integration approaches. These information sharing

architectures are organised into different categories according to their nature. The key

features of these information sharing architectures are presented in a tabular format - one

table for each category. Due to several columns occurring in these tables, which cannot fit

into a single page, the tables are split across multiple pages. Where the tables are split, the

first and the second column identifying the serial number and the name of the system

architecture is repeated for ease of comparison. This appendix comprises of the following

tables.

Table 1: Mediator and/or Wrapper Based Information Systems

Table 2. Schema Integration based Information Systems

Table 3. Grid based Information Systems

Table 4. Other Information Systems

Table 5. Schema Integration Approaches

218

Appendix 3: Information System Comparison Tables

Table 1. Mediator and/or Wrapper Based Information Systems
Columns 1-5

1 2 3 4 5

SL . Systems/ Architectures Description Supports
resource
Autonomy?

Supports
Het.
resources?

1 TSIM M IS [Gar97] A m ediator based inform ation integration
system .

y es Y es

2 DISC O [Tom 98] A distributed m ediator based architecture
for scaling access to h eterogeneous
information sources.

Y es Y es

3 COIN [Bre97] Provides approach to reso lve sem antic
conflicts w here the con flic ts are not
identified "a priori".

Y es Y es

4 DIKE [Pal03] Provides sem i-autom atic m eans for the
construction o f C ISs.

Y es Y es

5 M edM aker [Pap96] Integration o f heterogen eou s inform ation
sources by d eclaratively sp ec ify in g
mediators.

Y es

6 X M L M edia [Gar99] A FD B S m ediator for federating
heterogeneous data sources u sin g a sem i
structured data m od el based on O EM
[M cH971.

Y es Y es

7 X M F [L ee02] A system to provide integrated v ie w o f
information resources accessib le v ia the
web.

Y es Y es

8 M IX [B ai99] X M L-based inform ation m ediator
prototype

Y es Y es

9 DIOM [L iu95],[L iu96],
[L ee97]

A system to ach ieve interoperability by
exp licitly d efin in g interfaces for
information producers and consum ers and
m atching them d yn am ica lly to m eet
information consum ers' needs.

Y es Y es

10 SIM S [A re93],[A re97] Integrates in form ation from databases and
know ledge bases.

Y es Y es

11 Infosleuth [Bay97] A system o f inform ation sharing and
processing in the dynam ic and open
environm ents o f the W W W .

Y es Y es

12 C am ot[W oe93], [Sin97] An enterprise inform ation integration
system.

Y es Y es

13 HERM ES [Sub95] A system for sem antic integration o f
information from h eterogeneous data
sources and reasoning system s.

Y es Y es

14 X M L Data Integration
System [A lm 04]

An approach for m ediation o f X M L data
sources using X M L as g lob al schem a.
Data sources a lso provide data using X M L
schem as.

Y es Y es

15 FIS [Bus99] The report identifies concepts,
term inology and reference architectures o f
FISs.

Y es ̂ Y es

219

Appendix 3: Information System Comparison Tables

Table 1 (contd). Mediator and/or Wrapper Based Information Systems
Columns 1-5 (contd.)

1 2 3 4 5
SL . Systems/ Architectures Description Supports

resource
Autonomy?

Supports
Het.
resources?

16 w ebFIN D IT [BouOO],
[B ou94]

A dynam ic architecture for describ ing,
locating and a ccess in g data from w eb
accessib le databases.

Y es Y es

17 Infomaster [G en97] An inform ation integration system for
accessin g inform ation sou rces a ccessib le
via the w eb.

Y es yes

18 SPICE [JonOO], [X u02] The project a im s to bu ild a "catalog o f
life" o f liv in g organ ism s by provid ing
integrated access to distributed taxonom ic
databases or G S D s.

Y es yes

19 Garlic [Car95] A system for m anaging h eterogen eou s
m ultim edia and traditional data.

Y es yes

Str = structured; semi-str = semi-structured, unstr = unstructured;
= Not known from reference.

220

Appendix 3: Information System Comparison Tables

Table 1 (contd). Mediator and/or Wrapper Based Information Systems
Columns 1, 2, 6-8

1 2 6 7 8

SL. Systems/Architectures Data Sources Operational domain/ Main objective Uses
Ontol
-ogies

1 TSIM M IS [Gar97] Str, sem i-str &
unstr

Integration o f inform ation from different sources
w h ich are related but "not-quite-the-same".

N o

2 DISC O [Tom 98] Str H eterogen eou s data sources conform ing to
different data m odels, schem a and sem antics.

N o

3 CO IN [Bre97] Str & sem i-str Integration o f inform ation sources accessib le from
the internet.

N o

4 DIKE [Pal03] Str Friendly and flex ib le access to heterogeneous
databases.

N o

5 M edM aker [Pap96] Str, sem i-str, unstr
& sources with
changing schem as.

Integration o f inform ation sources w hich do not
have w ell d efined static schem a.

N o

6 X M L M edia [Gar99] Str, unstr Integration o f m ultip le data sources in the internet
or on intranets u sin g X M L protocols.

N o

7 X M F [L ee02] Str, sem i-str Integration o f inform ation resources accessib le v ia
the w eb.

N o

8 M IX [Bar99] Str, sem i-str Integration o f data from w eb based sources
b elon g in g to d ifferent conceptual dom ains.

N o

9 DIOM
[Liu951,[Liu961,[Lee971

Str, sem i-str &
unstr

Interoperability in environm ents w ith grow ing
num ber o f data sources.

N o

10 SIM S [A re93],[A re97] Str & K Bs Inform ation integration in heterogeneous
environm ents.

Y es

11 Infosleuth [B ay97] Str, sem i-str and
unstr

O pen, dynam ic environm ent w here applications
do not have com p lete k n ow led ge or control o f
resources.

Y es

12 C am ot[W oe93],[S in97] Str, sem i-str, unstr,
K B s & apps.

Enterprise environm ents for integrated
m anagem ent and access to inform ation (available
from files, apps, D B S , K B s, etc)

Y es

13 HERM ES [Sub95] Str, unstr & apps. P rovides m eth od o logy for integration o f data
sou rces and reasoning system s.

N o

14 X M L Data Integration
System [A lm 04]

Str M ediation o f h eterogeneous X M L data sources. N o

15 FIS [B us99] Str, sem i-str &
unstr

R eports develop m en ts in the field o f data
integration and defines criteria to characterise
inform ation integration system s.

Y es

16 w ebFIN D IT [BouOO],
fBou941

Str A c c e ss to inform ation sources available v ia the
w eb.

N o

17 Infomaster [G en97] Str, sem i-str Integration o f inform ation sources available via
the w eb.

N o

18 SPICE [JonOO], [Xu02] Str Integrated access to taxonom ic databases or
G SD s.

N o

19 Garlic [Car95] Str, sem i-str, unstr,
im age & v id eo
data

Integrated access to heterogeneous data sources
includ ing databases, non-database information
sou rces and m ultim edia data sources.

N o

Str = structured; semi-str = semi-structured, unstr = unstructured; # = Not known from reference.

221

Appendix 3: Information System Comparison Tables

Table 1 (contd). Mediator and/or Wrapper Based Information Systems
Columns 1,2, 9-12

1 2 9 10 11 12

SL. Systems/Architectures Mediator
Based/ or use
of mediators?

Schema Int.
supported?

Provide res.
wrappers?

Operations
Supported

1 TSIM M IS [Gar97] Y es N o Y es access

2 D ISC O [Tom 98] Y es N o Y es access

3 CO IN [Bre97] Y es N o Y es access

4 D IKE [Pal03] "mediator-like"
architecture

N o Y es access

5 M edM aker [Pap96] Y es N o Y es access

6 X M L M edia [Gar99] Y es N o . Y es access

7 X M F [Lee02] Y es Y es. G lobal
schem a
d efined in
X M L .

Y es access

8 M IX [Bar99] Y es X M L D T D s as
structural
d escrip tion
(i.e . schem a)
o f m ediator
v iew s .

Y es access

9 DIO M [Liu95J, [L iu96],[L ee97] Y es N o Y es access

10 SIM S [A re93], [Are97] Y es N o . N o access, update

11 Infosleuth [B ay97] Y es N o N o access

12 C am ot[W oe93], [Sin97] Y es (m ediated
a ccess to
resources)

N o N o access, update

13 H ERM ES [Sub95] Y es N o N o access

14 X M L Data Integration System
[A lm 04]

Y es Y es , G lobal
schem a
defined in
X M L

N o access

15 FIS [B us99] Y es N o M ediator based
FIS types use
wrappers

access, update

16 w ebFIN D IT [BouOO], [B ou94] N o N o Y es access

17 Infomaster [G en97] N o N o Y es access

18 SPICE [JonOO], [X u02] N o N o Y es access

19 Garlic [Car95] N o N o Y es access, update

222

Appendix 3: Information System Comparison Tables

Table 1 (contd). Mediator and/or Wrapper Based Information Systems
Columns 1 ,2 ,13 & 14

1 2 13 14

SL. Systems/
Architectures

Middleware/ or middleware functions Data model

1 TSIM M IS [Gar97] Lightweight O EM based m ediators, wrappers, query
language and wrapper and m ediator generators.

OEM data m odel
rPap951.

2 D ISC O [Tom 98] Wrapper interfaces, query optim iser, query processing
sem antics, etc.

O D M G data m odel
[CatOOl

3 COIN [Bre97] Context know ledge repository, m ediation en gin e, M ulti
database access engine.

Object-oriented data
m odel o f fam ily Frame-
L ogic [K if89].

4 DIKE [Pal03] Inter-schema property extractor to address different
types o f heterogeneities. D ata repository for representing
description o f inform ation stored in input databases.

Relational

5 M edM aker [Pap96] M ediators provide integrated v ie w s in O EM o f
information from underlying data sources.

OEM data m odel
[Pap95].

6 X M L M edia [Gar99] Three-layered architecture: translation layer (data
sources & wrappers), m ediation layer (for m ediation
capabilities) & coordination layer (c lien t side tools).

X M L

7 X M F [Lee02] M ediators control wrappers and perform inform ation
integration.

X M L

8 M IX [Bar99] The M IX mediator and query processor reso lv es query
by using m ediator v iew definition .

X M L

9 DIOM [Liu95]
JLiu961,[Lee971

System architecture conform s to 13 reference fram ework
[Hul951.

O D M G -93 [Cat94] data
m odel.

10 SIM S [A re93] [Are97] K now ledge representation system , LIM & Prodigy
analysis planner.

Relational & Loom
[L00O6I

11 Infosleuth [B ay97] Network o f agents created using Java & dom ain m odels
(ontologies)

Relational

12 Carnot [W oe93],
[Sin97]

A distributed interpreter ca lled E SS constructed using
Rosette actor language [T om 88] & various other
services in its five layer architecture.

The E SS distributed
interpreter.

13 HERM ES [Sub95] Provides a general rule-based declarative language for
defining m ediators w h ich access data sources and
reasoning system s uniform ly.

H erm es M ediator
Language.

14 X M L Data Integration
System [A lm 04]

The X M L m ediation layer. X M L

15 FIS [B us99] Federation layer o f FIS provides uniform access
language, schem a, m etadata, etc.

CD M

16 w ebFIN D IT [BouOO],
[Bou941

w ebD D L for form ing cluster o f related inform ation
repositories. S ervice lin k s for link ing clusters.

C O R BA [O M G 06].

17 Infom aster [G en97] "Infomaster Facilitator" determ ines sources that contain
the information necessary to answ er user query. A K B
contains rules and constraints describ ing inform ation
sources and translations am ong them .

R ules & constraints o f
the KB.

18 SPICE [JonOO], [X u02] The CAS acts as a server, form ulates queries, assem ble
results, etc. C A S k n ow led ge repository.

CO RBA [OM G06],

19 Garlic [Car95] Garlic Query S erv ices and R untim e System & M etadata
Repository.

O DM G -93 [Cat94]
object model.

223

Appendix 3: Information System Comparison Tables

Table 1 (contd). Mediator and/or Wrapper Based Information Systems
Columns 1, 2 & 15

1 2 15
SL. Systems/Architectures Key feature(s)

1 TSIM M IS [Gar97] A standard data m odel based on O EM and com m on query language; network
o f m ediators w h ich p rovide additional functionalities.

2 D ISC O [Tom 98] A ddresses issu es su ch as "fragile mediator", "source capability" and "graceless
failure" to handle increasing num ber o f data sources.

3 COIN [Bre97] D uring query tim e con tex t m ediators detects and resolve conflicts by
com paring con tex ts associated w ith data sources.

4 DIKE [Pal03] Extraction and exp lo ita tion o f in ter-schem a k n ow led ge for creating CIS,
enrichm ent o f schem a descriptions, analysis o f inter-schem a properties to
build integrated v ie w o f data availab le through schem as, etc.

5 M edM aker [Pap96] Provides m echan ism to handle schem a evo lu tion , structure irregularities etc. o f
underlying data sources.

6 X M L M edia [Gar99] Provides the m echan ism to m erge structured and un-structured data sources.
Provides facility to store retrieved data as X M L docum ents in R D B M S for
query and m anipulation.

7 X M F [L ee02] Inform ation resources are described u sin g X M L (by their wrappers). D ynam ic
m anagem ent o f g lob al schem a w h ich is a lso described using X M L. Supports
different types o f wrappers for integrating different W W W information
resources.

8 M IX [Bar99] D ata exchange and integration is fu lly m anaged using X M L. X M A S provides
grouping and ordering facilities to generate n ew X M L "objects" from existing
ones.

9 DIOM [Liu95] [Liu96]
[Lee97]

Inform ation system s interoperated w ithout the need for global schema.
Interoperability is ach ieved u sin g a m etadata catalog service.

10 SIM S [A re93],[A re97] Processing o f queries u sin g k n ow led ge o f inform ation sources stored in an
ontology. D om ain inform ation such as availab le inform ation sources, their
structure, contents, etc described u sin g L oom [L0 0 O6].

11 Infosleuth [B ay97] S pecia lised agents for serv ices su ch as users, on to logy , brokers, resources,
data analysis, task ex ecu tion and m onitoring.

12 C am ot[W oe93] [Sin97] Supports w id e range o f functions such as a ccessin g heterogeneous legacy
databases, sem antic integration u sin g o n to log ies , business process
m anagem ent, data integrity enhancem ent, analytical decision support,
w orkflow m anagem ent, k n ow led ge d iscovery , etc.

13 HERM ES [Sub95] Supports increm ental integration o f n ew inform ation system s. M ediators
provide "sophisticated abilities to extract and produce new information from
ex isting data".

14 X M L Data Integration
System [A lm 04]

G lobal schem a en ab les creation o f h om ogen ised v ie w over heterogeneous
X M L data. Integration too l based on the X M L Schem a language [Fal04],
[Tho041, [Bir061.

15 FIS [Bus99] Identifies three-tier architecture o f FIS.

16 w ebFIN D IT [BouOO],
[Bou941

A llo w s grouping o f related inform ation repositories (as clusters) and establish
inter-relationship betw een them .

17 Infomaster [G en97] A cce sse s h eterogen eou s inform ation sources by g iv in g the im pression o f a
centralised and h om ogen eou s inform ation system . Enables creation o f a virtual
data w arehouse.

18 SPICE [JonOO], [Xu02] The approach adopts a C D M & all databases (v ia their wrappers) map to this
com m on data m odel.

19 Garlic [Car95] Q uery optim isation techniques for advanced query processing.

224

Appendix 3: Information System Comparison Tables

Table 1 (contd). Mediator and/or Wrapper Based Information Systems
Columns 1, 2 ,16 & 17

1 2 16 17

SL. Systems/
Architectures

Method(s) of resolving conflicts Language for Data
Access/Query

1 TSIM M IS [Gar97] Wrappers perform query translation and convert
results into appropriate O E M objects.

M SL, LOREL

2 DISC O [Tom 98] M aps D isco types to data source types. M ediators
perform reform ulation o f queries into loca l schem as.

O D M G 2.0

3 COIN [Bre97] Wrappers provide uniform protocol. SQ L, O D B C , H TM L
interface and Q BE (Query-
B y-E xam ple) interface.

4 DIKE [Pal03] Wrappers for translating queries into the language
supported by the local D B M S .

W eb-based access layer to
query available data and
schem as using SQL.

5 M edM aker [Pap96] The M SL reso lves schem a-d om ain m ism atch,
schem atic d iscrepancy and supports schem a
evolution.

M SL

6 X M L M edia [Gar99] Wrappers wrap data sou rces in X M L or SQ L and
provide necessary translation facilities .

Object-O riented SQL3
[E is99], JDBC [Cat97] and
X M L -Q L [D eu98].

7 X M F [Lee02] Wrappers convert data into X M L by u sin g translators.
XM F m ediation rules reso lve schem atic co n flic ts by
mapping global and loca l schem as.

X M L based Xpath [C la99] &
A PI for Java based clients.

8 M IX [Bar99] X M L wrappers for d ifferent w eb sou rces w h ich
perform necessary translation.

X M A S & GUI based B B Q

9 DIOM [Liu95],
[Liu961,[Lee97]

Wrappers provide translation facilities u sin g m etadata
catalog.

D IO M IQL

10 SIM S [A re93],
[Are97]

Reform ulates queries exp ressed in term s o f dom ain
m odel to appropriate sub q ueries for various
information sources.

Q uery language o f Loom
[L00O6] K now ledge
representation system.

11 Infosleuth [B ay97] Resource agents provide m apping from com m on
ontology to resource schem a.

Q uery specified in generic
term s, but SQ L used
internally to represent
queries over the ontologies.
K Q M L [Fin94] also used
internally.

12 Carnot [W oe93]
JSin971

M IST performs sem antic m ed iation am ong
heterogeneous sources.

HTM L, M o tif & LDL-H-

13 HERM ES [Sub95] V ia the sem antic integration p rocess & con flic t
handling toolkit.

L ogical query language
based on HERM ES mediator
language.

14 X M L Data
Integration System
[Alm041

Query translators use m appings described betw een
global and local schem as to aid query processing.

G lobal queries specified as
X M L docs.

15 FIS [Bus99] A pplication specific . A pplication specific.

16 w ebFIN D IT [BouOO],
[B ou94]

Provides “ interface-dom ain m appings” to map
betw een clusters and database interface.

W W D -Q L

17 Infomaster [G en97] Rules and constraints (stored in the K B) describe
information sources and translation am ong them.

Form based interface v ia the
w eb & programmatic access
via ACL.

18 SPICE [JonOO],
[X u02]

The wrappers wrap the G S D s into the C D M to answer
CAS queries.

W eb browser-based access.

19 Garlic [Car95] R epository wrappers translate betw een Garlic's
protocols and repository's native protocols.

Object-oriented extension o f
SQL.

225

Appendix 3: Information System Comparison Tables

Table 2. Schema Integration based Information Systems
Columns 1-5

1 2 3 4 5

SL. Systems/
Architectures

Description Supports res.
Autonomy?

Supports
Het.
resources?

20 M ultibase [Hua94] A H eterogeneous m ultidatabase m anagem ent
system.

Y es

21 Efendi [Rad95] A federation services to co u p le h eterogeneous
database and file system s to create a F D B S .

Y es Y es

22 M yraid [H w a94]
[Lim 95]

A FD BS w hich provides "enterprise-wide"
information integration o f independently
developed databases.

Y es Y es

23 Pegasus [A hm 91] A heterogeneous m ultidatabase m anagem ent
system.

Y es Y es

24 H O D FA [Kar95] Provides an approach and a m eth o d o lo g y for
hom ogenisation o f databases so that they can
be m anaged using a sin g le D B M S in a
federation.

Y es yes, but
hom ogenises
them.

25 IR O -D B [Gar95]
[Fan981

A heterogeneous federated database system . Y es Y es

26 D A T A PL E X
[Chu901

A heterogeneous distributed database
m anagement system .

Y es Y es

27 IN FINITY [Har97] A federated database system . Y es yes

28 Sheth and Larson's
FD B S reference
architectures [She90]

The survey paper id en tifies reference
architectures for d ev elop in g F D B S .

Y es Y es

29 X M L Data
Integration with
OW L [Leh041

Provide an approach for X M L data integration
available v ia the w eb u sin g W eb O n to logy
Language O W L [B ec041.

Y es

30 M V D S [D uw 96] Supports integration o f sam e inform ation
distributed across m ultip le sites in various
w ays individually tailored for d ifferent users
and applications.

Y es Y es

Str = structured; semi-str = semi-structured, unstr = unstructured;
= Not known from reference.

226

Appendix 3: Information System Comparison Tables

Table 2 (contd.)* Schema Integration based Information Systems
Columns 1, 2, 6-9

1 2 6 7 8 9

SL. Systems/
Architectures

Data Sources Operational domain/ Main
objective

Uses
Ontologies

Mediator
Based/ or use
of mediators?

20 M ultibase [Hua94] Str Integration o f h eterogeneous
databases.

N o N o

21 Efendi [Rad95] Str & U n ix F ile
system .

Integration o f heterogen eou s
databases in an enterprise.

N o N o

22 M yraid [H w a94]
[L im 95]

Str "enterprise-wide" inform ation
in tegration o f independently
d ev e lo p ed database.

N o N o

23 Pegasus [A hm 91] Str A c c e ss to h eterogen eou s
database and non-database
inform ation sources.

N o N o

24 H O D FA [Kar95] Str Integration o f autonom ous
" legacy lo ca lized databases"
w h ich are o w n ed by d ifferent
departm ents in an organisation.

N o N o

25 IR O -D B [Gar95]
[Fan98]

Str Interoperability o f pre-ex istin g
relational databases and n ew
object-orien ted databases.

N o N o

26 D A T A PL E X
[Chu90]

Str Sharing o f data betw een
h eterogen eou s database
system s u sin g a relational data
m odel.

N o N o

27 INFINITY [H3r97] Str Integration o f heterogen eou s
data from relational & object-
oriented databases.

N o N o

28 Sheth and Larson's
FD B S reference
architectures
[She90]

Str D isc u sse s "the ap p lication o f
the federation con cep t for
m anaging ex istin g
h eterogen eou s and autonom ous
D B Ss" [She901.

N o N o

29 X M L Data
Integration with
OW L [Leh04]

Data sources
described using
XM L schem a

Integration o f data sources
availab le ffom the w eb v ia w eb
form s or w eb serv ices.

Y es N o

30 M V D S [D uw 96] Str Interoperability in
heterogen eou s object-oriented
m ultidatabase system .

N o N o

Str = structured; semi-str = semi-structured, unstr = unstructured;
= Not known from reference.

227

Appendix 3: Information System Comparison Tables
Table 2 (contd.). Schema Integration based Information Systems
 __________________ Columns 1, 2,10-13_________________________

1 2 10 11 12 13

SL. Systems/
Architectures

Schema Int.
supported?

Provide res.
wrappers?

Operations
Supported

Middleware/ or middleware
functions

20 M ultibase
[Hua94]

Y es N o a ccess, update Schem a editor for defining global
schem as, global Schem a repository,
distributed cooperative com putation
m odel for query execution.

21 Efendi [Rad95] Y es N o a ccess, update Efendi federation kernel & schem a
integration facilities.

22 Myraid
[H wa94]
[Lim 95]

Y es. (The
schem a is
represented as
a set o f
integrated
relations)

N o access, update Q uery processing, global transaction
m anagem ent

23 Pegasus
[Ahm 91]

Y es N o access, update C ooperative information m anagement
layer for schem a integration, global
query processing, local query
translation and transaction
m anagem ent.

24 H O DFA
[Kar95]

Y es N o a ccess, update M A S S extracts data from
heterogeneous databases to a
h om ogeneous database. K now ledge
directory m aintains information which
aids database hom ogenisation.

25 IR O-DB
[Gar95]
[Fan98]

Y es N o access, update Three layer architecture supports for
schem a integration, global transaction
m anagem ent, concurrency control,
recovery, distributed query
decom p osition and optim isation.

26 D A T A PL E X
[Chu90]

Y es N o access, update C om m on conceptual schem a based on
relational data m odel and definition o f
external schem as over it. External
schem as describe user's v iew s as
subset o f global conceptual schema.

27 IN FINITY
[HSr97]

Y es N o access, update Federation layer provides schem a
architecture to resolve schem atic and
sem antic heterogeneities in tw o steps.

28 Sheth and
Larson's FD BS
reference
architectures
[She90]

Y es. L oosely
coupled FD BS
supports
m ultiple
federated
schem as &
tightly coupled
F D B S support
one or more
federated
schemas.

N o access, update T w o important com ponents applicable
to all F D B S reference architectures
identified are: processors and schemas.

29 XM L Data
Integration with
OW L [Leh041

Y es N o a ccess OW L is used as global schema
language for data integration and
sem antic mapping.

30 M V D S
[D uw 96]

Supports
m ultiple
integration
view s

N o a ccess M V D L provides sem antically rich
integration operatiors for resolving
sem antical and structural differences.
The three interface architecture allow s
users to use Preferred D BM S or DDL.

228

Appendix 3: Information System Comparison Tables

Table 2 (contd.)* Schema Integration based Information Systems
Columns 1, 2 ,14 & 15

1 2 14 15

SL. Systems/Architectures Data model Key feature(s)

20 M ultibase [Hua94] Relational Provides h igh transparency o f networks and
local D B M S s for applications to access
heterogeneous databases in network
environm ent.

21 Efendi [Rad95] O D M G -93 [C at94] object
m odel.

Integration o f heterogeneous data, data
m igration, objects caching & redundancy
control.

22 Myraid [H w a94] [Lim 95] Relational Supports creation o f m ultiple federations.
Transaction m anagem ent provides tw o-phase
lock in g protocol & a tim eout m echanism for
dead lock problem .

23 Pegasus [Ahm 91] object oriented as w ell as
functional H O SQ L

A cce ss & m anipulation o f m ultiple
autonom ous heterogeneous distributed
object-oriented , relational, and other
inform ation system s v ia a uniform interface.

24 H O D FA [Kar95] N.a. The paper describes
architecture only.

Transform ation o f a co llection o f
heterogen eou s legacy information system s
into h om ogeneous system s.

25 IRO-DB [Gar95] [Fan98] O D M G -93 [Cat94] object
model.

A ch iev es interoperability betw een pre
ex istin g relational D B S and new object-
oriented D B S . O bject-oriented paradigm
used both for describing heterogeneous D B S
and accessin g federated D B S.

26 D A T A PL E X [Chu90] Relational Architecture provides fourteen "functionally-
independent" m odules w ith w ell defined
interfaces to support any D B M S and file
system .

27 IN FINITY [Har97] EXPRESS [IS 0 9 4 a] , [W il98]
data m odel o f STEP [IS 0 9 4] ,
[G le89] standard & and an
access interface SD A I r iS 0 9 8 1

The system provides not on ly a com m on data
m odel but a lso a com m on schem a structure
to ach ieve com plete hom ogeneity o f the data
m odels.

28 Sheth and Larson's FD BS
reference architectures
[She90]

The com ponent schem a (w h ich
is derived by translating local
schem as) acts at the C D M o f
the FDBS.

Identifies various F D B S reference
architectures, F ive level FD BS schem a
architecture, F D B S evolution process, F D B D
d evelopm ent tasks & m ethodology, FD BS
operation tasks & case studies.

29 X M L Data Integration
with OW L [Leh04]

A graph structure w hich has
items is used as data m odel for
OW L instances.

Supports integration o f data sources with
X M L schem as into a global schem a defined
using OW L.

30 M V D S [D uw 96] O D M G -93 [C at94] object
model.

The system enables creation o f multiple
integration v iew s w ithout first creating the
entire g lobal schema.

229

___________________Appendix 3: Information System Comparison Tables
Table 2 (contd.)* Schema Integration based Information Systems

Columns 1 ,2 ,1 4 & 15

1 2 16 17

SL. Systems/ Architectures Method(s) of resolving conflicts Language for Data
Access/Query

20 M ultibase [Hua94] "Query Translator" w h ich converts
standard SQ L com m ands into local
SQL com m and.

ESQ L /C , O D BC API, M ultibase-
D IL

21 Efendi [Rad95] Federation kernel d eco m p o ses g lobal
operations to operations o f various
D B S.

O D M G 's ODL/O M L/OQ L

22 Myraid [H w a94] [Lim95] The relational to loca l query translation
is perform ed by "gateways" w hich
reside on loca l database schem as.

SQ L Q uery Interface

23 Pegasus [A hm 91] H O SQ L provides type and function
abstractions to deal w ith m apping &
integration problem s.

H O SQ L

24 H O D FA [Kar95] The Coordinator D B M S m anages
hom ogenised m em ber databases,
resolves sem antic con flic ts and enable
interoperability. S ch em as o f all
m ember databases are based on the
sam e data m odel o f the coordinator
D B M S.

N .a . The paper describes an
architecture only.

25 IR O-DB [Gar95] [Fan98] The Local layer provides loca l D B S
adapters to address d ifferent typ es o f
heterogeneities and provides a standard
O D M G interface.

O Q L

26 D A T A PL E X [Chu90] The "translator" m odule translates
betw een user SQ L queries and native
queries o f the participating
heterogeneous databases u sin g a syntax
transformation table and a set o f rules.

SQ L

27 INFINITY [H3r97] Schem as o f h eterogen eou s data m odels
are translated into "data-m odel
hom ogenized" schem as described in
EX PR ESS data m odel by u sin g a
m apping language.

C O R A L language (w hich is similar
to SQ L 3 [E is99])

28 Sheth and Larson's FD BS
reference architectures
[She90]

Transform ing p rocessors for
transforming data and queries betw een
different data m o d els/sch em as v ia
m appings.

Q uery language o f the FD B S's
C D M or query language o f external
schem a (i f external schem a is
different from federated schema).

29 X M L Data Integration with
O W L [Leh04]

Sem antic m apping features provided by
the O W L are used for m apping
heterogeneous data sources to the
com m on global schem a.

X query based SW QL.

30 M V D S [D uw 96] Source Sch em a S p ecifica tion Interface
maps source schem a syntactic
constructs and corresponding sem antic
content into the M V D S 's interm ediate
CDM .

U ser's preferred query language.
Translators map between M VDS's
C D M to user specified DDL. The
user specified D D L is attached to
M V D S to adapt to new D BM S and
D D L.

230

Appendix 3: Information System Comparison Tables

Table 3. Grid based Information Systems
Columns 1-5

1 2 3 4 5

SL. Systems/ Architectures Description

Supports
res.
Autonomy?

Supports Het.
resources

31
O G SA -D A I [A tk05],
[Ogs071

A m iddlew are system for exp o sin g data
sources to the G rid environm ent. Y es Y es

31
Spitfire [G ag02] [Spi03]
[B el02]

P rovides m idd lew are to a ccess relational
databases in G rid environm ent. Y es Y es

33 G eneGrid [Kel051 f Jit051

A w ork flo w based b ioinform atics
application for a ccess in g h eterogen eou s
applications and datasets in Grid
environm ent. Y es Y es

34
B iodiversity W orld (B D W)
fPah061, [Pah06al

A flex ib le and ex ten sib le W eb Serv ices
and w o rk flo w based Grid P SE for so lv in g
problem s in b iod iversity and analysing
biod iversity patterns. Y es Y es

Table 3 (contd.). Grid based Information Systems
Columns 1, 2, 6-8

1 2 6 7 8

SL. Systems/
Architectures

Data Sources Operational domain/ Main
objective

Uses Ontologies

31 O G SA -D A I [A tk05],
[O gs07]

Str, file system s &
indexed files

A c c e ss to data from different sources
in a G rid environm ent.

M iddleware can be
custom ised to
access ontology
data in different
formats.

31 Spitfire [G ag02]
[Spi03] [B el02]

Str A c c e ss to R D B M S v ia standard
p rotoco ls and w ell published
in terfaces in Grid environm ent.

N o

33 G eneGrid [K el05]
[Jit05]

B ioinform atics apps
& bio log ica l datasets

C onducting in silico experim ents in
b io lo g y for develop m en t o f antibodies
and n ew drugs.

N o

34 Biodiversity W orld
(B D W) [Pah06],
[Pah06a]

Str, sem i-str, & apps Integrated a ccess to w id e ly dispersed
and disparate resources and analytical
to o ls & co m p osition o f these resources
into w orkflow s.

Y es

Str = structured; semi-str = semi-structured, unstr = unstructured;
= Not known from reference.

231

Appendix 3: Information System Comparison Tables

Table 3 (contd.)* Grid based Information Systems
Columns 1, 2, 9-13

1 2 9 10 11 12 13

SL. Systems/
Architectures

Mediator
Based/ or
use of
mediators?

Schema Int.
supported?

Provide res.
wrappers?

Operations
Supported

Middleware/ or
middleware
functions

31 O G SA -D A I
[Atk05],
[O gs07]

M ediator
based
functionality
can be built i f
required
depending
upon
application
domain
requirements.

N .a . P rovides "data
services" for
users to
a ccess the
underlying
data sources
v ia its
operations.

a ccess, update D ata operations
specified using "perform
documents" w hich are
sent to "OGSA-DAI
Core" w hich m anages
access to data resources
and executes user
com m ands.

31 Spitfire
[G ag02]
[Spi03] [B el02]

N o N .a. P rovides
"local layer
service" for
g ain in g access
to R D B M S
through JD B C
[C at97] and
S O A P
[G ra02]
protocol.

access, update M iddleware's server
com ponent interfaces
R D B M S and provides
"Grid access" to the
database(s).

33 GeneGrid
[K el05] [Jit05]

N o N .a. G A M
m anages
a ccess to and
integration o f
bioinform atics
applications.

a ccess, update O G SA com plaint
architecture provides
various com ponents for
creating integrated
environm ent to provide
access to diverse
applications and
databases.

34 Biodiversity
W orld (B D W)
[Pah06],
[Pah06a]

N o N .a. Y es access Triana w orkflow
m anagem ent system for
com posing and
executing w orkflow s
[T ay03], Condor
[Tha05] based Grid
m iddleware, metadata
repository, w eb-service
based access to resource
wrappers.

232

Appendix 3: Information System Comparison Tables

Table 3 (contd.). Grid based Information Systems
Columns 1 ,2 , 9-13

1 2 14 15

SL. Systems/
Architectures

Data model Key feature(s)

31 O G SA -D A I
[A tk05], [O gs07]

O G SA -D A I provides X M L -b ased
"perform docum ents" to a ccess data
sources in a standard w ay.

P rovides access to data resources in Grid
environm ent in consistent and data resource
independent w ay , supports data integration, etc.

31 Spitfire [G ag02]
[Spi03] [B el02]

Client side A PI availab le for a ccess in g
databases through standard p rotoco l and
w ell-defined interfaces.

A c c e ss to R D B M S in Grid environm ent for Grid
applications.

33 GeneGrid
[K el05] [Jit05]

Bioinform atics experim ents represented
in XM L w orkflow docum ents.

E nab les creation o f a "Virtual Bioinform atics
Laboratory" from diverse resources. A ccess to
distributed com putational resources for running
com p ute-in ten sive experim ents.

34 B iodiversity
W orld (B D W)
[Pah06],
fPah06a]

Provide datatypes to exch an ge o f
heterogeneous data in a standard w a y and
hide data heterogeneity at the system
level.

Supports d ifferent types o f b iodiversity
experim ents such as b ioclim atic m odelling,
p h y lo g en etics an lysis, b iodiversity richness
an a lysis and conservation evaluation, etc.

Table 3 (contd.). Grid based Information Systems
Columns 1 ,2 , 9-13

1 2 16 17

SL. Systems/
Architectures

Method(s) of resolving conflicts Language for Data Access/Query

31 O G SA -D A I
[A tk05],
rogs07i

Supports data transform ation u sin g
X SL T [C la99a]. U sers reso lv e all other
conflicts.

Interaction w ith data services v ia the "perform
docum ents" w h ich can be generated by using
O G S A -D A I's A PI in Java.

31 Spitfire
[G ag02]
rSpi031 FBel021

N .a. C lien t applications v ia the use Spitfire API.

33 GeneGrid
[K el05] [Jit05]

Provides "linkers" for transform ing
results o f one application or database
operation into other form ats.

Portal based access.

34 B iodiversity
W orld (B D W)
[Pah06],
[Pah06a]

D ata types hide data h eterogen eity at
system level, clien t side to o ls convert
data into appropriate form at for its u se
in w orkflow process.

U ser interaction v ia the Triana w orkflow
m anagem ent system .

233

Appendix 3: Information System Comparison Tables

Table 4. Other Information Systems
Columns 1-5

1 2 3 4 5

SL. Systems/
Architectures

Description Supports
res.
Autonomy?

Supports Het.
resources?

35 Inform ationM anifold
rLev961

A ccess to heterogen eou s inform aiton sources
available v ia the w eb .

Y es Y es

36 D D X M I [N am 02] A sem i-autom ated m ean s o f in tegration o f
heterogeneous distributed databases u sin g a
metadata integration approach & X M L
Metadata Interchange (X M I) [X M I06]
Specifications.

yes

37 M R D SM [Lit85] A relational m ultidatabase system (lo o se ly
coupled F D B S).

Y es Supports relational
databases w hich
m ay differ
sem antically or
structurally.

38 Heim bigner and
M cLeod's FD BS
Architecture [H ei85]

A F D B S architecture w h ich supports a
collection o f independent databases in a
loose ly coup led federation.

Y es N o

39 Hsiao's Federated
databases and system s
(D ata sharing Tutorial)
THsi921

The tutorial provides d ifferent approaches to
data sharing in federated database
environm ent.

Y es Y es

40 E-U nion [K on04] Provides a "platform" for Inform ation sharing
betw een E -com m erce system s for construction
material procurem ent.

Y es Y es

Table 4 (contd.)* Other Information Systems
Columns 1, 2, 6-8

1 2 6 7 8

SL. Systems/ Architectures Data
Sources

Operational domain/ Main objective Uses
Ontologies

35 Inform ationM anifold [L ev96] Str A c c e ss to h eterogen eou s inform ation sources
availab le v ia the w eb .

N o

36 D D X M I [Nam 02] Str Integration o f heterogen eou s data available
in X M L form at from X M L databases.

N o

37 M R D SM [Lit85] Str M anagem ent o f databases o f M R D S (M ultics
R elational D ata Store) [M cJ06]

N o

38 Heim bigner and M cLeod's
FD BS Architecture [H ei85]

Str Partial and coordinated sharing am ong
independent databases w ith m inim um
centralised control in an o ffice information
system environm ent.

N o

39 Hsiao's Federated databases and
system s (D ata sharing Tutorial)
[Hsi921

Str Interoperability o f h eterogeneous databases
to m eet organisational requirements.

N o

40 E-U nion [K on04] Str B ring together different actors such as
buyers and suppliers in construction supply
chain v ia E -com m erce system s.

N o

234

Appendix 3: Information System Comparison Tables

Table 4 (contd.). Other Information Systems
Columns 1, 2, 9-12

1 2 9 10 11 12

SL. Systems/ Architectures

Mediator Based/
or use of
mediators?

Schema Int.
supported?

Provide res.
wrappers?

Operations
Supported

35 InformationM anifold [Lev961 N o N o N o access

36 D D X M I [Nam021 N o N o N o access

37 M R D SM [Lit85] N o N o N o access, update

38
H eim bigner and M cLeod's FD BS
Architecture [Hei851 N o N o N o access, update

39

Hsiao's Federated databases and
system s (Data sharing Tutorial)
[Hsi921 N o N o N o access, update

40 E -U nion [K on04] N o N o N o access

Table 4 (contd.)* Other Information Systems
Columns 1, 2,13 & 14

1 2 13 14

SL.
Systems/
Architectures Middleware/ or middleware functions Data model

35
Inform ationM anifold
[Lev961

Information source description repository, Q uery
Plan Generator, Query E xecu tion E ngine, etc.

R elational m odel but augmented
w ith object-oriented features.

36 D D X M I [Nam021

Generation o f tool to perform m etadata integration,
which produces a D D X M I file . T his file is then used
to generate local queries for individual databases
from user's master query.

N .a .T he D D X M I file is an XM L
docum ent.

37 M R D SM [Lit85] M ltidatabase data m anipulation language M D SL . R elational

38

H eim bigner and
M cL eod’s FD BS
Architecture [H ei85]

Provides export and import schem as to sp ec ify w h ich
information to share. A federal d ictionary for
federation lifecycle m anagem ent.

A n object-oriented and semantic
C D M based on the "event
m odel" [Kin851.

39

H siao's Federated
databases and system s
(D ata sharing Tutorial)
[H si92]

Identifies five different approaches to database
sharing. First is database con version and four
different m apping approaches based on database
schem a and transaction translation.

The tutorial proposes
m ultim odal and multilingual
capabilities in federation to
support different types o f D B M S
and their languages.

40 E-U nion [K on04]

The w eb service based E -U n ion fram ew ork co llec ts
data from different E -com m erce sites v ia X M L based
SO AP m essaging protocol. R D B M S

235

Appendix 3: Information System Comparison Tables

Table 4 (contd.). Other Information Systems
Columns 1, 2 ,16 & 17

1 2 15 16 17

SL. Systems/
Architectures

Key feature(s) Method(s) of resolving
conflicts

Language for Data
Access/Query

35 Inform ationM anifold
[L ev96]

Supports separation o f
information source
description and details o n h o w
to access them. Inform ation
source descriptions aid query
generation, capability to query
several inform ation sources
and com bine their answ ers.

Interface program s for
interacting w ith form
based interfaces o f W W W
data sources w hich
retrieve data based on
input variables.

W eb based interface,
Query formulation
using templates
available for classes in
t h e "world view"
schem a

36 D D X M I [N am 02] Generation o f a too l for m eta
users to perform m eta-data
integration and store
integration inform ation in a
file.

The D D X M I file provides
m eta-inform ation about
relationsh ips am ong
databases, m appings and
function nam es for
handling sem antic and
structural d iscrepancies.

X M L Query Language
Quilt [ChaOO].

37 M R D SM [Lit85] Supports m anagem ent o f
databases w ith d istinct
schem as. Supports inter
database queries, m ultip le
queries w hich are repeated for
databases, dynam ic attributes,
etc.

V ia the use o f sem antic
variables w h ich aid to
replace query elem en ts
(w h en the m ain query is
d iv id ed into sub queries)
to deal w ith objects nam ed
differen tly in different
databases.

M D SL w hich is a SQ L-
like type language.

38 H eim bigner and
M cLeod's FD BS
Architecture [H ei85]

A llow s cooperation am ong
independent system s, supports
transaction sharing,
negotiation betw een tw o D B S
com ponents for inform ation
sharing.

N .a . T he architecture
presented assum es a
h om ogen eou s data m odel.

A cce ss to rem ote
database operations by
im porting remote
databases' export
schem as into local
system s.

39 Hsiao's Federated
databases and
system s (Data
sharing Tutorial)
[H si92]

Identifies five requirem ents
for federated databases and
system s: transparent a ccess,
local autonom y, m ultim odal
and m ultilingual cap ab ilities,
m ulti- backend capability and
efficien t access and
concurrency control.

D atabase con version
approach uses
"converters" to identify
sem antic equ ivalence; In
other approaches
m ultim odal and
m ultilingual capab ilities
are proposed to reso lve
different types o f
con flic ts .

User's preferred
language in case o f
database conversion
approach; A lso user's
preferred language in
other approaches except
one approach w hich
uses a universal data
m odel and language.

40 E-U nion [K on04] Framework jo in s together
different construction m aterial
trading sites so that buyers
can also v iew inform ation
provided by other w eb sites .
Enables inform ation sharing
betw een different sites.
A llo w s registration o f trading
sites and material inform ation.
Provides material search ing
facility.

M aterial inform ation from
different sites is converted
into the standard E -U nion
schem a for data sharing.

W ebsite based access.

236

Appendix 3: Information System Comparison Tables

Table 5. Schema Integration Approaches

S L . Approach Description
1 Progressive

pairwise integration
o f database m odule
schem as [Luk96]

[Luk96] describes a schem a integration approach o f progressive pairwise integration o f
database m odule schem as built by different designers. A n information system o f a large
organisation con sists o f various softw are subsystem s w here each software subsystem
provides a business function such as store control, sa les, purchasing, book-keeping,
production planning, production m anagem ent etc. The softw are subsystem s are
individually designed by d ifferent designers. T he schem a integration approach presented
in [Luk96] integrates m odu le schem as (in a progressive pairw ise fashion) into the main
schem a o f the organisation w here m odu le schem a corresponds to a software subsystem
that provides a business function to an organisation.

2 Schem a integration
using collaboration
[B ey97]

B eynon-D avies et al. [B ey 9 7] d iscu ss the im portance o f collaboration w hen performing
schem a integration. A dem onstrator system ca lled SISIB IS (Schem a Integration System
using the Issue B ased Inform ation System (IB IS)) w h ich uses IBIS schem e to support
collaborative database d esign is described . The IB IS project focu ses on the role o f
com puters in group w ork in the dom ain o f C om puter Supported Cooperative Work
(CSCW) [B ey97]. The SISIB IS too l takes a collaborative and an interactive approach to
represent equivalences b etw een con cep ts represented in subschem as. It provides
m echanism s for storing deliberations arising from collaboration in an issue base so that
rationale behind integration d ec is io n s cou ld be captured and stored.

3 Schem a integration
using standardised
dictionary [LawOl]

Schem a integration requires the resolu tion o f nam ing, structural and sem antic conflicts.
Lawrence and Barker [L aw O l] propose a strategy for schem a integration by capturing
data sem antics using a standardised dictionary. It is argued that the integration process
w hich is m ostly manual can b e in creasing ly autom ated u sin g a standardized global
dictionary w hich is organised as a hierarchy o f con cep t terms. C oncept terms are related
using ‘IS -A ’ relationship for m od e lin g generalisation and specialisation and ‘H A S -A ’
relationship for constructing com p onent relationships. The dictionary is used as a binding
betw een integration sites and elim inates nam ing con flic ts and reduces sem antic conflicts.
Structural conflicts are reso lved at query tim e b y a query processor w hich translates from
the semantic integrated v ie w to structural queries. The m ajor contribution o f the work is a
system ised m ethod for capturing data sem antics u sin g a standardized dictionary and a
m odel w hich uses this in form ation to perform schem a integration in relational databases.

4 V iew integration
w hich preserves the
sem antics o f
updates [V id94].

V idal and W inslett [V id94] propose a m eth od o logy o f schem a integration w hich
preserves the sem antics o f updates during the v ie w integration process. Schem a
transformation is guided by a se t o f transform ation princip les so that it can be realised in a
safe an algorithm ic w ay. TTie relationship b etw een the original and transformed schem a is
form ally specified by instance and update m appings. The instance m apping specifies how
instances o f the original schem a are m apped to the instance o f the transformed schem a
and vice-versa. The update m apping sp ec ifies h o w each update operation defined under
the original schem a is transform ed into an update operation defined under the transformed
schema. B y adopting this approach the transform ation preserves information and update
semantics.

237

Appendix 3: Information System Comparison Tables

Table 5 (contd.)* Schema Integration Approaches

SL. Approach Description
5 A ssertion based

approach for
schem a
integration
[Joh93]

A schem a integration problem can also be analysed b y using concepts from log ic
program ming and d ed u ctive databases. T h is approach is suggested by Johannesson [Joh93]
w ho identifies h ow eq u iva len t constructs o f conceptual schem as can be represented by
integrating assertions. A m ethod o f integrating schem as autom atically is proposed starting
from a set o f integration assertions. Integration assertions are used to describe
correspondences betw een constructs in d ifferent conceptual schem as w ith corresponding
information bases. It is p o ss ib le to d istinguish betw een tw o different types o f integration
assertions. The first type o f assertions, ca lled object equality assertions is used to express
that different constants in d ifferent in form ation bases denote the sam e entity. The second
type o f assertions, ca lled ex ten sio n relationship assertions, is used to describe set
relationships betw een ex ten sio n s o f d ifferent predicate sym b ols, such as the extension o f
one predicate sym bol b ein g identical to, included in, or overlapping with the extension o f
another. For exam ple the predicate eq (a ,b) m eans that the entity denoted by “a” is identical
to the entity denoted by “b” . H ere “eq ” is a predicate sym bol.

6 M odel
independent
assertions for
heterogeneous
schem a
integration
[Spa92]

Spaccapietra et al. [Spa92] a lso take assertion-based approach for heterogeneous schem a
integration in w hich the D B A poin ts out corresponding e lem en ts in the schem as and
defines the nature o f correspondence betw een them . T he interschem a correspondence
assertions are declarative statem ents that assert the ex isten ce o f relationships o f som e form
or another betw een tw o schem as. A ssertion s identify w hat sem antic, descriptive and
structural conflicts ex ist w ith in the correspondence. T he m ain contribution is a
m ethodology for autom atic reso lu tion o f structural con flic ts by putting schem a
transformation k n ow led ge into the integrator system .

7 M etadata and
m eta-m eta
information
based schem a
integration
[TanOO]

Tan et al. [TanOO] present a database schem a integration approach that not on ly uses
metadata but a lso uses m eta-m eta inform ation to m ake schem a integration possible. The
solution requires a m eta ob ject fac ility that serves not o n ly as a repository but also as a
more feasible m eans o f m im aging m eta data. It is identified that m eta objects such as
nam es, types, structural rela tion sh ip s w ith other objects can be used to infer object
equivalence or associations. In this approach database system s are wrapped as objects and
the system is federated rather than the on e that uses a g lob al schem a. The approach uses
three repositories: the export, im port and auxiliary schem a repositories. A n auxiliary
schem a defines ex ten sion s to the ex istin g schem as for en tities in the m ultidatabase that do
not exist in the com ponent databases. T he repositories a lso provide program-data
independence and exten sib ility . T h e schem a integration facility m anipulates the meta
objects to construct im port schem as. In telligent m odu les are used to form integration
incubators to facilitate the ev o lu tio n o f com p osite schem as based on inferences, user
assistance and other c lu es to estab lish correct m apping betw een schem as.

8 Four-layered
schem a
integration
architecture
[Red94]

To achieve schem a integration and database integration, the m ethodology adopted by
R eddy et al. [R ed94] u ses a four-layered sch em a architecture consisting o f local schemata,
local object schem ata, g lob a l sch em a and g lob a l v ie w schem ata. Each layer presents an
integrated v iew o f the con cep ts that characterise the layers below . The m ethodology
involves acquisition o f sem an tic k n o w led g e relevant to objects o f a local schem a object.
During know ledge acqu isition p rocess the attributes that define sem antic m eaning o f local
object property and their va lu es are captured. A d d ition ally the concepts o f object
equivalence class and property eq u iva len ce class are used to facilitate creation o f integrated
schem a. The proposed m eth o d o lo g y addresses various kinds o f conflicts such as naming
conflicts, scaling co n flic ts , type co n flic ts and data incom patib ilities such as different levels
o f accuracy, asynchronous updates and lack o f security.

238

Appendix 3: Information System Comparison Tables

Table 5 (contd.). Schema Integration Approaches

S L . Approach Description
9 R esolution o f conflicts

in M V D B federated
system [BenO l]

B enchikha et al. [B en O l] propose a federated database system called
M u ltiV iew D ataB ase (M V D B) S ystem that supports the concept o f view point to
resolve nam ing, structural and sem antic con flic ts in a federated database system.
It is argued that the schem a can take the form o f a specification w hich takes into
account several po in ts o f v iew . Several poin ts o f v ie w are required because a
sing le abstraction w h ich m eets the need o f all project participants is difficult to
establish. Each poin t o f v ie w can represent an aspect o f the data description held
by an independent database ca lled ‘partial’. The en tities o f the universe o f
discourse are described in a m ultip le and com plem entary w ay by several partial
D B s w hich share a b asic descrip tion know n as ‘referential’. Each partial schem a
describes an aspect o f the data or part o f the data o f the referential. T hese partial
databases are integrated in the M V D B federated system .

10 Schem a integration
m ethodologies
identified by Batini et
al. [Bat86].

C auses o f schem a integration id entified by B atin i et al. [Bat86] include different
perspectives o f user groups in m o d e lin g the sam e object, equivalence am ong
constructs o f the m odel, incom patib le d esign sp ecifications, com m on concepts
but having different representations and sem antical and structural
incom patib ilities, etc. B atin i et al. [B at86] provides com parison o f tw elve
different m eth o d o lo g ies for sch em a integration w h ich provide solutions to
schem a integration problem s. For the sake o f brevity they are not listed here. The
fundamental problem identified by B atin i et al. that is addressed by schem a
integration p rocesses pertains to resolu tion the sem antical and structural
diversities o f schem as.

239

Appendix 4: Setting-up MDSSF in a Distributed Environment

Appendix 4
Setting-up MDSSF in a Distributed Environment

A4.1 Introduction
The new PSCD application is based on the MDSSF architecture. The testing of the
PSCD application took place in a distributed computing environment in which several
machines were used to test the functionality provided by its different components. The
testing took place on the machines available in a local area network. A few machines
from the Welsh e-Science Centre (WeSC) [Wel07] were also used for testing and
development. Access to the WeSC machines for compiling, installing and running
MDSSF components was achieved via the SSH secure shell. This appendix provides
information on setting up the components of the MDSSF architecture in a distributed
computing environment. This can be achieved by following the compiling and
installation procedure described here. The installation procedure also involves installing
several prerequisite software components which are also identified in this appendix. The
appendix is organised as follows. Section A4.2 identifies the machines which were used
to set-up the MDSSF system components in a distributed environment. Different
machines were used to host its different components. Section A4.3 identifies the
components and the machines on which these were deployed. Section A4.4 provides
information of Web Service access URLs of MDSSF system components and section
A4.5 describe the installation procedure o f the system components.

A4.2 Machines used for Installing MDSSF System Components
The following seven machines were used for conducting MDSSF experiments. The
MDSSF system components (see Section A4.3) were installed on these machines. Out
of these seven machines, four machines were available in the local area network and
three machines were provided by the WeSC.

1. tennis.cs.cf.ac.uk
2. cognac.cs.cf.ac.uk
3. violin.cs.cf.ac.uk
4. legend.cs.cf.ac.uk
5. arsenic.cs.cf.ac.uk (WeSC machine)
6. bouscat.cs.cf.ac.uk (WeSC machine)
7. agents-comsc.grid.cf.ac.uk (WeSC machine)

A4.3 MDSSF System Components
The MDSSF architecture comprises several individual system components. These
system components are listed below. Figure A4.1 identifies the machines on which they
were installed and run.

1. Database Search Service (DSS) System.
2. Master Grid Service (MGS)
3. Product Class Database (PCD) System
4. Supplier Database (SD) System
5. Supplier’s Product Class Database (SPCD) System
6. Supplier Web Service
7. Metadata Repository

240

Appendix 4: Setting-up MDSSF in a Distributed Environment

MDSSF System Components Installed in machine(s):
1. Database Search Service (DSS) System bouscat.cs.cf.ac.uk,

agents-comsc.grid.cf.ac.uk,
violin.cs.cf.ac.uk,
arsenic.cs.cf.ac.uk

2. Master Grid Service (MGS) tennis.cs.cf.ac.uk
3. Product Class Database (PCD) System tennis.cs.cf.ac.uk
4. Supplier Database (SD) System tennis.cs.cf.ac.uk,

cognac.cs.cf.ac.uk,
legend.cs.cf.ac.uk

5. Supplier’s Product Class Database
(SPCD) System

tennis.cs.cf.ac.uk,
cognac.cs.cf.ac.uk,
legend.cs.cf.ac.uk

6. Supplier Web Service tennis.cs.cf.ac.uk,
cognac.cs.cf.ac.uk,
legend.cs.cf.ac.uk

7. Metadata Repository tennis.cs.cf.ac.uk

Figure A4.1 The MDSSF system components
and the machines in which they are installed

A4.4 Web Service Access URLs
The components of the MDSSFF architecture collaborated with other components in a
distributed environment when performing a distributed database search to retrieve
product data from several SD systems (supplier databases) in response to a contractor’s
query. In MDSSF, the components (such as the MGS) invoke the services provided by
the other components (such as the DSS) via the Web Service mechanism by sending
SOAP [Gra02] messages to these components (see Section 6.3). The PSCD web
application submits a product search job to the MGS node by invoking its Web Service
interface which is accessible through a Web Service URL. Similarly the MGS
distributes the search jobs across a number of machines in a Grid environment by
invoking the DSS systems Web Service interfaces through its Web Service URLs.
Finally the DSS systems invoke several SD systems, which are also accessible through
their Web Services interfaces having a Web Service URL. This section identifies the
Web Service URLs of MDSSF system components.

A4.4.1 Product Class Database (PCD) System Component
Machine Name: tennis.cs.cf.ac.uk
Access URL: Not applicable.

A4.4.2 Supplier’s Product Class Database (SPCD) and Supplier Database (SD)
System Components

a) Machine Name: tennis.cs.cf.ac.uk
SD Web Service Access URL:

httn://l 31.251.42.40/SupplierAnp/ProductService.asmx
SPCD Access URL: Not applicable.

241

Appendix 4: Setting-up MDSSF in a Distributed Environment

b) Machine Name: cognac.cs.cf.ac.uk
SD Web Service Access URL:
http://l 31.251.42.33/SupplierApp/ProductService.asmx
SPCD Access URL: Not applicable.

c) Machine Name: legend.cs.cf.ac.uk
SD Web Service Access URL:
http://l 31.251,49.72/SupplierApp/ProductService.asmx
SPCD Access URL: Not applicable.

A4.4.3 Master Grid Service (MGS) System Component
a) Machine Name: tennis.cs.cf.ac.uk

Master Grid Web Service Access URL:
http://l 31.251.42.40:8080/axis/servlet/AxisServlet/MGS

A4.4.4 Database Search Service (DSS) System Component
a) Machine Name: bouscat.cs.cf.ac.uk

Access URL (GSH):
http://l 31.251.47.110:18080/ogsa/services/services/uk/co/activeplan/mdss 4/impl/
DatabaseSearchlmplProviderFactorvService

b) Machine Name: agents-comsc.grid.cf.ac.uk
Access URL (GSH):
http://l 31.251.128.7:18080/ogsa/services/services/uk/co/activeplan/mdss 4/impl/D
atabaseSearchlmplProviderFactorvService

c) Machine Name: violin.cs.cf.ac.uk
Access URL (GSH):
http://l 31.251.42.37:8080/ogsa/services/services/uk/co/activeplan/mdss 4/impl/Da
tabaseSearchlmplProviderFactorvService

d) Machine Name: arsenic.cs.cf.ac.uk
Access URL (GSH):
http://l 31.251.42.93:8080/ogsa/services/services/uk/co/activeplan/mdss 4/impl/Da
tabaseSearchlmplProviderFactorvService

A4.5 MDSSF System component Installation Instructions
This section provides instructions for installing and running the MDSSF system
components. The source code of all the MDSSF system components is available in
Appendix 5. The directory locations or the folder names of system code identified in
this appendix refer to locations or folder names as it is available in the digital form.

A4.5.1 Software Tools
The installation instructions pertain to deploying and running the MDSSF components
in the Windows platform. The software components were developed in the Windows
XP Professional operating system environment. The MDSS system component of
MDSSF can also be deployed in the Linux operating system by following the same
procedure described here. The MDSS system component of the MDSSF architecture
comprises one or more DSS systems and the MGS system deployed in individual
machines (see Section 6.3).

242

http://l
http://l
http://l
http://l
http://l
http://l
http://l

Appendix 4: Setting-up MDSSF in a Distributed Environment

Download and install the following prerequisite software tools:
• Jakarta Ant 1 .5 .2 h ttp ://a n t.a p a ch e .o rg /

• Apache Axis 1 .1 Final h ttp ://w s .a p a c h e .o r g /a x is /

• Jakarta Tomcat 4 .1 .2 4 h ttp :// ia k a r ta .a p a c h e .o r g /to m c a t/

• Globus Toolkit 3 .0 .2 (Core) h ttp ://w w w -u n ix .g lo b u s .o r g /to o lk it /d o w n lo a d s /

• Java 2 SDK 1.4.1 02 http://iava.sun.com
• Microsoft SQL Server 2000 http://www.microsoft.com/sqlserver/2008/en/us/default.aspx
• Microsoft Internet Information Server (IIS) (available as part of Windows XP professional OS)

It is not recommended to install any other version of the software and tools than the one
listed above because of compatibility issues. Please review the documentation
associated with the above software tools for their respective installation instructions and
classpath settings.

A4.5.2 Document Conventions:
<ogsa_root> refers to the directory location where the Globus Toolkit 3.0.2 (Core)
distribution is unpacked.
<tomcat_home> refers to the location o f jakarta-tomcat-4.1.24 directory.
<dev_home> refers to the location of the “development” folder. The “development”
folder contains all the source code for the DSS and MGS sub components of the
MDSS system.
<mgs_root> refers to the location of Master Grid Service (MGS) folder.

A4.5.3 Compiling and deploying the DSS System
The steps identified in this section are performed for each of the machine where the
DSS system is deployed. Figure A4.1 identifies a list o f machines on which DSS system
is deployed. The Grid-enabled DSS System performs the task of searching and
retrieving product data from several supplier database (SD) systems via their web
service interface. To invoke a supplier Web Service interface and request data from an
SD system, the DSS System depends on Java proxies and skeletons for the supplier
Web #service which is described using the WSDL (web service description language)
[Gra02]. At the server side, the WSDL is generated by tools such as Apache Axis when
an application is deployed as a web service. The client side binding for invoking the
supplier Web Service can be created by using the Apache Axis WSDL-to-Java tool.
This tool can be run by executing org.apache.axis.wsdl.WSDL2Java command. To
create bindings perform the following steps:

a) Create a “development” folder. For example “C:\development” which will be
referred as <dev_home>.

b) Open DOS command prompt (start—> run—> cmd) and execute the following
command from <dev_home> directory.

Java org.apache.axis.wsdl. WSDL2Java
httv://localhost/SuvvlierApv/ProductService.asmx?WSDL

The argument of the above command is the URL of Supplier web application
WSDL file. It is assumed that the supplier web service is running in the local
machine. If it is running in a remote machine then replace the above URL with the

243

http://ant.apache.org/
http://ws.apache.org/axis/
http://iakarta.apache.org/tomcat/
http://www-unix.globus.org/toolkit/downloads/
http://iava.sun.com
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

Appendix 4: Setting-up MDSSF in a Distributed Environment

full machine name or IP address of the remote machine followed by the name of the
web service and its WSDL. The above command creates a directory structure
uk\co\activeplan\SupplierWS in the <dev_home> folder and all the stub files
generated reside in the “SupplierWS” directory.

c) Execute the following command from <dev home> to compile the stub files:

javac uk\co\activeplan\SupplierWS\ *.java

The above steps create the binding code to create and send SOAP messages to the
Supplier Web Service for retrieving product data from an SD system. The binding
code is used by the DSS component o f MDSS System deployed in a Grid
environment. To install the DSS system in a given machine as a Grid service
perform the following steps:

d) Copy mdss folder to <dev home>\uk\co\activeplan.

e) Compile the files in the mdss directory by running the following command from the
<dev home> directory.

javac uk\co\activeplan\mdss_4\ *.java

f) Create a java archive of all the classes in the mdss and SupplierWS directory. The
following command is executed from the <dev_home> directory. The jar file is
named as mdss.jar and it is created in the <dev_home> folder.

jar cv f mdss.jar uk\co\activeplan\mdss_4*. class
uk\co \activeplan \Supplier WS\ * class

g) Create new folder “lib” in the <dev_home> directory and copy mdss.jar into the lib
folder. The file mdss.jar contains all the java code of the DSS system which is
exposed as a Grid service. The jar file is run through the
createBottomUpGridService tool which comes as part of the Globus Toolkit 3.0.2
(core) distribution. The tool automatically generates the stubs, the service locators,
the deployment descriptor fragment, and an operation provider that delegates its
calls to the DSS system code when the Grid service is invoked for searching product
supplier databases (SD systems).

h) Copy file build-tools-usage.xml from xmlFiles folder into the <dev_home> folder.
The build-tools-usage.xml file, among other things contains the location of mdss.jar
file which is to be run through the createBottomUpGridService tool. In our case it is
<dev_home>\lib\mdss.j ar

i) Copy file “build.properties” to <dev_home> directory. The build.properties file
points to the location of <ogsa_root> directory.

j) From the <dev_home> directory run the following command:

ant - f build-tools-usage.xml createBottomUpGridService

244

Appendix 4: Setting-up MDSSF in a Distributed Environment

This command generates all the files necessary for the deployment of the Grid
service in the <dev_home>\bottomUpFiles directory.

k) Create Grid Service Archive (GAR) of the files in the bottomUpFiles directory. The
properties for creating the GAR file are set in the target “bottomUpGar” in the
build-tools-usage.xml. The following command is used from <dev_home> directory
to create the GAR file.

ant - / build-tools-usage.xml bottomUpGar

The above command creates mdss.gar in <dev_home>\bottomUpFiles directory.
Now the DSS Grid service is ready for deployment.

1) To deploy the DSS Grid service run the following command from <ogsa_root>.

ant deploy -Dgar. name=<dev_home>\bottomUpFiles\mdss. gar

m) Now deploy the DSS Grid service in the tomcat container by running the following
command from <ogsa_root> directory.

ant -Dtomcat. dir=< tomcat home > deployTomcat

n) After deploying the Grid service in the tomcat container, copy the folder “uk” from
<dev_home> to <tomcat_home>\webapps\ogsa\WEB-INF\classes folder. Restart
tomcat server and access the Grid service at the following URL.

http://localhost:8080/ogsa/servlet/AxisServlet

The above URL lists a number of Grid service currently deployed. The name of the
DSS Service deployed is DatabaseSearchlmplProviderFactoryService. For
undeploying the DSS Grid service run the following command from
<ogsa_root>\undeploy directory.

a n t - f mdss-undeploy.xml

And then run the following command from <ogsa_root> to undeploy it from tomcat
container.

ant -Dtomcat. dir=<tomcat_home> deployTomcat

A4.5.4 Complying and deploying the Master Grid Service (MGS)
Master Grid Service (MGS) is a Web Service which divides the total work to be done
into roughly equal portions and allocates each proportion to individual Grid machines
running DSS instances. The MGS accesses DSS instances using its Grid Service
Handles (GSH) (i.e. its web service access URLs). The MGS is deployed in
tennis.cs.cf.ac.uk machine. To compile and deploy the MGS, perform the following
steps.

245

http://localhost:8080/ogsa/servlet/AxisServlet

Appendix 4: Setting-up MDSSF in a Distributed Environment

a) Create new folder “MGS” inside <dev_home> directory. The “MGS” folder is
referred to as <mgs_root>.

b) Copy "org" and Muk" folders from bottomUpfiles folder into the <mgs_root>.

c) Copy “mgs_4” folder (the MGS system code folder) into the
<mgs_root>\uk\co\activeplan\ folder.

d) Copy deploy.wsdd and undeploy.wsdd into the <mgs_root>
Classes in the "org" and "uk" folder are already in the compiled form so there is no
need to compile them but the java code in the mgs folder need compiling. Compile
MGS using the following command from <mgs_root>.

javac uk\co\activeplan\mgs*.java

e) Create a java archive of classes in the mgs_4 folder and its dependent classes by
executing the following jar command from <mgs_root>. The jar file is named as
mgs.jar and it is created in the <mgs_root> directory.

f)
jar cvf mgs ja r uk\co \activeplan\mdss_4 \ * class
uk\co\activeplan\mdss_4\bindings\ * class uk\co\activeplan\mdss\service\ * class
uk\co\activeplan\mgs* class org\gridforum\ogsi\ * class

g) MGS is now ready for deployment. We use AdminClient tool from Apache Axis
distribution to deploy the MGS in the tomcat container. The deployment file
deploy.wsdd contains details of service to be deployed. The following command is
used from <mgs_root> to deploy the MGS service.

java orgapache.axis.client.AdminClient deploy.wsdd

For undeploying the MGS service run the following command from <mgs_root>
directory.

java org.apache.axis.client.AdminClient deploy.wsdd

h) Copy mgs.jar from <mgs_root> folder into <tomcat_home>\webapps\axis\WEB-
INF\lib\ folder. Restart tomcat server and access MGS Service at the following
URL.

http://localhost:8080/axis/servlet/AxisServlet

A4.5.6 Installing PCD, SPCD and SD Systems
The PCD, SPCD and SD database systems are available as backup copies. The backup
copies contain database tables and database stored procedures and functions. Perform
database restore operation using SQL Server Enterprise Manager utility in SQL Server
2000 RDBMS to install these database systems.

A4.5.7 Installing Product Supplier Web Service Application
A prototype product supplier Web Service application is available as part of a supplier
application which can be installed and run in Microsoft IIS server in machines where

246

http://localhost:8080/axis/servlet/AxisServlet

Appendix 4: Setting-up MDSSF in a Distributed Environment

SD systems are installed. The application is installed by web application installation
steps in IIS server (refer to IIS server documentation).The supplier application exposes
the SD system as a web service which is invoked by DSS Grid services to retrieve
product data.

247

Appendix 5: Product Class Database (PCD) System Code

Appendix 5
Product Class Database (PCD) System Code

/•
1.1 Procedure Name: dbo.proc_CategoryIDGenerator
Database: PCD
Description:
C a teg o ry lD G en era to r p ro ced u re g e n e r a te s C a te g o r y I D u n d e r w h ic h th e p r o d u c ts ca n b e l is te d . T h e p ro ced u re
takes o n e p aram eter w h ic h is th e ID o f th e e x i s t in g c a te g o r y . I f n o p a r e m e te r is s u p p lie d th e n in p u t p aram eter
(@ ID C a teg o ry) v a lu e is se t to N U L L . T h e ID is g e n e r a te d d e p e n d in g u p o n th e u se r in p u t. I f th e u ser su p p lie s
no param eter th e n a c a te g o r y ID is g e n e r a te d at t h e r o o t l e v e l . I f th e p a ra m ete r is su p p lie d (w h ic h is th e
ex is tin g c a te g o r y or su b -c a te g o r y) th e n th e n e w c a te g o r y is g e n e r a te d a s th e su b c a te g o r y o f su p p lie d
ca teg o ry /su b ca teto ry .
•/
CREATE PROCEDURE dbo.proc_CategoryIDGenerator
- Input parameter.
@IDSuperCategory NVARCHAR(255) NULL,
@NextAvailableIDCategory NVARCHAR(255) OUTPUT,
@NextAvailabieIDIntemal INT OUTPUT
AS
DECLARE
@maxIDIntemal int,
@maxlDCategory NVARCHAR(255), — Variable @ m axCat stores the ID o f category with highest value.
@superCategoryIDLength TINYINT, ~ This variable stores the length o f Category ID stored in variable @ maxCat
@count TINYINT, -- Use in while loop to keep track o f the num ber o f tim es the loop has run or will run.
@NextIDCategory NVARCHAR(255) -- This variable stores the value o f next Available Category/subcategory under given category.
IF @IDSuperCategory IS NULL
BEGIN

IF NOT EXISTS(Select * from Category)
BEGIN

SELECT @ NextAvailableIDCategory = T
SELECT @ NextAvailableIDIntemal = 1

END
ELSE
BEGIN

SELECT @MaxIDIntemal = M A X(IDIntem al) FROM Category W HERE IDSuperCategory LIKE 'O'
Print 'Max Internal ID i s . ' + CAST(@ M axIDIntem al AS NVARCHAR)
SELECT @MaxIDCategory = IDCategory FROM Category W HERE IDSuperCategory LIKE 'O' AND IDIntemal
= @maxIDIntemal
Print 'MaxCat i s : ' + @MaxIDCategory
SELECT @ NextAvailableIDCategory = (CAST(@ M axIDCategory AS INT) + 1)
PRINT 'From CatlDGen Next Available C a t: ' + @ NextAvailableIDCategory
SELECT @ NextAvailableIDIntemal = @ M axIDIntem al + 1

END
END
- I f User supplies and input parameter the following code is executed otherwise the procedure execution is —terminated here.
ELSE
BEGIN

— Check whether the super category supplied by the user exists.
— IF the supercategory exists, then @ maxCat variable holds the max IDCategory under that super — category.
SELECT @MaxIDIntemal = M AX(IDIntemal) FROM Category W HERE IDSuperCategory LIKE @IDSuperCategory
SELECT @maxIDCategory = MAX(IDCategory) FROM Category W HERE IDSuperCategory LIKE @IDSuperCategory
AND IDIntemal = @MaxIDIntemal
IF @maxIDCategory IS NOT NULL
BEGIN

PRINT 'LAST VALUE IN this Category IS: ' + @ maxIDCategory
SELECT @ SuperCategoryIDLength = LEN(@ maxIDCategory)
SELECT @count = LEN(@ maxIDCategory)
PRINT 'Length i s : ' + CAST(@ SuperCategoryIDLength AS NVARCHAR)
WHILE @count > 0
BEGIN

IF SUBSTRING (@ maxIDCategory, @ count, 1) LIKE '.'
BEGIN

PRINT 'Dot found at Position: ' + CAST(@ count AS NVARCHAR)
PRINT RIGHT(@ m axIDCategory, (LEN(@ maxIDCategory) - @count))

248

Appendix 5: Product Class Database (PCD) System Code

SELECT @NextIDCategory = CAST(RIGHT(@maxIDCategory, (LEN(@maxIDCategory)
- @count)) AS INT) + 1
PRINT 'Category ID A vailable:' + LEFT (@maxIDCategory, @Count) +
@NextIDCategory
SELECT @NextAvailableIDCategory = LEFT (@maxIDCategory, @ Count) +
@NextIDCategory
SELECT @NextAvailableIDIntemal = @MaxIDIntemal + 1
SELECT @Count = 0

END
ELSE
BEGIN

SELECT @ Count = @Count -1
END
END

END
-- IF the supplied supercategory does not exists in the IDSuperCategory column of Category table
- then it is checked whether
-- it exists in IDCategory column. It might happen that the supplied category might not have any
-su b categories defined under it therefore
- it has no entry in IDSuperCategory column o f Category table.

ELSE
BEGIN

SELECT @MaxIDIntemal = MAX(IDIntemal) FROM Categore WHERE IDCategory LIKE @IDSuperCategory
SELECT @maxCat = MAX(IDCategory) FROM Category WHERE IDCategory LIKE @IDSuperCategory
IF EXISTS(SELECT IDCategory FROM Category WHERE IDCategory LIKE @IDSuperCategory)
BEGIN

—PRINT T his Category Exists'
—PRINT 'Category ID A vailable:' + @IDCategory + '. 1'
SELECT @NextAvailableIDCategory = (^IDSuperCategory + '. 1'
SELECT @NextAvailableIDIntemal = 1

END
-IF supplied category is not found either in IDSuperCategory or IDCategory columns
- th en the supercategory does not exists and therefore user cannot
- a new category under the supplied category.
ELSE

PRINT 'Supplied Category Does not Exists'
END

END
GO

/*
1.2 Procedure Name: dbo.proc_InsertCategory
D atab ase: PCD
Description:
T h is p ro ced u re is e n a b le s crea tio n o f n e w c a te g o r y v a lu e s . It e x e c u te s p roced u re C a te g o r y lD G e n e r a to r l to
g en era te v a u e s su c h as ID S u p erC a teg o ry , N e x tA v a ila b le lD C a te g o r y and N e x tA v a ila b le lD C a te g o r y ln te m a l
and th en u se s th e se to crea te a n e w c a te g o r y in c a te g o r y ta b le .
*/

CREATE PROCEDURE dbo.proc_InsertCategory
@IDSuperCategory NVARCHAR(255) = NULL,
@CategoryName NVARCHAR(255)
AS
DECLARE

@NewCategoryID NVARCHAR(255),
@NewIDInternal INT

Exec CategorylDGeneratorl
@IDSuperCategory = @IDSuperCategory,
@NextAvailableIDCategory = @NewCategoryID OUTPUT,
@NextAvailableIDIntemal = @NewIDIntemal OUTPUT

IF @IDSuperCategory IS NULL
BEGIN

SELECT @IDSuperCategory = 'O'
PRINT 'INFO From InsertCategory Procedure'

249

Appendix 5: Product Class Database (PCD) System Code

END
GO

PRINT 'Category ID is : ' + @NewCategoryID
PRINT'SuperCategory ID is : ' + @IDSuperCategory
PRINT 'ID Internal is : ' + CAST(@NewIDIntemal AS NVARCHAR)
Insert into Category Values(@NewCategoryID, @CategoryName, @IDSuperCategory, @ N ew ID Internal)

/*

1.3 Procedure Name: dbo.proc_Assign
Database: PCD
Description:
This procedure assigns a specification by calling procedure proc A ssignSpecification as part o f a transaction.
*/

CREATE Procedure dbo.proc_Assign
/* Param List * /
@IDSpecTypeDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@SpecType NVARCHAR(4000) = NULL,
@IDMeasurementUnit BIGINT = NULL,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

BEGIN TRAN
DECLARE
@Error INT,
@IDEntityPartl INT /* Holds EntityPart o f @ IDSpecTypeDef */
SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @IDEntity Parti = dbo.fn_getIDEntityPart(@IDSpecTypeDef)

/* Assigning a Specification * /
IF @IDEntityParti = 100
BEGIN

EXEC proc_AssignSpecification
@IDSpecification = @IDSpecTypeDef,
@IDAssignToSpecTypeDef = @IDAssignToSpecTypeDef,
@SpecificationValue = @SpecTypeValue,
@IDMeasurementUnit = @IDMeasurementUnit,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from Proc_Assign.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
RETURN

END
END

END
GO

1.4 Procedure Name: dbo. proc_AssignCategory
D atab ase: PCD
Description:
T h is p ro ced u re a ss ig n s a c a te g o r y to a su p er c a te g o r y an d su b ca teg o ry .

CREATE Procedure proc_AssignCategory
@IDCategory BIGINT,

250

Appendix 5: Product Class Database (PCD) System Code

@IDSuperCategory
@IDProcState
@Message

BIGINT,
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0
INSERT INTO Category_SuperCategory (IDCategory, IDSuperCategory)
VALUES (@IDCategory, @IDSuperCategory)
SELECT @ERROR = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new C ategory.'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_CreateCategory.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
INSERT INTO Category_SubCategory (IDCategory, IDSubCategory)
VALUES (@IDSuperCategory, @IDCategory)
SELECT @ERROR = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while creating the new category.'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + '. '
SELECT @Message = @Message + 'Error occured in Procedure proc_CreateCategory.'
SELECT @Message = @Message + 'Procedure is terminated abnormally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Category successfully assigned.'
RETURN

END

1.5 Procedure Name: dbo. proc AssignListSpecification
Database: PC D
Description:
This procedure enables assigning o f list specification to a product class or specification group.
*/

CREATE Procedure proc_AssignListSpecification
I* Param List */
@IDListDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

END GO

/*

AS
BEGIN

DECLARE
@Error
@IDEntityPart2

INT,
INT /*Holds Entity part o f @ IDAssignToSpecTypeDef /

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @IDEntityPart2 = dbo.fn_getIDEntityPart(@IDAssignToSpecTypeDef)

251

Appendix 5: Product Class Database (PCD) System Code

/* A List Specification can be assigned to a product class or a specification group */

IF @IDEntityPart2 NOT IN (105,106)
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'A List Specification can only be assigned to a Product Class or a Specification G ro u p .1
SELECT @Message = @Message + 'The supplied specification type to which specification group needs to be
assigned to is invalid .'
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignListSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* Assigning List specification group to a product class*/
IF @IDEntityPart2 = 105
BEGIN

INSERT INTO ProductClassDefinition(IDProdClassDef, IDListDef)
VALUES (@IDAssignToSpecTypeDef, @IDListDef)
SELECT @Error = @@EFLROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while assigning the List Specification to the product class.'
SELECT @Message = @Message + 'Error code is : ' + CAST(@Error AS NVARCHAR) + ' . '

SELECT @Message = @ Message + 'Error occured in Procedure proc_AssignListSpecification.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'List Specification successfully assigned to the Product Class.'
RETURN

END

END - End o f IF @IDEntityPart2 = 105

/*Assigning list specification to a specification Group */
IF @IDEntityPart2 = 106
BEGIN

INSERT INTO SpecificationGroupDefinition(IDSpecGroupDef, IDListDef)
VALUES (@IDAssignToSpecTypeDef, @IDListDef)
SELECT @Error = @@EFLROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while assigning the List Specification to the specification
group.'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignListSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'List Specification successfully assigned to the Specification Group.'
RETURN

END
END -E n d o f IF @IDEntityPart2 = 106 */

END
GO

252

Appendix 5: Product Class Database (PCD) System Code

/*
1.6 Procedure Name: dbo. proc_AssignProductClass
Database: PCD
Description:
This procedure enables assigning of product class/ sub product class to a category, product class or a
specification group.
*/

CREATE Procedure proc_AssignProductClass
/* Param List */
@IDProdC lassDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@Error INT,
@IDEntityPart2 INT /*Holds Entity part o f @IDAssignToSpecTypeDef*/
SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @IDEntityPart2 = dbo.fn_getIDEntityPart(@IDAssignToSpecTypeDef)

/* A sub product class can be assigned to a category,product class or a specification group */
IF @IDEntityPart2 NOT IN (102,105,106)
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'A product class can only be assigned to a Category, Product Class or a Specification
G roup.'
SELECT @Message = @Message + 'The supplied specification type to which Product Class needs to be assigned
is invalid .'
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignProductClass.'
SELECT @Message = @Message + 'Procedure is terminated abnormally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* Assigning product class to a product class*/
IF @IDEntityPart2 = 105
BEGIN

INSERT INTO ProductClassDefinition(IDProdClassDef, IDSubclassDef)
VALUES (@IDAssignToSpecTypeDef, @IDProdClassDef)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while assigning the Subproduct class to the product class.'
SELECT @Message = @Message + 'Error code is : ' + CAST(@Error AS NVARCHAR) + '. '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignProductClass.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Subproduct class successfully assigned to the product class.'
RETURN

END
END - End of IF @IDEntityPart2 = 105

/* Assigning product class to a specification Group */
IF @IDEntityPart2 = 106
BEGIN

INSERT INTO SpecificationGroupDefinition(IDSpecGroupDef, IDProdClassDef)
VALUES (@IDAssignToSpecTypeDef, @IDProdClassDef)
SELECT @Error = @@ERROR
IF @Error != 0

253

Appendix 5: Product Class Database (PCD) System Code

BEGIN

END
ELSE
BEGIN

END

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while assigning the product class to the specification group.'
SELECT @Message = @Message + 'Error code is : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignProductClass.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

SELECT @Message = 'Product class successfully assigned to the specification group.'
RETURN

END —End of IF @IDEntityPart2 = 106 ♦/
/♦Assigning product class to a category ♦/

IF @IDEntityPart2 = 102
BEGIN

INSERT INTO Category_ProductClass(IDCategory, IDProdClassDef)
VALUES (@IDAssignToSpecTypeDef, @IDProdClassDef)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 4
SELECT @Message = 'An error occured while assigning the product class to the category.'
SELECT @Message = @Message + 'Error code is : ' + CAST(@Error AS NVARCHAR) + '.
SELECT @Message = @Message + 'Error occured in Procedure proc AssignProductClass.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Product class successfully assigned to the category.'
RETURN

END

END
GO

END —End o f IF @IDEntityPart2 = 102 ♦/
-- End of Proc_AssignProductClass Procedure.

1.7 Procedure Name: dbo. proc_AssignSpecification
Database: PCD
Description:
This procedure enables assigning of specification to product class or specification group.

CREATE Procedure proc_AssignSpecification
/♦ Param List ♦/
@IDSpec
@IDAssignT oSpecT ypeDef
@SpecValue
@IDMeasUnit
@IDProcState
@Message
AS
BEGIN

BIGINT,
BIGINT,

NVARCHAR(4000) = NULL,
BIGINT = NULL,
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

DECLARE
@Error INT,
@IDEntityPart2 INT /♦Holds Entity part o f @IDAssignToSpecTypeDePV
SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @IDEntityPart2 = dbo.fn_getIDEntityPart(@IDAssignToSpecTypeDef)

/♦A specification can only be assigned to a product class or a specification group ♦/

254

Appendix 5: Product Class Database (PCD) System Code

IF @IDEntityPart2 NOT IN (105, 106)
BEGIN

SELECT @Message = 'A specification can only be assigned to a Product Class or a Specification Group. '
SELECT @Message = @Message + 'The supplied specification type to which specification needs to be assigned is
invalid .'
SELECT @Message = @Message + 'Error occured in Procedure proc AssignSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* If a specification value is supplied then @IDMeasUnit should not be null. A specification
should correspond to a measurement unit. */
/*
IF @SpecValue IS NOT NULL
BEGIN

IF @IDMeasUnit IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while creating the new specification.'
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_CreateNewSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
END

/•Correspondingly @IDMeasUnit should be accompanied by a @SpecVal.*/
IF @IDMeasUnit IS NOT NULL
BEGIN

IF @SpecValue IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 4
SELECT @Message = 'An error occured while creating the new specification.'
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_CreateNewSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
END

/* Assign Specification to a product class */
IF @IDEntityPart2 = 105
BEGIN

INSERT INTO PCDSpecificationValue(IDProdClassDef, IDSpec,SpecValue, IDMeasUnit)
VALUES(@IDAssignToSpecTypeDef, @IDSpec, @SpecValue, @IDMeasUnit)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while assigning the specifiction to the product class.'
SELECT @Message = @Message + 'Procedure State ID is : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error code is : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Specification successfully assigned to the product class.'

255

Appendix 5: Product Class Database (PCD) System Code

RETURN
END

END

/♦Assign Specification to a specification Group */
IF @IDEntityPart2 = 106
BEGIN

INSERT INTO SGDSpecificationValue (IDSpecGroupDef, IDSpec.SpecValue, IDMeasUnit)
VALUES(@IDAssignToSpecTypeDef, @IDSpec, @SpecValue, @IDMeasUnit)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while assigning the specifiction to the specification group.'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Specification successfully assigned to the specification group.'
RETURN

END
END — End o f IF @IDEntityPart2 = 106

END
GO

/*

1.8 Procedure Name: dbo. proc_AssignSpecificationGroup
Database: PCD
Description: This procedure enables assigning of specification group to product class or a specification group.
*/

CREATE Procedure proc_AssignSpecificationGroup
/* Param List */
@IDSpecGroupDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@Error INT,
@IDEntityPart2 INT /*Holds Entity part o f @ IDAssignToSpecTypeDef /

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @IDEntityPart2 = dbo.fn_getIDEntityPart(@IDAssignToSpecTypeDef)

/* A specification group can be assigned to a product class or a specification group */
IF @IDEntityPart2 NOT IN (105,106)
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'A specifiation group can only be assigned to a Product Class or a Specification G ro u p .'
SELECT @Message = @Message + 'The supplied specification type to which specification group needs to be
assigned to is invalid .'
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignSpecificationGroup.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* Assigning specification group to a product class*/

256

Appendix 5: Product Class Database (PCD) System Code

IF @IDEntityPart2 = 105
BEGIN

INSERT INTO ProductClassDefinition(IDProdClassDef, IDSpecGroupDef)
VALUES (@IDAssignToSpecTypeDef, @IDSpecGroupDef)
SELECT @Error = @@ERROR
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while assigning the specification group to the product class.1
SELECT @Message = @Message + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignSpecificationGroup. ’
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Specification group successfully assigned to the Product Class.'
RETURN

END
END ~ End o f IF @IDEntityPart2 = 105

/♦Assigning specification group to a specification Group */
IF @IDEntityPart2 = 106
BEGIN

INSERT INTO SpecificationGroupDefinition(IDSpecGroupDef, IDSubSpecGroupDef)
VALUES (@IDAssignToSpecTypeDef, @IDSpecGroupDef)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while assigning the specification group to the specification
group.'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignSpecificationGroup.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Specification group successfully assigned to the Specification Group.'
RETURN

END
END -E n d o f IF @IDEntityPart2 = 106 */

END — End of Proc_AssignSpecificationGroup Procedure.
GO

/*

1.9 Procedure Name: dbo.proc_AssignTableSpecification
Database: PCD
Description: This procedure enables assigning of table specification to product class or specification group.

CREATE Procedure proc_AssignTableSpecification
/* Param List */
@IDTableVerDef BIGINT.
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@Error INT,
@IDEntityPart2 INT /*Holds Entity part o f @IDAssignToSpecTypeDeFV
SELECT @IDProcState = 0

257

Appendix 5: Product Class Database (PCD) System Code

SELECT @ERROR = 0
SELECT @IDEntityPart2 = dbo.fh_getIDEntityPart(@ IDAssignToSpecTypeDef)

/* A Table specification can be assigned to a product class or a specification group. */
IF @IDEntityPart2 NOT IN (105,106)
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'A Table Specification can only be assigned to a Product Class or a Specification G roup.'
SELECT @Message = @Message + 'The supplied specification type to which specification group needs to be
assigned to is invalid.'
SELECT @Message = @Message + 'Error occured in Procedure proc_AssignTableSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* Assigning Table Specification to a product class*/
IF @IDEntityPart2 = 105
BEGIN

INSERT INTO ProductClassDefinition(IDProdClassDef, IDTableVerDef)
VALUES (@IDAssignToSpecTypeDef, @ IDTableVerDef)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while assigning the table specification to the product class '
SELECT @Message = @ Message + 'ErTor code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'Error occured in Procedure proc_AssignTableSpecification.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = Table Specification successfully assigned to the Product Class.'
RETURN

END
END - End of IF @IDEntityPart2 = 105

/♦Assigning Table Specification to a specification Group */
IF @IDEntityPart2 = 106
BEGIN

INSERT INTO SpecificationGroupDefinition(IDSpecGroupDef, IDTableVerDef)
VALUES (@IDAssignToSpecTypeDef, @ IDTableVerDef)
SELECT @Error = @@EFLROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while assigning the table specification to the specification
group.'
SELECT @Message = @Message + ’Error code is: ’ + CAST(@ Error AS NVARCHAR) + '. '
SELECT @Message = @ Message + 'Error occured in Procedure proc_AssignTableSpecification.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = T able Specification successfully assigned to the Specification Group.'
RETURN

END
END -E n d of IF @IDEntityPart2 = 106 */

END - End of proc_AssignTableSpecification Procedure.
GO

258

Appendix 5: Product Class Database (PCD) System Code

1.10 Procedure Name: dbo.proc_CallAssignCategory
Database: PCD
Description:
This procedure calls proc AssignCategory as a part of a transaction.
♦/

CREATE Procedure proc_CallAssignCategory
/* Param List */
@IDCategory BIGINT,
@IDSuperCategory BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

/* This procedure calls proc_AssignCategory as a part o f a transaction.*/
BEGIN TRAN
EXEC proc_AssignCategory
@IDCategory = @IDCategory,
@IDSuperCategory = @ IDSuperCategory,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from Proc_CallAssignCategory.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
RETURN

END
END - End o f proc_CallAssignCategory Procedure.
GO

/*

1.11 Procedure Name: dbo.proc_CallAssignProductClass
Database: PCD
Description:
This procedure calls proc AssignProductClass as a part of a transaction.

CREATE Procedure proc_CallAssignProductClass
/* Param List */
@IDProdClassDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

/* This procedure calls proc_AssignProductClass as a part o f a transaction.*/
BEGIN TRAN
EXEC proc_AssignProductClass
@ IDProdClassDef = @ IDProdClassDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @IDProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CallAssignProductClass.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

259

Appendix 5: Product Class Database (PCD) System Code

ELSE
BEGIN

COMMIT TRAN
RETURN

END
END -- End o f proc_CallAssignProductClass Procedure.
GO

1.12 Procedure Name: dbo.proc_CallAssignSpecification
Database: PCD
Description:
This procedure calls proc AssignSpecification as a part of a transaction.
*/

CREATE Procedure proc_CaHAssignSpecification
/* Param List */
@IDSpec BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@Spec Value NVARCHAR(4000) = NULL,
@IDMeasUnit BIGINT = NULL,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

/* This procedure calls proc_AssignSpecification as a part o f a transaction.*/
BEGIN TRAN
EXEC proc_AssignSpecification
@IDSpec = @ IDSpec,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@SpecValue = @ SpecValue,
@IDMeasUnit = @IDMeasUnit,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CallAssignSpecification.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
RETURN

END
END - End o f proc_CallAssignSpecification Procedure.
GO

/*

1.13 Procedure Name: dbo.proc_CallAssignSpecificationGroup
Database: PCD
Description:
This procedure calls procAssignSpeciflcationGroup as a part of a transaction.
*/

CREATE Procedure proc CallAssignSpecificationGroup
/* Param List */
@IDSpecGroupDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

/* This procedure calls proc_AssignSpecificationGroup as a part o f a transaction.*/
BEGIN TRAN
EXEC procAssignSpeciflcationGroup

260

Appendix 5: Product Class Database (PCD) System Code

@IDSpecGroupDef = @ IDSpecGroupDef,
@ IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @ IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ Message + ' This Procedure was called from proc_CallAssignSpecificationGroup.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
RETURN

END
END - End o f proc_CallAssignSpecificationGroup Procedure.
GO

/*

1.14 Procedure Name: dbo.procCallAssignTableSpecification
Database: PCD
Description:
Ibis procedure calls proc AssignTableSpecification as a part of a transaction.
♦/

CREATE Procedure proc_CallAssignTableSpecification
/* Param List */
@IDT ableV erDef BIGINT,
@IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

/* This procedure calls proc_AssignTableSpecification as a part o f a transaction.*/
BEGIN TRAN
EXEC proc_AssignTableSpecification
@IDTableVerDef = @IDTab!eVerDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CallAssignTableSpecification.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
RETURN

END
END — End o f proc_CallAssignTableSpecification Procedure.
GO

/♦

1.15 Procedure Name: dbo.proc_Category_ProductClass_sel
Database: PCD
Description:
This procedure provides information on all the product classes that are assigned to a category. If IDCategory
is not provided then all the top level product classes assigned to the categories are selected.
*/

CREATE PROCEDURE proc_Category_ProductClass_sel
@IDCategory BIGINT,
@OrderBy NVARCHAR(255) = NULL,

261

Appendix 5: Product Class Database (PCD) System Code

@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON

/*
IF @IDCategory = -1, all the top level product classes assigned to all the categories are selected.
*/
IF (@IDCategory = -1)
BEGIN

SET @SQL = ' SELECT c_pc.IDCategory,
c_pc.IDProdClassDef,
pcv.IDProdClass,
pcv. IDProdClass Ver,
- p c v. ProdC lass V erDesc,
pc. ProdC lassName
-pc.ProdClassDesc

END
ELSE
BEGIN

-pc.ProdClassDesc
FROM dbo.Category_ProductClass c_ p c , dbo.ProductClassVersion p c v , dbo.ProductClass pc
W HERE c_pc.IDProdClassDef = pcv.IDProdClassDef AND
pcv.IDProdClass = pc.IDProdClass'

SET @SQL = ' SELECT c_pc.IDCategory,
c_pc. IDProdC lassDef,
pcv.IDProdClass,
pcv. IDProdClass Ver,
-p cv . ProdC lassV erDesc,
pc.ProdClassName
-pc.ProdClassDesc
FROM dbo.Category ProductClass c_ p c , dbo.ProductClassVersion pcv , dbo.ProductClass pc
W HERE c_pc.IDProdClassDef = pcv.IDProdClassDef AND
pcv.IDProdClass = pc.IDProdClass AND
c_pc.IDCategory = @IDCategory'

END
IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER B Y ' + @OrderBy + " + @UpDown
END
EXEC sp executesql @SQL, N'@IDCategory BIGINT',@IDCategory
SELECT @ RecordCount = @@rowcount
GO

/*

1.16 Procedure Name: dbo.proc_Category_sel
Database: PCD
Description:
This procedure provides information or categories such as IDCategory, CategoryName and
Category Descri ption.
*/

CREATE PROCEDURE proc_Category_sel
@IDCategory BIGINT = NULL,
@OrderBy NVARCHAR(255) = NULL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON
SET @SQL = ' SELECT dbo.Category.IDCategory,

dbo.Category.CategoryName,
dbo.Category.CategoryDesc
FROM Category '

262

Appendix 5: Product Class Database (PCD) System Code

IF (@IDCategory IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' WHERE IDCategory = @ IDCategory'
END
IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @ UpDown
END
EXEC sp_executesql @SQL, N'@IDCategory BIGINT',@ IDCategory
SELECT @RecordCount = @@rowcount
GO

/*
1.17 Procedure Name: dbo.proc_Category_SubCategory_sel
D ata b a se: PCD
D e s c r ip t io n :
T h is p ro ced u re e n a b le s s e le c t io n o f c a te g o r ie s a n d su b c a te g o r ie s .
*/

CREATE PROCEDURE proc_Category_SubCategory_sel
@IDCategory BIGINT = NULL,
@OrderBy NVARCHAR(255) = NULL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON
/*
The following if block select all the top categories.
* /
IF (@IDCategory IS NULL)
BEGIN

SET @SQL = ' SELECT dbo.Category.IDCategory,
dbo.Category.CategoryName,
dbo.Category.CategoryDesc
FROM Category
WHERE dbo.Category.IDCategory NOT IN
(SELECT dbo.Category_SuperCategory. IDCategory FROM dbo.Category_SuperCategory)'

IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @ UpDown
END
EXEC sp_executesql @SQL, N"
SELECT @RecordCount = @@rowcount
RETURN

END

--The Following if block is executed to get IDCategory, CategoryName from category table and
- IDSuperCategory from category SuperCategory table. By calling the following if block only one call is
- made to the stored procedure to get categories and their sub categories.
ELSE IF(@IDCategory = -1)
BEGIN

SET @SQL = ' select c.IDCategory, c.CategoryName, c_sc.IDSuperCategory from category c
LEFT OUTER JOIN category_SuperCategory c_sc
on c.IDCategory = c_sc.IDCategory'

END
ELSE
BEGIN

SET @SQL = ' SELECT dbo.Category.IDCategory,
dbo.Category.CategoryName,
dbo.Category.CategoryDesc
FROM Category
WHERE dbo.Category.IDCategory IN
(SELECT dbo.Category_SubCategory.IDSubCategory FROM Category SubCategory where IDCategory:
@ IDCategory)'

263

Appendix 5: Product Class Database (PCD) System Code

END
IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @UpDown
END
EXEC sp_executesql @SQL, N'@ IDCategory BIGINT’,@ IDCategory
SELECT @RecordCount = @@rowcount
GO

/*
1.18 Procedure Name: dbo.proc_CreateCategory
D atab ase: P C D

D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f c a te g o r y .
*/
CREATE Procedure proc_CreateCategory
/* Param List */
@CategoryName NVARCHAR(255),
@IDSuperCategory BIGINT = NULL,
@CategoryDesc NVARCHAR(4000) = NULL,
@IDProcState TINYINT OUTPUT,
©M essage NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
(©IDCategory BIGINT,
@ Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0
BEGIN TRAN
/*Get a new category ID */
EXEC dboprocG etN ew ID
@IDEntity = 102,
@IDNew = @IDCategory OUTPUT,
@Message = (©Message OUTPUT,
(©IDProcState = (©IDProcState OUTPUT
IF @!DProcState != 0
BEGIN

ROLLBACK TRAN
SELECT (©IDProcState = 1
SELECT (©Message = (©Message + ' This Procedure was called from Proc_CreateCategory.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN (©(©ERROR

END

/*Create the Category by inserting values into the Category table */
INSERT INTO Category(IDCategory, CategoryName, CategoryDesc)
VALUES (@lDCategory, LTRIM (RTRIM (@ CategoryName)), LTRIM(RTRIM ((©CategoryDesc)))
SELECT (©Error = (©(©ERROR
IF (©Error != 0
BEGIN

ROLLBACK TRAN
SELECT (©IDProcState = 2
SELECT (©Message = 'An error occured while creating the new category.1
SELECT (©Message = © M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @ Message + 'E rror occured in Procedure proc_CreateCategory.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/* Now insert values into the Category Hierarchy table to maintain category hierarchy. */
/■"IF @SuperCategory is null then a category is top level category and die IDSuperCategory

value for the category is 0. It also has no sub category. */
IF @IDSuperCategory IS NULL
BEGIN

264

Appendix 5: Product Class Database (PCD) System Code

END
ELSE
BEGIN

END

SELECT @ Message = 'Category successfully C reated .'
SELECT @Message = @ M essage + 'Category ID i s : ' + CAST(@IDCategory AS NVARCHAR) + '. '
COMMIT TRAN
RETURN

/* If a category has a super category then the category is also a sub category
o f that super category. In this case two inserts are required. First to create a
category and its super category and second to create a supercategory and its sub category
For this we call proc_AssignCategory. */

EXEC proc_AssignCategory
@IDCategory = @IDCategory,
@IDSuperCategory = @ IDSuperCategory,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ Message + ' This Procedure was called from Proc_AssignCategory.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

SELECT @Message = 'Category successfully Created. ’
SELECT @Message = @ Message + 'Category ID i s : ' + CAST(@ IDCategory AS NVARCHAR) + '
COMMIT TRAN
RETURN

END

END — End of Proc_CreateCategory Procedure.
GO

1.19 Procedure Name: dbo.proc_CreateNewListSpecification
D a ta b a se: P C D
D escr ip tio n :
T h is p ro ced u re e n a b le s crea tio n o f n e w lis t s p e c if ic a t io n .
*/
CREATE Procedure proc_CreateNewListSpecification
/* Param List */
@ListName
@IDListVer
@ListDesc
@ListVerDesc
@ListValues
@ListIDMeasUnits
@IDAssignToSpecTypeDef
@IDListDef
@IDProcState
@Message
AS
BEGIN

NVARCHAR(255),
MONEY = NULL,
NVARCHAR(4000) = NULL,
NVARCHAR(4000) = NULL,
NVARCHAR(4000),
NVARCHAR(4000),
BIGINT = NULL,
BIGINT OUTPUT,
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

DECLARE
@IDList BIGINT,
-@ ID ListD ef BIGINT,
@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0
BEGIN TRAN
/*Get an new List ID */
EXEC dbo proc GetNewID
@IDEntity = 107,
@IDNew = @IDList OUTPUT,

265

Appendix 5: Product Class Database (PCD) System Code

@Message = @Message OUTPUT,
@IDProcState = @ IDProcState OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure w as called from proc_CreateNewListSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/* Select version ID as 1 if it is not provided */
IF @IDListVer IS NULL
BEGIN

SELECT @IDListVer = 1
END
/■"Get a new List definition ID */
EXEC dbo.proc_GetNewID
@IDEntity = 108,
@IDNew =@ ID ListD ef OUTPUT,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ M essage + ' This Procedure was called from proc_CreateNewListSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦Create a List specification by inserting values into ListSpecification, List version
tables. The order in which the values are inserted into the
table should be maintained. First values should be inserted into the ListSpecification table
then into ListVersion table because IDList in ListVersion table
references IDList in ListSpecification.'"/

INSERT INTO ListSpecification(IDList, ListNam e,ListDesc)
VALUES (@IDList, LTRIM (RTRIM(@ ListName)), LTRIM (RTRIM (@ ListDesc)))

SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new list specification.'
SELECT @Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc_CreateNewListSpecification.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

INSERT INTO ListVersion(IDList, IDListVer, IDListDef, ListVerDesc)
VALUES(@IDList,@IDListVer,@IDListDef, LTRIM (R TRIM (@ ListV erD esc)))
SELECT @Error = @@ERROR
IF @Error \ - 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @ Message = 'An error occured while creating the new list specification.'
SELECT @ Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_CreateNewListSpecification.'
SELECT @ Message = @ M essage + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

266

Appendix 5: Product Class Database (PCD) System Code

/* Now assign the list specification. The following procedure is called for assigning the list specification. A list specification
can be assigned to a product class or specification group. */
IF @IDAssignToSpecTypeDef IS NOT NULL
BEGIN

EXEC proc_AssignListSpecification
@IDListDef = @ IDListDef,
@ IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
Proc_CreateNewListSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
END

/* Now insert values in the ListDefiniton Table. For this we call proc_InsertListValues
procedure */
EXEC dbo.proc_InsertListValues
@ IDListDef = @IDListDef,
@ListValues = @ListValues,
@ListIDMeasUnits = @ListIDMeasUnits,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CreateNewListSpecification.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

/*If everything goes well until this point it means that all the values are inserted
properly into the above tables. Now w e neet to com m it the transaction. */
COMMIT TRAN
SELECT @Message = 'List Specification Created Successfully. List Specification ID i s : ' + CAST(@IDList AS
NVARCHAR) + '. '
SELECT @Message = @Message + 'List Specification Version i s : ' + CAST(@ IDListVer AS NVARCHAR) + ' . '
RETURN

END
END — End o f proc_CreateNewListSpecification Procedure.

1.20 Procedure Name: dbo.proc_CreateNewListSpecificationVersion
D a ta b a se: P C D
D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f n e w lis t s p e c i f ic a t io n v e r s io n .

CREATE Procedure proc CreateNewListSpecificationVersion
/* Param List */
@IDList
@IDListVer
@ListVerDesc
@ListValues
@ListIDMeasUnits
@ID AssignT oSpecT ypeDef
@IDListDef
@IDProcState
@Message
AS
BEGIN

DECLARE

BIGINT,
MONEY = NULL,
NVARCHAR(4000)= NULL,
NVARCHAR(4000),
NVARCHAR(4000) = NULL,
BIGINT = N ULL,
BIGINT OUTPUT,
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

267

Appendix 5: Product Class Database (PCD) System Code

@IDExistingLatestVer MONEY,
~@ IDLislDef BIGINT,
@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0
BEGIN TRAN

/♦Check whether the supplied List specification exists. I f yes, get the
existing latest version o f that List specification in the database ♦/

SELECT @IDExistingLatestVer = M AX(IDListVer) FROM ListVersion
WHERE IDList = @IDList
IF @IDExistingLatestVer IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'List Specification ID supplied does not exists. '
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc CreateNewListSpecificationVersion.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦IDListVer supplied should be always greate than existing latest version in the database ♦/

IF @IDListVer IS NULL
BEGIN

SELECT @IDListVer = FLOOR(@ IDExistingLatestVer) + 1
END
ELSE
BEGIN

IF @IDListVer < @ IDExistingLatestVer
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'Supplied ID L istV ersion ' + CAST(@ IDListVer AS NVARCHAR) + ' is less
than existing latest version in the d a tab ase .'
SELECT @ Message = @ M essage + 'Existing lateste version i s : ' + CAST(@IDExistingLatestVer AS
NVARCHAR) + ’. '
SELECT @Message = @ M essage + 'Please provide a version ID greater than the existing latest version
or leave it blank for the system to generate it for y o u . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'E rror occured in Procedure
proc_CreateNewListSpecificationVersion.'
SELECT @ Message = @ M essage + 'Procedure is abnorm ally terminated.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ ERROR

END
END

/♦Create new IDListDef for the new version o f the product class. ♦/

EXEC dbo.proc_GetNewID
@ IDEntity= 108,
@IDNew =@ ID ListD ef OUTPUT,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from proc_CreateNewListSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦Create a list specification version by inserting values into the ListVersion table.♦/

268

Appendix 5: Product Class Database (PCD) System Code

INSERT INTO ListVersion(IDList, IDListVer, IDListDef, ListVerDesc)
VALUES (@IDList, @IDListVer, @ IDListDef, LTRIM (RTRIM (@ ListVerDesc)))
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while creating the new List Specification version.'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_CreateNewListSpecificationVersion.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* Now assign the list specification. The following procedure is called for
assigning the list specification. A list specification can be assigned
to a product class or specification group. */

IF @IDAssignToSpecTypeDef IS NOT NULL
BEGIN

EXEC proc_AssignListSpecification
@ IDListDef = @IDListDef,
@IDAssignToSpecTypeDef = @IDAssignToSpecTypeDef,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ Message + ' This Procedure was called from
Proc_CreateNewListSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
END
/* Now insert values in the ListDefiniton Table. For this w e call proc_InsertListValues
procedure */

EXEC dbo.proc_InsertListValues
@IDListDef = @IDListDef,
@ListValues = @ListValues,
@ListIDMeasUnits = @ListIDMeasUnits,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CreateNewListSpecificationVersion.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

/*If everything goes well until this point it means that all the values are inserted
properly into the above tables. Now w e neet to commit the transaction. */

COMMIT TRAN
SELECT @Message = 'List Specification Version Created Successfully. List Specification ID i s : ' +
CAST(@IDList AS NVARCHAR) + '. '
SELECT @Message = @Message + 'L ist Specification Version i s : ' + CAST(@IDListVer AS NVARCHAR) + ' . '
RETURN

END
END — End of proc CreateNewListSpecificationVersion Procedure.
GO

269

Appendix 5: Product Class Database (PCD) System Code

/*
1.21 Procedure Name: dbo.proc_CreateNewProductClass
D a ta b a se: P C D
D e s c r ip t io n :
T h is p ro ced u re e n a b le s th e crea tio n o f n e w p r o d u c t c la s s .
*/

CREATE Procedure proc_CreateNewProduct€lass
/* Param List */
@ProdClassName
@IDProdClassVer
@ProdClassDesc
@ProdClassVerDesc
@IDAssignT oSpecT ypeDef
@1 DProdC lassDef
@IDProcState
@Message
AS
BEGIN

DECLARE
@IDProdClass BIGINT,
~@ IDProdClassDef BIGINT,
@Error INT
SELECT @IDProcState = 0
SELECT @ ERROR = 0

BEGIN TRAN
/*Get an new ProductClass ID */
EXEC dbo.proc_GetNewID
@IDEntity = 103,
@IDNew = @IDProdClass OUTPUT,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from Proc_CreateNewProductClass.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/* Select version ID as 1 if it is not provided */

IF @IDProdClassVer IS NULL
BEGIN

SELECT @IDProdCIassVer = 1
END

/*Get a new product class definition ID */
EXEC dbo.proc_GetNewID
@IDEntity = 105,
@IDNew = @IDProdClassDef OUTPUT,
@Message =@ M essage OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from Proc CreateNewProductClass.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/•Create a product class by inserting values into ProductClass, product class version
and Category ProductClass tables. The order in which the values are inserted into the
table should be maintained. First values should be inserted into the ProductClass table
then into ProductClassVersion table because IDProdClass in ProductClassVersion table

NVARCHAR(255),
MONEY = NULL,
NVARCHAR(4000) = NULL,
NVARCHAR(4000) = NULL,
BIGINT = NULL,
BIGINT OUTPUT,
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

270

Appendix 5: Product Class Database (PCD) System Code

references IDProdClass in ProductClass. Finally the product class should be assigned.
A product class can be assigned to a product class, category or specification group.
For assigning the product class we call proc_AssignProductcIass procedure.*/

INSERT INTO ProductClass(IDProdClass, ProdClassName,ProdClassDesc)
VALUES (@IDProdClass, LTRIM (RTRIM (@ ProdClassName)), LTRIM (RTRIM (@ ProdClassDesc)))

SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new product class.'
SELECT @Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc_CreateNewProductClass.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

INSERT INTO ProductClassVersion(IDProdClass, IDProdClass Ver, IDProdClassDef, ProdClassVerDesc)
VALUES(@IDProdClass,@IDProdClassVer,@IDProdClassDef, LTRIM (RTRIM (@ ProdClassVerDesc)))
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while creating the new product class.'
SELECT @Message = @Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'E rror occured in Procedure proc_CreateNewProductClass.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/* Assigning product class */
EXEC proc_AssignProductClass
@IDProdClassDef = @IDProdClassDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,

@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CreateNewProductClass.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

/*If everything goes well until this point it means that all the values are inserted
properly into the above tables. Now we neet to com m it the transaction. */

COMMIT TRAN
SELECT @Message = 'Product Class Created Successfully. Product Class ID i s : ' + CAST(@IDProdClass AS
NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Product Class Version i s : ' + CAST(@ IDProdClassVer AS NVARCHAR) +

RETURN
END

END — End o f Proc CreateNewProductClass Procedure.

271

Appendix 5: Product Class Database (PCD) System Code

/*
1.22 Procedure Name: dbo.proc_CreateNewProductClassVersion
Database: PCD
Description:
This procedure enables the creation of new product class version.

CREATE Procedure proc_CreateNewProductClassVersion
I* Param List */
@IDProdClass BIGINT,
@IDProdClassVer MONEY = NULL,
@ProdClassVerDesc NVARCHAR(4000) = NULL,
@IDAssignToSpecTypeDef BIGINT = NULL,
@IDProdClassDef BIGINT OUTPUT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@IDExistingLatestVer MONEY,
—@IDProdClassDef BIGINT,

@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0
BEGIN TRAN

/‘ Check whether the supplied product class exists. I f yes, get the
existing latest version o f that product class in the database * /
SELECT @IDExistingLatestVer = M A X(IDProdClassVer) FROM ProductClassVersion
WHERE IDProdClass = @IDProdClass

IF @IDExistingLatestVer IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'Product class ID supplied does not e x is ts .'
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'E rror occured in Procedure proc_CreateNewProductClassVersion.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/‘ IDProdClassVer supplied should be always greate than existing latest version in the database */

IF @IDProdCIassVer IS NULL
BEGIN

SELECT @IDProdClassVer = FLOOR(@ IDExistingLatestVer) + 1
END
ELSE
BEGIN

IF @IDProdClass Ver < @ IDExistingLatestVer
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'Supplied IDProductClassVersion ' + CAST(@IDProdClassVer AS
NVARCHAR) + ' is less than existing latest version in the database.'
SELECT @Message = @ M essage + 'Existing lateste version i s : ' + CAST(@IDExistingLatestVer AS
NVARCHAR) + '. '
SELECT @Message = @ M essage + 'Please provide a version ID greater than the existing latest version
or leave it blank for the system to generate it for you. '
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ Message = @ M essage + 'E rror occured in Procedure proc_CreateNewProductClassVersion.

SELECT @ M essage = @ M essage + 'Procedure is abnormally terminated.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR

272

Appendix 5: Product Class Database (PCD) System Code

RETURN @ @ ERROR
END

END

/•Create new IDProdClassDef for the new version o f the product class. */

EXEC dbo.proc_GetNewID
@ IDEntity= 105,
@IDNew =@ ID ProdClassD ef OUTPUT,
@Message = @Message OUTPUT,

@IDProcState = @IDProcState OUTPUT

IF @!DProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ Message + ' This Procedure was called from Proc_CreateNewProductClassVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/•Create a product class by inserting values into ProductClassVersion and Category ProductClass tables*/

INSERT INTO ProductClassVersion(IDProdClass, IDProdClass Ver, IDProdClassDef, ProdClassVerDesc)
VALUES
(@IDProdClass, @IDProdClassVer, @ IDProdClassDef, LTRJM (RTRIM (@ ProdClassVerDesc)))
SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while creating the new product class version.'
SELECT @Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'E rror occured in Procedure proc_CreateNewProductClassVersion.'
SELECT @Message = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/* Assigning product class */

EXEC proc_AssignProductClass
@ IDProdClassDef = @IDProdClassDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from proc_CreateNewProductClass.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

/• I f everything goes well until this point it means that all the values are inserted
properly into the above tables. Now w e neet to com m it the transaction. */

COMMIT TRAN
SELECT @Message = 'Product Class Version created successfully. Product Class ID i s : ' + CAST(@IDProdClass
AS NVARCHAR) + ’. ’
SELECT @Message = @ Message + 'Product C lass Version i s : ' + CAST(@ IDProdClassVer AS NVARCHAR) +
'. 'RETURN

END
END - End o f Proc_CreateNewProductClassVersion Procedure.

273

Appendix 5: Product Class Database (PCD) System Code

1.23 Procedure Name: dbo.proc_CreateNewSpecification
D a ta b a se: P C D
D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f n e w s p e c if ic a t io n .
♦/

CREATE Procedure proc_CreateNewSpecification
/♦ Param List ♦/
@SpecName NVARCHAR(255),
@SpecDesc NVARCHAR(4000) = NULL,
@Spec Value NVARCHAR(4000) = NULL,
@IDMeasUnit BIGINT = NULL,
@IDAssignToSpecTypeDef BIGINT = N U L L ,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

SELECT @IDProcState = 0
SELECT @ ERROR = 0
BEGIN TRAN

/♦Get an new specification ID ♦/

EXEC dbo.proc_GetNewID
@ IDEntity= 100,
@IDNew = @IDSpec OUTPUT,
@Message =@ M essage OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure w as called from Proc_CreateNewSpecification.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/♦Create the Specification by inserting values into the Specification table ♦/

INSERT INTO Specification(IDSpec, SpecName, SpecDesc)
VALUES (@IDSpec, LTRIM(RTRIM(@SpecName)), LTRIM (RTRIM (@ SpecDesc»)

SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new specification.'
SELECT @Message = @Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'E rror occured in Procedure proc_CreateNewSpecification.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦ Now assign the specification to Specfication Definition under which it was created if
@AssignToSpecTypeDef is not null. Otherwise com m it the transaction and return as
the user has not specfied which specification type d e f the new specification should
be assigned to. ♦/

IF @IDAssignToSpecTypeDef IS NULL

AS
BEGIN

DECLARE
@Error
@IDSpec
@IDEntityPart

INT,
BIGINT,
BIGINT

BEGIN

274

Appendix 5: Product Class Database (PCD) System Code

COMMIT TRAN
SELECT @Message = 'Specification Created Successfully. Specification ID i s : ' +

CAST(@IDSpec AS NVARCHAR) + '
RETURN
END
ELSE
BEGIN

EXEC proc_AssignSpecification
@IDSpec = @ IDSpec,
@ IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@SpecValue = @ SpecValue,
@IDMeasUnit = @ IDM easUnit,

@ IDProcState = © ID ProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from proc_CallAssignSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = 'Specification Created Successfully. Specification ID i s : ' +

CAST(@IDSpec AS NVARCHAR) + '. '
RETURN

END
END -- End o f IF @ IDEntityPart = 106

END — End of Proc_CreateNewSpecification Procedure.
GO

/*
1.24 Procedure Name: dbo.proc_CreateNewSpecificationGroup
D atab ase: P C D
D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f n e w s p e c if ic a t io n g r o u p .
•/

CREATE Procedure procCreateNewSpecificationGroup
/* Param List */
@SpecGroupName NVARCHAR(255),
@IDSpecGroup V er MONEY = NULL,
@SpecGroupDesc NVARCHAR(4000) = NULL,
@SpecGroup V erDesc NVARCHAR(4000) = NULL,
@IDAssignToSpecTypeDef BIGINT = NULL,
@IDSpecGroupDef BIGINT OUTPUT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

AS
BEGIN

BEGIN TRAN
DECLARE
@IDSpecGroup BIGINT,
~@ IDSpecGroupDef BIGINT,

@Error INT,
@IDEntityPart INT
SELECT @IDProcState = 0
SELECT @ERROR = 0

/•create a new SpecificationGroup ID */

EXEC dbo.proc_GetNewID
@IDEntity =101 ,
@IDNew = @IDSpecGroup OUTPUT,
@Message = @Message OUTPUT,

275

Appendix 5: Product Class Database (PCD) System Code

@IDProcState = @IDProcState OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ Message + ' This Procedure was called from Proc_CreateNewSpecificationGroup.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦Select version ID as 1 if it is not provided ♦/

IF @IDSpecGroupVer IS NULL
BEGIN

SELECT @IDSpecGroupVer = 1
END

/♦Create new specification group definition ID ♦/
EXEC dbo.proc_GetNewID
@IDEntity = 106,
@IDNew = @IDSpecGroupDef OUTPUT,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from Proc_CreateNewSpecificationGroup.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/♦Create a specification group by inserting values into SpecificationGroup and
SpecificationGroupVersion tables. The order in which the values are inserted into the
table should be maintained. First values should be inserted into the SpecificationGroup table
then into SpecificationGroupVersion table because IDSpecGroup in SpecificaitionGroupVersion table
references IDSpecGroup in SpecificationGroup tab led /

INSERT INTO SpecificationGroup (IDSpecGroup, SpecGroupName, SpecGroupDesc)
VALUES (@IDSpecGroup, LTRIM (RTRIM(@SpecGroupName)), LTRIM (RTRIM (@ SpecGroupDesc)))
SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new specification g roup .'
SELECT @Message = @Message + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Error occured in Procedure proc_CreateNewSpecificationGroup.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

INSERT INTO SpecificationGroupVersion (IDSpecGroup, IDSpecGroupVer, IDSpecGroupDef, SpecGroupVerDesc)
VALUES (@IDSpecGroup, @IDSpecGroupVer, @ IDSpecGroupDef, LTRIM (RTRIM (@ SpecGroupVerDesc)))
SELECT (©Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new specification g roup .'
SELECT @Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS NVARCHAR) + ' . '
SELECT ©M essage = © M essage + 'Error occured in Procedure proc_CreateNewSpecificationGroup.'
SELECT @Message = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

276

Appendix 5: Product Class Database (PCD) System Code

/* Now assign the specification group. The follow ing procedure is called for
assigning the specification group */

IF @ IDAssignToSpecTypeDef IS N O T NULL
BEGIN

EXEC proc_AssignSpecificationGroup
@ IDSpecGroupDef = @ IDSpecGroupDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ M essage + ' This Procedure was called from
Proc_CreateNewSpecificationGroup.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
END

COMMIT TRAN
SELECT @Message = 'Specification group created Successfully. Specification Group ID i s : ' + CAST(@IDSpecGroup AS
NVARCHAR) + ' . '
SELECT @Message = @Message + 'Specification Group Version i s : ' + CAST(@ IDSpecGroupVer AS NVARCHAR) + ' . '
RETURN

END -- End o f Proc_CreateNewSpecificationGroup Procedure.
GO

/*
1.25 Procedure Name: dbo.proc_CreateNewSpecificationGroupVersion
D atab ase: P C D

D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f n e w s p e c i f ic a t io n g r o u p v e r s io n .

*/

CREATE Procedure proc_CreateNewSpecificationGroupVersion
/* Param List */
@IDSpecGroup BIGINT,
@IDSpecGroupVer MONEY = NULL,
@SpecGroupVerDesc NVARCHAR(4000)= NULL,
@IDAssignToSpecTypeDef BIGINT = NULL,
@IDSpecGroupDef BIGINT OUTPUT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@IDExistingLatestVer MONEY,
--@IDSpecGroupDef BIGINT,
@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0

BEGIN TRAN

/"■Check whether the supplied specification group exists. I f yes, get the
existing latest version o f that specification group in the database */

SELECT @IDExistingLatestVer = MAX(IDSpecGroup Ver) FROM SpecificationGroupVersion
WHERE IDSpecGroup = @ IDSpecGroup

IF @IDExistingLatestVer IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @ Message = 'Specification Group ID supplied does not e x is ts .'
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS NVARCHAR) + ' . '

277

Appendix 5: Product Class Database (PCD) System Code

SELECT @Message - @ Message + 'E rror occured in Procedure proc_CreateNewSpecificationGroupVersion.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/•IDSpecGroupVer supplied should always be greate than existing latest version in the database */

IF @IDSpecGroupVer IS NULL
BEGIN

SELECT @IDSpecGroupVer = FLOOR(@ IDExistingLatestVer) + 1
END
ELSE
BEGIN

IF @IDSpecGroupVer < @ IDExistingLatestVer
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'Supplied IDSpecificationGroupVersion ' + CAST(@IDSpecGroupVer AS
NVARCHAR) + ' is less than existing latest version in the database .'
SELECT @Message = @ M essage + 'Existing lateste version i s : ' + CAST(@IDExistingLatestVer AS
NVARCHAR) + '. '
SELECT @Message = @ M essage + 'Please provide a version ID greater than the existing latest version
or leave it blank for the system to generate it for y o u . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'E rror occured in Procedure
proc_CreateNewSpecificationGroupVersion.'
SELECT @Message = @ M essage + 'Procedure is abnormally terminated.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
END

/•Create new IDPSpecGroupDef for the new version o f the specification group.*/
EXEC dbo proc GetNewID
@ IDEntity= 106,
@IDNew = @ IDSpecGroupDef OUTPUT,
@Message =@ M essage OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from
Proc_CreateNewSpecificationGroup V ersion.'
RAISERROR(@Message, 1,1) WITH SETERROR
RETURN @@ERROR

END

/•Create a specification group by inserting values into the SpecificationGroupVersion table*/
INSERT INTO SpecificationGroupVersion(IDSpecGroup, IDSpecGroupVer, IDSpecGroupDef, SpecGroupVerDesc)
VALUES (@IDSpecGroup, @IDSpecGroupVer, @ IDSpecGroupDef, LTRIM (RTRIM (@ SpecGroupVerDesc)))
SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while creating the new specification group version.'
SELECT @Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s :1 + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @ M essage + 'E rror occured in Procedure proc_CreateNewSpecificationGroupVersion.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

COMMIT TRAN

278

Appendix 5: Product Class Database (PCD) System Code

SELECT @Message = 'Specification group Version created successfully. Specification group ID i s : ' +
CAST(@IDSpecGroup AS NVARCHAR) + '
SELECT @Message = @Message + 'Specification group Version i s : ' + CAST(@ IDSpecGroupVer AS NVARCHAR) + '

END — End of Proc_CreateNewSpecificationGroupVersion Procedure.
GO

/*
1.26 Procedure Name: dbo.proc_CreateNewTableSpecification
D atab ase: P C D

D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f ta b le s p e c if ic a t io n g r o u p .
*/
CREATE Procedure proc_CreateNewTableSpecification
/* Param List */
@TableSpecName NVARCHAR(255),
@IDT ableSpec Ver MONEY = NULL,
@NumOfRows INT = NULL,
@NumOfColumns INT,
@ColumnValues NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(100),
@TableSpecDesc NVARCHAR(4000) = NULL,
@T ableSpec VerDesc NVARCHAR(4000) = NULL,
@IDAssignToSpecTypeDef BIGINT = NULL,
@IDT able V erDef BIGINT OUTPUT,
©IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@IDTableSpec BIGINT,
-@ ID T ableV erD ef BIGINT,
@Error INT
SELECT (©IDProcState = 0
SELECT (©ERROR = 0

BEGIN TRAN
/*Get an new Table Specification ID */
EXEC dbo.proc_GetNewID
(©IDEntity = 109,
(©IDNew = @IDTableSpec OUTPUT,
(©Message = (©Message OUTPUT,
(©IDProcState = (©IDProcState OUTPUT

IF (©IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT (©Message = (©Message + ' This Procedure was called from proc_CreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN (©(©ERROR

END

/* Select version ID as 1 if it is not provided */

IF (©IDTableSpecVer IS NULL
BEGIN

SELECT (©IDTableSpecVer = 1
END

/♦Get a new table version definition ID */

EXEC dbo.proc_GetNewID
(©IDEntity = 110 ,
(©IDNew = (©IDTableVerDef OUTPUT,

279

Appendix 5: Product Class Database (PCD) System Code

@Message =@ M essage OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ Message + ' This Procedure was called from proc_CreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦Create the table specification by inserting values into TableSpecification and TableVersion
tables. The order in which the values are inserted into the table should be maintained. First values s hould be inserted into the
TableSpecification table
then into the TableVersion table because IDTableSpec in TableVersion table
references IDTableSpec in TableSpecification. */

INSERT INTO TableSpecification(IDTableSpec, TableSpecNam e, TableSpecDesc)
VALUES (@IDTableSpec, LTRIM (RTRIM (@ TableSpecName)), LTRIM (RTRIM (@ TableSpecDesc)))

SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = 'An error occured while creating the new table specification .'
SELECT @Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'E rror occured in Procedure proc_CreateNewTableSpecification.'
SELECT @Message = @ M essage + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

INSERT INTO TableVersion(IDTableSpec, IDTableSpecVer, IDTableVerDef,
NumOfRows, NumOfColumns, Table VerDesc)
VALUES(@ IDTableSpec,@IDTableSpecVer,@IDTableVerDef, @ NumOfRows, @NumOfColumns,
LTRIM(RTRIM(@TableSpec V erD esc)))

SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'An error occured while creating the new table specification.'
SELECT @Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'E rror occured in Procedure proc_CreateNewTableSpecification.'
SELECT @Message = @ M essage + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦ Assign the table specification by calling the follow ing procedure * /
/* A Table specification can be assigned to a product class or a specification group */
IF @IDAssignToSpecTypeDef IS NOT NULL
BEGIN

EXEC proc_AssignTableSpecification
@IDT ableVerDef = @ IDTableVerDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

280

Appendix 5: Product Class Database (PCD) System Code

END
END

/* Now check how many columns are supplied by the user. Accordingly invoke the procedure
that handle that many columns */

IF @NumOFColumns = 2
BEGIN

EXEC proc_InsertRow2
@ IDTableVerDef = @ IDTableVerDef,
@ColumnValues = @ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T able Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @Message = @ Message + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '. '
RETURN

END
END

IF @NumOFColumns = 3
BEGIN

EXEC proc_InsertRow3
@ IDTableVerDef= @IDTableVerDef,
@ColumnValues = @Column Values,
@ColIDMeasUnits = @ColIDMeasUnits,
@ RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ’
RETURN

END
END

IF @NumOFColumns = 4
BEGIN

EXEC proc_InsertRow4
@ IDTableVerDef = @IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,

281

Appendix 5: Product Class Database (PCD) System Code

@RowContent = @ RowContent,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewT ableSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ M essage = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS N V A R CH A R) + '
SELECT @ M essage = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 5
BEGIN

EXEC proc_InsertRow5
@IDT ableV erD ef = @ IDT able V erDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewT ableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS N VARCHAR) + '. '
SELECT @ M essage = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFColumns = 6
BEGIN

EXEC proc_InsertRow6
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @RowContent,
@IDProcState = @ IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewT ableSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

282

Appendix 5: Product Class Database (PCD) System Code

COMMIT TRAN
SELECT @ Message = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS N V A RCH A R) + '
SELECT @ Message = @ M essage + 'Table Specification Version is : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 7
BEGIN

EXEC proc_InsertRow7
@IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ColumnValues,
@CoIIDMeasUnits = @ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.‘
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS NV A R CH A R) + ' . '
SELECT @Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '. ’
RETURN

END
END

IF @NumOFColumns = 8
BEGIN

EXEC proc_InsertRow8
@IDTableVerDef = @ IDTableVerDef,
@ColumnValues = @ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
procCreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + '. '
SELECT @Message = @ M essage + T ab le Specification Version is : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '. '
RETURN

END
END

IF @NumOFColumns = 9
BEGIN

EXEC proc_InsertRow9
@IDTableVerDef = @ IDTableVerDef,

283

Appendix 5: Product Class Database (PCD) System Code

@ColumnValues = @ ColumnValues,
@CoIIDMeasUnits = @ ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpeci ficat ion.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @@ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ Message = T ab le Specification Created Successfully. Table Specification ID i s :1 +
CAST(@IDTableSpec AS N V A RCH A R) + '
SELECT @ Message = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 10
BEGIN

EXEC proc_InsertRowlO
@ IDTableVerDef= @IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @ RowContent,
@IDProcState = @ IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS N V A RCH A R) + ' . '
SELECT @Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

END - End o f Proc_CreateNewTableSpecification Procedure.
GO

/*

1.27 Procedure Name: dbo.proc_CreateNewTableSpecificationVersion
Database: PCD
Description:
This table enables creation of new table specification version.
*/

CREATE Procedure proc_CreateNewTableSpecificationVersion
I* Param List */
@IDTableSpec BIGINT,
@IDTableSpecVer MONEY = NULL,
@NumOfRows INT = NULL,
@NumOfColumns INT,
@ColumnValues NVARCHAR(4000),

284

Appendix 5: Product Class Database (PCD) System Code

@ColIDMeasUnits
@RowContent
@TableVerDesc
@IDAssignToSpecTypeDef
@IDT ableVerDef
@IDProcState
@Message

N VARCHAR(4000) = NULL,
NVARCHAR(IOO),
NVARCHAR(4000) = NULL,
BIGINT = N ULL,
BIGINT OUTPUT,
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@IDExistingLatestVer MONEY,
--@IDT ableVerDef BIGINT,
@Error INTINT
SELECT @IDProcState = 0
SELECT @ERROR = 0

BEGIN TRAN

/*Check whether the supplied Table Specification exists. I f yes, get the
existing latest version o f that table specification the database */

SELECT @IDExistingLatestVer = MAX(IDTableSpecVer) FROM TableVersion
WHERE IDTableSpec = @IDTableSpec
IF @IDExistingLatestVer IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = T able Specification ID supplied does not ex is ts .'
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @Message + 'E rror occured in Procedure proc_CreateNewTableSpecificationVersion. ’
SELECT @Message = @Message + 'Procedure is term inated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦IDTableSpecVer supplied should always be greate than existing latest version in the database */

IF @IDTableSpecVer IS NULL
BEGIN

SELECT @IDTableSpecVer = FLO O R(@ ID ExistingLatestV er)+ 1

BEGIN
IF @IDTableSpecVer < @ IDExistingLatestVer
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 2
SELECT @Message = 'Supplied IDTableVersion ' + CAST(@ IDTableSpecVer AS NVARCHAR) + '
is less than existing latest version in the database .'
SELECT @Message = @ M essage + 'Existing lateste version i s : ' + CAST(@IDExistingLatestVer AS
NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Please provide a version ID greater than the existing latest version
or leave it blank for the system to generate it for y o u . '
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Error occured in Procedure
proc_CreateNewTableSpecificationVersion. '
SELECT @ M essage = @ M essage + 'Procedure is abnormally terminated.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

END
ELSE

END

/*Create new IDTableVerDef for the new version o f the table specification.*/

EXEC dbo.proc GetNewID
@IDEntity =110 ,

285

Appendix 5: Product Class Database (PCD) System Code

@IDNew =@ ID TableV erD ef OUTPUT,
@Message = @Message OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ Message + ' This Procedure was called from proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/•Create a table specification version by inserting values into the TableVersion table"1/

INSERT INTO TableVersion(IDTableSpec, IDTableSpecVer, IDTableVerDef,
NumOfRows, NumOfColumns, Table VerDesc)
VALUES (@IDTableSpec, @ IDTableSpecVer, @ IDTableVerDef, @ NumOfRows,
@NumOIColumns,LTRIM (RTRIM (@ TableVerDesc)))
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = ■An error occured while creating the new table specification version.'
SELECT @Message = @Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc_CreateNewTableSpecificationVersion.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/• Assign the table specification by calling the follow ing procedure */
/* A Table specification can be assigned to a product class or a specification group */
IF @IDAssignToSpecTypeDef IS NOT NULL
BEGIN

EXEC proc_AssignTableSpecification
@IDT able V erD ef = @ IDTableVerDef,
@IDAssignToSpecTypeDef = @ IDAssignToSpecTypeDef,
@IDProcState = @IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
END

/* Now check how many columns are supplied by the user. Accordingly invoke the procedure
that handle that many columns */

IF @NumOFColumns = 2
BEGIN

EXEC proc_InsertRow2
@IDTableVerDef = @IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ’ This Procedure was called from
proc_CreateNewTableSpecification Version.'
RAISERROR(@Message, 1,1) W ITH SETERROR

286

Appendix 5: Product Class Database (PCD) System Code

RETURN @ @ERROR
END
ELSE
BEGIN

COMMIT TRAN
SELECT @ Message = T ab le Specification version Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 3
BEGIN

EXEC proc_InsertRow3
@IDT ableVerDef = @ IDTableVerDef,
@Column Values = @Column Values,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewT ableSpecification V ersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification version Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 4
BEGIN

EXEC proc_InsertRow4
@IDTableVerDef = @ IDTableVerDef,
@ColumnValues = @ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTab!eSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification version Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + '. '
SELECT @Message = @ M essage + T able Specification Version i s :1 + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

287

Appendix 5: Product Class Database (PCD) System Code

IF @NumOFColumns = 5
BEGIN

EXEC proc_InsertRow5
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification V ersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification version Created Successfully. Table Specification ID is :1 +
CAST(@IDTableSpec AS N V ARCHAR) + '
SELECT @ Message = @ M essage + T ab le Specification Version is : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 6
BEGIN

EXEC proc_InsertRow6
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @Column Values,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification Version.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ M essage = T ab le Specification version Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS N VARCHAR) + ' . '
SELECT @ Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '. '
RETURN

END
END

IF @NumOFColumns = 7
BEGIN

EXEC proc_InsertRow7
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN

288

Appendix 5: Product Class Database (PCD) System Code

SELECT @ Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@ Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification version Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS N VARCHAR) + '
SELECT @Message = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 8
BEGIN

EXEC proc_InsertRow8
@ IDTableVerDef= @IDTableVerDef,
@ColumnValues = @Column Values,
@ColIDMeasUnits = @ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification version Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFCoIumns = 9
BEGIN

EXEC proc_InsertRow9
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @ RowContent,
@IDProcState = @ IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification version Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @ Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

289

Appendix 5: Product Class Database (PCD) System Code

END
END

IF @NumOFColumns = 10
BEGIN

EXEC proc_InsertRow 10
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @CoIumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState O UTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ Message = T able Specification version Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

END — End of proc_CreateNewTableSpecificationVersion Procedure.
GO

/*

1.28 Procedure Name: dbo. proc_CreateNewTableSpecificationVersionVersion
Database: PCD
Description:
This procedure enables creation of a new version of a table specification version.

*/
CREATE Procedure proc_CreateNewTableSpecificationVersionVersion
/* Param List * /
@IDTabIeSpec BIGINT,
@IDT ableSpec Ver MONEY = NULL,
@NumOfRows INT = NULL,
@NumOfColumns INT,
@ColumnValues NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(100),
@TableVerDesc NVARCHAR(4000)= NULL,
@IDAssignToSpecTypeDef BIGINT = NULL,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@IDExistingLatestVer MONEY,
@IDTable V erD ef BIGINT,
@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0

BEGIN TRAN

/■"Check whether the supplied Table Specification exists. If yes, get the
existing latest version o f that table specification the database */

290

Appendix 5: Product Class Database (PCD) System Code

SELECT @IDExistingLatestVer = M AX(IDTableSpecVer) FROM TableVersion
WHERE IDTableSpec = @ IDTableSpec

IF @IDExistingLatestVer IS NULL
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 1
SELECT @Message = T able Specification ID supplied does not ex is ts .'
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @Message + 'E rror occured in Procedure
proc_CreateNewTableSpecificationVersionVersion.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦IDTableSpec Ver supplied should always be greate than existing latest version in the database */

IF @IDTableSpecVer IS NULL
BEGIN

SELECT @IDTableSpecVer = FLOO R(@ IDExistingLatestVer) + 1
END
ELSE
BEGIN

IF @IDTableSpecVer < @ IDExistingLatestVer
BEGIN

ROLLBACK TRAN
SELECT @ IDProcState = 2
SELECT @ Message = 'Supplied IDTableVersion ' + CAST(@ IDTableSpecVer AS NVARCHAR) + '
is less than existing latest version in the d atabase .'
SELECT @ Message = @ M essage + 'Existing lateste version i s : ' + CAST(@IDExistingLatestVer AS
NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'Please provide a version ID greater than the existing latest version
or leave it blank for the system to generate it for y o u . '
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'E rror occured in Procedure
proc_CreateNewTableSpecificationVersionVersion.'
SELECT @ Message = @ M essage + 'Procedure is abnormally terminated.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
END

/♦Create new IDTableVerDef for the new version o f the table specification.*/

EXEC d bo. proc_GetN ewID
@IDEntity =110 ,
@IDNew = @IDTableVerDef OUTPUT,
@Message =@ M essage OUTPUT,
@IDProcState = @IDProcState OUTPUT

IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @Message + ' This Procedure was called from
proc_CreateNewTableSpecificationVersionVcrsion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/♦Create a table specification version by inserting values into the TableVersion table*/

INSERT INTO TableVersion(IDTableSpec, IDTableSpecVer, IDTableVerDef,
NumOfRows, NumOfColumns, Table VerDesc)
VALUES (@IDTableSpec, @IDTableSpecVer, @ IDTableVerDef, @NumOfRows,

291

Appendix 5: Product Class Database (PCD) System Code

@NumOfColumns, LTRIM (RTRIM (@ TableVerDesc)))
SELECT @ Error = @ @ERROR
IF @Error != 0
BEGIN

ROLLBACK TRAN
SELECT @IDProcState = 3
SELECT @Message = 'An error occured while creating the new table specification version.'
SELECT @Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure
proc_CreateNewTableSpecificationVersionVersion.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/* Now check how many columns are supplied by the user. Accordingly invoke the procedure
that handle that many columns */

IF @NumOFColumns = 2
BEGIN

EXEC proc_InsertRow2
@ IDTableVerDef = @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFColumns = 3
BEGIN

EXEC proc_InsertRow3
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification Version.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '

292

Appendix 5: Product Class Database (PCD) System Code

SELECT @ M essage - @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 4
BEGIN

EXEC proc_InsertRow4
@IDTableVerDef = @ IDTableVerDef,
@CoIumnValues = @ ColumnVaIues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS N V A RCH A R) + '
SELECT @Message = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFColumns = 5
BEGIN

EXEC proc_InsertRow5
@ IDTableVerDef = @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @ RowContent,
@ IDProcState = @IDProcState OUTPUT,
@Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is: ’ +
CAST(@IDTableSpec AS N V ARCHAR) + ’. '
SELECT @Message = @ M essage + 'Table Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFColumns = 6
BEGIN

EXEC proc_InsertRow6
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @ RowContent,

293

Appendix 5: Product Class Database (PCD) System Code

@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID is : ' +
CAST(@IDTableSpec AS NVARCHAR) + '
SELECT @ Message = @ M essage + 'Table Specification Version i s :1 + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 7
BEGIN

EXEC proc_InsertRow7
@ IDTableVerDef = @IDTableVerDef,
@ColumnValues = @Column Values,
@ColIDMeasUnits = @ColIDM easUnits,
@RowContent = @RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ M essage = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFColumns = 8
BEGIN

EXEC proc_InsertRow8
@ IDTableVerDef = @IDTableVerDef,
@ColumnValues = @ColumnValues,
@ColIDMeasUnits = @ColIDMeasUnits,
@RowContent = @ RowContent,
@IDProcState = @ IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewT ableSpecificationV ersion.'
RAISERROR(@ Message, 1,1) W ITH SETERROR
RETURN @@ ERROR

END
ELSE
BEGIN

COMMIT TRAN

294

Appendix 5: Product Class Database (PCD) System Code

SELECT @ M essage - T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@ IDTableSpec AS N V ARCHAR) + '
SELECT @ M essage = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '
RETURN

END
END

IF @NumOFColumns = 9
BEGIN

EXEC proc_InsertRow9
@ IDTableVerDef= @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDMeasUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure w as called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @ M essage = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS N VARCHAR) + ' . '
SELECT @Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + ' . '
RETURN

END
END

IF @NumOFColumns = 10
BEGIN

EXEC proc_InsertRow 10
@IDTableVerDef = @IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@RowContent = @ RowContent,
@IDProcState = @IDProcState OUTPUT,
@Message = @ Message OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecificationVersion.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T ab le Specification Created Successfully. Table Specification ID i s : ' +
CAST(@IDTableSpec AS NVARCHAR) + '
SELECT @ Message = @ M essage + T ab le Specification Version i s : ' + CAST(@IDTableSpecVer AS
NVARCHAR) + '. '
RETURN

END
END

END — End of proc_CreateNewTableSpecificationVersionVersion Procedure.

295

Appendix 5: Product Class Database (PCD) System Code

1.29 Procedure Name: dbo.proc_GetNewID
Database: PCD
Description:
This procedure enables generation of new ID for different entities such as product class and specification.
*/

CREATE PROCEDURE dbo.proc_GetNewID
@IDEntity INT,
@IDNew BIGINT OUTPUT,
@Message NVARCHAR(500) OUTPUT,
@IDProcState TINYINT OUTPUT
AS

BEGIN
DECLARE
@RowsAffected INT

SELECT @IDProcState = 0
SELECT @Message = 'Procuedure Executed Successfully.'
IF NOT EXISTS (SELECT [IDEntity] FROM Entity W HERE [IDEntity] = @ IDEntity)
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An Entity with supplied IDEntity ' + CAST(@ IDEntity AS NVARCHAR) + ' does not
ex is t.'
SELECT @Message = @ Message + 'E rror occured in Procedure proc_getN ew ID .'
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'Procedure is abnorm ally terminated.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

END
SELECT @IDNew = IDAvailable FROM ENTITY W HERE [IDEntity] = @ IDENTITY

/* Call fh_IncrementID function to increment the IDNew. @ IDNew param eter is the ID to be incremented
and DEFAULT parameter is the number by which it is to be incremented. The DEFAULT increment
number set is 1 */

UPDATE Entity SET IDAvailable = dbo.fn_IncrementID(@ IDNew, DEFAULT)
WHERE [IDEntity] = @IDEntity
SELECT @RowsAfFected = @ @ RowCount

--PRINT 'Rows affected a r e ' + CAST(@ RowsAffected AS NVARCHAR)
--PRINT '@Error id i s : ' + CAST(@ Error AS NVARCHAR)
/* When the above update fails the following error is raised.*/
IF @RowsAffected = 0
BEGIN

SELECT @IDProcState = 2
SELECT @Message = 'An unknown error occured in Procedure Proc_G etN ew ID .'
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @ Message + 'Please contact your system adm inistrator.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
END
GO

/*

1.30 Procedure Name: dbo.proc_InsertListValues
D atab ase: P C D

D e s c r ip t io n :
T h is ta b le e n a b le s crea tio n o f lis t v a lu e s fo r l is t s p e c if ic a t io n .
*/

296

Appendix 5: Product Class Database (PCD) System Code

CREATE Procedure proc_InsertListValues
/* Param List */
@IDListDef
@ListValues

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = N ULL,
TINYINT OUTPUT,
NVARCHAR(SOO) O UTPUT

@ListIDMeasUnits
@IDProcState
@Message

AS
BEGIN

DECLARE
@Error INT
SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = 1'

/•Create a temporary table and insert the values from the table returned
by the function fn_getListValuesTable * /

CREATE TABLE #TempTableListValues (ListID INT, ListValue N V A R C H A R (255))
INSERT INTO #TempTableListValues
SELECT ColumnID,ColVal FROM dbo.fh_getColum nValuesTable(@ ListValues)

/•Create another temporary table and insert IDM eas units from the table returned
by the function fn^etL istV aluesTable */

CREATE TABLE #TempTableIDMeasUnit (M easID INT, IDM easUnit BIGINT)
INSERT INTO #TempTableIDMeasUnit
SELECT ColumnID, CAST(ColVal AS BIGINT) FROM dbo.fn_getColumnValuesTable(@ ListIDM easUnits)
SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An error occured while inserting the list specification .'
SELECT @Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc InsertListV alues.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END

/* Now insert the values into the List Definition table */
INSERT INTO ListDefinition (IDListDef, ListValue, IDM easUnit)
SELECT @IDListDef, a.ListValue, b.IDMeasUnit
FROM #TempTableListValues a, #Tem pTableIDM easUnit b
WHERE a.ListID = b.MeasID

SELECT @Error = @@ERROR
IF @Error != 0
BEGIN

SELECT @IDProcState = 2
SELECT @Message = 'An error occured while inserting the list specification .'
SELECT @Message = @ Message + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + '
SELECT @Message = @ Message + ’Procedure State ID is: * + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc_InsertListV alues.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

DROP TABLE #TempTableListValues
DROP TABLE #TempTableIDM easUnit
RETURN

END
END — End o f proc_InsertListValues Procedure.
GO

297

Appendix 5: Product Class Database (PCD) System Code

/*
1.31 Procedure Name: dbo.proc_InsertRow2
Database: PCD
Description:
This procedure enables creation o f table specification values having 2 colum ns.

* /

CREATE Procedure proc_InsertRow2
/* Param List */
@IDT ableVerDef BIGINT,
@ColumnValues NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(IOO),
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@Error INT,
@IDRow INT,
@NumOfRows INT,
@Column 1 Val NVARCHAR(255),
@Column2Val NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fh_getColumnValuesTable(@ ColumnValues)
PRINT '@ NumOfRows:' + CAST(@NumOfRows AS NVARCHAR)
/* The function fn_getColumnValuesTable(@ ColumnValues) should return two rows only */

IF @NumOfRows != 2
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An error occured while inserting the table ro w .'
SELECT @Message = @Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @Message + 'E rror occured in Procedure proc_InsertRow 2.'
SELECT @Message = @Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

/♦Create a temporary table and insert the values from the table returned
by the function fh_getColumnValuesTable ♦/

CREATE TABLE #TempTable (ColumnID INT, Column Value N V A R C H A R (255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColumnValuesTable(@ ColumnValues)
SELECT @ Columnl Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 2

/♦Check whether the row is contains column values or column specifications
A row can contain column values or column specifications(headers).*/

IF @RowContent LIKE 'ColVals'
BEGIN

/♦ Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'Column Values' ♦/
SELECT @IDRow = MAX(IDRow) FROM TableDefinition2 W HERE IDTableVerDef = @IDTableVerDef
IF @IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ IDRow + 1

INSERT INTO TableDefmition2(IDTableVerDef, IDRow, Column 1 Val, Column2Val, RowContent)

298

Appendix 5: Product Class Database (PCD) System Code

VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Column 1 Val)),LTRIM(RTRIM(@Column2Val)),
LTRIM (RTRIM (@ RowContent)))
SELECT @Error = @ @ ERROR
IF @Error != 0
BEGIN

SELECT @IDProcState = 2
SELECT @ Message = 'An error occured while inserting the table ro w .'
SELECT @ Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'E rror occured in Procedure proc_InsertRow2.'
SELECT @ Message = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

END

DROP TABLE #TempTable
RETURN

END —End o f IF @RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @IDRow = 0
INSERT INTO TableDefmition2(IDTableVerDef, IDRow, Column 1 Val, Column2Val, RowContent)
VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Column 1 Val)),LTRIM(RTRIM(@Column2Val)),
LTRIM(RTRIM(@RowContent)))
SELECT @ Error = @@ERROR
IF @Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ Message = 'An error occured while inserting the table ro w .'
SELECT @ Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'E rror occured in Procedure proc_InsertRow 2.'
SELECT @ Message = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @@ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END

END — End of Proc_InsertRow2 Procedure.
GO

1.32 Procedure Name: dbo.proc_InsertRow3
Database: PCD
D escription:
This procedure enables creation o f table specification values having 3 colum ns.

CREATE Procedure proc_InsertRow3
/* Param List * /
@IDTableVerDef
@ColumnValues
@ColIDMeasUnits
@RowContent
@IDProcState
@Message

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = NULL,
NVARCHAR(IOO),
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE

299

Appendix 5: Product Class Database (PCD) System Code

@Error INT,
@IDRow INT,
@NumOfRows INT,
@ ColumnlVal NVARCHAR(255),
@Column2Val NVARCHAR(255),
@Column3Val NVARCHAR(255)
SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '
SELECT @NumOFRows = COUNT(^) FROM dbo.fn getColumnValuesTabIe(@ ColumnValues)
PRINT '@ NumOfRows:' + CAST(@ NumOfRows AS NVARCHAR)
/♦ The function fn_getColumnValuesTable(@ ColumnValues) should return three rows only ♦/
IF @NumOfRows != 3
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An error occured while inserting the table ro w .1
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ Message + 'E rror occured in Procedure proc_InsertRow 3.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

/♦Create a temporary table and insert the values from the table returned
by the function fn_getColumnValuesTable ♦/

CREATE TABLE #TempTable (ColumnID INT, Colum nValue N V A R C H A R (255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColumnValuesTable(@ ColumnValues)

SELECT @Columnl Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 3

/♦Check whether the row is contains column values or column specifications
A row can contain column values or column specifications(headers). ♦/

IF @RowContent LIKE 'ColVals'
BEGIN

/♦ Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'ColumnValues' ♦/
SELECT @IDRow = MAX(IDRow) FROM TableDefinition3 W HERE IDTableV erDef = @ IDTableVerDef
IF @IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @IDRow = @ IDRow + 1
INSERT INTO TableDefinition3(IDTableVerDef, IDRow, Column 1 Val, Column2Val, Column3Val,
RowContent)
VALUES(@IDTableVerDef, @ IDRow,
LTRIM (RTRIM(@Column 1 Val)),LTRIM (RTRIM (@ Column2Val)),
LTRIM (RTRIM(@ Column3Val)), LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + '.

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'Error occured in Procedure proc_InsertRow3.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR
END

ELSE
BEGIN

DROP TABLE #TempTabIe
RETURN

300

Appendix 5: Product Class Database (PCD) System Code

END
END —End o f IF @ RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @IDRow = 0
INSERT INTO TableDefmition3(IDTableVerDef, IDRow, Colum nl Val, Column2Val,Column3Val,
RowContent)
VALUES(@ IDTableVerDef, @ IDRow,
LTRIM (RTRIM(@ Column 1 Val)),LTRIM (RTRIM (@ Column2Val)),
LTRIM (RTRIM (@ Column3Val)),LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + '

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. ’
SELECT @ M essage = @ M essage + 'Error occured in Procedure proc_InsertRow3.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END

END
END -- End o f Proc_InsertRow3 Procedure.
GO

/*

1.33 Procedure Name: dbo.proc_InsertRow4
Database: PCD
Description:
This procedure enables creation o f table specification values having 4 colum ns.
*/

CREATE Procedure proc_InsertRow4
/* Param List *1
@IDT able V erDef BIGINT,
@ColumnValues NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(IOO),
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@Error INT,
@IDRow INT,
@NumOfRows INT,
@Columnl Val NVARCHAR(255),
@Column2Val NVARCHAR(255),
@Column3Val NVARCHAR(255),
@Column4Val NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColumnValuesTable(@ ColumnValues)
-PR IN T '@NumOfRows: ' + CAST(@ NumOfRows AS NVARCHAR)
/* The function fn_getColumnValuesTable(@ ColumnValues) should return two rows only * /

301

Appendix 5: Product Class Database (PCD) System Code

IF @NumOfRows != 4
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'An error occured while inserting the table ro w .1
SELECT @ M essage = @ Message + 'Procedure State ID i s : ' + CAST(@IDProcState AS NVARCHAR) + '
SELECT @ Message = @Message + 'E rror occured in Procedure proc_InsertRow4.'
SELECT @ Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

/♦Create a temporary table and insert the values from the table returned
by the function fh_getColumnValuesTable ♦/

CREATE TABLE #TempTable (ColumnID INT, Colum nV alue NVARCHAR(255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColumnValuesTable(@ ColumnValues)

SELECT @ Columnl Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3 Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 3
SELECT @Column4Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 4

/♦Check whether the row contains column values or column specifications
A row can only contain column values or column specifications(headers).V

IF @RowContent LIKE 'ColVals'
BEGIN

/♦ Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'ColumnValues' ♦/
SELECT @IDRow = MAX(IDRow) FROM TableDefmition4 W HERE IDTableVerDef = @ IDTableVerDef
IF @IDRow IS NULL

SELECT @IDRow = 1
ELSE

SELECT @IDRow = @ IDRow + 1
INSERT INTO TableDefinition4(IDTableVerDef, IDRow, Column 1 Val,
Column2Val,Column3Val,Column4Val, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,
LTRIM(RTRIM(@Column 1 Val)),LTRIM (RTRIM (@ Column2 Val)),
LTRIM(RTRIM(@Column3 V al)),
LTRIM (RTRIM (@ Column4Val)), LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR

IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + '.

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'Error occured in Procedure proc_InsertRow4.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END -E n d o f IF @RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @IDRow = 0
INSERT INTO TableDefinition4(IDTableVerDef, IDRow, Column 1 Val, Column2Val, Column3Val,
Column4Val, RowContent)

302

Appendix 5: Product Class Database (PCD) System Code

VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Column 1 Val)),LTRIM(RTRIM(@Column2 Val)),

LTRIM (RTRIM (@ Column3Val)),LTRIM(RTRIM(@ Column4Val)),LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_InsertRow4.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END

END - End o f Proc_InsertRow4 Procedure.
GO

1.34 Procedure Name: dbo.proc_InsertRow5
D a tab ase: P C D

D e s c r ip t io n :
T h is p roced u re e n a b le s crea tio n o f ta b le s p e c i f ic a t io n v a lu e s h a v in g 5 c o lu m n s .
*/

CREATE Procedure proc_InsertRow5
/* Param List */
@IDTableVerDef
@ColumnValues
@ColIDMeasUnits
@RowContent
@IDProcState
@Message

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = NULL,
NVARCHAR(100),
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@Error
@IDRow
@NumOfRows
@Columnl Val
@Column2Val
@Column3Val
@Column4Val
@Column5Val

INT,
INT,
INT,
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColumnValuesTable(@ ColumnValues)
-PR IN T '@ Num OfRows:' + CAST(@ NumOfRows AS NVARCHAR)
/* The function fn_getC olum nV aIuesT abIe(@ C oIum nV alues) should re tu rn tw o row s only * /

IF @NumOfRows != 5
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An error occured while inserting the table ro w .'
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS NVARCHAR) + 1
SELECT @ Message = @ M essage + 'E rror occured in Procedure proc_InsertRow5.'
SELECT @ Message = @ Message + 'Procedure is terminated abnormally. ’

303

Appendix 5: Product Class Database (PCD) System Code

RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

/♦Create a temporary table and insert the values from the table returned
by the function fh_getColumnValuesTable ♦/

CREATE TABLE #TempTable (ColumnID INT, Colum nValue N V A R C H A R (255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fn getColumnValuesTable(@,Column Values)

SELECT @ Columnl Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 3
SELECT @Column4Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 4
SELECT @Column5Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 5

/♦Check whether the row contains column values or colum n specifications
A row can only contain column values or column speciflcations(headers). ♦/

IF @RowContent LIKE 'ColVals'
BEGIN

/♦ Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'ColumnValues' ♦/
SELECT @IDRow = MAX(IDRow) FROM TableDefinition2 W HERE IDTableVerDef = @ IDTableVerDef
IF @IDRow IS NULL

SELECT @IDRow = 1
ELSE

SELECT @IDRow = @ IDRow + 1
INSERT INTO TableDefinition5(IDTableVerDef, IDRow, C olum nlV al,
Column2Val,Column3Val,Column4Val, Column5Val, RowContent)
V ALUES(@IDT ableVerDef, @ IDRow,
LTRIM (RTRIM (@ ColumnlVal)),LTRIM (RTRIM(@ Column2Val)),LTRIM (RTRIM (@ Column3Val))
,LTRIM (RTRIM (@ Column4Val)),LTRIM(RTRIM (@ Column5Val)),
LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + '.

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Error occured in Procedure proc_InsertRow5.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END -E n d o f IF @RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableDefinition5(IDTableVerDef, IDRow, Colum nlV al, Column2Val, Column3Val,
Column4Val, Column5Val, RowContent)
VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Colum nl Val)),LTRIM(RTRIM(@Column2Val)),
LTRIM(RTRIM (@ Column3Val)),LTRIM(RTRIM(@ Column4Val)),
LTRIM(RTRIM(@Column5 Val)),
LTRIM(RTRIM(@RowContent)))
SELECT @ Error = @ @ERROR
IF @Error != 0
BEGIN

SELECT @IDProcState = 3
SELECT @ Message = 'An error occured while inserting the table ro w .'
SELECT @ Message = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '

304

Appendix 5: Product Class Database (PCD) System Code

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '
SELECT @ M essage = @ M essage + 'Error occured in Procedure proc_InsertRow5.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTab!e
RETURN

END
END

END — End o f Proc_InsertRow5 Procedure.
GO

1.35 Procedure Name: dbo.proc_InsertRow6
D atab ase: PCD
Description:
T h is p ro ced u re e n a b le s crea tio n o f ta b le s p e c i f ic a t io n v a lu e s h a v in g 6 c o lu m n s .

CREATE Procedure proc_InsertRow6
/* Param List * /
@IDT ableVerDef
@ColumnValues
@ColIDMeasUnits
@RowContent
@IDProcState
@Message

BIGINT,
NV ARCH AR(4000),
N V ARCH AR(4000) = NULL,
N V ARCHAR(100),
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@Error
@IDRow
@NumOfRows
@Columnl Val
@Column2Val
@Column3Val
@Column4Val
@Column5Val
@Column6Val

INT,
INT,
INT,
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColumnValuesTable(@ ColumnValues)
-PR IN T '@ Num OfRows:' + CAST(@ NumOfRows AS NVARCHAR)
/* The function fn_getColumnValuesTable(@ ColumnValues) should return two rows only * /

IF @NumOfRows != 6
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An error occured while inserting the table ro w .'
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'E rror occured in Procedure Proc_InsertRow6. ’
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

/*Create a temporary table and insert the values from the table returned
by the function fh_getColumnValuesTable */

305

Appendix 5: Product Class Database (PCD) System Code

CREATE TABLE #TempTable (ColumnID INT, Colum nValue NVARCHAR(255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo. fn getColumnValuesTable(@ ColumnValuesl

SELECT @ Columnl Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2VaI = ColumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 3
SELECT @Column4Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 4
SELECT @Column5Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 5
SELECT @Column6Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 6

/♦Check whether the row contains column values or colum n specifications
A row can only contain column values or column specifications(headers).*/

IF @RowContent LIKE 'ColVais'
BEGIN

/* Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'ColumnValues' */
SELECT @IDRow = M AX(IDRow) FROM TableDefinition6 W HERE IDTableVerDef = @ IDTableVerDef
IF @IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ IDRow + 1

INSERT INTO TableDefmition6(IDTableVerDef, IDRow, C olum nlV al, Column2Val,Column3Val,Column4Val,
Column5Val, Colum n6Val, RowContent)

VALUES(@IDTableVerDef, @ IDRow,
LTRIM(RTRIM(@Column 1 Val)),LTRIM (RTRIM (@ Column2 Val)),LTRIM (RTRIM(@Column3 Val)),
LTRIM (RTRIM (@ Column4Val)),LTRIM(RTRIM (@ Column5Val)),

LTRIM (RTRIM (@ Column6Val)),LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRow 6.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END -E n d o f IF @ RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @IDRow = 0
INSERT INTO TableDefinition6(IDTableVerDef, IDRow, Colum nlV al, Column2Val, Column3Val,
Column4Val, Column5Val, Column6 Val,RowContent)
VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Column 1 Val)),LTRIM(RTRIM(@Column2Val)),
LTRIM (RTRIM (@ Column3Val)),LTRIM(RTRIM(@ Column4Val)),LTRIM (RTRIM (@ Column5Val)),
LTRIM (RTRIM (@ Column6Val)),LTRIM (RTRIM (@ RowContent)))

SELECT @ Error = @@ ERROR
IF @Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRow6.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

306

Appendix 5: Product Class Database (PCD) System Code

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END

END - End of Proc_InsertRow6 Procedure.

/*
1.36 Procedure Name: dbo.proc_InsertRow7
D atab ase: PCD
Description:
T h is p ro ced u re e n a b le s crea tio n o f ta b le s p e c i f ic a t io n v a lu e s h a v in g 7 c o lu m n s .
*/
CREATE Procedure Proc_InsertRow7
/* Param List */
@IDTableVerDef BIGINT,
@Column Values NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(100),
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@Error INT,
@IDRow INT,

@NumOfRows INT,
@ColumnlVal NVARCHAR(25S),
@Column2VaI NVARCHAR(255),
@CoIumn3Val NVARCHAR(255),
@Column4Val NVARCHAR(255),
@Column5Val NVARCHAR(255),
@Column6Val NVARCHAR(255),
@Column7Val NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' 1

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColumnValuesTable(@ ColumnVaIues)
-PR IN T '@NumOfRows: ' + CAST(@ NumOfRows AS NVARCHAR)
/* The function fh_getColumnValuesTable(@ ColumnValues) should return two rows only */

IF @NumOfRows != 7
BEGIN

SELECT @IDProcState = 1
SELECT @Message = 'An error occured while inserting the table ro w .'
SELECT @Message = @ Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @Message + 'E rror occured in Procedure Proc_InsertR ow 7.'
SELECT @Message = @ Message + 'Procedure is terminated abnorm ally .'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

/•Create a temporary table and insert the values from the table returned
by the function fn_getColumnValuesTable * /

CREATE TABLE #TempTable (ColumnID INT, Colum nValue N V A R C H A R (255))
INSERT INTO #TempTable
SELECT ColumnID,Col Val FROM dbo.fh_getColumnValuesTable(@ Column Values)

SELECT @ Columnl Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3Val = ColumnValue FROM #Tem pTable W HERE ColumnID = 3

307

Appendix 5: Product Class Database (PCD) System Code

SELECT @Column4Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 4
SELECT @Column5Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 5
SELECT @Column6Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 6
SELECT @Column7Val = CoIumnValue FROM #TempTabIe W HERE ColumnID = 7

/♦Check whether the row contains column values or colum n specifications
A row can only contain column values or colum n specifications(headers).*/

IF @RowContent LIKE 'ColVais'
BEGIN

/* Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ Row Content = 'ColumnValues' */
SELECT @ IDRow = MAX(IDRow) FROM TableDefinition7 W HERE IDTableVerDef = ©IDTableVerDef
IF @IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ IDRow + 1

INSERT INTO TableDefmition7(IDTableVerDef, IDRow, C olum nlV al, Column2Val,Column3Val,Column4Val,
Column5Val, Colum n6Val,Column7V al, RowContent)

VALUES(@ IDTableVerDef @ IDRow,
LTRIM (RTRIM (@ ColumnlVal)),LTRIM(RTRIM(@ Column2VaI)),LTRIM(RTRIM(@ Column3Val)),
LTRIM (RTRIM (@ Column4Val)),LTRIM(RTRIM (@ Column5Val)), LTRIM(RTRIM(@Column6Val)),
LTRIM (RTRIM (@ Column7Val)),LTRIM (RTRIM (@ RowContent)))
SELECT © Error = @ @ ERROR
IF @Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s :1 + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT © M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRow 7.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END —End o f IF @ RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableDefinition7(IDTableVerDef, IDRow, C olum nlV al, Column2Val, Column3Val,
Column4Val, Column5Val, Colum n6Val,Column7V al, RowContent)
VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Column 1 Val)),LTRIM(RTRIM(@Column2Val)),
LTRIM (RTRIM (@ CoIumn3Val)),LTRIM (RTRIM (@ Column4Val)),LTRIM(RTRIM(@ Column5Val)),
LTRIM (RTRIM (@ Column6Val)),LTRIM (RTRIM (@ Column7Val)),LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR

IF @Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + ' . '
SELECT © M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRow7.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END

308

Appendix 5: Product Class Database (PCD) System Code

END
END - End o f Proc_InsertRow7 Procedure.
GO

/*
1.37 Procedure Name: dbo.proc_InsertRow8
Database: PCD
Description:
This p roced u re e n a b le s c r e a t io n o f t a b le s p e c i f i c a t io n v a lu e s h a v in g 8 c o lu m n s .

CREATE Procedure Proc_InsertRow8
/* Param List */
@IDTableVerDef BIGINT,
@ColumnValues NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(100),
@IDProcState TINYINT OUTPUT,

NVARCHAR(500) OUTPUT
AS
BEGIN

DECLARE
@Error INT,
@IDRow INT,
@NumOfRows INT,
@Columnl Val NVARCHAR(255),
@Column2Val NVARCHAR(255),
@Column3Val NVARCHAR(255),
@Column4Val NVARCHAR(255),
@Column5Val NVARCHAR(255),
@Column6Val NVARCHAR(255),
@Column7Val NV ARC H AR(255),
@Column8Val NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColum nValuesTable(@ Colum nValues)
-PR IN T '@ N um O fRow s:' + CAST(@ NumOfRows AS N V A R CH A R)
I* The function fn_getColumnValuesTable(@ Column V alues) should return tw o rows only * /

IF @NumOfRows != 8
BEGIN

SELECT @IDProcState = 1
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P roc_InsertR ow 8.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ Message, 1,1) W ITH SETERRO R
RETURN

END

/•Create a temporary table and insert the values from the table returned
by the function fn_getColumnValuesTable */

CREATE TABLE #TempTable (Colum nID INT, CoIum nValue N V A R C H A R (255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColum nValuesTable(@ Colum nValues)

SELECT @Column 1 Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 3
SELECT @Column4Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 4
SELECT @Column5Val = CoIumnValue FROM #Tem pTable W H ERE ColumnID = 5
SELECT @Column6Val = CoIumnValue FROM #Tem pTable W H ERE ColumnID = 6

309

Appendix 5: Product Class Database (PCD) System Code

SELECT @Column7Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 7
SELECT @Column8Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 8

/♦Check whether the row contains column values or column specifications
A row can only contain column values or column specifications(headers)."7

IF @RowContent LIKE 'ColVals'
BEGIN

/* Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'ColumnValues' */
SELECT @ IDRow = MAX(IDRow) FROM TableDefinition8 W HERE IDTableVerDef = @ IDTableVerDef
IF @ IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ IDRow + 1
INSERT INTO TableDefinition8(IDTableVerDef, IDRow, Colum nlV al,
Column2 Val,Column3 Val,Column4 Val,
Column5Val, Column6Val,Column7Val, Column8Val, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,

LTRIM(RTRIM (@ Column 1 Val)),LTRIM (RTRIM (@ Column2Val)),
LTRIM(RTRIM(@ Column3 Val)),
LTRIM (RTRIM (@ Column4 V al)),LTRIM (RTRIM (@ Column5 V al)),
LTRIM (RTRIM (@ Column6 V al)),
LTRIM (RTRIM (@ Column7Val)),LTRIM (RTRIM(@ Column8Val)),LTRIM (RTRIM (@ RowContent)

))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
ELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + '.

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'Error occured in Procedure Proc_InsertRow8.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END —End o f IF @ RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableDefmition8(IDTableVerDef, IDRow, Colum nlV al, Column2Val, Column3Val,
Column4Val, Column5Val,
Column6Val,Column7Val, Column8Val, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,
LTRIM (RTRIM(@ Column 1 Val)),LTRIM (RTRIM (@ Column2Val)),
LTRIM (RTRIM (@ Column3Val)),LTRIM (RTRIM (@ Column4Val)),
LTRIM (RTRIM (@ Column5Val)),
LTRIM (RTRIM (@ Column6Val)),LTRIM (RTRIM (@ Column7Val)),
LTRIM (RTRIM (@ Column8 V al)),
LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@Error AS NVARCHAR) + '.

SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'Error occured in Procedure Proc_InsertRow8.'
SELECT @ M essage = @ Message + 'Procedure is terminated abnorm ally.1

310

Appendix 5: Product Class Database (PCD) System Code

END
ELSE
BEGIN

RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

DROP TABLE #Tem pTable
RETURN

END
END

END — End of Proc_InsertRow8 Procedure.
GO

/*
1.38 Procedure Name: dbo.proc_InsertRow9
D ata b a se: P C D
D e s c r ip t io n :
T h is p ro ced u re e n a b le s crea tio n o f ta b le s p e c i f ic a t io n v a lu e s h a v in g 9 c o lu m n s .
*/
CREATE Procedure Proc_InsertRow9
/* Param List */
@IDT ableVerDef BIGINT,
@ColumnValues NVARCHAR(4000),
@ColIDMeasUnits NVARCHAR(4000) = NULL,
@RowContent NVARCHAR(IOO),
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@Error INT,
@IDRow INT,
@NumOfRows INT,
@ ColumnlVal NVARCHAR(255),
@Column2Val NVARCHAR(255),
@CoIumn3Val NVARCHAR(255),
@Column4Val NVARCHAR(255),
@Column5Val NVARCHAR(255),
@Column6Val NVARCHAR(255),
@Column7Val NVARCHAR(255),
@Column8Val NVARCHAR(255),
@Column9Val NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ERROR = 0
SELECT @Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColumnValuesTabIe(@ ColumnValues)
--PRINT '@ NumOfRows:' + CAST(@ NumOfRows AS NVARCHAR)
/* The function fn_getColumnValuesTable(@ ColumnValues) should return two rows only */

IF @NumOfRows != 9
BEGIN

SELECT @IDProcState = 1
SELECT @Message = A n error occured while inserting the table ro w .'
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @ M essage + 'E rror occured in Procedure Proc_InsertR ow 9.'
SELECT @Message = @ M essage + 'Procedure is terminated abnorm ally .'
RA ISERRO R(@ M essage,l,l) W ITH SETERROR
RETURN

END

/"■Create a temporary table and insert the values from the table returned
by the function fn_getColumnValuesTable * /

CREATE TABLE #TempTable (Colum nID INT, CoIumnValue NVARCHAR(255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColumnValuesTable(@ ColumnValues)

311

Appendix 5: Product Class Database (PCD) System Code

SELECT @ Colum nlVal = CoIumnValue
SELECT @Column2Val = CoIumnValue
SELECT @Column3Val = CoIumnValue
SELECT @Column4Val = CoIumnValue
SELECT @Column5Val = CoIumnValue
SELECT @Column6Val = CoIumnValue
SELECT @Column7Val = CoIumnValue
SELECT @Column8Val = CoIumnValue
SELECT @Column9Val = CoIumnValue

FROM #Tem pTable W HERE ColumnID = 1
FROM #Tem pTable W HERE ColumnID = 2
FROM #Tem pTable W HERE ColumnID = 3
FROM #Tem pTable W HERE ColumnID = 4
FROM #TempTabIe W HERE ColumnID = 5
FROM #Tem pTable W HERE ColumnID = 6
FROM #Tem pTable W HERE ColumnID = 7
FROM #Tem pTable W HERE ColumnID = 8
FROM #Tem pTable W HERE ColumnID = 9

/♦Check whether the row contains column values or column specifications
A row can only contain column values or column specifications(headers)."7

IF @RowContent LIKE 'ColVals'
BEGIN

/* Check for the existing rows w ith sam e ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ RowContent = 'ColumnValues' *1
SELECT @IDRow = MAX(IDRow) FRO M TableDefinition9 W HERE IDTableVerDef = @IDTableVerDef
IF @IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ IDRow + 1
INSERT INTO TableDefinition9(IDTableVerDef, IDRow, C olum nlV al,
Column2Val,Column3Val,Column4Val,
Column5Val, Colum n6Val,Column7Val, Column8Val, Column9Val, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,
LTRIM (RTRIM (@ ColumnlVal)),LTRIM (RTRIM (@ Column2Val)),LTRIM (RTRIM (@ Column3Val))

LTRIM (RTRIM (@ Column4Val)),LTRIM (RTRIM (@ CoIumn5Val)),
LTRIM (RTRIM (@ Column6Val)),
LTRIM (RTRIM (@ Column7 V al)),LTRIM (RTRIM (@ Column8 V al)),
LTRIM (RTRIM (@ CoIumn9Val)),
LTRIM (RTRIM (@ Row Content)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table row. '
SELECT @ Message = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ Message = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ Message = @ M essage + 'E rror occured in Procedure Proc_InsertRow 9.'
SELECT @ Message = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ Message, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END -E n d o f IF @ RowContent LIKE 'TableRow'
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableDefmition9(IDTableVerDef, IDRow, Colum nlV al, Column2Val, Column3Val,
Column4Val, Column5Val, Colum n6Val,Column7V al, Column8Val,
Column9Val, RowContent)

VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ ColumnlVal)),LTRIM(RTRIM(@ Column2Val)),
LTRIM(RTRIM(@ Column3Val)),LTRIM(RTRIM(@ Column4Val)),LTRIM(RTRIM (@ Column5Val)),
LTRIM(RTRIM (@ Column6Val)),LTRIM(RTRIM(@ Column7Val)),LTRIM(RTRIM(@ Column8Val)),
LTRIM (RTRIM (@ Column9Val)),LTRIM (RTRIM (@ RowContent)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'

312

Appendix 5: Product Class Database (PCD) System Code

SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRow9.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END

END - End o f Proc_InsertRow9 Procedure.
GO

1.39 Procedure Name: dbo.proc_InsertRowlO
Database: PCD
Description:
This procedure enables creation of table specification values having 10 columns.

CREATE Procedure p rocInsertR ow 10
/* Param List */
@IDTabIeVerDef
@ColumnValues
@ColIDMeasUnits
@RowContent
@IDProcState
@Message

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = NULL,
NVARCHAR(IOO),
TINYINT OUTPUT,
NVARCHAR(500) O UTPUT

AS
BEGIN

DECLARE
@Error
@IDRow
@NumOfRows
@Columnl Val
@Column2Val
@Column3Val
@Column4Val
@Column5Val
@Column6Val
@Column7Val
@Column8Val
@Column9Val
@ColumnlOVal

INT,
INT,
INT,
NVARCHAR(255),
NVARCHAR(255),
N V ARCH AR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255)

SELECT @IDProcState = 0
SELECT @ ERROR = 0
SELECT @ Message = ' '

SELECT @NumOFRows = COUNT(*) FROM dbo.fn_getColumnValuesTable(@ ColumnValues)
-PR IN T '@ N um O fRow s:' + CAST(@ NumOfRows AS NVARCHAR)
/* The function fn_getColumnValuesTable(@ ColumnValues) should return two rows only * /

IF @NumOfRows != 10
BEGIN

SELECT @ IDProcState = 1
SELECT @ Message = 'An error occured while inserting the table row. '
SELECT @ Message = @ M essage + 'Procedure State ID is: ’ + CAST(@IDProcState AS NVARCHAR) + '
SELECT @ Message = @ M essage + 'E rror occured in Procedure Proc_InsertRowlO.'
SELECT @ Message = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN

END

313

Appendix 5: Product Class Database (PCD) System Code

/■"Create a temporary table and insert the values from the table returned
by the function fn_getColumnValuesTable */

CREATE TABLE #TempTable (Colum nID INT, CoIumnValue NVARCHAR(255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColum nValuesTable(@ Colum nValues)

SELECT @ Columnl Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 1
SELECT @Column2Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 2
SELECT @Column3Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 3
SELECT @Column4Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 4
SELECT @Column5Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 5
SELECT @Column6Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 6
SELECT @Column7Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 7
SELECT @Column8Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 8
SELECT @Column9Val = CoIumnValue FROM #Tem pTable W HERE ColumnID = 9
SELECT @ColumnlOVal = CoIumnValue FROM #Tem pTable W HERE Colum nID = 10

/■"Check whether the row contains column values or colum n specifications
A row can only contain column values or colum n specifications(headers).1"/

IF @RowContent LIKE 'ColVals'
BEGIN

I* Check for the existing rows with sam e ID TableV erD ef to keep track o f the number
o f rows the IDTableV erDef has if the @ RowContent = 'ColumnValues' * /
SELECT @IDRow = MAX(IDRow) FROM TableDefinitionlO W HERE ID TableV erD ef = @ IDTableVerDef
IF @IDRow IS N ULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ ID Row + 1
INSERT INTO TableDefinitionlO(IDTableVerDef, IDRow, C olum nlV al,
Column2Val,Column3Val,Column4Val,
Column5Val, Colum n6Val,Column7V al, Column8Val, Column9Val,ColumnlOVal, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,
LTRIM (RTRIM (@ Column 1 Val)),LTRIM (RTRIM (@ CoIum n2 Val)),
LTRIM (RTRIM (@ Column3Val)),
LTRIM (RTRIM (@ Column4 V al)),LTRIM (RTRIM (@ ColumnS Val)),
LTRIM (RTRIM (@ Column6Val)),
LTRIM (RTRIM (@ Colum n7Val)),LTRIM (RTRIM (@ Colum n8Val)),
LTRIM (RTRIM (@ Column9Val)),
LTRIM (RTRIM (@ Column 1 OV al)),LTRIM (RTRIM (@ Row Content)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .1
SELECT @ M essage = @ M essage + 'Error code is: ' + CAST(@ Error AS NVARCHAR) + '.

SELECT @ M essage = @ M essage + 'Procedure S tate ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. ’
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P rocJnsertR ow lO .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END -E n d o f IF @ RowContent LIKE 'TableRow'
ELSE

BEGIN
SELECT @ IDRow = 0
INSERT INTO TableDefinitionlO(IDTableVerDef, IDRow, C olum nlV al, Column2Val, Column3Val,
Column4Val,
Column5Val, Column6Val,Column7Val, Column8Val,
Column9Val, Column lOVal, RowContent)

314

Appendix 5: Product Class Database (PCD) System Code

VALUES(@IDTableVerDef, @ IDRow, LTRIM (RTRIM (@ Colum nl VaI)),LTRIM(RTRIM(@CoIumn2VaI)),

LTRIM (RTRIM (@ Column3Val)),LTRIM(RTRIM(@ Column4Val)),LTRIM (RTRIM (@ Column5Val)),LTRIM(R
TRIM(@ Column6Val)),LTRIM (RTRIM (@ Column7Val)),LTRIM (RTRIM (@ Column8Val)),
LTRIM(RTRIM(@Column9 Val)),LTRIM (RTRIM (@ Column 1 OVal)),
LTRIM (RTRIM (@ RowContent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRowlO.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END

END -- End of Proc_InsertRow 10 Procedure.
GO

1.40 Procedure Name: dbo.proc_MeasurementUnit_sel
Database: PCD
Description:
This procedure enables selection of measurement unit.

*/

CREATE PROCEDURE proc_MeasurementUnit_sel
@IDMeasUnit BIGINT = NULL,
@OrderBy NVARCHAR(255) = NULL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON

/*
if @IDMeasUnit is null then select all the measurement units.
*/

IF (@IDMeasUnit IS NULL)
BEGIN

SET @SQL = ' SELECT IDMeasUnit, M easUnitNam e, M easUnitDesc
FROM dbo.MeasurementUnit'

END
ELSE
BEGIN

SET @SQL = ' SELECT IDMeasUnit, M easUnitNam e, MeasUnitDesc
FROM dbo.MeasurementUnit W HERE IDM easUnit = @ ID M easU nit'

END

IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @ UpDown
END
EXEC sp executesql @SQL, N '@ IDM easUnit BIGINT',@ IDM easU nit
SELECT @RecordCount = @ @ rowcount
GO

315

Appendix 5: Product Class Database (PCD) System Code

1.41 Procedure Name: dbo.proc_ProductClass_SubProductClass_sel
Database: PCD
Description:
The following procedure selects all the product classes assigned to a product class.
*/

CREATE PROCEDURE proc_ProductClass_SubProductClass_sel
@IDProdClassDef BIGINT = -1,
@OrderBy NVARCHAR(255) = NULL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON

/*
IF @IDProdClassDef = -1, all product classes and sub product classes assigned to them are selected.
*/

IF (@ IDProdClassDef= -1)
BEGIN

SET @SQL = 'SELECT pc.IDProdClass, pc.ProdClassNam e, pcv.IDProdClassDef,
pcl.IDProdClass AS IDSubProdClass, pcl.P rodC lassN am e AS SubProdClassName, pcvl.ID ProdC lassD ef AS
IDSubProdClassDef, pcvl.ID ProdClassV er AS SubProdClassVer
FROM ProductClass pc, ProductClassVersion pcv, ProductClass p c i, productClassVersion pcv l, ProductClassDefmition pcd
WHERE pcv.IDProdClass = pc.IDProdClass AN D
pcvl IDProdClass = pci.IDProdClass AND
pcv.IDProdClassDef = pcd.IDProdClassDef AND
pcvl IDProdClassDef = pcd.IDSubClassDef

END
ELSE
BEGIN

SET @SQL = 'SELECT pc.IDProdClass, pc.ProdClassNam e, pcv.IDProdClassDef,
pcl.IDProdClass AS IDSubProdClass, pcl.P rodC lassN am e AS SubProdClassName, pcvl.ID ProdC lassD ef AS
IDSubProdClassDef, pcvl.ID ProdC lassV er AS SubProdClassVer
FROM ProductClass pc, ProductClassVersion pcv, ProductClass p c i, productClassVersion pcv l, ProductClassDefmition pcd
WHERE pcv.IDProdClass = pc.IDProdClass AND
pcvl .IDProdClass = pci .IDProdClass AND
pcv.IDProdClassDef = pcd.IDProdClassDef AND
pcvl .IDProdClassDef = pcd.IDSubClassDef AND
pcv.IDProdClassDef = @ IDProdClassDef

END

IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @ UpDown
END
EXEC sp_executesql @SQL, N '@ IDProdClassDef B IG IN T',@ ID ProdClassD ef
SELECT @RecordCount = @@rowcount
GO

I*

1.42 Procedure Name: dbo.proc_SpecGroup_ProductClass_sel
Database: PCD
Description:
The following procedure selects all the product classes assigned to a Specification Group.
*/

CREATE PROCEDURE proc_SpecGroup_ProductClass_sel
@IDSpecGroupDef BIGINT,
@OrderBy NVARCHAR(255) = N U LL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON

316

Appendix 5: Product Class Database (PCD) System Code

/*
IF@ IDSpecGroupDef= -1, all the top level product classes assigned to all the specification groups are selected.
*/
IF (@IDSpecGroupDef = -1)
BEGIN

SET @SQL = ' SELECT sgv.IDSpecGroupDef,
sgd. I DProdClassDef,
pcv.IDProdClass,
pcv. IDProdClass Ver,
pcv.ProdClassVerDesc,
pc.ProdClassName,
pc.ProdClassDesc
FROM dbo.SpecificationGroupVersion sgv, dbo.SpecificationGroupDefinition sgd, dbo.ProductClassVersion pcv,
dbo.ProductClass pc
WHERE sgv.IDSpecGroupDef= sgd.ID SpecG roupD ef AND
sgd.IDProdClassDef = pcv.IDProdClassDef AND
pcv.IDProdClass = pc.ID ProdC lass1

END
ELSE
/*
The following sql statement selects all the product classes assigned to a specification group.
*/
BEGIN

SET @SQL = 'SELECT sgv.IDSpecGroupDef,
sgd.IDProdClassDef,
pcv.IDProdClass,
pcv. IDProdClass Ver,
pcv.ProdClassVerDesc,
pc.ProdClassName,
pc.ProdClassDesc
FROM dbo.SpecificationGroupVersion sgv, dbo.SpecificationGroupDefinition sgd, dbo.ProductClassVersion pcv,
dbo.ProductClass pc
WHERE sgv.IDSpecGroupDef = sgd.ID SpecG roupD ef AND
sgd.IDProdClassDef = pcv.IDProdClassDef AND
pcv.IDProdClass = pc.IDProdClass AND
sgv.IDSpecGroupDef = @ ID SpecG roupD ef'

END
IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + ' ' + @ UpDown
END
EXEC sp_executesql @SQL, N '@ IDSpecGroupDef BIGINT',@ IDSpecGroupDef
SELECT @RecordCount = @@rowcount
GO

/*

1.43 Procedure Name: dbo.proc_SpecGroup_SubSpecGroup_seI
Database: PCD
Description:
This procedures selects sub specification groups for a given specification group.

CREATE PROCEDURE proc_SpecGroup_SubSpecGroup_sel
@IDSpecGroupDef BIGINT = NULL,
@OrderBy NVARCHAR(255) = N ULL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
declare @IDSubSpecGroup bigint
declare @SubSpecGroupName nvarchar(255)
declare @IDSubSpecGroupDef bigint
declare @IDSubSpecGroupVer money

select @IDSubSpecGroup = null
select @SubSpecGroupName = null

317

Appendix 5: Product Class Database (PCD) System Code

select @ IDSubSpecGroupDef = null
select @ IDSubSpecGroupVer = null
SET NoCount ON
--The following if block selects top level spec groups having no parent spec groups.
--Top level spec group def are those whose IDs are not listed in ID SubSpecG roupD ef column o f SpecificationGroupDefinition Table.
IF (@IDSpecGroupDef IS NULL)
BEGIN

SET @SQL = 'SELEC T
sg.IDSpecGroup,
sg.SpecGroupName,
~sg. SpecGroupDesc,
sgv. IDSpecGroupDef,
sgv. IDSpecGroup Ver
-sgv.SpecGroupVerDesc
FROM SpecificationGroup sg, SpecificationGroupVersion sgv
WHERE sg.IDSpecGroup = sgv.IDSpecGroup

AND sgv.IDSpecGroupDef NOT IN
(SELECT IDSubSpecGroupDef FROM SpecificationGroupDefinition W HERE IDSubSpecGroupDef IS NOT NULL)'
IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @ SQL + ' ORDER BY ' + @ OrderBy + " + @UpDown
END

EXEC spexecu tesq l @SQL, N"
SELECT @ RecordCount = @ @ rowcount
RETURN

END

--The Following if block selects all the top level specification groups and its sub-spec groups. In the rows selected
- the top level specification groups are those having N ULL value in the last four columns. This is a technique employed
- to distiguish top level spec groups from rest others.

IF(@IDSpecGroupDef = -1)

BEGIN
SET @SQL = 'SELECT sg.IDSpecGroup, sg.SpecGroupName, sgv.IDSpecGroupDef, sgv.IDSpecGroupVer,
sgl.IDSpecGroup AS IDSubSpecGroup, sgl.SpecG roupN am e AS SubSpecGroupName, sgv l. IDSpecGroupDef AS
IDSubSpecGroupDef, sgvl.ID SpecG roupV er AS IDSubSpecGroup Ver
FROM SpecificationGroup sg, SpecificationGroupVersion sgv, SpecificationGroup sg l, SpecificationGroupVersion sgvl,
SpecificationGroupDefinition sgd
WHERE sg.IDSpecGroup = sgv.IDSpecGroup AND
sgl .IDSpecGroup = sgvl .IDSpecGroup AND
sgv.IDSpecGroupDef = sgd.IDSpecGroupDef AND
sgvl IDSpecGroupDef = sgd.IDSubSpecGroupDef AND sgv.ID SpecG roupD ef IN
(SELECT IDSpecGroupDef FROM SpecificationGroupDefinition)'

END
ELSE
BEGIN

/*
The following else block selects the sub specification groups for a given specification group.
*/
SET @SQL = ' SELECT sg.IDSpecGroup, sg.SpecGroupName, sgv.IDSpecGroupDef, sgv.IDSpecGroupVer,
sgl. IDSpecGroup AS IDSubSpecGroup, sgl.SpecG roupN am e AS SubSpecGroupName, sgv l. IDSpecGroupDef AS
IDSubSpecGroupDef, sgvl.ID SpecG roupV er AS IDSubSpecGroup Ver
FROM SpecificationGroup sg, SpecificationGroupVersion sgv, SpecificationGroup sg l , SpecificationGroupVersion sgvl,

SpecificationGroupDefinition sgd
WHERE sg.IDSpecGroup = sgv.IDSpecGroup AND
sgl .IDSpecGroup = sgvl .IDSpecGroup AND
sgv.IDSpecGroupDef = sgd.IDSpecGroupDef AND
sgvl .IDSpecGroupDef = sgd.IDSubSpecGroupDef AND
sgv.IDSpecGroupDef = @ IDSpecGroupDef AND
sgv.IDSpecGroupDef IN
(SELECT IDSpecGroupDef FROM SpecificationGroupDefinition)'

END
IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @ UpDown
END
EXEC sp executesql @SQL, N '@ IDSpecGroupDef BIGINT, @ IDSubSpecGroup BIGINT, @ SubSpecGroupName nvarchar(255),
@IDSubSpecGroupDef bigint, @ IDSubSpecGroupVer money',

318

Appendix 5: Product Class Database (PCD) System Code

@IDSpecGroupDef, @IDSubSpecGroup, @ SubSpecGroupName, @ IDSubSpecGroupDef, @ IDSubSpecGroupVer
SELECT @RecordCount = @@rowcount
GO

/*

1.44 Procedure Name: dbo.proc_SpecName_check
D atab ase: PCD
Description:
T h e fo l lo w in g p ro ced u re c h e c k s w h e th e r th e su p p lie r S p e c N a m e e x is t s in th e S p e c if ic a t io n T a b le .
*/
CREATE PROCEDURE proc_SpecName_check
@SpecName NVARCHAR(255),
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON
BEGIN

SET @SQL = ' SELECT LOW ER(SpecName) FROM dbo.Specification
WHERE SpecName = LOW ER(@ SpecName)'

END
EXEC sp_executesql @SQL, N'@ SpecName NVARCHAR(255)',@ SpecNam e
SELECT @RecordCount = @ @ rowcount
GO

/*
1.45 Procedure Name: dbo.proc_VersionRequest
D atab ase: PCD
Description:
T h is p ro ced u re c o m p u te s th e la te s t v e r s io n o f a p r o d u c t c la s s .
*/
CREATE Procedure proc_VersionRequest
/* Param List */
@IDProductClass BIGINT,
@IDExistingLatestVersion MONEY OUTPUT,
@IDPossibIeNewVersion MONEY OUTPUT,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) OUTPUT
AS
BEGIN

SELECT @IDProcState = 0
SELECT @Message = 'Procedure Successfully Executed.'
-B EG IN TRAN
/♦Check whether the supplied product class exists. I f yes, then get the
existing latest version o f that product class in the database
and compute the possible new version from it. * /
IF EXISTS(SELECT IDProductClass FROM ProductClass W HERE IDProductClass = @IDProductClass)
BEGIN

SELECT @IDExistingLatestVersion = M AX(IDProductClassVersion) FROM ProductClass
W HERE IDProductClass = @ IDProductClass
SELECT @IDPossibleNewVersion = FLOOR(@ IDExistingLatestVersion) + 1

END
ELSE
BEGIN

SELECT @ IDProcState = 1
SELECT @ Message = 'Supplied ID ProductC lass:' + CAST(@ IDProductClass AS NVARCHAR) + ’ does not
ex ists .'
SELECT @ Message = @ M essage + 'E rror occured in procedure Proc_CreateNewProductClassVersion.'
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure is abnormally terminated.'
RAISERROR(@Message, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
END — End o f proc_VersionRequest.
GO

319

Appendix 5: Product Class Database (PCD) System Code

i*

1.46 Procedure Name: dbo.ProductClass_SubProductClass_sel
Database: PCD
Description:
The fo l lo w in g p ro ced u re s e le c t s a ll th e p r o d u c t c la s s e s a s s ig n e d to a p r o d u c t c la s s .
•/

CREATE PROCEDURE ProductClass_SubProductClass_sel
@IDProdC lassDef BIGINT = -1,
@OrderBy NVARCHAR(255) = N ULL,
@UpDown NVARCHAR(255) = 'ASC',
@RecordCount INT OUTPUT
AS
DECLARE @SQL NVARCHAR(4000)
SET NoCount ON

I*
IF @IDProdClassDef = -1, all product classes and sub product classes assigned to them are selected.
♦/

IF (@IDProdClassDef = -1)
BEGIN

SET @SQL = 'SELECT pc.IDProdClass, pc.ProdClassNam e, pcv.IDProdClassDef,
pcl.IDProdClass AS IDSubProdClass, pcl.ProdC lassN am e AS IDSubProdClassName, pcvl.ID ProdC lassD ef AS
IDSubProdC lassDef
FROM ProductClass pc, ProductClassVersion pcv, ProductClass p c i , productClassVersion pcv l, ProductClassDefmition pcd
WHERE pcv.IDProdClass = pc.IDProdClass AND
pcvl .IDProdClass = pci .IDProdClass AND
pcv.IDProdClassDef = pcd.IDProdClassDef AND
pcvl .IDProdClassDef = pcd.IDSubClassDef

END
ELSE
BEGIN

SET @SQL = 'SELECT pc.IDProdClass, pc.ProdClassNam e, pcv.IDProdClassDef,
pcl.IDProdClass AS IDSubProdClass, pcl.ProdC lassN am e AS IDSubProdClassName, pcvl.ID ProdC lassD ef AS

IDSubProdClassDef
FROM ProductClass pc, ProductClassVersion pcv, ProductClass p c i, productClassVersion pcv l, ProductClassDefmition pcd
WHERE pcv.IDProdClass = pc.IDProdClass AND
pcvl.IDProdClass = pcl.ID ProdC lass AND
pcv.IDProdClassDef = pcd.IDProdClassDef AND
pcvl .IDProdClassDef = pcd.IDSubClassDef AND
pcv.IDProdClassDef = @IDProdC lassD ef

END

IF (@OrderBy IS NOT NULL)
BEGIN

SET @SQL = @SQL + ' ORDER BY ' + @ OrderBy + " + @ UpDown
END
EXEC sp_executesql @SQL, N '@ IDProdClassDef B IG IN T',@ ID ProdClassD ef
SELECT @RecordCount = @ @ rowcount
GO

I*
1.47 Procedure Name: dbo.procCreateColumnSpecification
Database: PCD
Description:
T his p ro ced u re e n a b le s c rea tio n o f c o lu m n s p e c i f ic a t io n .
♦/

CREATE Procedure proc_CreateColumnSpecification
@IDTableDefmition BIGINT,
@ColumnSpecs NVARCHAR(4000)
I* Param List */
AS
BEGIN

DECLARE
@ColValue NVARCHAR(500),

320

Appendix 5: Product Class Database (PCD) System Code

@ColNumber INT
SELECT @ ColNumber = NumberOFColumns FROM TableSpecification
WHERE IDTableDefinition = @IDTableDefInition
--SELECT @ ColNumber = @ ColNumber + 1
Declare TableValuesCursor Cursor FOR
select colval from fh_getColumnValuesTable(@ ColumnSpecs)
open Table ValuesCursor
FETCH NEXT FROM TableValuesCursor INTO @ ColValue
WHILE @@FETCH_STATUS = 0

BEGIN
-PR IN T @ColValue
SELECT @ColNumber = @ ColNum ber + 1
INSERT INTO TableDefinition (IDTableDefinition,TableRow,TableColumn,TableValue)
VALUES (@IDTableDefinition, 0, @ ColNum ber, @ ColValue)
FETCH NEXT FROM TableValuesCursor INTO @ ColValue

END
close TableValuesCursor
Deallocate TableValuesCursor
UPDATE TableSpecification SET N um berOfColum ns = @ ColNumber
WHERE IDTableDefinition = @ IDTableDefinition

END
GO

/*

1.48 Procedure Name: dbo.proc_CreateTableRow
Database: PCD
Description:
This procedure enables the creation o f table row for table specification .
*/
CREATE Procedure proc_CreateTableRow
@IDTableDefinition BIGINT,
@ColumnValues NVARCHAR(4000)
I* Param List * /
AS
BEGIN

DECLARE
@NumberOfColumns INT,
@NumberOfRows INT,
@ThisRow INT,
@NumberOfColValsCreated INT,
@ErrorMessage NVARCHAR(255),
@ColValue NVARCHAR(500)
SELECT @NumberOfColumns = N um berOFColum ns FROM TableSpecification
WHERE IDTableDefinition = @ IDTableDefinition
IF @NumberOFColumns = 0
BEGIN

SELECT @ErrorM essage = N o Column Specifications found. Procedure Terminated.'
RAISERROR(@ErrorMessage, 1,1) W ITH SETERROR
RETURN @ @ERROR

END
SELECT @NumberOfColValsCreated = 0
SELECT @NumberOfRows = NumberOfRows FROM TableSpecification
WHERE IDTableDefinition = @ IDTableDefinition
SELECT @ThisRow = @NumberOfRows + 1
Declare TableValuesCursor Cursor FOR
select colval from fn_getColumnValuesTable(@ ColumnValues)
open TableValuesCursor
FETCH NEXT FROM TableValuesCursor INTO @ ColValue
WHILE @@FETCH_STATUS = 0
BEGIN

Print '@ NumOfColValsCreate V a l: ' + CAST(@ NumberOfColValsCreated AS NVARCHAR)
Print '@ NumberOfColumns Val: ' + CAST(@ NumberOFColumns AS NVARCHAR)
IF @ NumberOfColValsCreated < @ NumberOFCoIumns
BEGIN

INSERT INTO TableDefinition (IDTableDefinition,TableRow,TableColumn,TableVaIue)
VALUES (@ IDTableDefinition, @ ThisRow, @ NumberOfColValsCreated + 1, @ColValue)
SELECT @ NumberOfColValsCreated = @ NumberOfCoIVaIsCreated + 1

END

321

Appendix 5: Product Class Database (PCD) System Code

FETCH NEXT FROM TableValuesCursor INTO @ ColValue
END
close TableValuesCursor
Deallocate TableValuesCursor
UPDATE TableSpecification SET NumberOfRows = N um berO fRow s + 1
WHERE IDTableDefinition = @IDTableDefinition
END
GO

/*
1.49 Procedure Name: dbo.sp_DisplayTab!e
D atab ase: P C D

D e s c r ip t io n :
T h is p ro ced u re d isp la y s ta b le s p e c if ic a t io n d ata .
*/
CREATE Procedure sp_DisplayTab!e
@IDTableDefinition BIGINT
/* Param List */
AS
BEGIN

DECLARE
@TableRowNumber INT,
@TableColumnNumber INT,
@TableColumnValues NVARCHAR(500)
SELECT @TableColumnValues = "
DECLARE TableRowsCursor CURSOR FOR
SELECT DISTINCT (TableRow) FROM TableDefinition W H ERE IDTableDefinition = @ IDTableDefinition
open TableRowsCursor
FETCH NEXT FROM TableRowsCursor INTO @ TableRowNum ber
WHILE @@FETCH_STATUS = 0
BEGIN

DECLARE TableColumnsCursor CURSOR FOR
SELECT TableColumn FROM TableDefinition
W HERE IDTableDefinition = @ IDTableDefinition A N D TableRow = @ TableRowNumber
OPEN TableColumnsCursor
FETCH NEXT FROM TableColum nsCursor INTO @ TableColum nNum ber
WHILE @ @ FETCH_STATUS = 0
BEGIN

SELECT @ TableCoIumnValues = @ TableColumn Values + 1 ' +
TableValue FROM TableDefinition
W HERE IDTableDefinition = @ IDTableDefinition

AND TableRow = @ TableRowNum ber
AND TableColumn = @ TableColum nNum ber
FETCH NEXT FROM TableColum nsCursor INTO @ TableColum nNum ber

END
CLOSE TableColumnsCursor
DEALLOCATE TableColumnsCursor
PRINT @TableColumnValues
SELECT @ TableColumnValues = "
FETCH NEXT FROM TableRowsCursor INTO @ TableRowNum ber

END
CLOSE TableRowsCursor
DEALLOCATE TableRowsCursor
END
GO

/*
1.50 Function Name: dbo.fn getColumnValuesTable
D atab ase: P C D

D e s c r ip t io n :
T h is fu n ctio n ex tra c ts c o lu m n v a lu e s fr o m a s tr in g C o lu m n v a lu e s in a s tr in g are d e lim ite d b y '* * ♦ * * ' * /
A fter ex tra ctin g th e c o lu m n v a lu e s th e fu n c t io n in se r ts e a c h in d iv id u a l c o lu m n v a lu e in to th e ta b le and retu rn s

the ta b le to th e c a lle d p ro c e d u r e * /

322

Appendix 5: Product Class Database (PCD) System Code

CREATE FUNCTION dbo.fh getColumnValuesTable
(@ColumnValues NVARCHAR(4000))
RETURNS @ColumnValuesTable TABLE
(

ColumnID INT,
Col Val NVARCHAR(500)

)

AS
BEGIN

DECLARE
@Index INT, /* Keeps the index o f position from where the delimiter starts, ie the starting position o f '*♦***' in
a string */
@DONE TINYINT, /*Acts as a boolean variable. */
@ColumnVal NVARCHAR(500), /*Holds each indiviaual column value * /
@Counter INT

/*The following is executed when the procedure is called with empty string as input parameter */
SELECT @DONE = 0
SELECT @ColumnValues = LTRIM (RTRIM (@ ColumnValues))
IF LEN(@ColumnValues) = 0
BEGIN

SELECT @ DONE = 1
RETURN

END

/* The following is executed when the string contains only one column values */
SELECT @Index = CHARINDEX('###', @ ColumnValues)
IF @Index = 0
BEGIN

SELECT @ColumnVal = @ ColumnValues
SELECT @ColumnVal = LTRIM (RTRIM (@ ColumnVal))
SELECT @Counter = 1
INSERT INTO @ ColumnValuesTable (Colum nID ,ColVal) VALUES (@ Counter, @ColumnValues)
SELECT @DONE = 1
RETURN

END

/* The following loop is executed when there are more than one column values in the string */
SELECT @Counter = 1
WHILE @DONE = 0
BEGIN

SELECT @ Index = CHARINDEX('###', @ CoIumnValues)
SELECT @ColumnVal = LEFT(@ ColumnValues, @ Index - 1)
SELECT @ColumnVal = LTRIM (RTRIM (@ ColumnVal))
IF LEN(@ColumnVal) > 0

INSERT INTO @ Colum nValuesTable (Colum nID,ColVal) VALUES (@ Counter, @ColumnVal)
ELSE

INSERT INTO @ Colum nValuesTable (Colum nID,ColVal) VALUES (@Counter, NULL)
SELECT @Counter = @ Counter + 1
SELECT @ ColumnValues = SUBSTRING(@ ColumnValues, @ Index +3, LEN(@ ColumnValues) - @Index + 2)
SELECT @Column Values = LTRIM (RTRIM (@ ColumnValues))
SELECT @ Index = CHARINDEX('###', @ Colum nValues)
IF @ Index = 0
BEGIN

IF LEN(@ ColumnValues) = 0
BEGIN

SELECT @ DONE = 1
END
ELSE
BEGIN

SELECT @ColumnVal = @ Colum nValues
SELECT @ ColumnVal = LTRIM (RTRIM (@ ColumnVal))
IF LEN(@ ColumnVal) > 0

INSERT INTO @ Colum nValuesTable (ColumnID,ColVal) VALUES (@Counter, @ColumnVal)
ELSE

INSERT INTO @ Colum nValuesTable (ColumnID,ColVal) VALUES (@Counter, NULL)
SELECT @ DONE = 1

END

323

Appendix 5: Product Class Database (PCD) System Code

END
END
RETURN
END

/*
1.51 Function Name: dbo.fn_GetIDEntityPart
D atab ase: P C D

D e s c r ip t io n :
T h is fu n ctio n returns en t ity part fr o m a c o m p le te ID .
*/
CREATE FUNCTION dbo.fn_GetIDEntityPart
(@IDComplete BIGINT)
RETURNS INT
AS
BEGIN

RETURN CAST(SUBSTRING(CAST(@IDComplete AS NVARCHAR), 1, 3) AS INT)
END

/*
1.52 Function Name: dbo.fn_GetIDPart
D atab ase: P C D

D e s c r ip t io n :
T h is fu n c tio n returns ID part fro m a c o m p le te ID .
*/
CREATE FUNCTION dbo.fn_GetIDPart
(@IDComplete BIGINT)
RETURNS BIGINT
AS

BEGIN
DECLARE
@IDCompleteLength TINYINT,
@IDPart NVARCHAR(20)
SELECT @IDCompleteLength = LEN(CAST(@ IDComplete AS NVARCHAR))
SELECT @IDPart = SUBSTRING(CAST(@ IDComplete AS NVARCHAR), 4, @ IDCompleteLength - 3)
RETURN CAST(@IDPart AS BIGINT)

END

/*
1.53 Function Name: dbo.fn_GetNewID
D atab ase: P C D
D e s c r ip t io n :
T h is fu n ctio n g e n e r a te s a n e w ID fo r g iv e n e n t ity s u c h a s p r o d u c t c la s s , s p e c if ic a t io n , e tc .
*/

CREATE FUNCTION dbo.fh_GetNewID
(@IDEntity INT)
RETURNS BIGINT
AS
BEGIN

DECLARE
@IDAvailable BIGINT,
@IDNext BIGINT
SELECT @IDAvailable = IDAvailable FROM Entity W HERE [IDEntity] = @ IDEntity
SELECT @IDNext = dbo.fn_IncrementID(@ IDAvailable, DEFAULT)
-EX ECU TE sp_SetNewID(@IDEntity)
RETURN @IDAvailable

END

/*
1.54 Function Name: dbo.fn_IncrementID
D atab ase: P C D

D e s c r ip t io n :

324

Appendix 5: Product Class Database (PCD) System Code

T h is fu n c tio n in c r e m e n ts ID .
*/
CREATE FUNCTION dbo.fhJncrem entlD
(@IDComplete BIGINT,
@IncrementBy INT = 1)

RETURNS BIGINT
AS
BEGIN

DECLARE
@IDPart BIGINT,
@EntityPart BIGINT
SELECT @IDPart = dbo.fn_GetIDPart(@ IDComplete)
SELECT @EntityPart = dbo.fh_GetIDEntityPart(@ IDComplete)
SELECT @ IDPart = @ IDPart + @ IncrementBy
RETURN CAST(CAST(@ EntityPart AS N VARCHAR) + CAST(@ IDPart AS NVARCHAR) AS BIGINT)

END

/*

1.55 Function Name: dbo.fn_GetNextAvailableID
D atab ase: P C D

D e s c r ip t io n :
T h is fu n ctio n g e n e r a te s n e x t a v a ila b le ID .
* /

CREATE FUNCTION dbo.fh_GetNextAvailableID
(@IDComplete BIGINT)
RETURNS BIGINT
AS
BEGIN

DECLARE
@IDPart BIGINT,
@EntityPart BIGINT
SELECT @IDPart = dbo.GetIDPart(@ IDCompIete)
SELECT @EntityPart = dbo.GetIDEntityPart(@ IDComplete)
SELECT @IDPart = @ IDPart + 1
RETURN CAST(CAST(@EntityPart AS NVARCHAR) + CAST(@ IDPart AS NVARCHAR) AS BIGINT)

END

325

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

Supplier’s Product Class Database (SPCD) System Code
/*
2.1 Procedure Name: dbo.proc_AssignCategory
Database: SupplierPCD
Description:
This procedure enables assigning a category to super category and sub category.
*/
CREATE Procedure proc_AssignCategory
/* Param List * /
@ IDCategory BIGINT,
@ IDSuperCategory BIGINT,
@IDProcState TINYINT O UTPUT,
@Message NV A RCH A R(500) O U TPU T

AS
BEGIN

DECLARE
@Error INT
SELECT @ IDProcState = 0
SELECT @ ERROR = 0

IF NOT EXISTS (SELECT IDCategory, ID SuperC ategory FR O M Category_SuperC ategory
W HERE IDCategory =@ ID C ategory A N D ID SuperC ategory = @ ID SuperC ategory)

BEGIN
INSERT INTO Category_SuperCategory (ID C ategory, ID SuperC ategory)
VALUES (@ IDCategory, @ ID SuperC ategory)
SELECT @ ERROR = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An erro r occured while creating the new C a te g o ry .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure p roc_C reateC ategory .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAJSERRO R(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER RO R

END
END - End o f IF NOT EXISTS...

IF NOT EXISTS (SELECT IDCategory, ID SubC ategory FR O M Category_SubCategory
W HERE IDCategory = @ ID SuperC ategory A N D ID SubCategory = @ ID Category)

BEGIN
INSERT INTO Category SubCategory (ID C ategory, IDSubCategory)
VALUES (@ IDSuperCategory, @ ID C ategory)
SELECT @ ERROR = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured while creating the new category.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_C reateC ategory.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER RO R

END
ELSE
BEGIN

SELECT @ M essage = 'C ategory successfully assigned.'
RETURN

END
END - End o f IF NOT EXISTS.

END — End o f Proc AssignCategory Procedure.
GO

326

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

/*
2.2 Procedure Name: dbo.proc_AssignListSpecification
Database: SupplierPCD
Description:
This procedure enables assigning a list specification to product class or specification group.
*/
CREATE Procedure proc_A ssignListSpecification
/* Param List */
@ IDListDef BIGINT,
@ IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT O U TPU T,
@Message N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@Error INT,
@ IDEntityPart2 INT /*Holds Entity part o f @ ID A ssignToSpecTypeD ef*/

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ IDEntityPart2 = dbo.fn_getID EntityPart(@ ID A ssignToSpecTypeD ef)

/* A List Specification can be assigned to a p roduct class or a specification group */

IF @ IDEntityPart2 N O T IN (105,106)
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'A L ist Specification can only be assigned to a Product Class or a Specification Group.

SELECT @ M essage = @ M essage + T h e supplied specification type to w hich specification group needs to be
assigned to is in v a lid .'
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignListSpecification.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

END

/* Assigning List specification group to a product class*/
/* Assign a list specification to a product class only if it is no t previously assigned.

The following IF N O T EXISTS block checks this. */

IF @IDEntityPart2 = 105
BEGIN

IF NOT EXISTS (SELECT IDProdClassDef, ID L istD ef FRO M ProductClassD efm ition
WHERE IDProdClassDef = @ ID A ssignToSpecT ypeD ef A N D ID L istD ef = @ IDListD ef)
BEGIN

INSERT INTO ProductC lassD efinition(ID ProdC lassD ef, IDListDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ ID ListD ef)
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured while assigning the List Specification to the product

class.'

END
ELSE
BEGIN

SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_AssignListSpecification.
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER RO R

SELECT @ M essage = 'L ist Specification successfully assigned to the Product Class.'
RETURN

END
END - End o f IF NOT EXISTS...

END - End o f IF @ IDEntityPart2 = 105

/*Assigning list specification to a specification G roup */
/* Assign a list specification to a specification group only if it is not previously assigned.

The following IF N O T EXISTS block checks this. */

327

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

IF @ IDEntityPart2 = 106
BEGIN

IF NO T EXISTS (SELECT ID SpecG roupD ef, ID ListD ef FROM SpecificationGroupDefinition
W HERE ID SpecG roupD ef = @ ID A ssignToSpecT ypeD ef A N D ID ListD ef = @ IDListDef)

BEGIN
INSERT INTO SpecificationG roupD efinition(ID SpecG roupD ef, IDListDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ IDListD ef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

R O LLBA CK TR A N
SELECT @ ID ProcState = 3
SELECT @ M essage = 'An error occured while assigning the List Specification to the
specification group .1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + 'Error occured in Procedure
p ro cA ss ig n L is tS p e c ifica tio n .'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETERRO R
R ETU RN @ @ ER R O R

END
ELSE
BEGIN

SELECT @ M essage = 'L ist Specification successfully assigned to the Specification
G roup.'
RETU RN

END
END - End o f IF N O T EXISTS...

END -E n d o f IF @ IDEntityPart2 = 106 */
END - End o f proc_AssignListSpecification Procedure.
GO

/*

2.3 Procedure Name: dbo.proc_AssignProductClass
Database: SupplierPCD
Description:
This procedure enables assigning a (sub) product class to category, product class or specification group.
*/

CREATE Procedure proc_AssignProductClass
/* Param List */
@ IDProdClassDef BIGINT,
@ IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT O U TPU T,
@Message N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT,
@ IDEntityPart2 INT /* Holds Entity part o f @ ID A ssignToSpecTypeD ef*/

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ IDEntityPart2 = dbo.fn_getID EntityPart(@ ID A ssignToSpecTypeD ef)
/* A sub product class can be assigned to a category ,product class or a specification group */

IF @IDEntityPart2 NOT IN (102,105,106)
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'A product class can only be assigned to a Category, Product Class or a Specification
G ro u p .'
SELECT @ M essage = @ M essage + T h e supplied specification type to w hich Product Class needs to be
assigned is in v a lid .'
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignProductC lass.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

END

/* Assigning product class to a product class*/
/* Assign a sub product class to a product class only if it is not previously assigned.

328

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

The following IF NO T EXISTS block checks this. ♦/
IF @ IDEntityPart2 = 105
BEGIN

IF N O T EXISTS (SELECT ID ProdC lassD ef, ID SubC lassD ef FROM ProductClassDefinition
W HERE ID ProdC lassD ef = @ ID A ssignToSpecT ypeD ef AND ID SubClassD ef = @ IDProdClassDef)

BEGIN
INSERT INTO ProductClassD efm ition(ID ProdC lassD ef, IDSubclassDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ IDProdClassDef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TRA N
SELEC T @ ID ProcState = 2
SELEC T @ M essage = 'An error occured while assigning the Subproduct class to the
product c lass.1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
N V A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
p roc_A ssignP roductC lass.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELEC T @ M essage = 'Subproduct class successfully assigned to the product class.'
RETU RN

END
END - End o f IF N O T EXISTS...

END -- End o f IF @ IDEntityPart2 = 105

/♦Assigning product class to a specification G roup ♦/
/♦ Assign a product class to a specification G roup only if it is no t previously assigned.
The following IF NOT EXISTS block checks this. ♦/
IF @ IDEntityPart2 = 106
BEGIN

IF NOT EXISTS (SELECT ID SpecG roupD ef, ID ProdC lassD ef FRO M SpecificationGroupDefinition
W HERE ID SpecG roupD ef = @ ID A ssignToSpecT ypeD ef A N D ID ProdC lassD ef = @ IDProdClassDef)
BEGIN

INSERT INTO SpecificationG roupD efinition(ID SpecG roupD ef, IDProdClassDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ ID ProdC lassD ef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TRA N
SELECT @ ID ProcState = 3
SELECT @ M essage = 'An error occured while assigning the product class to the
specification group.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
N V A R C H A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure
p roc_A ssignP roductC lass.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A IS E R R O R (@ M essage,l,l) W ITH SETERRO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELEC T @ M essage = 'Product class successfully assigned to the specification group.'
RETU RN

END
END - End o f IF N O T EXISTS

END -E n d o f IF @ IDEntityPart2 = 106 */

/♦Assigning product class to a category ♦/
/♦Assigning product class to a specification G roup ♦/
/♦ Assign a product class to a category only if it is no t previously assigned.

The following IF NOT EXISTS block checks this. ♦/

IF @ IDEntityPart2 = 102
BEGIN

IF N O T EXISTS (SELECT ID C ategory, ID ProdC lassD ef FROM Category_ProductClass
W HERE ID Category = @ ID A ssignToSpecTypeD ef AND IDProdClassDef = @ IDProdClassDef)

BEGIN
INSERT INTO Category_ProductClass(ID C ategory, IDProdClassDef)

329

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

VALUES (@ ID A ssignToSpecTypeD ef, @ IDProdClassDef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

R O LLB A C K TRA N
SELEC T @ ID ProcState = 4
SELEC T @ M essage = 'An error occured while assigning the product class to the
category.'
SELEC T @ M essage = @ M essage + 'Error code i s : ' + CA ST(@ Error AS
N V A R C H A R) + '. ’
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure
p roc_A ssignP roductC lass.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETERROR
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELECT @ M essage = P ro d u c t class successfully assigned to the category.'
RETU RN

END
END --End o f IF @ ID EntityPart2 = 102 */

END - End o f IF NO T EXISTS.
END — End o f Proc_AssignProductClass Procedure.
GO

/♦
2.4 Procedure Name: dbo.proc_AssignSpecification
Database: SupplierPCD
Description:
This procedure enables assigning a specification to product class or specification group.
*/

CREATE Procedure proc_AssignSpecification
/* Param List */
@IDSpec BIGINT,
@ IDAssignToSpecTypeDef BIGINT,
@Spec Value N V A R CH A R (4000) = N U LL,
@IDMeasUnit BIGINT = N U LL,
@IDProcState TINYINT O U TPU T,
@Message N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@Error INT,
@ IDEntityPart2 INT /*H olds Entity part o f @ ID A ssignToSpecTypeD ef*/
SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ IDEntityPart2 = dbo.fh_getID EntityPart(@ ID A ssignToSpecTypeD ef)

/* A specification can only be assigned to a product class or a specification group */
IF @IDEntityPart2 NOT IN (105, 106)
BEGIN

SELECT @ M essage = 'A specification can only be assigned to a P roduct C lass o r a Specification G ro u p .'
SELECT @ M essage = @ M essage + T h e supplied specification type to w hich specification needs to be
assigned is in v a lid .'
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignS pecifica tion .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

END
IF @ IDM easUnit IS N O T NU LL
BEGIN
IF @ SpecValue IS NULL

BEGIN
ROLLBACK TRA N
SELECT @ ID ProcState = 4
SELECT @ M essage = 'An error occured while creating the new specification.'
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS
N V A RCH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_CreateNewSpecification.
SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R

330

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

END
GO

/*

RETU RN @ @ ER R O R
END

END
/* Assign Specification to a product class */
/* Assign Specification to a product class only i f it is no t previously assigned.

The follow ing IF N O T EXISTS block checks this. * /
IF @ IDEntityPart2 = 105
BEGIN

IF N O T EXISTS (SELEC T ID ProdC lassD ef, ID Spec FRO M PCDSpecificationValue W HERE
ID ProdC lassD ef = @ ID A ssignT oSpecT ypeD ef A N D ID Spec = @ IDSpec)

BEGIN
IN SERT IN TO PC D SpecificationV alue(ID ProdC lassD ef, IDSpec,Spec Value, IDM easUnit)
V A LU ES(@ ID A ssignToSpecTypeD ef, @ ID Spec, @ SpecV alue, @ IDM easUnit)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TR A N
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured while assigning the specifiction to the product
class.'
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState
AS N V A R C H A R) + ’. '
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
N V A R C H A R) + '. '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure
p roc_A ssignS pecifica tion .'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELEC T @ M essage = 'Specification successfully assigned to the product class.'
RETU RN

END
END - End o f IF N O T EXISTS...

END - End o f IF @ ID EntityPart2 = 105

/* Assign Specification to a specification G roup */
/* Assign Specification to Specification only if it is no t previously assigned.

The following IF N O T EXISTS block checks this. */
IF @IDEntityPart2 = 106
BEGIN

IF N O T EXISTS (SELECT ID SpecG roupD ef, ID Spec FR O M SG D SpecificationV alue W HERE
ID SpecG roupD ef =@ ID A ssignT oSpecT ypeD ef A N D ID Spec = @ IDSpec)

BEGIN
INSERT INTO SG D SpecificationV alue (ID SpecG roupD ef, ID Spec,Spec Value, IDM easUnit)
V A L U ES(@ ID A ssignToSpecTypeD ef, @ ID Spec, @ SpecV alue, @ IDM easUnit)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TR A N
SELECT @ ID ProcState = 2
SELEC T @ M essage = 'An erro r occured while assigning the specifiction to the
specification group.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
p roc_A ssignS pecifica tion .'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELEC T @ M essage = 'Specification successfully assigned to the specification group.'
RETU RN

END
END - End o f IF N O T EX ISTS...

END - End o f IF @ IDEntityPart2 = 106
-- End o f Proc_A ssignSpecification Procedure.

331

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

2.5 Procedure Name: dbo.proc_AssignSpecificationGroup
Database: SupplierPCD
Description:
This procedure enables assigning a (sub) specification group to specification group or product class.
*/

CREATE Procedure proc_AssignSpecificationGroup
/* Param List */
@ IDSpecGroupDef BIGINT,
@ IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT O U TPU T,
@Message N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@Error INT,
@IDEntityPart2 INT /*H olds Entity part o f @ ID A ssignToSpecTypeD ef*/

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ IDEntityPart2 = dbo.fn_getID EntityPart(@ ID A ssignToSpecTypeD ef)
/* A specification group can be assigned to a product class or a specification group */

IF @ IDEntityPart2 N O T IN (105,106)
BEGIN

SELECT @ ID ProcState = 1
SELECT @ M essage = 'A specifiation group can only be assigned to a P roduct Class or a Specification
G ro u p .'
SELECT @ M essage = @ M essage + T h e supplied specification type to w hich specification group needs to be
assigned to is in v a lid .'
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignSpecificationG roup.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnormally. '
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END

/* Assigning specification group to a product class*/
/* Assign specification group to a product class only i f it is not previously assigned.

The following IF NO T EXISTS block checks this. */
IF @ IDEntityPart2 = 105
BEGIN
IF NOT EXISTS (SELECT ID ProdC lassD ef, ID S pecG roupD ef FRO M ProductClassD efm ition

W HERE ID ProdC lassD ef = @ ID A ssignToSpecT ypeD ef A N D ID SpecG roupD ef=
@IDSpecGroupDef)

BEGIN
INSERT INTO ProductC lassD efinition(ID ProdC lassD ef, IDSpecGroupDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ ID SpecG roupD ef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRA N
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An erro r occured while assigning the specification group to the
product class.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
proc_A ssignSpecifica tionG roup.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETERROR
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELECT @ M essage = 'Specification group successfully assigned to the Product Class.'
RETU RN

END
END - End o f IF N O T EXISTS...

END - End o f IF @ IDEntityPart2 = 105

/♦Assigning sub specification group to a specification G roup */
/* Assign sub specification group to a specification group only i f it is not previously assigned.

The following IF N O T EXISTS block checks this. */

332

Appendix 5: Supplier's Product Class Database (SPCD) System Code

IF @ IDEntityPart2 = 106
BEGIN
IF NOT EXISTS (SELECT ID SpecG roupD ef, ID SubSpecG roupD ef FRO M SpecificationGroupDefinition
W HERE ID SpecG roupD ef= @ ID A ssignToSpecT ypeD ef A N D ID SubSpecG roupD ef= @ IDSpecGroupDef)
BEGIN

INSERT INTO SpecificationG roupD efm ition(ID SpecG roupD ef, IDSubSpecGroupDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ ID SpecG roupD ef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRA N
SELECT @ ID ProcState = 3
SELECT @ M essage = 'An error occured while assigning the specification group to the
specification group.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS N V ARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_AssignSpecificationGroup.

SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R
END
ELSE
BEGIN

SELEC T @ M essage = 'Specification group successfully assigned to the Specification
G roup.'
R ETU RN

END
END - End o f IF N O T EX ISTS...

END -E n d o f IF @ ID EntityPart2 = 106 */
END - End o f Proc_AssignSpecificationGroup Procedure.
GO

/*
2.6 Procedure Name: dbo.proc_AssignTableSpecification
Database: SupplierPCD
Description:
This procedure enables assigning a table specification to product class or specification group.
*/
CREATE Procedure proc_AssignTableSpecification
/* Param List */
@ IDTableVerDef BIGINT,
@ IDAssignToSpecTypeDef BIGINT,
@IDProcState TINYINT O U TPU T,
@Message N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT,
@ IDEntityPart2 INT /*H olds Entity part o f @ ID A ssignT oS pecT ypeD ef /

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ IDEntityPart2 = dbo.fn_getID EntityPart(@ ID A ssignToSpecTypeD ef)

/* A Table specification can be assigned to a product class or a specification group */

IF @ IDEntityPart2 NOT IN (105,106)
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'A Table Specification can only be assigned to a Product Class or a Specification
G ro u p .'
SELECT @ M essage = @ M essage + T h e supplied specification type to which specification group needs to be
assigned to is in v a lid .'
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignTableSpecification.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERRO R

END

/* Assigning Table specification to a product class*/

333

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

/* Assign a table specification to a p roduct class only i f it is not previously assigned.
The following IF N O T EXISTS block checks this. */

IF @ IDEntityPart2 = 105
BEGIN

IF N O T EXISTS (SELECT ID ProdC lassD ef, ID TableV erD ef FROM ProductClassDefinition
W HERE ID ProdC lassD ef = @ ID A ssignToSpecT ypeD ef AND ID TableV erD ef = @ IDTableVerDef)
BEGIN

INSERT IN TO ProductC lassD efinition(ID ProdC lassD ef, IDTableVerDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ IDTableVerDef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TR A N
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured while assigning the table specification to the
product class.'
SELECT @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS
N V A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
proc_A ssignT ableSpecification .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETERRO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELECT @ M essage = T ab le Specification successfully assigned to the Product Class.
RETU RN

END
END - End o f IF N O T EXISTS...

END — End o f IF @ IDEntityPart2 = 1 0 5

/* Assigning Table Specification to a specification G roup */
/* Assign a table specification to a product class on ly i f it is no t previously assigned.

The following IF N O T EXISTS block checks this. */

IF @ IDEntityPart2 = 1 0 6
BEGIN

IF NOT EXISTS (SELECT ID SpecG roupD ef, ID T ableV erD ef FROM SpecificationGroupDefinition
W HERE ID SpecG roupD ef = @ ID A ssignToSpecT ypeD ef A N D ID TableV erD ef = @ IDTableVerDef)

BEGIN
INSERT INTO SpecificationG roupD efinition(ID SpecG roupD ef, IDTableVerDef)
VALUES (@ ID A ssignToSpecTypeD ef, @ ID TableV erD ef)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRA N
SELECT @ ID ProcState = 3
SELEC T @ M essage = 'An error occured while assigning the table specification to the
specification group.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS
NV A R CH A R) + '. ’
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
proc_A ssignT ableSpecification .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELECT @ M essage = T ab le Specification successfully assigned to the Specification
G roup.'
RETURN

END
END - End o f IF N O T EXISTS...

END -E n d o f IF @ IDEntityPart2 = 106 */
END - End o f proc AssignTableSpecification Procedure.
GO

/*

334

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

2.7 Procedure Name: dbo.proc_CreateCategory
Database: SupplierPCD
Description:
This procedure enables creation of a category.
♦/

CREATE Procedure proc_CreateCategory
/♦ Param List ♦/
@IDCategory BIGINT,
@CategoryName N V A R CH A R (255),
@ IDSuperCategory BIGINT = N U LL,
@CategoryDesc N V A R CH A R (4000) = N U LL,
@IDProcState TIN Y IN T O U TPU T,
@Message N V A RCH A R (500) O U TPU T

AS
BEGIN

DECLARE
@Error INT
SELECT @ IDProcState = 0
SELECT @ ERROR = 0
BEGIN TRAN

/♦Create the Category by inserting values into the Category table ♦/
/♦
If the Category already exists in the Supplier PCD D atabase then we do not need
to perform the follow ing insert operation.
♦/
IF NOT EXISTS (SELECT ID Category FRO M C atagory W H ERE ID Category = @ IDCategory)
BEGIN

INSERT INTO C ategory(ID Category, C ategoryN am e, CategoryD esc)
VALUES (@ IDCategory, L TR IM (R TR IM (@ C ategoryN am e)), LTRIM (RTRIM (@ CategoryDesc)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured while creating the new category.1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + '.
SELECT @ M essage = @ M essage + 'Procedure State ID is: ’ + CAST(@ IDProcState AS
N V A RCH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_C reateC ategory .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER RO R

END
END - END o f IF NO T EXISTS...
/♦ Now insert values into the CategoryH ierarchy table to m aintain category hierarchy. ♦/

/♦IF @ SuperCategory is null then a category is top level category and the ID SuperC ategory
value for the category is 0. It also has no sub category. ♦/

IF @ IDSuperCategory IS NULL
BEGIN

SELECT @ M essage = 'C ategory successfully C re a te d .'
SELECT @ M essage = @ M essage + 'C ategory ID i s : ' + C A ST(@ ID C ategory AS NVARCHAR) + '.'
COM M IT TRAN
RETURN

END
ELSE
BEGIN

/♦ If a category has a super category then the category is also a sub category
o f that super category. In this case tw o inserts are required. F irst to create a
category and its super category and second to create a supercategory and its sub category
For this we call proc_A ssignCategory. ♦/

EXEC proc_AssignCategory
@ IDCategory = @ ID Category,
@ IDSuperCategory = @ ID SuperC ategory,
@ IDProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from Proc_AssignCategory.'

335

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

R A ISER RO R(@ M essage, 1,1) W ITH SETERROR
RETU RN @ @ ER RO R

END
ELSE
BEGIN

SELECT @ M essage = 'C ategory successfully D ow nloaded .'
SELECT @ M essage = @ M essage + 'Category ID i s : ' + CAST(@ IDCategory AS NVARCHAR)
+ ' . '

COM M IT TRAN
RETURN

END
END

END - End o f Proc_CreateCategory Procedure.
GO

/*

2.8 Procedure Name: dbo.proc_CreateNewListSpecification
Database: SupplierPCD
Description:
This procedure enables creation of a new list specification.
*/
CREATE Procedure proc_CreateNewListSpecification
/* Param List */
@IDList BIGINT,
@IDListVer M ONEY,
@ IDListDef BIGINT,
@ListName N V A R CH A R(255),
@ListDesc N V A R CH A R (4000) = N U LL,
@ListVerDesc N V A R CH A R (4000) = N U LL,
@ListVaIues N V A R CH A R (4000),
@ListIDMeasUnits N V A R CH A R (4000) = N U LL,
@ lDAssignToSpecTypeDef BIGINT = N U L L ,
@IDProcState TINYINT O U TPU T,
@Message N V A RCH A R (500) O U TPU T

AS
BEGIN

DECLARE
@Error INT,
@ NewListVersion NV A R CH A R (5)
SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ NewListVersion = N o '
BEGIN TRAN

/♦Create a List specification in the Supplier PCD database
by inserting values into L istSpecification, L ist version

tables. The order in which the values are inserted into the
table should be maintained. First values should be inserted into the ListSpecification table
then into ListVersion table because ID List in L istV ersion table
references IDList in ListSpecification.*/

/*
If the list specification already exists in the Supplier PC D D atabase then we do not need
to perform the follow ing insert operation.
*/
IF NOT EXISTS(SELECT ID List FROM ListSpecification W H ERE ID List = @ IDList)
BEGIN

INSERT INTO L istSpecification(ID List, L istN am e.ListD esc)
VALUES (@ IDList, LTR IM (R TR IM (@ ListN am e)), L TR IM (R TR IM (@ ListD esc)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An erro r occured while creating the new list specification.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
p roc_C reateN ew L istSpecification .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'

336

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

R A lSERR O R(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ER RO R

END
END - End o f IF NO T EXISTS...

IF NOT EXISTS(SELECT ID ListD ef FR O M ListV ersion W H ERE ID ListD ef = @ IDListDef)
BEGIN

SELECT @ N ew ListV ersion = 'Yes'
INSERT INTO ListV ersion(ID List, ID ListV er, ID ListD ef, L istVerDesc)
V A LU ES(@ ID List,@ ID ListV er,@ ID ListD ef, L TR IM (R TR IM (@ ListV erD esc)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured while creating the new list specification.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V ARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
proc_C reateN ew L istSpecification .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERRO R

END
END ~ End o f IF N O T EXISTS...

/* Now assign the list specification. The follow ing procedure is called for
assigning the list specification. A list specification can be assigned
to a product class or specification group. */

IF @ IDAssignToSpecTypeDef IS N O T N U LL
BEGIN

EXEC proc_AssignListSpecification
@ ID ListD ef = @ ID ListD ef,
@ ID A ssignToSpecTypeD ef = @ ID A ssignToSpecTypeD ef,
@ IDProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his Procedure w as called from
Proc_CreateN ew ListSpecification.'
RA ISERRO R(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER RO R

END
END

/* Now insert values in the ListDefiniton Table. For this we call proc_InsertListV alues
procedure */
/*
I f the list specification definition already exists in the Supplier PC D D atabase then we do not need

to perform the follow ing insert list values operation. W e check this w ith the value o f
@ NewListVersion variable. I f @ N ew ListV ersion is 'Yes' then it indicates that the list
version is being downloaded for the first tim e in the Supplier PC D therefore the
proc_InsertValues needs to be called.

*/
- IF NOT EXISTS(SELECT ID ListD ef FROM ListV ersion W H ERE ID L istD ef = @ IDListDef)
IF @ NewListVersion = 'Yes'
BEGIN

EXEC dbo.proc_InsertListValues
@ ID ListD ef = @ ID ListD ef,
@ ListValues = @ ListV alues,
@ ListIDM easUnits = @ ListID M easU nits,
@ M essage = @ M essage O U TPU T,
@ IDProcState = @ ID ProcState O U TPU T

IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_C reateN ew ListSpecification.'
R A ISER RO R (@ M essage, 1,1) W ITH SETERROR

337

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

RETURN @ @ ER RO R
END
ELSE
BEGIN

/* If everything goes w ell until this point it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. */
COM M IT TRAN
SELECT @ M essage = 'L ist Specification C reated Successfully. L ist Specification ID i s : ' +
CA ST(@ ID List AS N V A R C H A R) + '
SELECT @ M essage = @ M essage + 'L ist Specification Version i s : ' + CAST(@ IDListVer AS
NVARCHAR) + '. '
RETURN

END
END - End o f IF N O T EXISTS...
ELSE
BEGIN

/* If everything goes w ell until this poin t it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. */
COM M IT TRAN
SELECT @ M essage = 'L ist Specification dow nloaded Successfully. List Specification ID i s : ' +
CA ST(@ ID List AS N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'L ist Specification V ersion i s : ' + CAST(@ IDListVer AS
N V ARCHAR) + '. ’
RETURN

END -E n d o f ELSE.
END -- End o f proc_CreateNewListSpecification Procedure.

/*

2.9 Procedure Name: dbo.proc_CreateNewProductClass
Database: SupplierPCD
Description:
This procedure enables creation of a new product class.
*/

CREATE Procedure proc_CreateNewProductClass
/* Param List */
@IDProdClass BIGINT,
@ IDProdClassVer M O N E Y ,
@ IDProdClassDef BIGINT,
@ProdClassName NVARCHAR(255),
@ProdClassDesc N VARCHAR(4000) = N U LL,
@ProdClassVerDesc N V A RCH A R(4000) = N U LL,
@ IDAssignToSpecTypeDef BIGINT = N U L L ,
@IDProcState TINYINT OUTPUT,
@Message NVARCHAR(500) O UTPUT

AS
BEGIN

DECLARE
@Error INT
SELECT @ IDProcState = 0
SELECT @ ERROR = 0

BEGIN TRAN

/♦Create a product class in the Supplier PCD D atabase by inserting values into ProductClass, product class version
and CategoryJProductClass tables. The order in w hich the values are inserted into the
table should be maintained. First values should be inserted into the ProductClass table
then into ProductClassVersion table because ID ProdClass in ProductClassV ersion table
references IDProdClass in ProductClass. F inally the product class should be assigned.
A product class can be assigned to a product class, category or specification group.
For assigning the product class w e call proc_A ssignProductclass procedure.*/

/*
If the product class already exists in the Supplier PCD Database then we do not need
to perform the follow ing insert operation.
*/
IF NOT EXISTS(SELECT IDProdClass FR O M ProductClass W HERE IDProdClass = @ IDProdClass)
BEGIN

INSERT INTO ProductClass(ID ProdClass, ProdClassName,ProdClassDesc)
VALUES (@ IDProdClass, LTRIM (RTRIM (@ ProdClassN am e)), LTRIM (RTRIM (@ ProdClassDesc)))
SELECT @ Error = @ @ ER R O R
IF @ Error != 0

338

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

BEGIN
ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured while creating the new product class.'
SELECT © M essage = © M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + P rocedure State ID i s : ' + CAST(@ IDProcState AS
N V A RCH A R) + '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_CreateN ew ProductCIass.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER R O R

END
END - End IF N O T EXISTS...

/*
If the product class version already exists in the Supplier PCD D atabase then we do not need
to perform the follow ing insert operation.
*/
IF NOT EXISTS(SELECT ID ProdC lassD ef FRO M ProductC lassV ersion W H ERE ID ProdC lassD ef=

@IDProdClassDef)
BEGIN

INSERT INTO ProductClassV ersion(ID ProdClass, ID ProdC lassV er, IDProdClassDef, ProdClassVerDesc)
V A LU ES(@ ID ProdClass,@ ID ProdC lassV er,@ ID ProdClassD ef, LTR IM (R TR IM (@ ProdC lassV erD esc)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured w hile creating the new product class.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS N V ARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NV A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_C reateN ew ProductC lass.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
END - End IF NOT EXISTS...
/* Assigning product class */

EXEC proc_AssignProductClass
@ IDProdClassDef = @ ID ProdC lassD ef,
@ IDAssignToSpecTypeDef = @ ID A ssignToSpecTypeD ef,

@IDProcState = @ ID ProcState O U TPU T,
@Message = @ M essage O U TPU T
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his Procedure w as called from proc_CreateNewProductClass.'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

/* If everything goes well until this po in t it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. */

COM M IT TRAN
SELECT @ M essage = P ro d u c t C lass D ow nloaded Successfully. Product Class ID is: ’ +
CAST(@ IDProdClass AS N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + 'P roduct C lass V ersion i s : ' + CA ST(@ IDProdClassVer AS
NVARCHAR) + ' . '
RETURN

END
END - End o f Proc CreateNewProductClass Procedure.
GO

339

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

2.10 Procedure Name: dbo.procCreateNewSpecification
Database: SupplierPCD
Description:
This procedure enables creation of a new specification.
*/

CREATE Procedure proc_CreateNewSpecification
/* Param List * /
@IDSpec BIGINT,
@SpecName NV A R CH A R (255),
@SpecDesc N V A R CH A R(4000) = N U LL,
@SpecValue N V A R CH A R (4000) = N U LL,
@ IDMeasUnit BIGINT = N U LL,
@ IDAssignToSpecTypeDef BIGINT = N U L L ,
@!DProcState TINYINT O U TPU T,
@Message N V A R CH A R(500) O U TPU T

AS
BEGIN

DECLARE
@Error INT,
@ !DEntityPart BIGINT
SELECT @ IDProcState = 0
SELECT @ ERROR = 0

BEGIN TRAN

/♦Create the Specification by inserting values into the Specification table * /
/*
I f the Specification already exists in the Supplier PCD D atabase then we do not need
to perform the follow ing insert operation.
*/
IF NOT EXISTS(SELECT ID Spec FRO M Specification W H ER E ID Spec = @ IDSpec)
BEGIN

INSERT INTO Specification(ID Spec, SpecN am e, SpecD esc)
VALUES
(@ IDSpec, L TR IM (R TR IM (@ SpecN am e», LTRIM (R TRIM (@ SpecD esc)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile creating the new specification.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A RCH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_CreateNewSpecification.
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER RO R(@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER RO R

END
END - End o f IF N O T EXISTS...

/* Now assign the specification to Specfication D efinition under w hich it w as created.
We call the following procedure for assigning specification.
*/

IF @ IDAssignToSpecTypeDef IS NU LL
BEGIN

COM M IT TRAN
SELECT @ M essage = 'Specification C reated Successfully. Specification ID i s : ' +
CAST(@ IDSpec AS N V A R C H A R) + ’. '

RETURN
END
ELSE
BEGIN

EXEC proc_AssignSpecification
@ IDSpec = @ ID Spec,
@ ID A ssignToSpecTypeD ef = @ ID A ssignToSpecTypeD ef,
@ SpecValue = @ SpecV alue,
@ IDM easUnit = @ ID M easU nit,

@ IDProcState = @ ID ProcState O U TPU T,

340

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

@ M essage = @ M essage O UTPUT
IF @ ID ProcState != 0
BEGIN

ROLLBACK TR A N
SELECT @ M essage = @ M essage + 1 This Procedure w as called from
proc_CaH A ssignSpecification.'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

CO M M IT TRA N
SELECT @ M essage = 'Specification D ow nloaded Successfully. Specification ID i s : ' +
CA ST(@ ID Spec AS N V A R C H A R) + '
RETU RN

END
END -- End o f IF @ ID EntityPart = 106

END — End o f Proc_CreateNewSpecification Procedure.

/*

2.11 Procedure Name: dbo.proc_CreateNewSpecificationGroup
Database: SuppIierPCD
Description:
This procedure enables creation of a new specification group.
*/
CREATE Procedure proc_CreateN ew SpecificationG roup
/* Param List */
@IDSpecGroup BIG IN T,
@IDSpecGroupVer M O N EY ,
@ IDSpecGroupDef BIGINT,
@SpecGroupName N V A R CH A R (255),
@SpecGroupDesc N V A R C H A R (4000) = N U L L,
@SpecGroupVerDesc N V A R C H A R (4000) = N U L L,
@ IDAssignToSpecTypeDef BIG IN T = N U LL,
@IDProcState TIN Y IN T O U TPU T,
@Message N V A R C H A R (500) O U T PU T

AS
BEGIN

BEGIN TRAN
DECLARE
--© ID SpecG roupD ef BIG IN T,
@ Error INT,
@ IDEntityPart INT

SELECT @ IDProcState = 0
SELECT @ ERROR = 0

/♦Create a specification group in the Supplier PC D by inserting values into SpecificationG roup and
SpecificationGroupVersion tables. T he order in w hich the values are inserted into the

table should be m aintained. First values should be inserted into the SpecificationG roup table
then into SpecificationG roupV ersion table because ID SpecG roup in SpecificaitionG roupV ersion table
references IDSpecGroup in SpecificationG roup tab le .* /

/♦
If the specification group already exists in the S upplier PCD D atabase then w e do not need
to perform the follow ing insert operation.
*/
IF NOT EXISTS(SELECT ID SpecG roup FRO M SpecificationG roup W H E R E ID SpecG roup = @ IDSpecGroup)
BEGIN

INSERT INTO SpecificationG roup (ID SpecG roup, SpecG roupN am e, SpecG roupD esc)
VALUES (@ ID SpecG roup, L TR IM (R TR IM (@ SpecG roupN am e)), L TR IM (R TR IM (@ SpecG roupD esc»)
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TRA N
SELECT @ ID ProcState = 1
SELEC T @ M essage = 'An e rro r occured while creating the new specification g ro u p .'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + '. ’
SELECT © M essag e = © M essag e + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A R CH A R) + '. '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure
p roc_C reateN ew S pecificationG roup .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'

341

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

R A ISER RO R (@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ER R O R

END
END - End o f IF N O T EXISTS...

/*
If the specification group version already exists in the Supplier PCD D atabase then we do not need
to perform the follow ing insert operation.
*/

IF NOT EXISTS(SELECT ID SpecG roupD ef FR O M SpecificationG roupV ersion W HERE ID SpecG roupD ef=
@ IDSpecGroupDef)
BEGIN

INSERT INTO SpecificationG roupV ersion (ID SpecG roup, ID SpecG roupV er, IDSpecGroupDef,
SpecGroupVerDesc)
VALUES (@ IDSpecG roup, @ ID SpecG roupV er, @ ID SpecG roupD ef,
LTR IM (RTRIM (@ SpecG roupV erD esc)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured while creating the new specification g ro u p .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NV A R CH A R) + ’. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
proc C reateN ew SpecificationG roup.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER RO R

END
END -E n d o f IF N O T EXISTS...
/* Now assign the specification group. The follow ing procedure is called for

assigning the specification group */

IF @ IDAssignToSpecTypeDef IS N O T N U LL
BEGIN

EXEC proc_A ssignSpecificationG roup
@ ID SpecG roupD ef = @ ID SpecG roupD ef,
@ ID A ssignToSpecTypeD ef = @ ID A ssignToSpecTypeD ef,
@ IDProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure w as called from
proc_CreateN ew SpecificationG roup.'
R A ISER RO R (@ M essage, 1,1) W ITH SETERRO R
RETURN @ @ ER RO R

END
END
COMMIT TRAN
SELECT @ M essage = 'Specification group dow nloaded Successfully. Specification Group ID i s : ' +
CAST(@ IDSpecGroup AS N V A RCH A R) + ' . '
SELECT @ M essage = @ M essage + 'Specification G roup V ersion i s : ' + CA ST(@ ID SpecG roupV er AS NVARCHAR) +

RETURN
END - End o f Proc CreateNewSpecificationGroup Procedure.
GO

/*
2.12 Procedure Name: dbo.proc_CreateNewTableSpecification
Database: SupplierPCD
Description:
This procedure enables creation of a new table specification.
*/
CREATE Procedure proc_CreateNewTableSpecification
I* Param List */
@IDTableSpec BIGINT,
@IDTableSpecVer MONEY,
@IDTableVerDef BIGINT,
@TableSpecName N V ARCHAR(255),
@NumOfRows INT = NULL,

342

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

@NumOfColumns
@Column Values
@ColIDMeasUnits
@RowContent
@TableSpecDesc
@T ableSpec VerDesc
@ID AssignT oSpecT ypeD ef
@IDProcState
@Message

INT,
NV A R CH A R (4000),
NV A R CH A R (4000) = N U LL,
NVARCHAR(IOO),
NV A R CH A R (4000) = N U LL,
NV A R CH A R (4000) = N U LL,
BIGINT = N U LL,
TINYINT O U TPU T,
N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@Error INT,
@NewTable Version N V A R CH A R (5)
SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ NewTable Version = N o 1
BEGIN TRAN

/♦Create the table specification in the Supplier PCD by inserting
values into TableSpecification and Table V ersion
tables. The order in which the values are inserted into the table should be maintained.
First values should be inserted into the TableSpecification table
then into the Table Version table because ID TableSpec in Table V ersion table
references IDTableSpec in TableSpecification. */

/*
I f the Table Specification already exists in the Supplier PCD D atabase then w e do no t need
to perform the follow ing insert operation.
*/
IF NOT EXISTS(SELECT ID TableSpec FR O M TableSpecification W H ER E ID TableSpec = @ IDTableSpec)
BEGIN

INSERT INTO TableSpecification(ID TableSpec, TableSpecN am e, TableSpecD esc)
VALUES (@ IDTableSpec, L TR IM (R TR IM (@ TableSpecN am e)), LTRJM (RTRIM (@ TableSpecD esc)))

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRA N
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile creating the new table specifica tion .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NV A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS
N V A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure
proc_C reateN ew T ableSpecification .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ER R O R

END
END - End o f IF N O T EXISTS...
/*
If the Table Specification version already exists in the Supplier PCD D atabase then
we do not need to perform the follow ing insert operation.

IF NOT EXISTS(SELECT ID TableV erD ef FRO M T able V ersion W H ERE ID TableV erD ef = @ IDTableVerDef)
BEGIN

SELECT @ N ew TableV ersion = 'Yes'
INSERT INTO TableV ersion(ID TableSpec, ID TableSpecV er, ID TableV erD ef,
Num OfRows, N um O fColum ns, Table V erD esc)
V A LU ES(@ ID TableSpec,@ ID TableSpecV er,@ ID TableV erD ef,@ N um O fR ow s,@ N um O fC olum ns,
L TR IM (R TR IM (@ TableSpecV erD esc)))
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRA N
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An erro r occured w hile creating the new table specification.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + '. ’
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NV A RCH A R) + ’. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure

*/

proc_CreateNewTableSpecification.'

343

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

SELEC T @ M essage - @ M essage + 'Procedure is term inated ab n o rm a lly .1
R A lSE R R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
EN D - End o f IF N O T EXISTS...

/* Assign the table specification by calling the fo llow ing procedure */
/* A Table specification can be assigned to a p roduct class o r a specification group * /
IF @ ID A ssignToSpecTypeD ef IS N O T N U LL
BEGIN

EXEC proc_A ssignTableSpecification
@ IDT able V erD ef = @ ID T ableV erD ef,
@ IDAssignT oSpecT ypeD ef = @ ID A ssignT oS pecT ypeD ef,
@ ID ProcState = @ ID ProcS tate O U T PU T ,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TR A N
SELEC T @ M essage = @ M essage + ' T his P rocedure w as called from
p roc_C reateN ew T ableSpecification .1
R A ISER R O R (@ M essage, 1,1) W ITH SE T E R R O R
RETU RN @ @ ER R O R

END
END

/* N ow check how many colum ns are supplied by the user. A ccord ing ly invoke the procedure
that handle that many colum ns */
/*
If the table version definition already exists in the Supplier PC D D atabase then w e do no t need

to invoke any o f the Proc_InsertRow operations.
The follow ing if block checks this. I f the dow nloaded table V ersion is n o t a new one
then any o f the follow ing Proc InsertRow procedures are no t invoked.
*/

IF @ N ew Table Version = N o '
BEGIN

CO M M IT TRAN
SELECT @ M essage = T ab le Specification D ow nloaded S uccessfu lly . T able Specification ID i s : ' +
C A ST(@ ID TableSpec AS N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + T a b le S pecification V ersion is: ' + C A S T (@ ID T ableSpecV er AS
N V ARCHAR) + '. '
RETURN

END

IF @ Num O FColum ns = 2
BEGIN

EXEC proc_InsertRow2
@ ID TableV erD ef= @ ID TableV erD ef,
@ Colum nV alues = @ C olum nV alues,
@ ColID M easU nits = @ C olID M easU nits,
@ Row C ontent = @ R ow C ontent,
@ IDProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T h is P rocedure w as called from
proc_C reateN ew T ableSpecification.'
RA ISER R O R (@ M essage, 1,1) W ITH S E T E R R O R
RETURN @ @ ER R O R

END
ELSE
BEGIN

CO M M IT TRAN
SELECT @ M essage = T ab le S pecification C reated Successfu lly . T able Specification ID is: ' +
CA ST(@ ID TableSpec AS N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + T a b le S pecification V ersion is: ' + CAST(@ IDTableSpecVer
AS N V A R C H A R) + '. '
RETURN

END
END

IF @ Num O FColum ns = 3
BEGIN

EXEC proc_InsertRow 3

344

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

@ ID TableV erD ef= @ ID TableV erD ef,
@ ColumnValues = @ Colum nV alues,
@ ColIDM easUnits = @ ColID M easU nits,
@ RowContent = @ RowContent,
@ IDProcState = @ IDProcState O U TPU T,
@Message = @ M essage O U TPU T
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpec ification.'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETURN @ @ ERROR

END
ELSE
BEGIN

COM MIT TRAN
SELECT @ Message = T ab le Specification C reated Successfully. Table Specification ID is: ’ +
CAST(@ IDTableSpec AS N V A R C H A R) + ’
SELECT @ Message = @ M essage + T ab le Specification Version i s : ' + CAST(@ IDTableSpecVer
AS NVARCHAR) + '
RETURN

END
END

IF @ Num OFColum ns = 4
BEGIN

EXEC proc_InsertRow4
@ IDT able V erD ef = @IDTableVerDef,
@ ColumnValues = @ ColumnValues,
@ ColIDM easUnits = @ ColIDM easUnits,
@ RowContent = @ RowContent,
@ IDProcState = @IDProcState OUTPUT,
@ M essage = @Message OUTPUT
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ Message = @ M essage + ' This Procedure w as called from
proc_CreateNewTableSpecification.1
RAISERROR(@ Message, 1,1) W ITH SETERRO R
RETURN @@ERROR

END
ELSE
BEGIN

COMMIT TRAN
SELECT @Message = T able Specification Created Successfully. Table Specification ID i s :1 +
CAST(@ IDTableSpec AS N V A RCH A R) + ' . '
SELECT @ Message = @ M essage + T ab le Specification V ersion i s : ' + CAST(@ IDTableSpecVer
AS NVARCHAR) + ' . '
RETURN

END
END

IF @ NumOFCoIumns = 5
BEGIN

EXEC proc_InsertRow5
@IDT able V erD ef = @ IDTableVerDef,
@ColumnValues = @ ColumnValues,
@ColIDMeasUnits = @ ColIDM easUnits,
@ RowContent = @ RowContent,
@ IDProcState = @ IDProcState OUTPUT,
@ Message = @ M essage OUTPUT
IF @IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateNewTableSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

END
ELSE
BEGIN

COM M IT TRAN
SELECT @ M essage = T able Specification C reated Successfully. Table Specification ID is: ’ +
CAST(@ IDTableSpec AS N V A R CH A R) + ’. '

345

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

SELECT @ M essage = @ M essage + T ab le Specification Version i s : 1 + CAST(@ IDTableSpecVer
AS N V A R CH A R) + '
RETURN

END
END

IF @ Num OFColum ns = 6
BEGIN

EXEC proc_InsertRow6
@ ID TableV erD ef= @ ID Table V erD ef,
@ ColumnValues = @ Colum nV alues,
@ ColIDM easUnits = @ ColID M easU nits,
@ RowContent = @ Row Content,
@ IDProcState = @ IDProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure w as called from
proc_CreateN ew TabIeSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

COM M IT TRAN
SELECT @ M essage = T ab le Specification C reated Successfully. Table Specification ID i s : ' +
CAST(@ IDTableSpec AS N V A R C H A R) + '
SELECT @ M essage = @ M essage + T ab le Specification V ersion i s : ' + CAST(@ IDTableSpecVer
AS NVARCHAR) + '
RETURN

END
END

IF @ Num O FColum ns = 7
BEGIN

EX EC proc_InsertRow7
@ ID TableV erD ef = @ IDTableVerDef,
@ Colum nValues = @ Column Values,
@ ColIDM easUnits = @ ColIDM easUnits,
@ Row Content = @ RowContent,
@ IDProcState = @ IDProcState O U TPU T,
@ M essage = @Message OUTPUT
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure w as called from
proc_CreateN ew TableSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

COM M IT TRAN
SELECT @ M essage = T ab le Specification C reated Successfully. Table Specification ID is: ' +
CAST(@ IDTableSpec AS N V A R C H A R) + '
SELECT @ M essage = @ M essage + T ab le Specification V ersion i s : 1 + CAST(@ IDTableSpecVer
AS NVARCHAR) + '. '
RETURN

END
END

IF @ Num OFColum ns = 8
BEGIN

EXEC proc_InsertRow8
@ ID TableV erD ef= @ IDTable VerDef,
@ ColumnValues = @ Colum nV alues,
@ ColIDM easUnits = @ ColID M easU nits,
@ RowContent = @ RowContent,
@ IDProcState = @ IDProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN

346

Appendix 5: Supplier's Product Class Database (SPCD) System Code

SELECT @ M essage = @ M essage + ' This Procedure was called from
proc_CreateN ew T ableSpecification.1
RA lSERR O R(@ M essage, 1,1) W ITH SETERRO R
RETURN @ @ ER RO R

END
ELSE
BEGIN

COM M IT TRAN
SELECT @ M essage = T ab le Specification C reated Successfully. Table Specification ID i s : ' +
CAST(@ IDTableSpec AS N V A R C H A R) + '
SELECT @ M essage = @ M essage + T ab le Specification Version i s : ' + CAST(@ IDTableSpecVer
AS NVARCHAR) + '
RETURN

END
END

IF @ N um OFColum ns = 9
BEGIN

EXEC proc_InsertRow9
@ ID TableV erD ef= @ IDTable V erDef,
@ Colum nValues = @ Column Values,
@ ColIDM easUnits = @ ColIDM easUnits,
@ RowContent = @ RowContent,
@ IDProcState = @ IDProcState O U TPU T,
@ M essage = @ M essage OUTPUT
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ’ T his P rocedure w as called from
proc_CreateNewT ableSpec ification .1
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

COM M IT TRAN
SELECT @ M essage = T ab le Specification C reated Successfully. Table Specification ID i s :1 +
CAST(@ IDTableSpec AS N V A R C H A R) + ’. '
SELECT @ M essage = @ M essage + T ab le Specification V ersion i s : ' + CAST(@ IDTableSpecVer
AS NVARCHAR) + ' . '
RETURN

END
END

IF @ N um O FColum ns = 10
BEGIN

EXEC proc InsertRowlO
@ ID TableV erD ef= @ IDTable VerDef,
@ Colum nValues = @ Colum nValues,
@ ColIDM easUnits = @ ColIDM easUnits,
@ RowContent = @ RowContent,
@ IDProcState = @ IDProcState O U TPU T,
@ M essage = @ Message OUTPUT
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure w as called from
proc_CreateNewT ableSpecification.'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ E R R O R

END
ELSE
BEGIN

COM MIT TRAN
SELECT @ M essage = T ab le Specification C reated Successfully. Table Specification ID i s : ' +
CAST(@ IDTableSpec AS N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + T ab le Specification Version i s : ' + CAST(@ IDTableSpecVer
AS NVARCHAR) + '. '
RETURN

END
END

END - End o f Proc_CreateNewTableSpecification Procedure.
GO

347

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

2.13 Procedure Name: dbo.proc_InsertListValues
Database: SupplierPCD
Description:
This procedure enables creation of list values for list specification.

CREATE Procedure proc_InsertListValues
/♦ Param List ♦/
@ ID ListD ef BIGINT,
@ ListValues N V A R CH A R (4000),
@ ListID M easU nits N V A R CH A R (4000) = N U LL,
@ IDProcState TINYINT O U TPU T,
@ M essage N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT
SELECT @ IDProcState = 0
SELECT @ ERRO R = 0
SELECT @ M essage = ' '

/♦Create a tem porary table and insert the values from the table returned
by the function fn^getListValuesTable ♦/

CR EA TE TABLE #Tem pTableListValues (LisUD INT, L istV alue N V A R C H A R (2 5 5))
INSERT INTO #TempTableListVa!ues
SELECT ColumnID,CoIVal FROM dbo.fh_getC olum nV aluesTabIe(@ ListV alues)

/♦Create another tem porary table and insert ID M eas units from the table returned
by the function fn_getListValuesTable ♦/

CREATE TABLE #Tem pTableIDM easUnit (M easID IN T, ID M easU nit B IG IN T)
INSERT INTO #Tem pTableIDM easUnit
SELECT Colum nID , CAST(ColVal AS BIGINT) FRO M dbo.fh_getColum nV aluesTable(@ ListID M easU nits)
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'An error occured w hile inserting the list sp e c ifica tio n .1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure p roc_InsertL istV alues.'
SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END

/♦ N ow insert the values into the List Definition table ♦/
INSERT INTO ListDefmition (IDListDef, L istV alue, ID M easU nit)
SELECT @ IDListDef, a ListValue, b.IDM easUnit
FROM #Tem pTableListValues a, #Tem pTable ID M eas U nit b
W HERE a.ListID = b.MeasID

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured w hile inserting the list sp e c ifica tio n .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure proc InsertL istV alues.'
SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTableListV alues
DROP TABLE #Tem pTableID M easU nit
RETURN

END
END -- End o f p rocJnsertL istV alues Procedure.
GO

348

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

/*
2.14 Procedure Name: dbo.proc_InsertRow2
Database: SupplierPCD
Description:
This procedure enables creation of table specification values having 2 columns.
*/
CREATE Procedure proc_InsertRow2
/* Param List */
@ ID TableV erD ef BIGINT,
© C olum nV alues N V A R CH A R (4000),
@ ColID M easU nits N V A R CH A R(4000) = N U LL,
© R ow C ontent NVARCHAR(IOO),
© ID ProcState TINYINT O U TPU T,
© M essage N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
© E rro r INT,
@ IDRow INT,
© N um O fR ow s INT,
@ C oIum nlV al N V A R C H A R (255),
@ Colum n2V al N V A R CH A R (255)

SELECT © ID ProcState = 0
SELECT @ ERROR = 0
SELECT © M essage = ' '

SELECT © N um O FR ow s = COU NT(*) FROM dbo.fti_getC olum nV aluesTable(@ C oIum nV alues)
PRINT © N u m O fR o w s:' + C A ST(© N um O fR ow s AS N V A R C H A R)
/* The function fn_getColum nV aluesTable(@ Colum n V alues) should return tw o row s only */

IF © N um O fR ow s != 2
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'An error occured w hile inserting the table r o w . '
SELECT © M essage = © M essage + 'Procedure State ID is: ' + C A ST(@ ID ProcState AS N V ARCHAR) + 1
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure p roc_ InsertR ow 2 .'
SELECT © M essage = © M essage + 'P rocedure is term inated abnorm ally. '
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fn_getColumnVaIuesTable */

CR EA TE TABLE #TempTable (Colum nID INT, Colum n V alue N V A R C H A R (2 5 5))
IN SERT INTO #TempTable
SELECT Colum nID,ColVal FROM dbo.fh_jgetC olum nV aluesTable(@ C olum nV alues)

SELECT @ C olum nl Val = Colum nValue FRO M #T em pTable W H ER E Colum nID = 1
SELECT @ Colum n2Val = Colum nValue FROM #Tem pTable W H ER E Colum nID = 2

/•C heck w hether the row is contains colum n values or colum n specifications
A row can contain column values or colum n specifications(headers).* /

IF © R ow C ontent LIKE 'ColVals'
BEGIN

/• Check for the existing rows with sam e ID T ableV erD ef to keep track o f the num ber
o f rows the ID TableV erD ef has if the @ R ow C ontent = 'Colum n V alues' • /
SELECT @ IDRow = M A X (ID Row) FROM T ableD efm ition2 W H ERE ID TableV erD ef = @ IDTableVerDef
IF © ID R ow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ ID Row = @ ID R ow + 1

INSERT INTO TableD efinition2(ID TableV erD ef, ID Row , Colum n 1 Val, Colum n2Val, RowContent)
VALUES(@ IDTableVerDef, @ ID Row ,
LTRIM (RTRIM (@ Colum n 1 V al)),LTR IM (R TR IM (@ C olum n2V al)), LTRIM (RTRIM (@ Row Content)))
SELECT @ Error = @ @ ER RO R

349

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

IF @ Error != 0
BEGIN

SELEC T @ ID ProcS tate = 2
SELECT @ M essage = 'An erro r occured w hile inserting the table ro w . '
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NV A R C H A R) + '. '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure proc_InsertR ow 2.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ER R O R

END
ELSE
BEGIN

DRO P TA BLE #Tem pTable
RETURN

END
END --End o f IF @ Row C ontent LIKE T ab leR o w '
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableD efinition2(ID TableV erD ef, ID R ow , C o lu m n lV al, C olum n2V al, Row Content)
V A LUES(@ IDTableVerDef, @ ID R ow ,
LTRIM (RTRIM (@ Colum n 1 V al)),L TR IM (R TR IM (@ C olum n2V al)), LTR IM (R TR IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3
SELECT @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST(@ ID ProcState AS
NV ARCHAR) + '. ’
SELECT @ M essage = @ M essage + 'E rro r occured in P rocedure p roc_ InsertR ow 2 .'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END

END - - End o f Proc_InsertRow2 Procedure.
GO

2.15 Procedure Name: dbo.proc_InsertRow3
Database: SupplierPCD
Description:
This procedure enables creation of table specification values having 3 columns.

CREATE Procedure proc_InsertRow3
/* Param List */
@ IDTable V erD ef
@ Colum nValues
@ ColIDM easUnits
@ RowContent
@ IDProcState
@ M essage

BIGINT,
NV A RCH A R(4000),
N V A R CH A R(4000) = N U LL,
NVARCHAR(IOO),
TINYINT O U TPU T,
N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error
@ IDRow
@ Num OfRows
@ C olum nl Val
@ Colum n2Val
@ Colum n3Val

INT,
INT,
INT,

NV A R CH A R (255),
NV A R CH A R (255),
N V A R CH A R (255)

SELECT @ IDProcState = 0
SELECT @ ERROR = 0

350

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

SELECT @ M essage = ' '

SELECT @ N um O FRow s = C O U N T(*) FR O M dbo.fh_getC olum nV aluesTable(@ C olum nV alues)
PRINT '@ N um O fR ow s:' + C A ST (@ N um O fR ow s AS N V A R C H A R)

/* The function fn getColum n V aluesTable(@ C olum n V alues) should return three row s only • /

IF @ N um O fRow s != 3
BEGIN

SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + CA ST(@ ID ProcState AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rro r occured in P rocedure p roc_ InsertR ow 3 .'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm a lly .'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fn_getColum nV aluesTable */

CREATE TABLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (2 5 5))
INSERT INTO #Tem pTable
SELECT Colum nID,ColVal FROM dbo .fh_getC olum nV aluesTable(@ C olum nV alues)

SELECT @ Colum nl Val = C olum nV alue FR O M #T em pT able W H ER E C olum nID = I
SELECT @ Colum n2V al = C olum nV alue FRO M #T em pT able W H E R E C olum nID = 2
SELECT @ Colum n3Val = C olum nV alue FRO M #T em pT able W H E R E C olum nID = 3

/•C h eck w hether the row is contains colum n values o r colum n specifications
A row can contain column values or colum n specifications(headers).* /

IF @ Row Content LIKE C olV als '
BEGIN

/* Check for the existing rows w ith sam e ID T ab leV erD ef to keep track o f the num ber
o f rows the ID TableV erD ef has if the @ R ow C onten t = 'C olum n V alues' • /

SELECT @ ID Row = M A X (ID Row) FRO M T ableD efin ition3 W H ER E ID T ableV erD ef = @ ID TableV erD ef
IF @ IDRow IS NULL

SELECT @ ID Row = 1
ELSE

SELECT @ ID Row = @ ID R ow + 1

INSERT INTO T abIeD efinition3(ID TableV erD ef, ID R ow , C o lu m n lV al, C olum n2V aI, C olum n3V al,
RowContent)
V ALUES(@ IDT able VerDef, @ ID Row ,

LTRIM (RTRIM (@ Colum n 1 V al)),LTR IM (RTRIM (@ C olum n2 V al)),
LTR IM (R TR IM (@ C olum n3V al)), L T R IM (R T R JM (@ R ow C onten t)))

SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code is: ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + CA ST (@ ID ProcState AS
NV A R CH A R) + ’. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure p ro c_ In sertR o w 3 .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally. '
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END -E n d o f IF @ Row C ontent LIKE T ab leR o w '
ELSE
BEGIN

SELECT @ ID Row = 0
INSERT INTO TableD efinition3(ID T ableV erD ef, ID Row , C o lum nlV al, Colum n2V al,C o!um n3V al,
RowContent)

351

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

VALUES(@ IDTable VerDef, @ ID Row ,
LTRIM (RTRIM (@ Column 1 V al)),LTR IM (RTR IM (@ C olum n2V al)),
LTRlM (R TRIM (@ C olum n3V al)),LTRIM (RTRIM (@ Row C ontent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_InsertRow 3.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN (©(©ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END

END - - End o f Proc_InsertRow3 Procedure.
GO

2.16 Procedure Name: dbo.proc_InsertRow4
Database: SupplierPCD
Description:
This procedure enables creation of table specification values having 4 columns.
* /

CREATE Procedure proc_InsertRow4
/* Param List */
© ID T ableV erD ef
© C olum nV alues
© C olID M easU nits
© R ow C ontent
© ID ProcState
© M essage

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = NULL,
N VARCH AR(100),
TINYINT OUTPUT,
NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@ Error
@ IDRow
© N um O fR ow s
@ C olum nl Val
@ Column2Val
@ Column3Val
@ Column4Val

INT,
INT,
INT,
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
N V ARCH A R(255)

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ M essage = ' '

SELECT @ NumOFRows = COUNT(*) FROM dbo.fn_getColum nV aluesTable(@ Colum nV alues)
--PRINT '@ N um O fR ow s:' + CAST(@ NumOfRows AS N V A R CH A R)
/* The function fn_getColumnValuesTable(@ CoIumn Values) should return two rows only */

IF © N um O fR ow s != 4
BEGIN

SELECT (©IDProcState = 1
SELECT (©Message = 'An error occured while inserting the table row. '
SELECT (©Message = (©Message + 'Procedure State ID i s : ' + CAST(@ IDProcState AS NVARCHAR) +
SELECT (©Message = (©Message + 'E rror occured in Procedure proc_InsertR ow 4.'
SELECT (©Message = (©Message + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN

END

/♦Create a temporary table and insert the values from the table returned
by the function fn_getColumnValuesTabIe */

352

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

CREATE TABLE #Tem pTable (C olum nID INT, Colum nV alue N V A R C H A R (255))
INSERT INTO #TempTabIe
SELECT ColumnID,Col Val FROM dbo.fh getC olum nV aluesTable(@ C olum n Values)

SELECT @ Colum nl Val = Colum nV alue FRO M #T em pTable W H ERE Colum nID = 1
SELECT @ Column2Val = Colum nV alue FROM #T em pTable W H ERE Colum nID = 2
SELECT @ Column3Val = C olum nV alue FR O M #Tem pTable W H ERE Colum nID = 3
SELECT @ Column4Val = Colum nValue FRO M #T em pTable W H ERE Colum nID = 4

/♦C heck w hether the row contains colum n values or colum n specifications
A row can only contain column values or colum n specifications(headers).* /

IF @ Row C ontent LIKE 'ColVais'
BEGIN

/* Check for the existing rows w ith sam e ID T ableV erD ef to keep track o f the num ber
o f rows the IDTableV erDef has if the @ R ow C ontent = 'Colum nV alues' * /
SELECT @ IDRow = M A X (ID Row) FR O M TableD efinition4 W H ERE ID TableV erD ef = @ IDTableVerDef
IF @ IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ ID Row + 1

INSERT INTO TableD efinition4(ID TableV erD ef, ID Row , C o lum nlV al,
Colum n2Val,Column3V aI,Colum n4Val, Row C ontent)
VALUES(@ IDTable VerDef, @ ID Row ,
LTRIM (R TR IM (@ C olum nlV al)),LTR IM (R TR IM (@ C olum n2V al)),LTR IM (R TR IM (@ C olum n3V al)),
LTRIM (RTRIM (@ Column4VaI)), L T R IM (R T R IM (@ R ow C onten t)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N VARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure S tate ID i s : ' + C A ST(@ ID ProcState AS
NVARCHAR) + '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure proc_InsertR ow 4.'
SELECT @ Message = @ M essage + 'Procedure is term inated abnorm ally. ’
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
EN D —End o f IF @ RowContent LIKE T ableR ow '
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableD efinition4(ID TableV erD ef, ID Row , C o lu m n lV al, Colum n2V al, Column3Val,
Column4Val, RowContent)
VALUES(@ IDTable VerDef, @ IDRow,
LTRIM (RTRIM (@ Column 1 V al)),LTR IM (R TR IM (@ C olum n2 V al)),
LTRIM (R TRIM (@ Colum n3V al)),LTRIM (RTRIM (@ Colum n4V al)),LTR IM (R TR IM (@ R ow Content)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_InsertR ow 4.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END

EN D — End o f Proc_InsertRow4 Procedure.

353

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

2.17 Procedure Name: dbo.proc_InsertRow5
Database: S u p p lierP C D
D escr ip tio n :
This procedure enables creation o f table sp ec ifica tio n v a lu es h av in g 5 colum ns.
* /

CREATE Procedure proc_InsertRow5
/* Param List */
© ID T ableV erD ef BIGINT,
© C olum nV alues N V A R C H A R (4000),
© C olID M easU nits N V A R C H A R (4000) = N U LL,
© R ow C ontent NVARCHAR(IOO),
© ID ProcState TINYINT O U TPU T,
© M essage N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
© E rro r INT,
@ IDRow INT,
© N um O fR ow s INT,
@ C olum nlV al N V A R CH A R(255),
@ Colum n2V al N V A R CH A R (255),
@ Colum n3VaI NV A R CH A R (255),
@ CoIum n4Val N V A RCH A R (255),
@ Colum n5Val N V A R CH A R (255)

SELECT © ID ProcState = 0
SELECT @ ER RO R = 0
SELECT @ M essage = ' '

SELECT © N um O FR ow s = CO U N T(*) FROM dbo.fh_getC olum nV aIuesT abIe(@ C oIum nV alues)
--PRINT '@ N um O fR ow s:' + CA ST(@ N um O fRow s AS N V A R C H A R)
/• The function fn_getColum nV aluesTabIe(@ Colum nV alues) shou ld re tu rn tw o row s only • /

IF © N um O fR ow s != 5
BEGIN

SELECT © ID ProcState = 1
SELECT © M essage = 'An error occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'Procedure State ID is: ' + C A ST (@ ID ProcState AS N V A R C H A R) +
SELECT @ M essage = @ M essage + 'E rror occured in P roced u re p ro c_ In sertR o w 5 .'
SELECT @ M essage = @ M essage + 'Procedure is te rm in a ted abnorm ally. ’
RAISERROR(@ M essage, 1,1) W ITH SET ER R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table re tu rn ed
by the function fn_getColum nValuesTable */

CR EA TE TABLE #Tem pTable (Colum nID INT, C olum nV alue N V A R C H A R (2 5 5))
IN SERT INTO #TempTable
SELEC T Colum nID,ColVal FROM dbo .fn_getC olum nV aluesTable(@ C olum nV aIues)

SELECT © C olum nlV al = Colum nV alue FROM #T em pTable W H E R E C olum nID = 1
SELECT @ Colum n2Val = Colum nV alue FROM #T em pTable W H E R E C olum nID = 2
SELEC T @ Colum n3Val = Colum nV alue FROM #T em pT able W H E R E C olum nID = 3
SELECT @ Colum n4Val = Colum nV alue FROM #T em pT able W H E R E C olum nID = 4
SELECT @ Colum n5Val = C olum nV alue FROM #T em pTable W H E R E Colum nID = 5

/•C h eck whether the row contains column values or colum n specifica tions
A row can only contain column values or colum n sp ec ifica tions(headers).* /

IF © R ow C ontent LIKE ’ColV als’
BEGIN

/* Check for the existing rows with sam e ID T ab leV erD ef to keep track o f the num ber
o f rows the ID TableV erD ef has if the @ R ow C onten t = ’C o lum nV alues’ • /
SELECT @ IDRow = M A X (ID Row) FROM T ab leD efin ition2 W H ER E ID TableV erD ef = @ ID TableV erD ef
IF © ID R ow IS NULL

SELECT @ ID Row = 1
ELSE

SELECT @ ID Row = @ ID R ow + 1

354

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

INSERT INTO T abIeD efinition5(ID T abIeV erD ef, ID Row , C o lum nlV al,
C olum n2V aJ,C oIum n3V al,C olum n4V al, C olum n5V al, Row C ontent)
V A LU ES(@ ID TableV erD ef, @ ID R ow ,
L TR IM (R TR IM (@ C olum nlV al)),LTR IM (R TR IM (@ C olum n2V al)),LTR IM (R TR IM (@ C olum n3V al)),
L TR IM (R TR IM (@ C olum n4V al)),LT R IM (R T R IM (@ C olum n5V al)), LTR IM (R TR IM (@ R ow C ontent)))

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 2
SELECT @ M essage = 'An e rro r occured w hile inserting the table r o w .1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS N V ARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + CA ST(@ ID ProcState AS
NV A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure p roc_InsertR ow 5.'
SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTab!e
RETURN

END
END --End o f IF @ Row C ontent LIKE T ab leR o w '
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableD efin ition5(ID T ableV erD ef, ID R ow , C o lu m n lV al, Colum n2V al, Colum n3Val,
Colum n4Val, C olum n5V al, R ow C ontent)
V ALUES(@ IDTableVerDef, @ ID R ow , L T R IM (R T R IM (@ C olum n 1 Val)),
LTRIM (R TRIM (@ Colum n2V al)),
L TR IM (R TR IM (@ C olum n3V al)),LTR IM (R TR IM (@ C olum n4V al)),LTR IM (R TR IM (@ C olum n5V al)),LTR I
M (R T R IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ lD ProcState = 3
SELECT @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rro r code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST(@ ID ProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure proc_InsertRow 5. ’
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm a lly .'
R A ISER RO R (@ M essage, 1,1) W ITH SE T E R R O R
RETURN @ @ ER R O R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END

END - - End o f Proc_InsertRow2 Procedure.

2.18 Procedure Name: dbo. proc_InsertRow6
Database: S u p p lierP C D
D escrip tion :
This procedure enables creation o f table sp ec ifica tio n v a lu es h a v in g 6 co lum ns.
*/

CREATE Procedure proc_InsertRow6
/* Param List */
@ IDTable V erD ef
@ ColumnValues
@ ColIDM easUnits
@ RowContent
@IDProcState
@Message

BIGINT,
NV A R CH A R (4000),
N V A R CH A R (4000) = N U LL,

N VARCH AR(100),
TINYINT O U TPU T,

NV A RCH A R(500) O U TPU T

AS
BEGIN

355

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

DECLARE
@ Error
@ IDRow

INT,
INT,
INT,@ NumOfRows

@ Colum nlV al
@ Column2Val
@ Column3Val
@ Column4Val
@ Column5Val
@ Column6VaI

N V A RCH A R(255),
N V A RCH A R(255),
N VARCHAR(25 5),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255)

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ M essage = ' '

SELECT @ NumOFRows = COUNT(*) FROM dbo.fti_getColum nValuesTabIe(@ Colum nValues)
-P R IN T '@ N um O fR ow s:' + CAST(@ N umO fRows AS N V A R C H A R)
/♦ The function fn_getColumnValuesTable(@ Column V alues) should return two rows only ♦/

IF @ Num OfRows != 6
BEGIN

SELECT @ IDProcState = 1
SELECT @Message = ’An error occured w hile inserting the table r o w . '
SELECT @Message = @Message + 'Procedure State ID i s : 1 + CAST(@ IDProcState AS NVARCHAR) + '
SELECT @Message = @Message + 'E rror occured in Procedure P roc_InsertR ow 6.'
SELECT @Message = @Message + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage,l ,1) W ITH SETER R O R
RETURN

END

/♦Create a tem porary table and insert the values from the table returned
by the function fh_getColumnValuesTable ♦/

CREATE TABLE #TempTable (ColumnID INT, C olum nV alue N V A R C H A R (255))
INSERT INTO #TempTable
SELECT ColumnID,ColVal FROM dbo.fh_getColum nV aluesTable(@ Colum nV alues)

SELECT @ C olum nl Val = ColumnValue FROM #Tem pTabIe W H ERE C olum nID = 1
SELECT @ Colum n2Val = ColumnValue FROM #Tem pTable W H ERE C olum nID = 2
SELECT @ Column3Val = ColumnValue FROM #Tem pTable W H ERE Colum nID = 3

SELECT @ Column4Val = ColumnValue FROM #Tem pTable W H ER E Colum nID = 4
SELECT @ Column5Val = ColumnValue FROM #Tem pTable W H ER E C olum nID = 5
SELECT @ Column6Val = ColumnValue FROM #Tem pTable W H ER E C olum nID = 6

/♦C heck whether the row contains column values or colum n specifications
A row can only contain column values or column specifications(headers).^/

IF @ Row Content LIKE 'ColVais'
BEGIN

/♦ Check for the existing rows with same ID TableV erD ef to keep track o f the number
o f rows the IDTableVerDef has if the @ Row C ontent = 'C olum nV alues' ♦/
SELECT @ IDRow = MAX(IDRow) FROM TableD efinition6 W H ERE ID TableV erD ef = @ ID TableV erD ef
IF @ IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ IDRow + 1

INSERT INTO TableDefmition6(IDTableVerDef, ID Row , C o lum nlV al,
Column2Val,Column3Val,Column4Val,

ColumnSVal, Column6Val, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,
LTRIM (RTRIM (@ Colum nlVal)),LTRIM (RTRIM (@ Colum n2Val)),LTRIM (RTRIM (@ Colum n3Val)),
LTRIM (RTRIM (@ Colum n4Val)),LTRIM (RTRIM (@ Colum n5Val)),
LTRIM (R TRIM (@ Colum n6V al)),LTRIM (RTRIM (@ Row C ontent)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertRow 6.'
SELECT @ M essage = @ M essage + 'Procedure is terminated abnorm ally.'
RAISERROR(@ M essage, 1,1) W ITH SETERRO R

356

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

RETURN @ @ ER RO R
END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END --End o f IF @ RowContent LIKE T ableR ow '
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableD efinition6(ID TableV erD ef, ID Row , C olum nlV al, Column2Val, Column3Val,
Column4Val, Column5Val,
Column6Val, RowContent)
VALUES(@ IDTableVerDef, @ IDRow,

LTRIM (RTRIM (@ Colum n 1 VaI)),LTRIM (RTRIM (@ Column2VaI)),
LTRIM (RTRIM (@ Colum n3VaI)),LTRIM (RTRIM (@ CoIum n4Val)),LTRIM (RTRIM (@ CoIum n5Val)),
LTRIM (R TRIM (@ Colum n6V al)),LTRIM (RTRIM (@ Row C ontent)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @IDProcState = 3
SELECT @Message = 'An error occured w hile inserting the table row. ’
SELECT @Message = @ M essage + 'E rror code is: ’ + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @Message = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NVARCHAR) + '
SELECT @Message = @ M essage + 'E rror occured in Procedure Proc_InsertR ow 6.'
SELECT @Message = @ M essage + 'Procedure is term inated abno rm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ERROR

END
ELSE
BEGIN

DROP TABLE #TempTable
RETURN

END
END

END - - End o f Proc_InsertR ow 6 Procedure.
GO

2.19 Procedure Name: dbo.proc_InsertRow7
Database: S u p p lierP C D
D escr ip tio n :
T his procedure enables creation o f table specification va lu es hav in g 7 colum ns.

CREATE Procedure proc_InsertRow7
I* Param List */
@ ID TableV erD ef
@ Colum nV alues
@ ColID M easU nits
gR ow C onten t
@ ID ProcState
@ M essage

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = N ULL,
NVARCHAR(IOO),
TINYINT OUTPUT,
NVARCHAR(SOO) OUTPUT

AS
BEGIN

DECLARE
@ Error
@ IDRow
@ Num OfRows
@ CoIum nl Val
@ Colum n2Val
@ Column3Val
@ Column4Val
@ Column5Val
@ Column6VaI
@ Column7Val

INT,
INT,
INT,

NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255)

SELECT @ IDProcState = 0
SELECT @ ERROR = 0
SELECT @ M essage = ' '

357

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

SELECT @ N um O FRow s - C O U N T(*) FRO M dbo.fn getColum nV aluesTable(@ C olum nV alues)
-P R IN T '@ N um O fR ow s:' + C A ST (@ N um O fR ow s AS N V A R C H A R)
/* The function fn_ jetC olum n V aluesTable(@ C olum nV alues) should return two row s only */

IF @ N um OfRows != 7
BEGIN

SELECT @ ID ProcState = 1
SELECT @ M essage = 'An erro r occured w hile inserting the table r o w .1
SELECT @ M essage = @ M essage + 'P rocedure S tate ID i s : ' + CA ST(@ ID ProcState AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure P roc_InsertR ow 7.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RA ISER RO R(@ M essage, 1,1) W ITH SE T E R R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fn_getColum n V aluesTable */

CREATE TABLE #Tem pTable (C olum nID INT, C olum n V alue N V A R C H A R (2 5 5))
INSERT INTO #Tem pTable
SELECT Colum nID,ColVal FROM dbo.fn_getC olum nV aIuesT able(@ C olum n V alues)

SELECT @ C olum nl Val = C olum nV alue FR O M #T em pT able W H E R E C olum nID = 1
SELECT @ Colum n2Val = Colum nV alue FRO M #T em pT able W H ER E C olum nID = 2
SELECT @ Colum n3Val = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 3
SELECT @ Colum n4Val = Colum nV alue FRO M #T em pT able W H ER E C olum nID = 4
SELECT @ Colum n5Val = Colum nV alue FRO M #T em pT able W H E R E C olum nID = 5
SELECT @ Colum n6V al = Colum nV alue FRO M #T em pT able W H E R E C olum nID = 6
SELECT @ Colum n7V al = Colum nV alue FR O M #T em pT able W H E R E C olum nID = 7

/•C h eck w hether the row contains colum n values or co lum n specifications
A row can only contain colum n values or colum n specifications(headers).* /
IF @ Row Content LIKE C olV als '
BEGIN

/• Check for the existing rows w ith sam e ID T ab leV erD ef to keep track o f the num ber
o f rows the ID TableV erD ef has if the @ R ow C onten t = 'C olum n V alues' */
SELECT @ IDRow = M A X (ID Row) FR O M T ableD efin ition7 W H ER E ID T ableV erD ef = @ ID TableV erD ef
IF @ IDRow IS NULL

SELECT @ ID Row = 1
ELSE

SELECT @ ID Row = @ ID R ow + 1

INSERT INTO T ableD efinition7(ID TableV erD ef, ID R ow , C olum n 1 Val,
Colum n2V al,C olum n3V al,Colum n4V al,
Colum n5Val, C olum n6V al,C olum n7V al, R ow C ontent)
VALUES(@ IDTableVerDef, @ ID Row ,
L TR IM (R TR IM (@ C olum nlV al)),LT R IM (R T R IM (@ C olum n2V al)),L TR IM (R TR lM (@ C olum n3V al)),
L TR IM (R TRIM (@ C olum n4V al)),LTR IM (R TR IM (@ C olum n5V al)), LTRIM (R TRIM (@ Colum n6V al)),
L TR IM (R TR IM (@ C olum n7V al)),LT R IM (R T R IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 2
SELECT @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code is: ' + C A ST (@ E rror AS N VARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS
NVARCHAR) + '. ’
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure P roc_InsertR ow 7.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally. '
R A ISERRO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END -E n d o f IF @ Row C ontent LIKE T ab leR ow '
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO T ableD efm ition7(ID TableV erD ef, ID Row , Colum n 1 Val, Colum n2Val, Column3Val,
Colum n4Val, C olum n5V al,

358

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

C olum n6V al,C olum n7V al, R ow C ontent)
VA LU ES(@ ID TableV erD ef, @ ID R ow ,
LTRIM (RTRIM (@ Colum n 1 V al)),LTR IM (R TR IM (@ C olum n2V al)),
LTRIM (R TR IM (@ C olum n3V al)),LTRIM (R TR IM (@ Colum n4V al)),LTR IM (R TR IM (@ C olum n5V al)),
LTR IM (R TR IM (@ C olum n6V al)),LTR IM (R TR IM (@ C oIum n7V al)),LTR IM (R TR IM (@ R ow C ontent)))

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3
SELECT @ M essage = 'An erro r occured w hile inserting the table ro w . '
SELECT @ M essage = @ M essage + 'E rror code is. ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure P roc_InsertR ow 7.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated abno rm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END

END - End o f Proc_InsertRow7 Procedure.
GO

/*

2.20 Procedure Name: dbo.proc_InsertRow8
Database: SuppIierPCD
Description:
T his procedure enables creation o f table sp ec ifica tion v a lu es h av in g 8 co lu m n s.
* /

CREATE Procedure proc_lnsertRow 8
/* Param List */
@ ID TableV erD ef
@ Colum nV alues
@ ColID M easU nits
@ Row C ontent
@ IDProcState
@ M essage

BIGINT,
NVARCHAR(4000),
NVARCHAR(4000) = N U LL,
NVARCH AR(100),
TINYINT O U TPU T,
NVARCHAR(500) O U TPU T

AS
BEGIN

DECLARE
@ Error
@ lD Row
@ N um O fRow s
@ C oIum nl Val
@ Colum n2V al
@ Colum n3Val
@ Colum n4V al
@ Colum n5V al
@ Colum n6V al
@ Colum n7VaI
@ Colum n8Val

INT,
INT,
INT,
N V A RCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
NVARCHAR(255),
N V ARCHAR(255),
N V A RCH A R(255),
N V A RCH A R(255),
NV A RCH A R(255)

SELEC T @ IDProcState = 0
SELEC T @ ERROR = 0
SELEC T @ M essage = ' '

SELEC T @ Num OFRows = COU NT(*) FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)
-P R IN T '@ NumOfRows: ' + CA ST(@ N um O fR ow s AS N V A R C H A R)
/* The function fn_getColumn V aluesTable(@ Co!um n V alues) should return tw o row s only */

IF @ N um O fRow s != 8
BEGIN

SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile inserting the table row. '
SELECT @ M essage = @ M essage + 'Procedure State ID is: ' + CA ST(@ ID ProcState AS NVARCHAR) +
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P roc_InsertR ow 8.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abno rm ally .'

359

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

RA ISER RO R(@ M essage, 1,1) W ITH SETER R O R
RETURN

END

/♦C reate a tem porary table and insert the values from the table returned
by the function fn_getColum n V aluesTable ♦/

CREATE TABLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (255))
INSERT INTO #Tem pTable
SELECT ColumnID,CoIVal FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)

SELECT @ C olum nl Val = Colum nV alue FROM #T em pTabIe W H ER E C olum nID = 1
SELECT @ Colum n2Val = Colum nV alue FRO M #T em pTab!e W H ER E C olum nID = 2
SELECT @ Colum n3Val = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 3
SELECT @ Colum n4Val = Colum nV alue FRO M #T em pT able W H ER E C olum nID = 4
SELECT @ Colum n5Val = C olum nV alue FRO M #T em pT able W H E R E C olum nID = 5
SELECT @ Colum n6Val = Colum nV alue FROM #T em pT able W H ER E C olum nID = 6
SELECT @ Colum n7Val = Colum nV alue FROM #T em pTable W H ER E C olum nID = 7
SELECT @ Colum n8Val = C olum nV alue FROM #T em pTable W H ER E C olum nID = 8

/♦C heck w hether the row contains column values or colum n specifications
A row can only contain column values or colum n specifications(headers).V

IF @ Row Content LIKE 'ColVais'
BEGIN

/♦ Check for the existing rows with sam e ID T ab leV erD ef to keep track o f the num ber
o f rows the ID TableV erD ef has if the @ R ow C ontent = 'C olum n V alues' ♦/
SELECT @ IDRow = M A X(IDRow) FR O M T ableD efm ition8 W H ER E ID T ableV erD ef = @ ID TableV erD ef
IF @ IDRow IS NULL

SELECT @ IDRow = 1
ELSE

SELECT @ IDRow = @ ID R ow + 1

INSERT INTO TableD efinition8(ID TableV erD ef, ID R ow , C o lum nl Val,
Colum n2Val,Column3V al,Colum n4Val,
Colum n5Val, Colum n6Val,Colum n7V al, C olum n8V al, Row C ontent)

VALUES(@ IDTableVerDef, @ IDRow,
L TR IM (R TR IM (@ C olum nlV al)),LT R IM (R T R IM (@ C olum n2V al)),L TR IM (R TR IM (@ C olum n3V al)),
LTRIM (R TRIM (@ Colum n4V al)),LTRIM (RTRIM (@ Colum n5V al)>, L TR IM (R TR IM (@ C olum n6V al)),
L TR IM (R TR IM (@ C olum n7V al)),LT R IM (R T R IM (@ C olum n8V al)),L TR IM (R TR IM (@ R ow C ontent)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A S T (@ E rror AS N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST (@ ID ProcState AS
NVARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P roc_ In sertR o w 8 .'
SELECT @ M essage = @ M essage + 'P rocedure is term inated a b n o rm a lly .'
RAISERROR(@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END --End o f IF @ RowContent LIKE T ableR ow '
ELSE
BEGIN

SELECT @ IDRow = 0
INSERT INTO TableD efinition8(ID TableV erD ef, ID R ow , C o lum nl Val, C olum n2V al, C olum n3V al,
Column4Val, Column5Val,
Colum n6Val,Column7V al, Colum n8VaI, R ow C ontent)
VALUES(@ IDTableVerDef, @ ID Row ,
LTRIM (RTRIM (@ Colum nl V al)),LTR IM (R TR JM (@ C olum n2V al)),
LTR IM (R TR IM (@ C olum n3V al)),LTR IM (R TR IM (@ C olum n4V al)),LTR IM (R TR IM (@ C olum n5V al)),

LTR IM (R TR IM (@ C olum n6V al)),LTR IM (R TR IM (@ C olum n7V aI)),LTR IM (R TRIM (@ C olum n8V al)),
LTR lM (R TR IM (@ R ow C ontent)))

SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3

360

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

END
ELSE
BEGIN

SELEC T @ M essage = 'An e rro r occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS N VARCHAR) + '.
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS
N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertR ow 8.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abno rm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

DROP TA BLE #Tem pTable
RETURN

END
END

END - End o f Proc_InsertRow8 Procedure.
GO

/*
2.21 Procedure Name: dbo.proc_InsertRow9
Database: SupplierPCD
Description:
This procedure enables creation of table specification values having 9 columns.
* /

CREATE Procedure Proc_InsertRow9
/* Param List */
@ ID TableV erD ef BIGINT,
@ Colum nValues N V A R CH A R (4000),
@ ColID M easU nits N V A R CH A R (4000) = NULL,
@ Row Content NVARCHAR(IOO),

@ !DProcState TINYINT OUTPUT,
@ M essage N V A R CH A R (500) OUTPUT

AS
BEGIN

DECLARE
@ Error INT,
@ IDRow INT,
@ N um OfRows INT,
@ C olum nl Val N V A RCHAR(255),
@ Colum n2Val NV A R CH A R(255),
@ CoIum n3Val N V A R CH A R (255),
@ Colum n4Val N V A RCH A R(255),
@ Colum n5VaI N V A R CH A R (255),
@ Colum n6Val N V A RCH A R(255),
@ Colum n7Va! NV A R CH A R (255),
@ CoIum n8Val N V A RCHAR(255),
@ Colum n9Val N VARCHAR(255)

SELECT @ ID ProcState = 0
SELECT @ ER RO R = 0
SELECT @ M essage = ' '

SELECT @ N um OFRows = COU NT(*) FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)
-P R IN T '@ N um O fR ow s:' + C A ST(@ N um O fR ow s AS N V A R C H A R)
/* The function fn_getColum nV aluesTable(@ Colum nV alues) should return tw o rows only */

IF @ N um OfRows != 9
BEGIN

SELECT @ IDProcState = 1
SELECT @ M essage = 'An error occured w hile inserting the table row. '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS NVARCHAR) +
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P roc_InsertR ow 9.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fn_getColum n ValuesTable * /

361

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

CR EA TE TA BLE #Tem pTable (Colum nID INT, Colum nValue N V A R C H A R (255))
IN SER T IN TO #Tem pTable
SELEC T Colum nID ,ColV al FROM dbo.fh_getColum nValuesTable(@ Colum nValues)

SELEC T @ C olum nl Val = Colum nV alue FROM #Tem pTable W HERE ColumnID = 1
SELEC T @ Colum n2V al = Colum nV alue FROM #Tem pTable W HERE ColumnID = 2
SELEC T @ C olum n3V al = Colum nV alue FROM #Tem pTable W HERE ColumnID = 3
SELEC T @ C olum n4V al = C olum nV alue FROM #Tem pTable W HERE ColumnID = 4
SELEC T @ C olum n5V al = C olum nV alue FROM #Tem pTable W HERE ColumnID = 5
SELEC T @ C olum n6V al = Colum nV alue FROM #Tem pTable W HERE ColumnID = 6
SELEC T @ C olum n7V al = C olum nV alue FROM #Tem pTable W HERE ColumnID = 7
SELEC T @ C olum n8V al = C olum nV alue FROM #Tem pTable W HERE ColumnID = 8
SELEC T @ C olum n9V al = C olum nV alue FROM #Tem pTable W HERE ColumnID = 9

/ ‘ C heck w hether the row contains column values or colum n specifications
A row can only contain colum n values or colum n specifications(headers)."7

IF @ R ow C ontent LIKE 'ColVals'
BEGIN

/* C heck for the existing row s with sam e ID TableV erD ef to keep track o f the number
o f row s the ID TableV erD ef has if the @ R ow C ontent = C olum n Values' *1
SEL EC T @ ID R ow = M A X (ID Row) FROM TableD efm ition9 W HERE ID TableV erD ef = @ ID TableV erD ef
IF @ ID R ow IS N U LL

SELEC T @ ID Row = 1
ELSE

SELEC T @ ID Row = @ ID Row + 1

IN SER T IN TO TableD efinition9(ID TableV erD ef, IDRow, Colum nl Val,
Colum n2V al,C olum n3V al,C olum n4V al,
C olum n5V al, Colum n6V al,C olum n7V al, Colum n8V al, Colum n9Val,RowContent)

V A L U ES(@ ID T able VerDef, @ IDRow,
LTRIM (RTRIM (@ Colum nlV al)),LTRIM (RTRIM (@ Colum n2V al)),LTRIM (R TR IM (@ Colum n3V aI)),
LTR IM (R TRIM (@ Colum n4V al)),LTRIM (RTRIM (@ Colum n5V aI)), LTRIM (RTRIM (@ Colum n6Val)),
LTRIM (RTRIM (@ Colum n7V al)),LTRIM (RTRIM (@ Colum n8V al)), LTRIM (RTRIM (@ Colum n9Val)),
LTR IM (R TR IM (@ R ow C ontent)))

SEL EC T @ Error = @ @ ERROR
IF @ E rror != 0
BEG IN

SELEC T @ IDProcState = 2
SELEC T @ M essage = 'An error occured while inserting the table ro w .'
SELEC T @ M essage = @ M essage + 'Error code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
NV A R CH A R) + '
SELECT @ M essage = @ M essage + 'Error occured in Procedure P roc_InsertR ow 9.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RAISERROR(@ M essage, 1,1) W ITH SETERROR
RETU RN @ @ ERROR

END
ELSE
BEGIN

DRO P TABLE #Tem pTable
RETURN

END
EN D --End o f IF @ Row C ontent LIKE TableR ow '
ELSE
BEGIN

SELECT @ IDRow = 0
IN SERT INTO TableD efinition9(ID TableV erD ef, IDRow, C olum nl Val, Colum n2Val, Column3Val,
Colum n4Val,
Colum n5Val, Colum n6Val,Colum n7V al, Colum n8V al,
Colum n9Val, RowContent)
VALUES(@ IDTable VerDef, @ ID Row ,
LTRIM (RTRIM (@ Colum n 1 Val)),LTRIM (RTR IM (@ Colum n2V al)),
LTRIM (RTRIM (@ Colum n3V al)),LTRIM (RTRIM (@ Colum n4V al)),LTRIM (RTRIM (@ Colum n5V al)),
LTRIM (RTRIM (@ Colum n6V al)),LTRIM (RTRIM (@ Colum n7V al)),LTRIM (RTRIM (@ Colum n8V al)),
LTRIM (R TR IM (@ C olum n9V al)),LTR IM (R TR IM (@ R ow C ontent)))

SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3
SELECT @ M essage = 'An error occured while inserting the table ro w .'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + CAST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A R CH A R) + '. '

362

Appendix 5: Supplier's Product Class Database (SPCD) System Code

EN D
ELSE
BEG IN

SELEC T @ M essage = @ M essage + 'E rror occured in Procedure P roc_InsertR ow 9.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A lSE R R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

DRO P TA BLE #Tem pTable
RETU RN

EN D
END

END -- End o f P roc_InsertR ow 9 Procedure.
GO

/*
2.22 Procedure Name: dbo.proc_InsertRowlO
Database: SupplierPCD
Description:
This procedure enables creation of table specification values having 10 columns.
•/

CREATE Procedure p ro c In s e r tR o w 10
/* Param List */
@ IDTable V erD ef BIG IN T,
@ Colum nValues N V A R C H A R (4000),
@ CoIIDM easUnits N V A R C H A R (4000) = N U LL,
@ RowContent NVA RCH A R(IO O),
@ IDProcState T IN Y IN T O U TPU T,
© M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
© E rro r INT,
© ID R ow INT,
© N um O fR ow s INT,
© C o lu m n l Val N V A R C H A R (255),
@ C olum n2V al N V A R C H A R (255),
@ C olum n4V al N V A R C H A R (255),
@ C olum n5V al N V A R C H A R (255),
© C olum n6V al N V A R C H A R (255),
@ C olum n7V al N V A R C H A R (255),
@ C olum n8V al N V A R C H A R (255),
@ C olum n9V al N V A R C H A R (255),
© C olum n lOVal N V A R C H A R (255)

SELEC T © ID P ro cS ta te = 0
SELEC T © E R R O R = 0
SELEC T © M essag e = ' '

SELECT © N u m O F R o w s = C O U N T(*) FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)
-P R IN T '© N um O fR ow s: ' + CA ST(@ N um O fR ow s AS N V A R C H A R)
/* The function fn_getC oIum nV aluesTable(@ C olum nV alues) should return two row s only * /

IF © N um O fR ow s != 10
BEGIN

SEL EC T © ID P rocS ta te = 1
SEL EC T © M essag e = 'An error occured w hile inserting the table ro w . '
SEL EC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS NVARCHAR) +
SEL EC T @ M essage = @ M essage + 'E rror occured in Procedure P ro c Jn se rtR o w lO .'
SEL EC T © M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN

END

/♦C reate a tem porary table and insert the values from the table returned
by the function fn_getC olum nV aluesTable */

CR EA TE TA B LE #T em pTable (C olum nID IN T, C olum nV alue N V A R C H A R (255))
INSERT INTO #Tem pTable
SELEC T Colum nID ,C olV al FRO M dbo.fn_getColum nV aluesTable(@ Colum nV a!ues)

SELEC T @ C olum nl Val = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 1

363

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

SELEC T @ C olum n2V al = C olum nV alue FRO M #T em pTable W H ERE ColumnID = 2
SELEC T @ Colum n3V al = C olum nV alue FR O M #T em pTable W H ERE ColumnID = 3
SEL EC T @ Colum n4V al = Colum nV alue FRO M #T em pTable W H ERE Colum nID = 4

SELEC T @ C olum n5V al = Colum nV alue FR O M #T em pT able W H ERE Colum nID = 5
SELEC T @ C olum n6V al = C olum nV alue FR O M #T em pT able W H ERE Colum nID = 6
SELEC T @ C olum n7V al = C olum nV alue FROM #T em pT able W H ER E ColumnID = 7
SELEC T @ C olum n8V al = C olum nV alue FRO M #T em pTable W H ERE Colum nID = 8
SELEC T @ C olum n9V al = C olum nV alue FR O M #T em pT able W H ERE Colum nID = 9
SELEC T @ C olum nlO V al = Colum nV alue FR O M #T em pTable W H ERE Colum nID = 10

/*C heck w hether the row contains colum n values or colum n specifications
A row can only contain colum n values or colum n specifications(headers).* /

IF @ R ow C ontent LIK E 'C olV als'
BEGIN

/* C heck for the existing row s with sam e ID T ab leV erD ef to keep track o f the num ber
o f row s the ID T ab leV erD ef has if the @ R ow C onten t = C olum nV alues’ */
SEL EC T @ ID R ow = M A X (ID R ow) FRO M T ableD efin itionlO W HERE ID T ab leV erD ef=
@ ID Table V erD ef
IF @ ID R ow IS N U LL

SE L E C T @ ID R ow = 1
ELSE

SEL EC T @ ID R ow = @ ID R ow + 1

IN SER T IN TO T ableD efin ition lO (ID T able V erD ef, ID Row , C olum nl Val,
C olum n2V al,C olum n3V al,C olum n4V al,
C olum n5V al, C olum n6V aI,C olum n7V al, C olum n8V al, Colum n9V al,C olum nlO V al, RowContent)
V A L U E S(@ ID T ableV erD ef, @ ID R ow ,
L TR IM (R T R IM (@ C olum n 1 V al)),L TR IM (R TR IM (@ C olum n2V al)),
L T R IM (R T R IM (@ C olum n3V al)),
L T R IM (R T R IM (@ C olum n4V aI)),L TR IM (R TR IM (@ C olum n5V al)),LT R IM (R T R IM (@ C olum n6V al)),
L T R IM (R T R IM (@ C olum n7V al)),L T R IM (R T R IM (@ C olum n8V al)), LTR IM (R TR IM (@ C olum n9V al)),
L T R IM (R T R IM (@ C olum n 1 O V al)),L T R IM (R T R IM (@ R ow C ontent)))

SELEC T @ E rror = @ @ E R R O R
IF @ Error != 0
BEGIN

SE L E C T @ ID P rocS ta te = 2
SEL EC T @ M essage = 'An e rro r occu red w hile inserting the table r o w . '
SE L E C T @ M essag e = @ M essage + 'E rror code i s : ' + C A ST(@ Error A S N V A R CH A R) + '. '
SE L E C T @ M essag e = @ M essage + 'P rocedure State ID i s : ' + C A ST(@ ID ProcState AS
N V A R C H A R) + '. '
SE L E C T @ M essag e = @ M essage + 'E rror occured in Procedure P roc_ InsertR ow lO .'
SEL EC T @ M essag e = @ M essage + 'P rocedure is term inated ab n o rm a lly .'
R A IS E R R O R (@ M essage, 1,1) W ITH SET ER R O R
R E TU R N @ @ E R R O R

END
ELSE
BEGIN

D R O P T A B L E #T em pT able
R ETU R N

END
END —End o f IF @ R ow C onten t L IK E T ab leR o w '
ELSE
BEGIN

SELEC T @ ID R ow = 0
IN SERT IN TO T ableD efin ition lO (ID T ab leV erD ef, ID R ow , Colum nl Val, CoIum n2V al, Colum n3Val,
Colum n4V al,
C olum n5V al, C o lum n6V al,C olum n7V al, C olum n8V al,
C olum n9V al, C olum n lO V al,R ow C ontent)
V A L U E S (@ ID T ableV erD ef, @ ID R ow ,
L T R IM (R T R IM (@ C olum n 1 V al)),L TR IM (R TR IM (@ C olum n2V al)),
L TR IM (R TR IM (@ C olum n3V al)),LT R IM (R T R IM (@ C o!um n4V al)),LT R IM (R T R IM (@ C oIum n5V al)),
LTR IM (R TR IM (@ C olum n6V al)),LT R IM (R T R IM (@ C olum n7V al)),L TR IM (R TR IM (@ C olum n8V al)),
L T R IM (R TR IM (@ C olum n9V al)),LT R IM (R T R IM (@ C olum nlO V al)),L TR IM (R TR IM (@ R ow C ontent)))

SELEC T @ E rror = @ @ E R R O R
IF @ E rror != 0
BEGIN

SEL EC T @ ID P rocS tate = 3
SEL EC T @ M essag e = 'An error occured w hile inserting the table row. ’
SEL EC T @ M essag e = @ M essage + 'E rror code is: ’ + C A ST(@ Error A S NVARCHAR) + '. '
SEL EC T @ M essag e = @ M essage + ’Procedure State ID i s : ' + CA ST(@ ID ProcState AS
N V A R C H A R) + ’
SEL EC T @ M essag e = @ M essage + 'E rror occured in Procedure Proc_InsertR ow lO .'
SEL EC T @ M essag e = @ M essage + P ro c ed u re is terminated abnorm ally. '
R A ISE R R O R (@ M essage, 1,1) W ITH SET ER R O R

364

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

RETURN @ @ ER RO R
END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END

END -- End o f P ro c In se rtR o w lO Procedure.
GO

2.23 Function Name: dbo.fn_getColumnValuesTable
Database: SupplierPCD
Description:
This function extracts column values from a string Column values in a string are delimited by '*****' */
After extracting the column values the function inserts each individual column value into the table and
returns the table to the called procedure.
♦/

CREATE FU N CTIO N dbo.fn^getC olum nV aluesTable
(© C olum nV alues N V A R C H A R (4000))
RETURNS @ C olum nV aluesTable TABLE
(

Colum nID INT,
Col Val N V A R C H A R (500)

)

AS
BEGIN

D ECLA RE
© In d ex INT, /♦ Keeps the index o f position from w here the delim iter starts.

i.e. the starting position o f '♦♦♦♦♦' in a string ♦/
@ D O N E TIN Y IN T, /♦Acts as a boolean variable. ♦/
@ C olum nV al NV A R CH A R (500), /♦Holds each indiviaual colum n value ♦/
@ C ounter INT

/♦The follow ing is executed when the procedure is called with em pty string as input param eter ♦/
SELEC T @ D O N E = 0
SELEC T @ C olum nV alues = LTRIM (RTRIM (@ Colum nValues))
IF L EN (@ C olum nV alues) = 0
BEGIN

SELEC T @ D O N E = 1
RETU RN

EN D

/♦ T he follow ing is executed when the string contains only one colum n values ♦/
SELEC T @ Index = CHARINDEXC###', @ Colum nValues)
IF @ Index = 0
BEGIN

SELECT @ Colum nVal = @ Colum nValues
SELECT @ Colum nV al = LTRIM (RTRIM (@ Colum nVal))
SELECT @ Counter = 1
IN SERT INTO @ Column V aluesTable (Colum nID ,Col Val) VALUES (@ Counter, @CoIumn Values)
SELECT @ D O N E = 1
RETU RN

END

/♦ The follow ing loop is executed when there are more than one column values in the string ♦/
SELECT © C ou n ter = 1
W HILE © D O N E = 0
BEGIN

SELEC T © In d ex = CHARINDEX(W ##', @ Colum nV alues)
SELEC T © C olum nV al = LEFT(@ Colum nV alues, @ Index - 1)
SELEC T © C olum nV al = LTRIM (RTRIM (@ Colum nV al))
IF LEN (@ C olum nV al) > 0

IN SERT IN TO © C olum n V aluesTable (Colum nID ,Col Val) VALUES (© C ounter, © Colum nVal)
ELSE

IN SERT IN TO @ Colum n ValuesTable (Colum nID ,Col Val) VALUES (@ Counter, NULL)
SELECT @ C ounter = @ Counter + 1
SELECT @ Colum nV alues = SU BSTRIN G (@ C olum nV alues, @ Index +3, LEN(@ CoIumnValues) - @ Index + 2)
SELECT @ Colum nV alues = LTRIM (R TRIM (@ Colum nV alues))
SELECT @ Index = CHARINDEX(W ##', @ Colum nV alues)

365

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

IF @ Index = 0
BEGIN

IF LEN (@ C olum nV alues) = 0
BEGIN

SELEC T @ D O N E = 1
END
ELSE
BEGIN

SELEC T @ C olum nV al = @ C olum nV alues
SELEC T @ C olum nV al = LTR IM (R TR IM (@ C olum nV al))

IF LEN (@ C olum nV al) > 0
IN SERT IN TO @ C olum nV aluesT able (C olum nID ,C olV al) VALUES (@ Counter,

@ ColumnVal)
ELSE

IN SERT IN TO @ C olum nV aluesT able (C olum nID ,C olV al) VALUES (@ Counter, NULL)
SELEC T @ D O N E = 1

END
END

END
RETURN
END

/*
2.24 Function Name: dbo. dbo.fn_GetIDEntityPart
Database: SupplierPCD
Description:
This function returns entity part from a complete ID.
*/
CREATE FUNCTION dbo.fn_G etID EntityPart
(@ lD Com plete B1GINT)

RETURNS INT
AS

BEGIN
RETURN C A ST (SU B STR IN G (C A ST (@ ID C om plete AS N V A R C H A R), 1, 3) AS INT)

END

I*

366

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

2.25 Function Name: dbo.fn_GetIDPart
Database: SupplierPCD
Description:
This function returns ID part from a complete ID.
*/

CREATE FU N CTIO N dbo.fh_G etID Part
(@ ID C om plete BIG IN T)

RETURNS B IG IN T
AS

BEGIN
DECLA RE
@ ID C om pleteL ength TIN Y IN T,
@ ID Part N V A R C H A R (20)
SELEC T @ ID C om pleteL ength = LEN (C A ST(@ ID C om plete AS N V A RCH A R))
SELEC T @ ID P art = SU B STR IN G (C A ST(@ ID Com plete AS N V A R C H A R), 4, @ IDCom pleteLength - 3)
RETU RN C A ST (@ ID Part AS BIGINT)

END

/*

2.26 Function Name: dbo.fn_GetNewID
Database: SupplierPCD
Description:
This function generates a new ID for given entity such as product class, specification, etc.
♦/

CREATE FU N CTIO N dbo.fh_G etN ew ID
(@ ID Entity INT)

RETURNS BIGINT
AS

BEGIN
DECLARE
@ ID A vailable BIG IN T,
@ ID N ext B IG IN T
SELECT g ID A v a ila b le = ID A vailable FROM Entity W H ER E [IDEntity] = @ IDEntity
SELEC T @ ID N ext = dbo.fn_Increm entID (@ ID A vailable, DEFA U LT)
RETU RN @ ID A vai!able

END

/*
2.27 Function Name: dbo.fn_IncrementID
Database: SupplierPCD
Description:
This function increments ID.
* /

CREATE FU N CTIO N d b o .fn Jn c re m e n tlD
(@ ID Com plete BIG IN T,
@ Increm entB y INT = 1)

RETURNS BIG IN T
AS

BEGIN
D ECLA RE
g ID P a r t BIGINT,
@ EntityPart BIGINT
SELECT g I D P a r t = dbo .fh_G etID P art(g lD C om plete)
SELEC T g E n ti ty P a r t = dbo.fh_G etID E ntityPart(g ID C om plete)
SELEC T g ID P a r t = g ID P a r t + g ln c re m e n tB y
RETU RN C A ST (C A ST (g E n tity P a rt AS N V A R C H A R) + C A S T (g ID P art AS NVARCHAR) AS BIGINT)

END

367

Appendix 5: Supplier’s Product Class Database (SPCD) System Code

/*
2.28 Function Name: dbo.fn_GetNextAvailableID
Database: SupplierPCD
Description:
This function generates next available ID.
♦/

CREATE FU N C TIO N dbo.fn_G etN extA vailableID
(@ ID Com plete B IG IN T)
RETURNS BIG IN T
AS

BEGIN
DECLARE
@ IDPart B IG IN T,
@ EntityPart B IG IN T
SELECT @ ID Part = dbo.G etID Part(@ ID C om plete)
SELECT @ EntityPart = dbo.G etID EntityPart(@ ID C om plete)
SELECT @ ID Part = @ ID P art + 1
RETURN CA ST (C A ST (@ E ntityP art AS N V A R C H A R) + C A ST(@ ID Part AS N V A R C H A R) AS BIGINT)
END

368

Appendix 5: Supplier Database (SD) System Code

Supplier Database (SD) System Code
/*

3.1 Procedure Name: dbo.procAssignCategory
Database: SupplierDB
Description:
This procedure enables assigning a category to super category and sub category.
*/

CREATE Procedure proc_A ssignC ategory
/* Param List */
@ lD Category U N IQ U EID EN TIFIER,
© ID SuperC ategory U N IQ U EID EN TIFIER,
© ID ProcState T IN Y IN T O U TPU T,
© M essage N V A R C H A R (500) O U TPU T
AS
BEGIN

DECLARE
© E rro r INT
SELECT © ID ProcS ta te = 0
SELEC T @ ER R O R = 0
INSERT INTO C ategory_SuperC ategory (ID C ategory, ID SuperC ategory)
VALUES (© ID C ategory , @ ID SuperC ategory)
SELECT @ ER R O R = @ @ ER R O R
IF © E rro r != 0
BEGIN

RO LLBA CK TRAN
SELEC T @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile creating the new Category. '
SELECT © M essage = © M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELEC T © M essage = @ M essage + 'E rror occured in P rocedure p roc_C reateC ategory .'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally. '
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END

INSERT INTO C ategory_SubC ategory (ID C ategory, ID SubC ategory)
VALUES (@ ID SuperCategory, © ID C ategory)
SELECT @ ERRO R = @ @ ER RO R
IF © E rro r != 0
BEGIN

RO LLBA CK TRAN
SELECT @ ID ProcState = 2
SELECT @ M essage = 'An error occured w hile creating the new category.'
SELECT © M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELECT © M essage = @ M essage + 'E rror occured in P rocedure p roc_C reateC ategory .'
SELECT © M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN © © E R R O R

END
ELSE
BEGIN

SELEC T @ M essage = 'C ategory successfu lly assigned.'
RETURN

END
END -- End o f Proc_A ssignCategory Procedure.
GO

/*

3.2 Procedure Name: dbo.proc_AssignList2Product
Database: SupplierDB
Description:
This procedure enables assigning list specification to product version.
*/

CREATE Procedure proc_A ssignList2Product
/* Param List */
@ IDProd U N IQ U EID EN TIFIER ,
© ID L ist U N IQ U EID EN TIFIER ,
@ IDProcState T IN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

369

Appendix 5: Supplier Database (SD) System Code

AS
BEGIN

D E C L A R E
@ E rro r INT
S E L E C T @ ID ProcState = 0
S E L E C T @ E R R O R = 0
/* A L ist can be assigned to a product or a specification group */

/* T his p rocedure assigns a list to a product */
IN S E R T IN TO ProductD efm ition(ID Prod, IDList)
V A L U ES (@ ID Prod, @ IDList)
SEL EC T (© Error = @ @ ERRO R
IF @ E rro r != 0
BEG IN

R O L L B A C K TRAN
S E L E C T @ ID ProcState = 1
S E L E C T @ M essage = 'An error occured while assigning the List to the product.'
S E L E C T @ M essage = @ M essage + 'E rror code i s : ' + CA ST (@ E rror AS N V A R C H A R) + ' . '
SE L E C T @ M essage = @ M essage + 'E rror occured in P rocedure proc_A ssignL ist2Product.'
S E L E C T @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
R E T U R N @ @ ER R O R

EN D
ELSE
BEGIN

SE L E C T @ M essage = 'L ist successfully assigned to the Product.'
R E T U R N

END
END — End o f p roc_A ssignL ist2Product Procedure.

3.3 Procedure Name: dbo.proc_AssignList2SpecificationGroup
Database: SupplierDB
Description:
This procedure enables assigning list specification to specification group.

CREATE Procedure p roc_A ssignL ist2SpecificationG roup
/* Param List */
© ID SpecG roup U N IQ U EID EN TIFIER ,
© ID L ist U N IQ U EID EN TIFIER ,
© ID ProcState T IN Y IN T O U TPU T,
© M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

END
GO

D EC LA R E
© E rro r INT
/* A L ist can be assigned to a product or a specification group *1
/* T h is p rocedure assigns a list to a Specification G roup */
IN SER T IN T O SpecificationG roupD efm ition(ID SpecG roup, IDList)
V A LU ES (© ID S p ecG ro u p , @ ID List)
SELEC T © E rro r = @ @ E R R O R
IF @ E rror != 0
BEGIN

R O L L B A C K TRA N
SE L E C T @ ID ProcState = 1
SE L E C T @ M essage = 'An error occured while assigning the List to the specification group.'
SE L E C T @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS N V A R CH A R) + ' . '
SE L E C T @ M essage = @ M essage + 'E rror occured in Procedure proc_AssignList2SpecificationGroup.
S E L E C T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
R E T U R N @ @ ER R O R

EN D
ELSE
BEG IN

EN D

S E L E C T @ M essage = 'L ist successfully assigned to the Specification G roup.'
R E TU R N

370

Appendix 5: Supplier Database (SD) System Code

3.4 Procedure Name: dbo.proc_AssignProduct2Category
Database: SupplierDB
Description:
This procedure enables assigning a product to a category.
* /

CREATE Procedure proc_A ssignProduct2C ategory
/* Param List */

@ ID Category U N IQ U EID EN TIFIER,
@ IDProd U N IQ U EID EN TIFIER,
@ ID ProcState T IN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T
AS
BEGIN

D ECLARE
@ Error INT
SELEC T @ ID ProcState = 0
SELECT @ ER R O R = 0
/* A sub product can be assigned to a category ,product o r a specification g roup * /
/* This procedure assigns a product to a category. Im portant th ing to note is that
a product is being assigned not ID ProdD ef */

IN SERT IN TO C ategory_ProductC lass(ID C ategory, ID Prod)
V ALUES (© ID C ategory , @ ID Prod)
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

RO LLBA CK TRAN
SELECT @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile assigning p roduct to the category.'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure proc_A ssignProduct2C ategory.
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
RA ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
ELSE
BEGIN

SELECT @ M essage = 'Product successfully assigned to the category.'
RETURN

END
END - End o f Pproc_A ssignProduct2Category.
GO

/*

3.5 Procedure Name: dbo.proc_AssignProduct2SpecificationGroup
Database: SupplierDB
Description:
This procedure enables assigning product to specification group.
♦/

CREATE Procedure proc_A ssignProduct2SpecificationG roup
/* Param List */
@ IDSpecGroup U N IQ U EID EN TIFIER,
@ IDProd U N IQ U EID EN TIFIER,
@ IDProcState TIN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT
SELECT @ IDProcState = 0
SELECT @ ER RO R = 0
/* A sub product can be assigned to a category ,product class or a specification group */
/* This stored procedure assigns a p roduct to a specification group. */
INSERT INTO SpecificationG roupD efinition(ID SpecG roup, IDProd)
VALUES (@ ID SpecG roup, @ ID Prod)

371

Appendix 5: Supplier Database (SD) System Code

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile assigning the product to the specification group.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure proc_A ssignProduct2SpecificationG roup.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated abnorm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

SELECT @ M essage = 'Product successfu lly assigned to the specification group.'
RETURN

END
END -- End o f proc_A ssignProduct2SpecificationG roup Procedure.

3.6 Procedure Name: dbo.proc_AssignSpecificationGroup2Product
Database: SupplierDB
Description:
This procedure enables assigning specification group to product.
*/
CREATE Procedure proc_A ssignSpecificationG roup2Product
/* Param List */
@ IDProd U N IQ U EID EN TIFIER,
@ ID SpecG roup UN IQ U EID EN TIFIER,
@ IDProcState T IN Y IN T OUTPUT,
@ M essage N V A R C H A R (500) OUTPUT
AS
BEGIN

DECLARE
@ Error INT
/* A specification group can be assigned to a product or another specification group. * /

/* This procedure assigns a specification group to a product * /

INSERT IN TO ProductD efm ition(ID Prod, ID SpecG roup)
VALUES (@ ID Prod, @ IDSpecGroup)
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

RO LLBA CK TRAN
SELEC T @ IDProcState = 1
SELEC T @ M essage = 'An error occured w hile assigning the specification group to the product.'
SELEC T @ M essage = @ M essage + 'E rror code is: ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure p roc_A ssignSpecifica tionG roup.'
SELEC T @ M essage = @ M essage + 'P rocedure is term inated ab n o rm a lly .'
RAISERROR(@ M essage, 1,1) W ITH SET ER R O R
R ETU RN @ @ ERROR

END
ELSE
BEGIN

SELEC T @ M essage = 'Specification group successfu lly assigned to the Product.'
RETURN

END
END -- End o f proc_A ssignSpecificationG roup2Product.
GO

372

Appendix 5: Supplier Database (SD) System Code

3.7 Procedure Name: dbo.proc_AssignSpecificationGroup2SpecificationGroup
Database: SupplierDB
Description:
This product en ab les assign ing a (sub) sp ec ifica tion group to another sp ecification group.
* /

CREATE Procedure proc_A ssignSpecificationG roup2SpecificationG roup
/* Param List * /
© ID SpecG roup UNIQUEIDENTIFIER,
© ID SubSpecG roup UNIQUEIDENTIFIER,
© ID ProcState T IN Y IN T OUTPUT,
© M essage N V A R CH A R (500) OUTPUT
AS
BEGIN

D ECLA RE
© E rro r INT
/* A specification group can be assigned to a product or another specification group. */
/* This procedure assigns a specification group to another specification group. */

IN SERT IN TO SpecificationG roupD efinition(ID SpecG roup, ID SubSpecG roup)
V A LU ES (© ID SpecG roup, @ IDSubSpecGroup)

SELEC T @ E rror = @ @ ERROR
IF © E rro r != 0
BEGIN

RO LLB A C K TRAN
SEL EC T @ IDProcState = 1
SEL EC T @ M essage = ’An error occured while assigning the specification group to specification group.'
SEL EC T @ M essage = @ M essage + 'E rror code is: ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SEL EC T @ M essage = © M essage + 'E rror occured in Procedure
proc_A ssignSpecificationG roup2SpecificationG roup.'
SEL EC T © M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU R N @ @ ERROR

END
ELSE
BEGIN

SELEC T @ M essage = 'Specification group successfully assigned to the Specification G roup.'
RETU RN

EN D

END - End o f proc_A ssignSpecificationG roup2SpecificationG roup.
GO

/*

3.8 Procedure Name: dbo.proc_AssignSubProduct2Product
Database: SupplierDB
Description:
This procedure enables assigning a sub product to another product.
*/

CREATE Procedure proc _A ssignSubProduct2Product
/* Param List */
© ID Prod UNIQUEIDENTIFIER,
© ID SubProd UNIQUEIDENTIFIER,
^ ID P ro cS ta te TIN Y IN T OUTPUT,
© M essage NVARCHAR(500) O U TPU T
AS
BEGIN

DECLARE
© E rro r INT
SELECT © ID ProcState = 0
SELECT © E R R O R = 0

/* A sub product can be assigned to a category ,product or a specification group */
/* This procedure assigns a sub product to another product * /

INSERT INTO ProductD efinition(ID Prod, ID SubProd)

373

Appendix 5: Supplier Database (SD) System Code

VALUES (@ ID Prod, @ ID SubProd)
SELEC T (©Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLBA CK TRAN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An erro r occured w hile assigning the Subproduct to the product.1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignSubProduct2Product.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abno rm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ERRO R

END
ELSE
BEGIN

SELEC T @ M essage = 'Subproduct successfu lly assigned to the product.'
RETU RN

END
END — End o f proc_A ssignSubProduct2Product Procedure.

3.9 Procedure Name: dbo.proc_AssignTableObject2Product
Database: SupplierDB
Description:
This procedure enables assigning a table specification object to product.
* /

CREATE Procedure proc_A ssignTableO bject2Product
/* Param List */
@ IDProd U N IQ U EID EN TIFIER,
© ID TableO bj UN IQ U EID EN TIFIER,
@ IDProcState T IN Y IN T O U TPU T,
© M essage N V A R C H A R (500) O U TPU T
AS
BEGIN

DECLARE
@ Error INT
SELECT @ ID ProcState = 0
SELECT @ ER RO R = 0

END
GO

/* A Table object can be assigned to a p roduct class or a specification group */
/*
This procedure assigns a table object to a product.
*/
INSERT INTO ProductD efm ition(ID Prod, ID TableO bj)
VALUES (© ID Prod , @ ID TableO bj)
SELECT © E rro r = @ @ ER R O R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile assigning the table object to the product.'
SELECT © M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_A ssignTableO bject2Product.
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETU RN © (© ERRO R

END
ELSE
BEGIN

SELECT @ M essage = T ab le object successfu lly assigned to the Product.'
RETURN

END
-- End o f proc_A ssignTableO bject2Product Procedure.

/♦

374

Appendix 5: Supplier Database (SD) System Code

3.10 Procedure Name: dbo.proc_AssignTableObject2SpecificationGroup
Database: SupplierDB
Description:
This procedure enables assigning table specification object to specification group.
* /

CREATE Procedure proc_A ssignTableO bject2SpecificationG roup
/* Param List */
© ID SpecG roup UNIQUEIDENTIFIER,
© ID TableO bj UNIQUEIDENTIFIER,
© ID ProcState TINYINT O UTPUT,
© M essage N VARCHAR(500) O U TPU T
AS
BEGIN

DECLARE
© E rro r INT

SELECT © ID ProcState = 0
SELECT © E R R O R = 0

/* A Table object can be assigned to a product class o r a specification group */
/*
This procedure assigns a table object to specification group.
*/
IN SERT INTO SpecificationG roupD efm ition(ID SpecG roup, ID TableO bj)
VALUES (© ID SpecG roup, @ IDTableObj)
SELECT @ Error = @ @ ERROR
IF © E rro r != 0
BEGIN

ROLLBACK TRAN
SELECT @ IDProcState = 3
SELECT @ M essage = 'An error occured w hile assigning the table o b jec t to the specification group.’
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A S T (@ E rror A S N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure
proc_A ssignTableO bject2SpecificationG roup.'
SELECT @ M essage = @ M essage + 'Procedure is term inated a b n o rm a lly .'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

END
ELSE
BEGIN

SELECT © M essage = T ab le object successfu lly assigned to the Specification G roup.'
RETURN

END
END -- End o f proc_A ssignTableO bject2SpecificationG roup Procedure.
GO

/*

3.11 Procedure Name: dbo.proc_CreateCategory
Database: SupplierDB
Description:
This procedure enables creation of a category.

CREATE Procedure proc CreateCategory
/* Param List * /
© I DCategoryC lass
© C ategoryN ame
© I DSuperCategory
© C ategory Desc
© ID ProcState
© M essage

BIGINT,
N V A R CH A R (255),
BIGINT = NU LL,
N V A R C H A R (4000) = N U LL,
TINYINT O U TPU T,
N V A R C H A R (500) O U T PU T

AS
BEGIN

DECLARE
@ Error INT,
© ID C ategory U N IQ U EID EN TIFIER
SELECT © ID ProcState = 0
SELECT © E R R O R = 0

BEGIN TRAN

375

Appendix 5: Supplier Database (SD) System Code

/♦The follow ing block checks w hether the category a lready exists ♦/

IF EXISTS (SELECT IDCategoryCIass FR O M C ategory W H ER E ID C ategoryClass = @ IDCategoryClass)
BEGIN

ROLLBACK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage - 'C ategory a lready ex is ts .’
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID is: ’ + C A ST(@ ID ProcState AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure p roc_C reateC atego ry .'
SELECT @ M essage = @ M essage + 'P rocedure is term inated abnorm ally. '
RA ISERRO R(@ M essage, 1,1) W ITH SE T E R R O R
RETURN @ @ ERROR

END

/♦ Create Guid for IDCategory. ♦/
SELECT @ ID Category = newID()

/♦C reate the Category by inserting values into the C a tego ry table ♦/

INSERT INTO Category(ID Category, ID C ategoryC lass, C ategoryN am e, C ategoryD esc)
VALUES (@ ID Category, @ ID CategoryClass, L T R IM (R T R IM (@ C ategoryN am e)), LTRIM (R TRIM (@ CategoryD esc)))
SELECT @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELECT @ IDProcState = 2
SELECT @ M essage = 'An error occured w hile creating the new category .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A S T (@ ID ProcS tate AS NV A R CH A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure p ro c_ C rea teC a teg o ry .'
SELEC T @ M essage = @ M essage + 'P rocedure is term inated abnorm ally. '
RAISERROR(@ M essage, 1,1) W ITH SE T E R R O R
RETU RN @ @ ERROR

END

/♦ Now insert values into the C ategoryH ierarchy table to m aintain category hierarchy. ♦/

/♦IF @ SuperC ategory is null then a category is top level ca tegory and the ID SuperC ategory
value for the category is 0. It also has no sub category. ♦/

IF @ ID SuperC ategory IS NULL
BEGIN

SELECT @ M essage = 'C ategory successfu lly C re a te d . '
SELEC T @ M essage = @ M essage + 'C ategory ID i s : ' + C A ST (@ ID C ategory AS N V A R CH A R) + '.'
CO M M IT TRAN
RETURN

END
ELSE
BEGIN

/♦ If a category has a super category then the ca tegory is also a sub category
o f that super category. In this case tw o inserts are required. F irst to create a
category and its super category and second to crea te a supercategory and its sub category
For this we call proc_A ssignC ategory. ♦/

EXEC proc_A ssignCategory
@ ID Category = @ ID C ategory ,
@ ID SuperCategory = @ ID SuperC ategory ,
@ IDProcState = @ ID ProcS tate O U T PU T ,
@ M essage = @ M essage O U T P U T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TR A N
SELECT @ M essage = @ M essage + ' T his Procedure w as called from Proc_AssignCategory.'
R A IS E R R O R (@ M essage,l,l) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

SELECT @ M essage = 'C ategory successfu lly C re a te d .'
SELECT @ M essage = @ M essage + 'C ategory ID i s : ' + C A ST(@ ID C ategory AS NVARCHAR)

C O M M IT TR A N
RETURN

END

376

Appendix 5: Supplier Database (SD) System Code

END
END — End o f Proc C reateC ategory Procedure.
GO

/*

3.12 Procedure Name: dbo.proc_CreateNewList
Database: SupplierDB
Description:
This procedure creates a new list specification.
*/

CREATE Procedure pi
/* Param List */
@ IDListC lass
@ IDListV er
@ ListName
@ ListDesc
@ ListValues
@ ListID M easU nits
@ AssignTo
@ IDAssignTo
@ IDProcState
@ M essage

AS
BEGIN

DECLARE
@ IDList U N IQ U EID EN TIFIER ,
@ Error INT
SELECT @ ID ProcS tate = 0
SELECT @ ER R O R = 0

BEGIN TRA N
/*
Create List specification by insertinv values into L istSpecification Table. */
/ ‘ C reate guids for ID List*/

SELECT @ ID List= new ID ()
INSERT IN TO ListSpecification(ID LisL ID ListClass, ID ListV er, L istN am e,L istD esc)
VALUES (@ ID List, @ ID ListC Iass, @ IDListV er, LTR IM (R TR IM (@ L istN am e)), L TR IM (R TR IM (@ ListD esc)))

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

RO LLB A C K TRAN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile creating the new l i s t .'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELEC T @ M essage = @ M essage + 'Procedure State ID is: ' + CA ST(@ ID ProcState AS N V A RCH A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure proc_C reateN ew L ist.'
SELEC T @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RA lSE R R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
/* Now assign the list specification. T he follow ing procedure is called for

assigning the list specification. A list specification can be assigned
to a product or specification group. */

IF @ A ssignTo = 'Product'
BEGIN

EXEC proc_A ssignList2Product
@ ID Prod = @ ID A ssignTo,
@ ID List = @ ID List,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELEC T @ M essage = @ M essage + ' This Procedure w as called from Proc_CreateNewList.'
R A IS E R R O R (@ M essag e ,l,l) W ITH SETER RO R
RETU RN @ @ ER R O R

END
END

C reateN ew List

BIGINT,
M O NEY,
N V A R CH A R (255),
N V A R CH A R (4000) = N U LL,
N V A R CH A R (4000) = NULL,
N V A R CH A R (4000) = N U LL,
N V A R CH A R (60),
UN IQ U EID EN TIFIER,
T IN Y IN T O UTPUT,
N V A R C H A R (500) O U TPU T

377

Appendix §: Supplier Database (SD) System Code

IF @ A ssignTo = 'SpecificationG roup'
BEG IN

EX EC proc_A ssignList2SpecificationG roup
@ ID SpecG roup = @ ID A ssignTo,
@ ID List = @ ID List,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEG IN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure w as called from P rocC reateN ew L ist.'
R A ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ERROR

EN D
END

/♦ Now insert values in the ListDefiniton Table. For this we call proc_InsertListV alues
procedure ♦/
EXEC dbo.proc_InsertL istV alues
@ ID List = @ ID List,
@ ListV aIues = @ ListV alues,
@ ListID M easU nits = @ ListID M easU nits,
@ M essage = @ M essage OUTPUT,
@ ID ProcState = @ ID ProcState OUTPUT
IF @ ID ProcState != 0
BEGIN

R O L L B A C K TRA N
SE L E C T @ M essage = @ M essage + ' This Procedure w as called from proc_CreateN ew List.'
R A IS E R R O R (@ M essag e ,l,l) W ITH SETER RO R
R E TU R N @ @ ER R O R

END
ELSE
BEGIN

/♦ If every th ing goes w ell until this point it m eans that all the values are inserted
p roperly into the above tables. N ow we neet to com m it the transaction. ♦/
C O M M IT T R A N
SE L E C T @ M essage = T is t Created S uccessfu lly .'
R ETU R N

END
END -- End o f p ro c C re a te N e w L is t Procedure.
GO

/♦

3.13 Procedure Name: dbo.proc_CreateNewProduct
Database: SupplierDB
Description:
This procedure creates a new product specification.
♦/

CREATE Procedure proc_C reateN ew Product
/♦ Param List ♦/
@ IDProdClass B IG IN T,
@ IDProdClassVer M O N EY ,
@ ProdName N V A R C H A R (255),
@ ProdDesc N V A R C H A R (4000) = NULL,
@ AssignTo N V A R C H A R (60) = NULL,
@ IDAssignTo U N IQ U E ID E N TIFIER = NU LL,
@ IDProcState T IN Y IN T O UTPUT,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

D ECLA RE
@ Error INT,
@ ID ProdInternal B IG IN T,
@ ID Prod U N IQ U EID EN TIFIER

SELEC T @ ID ProcState = 0
SELEC T @ ER R O R = 0

BEGIN TRA N

/♦G et an new Internal ProducUD ♦/
EXEC dbo.proc_G etN ew ID

378

Appendix 5: Supplier Database (SD) System Code

@ ID Entity = 114,
@ ID N ew = @ ID ProdIntem al O U TPU T,
@ M essage = @ M essage O U TPU T,
@ ID ProcState = @ ID ProcState O U TPU T

IF @ ID ProcState != 0
BEGIN

R O LLBA CK TRAN
SELEC T @ M essage = @ M essage + ' T h is Procedure w as called from Proc_CreateN ew Product.'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
R ETU RN @ @ ER RO R

END

/*
C reate product by inserting values into product table. A fter inserting values into the
product table, the product created should be assigned. A product can be assigned to
a another product, a specification group or a categor.
• /

/•C rea te guids for ID Prod */
SELEC T @ ID Prod = new ID ()

IN SERT INTO Product(ID Prod, ID P rodlntem al.ID ProdC lass, ID ProdC lassV er, ProdN am e, ProdDesc)
VALUES (@ ID Prod, @ ID ProdIntem al, @ ID ProdC lass, @ ID ProdC lassV er, LTRIM (R TRIM (@ ProdN am e)),
L T R IM (R T R IM (@ ProdD esc)))

SELEC T @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

RO LLBA CK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile creating the new product class.'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELEC T @ M essage = @ M essage + 'P rocedure State ID i s : ' + CA ST(@ ID ProcState AS N V A RCH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_C reateN ew Product.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
R ETU RN @ @ ER RO R

END
/* A product can be assigned to another product, specification group or category */

/* Assigning product to another product*/

IF @ A ssignTo = 'Product'
BEGIN

EXEC proc_A ssignSubProduct2Product
@ ID Prod = @ ID A ssignTo,
@ ID SubProd = @ ID Prod,
@ ID ProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELEC T @ M essage = @ M essage + ' T his P rocedure w as called from proc_CreateNewProduct.'
R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

/ • I f everyth ing goes w ell until this poin t it m eans that all the values are inserted
properly into the above tables. N ow we neet to com m it the transaction. • /

CO M M IT TRAN
SELEC T @ M essage = 'P roduct C reated Successfully.'
RETURN

END
END -- End o f IF @ A ssignTo = 'product'

IF @ A ssignTo = 'SpecificationG roup'
BEGIN

EXEC proc_A ssignProduct2SpecificationG roup
@ ID SpecG roup = @ ID A ssignTo,
@ ID Prod = @ ID Prod,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0

379

Appendix 5: Supplier Database (SD) System Code

BEGIN

END
ELSE
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his Procedure was called from proc_CreateNewProduct.'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

/♦If everything goes well until this po in t it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. ♦/

COMMIT TRAN
SELECT @Message = P ro d u c t C reated Successfully.'
RETURN

END
END - IF @ A ssignTo = ’SpecificationGroup’

IF @ A ssignTo = 'Category'
BEGIN

EX EC proc_AssignProduct2Category
@ ID Category = @IDAssignTo,
@ ID Prod = @IDProd,
@ ID ProcState = @IDProcState OUTPUT,
@ M essage = @Message OUTPUT
IF @ IDProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @Message = @ M essage + ' T his Procedure w as called from proc C reateN ew Product.'
RAISERROR(@Message, 1,1) W ITH SETER R O R
RETURN @@ERROR

EN D
ELSE
BEGIN

/♦ If everything goes well until this poin t it m eans that all the values are inserted
properly into the above tables. Now we neet to com m it the transaction. ♦/

COM M IT TRAN
SELECT @Message = Product Created Successfully.'
RETURN

END
EN D - IF @ A ssignTo = 'Category'

END — End o f Proc_CreateN ew Product Procedure.
GO

/♦

3.14 Procedure Name: dbo.proc_CreateNewProductSpecificationObject
Database: SupplierDB
Description:
This procedure enables creation of a new product specification.
♦/

CREA TE Procedure proc CreateNewProductSpecificationObject
/♦ Param List ♦/
@ ProdSpecN am e NVARCHAR(255),
@ ProdSpecV alue NVARCHAR(4000),
@ ProdSpecD esc NVARCHAR(4000) = NULL,
@ M easU nitN am e NVARCHAR(255),
@ IDProd UNIQUEIDENTIFIER,
@ IDProcState TINYINT OUTPUT,
g M e ssag e NVARCHAR(500) OUTPUT

AS
BEGIN

DECLARE
@ Error INT,
@ ID ProdSpec UNIQUEIDENTIFIER
SELECT (gID ProcState = 0
SELEC T @ ERROR = 0

BEGIN TRAN

/♦Create guid for IDProdSpec ♦/
SELECT @ ID ProdSpec = newID()
/♦Create Product Specification by inserting values into the P roduc t Specification table ♦/

380

Appendix 5: Supplier Database (SD) System Code

IN SER T IN TO ProductSpecification(lD ProdSpec, ProdSpecN am e, ProdSpecV alue,
ProdSpecD esc, M easU nitN am e, IDProd)
V A LU ES
(@ ID ProdSpec, LTR IM (R TR IM (@ ProdSpecN am e)),LTR IM (R TR IM (@ ProdSpecV alue)),

LTR IM (R TR IM (@ ProdSpecD esc)), L TRIM (R TR IM (@ M easU nitN am e)), @ IDProd)

SELEC T @ E rror = @ @ ER R O R
IF @ E rror != 0
BEGIN

RO LLB A C K TRAN
SELEC T @ ID ProcState = 1
SEL EC T @ M essage = 'An error occured while creating the new Product Specification object.'
SEL EC T @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS N V A RCH A R) + ' . '
SEL EC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS N V A R CH A R) +
SEL EC T @ M essage = @ M essage + 'E rror occured in Procedure
P roc_C reateN ew P roductS pecifica tionO bject.'
SEL EC T @ M essage = @ M essage + 'Procedure is term inated abno rm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
R ETU R N @ @ ER R O R

END
ELSE
BEGIN

C O M M IT T R A N
END

END — End o f Proc_C reateN ew ProductSpecificationO bject Procedure.
GO

/♦

3.15 Procedure Name: dbo.proc_CreateNewSGSpecificationObject
Database: SupplierDB
Description:
This procedure enables the creation of new specification group specification.
♦/

CREATE Procedure proc_C reateN ew SG SpecificationO bject
/* Param List ♦/
@ SGSpecNam e N V A R C H A R (255),
@ SGSpecValue N V A R C H A R (4000),
@ SGSpecDesc N V A R C H A R (4000) = N U LL,
@ M easUnitNam e N V A R C H A R (255),
@ IDSpecGroup U N IQ U EID EN TIFIER,
@ IDProcState T IN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT,
@ IDSGSpec U N IQ U EID EN TIFIER
SELECT @ ID ProcState = 0
SELECT @ ER RO R = 0

BEGIN TRAN

/♦Create guid for ID ProdSpec ♦/
SELECT @ ID SG Spec = new ID ()

/♦Create Product Specification by inserting v alues into the P roduct Specification table ♦/
INSERT INTO SG Specification(ID SG Spec, SG SpecN am e, SG SpecV alue,

SG SpecD esc, M easU nitN am e, ID SpecG roup)
VALUES
(@ ID SG Spec, LTR IM (R TR IM (@ SG SpecN am e)),LT R IM (R T R IM (@ SG SpecV alue)),

LTR IM (R TR IM (@ SG SpecD esc)), L TR IM (R TR IM (@ M easU nitN am e)), @ IDSpecGroup)

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

R O LLBA CK TRAN
SELECT @ ID ProcState = 1
SELECT @ M essage = 'An erro r occured w hile creating the new Specification Group Specification object.'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s . ' + CA ST(@ ID ProcState AS NVARCHAR) + '.
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_CreateN ew SG SpecificationO bject.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'

381

Appendix 5: Supplier Database (SD) System Code

R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER RO R

EN D
ELSE
BEG IN

C O M M IT TRAN
EN D

END - End o f P ro cC reateN ew S G S pecifica tionO bject Procedure.
GO

/*

3.16 Procedure Name: dbo.proc_CreateNewSpecificationGroup
Database: SupplierDB
Description:
This procedure enables creation of new specification group.
*/

CREATE Procedure proc_C reateN ew SpecificationG roup
/* Param List */
@ ID SpecG roupClass BIG IN T,
@ ID SpecG roupV er M O N EY ,
@ SpecG roupN am e N V A R C H A R (255),
@ SpecG roupD esc N V A R C H A R (4000),
@ A ssignTo N V A R C H A R (60),
@ ID A ssignTo U N IQ U EID EN TIFIER ,
@ ID ProcState T IN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

BEGIN TR A N
D ECLA RE
@ ID SpecG roup U N IQ U EID EN TIFIER ,
@EiTor INT,
@ ID EntityPart INT

SELEC T @ ID P rocS tate = 0
SELEC T @ E R R O R = 0

/*C reate guids for @ ID SpecG roup * /
SELEC T @ ID S pecG roup = new ID ()

/•C rea te a specification g roup by inserting values into SpecificationG roup table */
IN SERT IN TO SpecificationG roup (ID SpecG roup, ID SpecG roupClass, IDSpecG roupV er.SpecG roupN am e,

SpecGroupDesc)
VALUES (@ ID S pecG roup , @ ID SpecG roupC lass, @ ID SpecG roupV er, LTRIM (R TRIM (@ SpecG roupN am e)),
L T R IM (R T R IM (@ S pecG roupD esc)))
SELEC T @ E rro r = @ @ ER R O R
IF @ Error != 0
BEGIN

R O L L B A C K TR A N
S EL EC T @ ID ProcState = 1
S EL EC T @ M essage = 'An error occured while creating the new specification g ro u p .'
SE L E C T @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS N V A RCH A R) + ' . '
SE L E C T @ M essage = @ M essage + 'Procedure State ID is: ’ + CA ST(@ ID ProcState AS N VARCHAR) +
SE L E C T @ M essage = @ M essage + 'E rror occured in Procedure proc_C reateN ew SpecificationG roup.'
SEL EC T @ M essage = @ M essage + 'Procedure is term inated abno rm ally .'
R A IS E R R O R (@ M essag e ,l,l) W ITH SETER RO R
R E TU R N @ @ ER R O R

END

/* N ow assign the specification group. T he follow ing procedure is called for
assigning the specification group to a product.*/

IF @ A ssignT o = 'Product'
BEGIN

E X EC proc_A ssignSpecificationG roup2Product
@ ID Prod = @ ID A ssignTo,
@ ID SpecG roup = @ ID SpecG roup,
@ ID ProcS tate = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEG IN

RO LLBA CK TRAN

382

Appendix 5: Supplier Database (SD) System Code

SELECT @ M essage - @ M essage + ' T his Procedure w as called from
Proc_CreateN ew SpecificationG roup.'
R A ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ER R O R
END
ELSE
BEGIN

CO M M IT TRA N
SELECT @ M essage = 'Specification group created Successfully.1
RETURN

END
END -- IF @ AssignTo = 'Product'

/* T he follow ing procedure is called for
assigning the specification group to another specification g roup .*/

IF @ A ssignTo = *SpecificationGroup'
BEGIN

EX EC proc_A ssignSpecificationG roup2SpecificationG roup
@ ID SpecG roup = @ IDAssignTo,
@ !D SubSpecG roup = @ IDSpecGroup,
@ ID ProcState = @ IDProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his P rocedure w as called from
Proc_CreateNewSpecificationGroup.'
RAISERROR(@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ERROR

EN D
ELSE
BEGIN

COM M IT TRAN
SELECT @Message = 'Specification group created Successfully.'
RETURN

EN D
EN D -- IF @ A ssignTo = 'SpecificationGroup'

END - End o f Proc_CreateNewSpecificationGroup Procedure.
GO

/*

3.17 Procedure Name: dbo.proc_CreateNewTableObject
Database: SupplierDB
Description:
This procedure enable creation of new table specification.
*/

CREATE Procedure proc_CreateNewTableObject
/♦ Param List */
@ ID TableSpecC lass BIGINT,
@ ID TableSpecV er MONEY,
@ N um O fR ow s INT = NULL,
© N um O fC olum ns INT,
@ Colum nV alues NVARCHAR(4000),
© C olID M easU nits NVARCHAR(4000) = NULL,
© R ow C onten t NVARCHAR(IOO),
@ A ssignTo NVARCHAR(60),
@ ID A ssignTo UNIQUEIDENTIFIER,
@ TableO bjN am e NVARCHAR(255),
© T ableO bjD esc NVARCHAR(4000),
@ ID ProcState TINYINT OUTPUT,
© M essage NVARCHAR(500) O U TPU T

AS
BEGIN

DECLARE
© ID TableO bj U N IQ U EID EN TIFIER,
@ Error INT
SELECT @ ID ProcState = 0
SELECT @ ERROR = 0
BEGIN TRAN
/♦
Create a table specification by inserting values into TableO bj table.

383

Appendix 5: Supplier Database (SD) System Code

♦/
/♦C reate guids for @ ID TableO bj, @ ID TableO bj ♦/
SELECT @ ID TableO bj = newID()

IN SERT INTO TableO bject(ID TabIeO bj, ID TableSpecC lass, ID TableSpecV er,
N um O fRow s, N um O fC olum ns, T ableO bjN am e, TableO bjD esc)

V ALU ES (@ ID TableO bj, @ ID TableSpecC lass, @ ID TableSpecV er,
@ N um O fR ow s, @ N um O fC olum ns,LTR IM (R TR IM (@ TabIeO bjN am e)), LTRIM (R TR IM (@ TableO bjD esc)))

SELEC T @ Error = @ @ ERROR
IF @ Error != 0
BEGIN

RO LLBA CK TRAN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile creating the new table O b je c t .1
SELEC T @ M essage = @ M essage + 'E rror code is: ' + C A ST (@ E rror AS N V A R CH A R) + ' . '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS N VARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure p roc_C reateN ew T ableO bject.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETU R N @ @ ERRO R

END

/♦ A ssign the table specification by calling the follow ing procedure ♦/
/♦ A Table specification can be assigned to a product class or a specification group ♦/
IF @ A ssignTo = 'Product'
BEGIN

EX EC proc_A ssignTableO bject2Product
@ ID Prod = @ IDAssignTo,
@ ID TableO bj = @ IDTableObj,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure w as called from

proc_C reateN ew T ableO bject.'
RAISERROR(@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ERROR

EN D
END

IF @ A ssignTo = 'SpecificationG roup'
BEGIN

EX EC proc_A ssignProduct2SpecificationG roup
@ ID SpecG roup = @ IDAssignTo,
@ ID TableO bj = @ IDTableObj,
@ ID ProcState = @ IDProcState O U TPU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his P rocedure w as called from

p ro cC rea teN ew T ableO bject.'
RA ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
END

/♦ N ow check how m any colum ns are supplied by the user. A ccordingly invoke the procedure
that handle that m any colum ns ♦/

IF @ N um O FColum ns = 2
BEGIN

EXEC proc_InsertRow 2
@ IDTableObj = @ ID TableO bj,
@ Colum nV alues = @ C olum nV alues,
@ ColID M easU nits = @ C ollD M easU nits,
@ Row C ontent = @ R ow C ontent,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELEC T @ M essage = @ M essage + ' This Procedure was called from

proc_CreateN ew T ableO bject.'

384

Appendix 5: Supplier Database (SD) System Code

R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
R ETU RN @ @ ER R O R

EN D
ELSE
BEG IN

CO M M IT TRA N
SELECT @ M essage = T a b le Specification C reated S uccessfu lly .1
RETU RN

EN D
END

IF @ N um O FC olum ns = 3
BEGIN

EX EC proc_InsertRow 3
@ ID TableO bj = @ ID Tab!eO bj,
@ C olum nV alues = @ C olum nV aIues,
@ C oIID M easU nits = @ C olID M easU nits,
@ R ow C ontent = @ R ow C ontent,
@ ID ProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELECT @ M essage = @ M essage + ' This Procedure w as called from

proc_CreateN ew T ableO bject.'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

C O M M IT TRA N
SELECT @ M essage = T a b le S pecification C reated S uccessfu lly .1
RETU RN

EN D
END

IF @ N um O FColum ns = 4
BEGIN

EX EC proc_InsertR ow 4
@ ID T ab leO bj= @ ID TableO bj,
@ Colum n V alues = @ C olum n V alues,
@ C olID M easU nits = @ C olID M easU nits,
@ R ow C ontent = @ R ow C ontent,
@ ID ProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELEC T @ M essage = @ M essage + ' This P rocedure w as called from

proc_CreateN ewT ableO bject.'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

EN D
ELSE
BEGIN

C O M M IT TRA N
SELECT @ M essage = T ab le Specification C reated Successfully.'
RETU RN

EN D
END

IF @ N um O FC olum ns = 5
BEGIN

EXEC proc_InsertRow 5
@ ID TableO bj = @ ID TableO bj,
@ Colum nV alues = @ C olum nV alues,
@ ColID M easU nits = @ C olID M easU nits,
@ R ow C ontent = @ R ow C ontent,
@ ID ProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLB A C K T R A N
SELEC T @ M essage = @ M essage + ' This Procedure was called from

proc_CreateNewT ableO bject.'

385

Appendix 5: Supplier Database (SD) System Code

R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER R O R

EN D
ELSE
BEGIN

COM M IT TRAN
SELECT @ M essage = T ab le Specification C reated S u ccessfu lly .'
RETURN

EN D
EN D

IF @ N um O FC olum ns = 6
BEGIN

E X EC proc_InsertRow 6
@ ID T ab leO b j= @ IDTableObj,
@ Co!um nV alues = @ CoIumn Values,
@ C olID M easU nits = @ ColIDM easUnits,
@ R ow C ontent = @ RowContent,
@ ID ProcS tate = @ IDProcState O U TPU T,
@ M essage = @ M essage OUTPUT
IF @ ID ProcS tate != 0
BEG IN

RO LLBA CK TRAN
SELEC T @ M essage = @ M essage + ' This Procedure w as called from

proc_C reateN ew TableO bject.'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ERROR

EN D
ELSE
BEG IN

C O M M IT TRAN
SELEC T @ M essage = T ab le Specification C reated S u ccessfu lly .'
RETU RN

E N D
END

IF @ N um O FC olum ns = 7
BEGIN

E X EC proc_InsertR ow 7
@ ID T ab leO b j= @ ID TableO bj,
@ C olum nV alues = @ Colum nValues,
@ C olID M easU nits = @ ColID M easU nits,
@ R ow C onten t = @ Row C ontent,
@ ID ProcS tate = @ ID ProcState O UTPUT,
@ M essage = @ M essage O UTPUT
IF @ ID ProcS tate != 0
BEG IN

RO LLB A C K TRAN
SELEC T @ M essage = @ M essage + ' This Procedure w as called from

p ro cC rea teN ew T ab leO bject.'
RA ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER RO R

EN D
ELSE
BEG IN

C O M M IT TRAN
SELEC T @ M essage = T ab le Specification C reated S uccessfu lly .1
RETU RN

EN D
END

IF @ N um O FC olum ns = 8
BEGIN

E X EC proc_InsertR ow 8
@ ID TableO bj = @ ID TableO bj,
@ C olum nV alues = @ Colum nV alues,
@ C olID M easU nits = @ ColID M easU nits,
@ R ow C ontent = @ Row C ontent,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEG IN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' This Procedure was called from

p ro cC rea teN ew T ableO bject.'

386

Appendix 5: Supplier Database (SD) System Code

R A ISER R O R (@ M essage, 1,1) W ITH SETER RO R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

C O M M IT TRA N
SELEC T @ M essage = T a b le S pecification C reated S uccessfu lly .'
RETU RN

END
END

IF @ N um O FColum ns = 9
BEGIN

EXEC proc_InsertR ow 9
@ IDTableObj = @ ID TableO bj,
@ Colum nV alues = @ C olum nV alues,
@ CoIID M easU nits = @ C olID M easU nits,
@ Row C ontent = @ R ow C ontent,
@ ID ProcState = @ ID ProcState O U T P U T ,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELEC T @ M essage = @ M essage + ' T his P rocedure w as called from

procC reateN ew T ableO bject.'
R A IS E R R O R (@ M essage,l,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

C O M M IT TRA N
SELEC T @ M essage = T a b le S pecification C reated S u ccessfu lly .'
RETU RN

END
END

IF @ Num OFColum ns = 10
BEGIN

EXEC proc_InsertRow lO
@ ID TableO bj= @ ID TableO bj,
@ Colum nV alues = @ C olum nV alues,
@ ColID M easU nits = @ C olID M easU nits,
@ Row Content = @ R ow C ontent,
@ IDProcState = @ ID ProcState O U T P U T ,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRA N
SELECT @ M essage = @ M essage + ' This P rocedure w as called from

p r o c C reateN e wT ableObject.'
R A ISER R O R (@ M essage, 1,1) W IT H SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

C O M M IT TRA N
SELECT @ M essage = T a b le Specification C reated S u ccessfu lly .'
RETU RN

END
END

END - End o f proc CreateN ew TableO bject Procedure.
GO

387

Appendix 5: Supplier Database (SD) System Code

3.18 Procedure Name: dbo.proc_GetNewID
Database: SupplierDB
Description:
This procedure enables generation of new IDs for entities.
*/

CREATE PRO C ED U R E d b o .p ro cG etN ew ID
@ ID Entity INT,
@ IDNew BIG IN T O UTPUT,
@ M essage N V A R C H A R (500) O UTPUT,
@ ID ProcState T IN Y IN T O U TPU T
AS

BEGIN
D ECLARE
@ Rows A ffected INT

SELECT @ ID ProcState = 0
SELECT @ M essage = 'Procuedure Executed Successfully .'
IF N O T EXISTS (SELECT [IDEntity] FRO M E ntity W H ER E [ID Entity] = @ ID Entity)

BEGIN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An Entity w ith supplied ID Entity ’ + C A ST (@ ID E ntity AS N V A R CH A R) + ' does
not e x is t . '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure proc g e tN ew ID .'
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST (@ ID ProcState AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure is abnorm ally term inated.'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
ELSE
BEGIN

SELECT @ ID N ew = ID A vailable FR O M EN TITY W H ER E [ID Entity] = @ ID EN TITY
END

/* Call fn ln c re m e n tlD function to increm ent the ID N ew . @ ID N ew param eter is the ID to be increm ented
and DEFA ULT param eter is the num ber by w hich it is to be increm ented. T he D EFA U LT increm ent
num ber set is 1 */

UPDATE Entity SET ID A vailable = dbo.fn_Increm entID (@ ID N ew , D EFA U LT)
W HERE [IDEntity] = @ ID Entity
SELECT @ Row sA ffected = @ @ R ow C ount

—PRINT H ow s affected are ' + C A ST (@ R ow sA ffected AS N V A R C H A R)
-P R IN T ’@ Error id i s : ' + C A ST(@ Error AS N V A R C H A R)
/* W hen the above update fails the follow ing erro r is raised .* /
IF @ Row sA ffected = 0
BEGIN

SELECT @ ID ProcState = 2
SELECT @ M essage = 'An unknow n error occured in P rocedure P roc_G etN ew ID .'
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'P lease contact your system ad m in istra to r.'
RA ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER RO R

END
END
GO

/*

388

Appendix 5: Supplier Database (SD) System Code

3.19 Procedure Name: dbo.proc_InsertListValues
Database: SupplierDB
Description:
This procedure enables creation of values for list specification.
♦/

CREATE Procedure proc_InsertListV alues
/♦ Param List ♦/
@ IDList U N IQ U EID EN TIFIER,
@ List Values N V A R C H A R (4000),
@ ListID M easU nits N V A R C H A R (4000) = N U LL,
@ IDProcState T IN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT
SELECT @ ID ProcState = 0
SELECT @ ER R O R = 0
SELECT @ M essage = 1'

/♦Create a tem porary table and insert the values from the table returned
by the function fh_getListV aluesTable ♦/

CREATE TA BLE #Tem pTableL istV alues (L istID INT, L istV alue N V A R C H A R (255))
INSERT INTO #Tem pTableL istV alues
SELECT Colum nlD .C olV al FRO M dbo.fn_getC olum nV aluesTabIe(@ ListV alues)

/♦Create another tem porary table and insert ID M eas units from the table returned
by the function fn_getListV aluesTable ♦/
/♦
////The follow ing com m ented because o f an erro r on 07 D edc 06 w ith ID M easU nit.
CREATE TA BLE #T em pTableID M easU nit (M easID INT, ID M easU nit BIG IN T)

INSERT INTO #Tem pTableID M easU nit
SELECT Colum nID , CA ST(C olV al AS B IG IN T) FRO M dbo.fn_getC olum nV aluesTable(@ ListID M easU nits)
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile inserting the list sp e c ifica tio n .'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + CA ST (@ E rror AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS N V A RCH A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure p roc_InsertL istV alues.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
R A lSER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER R O R

END
♦/
/♦ Now insert the values into the List D efinition table ♦/

/♦
//The follow ing com m ented because o f an error on 07 D edc 06 with IDM easUnit.
INSERT INTO ListD efinition (ID List, L istV alue, ID M easU nit)
SELECT @ ID List, aL istV alu e , b .ID M easU nit
FROM #Tem pTableL istV alues a, #T em pT ableID M easU nit b
W HERE a.ListID = b.M easID
♦/

INSERT INTO L istD efinition (ID List, L istV alue, ID M easU nit)
SELECT @ ID List, aL istV alue , N U LL
FROM #Tem pTableListV alues a

SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 2
SELEC T @ M essage = 'An error occured while inserting the list sp ecifica tion .'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure p ro cJn se rtL is tV a lu es .'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER RO R

389

Appendix 5: Supplier Database (SD) System Code

RETU RN @ @ ER R O R
END
ELSE
BEGIN

D RO P TA BLE #T em pTableL istV alues
/*
//The follow ing com m ented because o f an erro r on 07 D edc 06 with IDM easUnit.
D RO P TABLE #T em pTableID M easU nit
♦/
RETU RN

END
END - End o f proc_InsertListV alues Procedure.

/*

3.20 Procedure Name: dbo.proc_InsertRow2
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 2 columns.
♦/

CREATE Procedure proc_InsertRow 2
/* Param List */
@ IDTableObj U N IQ U EID EN TIFIER,
@ Colum nValues N V A R C H A R (4000),
@ ColIDM easUnits N V A R C H A R (4000) = N U LL,
@ Row Content NVARCHAR(IOO),
@ IDProcState TIN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error INT,
@ IDRow INT,
@ Num OfRows INT,
@ C olum nlV al N V A R C H A R (255),
@ Colum n2Val N V A R C H A R (255)

SELECT @ ID ProcState = 0
SELECT @ ER R O R = 0
SELECT @ M essage = ' '

SELECT @ N um O FRow s = C O U N T(*) FRO M dbo.fii_getC olum nV aluesTable(@ C olum nV alues)
PRINT '@ N um O fR ow s:' + C A ST (@ N um O fR ow s AS N V A R C H A R)
/* The function fn_getC olum nV aluesTable(@ C olum nV alues) should return tw o row s only ♦/

IF @ N um O fRow s != 2
BEGIN

SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'P rocedure State ID i s : ' + CA ST(@ ID ProcState AS N V ARCHAR) + '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure p roc_InsertR ow 2.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fh_getC olum nV aluesTable */

CREATE TA BLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (255))
INSERT INTO #Tem pTable
SELECT C olum nID ,C olV al FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)

SELECT @ C olum nI Val = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 1
SELECT @ Colum n2V al = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 2

/♦C heck w hether the row is contains colum n values or colum n specifications
A row can contain colum n values or colum n specifications(headers).V

IF @ R ow C ontent LIKE 'C olV als'
BEGIN

390

Appendix 5: Supplier Database (SD) System Code

/* C heck for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f row s the ID TableO bj has i f the @ R ow C ontent = 'Column V alues’ * /
SELEC T @ ID R ow = M A X (lD R ow) FR O M TableD efm ition2 W HERE IDTableObj = @ IDTableObj
IF @ ID R ow IS N U LL

SELEC T @ ID R ow = 1
ELSE

SELEC T @ ID R ow = @ ID R ow + 1

IN SERT IN TO T ableD efin ition2(ID T ableO bj, ID R ow , Colum n lV al, Colum n2VaI, RowContent)
V A LU ES(@ ID TableO bj, @ ID R ow , LTR IM (R TR IM (@ C olum n I Val)),LTRIM (RTRIM (@ Colum n2Val)),
L T R IM (R T R JM (@ R ow C ontent)))
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcS tate = 2
SELECT @ M essage = 'An erro r occured w hile inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code is: ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS
N V A R C H A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure p roc_InsertR ow 2.'
SELEC T @ M essage = @ M essage + 'P rocedure is term inated abno rm ally .'
R A lSE R R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

DRO P TA BLE #Tem pTable
RETU RN

END
END —End o f IF @ R ow C ontent LIKE T ab leR o w '
ELSE - Enter header inform ation o f the table.
BEGIN

SELECT @ ID Row = 0
INSERT INTO T ableD efin ition2(ID T ableO bj, ID Row , C olum n lV a l, C olum n2V al, RowContent)
V A LU ES(@ ID TableO bj, @ ID R ow , L TR IM (R TR IM (@ C olum n 1 V al)),LTR IM (RTR IM (@ C olum n2V al)),
L T R IM (R T R IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3
SELECT @ M essage = 'An e rro r occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'E rror code is: ’ + C A ST (@ E rror AS N V A RCH A R) + ' . '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS
N V A R C H A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure p roc_InsertR ow 2.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

DRO P TA BLE #Tem pTable
RETU RN

END
END

END — End o f Proc_InsertRow 2 Procedure.
GO

/ •

391

Appendix 5: Supplier Database (SD) System Code

3.21 Procedure Name: dbo.proc_InsertRow3
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 3 columns.
*/

CR EA TE Procedure Proc_InsertR ow 3
/• Param List */
@ ID TableO bj U N IQ U EID EN TIFIER ,
@ C olum nV alues N V A R C H A R (4000),
@ CoIID M easU nits N V A R C H A R (4000) = N U LL,
@ R ow C ontent NVARCHAR(IOO),
@ ID ProcState TIN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

D ECLA RE
@ Error INT,
@ ID R ow INT,
@ N um O fR ow s INT,
@ C olum nl Val N V A R CH A R (255),
@ C olum n2V al N V A R CH A R(255),
@ C olum n3V al N V A R CH A R (255)

SELEC T @ ID ProcState = 0
SELEC T @ ER R O R = 0
SELEC T @ M essage = ' '

SELEC T @ N um O FR ow s = CO U N T(*) FROM dbo.fti_getC olum nV aluesT able(@ C oIum nV alues)
PRIN T '@ N u m O fR o w s:' + CA ST(@ N um O fR ow s AS N V A R C H A R)

/* The function fn_getColum nV aluesTable(@ C olum nV alues) should return three row s only */

IF @ N um O fR ow s != 3
BEGIN

SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile inserting the table r o w .1
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS N V A RCH A R) +
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure p roc_ InsertR ow 3 .'
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fn_j»etColum nValuesTable */

CR EA TE TA BLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (2 5 5))
INSERT INTO #Tem pTable
SELECT Colum nID ,CoIV al FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)

SELECT @ C olum nl Val = C olum nV alue FRO M #T em pT able W H ER E Colum nID = 1
SELECT @ C olum n2V al = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 2

SELECT @ Colum n3V al = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 3

/•C h eck w hether the row is contains colum n values or colum n specifications
A row can contain colum n values or colum n specifications(headers).* /

IF @ R ow C ontent LIKE 'CoIVals'
BEGIN

/* Check for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f rows the ID TableO bj has if the @ R ow C ontent = 'Colum n V alues’ • /

SELEC T @ ID R ow = M A X (ID R ow) FR O M TableD efinition3 W HERE IDTableObj = @ IDTableObj
IF @ ID Row IS N U LL

SELEC T @ ID R ow = 1
ELSE

SELEC T @ ID R ow = @ ID R ow + 1

392

Appendix 5: Supplier Database (SD) System Code

IN SERT rNTO T ableD efin ition3(ID T ableO bj, ID Row , Colum n 1 Val, C olum n2V al, Column3Val,
RowContent)

V A LU ES(@ ID TableO bj, @ ID R ow , L TR IM (R TR IM (@ C olum n 1 V al)),LTR IM (RTR IM (@ C olum n2V al)),
LTR IM (R TR IM (@ C olum n3V al)), L TR IM (R TR JM (@ R ow C ontent)))

SELEC T @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 2
SELECT @ M essage = 'An e rro r occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS N V A RCH A R) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS
N V A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_InsertR ow 3.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER RO R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END - E n d o f IF @ Row C ontent LIKE T ab leR ow '
ELSE - N ow enter header information o f the table.
BEGIN

SELECT @ ID Row = 0
IN SERT INTO TableD efinition3(ID TableO bj, ID R ow , C o lum nl Val, Colum n2V al,C olum n3V al,

Row C ontent)
VA LU ES(@ ID TableO bj, @ ID Row , LTRIM (R TR IM (@ C olum n 1 V al)),LTR IM (RTR IM (@ C olum n2V al)),

LTR IM (R TR IM (@ C olum n3V al)),LT R IM (R T R IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3
SELECT @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELEC T @ M essage = @ M essage + P ro ced u re S tate ID is: ' + C A ST(@ ID ProcState AS
N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure p roc_ InsertR ow 3 .'
SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
R A IS E R R O R (@ M essage,l,l) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
ELSE
BEGIN

DRO P TABLE #Tem pTable
RETURN

END
END

END - End o f Proc_InsertRow 3 Procedure.
GO

393

Appendix 5: Supplier Database (SD) System Code

/♦

3.22 Procedure Name: dbo.proc_InsertRow4
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 4 columns.
♦/

CR EA TE Procedure Proc_InsertR ow 4
/♦ Param List ♦/
@ ID TableO bj U N IQ U EID EN TIFIER ,
© C olum nV alues N V A R CH A R (4000),
@ C olID M easU nits N V A R C H A R (4000) = N U L L,
© R ow C ontent NVARCHAR(IOO),
@ ID ProcState TTNYINT O U TPU T,
© M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

DECLARE
© E rro r INT,
© ID R ow INT,
© N um O fR ow s INT,

@ C olum nI Val N V A R CH A R(255),
@ C olum n2V al N V A R CH A R(255),
@ CoIum n3VaI N V A R CH A R (255),
© C oIum n4V al N V A R CH A R(255)

SELEC T © ID ProcS ta te = 0
SELEC T @ ER RO R = 0
SELEC T @ M essage = ' '

SELEC T © N um O FR ow s = CO U N T(*) FRO M dbo.fn_getC olum nV aluesTable(@ C olum nV alues)
-P R IN T © N u m O fR o w s: ' + CA ST(@ N um O fR ow s AS N V A R C H A R)
/♦ T he function fh_getColum nV aluesTable(© C olum n V alues) should retu rn tw o row s only ♦/

IF © N um O fR ow s != 4
BEGIN

SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST (@ ID ProcState AS N V A R CH A R) +
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure p roc_ InsertR ow 4 .'
SELEC T © M essage = © M essage + 'Procedure is term inated ab n o rm a lly .'
RA ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN

END

/♦C reate a tem porary table and insert the values from the table returned
by the function fh_getColum nV aluesTable ♦/

CREA TE TA BLE #Tem pTable (Colum nID INT, C olum nV alue N V A R C H A R (2 5 5))
IN SERT INTO #Tem pTable
SELECT C olum nID ,ColV al FRO M dbo fn_getC olum nV aluesTable(@ C olum nV alues)

SELECT © C olum n 1 Val = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 1
SELECT @ Colum n2V al = C olum nV alue FR O M #T em pT able W H E R E Colum nID = 2
SELECT @ Colum n3V al = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 3
SELEC T @ Colum n4VaI = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 4

/♦C heck w hether the row contains colum n values o r colum n specifications
A row can only contain colum n values or colum n specifications(headers).^ /

IF © R ow C onten t LIKE 'ColV als'
BEGIN

/♦ C heck for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f rows the IDTableO bj has if the @ R ow C ontent = 'Colum n Values' ♦/
SELECT @ ID R ow = M A X (ID R ow) FR O M T ableD efinition4 W HERE IDTableObj = @ IDTableObj
IF © ID R ow IS NU LL

SELEC T © ID R o w = 1
ELSE

SELEC T @ ID R ow = @ ID R ow + 1

IN SERT IN TO T ableD efm ition4(ID T ableO bj, IDRow, Column 1 Val,
C olum n2V al,C o!um n3V al,C olum n4V al, RowContent)

394

Appendix 5: Supplier Database (SD) System Code

V A L U ES(@ ID TableO bj, @ ID R ow ,
L T R IM (R TR IM (@ C olum nl V al)),LTR IM (RTR IM (@ C olum n2V al)),LTRIM (R TRIM (@ Colum n3
Val)),
LTR IM (R TR IM (@ C olum n4V al)), L T R IM (R TR IM (@ R ow C ontent)))
SELECT @ Error = @ @ E R R O R

IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 2
SELECT @ M essage = 'An erro r occured w hile inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + CA ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure State ID i s : ' + CAST(@ IDProcState AS
N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure proc_InsertR ow 4.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated abnorm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
END --End o f IF @ Row C ontent LIKE T ab leR ow '
ELSE -- N ow enter header information o f the table.
BEGIN

SELEC T @ IDRow = 0
INSERT INTO T ableD efinition4(ID TableO bj, ID R ow , C o lu m n l Val, C olum n2V al, CoIumn3Val,
Colum n4V al, RowContent)
V A LUES(@ IDTableObj, @ ID Row , L T R IM (R T R IM (@ C olum n 1 Val)),LTRIM (RTR IM (@ C olum n2V aI)),

L TR IM (R TR IM (@ C olum n3V al)),LT R IM (R T R IM (@ C olum n4V al)),L TR IM (R TR IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT @ ID ProcState = 3
SELECT @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELECT @ M essage = @ M essage + 'E rro r code is: ' + C A ST (@ E rror AS N V A RCH A R) + ' . '
SELECT @ M essage = @ M essage + 'P rocedure S tate ID i s : ' + C A ST(@ ID ProcState AS
N V ARCHAR) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in P rocedure p roc_ InsertR ow 4 .'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm a lly .'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTabIe
RETURN

END
END

END — End o f Proc_InsertR ow 4 Procedure.

395

Appendix 5: Supplier Database (SD) System Code

/♦

3.23 Procedure Name: dbo.proc_InsertRow5
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 5 columns.

C R EA TE P rocedure P roc_lnsertR ow 5
/♦ Param List ♦/
g ID T a b le O b j U N IQ U EID EN TIFIER,
g C o lu m n V alu es N V A R CH A R (4000),
@ C olID M easU nits N V A R C H A R (4000) = N U LL,
g R o w C o n ten t NVARCHAR(IOO),
g ID P ro cS ta te T IN Y IN T O U TPU T,
@ M essage N V A R C H A R (500) O U TPU T

AS
BEGIN

D EC LA R E
(gE rro r INT,
(gID R ow INT,
g N u m O fR o w s INT,
g C o lu m n 1 Val N V A R C H A R (255),
g C o lu m n 2 V a l N V A R C H A R (255),
g C o lu m n 3 V a l N V A R C H A R (255),
g C o lu m n 4 V a I N V A R C H A R (255),
g C o lu m n 5 V a l N V A R C H A R (255)

SELEC T g ID P ro c S ta te = 0
SEL EC T g E R R O R = 0
SELEC T g M e s s a g e = ' '

SEL EC T g N u m O F R o w s = C O U N T(*) FROM dbo .fh_getC oIum nV aluesT able(gC olum nV alues)
-P R IN T 'g N u m O fR o w s : ' + C A S T (gN um O fR ow s AS N V A R C H A R)
/♦ T he function fn_getC olum nV aluesT able(gC olum n Values) should return two row s only ♦/

IF g N u m O fR o w s != 5
BEG IN

SE L E C T g ID P ro c S ta te = 1
SE L E C T g M e s s a g e = 'An error occured while inserting the table r o w . '
SE L E C T g M e s s a g e = g M e ssa g e + 'Procedure State ID i s : ' + C A S T (g ID P ro cS ta te AS N V A RCH A R) +
SE L E C T g M e ss a g e = g M e ssa g e + 'E rror occured in P rocedure p roc_ InsertR ow 5 .'
SEL EC T g M e ss a g e = g M e ssa g e + 'Procedure is term inated ab n o rm a lly .'
R A IS E R R O R (g M e ssa g e ,l ,l) W ITH SETER RO R
RETU R N

EN D

/♦C rea te a tem porary table and insert the values from the table returned
by the function fn_getColum nV aluesTable ♦/

C R E A T E T A B L E #Tem pTable (Colum nID INT, C olum nV alue N V A R C H A R (2 5 5))
IN SER T IN TO #Tem pTable
SEL EC T Colum nID ,C ol Val FROM dbo.fn_getC olum nV aluesT able(gC o!um nV alues)

SEL EC T g C o Iu m n l Val = C olum nV alue FROM #Tem pTable W H ER E C olum nID = 1
SEL EC T g C o lu m n 2 V a l = Colum nV alue FROM #Tem pTable W H ER E C olum nID = 2

SEL EC T g C o lu m n 3 V a l = C olum nV alue FROM #Tem pTable W H ER E Colum nID = 3
SEL EC T g C o lu m n 4 V a l = C olum nV alue FRO M #T em pTable W H E R E Colum nID = 4
SEL EC T g C o lu m n 5 V a l = C olum nV alue FROM #Tem pTable W H ER E C olum nID = 5

/♦C heck w hether the row contains colum n values or colum n specifications
A row can only contain colum n values or colum n specifications(headers).^ /

IF g R o w C o n te n t LIKE 'ColV als'
BEGIN

/♦ C heck for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f row s the ID TableO bj has if the g R o w C o n te n t = 'C olum n V alues' ♦/
SELEC T g ID R o w = M A X (ID R ow) FR O M T ableD efm ition2 W HERE IDTableObj = g ID T ableO bj
IF g ID R o w IS N U LL

SELEC T g ID R o w = 1
ELSE

SELEC T g ID R o w = g ID R o w + 1

396

Appendix 5: Supplier Database (SD) System Code

IN SERT IN TO TableD efin ition5(ID T abIeO bj, ID Row , C olum nl Val,
C oIum n2V al,C olum n3V al,C olum n4V al, C olum n5V al, R ow Content)
V A LU ES(@ ID TableO bj, @ ID R ow ,
L TR IM (R TR IM (@ C olum nl V aI)),LTR IM (R TR IM (@ C olum n2V al)),LTR IM (R TR IM (@ C oIum n3V al)),

LTR IM (R TR IM (@ C olum n4V aI)),L TR IM (R TR IM (@ C olum n5V al)),LT R IM (R T R IM (@ R ow C ontent)))
SELEC T @ Error = g g E R R O R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 2
SELECT @ M essage = 'An erro r occured w hile inserting the table ro w .1
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + C A ST(@ ID ProcState AS
N V A R CH A R) + ' . '
SELECT g M e ssa g e = @ M essage + 'E rror occured in Procedure proc_InsertR ow 5.'
SELECT g M e ssa g e = @ M essage + 'Procedure is term inated abno rm ally .'
RA ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETURN g g E R R O R

EN D
ELSE
BEGIN

DRO P TABLE #Tem pTable
RETURN

EN D
EN D - E n d o f IF @ R ow C ontcnt LIKE T ab leR ow '
ELSE — N ow en ter header information o f the table.
BEGIN

SELEC T @ ID Row = 0
IN SERT IN TO TableD efinition5(ID TableO bj, ID R ow , C o lum nl Val, CoIum n2V al, Colum n3Val,
C olum n4V al, Colum n5V al, Row C ontent)
V A LU ES(@ ID TableO bj, g ID R o w , L T R IM (R T R IM (@ C olum nl V al)),LTR IM (RTR IM (@ C olum n2V al)),

T R IM (R TR IM (@ C olum n3V al)),LTR IM (R TR IM (@ C olum n4V al)),LTR IM (R TR IM (@ C olum n5V aI)),
LTR IM (R TR IM (@ R ow C ontent)))
SELEC T (gE rror = @ @ ER RO R
IF (gE rro r != 0
BEGIN

SELECT g ID P ro cS ta te = 3
SELECT g M e ss a g e = 'An erro r occured w hile inserting the table r o w . '
SELECT g M e ss a g e = g M e ss a g e + 'E rror code i s : ' + C A S T (g E rro r AS N V A R CH A R) + ' . '
SELECT g M e ss a g e = g M e ss a g e + 'P rocedure State ID i s : ' + C A S T (g ID P ro cS ta te AS
N V A R CH A R) + ' . '
SELEC T g M e ssa g e = g M e ss a g e + 'E rror occured in P rocedure proc_InsertRow 5. ’
SELECT g M e ss a g e = g M e ss a g e + 'P rocedure is term inated ab n o rm ally .'
R A IS E R R O R (gM essage, 1,1) W ITH SET ER R O R
RETU RN g g E R R O R

EN D
ELSE
BEGIN

D RO P TA BLE #Tem pTable
RETU RN

END
END

END -- End o f Proc_InsertRow 5 Procedure.
GO

/*

3.24 Procedure Name: dbo.proc_InsertRow6
Database: SuppIierDB
Description:
This procedure enables creation of column values for table specification with 6 columns.
*/

CREATE Procedure Proc_InsertRow 6
/* Param List • /
g ID T ab leO b j U N IQ U EID EN TIFIER ,
g C o lu m n V alu es N V A R C H A R (4000),
g C o lID M easU nits N V A R C H A R (4000) = N U LL,
g R o w C o n ten t NVARCHAR(IOO),
g ID P ro cS ta te TINY1NT O U T PU T,
g M e ssa g e N V A R C H A R (500) O U T PU T

AS
BEGIN

397

Appendix 5: Supplier Database (SD) System Code

D ECLA RE
@ Error
@ ID Row

INT,
INT,
INT,@ N um O fR ow s

@ C olum nl Val
@ Colum n2V al
@ CoIum n3V al
@ CoIum n4V al
@ Colum n5V aI

@ C olum n6V al

N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),

N V A R C H A R (255)

SELEC T g ID P ro c S ta te = 0
SELEC T @ ER R O R = 0
SELEC T @ M essage = ' '

SELEC T @ N um O FR ow s = C O U N T(*) FRO M dbo .fn_getC olum nV aluesT able(gC olum nV alues)
--PRIN T '@ N um O fR ow s:' + C A S T (g N u m O fR o w s AS N V A R C H A R)
/* The function fn getC olum nV aIuesTable(@ Colum n V alues) should return tw o row s only */

IF @ N um O fR ow s != 6
BEGIN

SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST(@ ID ProcState AS NVARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure P roc_ InsertR ow 6 .'
SELECT @ M essage = @ M essage + 'P rocedure is term inated ab n o rm a lly .'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETURN

END

/•C rea te a tem porary table and insert the values from the table returned
by the function fn_getColum nV aluesTable */

CR EA TE TA BLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (255))
IN SERT INTO #Tem pTable
SELEC T Colum nID,CoIVal FRO M dbo .fn_getC oIum nV aluesT ab le(gC o lum nV alues)

SELECT @ C olum nl Val = Colum nV alue FROM #T em pT able W H E R E C olum nID = 1
SELEC T @ Colum n2V al = Colum nV alue FRO M #T em pT able W H E R E C olum nID = 2
SELECT @ Colum n3V al = Colum nV alue FRO M #T em pT able W H E R E C olum nID = 3
SELECT @ C olum n4V al = C olum nV alue FRO M #T em pT able W H E R E C olum nID = 4
SELECT @ Colum n5V al = C olum nV alue FROM #T em pT able W H ER E C olum nID = 5
SELECT @ Colum n6V al = Colum nV alue FROM #T em pT able W H ER E C olum nID = 6

/•C heck w hether the row contains colum n values o r colum n specifications
A row can only contain colum n values or colum n specifications(headers).* /

IF @ R ow C ontent LIKE 'ColVals'
BEGIN

/• Check for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f rows the IDTableO bj has if the @ R ow C ontent = 'C olum n V alues' • /
SELECT @ ID Row = M A X (ID R ow) FR O M T ableD efin ition6 W H ER E ID TableO bj = @ IDTableObj
IF @ ID Row IS N U LL

SELECT (gID R ow = 1
ELSE

SELEC T (gID R ow = (g ID R ow + 1

INSERT INTO T ableD efin ition6(ID T ableO bj, ID R ow , C o lum nl Val,
C olum n2V al,C olum n3V al,Colum n4V al,

Colum n5V al, C olum n6V al, Row C ontent)
V A LU ES(@ ID TableO bj, (gID R ow ,
L TR IM (R TR IM (@ C olum nlV al)),LT R IM (R T R IM (@ C olum n2V al)),L TR IM (R TR IM ((gC olum n3V al)),
L TR IM (R TR IM (@ C olum n4V al)),LT R IM (R T R IM (@ C olum n5V al)),
LTR IM (R TR IM (<gC olum n6V al)),LT R IM (R T R IM (@ R ow C ontent)))
SELECT (gE rro r = g g E R R O R
IF (gE rror != 0
BEGIN

SELEC T (gID P rocS tate = 2
SELEC T g M e s s a g e = 'An error occured while inserting the table ro w . '
SELECT g M e s s a g e = g M e ss a g e + 'E rror code i s : ' + C A S T (g E rro r AS NVARCHAR) + ' . '
SELEC T g M e s s a g e = g M e s s a g e + 'Procedure State ID i s : ' + C A S T (gID ProcS tate AS
N V A R C H A R) + '. '
SELECT g M e ss a g e = g M e s s a g e + 'E rror occured in Procedure Proc_InsertR ow 6.'
SELECT g M e s s a g e = g M e ss a g e + 'Procedure is term inated abnorm ally .'

398

Appendix 5: Supplier Database (SD) System Code

R A lSE R R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

D RO P TA B LE #T em pTable
RETU RN

END
EN D - E n d o f IF @ Row C ontent LIK E T ab leR o w '
ELSE — N ow enter header inform atio o f the table.
BEGIN

SELEC T (gID R ow = 0
IN SERT IN TO TableD efin ition6(ID T ableO bj, ID R ow , C o lum nl Val, C olum n2V al, Colum n3Val,
C olum n4V al, C olum n5V al, C olum n6V al,R ow C ontent)
VA LU ES(@ ID TableO bj, (gID R ow , L T R IM (R T R IM (@ C olum nl Val)),LTR IM (RTR IM (@ C olum n2V al)),
L TR IM (R TR IM (@ C olum n3V al)),LTR IM (R TR IM (@ C oIum n4V al)),LTRIM (RTR IM (@ C olum n5V al)),
L T R IM (R TR IM (@ C olum n6V al)),LT R IM (R T R IM (@ R ow C ontent)))

SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 3
SELEC T @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N VARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST(@ ID ProcState AS
N V A R CH A R) + '. '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure P roc_InsertR ow 6.'
SELEC T @ M essage = @ M essage + 'P rocedure is term inated ab n o rm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

DRO P TABLE #Tem pTable
RETURN

END
END

END — End o f Proc_InsertR ow 6 Procedure.
GO

3.25 Procedure Name: dbo.proc_InsertRow7
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 7 columns.
♦/

CREATE Procedure Proc_InsertRow7
/* Param List */
(gID TableO bj
(gColum nV alues
(gC olID M easU nits
(gR ow C ontent
(gID ProcState
(gM essage

U N IQ U EID EN TIFIER,
N V A R CH A R (4000),
N V ARC H A R (4000) = N U LL,
N VARCH AR(100),
TIN Y IN T O U TPU T,
N V A R C H A R (500) O U T PU T

AS
BEGIN

DECLARE
(gError
(gID R ow
(gN um O fR ow s
(gC olum nl Val
@ Colum n2Val
@ Colum n3V al
@ Colum n4Val
@ CoIumn5Val

@ Colum n6Val
@ Colum n7Val

INT,
INT,
INT,
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),

N V A R C H A R (255),
N V A RCH A R (255)

SELECT (gID ProcState = 0
SELECT (gE R R O R = 0
SELECT (gM essage = ' '

SELECT (gN um O FR ow s = C O U N T(*) FROM dbo.fn_getColum nV aluesTable(@ C oIum nV alues)

399

Appendix 5: Supplier Database (SD) System Code

-P R IN T '@ N um O fR ow s:' + C A ST (@ N um O fR ow s AS N V A R C H A R)
/* The function fh_getC olum nV aluesTable(@ C olum n V alues) should return two rows only • /

IF @ N um O fR ow s != 7
BEGIN

SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An erro r occured w hile inserting the table r o w . '
SELEC T @ M essage = @ M essage + 'P rocedure State ID i s : ' + C A ST(@ ID ProcState AS NVARCHAR) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure P roc_InsertR ow 7.'
SELECT @ M essage = @ M essage + 'P rocedure is term inated abno rm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fh_getC olum nV aluesTable • /

CREATE TA BLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (2 5 5))
INSERT INTO #Tem pTable
SELECT Colum nID ,ColV al FROM dbo .fn_getC olum nV aluesTable(@ C olum nV alues)

SELECT @ Colum nl Val = C olum nV alue FROM #T em pT able W H E R E C olum nID = 1
SELECT @ Colum n2V al = C olum nV alue FRO M #T em pT able W H E R E C olum nID = 2
SELECT @ Colum n3Val = Colum nV alue FRO M #T em pT able W H E R E C olum nID = 3

SELEC T @ Colum n4Val = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 4
SELECT @ Colum n5Val = Colum nV alue FRO M #T em pT able W H E R E C olum nID = 5
SELECT @ Colum n6Val = Colum nV alue FROM #T em pT able W H ER E C olum nID = 6
SELECT @ Colum n7Val = Colum nV alue FROM #T em pT able W H E R E C olum nID = 7

/•C h eck w hether the row contains colum n values or colum n specifications
A row can only contain colum n values or colum n specifications(headers).* /

IF (gR ow C ontent LIKE G ol Vais'
BEGIN

/* Check for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f rows the IDTableO bj has if the (gR ow C onten t = 'C olum n V alues' • /
SELECT (gID R ow = M A X (ID R ow) FR O M T ableD efin ition7 W H ER E ID TableO bj = (gIDTableObj
IF (gID R ow IS N U LL

SELECT (gID R ow = 1
ELSE

SELECT (gID R ow = (g ID R ow + 1

INSERT INTO T ableD efin ition7(ID T ableO bj, ID R ow , C o lu m n l Val,
Colum n2V al,C olum n3V al,Colum n4V aI,

C olum n5V al, C olum n6V al,C olum n7V al, R ow C ontent)
V A L U E S (gID T ableO bj, (gID R ow ,
L T R IM (R T R IM (gC olum nlV al)),L T R IM (R T R IM (gC olum n2V al)),L T R IM (R T R IM (gC olum n3V al)),
LTR IM (R TR IM (@ C olum n4V al)),LT R IM (R T R IM (@ C olum n5V al)), LTRIM (RTRIM (@ Colum n6V aI)),
L T R IM (R TR IM (@ C olum n7V al)),LT R IM (R T R IM (@ R ow C ontent)))

SELECT (gE rror = @ @ ER R O R
IF g E rro r != 0
BEGIN

SELECT g ID P ro c S ta te = 2
SELECT g M e ss a g e = 'An erro r occured w hile inserting the table r o w . '
SELEC T g M e ss a g e = g M e s s a g e + 'E rror code i s : ' + C A S T (g E rro r AS N VARCHAR) + ' . '
SELEC T g M e ss a g e = g M e s s a g e + 'Procedure State ID i s : ' + C A S T (gID P rocS ta te AS
N V A R C H A R) + '. '
SELEC T g M e ss a g e = g M e s s a g e + 'E rror occured in P rocedure Proc_InsertR ow 7.'
SELEC T g M e ss a g e = g M e ss a g e + 'Procedure is term inated abnorm ally .'
R A IS E R R O R (g M essag e , 1,1) W ITH SETER R O R
RETU RN g g E R R O R

END
ELSE
BEGIN

DRO P TA B LE #T em pTable
RETU RN

END
END -E n d o f IF g R o w C o n te n t LIK E T ab leR ow '
ELSE - Now insert header inform ation o f the table.
BEGIN

SELEC T g ID R o w = 0
INSERT INTO T ableD efm ition7(ID T ableO bj, ID Row , C olum nl Val, Colum n2Val, Column3Val,
C olum n4V al, C olum n5V al, C olum n6V al,C olum n7V al, RowContent)

400

Appendix 5: Supplier Database (SD) System Code

V A LU ES(@ ID TableO bj, @ ID R ow , LTR IM (R TR IM (@ C olum nlV al)),LTR IM (R TR IM (@ C olum n2V al)),
LTR IM (R TR IM (@ C olum n3V al)),LTR IM (R TR IM (@ C olum n4V al)),LTR IM (R TR IM (@ C olum n5V al)),
LTRIM (R TR IM (@ C olum n6V al)),LTR IM (R TR IM (@ C olum n7V al)),LTR IM (R TR IM (@ R ow C ontent)))
SELECT @ Error = @ @ ER R O R
IF @ Error != 0
BEGIN

SELEC T @ ID ProcState = 3
SELEC T @ M essage = 'An e rro r occured w hile inserting the table ro w .'
SELECT @ M essage = @ M essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + '
SELECT @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A R CH A R) + '. '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertR ow 7.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

DRO P TABLE #Tem pTable
RETURN

END
END

EN D - End o f Proc_InsertR ow 7 Procedure.

3.26 Procedure Name: dbo.proc_InsertRow8
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 8 columns.
*/

CR EA TE Procedure Proc_InsertRow8
/* Param List * /
@ !D TableO bj
@ Colum n Values
@ ColID M easU nits
@ Row Content
@ ID ProcState
@ M essage

UN IQ U EID EN TIFIER,
NV A R CH A R (4000),
N VARCH A R(4000) = N U LL,
NVARCHAR(IOO),
TIN Y IN T OUTPUT,
NV A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
@ Error
@ lD R ow
@ N um O fRow s
@ C olum nl Val
@ Colum n2V al
@ C olum n3V al
@ Co!um n4Val
@ Colum n5V al
@ Colum n6Val
@ Colum n7Val
@ CoIumn8Val

INT,
INT,
INT,
N V A R C H A R (255),
N V A R CH A R (255),
N V A R CH A R (255),
N V A R CH A R (255),
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255),
N V A R C H A R (255)

SELEC T @ ID ProcState = 0
SELECT @ ERRO R = 0
SELECT @ M essage = ' '

SELECT @ N um O FRow s = CO U N T(*) FRO M dbo.fn_getC olum nV aluesTabIe(@ C olum nV alues)
-P R IN T '@ Num OfRows: ’ + C A ST (@ N um O fR ow s AS N V A R C H A R)
/* The function fn_getC olum nV aluesTable(@ C olum nV alues) should return two rows only */

IF @ N um O fRow s != 8
BEGIN

SELECT @ ID ProcState = 1
SELECT @ M essage = 'An error occured w hile inserting the table row. ’
SELECT @ M essage = @ M essage + 'Procedure S tate ID i s : ' + C A ST(@ ID ProcState AS NVARCHAR) + 1
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P roc_InsertR ow 8.'
SELECT @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
RA ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETURN

401

Appendix 5: Supplier Database (SD) System Code

END

/♦C reate a tem porary table and insert the values from the table returned
by the function fh_getC olum nV aluesTable */

CR EA TE TA BLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (255))
IN SERT IN TO #Tem pTable
SELEC T Colum nID ,ColV al FROM dbo.fn_getC olum nV aluesTable(@ C olum nV alues)

SELEC T @ C olum nl Val = Colum nV alue FR O M #T em pTable W H ER E C olum nID = 1
SELEC T @ Colum n2V al = C olum nV alue FRO M #T em pT able W H ER E C olum nID = 2
SELEC T @ Colum n3V al = Colum nV alue FROM #T em pT able W H ER E C olum nID = 3
SELEC T @ C olum n4V al = Colum nV alue FROM #T em pT able W H ER E C olum nID = 4
SELEC T @ C olum n5V al = Colum nV alue FRO M #T em pT able W H ER E C olum nID = 5
SELEC T @ C olum n6V al = C olum nV alue FRO M #T em pTable W H ER E Colum nID = 6
SELEC T @ C olum n7V al = C olum nV alue FRO M #T em pT able W H E R E Colum nID = 7
SELEC T g C o lu m n 8 V a l = C olum nV alue FRO M #T em pT able W H E R E Colum nID = 8

/•C h eck w hether the row contains column values o r colum n specifications
A row can only contain column values or colum n specifications(headers).* /

IF @ R ow C ontent LIKE *ColVals'
BEGIN

/* Check for the existing rows w ith sam e ID TableO bj to keep track o f the num ber
o f rows the IDTableObj has if the @ R ow C ontent = 'C olum n V alues' • /
SELECT (gID R ow = M A X (ID Row) FR O M T ableD efin ition8 W H ER E ID TableO bj = (gID TableO bj
IF (gID R ow IS NULL

SELECT (gID R ow = 1
ELSE

SELECT (gID R ow = (g ID R ow + 1

IN SERT INTO TableD efinition8(ID TableO bj, ID R ow , C o lum nl Val,
C olum n2V al,C olum n3V al,Colum n4V al,

C olum n5V al, C olum n6V al,C olum n7V al, C olum n8V al, R ow C ontent)
VA LU ES(@ ID TableO bj, (gID R ow ,
LTR IM (R TR IM (@ C olum nl V al)),L TR IM (R TR IM (@ C olum n2V al)),L TR IM (R TR IM ((gC olum n3V al)),
L T R IM (R T R IM (gC olum n4V al)),L T R IM (R T R IM (gC olum n5V aI)), L T R IM (R T R IM (gC olum n6V al)),
L TR IM (R TR IM (@ C olum n7V al)),LT R IM (R T R IM (@ C olum n8V al)),L TR IM (R TR IM (@ R ow C ontent)))

SELEC T (gE rror = @ @ ER RO R
IF (gE rror != 0
BEGIN

SELECT g ID P ro c S ta te = 2
SELEC T g M e ss a g e = 'An error occured w hile inserting the table row. '
SELECT g M e ss a g e = g M e ss a g e + 'E rror code is: ' + C A S T (g E rro r AS N V A RCH A R) + ' . '
SELECT g M e ssa g e = g M e ss a g e + 'Procedure S tate ID i s : ' + C A S T (gID P rocS ta te AS
N V A R CH A R) + '. '
SELECT g M e ssa g e = g M e ss a g e + 'E rror occured in Procedure Proc_InsertR ow 8.'
SELECT g M e ssa g e = g M e ss a g e + 'Procedure is term inated abno rm ally .'
R A IS E R R O R (gM essage, 1,1) W ITH SET ER R O R
RETURN g g E R R O R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETURN

END
EN D —End o f IF g R o w C o n ten t LIKE T ab leR o w '
ELSE — N ow insert header inform ation o f the table.
BEGIN

SELECT g ID R o w = 0
INSERT INTO T ableD efin ition8(ID T ableO bj, ID R ow , C olum nl Val, Colum n2Val, Column3Val,
Colum n4V al, C olum n5V al, C olum n6V al,C olum n7V al, Colum n8V al, RowContent)
V A L U E S (gID T ab leO b j, g ID R o w , L T R IM (R T R IM (g C o lu m n 1 V al)),LTR IM (R TR IM (gC olum n2V al)),
L TR IM (R T R IM (gC olum n3V al)),L T R IM (R T R IM (gC olum n4V al)),L T R IM (R T R IM (gC olum n5V al)),
L TR IM (R T R IM (gC olum n6V al)),L T R IM (R T R IM (gC olum n7V al)),L T R IM (R T R IM (gC olum n8V al)),
L T R IM (R T R IM (g R o w C o n ten t)))

SELECT g E r r o r = g g E R R O R
IF g E r r o r != 0
BEGIN

SELEC T g ID P ro c S ta te = 3
SELEC T g M e s s a g e = 'An erro r occured w hile inserting the table ro w .'
SELEC T g M e s s a g e = g M e ss a g e + 'E rror code i s : ' + C A S T (g E rro r AS NVARCHAR) + ' . '

402

Appendix 5: Supplier Database (SD) System Code

SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A R C H A R) + ’
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure Proc_InsertR ow 8.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated abnorm ally .'
R A IS E R R O R (g M essag e , 1,1) W ITH SETER R O R
RETU RN g g E R R O R

END
ELSE
BEGIN

DRO P TA B LE #T em pTable
RETURN

END
END

END -- End o f Proc_InsertR ow 8 Procedure.
GO

/*

3.27 Procedure Name: dbo.proc_InsertRow9
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 9 columns.
• /

CREA TE Procedure Proc_InsertRow 9
/* Param List */
g ID T a b le O b j U N IQ U EID EN TIFIER,
gC o lu m n V alu es N V A RCH A R (4000),
@ C olID M easU nits N V A R CH A R (4000) = N U LL,
@ R ow C ontent NVARCHAR(IOO),
(gID ProcState TIN Y IN T O U TPU T,
(gM essage N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
(gE rror INT,
(gID R ow INT,
g N u m O fR o w s INT,
g C o lu m n l Val N V A R C H A R (255),
g C o lu m n 2 V al N V A R C H A R (255),
g C o lu m n 3 V al N V A R CH A R (255),
g C o lu m n 4 V al N V A R C H A R (255),
g C o lum nS V al N V A R C H A R (255),
g C o lu m n 6 V al N V A R C H A R (255),
g C o lu m n 7 V al N V A R C H A R (255),
g C o lu m n 8 V al N V A R CH A R (255),
g C o lu m n 9 V aI N V A R CH A R (255)

SELECT g ID P ro cS ta te = 0
SELEC T g E R R O R = 0
SELEC T g M e ss a g e = ' '

SELEC T g N u m O F R o w s = CO U N T(*) FRO M dbo .fn_getC olum nV aluesT able(gC olum nV aIues)
--PRIN T 'gN um O fR ow s: ’ + C A S T (g N u m O fR o w s AS N V A R C H A R)
/♦ The function fh_getC olum nV aluesT able(gC olum nV alues) should return tw o rows only */

IF g N u m O fR o w s != 9
BEGIN

SELECT g ID P ro cS ta te = 1
SELECT g M e ssa g e = 'An error occured w hile inserting the table ro w . '
SELECT g M e ss a g e = g M e s s a g e + 'P rocedure State ID i s : ' + C A S T (gID P rocS ta te AS NVARCHAR) +
SELECT g M e ssa g e = g M e ss a g e + 'E rror occured in Procedure P roc_InsertR ow 9.'
SELECT g M e ssa g e = g M e ss a g e + 'P rocedure is term inated abnorm ally. '
R A IS E R R O R (gM essage, 1,1) W ITH SET ER R O R
RETURN

END

/•C reate a tem porary table and insert the values from the table returned
by the function fn_getC olum nV aluesTable */

CREATE TABLE #Tem pTable (C olum nID INT, C olum nV alue N V A R C H A R (255))
INSERT INTO #Tem pTable
SELECT C olum nID ,C olV al FRO M dbo .fn_getC olum nV aluesTable(gC olum nV aIues)

403

Appendix 5: Supplier Database (SD) System Code

SELECT @ C olum nl Val = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 1
SELECT @ C olum n2V al = C olum nV alue FR O M #T em pTable W H ER E Colum nID = 2
SELECT @ C olum n3V al = C olum nV alue FR O M #T em pT able W H ER E Colum nID = 3
SELECT @ C olum n4V al = C olum nV alue FRO M #T em pTable W H ER E Colum nID = 4
SELECT @ C olum n5V al = C olum nV alue FRO M #T em pT able W H ER E Colum nID = 5
SELECT @ C olum n6V al = C olum nV alue FRO M #T em pTable W H ER E Colum nID = 6
SELECT g C o lu m n 7 V al = C olum nV alue FR O M #T em pT able W H E R E C olum nID = 7
SELEC T @ Colum n8V al = Colum nV alue FRO M #T em pT able W H ER E C olum nID = 8
SELEC T @ Colum n9V al = Colum nV alue FR O M #T em pTable W H ER E C olum nID = 9

/•C h eck w hether the row contains colum n values o r colum n specifications
A row can only contain column values or colum n specifications(headers).* /

IF @ R ow C ontent LIKE ’C olV als’
BEGIN

/• C heck for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f row s the IDTableObj has if the @ R ow C ontent = 'C olum n V alues' */
SELEC T @ ID Row = M A X (ID Row) FR O M T ableD efm ition9 W H ERE IDTableO bj = @ IDTableObj
IF (gID R ow IS NU LL

SELECT (gID R ow = 1
ELSE

SELECT (gID R ow = (gID R ow + 1

IN SERT INTO TableD efm ition9(ID TableO bj, ID Row , C o lum nl Val,
C olum n2V al,C olum n3V al,Colum n4V al,

C olum n5V al, C olum n6V al,C olum n7V al, C olum n8V al, C olum n9V al,R ow C ontent)
V A LUES(@ IDTableObj, (gID R ow ,
L TR IM (R TR IM (@ C olum nlV al)),LT R IM (R T R IM (@ C olum n2V al)),L TR IM (R TR IM (@ C olum n3V al)),
LTR IM (R TR IM (@ C olum n4V al)),LTR IM (R TR IM (@ C olum n5V al)), LTRIM (R TRIM (@ Colum n6V al)),
L TRIM (R TR IM (@ C olum n7V al)),LTR IM (R TRIM (@ C olum n8V al)), LTRIM (R TRIM (@ Colum n9V al)),
LTR IM (R TR IM (@ R ow C ontent)))
SELECT (gE rror = @ @ ER RO R
IF (gE rror != 0
BEGIN

SELECT (gID ProcState = 2
SELECT (gM essage = 'An erro r occured w hile inserting the table r o w . '
SELECT (gM essage = g M e s s a g e + 'E rror code i s : ' + C A S T (g E rro r AS N V A R CH A R) + ' . '
SELECT g M e ssa g e = g M e s s a g e + 'Procedure State ID i s : ' + C A S T (g ID P ro cS ta te AS
NV A R CH A R) + ’
SELECT g M e ssa g e = g M e s s a g e + 'E rror occured in Procedure P roc_InsertR ow 9.'
SELEC T g M e ssa g e = g M e ss a g e + 'P rocedure is term inated ab n o rm ally .'
R A IS E R R O R (gM essage, 1,1) W ITH SET ER R O R
RETU RN g g E R R O R

END
ELSE
BEGIN

DRO P TA BLE #Tem pTable
RETURN

END
END --End o f IF g R o w C o n ten t LIKE T ab leR o w '
ELSE -- N ow insert header inform ation o f the table.
BEGIN

SELECT g ID R o w = 0
INSERT INTO T ableD efinition9(ID TableO bj, ID R ow , C o lum nl Val, CoIum n2V al, Colum n3Val,

Colum n4V al,
C olum n5V al, Colum n6V al,C olum n7V al, C olum n8V al,
Colum n9V al, Row Content)
V A L U E S (gID T ableO bj, g ID R o w , L T R IM (R T R IM (g C o lu m n l V al)),LTR IM (R TR IM (gC olum n2V al)),
L T R IM (R T R IM (gC olum n3V al)),L T R IM (R T R IM (gC olum n4V al)),L T R IM (R T R IM (gC oIum n5V al)),
L T R IM (R T R IM (gC olum n6V al)),L T R IM (R T R IM (gC olum n7V al)),L T R IM (R T R IM (gC olum n8V al)),
L T R IM (R T R IM (g C o lu m n 9 V al)),L T R IM (R T R IM (g R o w C o n ten t)))

SELECT g E r r o r = g g E R R O R
IF g E r r o r != 0
BEGIN

SELEC T g ID P ro c S ta te = 3
SELEC T g M e ss a g e = 'An erro r occured while inserting the table ro w . '
SELEC T g M e ss a g e = g M e s s a g e + 'E rror code is: ’ + C A S T (g E rro r AS NVARCHAR) + ' . '
SELEC T g M e ss a g e = g M e s s a g e + 'Procedure State ID i s : ' + C A S T (gID P rocS tate AS
N V A R C H A R) + '. '
SELEC T g M e s s a g e = g M e s s a g e + 'E rror occured in Procedure Proc_InsertR ow 9.'
SELEC T g M e ss a g e = g M e ss a g e + 'Procedure is term inated abnorm ally .'
R A IS E R R O R (g M essag e , 1,1) W ITH SETER R O R
RETU RN g g E R R O R

404

Appendix 5: Supplier Database (SD) System Code

EN D
ELSE
BEGIN

DRO P TABLE #T em pTabIe
RETURN

END
EN D

END — End o f Proc InsertRow 9 Procedure.
GO

/•

3.28 Procedure Name: dbo.proc_InsertRowlO
Database: SupplierDB
Description:
This procedure enables creation of column values for table specification with 10 columns.
* /

CR EA TE Procedure Proc InsertRow lO
/* Param List */
@ ID TableO bj U N IQ U EID EN TIFIER,
@ C olum nV alues N V A R CH A R(4000),
@ ColID M easU nits N V A R CH A R (4000) = N U LL,
@ R ow C ontent NVARCHAR(IOO),
(gID ProcState TIN Y IN T O U TPU T,
@ M essage N V A R CH A R (500) O U TPU T

AS
BEGIN

DECLARE
g E rr o r INT,
(gID R ow INT,

@ N um O fRow s NT,
g C o lu m n lV a l N V A R C H A R (255),
@ Colum n2V al N V A R C H A R (255),
g C o lu m n 3 V al N V A R C H A R (255),
@ CoIum n4Val N V A R C H A R (255),

@ C olum n5V al N V A R C H A R (255),
@ C olum n6V al N V A R C H A R (255),
@ C olum n7V al N V A R C H A R (255),
g C o lu m n 8 V al N V A R C H A R (255),
@ Colum n9V al N V A R C H A R (255),
g C o iu m n lO V al N V A R C H A R (255)

SELECT (gID ProcState = 0
SELECT (gER R O R = 0
SELECT (gM essage = ' '

SELECT (gN um O FR ow s = C O U N T(‘) FRO M dbo.fn_getC oIum nV aluesT able(@ C oIum nV alues)
—PRINT '@ N um O fR ow s:' + C A ST(@ N um O fR ow s AS N V A R C H A R)
/* The function fh_getC olum nV aluesTable(@ Colum nV alues) should return tw o row s only */

IF (gN um O fR ow s != 10
BEGIN

SELECT g ID P ro cS ta te = 1
SELECT g M e ss a g e = 'An error occured w hile inserting the table r o w . '
SELECT g M e ssa g e = g M e ssa g e + 'Procedure State ID is: ' + C A S T (g ID P ro cS ta te AS N V A RCH A R) + 1
SELECT g M e ssa g e = g M e ss a g e + 'E rror occured in P rocedure P ro c Jn se rtR o w lO .'
SELECT g M e ss a g e = g M e ssa g e + 'P rocedure is term inated ab n o rm a lly .'
R A IS E R R O R (gM essage, 1,1) W ITH SET ER R O R
RETURN

END

/ ‘ C reate a tem porary table and insert the values from the table returned
by the function fn_getC olum nV aluesTable *!

CREA TE TABLE #Tem pTable (C olum nID IN T, C olum nV alue N V A R C H A R (255))
INSERT INTO #Tem pTable
SELECT Colum nID ,ColV al FROM dbo.fn_getC olum nV aluesT ab!e(gC olum nV alues)

SELECT g C o lu m n l Val = C olum nV alue FRO M #T em pTable W H ER E Colum nID = 1
SELECT g C o lu m n 2 V al = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 2
SELECT g C o lu m n 3 V al = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 3
SELECT g C o lu m n 4 V al = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 4
SELECT g C o lu m n 5 V al = C olum nV alue FRO M #Tem pTabIe W H ERE Colum nID = 5

405

Appendix 5: Supplier Database (SD) System Code

SELECT @ Colum n6V al = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 6
SELECT @ Colum n7V al = C olum nV alue FRO M #Tem pTable W H ER E Colum nID = 7
SELECT @ Colum n8V al = C olum nV alue FRO M #Tem pTable W H ERE Colum nID = 8
SELECT @ Colum n9V al = C olum nV alue FRO M #T em pTable W H ER E Colum nID = 9
SELECT @ Colum nlO V al = C olum nV alue FR O M #Tem pTable W H ERE Colum nID = 10

/•C h eck w hether the row contains colum n values o r colum n specifications
A row can only contain colum n values o r colum n specifications(headers).* /

IF @ R ow C ontent LIKE 'ColV als'
BEGIN

/* Check for the existing row s w ith sam e ID TableO bj to keep track o f the num ber
o f rows the IDTableO bj has if the @ R ow C onten t = 'Colum n V alues' */
SELECT @ IDRow = M A X (ID R ow) FR O M T ableD efin itionlO W H ERE IDTableO bj = @ IDTableObj
IF (gID R ow IS NULL

SELECT (gID R ow = 1
ELSE

SELECT (gID R ow = (g ID R ow + 1

INSERT INTO T ableD efinitionlO (ID TableO bj, ID R ow , C o lum nl Val,
C olum n2V al,C olum n3V al,Colum n4V al,

C olum n5V al, Colum n6V al,C olum n7V al, C olum n8V al, C olum n9V al,C olum n 10Val, RowContent)
V A LU ES(@ ID TableO bj, @ ID R ow ,

L TR IM (R TRIM (@ Colum nl V aI)),L TR IM (R TR IM (@ C olum n2V al)),LTR IM (R TR IM ((gC olum n3V al)),
L TRIM (R TR IM (@ C olum n4V al)),LTR IM (R TRIM (@ C olum n5V al)), LTRIM (RTRIM (@ Colum n6V al)),
L TRIM (R TR IM (@ C olum n7V al)),LTR IM (R TRIM (@ C olum n8V al)), LTRIM (R TRIM (@ Colum n9V al)),
LTRIM (RTRIM (@ Colum n 1 O V al)),L T R IM (R T R IM (@ R ow C ontent)))

SELECT (gError = @ @ ER RO R
IF @ Error != 0
BEGIN

SELECT (gID ProcState = 2
SELECT (gM essage = 'An erro r occured w hile inserting the table r o w . '
SELECT (gM essage = (gM essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A RCH A R) + ' . '
SELECT (gM essage = (gM essage + 'P rocedure State ID i s : ' + CA ST(@ ID ProcState AS
N V A RCH A R) + '. ’
SELECT (gM essage = (gM essage + 'E rror occured in P rocedure P roc_InsertR ow lO .'
SELECT (gM essage = (gM essage + 'P rocedure is term inated ab n o rm ally .'
R A ISER RO R(@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER RO R

END
ELSE
BEGIN

DROP TABLE #Tem pTable
RETU RN

END
END - E n d o f IF (gR ow C ontent LIKE T ab leR ow '
ELSE ~ N ow insert header inform ation o f the table.
BEGIN

SELECT (gID R ow = 0
INSERT INTO T ableD efinitionlO (ID TableO bj, ID R ow , C o lum nl Val, Colum n2V al, Colum n3Val,

C olum n4V al,
C olum n5V al, C olum n6V al,C olum n7V al, C olum n8V al,
Colum n9V al, Colum n lO V al,R ow C ontent)

VALUES(@ IDTableObj, (gID R ow , L TR IM (R TR IM (@ C olum n 1 Val)),LTR IM (RTRIM (@ C olum n2V al)),
L TR IM (R TR IM (@ C olum n3V al)),LTR IM (R TR IM (@ C olum n4V al)),LTR IM (R TR IM ((gColum n5V al)),
L TR IM (R TRIM (@ C olum n6V al)),LTR IM (R TR IM ((gC olum n7V aI)),LTRIM (RTR IM ((gC olum n8V al)),
LTR IM (R TR IM (@ C olum n9V al)),LTR IM (R TR IM ((gC olum n 1 O V al)),LTRIM (RTRIM (@ Row Content)))

SELECT (gError = @ @ ER RO R
IF (gError != 0
BEGIN

SELECT (gID ProcS tate = 3
SELECT (gM essage = 'An erro r occured w hile inserting the table r o w . '
SELECT (gM essage = (gM essage + 'E rror code i s : ' + C A ST(@ Error AS NVARCHAR) + ' . '
SELEC T (gM essage = (gM essage + 'Procedure State ID i s : ' + CAST(@ IDProcState AS
N V A R CH A R) + '. '
SELECT (gM essage = (gM essage + 'E rror occured in Procedure P ro c Jn se rtR o w lO .'
SELEC T (gM essage = (gM essage + 'Procedure is term inated abnorm ally .'
R A ISER R O R ((gM essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER R O R

END
ELSE
BEGIN

DRO P TA BLE #Tem pTable
RETU RN

END

406

Appendix 5: Supplier Database (SD) System Code

END
END -- End o f Proc_InsertR ow 10 Procedure.
GO

/*

3.29 Procedure Name: dbo.proc_UnAssignProduct2Category
Database: SupplierDB
Description:
This procedure enables unassigning a product from category.
* /

CR EA TE Procedure proc_U nA ssignProduct2C ategory
/* Param List */

g ID P ro d U N IQ U EID EN TIFIER,
g ID P ro cS ta te TIN Y IN T O U TPU T,
g M e ssa g e N V A R C H A R (500) O U T PU T

AS
BEGIN

DECLARE
g E r r o r INT
SELECT g ID P ro cS ta te = 0
SELEC T g E R R O R = 0

/* This procedure unassigns a product to a category. Im portant th ing to note is that
a product is being assigned not ID ProdD ef */
DELETE C ategory_ProductCIass
W HERE IDProd = g ID P ro d

SELECT g E r r o r = g g E R R O R
IF g E r r o r != 0
BEGIN

ROLLBACK TRAN
SELECT g ID P ro cS ta te = 1
SELEC T g M e ss a g e = 'An error occured w hile unassigning product to the category.'
SELEC T g M e ss a g e = g M e ssa g e + 'E rror code i s : ' + C A S T (g E rro r AS N V A R C H A R) + ' . '
SELECT g M e ssa g e = g M e ssa g e + 'E rror occured in P rocedure p roc_U nA ssignProduct2C ategory .'
SELECT g M e ss a g e = g M e ssa g e + 'P rocedure is term inated ab n o rm a lly .'
R A IS E R R O R (gM essage, 1,1) W ITH SET ER R O R
RETU RN g g E R R O R

END
ELSE
BEGIN

SELECT g M e ssa g e = P ro d u c t successfully unassigned to the category.'
RETU RN

END
END -- End o f Proc_U nA ssignProduct2C ategory.
GO

407

Appendix 5: Supplier Database (SD) System Code

/*

3.30 Procedure Name: dbo.proc_UnAssignProduct2SpecificationGroup
Database: SupplierDB
Description:
This procedure enables unassigning a product from specification group.
*/

CREA TE Procedure proc_U nA ssignProduct2SpecificationG roup
/* Param List */

@ ID Prod U N IQ U EID EN TIFIER,
@ ID ProcState TIN Y IN T O U TPU T,
@ M essage N V A R CH A R (500) O U T PU T

AS
BEGIN

D ECLA RE
@ Error INT

SELECT @ ID ProcState = 0
SELEC T @ ER RO R = 0

/* This stored procedure unassigns a product to a specification group. */
D ELETE SpecificationG roupD efinition
W H ERE IDProd = @ IDProd
SELEC T @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile unassigning the p roduct to the specification group.'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in P rocedure proc_U nA ssignProduct2SpecificationG roup.

SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
RA ISERRO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
ELSE
BEGIN

SELECT @ M essage = P ro d u c t successfu lly unassigned to the specification group.'
RETURN

END
END - End o f proc_U nA ssignProduct2SpecificationG roup Procedure.
GO

408

Appendix 5: Supplier Database (SD) System Code

/*

3.31 Procedure Name: dbo.proc_UnAssignSubProduct2Product
D atabase: SupplierDB
Description:
T his procedure enables un assign in g a (su b) product from product.
*/

CREA TE Procedure proc_U nA ssignSubProduct2Product
/* Param List */
@ ID SubProd U N IQ U EID EN TIFIER,
@ ID ProcState TINYINT O U TPU T,
@ M essage N V A R CH A R (500) O U T PU T

AS
BEGIN

D ECLA RE
@ Error INT
SELEC T @ ID ProcState = 0
SELEC T @ ER R O R = 0
/* T his procedure unassigns a sub product to another p roduct */
D ELETE ProductD efinition
W H ERE ID SubProd = @ IDSubProd
SELEC T @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

ROLLBACK TRAN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An error occured w hile unassigning the Subproduct to the product.'
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R C H A R) + ' . '
SELEC T @ M essage = @ M essage + 'E rror occured in Procedure p roc_U nA ssignSubProduct2Product.'
SELEC T @ M essage = @ M essage + 'Procedure is term inated ab n o rm a lly .'
R A ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER RO R

END
ELSE
BEGIN

SELEC T @ M essage = 'Subproduct successfully unassigned to the p roduct.’
RETU RN

END
END - End o f proc_U nA ssignSubProduct2Product Procedure.
GO

/*

3.32 Procedure Name: dbo.proc_UpdateProduct
Database: SupplierDB
Description:
This procedure enables update of product data.
♦/

C R EA TE Procedure proc_U pdateProduct
/* Param List */
@ ID Prod U N IQUEIDENTIFIER,
@ ProdN am e N V A R CH A R(255),
@ ProdD esc N V A R CH A R (4000) = N U LL,
@ A ssignTo N V A R CH A R (60)= N U LL,
@ ID A ssignTo U N IQ U EID EN TIFIER = N U L L,
@ ID ProcState TINYINT O U TPU T,
© M essage N V A R CH A R (500) O U T PU T
AS
BEGIN

DECLARE
© E rro r INT
SELEC T @ ID ProcState = 0
SELECT © E R R O R = 0

BEGIN TRAN
/*
U pdate product by inserting new values into product table.
*/
UPDATE Product
SET © P rodN am e = ISN U LL(@ ProdN am e, ProdN am e),

@ ProdD esc = ISN U LL(@ ProdD esc, P rodD esc)

409

Appendix 5: Supplier Database (SD) System Code

FRO M PRO D U CT
W H ERE ID Prod = @ ID Prod
SELECT @ Error = @ @ ER RO R
IF @ Error != 0
BEGIN

RO LLBA CK TRAN
SELEC T @ ID ProcState = 1
SELEC T @ M essage = 'An erro r occured w hile updating Product.1
SELEC T @ M essage = @ M essage + 'E rror code i s : ' + C A ST (@ E rror AS N V A R CH A R) + '
SELEC T @ M essage = @ M essage + 'Procedure State ID i s : ' + CA ST(@ ID ProcState AS N V A R CH A R) + ' . '
SELECT @ M essage = @ M essage + 'E rror occured in Procedure P roc_U pdateP roduct.'
SELECT @ M essage = @ M essage + 'Procedure is term inated ab n o rm ally .'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
/*
As part o f updating process o f a product, a p roduct can be reassigned to a product,
specification group or a category. In the follow ing b lock w e check w hether @ A ssignTo is null.
If it is null, then there is no need to reassign a product. O therw ise the product
needs to be ressigned to another product, specification group or category. As part o f
accom plishing this process we need to delete earlier assignm ent a p roduct has to
a product, specification group or category.
*/
IF @ A ssignTo IS N U LL
BEGIN

C O M M IT TRAN
SELEC T @ M essage = P ro d u c t U pdated Successfully .'
RETU RN

EN D
/*
U nassign a subProduct to a product.
*/
EX EC proc_U nA ssignSubProduct2Product
@ ID SubProd = @ ID Prod,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his P rocedure w as called from Proc_U pdateProduct.'
RA ISER RO R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER RO R

END
/*
Unassign a Product to a specification group.
•/
EXEC proc_U nA ssignProduct2SpecificationG roup
@ ID Prod = @ ID Prod,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U TPU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his P rocedure w as called from Proc_U pdateProduct.'
R A ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END

/*
U nassign a Product to a category.
*/
EX EC proc_U nA ssignProduct2C ategory
@ ID Prod = @ IDProd,
@ ID ProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T his P rocedure w as called from Proc_U pdateProduct.'
R A ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETU RN @ @ ER RO R

END

/* A product now needs to be reassigned to a new product, spec group or category */
/* A ssigning product to another product* /

410

Appendix 5: Supplier Database (SD) System Code

IF @ A ssignTo = 'Product'
BEGIN

EXEC proc_A ssignSubProduct2Product
@ ID Prod = @ ID A ssignTo,
@ ID SubProd = @ ID Prod,
@ !D ProcState = @ ID ProcState O U T PU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRA N
SELECT @ M essage = @ M essage + ' T h is P rocedure w as called from Proc_U pdateProduct.'
RA ISER R O R (@ M essage, 1,1) W ITH SETER R O R
RETURN @ @ ER R O R

END
ELSE
BEGIN

/• I f everything goes w ell until this poin t it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. */
CO M M IT TRAN
SELECT @ M essage = P ro d u c t U pdated Successfully .'
RETURN

END
EN D ~ End o f IF @ A ssignTo = 'product'

IF @ A ssignTo = 'SpecificationG roup'
BEGIN

EX EC proc_A ssignProduct2SpecificationG roup
@ ID SpecG roup = @ ID A ssignTo,
@ ID Prod = @ ID Prod,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

RO LLBA CK TRAN
SELEC T @ M essage = @ M essage + ' T h is P rocedure w as called from Proc_U pdateProduct.'
RA ISER RO R (@ M essage, 1,1) W ITH SET ER R O R
RETU RN @ @ ER RO R

END
ELSE
BEGIN

/ • I f everything goes w ell until th is poin t it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. • /

C O M M IT TRAN
SELEC T @ M essage = 'P roduct U pdated S uccessfu lly .1
RETURN

END
END — IF @ A ssignTo = ’SpecificationG roup'
IF @ A ssignTo = 'Category'
BEGIN

EX EC proc_A ssignProduct2C ategory
@ ID Category = @ ID A ssignTo,
@ ID Prod = @ IDProd,
@ ID ProcState = @ ID ProcState O U TPU T,
@ M essage = @ M essage O U T PU T
IF @ ID ProcState != 0
BEGIN

ROLLBACK TRAN
SELECT @ M essage = @ M essage + ' T h is P rocedure w as called from P rocJJpdateP roduct.'
R A ISER R O R (@ M essage, 1,1) W ITH SET ER R O R
RETURN @ @ ER R O R

END
ELSE
BEGIN

/ • I f everything goes w ell until th is poin t it m eans that all the values are inserted
properly into the above tables. N ow w e neet to com m it the transaction. • /

C O M M IT TRAN
SELEC T @ M essage = 'P roduct U pdated Successfully.'
RETU RN

END
END -- IF @ A ssignTo = 'C ategory'

END -- End o f Proc_U pdateProduct Procedure.
GO

411

Appendix 5: Supplier Database (SD) System Code

/*

3.33 Procedure Name: dbo. proc_ProductSeI
Database: SupplierDB
Description:
This procedure enables selection of product data.
*/

CREATE PRO C ED U R E p ro cP ro d u c tS e l
@ ID ProdC lass BIGINT,
@ O rderB y N V A R C H A R (255) = N U LL,
@ U pD ow n N V A R C H A R (255) = 'A S C \
@ RecordC ount INT O UTPUT
AS
D ECLARE @ SQ L N V A R CH A R (4000)
SET N oC ount ON
SET @ SQ L = ' SELECT dbo .P roductlD Prod ln tem al,
dbo.Product.lD ProdC lass,
dbo. Product. I DProdClass Ver,
dbo. Product. ProdN am e,
dbo. Product. Prod Desc
FROM dbo.Product

W H ERE I DProdClass = @ ID ProdC lass'

IF (@ O rderB y IS N O T NU LL)
BEGIN

SET @ SQ L = @ SQ L + ' O RD ER BY ' + @ O rderB y + " + @ U pD ow n
END
EXEC sp_executesql @ SQL, N '@ ID ProdC lass B IG IN T’,@ ID ProdC lass
SELECT @ R ecordC ount = @ @ row count
GO

/♦

3.34 Function Name: dbo.fn__getColumnValuesTable
Database: SupplierDB
Description:
This function extracts column values from a string Column values in a string are delimited by '****♦' */
After extracting the column values the function inserts each individual column value into the table and
returns the table to the called procedure.
*/

CR EA TE FUNCTION dbo.fn_getColum nV aluesTable
(@ Colum nV alues N V A R C H A R (4000))

RETU RN S @ C olum nV a!uesTable TABLE
(

C olum nID INT,
CoIVal N V A R CH A R (500)

AS
BEGIN

)

DECLARE
@ Index INT, /* Keeps the index o f position from w here the delim iter starts, ie the starting position o f

'* •*** ' in a string ' /
@ D O N E TIN Y IN T, /*A cts as a boolean variable. ' /
@ Colum nV al N V A R CH A R(500), / 'H o ld s each indiviaual colum n value */
@ C ounter INT

/ 'T h e follow ing is executed when the procedure is called w ith em pty string as input param eter */
SELEC T @ D O N E = 0
SELECT @ CoIum nValues = L TR IM (R TR IM (@ C olum nV alues))
IF LEN (@ Colum nV alues) = 0
BEGIN

SELECT @ D O N E = 1
RETURN

END

/* The follow ing is executed w hen the string contains only one colum n values */
SELECT @ Index = CH A RIN D EX C ###', @ C olum nV alues)
IF @ Index = 0
BEGIN

SELECT @ C olum nV al = @ C olum n V alues
SELEC T @ C olum nV al = L TR IM (R TR IM (@ C olum nV al))

412

Appendix 5: Supplier Database (SD) System Code

SELEC T @ C ounter = 1
IN SERT IN TO @ C olum nV aluesTabIe (C olum nlD .C olV al) VALUES (@ Counter, @ Colum nValues)
SELECT @ D O N E = I
RETU RN

END

/* The follow ing loop is executed w hen there are m ore than one colum n values in the string */
SELECT @ C ounter = 1
W HILE @ D O N E = 0
BEGIN

SELEC T @ Index = CHARINDEXC###', @ C olum nV alues)
SELECT @ Colum nV al = LEFT(@ C olum nV alues, @ Index - 1)
SELECT @ Colum nV al = LTR IM (R TR IM (@ C olum nV aI))
IF LEN (@ Colum nV aI) > 0

INSERT INTO @ C olum nV aluesTable (C olum nlD .C olV al) V A LU ES (@ C ounter, @ Colum nVal)
ELSE

INSERT INTO @ C olum nV aluesTable (C olum nlD .C olV al) V A LU ES (@ Counter, N U LL)
SELEC T @ C ounter = @ Counter + 1
SELECT @ Colum nV alues = SU B STR IN G (@ C olum nV alues, @ Index +3, LEN (@ C olum nV alues) - @ Index + 2)
SELEC T @ Colum nV alues = LTR IM (R TR IM (@ C olum nV alues))
SELECT @ Index = CHARINDEXC###', @ C olum nV alues)
IF @ Index = 0
BEGIN

IF LEN(@ CoIum nValues) = 0
BEGIN

SELECT @ DONE = 1
END
ELSE
BEGIN

SELECT @ Colum nV al = @ C olum nV alues
SELECT @ Colum nV a! = L TR IM (R TR IM (@ C olum nV al))

IF LEN (@ Colum nV al) > 0
INSERT IN TO @ C olum nV aluesTable (C olum nID ,C olV al) V A LU ES (@ Counter,

@ CoIumnVal)
ELSE

INSERT IN TO @ C olum nV aluesTable (C olum nlD .C olV al) V A LU ES (@ Counter, N U LL)
SELEC T @ D O N E = 1

END
END

END
RETURN
END

/•

3.35 Function Name: dbo.fn_GetIDEntityPart
Database: SupplierDB
Description:
This function returns entity part from a complete ID.
♦/

CR EA TE FUNCTION dbo.fh_G etID EntityPart
(@ ID C om plete BIGINT)

RETU RN S INT
AS

BEGIN
RETU RN CA ST(SU B STR IN G (CA ST(@ ID C om plete AS N V A R C H A R), 1, 3) AS INT)

END

413

Appendix 5: Supplier Database (SD) System Code

/*

3.36 Function Name: dbo.fn_GetIDPart
Database: SupplierDB
Description:
This function returns ID part from a complete ID.
*/

CREATE FUNCTION dbo.fn_G etID Part
(@ ID Com plete BIGINT)
RETURNS BIGINT
AS

BEGIN
DECLARE

(gID C om pleteLength TIN Y IN T,
@ ID Part N V A R C H A R (20)
SELECT @ ID Com pleteLength = L EN (C A ST (@ ID C om plete AS N V A R C H A R))
SELECT @ ID Part = SU B STR IN G (C A ST(@ ID C om plete AS N V A R C H A R), 4, @ ID C om pleteLength - 3)
RETURN C A ST(@ ID Part AS B IG IN T)

END

/*

3.37 Function Name: dbo.fn_GetNewID
Database: SupplierDB
Description:
This function generates a new ID for given entity such as product class, specification, etc.
*l

CREATE FUNCTION dbo.fh_G etN ew ID
(@ ID Entity INT)

RETURNS BIGINT
AS

BEGIN
DECLARE

@ IDAvailable BIGINT,
@ ID N ext BIGINT
SELECT @ IDAvailable = ID A vailable FROM Entity W H ER E [ID Entity] = (gID E ntity
SELECT (gID N ext = dbo.fh_Increm enU D (@ ID A vailab!e, D EFA U LT)
RETURN @ IDAvailable

END

/♦

3.38 Function Name: dbo.fn_IncrementID
Database: SupplierDB
Description:
This function increments ID.
*/

CREA TE FUNCTION d bo .fnJncrem en tlD
(@ ID C om plete BIGINT,
(glncrem entB y INT = 1)

RETU RN S BIGINT
AS

BEGIN
D ECLARE
(gID Part BIGINT,
@ EntityPart BIGINT
SELECT (gID Part = dbo.fh_G etID Part((gID C om plete)
SELECT (gEntityPart = dbo.fh_G etID EntityPart(@ ID C om plete)
SELECT (gID Part = (gID Part + (glncrem entB y
RETURN CA ST (CAST(@ Entity Part AS N V A R CH A R) + C A ST (@ ID Part AS N V A R C H A R) AS BIGINT)
END

414

Appendix §: Supplier Database (SD) System Code

/•

3.39 Function Name: dbo.fnG etNextAvailablelD
Database: SupplierDB
Description:
This function generates next available ID.
*/

CREATE FUN CTIO N dbo.fn_G etN extA vailableID
(@ ID C om plete BIG IN T)

RETU RNS BIGINT
AS

BEGIN
DECLARE
@ ID Part BIGINT,
@ EntityPart BIGINT
SELEC T @ ID Part = dbo.G ctID Part(@ ID C om plete)
SELEC T @ EntityPart = dbo.G etID EntityPart(@ ID C om plete)
SELECT @ ID Part = @ ID Part + I
RETU RN CA ST (CAST (@ EntityPart AS N V A R C H A R) + C A ST (@ ID Part AS N V A R C H A R) AS BIGINT)

END

415

Appendix 5: Master Grid Service (MGS) System Code

Master Grid Service (MGS) System Code
/ *

* *

** 4.1 Interface: MasterGrid
** Description:
** This is an interface implemented by MasterGridlmpl class which initiates the database search jobs.
* *

* /

package uk.co.activeplan.mgs.impl;

public interface MasterGrid
{

public String callTestGridService(String url);
public String executeJob(String searchString, String supplierString, String gshString);

}

/ *

* *

** 4.2 Class: MasterGridlmpl
** Description:
** This class implements MasterGrid interface to provide executeJob method for submitting jobs to
** Database Search Services (DSS) in a Grid environment. The executeJob method parses the
** supplierString input argument (this argument provides a list of suppliers databases to search to the
** executeJob method) to split number of supplier databases to search in equal proportions and allocate
** these supplier lists to available DSSs. The gshString input argument provides a list of DSS available
** in a Grid environment using which the search could be performed and searchString input argument
** provides product class ID pertaining to which product data has to be retrieved from supplier
** databases. The callTestGridService method provides the service of checking whether a DSS is
** available in a Grid environment and is ready to accept requests.
* *
* /

package uk.co.activeplan.mgs.impl;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import org.w3c.dom.Element;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.CharacterData;

import java.net.URL;
import org.gridforum.ogsi.OGSIServiceGridLocator;
import org.gridforum.ogsi.GridService;
import org.gridforum.ogsi.Factory;
import org.gridforum.ogsi.LocatorType;
import org.globus.ogsa.utils.GridServiceFactory;
import uk.co.activeplan.mdss.DatabaseSearch.DatabaseSearchServiceGridLocator;
import uk.co.activeplan.mdss.DatabaseSearch.DatabaseSearchPortType;

public class MasterGridlmpl implements MasterGrid
{

private GshDocumentParser gshDocumentParser;
private SupplierDocumentParser supplierDocumentParser;
private Converter converter;
private int gshCount;
private int supplierCount;
private ThreadGroup threadGroup;

416

Appendix 5: Master Grid Service (MGS) System Code

private DataAggregate dataAggregate;
private CallDataAggregate callDataAggregate;
private URL gsh;
private Factory factory;
private GridServiceFactory databaseSearchFactory;
private LocatorType locator;
private OGSIServiceGridLocator gridLocator;
public MasterGridlmplO
{

converter = new Converter();

} // end of public MasterGridlmpl constructor,
public String callTestGridService(String url)
{

String retumStr =
try
{

url.trim();
gridLocator = new OGSIServiceGridLocator();
java.net.URL gshURL = new java.net.URL(url);
factory = gridLocator.getFactoryPort(gshURL);
databaseSearchFactory = new GridServiceFactory(factory);
LocatorType locator = databaseSearchFactory.createService();
DatabaseSearchServiceGridLocator databaseSearchLocator = new
DatabaseSearchServiceGridLocator();
DatabaseSearchPortType databaseSearch =
databaseSearchLocator.getDatabaseSearchService(locator);
retumStr = databaseSearch.testGridService(url);

}
catch(Exception e)
{

retumStr = "Error Occured: Either the URL is malformed or the grid service at
specified URL does not exist.";

}
return retumStr;

} // end of public String callTestGridService(String url).

public String executeJob(String searchString, String supplierString, String gshString)
{

gshCount = converter.getElementCount(gshString, "GridServiceHandle");
supplierDocumentParser = new SupplierDocumentParser(supplierString, gshCount);
gshDocumentParser = new GshDocumentParser(gshString);
callDataAggregate = new CallDataAggregate();
dataAggregate = callDataAggregate.getDataAggregate();
JobExecution jobExecution;
ThreadChecker threadChecker = new ThreadChecker();
for(int i=0; i<gshCount;i++)
{

jobExecution = new JobExecution(searchString,
supplierDocumentParser.getSupplierSubDocumentStringO,
gshDocumentParser.getGsh(),callDataAggregate);

jobExecution.setThreadChecker(threadChecker);
Thread thread = new Thread(threadGroup, jobExecution);
thread.start();

} // end of for loop.
JobAggregation jobAggregation = new JobAggregation();
j ob Aggregation. setThreadChecker(threadChecker);
jobAggregation.setThreadCount(gshCount);
jobAggregation. setDataAggregate(dataAggregate);
Thread jobAggregationThread = new Thread(threadGroup, jobAggregation);

417

Appendix 5: Master Grid Service (MGS) System Code

jobAggregationThread.setPriority(Thread.MIN_PRIORITY);
jobAggregationThread.start();
System.out.println jobAggregation.callGetAggregateString();
return jobAggregation.callGetAggregateString();

} //End: public String executeJob(String searchString, String supplierString, String gshString)
} // End: public class MasterGridlmpl

/ *

* *

** 4.3 Class: Converter
** Description:
** This class converts a string (containing data in XML format) into XML document and vice versa.
** The string can contain details on product supplier databases to search or product supplier database
** search criteria. The functionality provided by this class is needed for transportation of data/ search
** criteria (in a string format) between MGS (Master Grid Service) and individual DSS (Database
** Search Services) and for providing the same data to other classes in this package for identifying
** supplier/search criteria details by converting data into XML element objects. The two main methods
** of this class: getStringObject and getStringObject provide these functionalities. The services of this
** class are also available in DSS system component.
* *

* /

package uk.co.activeplan.mgs.impl;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import j avax.xm 1 .parsers. FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

import javax.xm 1 .transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
import java.io.StringReader;
import java.io.StringWriter;
import java.io.BufferedReader;
import java.io.FileReader;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import j a vax. xm 1 .transform .dom. DOMSource;
import javax.xml.transform.dom.DOMResult;

import org.xml.sax.InputSource;

public class Converter
{

TransformerFactory transformerFactory;
Transformer transformer;
DocumentBuilderFactory factory;
DocumentBuilder builder;
Document document;
Document doc;
BufferedReader bufferedReader;
DOMResult domResult;
StringWriter stringWriter;

418

Appendix 5: Master Grid Service (MGS) System Code

StringReader stringReader;
public Converter()
{

try
{

transformerFactory = TransformerFactory.newInstance();
transformer = transformerFactory.newTransformer();
factory = DocumentBuilderFactory.newInstance();

}
catch(Exception e)
{

e.printStackTrace();
}

} //End: public ConverterQ

//Convert a string to document object.
public Document getDomObject(String xmlString)
{

try
{

builder = factory.newDocumentBuilderO;
doc = builder.newDocumentO;
//DOMResult domRes = new DOMResult(doc);
stringReader = new StringReader(xmlString);
bufferedReader = new BufferedReader(stringReader);
InputSource is = new InputSource(bufferedReader);
doc = builder.parse(is);

}
catch(Exception e)
{

e.printStackTrace();
}
return doc;

}
public String getStringObject(Document document)
{

try
{

stringWriter = new StringWriter();
DOMSource domSrc = new DOMSource(document);
StreamResult streamRes = new StreamResult(stringWriter);
transformer.transform(domSrc, streamRes);

}
catch(Exception e)
{

e.printStackTrace();
}
return stringWriter.toString();

} // end of public String getStringObject(Document document)

public int getElementCount(Document document, String elemName)
{

NodeList nodeListl = document.getElementsByTagName(elemName);
System.out.println(Integer.toString(nodeList.getLength()));
return nodeList 1 .getLength();

} //End: public int getElementCount(Document document, String elemName)

419

Appendix 5: Master Grid Service (MGS) System Code

public int getElementCount(String documentString, String elemName)
{

Document stringDoc = getDomObject(documentString);
NodeList nodeList2 = stringDoc.getElementsByTagName(elemName);
return nodeList2.getLength();

} //End: public int getElementCount(String documentString, String elemName)
} // end of public class Converter

/ *

* *

** 4.4 Class: DataAggregate
** Description:
** This class provides of functionality of aggregating product data retrieved from one or more DSS
** components into an XML document. The class is intialalised by callDataAggregate in MGS system
** component which synchronises access it. Access to this class needs to be synchronised because more
** than one job execution thread of JobExecution class accesses this class to accumulate search results
** obtained from one or more DSS components. The method addNodes accumulates the search results
** retrieved from DSS components. Once DSS components finish searching all supplier databases, the
** getAggregateString method of this class is called by CallDataAggregate class to get all product data
** retrieved from all product suppliers in string format which is then returned to the user.
* *

* /

package uk.co.activeplan.mgs.impl;

import uk.co.activeplan.mdss.DatabaseSearch.DatabaseSearchServiceLocator;
import uk.co.activeplan.mdss.DatabaseSearch.DatabaseSearchPortType;
import java.net.URL;
import org.apache.xerces.dom.*;
import org.w3c.dom.*;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml. parsers. FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;

// For write operation
import javax.xml.transform.Transformer;
import javax.xm 1 .transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.sax.SAXSource;
i mport j a vax. xm 1. trans form. stream. Stream Resu It;
import javax.xml.transform.stream.*;
import java.io.*;
import org.w3c.dom.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.dom.DOMResult;

public class DataAggregate
{

420

Appendix 5: Master Grid Service (MGS) System Code

TransformerFactory transformerFactory;
Transformer transformer;
DocumentBuilderFactory factory;
DocumentBuilder builder;
DOMImplementation domlmplementation;
Document document;
Element rootElement;
NodeList nodeList;
BufferedReader bufferedReader;
DOMResult domResult;
StringWriter stringWriter;
StringReader stringReader;
int tempNumber;
public DataAggregate(String docName)
{

try
{

transformerFactory = TransformerFactory.newInstance();
transformer = transformerFactory.newTransformer();
factory = DocumentBuilderFactory.newInstance();
builder = factory.newDocumentBuilderO;
domlmplementation = builder.getDOMImplementationO;
document = domImplementation.createDocument(null, docName, null);
rootElement = document.getDocumentElement();

}
catch(Exception e)
{

e.printStackTrace();
}

}
public void setTempNumber(int i)
{

tempNumber = i;
}
public int getTempNumber()
{

return tempNumber;
}
public void addNodes(String newDocument, String tagName)
{

//get Document representation of the string newDocument.
try
{

//wait();
Document doc = getDomObject(newDocument);
nodeList = doc.getElementsByTagName(tagName);
/*
Add the nodes to the document object by importing nodes from the
newDocument
object. Element rootElement represents the documentElement. i.e. the element
created in the constructor.
* /
//Element elem;
//String elemStr =
for(int i=0; i<nodeList.getLength(); i++)
{

rootElement.appendChild
(document. importN ode(nodeList. item(i),true));

421

Appendix 5: Master Grid Service (MGS) System Code

}
//System.out.println("Nodes added");
/*Now add any error nodes returned from the search. For example, some web
services may not be responding or URL to web services may not be correct.In
this case an error node is returned by the grid service for that web service.The
error nodes are
added here.*/
nodeList = doc.getElementsByTagName("ErrorString");
for(int i=0; i<nodeList.getLength(); i++)
{

rootElement.appendChild
(document.importNode(nodeList.item(i),true));

}

}
catch(Exception e)
{

e.printStackTrace();
}

} //End: public void addNodes(String newDocument, String tagName)

//Convert a string to document object.
public Document getDomObject(String xmlString)
{

Document doc = builder.newDocument();

try
{

DOMResult domRes = new DOMResult(doc);
stringReader = new StringReader(xml String);
bufferedReader = new BufferedReader(stringReader);
StreamSource ss = new StreamSource(bufferedReader);
transformer.transform(ss, domRes);

}
catch(Exception e)
{

e.printStackTrace();
}
return doc;

} //End: public Document getDomObject(String xmlString)

public String getAggregateString()
{

DOMSource domSource;
try
{

stringWriter = new StringWriter();
DOMSource domSrc = new DOMSource(document);
StreamResult streamRes = new StreamResult(stringWriter);
transformer.transform(domSrc, streamRes);

}
catch(Exception e)
{

e.printStackTrace();
}

// System.out.println("The string at getAggregateStrmg is:\n " + stringWriter);
return stringWriter.toString();

} //End: public String getAggregateString()
} //End: public class DataAggregate

422

Appendix 5: Master Grid Service (MGS) System Code

/ I *

* *

** 4.5 Class: CallDataAggregate
** Description:
** This class provides synchronised acces to DataAggregate class. Methods of this class provides
** synchronised access to addNodes method of DataAggregate class. Access to DataAggregate class
** needs to be synchronised because more than one job execution thread of JobExecution class accesses
** methods of DataAggregate class.
* *

* /

package uk.co.activeplan.mgs.impl;

class CallDataAggregate
{

private DataAggregate dataAggregate;
public CallDataAggregate()
{

dataAggregate = new DataAggregate("ActivePlanDataSet");
}
private boolean accessible = true; //condition variable,
public synchronized void calLAddNodes(String nodesString)
{

while(! accessible)
{

try
{

wait();
}
catch(InterruptedException e)
{

e.printStackTrace();
}

} // end of while,
accessible = false;
dataAggregate.addNodes(nodesString,"Product");
accessible = true;
notifyQ;

} // end of public synchronized void callAddNodes(String nodesString)
public synchronized void callAddNodes(String nodesString, String tagName)
{

while(laccessible)
{

try
{

wait();
}
catch(InterruptedException e)
{

e.printStackT race();
}

} // end of while,
accessible = false;
dataAggregate. addN odes(nodesString,tagN ame);
accessible = true;
notifyO;

} // end of public synchronized void callAddNodes(String nodesString)

423

Appendix 5: Master Grid Service (MGS) System Code

public DataAggregate getDataAggregate()
{

return dataAggregate;
}

} // End of class callDataAggregate.

/ *
* *

** 4.6 Class: GshDocum entParser
** Description:
** GshDocumentParser parses the GshDocument containing the GridServiceHandles of all the registered
** Grid services available as part of DSS system component. The getGsh() method returns individual
** Grid service handle strings.

* /

package uk.co.activeplan.mgs.impl;

import org.w3c.dom.*;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.CharacterData;
import uk.co.activeplan.mgs.impl.Converter;

public class GshDocumentParser
{

private int templterator;
private int iterator;
private Element elem;
private Document gshDocument;
private NodeList gshNodeList;
private String elemStr =
private Converter converter;
public GshDocumentParser(String GshString)
{

iterator = 0;
converter = new Converter();
gshDocument = converter.getDomObject(GshString);
gshNodeList = gshDocument.getElementsByTagName("GSH");

}

public String getGshO
{

elem = (Element)gshNodeList.item(getIterator());
elemStr = (((CharacterData)elem.getFirstChild()).getDataO);
return elemStr;

}

public int getlteratorO
{

templterator = iterator;
iterator = iterator + 1;
return templterator;

} // end of public getIterator()
} // End of class GshDocumentParser

424

Appendix 5: Master Grid Service (MGS) System Code

/ *
* *

** 4.7 Class: JobExecution
** Description:
** This class invokes a Grid service (via its Grid Service Handle URL) available as part of DSS
** component in a Grid environment. An instance of this class is run as a thread which is spawn by
** MasterGridlmpl. The MasterGridlmpl class creates several threads of this class to invoke more than
** one Grid service in a Grid environment so that a large number of database search operations could be
** performed by one or more Grid service instances in a collaborative manner. This constructor of this
** class is provided with a list of supplier databases to search in supplierSubStr, search criteria in
** searchStr, Grid Service Handle URL in gshURL and instance of CallDataAggregate class in cda to
** accumulate search results returned by the Grid service. Since the instance of this class is run as a
** thread by MasterGridlmpl, it has to notify ThreadChecker class when it has finished its operation (i.e.
** run method executed successfully). Once all the threads have finished execution, it is only then the
** product data searched from supplier databases (by these JobExecution threads) is returned to the user.
* *

* /

package uk.co.activeplan.mgs.impl;

import java.net.URL;
import org.gridforum.ogsi.OGSIServiceGridLocator;
import org.gridforum.ogsi.GridService;
import org.gridforum.ogsi.Factory;
import org.gridforum.ogsi.LocatorType;
import org.globus.ogsa.utils.GridServiceFactory;
import uk.co.activeplan.mdss.DatabaseSearch.DatabaseSearchServiceGridLocator;
import uk.co.activeplan.mdss.DatabaseSearch.DatabaseSearchPortType;

class JobExecution implements Runnable
{

OGSIServiceGridLocator gridLocator = new OGSIServiceGridLocator();
URL gsh;
Factory factory;
GridServiceFactory databaseSearchFactory;
LocatorType locator;
DatabaseSearchServiceGridLocator databaseSearchLocator;
DatabaseSearchPortType databaseSearch;
String searchString = "";
String supplierSubString =
String gshUrlString =
String str =
CallDataAggregate callDataAggregate;
ThreadChecker threadChecker;
public JobExecution(String searchStr,String supplierSubStr, String gshURL,

CallDataAggregate cda)
{

try
{

searchString = searchStr;
supplierSubString = supplierSubStr;
gsh = new java.net.URL(gshURL);
factory = gridLocator.getFactoryPort(gsh);
databaseSearchFactory = new GridServiceFactory(factory);
callDataAggregate = cda;
gshUrlString = gshURL;

}
catch(Exception e)
{

e.printStackTraceQ;

425

Appendix 5: Master Grid Service (MGS) System Code

}
}
public void setThreadChecker(ThreadChecker tc)
{

threadChecker = tc;
}
synchronized public void runO
{

try
{

System.out.println("Supplier String: \n" + supplierSubString);
System.out.println("Gsh URL: \n" + gshUrlString);
locator = databaseSearchFactory.createService();
databaseSearchLocator = new DatabaseSearchServiceGridLocator();
databaseSearch = databaseSearchLocator.getDatabaseSearchService(locator);
str = databaseSearch.getProductsAsString(searchString, supplierSubString);
System. out.println(str + "\n\n");
cal 1 DataAggregate. cal lAddNodes(str);
threadChecker.setThreadsCompleted();

//Cleanup
GridService gridService = gridLocator.getGridServicePort(locator);
gridService.destroy();
gridLocator = null;
factory = null;
databaseSearchFactory = null;
locator = null;
databaseSearch = null;
str = null;
System.gc();

}
catch(Exception e)
{

threadChecker.setErrorsOccured();
threadChecker.setThreadsCompleted();
//Cleanup.
try
{

GridService gridService = gridLocator.getGridServicePort(locator);
gridService. destroy();
gridLocator = null;
factory = null;
databaseSearchFactory = null;
locator = null;
databaseSearch = null;
str = null;
System.gc();

}
catch(Exception exception)
{

exception.printStackTrace();
} // End: catch(Exception exception)

} //End: catch(Exception exception)
} //End of synchronized public void run().

} //End of class JobExecution implements Runnable.

426

Appendix 5: Master Grid Service (MGS) System Code

/ *
* *

** 4.8 Class: JobAggregation
** Description:
** An instance of this class is intialised by MasterGridlmpl. It is initialised as a thread. The role of the
** run method of this class is to check at regular interval the completion of job execution threads and
** aggregation of data. It is only after all the job execution threads have completed and data aggregated,
** that it is sent to the user. Once the execution is complete and data aggregated the
** dataAggregationDone is set to true in the run method. After this the MasterGridlmpl calls
** callGetAggregateString method to retrieve all the results obtained (i.e. product data) from product
** supplier databases.
* *

* /

package uk.co.activeplan.mgs.impl;

public class JobAggregation implements Runnable
{

private boolean dataAggregationDone = false;
private String aggregateString = "";
ThreadGroup threadGroup;
int threadCount = 0;
ThreadChecker threadChecker;
DataAggregate dataAggregate;
public void setThreadChecker(ThreadChecker tc)

{
threadChecker = tc;

}
public void setThreadCount(int i)

{
threadCount = i;

}
public void setDataAggregate(DataAggregate da)
{

dataAggregate = da;
}

synchronized public void run()
{

while(threadChecker.getThreadsCompleted() < threadCount)
{

try
{

wait(l * 1000);
}
catch(Exception e)
{

threadChecker. setErrorsOccured();
e.printStackTraceQ;

}

}
System.out.println("\n\n\n Number of Errors Occured: " +
Integer.toString(threadChecker.getErrorsOccured()));
System.out.println("Number of threads running currently inside the run method: " +
threadGroup.activeCount());
aggregateString = dataAggregate.getAggregateStringO;
dataAggregationDone = true;

} // end of synchronized public void run()

synchronized public String callGetAggregateStringQ

427

Appendix 5: Master Grid Service (MGS) System Code

{
while(! dataAggregationDone)
{

try
{

wait(lOOO);
}
catch(Exception e)
{

System.out.println("Exception in callGetAggregateStringO method of
JobAggregation");

}
} // end of while,
return aggregateString;
} //end of synchronized public String callGetAggregateStringO

} //End: JobAggregation implements Runnable

/ *

* *

** 4.9 Class: SupplierDocumentParser
** Description:
** SupplierDocumentParser creates number of sub documents which are equally divided among the
** available GSHs. Every time a call is made to the method getSupplierSubDocumentString, it returns a
** string that is a sub document of document which contains list of suppliers. An instance of this class is
** intialised by MasterGridlmpl class.
* *

* /

package uk.co.activeplan.mgs.impl;

import org.w3c.dom.*;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.CharacterData;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import uk.co.activeplan.mgs.impl.Converter;

public class SupplierDocumentParser
{

private int loopCount = 0;
private int temp;
private int gshCount;
private int supplierCount;
private int supplierPerGSH;
private int remainder = 0;
private int i;
private int currentNode;
private int currentNodeTemp;
private DocumentBuilderFactory factory;
private DocumentBuilder builder;
private DOMImplementation domlmplementation;
private Element rootElement;
private Document document;
private NodeList supplierNodeList;
private Converter converter;
public SupplierDocumentParser(Document doc, int numOfGSHs)
{

document = doc;
gshCount = numOfGSHs;
supplierNodeList = document.getElementsByTagName("Supplier");

428

Appendix 5: Master Grid Service (MGS) System Code

suppIierCount = supplierNodeList.getLength();
currentNode = 0;
converter = new Converter();
supplierPerGSH = supplierCount/gshCount;
setRemainder(supplierCount % gshCount);

try
{

factory = DocumentBuilderFactory.newInstance();
builder = factory.newDocumentBuilderO;
domlmplementation = builder.getDOMImplementationO;

}
catch(Exception e)
{

e. printStackT raceO;
}

}
public SupplierDocumentParser(String docString, int numOfGSHs)

{
converter = new Converter();
document = converter.getDomObject(docString);
gshCount = numOfGSHs;
supplierNodeList = document. getElementsByTagName(" Supplier");
suppIierCount = supplierNodeList.getLength();
currentNode = 0;

supplierPerGSH = supplierCount/gshCount;
setRemainder(supplierCount % gshCount);

try
{

factory = DocumentBuilderFactory.newInstance();
builder = factory.newDocumentBuilderO;
domlmplementation = builder.getDOMImplementationO;

}
catch(Exception e)
(

e.printStackT raceO;
}

}
public String getSupplierSubDocumentStringO
{

//The following loop iterates depending on the number of suppliers
//to be put into a xml document.
System.out.println("Supplier per GSH is: " + Integer.toString(supplierPerGSH));
loopCount = supplierPeKJSH + getRemainder();
System.out.println("Loop count is: " + Integer.toString(loopCount));
document = domImplementation.createDocument(null, "SupplierList", null);
rootElement = document.getDocumentElement();
for(i=0; i<loopCount; i++)
{

rootElement.appendChild
(document.importNode(supplierNodeList.item(getCurrentNode()),true));

}
return converter.getStringObject(document);

}
public void setRemainder(int rem)
{

429

Appendix 5: Master Grid Service (MGS) System Code

remainder = rem;
System.out.println("Remainder is set. It is: " + Integer.toString(remainder));

public int getCurrentNodeO
{

currentNodeTemp = currentNode;
currentNode = currentNode + 1;
return currentNodeTemp;

}

public int getRemainder()
{

if (remainder > 0)
{

remainder = remainder -1;
//System.out.println("Retuming remainder");
return 1;

}
else
{

return 0;
}

} // end of public int getRemainder()
} // End of class SupplierDocumentParser

/ *

* *

** 4.10 Class: ThreadChecker
** Description:
** This class keeps count of number of job execution threads which are initiated by MasterGridlmpl
** class. Every time a JobExecution thread completes its operations it informs this class by invoking its
** setThreadsCompletedmethod. The JobAggregation class invokes getErrorsOccuredand
** getThreadsCompleted methods of this class to keep track of threads completed or errors occurred. It
** is only after all the threads have completed their execution that JobAggregation class signals
** MasterGridlmpl class to ** send the data retrieved from supplier databases to the user.
* *

* /

package uk.co.activeplan.mgs.impl;
public class ThreadChecker
{

private int threadsCompleted = 0;
int errorsOccured = 0;
public void setErrorsOccuredO
{

errorsOccured = errorsOccured + 1;
}
public int getErrorsOccured()
{

return errorsOccured;
}
public void setThreadsCompletedO
{

threadsCompleted = threadsCompleted + 1;
}
public int getThreadsCompleted()
{

return threadsCompleted;
}

} //End of class ThreadChecker

430

Appendix 5: Database Search Service (DSS) System Code

Database Search Service (DSS) System Code
/ *

* *

** 5.1 Interface: DatabaseSearch
** Description:
** This is an interface implemented by database search classes which perform product data search in a
** Grid environment as a Grid service.
* *

* /

package uk.co.activeplan.mdss_4;
public interface DatabaseSearch
{

public String getProductsAsString(String targetGSH, String searchCriteria);

public String testGridService(String gsh);
}

/ *

* *

** 5.2 Class: DatabaseSearchlmpl
** Description:
** This class performs a search of product supplier databases in a Grid environment. The functionality
** of this class is available as a Grid service in a Grid environment. This main method of this class
** “getProductsAsString” is invoked by MGS (Master Grid Service) providing product search criteria (as
** xmlSearchString) and a list of product supplier databases (as xmlSupplierString) to search. The
** method then invokes each of the product supplier databases identified in the xmlSupplierString and
** aggregates product data retrieved from them. The aggregated product data is sent back to the calling
** MGS.
* *

* /

package uk.co.activeplan.mdss_4;
import java.net.URL;
import org.w3c.dom. Document;
import uk.co.activeplan.SupplierWS_4. ProductSupplierWebServiceSoapStub;
public class DatabaseSearchlmpl implements DatabaseSearch
{

private Converter converter;
private int suppIierCount;
private Document supplierDocument;
private ProductSupplierWebServiceSoapStub stub;
private URL url = null;
private SupplierParser supplierParser;
private String result =
private DataAggregate dataAggregate;
private String[] supplierDetails = new String[3];
public DatabaseSearchImpl()
{

}
Element elem;
String str =
Object obj[];
Object any[];

431

Appendix 5: Database Search Service (DSS) System Code

public String getProductsAsString(String xmlSearchString, String xmlSupplierString)
{

converter = new ConverterQ;
dataAggregate = new DataAggregate("GridServiceResponse");
supplierParser = new SupplierParser(xmlSupplierString);
suppIierCount = converter.getElementCount(xmlSupplierString,"Supplier");
supplierDocument = converter.getDomObject(xmlSupplierString);

System.out.println("Supplier count: " + Integer.toString(supplierCount));
System.out.println("Supplier String: \n" + xmlSupplierString);

for (int i=0;i<supplierCount;i++)
{

try
{

/*
supplierDetails[0] contains ID of the supplier.
supplierDetails[l] contains supplier web service URL.
upplierDetails[2] contains name of the dataset which is expected to
be returned by the supplier.
*/
//System.out.println("Identifying supplier details...");
supplierDetails = supplierParser.getSupplierDetailsO;
url = new URL(supplierDetails[l]);

System.out.println("The supplier URL: ");
System.out.println(supplierDetails[0]);
System.out.println(supplierDetai!s[1]);
System.out.println(supplierDetails[2]);
System.out.println("TTie URL is: " + url.toStringQ + "\n\n\n");

/* Prepare stub by identifying the supplier web service url. The
supplier Web Dervice is invoked by providing the Web Service with
the product data search string. Set an acceptable time out so that the
stub does not wait too long in circumstances when the supplier web
service is unavailable/offline. If retrieving of data from supplier
Web Service is successful then the retrieved data is aggregated into
an xml document by DataAggregate class by identifying data
retrieved and supplier details i.e. the supplier which provided the
product data.
*/

stub = new ProductSupplierWebServiceSoapStub(url,null);
stub.setTimeout(60 * 5);
System.out.println("The timeout is: " + stub.getTimeoutO);
result = stub.getProductsAsString(xmlSearchString);
//System.out.println(result);
dataAggregate.addNodes(result, supplierDetails);

}
catch(Exception e)
{

/* This exception is thrown when this class is unable to invoke the
Supplier Web Service. When the stub is unable to retried data from
Supplie Web Service URL then error string is encoded into XML
element and added to the returned XML document by DataAggregate
class. This XML element identifies the supplier Web Service from
which product data could not be retrieved.

432

Appendix 5: Database Search Service (DSS) System Code

*/

String errStr = "\n<Error>\n\t<ErrorString>\n\t\tCould not retrieve
data from URL " + url.toString() +
”.\n Either URL is malformed or connection to the web service is \n
refused (a web service " + "may not be available) or access to the
database server is denied or is
unavailable.\n\t</ErrorString>\n\t</Error>\n";
supplierDetails[2] = "Error";
dataAggregate.addNodes(errStr, supplierDetails);

} //end of catch,
finally
{

//Release system/memory resources,
stub = null;
result = null;
url = null;

} // End of finally block.
} //end of for loop.

/*
Once all product data is retrieved from identified product suppliers in SupplierDetails
array the aggregate data has to be transformed into String from XML object for
transportaion to MGS. For this call getAaggregateString method of AggregateData
class.
*/

String aggData = dataAggregate.getAggregateString();
System.out.println("The aggregate data: \n" + aggData);

//Set the following class to null to free system/memory resources.

converter = null;
dataAggregate = null;
supplierDocument = null;
supplierParser = null;

//Perform gargabe collection in order to free system/memory resources.
System.gc();
return aggData;

} //End of method: public String getProductsAsString(String xmlSearchString, String
//xm 1 Suppl ierString)

/* The following is a test method to identify whether a grid service for performing supplier
database search is available in the Grid environment.
* /

public String testGridService(String gsh)

return "Grid service available at Grid Service Handle: " + gsh;
}

} //End of class: DatabaseSearchlmpl

/ *

* *

433

Appendix 5: Database Search Service (DSS) System Code

** 5.3 Class: DataAggregate
** Description:
** This class provides of functionality of aggregating product data retrieved from one or more suppliers
into an XML document. The class is intialalised by DatabaseSearchlmpl class in a grid environment
which retrieves product data from supplier databases and passes to this class by calling its addNodes
method. This method then documents what product data is retrieved from which product supplier. Once
all product supplier databases have been searched, getAggregateString method of this class is called by
DatabaseSearchlmpl to get all product data retrieved from all product suppliers in string format which is
then returned to the MGS (Master Grid Service).
* *

* ^

package uk.co.activeplan.mdss_4;

import java.net.URL;
import org.apache.xerces.dom.*;
import org.w3c.dom.*;

import j avax. xm 1 .parsers. DocumentBu i lder;
import javax.xm 1.parsers.DocumentBuiIderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;

// For write operation
import j avax. xm 1 .transform. Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import j avax. xml. transform, sax. SAX Source;
import j avax.xm 1 .transform .stream. StreamResu It;
import javax.xm 1 .transform .stream .*;
import java.io.*;
import org.w3c.dom.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.dom.DOMResult;

public class DataAggregate
{

TransformerFactory transformerFactory;
Transformer transformer;
DocumentBuilderFactory factory;
DocumentBuilder builder;
DOMImplementation domlmplementation;
Document document;
Element rootElement;
NodeList nodeList;
BufferedReader bufferedReader;
DOMResult domResult;
StringWriter stringWriter;
StringReader stringReader;
int tempNumber;

public DataAggregate(String docName)
{

try

434

Appendix 5: Database Search Service (DSS) System Code

{

transformerFactory = TransformerFactory.newInstance();
transformer = transformerFactory .newTransformer();
factory = DocumentBuilderFactory.newInstance();
builder = factory.newDocumentBuilderO;
domlmplementation = builder.getDOMImplementationO;
document = domImplementation.createDocument(null, docName, null);
rootElement = document.getDocumentElement();

}
catch(Exception e)
{

e.printStackTrace();
}

}
public void setTempNumber(int i)
{

tempNumber = i;
}
public int getTempNumber()
{

return tempNumber;
}
public void addNodes(String newDocument, String[] supplierDetails)
{

//get Document representation of the string newDocument.
try
{

Document doc = getDomObject(newDocument);
nodeList = doc.getElementsByTagName(supplierDetails[2]);
/*
Add the nodes to the document object by importing nodes from the
newDocument object. Element rootElement represents the documentElement.
i.e. the element created in the constructor. supplierDetails[0] contains ID of the
supplier. supplierDetails[l] contains supplier web service URL.
supplierDetails[2] contains name of the dataset which is expected to be
returned by the supplier.
*/

Element elem;
for(int i=0; i<nodeList.getLength(); i++)
{

elem = (Element)nodeList.item(i);
elem.setAttribute("IDSupplier", supplierDetails[0]);
elem.setAttribute("SupplierWsURL",supplierDetails[1]);
rootElement.appendChild
(document.importNode(nodeList.item(i),true));

}
//System.out.println("Nodes added");
notify();

}
catch(Exception e)
{

e.printStackTrace();
}
System.out.println(elemStr);
elemStr =

435

Appendix 5: Database Search Service (DSS) System Code

NodeList nodeList 1 - document.getElementsByTagName("ProductName");
for(int i=0; i<nodeList.getLength(); i++)
{

rootElement.appendChild(document.importNode(nodeList.item(i),true));
elem = (Element)nodeList.item(i);
elemStr = elemStr + (((CharacterData)elem.getFirstChild()).getDataO) + "\n";

}
System.out.println("From nodeList 2: \n " + elemStr);

}//End: public void addNodes(String newDocument, String[] supplierDetails)

//Convert a string to document object.
public Document getDomObject(String xmlString)
{

Document doc = builder.newDocument();

try
{

DOMResult domRes = new DOMResult(doc);
stringReader = new StringReader(xmlString);
bufferedReader = new BufferedReader(stringReader);
StreamSource ss = new StreamSource(bufferedReader);
transformer.transform(ss, domRes);

}
catch(Exception e)
{

e.printStackTraceO;
}
return doc;

}
public String getAggregateString()
{

DOMSource domSource;
try
{

stringWriter = new StringWriter();
DOMSource domSrc = new DOMSource(document);
StreamResult streamRes = new StreamResult(stringWriter);
transformer.transform(domSrc, streamRes);

}
catch(Exception e)
{

e.printStackTraceO;
}
System.out.println("The string at getAggregateString is:\n " + stringWnter);
return stringWriter.toString();

}
} //End of class: DataAggregate

/**************************

436

Appendix 5: Database Search Service (DSS) System Code

** 5.4 Class: SupplierParser
** Description:
** This class parses the xmlSupplierString string. This string contains details on all the suppliers
** databases that have to be searched. These details are provided by MGS (Master Grid Service). This
** class is initialised by DatabaseSearchlmpl to retrieve all the details on a supplier database(s). The
** main method of this class getSupplierDetails goes through the xmlSupplierString (which is converted
** into XML DOM object by converter class) and returns individual supplier details to the Grid service
** for invoking product supplier databases.
* *

* ^

package uk.co.activeplan.mdss_4;
import org.w3c.dom.*;
import org.w3c.dom.DOMImplementation;
import org.w3c.dom.CharacterData;
//import ukl .co.activeplan.mdss.impl.Converter;

public class SupplierParser
{

private int templterator;
private int iterator;
private Element elem;
private Document supplierListDocument;
private NodeList supplierNodeList;
private NodeList tempNodeList;
private String elemStr =
private Converter converter;
private String[] supplierDetails = new String[3];
private Element tempElement;
public SupplierParser(String xmlSupplierString)
{

iterator = 0;
converter = new Converter();
supplierListDocument = converter.getDomObject(xmlSupplierString);
supplierNodeList = supplierListDocument. getElementsByTagName("Supplier");

}

public String[] getSupplierDetails()
{

//Extract the supplier node from the supplierNodeList.
elem = (Element)supplierNodeList.item(getIterator());

//Get the "IDSupplier" node into the tempNodeList and extract the supplier id
// into the supplierDetails[0].
tempNodeList = elem.getElementsByTagName("IDSupplier");
tempElement = (Element)tempNodeList.item(O);
supplierDetails[0] = (((CharacterData)tempElement.getFirstChild()).getData());
System.out.println("IDSupplier(SupplierDetails[0]): " + supplierDetails[0]);

/*Get the "SupplierWS" node into the tempNodeList and extract the supplier web
service url into the supplierDetails[l]. */
tempNodeList = elem.getElementsByTagName("SupplierWS");
tempElement = (Element)tempNodeList.item(O);
supplierDetails[1] = (((CharacterData)tempElement.getFirstChild()).getData());
System.out.println("Supplier Web Service URL (SupplierDetails[l]): " +
supplierDetails[l]);

//Get the "DataSetName" node into the tempNodeList and extract the name of the
//dataset
//that the supplier is exptected to return.

437

Appendix 5: Database Search Service (DSS) System Code

tempNodeList - elem.getElementsByTagName("DataSetName");
tempElement = (Element)tempNodeList.item(O);
supplierDetails[2] = (((CharacterData)tempElement.getFirstChildO).getData());
System.out.println("DataSet Name(SupplierDetails[2]): " + supplierDetails[2]);

return supplierDetails;
}

public int getlteratorO
{

templterator = iterator;
iterator = iterator + 1;
return templterator;

} // end of public getlteratorO
} // End of class SupplierParser

/ *

* *

** 5.5 Class: Converter
** Description:
** This class converts a string (containing data in XML format) into XML document and vice versa.
** The string can contain details on product supplier databases to search or product supplier database
** search criteria. The functionality provided by this class is needed for transportation of data/ search
** criteria (in a string format) between MGS (Master Grid Service) and individual DSS (Database Search
** Services) and for providing the same data to other classes in this package for identifying
** supplier/search criteria details by converting data into XML element objects. The two main methods of
** this class: getStringObject and getStringObject provide these functionalities.
* *

* /

package uk.co.activeplan.mdss_4;

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

i m port j avax. xm 1. trans form. stream. Stream Resu It;
import j avax.xm 1 .transform .stream. StreamSource;
import java.io.StringReader;
import java.io. StringWriter;
import java.io.BufferedReader;
import java.io.FileReader;

import org.w3c.dom.Document;
import org.w3c.dom.NodeList;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.dom.DOMResult;

import org.xml.sax.InputSource;

public class Converter

438

Appendix 5: Database Search Service (DSS) System Code

TransformerFactory transformerFactory;
Transformer transformer;
DocumentBuilderFactory factory;
DocumentBuilder builder;
Document document;
Document doc;
BufferedReader bufferedReader;
DOMResult domResult;
StringWriter stringWriter;
StringReader stringReader;
public ConverterQ
{

try
{

transformerFactory = TransformerFactory.newInstance();
transformer = transformerFactory.newTransformer();
factory = DocumentBuilderFactory.newInstance();

}
catch(Exception e)
{

e.printStackTraceO;
}

} //End: public ConverterO

//Convert a string to document object.
public Document getDomObject(String xmlString)
{

try
{

builder = factory.newDocumentBuilderO;
doc = builder.newDocumentO;
stringReader = new StringReader(xml String);
bufferedReader = new BufferedReader(stringReader);
InputSource is = new InputSource(bufferedReader);
doc = builder.parse(is);

}
catch(Exception e)
{

e.printStackTraceO;
}
return doc;

}

public String getStringObject(Document document)
{

try
{

stringWriter = new StringWriter();
DOMSource domSrc = new DOMSource(document);
StreamResult streamRes = new StreamResult(stringWriter);
transformer.transform(domSrc, streamRes);

}
catch(Exception e)
{

e.printStackTraceO;
}

439

Appendix 5: Database Search Service (DSS) System Code

return stringWriter.toString();
} // End: public String getStringObject(Document document)

public int getElementCount(Document document, String elemName)
{

NodeList nodeListl = document.getElementsByTagName(elemName);
System.out.println(Integer.toString(nodeList.getLength()));
return nodeListl.getLength();

} //End: public int getElementCount(Document document, String elemName)

public int getElementCount(String documentString, String elemName)
{

Document stringDoc = getDomObject(documentString);
NodeList nodeList2 = stringDoc.getElementsByTagName(elemName);
return nodeList2.getLength();

} //End: public int getElementCount(String documentString, String elemName)
} // end of public class Converter

440

References

References

[Aga98] Agapiou, A., Flanagan, R., Norman, G. and Notman, D. The changing role
of builders merchants in the construction supply chain. In: Construction
Management and Economics. 15(3), pp.351-361, May 1998.

[Ahm91] Ahmed, R., Smedt, P. D., Du, W., Kent, W., Ketabchi, M. A., Litwin, W.
A., Rafii, A. and Shan, M.-C., The Pegasus Heterogeneous Multidatabase
System. In: Computer, 24(12), pp. 19-27, 1991.

[Ahm08] Ahmad, F., Zakaria, N. H., Osman, W. R. S. Transforming Information-
Based Agricultural Portal to Knowledge-Based Agricultural Hub, In: Proc.
3rd International Conference on Information and Communication
Technologies: From Theory to Applications, 2008. (ICTTA 2008), pp. 1-4,
7-11 April 2008.

[Ahm08a] Ahmed, E., Bessis, N., Yue, Y., Sarfraz, M., Matching multiple elements in
grid databases: A practical approach, In: Proc. Third International
Conference on Digital Information Management, (ICDIM 2008.), pp.757-
762, November 2008.

[Aka08] Akahoshi, Y., Kidawara, Y., and Tanaka, K. 2008. A database-oriented
wrapper for ubiquitous data acquisition/access environments. In: Proc. 2nd
international Conference on Ubiquitous information Management and
Communication (ICUIMC ’08), Suwon, Korea, January 31 - February 01,
2008.

[Alm04] Almarimi, A. and Pokomy, J. A Mediation Layer for Heterogeneous XML
Schemas. In: The sixth International Conference on Information
Integrationand Web-based Applications Services(IIWAS'2004), Jakarta,
Indonesia, 2004.

[Amb03] Ambler, S. Agile Database Techniques: Effective Strategies fo r the Agile
Software Developer, Wiley, October 2003.

[Apa07] The Apache Tomcat Website, 2007. [Online]. Available:
http://tomcat.apache.org/, last accessed: 23 December 2007

[Apa07a] The Apache Axis website, 2007. [Online]. Available:
http://ws.apache.org/axis/, last accessed: 23 December 2007.

[Aps09] Active Plan Solutions Limited (APSL) website. [Online]. Available:
http://www.activeplan.co.uk/. Last accessed: 18 February 2009.

[Are93] Arens, Y., Chee, C. Y., Hsu, C.-N. and Knoblock, C. A. Retrieving and
Integrating Data from Multiple Information Sources. In: International
Journal o f Cooperative Information Systems, vol. 2(2), pp. 127-158, 1993.

441

http://tomcat.apache.org/
http://ws.apache.org/axis/
http://www.activeplan.co.uk/

References

[Are97] Arens, Y., Hsu, C.-N. and Knoblock, C. A. Query processing in the SIMS
information mediator. In: M. N. Huhns and M. P. Singh (Eds.): Readings in
agents. Morgan Kaufmann Publishers Inc., pp.82-90,1997.

[Atk05] Atkinson, M., Karasawas, K., Antonioletti, M., Baxter, R., Borley, A.,
Hong, N. C., Hume, A., Jackson, M., Krause, A., Laws, S., Paton, N.,
Schopf, J. M., Sudgen, T., Tourlas, K. and Watson, P. A New Architecture
for OGSA-DAI. In: Proc. o f the UK e-Science All Hands Meeting 2005
(AHM'05), Nottingham, UK, 2005.

[Aus84] Austen, A.D., Neale, R. H. (Eds.). Managing construction projects - a guide
to processes and procedures. A. D. International Labor Office, Geneva,
1984

[Bai05] Baily, P., Farmer, D., Jessop, D. and Jones, D. Purchasing Principles and
Management. 9th ed., FT Prentice Hall, 2005.

[Bak86] Bakos, J. Y. and Treacy, M.E. Information Technology and Corporate
Strategy: A Research Perspective (Draft Version). In: MIS Quarterly, pp.
107-119, June, 1986.

[Bar92] Barrie, D. S. and Paulson, B. C. Professional construction management:
including C.M., design-construct, and general contracting. International
ed., McGraw-Hill, 1992.

[Bar99] Baru, C., Gupta, A., Ludascher, B., Marciano, R., Papakonstantinou, Y.,
Velikhov, P. and Chu, V. XML-based information mediation with MIX. In:
Proc. ACM SIGMOD International Conference on Management o f Data
(SIGMOD '99% Philadelphia, Pennsylvania, United States, pp.597-599,
May 31 - June 03, 1999.

[Bas08] Basney, J, Martin, S., Navarro, J., Pierce, M., Scavo, T., Strand, L., Uram,
T., Wilkins-Diehr, N., Wu, W., Youn, C. The Problem Solving
Environments of TeraGrid, Science Gateways, and the Intersection of the
Two, In: Proc. IEEE Fourth International Conference on eScience,
(eScience '08.), pp.725-734, December 2008.

[Bat86] Batini, C., Lenzerini, M. and Navathe, S. B. A comparative analysis of
methodologies for database schema integration. In: ACM Comput. Surv.
18(4), pp.323-364, 1986.

[Bay97] Bayrado Jr., R. J., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal,
A., Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M., Rashid, M.,
Rusinkiewicz, M., Shea, R., Unnikrishnan, C., Unruh, A. and Woelk, D.
InfoSleuth: agent-based semantic integration of information in open and
dynamic environments. In: Proc. AC M SIGMOD International Conference
on Management o f Data, Tucson, Arizona, United States, 1997.

442

References

[Bec04]

[Bel02]

[BenOl]

[Ber08]

[Bet99]

[Bet99a]

[Bey97]

[Bir06]

[Bla92]

[Bon08]

[Bou94]

[BouOO]

Bechhofer, S., Harmelen, F. v., Hendler, J., Horrocks, I., McGuinness,
D.L., Patel-Schneider, P. F. and Stein, L. A. OWL Web Ontology
Language Reference. In: M. Dean and G. Schreiber (Ed.). W3C working
draft. Feb 2004. [Online]. Available: http://www.w3.org/TR/owl-ref/ , last
accessed: 21 February 2008.

Bell, W. H., Bosio, D., Hoschek, W., Kunszt, P., McCance, G. and Silander,
M. Project Spitfire - Towards Grid Web Service Databases. In: Proc UK e-
Science All Hands Conference, Sheffield, UK, September 2002.

Benchikha, F., Boufaida, M. and Seinturier, L. Integration of the viewpoint
mechanism in federated databases. In: Proc. AC M Symposium on Applied
Computing, Las Vegas, Nevada, United States, 2001.

Berger, S. and Schrefl, M., From Federated Databases to a Federated Data
Warehouse System, In: Proc. 41st Annual Hawaii International Conference
on System Sciences, pp.394-394, 7-10 January 2008.

Betts, M. The significance o f IT. In: M. Betts (Ed.): Strategic management
o f IT in construction. Blackwell, Oxford, 1999.

Betts, M. and Clark, A. The scope o f IT in construction. In: M. Betts (Ed.):
Strategic management o f IT in construction. Blackwell, Oxford, pp. 133,
1999.

Beynon-Davies, P., Bonde, L., McPhee, D. and Jones, C. B. A Collaborative
Schema Integration System. In: Comput. Supported Coop. Work. 6 (1),
pp. 1-18, 1997.

XML Schema Part 2: Datatypes Second Edition. In: P. V. Biron, K.
Permanente and A. Malhotra (Eds.): W3C Recommendation. October 2004.
[Online]. Available: http://www.w3.org/TR/xmlschema-2/ , last accessed:
21 February 2008.

Blanchard, B. S. Logistics engineering and management. 4th ed., Prentice-
Hall, 1992.

Bonifati, A., Chrysanthis, P. K., Ouksel, A. M., and Sattler, K., Distributed
databases and peer-to-peer databases: past and present. SIGMOD Rec.
37(1), pp.5-11, Marrch 2008.

Bouguettaya, A. Large Multidatabases: Beyond Federation and Global
Schema Integration. In: Proc. Fifth Australasian Database Conference,
Christchurch, New Zealand, pp.258-273, 1994.

Bouguettaya, A., Benatallah, B., Hendra, L., Ouzzani, M. and Beard, J.
Supporting dynamic interactions among Web-based information sources.
In: IEEE Transactions on Knowledge and Data Engineering. 12(5), pp.779
-801,2000.

443

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/xmlschema-2/

References

[Bre97]

[Bur99]

[Bur03]

[Bur04]

[Bur05]

[Bus99]

[Cal95]

[Car95]

[Cat94]

[Cat97]

Bressan, S., Goh, C. H., Fynn, K., Jakobisiak, M., Hussein, K., Kon, H.,
Lee, T., Madnick, S., Pena, T., Qu, J., Shum, A. and Siegel, M. The
Context Interchange mediator prototype. In: Proc. ACM SIGMOD
International Conference on Management o f Data, pp.525-527, 1997.

Bum, J., Marshall, A. P. and Wild, A. M. Managing knowledge for strategic
advantage in the virtual organisation. In: Proc. ACM SIGCPR Conference
on Computer Personnel Research, New Orleans, Louisiana, United States,
pp. 19-26, 1999.

Bumap, P., Joita, L., Pahwa, J. S., Gray, A., Rana, O. and Miles, J.
Supporting Collaborative Working of Construction Industry Consortia via
the Grid. In: Proc. UK e-Science Programme All Hands Meeting
(AHM ’03), Nottingham, UK, 2-4 September 2003.

Bumap, P., Joita, L., Pahwa, J. S., Gray, A., Rana, O. and Miles, J. Security,
User and Data Management for Collaborative Virtual Teams in a Grid
Environment Supporting Consortia in the Construction Industry. In: Proc.
Workshop on Requirements Capture fo r Collaboration in e-Science,
Sponsored by National e-Science Centre, Edinburgh, United Kingdom,
pp.54-60, 14-15 January 2004.

Bumap, P., Pahwa, J. S., Joita, L., Gray, W. A., Rana, O. and Miles, J. C.
Grid based e-Procurement. In: Proc. ASCE International Conference on
Computing in Civil Engineering, Cancun, Mexico, July 12-15, 2005.

Busse, S., Kutsche, R.-D., Leser, U. and Weber, H. Federated Information
Systems: Concepts, Terminology and Architectures. In:
Forschungsberichte des Fachbereichs Informatik Nr. 99-9, Technische
Universitdt Berlin. 1999.

Calvert, R. E. Introduction to building management. 6th ed., Butterworth-
Heinemann, Boston, Oxford, 1995.

Carey, M. J., L. M. Haas, Schwarz, P. M., Arya, M., Cody, W. F., Fagin, R.,
Flickner, M., Luniewski, A. W., Niblack, W., Petkovic, D., Thomas, J.,
Williams, J. H. and Wimmers, E. L. Towards Heterogeneous Multimedia
Information Systems: The Garlic Approach. In: Proc. 5th International
Workshop on Research Issues in Data Engineering: Distributed Object
Management, (RIDE-DOM ‘95), pp.124-131, 1995.

The Object Database Standard: ODMG-93. In: R. Cattell (Ed.). Morgan
Kaufmann, San Francisco, 1994.

Cattell, R. G. G. and Hamilton, G. Jdbc Database Access with Java: a
Tutorial Annotated Reference, ed., Addison-Wesley Longman Publishing
Co., 1997.

444

References

[CatOO]

[ChaOO]

[CheOl]

[Che08]

[Chi08]

[Chr98]

[Chu90]

[Cla99]

[Cla99a]

[Com09]

[Con99]

[Con05]

[Cox02]

The object data standard: ODMG 3.0. In: R. G. G. Cattell, D. Barry, M.
Berler, J. Eastman, D. Jordan, C. Russell, O. Schadow, T. Stanienda and F.
Velez (Eds.). San Francisco: Morgan Kaufmann, 2000.

Chamberlin, D., Robie, J. and Florescu, D. Quilt: An XML Query Language
for Heterogeneous Data Sources. In: International Workshop on the Web
and Databases (WebDB'2000), Dallas, Texas, 2000.
Cheng, E. W. L., Li, H., Love, P. E. D. and Irani, Z. An e-business model to
support supply chain activities in construction. In: Logistics Information
Management. 14(1-2), pp .68 -78, 2001.

Acoustic Air Movement Limited website, The Cheetah Fan Coil Unit
Brochure, 2008. [Online]. Available:
http://www.caice.co.uk/admin/assets/caice%20cheetah%20fan%20coil%20
unit%20brochure%202008 07 01.pdf, last accessed: 23 December 2008.

Chiticariu, L., Kolaitis, P. G., and Popa, L., Interactive generation of
integrated schemas. In: Proc. 2008 ACM SIGMOD international
Conference on Management o f Data, Vancouver, Canada, June 0 9 - 1 2 ,
2008.

Christopher, M. Logistics and supply chain management: strategies for
reducing cost and improving service. 2nd ed., Financial Times Pitman,
London 1998.

Chung, C. DATAPLEX: an access to heterogeneous distributed databases.
In: Communications o f the ACM. pp.70-80, 1990.

XML Path Language (XPath) Version 1.0. In: J. Clark and S. DeRose (Ed.):
W3C Recommendation. Nov. 1999. [Online]. Available:
http://www.w3.org/TR/xpath, last Accessed: 23 February 2008.

XSL Transformations (XSLT) Version 1.0. In: J. Clark (Ed.): W3C
Recommendation. November 1999, [Online], Available:
http://www.w3.org/TR/xslt, last accessed: 23 February 2008.

The Compare.com website, 2006 [Online]. Available:
http://www.compare.com/, last accessed: 21 February 2009.

Conrad, S., Hasselbring, W., Hohenstein, U., Kutsche, R. D., Roantree, M.,
Saake, G. and Saltor, F. Engineering federated information systems: report
of EEFIS '99 workshop. In: SIGMOD Rec. 28(3), pp.9-11, 1999.

Connolly, T. M. and Begg, C. E. Database systems: a practical approach to
design, implementation, and management. 4th ed., Addison-Wesley,
Harlow, New York, 2005.

Cox, A. and Ireland, P. Managing construction supply chains: the common
sense approach. In: Engineering, Construction and Architectural
Management. 9(5/6), pp.409-418, 2002.

445

http://www.caice.co.uk/admin/assets/caice%20cheetah%20fan%20coil%20
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.compare.com/

References

[Cza04]

[Dal08]

[Dar07]

[Deu98]

[DomOS]

[Don06]

[Dti95]

[Duw96]

[Dze05]

[Edu99]

[EduOl]

From Open Grid Services Infrastructure to WS-Resource Framework:
Refactoring & Evolution, version 1.1. In: K. Czajkowski, D. Ferguson, I.
Foster, J. Frey, S. Graham, T. Maguire, D. Snelling and S. Tuecke (Ed.):
The WS-Resource Framework. [Online]. Available:
http://www.globus.org/wsrf/specs/ogsi_to_wsrf_l .O.pdf, last accessed 24
February 2008, 2004.

Dalsgaard, E., Kjelstrom, K., and Riis, J., A federation of web services for
Danish health care. In: Proc. 7th Symposium on Identity and Trust on the
internet, (IDtrust '08), Gaithersburg, Maryland, March 04 - 06, 2008.

Darrah, M., Van Scoy, F., and Plunkett, P. 2007. Enabling collaboration in
high performance computing. In: Proc. 8th ACM SIGITE Conference on
information Technology Education, Destin, Florida, USA, October 18-20,
2007.

Deutsch, A., Fernandez, M., Florescu, D., Levy, A. and Suciu, D. XML-
QL: A Query Language for XML. World Wide Web Consortium. August,
1998. [Online], Available: http://www.w3.org/TR/NOTE-xml-ql/ Last
accessed: 24 February 2008.

The W3C Document Object Model (DOM) website, 2005. [Online].
Available: http://www.w3.org/DOM/. last accessed: 28 February 2008.

Dongarra, J. and Lastovetsky, A., An overview of heterogeneous high
performance and Grid computing. In: DiMartino, B., Dongarra, J., Hoisie,
A., Yang, L., Zima, H. (Eds.), Engineering the Grid: Status and
Perspective, American Scientific Publishers, 2006

Report on Small firms in Britain, Department o f Trade and Industry (DTI),
HMSO, London 1995.

Duwairi, R. M., Fiddian, N. J. and Gray, W. A. A Multiple View Definition
System for Supporting Interoperability among Heterogeneous and
Autonomous Databases. In: In Proc. 10th ERCIM Workshop on
Heterogeneous Information Management, Prague, Czech Republic, 1996.

Dzeng, R.-J. and Chang, S.-Y. Learning search keywords for construction
procurement. In: Automation in Construction. 14(1), pp. 45-58, 2005.

Edum-Fotwe, F. T., McCaffer, R., Thorpe, A. and Majid, M. Z. A. Sub
contracting or Co-contracting: Construction Procurement in Perspective. In:
Proc. 2nd International Conference on Construction Industry Development,
National University of Singapore, pp.157-163, 27-29 October, 1999.

Edum-Fotwe, F. T., Thorpe, A. and McCaffer, R. Information procurement
practices of key actors in construction supply chains. In: European Journal
o f Purchasing and Supply Management. 7(3), pp. 155-164, 2001.

446

http://www.globus.org/wsrf/specs/ogsi_to_wsrf_l
http://www.w3.org/TR/NOTE-xml-ql/
http://www.w3.org/DOM/

References

[Ega98] Egan, Sir J. Rethinking construction: the report of the Construction Task
Force to the Deputy Prime Minister, John Prescott, on the scope for
improving the quality and efficiency of UK construction. Department o f the
Environment, Transport and Regions (DETR), 1998.

[Eis99] Eisenberg, A. and Melton, J. SQL: 1999, formerly known as SQL3. In:
SIGMOD Rec. 28(1), pp.131-138, 1999.

[Eur03] The European DataGrid Project website, 2003. [Online]. Available:
http://edg-wp2.web.cem.ch/edg-wp2/ . Last accessed: 24 February 2008.

[Fal04] XML Schema Part 0: Primer Second Edition. In: D. C. Fallside and P.
Walmsley (Ed.): W3C Recommendation. October 2004, [Online].
Available: http://www.w3.org/TR/xmlschema-0/ , Last accessed: 24
February 2008.

[Fan98] Fankhauser, P., Gardarin, G., Lopez, M., Munoz, J. and Tomasic, A.
Experiences in Federating Databases: From IRO-DB to MIRO-Web. In:
Proc. 24th annual International Conference on Very Large Data Bases
(VLDB'98), New York City, New York, USA, pp.655-658, 1998.

[Fan08] Fan, H. and Liu G., Study on Proteomics Data Integration in Web
Environments, In: The 2nd International Conference on Bioinformatics and
Biomedical Engineering, (ICBBE 2008.), pp. 192-195, 16-18 May 2008.

[Fen08] Feng, T., Xiao-bing, H., Feng-bo, W., The Heterogeneous Data Integration
Based on XML in Coal Enterprise, International Symposium on Computer
Science and Computational Technology, (ISCSCT '08.), vol.l, pp.438-441,
20-22 Dec. 2008.

[Fer03] Ferreira, L., Jacob, B., Slevin, S., Brown, M., Sundararajan, S., Lepesant, J.
and Bank, J. Globus Toolkit 3.0 Quick Start. IBM Redbooks, IBM Corp.,
2003. [Online]. Available:
http://www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf, last accessed:
24 February 2008.

[Fin94] Finin, T., Fritzson, R., McKay, D. and McEntire, R. KQML as an agent
communication language. In: Proc. Third international Conference on
Information and Knowledge Management (CIKM '94), Gaithersburg,
Maryland, United States, pp.456-463, November 29 - December 02, 1994.

[Fos98] Foster, I. and Kesselman, C. The Globus Project: A Status Report. In: Proc.
Seventh Heterogeneous Computing Workshop, pp.4-19, 1998.

[Fos99] Foster, I. and Kesselman, C. Computational Grids, Chapter 2 o f The Grid:
Blueprint fo r a New Computing Infrastructure, Morgan-Kaufman, 1999.

[FosOl] Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. In: International Journal o f Supercomputer
Applications. 15(3), 2001.

447

http://edg-wp2.web.cem.ch/edg-wp2/
http://www.w3.org/TR/xmlschema-0/
http://www.redbooks.ibm.com/redpapers/pdfs/redp3697.pdf

References

[Fos02]

[Fos02a]

[Fra98]

[Gag02]

[Gan07]

[Gar95]

[Gar97]

[Gar99]

[Gen97]

[Gen07]

Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration. In: Open Grid Service Infrastructure WG, Global Grid Forum.
June 22, 2002.

Foster, I., Voeckler, J., Wilde, M. and Zhao, Y. Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation. In:
Proc. N th Conference on Scientific and Statistical Database Management,
July, 2002.

Franks, J. Building procurement systems: a client's guide. 3rd ed., Addison
Wesley Longman Limited, Harlow, Essex, England, 1998.

Gagliardi, F., Jones, B., Reale, M. and Burke, S. European DataGrid Project:
Experiences o f Deploying a Large Scale Testbed for E-science
Applications. In: M. Calzarossa and S. Tucci (Ed.): Performance
Evaluation o f Complex Systems: Techniques and Tools, Performance 2002,
Tutorial Lectures, Lecture Notes In Computer Science, vol. 2459. Springer-
Verlag, London, pp.480-500, 2002.

The Ganglia Monitoring System, 2007. [Online]. Available:
http://ganglia.sourceforge.net/. last accessed 23 December 2007

Gardarin, G., Gannouni, G., Finance, B., Fankhausera, P., Klas, W., Pastrea,
D., Legoff, R. and Ramfos, A. IRO-DB: a distributed system federating
object and relational databases. In: O. A. Bukhres and A. K. Elmagarmid
(Eds.): Object-Oriented Multidatabase Systems: A Solution For Advanced
Applications. Prentice Hall International (UK) Ltd., Hertfordshire, UK,
pp.684-712, 1995.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv,
Y., Ullman, J., Vassalos, V. and Widom, J. The TSIMMIS Approach to
Mediation: Data Models and Languages. In: Journal o f Intelligent
Information Systems. 8(2), pp. 117-132, 1997.

Gardarin, G., Sha, F. and T. Dang-Ngoc. XML-based Components for
Federating Multiple Heterogeneous Data Sources. In: Proc. 18th
international Conference on Conceptual Modeling, J. Akoka, M.
Bouzeghoub, I. Comyn-Wattiau, and E. Metais (Eds.), LNCS, vol. 1728.
Springer-Verlag, London, pp.506-519, 1999.

Genesereth, M. R., Keller, A. M. and Duschka, O. M. Infomaster: an
information integration system. In: Proc. ACM SIGMOD international
Conference on Management o f Data, Tucson, Arizona, United States, May
11 - 15, 1997.

The GENIUS Portal website, 2007 [Online]. Available:
http://egee.cesnet.cz/en/user/genius.html Last accessed: 23 December 2007.

448

http://ganglia.sourceforge.net/
http://egee.cesnet.cz/en/user/genius.html

References

[Gie89]

[Gil05]

[Glo09]

[Glo09a]

[Glo09b]

[Gob03]

[Gra02]

[Gra07]

[Gra08]

[Gru91]

[Gru93]

[Haj08]

Gielingh, W. F. General AEC Reference Model (GARM), ISO
TC 184/SC4/WG1 Document N329. 1989.

Gillespie, C. S., Proctor, C. J., Shanley, D. P., Wilkinson, D. J., Boys, R. J.
and Kirkwood, T. B. L. Web-services for the biology community: the
BASIS project. In: Proc. o f the UK e-Science All Hands Meeting 2005,
Nottingham UK, 19th - 22nd September, 2005.

The Globus Alliance Website, 2009. [Online]. Available:
http://www.globus.org/. last accessed: 22 February 2009.

The Globus Consortium Website, 2009. [Online]. Available:
http://www.globusconsortium.org/. last accessed: 22 February 2009.

The Globus Toolkit 3.0 - Java Programmer’s Guide: Core Framework, 2003.
[Online]. Available:
http://www.globus.Org/toolkit/docs/3.0/iava programmers guide.html. last
accessed: 23 February 2009.

Goble, C., Wroe, C. and Stevens, R. The myGrid project: services,
architecture and demonstrator. In: Proc. UK e-Science All Hands Meeting
(AH M ’03), Nottingham, UK, Sept. 2003.

Graham, S., Simeonov, S., Boubez, T., Davis, D., Daniels, G., Nakamura,
Y. and Neyama, R. Building Web Services with Java: Making sense o f
XML, SOAP, WSDL, and UDD. Sams Publishing, 2002.

The P-GRADE Grid Portal website, 2007. [Online].
Available:http://egee.cesnet.cz/en/user/p-grade.html Last accessed: 23
December 2007.

Grant, A., Antonioletti, M., Hume, A.C., Krause, A., Dobrzelecki, B.,
Jackson, M.J., Parsons, M., Atkinson, M.P. and Theocharopoulos, E.
OGSA-DAI: Middleware for Data Integration: Selected Applications, IEEE
Fourth International Conference on eScience, pp.343-343, December 2008.

Gruber, T. R. The Role of Common Ontology in Achieving Sharable,
Reusable Knowledge Bases. In: J. A. Allen, R. Fikes and E. Sandewall
(Eds.): Principles o f Knowledge Representation and Reasoning. Morgan
Kaufmann, 1991.

Gruber, T. R. A translation approach to portable ontology specifications. In:
Knowledge Acquisition, vol. 5 pp. 199-220, 1993.

Hajmoosaei, A. and Abdul-Kareem, S., An Approach for Mapping of
Domain-based Local Ontologies. In: Proc. International Conference on
Complex, intelligent and Software intensive Systems (CISIS), pp.865-870,
4-7 March 2008.

449

http://www.globus.org/
http://www.globusconsortium.org/
http://www.globus.Org/toolkit/docs/3.0/iava
http://egee.cesnet.cz/en/user/p-grade.html

References

[Han99]

[Har97]

[HarOl]

[HasOO]

[Hei85]

[Hsi92]

[Hsi92a]

[Hua94]

[Hua06]

[Hul95]

[Hwa94]

[Ies05]

Handfield, R. B. Introduction to supply chain management, ed., Prentice
Hall, Upper Saddle River, N.J., 1999.

Harder, T., Sauter, G. and Thomas, J. Design and Architecture of the FDBS
Prototype INFINITY. In: Int. CAiSE‘97 Workshop, Engineering Federated
Database Systems (EFD BS‘97'), Barcelona, pp.57-68, 1997.

Hams, F. and McCaffer, R. Modern construction management. 5th ed.,
Blackwell Science, Oxford, 2001.

Hasselbring, W., Heuvel, W. J. v. d., Houben, G. J., Kutsche, R. D., Rieger,
B., Roantree, M. and Subieta, K. Research and practice in federated
information systems. In: SIGMOD Rec. 29(4), pp. 16-18, 2000.

Heimbigner, D. and McLeod, D. A federated architecture for information
management. In: AC M Transactions on Office Information Systems. 3(3),
pp.253-278, July, 1985.

Hsiao, D. K. Federated databases and systems: part I — a tutorial on their
data sharing. In: The VLDB Journal. 1(1), pp.127-180, 1992.

Hsiao, D. K. Federated databases and systems: part II — a tutorial on their
resource consolidation. In: The VLDB Journal. 1(2), pp.285-310, 1992.

Huang, J.-W. MultiBase: A Heterogeneous Multidatabase Management
System. In: Proc. Eighteenth Annual International Computer Software and
Applications Conference (COMPSAC'94), pp.332-339, 1994.

Huang, W., Liu, J., Abali, B., and Panda, D. K. 2006. A Case for High
Performance Computing with Virtual Machines. In: Proc 20th Annual
international Conference on Supercomputing, Caims, Queensland,
Australia, June 28 - July 01, 2006.

Reference Architecture for the Intelligent Integration of Information. R.
Hull, R. King, Y. Arens and M. Siegel (Eds.): Technical Report, ARP A.
1995. [Online]. Available: http://ise.gmu.edu/I3_Arch/, last accessed 24
February 2008.

Hwang, S.-Y., Lim, E.-P., Yang, H.-R., Musukula, S., Mediratta, K.,
Ganesh, M., Clements, D., Stenoien, J. and Srivastava, J. The MYRIAD
federated database prototype. In: Proc. AC M SIGMOD International
Conference on Management o f data, Minneapolis, Minnesota, United
States, 1994.

Annual Survey of Small Business: UK 2005, Institute o f Employment
Studies, University of Sussex, 2005. [Online] Available:
http://www.berr.gov.uk/files/file38247.pdf. Last Accessed: 23 December
2007.

450

http://ise.gmu.edu/I3_Arch/
http://www.berr.gov.uk/files/file38247.pdf

References

[Iis09] The Official Microsoft Internet Information Services (IIS) web site, 2008.
[Online]. Available: http://www.iis.net/. last accessed 02 January 2009.

[IS094] Industrial automation systems and integration ~ Product data representation
and exchange ~ Part 1: Overview and fundamental principle. International
Organisation fo r Standardization (ISO), ISO 10303-1, 1st edition, 1994.

[IS094a] Industrial automation systems and integration — Product data representation
and exchange — Part 11: Description methods: The EXPRESS language
reference manual, International Organisation for Standardization (ISO),
ISO 10303-11, 1st edition, 1994.

[IS098] Industrial automation systems and integration -- Product data representation
and exchange ~ Part 22: Implementation methods: Standard data access
interface, International Organisation fo r Standardization (ISO), ISO
10303-22 1st edition, 1998.

[Jav07] The Java technology web site, 2007. [Online]. Available:
http://iava.sun.com/. last accessed: 23 December 2007

[Jit05] Jithesh, P. V., Kelly, N., Donachy, P., Harmer, T., Perrott, R., McCurley,
M., Townsley, M., J. Johnston and McKee, S. GeneGrid: grid based
solution for bioinformatics application integration and experiment
execution. In: Proc. 18th IEEE Symposium on Computer-Based Medical
Systems, pp.523-528, 2005.

[Joh93] Johannesson, P. A logical basis for schema integration. In: Third
International Workshop on Research Issues in Data Engineering, Proc.
Interoperability in Multidatabase Systems, pp.86-95, 1993.

[Joi04] Joita, L., Pahwa, J. S., Bumap, P., Gray, A., Rana, O. and Miles, J.
Supporting Collaborative Virtual Organisations in the Construction
Industry via the Grid. In: Proc. o f the UK e-Science All Hands Meeting,
Nottingham UK, 31st Aug-3rd Sep, 2004.

[Joi04a] Joita, L., Rana, O., Bumap, P., Pahwa, J. S., Gray, A. and Miles, J. A Grid-
Enabled Security Framework for Collaborative Virtual Organisations. In:
Proc. O f the 5th IF1P Working Conference on Virtual Enterprises (PRO
VE) (alongside the IF IP World Computer Congress), Toulouse, France, 23-
26 August 2004.

[JonOO] Jones, A. C., Xu, X., Pittas, N., Gray, W. A., Fiddian, N. J., White, R. J.,
Robinson, J., Bisby, F. A. and Brandt, S. M. SPICE: A Flexible
Architecture for Integrating Autonomous Databases to Comprise a
Distributed Catalogue o f Life. In: Proc. 11th International Conference on
Database and Expert Systems Applications, London, UK, pp.981-992,
September, 2000.

451

http://www.iis.net/
http://iava.sun.com/

References

[Jun08]

[Kar95]

[Kel05]

[Kif89]

[Kif89]

[Kin85]

[Kon04]

[Kor98]

[Koz07]

[Kra08]

Junfang Z., Wancheng N., Lin C., Yu L., Modeling RFID Data to Support
Information Sharing, In: Third International Conference on Convergence
and Hybrid Information Technology, (ICCIT '08.), vol.l, pp.l 137-1141, 11-
13 November 2008

Karlapalem, K., Li, Q. and Shum, C. HODFA: an architectural framework
for homogenizing heterogeneous legacy databases. In: SIGMOD Rec.
24(1), pp. 15-20, 1995.

Kelly, N., Jithesh, P. V., Donachy, P., Harmer, T. J., Perrott, R. H.,
McCurley, M., Townsley, M., Johnston, J. and McKee, S. GeneGrid: a
commercial grid service oriented virtual bioinformatics laboratory. In:
IEEE International Conference on Services Computing, pp.43- 50, 2005.

M. Kifer and G. Lausen, "F-logic: a higher-order language for reasoning
about objects, inheritance, and scheme," Proc. of the 1989 ACM SIGMOD
international Conference on Management of Data, Portland, Oregon,
United States, J. Clifford, B. Lindsay, and D. Maier, Eds. SIGMOD '89,
pp 134-146, ACM Press, New York, 1989.

Kifer, M. and Lausen, G. F-logic: a higher-order language for reasoning
about objects, inheritance, and scheme. In: Proc. ACM SIGMOD
international Conference on Management o f Data, Portland, Oregon,
United States, pp. 134-146, 1989.

King, R. and McLeod, D. A database design methodology and tool for
information systems. In: AC M Transactions on Office Information Systems.
3(1), pp.2-21, 1985.

Kong, S. C. W., Li, H., Hung, T. P. L., Shi, J. W. Z., Castro-Lacouturec, D.
and Skibniewskid, M. Enabling Information Sharing between E-commerce
Systems for Construction Material Procurement. In: Automation in
Construction, pp.261-276, 2004.

Komelius, L. and Wamelink, J. W. F. The virtual corporation: learning from
construction. In: Supply Chain Management. 3(4), pp. 193-202, 1998.

Kozlova, I., Ritter, N., and Husemann, M., Providing semantically
equivalent, complete views for multilingual access to integrated data. In:
26th international Conference on Conceptual Modeling, Auckland, New
Zealand, November, 2007.

Krawczyk, S. and Bubendorfer, K., Grid resource allocation: allocation
mechanisms and utilisation patterns. In Proc. o f the Sixth Australasian
Workshop on Grid Computing and E-Research, vol. 82, Wollongong,
NSW, Australia, January 2008, W. Kelly and P. Roe, (Eds.), Conferences
in Research and Practice in Information Technology Series, vol. 333.
Australian Computer Society, Darlinghurst, Australia, 73-81.

452

References

[KumOO]

[KumOl]

[Lam93]

[Lat94]

[LawOl]

[Lee97]

[Lee02]

[Lee08]

[Leh04]

[Lim95]

[Lit85]

Kumaraswamy, M., Palaneeswaran, E. and Humphreys, P. Selection matters
- in construction supply chain optimisation. In: International Journal o f
Physical Distribution & Logistics Management. 30(7/8), pp.661-680, 2000.

Kumaraswamy, M. M. and Dissanayaka, S. M. Developing a decision
support system for building project procurement. In: Building and
Environment. 36(3), pp.337-349, 2001.

Lamming, R. Beyond Partnership: Strategies fo r Innovation and Lean
Supply. Prentice-Hall International (UK) Limited, Hertfordshire, 1993.

Latham, S. M. Constructing the team: Joint Review o f Procurement and
Contractural Arrangements in the United Kingdom Construction Industry:
fina l report. HMSO, London, 1994.

Lawrence, R. and Barker, K. Integrating relational database schemas using
a standardized dictionary. In: Proc. AC M symposium on Applied
computing, Las Vegas, Nevada, United States, pp.225-230, 2001.

Lee, Y., Liu, L. and Pu, C. Towards interoperable heterogeneous information
systems: an experiment using the DIOM approach. In: Proc. ACM
Symposium on Applied Computing (SAC '97), San Jose, California, United
States, pp. 1997, 1997.

Lee, K., Min, J. and Park, K. A Design and Implementation of XML-Based
Mediation Framework (XMF) for Integration of Internet Information
Resources. In: Proc. 35th Annual Hawaii International Conference on
System Sciences (HICSSV2), IEEE Computer Society, Washington, DC,
202, 2002.

Lee, J., Nam, D., Hwang, S., Byeon, O., A Grid-Enabled Problem Solving
Environment for Supporting Collaborative Aerodynamic Engineering
Process, In: Proc. IEEE Fourth International Conference on eScience,
(eScience '08.), pp.770-777, 7-12 December 2008.

Lehti, P. and Fankhauser, P. XML Data Integration with OWL: Experiences
and Challenges. In: Proc. International Symposium on Applications and the
Internet (SAINT04), Los Alamitos, CA, USA, 2004.

Lim, E., Hwang, S., Srivastava, J., Clements, D. and Ganesh, M. Myriad:
Design and Implementation o f a Federated Database Prototype. In:
Software - Practice and Experience. 25(5), pp.533-562, 1995.

Litwin, W. An overview o f the multidatabase system MRDSM. In: Proc.
ACM Annual Conference on the Range o f Computing: Mid-80's
Perspective, Denver, Colorado, United States, ACM '85. ACM Press, New
York, NY, 1985.

453

References

[Liu95]

[Liu96]

[Lev96]

[L00O6]

[Lui93]

[Luk96]

[Lyn08]

[Lyn09]

[LysOO]

[Mah04]

[Mas02]

Liu, L. and Pu, C. The distributed interoperable object model and its
application to large-scale interoperable database systems. In: Proc. o f the
Fourth international Conference on information and Knowledge
Management (CIKM ’95), Baltimore, Maryland, United States, November
29 - December 02, 1995.

Liu, L. and Pu, C. An Object-Oriented Approach to Interoperation of
Heterogeneous Information Sources. In: Proc. Seventh International Hong
Kong Computer Society Database Workshop, Hong Kong, pp.49-63, 1996.

Levy, A. Y., Rajaraman, A. and Ordille, J. J. Querying Heterogeneous
Information Sources Using Source Descriptions. In: Proc. Twenty-second
International Conference on Very Large Databases, Bombay, India,
pp.251-262, 1996.

The Loom Project Home Page, 2006 [Online.] Available:
http://www.isi.edu/isd/LOOM/LOOM-HOME.html . Last accessed: 10
December 2006.

Luiten, G., Froese, T., Bjork, B.-C., Cooper, G., Junge, R., Karstila, K. and
Oxman, R. An Information Reference Model For Architecture,
Engineering, And Construction. In: Proc. First International Conference on
the Management o f Information Technology fo r Construction, Singapore,
pp.391-406, 1993.

Lukovic, I. and Mogin, P. An approach to relational database schema
integration. In: IEEE International Conference on Systems, Man, and
Cybernetics, vol.4, pp.3210-3215, 1996.

Lynden, S., Pahlevi, S. M., and Kojima, I., Service-based Data Integration
using OGSA-DQP and OGSA-WebDB, In: Proc. The 9th IEEE/ACM
International Conference on Grid Computing (Grid 2008), Tsukuba, Japan,
September 2008. IEEE Computer Society Press.

Lynden, S., Mukheijee, A., Hume, A.C., Fernandes, A.A.A., Paton, N.W.,
Sakellariou, R. and Watson, P. The design and implementation of OGSA-
DQP: A service-based distributed query processor, Future Generation
Computer Systems, vol. 25(3), pp. 224-236, March 2009.

Lysons, K. Purchasing and supply chain management. 5th ed., Pearson
Education Limited, England, 2000.

Mahmoud-Jouini, S. B., Midler, C. and Garel, G. Time-to-market vs. time-
to-delivery Managing speed in Engineering, Procurement and Construction
projects. In: International Journal o f Project Management. 22(5), pp.359-
367, 2004.

Masterman, J. W. E. An introduction to building procurement systems. 2nd
ed., Spon Press, London, New York, 2002.

454

http://www.isi.edu/isd/LOOM/LOOM-HOME.html

References

[McC99]

[McH97]

[McJ06]

[Mic07]

[Mic07a]

[Mil02]

[Mil04]

[Myl96]

[Nak08]

[Nam02]

[Nin97]

McCreadiea, M. and Rice, R. E. Trends in analyzing access to information.
Part I: cross-disciplinary conceptualizations of access. In: Information
Processing & Management. 35(1), pp.45-76, 1999.

McHugh, J., Abiteboul, S., Goldman, A. R., Quass, D. and Widom, J. Lore:
a database management system for semistructured data. In: SIGMOD Rec.
26 (3), pp.54-66, 1997.

McJones, P. “Multics Relational Data Store (MRDS)” [Online]. Available:
http://www.mciones.org/Svstem R/mrds.html. 2006 Last accessed: 14
October 2006.

The Microsoft .NET technology website, 2007. [Online]. Available:
http://www.microsoft.com/net/default.aspx. last accessed: 23 December
2007.

The Microsoft SQL Server website, 2007. [Online]. Available:
http://www.microsoft.com/sql/default.mspx. last accessed 23 December
2007.

Miles J.C., Rana, O.and Gray, W.A. Collaborative Virtual Teams. Research
project proposal, Cardiff University, 2002.

Miles, J., Joita, L., Pahwa, J. S., Bumap, P., Gray, A. and Rana, O.
Collaborative Engineering Virtual Teams in a Grid Environment
Supporting Consortia in the Construction Industry. In: Proc. o f the 10th
International Conference on Computing in Civil and Building Engineering
(ICCCBE), Weimar, Germany, 2-4 June, 2004.

Mylopoulos, J., Chaudhri, V., Plexousakis, D., Shrufi, A. and Topologlou,
T. Building knowledge base management systems. In: The VLDB Journal.
5(4), pp.238-263, 1996.

Nakanishi, T., Zettsu, K., Kidawara, Y., Kiyoki, Y., Approaching the
Interconnection of Heterogeneous Knowledge Bases on a Knowledge Grid,
In: Proc. Fourth International Conference on Semantics, Knowledge and
Grid, (SKG ’08.), pp.71-78, 3-5 December 2008.

Nam, Y., Goguen, J. and Wang, G. A metadata integration assistant
generator for heterogeneous distributed databases. In: Proc. International
Conference on Ontologies, DataBases, and Applications o f Semantics for
Large Scale Information Systems, R. Meersman and Z. Tari (eds.), LNCS,
vol. 2519. Springer-Verlag, London, pp. 1332-1344, 2002.

Nink, U. Using the STEP standard and databases in science. In: Proc. Ninth
International Conference on Scientific and Statistical Database
Management, Olympia, WA, pp. 196-207, Aug, 1997.

455

http://www.mciones.org/Svstem
http://www.microsoft.com/net/default.aspx
http://www.microsoft.com/sql/default.mspx

References

[Oas09]

[Ogs07]

[OMG06]

[Pah04]

[Pah06]

[Pah06a]

[Pah06b]

[Pal03]

[Pap95]

The OASIS Web Services Resource Framework (WSRF) TC, 2009.
[Online]. Available: http://www.oasis-
open.org/committees/tc home.php?wg abbrev=wsrf. last accessed: 22
February 2009

OGSA-DAI User Documentation. [Online]. Available:
http://www.ogsadai.org.uk/documentation/, Last accessed: 17 December
2007

The OMG’s CORBA Website. [Online]. Available: http://www.corba.org/

Pahwa, J. S., Bumap, P., Joita, L., Gray, A., Rana, O. and Miles, J. Creating
a Virtual Distributed Database - Data Definition and Search Model for
Collaborative Virtual Teams in the Construction Industry. In: 21st Annual
British National Conference on Databases, Proceedings Volume 2,
Edinburgh, UK, pp.3-17, 7-9 July, 2004.

Pahwa, J. S., Brewer, P., Sutton, T., Yesson, C., Burgess, M., Xu, X., Jones,
A. C., R. J. White, Gray, W. A., Fiddian, N. J., Bisby, F. A., Culham, A.,
Caithness, N., Scoble, M., Williams, P. and Bhagwat, S. Biodiversity
World: A Problem-Solving Environment for Analysing Biodiversity
Patterns. In: Proc. 6th IEEE International Symposium on Cluster
Computing and the Grid (CCGRID 2006), Singapore, 2006.

Pahwa, J. S., White, R. J., Jones, A. C., Burgess, M., Gray, W. A., Fiddian,
N. J., Sutton, T., Brewer, P., Yesson, C., Caithness, N., Culham, A., Bisby,
F. A., Scoble, M., Williams, P. and Bhagwat, S. Accessing Biodiversity
Resources in Computational Environments from Workflow Applications.
In: Workshop on Workflows in Support o f Large-Scale Science (in
conjunction with the 15th IEEE International Symposium on High
Performance Distributed Computing, Paris, France, 2006.

Pahwa, J. S., Bumap, P., Gray, W. A. and Miles, J. MDSSF - A Federated
Architecture for Product Procurement. In: 17th International Conference on
Database and Expert Systems Applications (DEXA '06), Andrzej Frycz
Modrzewski Cracow College, Krakow, Poland, 4 -8 September 2006.

Palopoli, L., Terracina, G. and Ursino, D. DIKE: a system supporting the
semi-automatic construction o f cooperative information systems from
heterogeneous databases. In: Software—Practice & Experience archive.
33(9), pp.847 - 884, 2003.

Papakonstantinou, Y., Garcia-Molina, H. and Widom, J. Object Exchange
Across Heterogeneous Information Sources. In: Proc. Eleventh
international Conference on Data Engineering (ICDE'95), Washington,
DC, pp.251-260, March 06 - 10, 1995.

456

http://www.oasis-
http://www.ogsadai.org.uk/documentation/
http://www.corba.org/

References

[Pap96]

[Pap96a]

[Par98]

[Pat99]

[Pie97]

[Por98]

[Pri09]

[Qua08]

[Rad95]

[Ran05]

[Red94]

[Row99]

Papakonstantinou, Y., Garcia-Molina, H. and Ullman, J. MedMaker: A
Mediation System Based on Declarative Specifications. In: Proc. Twelfth
International Conference on Data Engineering (ICDE'96), IEEE Computer
Society, Washington DC, pp. 132-141, 1996.

Papakonstantinou, Y., Abiteboul, S. and Garcia-Molina, H. Object Fusion
in Mediator Systems. In: Proc. 22nd International Conference on Very
Large Data Bases, pp.413-424, 1996.

Parent, C. and Spaccapietra, S. Issues and approaches of database integration.
In: Communications o f the ACM. 41(5), pp.166-178, 1998.

Patterson, J. L., Forker, L. B. and Hanna, J. B. Supply chain consortia: the
rise of transcendental buyer-supplier relationships. In: European Journal o f
Purchasing and Supply Management, vol. 5 pp.85 - 93, 1999.

Pietroforte, R. Communication and governance in the building process. In:
Construction Management and Economics, vol. 15, pp.71-82, 1997.

Porter, M. E. Competitive advantage o f nations. Macmillan Business,
Basingstoke, 1998.

The Pricerunner.com website, 2009. [Online]. Available:
http://www.pricerunner.co.uk/. last accessed: 21 February 2009.

Quartel, D., Pokraev, S., Pessoa, R.M., van Sinderen, M., Model-Driven
Development of a Mediation Service, In: Proc. 12th International IEEE
Enterprise Distributed Object Computing Conference, (EDOC f08.),
pp. 117-126, 15-19 September 2008.

Radeke, E., Bottger, R., Burkert, B., Engel, Y., Kachel, G., Kolmschlag, S.
and Nolte, D. Efendi: federated database system of Cadlab. In: Proc. ACM
SIGMOD International Conference on Management o f Data, San Jose,
California, United States, 1995.

Rana, O., Hilton, J., Joita, L., Bumap, P., Pahwa, J. S., Miles, J. and Gray,
W. A. Secure Virtual Organisations: Protocols and Requirements. In: S.
Paulus, N. Pohlmann, and H. Reimer (eds.), Information Security Solutions
Europe (ISSE) 2005 - The Independent European ICT Security Conference
and Exhibition, Budapest, Hungary, 27-29 September 2005.

Reddy, M. P., Prasad, B. E., Reddy, P. G. and Gupta, A. A Methodology
for Integration of Heterogeneous Databases. In: IEEE Transactions on
Knowledge and Data Engineering. 6(6), pp.920-933, 1994.

Procurement Systems: A Guide to Best Practice in Construction. In: S.
Rowlinson and P. McDermott (Ed.): E & FN Spon. London: 1999.

457

http://www.pricerunner.co.uk/

References

[Sar08]

[Sau97]

[Sek06]

[Sfc02]

[She90]

[Sho07]

[Sin97]

[Sin05]

[SomOl]

[Spa92]

[Spi03]

[Su95]

Sarraipa, J., Silva, J., Jardim-Goncalves, R., Monteiro, A., MENTOR — A
methodology for enterprise reference ontology development, In: Proc. 4th
International IEEE Conference on Intelligent Systems, IS '08., vol.l, pp.6-
32-6-40, 6-8 Sept. 2008.

Saunders, M. Strategic purchasing and supply chain management. Financial
Times, Pitman, London 1997.

The SEEK Project Proposal, 2004. [Online]. Available:
http://seek.ecoinformatics.org/Wiki. isp?page=SEEKProiectProposal Last
accessed: 21 October 2006.
Accelerating Change: A report by the Strategic Forum for Construction
chaired by Sir John Egan, Strategic Forum fo r Construction, London 2002

Sheth, A. P. and Larson, J. A. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. In: ACM Computing
Surveys. 22 (3), pp. 183-236, 1990.

Shore, J. and Warden, S. The Art o f Agile Development (Paperback),
O'Reilly Media Inc., Oct 2007.

Singh, M. P., Cannata, P. E., Huhns, M. N., Jacobs, N., Ksiezyk, T., Ong,
K., Sheth, A. P., Tomlinson, C. and Woelk, D. The Carnot Heterogeneous
Database Project: Implemented Applications. In: Distrib. Parallel
Databases. 5(2), pp.207-225, 1997.

Singh, G., Deelman, E., Mehta, G., Vahi, K., Su, M.-H., Berriman, G. B.,
Good, J., Jacob, J. C., Katz, D. S., Lazzarini, A., Blackburn, K. and
Koranda, S. The Pegasus Portal: Web Based Grid Computing. In: Proc. o f
the ACM symposium on Applied computing, Santa Fe, New Mexico,
pp.680-686, 2005.

Sommerville, I. Software engineering. 6th ed., Addison-Wesley, Harlow,
New York, 2001.

Spaccapietra, S., Parent, C. and Dupont, Y. Model independent assertions
for integration of heterogeneous schemas. In: The VLDB Journal. 1(1),
pp.81-126, 1992.

The Spitfire Task webpage, 2003. [Online]. Available: http://edg-
wp2 .web.cem.ch/edg-wp2/spitfire/index.html. Last accessed: 23 December
2007

Su, S. Y. W., Lam, H., Arroyo-Figueroa, J., Yu, T. and Yang, Z. An
extensible knowledge base management system for supporting rule-based
interoperability among heterogeneous systems. In: Proc. Fourth
International Conference on Information and Knowledge Management
(CIKM ’95), Baltimore, Maryland, United States, 1995.

458

http://seek.ecoinformatics.org/Wiki
http://edg-

References

[Sub95]

[TanOO]

[Tay03]

[Tha05]

[Tho06]

[Tom88]

[Tom98]

[Tue03]

[Vid94]

[VieOO]

[Vis08]

Subrahmanian, V. S., Adali, S., Brink, A., Emery, R., Lu, J., Rajput, A.,
Rogers, T., Ross, R. and Ward, C. Hermes: A heterogeneous reasoning and
mediator system. In: Technical report, University o f Maryland. 1995.

Tan, J., Zaslavsky, A. and Bond, A. Meta object approach to database
schema integration. In: Proc. International Symposium on Distributed
Objects and Applications, pp. 145-154, 2000.

Taylor, I., Shields, M., Wang, I. and Philp, R. Grid Enabling Applications
using Triana. In: Workshop on Grid Applications and Programming Tools,
Seattle, USA, 2003.
Thain, D., Tannenbaum, T. and Livny, M. Distributed Computing in
Practice: The Condor Experience. In: Concurrency and Computation:
Practice and Experience. 17(2-4), pp.323-356, 2005.

XML Schema Part 1: Structures Second Edition. In: H. S. Thompson, D.
Beech, M. Maloney and N. Mendelsohn (Ed.): W3C Recommendation.
October 2004. [Online]. Available: http://www.w3.org/TR/xmlschema-1 / ,
Last accessed: 12 October 2006.

Tomlinson, C., Kim, W., Scheevel, M., Singh, V., Will, B. and Agha, G.
Rosette: An object-oriented concurrent systems architecture. In: Proc. AC M
SIGPLAN Workshop on Object-Based Concurrent Programming, San
Diego, California, United States, pp.91-93, 1988.

Tomasic, A., Raschid, L. and Valduriez, P. Scaling Access to Heterogeneous
Data Sources with DISCO. In: IEEE Transactions on Knowledge and Data
Engineering. 10(5), pp.808-823, 1998.

Open Grid Services Infrastructure (OGSI) Version 1.0. In: S. Tuecke, K.
Czajkowski, I. Foster, J. Frey, S. Graham, C. K. T. Maquire, T. Sandholm,
D. Snelling and P. Vanderbilt (eds.): Open Grid Services Infrastructure -
Working Group. 2003.

Vidal, V. M. P. and Winslett, M. Preserving update semantics in schema
integration. In: Proc. Third International Conference on Information and
knowledge management, Gaithersburg, Maryland, United States, pp.263-
271, 1994.

Vieira, R. Professional SQL Server 2000 Programming Wrox Press Ltd.,
Birmingham, UK, 2000.

Visual Studio .NET 2003 Solution Center website, 2008. [Online].
Available: http://support.microsoft.com/ph/3040. last accessed: 02 January
2009.

459

http://www.w3.org/TR/xmlschema-1
http://support.microsoft.com/ph/3040

References

[Wal97]

[Wal99]

[Wal99a]

[Wan08]

[Wel07]

[WenOl]

[Wie92]

[Wie93]

[Wil98]

[Wix98]

[Woe93]

[Wsr07]

Walker, D. H. T. and Betts, M. Information Technology Foresight: The
Future Application of the World Wide Web in Construction. In: CIB W78
Workshop, Information Technology Support fo r Construction Process Re-
Engineering (IT-CPR97), James Cook University, Cairns, Queensland,
1997.

Walker, D. H. T. and Lloyd-Walker, B. M. Organisational learning as a
vehicle for improved building procurement. In: S. Rowlinson and P.
McDermott (Ed.): Procurement Systems: A Guide to Best Practice in
Construction. E & FN Spon, London, 1999.

Walker, D. H. T. and Rowlinson, S. Use of World Wide Web technologies
and procurement process implications. In: S. Rowlinson and P. McDermott
(Ed.): Procurement Systems: A Guide to Best Practice in Construction. E &
FN Spon, London, 1999.

Wang, X, Huang, L., Zhang, Y., A Grid Middleware DISQ for Data
Integration, In: Proc. International Conference on Computer Science and
Software Engineering, vol.3, pp.62-65, December 2008.

The Welsh e-Science Centre website. 2007. [Online]. Available:
http://www.wesc.ac.uk/. last accessed 23 December 2007.

Weng, R. and Zhu, Y. aecXML Framework. 2001. [Online]. Available:
http://www.iai-na.org/aecxml/documents.php. last accessed 09 November
2006.

Wiederhold, G. Mediators in the architecture of future information systems.
In: Computer. 25(3), pp.38-49, 1992.

Wiederhold, G. Intelligent integration of information. In: Proc. ACM
SIGMOD International Conference on Management o f Data, Washington,
D.C. United States, May 25 - 28, 1993.

Wilson, P. R., “STEP and EXPRESS” [Online]. Available:
http://deslab.mit.edu/DesignLab/dicpm/step.html, 1998. Last accessed: 03
October 2006.

Wix, J. and Liebich, T. Industry foundation classes: some business questions
examined. In: Proc. o f the second EC-PPM conference, Watford, UK, Oct
19-21, 1998.

Woelk, D., Cannata, P., Huhns, M., Shen, W.-M. and Tomlinson, C. Using
Carnot for enterprise information integration. In: Proc. Second
International Conference on Parallel and Distributed Information Systems.
pp. 133-136, 1993.

The WS-Resource Framework, 2007. [Online] Available:
http://www.globus.org/wsrf/, last accessed 23 December 2007.

460

http://www.wesc.ac.uk/
http://www.iai-na.org/aecxml/documents.php
http://deslab.mit.edu/DesignLab/dicpm/step.html
http://www.globus.org/wsrf/

References

[WWW07] The World Wide Web (W3C) Consortium website. [Online]. Available:
http://www.w3c.org/. Last Accessed: 23 December 2007.

[Wys03] Wyss, C. M., James, A., Hasselbring, W., Conrad, S. and Hopfner, H. Report
on the Engineering Federated Information Systems 2003 workshop (EFIS
2003). In: SIGSOFTSoftw. Eng. Notes. 29(2), pp. 1-3, 2003.

[XMI06] Object Management Group, The XML Metadata Interchange (XMI)
Specification v2.1, [Online]. Available:
http://www.omg.org/technology/documents/formal/xmi.htm. 2006, Last
Accessed: 10 October 2006.

[XML07] The Extensible Markup Language (XML). [Online]. Available
http://www.w3c.org/XML/ Last Accessed: 23 December 2007.

[Xu02] Xu, X., Jones, A. C., Gray, W. A., Fiddian, N. J., White, R. J. and Bisby, F.
A. Design and performance evaluation of a web-based multi-tier federated
system for a catalogue of life. In: Proc. 4th International Workshop on Web
Information and Data Management, McLean, Virginia, USA, pp. 104-107,
2002.

[Yan07] Yang, H., Ye, F., and Liu, Z. 2007. Resource discovery in federated systems
with voluntary sharing. In: Proc. 2007 ACM/IFIP/USENIX international
Conference on Middleware Companion, Newport Beach, California,
November 26 - 30, 2007.

[Yeo02] Yeo, K. T. and J.H.Ning. Integrating supply chain and critical chain concepts
in engineer-procure-construct (EPC) projects. In: International Journal o f
Project Management. 20(4), pp.253-262, 2002.

461

http://www.w3c.org/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.w3c.org/XML/

