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ABSTRACT - 1

Abstract

Atherosclerosis is a leading cause o f morbidity and m ortality in the western world. The 

deposition o f lipoprotein cholesterol in the arterial wall is a critical early step in the  

pathogenesis o f atherosclerosis. These atherogenic lipoproteins are then taken up by 

macrophages to  transform into lipid-loaded foam cells. ATP-binding cassette 

transporter-Ai (ABCAi) is a membrane-bound protein that mediates efflux o f cholesterol 

from cells, such as macrophages. Tangier disease, which arises due to  mutations in the  

ABCAi gene, is associated w ith foam cells in a number o f tissues and premature  

atherosclerosis. Proteins in HDL, such as apolipoprotein E (apoE), act as acceptors of 
cholesterol released from  macrophages via the action o f ABCAi, and take it to  the liver 

where it can be excreted through the bile system. Increasing the expression o f both 

ABCAi and apoE is therefore  considered as a potential therapeutic approach for the  

prevention or treatm ent o f atherosclerosis. Liver-X-receptors (LXRs) are members o f a 

subfamily o f nuclear receptors that are potent activators of ABCAi and apoE expression. 

Agonists of LXRs inhibit macrophage foam cell form ation in vitro and atherosclerosis in 

mouse models of the disease. The signalling pathways through which LXR agonists 

induce the expression o f ABCAi and apoE expression in macrophages are not known. 

The major aim of the studies presented in this thesis was to investigate such signalling 

pathways using the human macrophage THP-1 cell line as a model system with key 

findings confirmed in primary cultures.

Both natural LXR agonists, such as combinations of 22-(R)-hydroxycholesterol (22-(R)- 

HC) and 9-cis-retinoic acid (9CRA), and synthetic ligands induced the expression of 

ABCAi and apoE. Such an induction o f ABCAi and apoE expression was attenuated by 

treatm ent o f the cells w ith pharmacological inhibitors of c-Jun-N-terminal kinase/stress- 

activated kinase (JNK/SAPK) and phosphoinositide-3-kinase (PI3K) pathways. The action 

of 22-(R)-HC and 9CRA was associated w ith activation o f JNK/SAPK, its upstream  

com ponent SEK1/MKK4 and its down-stream target c-Jun along w ith the key target for 

PI3K, protein kinase B (PKB). The role o f these pathways was confirmed further by 

analysing the action o f expression o f dominant negative forms of key proteins on the  

activation of ABCAi prom oter. In addition, small interfering RNA-mediated knockdown 

of JNK/SAPK was found to  attenuate the induction o f apoE expression. The action o f 

these pathways culminated at the level o f activator protein-1, a transcription factor that 

contains c-Jun, and whose binding sites are present in the regulatory regions of both the  

apoE and ABCAi genes. Finally, a potential cross-talk between the JNK/SAPK and PI3K 

pathways was identified in which protein kinase C played an im portant role.

In conclusion, the studies presented in this thesis demonstrated, for the first tim e, an 

important role for a pathway involving PKB, PKC and JNK/SAPK cascade in the activation 

of ABCAi and apoE expression by LXR agonists, which has implications to macrophage 

foam cell form ation and atherosclerosis.
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NF-kB Nuclear factor for kappa light chain in B cells

OD O ptical density
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PAGE Polyacrylamide gel electrophoresis
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TRAP Thyroid hormone receptor- associated proteins
U Unit
UC Unesterified cholesterol
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UT Untreated

UV U ltra  v io let

V Volts
VCAM-1 Vascular cell adhesion molecule-1
VDR Vitamin D receptor

v/v Volum e to  volum e
VLDL Very low density lipoprotein

WCE W hole  cell extract

W H AM Wisconsin hypoalpha mutant

w /v W eig h t to  volum e
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Chapter i: General Introduction
Cholesterol Is vital fo r diverse cellular functions and plays several structural and 

metabolic roles. Cholesterol distributes along the entire plasma membrane o f cells, 

where it modulates Its fluidity and permeability. Cholesterol is also required for the  

regulation o f the function of integral membrane proteins, transcriptional regulation and 

for the form ation of lipid rafts (Tabas, 2002). Cholesterol concentrates in specialized 

sphingolipid-rich domains o f the plasma membrane, called rafts and caveolae (Anderson,

1998). These contain a variety o f signalling molecules that depend on the well- 

maintained cholesterol content for normal activity. In addition, cholesterol is a substrate 

for the production o f steroids and covalently links to a protein involved in limb 

development (Lewis e t aL, 2001). However, elevated cellular levels o f free cholesterol 

are toxic and can have pathological effects, in particular in cells o f the arterial wall, 

where its accumulation initiates atherosclerotic cardiovascular disease (CVD) (Glass and 

W itztum , 2001; Guyton and Klemp, 1996; Lusis, 2000). The body therefore depends on a 

complex hom eostatic system to  modulate the availability of cholesterol to  tissues, which 

operates at both th e  cellular level and within the plasma com ponent o f the serum (Oram  

and Heinecke, 2005).

In the  human plasma, two-thirds o f the cholesterol is carried by a class of lipoprotein 

particles called low-density lipoproteins (LDL), which provide a source o f cholesterol for 

steroidogenesis and cellular membranes. The uptake of cellular cholesterol occurs 

through the interaction of LDL with a cell-surface receptor (LDL receptor or LDLR) that 

mediates internalization and degradation of the lipoprotein particles (Oram  and 

Heinecke, 2005). The hepatic LDLR is responsible for clearing most o f the LDL 

cholesterol from  the plasma. Cells other than those in steroidogenic tissues and the liver 

(e.g. macrophages and smooth muscle cells) cannot metabolize cholesterol. Instead, 

they modulate their m em brane cholesterol content by a feedback system that controls 

the rate o f cholesterol biosynthesis and uptake by the LDL receptor (Brown and 

Goldstein, 1999). This system in most cell types is sufficient to  provide cells w ith enough 

cholesterol to  maintain mem brane integrity and function w ithout cholesterol 

overloading. Some cells, specifically macrophages, can take up cholesterol by other 

endocytic and phagocytic pathways tha t are not under feedback regulation by this sterol 

(Osterud and Bjorklid, 2003). Such ceils must either store this excess cholesterol as 

esters or secrete it (Oram  and Heinecke, 2005).
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High-density lipoproteins (HDL), which carries about one-third o f the cholesterol in the  

human plasma, are involved in the removal o f excess cholesterol from cells. HDL is a 

multifunctional and heterogeneous class o f particle that transports a variety of lipids and 

lipophilic molecules between tissues and other lipoproteins. One of the major functions 

of HDL is to  transport cholesterol from peripheral tissues to  the liver for elimination via 

the bile system (Glomset, 1968; Oram and Yokoyama, 1996), a process called reverse 

cholesterol transport (RCT). HDL, or its components, can rem ove cellular cholesterol by 

multiple mechanisms (Oram and Yokoyama, 1996). For example, the phospholipids in 

HDL absorb cholesterol that has diffused from the plasma mem brane into the aqueous 

phase by a passive process, which is facilitated by the interaction o f HDL particles with  

scavenger receptor Bl (SR-BI) (Oram and Heinecke, 2005). In addition, four transporters  

have been identified in the  cell membrane that m ediate cholesterol efflux to  HDL 

components by metabolically active pathways. All these transporters belong to a 

superfamily o f ATP-binding cassette transporters (ABCs). ABCAi mediates the transport 

of cellular cholesterol, phospholipids and other metabolites to  HDL proteins 

(apolipoproteins) th a t are associated w ith little or no lipid (lipid-free apolipoproteins) 

(W ang and Tail, 2003). ABCA7 is a close homolog o f ABCAi and selectively transports 

phospholipids to  lipid-depleted apolipoproteins (Abe-Dohmae et al., 2004). ABCG1 and 

ABCG4, which are highly expressed in tissue macrophages and hepatocytes, mediate 

cholesterol transport from  cells to  HDL particles (Nakamura e t al., 2004; Neufeld e t al., 

2001; Schmitz et al., 2001; Wellington e t al., 2002). From these four ABC transporters, 

ABCAi has been extensively characterized. Several studies using cultured cells or specific 

animal models have shown that ABCAi is an effective athero-protective agent and a 

major determ inant o f plasma HDL levels (Aiello e t al., 2003; Oram and Heinecke, 2005; 

Singaraja et al., 2003; W ang and Tall, 2003). Therefore, this transporter has become an 

im portant new therapeutic target fo r clearing cholesterol from arterial macrophages 

and, thereby, preventing the developm ent o f atherosclerosis, which is addressed below  

in more detail.

1.1 Atherosclerosis
The term  atherosclerosis, which is a slow progressive disorder, was coined in 1904, and 

came from the Greek words “ athero”, meaning porridge or gruel that refers to the soft 

consistency of the core plaque, and “ sclerosis” meaning hardening (Gurr e t al., 2002). 

Atherosclerotic CVD is the leading cause o f all deaths in industrialized countries,
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accounting for nearly 40% o f m ortality (Glass and W itztum , 2001; Hansson and Libby, 

2006; Lusis, 2000). Atherosclerosis is a form  o f arteriosclerosis in which a plaque builds 

up in the inner lining o f arteries. A plaque consists o f a combination of lipids, cholesterol, 

cellular debris, fibrin, calcium and other substances, and usually develops in the inner 

lining o f medium and large arteries. Accumulation o f these substances leads to  the  

thickening o f the arterial wall and causes them  to  lose elasticity and so become less 

resilient. Overtim e, these plaques, which are known as atherosclerotic lesion or 

atheroma, m ature and gain new characteristics. The developm ent o f such 

atherosclerotic lesions involves a complicated sequence o f events in which various cell 

types, such as monocyte-derived macrophages, T cells and the normal cellular elements 

of the arterial wall (e .g . smooth muscle cells (SMCs) and collagen), contribute to  form a 

complicated atherosclerotic plaque (Glass and W itztum , 2001; Hansson and Libby, 2006; 

Lusis, 2000; Ross, 1999).

Atherosclerosis begins early in life, sometimes in late childhood, but causes no 

symptoms. It usually becomes symptomatic when it interferes w ith the coronary or 

cerebral circulation. If a blood clot (throm bus) forms inside a cerebral artery, it cuts o ff  

the blood supply to  certain areas o f the brain and an ischaemic stroke may occur. If it 

blocks a blood vessel that feeds the heart, it causes a heart attack or myocardial 

infarction (Gurr e t al., 2002). If atherosclerosis narrows other arterial branches, for  

example, the  arteries supplying blood to  the intestines, abdominal angina occurs, and 

sudden, com plete blockage of the blood supply to  the intestine can cause bowel 

infarction. In the extrem ities, atherosclerosis can narrow the major arterial supply to the  

legs. The reduced blood flow  results in cramps and pain during exercise, known as 

interm ittent claudication. Severely compromised blood supply to  the legs leads to pale 

or cyanotic, cold legs which eventually may develop gangrenes (Hansson and Libby, 

2006).

Systematic investigation o f the mechanisms that initiate atherosclerosis have relied on 

animal models o f this disease. In this regard, tw o  strains of genetically altered mice have 

been particularly fruitful. ApoE-/- mice, which are deficient in the gene coding for 

apolipoprotein E (apoE), a key com ponent o f plasma lipoproteins and a regulator of 

overall cholesterol metabolism, develop spontaneous hypercholesterolemia and 

atherosclerotic disease that progresses to  myocardial infarction and stroke (Piedrahita



CHAPTER ONE - 5

et al., 1992; Plump et al., 1992; Zhang e t al., 1992a). The developm ent o f atherosclerosis 

in these mice can be “ speeded-up” by feeding them  a high fa t diet. Mice deficient in the  

gene encoding the LDL receptor (LDLR-/-) develop hypercholesterolemia and 

atherosclerotic plaques when fed a high fa t diet (Ishibashi e t al., 1994). Crossbreeding o f 

these deficient mice w ith those that carry deletion in other genes or transplantation o f 

bone m arrow from  mice that are wildtype or deficient in a particular protein into 

irradiated apoE-/- or LDLR-/- mice have provided im portant inform ation on the role o f 

specific genes or population o f cells in the developm ent o f this disease.

1.1.1 Risk factors fo r atherosclerosis
Epidemiological * studies have identified numerous risk factors (e.g . environmental/ 

dietary and genetic factors) that contribute to  the developm ent o f atherosclerosis, such 

as hypercholesterolemia, hypertension, diabetes mellitus, obesity, male sex, smoking, 

age, family medical history, physical inactivity, dietary habits, infections and stress, 

which all w ork  synergistically (Glass and W itztum , 2001; Lusis, 2000). Two genetic 

disorders, Tangier disease (TD) and familial hypoalphalipoproteinemia (FHA) have been 

found to  be quite frequent and contribute to the developm ent o f atherosclerosis (M edh, 

2000). Tangier disease is characterised by severe deficiency of HDL caused by a mutation  

in the ABCAi gene, which plays a critical role in regulating cellular cholesterol efflux and 

RCT (Van Eck e t al., 2002) (see section 1.2). FHA is a condition tha t leads to high levels of 

lipids in the plasma due to  their impaired removal. FHA is caused by a mutation in the  

ABCAi gene, resulting in decreased cellular cholesterol efflux and degradation o f HDL 

(Brooks-Wilson e t al., 1999). Amongst the many genetic and environmental risk factors, 

elevated levels o f serum cholesterol is probably unique in being sufficient to  drive the  

developm ent o f atherosclerosis in humans and experimental animals in the absence of 

other risk factors (Glass and W itztum , 2001). The greatest risk is in individuals that have 

high levels o f serum LDL cholesterol and low  levels o f HDL cholesterol (Repa and 

Mangelsdorf, 2002; Ross, 1999). Although the exact athero-protective mechanism of 

HDL is not known, it is speculated tha t its ability to stimulate RCT may be a major reason 

(Repa and Mangelsdorf, 2002).

1.1.2 Lesions o f atherosclerosis
Atherosclerosis is perceived to  be an inflammatory response o f macrophages and 

lymphocytes to  pathogenic lipoproteins in the endothelial lining o f the arterial wall (Li
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and Glass, 2002; Ross, 1999). The limited developm ent of atherosclerosis in 

hypercholesterolemic apoE-/- or LDLR-/- mice that are also deficient in macrophage 

colony stimulating factor (M-CSF), which is required fo r differentiation of monocytes 

into macrophages, represents one o f many lines o f evidence that demonstrate the  

importance of immune cells in this disease (Smith e t al., 1995). The lesions form ed as a 

response to  activation of endothelial cells via a variety o f insults (e.g. modified LDL) can 

be divided into three stages; the fatty  streak, the mature plaque and the fibrous plaque 

(Lusis, 2000; Ross, 1999).

Fatty streaks, which represent the earliest visible atherosclerotic lesions, consist mainly 

of macrophages tha t have taken up massive amounts o f cholesterol to  form  lipid-loaded 

foam cells (Li and Glass, 2002). The formation o f fa tty  streaks is initiated by the  

adherence of circulating monocytes and T cells to activated endothelial cells at lesion 

prone sites w ithin large arteries (Hansson and Libby, 2006). The activated endothelial 

cells in the arteries express leukocyte adhesion molecules, specifically vascular cell 

adhesion molecule 1 (VCAM1), as part o f the initial response to  cholesterol accumulation 

in the intima (Cybulsky and Gimbrone, 1991). The adherent monocytes and T cells 

migrate into the  subendothelial space. Under the influence of M-CSF, produced by 

endothelial cells and SMCs (Rajavashisth et al., 1990), the monocytes differentiate into 

macrophages (Sm ith et al., 1995). The macrophages then accumulate massive amounts 

of cholesterol and become foam cells (Li and Glass, 2002) (Figure 1.1). Although the  

expression o f VCAM1 by the endothelium ceases after a few  weeks, SMCs begin to  

express this adhesion molecule (Li et al., 1993). Expression o f VCAM1 and other adhesion 

molecules by SMCs m ight prom ote further recruitm ent of, and retention of, 

mononuclear cells in the arterial intima (Hansson and Libby, 2006). This is also 

accompanied by an influx o f T cells, which can undergo antigen-dependent activation 

and produce cytokines and other regulatory molecules that influence the functional 

properties of the  nearby endothelial cells, SMCs and macrophages (Hansson, 2001). The 

progression o f fa tty  streaks to m ore complex lesions (m ature atherosclerotic plaques, 

also known as atheromas) involves the migration of SMCs from the media into the  

intima, where they accumulate cholesterol and become SMC-derived foam cells (Li and 

Glass, 2002).
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The death of foam cells leads to the formation of a necrotic, cholesterol-rich core region 

that is surrounded by a fibrous cap of extracellular, collagen-rich matrix proteins 

secreted by SMCs (Jonasson et al., 1986). The shoulder region of the plaque, which is 

where it grows further, and the interface between the fibrous cap and the lipid core 

have high accumulation of activated T cells and macrophages (Jonasson et al., 1986). 

These produce pro-inflammatory cytokines such as interferon-y (IFN-y) and tumour 

necrosis factor-a (TNF-a) (Hansson and Libby, 2006). With time, the mature plaques can 

progress into an even more complex lesion.

Endothelial cell

ShoulderNorm*! artery

Inrima
Elastic lamina

I ' *  “ K /
Cellular debris 
and cholesterolMedia

Smooth
Cholesterol Deed tell Dendritic cell hoanwell Macrophage Mast cell Momxyte muscle cell Ice#

Figure 1.1 Cellular composition of atherosclerotic plaques.

The atherosclerotic plaque has a core containing lipids, which include esterified cholesterol and 
debris from dead cells. Surrounding it, a fibrous cap, containing SMCs and collagen fibres, 
stabilizes the plaque. Immune cells, including macrophages, T cells and mast cells, populate the 
plaque, and are frequently in an activated state. They produce cytokines which can affect 
plaque inflammation and vascular function. Until complications occur, an intact endothelium 
covers the plaque. Figure taken from Hansson and Libby, 2006.

As the lesion grows, those regions that contain a high concentration of lipids are 

particularly prone to rupture (Li and Glass, 2002). Such unstable plaques also contain 

necrotic debris, a thin fibrous cap and numerous macrophages in the shoulder regions 

where rupture most often occurs. The fibrous cap consists of a dense collagen-rich 

extracellular matrix with SMCs, collagen fibres, macrophages and T cells, which protrude
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into the arterial lumen, impeding the flo w  of blood and stabilizing the plaque in the  

lesion. Eventually, the growth o f the lesion extends inward, causing narrowing of the  

vessel lumen and the clinical symptoms of angina. The rupture of the fibrous cap that 

overlies the lipid core of the plaque (Figure 1.2) can lead to  thrombus formation, which 

occludes the vessel lumen and results in acute myocardial infarction (Glass and W itztum , 

2001; Hansson and Libby, 2006).

1.1.3 Macrophages and cellular cholesterol accumulation
Macrophages are an essential part o f the body's host defence system (Li and Glass,

2002). The normal function of macrophages is to  act as an antigen-presenting cell to  

remove invading microorganisms and toxic materials, and also to  act as a source of 

growth factors and cytokines. As detailed above, high serum cholesterol levels 

represents a m ajor risk factor for the developm ent o f atherosclerosis (Ohashi e t al., 

2005). Cholesterol is carried in the bloodstream by several lipoprotein particles: 

chylomicrons, very low-density lipoproteins (VLDL), LDL and HDL, w ith HDL primarily 

being an anti-inflam m atory, anti-atherogenic molecule. LDL transports the majority of 

serum cholesterol in humans (Glass and W itztum , 2001). Elevated levels of plasma 

cholesterol leads to  the deposition o f LDL in the arterial wall. Native LDL would not 

accumulate rapidly enough through normal transport pathways to  form foam cells 

(Goldstein and Brown, 1977). This is because the expression of the LDL receptor is under 

negative feedback regulation by cholesterol (Chen e t al., 2007; Dueland et al., 1992; 

Spitsen e t al., 2000). It is the oxidation of LDL once it has entered the intima, and its 

subsequent uncontrolled uptake by a number o f scavenger receptors, tha t is thought to  

be the primary initiating event in the developm ent of atherosclerosis (Cyrus et al., 1999). 

W hen there is damage to  the arterial wall, an inflam matory response occurs in which 

monocytes enter the arterial wall and differentiate into macrophages. These 

macrophages then take up oxidized LDL (oxLDL) to  form  foam cells (Vainio and Ikonen,

2003). This inflam m atory response o f macrophages and lymphocytes to pathogenic 

lipoproteins in the arterial wall therefore contributes to the developm ent of 

atherosclerosis (Glass and W itztum , 2001; Li and Glass, 2002; Libby e t al., 2002; Ross,

1999).



CHAPTER ONE -9

Macrophages have essential functions in all phases of atherosclerosis, firstly in the 

development of the fatty streak, and ultimately on processes that cause the unstable 

plaque to rupture (Li and Glass, 2002; Smith et al., 1995). A study by Watanabe et al.
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Figure 1.2 Plaque activation, rupture and thrombosis.

When activated, immune cells, including macrophages, T cells and mast cells, relealse pro- 
inflammatory cytokines, this reduces collagen formation and induces the expression of tissue 
factor. The weakened plaque might fissure when subjected to the forces of arterial blood 
pressure. Exposure of subendothelial structures promotes platelet aggregation and 
thrombosis. A thrombus forms and might occlude the lumen of the artery, leading to acute 
myocardial infarction. Figure taken from Hansson and Libby, 2006.
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(1985) showed increased accumulation o f lipid laden macrophages in the intima and 

their “clinging” to  the  endothelial surface o f the arterial intima even when there were  

no grossly observable alterations in animals on high cholesterol diets for eight weeks or 

longer. Lipid-laden macrophages w ere the predom inant cell type seen in new layers of 

foam  cells in flattened lesions. They were also increased noticeably in advanced lesions 

and found to  be present in areas o f necrosis and near the necrotic core of the atheroma. 

This was an early indication that macrophages were the source o f foam  cells in the initial 

phases of atherosclerosis (Watanabe et al., 1985).

Oxidation o f LDL by free radicals and lipoxygenases occurs in the arterial wall and 

becomes prevalent w hen levels of circulating LDL are raised. LDL particles, containing 

cholesterol, comes in to  the intima of arterial wall and can pass through the intercellular 

gaps betw een the endothelial cell junctions to  the subendothelial matrix (Glass and 

W itztum , 2001). These LDL particles attract macrophages, where they play an im portant 

role in protecting the vascular wall from injury. In inflammatory reactions, macrophages 

scavenge proinflam m atory oxLDL particles and subsequently remove it into HDL 

particles to  avoid becoming foam cells and dying. This clearance o f oxidized lipoproteins 

and the efflux o f lipoprotein-derived cholesterol to  HDL acceptors fo r RCT represent the  

first line o f defence against cholesterol toxicity in macrophages (Cuchel and Rader, 

2006; Li and Glass, 2002). W hen macrophage scavenger receptors take up oxLDL, it is 

first delivered to  lysosomes. These then hydrolyze its cholesterol esters to  free  

cholesterol and fa tty  acids (Li and Glass, 2002). If no acceptor is present, the excess free  

cholesterol, which is toxic to  macrophages (Tabas, 2004), is re-esterified to  cholesterol 

esters (CE) via the  action o f acylcoenzyme A: acylcholesterol transferase (ACAT), also 

known as sterol O-acyltransferase (SOAT) (Chang e t al., 2001). There are tw o SOAT 

genes tha t have been identified, SOAT1, which is expressed by a variety o f cells including 

macrophages, and SOAT2, which is expressed in the liver and the intestine (Brewer,

2000). The functions o f SOAT are opposed by neutral cholesterol esterase, exemplified 

by hormone sensitive lipase, which hydrolyses cholesterol esters and also functions as 

the rate limiting enzyme fo r the hydrolysis o f triglycerides in adipocytes (Brewer, 2000). 

Several studies have indicated that cholesterol esterification is a protective response of 

macrophages to  excess free cholesterol in conditions in which cholesterol efflux  

pathways become saturated (Accad et al., 2000; Fazio e t al., 2001). Although these 

findings argue against the use o f SOAT inhibitors for the prevention or treatm ent of
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atherosclerosis, a recent study using an inhibitor o f SOAT1 and SOAT2 in apoE-/- mice 

demonstrated a significant decrease in serum lipoprotein levels and extent of 

atherosclerosis w ithout any evidence o f toxicity (Kusunoki e t al., 2001), indicating that 

partial inhibition of these pathways may be beneficial.

1.1.4 Reverse cholesterol transport
Glomset in 1968 was the first to  introduce the concept o f RCT to  illustrate the  

mechanism by which peripheral cholesterol is returned to  the liver for excretion in the  

bile system (Glomset, 1968). Ross and Glomset (1973) hypothesized tha t atherosclerotic 

lesions develop when an imbalance occurs between removal o f arterial cholesterol and 

its deposition a fte r endothelial injury, and suggested the relationship o f RCT to  

atherosclerosis. Later in 1975, this relationship was developed further by M iller and 

Miller who suggested that, on the basis o f an inverse relationship betw een HDL levels 

and atherosclerosis, special importance should be placed on increasing circulating levels 

of HDL as a w ay to  improve the clearance o f cholesterol from the arterial wall to  prevent 

the developm ent o f this disease (M iller and Miller, 1975). The physiological need for this 

process is clear as mammalian cells do not have the ability to  catabolize the sterol ring 

and most excess sterols can only be eliminated from the body by biliary excretion. 

Excess unesterified cholesterol (UC) is toxic to cells, which have therefore developed 

several ways to  protect against its toxicity (Cuchel and Rader, 2006; Ohashi et al., 2003).

1.1.5 Macrophage reverse cholesterol transport
As the intracellular levels o f cholesterol increase, endogenous cholesterol biosynthesis 

and LDL-R expression are repressed by inhibition o f the sterol regulatory element- 

binding protein (SREBP) pathway (Brown and Goldstein, 1999). In this pathway, the  

precursor SREBP protein is associated w ith  the rough endoplasmic reticulum (RER). 

W hen the cell content o f cholesterol is low, a protease cleaves SREBP to release the  

transcriptionally active N-terminal portion, which migrates to  the nucleus and binds to  

specific prom oter sequences in target genes; for example, LDL-R and enzymes involved 

in cholesterol synthesis (e.g. HMG-CoA synthase). When the cell content o f cholesterol is 

high, this pathway does not operate and the transcription o f target genes is low  

(Edwards and Davies, 1996). However, this mechanism is not sufficient to maintain 

cholesterol homeostasis in the face of continued cholesterol uptake by scavenger 

receptor-dependent mechanisms. Therefore, macrophages and other cell types must
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export cholesterol to  extracellular acceptors for transport to  the liver for protection 

against cholesterol toxicity (Brown and Goldstein, 1999; Cuchel and Rader, 2006; Li and 

Glass, 2002). The return o f this extrahepatic cholesterol to  the liver is necessary to  

maintain a balance between cholesterol uptake and de novo synthesis. The efflux of 

cholesterol represents the second line of defence against cholesterol toxicity by 

macrophages (Cuchel and Rader, 2006).

The protective effects of RCT are particularly im portant for the removal o f cholesterol 

from the intimal space of the blood vessel wall (Li and Glass, 2002). A  critical step in this 

process is the  efflux of free cholesterol from these cells to  acceptor apolipoproteins, 

such as apoAl, which are initially synthesized and secreted by the liver (Oram  and 

Yokoyama, 1996), to  form  a pre-HDL particle. Then, cholesterol in pre-HDL is esterified 

and transported to  the liver (Figure 1.3) (Cuchel and Rader, 2006). This RCT function is 

thought to be m ediated mainly by HDL, which can deliver cholesterol esters to the liver 

directly through a selective uptake process involving SR-BI, or indirectly through transfer 

of cholesterol esters in HDL to other lipoproteins, such as VLDL, interm ediate density 

lipoproteins (ID L) or LDL through the action o f the cholesterol ester transfer protein 

(CETP) (Acton e t al., 1996; Repa and Mangelsdorf, 2002).

Macrophages have tw o potential mechanisms for disposing of excess cholesterol: 

enzymatic modification to  more soluble forms and efflux via membrane transporters. 

The major mechanism for cholesterol efflux is RCT through the ABC family of 

transporters w here HDL serves as the primary extracellular acceptor. In addition to  

ABCA1, other mechanisms/proteins are known to  be involved, including sterol 27- 

hydroxylase (CYP27A1), SR-BI and passive diffusion (Ohashi e t al., 2005). CYP27A1 is 

expressed in macrophages at relatively high levels and may play a role in the excretion of 

cholesterol by converting it to  the more soluble form  27-OH (Bjorkhem, 1992; Escher et 

al., 2003). In addition, cholesterol efflux can occur via passive diffusion. SR-BI can also 

induce cholesterol efflux by enabling HDL to  bind to cells and recognize lipids within 

cholesterol-rich domains in the plasma mem brane (Williams et al., 1999). This explains 

why the risk o f atherosclerosis is inversely correlated with levels o f HDL cholesterol. 

There is also evidence that macrophages may contribute directly to  the availability of 

extracellular cholesterol levels through the secretion of apoE which contributes to the  

formation of HDL particles (Linton et al., 1995).
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The apoE synthesized by macrophages is expressed at high levels in atherosclerotic 

lesions, particularly in regions association with macrophage-derived foam cells 

(Greenow et al., 2005). Several studies have shown that the expression of apoE by 

macrophages has potent anti-atherogenic effects because of its ability to act both as a
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Figure 1.3 Reverse cholesterol transport.

Lipid-poor apoA-l particles, which are secreted by the liver and the intestine, are a potent 
acceptor of free cholesterol and phospholipids from the liver and peripheral cells. Nonlipidated 
apoA-l is cleared by the kidney. nHDL mature into small spherical HDL particles through the action 
of the cholesterol esterifying enzyme LCAT, and the CE are transferred to the liver by SR-BI and to 
other lipoproteins by CETP. LDL CE is delivered into hepatocytes after endocytosis of LDL 
particles by the LDL-R. The lipoprotein-derived CE is hydrolyzed in the liver to cholesterol, which is 
secreted in the bile as bile acids, or is reassembled into lipoproteins that are secreted into the 
circulation (not shown). nHDL, nascent HDL particles; LCAT, lysolecithinrcholesterol 
acyltransferase; CE, cholesterol ester; CETP, cholesterol ester transfer protein; SR-BI, scavenger 
receptor Bl. Adopted from Cuchel and Rader, 2006.



CHAPTER ONE- 14

powerful antioxidant and to  prom ote cellular cholesterol efflux and RCT (Greenow et al., 

2005; Thorngate e t al., 2003). For example, increased expression of endogenous apoE in 

macrophages results in enhanced cholesterol efflux, which attenuates the deleterious 

effects of cholesterol overload on macrophage function, reduces foam  cell formation of 

macrophages, and promotes removal o f cholesterol from  the vessel wall. Approaches 

tha t increase macrophage apoE expression will therefore limit the development of 

atherogenesis. In addition, macrophage-specific expression o f human apoE in apoE- 

deficient mice results in a significant attenuation of atherosclerotic lesion developm ent 

(Greenow e t al., 2005).

Thus, prom otion o f macrophage RCT could prevent the progression of, or even induce 

regression of, atherosclerosis and therefore represents an attractive means for 

therapeutic intervention o f this disease. This could involve stimulation of macrophage 

cholesterol efflux pathways. A way to  achieve this would be to  use agonists o f liver X 

receptors (LXRs), a family o f transcription factors belonging to  the nuclear receptor 

(NR) superfamily, which induce the expression of several genes implicated in the  

cholesterol efflux pathway (see section 1.3). For example, the upregulation of ABCA1, 

ABCG1 and apoE expression by LXR agonists promotes macrophage cholesterol efflux in 

vitro (Venkateswaran et al., 2000a; Whitney et al., 2001), increases macrophage RCT in 

vivo (Naik e t al., 2006) and reduces atherosclerosis developm ent in mice (Joseph e t al., 

2002b). The role o f ABCA1, a major target fo r LXR action and a potent anti-atherogenic 

protein, will be discussed in more detail.

1.2 ATP B inding Cassette (ABC) tran sporters
The term  "ABC transporter” was first applied by Christopher Higgins in 1992 in order to  

unite the relevant members of this gene family (Higgins, 1992). ABC transporter genes 

code for the largest family o f trans-membrane (T M ) proteins (Dean e t al., 2001). Proteins 

are classified as ABC transporters based on the sequence and organization of their ATP- 

binding domains, also known as nucleotide-binding folds (NBFs) (Figure 1.4A). The NBFs 

contain characteristic motifs (W alker A and B) separated by approximately 90-120 amino 

acids. ABC transporter proteins also contain an additional element, the signature C 

motif, located just upstream of the W alker B site (Hyde et al., 1990). The TM domain 

contains 6-11 membrane spanning a-helices and provides the specificity for the substrate 

(Dean, 2002). In eukaryotes, all ABC transporters bind and hydrolyze ATP to generate
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the energy needed and use it to drive the transport of various metabolites across all cell 

membranes from the cytoplasm to the outside of the cell or into an intracellular 

compartment such as endoplasmic reticulum (ER), mitochondria and peroxisomes (Dean 

and Allikmets, 1995).

TM TM Lipid bilayer

N B F N B F

Figure 1.4A A typical ABC transporter protein.

The structure of a representative ABC transporter protein containing TM domains and the NBF. 
This schematic diagram of ABC transporter is revised from Dean, 2002.

Extracellular

intracellular

NH2 N B D

N B DRegulatory domain
COOH

Nucleotide (ATP) binding
domain

Figure 1.4B The predicted structure of ABCAi.

ABCAi is a full length transporter with two TM domains and two NBD arrangement. It also has a 
regulatory domain between the two halves of the protein that contains highly hydrophobic 
segments. The tw o NBD contain the highly conserved Walker A and Walker B domains. In 
addition, a signature or C motif is present. The intracellular position of the NH2 and COOH 
terminus is also indicated. The schematic diagram of ABCAi is revised from Oram and Heinecke, 
2005.
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The eukaryotic ABC proteins fall into tw o  groups, full transporters containing tw o  halves 

of similar structural units, TMs and tw o  NBFs joined covalently (e.g. ABCAi and ABCA7), 

or as half transporters of single structural units. The latter must form either active 

homodimers or heterodimers to create functional transporters (e.g. ABCG1 and ABCG4) 

(Dean e t al., 2001; Hyde e t al., 1990). The genes that encode ABC proteins are widely 

dispersed in the eukaryotic genomes and are highly conserved between species, 

indicating that most o f these genes have existed since the beginning o f eukaryotic 

evolution. The eukaryotic ABC genes are grouped into seven subfamilies (ABCA through  

ABCG) based on similarity in gene structure (half versus full transporters), order o f the  

functional domains and on sequence homology in the NBF and TM  domains (Dean, 

2002). Tw o mem bers of the human ABCA subfamily, the ABCAi and ABCA4 proteins, 

have been studied extensively. The ABCA4 protein transports vitamin A derivatives in 

the outer segments o f the rod photoreceptor cells and therefore performs a crucial step 

in the vision cycle. The ABCAi protein is involved in disorders of cholesterol transport 

and HDL biosynthesis.

1.2.1 Biological structure o f ABCAi
The human ABCAi is a single polypeptide chain o f 2,261 amino acids and comprises of 

tw o  halves of similar structure (Fitzgerald e t al., 2001). Each half encodes for the TM  

domain, containing six a-helices, and NBD, w ith  tw o  conserved peptide motifs (W alker A 

and B), and a W alker C signature unique to ABC transporters (Figure 1.4B) (Dean e t al., 

2001). In addition, ABCAi has a regulatory domain between the tw o  halves of the protein 

that contains a highly hydrophobic segment (Luciani et al., 1994). It is also predicted to  

have its NH2 terminus oriented into the cytosol and tw o  large extracellular loops that are 

highly glycosylated and linked by one or more disulfide bonds (Figure 1.5) (Dean et al., 

2001; Oram and Heinecke, 2005).

1.2.2 Localization and cellular trafficking o f ABCAi
The cellular localization o f ABCAi and its potential sites o f action are critical to  

understanding the process o f cellular lipid efflux. Initial immunocytochemical studies 

suggested that endogenously expressed human ABCAi was localized on the plasma 

membrane (Lawn et al., 1999; Orso et al., 2000). Subsequent studies established that the  

presence of ABCAi on the plasma cell mem brane and its movement to  the cell surface 

was required fo r the transporter to function in apoA-l-dependent cellular lipid efflux
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(Neufeld e t al., 2001). Furthermore, studies by Hamon et al. (2000) have established that 

the ABCAi transporter also resides in intracellular endocytic compartments, which are 

membrane-bound com partments inside cells o f roughly 300-400 nm in diameter when 

fully mature (Fitzgerald e t al., 2001; Hamon e t al., 2000). In addition to its movement to  

the cell surface, trafficking o f the ABCAi transporter in endocytic compartments may 

also play an im portant role in apoA-l-mediated efflux o f cellular lipids (Neufeld e t al.,

2001). The early endosomes, containing the ABCAi transporter, w ere  found to shuttle 

betw een the plasma membrane and intracellular endocytic com partm ents. The delivery 

of ABCAi to  lysosomes fo r degradation has also been suggested to  potentially serve as a 

mechanism to  decrease the surface expression o f ABCAi, and hence, m odulate apoA-l- 

mediated cellular lipid efflux (Neufeld et al., 2001; Neufeld e t al., 2004).

1.2.3 Biological functions o f ABCAi
Most of the know n functions of eukaryotic ABC transporters involve the shuttling of 

hydrophobic compounds either within the cell, as part o f a metabolic process, or outside 

the cell fo r transport to  other organs or for secretion from the body (Dean, 2002). The 

function o f ABCAi is to  mediate the extrusion of membrane phospholipids, unesterified 

cholesterol and other lipophilic molecules across cellular membranes towards specific 

extracellular acceptors, such as lipid-poor HDL apolipoproteins (Oram and Heinecke, 

2005; Repa and Mangelsdorf, 2002). ABCAi, like other ABC transporters, form s a channel 

in the m em brane that promotes flipping of lipids from the inner to  the outer membrane 

leaflet by an ATPase-dependent process (Oram and Heinecke, 2005). It has also been 

reported to  prom ote secretion o f apoE (Von Eckardstein e t al., 2001a). In addition, there  

is evidence that ABCAi promotes engulfment o f apoptotic cells by macrophages (Hamon  

et al., 2000) and generates microparticles (MPs) that bleb from the plasma membranes. 

MPs are submicron mem brane elements, mainly expressing phosphatidylserine at the  

plasma membrane. MPs are found in the circulation o f healthy subjects but their levels 

can increase in various pathological conditions such as thrombosis (Combes et al., 2005).

ABCAi appears to  target specific mem brane domains for lipid secretion, which are likely 

to  be regions that are sensitive to  accumulation of cholesterol and other lipophilic 

compounds (Yamauchi e t al., 2004). Thus, ABCAi removes cholesterol that accumulates 

as cytosolic cholesteryl ester lipid droplets. The ABCAi-dependent control of the lipid 

content o f the membrane dramatically influences the plasticity and fluidity o f the
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membrane itself. Two models have been proposed for the ability of ABCAi to  target 

specific lipid domains (Oram and Heinecke, 2005). The exocytosis model suggests that 

excess intracellular cholesterol is packaged into transport vesicles or rafts, perhaps in 

the Golgi apparatus, which then translocates to  domains in the plasma membrane 

containing ABCAi (Oram and Heinecke, 2005; Oram and Lawn, 2001). In support o f this 

mechanism, a recent study showed that overexpression o f ABCAi in the absence of 

apolipoproteins increases the appearance of cholesterol on the cell surface (Vaughan 

and Oram , 2003). The other model, retro-endocytosis, suggests that ABCAi- and 

apolipoprotein-containing vesicles endocytose extracellular material (e.g. cholesterol) to  

intracellular lipid deposits, where ABCAi pumps lipids into the vesicle lumen for release 

by exocytosis (Santamarina-Fojo et al., 2001; Takahashi and Smith, 1999). In support of 

this model, ABCAi has been shown to  recycle rapidly between the plasma membrane  

and the late endosomal/lysosomal compartments and that these compartments  

accumulate cholesterol in cells with dysfunctional ABCAi, and that ABCAi containing 

intracellular vesicles also contain apolipoproteins (Neufeld e t al., 2001; Neufeld e t al., 

2004).

Although the  structure o f ABCAi has not been determined, electron microscopy and X- 

ray crystallography o f other ABC transporters, which translocate lipids from the inner to  

the outer m em brane leaflets and which extrude a variety o f lipophilic compounds from  

cells, have generated molecular models that may apply to  ABCAi. It has been suggested 

tha t the tw o  symmetrical trans-membrane bundles come together to  form a chamber 

that scans the inner leaflet o f the membrane fo r substrates, incorporates them into the  

chamber, and flips them  to  the outer membrane leaflet fo r extrusion from  the cell (Oram  

and Heinecke, 2005). This involves a series o f conformational changes in the ABCAi 

protein that are probably driven by the NBD domains (Oram and Heinecke, 2005).

The structural studies suggest the following model for the ABCAi pathway. Excess 

cellular cholesterol along w ith phospholipids accumulate within domains of the cytosolic 

leaflet o f the plasma membrane or intracellular vesicle membranes. This cholesterol is 

not accessible to  apolipoproteins and therefore must be translocated to the cell surface 

or into the vesicle lumen for removal. These lipid domains may assemble around ABCAi 

molecules or ABCAi may migrate to  these domains a fter they are form ed. Other 

lipophilic molecules may also accumulate in these domains (Oram and Heinecke, 2005).
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In this model, the TM  chamber o f ABCAi Is initially open at the bottom . Excess cellular 

cholesterol, along w ith phospholipids that have accumulated in the cytosolic leaflet of 

membrane, are laterally transported into the chamber by a process that is facilitated by 

high-affinity phospholipid binding sites. This phospholipid recognition induces ATP 

binding to  the NBDs, which promotes their dimerization and thus closes the chamber. 

The trapped lipids are then flipped to  the outer membrane leaflet. The hydrolysis of ATP 

by the NBDs forms an ADP-bound interm ediate that changes the conformation of the 

TM domains, opening the chamber at the membrane outer leaflet. Lipids are extruded  

from the cham ber into cholesterol-rich domains on the cell surface, where they are 

removed by apolipoproteins. The structure o f the ABCAi chamber reverts back to its 

substrate uptake conformation after ADP dissociates from  the NBDs. The removal o f 

lipids by apolipoproteins is believed to consist o f a tw o  step process: first 

apolipoproteins bind to  ABCAi and then “solubilize” the ABCAi transported lipids (W ang  

et al., 2001b). It has been proposed that ABCAi carries out the flipping o f membrane 

phospholipids, principally phosphatidylcholine, and cholesterol towards the lipid-poor 

apoAl in nascent HDL particle, which can now accept cholesterol to  initiate RCT (Ishii et 

al., 2002).

1.2.4 Tissue specific expression
ABCAi mRNA is widely distributed among multiple tissues w ith variation in abundance at 

specific sites. The highest mRNA expression levels of ABCAi are detected in liver, heart, 

lung, placental trophoblasts, kidney, adrenal gland and small intestine. The lowest 

expression is found in the pancreas, ovary, colon, skeletal muscle, bone marrow and 

mammary glands. A t the cellular level, tissue macrophages as well as macrophage-like 

cell lines o f mouse or human origin express high levels o f ABCAi. The progression of 

foam cell form ation and atheroma developm ent are consistently influenced by the  

expression o f ABCAi in macrophages and other cell types. Early studies suggested that 

inactivation o f the ABCAi gene increases absorption o f dietary cholesterol, suggesting 

that ABCAi may facilitate the re-secretion o f sterols back into the intestinal lumen across 

the apical membrane. Thus, ABCAi may also suppress the flux of dietary cholesterol into 

the body. This was largely based on the observation that LXR/RXR agonists inhibit 

absorption o f dietary cholesterol in mice that is associated with an induction of intestinal 

ABCAi expression (Knight e t al., 2003; Repa et al., 2000b). A lack o f ABCAi in the 

Wisconsin Hypoalpha M utant (W H A M ) chicken does not impede LXR agonist-induced
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reduction in dietary cholesterol absorption but suppresses cholesterol secretion from  

the basolateral side o f the intestine (Mulligan e t al., 2003). It is therefore likely that 

intestinal ABCAi functions to  generate HDL particles that transport dietary cholesterol 

to  the liver, providing another protective mechanism against excess cholesterol 

overload (Mulligan e t al., 2003; Oram and Heinecke, 2005; Repa et al., 2000b).

1.2.5 Polymorphisms o f ABCAi
Mutations in ABCAi cause a severe HDL deficiency syndrome, called TD, that is 

characterized by deposition of sterols in tissue macrophages (Assmann et al., 1995; 

Hayden e t al., 2001). TD was first identified in the 1960s as an HDL deficiency syndrome 

affecting families in the Tangier Island in the Chesapeake Bay in USA (Fredrickson e t al., 

1961). In the  mid 1990s, It was discovered that the ability o f purified apoA-l to remove 

cholesterol and phospholipids from fibroblasts isolated from  TD patients was severely 

impaired (Francis e t al., 1995), consistent w ith a defective ABCAi. In 1999, four studies 

independently identified the defective TD gene as ABCAi (Bodzioch, 1999; Brooks-Wilson 

et al., 1999; Lawn e t al., 1999; Rust, 1999). The clinical manifestation of TD include 

premature coronary artery disease (Oram, 2000; Singaraja et al., 2003). The individuals 

are characterized by an accumulation o f cholesteryl esters in the reticulo-endothelial 

cells o f several tissues, including tonsils, thymus, lymph nodes, bone marrow, spleen, 

liver, gall bladder and intestinal mucosa. Many patients also have lipid deposits in SMCs 

and fibroblasts.

Over 70 mutations in the ABCAi gene have been identified in subjects w ith low plasma 

HDL levels, one-third o f which are missense mutations (Cohen e t al., 2004; Frikke- 

Schmidt et al., 2004; Singaraja et al., 2003). Although these mutations occur throughout 

the gene, they tend to  cluster in regions specifying for the extracellular loops, the NBD 

domains and the C-terminal region. The functional e ffect o f such missense mutations has 

been studied in cultured cells. W hen most o f these mutants are expressed in cells, they  

appear in the plasma membrane but have severely impaired lipid transport and 

apolipoprotein binding activities (Fitzgerald e t al., 2002; Lawn et al., 1999). There are, 

however, some substitution mutations, such as Q597R and R587W, that do not localize 

to  the plasma membrane (Rigot e t al., 2002; Tanaka et al., 2003). In addition, some of the  

missense mutations prevent ABCAi trafficking to  the plasma mem brane and cause 

severe HDL deficiency (Albrechta e t al., 2004). Furthermore, one m utant, W 590S, has
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been described that has normal apolipoprotein binding activity but defective lipid 

transport (Fitzgerald e t al., 2002).

Three independent studies have shown that ABCAi is responsible for the rate-limiting 

step in the efflux o f cholesterol from peripheral cells (Bodzioch, 1999; Brooks-Wilson et 

al., 1999; Rust, 1999). Because o f the im portant role o f ABCAi in cholesterol transport, 

several groups have examined the ABCAi gene for polymorphisms that might be 

associated w ith  plasma lipid levels and CVD. Polymorphisms in the ABCAi gene are 

associated w ith  either increased or decreased CVD (Singaraja e t al., 2003). Several of 

these com m on polymorphisms in the coding, prom oter and 5*- upstream regions are 

associated w ith  either low or high plasma HDL levels. For example, a com mon variant of 

ABCAi, the  R219K variant, which is found in 46% o f Europeans, lowers the risk of 

coronary artery disease (Trivedi, 2001). In the R219K variant, the amino acid arginine is 

replaced by lysine and this is associated with lower triglyceride levels and raised HDL 

cholesterol levels (up to  15 percent higher than normal) (Singaraja e t al., 2003). Carriers 

of this variant have 29% few er coronary events and have less bypass surgery. The 

variants, V771M and V825I, have also been reported to  be associated w ith increased HDL 

levels. O ther ABCAi mutations, such as the R1587K variant, is associated w ith low levels 

of HDL and causes familial hypoalphalipoproteinemia (Frikke-Schmidt e t al., 2004; 

Singaraja e t al., 2003).

The only naturally occurring animal model for TD is the W HAM  chicken. ABCAi in these 

chickens has a missense mutation near the N-terminus that produces a defective protein 

(A ttie  e t al., 2000). Similar to  human TD patients and ABCAi knockout mice, the W HAM  

chicken has very low  levels of HDL, due to  hypercatabolism of lipid poor apoA-l, and 

accumulates cholesteryl esters in tissues. The most severe lipid accumulation occurs 

particularly in hepatic parenchymal and intestinal epithelial cells (Schreyer e t al., 1994)-

Further advances on the role o f ABCAi have emerged from the development o f ABCA1-/- 

mice. Studies in these mice have provided additional evidence that ABCAi is a major 

determ inant o f plasma HDL levels. The phenotype in these mice is similar to that of 

human TD (Mcneish e t al., 2000; Orso e t al., 2000). Thus, the absence o f ABCAi in mice 

leads to accumulation o f sterols in some tissues and deficiency o f HDL, consistent w ith  

the function o f ABCAi in cholesterol trafficking across the plasma membrane. 

Conversely, overexpression o f human ABCAi in transgenic C57BL/6 mice results in
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elevation of HDL levels (Joyce et al., 2002; Singaraja et al., 2002). In general, ABCAi 

mutations that impair its function are associated w ith premature CVD (Cohen et al., 

2004; Frikke-Schmidt e t al., 2004; Singaraja e t al., 2003).

Such mouse models have provided support for the atheroprotective effects of ABCAi. 

Deletion o f mouse ABCAi results in a considerable reduction in the levels of plasma HDL 

(Orso e t al., 2000). However, there is no apparent change in arterial lesion formation 

when these mice are crossed w ith an atherogenic strain, such as apoE-/- or LDLR-/- 

(Aiello, 2002). This is probably because humans carry most o f their serum cholesterol in 

LDL rather than HDL (as mice do). If ABCAi is eliminated only from  macrophages (by 

bone m arrow  transplantation), serum HDL levels are relatively unaffected and this leads 

to  enhanced lesion form ation in recipient mice (Aiello, 2002; Van Eck et al., 2002). In 

contrast, overexpression of human ABCAi in transgenic mice results in protection 

against an atherogeneic diet (Singaraja e t al., 2002).

Studies on heterozygous TD patients have also demonstrated the importance o f ABCAi 

in RCT and atherosclerosis. These studies have estimated that individuals lacking 

functional ABCAi have a prevalence o f CVD that is at least six fold higher than those with  

a normal protein (Serfaty-Lacrosniere e t al., 1994). This moderately high risk for 

atherosclerosis is not as dramatic as would be expected for individuals w ith the absence 

o f HDL, a well known atheroprotective lipoprotein. The low levels of LDL may protect 

these TD heterozygotes from atherogenesis. Studies o f TD patients who tend to have 

more normal levels o f LDL show a significant inverse correlation between ABCAi and the  

prevalancy and severity o f atherosclerosis (Clee e t al., 2000). It has been shown that 

individuals w ho carry a single functional allele o f ABCAi show increase in the intima 

media thickness o f the arterial wall, a marker for atherosclerosis (Van Dam, 2002). 

Overall, all these studies suggest the importance o f macrophage ABCAi as a target for 

therapeutic interventions for treating atherosclerosis.

1.2.6 Regulation o f gene expression
This section will start w ith an overview o f eukaryotic gene expression and its regulation. 

The process of differential gene expression or the selective activation of different 

subsets of genes underlies processes such as differentiation, developm ent and disease. 

Selective activation of gene expression is carefully regulated and, ultimately, controls all 

functions o f cells, tissues and organs. Gene expression occurs in tw o steps: (i) the
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transcription of the information encoded in genomic DNA into a molecule of RNA; (ii) 

translation o f the information encoded in the nucleotides of mRNA into a defined 

sequence of amino acids in a protein.

1.2.6.1 Transcription
The transcription o f a DNA molecule into an RNA copy is achieved by a DNA-dependent 

RNA polymerase enzyme. Essentially, this enzyme catalyzes the joining of a single­

stranded chain of ribonucleotides via phosphodiester bonds, w ith  information 

concerning the order of the ribonucleotides being provided by the sequence of the DNA 

molecule being transcribed (Gelles and Landick, 1998). In eukaryotic cells RNA is 

synthesized by three polymerases that are responsible for transcribing the different 

types o f genes. These are: (i) RNA polymerase I, a nuclear enzyme tha t transcribes 

ribosomal RNA (rRNA) (18S, 5.8S and 28S) genes; (ii) RNA polymerase II that is located in 

the nucleoplasm and transcribes the genes that code fo r messenger RNA (mRNA); and 

(iii) RNA Polymerase III, which is also nudeoplasmic and transcribes the genes encoding 

transfer RNA (tR N A ) and small RNAs that play structural and catalytic roles in the cell. 

RNA transcribed by RNA polymerase I and ill are not translated into proteins but are 

involved in protein synthesis. The DNA-dependent RNA polymerase which transcribes 

genes coding fo r proteins is RNA polymerase II, a large multi-subunit enzyme. This 

process is described below in more detail.

Transcription of mRNA is initiated through the recruitment o f RNA polymerase II (Pol II) 

to  the promoters o f target genes. The transcription of all such genes requires the  

activity o f critical core prom oter elements that initiate the transcription and elongation 

o f RNA. In addition, upstream regulatory elements, enhancer and silencer regions are 

required fo r regulated and/or cell-type-specific gene transcription (See section 1.2.6.3). 

The core prom oter includes the TATA box, the TFIIB recognition element (BRE), the  

initiator (In r) or the downstream prom oter elem ent (DPE). Most, but not all, genes have 

a TATA box located 25 base pairs upstream or downstream of the transcriptional 

initiation site (also called CAP site). This elem ent helps to specify the precise site at 

which transcription is initiated by interaction w ith  the TATA box- binding protein (TBP). 

The exact sequence of the TATA box is variable, and a number of related thymine- and 

adenine-rich sequences all able to confer TATA box function. To initiate transcription, 

RNA polymerase II also requires various additional proteins, called general transcription
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factors (GTF) (Orphanides e t al., 1996; Roeder 1996). This occurs in conjunction w ith the 

assembly o f multiple components o f the basal transcription machinery, including GTFs, 

namely TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH, which bind in a series of ordered steps 

to  specific recognition sequences on the prom oter o f a gene close to the transcription 

initiation sites in order for RNA polymerase to bind and start transcription (Orphanides 

et al., 1996; Roeder 1996).

Transcription can be divided into three phases: initiation, elongation and termination. 

The initiation phase concerns RNA polymerase-mediated starting o f transcription on a 

DNA molecule (Gelles and Landick, 1998). For genes transcribed by RNA polymerase II, 

the initial contact is made by TFIID, which is a protein complex made up o f TBP and at 

least 12 TBP-associated factors (TAFs), to  the TATA box. TBP is a sequence-specific 

protein tha t binds to DNA via a specific domain that recognises the TATA box 

(Hernandez, 1993). During transcription, TAFs assist in the attachm ent o f TFIID to  the  

TATA box. A fte r TFIID has bound to  the core prom oter, the pre-initiation complex (PIC) 

is form ed by attachm ent of the remaining GTFs (Green, 2000). These GTFs bind to  the 

complex in the order TFIIA, TFIIB, TFIIF/ RNA polymerase II, TFIIE and TFIIH. The TFIIA 

binds and stabilizes the TFIID-TATA box complex. Next, TFIIB binds to  TFIID thus 

providing a physical link between TFIID and the RNA polymerase II which has already 

complexed w ith TFIIF at the  prom oter. TFIIB is im portant in ensuring the correct 

positioning o f RNA polymerase II relative to  the transcription start site. Then, binding of 

TFIIE and TFIIH com plete the transcription initiation complex so that RNA polymerase II 

can initiate transcription. TFIIH, which is a protein kinase and has an ATP-dependent 

helicase activity, is responsible for the unwinding o f the DNA helix, thereby allowing 

transcription to  begin. In addition, it will specifically hyperphosphorylate the carboxy- 

terminal domain (CTD) o f the largest subunit o f RNA polymerase II. The CTD is that 

portion o f the polymerase which is involved in the initiation o f DNA transcription. 

Initiation of RNA synthesis is accompanied by extensive phosphorylation of the CTD. 

RNA polymerase II containing nonphosphorylated CTD is recruited to the PIC whereas 

the hyperphosphorylated CTD form is involved in active transcription. This addition of 

phosphate groups to  CTD of RNA polymerase II is the final step in the assembly of the 

initiation complex, thereby causing RNA polymerase II to change its confirmation and 

dissociate from the initiation site and begin synthesizing RNA.
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Once a pre-initiation complex has been form ed and an appropriate RNA polymerase has 

attached to it in a functionally active state, transcription is initiated by separating the  

DNA strands to form an open complex. Eventually, transcription elongation begins. The 

RNA polymerase II engages in elongation by moving along the DNA tem plate, 

synthesizing RNA by covalently adding ribonucleotide triphosphates to  the 3* end of the  

growing RNA chain. Therefore, the polymerase extends the growing RNA chain in a 5* to  

3' direction. As the enzyme moves in a 3' to  5' direction along the antisense DNA strand, 

it unwinds the DNA and separates the DNA strands to  expose the tem plate strand for 

ribonucleotide base pairing, w ith the helix being reformed behind the polymerase 

(Gelles and Landick, 1998). In recent years, it has become apparent that transcription 

elongation is also a highly regulated process which can control multiple stages required 

for the m aturation o f mRNA. These pre-mRNA processing events are tightly coupled to  

transcription and take place with the elongation process. Such processing includes pre- 

mRNA capping at the 5' end and the addition o f a poly-A tail at the 3' end as well as 

removal o f introns by splicing and mRNA export. Capping and polyadenylation are 

thought to  increase the stability o f mRNA, to aid its export from  the nucleus and 

transportation to  the cytoplasm and to  generally identify the RNA molecule as an mRNA. 

This maturation of mRNA is used by the protein synthesis machinery as an indication 

that both ends o f the mRNA are present (Shatkin and Manley, 2000; Daneholt 1997).

The term ination of transcription, namely the dissociation o f the transcription complex 

from  the DNA tem plate to  release the newly transcribed mRNA and the ending of RNA 

synthesis, occurs at a specific DNA sequence known as the term inator. The exact 

molecular mechanisms controlling the termination process are still under investigation. 

This transcriptional term ination is necessary for maintaining active cellular RNA 

polymerase II and to  prevent erroneous transcription of downstream genes (Sims et al., 

2004).

1.2.6.2 Translation
Translation o f an mRNA into protein is a cyclic process that requires a large amount of 

energy in the form of ATP and GTP hydrolysis. Translation also occurs in three phases; 

initiation, elongation and term ination. Sequences within RNA provide structures to  

which ribosomes associate and so initiate translation. These sequences come into tw o  

parts: the ribosome binding sequence and the initiation codon. The ribosome binding
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sequence positions the ribosome so tha t translation can be initiated if there is a start 

codon on the mRNA at an appropriate position relative to  where the ribosome binds. 

Translation can be initiated once these tw o  parts come together. Although, the full 

details o f the initiation process are not fully understood, the following process is known  

to  occur. The first step involves the form ation o f the pre-initiation complex that consists 

of the small 40S ribosomal subunit, the initiation factor elF-2 bound to  the initiator M et- 

tRNA|met,a molecule of GTP and three additional initiation factors, elF-1, elF-iA and eIF-3. 

A fter assembly, the pre-initiation complex associates with the 5'end o f the mRNA. This 

step requires elF-4F, also called the Cap Binding Complex, which consists o f the initiation 

factors elF-4A, elF-4E and elF-4G. The factor elF-4G acts as a bridge between elF-4E, 

attached to  the CAP, and eIF-3 bound to  the pre-initiation complex (H entze 1997). The 

result is th a t the pre-initiation complex becomes attached to the 5'region o f the mRNA. 

This attachm ent is also influenced by the poly (A ) tail at the distant 3’ end o f the mRNA. 

Thus, the CAP structure and poly (A) tail probably work together (Preiss and Hentze 

1998). The poly (A ) tail could also have an im portant regulatory role, as the length of the  

tail appears to  correlate with the extent of the initiation that occurs w ith a particular 

mRNA. A fter becoming attached to  the 5' end o f the mRNA, the initiation complex has 

to  scan along the molecule and find the initiation codon. The start codon, which is 

usually s’-AU G ^’ is recognizable because it is contained in a short sequence called the  

Kozak consensus. Once the initiation complex is positioned over the initiation codon, the  

large 60S subunit o f the ribosome attaches to  form an 80S initiation complex. This 

attachm ent requires hydrolysis of GTP and leads to the release o f the initiation factors. 

Two final initiation factors are involved in this stage, elF-5 and elF-6. EIF-5 aids the  

release o f the other factors and elF-6 is associated w ith the unbound large subunit and 

prevents it from attaching to  a small subunit in the cytoplasm (Sachs and Varani 2000).

The ribosome binds to  the mRNA at the start AUG codon that is recognized only by the  

initiator tRNA. This then leads to  the elongation stage of translation, which requires 

three elongation factors, eEF-iA, eEF-IB and eEF-2. Essentially eEF-1 controls the insertion 

of new charged tRNA and eEF-2 controls translocation of the ribosome following  

peptide bond form ation (Green, 2000). During this stage, complexes composed of an 

amino acid linked to  tRNA sequentially bind to the appropriate codon in the mRNA by 

forming com plementary base pairs with the tRNA anticodon. The ribosome moves from  

codon to codon along the mRNA. Amino acids are added one by one into a polypeptide
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sequence that is dictated by DNA and represented by mRNA. The genetic code in the  

mRNA molecule is thus used to  build up a polypeptide chain. Protein synthesis ends 

when one o f the three termination codon is reached on the RNA (Frank, 2000). Two  

release factors, eRF-1 and eRF-3 recognize the term ination codons (UAA, UAG and UGA). 

The release factors term inate translation and release the com plete polypeptide chain 

from the ribosome. The dissociated ribosome subunits enter the cytoplasm where they  

remain until used again in another round of translation (Frank, 2000).

Translation is not the final stage in the regulation of gene expression. The polypeptide 

that dissociates from  the ribosome is usually inactive and, before taking on its functional 

role in the cell, may undergo one o f the following four types of post-translational 

processing (Paulus, 2000; Wickner et.al. 1999). The first type, protein folding, involves 

folding o f the  polypeptide chain into its correct tertiary structure. The second type, 

proteolytic cleavage, involves cleavage of the polypeptide at specific sites by proteases. 

In the third type, chemical modification, individual amino acids in the polypeptides or the  

amino or carboxy groups of the terminal amino acids might be modified by attachment 

of new, small chemical groups (e.g. an acetyi, methyl or phosphate group). Such 

chemical modifications often play an im portant role in determining the precise activity of 

the target protein and have im portant regulatory roles, such as activation of signal 

transduction. The fourth type, intein splicing involves removal o f inteins, intervening 

sequences in some proteins, by an endogenous activity and joining o f exteins in order 

for the protein to  become active.

Cell must also ensure that the newly synthesized protein is transported to its correct 

location where it can carry out its function. This process is called protein targeting. In a 

cell, the protein may be destined to stay in the cytoplasm (e.g. enzymes involved in 

glycolysis) or, alternatively, it may need to  be targeted to an organelle such as 

mitochondria, peroxisome, lysosome or the nucleus, or even be inserted into the plasma 

membrane or exported out o f the cell. Essentially, if a protein is destined for the  

cytoplasm, it is made on free ribosomes in the cytoplasm and released directly. If it is 

destined for other final locations, specific protein-targeting mechanisms are involved 

(Bernstein, 2000; Bukau et al., 1996). For example, those destined for the nucleus have 

one or more internal nuclear localization sequences. Specific proteins bind to the
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sequence once the protein has been synthesized by free ribosomes and target it to  the  

nucleus via a process that requires energy (Johnson, e t al., 2002).

The secretory proteins have an N-terminal signal peptide that directs the secretory 

protein to  the rough endoplasmic reticulum (RER) mem brane and so targets the protein 

to  cross into the RER lumen and be exported. The signal peptide opens the translocon 

channel and leads the nascent polypeptide through it as it is synthesized. On reaching 

the ER lumen, the signal peptide is cleaved o ff and the polypeptide moves to the Golgi 

complex tha t is near the RER by vesicular transport. The polypeptide then moves 

through the Golgi complex to the trans compartment, being processed en route by, for 

example, attachm ent o f carbohydrate residues (glycosylation). The vesicles bud from  

the trans com partm ent and carry the glycosylated, secretory proteins to  the plasma 

membrane w here the vesicle fuse, thereby releasing their content to  the cell exterior 

(Bernstein, 2000; Bukau et al., 1996).

The synthesis of integral membrane proteins is also mediated by ribosomes on the RER, 

but the  polypeptide chain becomes inserted in the RER membrane rather than being 

transported into the lumen. During transport to  the Golgi and then to  the cell surface, 

these proteins stay anchored in the membrane. In this case, in addition to  the signal 

peptide, the polypeptide chain contains a stop transfer or anchor signal that fixes the  

protein in the membrane and the final vesicle which fuses w ith  the plasma membrane 

becomes part o f it. This transfer o f proteins across the ER membrane occurs during 

synthesis by a mechanism similar to  that for secretory proteins. GTP hydrolysis plays an 

im portant part in these processes w ith GTP-binding proteins acting as molecular 

switches. The proteins undergo aliosteric changes when GTP replaces GDP or bound GTP 

is hydrolysed (Eicher and Irihimovitch, 2003).

1.2.6.3 Transcriptional control of gene expression
Gene expression can be regulated at many o f the steps in the pathway from DNA to RNA 

to  protein (Figure 1.5). Thus, a cell can control the levels o f protein present by regulating 

the transcription o f DNA to  mRNA, modification o f mRNA, export of the mRNA from  

nucleus to  the cytoplasm and, finally, by selective mRNA translation to  a specific protein. 

In addition, the regulation of gene expression is subject to mRNA degradation and 

protein activity control. For most genes, transcriptional control plays a major role in
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processes such as development and differentiation along with a cell's response to  

metabolic needs and environmental stimuli.
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Figure 1.5 Regulation of gene expression.

Gene expression can be controlled at several different steps, although for most genes the main 
site of control is transcription of DNA into RNA.

Gene transcription is generally controlled by interaction of DNA binding proteins (cis- 

acting elements) to specific regulatory sequences (trans-acting factors) in target genes. 

These DNA sequence elements are usually located in the 5' region of a gene upstream 

from the transcriptional initiation site. These DNA sequence involved include the 

promoter region, which consists of core promoter and upstream regulatory elements 

(UPEs), and the enhancer elements and silencer regions (Latchman 1998). 

Transcriptional regulation occurs via transcription factors other than GTFs that bind to 

short control elements associated with the regulatory regions of target genes, and then 

interact with each other and with the transcription initiation complex by protein-protein 

interaction to activate or repress the rate of transcription of the target gene 

(Orphanides et al., 1996; Roeder, 1996). Recruitment of specific co-activator or co­

repressor proteins are required to aid transcription.

Upstream promoter elements (UPEs) contain tw o types of sequences. The first type are 

those sequences that are found in many genes that exhibit distinct patterns of
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regulation, and are therefore likely to  be involved in the basic process o f transcription 

(often  referred to as the general transcription factor machinery). The second type is 

those that are only in genes transcribed in a particular tissue or in response to  a specific 

signal (activated transcription) (Latchman 1998). Several sequences are involved in the 

basal transcription machinery (e.g. TATA box). The UPEs are usually located within 100- 

200bp upstream from  the transcription start site and play an im portant role in ensuring 

efficient transcription from the prom oter and are also involved in regulation. These UPEs 

contain multiple binding sites for a range of different regulatory transcription factors 

(TFs). These TFs regulate gene transcription by binding to their specific recognition DNA 

sequence elements which are distinct from the core prom oter and interact w ith RNA 

polymerase II general transcription factor machinery which is bound at the core 

prom oter (Latchman 1998; Orphanides e t al., 1996).

The additional DNA sequence elements involved in the regulation of transcription are 

enhancers and silencers. These elements affect the level o f gene transcription 

irrespective o f whether they are in an upstream position, downstream position or within 

the coding region in any orientation relative to the transcriptional start site. Enhancers 

also contain multiple binding sequences for TFs that act to  alter the rate of gene 

transcription either positively or negatively. Such binding of TF provides a mechanism for 

tissue- and stimulus-specific gene expression.

In most cases, the TFs that bind to  enhancer or prom oter sequences are activator 

proteins that induce gene transcription. These proteins have at least tw o  distinct 

domains, the DNA binding domain, that recognizes the specific DNA sequence to bind 

to, and the activation domain, that is responsible for bringing transcriptional activation 

by interaction w ith other TFs and/or the RNA polymerase complex. Many TFs operate as 

dimers, either homodimers or heterodimers, w ith subunits held together via 

dimerization domains. Finally some TFs (e.g. NR) are responsive to specific small 

molecules (ligands) which regulate their activity. In these cases, the ligand binds at a 

ligand binding domain in the TF (See section 1.3).

DNA binding domains contain characteristic protein motifs. For example, the helix-turn- 

helix m otif contains tw o a-helices separated by a short (3-turn. W hen the TF binds to 

DNA, the recognition helix lies in the major groove of the DNA double helix. The second 

type o f DNA binding domain is the zinc finger motif, which consists o f a peptide loop
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w ith either tw o  cysteines and tw o  histidines (the  C2H2 finger) found, for example, in GTFs 

or four cysteins (the  C4) finger (e.g. NRs) that coordinates a zinc ion. A particularly 

im portant difference between the tw o  fingers is that the C2H2 proteins generally contain 

three or more repeating finger units and bind as monomers. In contrast, the C4 zinc 

finger proteins generally contain only tw o finger units and generally bind to DNA as 

homodimers or heterodimers. The zinc finger m otif secondary structure consists o f tw o  

antiparaliel p-strands and one a-helix. TF often contain several zinc fingers, in each case 

the a-helix binds to  the major groove of the DNA double helix. Some TFs (e.g. the basic 

leucine zipper proteins (bZIP)) contain basic domains that interact w ith  the acidic target 

DNA (Latchman 1998). The Leucine zipper has a sequence consisting o f a leucine residue 

at every seventh amino acid and forms an a- helix w ith the leucines presented on the  

same side o f the helix every second turn, thereby giving a hydrophobic surface. Two TF 

monomers can interact via the hydrophobic faces o f their leucine zipper motifs to  form a 

dimer. The preceding regions are rich in basic amino acids and interact w ith the acidic 

DNA. Finally, the Helix-Ioop-helix (HLH) m otif contains tw o  potential a-helices connected 

by a non-helical loop of variable length. The carboxy-terminal a-helix has a hydrophobic 

face and tw o  TF monomers, each with an HLH m otif, can dimerize through this 

(Latchman 1998). Interaction w ith DNA is again achieved through dusters of basic amino 

acids.

Unlike DNA binding domains and dimerization domains, common structural motifs have 

not yet been identified in the activation domains of TFs. A transcription factor may 

contain 2 to 5 activation domains in its coding region, either the same type or different. 

Many different types o f activation domains have been identified and include: (i) acidic 

activation domains, which are rich in acidic amino acids (e.g. aspartic and glutamic 

acids); (ii) glutamine-rich domains (such as SP-1 transcription factor); and (iii) proline-rich 

domains (such as c-Jun transcription factor). Transcriptional repressor proteins that 

inhibit the transcription o f specific genes also exist. They may act by binding either to  

control elements within the prom oter region near the gene or at sites located a long 

distance away from  the gene, called silencers. The repressor protein may inhibit 

transcription directly. However, other repressors inhibit transcription by blocking 

activation (Brivanlou and Darnell, 2002). The next section will discuss the analysis of 

ABCAi gene prom oter and the regulation o f ABCAi expression.
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1.2.7 Analysis o f the ABCAi gene prom oter
The ABCAi gene in the human and mouse genomes has been mapped to human 

chromosome 9q3i and mouse chromosome 4q23.i (Luciani et al., 1994). The human 

ABCAi gene comprises 50 exons spanning 150 kb (Santamarina-Fojo et al., 2000). 

Comparative analyses o f the mouse and human ABCAi promoters have identified 

im portant functional motifs that are strongly conserved betw een the tw o  species. The 

human ABCAi prom oter region contains multiple binding motifs for transcription factors 

with roles in lipid metabolism, such as SP1, NF-k B and AP-1, as well as a TATA box, a CAAT 

box and three E-box motifs (Figure 1.6) (Santamarina-Fojo et al., 2001). In addition, the  

ABCAi gene prom oter contains multiple binding motifs for the liver-enriched 

transcription factor hepatocytes nuclear factor (HNF)-3p. Potential binding sites for 

transcription factors known to  play a role in monocyte/macrophage differentiation, 

including STATs, c-Myb and GATA were also identified (Santamarina-Fojo e t al., 2000). 

Moreover, initial studies on the human ABCAi prom oter in RAW264 cells localized a 

cholesterol response elem ent within the first 990 bp upstream of the transcriptional 

start site (Santamarina-Fojo et al., 2000). Subsequent studies led to  the identification of 

specific motifs that modulate ABCAi gene expression in response to  oxysterol-induced 

transcription through the LXRs (Costet e t al., 2000; Schwartz e t al., 2000). A major 

finding was the presence of a direct repeat o f the NR half-site TGACCT, separated by 

four bases (DR4), as the elem ent responsible for the LXR-dependent trans-activation of 

the human ABCAi gene prom oter (Costet e t al., 2000; Schwartz e t al., 2000). This 

sequence binds the heterodim er o f LXR with the obligate partner retinoid X receptors 

(RXR) (Costet e t al., 2000; Schwartz e t al., 2000; Venkateswaran e t ai., 2000a).

Such sterol-mediated upregulation o f ABCAi expression requires activation o f the  

LXR/RXR heterodimer, as indicated by the finding that it can be reproduced by a 

synthetic, non-steroidal LXR ligand along w ith the absence o f such regulation in cells 

derived from mice lacking LXRa and LXRp (Costet e t al., 2000; Repa e t al., 2000b). 

Incubation of human embryonal kidney 293 cells and CV-1 cells (Costet e t al., 2000), 

along with RAW264 macrophages (Schmitz and Langmann, 2001), w ith 9-c/s-retinoic acid 

(9CRA), 20-(S)-hydroxy cholesterol or 22-(R)-hydroxy cholesterol (22(R)-HC) resulted in
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Figure 1.6 The sequence of the human ABCAi promoter.

The sequence of the human ABCAi promoter region is shown. The location of some potential 
binding sites for transcription factors in the distal and proximal promoter regions are 
highlighted. The transcription start site (G) is indicated as +1. Adapted from Santamarina-Fojo et 
al.t 2000.

up to 9-fold induction in the expression of a luciferase reporter construct driven by the  

ABCAi gene promoter. Addition of both RXR agonist 9CRA and LXR agonist (oxysterols) 

resulted in further induction of the expression of the gene (up to 37-fold). Interestingly, 

mutation of this LXR motif markedly diminished the induction of the ABCAi promoter
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activity by oxysterols and 9CRA (Yang et al., 2000). On the other hand, the E-box motif, 

located -147 bp upstream of the transcriptional start site, mediates repression of the  

hABCAi gene expression (Yang et al., 2002). The transcriptional factors upstream  

stimulatory factors-1 and -2 (USF1 and USF2) and the transcriptional repressor Fra2 bind 

to  the E-box m otif and facilitate this repression (Yang et al., 2000).

1.2.8 Regulation of ABCAi expression
The essential role played by ABCAi in RCT and its identification as a protector against the  

risk of CVD initiated studies to decipher how its expression is controlled both at the  

transcriptional and post-transcriptional level. The expression o f ABCAi is highly 

regulated (Table 1.1). For simplicity, I will describe the regulation in three major groups: 

NRs such as LXRs, peroxisome proliferator activated receptors (PPARs) and the bile acid 

receptor, farnesoid X receptor (FXR), all o f which act as heterodimers w ith RXRs (Repa 

et al., 2000b), cyclic adenosine monophosphate (cAMP) as an example of a second 

messenger, and cytokines, which can exert pleiotropic effects on ABCAi expression.

1.2.8.1 Transcriptional regulation of ABCAi expression by nuclear receptors
While basal levels o f ABCAi mRNA and protein in macrophages are iow, they are induced

by cholesterol loading and can be reversed by HDL-mediated cholesterol efflux. 

Langmann e t al. (1999) first demonstrated upregulation of ABCAi mRNA and protein 

levels in human monocyte-derived macrophages after incubation w ith  acetylated LDL. 

This increase in ABCAi expression was reversed by subsequent deioading of 

macrophages by incubation with HDL3 (Langmann et al., 1999). Additional evidence that 

ABCAi expression is induced by cholesterol loading and reduced by subsequent 

cholesterol removal was provided by Lawn et al. (1999) using quantitative RT-PCR. These 

authors observed a 17-fold increase in ABCAi mRNA levels following incubation of 

fibroblasts in serum-free medium containing cholesterol (Lawn et al., 1999). In addition, 

cell culture conditions that suppress cell grow th, such as serum deprivation, enhances 

ABCAi gene expression, whereas growth of fibroblasts in serum-containing media 

suppresses ABCAi expression (Lawn et al., 1999). Thus, it appears that ABCAi-mediated 

cellular lipid efflux requires cell quiescence. The activation o f LXR/RXR induces 

transcription of ABCAi which helps reduce the cholesterol content o f macrophage foam  

cells and plays a significant role in the RCT pathway (Costet et al., 2003; Langmann et al., 

2005; Venkateswaran et al., 2000a; Zhang and Mangelsdorf, 2002).
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Table 1.1: Transcriptional regulation of ABCAi. Table derived from Schmitz and Langmann, 2005; 
Zarubica et al., 2007. (+) Induction, (-) Repression___________________________________________

1
Secondary messengers

Le G off e t  al.,

Nucleotide analogs RAW264.7, J774 cAMP + 2006; O ram  e t  al., 

200 0

Lipids

Macrophages,
Oxysterols, LXR agonists intestine, liver, Sertoli LXRa, LXR(3 

cells, neuronal cells
+

Costet e t  al., 2000; 

Koldam ova e t  al., 

2003; M ascrez e t 

al., 2 00 4

Retinoids Macrophages
RXRa, RARy, 
LXRa

+
C o ste t e t  al., 2003; 

W a g s a te r e t  al., 

2 0 0 3

PPARa agonists
Macrophages,
intestine

PPARa +
C h ine tti e t al., 2001

C h aw la e t  al.,

PPARy agonists Macrophages PPARy + 2001a; C h ine tti e t  

al., 2001; Li e t  al., 

20 0 4

PPAR5 agonists THP-1 PPAR5 + O liver e t  al., 2001

PXR-agonist
HepG2, rat 
hepatocytes

Rifampicin, LCA, 
PCN

+
S chm itz and  

Langm ann, 200 5

Polyunsaturated fatty 
acids

J774, RAW264.7 7 -
W an g  and O ram , 

2002

Cholesterol depletion HUVEC SREBP2 - Z en g  e t  al., 200 4

ggPP THP-1, CaCo-2 ggPP, Rho - Gan e t  al., 2001

Hormones
Estrogen Liver, intestine ERa + Srivastava, 2002b

Androgen LNCaP ■> - Fukuchi e t  al., 2004

Thyroid hormone Fibroblast, 293T TRa -
H u u s k o n e n e ta l.,

200 4b

| Cytokines

TNFa J774 ■> - K hovidhunkit e t  

al., 2003

IL-ip J774 7 - Khovidhunkit e t  

al., 2003

LPS RAW 64.7, J774 N F - k B - Khovidhunkit e t  

al., 2003

IFNy Macrophages STAT1 -
Panousis and  

Zuckerm an, 20 0 0

TGF(3 Macrophages 7 + Panousis e t  al., 

2001

PPAR-a and -y also participate in the upreguation of ABCAi expression and RCT indirectly 

via enhanced transcription of LXRa (Chawla et al., 2001a; Chinetti et al., 2001; Chinetti- 

Gbaguidi et al., 2005). Chinetti et al. (2001) reported that PPARa and PPARy agonists 

induce ABCAi mRNA expression and apoA-l-mediated cholesterol efflux in normal
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macrophages but not in macrophages from patients with TD (Chinetti e t al., 2001). The 

expression of LXRa mRNA was also induced by these agents. Furthermore, the addition 

of both PPAR and LXR activators had an additive effect on ABCAi expression. Around 

the same tim e, Chawla et ai. (2001a) dem onstrated that ligand-mediated activation of 

PPARy leads to  induction o f LXRa expression and enhanced macrophage expression of 

mouse ABCAi (Chawla et al., 2001a). However, no functional PPAR response element has 

been identified in the ABCAi prom oter. The results o f these findings indicate that PPAR 

agonists might indirectly modulate ABCAi gene expression by activation of the LXRa 

pathway, and thereby illustrate a complex interaction between PPARa, PPARy and LXRa 

in the cellular regulation o f ABCAi gene expression.

The downreguiation o f ABCAi transcription can be achieved through pregnane X 

receptor (PXR) activated by a wide variety o f compounds including natural and synthetic 

androgens (Schmitz and Langmann, 2005; Sporstol e t al., 2005) or through thyroid 

hormone receptor (TR), TR/RXR dimers and geranylgeranyl pyrophosphate (ggPP), an 

intermediate in the endogenous mevalonate pathway (Gan et al., 2001).

1.2.8.2 Transcriptional regulation of ABCAi expression by cyclic AMP
cAMP is a ubiquitous second messenger involved in the control of a variety of

physiological events from  muscle contraction to memory, and in cellular functions such 

as growth (Cooper, 2003). cAMP also plays an im portant role in the upregulation of 

ABCAi gene expression by acting both at the transcriptional and translational level. 

Lawn e t al. (1999) showed a 10-fold increase in ABCAi mRNA expression in fibroblasts 

incubated w ith a cell permeable and non-hydrolysable cAMP analog, 8-Br-cAMP (Lawn et 

al., 1999). Abe-Dohmae et al. (2000 ) also demonstrated that pre-incubation o f RAW264 

macrophages w ith dibutyryl cAMP induces specific apoA-l binding to the cell surface and 

apoA-l-mediated cholesterol efflux as well as a 9- to  13-fold increase in ABCAi mRNA 

levels (Abe-Dohmae et al., 2000). In addition, Takahashi et al. (2000) identified the 

ABCAi gene as one o f the targets up-regulated by treatm ent o f RAW264 cells w ith cAMP 

(Takahashi et al., 2000). In separate studies, treatm ent o f mouse macrophages (RAW264 

and J774 cells) w ith 8-Br-cAMP also caused increases in apoA-l-mediated cholesterol 

efflux, ABCAi mRNA and protein levels, as well as the incorporation o f ABCAi into the  

plasma membrane and the binding of apoA-l to  cell surface ABCAi, whereas it had little 

or no effect on ABCAi mRNA expression in human tissues, arguing for different
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regulation between cell types and species (Oram e t al., 2000). This effect has been 

linked to  an increased stability o f ABCAi mRNA upon stimulation of the cells w ith cAMP. 

However, the identification o f a cAMP-responsive elem ent essential for the induction of 

ABCAi gene expression has recently been reported (Le Goff et al., 2006). This acts in 

conjunction with a nearby signal transducers and activators o f transcription protein 

(STAT) 3/4 elem ent and is not conserved in the human ABCAi gene, explaining the lack 

of cAMP stimulation of the human ABCAi gene (Le Goff et al., 2006). The outcome of 

these combined cell culture studies have provided evidence tha t ABCAi is a cAMP- 

inducible transporter in mice that promotes cellular efflux o f lipids (Le Goff et al., 2006).

1.2.8.3 Transcrfptfonal regulation of ABCAi expression by cytokines
Cytokines have been shown to exert pleiotropic effects on ABCAi gene transcription. In

general, pro-inflammatory cytokines, TNF-a, IFN-y and interleukin-i(3 (IL -ip) down- 

regulate the LXR-mediated enhancement o f ABCAi gene transcription and protein 

expression (Lusis, 2000; Panousis and Zuckerman, 2000). IFN-y also reduces ABCAi 

mRNA expression as well as cholesterol and phospholipid efflux to  apoA-l in mouse 

peritoneal macrophages and foam cells (Panousis and Zuckerman, 2000). These authors 

have suggested that by decreasing cellular cholesterol efflux through pathways that 

include the upregulation of ACAT expression and the downregulation o f ABCAi 

expression, IFN-y may prom ote the conversion of macrophages into foam  cells, thereby  

accelerating the progression of atherosclerosis. In contrast, transforming growth factor- 

13 (TGF-(3) has the reverse effect and induces ABCAi expression (Panousis et al., 2001). 

These results reinforce the recent findings o f multiple interactions between cellular 

handling o f cholesterol and inflammatory responses mostly mediated at the LXR level. 

The activation o f LXR indeed exerts a global anti-inflammatory effect and promotes 

macrophage survival (Castrillo et al., 2003b; Chawla et al., 2001a).

1.2.8.4 Post-transcriptional modulation of ABCAi expression and activity
After cells, particularly macrophages, are loaded with cholesterol, several protein

kinases influence the expression and activity o f ABCAi (Oram and Heinecke, 2005; 

Schmitz and Langmann, 2005). There is emerging recent evidence that ABCAi 

expression and function is regulated at a post-transcriptional level, via control o f either 

protein stability and turnover or its activity (Llaverias et al., 2005). The basal cellular 

levels o f ABCAi transporter are controlled by calpain-mediated degradation (Trompier
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and Chimini, 2005). It has been shown that ABCAi contains so called PEST (Pro-Glu-Ser- 

Thr) sequences required for proteolysis through the calpain pathway. The calpain 

mediated proteolytic degradation o f ABCAi is mainly regulated by protein kinase A  

(PKA)-dependent phosphorylation of the PEST sequence (M artinez e t al., 2003; Wang et 

al., 2003a). Binding o f apoA-l also greatly stabilizes ABCAi by inhibiting calpain-mediated 

degradation (M artinez et al., 2003; W ang et al., 2003a). Polyunsaturated fatty  acids, in 

addition to  acting as inhibitors of LXR-stimuIated gene expression, increase the already 

rapid turnover of ABCAi in macrophages and thereby diminish the cell surface 

expression of this protein (W ang and Oram, 2002).

ABCAi activity is under the control o f diverse protein kinases (Table 1.2). Activation of 

PKA by cAMP is required for optimum lipid transport activity of ABCAi (See et al., 2002; 

Tang e t al., 2004a). ABCAi is constitutively phosphorylated by PKA at serines 1042 and 

2054 in RAW 264.7 macrophages. Such ABCAi phosphorylation directly modulates its 

activity and the downstream efflux o f phospholipids and cholesterol to the acceptor 

ApoA-I (See e t al., 2002). It has also been reported that ApoA-l docking at the cell 

surface also induces ABCAi phosphorylation through the cAMP/PKA dependent pathway 

(Haidar et al., 2004; Zarubica et al., 2007). Casein kinase2 (CK2), conversely acts as a 

down-regulator o f ABCAi activity by phosphorylating amino acid residues located 

downstream of the first NBD (Roosbeek et al., 2004). In addition, other regulatory 

kinases have been reported to  contribute to ABCAi-dependent efflux o f lipids by acting 

on targets other than the transporter itself (Tang et al., 2004a). For example, Janus 

kinase 2 (JAK2) is required for the interaction o f apolipoproteins w ith ABCAi but has 

little effect on the intrinsic cholesterol flipase activity (Tang et al., 2004a). Moreover, 

there is evidence that protein kinase C (PKC) may play a role in modulating the lipid 

transport activity o f ABCAi. Several studies have shown that inhibition or activation of 

PKCs decrease or increase respectively, cholesterol efflux from cells to HDL or purified 

apoA-l (Li e t al., 1997; Mendez et al., 1991; Theret e t al., 1990; W alter et al., 1995), 

implicating PKC isoforms as modulators of ABCAi activity. However, short term  

treatm ent o f ABCAi transfected cells w ith  different PKC inhibitors has been shown to  

have no effect on apoA-l-mediated phospholipid or cholesterol efflux (Tang e t al., 

2004a), thereby suggesting that PKCs do not directly activate ABCAi but modulate 

trafficking o f lipid substrates to  ABCAi.
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Table 1.2: Regulation of ABCAi activity. Table derived from Oram and Heinecke, 2005. (+) 
increase; (-) decrease.

Signalling
Apolipoproteins? PKA + Lipid transport ABCAi

phosphorylation
Haidar et al., 
2004

CK2 - Lipid transport ABCA1
phosphorylation

Repa et al., 
2000b

Apolipoproteins JAK2 +ApoA-l binding ■> Takai etal., 2001

Apolipoproteins PKC + Lipid transport ABCA1
phosphorylation?

Lewis et al., 2001

Substrate
trafficking
Apolipoproteins PKC +Cholesterol

transport
Cholesterol
trafficking

Wu etal., 2004a

Partner proteins
•> Cdc42 + Lipid transport ABCAi binding Tontonoz and 

Mangelsdorf, 
2003

Abbreviation: Cdc42, cell division cycle 42; CK2, casein kinase2; JAK2, janus kinase2; PKA, protein 

kinase A; PKC, protein kinase C.

The activity of the ABCAi pathway is influenced by factors that control intracellular 

trafficking of lipids (Table 1.2). Trafficking of lipid substrates to ABCAi may also be 

mediated by signalling processes elicited by the interaction of apolipoproteins with 

ABCAi-expressing cells (Oram and Heinecke, 2005). Yamauchi et al. (2004) has reported 

that the ability of apolipoproteins to remove cholesterol selectively from sites of 

cholesterol esterification involves activation of PKC by apolipoproteins (Yamauchi et al., 

2004). There is also growing evidence that the activity of ABCAi is modulated by its 

interaction with a diverse group of proteins (Table 1.2). For example, cdc42, a member of 

the Rho GTPase family, directly interacts with ABCAi and forms complexes with proteins 

that control cytoskeletal elements and intracellular lipid transport (Diederich et al., 2001; 

Nofer et al., 2003; Nofer et al., 2006).

Collectively, the previous section has given a brief overview of the various factors that 

are able to modulate ABCAi expression. The major focus of this study is to investigate 

the regulation of ABCAi by the principal controller LXRs. Therefore, the next section will 

discuss these members of the NR family in more detail.
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1.3 Liver X receptors
NRs are members o f a superfamily o f transcription factors that are regulated by small 

lipophilic molecules such as steroids, thyroid hormones (TH), retinoids (vitamin A 

metabolites) and vitamin D3 (Aranda and Pascual, 2001; Crestani e t al., 2004b; Mckenna 

and O'Malley, 2001,, 2002b). A t least 48  types o f NRs have been identified in the human 

and mouse genomes and are divided into tw o general subfamilies (Escriva et al., 2004; 

Geyeregger e t al., 2006). Type 1 receptors include steroid horm one receptors, which in 

unstimulated cells are usually sequestered in the cytoplasm by heat shock proteins. 

Upon ligand binding, these receptors form homodimers and migrate into the nucleus 

where they regulate the transcription o f their target genes. Examples o f such receptors 

include the estrogen receptor (ER), androgen receptor (AR), progesterone receptor 

(PR) and glucocorticoid receptors (GR), as well as RXR (Crestani e t al., 2004b). Type 2 

receptors include a large number o f receptors that are mainly localized in the nucleus 

even in the absence o f their ligands. These receptors are characterized by the form ation  

of heterodimers w ith RXRs and include: LXR (Lehmann et al., 1997; Willy et al., 1995), 

PPAR, TR, Vitamin D receptor (VDR) and retinoic acid receptor (RAR) (Crestani et al., 

2004b). In addition, the NR superfamily also includes a large number o f orphan 

receptors for which the ligands have, as yet, not been identified (Aranda and Pascual, 

2001; Evans, 1988; Mandelsdorf e t al., 1995). In addition to  direct ligand-mediated 

activation o f NRs, they are also regulated at a post-translational level that may be 

brought about by interactions with diverse signal transduction pathways, including 

mitogen activated protein kinases (MAPKs), PKA and PKC (Rochette-Egly, 2003; Tata,

2002). NRs and their cognate ligands serve as potent regulators of expression of key 

genes involved in diverse aspects o f development, reproduction, immune function and 

homeostasis (Chawla e t al., 2001b; Francis et al., 2003). Several NRs have been shown to  

play im portant physiological roles in macrophages. In particular, LXRs, which recognise 

oxysterol ligands, are key regulators of lipid metabolism.

Two LXR members have been identified, LXRa and LXRp (also known as NR1H3 and 

NR1H2 respectively). These share a high degree o f amino acid similarity (78% in both their 

DNA-and ligand-binding domains) and appear to  respond to the same endogenous 

ligands (Alberti e t al., 2000) but differ in their tissue distribution. LXRa was first 

identified in the liver (hence the name liver X receptor) but is now known to be 

expressed at high levels in other metabolically active tissues/cells, particularly those
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associated with lipid metabolism, such as macrophages, intestine and adipose tissue, 

where its expression is induced in response to  cholesterol accumulation (Willy e t al.,

1995). In contrast, LXR(3 is expressed in a ubiquitous manner (Song et al., 1995). A dozen 

or more LXR target genes have been identified and the majority of them appear to  have 

one o f tw o  biological functions; firstly, removal o f excess cholesterol through efflux, 

catabolism or decreased absorption; and secondly, synthesis o f fa tty  acids (Chawla et al., 

2001b; Joseph and Tontonoz, 2003).

1.3.1 LXR protein structure
The LXR subfamily are considered as ‘metabolic receptors', which includes PPARs and 

FXR, and they are key "actors” in the integrated regulation of lipid and glucose 

metabolism (Edwards et al., 2002a). Like other members of this NR class, LXRs have a 

conserved modular structure with six different regions, commonly labelled A to F, 

corresponding to  autonomous functional domains that can be interchanged between  

related proteins w ithout loss of function (Figure 1.7) (Aranda and Pascual, 2001; 

Geyeregger et al., 2006; Gronemeyer e t al., 2004; Rochette-Egly, 2003). These domains 

are described below in detail

The DNA binding domain (DBD) (region C in Figure 1.7) is the most conserved region and 

consists o f tw o highly conserved zinc finger motifs that allows the receptor to recognize 

specific DNA consensus sequences known as hormone response elements (HREs). In 

addition to  the zinc finger motifs, this domain is composed of tw o  a-helices and a C- 

terminal extension (CTE). Helix 1 and Helix 2 cross at right angles to form  the core of the 

DBD folding that recognizes a hemi-site o f the response elem ent (Aranda and Pascual, 

2001; Bastien and Rochette-Egly, 2004; Rochette-Egly, 2003).

The ligand binding domain (LBD) (region E in Figure 1.7) at the C-terminus o f the  

receptor is the second most conserved region. This domain consists o f a LBD 

hydrophobic pocket, the main dimerization interface, and contains a region involved in 

ligand-dependent transcription activation function (AF-2) (Aranda and Pascual, 2001; 

Rosenfeld et al., 2006). LBD is a large multifunctional domain with a lipophilic core that 

binds specific small lipid molecules. AF-2 determines the specific ligand binding 

properties of each receptor and mediates ligand regulated interactions with other 

proteins that act as effectors of transcriptional activation and/or repression
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Figure 1.7 Structural and functional domain organization of a typical NR.

The typical structure of a NR is composed of several functional domains A to F based on regions 
of conserved sequence and function. The DNA binding domain (DBD; region C) is the most 
highly conserved domain and contains tw o zinc finger motifs. The ligand binding domain (LBD; 
region E) is less conserved than DBD and mediates ligand binding, dimerization and a ligand- 
dependent trans-activation function (AF-2). Within the AF-2, the integrity of a conserved 
amphipathic a-helix, termed AF-2 activation domain, has been shown to be required for ligand- 
dependent trans-activation. The N-terminal A/B region contains a cell- and promoter-specific 
trans-activation function (AF-1). The region D, called the hinge domain, contains nuclear 
localization signals (NLS hinge); The F domain is not present in all NRs and its function is poorly 
understood. Figure adapted from Aranda and Pascual, 2001.

(Gronemeyer et al., 2004). The LBD is formed by 12 conserved a-helical regions (Hi to 

H12) with a conserved (3-turn situated between helices H5 and H6. The helices are folded 

into a three layered, anti-parallel a-helical sandwich, in which a central core layer of three 

helices is packed between tw o additional layers of helices to create a cavity, the ligand 

binding pocket, which accommodates the ligand. This cavity is mainly hydrophobic and is 

buried within the bottom half of the LBD (Aranda and Pascual, 2001; Bastien and 

Rochette-Egly, 2004).

The F domain is present in some NRs. This domain may be involved in providing 

additional discrimination between receptor agonists and antagonists (Smirnov, 2002). 

For example, removal of this domain from  NR converts the action of antagonists into 

those for agonists. It is possible that this domain can bind some corepressor (Xu et al.,
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1996 ), thereby negatively modulating the transcription activity o f the receptor (Crestani 

et al., 2004b).

The N-terminal domain, also called the A/B region, harbours a ligand-independent 

transcriptional activation function (AF-1) (Figure 1.7). The action of the A/B domain 

shows prom oter and cell type specific activity, suggesting tha t it could contribute to the  

specificity o f the action seen among receptor isoforms and that it may interact with cell 

type specific factors (Aranda and Pascual, 2001; Rochette-Egly, 2003). This domain is also 

a target for phosphorylation mediated by different signalling pathways which include 

cydin dependent kinases (cdks) and MAP Kinases (Davis, 2000; Morgan, 1997). Such 

modifications can affect transcriptional activity o f the receptors (Rochette-Egly, 2003; 

Shao and Lazar, 1999). Indeed, several studies have shown that such phosphorylation is 

able to  affect transcriptional activity o f NRs, including LXRs (Bastien and Rochette-Egly, 

2004; Chen et al., 2006; Juge-Aubry et al., 1999; Kato et al., 1995; Rochette-Egly, 2003; 

Yamamoto et al., 2007).

The short D region is not well conserved among the different receptors and serves as a 

hinge region between the DBD and LBD, allowing rotation o f the DBD, and protein 

flexibility for simultaneous receptor dimerization and interaction to  the DNA consensus 

sequences located in the regulatory regions of target genes (Figure 1.7). In many NRs, 

the D domain contains nuclear localization signals (NLS) and also contains residues 

whose mutation abolishes the interaction of the NRs w ith  specific corepressors (Aranda 

and Pascual, 2001; Bastien and Rochette-Egly, 2004; Chen and Evans, 1995; Horlein et al.,

1995).

The structure o f ligand-bound receptors is much more compact than unliganded 

receptors (Aranda and Pascual, 2001). A fter ligand binding, the NRs undergo allosteric 

conformational changes in the LBD that promotes interactions with coactivator 

proteins, thus facilitating transcriptional regulation o f target genes (Aranda and Pascual, 

2001; Mckenna and O'Malley, 2002a; Rosenfeld and Glass, 2001; Svensson e t al., 2003). 

The recruitment o f coactivators is the second essential step in the action of NRs. This 

recruitment is the direct consequence of the ligand-induced conformational changes 

that generates the surface to  which the  NR-interacting domain (N ID ) of coactivators 

bind. This recruitment of coactivators appears to depend on specific interactions 

between the receptors and the coactivators, which requires multiple copies of a
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common, highly conserved LxxLL motifs (Rosenfeld e t al., 2006; Shao e t al., 2000). The 

ligand-induced recruitment o f coactivators to NRs are dependent on AF-2, which consists 

of a short LxxLL helical m otif within the LBD (Bourguet e t al., 2000), although a distinct 

set o f coactivators can also associate with the AF-1 domain. Point mutations in the AF-2 

domain has no effect on the binding of regulatory ligands, dimerisation or DNA binding 

but abolishes transcriptional activation (Svensson e t al., 2003). This domain is therefore 

predicted to  serve as an adapter surface for interactions w ith o ther molecules necessary 

for transcriptional activation (Barettino e t al., 1994).

1.3.2 LXR/RXR heterodimers
LXRs are focalized in the nucleus and form obligate heterodimers w ith RXR proteins 

(Willy et al., 1995). LXR/RXR heterodimers bind the promoters of target genes via DNA 

sequences composed of tw o  direct hexameric repeats o f the consensus m otif AGGTCA, 

separated by four nucleotides (DR4 elem ent), also term ed LXR response elements or 

LXR-REs (Chawla et al., 2001b; Edwards et al., 2002a; Willy et al., 1995; Zhang et al., 2001). 

While other RXR heterodimers, such as RXR/RAR, RXR/TR, PPAR/RXR and RXR/VDR are 

considered non permissive due to  their inability to respond to RXR selective ligands 

(retinoids such as 9CRA) independently of the partner ligand (Aranda and Pascual, 2001; 

Forman et al., 1995), the LXR/RXR forms a permissive heterodimer and can be activated 

by ligands for both LXR and RXR receptors, either separately or in synergy (Aranda and 

Pascual, 2001; Janowski e t al., 1996; Repa and Mangelsdorf, 2002). Thus, under certain 

conditions both ligands in combination can activate LXR/RXR heterodim er in an additive 

or sometimes synergistic manner. Interestingly, stimulation by 9CRA requires the AF-2 

domain o f LXR, but not RXR, to  become transcriptionally active. This requirement 

demonstrates that binding o f the RXR ligand leads to a conformation change in LXR 

resulting in transcriptional activation (Aranda and Pascual, 2001). The ligands can also 

play a potential role in dimerization and DNA binding. For example, 9CRA in some cases 

can increase the binding o f RXR homodimers to  the DR1 sequence (Zhang et al., 1992b), 

which can lead to  its unavailability fo r heterodim er formation with other receptors and, 

thereby, decreased transcription o f genes dependent on such heterodimers (Aranda and 

Pascual, 2001).
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1.3.3 LXR agonists/antagonists
The putative endogenous activators of LXRs consist of a specific group o f naturally 

occurring, oxidized derivatives o f cholesterol (oxysterols) (Forman et al., 1997; Janowski 

et al., 1996; Lehmann et al., 1997). In contrast to  steroid hormones that bind their 

respective receptors w ith high affinity (binding constants in the nanomolar range), 

natural ligands for LXRs appear to  consist o f cholesterol metabolites that bind with  

relatively low affinities (binding constants in the micromolar range) which is consistent 

with the higher physiological concentration of these agonists (Janowski e t al., 1999; Peet 

et al., 1988). Although sterol loading of cells induces the expression o f LXR target genes 

(Repa and Mangelsdorf, 1999), neither cholesterol esters nor free cholesterol itself can 

act as LXR activators and their conversion to oxysterols is required for transcriptional 

activity (Ory, 2004). These oxysterols serve as intermediary substrates or end products 

of various metabolic pathways including cholesterol biosynthesis, bile acid synthesis in 

the liver and steroid hormone synthesis in the adrenal glands. The introduction o f an 

epoxide, hydroxyl or keto group to such derivatives o f cholesterol on side chain renders 

the compounds biologically active inducers o f LXRs (Janowski e t al., 1996; Lehmann et 

al., 1997)- The most potent natural activators are 22(R)-, 2o(S)-, 24(S)-hydroxycholesterol 

and 24(S), 25-epoxycholesterol (Janowski e t al., 1999; Janowski et al., 1996; Lehmann et 

al., 1997). Importantly, these oxysterols exist in tissues that express LXRs and at 

concentrations that activate LXRs with Kd values between o .ipM  to o.4pM in vitro, 

suggesting they are physiologically relevant ligands (Janowski et al., 1999). 27 

hydroxycholesterol, which is formed via the action o f the enzyme sterol 27-hydroxylase, 

has been suggested to  be the endogenous LXR ligand in cholesterol-loaded human 

macrophages, where the action of LXR is o f particular importance in relation to  

atherogenesis (Fu e t al., 2001). The same author has also found that 24(S), 25- 

epoxycholesterol is particularly abundant in the liver, where both cholesterol 

metabolism and LXR expression are high. Thus, certain oxysterols may be cell-specific 

physiological ligands for the LXRs (Fu e t al., 2001).

Most o f the endogenous LXR ligands that have been identified so far activate both LXRa 

and LXRp with the exception o f the oxysterol, 5,6-24(S),25-diepoxycholesterol, which 

has been shown to  be relatively selective for LXRa. This raises the possibility of 

developing subtype-selective, synthetic LXR ligands for pharmacological applications 

(Janowski et al., 1999). Also, cholestenoic acid, a metabolite o f 27-hydroxycholesteroI, is
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a naturally occurring ligand for LXRa, but not for LXR(3 (EC50 for LXRa is 200nM and for 

LXRp is *5p M ). Similarly, natural and synthetic 6a-hydroxy bile acids are more selective 

activators o f LXRa than LXR(3 (Song et al., 2000).

In addition to the endogenous ligands, a number o f synthetic pharmacological LXR 

agonists have been reported, which are structurally unrelated to oxysterols. The 

increased potency o f these compounds compared to  physiological ligands makes them  

useful tools for the study of LXR function. The first such synthetic LXR ligand was the  

compound T0901317, which binds to and activates LXRs specifically w ith a Kd value 

around 20nM (Repa e t al., 2000b; Schultz e t al., 2000) compared to  30onM  for 24(S), 25- 

epoxycholesterol (Schultz e t al., 2000). Another compound, GW3965, a tertiary amine, 

has been found to  be an orally active LXR ligand (Collins et al., 2002). M ore recently, 

another synthetic compound, acetyl podocarpic (ADP), has been shown to be 1000-fold 

more potent than endogenous ligands (e.g. 22(R)-HC) in the activation of LXRa/p and 

their target genes (e.g. ABCAi) (Sparrow et al., 2002). All these ligands have been shown 

to  promote cellular cholesterol efflux and to inhibit atherosclerosis in animal models of 

this disease, which makes them potentially attractive agents for the modulation of 

human lipid metabolism (Joseph et al., 2002b).

In contrast to  oxysterols that enhance transcriptional activity o f LXRs, the activation of 

these receptors can also be antagonized by other small lipophilic agents (Chawla et al., 

2001b). For example, geranylgeranyl-pyrophosphate, an interm ediate in the cholesterol 

biosynthesis pathway, negatively regulates LXRa and LXRp transcriptional activity by 

inhibiting the interaction of the LXRs with nuclear coactivators (Forman et al., 1997). 

Similarly, unsaturated fa tty  acids antagonize LXR activity but by acting as competitive 

inhibitors for LXR ligands, thereby preventing the binding of LXR/RXR heterodimers to  

the LXR-RE (Yoshikawa e t al., 2002). Additionally, human blood plasma contains natural 

antagonists for LXRa and LXRp (Song et al., 2001). Such antagonists were identified as 

specific 3-sulfate derivatives of oxysterols and might be formed by the oxidation of 

cholesterol 3-sulfate, which is present at elevated levels in individuals with  

hypercholesterolemia (Song et al., 2001; Tamasawa et al., 1993). Thus, endogenous LXR 

antagonists can counteract LXR agonist actions in the control o f cholesterol 

homeostasis and atherogenesis (Geyeregger et al., 2006).
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1.3.4 LXR and coregulators
Initiation of transcription in eukaryotic cells is a complicated multi-step process involving 

a large number o f cofactors that exert functions in remodelling of the chromatin and/or 

recruitment of RNA polymerase II to  the promoters of target genes (Lemon and Tjian,

2000). Because packaging of eukaryotic DNA into chromatin has a generally repressive 

effect on transcription, the enzymes that alter chromatin structure have critical roles in 

the regulation of gene expression (Narlikar e t al., 2002). Transcriptional regulation by 

LXRs is achieved when they are activated by the interacting ligand and bind to the DR4 

elem ent in target gene promoters. As with other transcriptional regulatory proteins, the 

mechanism by which LXR heterodimers affect the rate of RNA polymerase ll-directed 

transcription involves the interaction of receptors with components o f the transcription 

pre-initiation complex. This interaction could occur directly or indirectly through the  

action of coregulators. Coregulators are coactivators or corepressors, which interact 

with NRs and enhance or lower the transcription rate o f their target genes respectively. 

These coregulators are required for efficient transcriptional regulation. In general, 

coregulators play one or more o f the following roles in regulating the transcriptional 

activity of NRs. First, coregulators function as bridging factors to recruit coactivators to  

DNA bound NRs, such as the steroid receptor coactivator (SRC) proteins, which can 

recruit P300/CREB binding protein (CPB) to DNA bound receptors. Second, coregulators 

can acetylate nucleosomal histones and various transcription factors a t the promoters of 

target genes (e.g. P300/CBP and P300/CBP associated factor (P/CAF)), which have 

potent nucleosomal histone acetyltransferase (HAT) activity. Acetylation of histones by 

HAT causes an expansion o f the chromatin structure, thereby allowing transcription to 

take place. Conversely, removal o f the acetyl group by histone deacetylases (HDACs) 

condenses the DNA structure, thereby preventing transcription (North and Verdin, 

2004). Third, coregulators function as bridging factors between DNA bound receptors 

and components of the basal transcriptional machinery (e.g. transcription factor IIA, IIB 

and IID). Although, the precise activation mechanisms and coregulators used by LXRs to 

activate the transcription o f target genes in a ligand-dependent manner are currently 

poorly understood (Glass and Rosenfeld, 2000; Mckenna and O'Malley, 2002b; 

Rosenfeld and Glass, 2001), a putative model has been derived from studies on some 

LXR responsive promoters and extensive research on other NRs (Bastien and Rochette- 

Egly, 2004; Edwards e t al., 2002b; Huuskonen et al., 2004a).
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In this model, LXR, like other NRs, such as RAR, TR and PPAR6 that form heterodimers 

with RXRs, interact w ith corepressor proteins, such as the NR corepressor (NCoR) 

(Horlein e t al., 1995) and the silencing m ediator o f retinoic acid and thyroid hormone 

receptor (SMRT), in the absence o f agonists (Chen and Evans, 1995; Hu et al., 2003; 

Wagner e t al., 2003). These corepressor interactions are maintained in the absence of 

the ligands and the transcriptional activity of LXR target genes is repressed (Bastien and 

Rochette-Egly, 2004; Hu et al., 2003; Wagner et al., 2003). Upon ligand binding, the basal 

rate of transcription occurs when the corepressors start to dissociate from  the LXR/RXR 

heterodimer, and the transcription of the target genes becomes fully activated when 

coactivators are recruited to the ligand-activated LXR/RXR heterodim er (Bastien and 

Rochette-Egly, 2004; Glass and Rosenfeld, 2000; Rosenfeld e t al., 2006). The transition 

from active repression to  ligand-dependent transcriptional activation requires 

dissociation of corepressors and recruitment of coactivators. Perissi et al. (2004) 

suggested that the ligand-dependent corepressor to coactivator exchange requires the  

ubiquitinylation machinery that targets the corepressor complex for proteosome- 

dependent degradation. Coactivator proteins implicated in trans-activation by LXRs 

include glucocorticoid receptor-interacting protein 1 (GRIP1), a m em ber of the pi6o co­

activator family (Huuskonen e t al., 2004a) and PPAR y coactivator 1 a  (PGC-ia) 

(Geyeregger et al., 2006; Mckenna and O'Malley, 2002a; Oberkofler e t al., 2003; 

Rosenfeld and Glass, 2001). Many of these are components o f large multi-protein 

complexes w ith associated enzymatic activities, including nucleosome remodelling 

activities, histone methyltransferase activity, HAT activity and the ability to recruit core 

transcription factors. This link is sufficient to cause maximal LXR-mediated 

transcriptional activation (Huuskonen et al., 2004a). The second step in this process is 

the recruitment o f associated proteins such as P/CAF, and via their HAT activities, 

modification of the chromatin structure so that the mediator multi-polypeptide 

complex, the human mediator-like thyroid hormone receptor-associated 

proteins/vitamin D receptor-interacting proteins (TRAP/DRIP) (Fondell et al., 1996; 

Rachez et al., 1999) can replace SRC-1/CBP. Subsequent recruitment of RNA polymerase 

II complex to TRAP/DRIP completes the second step in NR trans-activation. It is possible 

that P300/CBP interacts directly w ith the basal transcription machinery (Felzien et al.,

1999) or that P300/CBP acetylates histones and recruits switch/sucrose non-fermenting 

(SWI/SNF) chromatin remodelling complexes to the NRs, thereby facilitating the
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interaction with basal transcription machinery (Huang et al., 2003). Therefore, these 

interactions between LXRs, chromatin remodelling complexes and coactivators at 

oxysterol-activated promoters lead to  the stimulation of gene transcription.

LXR-mediated trans-activation can also be regulated by at least tw o  other mechanisms. 

Activating signal co-integrator-2 (ASC-2) has been shown to interact specifically with 

LXRs and stimulate gene transcription (Kim e t al., 2003). Although ASC-2 exists in a 

complex containing methyitransferases, the precise mechanism is not known. 

M oreover, LXRs can interact w ith multi-protein bridging factor-1 (MBF-1) (Brendel e t al., 

2002), which directly interacts with the general transcription factor TFIID (TFIID), making 

it a possible bridging molecule between LXR and basal transcription machinery.

Although, in the absence o f ligands, LXRs, like other NRs, may actively repress gene 

transcription by recruiting corepressor proteins (NCoR and SMRT) (Hu et al., 2003; Repa 

et al., 2000b; W agner et al., 2003), they also have the ability to negatively regulate gene 

expression in a ligand-dependent manner by antagonizing the activities of other classes 

of signal-dependent transcription factors, such as activator protein-1 (AP-1) and nuclear 

factor kappa B (NF-kB). This phenomenon, referred to as trans-repression, is thought to  

be the primary mechanism by which LXRs inhibit the expression of pro-inflammatory 

genes in macrophages (De Bosscher et al., 2003; Joseph e t al., 2003; Zelcer and 

Tontonoz, 2006). LXR-dependent repression of cytokine-induced expression of matrix 

metalloproteinase-9 (M M P -9) and osteopontin (OPN) genes has been demonstrated in 

macrophages, and this is through antagonism of the NF-kB signalling pathway (Castrillo 

et al., 2003a) and interference w ith the AP-1 signalling pathway (Ogawa et al., 2005) 

respectively. The molecular mechanisms responsible for such trans-repression are less 

well understood than the mechanisms responsible for transcriptional activation except 

that they do not require sequence-specific DNA binding to response elements in 

promoters o f target genes (Li and Glass, 2004; Pascual and Glass, 2006).

Post-translational modifications, such as phosphorylation, triggered by diverse signal 

transduction pathways, have also been shown to  be an important regulatory mechanism 

for a number of NRs (Crestani et al., 2004a; Hu et al., 1996; Juge-Aubry e t al., 1999; 

Rosenfeld et al., 2006). Indeed, phosphorylation o f NRs or other factors required for 

their actions, such as coactivators, have been reported previously (Bastien and 

Rochette-Egly, 2004; Blanquart e t al., 2004; Hu et al., 1996; Kato e t al., 1995; Lee et al.,
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2006b; Orti et al., 1992; Rochette-Egly, 2003; Wagner e t al., 2003). Although 

phosphorylation can be induced by the ligand, constitutive phosphorylation has also 

been found to be present in vivo (O rti e t al., 1992). Phosphorylation modulates the  

transcriptional activity of some of these receptors (Blanquart e t al., 2004; Hu et al., 

1996).

The involvement o f cell signalling pathways in the regulation o f target gene expression 

by NRs have previously been described. For example, the MAPK pathways have been 

shown to affect NR activity via phosphorylation of either the NR itself or co-regulator 

proteins (Rochette-Egly, 2003). It is well known that several NRs (e.g. ER, PR, AR, TR, 

PPARs, RAR and RXR) are phosphorylated by MAPKs leading to  modification o f their 

transcriptional activities via diverse mechanisms (Banfi e t al., 2003; Chen e t al., 2003; 

Gianni et al., 2002a; Kato e t al., 1995; Lange et al., 2000; Shen e t al., 2001; Yeh et al.,

1999). In addition, Chen et al. (2003) reported that all the three MAPK pathways are able 

to  modulate the activities o f transcription coregulators, such as P300 and SMRT. In 

particular, the c-Jun N-terminal kinases, also known as stress activated protein kinases 

(JNK/SAPK), have been reported to potentiate the activation function of ER via 

phosphorylation of ER associated proteins, CBP and GRIP1 (Feng et al., 2001). The 

JNK/SAPK pathway has also been shown to  directly phosphorylate several NRs such as 

PPARy (Adams et al., 1997; Camp et al., 1999; Hu e t al., 1996), PR (Faivre et al., 2005) and 

GR (Rogatsky e t al., 1998a). The JNK/SAPK has also been shown to  target the AF-1 

domain of RXRa (Gianni e t al., 2002b; Lee et al., 2000; Matsushima-Nishiwaki et al.,

2001), and thereby modulate its function.

The phosphoinositide 3-kinase pathway (PI3K) has also been shown to  play a vital role in 

NR signalling with various components of the pathway being involved in the regulation 

of the trans-activation function o f these DNA binding proteins. The primary role for this 

pathway seems to  be in the phosphorylation of NRs. For instance, protein kinase B 

(PKB), a downstream target for PI3K, is known to translocate to the nucleus upon 

stimulation o f the cells w ith particular ligands, and phosphorylate certain NRs (Rochette- 

Egly, 2003; Vanhaesebroeck e t al., 1997; Wymann and Pirola, 1998). For example, PKB 

has been shown to phosphorylate ER-a (Campbell et al., 2001) and AR (Lin et al., 2001) in 

their N-terminal regions. PKB also plays an im portant role in RAR signalling (Gianni et al., 

2002b), where it phosphorylates RARa at serine 96 in its DNA binding domain and
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inhibits transcriptional activation by this receptor (Srinivas et al., 2006). PKC also 

phosphorylates RARa and strongly reduces its trans-activation by inhibiting its 

dimerization w ith RXRa (Delm otte et al., 1999) or VDR (Hsieh et al., 1991; Hsieh et al., 

1993). PKC has also been shown to  regulate the transcriptional activation function of 

PPAR (Blanquart e t al., 2004). In the light o f such previous findings on the control of 

NRs, it is possible that cell signalling pathways could regulate LXR-mediated gene 

transcription via phosphorylation of the LXR protein or one of the coregulator 

components o f the transcription complex. In this context, Chen et al. (2006 ) showed for 

the first time that LXRs are phospho proteins. Moreover, they showed that LXRa is 

phosphorylated at a single site (serine 198) in the hinge region o f the protein and this is a 

consensus site for MAPK phosphorylation. A brief description of the tw o  common 

signalling pathways which have so far been found to  be involved in NR signalling is 

detailed below.

1.3.4.1 Mitogen activated protein kinase pathway
MAPKs belong to a family o f serine/threonine specific protein kinases that play an 

important role in several cellular processes such as growth, differentiation, proliferation 

and cell survival/apoptosis (Chang and Karin, 2001). MAPKs are intracellular signal 

transducing molecules expressed in all eukaryotic cells that modulate their basic cellular 

events by responding to  extracellular signals (Morrison and Davis, 2003). Activated 

MAPKs indirectly regulate the expression of multiple genes through the phosphorylation 

and subsequent activation of transcription factors that regulate them . The MAPKs are 

“proline-directed” kinases and thus phosphorylate Ser/Thr residues in target proteins 

only if it is immediately followed by a proline residue (Kyriakis and Avruch, 2001; Roux 

and Blenis, 2004). All MAPK pathways include a central three-tiered core signalling 

system (Figure 1.8). MAPKs are activated by dual phosphorylation o f Thr/Tyr residues in 

a conserved tri-peptide m otif (Thr-X-Tyr), which is located in the activation loop (Kyriakis 

and Avruch, 2001; Roux and Blenis, 2004). Such activation occurs via signalling cascades 

involving MAPK kinases (MAPKKs) that are in turn activated by MAPK kinase kinase 

(MAPKKK) (see Figure 1.8) (Morrison and Davis, 2003; Strniskova et al., 2002; Weston 

and Davis, 2002). There are five subgroups o f MAPKs that have been identified so far, 

namely extracellular signal regulated kinases (ERK1/2), ERK5, ERK7, JNK/SAPK and P38 

isoforms (Johnson et al., 2005).



Figure 1.8 The core M A PK  kinase s ignalling m odule.

Various extracellular signals “feed” into MAPKKK to MAPKK to MAPK, the core module, through 
several upstream regulators. Each MAPK is activated by dual Thr/Tyr phosphorylation catalysed 
by a MAPKK, which is in turn regulated by Ser/Thr phosphorylation by MAPKKK. The 
downstream targets of this signalling pathway then mediate the appropriate cellular responses. 
See text for further explanation. Figure adapted from Kyriakis and Avruch 2001.

Of these major subfamilies of MAPKs that are present in all eukaryotic organisms, three 

subfamilies have been extensively characterized. These have been integrated into 

different signal transduction pathways and also show differences in substrate specificity. 

The ERKs and the P38 groups of MAPKs are related to enzymes found in budding yeast 

and contain the dual phosphorylation motifs Thr-Glu-Tyr and Thr-Gly-Tyr respectively. 

The third group of MAPKs, the JNK/SAPK, contain the dual phosphorylation motif Thr- 

Pro-Tyr.

JNK/SAPKs were originally identified by their ability to bind to and phosphorylate the 

amino-terminal activation domain of the c-Jun transcription factor in response to a 

variety of stress-inducing signals, including UV stimulation, heat shock, oxidant stress
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and ionizing radiation (Kyriakis and Avruch, 2001). It has also been demonstrated that 

JNK/SAPKs are strongly activated by inflammatory cytokines such as TNF-a and IL-1 

(Derijard et al., 1994; Hibi e t al., 1993; Kyriakis and Avruch, 2001). A t least twelve distinct 

JNK/SAPK isoforms have been identified as the product o f three genes (Gupta et al.,

1996). A t least ten different isoforms o f p46 and p54 are possible because of differential 

mRNA splicing (Gupta et al., 1996; Kyriakis and Avruch, 2001). Phosphorylation of 

JNK/SAPKs is mediated by tw o MAPKKs, MKK4/SEK1 and MKK7/SEK2, which are present 

both in the cytoplasm and in the nucleus (Nishina et al., 2004). In addition, recent studies 

have identified other MAPKKK that activate the JNK/SAPK pathway. These include 

members of the MEKK family (MEKK1-4), the mixed-lineage protein kinase family (MLK1- 

3, DLK and LZK), the apoptosis signal-regulating kinase group (ASK-1 and -2), TGF-(3- 

activated kinase 1 (TAK1) and the product o f col proto-oncogene (TPL-2) (Figure 1.9), 

(Kyriakis and Avruch, 2001). Upstream regulators o f the MAPKKK are the Ste-20-Iike 

MAPKKK, the p2i-activated kinases (PAKs), the germinal centre kinase (GCK) and the  

histidine protein kinase (HPK) (see Figure 1.9) (Kyriakis and Avruch, 2001).

JNK/SAPKs activate c-Jun in response to  extracellular stimuli by phosphorylating the N- 

terminal activation domain of this factor (Ser63 and Ser73) resulting in increased 

transcriptional activity (Hibi e t al., 1993). c-Jun is a major com ponent of the AP-1 family, 

which typically consists o f a heterodimer o f bZIP transcription factors, typically c-Jun, 

Jun-D, and members of the fos family (usually c-fos) and activating transcription factor-2 

(ATF-2) family. Although homodimers of the Jun family are possible, this cannot occur 

for the fos family. AP-1 therefore consists o f Jun-Jun, Jun-Fos or Jun-ATF dimers (Karin et 

al., 1997; Kyriakis and Avruch, 2001). Transcriptional activation by AP-1 is mediated 

through both direct phosphorylation and dephosphorylation o f AP-1 components, as 

well as the phosphorylation and activation o f transcription factors that regulate the  

expression of c-Jun and c-Fos (Kyriakis and Avruch, 2001). Whilst c-Jun is a well known 

substrate of JNK/SAPK, there are other targets such as ATF-2 and the ETS domain 

transcription factor Elk-i (Gupta et al., 1995). Activation of JNK/SAPKs results in 

increased phosphorylation o f ATF-2, and thereby stimulation of its transcriptional activity 

(Gupta et al., 1995). Like c-Jun and ATF-2, phosphorylation of the Elk-1 activation domain 

by JNK/SAPK increases its transcriptional activity (Kyriakis and Avruch, 2001; Shaulian 

and Karin, 2002).
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Figure 1.9 A schematic representation of the JNK/SAFK signalling cascade.

Abbreviations: GCK, germinal centre kinase; PAK, p2i-activated kinase; HPK, histidine protein 
kinase; MEKKs, MAPK/ERK kinase kinase; MLKs, mixed-lineage protein kinases; ASKs, apoptosis 
signal-regulating kinases; TAK, TGF-(3 activated kinase; SEK, SAPK/ERK kinase. See text for 
further details. Adapted from Greenow, K., 2004.

1.3.4.2 Phosphoinositide 3- kinase p a th w ay

PI3K is a member of a large family of lipid kinases which modulate a variety of cellular 

processes, including growth, proliferation, differentiation, metabolism and cell 

survival/apoptosis (Krasilnikov, 2000). Several recent reviews have discussed the 

function of PI3K in CVD (Alloatti et al., 2004; Oudit et al., 2004). For example, roles for 

PI3K have been proposed in macrophage accumulation in inflammation. Indeed, 

monocytes from PI3KY knockout mice have decreased ability of migration and 

recruitment to the inflamed peritoneum (Hirsch et al., 2000). A pro-atherogenic role for 

PI3K is also indicated by the finding that apoE-knockout mice receiving transplanted 

bone marrow from mice that are deficient in pnoS, a catalytic subunit of PI3K (see 

below), display reduced atherosclerosis in comparison to those receiving wild type bone 

marrow (Chang et al., 2007). This is potentially due to decreased accumulation of 

macrophage foam cells mediated by the proinflammatory effects of PI3K dependent
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signalling. In addition, proliferation and migration of VSMCs in pulmonary tissue has 

been demonstrated to require PI3K activation (Gonchorova e t al., 2002). oxLDL has also 

been shown to  increase the activity o f PKB, a downstream target for Pl3k action, in 

VSMCs and may contribute to  the accumulation o f SMCs in atherosclerotic lesions (Chien 

et al., 2003).

Several members o f the  PI3K family have been isolated from  mammalian cells and 

grouped into three classes (I, II and III) according to  their structure and to  the molecules 

that they preferentially utilize in vivo as substrates. Class I PI3KS are the most extensively 

studied and are generally activated in response to  extracellular stimuli such as growth  

factors and insulin. Class I PI3K are heterodimeric molecules composed o f a regulatory 

(P85) and a catalytic (p n o ) subunits which are further divided into IA and IB subsets on 

the basis of sequence similarity. Class IA PI3KS are composed of one of five regulatory 

subunits (p 85a, p8s(3 or p55y» P55a  or psoa) attached to  a pno catalytic subunit (a , (3 or 

6). On the other hand, class IB PI3KS (Pl3Ky) are composed o f the regulatory p io i and 

the catalytic pnoy subunits. Class I PI3KS are often implicated in the control o f cellular 

functions based on an inhibitory effect o f the pharmacological agent LY294002. This and 

wortmannin are broad inhibitors of all Pl3kinases. Class II and III PI3KS are different from  

Class I in structure and function. Class II PI3K comprises of three catalytic isoforms (C2<x, 

(3 and y)> but unlike class I and III, have no regulatory proteins. These are therefore  

monomeric enzymes tha t catalyse the production of phosphatidylinositol 3-phosphate 

(Ptdlns3P) from phosphatidylinositol (Ptdlns) (may also produce phosphatidylinositol 

(3,4)-bisphosphate (Ptdlns(3,4)P2) from phosphatidylinositol 4-phosphate (Ptdlns4P)). 

However, little is known about their function. Class III PI3KS are similar to class II in that 

they utilise only Ptdlns, but are more similar to  class I in structure as they exist as 

heterodimers w ith a catalytic subunit (Vps34) and a regulatory subunit (P150). Class III 

PI3K seems to  be primarily involved in the regulation of intracellular trafficking of 

proteins and vesicles (Hawkins et al., 2006; Hirsch e t al., 2007). However, there is 

evidence that they are also able to contribute to  the effectiveness of several processes 

important to immune cells, such as phagocytosis.

In the inner leaflet o f the plasma membrane o f eurkaryotic cells, PI3KS are kept generally 

at a steady state level (Payrastre e t al., 2001). Activation of PI3KS requires tyrosine 

phosphorylation by an activated receptor associated with protein tyrosine kinases (e.g.
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granulocyte/macrophage-colony stimulating factor (GM-CSF)) or receptors with intrinsic 

tyrosine kinase activity (e.g. platelet-derived growth factor (PDGF) and insulin). Class I 

subfamily o f PI3KS can be activated by either receptor tyrosine kinases (RTKs) or G- 

protein coupled receptors (GPCR). Once activated, the active PI3K enzyme catalyzes the  

addition of a phosphate group specifically to the 3-OH position of the inositol ring of 

phosphoinositides (Rameh and Cantly, 1999). These then serve to  activate downstream  

signalling targets. The most common reaction is the phosphorylation of 

phosphatidylinositol-4, 5- biphosphate (Ptdlns(4,5)P2) to produce 

phosphophatidylinositol 3,4,5, triphosphate (Ptdlns(3,4,5)P3) by class I PI3KS, leading to  

the recruitment and activation of protein kinases that contain specialised lipid-binding 

domains such as the pleckstrin homology (PH) domains. Downstream protein kinases 

are subsequently recruited to the membrane through the binding of its PH domain to  

Ptdlns(3,4,5)P3, where they are brought into close proximity with their targets (Hawkins 

et al., 2006). The most widely studied of these are 3-phosphoinositide-dependent 

protein kinase-1 (PDK)-1 and its substrate PKB (also referred to  as AKT). This then 

regulates the action of several downstream effectors, including glycogen synthase 

kinase-3 (GSK-3) and the mammalian target of rapamycin (mTOR) (Figure 1.10). PDK-1 

also activates the kinases p7o(S6K) and PKCs (Bjornsti and Houghton, 2004; Cantly, 

2002; Vanhaesenbroeck and Alessi, 2000; Yang et al., 2004). Conversely, the activated 

PI3K complex is down-regulated by PTEN. An attractive hypothesis for such negative 

regulation of PI3K signalling is that tyrosine phosphorylation of p85, which occurs after 

the p85-pno complex form ation has been recruited to  the active RTK, serves as a 

negative regulatory signal that leads to a reduction in pno catalytic activity (Cuevas et 

al., 2001). The other hypothesis is that PI3K production of phosphoinositides is 

antagonized by protein phosphatases and tensin homologue (PTEN), which is a dual 

specificity phosphatase that has activity against lipid and protein substrates. This PTEN 

dephosphorylates Ptdlns(3,4,5)P3 to Ptdlns(4,5)P2 both in vitro and in vivo, thereby 

resulting in the down-regulation o f PI3K signalling pathways (Igor and Charles, 2002).

1.3.5 Role o f LXRs in cholesterol homeostasis
Under physiological conditions, cholesterol homeostasis is maintained via dietary intake 

by intestinal absorption and the regulated pathways of de novo synthesis and 

catabolism. Cholesterol biosynthesis is controlled by the accumulation of sterols, which
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Figure 1.10 Scematic repesentation of the PI3K pathway.

The conversion of PIP2 to PIP3 is catalysed by PI3K, providing a docking site for downstream 
kinases such as PDK-1 and PKB. PTEN antagonises PI3K signalling by converting PIP3 to PIP2. 
PKB is activated by phosphorylation by PDK-1 and regulates a number of other signalling 
molecules including PKCs, GSK-3 and mTOR. This leads, either directly or indirectly, to the 
regulation of transcription factors and gene expression. Abbreviations: FKHR, forkhead in 
rhabdomysarcoma transcription factor; GSK3, glycogen synthase kinase 3; mTOR, mammalian 
target of rapamycin; PDKi, 3’-phosphoinositide-dependent kinase-i; PI3K, phosphoinositide 3- 
kinase; PIP2, phosphatidylinositol bisphosphate; PIP3, phosphatidylinositol triphosphate; PKB, 
protein kinase B; PKC, protein kinase C; PTEN, phosphatase and tensin homologue.

by negative feedback prevent further synthesis via a pathway involving the inhibition of 

expression of the rate limiting enzyme, HMG-CoA reductase, via regulated proteolysis of 

the SREBP family of transcription factors (Goldstein and Brown, 1977). Excess 

cholesterol also activates a feed-forward pathway that results in the conversion of 

cholesterol into bile acids. The primary function of LXRs in macrophages is to maintain 

cellular cholesterol homeostasis. Alterations in cholesterol and fatty acid metabolism 

each have the potential to influence the development of CVD. The role of LXRs in the
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regulation of key genes implicated in the control of cholesterol homeostasis, from de 

novo synthesis and intestinal absorption, through RCT to bile acid synthesis and 

excretion are summarized in Table 1.3.

Table 1.3: LXR target genes involved in the control of lipid metabolism. Table derived from  
Edwards et al., 2002b; Joseph et al., 2002a. ( t )  Upregulation

t  SREBP-ic H/M Liver/Intestine Fatty acid synthesis Repa et al., 
2000a

t  FAS H/M Liver Fatty acid synthesis Joseph et al., 
2002a

t  CYP7A1 M Liver Clearance of cholesterol Lehmann etal., 

1997
t  apoE H/M Macrophage/Adipocyte Clearance of cholesterol Laffitte et al., 

2001b

t  LXRa H Macrophage Transcriptional control 
of lipid homeostasis 
genes

Laffitte et al., 
2001a; Whitney 
et al., 2001

T cetp H/M Liver Triglyceride hydrolysis Luo and Tall, 
2000

t  LPL H/M Liver/Macrophage Triglyceride hydrolysis Zhang et al., 
2001

t  ABCA1 H/M Macrophage/Intestine Cholesterol efflux Costet et al., 
2000

t  ABCGl H/M Macrophage Cholesterol efflux Kennedy et al., 
2001

TABCG4 H Macrophage Cholesterol efflux Engel et al., 
2001; Wang et 
al., 2004b

t  ABCG5/8 H Liver/Intestine Cholesterol efflux/ 
sterol transport

Berge et al., 
2000

Abbreviation: ABCA1, ATP-binding cassette transporter, subfamily A, member 1; ABCG1/4/5/8, ATP- 
binding cassette transporter, subfamily G, members 1, 4, 3 or 8; apoE, apolipoprotein E; CETP, 
cholesteryl ester transfer protein; CYP7A1, cholesterol 7 alpha-hydroxylase; FAS, fa tty acid 
synthetase; LXR, Liver X receptor; SREBP-ic, sterol regulatory element binding protein-ic.

Three important classes of LXR target genes influencing cholesterol homeostasis have 

been identified (Figure. 1.11). First, LXRs induce the expression of ABC transporters that 

have been linked to cholesterol efflux in macrophages and other cell types (Chawla et 

al., 2001b). Second, LXRs induce the expression of apoE in macrophages, which can 

potentially serve as an acceptor of cholesterol transported by ABCAi-dependent 

processes (Laffitte et al., 2001b). Third, LXRa seems to induce the synthesis of fatty acids
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that are preferential substrates of ACAT in cholesterol esterification reactions (Repa et 

al., 2000a). Thus, ABCA1 and ACAT act in concert to reduce free cholesterol levels and 

protect cells from its cytotoxic effects.

oxLDL

A po lA

ABCA1

Oxidized 
fatty acids A po lA

( I  Lysosome Nucleus

LXR Y PPAR
Oxysterols LXR.5R-BI, SREBPlC

LXR, apoE, ABCA1

Figure 1.11 Schematic illustration of the mechanisms by which LXRs enhance cholesterol efflux 
from macrophages.

Oxysterols generated from free cholesterol (FC) activate LXR-RXR heterodimers, resulting in 
increased transcription of target genes. These genes include those encoding ABCA1, ABCG1 and 
apoE, which are linked to the efflux of cholesterol to extracellular acceptors, and fatty acid 
synthetase (FAS), which leads to the synthesis of free fatty acids (FFAs) used for cholesterol 
esterification by SOAT. PPARs may promote cholesterol efflux by inducing LXRa expression. CE, 
cholesterol ester; LXR-RE, liver X receptor response element; SOAT, acyl coenzyme 
A:acylcholesterol transferase; NCEH, neutral cholesterol ester hydrolase. Figure revised from Li 
and Glass, 2002.

1.3.5.1 Role o f LXRs in reverse cholestero l transport

Virtually all animal cells synthesize cholesterol and import cholesterol from plasma 

lipoproteins. To achieve neutral cholesterol balance and prevent cholesterol overload, 

cells must export excess cholesterol. The only quantitatively significant sink for excess 

cholesterol is the liver, owing to its unique ability to synthesize bile acids and to
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transport cholesterol into bile (Glomset, 1968). In addition, the RCT pathway enables 

excess cholesterol to  be actively exported from lipid-laden ceils, such as macrophages, 

and transported back to the liver for excretion (Brown and Goldstein, 1997). As 

described previously in this chapter, this process is particularly important in 

macrophages. LXRs have been implicated as key sensors of sterol metabolism, 

maintaining normal cholesterol balance by promoting the efflux of this sterol from  

peripheral cells, increasing circulating HDL cholesterol, and ultimately increasing hepatic 

sterol catabolism and excretion. LXR regulation of RCT also implies a key role in 

protecting against atherogenesis. Such a hypothesis has been confirmed by studies on 

apoE-/- mice in which LXR activation was found to  be associated with reduced 

atherosclerosis (Claudel et al., 2001; Joseph et al., 2002b). LXRs control lipid efflux from  

macrophages through the coordinate regulation of several genes involved in cholesterol 

efflux, including ABCA1 and apoE (Claudel et al., 2001; Laffitte e t al., 2001b; Repa e t al., 

2000b; Venkateswaran e t al., 2000a).

1.3.5.!.f The ABC transporters
One LXR target gene that has generated a lot of attention for its role in cholesterol and 

phospholipid transport is ABCA1. As detailed in section 1.2, this encodes a protein that 

pumps cholesterol and phospholipids from macrophages and other cells to  apoAl, apoE 

or HDL vesicles, the first step in RCT, fo r transport to  the liver. A number of studies, 

summarised in section 1.2 above have demonstrated a potent role for LXRs in the 

regulation of ABCA1 expression and cholesterol efflux (Claudel e t al., 2001; Joseph and 

Tontonoz, 2003; Laffitte e t al., 2001b; Repa et al., 2000b; Venkateswaran e t al., 2000a).

Besides ABCA1, four other ABC transporters have also been identified as LXR targets, all 

of which are expressed in macrophages and contribute to  the control o f cholesterol 

homeostasis: ABCG1, ABCG4, ABCG5 and ABCG8. The expression of ABCG1 and ABCG4 is 

also induced in macrophages by lipid loading and treatm ent with oxysterols in a LXR- 

dependent manner (Kennedy et al., 2001; Venkateswaran et al., 2000b; Wang et al., 

2004b). The function o f ABCG1 and ABCG4 is to  facilitate cholesterol efflux, perhaps by 

working in concert w ith ABCA1 (Kennedy et al., 2005; Klucken et al., 2000; Wang et al., 

2004b; W ang et al., 2007). Macrophages lacking ABCG1 show a diminished cholesterol 

efflux capacity to HDL, suggesting that like ABCA1, ABCG1 will be anti-atherogenic 

(Kennedy et al., 2005). The role o f ABCG5/G8 is to mediate the efflux of plant sitosterols.
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Another rare genetic disorder of lipid metabolism, sitosterolemia (Salen et al., 1997), in 

which hyperlipidemia results from impaired efflux of sitosterol and related compounds 

to  the intestinal lumen and to  the bile (Schmitz et al., 2001) involves mutations in 

ABCG5/G8 (Hubacek e t al., 2001; Lee et al., 2001). Genetic deficiency of these 

transporters leads to  abnormal absorption o f sitosterols and a hyperabsorption of 

cholesterol. In addition, treatm ent o f mice with LXR agonists results in the stimulation of 

hepatobiliary excretion o f cholesterol, which is linked to  the activation of ABCG5/G8 

expression in the liver and intestinal cells (Berge et al., 2000; Yu e t al., 2003). These 

finding further strengthen the role of these transporters in dietary and biliary sterol 

trafficking, in particular in response to LXR agonists (Crestani e t al., 2004b).

1.3.5.1.2 Apolipoprotein E
Another LXR target gene that is important in cholesterol homeostasis is apoE. This was 

first described as a lipoprotein constituent of triglyceride-rich VLDL. However, apoE is 

now known as a major protein constituent of several plasma lipoproteins that carry 

dietary and liver-derived cholesterol such as chylomicron remnants, IDL and HDL. 

Recognition of apoE by LDL receptors mediates hepatic uptake of these particles 

(Curtiss and Boisvert, 2000). Indeed, apoE has been implicated in the maintenance of 

overall plasma cholesterol homeostasis and stimulation of cholesterol efflux from  

macrophages (Greenow et al., 2005). ApoE is a 34kDa protein that is synthesized 

primarily in the liver w ith significant amounts being produced by several peripheral 

tissues and cell types, including macrophages, adipose tissue and the brain (Newm an et 

al., 1983). In addition, the secretion of apoE can be regulated by a number of factors 

such as cholesterol loading of the cells (Mazzone, 1996).

A potent anti-atherogenic role for apoE has been demonstrated by several lines of 

evidence. In humans, it has been found that inhibition of apoE expression is associated 

with a pro-atherogenic lipoprotein profile and diffuse atherosclerotic disease (Greenow  

et al., 2005; Schaefer et al., 1986). In addition, apoE-/- mice are severely 

hypercholesterolaemic compared to wildtype mice and the increase in cholesterol is 

distributed in lower LDL fraction due to  their impaired clearance (Zhang et al., 1992a). 

Although apoE expression is absent in normal vessels, it is present at high levels in 

atherosclerotic lesions, where it is associated with macrophage-derived foam cells 

(Rosenfeld et al., 1993). The anti-atherogenic effect of apoE is due to  several properties
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of the protein: its antioxidant properties; its modulation of the function o f platelets, 

SMCs and lymphocytes; and its promotion o f cholesterol efflux and RCT (Larkin et al.,

2000). The beneficial nature of apoE production by macrophages is clear from several 

animal studies. Bone m arrow transplantation have shown that macrophage-derived 

apoE exerts anti-atherogenic properties independently o f its effects on plasma lipid 

levels (Fazio e t al., 1997). Mice expressing apoE only in macrophages are protected 

against atherosclerosis whereas those specifically lacking its expression in these cells are 

more susceptible to the developm ent of this disease (Fazio e t al., 1997). In addition, 

transfer of human apoE to apoE-deficient mice induces com plete regression of 

atherosclerotic lesions in the absence of any changes in plasma cholesterol and 

lipoprotein profile (Shimano e t al., 1995). By increasing cholesterol efflux from  

macrophages, apoE attenuates the deleterious effects of excess cholesterol in these 

cells, restricts the transformation of macrophages into foam cells, and improves the  

elimination o f cholesterol from the vessel wall.

Zhang et al. (1996) analysed the function o f apoE in mediating cholesterol efflux from  

monocyte-derived macrophages in the absence of added cholesterol acceptors, such as 

HDL and apolipoproteins (Zhang et al., 1996). They found that apoE produced by 

monocyte-derived macrophages mediates most of the cholesterol efflux from these 

cells and that cholesterol regulates the association of apoE with phospholipids. They 

also found that apoE associates with lipids after it has been secreted from  macrophages 

and the level o f secreted apoE is the rate-limiting step in RCT. Net synthesis of 

phospholipids by macrophages occurs secondary to  apoE-mediated loss o f macrophage 

phospholipids rather than due to cholesterol enrichment.

ApoE secreted from human monocyte-derived macrophages is responsible for 

cholesterol efflux from these cells and for the decrease in their cholesterol content 

(Zhang e t al., 1996). Antibody to  apoE can decrease this efflux by about two-thirds, 

showing that apoE does indeed cause cholesterol efflux from these macrophages. 

Enriching the monocytes w ith cholesterol did not, however, increase the levels of 

secreted apoE. Instead, it induced the complexing of apoE with phospholipids and 

cholesterol. Cholesterol alters the physical and chemical properties of the cell 

membrane in a way that favours the interaction of amphipathic apolipoproteins with  

phospholipids. ApoE picks up lipids after it is secreted from macrophages. ApoE thus
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acts is an autocrine pathway to m ediate cholesterol efflux from human monocyte- 

derived macrophages.

ApoE gene expression is complex in relation to  regulation by cellular changes and 

extracellular or intracellular factors (Greenow e t al., 2005). Hepatic apoE expression is 

controlled by a distal enhancer known as the hepatic control region (Alla et al., 1997). 

The expression o f apoE in adipocytes and macrophages is directed by a distinct 

sequence termed the multiple enhancer region (Shih et al., 2000). Interestingly, this 

enhancer along w ith the prom oter also contains conserved LXR-REs that mediate 

activation of gene transcription in response to oxysterol ligands in macrophages but not 

in monocytes (Laffitte e t al., 2001b). A recent study by Laffitte and colleagues 

demonstrated the involvement o f LXRs in the regulation o f apoE expression (Laffitte et 

al., 2001b). In macrophages, apoE gene transcription is increased by cholesterol loading. 

Oxysterols and the synthetic agonist T0901317 also enhance apoE expression and this is 

abolished in LXRa-/- and LXR{3-/- mice even in the presence of high concentrations of the  

ligand (Laffitte e t al., 2001b). The apoE gene has been mapped to chromosome 19 and is 

present in a gene cluster that contains apoCI, apoCII and apoCIV. It has recently been 

demonstrated that this entire gene cluster responds to LXR activation in both human 

and murine macrophages (M ak et al., 2002b). The induction o f this gene cluster by LXR 

ligands was reduced in LXRa(5-/- mice, but unchanged in LXRa-/- or LXRp-/- mice, thereby 

suggesting that both LXR isoforms are functional regulators of lipid-inducible 

apolipoprotein expression (M ak et al., 2002b). In contrast to  ABCA1, regulation of apoE 

by LXR and RXR is tissue/cell type-specific, occurring only in macrophages and adipose 

tissue but not in the liver (Laffitte  et al., 2001b; Mak e t al., 2002b). Similar to the ABCA1 

gene, apoE expression is regulated by the PPARy/LXRa regulatory circuit (Akiyama et al., 

2002).

LXRs induce the expression o f multiple apolipoproteins such as apoAi, apoB and apoE 

that could then serve as cholesterol acceptors in the context o f an atherosclerotic 

lesion. Interestingly, like apoE, all o f these a-helical secreted apolipoproteins have been 

shown to  serve as extracellular acceptors for cholesterol in the ABCAi-mediated efflux 

pathway (Bortnick et al., 2000; Curtiss and Boisvert, 2000). The induction of these 

acceptors within the arterial wall in macrophages would be expected to promote RCT 

and cholesterol efflux. Previous studies have shown that ABCA1 is involved in the
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secretion o f apoE from human macrophages (Von Eckardstein e t al., 2001a). In brain of 

ABCA1 deficient mice, apoE levels were reduced, thus indicating that ABCA1 not only 

mediates cholesterol efflux but also facilitates apoE synthesis and secretion from glial 

cells (Hirsch-Reinshagen et al., 2004). In addition, apoE was capable of stimulating efflux  

of cholesterol from cells via the ABCA1 dependent pathway (Krimbou et al., 2004).

1.3.5.1.3 Lipoprotein remodelling enzymes
LXRs have also been shown to  positively regulate the expression of several lipoprotein 

remodelling enzymes that transfer lipids between lipoproteins, including the human 

CETP, the phospholipid transfer protein (PLTP) and lipoprotein lipase (LPL) (Laffitte et 

al., 2003; Luo and Tall, 2000). The remodelling enzyme CETP mediates the transfer of 

cholesterol esters from HDL to triglyceride-rich lipoproteins (apoB-containing particles), 

which are subsequently cleared by the liver, and in exchange HDL receives triglycerides. 

This modification o f HDL by CETP makes HDL more susceptible to hydrolysis by hepatic 

lipase at the hepatocyte surface, which is an important component in the regeneration 

of small HDL particles and free apoAl that can re-circulate in the RCT pathway. Genetic 

CETP deficiency in humans cause increased atherosclerosis while overexpression of CETP 

in mice reduces coronary heart disease (Hayek et al., 1995). The prom oter of the CETP 

gene contains a functional DR4 LXR-RE, which mediates the upregulation of expression 

of this gene by sterols in response to a high fa t diet (Luo and Tall, 2000). The CETP gene 

can be trans-activated by both LXRa and LXRp.

PLTP has been identified as a key modulator of HDL metabolism in the plasma by its 

ability to  remodel HDL particles into large a-HDL and small pre-p-HDL particles, leading 

to  a reduction in plasma HDL levels (Huuskonen et al., 2004a). The pre-|3-HDL particles 

are efficient acceptors of cholesterol from peripheral cells and might also be involved in 

RCT (Van Tol, 2002). In addition, PLTP has recently been shown to regulate VLDL 

secretion from the liver (Jiang et al., 2001; Laffitte e t al., 2003). PLTP-deficient mice 

exhibit decreased levels o f VLDL and LDL in an apoE-deficient or apoB-transgenic 

background (Jiang e t al., 1999). Therefore, some of the actions of LXR agonists on HDL 

and VLDL levels are consistent w ith the known roles of PLTP in lipoprotein metabolism. 

In particular, it seems likely that the ability o f LXR agonists to raise plasma VLDL and 

triglyceride levels may involve PLTP. The expression of PLTP is induced by LXR agonists 

in hepatic cells and in macrophages (Cao e t al., 2002; Laffitte et al., 2003) leading, in vivo,
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to the formation o f large HDL particles that are enriched in cholesterol, apoA-l, apoE and 

phospholipids (Cao e t al., 2002). Also, PLTP expression and activity is increased in mice 

treated with LXR ligands and this is lost in LXRa/j3-/- mice (Laffitte et al., 2003). A 

functional LXR-RE was mapped in the human PLTP prom oter and found to be 

responsible for the transcriptional activation o f this gene by LXR/RXR heterodimers in 

transient transfection assays (Laffitte et al., 2003; M ak et al., 2002a).

LPL is the rate-limiting enzyme in the hydrolysis o f lipoprotein triglycerides (Goldberg,

1996). It is highly expressed in adipose and muscle tissues and is also produced by 

macrophages. LXR ligands also induce the expression o f LPL only in liver and 

macrophages but not in adipose tissue (Zhang et al., 2001). LXRa is thought to be a more 

selective regulator o f LPL than LXRp due to a higher affinity of LXRa for a DR4 like LXR- 

RE that has been identified within the regulatory region of the murine LPL gene, which is 

also conserved in the human LPL gene (Zhang et al., 2001).

1.3.5.2 Role of LXRs in lipogenesis
In addition to  the role o f LXRs in RCT, they have been implicated in the control o f fatty  

acid metabolism. The iipogenic activity of LXRs results from the upregulation of the  

master regulator o f hepatic lipogenesis, SREBP-ic (Repa e t al., 2000a; Schultz et al.,

2000), and thereby its downstream targets such as fatty  acid synthase (FAS) (Joseph et 

al., 2002a), steroyl CoA desaturase I (SCD-1) and acyl CoA carboxylase (ACC) seen in 

response to LXR ligands such as T0901317 (Tontonoz and Mangelsdorf, 2003). Mice 

carrying a targeted disruption o f the LXRa gene were found to be deficient in the  

hepatic expression o f SREBP-ic, FAS, SCD-1 and ACC along w ith defects in cholesterol 

metabolism (Peet et al., 1998). The demonstration that the SREBP-ic prom oter is a direct 

target for the LXRs provides a straight forward explanation for the ability o f LXR ligands 

to  induce hepatic lipogenesis (Repa et al., 2000a). Thus, pharmacological activation of 

LXRs increases lipogenesis to potentially harmful levels, causing hypertriglyceridemia 

(Yoshikawa et al., 2002), which is clearly a major current limitation of using LXR agonists 

in the treatm ent o f atherosclerosis. However, a newly characterized synthetic oxysterol, 

N,N-dimethyl-3p-hydroxycholenamide (DMHCA), has recently been reported to have a 

gene-selective LXR modulatory activity (Quinet et al., 2004). Both In vitro and in vivo 

studies have shown that DMHCA mediates potent transcriptional activation o f most LXR 

target genes while exhibiting minimal effects on SREBP-ic expression. DMHCA therefore
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does not alter circulating plasma triglycerides compared to nonsteroidal LXR agonists 

but still has the potential to stimulate cholesterol transport through the upregulation of 

LXR target genes, including ABCA1, in peritoneal macrophages, liver and small intestine.

It is worth noting that the regulation of lipid homeostasis by LXRs may also contribute to  

their action in cholesterol homeostasis. Recent data has revealed that LXR-/- mice are 

defective in hepatic lipid metabolism and are resistant to  obesity when challenged with a 

diet containing both high fa t and cholesterol (Kalaany et al., 2005). This study indicates 

an interaction between dietary cholesterol and lipid homeostasis in that LXRs selectively 

sense the cholesterol component o f a lipid-rich diet to control the balance between  

storage and oxidation of dietary fa t (Kalaany et al., 2005). Moreover, regulation of 

lipogenesis may function to coordinate the levels of fatty  acids and phospholipids, both 

of which are essential for the mobilisation of free cholesterol (Zhang and Mangelsdorf,

2002). For example, oleoyl-CoA, a product of SCD-1 catalysis, is a substrate for 

cholesterol esterification. Therefore, by increasing SCD-1 activity via SREBP-ic, the LXRs 

would ultimately prom ote the esterification and storage of free cholesterol within the  

cell and protect the organism from toxic accumulation of this sterol. In addition, 

phospholipids facilitate bile acid flow  from liver into bile for eventual excretion and 

lipoprotein transport of excess cholesterol, and thereby help to maintain the ratio of 

cholesterol to other lipids in plasma membranes (Repa et al., 2000a). LXRa also induces 

synthesis of fa tty  acids which are preferred substrates for SOAT in cholesterol 

esterification reactions (Li and Glass, 2002). ABCA1 and SOAT act together to  reduce free  

cholesterol levels and protect cells from the cytotoxic effects of excess cholesterol. 

Therefore, it is possible to  recognize why such a transcription factor that upregulates 

cholesterol efflux and downregulates cholesterol synthesis also upregulates fatty acid 

synthesis. Finally, it should also be taken into consideration that the effects of LXRs on 

lipogenesis may be tissue specific since it has been observed that in skeletal muscles, 

LXR ligands increase cholesterol efflux and do not seem to activate lipid deposition 

(Muscat et al., 2002).

1.3.6 Autoregulation o f the human LXRa gene
Recently, three independent studies have identified that the expression of the human 

LXRa gene is maintained by an auto-regulatory mechanism in human cells (Laffitte et al., 

2001a; Li et al., 2002; Whitney et al., 2001). In multiple human cell types, including
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primary macrophages, the expression of LXRa could be induced by natural and synthetic 

LXR agonists. This autoregulation occurs less than 4h upon addition of the ligands to  the 

cells. Both LXRa and LXRp can activate the transcription o f the prom oter when linked to  

a reporter gene. The autoregulation occurs via LXR-REs present in the human LXRa 

promoter (Hu and Lala, 2002; Li e t al., 2002; Whitney e t al., 2001). The autoinduction of 

LXRa expression provides a unique sensory mechanism utilized by cells to respond to  

increasing cholesterol levels. The generation of LXR ligands leads not only to the 

activation of the receptor but also to increased receptor levels within the cell. This 

potentially leads to  an amplification of the response to oxysterols and the LXR/ABCA1 

cholesterol efflux pathway. Interestingly, LXRa autoregulation appears to be limited to  

human cell types such as macrophages and hepatoma cells and does not occur in murine 

cell lines or primary murine macrophages (Laffitte e t al., 2001a). This dissimilarity in 

response suggests that mice may be less responsive than humans to treatm ent with LXR 

agonists.

1.3.6.1 LXR regulation by PPARs
In addition to autoregulation, PPARs have also been shown to cause a marked increase 

in LXRa expression. The observation that the expression o f the LXRa gene is responsive 

to  PPARy provides evidence for substantial crosstalk between the PPAR and LXR 

pathways. The PPARs are another NR subfamily expressed in human macrophages and 

can be activated by certain lipid components of oxLDL. PPARa and PPARy have been 

well characterised and are known to be involved in lipid metabolism and found to  be 

present in macrophages in atherosclerotic lesions (Akiyama et al., 2002; Chawla et al., 

2001a). Agonists o f PPARa and y induce the expression o f LXRa in human and murine 

macrophages (Chawla et al., 2001a; Chinetti e t al., 2001). Consistent with this, PPARy 

deficiency results in a marked reduction of LXRa expression and macrophage 

cholesterol efflux (Akiyama e t al., 2002; Chawla et al., 2001a). It has been reported that 

in rat hepatic cells (Tobin e t al., 2000) and in human primary macrophages (Chinetti et 

al., 2001), fatty  acids, in particular unsaturated fatty  acids, induce LXRa but not LXR(3 in a 

PPARa-dependent manner (Tobin et al., 2000). In a parallel study, it has also been 

demonstrated that agonist-mediated activation of PPARy in human macrophages leads 

to increased expression o f both human and mouse LXRa via a PPAR binding site in the  

LXRa prom oter (Chawla et al., 2001a).
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Beside the activation o f the LXRa gene by PPAR agonists, it has been reported that a 

regulatory cascade exists in which PPARy and PPARa stimulates ABCA1 function by 

activating LXRa transcription (Chawla et al., 2001a). The same study has shown that mice 

which lack PPARy activator in their macrophages have atherosclerosis. In addition, it has 

been shown that the apoE gene is also regulated by PPARy and LXR agonists, and that 

macrophage specific inhibition o f PPARy expression reduces levels of apoE and 

drastically decreases basal cholesterol efflux (Akiyama et al., 2002). As a result of this 

cross-regulation, LXR and PPARy ligands (i.e. thiozolidinediones (TZD)) have additive 

effects on the expression o f LXRa target genes such as ABCA1 and apoE. Thus, mature 

macrophages express more ABCA1 and export more cholesterol when exposed to the  

factors that activate PPARy or LXRa (Chawla e t al., 2001a; Chinetti e t al., 2001; Laffitte et 

al., 2001a).

1.3.7 LXRs and atherosclerosis
As mentioned earlier, the activation of LXRs and their target genes stimulates 

cholesterol efflux in macrophages, inhibits intestinal cholesterol absorption and 

promotes bile acid synthesis in the liver. The importance o f these receptors in 

physiological lipid metabolism suggests that they may also influence the development of 

metabolic disorders such as hyperlipidemia and atherosclerosis. Recently, a number of 

studies in vitro and in vivo have indicated that activation o f the LXR pathway is anti­

atherogenic (Joseph and Tontonoz, 2003; Repa and Mangelsdorf, 2002; Zelcer and 

Tontonoz, 2006). Over-expression of LXRa or their ligand-dependent activation 

stimulates cholesterol efflux in macrophages loaded with acetylated LDL in vitro (Joseph 

and Tontonoz, 2003). The first direct link between LXR activity and the pathogenesis of 

atherosclerosis came with the demonstration that activation o f the LXRs inhibited the  

development of atherosclerosis in mouse models of this disease (Joseph et al., 2002b; 

Joseph and Tontonoz, 2003; Schuster et al., 2002; Tangirala et al., 2002). Thus, treatm ent 

of apoE-/- or LDLR-/- mice with the tw o  synthetic LXR agonists, GW3965 and T0901317, 

was found to induce the expression o f ABCA1 and ABCG1, and led to a marked reduction 

(approximately 50%) in the size of atherosclerotic lesion development in the aortas of 

hyperlipidemic mice (Joseph et al., 2002b; Terasaka et al., 2003). In contrast, loss o f LXRs 

from the haematopoietic com partm ent (e.g. macrophages) by bone marrow  

transplantation resulted in a significant increase in atherosclerotic lesion formation in 

both LDLR-/- (m ore than 3 fold increase) and apoE-/- (3-8 fold increase) mice (Tangirala et



CHAPTER ONE- 69

al., 2002). In addition, LXRap-/- mice show severe defects in hepatic cholesterol 

metabolism and also develop splenomegaly and accumulate foam cells in multiple 

peripheral tissues (Schuster e t al., 2002). A recent study further established that 

treatm ent o f LDLR-/- mice w ith T0901317 reduces the size of pre-existing lesions and that 

this reduction is dependent on LXR activity in macrophages (Levin et al., 2005).

Two other NRs, PPARy and RXR, have also been implicated in the pathogenesis of 

atherosclerosis, and treatm ent of atherogenic mouse models w ith RXR or PPARy 

agonists results in significant decrease in lesion development (Claudel et al., 2001; Li e t 

al., 2000a). For example, a reduction in atherosclerosis was seen w ith RXR agonist 

LG268 (Claudel e t al., 2001). Also in these mouse models, PPARy ligands have been 

reported to reduce atherosclerosis, which is most likely a consequence o f indirect LXR- 

mediated effects (Claudel e t al., 2001; Li e t al., 2000a). In addition, transplantation of 

PPARy-/- bone m arrow into LDLR knockout mice also increases atherosclerosis (Chawla 

et al., 2001a). Collectively, these studies strongly support the hypothesis that 

macrophage LXR pathway is an important homeostatic mechanism that helps to protect 

against cholesterol overload, and they point to the potential usefulness of LXR, RXR and 

PPAR agonists as attractive targets for the intervention of CVD.

1.3.8 LXRs and inflamm ation
Atherosclerosis has long been known as a disorder of lipid metabolism as well as a 

chronic inflammatory disease. Recently, several studies have explored the role of LXRs in 

macrophage inflammatory pathways and reported a relationship between inflammatory 

gene expression and lipid metabolism in activated macrophages treated with LXR 

agonists (Castrillo and Tontonoz, 2004). In addition to inducing genes involved in RCT, 

LXR agonists were found to  inhibit the innate immune response and the expression of a 

cluster of genes involved in inflammation (Castrillo et al., 2003a; Joseph e t al., 2003). The 

importance of inflammation in atherosclerosis is well established. Certain inflammatory 

mediators such as monocyte chemotactic protein-1 (MCP-1), IL-1|3 and IL-6 promote  

monocyte recruitment in the atherosclerotic plaques, stimulate SMC proliferation and 

increase extracellular matrix production (Hansson, 1999). Metalloproteinases, such as 

MMP-9, are highly expressed by macrophages and SMCs and have been implicated in 

both lesion remodelling and plaque rupture (Pasterkamp et al., 2000). The induction of 

MCP-1, IL-6, inducible nitric oxide synthase (iNOS), cycIooxygenase-2 (COX-2), IL-1(3 and
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MMP-9 in response to bacterial pathogens and pro-inflammatory cytokines was inhibited 

by LXR activation (Joseph et al., 2003). The repression o f expression o f these genes was 

observed in LXRa-/- or LXR(5-/- macrophages but was completely abolished in LXRa/p null 

cells, indicating that either LXRa or LXRp can mediate the anti-inflammatory activity of 

LXR agonists (Castrillo et al., 2003a). In addition, treatm ent o f apoE-/- mice with LXR 

ligands reduced the expression o f the inflammatory m ediator M MP-9 >n atherosclerotic 

aortas (Joseph e t al., 2003). Both studies demonstrated that this regulation was LXR- 

dependent and the mechanism whereby LXRs exert their inhibitory effects on 

inflammatory genes appears to involve antagonism of the NF-kB pathway (Castrillo e t 

al., 2003a). Collectively, these data suggest that LXR ligands may exert their anti­

atherogenic effects not only by promoting cholesterol efflux but also by acting to  limit 

the production of inflammatory mediators in the artery wall.

Reciprocally, inflammatory pathways might also alter the LXR-mediated cholesterol 

metabolism, contribute to foam cell formation and accelerate lesion development 

(Zelcer and Tontonoz, 2006). Recently, it has been reported that bacterial and viral 

pathogens antagonise LXR transcriptional activity and cholesterol efflux. For example, 

activation of toll like receptors (TLRs) such as TLR3 or TLR4, which recognize conserved 

motifs on microbes and induce inflammatory signals during bacterial or viral infection of 

macrophages severely compromise the expression of ABCA1/G1, apoE and other LXR 

target genes both in vitro and in vivo (Castrillo et al., 2003b). Consistent with these 

effects on LXR-dependent gene expression, activation of TLR3 or TLR4 potently inhibits 

cholesterol efflux from macrophages. This effect is accomplished through activation of 

the viral response transcription factor IFN regulatory factor 3 (IRF3). However, the 

mechanism by which this factor blocks LXR actions is unclear. This LXR/TLR cross-talk 

explains how bacterial and viral infections interfere w ith cholesterol metabolism and 

modulate CVD (Zelcer and Tontonoz, 2006).

Recently, another function of LXR signalling in the innate immune response has been 

reported in which mice lacking LXRs were found to be susceptible to infection with 

intracellular pathogens (Joseph et al., 2004). The authors were able to show that altered 

macrophage function was a major contributor to  pathological susceptibility to microbial 

infection using bone marrow transplantation from LXRa/p-/- mice into wild type mice. 

The inability of LXR-/- to  mount response to microbial infection correlated with
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accelerated rates of macrophage apoptosis. The increased susceptibility o f LXR-/- 

macrophages to pathogen-induced apoptosis results from the loss of regulation of the  

anti-apoptotlc gene scavenger receptor cystine-rich repeat protein (SPa) by LXRa. SPa, 

which is also known as apoptosis inhibitor 6 (API6) or as apoptosis inhibitor of 

macrophages (A IM ), is a mem ber of the scavenger receptor cystine-rich repeat (SRCR) 

family (Gebe e t al., 1997). This activity was attributed to the induction of SPa and other 

anti-apoptotic factors as well as to the inhibition o f pro-apoptotic genes. SPa is the first 

LXR isoform-selective target gene and its selective regulation by LXRa and the induction 

of LXRa mRNA during infection, suggest that this isoform may have functions in innate 

immunity (Zelcer and Tontonoz, 2006). Similarly, Valledor et al. (2004 ) showed that 

activation of LXR/RXR heterodimers by natural and synthetic agonists inhibits 

macrophage apoptosis in response to apoptotic stimuli (e.g. cydoheximide) (Valledor et 

al., 2004).

The ability of the LXR pathway to  enhance macrophage survival through induction of the  

anti-apoptotic Spa gene highlights a common pathway used for both metabolic and 

immune control (Zelcer and Tontonoz, 2006). In addition to being induced in the setting 

of bacterial infections, Spa is also upregulated during macrophage lipid loading. 

Recently, the importance of this macrophage survival pathway in atherogenesis was 

explained (Arai, 2005). Macrophages from Spa-/- mice were highly susceptible to oxLDL 

loading-induced apoptosis in vitro and in vivo within atherosclerotic lesions. As a result, 

early atherosclerotic lesions in Spa-/- LDLR-/- mice are reduced compared with those in 

Spa+/+ LDLR-/- mice (Arai, 2005; Zelcer and Tontonoz, 2006).



CHAPTER ONE-7 2

1.4 Aims of the project
LXRs, members o f the NR family, have emerged as key factors in the control o f 

cholesterol homeostasis. Cholesterol efflux is a critical process in atherogenesis and is 

affected by LXR mediators. The evidence presented above clearly indicates that the  

activation of LXR leads to  changes in lipid metabolism, including promotion of RCT from  

macrophages to the liver, where it can be converted to bile acids or eliminated in the bile 

excretion system. The relevance of this effect for the developm ent o f atherosclerosis is 

clear from studies showing that synthetic agonists inhibit the developm ent of this 

disease in animal models (Joseph et al., 2002b). These findings define LXRs as potential 

therapeutic targets for the treatm ent o f lipid disorders. LXRs regulate the expression of 

many genes involved in RCT and lipid loading of macrophages. The role o f LXR target 

genes, such as ABCA1 and apoE, in RCT and atherosclerosis is well established as 

described previously in this chapter. Future therapeutic approaches should therefore  

seek to increase ABCA1 and apoE expression in macrophages to enhance cholesterol 

removal from these cells and to prevent foam cell formation in atherosclerotic lesion 

development. Previous work in our laboratory has shown that the LXR ligand, 22(R)-HC, 

has a stimulatory effect on apoE gene expression in macrophages (Greenow, K., 2004). 

It is important to understand comprehensively the mechanisms by which LXR agonists 

exert these inducible effects on the expression of genes involved in cholesterol efflux 

such as ABCA1 and apoE as this will:

1. Contribute to the understanding o f the mechanisms by which LXRs upregulate 

the expression of such genes in macrophages.

2. Identify potentially novel targets for therapeutic intervention of atherosclerosis.

The signal transduction pathways underlying such an action of LXRs remain poorly 

understood. However, previous work in our laboratory has shown that JNK/SAPK and 

PI3K are required for the upregulation of apoE gene expression by 22(R)-HC (Greenow, 

K., 2004). These results suggest regulation o f the function of LXRs by phosphorylation of 

either the receptors themselves or specific cofactors that interact w ith them (Bastien 

and Rochette-Egly, 2004; Huuskonen et al., 2004a; Rochette-Egly, 2003; Shao and Lazar,
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1999). Paying attention to these tw o  pathways, the initial aim of the present study was 

to elucidate the regulatory mechanisms by which LXR agonists, induce ABCA1 expression 

in macrophages.

The main aims o f the project were to:

1. Determine w hether the JNK/SAPK and PI3K signal transduction pathways are 

also involved in the LXR-mediated regulation of ABCA1 expression in 

macrophages.

2. Investigate the role of key components in these pathways and the potential 

mechanisms underlying their actions.

To achieve these overall goals, studies presented in chapter 3 investigated the effect of 

LXR agonists on ABCA1 mRNA expression in murine J774.2 macrophages, a well 

established mouse model for differentiated macrophages (Ralph and Nakoinz, 1975; 

Ralph et al., 1975). In addition, the potential role of the JNK/SAPK and PI3K pathways, 

which had previously been identified in our laboratory to be required for the 22(R)-HC- 

induced apoE gene expression in THP-1 cells, was studied by the use of RT-PCR, 

pharmacological agents and transient transfection assays with LXR-responsive promoter 

and DNA constructs specifying for dominant negative (D N ) forms of key components of 

the JNK/SAPK and PI3K pathways. On the basis of the outcome from these studies and, 

as atherosclerosis is in essence a human disease, the initial aims of the project were 

modified slightly to understand the regulation of ABCA1 transcription by LXR/RXR in 

human macrophages w ith apoE included in representative, comparative experiments.

Studies presented in chapter 4 explored the effect o f natural LXR agonists on ABCA1 and 

apoE protein levels in THP-1 macrophages, a well established human model for 

differentiated macrophages (Tsuchiya e t al., 1982; Tsuchiya et al., 1980), using western 

blot analysis. In addition, the action o f synthetic LXR agonists, which are known to 

stimulate RCT and inhibit the developm ent of atherosclerosis, on the expression of the  

ABCA1 and apoE genes was studied. Furthermore, the potential role o f the JNK/SAPK 

and PI3K pathways in the responses was investigated using pharmacological agents.
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Studies presented in chapters 5 and 6 focussed on the JNK/SAPK and the P3K pathways 

respectively in the regulation of ABCA1 expression by several complementary 

approaches, such as monitoring the activation of key components of the pathways, 

transient transfection assays with ABCA1 prom oter and DNA constructs specifying for 

DN forms of various proteins, and electrophoretic mobility shift assays (EMSA) for 

evaluating DNA-protein interactions. Studies presented in chapter 7 investigated any 

potential cross talk between these tw o pathways.



Chapter t w o : 

M aterials a n d  M ethods
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Chapter 2: Materials and Methods

2.1 M a t e r ia ls

2.1.1 S u p p lie rs
The suppliers from which the materials/chemicals used in this research project were 

purchased from are listed below in Table 2.1. Any reagents that are not listed were 

obtained from Sigma Chemical Corporation Ltd.

Table 2.1: The chemical reagents/materials and their suppliers

Abeam, Cambridgeshire, UK ABCAi antibody
Autogen Bioclear, Wiltshire, UK DMEM Tissue culture medium, RPMI 

1640 Tissue culture medium, INTERFERin™ 
siRNA transfection reagent

GE Healthcare, Buckinghamshire, UK Rainbow full range protein size markers, 
Random hexamers (pdN6), ECL-Western 
blotting detection reagent, X-ray film, Nick 
columns, Megaprime DNA labelling kit, 
a 32P-dCTP

Anachem, Luton, UK Acrylamide: bisacrylamide 29:1 
Acrylamide: bisacrylamide 37.5:1

Boehringer Mannheim Ltd, East Sussex, UK Positively charged Nylon membrane, 
Ribonucleoside triphosphate set

Bioline, London, UK Taq DNA polymerase (ioxNH4 reaction 
buffer), Agarose, Magnesium chloride

Biogenesis Ltd, Poole, UK Goat polyclonal apoE antibody
Corning Costar, Netherlands Falcon 15ml and 50ml polypropylene tubes
Calbiochem, Nottingham, UK LY294002, Curcumin, SP600125, T0901317, 

Rapamycin, Bisindolylmaleimide, G06983, 
G06976, Rotllerin

DIFCO Biosciences, Surrey, UK LB agar capsules, LB medium capsules
European Collection of Animal Cell Culture 
(ECACC),Salisbury, UK

Cell lines (J774-2, THP-1 and Hep3B)

Fisher Scientific, Loughborough, UK P-mercaptoethanol, EDTA, Ethanol, 
Glycerol, Hydrochloric acid, Industrial 
methylated spirit, Isopropanol, Sodium 
dodecyl sulphate, Methanol, Butan-i-ol, 
Sodium chloride, Sodium hydroxide, Tris

Genetic Research Instrumentation, Essex, UK Saran Wrap
Greiner, Gloucestershire, UK Tissue culture flasks, 96-well plates, 6- and 

12-well plates, Cell scrapers
Gibco BRL Life Technologies Ltd, Paisley, UK Fetal calf serum, Trypsin-EDTA, 

Ammonium persulphate
Helena Biosciences, Sunderland, UK Cell scrapers
Millipore Ltd., Gloucestershire, UK PVDF membrane
Marligen Biosciences, Sunderland, UK High purity plasmid Maxi Prep system
National Diagnostics, Atlanta, USA Agarose, 10 x TBE
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New England Biolabs, Hertfordshire, UK Restriction endonucleases, DNA 
molecular weight markers, Anti-PKB, Anti- 
PKB (pSer473), PKB kinase assay activity 
kit, Anti SEK1/MKK4, Anti PSEK1/MKK4 
(pSer257/Thr26i), Anti-SAPK/JNK, Anti 
SAPK/JNK (pThri83/Tyn85) and SAPK/JNK 
assay kit

Nycomed Pharma, Bridport, UK Lymphoprep™
Oxoid Ltd, Hampshire, UK Phosphate-buffered saline tablets
Pierce, Chester, UK Micro BCA protein assay kit
Promega Ltd, Southampton, UK Rnasin™ ribonuclease inhibitor, Passive 

lysis buffer ( 5X ), Firefly luciferase assay 
reagent, MMLV reverse transcriptase and 
toxbuffer of MMLV, dNTPs, 5X Reverse 
transcriptase buffer and Wizard plus 
SVTM Miniprep kit

PeproTech EC Ltd, London, UK TGF-p
Qiagen Ltd, Crawley, UK RNeasy™ total RNA isolation kit, 

Superfect™ transfection reagent, 
Effectene™ transfection reagent, JNKi, 
JNK2 and GAPDH siRNA

Santa-Cruz Biotechnology Inc., California, USA Anti-total-c-Jun (H-79), Anti-phospho-c-Jun 
(KM-1; pSer63)

Sigma Aldrich, Steinheim, Germany Poly-ethyleneimine (PEI), DIPE, SB216763, 
SB415286

Sigma Genosys, Cambridgeshire, UK DNA oligonucleotides
Sigma, Poole, UK Anti-(3-actin, Ampicillin, Aproptonin, 

Benzamidine, Bovine serum albumin, 
Bromophenol blue, Ethidium bromide, 
Ficoll (Type 400), Glycerol, Leupeptin, 
Mineral oil, Molecular biology grade 
water, PEI, Penicillin/Streptomycin, PMA, 
PMSF, iox TBE, TEMED, Tissue culture 
grade DMSO, Trypan blue solution, Tween 
20, 22(R)-and 22(S)- hydroxycholesterol, 
9-cis -retinoic acid

Schleicher and Schuell, London, UK Tissue culture filters (0.2pm)

2.1.2 C u ltu re  m e d ia  a n d  s to ck  s o lu tio n s

2.1.2.1 M edia
The LB medium and LB agar were all supplied in a capsule form and made up according 

to the manufacturer’s instruction (DIFCO Biosciences).

2.1.2.2 Stock solutions
The solutions were prepared to the specifications described in Tables 2.2, 2.3 and 2.4, are 

categorised according to the procedure in which they were used. The solutions were 

prepared using sterile double distilled water and were of molecular biology grade. All
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stock solutions used for tissue culture were autoclaved for 20min at a pressure of 

975kPa.

Table 2.2: Composition of stock solutions for the electrophoresis of RNA/DNA

5x DNA loading dye 0.5XTBE
40% (v/v) Glycerol
0.25% (w/v) Bromophenol blue

Table 2.3: Solutions for the isolation of proteins and Western blot analysis

Whole cell extraction buffer iomM HEPES (pH 7.9) 
400mM NaCI 
0.5mM DTT 
5% (v/v) Glycerol 
0.51T1M PMSF 
lopg/ml Aprotinin 
0.5M Benzamidine 
O.tmM EDTA

Phosphatase-free whole cell extraction buffer iomM Tris-HCl (pH 7.05)
5omM NaCI
5omM NaF
1% (v/v) Triton x-too
3omM Sodium pyrophosphate
5pM ZnCI2
ioopM Sodium orthovanadate 
im M  DTT
2.8pg/ml Aprotinin
2-5pg/ml each of Leupeptin and Pepstatin 
o.smM Benzamidine 
o.smM PMSF

2x SDS gel-loading buffer (Laemmli buffer) 0.125M Tris-HCl (pH 6.8)
4% (v/v) SDS
to% (v/v) glycerol
10% (v/v) (3-mercaptoethanol
0.2% (w/v) bromophenol blue
im M DTT
2.8pg/ml Aprotinin
2.5pg/ml each of Leupeptin and Pepstatin 
o.smM Benzamidine 
O.smM PMSF

Nuclei extraction buffer A iomM Hepes (pH 7.9) 
iomM KCI 
i.5mM MgCl2 
o^m M  PMSF 
O.smM DTT 
ipg/ml Pepstatin A 
iopg/ml Aprotinin 
lopg/ml Leupeptin
iopg/ml Type l-S soybean trypsin inhibitor

Nuclei extraction buffer C 2omM Hepes (pH 7.9)
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42omM NaCI 
t.5mM MgCl2 
0.2mM EDTA 
25% (v/v) glycerol 
O.smM DTT 
O.smM PMSF 
ipg/ml Pepstatin A 
iopg/ml Aprotinin 
iopg/ml Leupeptin
iopg/ml Type l-S soybean trypsin inhibitor

Upper gel buffer for SDS-PAGE iM  Tris-HCl 
10% (w/v) SDS 
pH 6.8

Lower gel buffer for SDS-PAGE 1.5M Tris-HCl 
10% (w/v) SDS 
pH 8.8

lOxRunning buffer for SDS-PAGE 25mM Tris-HCl 
2501T1M glycine 
0.1% (w/v) SDS 
pH 8.3

Reducing solubilising solution 50mM Tris-HCl 
20% (w/v) sucrose 
2% (w/v) SDS
0.1% (w/v) bromophenol blue 
10% (v/v) glycerol 
5% (v/v) p-mercaptoethanol 
pH 6.8

Western blot transfer buffer 25mM Tris 
1921T1M glycine 
20% (v/v) methanol

iox Tris buffered saline (TBS) iomM Tris-HCl 
200mM NaCI 
pH 7.4

Table 2.4: Stock solutions used for the preparation of binding reactions for EMSA

iox Binding buffer 340mM KCI 
50mM MgCl2 
imM DTT

Dilution buffer 40mM KCI 
o.imM EDTA

2.1.2.3 Antib iotics
A stock solution of ampicillin (100

stored in aliquots at -20°C.

mg/ml) was filter sterilised using 0.22pm filters and

2 .2  M e th o d s

2.2.1 P re p a ra tio n s  o f  p lastics  an d  g la s s w a re
All glassware and plastics (e.g. test tubes, pipette tips and Eppendorf tubes) for the 

isolation and manipulation of DNA, RNA and proteins were autoclaved for 20min at a
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pressure of 975 kPa at 121°C. This procedure was also carried out on solutions required 

for methods involving the manipulation of RNA or DNA.

2.2.2 Tissue culture
The following cell lines w ere used in this study: J774.2, an adherent murine monocyte- 

derived macrophage cell line; THP-1, a human monocytic cell line derived from a human 

leukemia cell; U937, a human monocytic cell line derived from a human histiocytic 

lymphoma and Hep3B, an adherent human hepatocarcinoma cell line derived from a 

human carcinoma. J774.2 and Hep3B were grown as adherent cells whereas THP-1 and 

U937 were maintained as undifferentiated monocytes grown in suspension. 

Differentiation of these cells was achieved by adding phorbol 12-myristate 13-acetate 

(PMA).

2.2.2.1 Maintenance of cells In culture
The cells were maintained either in RPMI 1640 (THP-1; U937) or Dulbecco’s Modified 

Eagle’s medium (D M EM ) (J774.2; Hep3B). Both medium contained stabilized glutamine 

and were supplemented with penicillin (iooU/m I), streptomycin (iooU /m l) (designated 

pen/strep here after) and 10% (v/v) heat-inactivated (30mm, 56°C) fetal calf serum (Hl- 

FCS).

All the components used to supplement the media were sterilized using a o.2pm sterile 

filter. The cells were maintained in a humid incubator at 37°C and 5% (v/v) CO2 

atmosphere. The culture medium was replaced every tw o days.

2.2.2.2 Subculturing of cells
The sub-culturing o f J774.2 cells was carried out by detaching the cells (when they were 

60-70% confluent) from the growth surface using a sterile disposable cell scraper and 

collecting them in 30 ml Universal tubes. The cells were then centrifuged at 8oog for 

5min at 4°C and resuspended in fresh medium containing 10% (v/v) HI-FCS and 1% (v/v) 

pen/strep. The cells were then plated out again at a ratio of 1:6 (e.g. cells from one flask 

were sub-cultured into six new flasks o f the same size).

THP-1 and U937 cells were sub-cultured when they reached approximately 60-70% 

confluency (ix io 6cells/mI). The cells were centrifuged at 8oog for 5min at 4°C and the  

pellet was resuspended in medium containing 10% (v/v) HI-FCS and 1% (v/v) pen/strep.



CHAPTER TWO-81

The cells were then plated into fresh tissue culture flasks at a ratio of 1:4 and incubated 

as above.

The adherent Hep3B cell line was sub-cultured when it reached between 50% and 60% 

confluency. The cells were washed with fresh medium and covered with a volume of 

trypsin/EDTA solution that was sufficient to cover the cell monolayer (e.g. 1.5ml for 

125cm2 large flask) and incubated at 37°C for 5-6min or until the cells had detached from  

the plastic. Cell culture medium containing HI-FCS was then added to the flasks to  

inactivate the action o f trypsin/EDTA and the cell suspension was transferred to a sterile 

50ml polypropylene tube and centrifuged at 8oog for 5min. The resulting pellet was 

resuspended in medium containing 10% (v/v) HI-FCS and 1% (v/v) pen/strep and the cells 

were plated out into new fresh tissue culture flasks at a ratio of 1:4.

2.2.2.3 Preserving and storing of cells
Cells at early passage (2-4) were centrifuged at 8oog for 5mm. The supernatant was 

removed and the cells were resuspended in FCS containing 10% (v/v) glycerol for THP-1 or 

10% (v/v) DMSO for J774.2, U937, and Hep3B cells. The mixture was then aliquoted in to  

1ml sterile cryo-vials, covered with thick layers of tissue paper, and placed in a 

polystyrene box overnight at -70°C. The cryo-vials were then stored in liquid nitrogen.

2.2.2.4 Thawing frozen cells
Frozen cryo-vials stored in liquid nitrogen were placed in w ater bath at 37°C until the  

contents had thawed. The outside of the cryo-vials were cleaned with 70% (v/v) ethanol 

and the contents transferred into a Universal tube containing 10ml of HI-FCS. After 

centrifugation for 5min at 8oog, the supernatant was discarded and the cell pellet was 

resuspended in complete medium containing 10% (v/v) HI-FCS and plated out in tissue 

culture flasks.

2.2.2.5 Counting Cells
A haemocytometer (Neubauer chamber) was used to count the number of cells for 

subculturing and transfection purposes. The haemocytom eter was covered with a 

precision ground cover-slip that was gently pressed on it until Newton rings were visible. 

Then, iopl of cell suspension was placed at the edge o f the cover-slip. The chamber was 

placed under the microscope and all the cells in its large square were counted.
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2.2.2.6 Differentiation of THP-1 monocytes
The differentiation of THP-1 monocytes was initiated by adding o.i 6|jM of PM A to the 

ceils (ix io 6/m I). Differentiation was completed after 24b of PMA addition when the cells 

lost their round morphology, became elongated and adhered to  the bottom of the flask.

2.2.27 Delipidation of HI-FCS
The study of LXR-mediated regulation o f genes implicated in the control o f cholesterol 

homeostasis required ail experiments to use delipidated HI-FCS. Lipids were removed 

from HI-FCS according to  the method of Cham and Knowles (1976) with minor 

modifications. To 10ml of HI-FCS, 20ml of 2:3 (v/v) butanol:DIPE was added and mixed by 

rotation for 30mm at room temperature. The phases were then separated by 

centrifugation at 4,ooog for 5mm and the serum removed into fresh tube. In order to  

remove any residual solvent, nitrogen was bubbled through the serum for 2-3h.

2.2.2.8 Treatment of cells with oxysterol ligands
For certain experiments, the addition of the LXR ligands 22(R)-HC and 22(S)-HC and/or 

the RXR ligand 9CRA was necessary. For J774.2 macrophages, the cells were first 

incubated for 4h in 10% (v/v) lipoprotein deficient serum (LPDS). The medium was then 

removed and replaced with fresh medium (o f the same serum content and composition) 

containing the ligands or the vehicle (i.e. DMSO) and incubated at 37°C in a humid 

atmosphere of air containing 5% (v/v) C0 2for the requisite time. For THP-1 cells, these 

were seeded in RPMl media containing 10% LPDS for 4h followed by the  addition of 

o.i6pM  PMA and incubation for 24h (Tsuchiya et al., 1982). The ligands or vehicle (i.e. 

DMSO) w ere then added and the incubation continued for the requisite time. These 

conditions are routinely used for experiments with such ligands.

2.2.2.9 Treatment of cells with inhibitors
For experiments with pharmacological inhibitors, the appropriate concentration of the  

inhibitors were added directly to the medium ih  before the addition of the mediators 

(i.e. pre-treatm ent). Table 2.5 details the pharmacological inhibitors used in this study 

and their mode o f action.

2.2.2.10 Trypan blue exclusion test
The trypan blue exclusion assay was used to determine cell viability. For this, 0.4% (w /v) 

of trypan blue solution was added to the cell culture media at a ratio of 1:100 (v/v) and 

incubated at 37°C for 5-iomin in an incubator. The cells were then washed w ith PBS and 

viewed under a microscope.
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Table 2.5: Action of pharmacological inhibitors used

LY294002 c19h17n o 3 PI3K Reversible ATP competitive inhibitor of PI3K Vlahos et al., 1995

SB216763 c19h 12n 2o 2ci2 GSK-3 Glycogen synthase kinase-3 inhibitor Smith et al., 2001

SB415286 Ci6H10N3O5CI GSK-3 Glycogen synthase kinase-3 inhibitor Smith et al., 2001

Rapamycin c51h 79n o ,3 mTOR Selective inhibitor of p70 S6 kinase Gottschalk et al., 1994

SP600125 c14h8n 20 JNK/SAPK Reversible ATP competitive inhibitor of JNK Bennett et al., 2001

Curcumin c21h 20o 6 JNK/SAPK Inhibits an upstream kinase of the JNK pathway Brouet et al., 1995

Bisindolylmaleimide I c25h 24n4o 2 PKC Reversible ATP competitive inhibitor of PKC Hers et al., 1999

Go 6976 c24h ,8n4o PKC Selective inhibitor of Ca+2 dependent PKCa-isozyme Martiny-Baron et al., 1993

Go 7983 c26h 26n4o 3 PKC Selective inhibitor of several PKC-isozymes Wang et al., 1998

Rottlerin C 3 0 H 2 8 O 8 PKC Selective inhibitor of PKC5-isozyme Gschwendt et al., 1994

PI3K, Phosphoinosltide 3-kinases; GSK, Glycogen synthase kinase-3; mTOR, mammalian target of rapamycin; JNK/SAPK, c-Jun N-terminal kinase/stress-activated 
protein kinase; PKC, Protein kinase C.
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2.2.2.11 Human primary monocyte-derived macrophage ceil cultures
Human primary monocytes/macrophages were isolated from buffy coats obtained from

the National Blood Service, Wales. The isolation was carried out using Accuspin™ 

centrifuge tubes and the separation medium used was Lymphoprep™. The separation 

medium comprises of an aqueous solution of a high molecular weight polysaccharide 

dextran and sodium diatrizoate that causes erythrocyte aggregation. Accuspin™ 

centrifuge tubes were layered on top of the polyethylene barrier (fr it) with 15ml of 

Lymphoprep™ that had previously been warmed to room tem perature. Subsequently, 

these were centrifuged at 8oog for imin in order to place the Lymphoprep™ in the tube 

below the frit. Then, 30ml o f blood was layered over the frit and centrifuged at 8oog for 

30mm at room tem perature to allow sedimintation of erythrocytes. The resultant 

mononuclear cells were collected and transferred to a new centrifuge tube and an equal 

volume of ice cold PBS-0.4% (w /v) tri-sodium citrate was added. Cells were pelleted at 

8oog for 5min at 4°C. The pelleted cells were resuspended in 10ml o f 0.2% (v/v) saline 

solution and incubated on ice for 30sec followed by the addition of 10ml of 1.6% (v/v) 

saline solution and immediate centrifugation at 8oog for 5mm at 4°C. The resultant 

interface was collected and washed 6-8 times w ith ice cold PBS-0.4% (w /v ) tri-sodium 

citrate to remove contaminating platelets. Primary monocytes were plated out in flasks 

(io x io 6 cells/ml) in complete culture medium containing 5% (v/v) HIFCS and 1% (v/v) 

pen/strep. The cells were allowed to adhere for 4h in an incubator at 37°C, containing 5% 

(v/v) CO2, and then the media was replaced with fresh culture medium. The human 

primary monocyte-derived macrophages were left to differentiate for 7-10 days before 

use in experiments. Every 2 days, half of the volume o f the medium was removed and 

replaced with fresh culture medium containing 5% (v/v) HI-FCS, and 1% (v/v) pen/strep. 

For stimulation with LXR agonists, the medium was removed and replaced with fresh 

culture medium containing 5% (v/v) LPDS and 1% (v/v) pen/strep.

2.2.3 Isolation o f total RNA
Total RNA was isolated using the Rneasy™ mini kit (Qiagen). The method relies on the  

selective binding properties of RNA to a silica gel-based membrane (Suppliers 

information, 1997). The disruption o f the cells was carried out in the presence of 

guanidinium isothiocyanate, which is an effective deproteinising agent that removes the  

proteins which complex with the RNA. Additionally, guanidinium isothiocyanate is a 

strong inhibitor of ribonudeases (RNases), which are liberated from organelles such as
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nuclei and lysosomes when the cells are disrupted. This inhibition results in the isolation 

of intact, undegraded RNA (Chomczynski and Sacchi, 1987).

2.2.3.1 Procedure
Following incubation w ith  the ligands, the cells were removed from the flasks, 

transferred to a 20ml Universal tube and centrifuged at 8oog for 5min. The cells in the 

pellet were lysed by the addition of 6oopl of lysis buffer RLT (provided in the kit) 

followed by passaging fo r about 10 times through a 0.9m m  needle fitted to a 2ml 

syringe. Once this homogenisation step was complete, 6oopl o f 70% (v/v) ethanol was 

added to  the lysate and then 70opl of the sample was applied to  an RNeasy column 

(provided in the kit), which was then centrifuged for 8oog for I5sec. This process was 

repeated until the entire sample had been applied to the column (the  flow  through was 

discarded). The column was then washed once with 700pl o f wash buffer RW1 (provided 

in the kit), centrifuged as above and then washed twice with 500pl of wash buffer RPE 

(provided in the kit). The column was centrifuged for 8oog for 2min in order to remove 

the residual ethanol. The RNA was then eluted by placing the column in a fresh 

microcentrifuge tube and then applying 5opl o f RNase-free w ater (provided in the kit) 

directly to the membrane. Following centrifugation for imin at 8oog, the RNA was 

collected in an Eppendorf tube.

2.2.3.2 Quantitation and assessment of the purity of total cellular RNA
The concentration of RNA was determined spectrophotometrically at 26onm (OD260)

and at 28onm (O D280) using a U-1800 spectrophotometer (Hitachi). The concentration 

was calculated by multiplying the absorbance by 40 (the absorbance of ipg/m l of RNA) 

and by the appropriate dilution factor. The purity was assessed by calculating the ratio 

of the absorbance at 260 and 28onm. Pure RNA has an OD26o:OD28onm ratio of 

approximately 2 (impurities may either increase or decrease this ratio). To be suitable for 

RT-PCR, a ratio between 1.8 and 2.2 was required, otherwise there was a possibility that 

the contamination may interfere w ith the assessment o f the concentration and with the  

reverse transcription reaction.

The RNA (ip g ) was also subjected to  electrophoresis to  verify the quantification and to  

determine the quality o f the RNA. Electrophoresis was carried out on a 1% (w /v) agarose 

gel. The RNA was visualised under an ultraviolet transilluminator using a Syngene Gel
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documentation system. Intact undegraded RNA should show a 28S:i 8S rRNA ratio of 

approximately 2:1.

2.2.4 Semi quantitative Reverse transcriptase Polymerase Chain Reaction 
(RT-PCR)

2.2.4.1 Introduction
RT-PCR is a two-step process, the reverse transcription of RNA into cDNA followed by 

the amplification of the cDNA by the polymerase chain reaction (PCR). As PCR can 

amplify specific DNA molecules in an exponential manner, it is an ideal technique for the 

semi quantitative or even quantitative analysis o f RNA and DNA molecules. The 

amplification allows RT-PCR to be used to measure short lived and low abundance 

mRNA transcripts that may not be detected by Northern blotting and is also less time 

consuming (Wang et al., 1989).

When the cDNA of interest is amplified, it is compared against a standard. The 

expression o f the standard should remain constant in each sample of RNA. Therefore, 

the levels o f the target gene in each sample can be normalized to  take into account 

factors such as the varying efficiencies of the RT reaction. Such standards include 

housekeeping genes such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH).

2.24.2 Reverse Transcription (RT) of RNA to cDNA
A mixture, containing ipg  of total RNA, 20opmoles of random hexamer primers (PdN6) 

and tissue culture grade w ater, made up to a final volume of 12.5|jI was incubated at 70°C 

for 5min and then chilled on ice for 5mm. The mixture was then made up to 20pl with ipl 

of deoxyribonudeosidetriphosphate mix (dNTPs) [iom M  of each], 4pl of 5x reverse 

transcriptase NH4 reaction buffer (Promega), o.5pI o f 200U of recombinant RNase 

inhibitor and ipl o f 200U/pl Moloney Murine Leukaemia Virus (M-MLV) reverse 

transcriptase (Promega). The mixture was then incubated at 37°C for ih followed by 

2min at 90°C. The cDNA product was diluted to ioopl w ith tissue culture grade w ater and 

stored at -20°C.

2.24.3 PCR reactions
All PCR reactions were carried out in a final volume of sopl using primers and optimised 

conditions shown in Tables 2.6 and 2.7 respectively. All PCR reactions were overlaid with  

mineral oil and carried out using a Biometra TRIO Thermoblock. The optimised cycle 

number for each primer set was chosen so that it corresponded to the exponential
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phase of amplification and, therefore, provided a direct correlation between the amount 

of product and the amount of the original cDNA template used.

The primer sequences were obtained from the following references: ABCA1 (Klucken et 

al., 2000); apoE, LPL and GAPDH (Wang et al., 1989); and 28S rRNA (Kong et al., 1999).

Table 2.6: The PCR primer sequences used fn this study

hABCAl For:5’GTTGGAAAGATTCTCTATACACCTGA-3' 
Re v: 5 'CGTCAG CACT CT GAT GAT G GCCTG-3’

690

hapoE Forrs’TTCCTGGCAGGATGCCAGGC^’ 
Rev:5’GGT CAGTT GTT CCT CCAGTT C-3’

270

hLPL For:5 'G AG ATTT CT CT GTATGGCACC-3’ 
Rev:5’CTGCAAAT GAGACACTTT CT C-3’

276

mMCP-i For:5'CTTCTATGCCTCCTGCTCATAGCT-3'
Rev:5’CTTGGGGTCAGCACAGATCTCCTT-3’

219

m/hGAPDH For: 5 'CCCTT CATT G ACCT CAACT AC AT GG-3' 
Rev:5'AGTCTT CTGGGT GGCAGT GAT GG-3’

456

mp-actin For:5’TGGAGAAGAGCTATGAGCTGCCTG-3' 
Rev:5'GT GCCACCAG ACAGCACT GT GTT G-3’

204

28S rRNA For:5’TGAACTATGCTTGGGCAGGG-3’
Rev:5'AGCGCCATCCATTTTCAGGG-3'

513

2.2.4.4 Agarose gel e lectrophoresis
The amplification products were size-fractionated by electrophoresis on a 1.5% (w /v) 

agarose gel and the fragment sizes determined by comparison to standard DNA 

molecular weight markers. Gels were made using 0.25X TBE and contained ethidium 

bromide (o.5pg/ml). Electrophoresis was carried out on a Horizontal Gel Unit (Fisher) at 

100V with 0.5X TBE as a “ running” buffer. Samples were mixed with DNA loading dye 

before adding to the wells. DNA bands were visualised under UV using a Syngene Gel 

Documentation System as described in section 2.2 .4 .5 .

2 .2 4 .5  D ensitom etric  scanning o f gels
The image of the gel on a UV transilluminator was recorded as a computer file using 

GeneTools™ software (Syngene). This allowed analysis to be carried out with the 

densitometry software package Quantiscan (Biosoft, Cambridge, UK). The intensity of 

the signals from the target gene and the control gene were calculated and a background 

for the gel was subtracted from each value. A ratio of the target gene: control gene was 

then determined.
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Table 2.7: The optimised PCR protocols for each primer set

forward primer (ioopM) 0.25(ll 0.25pl 0.25pl o.5pI o.spl ipl ipl
Reverse primer (ioopM) 0.25MI o.25pl 0.25pl o.spl o.spl ipl ipl
dNTPs (ioopM) 0.5MI °*5pl o.5pI ip! o.spl ipl 2pl
MgCl2 (50mM) ttri 1-5pl 2MI 2pl 2pl ipl IPI
DMSO (%v/v) - 2.5 - - 2*5pl
10X PCR buffer 5PI 5Ml 5M< 5Ml 5PI 3PI 5PI
Taq polymerase (5U/pl) 0.25pl 0.25pl 0.25pl o.25pl 0.25pl o.spl o-25H! .
cDNA 10pl lopl lopl lopl lOul 5Ml 10pl
ddH20 32.?5pl 29.75M< 31-75MI 30.75P! 31-25MI 35 5PI 27.25PI
Total volume (pi) 50 50 50 50 50 50 50
PCR programme

Initial melting 95°C 94°C 95°C 96°C 96°C 95°C 95°C
5min 2min 5min 5min 5min 5min 2min

Annealing 64°C 64°C 72°C 72°C 62°C 62°C 58°C
imin 30sec 2min 2min imin imin 2min

Extension 72°C 72°C 72°C 72°C 72°C 72°C 72°C
imin 2.5mm 2min 2min 2min 2min 2min

Melting 95°C 93°C 94°C 93°C 93°C 93°C 94°C
imin 30sec 30sec 30sec 30sec 30sec 2min

Final long extension step 72°C 72°C 72°C 72°C 72°C 72°C 72°C
lomin iomin iomin iomin iomin iomin 5min

Number of cycles 24 24 25 17 22 11 18
M, mouse; H, human
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2.2.5 Western blot analysis

2.2.5.1 Preparation of whole cell protein extracts
Total cellular protein was isolated from THP-1 macrophages (grown to about 70% 

confluence in 75cm2 tissue culture flasks) using either whole cell extraction buffer, 

phosphatase-free whole cell protein extraction buffer or Laemmli buffer (Table 2.3). The 

cells were scraped and then transferred with the media to a 20ml Universal tube and 

centrifuged at 8oog for 5min. The cells were resuspended in 1ml of ice cold PBS, 

transferred to a 1.5ml Eppendorf tube and centrifuged at a maximum speed (i3,ooorpm ) 

in a microcentrifuge for imin at 4°C. The cells were then washed twice with 1ml of ice 

cold PBS containing NaF (io m M ) and Na3Vo4 (sodium orthovanadate) (io o pM ) and the 

pellet was immediately frozen on dry ice. The pellet was resuspended by adding 5 

volumes of phosphatase-free whole cell extraction buffer (approximately i50p l) or 

Laemmli buffer and the cells were then lysed by vigorous pippetting followed by 

vortexing (45sec). The mixture was centrifuged again and the lysates were transferred 

to new tubes and stored at -8o°C until required.

2.2.5.2 Preparation of nuclear protein extracts
Isolation of nuclear extracts was carried out according to the protocol described by 

(Ramji et al., 1993) w ith minor modifications. Briefly, cells grown in 75cm2 tissue culture 

flasks were scraped in media and pelleted by centrifugation at looog for 5min. The cells 

were washed twice with 1ml o f ice cold PBS, transferred to an Eppendorf tube and 

pelleted by centrifugation at i3,ooorpm in a microcentrifuge for 5mm. The pellet was 

resuspended in 5opl o f ice cold nuclei extraction buffer A (Table 2.3), left on ice for 15mm 

and then vortexed for 10 sec. The cells were lysed by drawing the mixture five times 

through a loopl Hamilton syringe. The mixture was centrifuged again in a 

microcentrifuge at i3,ooorpm for 20sec and the supernatant, containing the cytosolic 

proteins, was stored at -70°^. The pellet, containing the nuclei was resuspended in 60 pi

of ice cold nuclei isolation buffer C (Table 2.3) and incubated on ice for 30mm. Following 

centrifugation in a microcentrifuge at i3,ooorpm at 4°C for 5mm, the supernatant, 

containing the nuclear extracts, was removed and stored at -8o°C.

2.2.5.3 Micro BCA protein assay
The concentration of total proteins in extracts was determined using the Micro BCA™ 

protein assay reagent kit. The procedures were performed as described in the 

manufacturer's instructions (Pierce). A standard curve was prepared for each assay
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using suitable serial dilutions of a 2mg/ml bovine serum albumin (BSA) solution to  give 

concentrations of 5pg/ml, I0|jg/m l, I5pg/mi, 20)jg/ml and 25)jg/ml. The standard and test 

samples were diluted in PBS. Then, loopl of each sample was placed in a 96 well micro­

titer plate (Greiner) followed by the addition o f loopl o f protein assay reagent (provided 

in the kit). A fter mixing and incubation at 37°C for 4h, the absorbance was read at 595nm 

using a titertek Multiscan MCC/340 Dynex Technologies MRX microplate reader. The 

protein concentration of the experimental samples was calculated from the standard 

curve.

2.2.5.4 JNK kinase assay
The JNK kinase activity was assayed using a non-radioactive JNK kinase assay kit from  

Cell Signalling Technology (CST) with a slight modification to the manufacturer's 

protocol. To 250pg of whole cell extracts, 20pl o f c-Jun fusion protein beads were added 

and left to  incubate overnight at 4°C with gentle rocking. The mixture was then 

centrifuged in a microcentrifuge for imin at i3,ooorpm and the pellet was washed twice 

with 300pl o f phosphatase-free whole cell extraction buffer (Table 2.3) w ithout Triton X- 

100 and twice with 300pl o f 1X JNK kinase buffer (provided in the kit). The pellet was 

then resuspended in 50pl o f 1XJNK kinase buffer supplemented with 200pM ATP and 

incubated for 30mm at 30°C. The kinase reaction was then terminated by the addition of 

25pl of solubilising solution (provided in the kit). The sample was then boiled for 5mm 

and loaded onto an SDS-PAGE gel. Electrophoresis and Western blotting were carried 

out as described in sections 2.2.5.6 and 2.2.57, respectively and the immunodetection of 

proteins was carried out using the phospho c-Jun (Ser63) antibody.

27.5.5 PKB kinase assay
The PKB kinase assay was carried out using a non-radioactive kinase assay kit from CST 

with a slight modification to the manufacturer's protocol. To 250pg of whole cell 

extracts, 2opl of immobilised PKB antibody was added and then incubated overnight at 

4°C with gentle rocking. The mixture was then centrifuged for imin at i3,ooog and the

pellet was washed twice with 300pl of phosphatase-free whole cell extraction buffer 

(Table 2.3) w ithout Triton X-100 and twice w ith 300pl of 1XPKB kinase buffer (provided in 

the kit). The pellet was resuspended in 40pl o f 1XPKB kinase buffer supplemented with  

200pM ATP and ipg of substrate (GSK-3 fusion protein). The mixture was then incubated 

for 3omin at 30°^ and the kinase reaction was then terminated by the addition of 2opi
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solubilising solution (provided in the kit). The sample was then boiled for 5min and 

loaded onto an SDS-PAGE gel. Electrophoresis and Western blotting were carried out as 

described in sections 2.2.5.6 and 2.2.57, respectively and the immunodetection of the 

protein was carried out using the phospho GSK-3a/p (Ser2i/29) antibody.

2.2.5.6 Sodium dodecylsulphate-polyacrylam ide gel e lectrophoresis  (SDS-PAGE)
SDS-PAGE was performed under reducing conditions according to the method of

{Laemmli, 1970). Typically, separating gels and stacking gels were prepared from stock 

solutions as shown in Table 2.8.

Table 2.8: Composition of stacking and separation gels/2oml for SDS-PAGE
Gel component 7.5% (w/v) 

Separating gel
10% (w/v) 
Separating gel

5% (w/v) 
Stacking gel

Upper buffer - - 2.5ml
Lower buffer 5ml 5ml -

Acrylamiderbisacylamide (37.5:1) 3.75ml 5ml 1.25ml
ddH20 11.25ml 10ml 6.14ml
10% (w/v) ammonium perslphate 200pl 200pl loopl
TEMED 20 pi 20pl lopl

The gels were prepared using the Mini-PROTEAN II™ Slab Electrophoresis Cell apparatus 

from Bio-Rad Laboratories according to the manufacturer's instructions. The separation 

gel was poured to within 1.5cm of the top of the inner glass plate. Butanol was layered 

on top of the gel solution to exclude air bubbles and the gel was allowed to polymerise 

for 30-40min. Once the gel had set, the butanol was washed off with ddH20 and the 

excess liquid removed using Whatman 3MM Paper. The stacking gel was then poured on 

top and the well-forming comb inserted. After polymerisation of the stacking gel, the 

comb was removed and the wells washed with ddH20. The gel was then placed in the 

electrophoresis tank and the upper and lower chambers were filled with ix  ‘‘running” 

buffer (see Table 2.3)

Protein samples (20-40pg) were mixed with an equal volume of gel loading buffer or 

bromophenol blue (BPB) and then incubated at room temperature for iomin or boiled 

for 5-8min. The samples were then allowed to cool and then loaded onto the gel (10% for 

Western blots with all antibodies except ABCA1 where a 7.5% separating gel was used). 

Rainbow protein size markers (7-iopl) (GE Healthcare) were loaded into the first lane of 

each gel (see Appendix III). Electrophoresis was carried out at 200V until the BPB marker 

dye had reached within 0.5cm of the lower end of the gel (approximately 50mm to ih for



CHAPTER TWO- 9 2

ABCA1). The gels were then removed from the glass plates and subjected to Western 

blotting.

2.2.57 Western blotting
Electrophoretic transfer of proteins from the gel to PVDF membranes (Millipore) was 

performed using a Bio-Rad Trans Blot Electrophoretic transfer Cell as described in the 

manufacturer's instructions. Briefly, the gel was removed from the glass plates and the 

stacking gel cut away. The gel was then equilibrated by incubation in transfer buffer 

(Table 2.3) for iomin. The membrane, Whatman 3M M  paper (pre-cut to the gel size) and 

the sponge pads o f the transfer apparatus were also prepared by pre soaking in transfer 

buffer. The activated membrane (soaked in methanol for im in) was then placed on the 

gel and sandwiched between the Whatman paper and the sponge pads before being 

placed in the blotting cassette. The cassette was then subjected to  electro-blotting in a 

tank containing transfer buffer at 4°^ at a constant voltage of 15V (overnight) or for ih  at

150V. Proteins transferred to the PVDF membranes were immunodetected as described 

in section 2.2.58.

2.2.5.8 Immunoprobing of the blots
Following electrophoretic transfer, the rainbow size markers were cut out from the  

PVDF membrane. The proteins that had been transferred from the gel were probed 

immunochemically using the ECL detection kit (GE Healthcare). First non-specific protein 

binding sites on the membrane were blocked by incubation, w ith shaking, in blocking 

buffer [5-10% (w /v ) non-fat milk and 0.1% (v/v) Tween-20 in ix  TBS] for ih  at room 

tem perature. A fter three incubations with washing buffer [ix  TBS containing 0.1% (v/v) 

Tween-20 (TBS-T)] for 5mm each, the membrane was incubated with the primary 

antibody, diluted in ixTBS-T containing 5% (w /v) non-fat milk or BSA, for ih at room 

temperature (see Table 2.9 for the dilution factor for each antibody used in this study). 

The membrane was then washed three times for 15mm each using washing buffer (TBS- 

T) and then immersed in secondary antibody solution [horseradish peroxidase- 

conjugated goat anti-rabbit IgG diluted in ixTBS-T containing 5-10% (w /v) non-fat milk or 

5% BSA]. The membrane was then washed with washing buffer (TBS-T) a further three 

times for 15mm each. Detection o f membrane bound antigen-antibody complexes was 

then carried out using the ECL detection reagent as described by the manufacturer. The 

films were then developed (section 2.2.5-9).
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Table 2.9: Primary antibody binding conditions
Primary Antibody Dilution %(w/v) Milk %(w/v) BSA Incubation Time (h) Size (kDa)
Goat anti-apoE 1/1000 5 - 1 34
Rabbit anti-ABCAi 1/1000 3 - O/N 220
Rabbit anti-phospho 
JNK/SAPK

1/1000 - 5 O/N 46/54

Rabbit anti-total 
JNK/SAPK

1/1000 - 5 O/N 46/54

Rabbit anti-phospho 
c-Jun (JNK/SAPK 
Assay)

1/1000 5 O/N 35/37

Rabbit anti-phospho
SEK1/MKK4
(Ser257/Thr26i)

1/1000 5 O/N 44

Rabbit anti-total
SEK1/MKK4
(Ser257/Thr26i)

1/1000 5 O/N 44

Mouse anti-phospho 
c-Jun (Ser63)

1/1000 5 O/N 47

Rabbit anti-total c-jun 
(Ser63)

1/1000 5 O/N 43

Rabbit anti-phospho 
PKB (Ser473)

1/1000 5 O/N 60

Rabbit anti-total PKB 1/1000 5 O/N 60
Phospho GSK3 (PKB 
Assay)

1/1000 5 O/N 30

Mouse anti-P-actin 1/12000 5 - 1 42
O/N, overnight

2.2.5»9 A utorad iography
The membranes were wrapped in Saran Wrap and exposed for the requisite time (losec- 

5min) to a Kodak X-ray film in a Hi-Speed-X light proof autoradiography cassette (with 

two intensifying screens on either side of the cassette) (Genetic Research 

Instrumentation). Further exposure times depended on the strength of the signals 

obtained. The exposed film was then developed in an Agfa-Gevaert automatic 

developer. The expected protein size was validated by comparison to standard rainbow 

markers.

2 .2 .6  Is o la tio n  and  m a n ip u la t io n  o f  D N A

2.2.6.1 Purification o f DNA spotted  o n to  f ilte r  papers
The region on the filter paper, containing the recombinant plasmid DNA, was cut and 

placed in a 1.5ml Eppendorf tube and 50pl of TE buffer was added. Following 51-nin 

incubation at room temperature, the mixture was subjected to centrifugation in a 

microcentrifuge for 5mm at maximum speed. The supernatant, containing the plasmid 

DNA, was stored at -20°C until required.
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2.2.6.2 Bacterial strains and vectors
Table 2.10 shows the genotype of the Escherichia Co// (E. Coli) strains used in this study. 

The maps of the recombinant plasmids for all expression and reporter vectors used in 

this study are shown in the Appendix III.

Table 2.10: Genotype of E Coli strains used
Bacterial Strain Genotype Reference
DH5-C1 supE44 AlacUiSg (<D8o lacZAMis) hsdi7 recAi 

endAi gyrAg6 th i-1 recAi
Hanahan, 1983a; 
Hanahan, 1983b

2.2.6.3 Preparation  o f com peten t cells
For the preparation of competent bacterial cells, a modified version of the method 

described by Mandel and Higa (1970) was used. LB-medium (5ml, pre-heated to 37°C) 

was inoculated with a single bacterial colony of the E. coli DH5-C1 strain and incubated for 

12-I8h at 37°C with moderate shaking. Then, 0.1ml of this overnight culture was used to 

inoculate 9.9ml of fresh LB-medium, which was then incubated with moderate shaking 

at 37°C until it reached an OD550 of 0.5-0.6. The cells were then pelleted by 

centrifugation at 3000g at 4°C for 5min, resuspended in half their original volume (5ml) 

of ice-cold 50mM CaCI2 and incubated on ice for 25min. The cells were again pelleted by 

centrifugation, as above, and resuspended in 1/10 of their original volume (1ml) of ice- 

cold 5omM CaCl2. Competent Cells were kept on ice until used for transformation or 

mixed with an equal volume of 40% (v/v) sterile glycerol, dispensed into 1ml aliquots in 

pre-chilled Eppendorf tubes and stored at -8o°C.

2 .2 .6 4  T ransform ation  o f com peten t cells
For each transformation, approximately 1-5-pl of recombinant plasmid DNA was added 

to 200pl of competent cells and incubated on ice for 40mm. The cells were then heat- 

shocked at 42°C for gosec and placed immediately on ice for a further 2min. Then, 8oopl 

of LB medium (pre warmed to 37°C) was added to the cells and the mixture incubated 

for ih at 37°C with moderate shaking. After the incubation, 200pl of transformed 

bacteria were spread on LB-agar plates containing ioopg/mi ampicillin. Remaining cells 

were pelleted by centrifugation in a microfuge at i3,ooorpm for 3mm, resuspended in 

loopl of LB-medium (pre warmed to 37°C) and spread onto a separate plate. The plates 

were incubated overnight at 37°C. An ampicillin plate spread with untransformed cells 

was used as a control for each experiment.
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2.2.6.5 Small-scale preparation of plasmid DNA (Mlni-prep protocol)
Small-scale preparation o f plasmid DNA was carried out using the Wizard® plus SV DNA

mini-prep kit (Promega) according to the manufacturer's instructions. A single colony of 

transformed bacteria was used to inoculate 10ml of LB-medium containing ioopg/m! of 

ampicillin and incubated overnight at 37°C with moderate shaking. The culture was then 

centrifuged at 8oog for smin and the resulting bacterial pellet was resuspended in 250pl 

of Cell Resuspension solution (provided in the kit).The suspension was then transferred 

to a microcentrifuge tube and 25opl of Cell Lysis solution (provided in the kit) was 

added. The suspension was mixed by inversion and clearing was observed confirming 

that lysis was complete. Alkaline Protease (lop l) (provided in the kit) was then added to  

the solution and, after inversion, the solution was incubated at room tem perature for 

5min. Then, 35opl of Neutralisation solution (provided in the kit) was added, mixed by 

inversion and centrifuged in a microfuge at i3,ooorpm for iomin. The clear supernatant 

was transferred to a spin column (provided in the kit) inserted into a collection tube and 

subjected to  centrifugation in a microfuge at i3,ooorpm for imin. The DNA was eluted  

from the column by adding 50pl o f Nuclease-Free w ater and centrifuging in a microfuge 

at i3,ooorpm for imin.

2.2.6.6 Large-scale preparation of plasmid DNA (Maxi-prep protocol)
The High Purity Plasmid Maxi Prep System was used for the large-scale preparation of

plasmid DNA according to the manufacturer's instructions (Marligen Biosciences). A 

single colony of transformed bacteria was used to inoculate 10ml of LB-medium 

containing ioopg/ml o f ampicillin and incubated for 14-I6h at 37°C with moderate 

shaking. The entire culture was then added to 250ml of LB-ampicillin (ioopg/m l) medium 

and left to grow  overnight with shaking at 37°C. The cells were then pelleted by 

centrifugation at i6 ,ooog for 30mm at 4°C. All medium was thoroughly removed and the  

resulting pellet was resuspended using 10ml of Cell Suspension buffer (provided in the 

kit). The cell suspension was then lysed using 10ml of Cell Lysis solution (provided in the 

kit). The mixture was left to incubate at room tem perature for 5mm, after which, 10ml of 

Neutralisation solution (provided in the kit) was added. The solution was mixed by 

inversion and centrifuged at i5,ooog at room tem perature for 30min.The supernatant 

was then transferred to a column (provided in the kit), which had previously been 

equilibrated by allowing 30ml of Equilibration buffer (provided in the kit) to drain 

through the column by gravity flow . The resulting flow through was discarded and the
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column was washed with 6oml o f Wash buffer (provided in the kit). The DNA was then 

eluted by adding 15ml of Elution buffer (in the kit) to  the column. Once all the solution 

had drained from the column by gravity flow, 10.5ml o f isopropanol was added to  

precipitate the DNA. The solution was mixed and centrifuged at i5,ooog for 30mm at 

room tem perature. The pellet was washed tw o times with 2ml o f 70% (v/v) ethanol by 

centrifugation at i5,ooog at 4°C for 5min. The ethanol was removed and the pellet was 

left to air-dry for iomin. The DNA pellet was then dissolved in soopl of TE buffer.

2.2.6.7 Quantification of DNA
The concentration and the efficiency of purification of recombinant plasmid DNA were 

assessed by measuring the Optical Density (OD) at 26onm and 28onm using a U-1800 

Hitachi spectrophotometer. The concentration was calculated by multiplying the 

absorbance by 50 (the  absorbance of ipg/ml of DNA) and by the appropriate dilution 

factor.

2.2.6.8 Restriction endonuclease digestion of recombinant plasmid DNA
Restriction endonuclease digestion of DNA was performed using buffers and conditions

recommended by the suppliers. The incubation times varied depending on the enzymes 

with the majority of the digest reactions being carried out for at least 3h at 37°C except 

Smal for which the incubation temperature was 25°C. The digests were typically carried 

out using 10U of each enzyme with the exception of Kpnl where 20U were used due to  

its low activity. All double digests were performed sequentially where the first digest 

step was followed by the addition of a single volume of sterile w ater, the second 

enzyme and the recommended buffer. For some digests performed in this study, the 

reaction mixture was supplemented with ioopg/ml BSA. All reactions were stopped by 

incubation at 65°C for iomin. DNA fragments were analysed by agarose gel 

electrophoresis. Table 2.11 details the restriction endonuclease digestion used to analyse 

each preparation of recombinant plasmid DNA before transfection based experiments.

2.2.6.9 Gel electrophoresis of DNA
Size-fractionation of products of the digestion reactions was carried out by 

electrophoresis using 0.8% (w /v) agarose gels in ix  TBE buffer containing o.5pg/ml 

ethidium bromide. The samples were mixed in a 1 to 10 ratio with 5x DNA loading buffer 

(Table 2.2), where BPB was used as the tracking dye, before pipetting into the wells of 

the gel along with 5-iopl of the ikb molecular size standards (see the Appendix I).
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Table 2.11: Restriction endonuclease digestion of plasmid constructs
Plasmid
construct

Vector Resrtiction
endonucleases

Fragment
( k b )

Lab. Source

LXR PGL3- Basic Kpnl, Nhel 4.8,2.8,1.2 M. Watson (California U.)
LXR-DN pGL.3- Basic Kpnl, Nhel T. Kocarek (Wayne State U.)
ABCAl PGL3- Basic Smal 4.8,0.6,0.3 P. Costet (Columbia U.)
ABCA1
DR4Mut

PGL3- Basic Smal 4.8,0.6,0.3 P. Costet (Columbia U.)

PKB AAA-DN PCDNA3 * * B. Hemmings (Basel)
pilO-DN PCDNA3 * * B. Hemmings (Basel)
JNK/SAPK-DN PCDNA3 * * E. Nishida (Kyto U.)
Tam67-DN PCDNA3 * * P. Brown (National Cancer I.)
SEK-1-DN pcDNA3 * * J.R. Woodgett (Ontario 

Cancer 1.)
PKCe-DN PCDNA3 EcoRI 2-7 S. Ohno (Yokohama City U.)
PKCA-DN pcDNA3 EcoRI, Sail 2 S. Ohno (Yokohama City U.)
PKCa-DN PCDNA3 Xhol 2 JW Soh (Inha U.)
PKC5-DN pcDNA3 Xhol 2 JW Soh (Inha U.)
PKCn-DN pcDNA3 Xhol 2 JW Soh (Inha U.)
PKC^-DN pcDNA3 Xhol 2 JW Soh (Inha U.)
*  Already checked by other researchers in the laboratory.

Electrophoresis was carried out in a horizontal gel apparatus (Fisher) at a constant 

voltage of 100 volts for approximately ih in ix TBE containing o.5pg/ml of ethidium 

bromide. The DNA was visualised using an ultraviolet transilluminator and the image was 

photographed using Genetools (Syngene). The sizes of the fragments were determined 

by comparison with the DNA size standards.

2 .2.7  Cell tra n s fe c t io n

2.2.7.1 Transient transfection  o f Hep3B cells using 25kDa po lyethylen im ine (PEI)
The transient transfection of the Hep3B cell line was carried out using PEI according to

the method of Dixon et al. (2000) with minor modifications. Hep3B cells that were about 

60% confluent were seeded 24h prior to transfection onto each well of a 6-well plate in 

2ml of DM EM containing 10% (v/v) HI-FCS per well and left overnight at 37°C with 3% C0 2. 

On the day of tranfection, the cell culture medium was removed and the cells were 

washed in HI-FCS- and antibiotic-free media. Then, 2ml of fresh media supplemented 

with 10% (v/v) HI-FCS was added to the cells and incubated for 4h. A transfection mixture 

containing 5pg of recombinant plasmid DNA in 5% (w /v) glucose and i.5pl of 25KDa PEI 

solution [5.625mg/ml PEI dissolved in 8ml ddH20 , PH7.2] was made. The resulting 

complex was immediately suspended in 1ml of DMEM with 10% (v/v) HI-FCS and added 

drop wise to the cells. The plates were swirled to ensure uniform distribution of the
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complexes. The cells were returned to the incubator for a further 24h. In the 

experiments examining the effects o f LXR/RXR ligands, the medium was replaced 24h 

after transfection with fresh DM EM containing 10% delipidated HI-FCS and the ligands 

were then added as usual and left in the incubator for a further 24h.

2.27.2 Transient transfection of U937 cells using SuperFect™ transfection 
method
This method was carried out as described by the manufacturer (Qiagen) for suspension 

cells. Twenty four hours prior to transfection, the cells were split in a ratio of 1 to 2. On 

the day of transfection, cells were suspended at a density of 6x io 5 cells/ml in RPMl 1640 

medium supplemented w ith 3% (v/v) LPDS and plated out at o.sml/well in 12-well plates, 

which were then incubated for 4h at 37 °C in air containing 5% (v/v) C0 2. The DNA/ 

Superfect™ complex was prepared by diluting DNA (ip g  ABCA1 promoter 

construct/6xio5 cells) to 50pl/pg of DNA with antibiotic- and serum-free RPMl 1640 

medium. Superfect™ solution (3pl/pg DNA) was added and the mixture was vortexed for 

losec and incubated for iomin at room temperature. The complex was then diluted with  

complete media containing 3% LPDS (200pl/pg of DNA). Subsequently, the mixture was 

added drop wise to the cells and the plates were centrifuged (8oog, 5mm) to ensure 

uniform distribution of the complexes. PMA (o .i6p M ) along w ith the ligands were added 

to  each well following the transfection and the cells were returned to the incubator for a 

further i8h . For co-transfection experiments, the cells were transfected w ith ipg of 

expression plasmid and 5pg of promoter-reporter DNA plasmid as described above.

2.27.3 Transient transfection of THP-1 cells using Effectene™ transfection 
method
Transient transfection with Effectene™ was carried out as described by the  

manufacturer (Qiagen) for suspension cells. For each transfection, o.4pg of the ABCA1 

promoter construct was made up to loopl w ith EC buffer along with 3.2pl of the 

Enhancer reagent (both provided in the kit). The solution was mixed by vortexing and 

incubated at room tem perature for 5mm. The DNA-Enhancer complex solution was then 

centrifuged (8oog, 30sec) and iopl o f Effectene™ reagent was added and mixed by 

pipetting. Then, 6oopl o f complete medium plus 10% (v/v) LPDS was added to the 

transfection complex and left to incubate for iomin at room temperature. The mixture 

was added drop wise to the cells and the plates were swirled to  ensure uniform 

distribution of the complexes. PMA (o .i6p M ) was added to each well following the
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transfection and the cells were returned to the incubator for a further 24h. The ligands 

were then added as usual and the cell left in the incubator for a further 24h and then 

harvested.

2.27.4 Transient transfection of THP-i cells using Interferin™ small interfering 
RNA (siRNA) transfection method
siRNA interacts selectively with a single target sequence within mRNA, thereby 

providing sequence specific mRNA degradation and inhibition of protein production. The 

transfection with Interferin™ was carried out as described by the manufacturer's 

protocol (Autogen Bioclear) for suspension ceils. Twenty four hours prior to 

transfection, the cells were split in a ratio of 1 to two. On the day of transfection, cells 

were suspended at a density of 2-3X105 cells/ml in RPMl 1640 medium supplemented 

with 10% (v/v) LPDS and plated out at o.5ml/weil in 12-well plates, and then incubated for 

4h at 37°c in air containing 5% (v/v) C0 2. For THP-1 cells, 50-60% approximately silencing

was typically observed with Interferin™ using 5nM siRNA concentration. Thus, 5nM of 

siRNA duplexes were diluted into 200pl of serum free medium. The siRNA solution 

(200J1I) was then vortexed gently and lopl of Interferin™ was added. The mixture was 

then homogenized for iosec and then incubated for iomin at room tem perature to allow  

complex formation to take place. The lnterferin™/siRNA mixture was added dropwise to  

the cells and the plates were swirled to ensure uniform distribution of the complexes. 

The cells were returned to the incubator for a further 24h. Twelve hour post 

transfection, 1.3ml of complete medium supplemented with 10% LPDS (v/v) was added. 

PMA (o .i6p M ) along with the diluted mixture was added to each well. Twenty four 

hours post PMA addition, the ligands were added as usual and the incubation contained 

for a further 24h.

2.27.5 Preparation of cell extracts for the determination of reporter gene 
activity
The cells were harvested by scraping and washed once with PBS. They were then 

resuspended in i20pl of ix  passive cell lysis buffer (Promega) by vortexing and then left 

on ice for iomin. Following centrifugation in a microfuge at i3,ooorpm for 2min, the  

supernatant was transferred to a fresh microcentrifuge tube and either stored at -8o°C 

until required or used immediately for the measurement of reporter gene activity.
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2.27.6 Measurement of ludferase activity
Cell extracts and firefly ludferase assay reagent (Promega) were both equilibrated to  

room tem perature. The luciferase activity was determined by mixing 2opl of cell extracts 

with loopl of luciferase assay reagent in a luminometer tube. The luciferase activity was 

measured using a Turner Designs (TD-50/50) Luminometer set at a sensitivity value of 

70% with a 2sec delay period and a 20sec integrate period. The number of counts 

recorded by this instrument correspond to the amount o f luciferase expressed from the 

reporter plasmids. All measurements were performed in duplicate and the average 

counts in cell extracts were normalised to the amount of protein in each lysate 

(determined as described in section 2.2.S.3.). This approach was used rather than the use 

of a control promoter plasmid linked to another reporter gene since most such 

promoters are themselves regulated by lipid metabolite products and cytokines (Foka, 

P., personal communication).

2.2.8 Electrophoretic Mobility Shift Assays (EMSA)

2.2.8.1 Generation of double-stranded oligonucleotides
The sequences of the oligonucleotides used for EMSA are shown in Table 2.12. Each 

single-stranded oligonucleotide was designed in such a way so that following annealing 

with the complementary oligonucleotide, 5’ overhangs, with at least one G residue 

remained on either side of the double-stranded pair. This allowed radiolabelling by “fill 

in” reaction using Klenow polymerase and [a -32P] dCTP.

For annealing, 200ng o f each forward and the corresponding reverse oligonucleotides 

were incubated at ioo°C for iomin in the presence of a medium salt buffer (ix  NEB 

Buffer 3) in a final volume of loopl. The mixture was allowed to cool down slowly to 

room temperature. The double stranded-oligonucleotides were stored at -20°C or 

radiolabelled immediately.

2.2.8.2 Preparation of radiolabelled probe of double-stranded oligonucleotides
The annealed double-stranded oligonucleotides with 5' overhangs (iopl) were diluted to

35pl with sterile w ater. Then, iopl o f labelling buffer and 2pl of Klenow polymerase (both  

provided in Megaprime™ labelling kit, GE Healthcare) along with 3pl of [a -32P] dCTP (GE 

Healthcare) was added and the mixture incubated for 30mm at 37°C. The reaction was 

stopped by the addition of 35opl of ixTE buffer. The labelled probe was then separated
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Table 2.12: Sequences of oligonucleotide probes for EMSA analysis

AP-1 5' CGCTTGATGAGTCAGCCGGAA 3' 
3’ GCGAACTACTCAGTCGGCCTT 5'

ABCA1 5’ GCTGAGTGACTGAACTACATAAA 3' 
3' GACTCACTGACTTGATGTATTTGG 5'

DR4 5' TTTGACCGATAGTAACCTC 3’ 
3' GGCTATCATTGGAGACGCG 5’

apoE 5’ GGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCAA 3’ 
3,AGTTCGCTAAGAGGACGGAGTCGGAGGGTTCATCG 5’

C/EBP 5'CAGTGTTTCCAGAC 3' 
3‘ ACAAAGGTCTGGTT 5'

NFkB 5’AGTTGAGGGGACTTTCCCAGG 3’ 
3’TCAACTCCCCTGAAAGGGTCCG 5’

NF-1 5’ GCCTTGGCATTA 3' 
3’ GAACCGTAATCG 5'

from unincorporated nucleotides by passing the mixture through a pre-packed 1ml 

Sephadex G50 column (Nick column, Pharmacia), which had been pre-equilibrated with 

9ml of ixTE buffer. Then, 400pl of ixTE buffer was added on top of the column to elute 

the DNA. The second fraction which contained the radiolabelled probe was collected in 

an Eppendorf tube. The later fractions, containing unincorporated radioisotope, were 

discarded. The probe was stored at -20°C for a week.

2.2.8.3 D N A/protein  binding reactions fo r EMSA
The binding of the [a-32P] labelled probes to the proteins in whole cell or nuclear 

extracts was carried out according to Ramji et al. (1993). Briefly, 5-iopg of whole cell 

extracts or 3-5 pg of nuclear extracts were mixed with dilution buffer (Table 2.4) to a 

final volume of 26pl. Then, 2pl of iox binding buffer (Table 2.4) and 2pl of poly dl-dc 

(ipg/ml) were added to the reaction mixture, which was incubated on ice for iomin to 

allow any non-specific DNA binding to occur. Following addition of 3pl of labelled probe 

(60,000-100,000 c.p.m.), the mixture was left for 20min at room temperature. 

Subsequently, I2pl of 20% (w/v) Ficoll was added and the mixture was subjected to 

electrophoresis (section 2.2.8.6).

2.2.8.4 Com petition binding assays
In order to determine the specificity of DNA-protein interactions, an excess quantity of 

unlabelled specific- and non-specific-oligonucleotides were added to the whole cell or 

nuclear extracts during the binding reaction. The specific oligonucleotide contained the
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identical sequence to that of the radiolabelled probe and the non-specific 

oligonucleotide contained an unrelated sequence. The procedure was similar to that 

described for EMSA with the exception of the presence of a 200-fold molar excess of the 

competitor oligonucleotide prior to the addition of the radiolabelled probe.

2.2.8.5 A ntibody supershift assays
Appropriate antibody (2pl) was added to whole cell or nuclear extracts during the 

binding reactions and prior to the addition of the radiolabelled probe. The reaction 

mixture was incubated on ice for 30mm and subjected to electrophoresis following the 

addition of i2pl of 20% (w /v) Ficoll as described in section 2.2.8.6. Rabbit pre-immune 

serum was used as a control for the antibody.

2.2.8.6 Electrophoresis o f DNA-protein com plexes
DNA-protein complexes were separated from the DNA probe by electrophoresis on a 4- 

6% (v/v) non-denaturing polyacrylamide gels containing 0.5XTBE (Table 2.13). The vertical 

gel electophoresis was performed in a cold cabinet at 4°C either overnight at 40V or for 

4h at 150V in 0.5XTBE “running” buffer. The progress of electrophoresis was monitored 

by loading 50pl of iox DNA loading dye (Table 2.2) to a lane in the gel. The gel was “pre- 

run” for 30mm prior to the loading of the samples. Following electrophoresis, the gel 

was removed from between the glass plates, transferred to a Whatman 3MM paper, 

covered with Saran Wrap and dried under vacuum using a gel dryer (model 583 Gel Dryer 

(Bio-Rad)) for ih at 8o°C. The dried gel was subjected to autoradiography.

Table 2.13: Composition of non-denaturing polyacrylamide gels for EMSA analysis

Acrylamide:bisacrylamide (29:1) 5ml 7.5ml

tox TBE 2.5ml 2.5ml

ddH20 42.5ml 40ml

10% APS 500pl 50opl

TEMED 50pl 5opl

2.2.8.7 A utoradiogaphy
The dried gel was placed in contact with Kodak X-ray film in a Hi-speed-X light proof 

cassette with an intensifying screen (Genetic Research Instrumentation) and stored at - 

8o°C for varying exposure times (6-72h), depending on the strength of the signal. The 

film was developed in a Gevamatic 60 automatic developer (Agfa-Gevaert).
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2.2.9 Densitometric analysis of the data
The intensity of bands from agarose gel images and immunoblots were analysed using 

GeneTooIs™ (Syngene) software as described by Harvey et al. (2007). Also, see section

2.2.4.5 for a detailed account on the densitometric analysis of data generated by RT-PCR.

2.2.10 Statistical analysis of the data
To assess data for statistical significance a standard student's t-test was carried out, the 

details of which are in the Appendix IV.
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Chapter 3: Mechanisms underlying the regulation of ABCA1 
gene expression by LXR agonists in J774.2 macrophages

3.1 Introduction
The aim of the work presented in this chapter was to understand the mechanisms 

underlying the regulation of ABCA1 expression by LXR agonists. Such agonists reduce 

the transformation o f macrophages into foam cells by increasing cellular cholesterol 

efflux. Specifically in mouse models of atherosclerosis, inactivation of LXRs promote the 

development of this disease whereas treatm ent with LXR agonists reduces lesion 

formation (Aiello, 2002; Van Eck e t al., 2002). Little is known about the mechanisms 

underlying LXR-regulated expression of this gene, especially the signalling pathways. 

Therefore, the potential signalling pathways involved in LXR-mediated regulation of 

ABCA1 expression were studied.

Previous studies in the laboratory on LXR-mediated regulation of gene expression were 

carried out on the THP-1 cell line. A major problem with these cells is that THP-1 

monocytes have to be differentiated into macrophages using PMA, thereby adding an 

additional effector in the analysis. The murine macrophage cell line, J774.2, already 

consists of adherent macrophages. These cells have therefore been used extensively to  

investigate macrophage gene expression relevant to atherosclerosis (Charriere e t al., 

2003; Harvey e t al., 2007; Mead et al., 2002; Mitchell et al., 1993; Wang et al., 2007). The 

J774.2 cell line was therefore selected as a model system for initial studies in this thesis 

as it most closely represents differentiated macrophages (Ralph and Nakoinz, 1975; 

Ralph et al., 1975). The pattern of gene expression in these cells are well-conserved with 

human macrophages (Mcknight et al., 1996; Mead e t al., 2002; Naureckiene e t al., 2007; 

Preiss-Landl et al., 2002) In addition, studying signalling mechanisms in a murine cell line 

allows direct comparisons with the widely used in vivo mammalian model for 

atherosclerosis development (the apoE-null and LDLR-null mice).

There is good evidence that ABCA1 mRNA levels are induced in response to treatm ent of 

different cell lines with natural or synthetic LXR agonists (Joseph et al., 2002b; Repa et 

al., 2002; Repa e t al., 2000a; Repa e t al., 2000b; Tangirala et al., 2002). The primary aim of 

the research presented in this chapter was to  investigate whether this response could 

be reproduced in the laboratory using J774.2 macrophages. The secondary aim was to
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delineate the cell signalling pathways in LXR-mediated activation of ABCAi expression in 

macrophages. This aim was achieved initially by investigating the effect of specific 

pharmacological inhibitors of various signalling pathways on the induction of ABCAi 

gene expression by LXR agonists. Key findings from these experiments were then 

confirmed with the use of DN mutants against central components of the identified 

signalling pathways. A summary of the experimental strategy used is shown in Figure 3.1.

LXR agonist treatment Pre-treatment for ih with  
inhibitors

J774.2 Macrophages

LXR agonist treatment

Identity signal 
transduction pathways

Monitor changes in 
mRNA levels by RT-PCR

Confirmation of 
identified pathways 

by co-transfection 
assays using DN 

constructs

1) Monitor changes in 
mRNA level* by 

RT-PCR 
2) Monitor changes in LXR 

promoter activity

Figure 3.1 Summary of the experimental strategy used to delineate the signal transduction 
pathways involved in the LXR agonist-mediated ABCAi gene expression in J774.2 macrophages.

3.2 Results

3.2.1 Experimental design

3.2.1.1 Cell culture

In order to investigate the regulation of ABCAi gene expression by LXR agonists, J774.2 

and Hep3B cell lines were used as model systems in the studies presented in this 

chapter. Both cell lines have previously been used widely as in vitro  models for studying 

the mechanisms involved in atherogenesis (Kennedy et al., 2001; Ralph and Nakoinz, 

1975; Ralph et al., 1975; Singaraja et al., 2001; Tengku-Muhammad et al., 1996). J774.2
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macrophages were grown until they were about 60-70% confluent and, prior to  

stimulation with ligands for i2h and 24h, they w ere cultured for 4h in DMEM medium 

containing 10% (v/v) LPDS. For all experiments, it was necessary to use 10% (v/v) 

delipidated serum (employed by numerous laboratories w ith such studies) (Beyea et al., 

2007; Costet et al., 2003; Gerbod-Giannone et al., 2006; Quinn e t al., 2005) to reduce the 

potential contribution of lipids present in the HI-FCS to LXR-induced expression of the  

genes analysed. For studies with pharmacological inhibitors, these were added to the 

cells ih prior to treatm ent with LXR agonists in order to ensure cellular uptake and 

inhibition of the target enzymes. The action of the inhibitors was not due to any 

cytotoxic effect as judged by analysis of cell viability using the trypan blue exclusion 

assay. The concentration of the ligands used was 2pg/ml for 22(R)-hydroxycholesterol 

(denoted 22(R)-HC) (Laffitte et al., 2001b) and iopM  for 9-c/s-retinoic acid (denoted  

9CRA) (Costet et al., 2000). In addition cells in some experiments were treated with the  

ligand 22(S)-hydroxycholesterol (denoted 22(S)-HC) (2pg/ml) (Laffitte e t al., 2001b), an 

inactive enantiomer of 22(R)-HC, as a control as it binds to but does not activate the  

LXRs. The ligands were dissolved in DMSO in such a way so that the final concentration 

of this vehicle was less than 0.1% (v/v) to ensure that it would not affect cell viability. 

Also, as an additional control, all control samples were treated w ith an equal volume of 

DMSO to ensure that the observed effects were due to  the ligands and not the DMSO 

vehicle. A fter this incubation, the cells were harvested and total RNA was isolated and 

used for RT-PCR analysis. The integrity of totai RNA preparation was analysed by 

resolving an aliquot on 1% (w /v) agarose gels. As expected for total RNA, the relative 

intensity of the 28SrRNA band was approximately twice the intensity o f the i8SrRNA 

band, for each sample.

3.2.1.2 RT-PCR
The PCR technology originated in 1986 as a non-cloning technique for direct 

amplification of a specific short segment o f DNA. In the exponential phase, the amount 

of amplified product is proportional to  the amount of template DNA sequence. The 

value of PCR is that it can use tiny amounts o f various types of DNA, such as genomic 

DNA. To carry out PCR, the target DNA is mixed with a thermostable DNA polymerase 

such as Taq DNA polymerase. In addition to a supply of deoxyribonudeotide 

triphosphates, tw o specific oligonucleotide primers, one that complements the 3' end 

on one DNA strand and another that complements the 3' end on the opposite strand,
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are used. The PCR product and appropriate size markers are subjected to  

electrophoresis. The resulting ethidium bromide stained bands on an agarose gel are 

placed under UV light for viewing.

A PCR cycle consist o f three steps; denaturation, primer annealing and elongation. The 

first step is denaturation, where the reaction mixture is heated to typically 94 °C for a 

short time period to denature the target DNA into single strands that can act as 

templates for DNA synthesis. The second step is primer annealing, where the mixture is 

rapidly cooled to a defined temperature which allows the tw o  primers to bind to the 

sequences on each o f the tw o  strands flanking the target DNA. The third step is 

elongation, where the temperature of the mixture is raised to  ~72 °C and kept at this 

temperature for a pre-set period of time to allow DNA polymerase to elongate each 

primer by copying the single stranded templates. These three steps of PCR cycle are 

repeated for a set number of times depending on the degree o f amplification required. 

As more and more reaction cycles are carried out, the original DNA is amplified and at 

this point the vast majority of the products are identical; in that the DNA amplified is 

only that between the tw o  primer sites.

PCR can also be used for amplifying specific RNA molecules following conversion of total 

or poly (A)+ RNA to cDNA using reverse transcription (called reverse transcription 

polymerase chain reaction or RT-PCR). The test PCR product along with that for the 

control gene (such as GAPDH and 28SrRNA) are subjected to electrophoresis on an 

agarose gel. The images from ethidium bromide-stained gels are captured as a digital 

image. GeneTools ™ Band analysis software (Syngene) is used to quantify the intensities 

of the signal from the test PCR bands and the control gene PCR product, and a ratio of 

the target gene to control gene is determined. Although, this technique is rapid, it does 

require extensive optimisation to  ensure that the PCR product is terminated when both 

the gene of interest and the internal control are in the exponential phase of 

amplification.

An improvement on PCR technology is real-time PCR (also abbreviated as RT-PCR). With 

this, the PCR sensitivity is enhanced by the addition of a fluorogenic probe that emits 

fluorescence that accumulates in the mixture and can be detected and quantified in real 

time (Higuchi et al., 1992; 1993). The greater the amount of target DNA that accumulates 

during the PCR cycle, the more intense the fluorescence which can be measured by
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using a charge-coupled device camera (Higuchi e t al., 1992; 1993). Another type of basic 

real-time PCR works by monitoring the hybridization of a set concentration of 

fluorescently labelled probe oligonucleotide to the PCR product. The more the PCR 

product, the more the hybridization occurs and so the more fluorescence is observed 

that is dependent on the specific method utilized. Real tim e PCR has provided sensitivity, 

reproducibility and considerably reduced risk of carryover contamination (Mackay e t al., 

2007).

Real time PCR has also given rise to related technologies that make it even more 

valuable than before. As detailed above, Real time PCR can make use of cDNA, for 

example, and thus apply the PCR technology to mRNA and even make the analysis 

quantitative, an approach known as Q-PCR (Cooper, et al., 2003; Bustin et al., 2005). Q- 

PCR allows reliable detection and measurement of products generated during each cycle 

of the PCR process, which are directly proportional to  the amount of tem plate prior to  

the start o f the PCR process (Ginzinger, 2002). Some Q-PCR applications include 

measuring mRNA expression levels, DNA copy number, transgene copy number and 

gene expression analysis, allelic discrimination and measuring viral titers (Ginzinger, 

2002; Ding et al., 2004).

In general quantitative PCR methods tend to be cumbersome and, additionally, require 

the use of a specialised real time PCR machine that may not be accessible to all 

scientists. It must also be accompanied by a method for detecting PCR product 

accumulation and an instrument to  perform thermocycling and record the results during 

each PCR cycle in real time (Ginzinger, 2002). A t present, real-time Q-PCR is beginning to 

be used a lot in a wide range o f applications because of reduction in cost of reagents and 

the instrumentation required. Researchers are using the technology for measuring gene 

expression in cells that are sparse in numbers and difficult to  isolate, as well as for 

analysis o f clinical samples as an aid to treating patients (Ginzinger, 2002). As new  

developments in Q-PCR and real tim e PCR arise, they should allow greater advances in 

science and medicine.

It should be noted that RT-PCR quantifies steady state mRNA levels and hence the  

changes observed could be either due to gene transcription or mRNA stability. RNA 

levels may not reflect the level of protein produced by the cell (Gygi et al., 1999) as many 

types of regulation occur at the post-transcriptional level (Bustin, 2002). In general, to
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investigate the physiological changes in gene expression, the relative expression ratio is 

often adequate as it is based on the relative expression of a target gene versus a 

reference gene (Pfaffl 2001). Therefore, the use of semi-quantitative RT-PCR was 

justified in the studies presented in this chapter as the overall trend in the changes of 

ABCA1 mRNA expression was confirmed and extended by analysis of the changes in 

steady state protein levels using Western blotting (See chapter 4). Additionally, the  

conditions for semi-quantitative RT-PCR had already been optimised when the studies 

were carried out and the procedures used standard equipment already present in the 

laboratory w ith an overall low cost.

The induction of ABCA1 specific mRNA was measured by semi-quantitative RT-PCR using 

GAPDH or 28SrRNA as a control for cDNA input. Previous optimisation experiments in 

the laboratory, involving titration of the number of amplification cycles, showed that the 

chosen conditions (i.e. 24 cycles for ABCA1 and 17 cycles for GAPDH) were within the 

exponential phase o f amplification and, therefore, provided a direct correlation between  

the amount o f amplification product and RNA tem plate abundance in the sample. The 

PCR products were size-fractionated by electrophoresis on 1.5% (w /v ) agarose gels and 

the signals were quantified using Syngene System Tools software (see Materials and 

Methods). The software assigns numerical values to each of the PCR products under 

analysis relating it directly to the intensity of the PCR product. The signals from the 

ABCA1 gene were normalised to that for GAPDH or 28SrRNA, w ith the ratio in vehicle- 

treated cells being arbitrarily assigned as 1 in each case.

3.2.1.3 Cell transfection
For transfection experiments, the Hep3B cells were split 24 hours prior to the 

experiment. On the day of the transfection, the cells were suspended in 6-well plates 

containing 2ml o f fresh medium containing 10% (v/v) HI-FCS. For each well, 1ml of PEI- 

DNA complex was added (see Materials and Methods). Following transfection, cells 

were incubated for 24h in DMEM supplemented w ith 10% LPDS and either iopM  of 9CRA 

plus 2pg/ml of 22(R)-HC or DMSO as a vehicle control. Cells were then harvested and 

extracts prepared for luciferase assays. The luciferase activity was normalized to the  

concentration of the cellular proteins. All transfections were carried out in triplicate and 

repeated at least three times. Results are presented as mean fold induction (mean ±SD),
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with basal level arbitrarily assigned as 1. A standard statistical t-test was carried out on 

the data and changes in expression were found to be significant to the level indicated.

3.2.2 The effect of oxysterols on ABCA1 mRNA expression in J774.2 cells
Before carrying out detailed studies on the actions o f LXR agonists in J774.2

macrophages, it was necessary to perform some experiments to  confirm typical LXR 

responses in these cells. The first response that was studied was the induction of ABCA1 

expression by the oxysterol 22(R)-HC using the inactive enantiomer, 22(S)-HC, for 

comparison. As shown in Figure 3.2, the mRNA levels of ABCA1 were induced in a 

statistically significant manner in response to 22(R)-HC treatm ent at both i2h and 24h. 

The maximal increase in mRNA levels was observed at I2h following incubation with this 

ligand. Unlike 22(R)-HC, the inactive enantiomer 22(S)-HC, which is not able to activate 

the LXRs, did not induce ABCA1 mRNA levels (Figure 3.2). Relative fold induction of 

ABCA1 mRNA expression after normalization to the 28S rRNA levels was approximately 

4-fold following I2h incubation of the cells with 22(R)-HC. A similar induction has 

previously been reported in the murine RAW 264.7 cell line (Claudel e t al., 2001).

As described in the General Introduction, LXR functions in cells as a heterodimer with its 

obligate partner RXR on target gene promoters. Therefore, we decided to investigate 

whether the endogenous ABCA1 gene can be activated by the oxysterol 22(R)-HC and 

9CRA, either alone or in combination, in J774.2 macrophages. The RT-PCR data shown in 

Figure 3.3 demonstrates a significant increase in ABCA1 mRNA expression in cells treated  

with 22(R)-HC (approximately 2-fold induction) or 9CRA (about 2-fold induction). A more 

pronounced induction in expression of about 5-fold was obtained with combined 

treatm ent o f both ligands. A similar trend has been seen in THP-1 macrophages (Costet 

et al., 2000).

3.2.3 Transient transfection o f Hep3B cells using LXR-promoter luciferase 
DNA constructs
In order to delineate the mechanisms by which LXR/RXR heterodimer regulates gene 

expression (e.g. signal transduction pathways, coactivator/corepressor requirements), it 

is useful to have a functional trans-activation assay. Such an assay can be used to  

delineate sequence requirements for particular responses and also allows the use of 

DNA constructs specifying for DN or constitutively active forms of key components of
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Figure 3.2 RT-PCR analysis of ABCAi mRNA expression in J774 macrophages following exposure 
to oxysterols.

The cells were incubated with DM EM containing 10% (v/v) LPDS for 4h and then either treated 
with vehicle DMSO (Ci2h and C24h) or exposed to the oxysterols, 22(R)-hydroxycholesterol 
(donated 22(R)HC) [2pg/ml] and 22(S)-hydroxycholesterol (donated 22(S)HC) [2pg/ml)] for i2h 
and 24h. The quality of total cellular RNA was assessed by electrophoresis on 1% (w/v) agarose gel 
(panel A). Then, cDNA was prepared against total cellular RNA and used in PCR reactions in 
which primers against ABCA1 or GAPDH were present. The amplification products were size- 
fractionated by electrophoresis on a 1.5% (w/v) agarose gel (panel B), M corresponds to the 1 kbp 
molecular weight markers. The ABCA1 and GAPDH signals at each point were determined by 
densitometric analysis. The ABCAi:GAPDH ratio for the Ci2h and C24h samples were arbitrarily 
assigned as 1 with those from the other samples shown as fold induction (mean ±SD) from four 
independent experiments (panel C; *P<0.05 compared with control)

Ci2h
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Figure 3.3 Effect of LXR agonists on ABCA1 mRNA expression in J774 macrophages.

The cells were incubated with DM EM containing 10% (v/v) LPDS for 4h and then either 
treated with the vehicle DMSO (Ci2h) or exposed to the RXR ligand 9CRA [(iopM )] or 
the LXR ligand 22(R)HC (2pg/ml) for I2h. The quality of total cellular RNA was assessed 
by electrophoresis on 1% (w /v) agarose gel (panel A). Then, cDNA was prepared against 
total cellular RNA and used in PCR reactions in which primers against ABCA1 or 28SrRNA 
were present. The amplification products were size-fractionated by electrophoresis on a 
1.5% (w /v) agarose gel (panel B), M corresponds to the 1 kbp molecular weight markers. 
The ABCA1 and 28SrRNA signals at each point were determined by densitometric 
analysis. The ABCAi:28SrRNA ratio for the Ci2h sample was arbitrarily assigned as 1 with 
those from the other samples shown as fold induction (mean ±SD) from three 
independent experiments (panel C; **P <0.01 compared with Ci2h).
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signal transduction pathways to further confirm the findings obtained using 

pharmacological agents. In addition, constructs for specific coactivators or corepressors 

can be used to delineate their potential roles in transcriptional regulation. Because the 

ABCA1 promoter-luciferase DNA construct was unavailable in the laboratory when these 

studies were carried out, the human LXRa promoter-luciferase DNA construct (present 

in the laboratory) was used. As described in the General Introduction, LXRa expression 

is subject to autoregulation and its promoter has been used previously to study the 

actions of LXRs (Laffitte et al., 2001a; Li et al., 2002; Schmitz and Langmann, 2005; Ulven 

et al., 2004; Whitney et al., 2001). The -2625hLXRa-Luc DNA construct was in the PGL3- 

Basic cloning vector (Appendix III). Recombinant plasmid DNA was purified as described 

in Materials and Methods and digestion with restriction enzymes was carried out to 

confirm identity.

Macrophages are difficult to transfect with exogenous DNA and previous transfection 

studies on J774.2 cells in the laboratory have been unsuccessful (Hughes et al., 2002; 

Irvine et al., 2005). From a range of cell lines used in the laboratory, Hep3B cells were 

found to be the most efficient for transfection with exogenous DNA. Indeed, the Hep3B 

cell line represents the most widely used transfection model system for researchers 

investigating various aspects of regulation of gene expression (Foka et al., 2003; Irvine 

et al., 2005; Kim et al., 2007; Vielma et al., 2003; Wu et al., 2004a; Yoshida et al., 2006). It 

was therefore decided to  use Hep3B for transfection experiments. Indeed, researchers 

in the LXR field commonly use these cells or other hepatoma cell lines for analysis 

(Aravindhan et al., 2006; Jakel e t al., 2004; Jaye et al., 2005; Kennedy et al., 2001; Liao et 

al., 2002; Martin e t al., 2000; Menke et al., 2002; Oberkofler et al., 2004; Singaraja et al.,

2001).

The transfection was facilitated by the use of the PEI reagent. The amino group in this 

reagent interacts with negatively charged DNA but leaves the molecule with a net 

positive charge that binds to the negatively charged cell membranes. The -2625hLXRa- 

Luc was transiently transfected into Hep3B cells as described in Materials and Methods. 

As shown in Figure 3.4, combinations of 22(R)-HC plus 9CRA activated the LXRa 

promoter activity by approximately four fold. In contrast, no such effect was seen with  

the pGL3-Luc parent reporter plasmid only, which produced low, background activity
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Figure 3.4 LXR/RXR heterodimers activate the LXR gene promoter in a heptoma cell line.

Hep3B cells were transfected with 5pg of the LXRa promoter-luciferase DNA construct 
using the PEI reagent. Following transfection, cells were incubated for 24h in DM EM 
supplemented with 10% LPDS containing either the DMSO vehicle (C) or 22(R)-HC plus 
9CRA (2pg/ml and iopM, respectively; Lig). The cells were then harvested and luciferase 
activity and protein concentration was determined as described in Materials and 
Methods. Relative luciferase activity was normalised to protein concentration and values 
are expressed as mean fold induction (the value in vehicle-treated cells has arbitrarily 
been assigned 1). Bars indicate mean ±SD with significance of induction versus control 
shown by **P<0.01. The results represent the outcome of three independent 
experiments each of which was carried out in triplicate.
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(data not shown). This result confirms that the LXRa promoter is activated by LXR 

agonists and that Hep3B cells represent an efficient system to study promoters 

regulated by this NR

3.2.4 Effect of pharmacological inhibitors of known signal transduction 
pathways on the LXR/RXR-mediated induction of ABCA1 mRNA expression
Previous studies in our laboratory have established a role for the JNK/SAPK and PI3K

pathways in the 22(R)-HC-mediated regulation of apoE gene expression (Greenow, K., 

2004). A major aim of the studies presented in this thesis was to investigate the 

signalling pathways involved in the LXR agonist-induced expression o f the ABCA1 gene. 

Several studies on NRs have shown that the signalling pathway utilised in the control of 

their actions often depends on the nature of the ligand (Clarke et al., 2004; Debevec et 

al., 2007; Hafizi and Dahlbacka, 2006; Leonardsson et al., 2004; Senali Abayratna Wansa 

and Muscat, 2005). It was, therefore, decided to investigate the potential role of the  

JNK/SAPK and PI3K pathways in the action of both 22(R)-HC and 9CRA in J774.2 

macrophages. The studies employed pharmacological inhibitors that were present in the  

laboratory and employed for our previous studies. For these experiments, J774.2 

macrophages were incubated with the inhibitors for ih to ensure cellular uptake and 

inhibition of the target enzyme. The initial concentration of the inhibitors used was 

based on previous studies in the laboratory and a detailed search of the published 

literature. Where DMSO was used for dissolving the inhibitors, as recommended by the  

manufacturer, it was ensured that its final concentration that was added to the cells was 

less than 0.1% (v/v) to avoid a potential effect on cell viability. The untreated cells were 

also exposed to media containing this amount of DMSO as a vehicle control. The 

incubation period with the ligands was I2h because maximal induction of ABCA1 

expression was seen at this tim e point (Figure 3.2). The inhibitors used were LY294002 

for the PI3K pathway and curcumin and SP600125 for the JNK/SAPK pathway (Bennett et 

al., 2001; Brouet and Ohshima, 1995; Chen and Tan, 1998; Dorai et al., 2000; Nakahara 

and Carthew, 2004; Nauc et al., 2004; Sood e t al., 2001; Tamagno et al., 2005; Vlahos et 

al.,1995).

3.2.4.1 Effect of the PI3K inhibitor on LXR/RXR-mediated induction of ABCA1 
expression in J774.2 cells
The inhibitor LY294002 prevents PI3K function by acting as a com petitor for the ATP- 

binding site o f the enzyme (Vlahos e t al., 1995). As shown in Figure 3.5, LY294002
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Figure 3.5 The effect of the LY294002 inhibitor on the induction of ABCA1 mRNA expression in 
J774-2 cells.

The cells were incubated with DM EM containing 10% (v/v) LPDS for 4h and then either 
treated with the vehicle DMSO (C) or exposed to 22(R)-HC (2pg/ml) and 9CRA (iopM ) 
(Lig) for i2h. The inhibitor LY294002 (LY) was added ih before the addition of the ligands 
at a concentration of 25pM. The quality of total cellular RNA was assessed by 
electrophoresis on 1% (w/v) agarose gel (panel A). Then, cDNA was prepared against 
total cellular RNA and used in PCR reactions in which primers against ABCA1 or GAPDH 
were present. The amplification products were size-fractionated by electrophoresis on a 
1.5% (w/v) agarose gel (panel B). The ABCA1 and GAPDH signals at each point were 
determined by densitometric analysis and presented as relative expression (mean ±SD) 
normalised to the expression of GAPDH from four independent experiments. The 
relative expression in the presence of the ligand alone (Lig) has been assigned as 1 as 
shown in panel C. (***P<o.ooi).
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attenuated the induction of ABCA1 mRNA expression levels by combinations of 22(R)-HC 

and 9CRA, thereby suggesting that PI3K was involved in the response. The use of the 

trypan blue exclusion assay showed that the inhibitory effect of LY294002 on LXR/RXR- 

induced ABCA1 expression was not due to an effect o f cell viability (data not shown). 

The inhibition of 22(R)-HC/9CRA-mediated induction of ABCA1 mRNA expression by 

LY294002 was marked but not complete. This suggests that an alternate pathway, 

activated by LXR/RXR, was also potentially involved in the regulation of ABCA1 

expression.

3.2.4.1.1 The effect of dominant negative plasmids against components of the PI3K 
pathway on the LXR promoter activity
In order to further confirm the role of the PI3K pathway in the actions o f LXR agonists, 

co-transfection assays were carried out with the LXRa gene prom oter and plasmids 

specifying for DN forms of the pno catalytic subunit of PI3K and PKB, one of well 

characterised downstream target for PI3K signalling. Indeed, previous work in the  

laboratory had found that 22(R)-HC activates PKB in THP-1 macrophages (Greenow, K. 

2004). In DN PKB, the activating phosphorylation sites Thr3o8 and Ser473 as well as 

Lysi79 i*1 subdomain II of the kinase domain have been mutated to alanine. On the other 

hand, DN pno lacks the minimal p85 binding site. Figure 3.6 shows that the LXRa gene 

promoter is activated about 4-fold by the ligands and this is inhibited in a statistically 

significant manner by the expression of both DN constructs. These data therefore  

confirm a role for the PI3K/PKB pathway in the LXR-mediated stimulation of macrophage 

gene expression.

3.2.4.1.2 The effect of GSK-3 inhibitors on the LXR/RXR-mediated induction of 
ABCA1 expression in J774.2 cells
GSK-3 is a well characterized downstream target for PKB actions. The PKB-mediated 

phosphorylation of serine 21 in GSK-3a and serine 9 in GSK-3P acts to inhibit their 

enzymatic activity resulting in their deactivation (Cross et al., 1995; Srivastava and 

Pandey, 1998). GSK-3a/p have been shown to be involved in signalling by several NRs 

(Salas et al., 2004). Therefore, inhibitors of GSK-3, maleimide derivatives SB216763 and 

SB415286 (Alonso and Martinez, 2004; Smith e t al., 2001), were employed to delineate 

the role of this enzyme in the regulation o f ABCA1 expression by LXR agonists. These 

tw o potent and selective GSK-3a /(3 inhibitors function by competing for ATP binding
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Figure 3.6 Effect of DN constructs against the PI3K pathway on the activity of the LXR promoter.

Hep3B cells were co-transfected with 5pg of the LXRa promoter-luciferase DNA construct and a plasmid 
construct specifying for a mutant kinase dead form of PI3K pno (A), a plasmid construct specifying for a DN 
mutant form of PKB (B) or the vector pcDNA3, using the PEI reagent. Following transfection, cells were 
incubated for 24h in DMEM supplemented with 10% LPDS containing either the DMSO vehicle (C) or 22(R)-HC 
(2pg/ml) and 9CRA (iopM ) (Lig). The cells were then harvested and luciferase activity and protein 
concentration determined as described in Materials and Methods. Relative luciferase activity was 
normalised to protein concentration and values are expressed as mean fold induction (the value in vehicle- 
treated cells has arbitrarily been assigned 1). Bars indicate mean ±SD with significance of induction versus 
control shown by *P<0.05. The results represent the outcome of four independent experiments each of 
which was carried out in triplicate.
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(Smith et al., 2001). As shown in Figure 3.7, both these pharmacological agents failed to  

inhibit the induction of ABCA1 expression by LXR/RXR at the two different 

concentrations used. In order to  rule-out the possibility that these results were because 

the inhibitors were not active, their positive actions was analysed. Previous studies in 

the laboratory had shown that these inhibitors attenuate the IFN-y-induced expression 

of MCP-1 in J774.2 macrophages (Elizabeth Harvey, PhD thesis, Cardiff University). Thus, 

J774.2 cells were pre-treated for ih  with the inhibitor SB216763 and SB415286 at 

concentrations of 30pM and 5opM, respectively. The cells w ere then either left 

untreated or incubated with IFNy (ioooU/m l) for 3h. Total RNA was isolated and 

subjected to RT-PCR as described in Materials and Methods. Both SB216763 and 

SB415286 were found to inhibit the IFN-y-mediated induction of MCP-1 mRNA expression 

(Figure 3.8). These data therefore strongly suggest that GSK-3 is not a potential 

downstream target of PI3K action in the regulation of ABCA1 expression by LXR/RXR.

3.2.4.1.3 The effect of an mTOR inhibitor on the LXR/RXR-mediated induction of 
ABCAi expression in J774.2 macrophages
mTOR represents another key downstream target of PI3K action in the regulation of 

gene expression. The possibility that mTOR acts as a downstream effector of PI3K in the  

LXR-mediated regulation of ABCA1 gene expression was therefore investigated using the  

well-characterized and widely employed inhibitor rapamycin. This is an antibiotic 

produced by Streptomyces hygroscopicus that forms a complex w ith the FK506 binding 

protein (FKBP-12), which then binds to and prevents the activation of mTOR (Chen et al., 

•1995). Figure 3.9 shows that rapamycin at three different concentrations had no effect 

on the induction of ABCA1 mRNA expression by LXR activators.

In order to rule out the possibility that these results were because the inhibitor was not 

active, a positive control for its action was performed. A  previous study in the laboratory 

had shown that rapamycin prevents, at least in part, the IFN-y-mediated inhibition of LPL 

expression in THP-1 macrophages (Sandra Evans, PhD thesis, Cardiff University). THP-1 

monocytes were differentiated with PMA for 24h. The cells were then pre-treated with  

rapamycin at tw o different concentrations (i5onM  and 500nM ) for ih. They were then 

cultured for 24h in the presence of IFN-y (ioooU /m l) or DMSO (vehicle control). Total
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Figure 3.7 The effect of SB216763 and SB415286 on the induction of ABCA1 expression by 
LXR/RXR in J774.2 cells.

J774.2 cells were incubated with DMEM containing 10% (v/v) LPDS for 4h and then either 
treated with the vehicle DMSO (control) or exposed to 22(R)-HC plus 9CRA [2pg/ml and 
iopM ] (Lig) for I2h. The inhibitors SB216763 (SB216) or SB415286 (SB415) were added ih 
before the treatment with the ligands at the indicated concentrations. The quality of 
total cellular RNA was assessed by electrophoresis on 1% (w/v) agarose gel (panel A). 
Then, cDNA was prepared against total cellular RNA and used in PCR reactions in which 
primers against ABCA1 or GAPDH were present. The amplification products were size- 
fractionated by electrophoresis on a 1.5% (w /v) agarose gel (panel B). M corresponds to 
the 1 kbp molecular weight markers. The ABCA1 and GAPDH signals at each point were 
determined by densitometric analysis. The ABCAi:GAPDH ratio for the ligand sample 
(Lig) was arbitrarily assigned as 1 with those from the other samples shown as relative 
expression (Rel Exp) (average) from tw o independent experiments.
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Figure 3.8 Effect of SB216763 and SB415286 on the induction of MCP-i expression by IFNy in 
J774.2 cells.

J774.2 cells were either treated with the vehicle DMSO (control) or exposed to IFNy 
(ioooU/ml) (IFN) for 3h. The inhibitors SB216763 (SB216) or SB415286 (SB415) were 
added ih before the treatm ent with the ligands at the indicated concentrations. The 
cDNA prepared against total cellular RNA was used in PCR reactions in which primers 
against MCP-1 or p-actin were present. The amplification products were size- 
fractionated by electrophoresis on a 1.5% (w/v) agarose gel (panel A), M corresponds to 
the 1 kbp molecular weight markers. The MCP-1 and p-actin signals at each point were 
determined by densitometric analysis. The MCP-i:p-actin ratio for cells treated with IFN-y 
was arbitrarily assigned as 1 with those from the other samples shown as relative 
expression (Rel Exp) (panel B).
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Figure 3.9 The effect of rapamycin on the induction of ABCA1 expression by LXR/RXR in J774.2 
cells.

J774.2 cells were incubated with DM EM containing 10% (v/v) LPDS for 4h and then either 
treated with the vehicle DMSO (control) or exposed to 22(R)-HC plus 9CRA [2pg/ml and 
iopM ] (Lig) for i2h. The inhibitor rapamycin (Rapa) was added ih before treatment with 
the ligand at the indicated concentrations. The quality of total cellular RNA was assessed 
by electrophoresis on 1% (w/v) agarose gel (panel A). Then, cDNA was prepared against 
total cellular RNA and used in PCR reactions in which primers against ABCA1 or GAPDH 
were present. The amplification products were size-fractionated by electrophoresis on a 
1.5% (w/v) agarose gel (panel B). M corresponds to the 1 kbp molecular weight markers. 
The ABCA1 and GAPDH signals at each point were determined by densitometric analysis. 
The ABCAirGAPDH ratio for the ligand sample (Lig) was arbitrarily assigned as 1 with 
those from the other samples shown as relative expression (Rel Exp) (average) from 
two independent experiments.
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RNA was isolated and subjected to RT-PCR as described in Materials and Methods.Figure 

3.10 shows that IFN-y decreases LPL mRNA expression in THP-1 macrophages and, as 

expected, the response was prevented, at least in part, by treatm ent of the cells with  

rapamycin. Overall, these results strongly suggest that mTOR is not involved in the  

LXR/RXR-mediated induction of ABCA1 mRNA expression in J774.2 cells.

3.24.2 Analysis of the role of the JNK/SAPK pathway in the 22(R) HC plus 9CRA- 
mediated induction of ABCAi mRNA expression and LXRa promoter activity
The role of JNK/SAPK, which is a branch of the MAPK pathways, in the LXR/RXR-

mediated induction of ABCA1 expression was also investigated. JNK/SAPK is known to 

regulate the AP-1 family o f transcription factors by phosphorylation o f key components 

such as c-Jun (Davis, 2000). The binding motif of this transcription factor family also exist 

in the LXRa and ABCA1 gene promoters (Santamarina-Fojo et al., 2000; Yang et al.,

2002). W e therefore investigated the potential role of JNK/SAPK in the LXR-mediated 

activation of ABCA1 expression using tw o pharmacological inhibitors, curcumin and 

SP600125. Curcumin (diferuloylmethane) obtained from rhizomes of the plant Curcuma 

longa, is a major yellow pigment in turmeric (Jobin et al., 1999). It has been shown to act 

as an inhibitor of an upstream kinase in the JNK pathway, possibly MEKK1 (Jobin et al., 

1999)* SP600125 is an anthrapyrazolone compound that acts as a reversible ATP 

competitive inhibitor for JNK/SAPK and subsequently inhibits c-Jun phosphorylation 

(Bennett et al., 2001). Recent studies have shown that SP600125 also prevents the 

activation of JNK/SAPK itself, thereby acting upstream of this kinase (Nakahara and 

Carthew, 2004; Tamagno et al., 2005).

As shown in Figure 3.11, tw o different concentration of SP600125 (50 pM and 100 pM) 

failed to attenuate the induction o f ABCA1 mRNA expression by LXR/RXR ligands. This is 

in contrast to previous studies demonstrating inhibitory actions at the same 

concentrations on the induction of apoE expression in THP-1 macrophages by the 

oxysterol 22(R)-HC (Kirsty Greenow, PhD thesis, Cardiff University). In order to rule-out 

the possibility that SP600125 was not active, its positive action was analysed. Previous 

studies in the laboratory had shown that SP600125 inhibits the TGF-p-mediated 

activation of apoE expression in THP-1 monocytes (Nishi Singh, PhD thesis, Cardiff
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Figure 3.10 The effect of rapamycin on the IFN^y-mediated decrease in LPL mRNA expression in 
THP-1 cells.

THP-1 cells were either treated with the vehicle DMSO (control) or exposed to IFNy (ioooU/ml) 
for 24h. The inhibitor rapamycin (Rapa) was added ih before the IFNy treatment at the indicated 
concentrations. The quality of total cellular RNA was assessed by electrophoresis on 1% (w/v) 
agarose gel (panel A). Then, cDNA was prepared against total cellular RNA and used in PCR 
reactions in which primers against LPL or 28SrRNA were present. The amplification products 
were size-fractionated by electrophoresis on a 1.5% (w/v) agarose gel (panel B). M corresponds to 
the 1 kbp molecular weight markers.
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Figure 3.11 The effect of SP600125 on the induction of ABCA1 mRNA expression by LXR activators 
in J774-2 cells.

The cells were incubated with DMEM containing 10% (v/v) LPDS for 4h and then either 
treated with the vehicle DMSO (control) or 22(R)-HC plus 9CRA [2pg/ml and iopM ] (Lig) 
for I2h. The inhibitor SP600125 (SP) was added ih before the addition of the ligands at 
the indicated concentrations (50 and ioopM). The quality of total cellular RNA was 
assessed by electrophoresis on 1% (w /v) agarose gel (panel A). Then, cDNA was prepared 
against total cellular RNA and used in PCR reactions in which primers against ABCA1 or 
GAPDH were present. The amplification products were size-fractionated by 
electrophoresis on a 1.5% (w/v) agarose gel (panel B). The ABCA1 and GAPDH signals at 
each point were determined by densitometric analysis. The ABCAi:GAPDH ratio for the 
ligand sample (Lig) was arbitrarily assigned as 1 with those from the other samples 
shown as relative expression (Rel Exp) (mean ±SD)from three independent experiments 
(panel C; ***P<o.ooi).
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University). As shown in Figure 3.12, this was indeed found to be the case in this study, 

thereby showing that SP600125 was functional. Initial experiments with curcumin at tw o  

different concentrations (i5pM  and 3opM) showed that the inhibitor was toxic to the  

cells at i2h (data not shown). A similar toxicity was also seen with several concentrations 

of the inhibitor at cispM. It was therefore not possible to investigate the action of this 

inhibitor on ABCA1 expression.

We also investigated the effect of DN JNK/SAPK on the activation of LXR promoter 

activity by the ligands. The DN JNK/SAPK plasmid was a kind gift from E. Nishida of 

Kyoto University. This plasmid has been used successfully in the laboratory and by other 

researchers in the field (Deng et al., 2001; Desbois-Mouthon et al., 2000; Gao et al., 2006; 

Vuong et al., 2000; Wang et al., 2003b; Wang et al., 2000). It specifies for a protein in 

which the phosphorylation site, Thr-Pro-Tyr, has been altered to Val-Pro-Ala. As shown in 

Figure 3.13, the induction o f LXRa promoter activity by LXR/RXR agonists was not 

prevented but increased slightly by expression of DN JNK/SAPK.

3.3 Discussion
A number of proteins in the ABC transporter super family have recently been discovered 

to play a key role in cholesterol efflux and RCT (Lawn et al., 1999). ABCA1 is a transporter 

on the plasma membrane that translocates cholesterol and phospholipids out of the  

cells. Mutations of the ABCA1 gene results in defects in apolipoprotein-mediated 

cholesterol efflux as found in TD (Bortnick et al., 2000). ABCA1 expression levels are 

typically low or undetectable in normal cells (Langmann et al., 1999) but can be induced 

by variety o f activators such as sterols, cAMP, 9CRA and PPAR agonists. In addition, 

studies by Laffitte et al. (2001b) demonstrated that ABCA1 expression is positively 

regulated by activation of LXRs.

Recent work analyzing the effect of synthetic LXR ligands in murine models of 

atherosclerosis provide direct evidence for an athero-protective effect of LXR activators 

(Hu et al., 2003; Joseph et al., 2002b; Levin et al., 2005; Schuster et al., 2002; Tangirala et 

al., 2002; Terasaka et al., 2003), thereby indicating that agonists of this NR represent 

promising agents for therapeutic intervention of CVD (Joseph et al., 2002b; Lund et al.,

2003). The molecular mechanisms underlying such regulation of ABCA1 expression by 

activation of LXRs is at present poorly understood and form the focus of studies in this 

thesis.
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Figure 3.12 The effect of SP600125 on the TGF-p-induced apoE mRNA expression in THP-1 cells.

THP-1 cells were either treated with the vehicle DMSO (control) or TGF-(3 (30ng/ml) for 
24h. The inhibitor SP600125 (SP) was added ih before treatm ent with TGF-|3 at the 
indicated concentration (sopM). The quality of total cellular RNA was assessed by 
electrophoresis on 1% (w /v) agarose gel (panel A). Then, cDNA was prepared against 
total cellular RNA and used in PCR reactions in which primers against apoE or 28SrRNA 
were present. The amplification products were size-fractionated by electrophoresis on 
a 1.5% (w/v) agarose gel (panel B). The apoE and 28SrRNA signals at each point were 
determined by densitometric analysis. The apoE:28SrRNA ratio for cells treated with 
TGF-p was arbitrarily assigned as 1 with those from the other samples shown as relative 
expression (Rel Exp) (panel C).
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JNK/SAPKPCDNA3

Figure 3.13 The effect of DN JNK/SAPK on the LXRa promoter activity induced by 22(R)-HC and 
9CRA.

Hep3B cells were co-transfected with 5pg of the LXRa promoter-luciferase DNA 
construct and a plasmid construct specifying for DN JNK/SAPK or the vector pcDNA3, 
using the PEI reagent. Following transfection, cells were incubated for 24h in DMEM 
supplemented with 10% LPDS containing either the DMSO vehicle (C) or 22(R)-HC plus 
9CRA [2pg/ml and iopM ] (Lig). The cells were then harvested and luciferase activity and 
protein concentration determined as described in Materials and Methods. Relative 
luciferase activity was normalised to protein concentration and values are expressed as 
mean fold induction (the value in vehicle-treated cells has arbitrarily been assigned 1). 
Bars indicate mean ±SD with significant effect shown by *P<0.05. The results represent 
the outcome of three independent experiments each of which was carried out in 
triplicate.
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In the studies presented in this chapter, an in vitro system, J774.2 macrophages, was 

chosen for the analysis of LXR-mediated induction of ABCA1 gene expression. Several 

studies have shown that oxysterols and synthetic LXR ligands rapidly induce the 

expression of ABCA1 and apoE mRNA in different macrophage cell lines (Costet et al., 

2000; Joseph et al., 2002b; Laffitte et al., 2001b; Mak et al., 2002b; Repa et al., 2000b; 

Schultz et al., 2000; Schwartz et al., 2000; Sparrow et al., 2002; Venkateswaran et al., 

2000a). It was important to first optimise and validate the use o f the RT-PCR technique 

for the determination of the effects of LXR activators on ABCA1 gene expression in 

J774.2 macrophages. The results from RT-PCR analysis showed that 22(R)-HC induces the 

expression of ABCA1. As expected, no such induction was seen with the inactive 

enantiomer 22(S)-HC (Figure 3.2). An additive activation of ABCA1 mRNA expression was 

obtained when both 22(R)-HC and 9CRA were present together (Figure 3.3). As the 

activation observed with 22(R)-HC and 9CRA in combination was most profound and as 

LXR binds to its recognition sequence in target gene promoters as a heterodimer with 

RXR, these LXR/RXR ligands were selected for further study. Overall, the results are 

similar to those seen in primary macrophage cultures and both the RAW264.7 and THP-1 

cell lines (Claudel et al., 2001; Costet et al., 2000).

In addition to RT-PCR, an additional assay system that was established by studies 

presented in this chapter was to monitor promoter activation by the ligands. It was of 

interest to determine whether activation of LXR/RXR leads to increased activity of a 

promoter regulated by the ligands in a transient transfection assay. The -2625hLXRa-Luc 

reporter construct contains the sequence for the human LXRa promoter linked to the  

luciferase gene. Because of the difficulties experienced in the laboratory, and others in 

the field, with the efficient transfection of J774.2 macrophages with exogenous DNA 

(Hughes et al., 2002; Irvine et al., 2003), such assays were performed in human Hep3B 

cells. Indeed, human hepatoma cell lines have been used extensively to study cytokine- 

mediated gene expression relevant to atherosclerosis (Blaschke et al., 2006; Coulouarn 

et al., 2005; Khovidhunkit et al., 2003; Miyake et al., 2000). The results shown in Figure 

3.4 indicate that the activity o f the LXRa prom oter was induced by LXR/RXR ligands in 

Hep3B cell transfected using the PEI reagent.

It was next decided to identify the potential signalling pathways that might be involved 

in mediating LXR/RXR induction of ABCA1 expression. For this purpose, a number of
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pharmacological inhibitors against various components of JNK/SAPK and PI3K signalling 

pathways and DN plasmids were used. The results showed that there was a potentially 

important role for the PI3K pathway in the activation of ABCA1 expression by LXR 

agonists. Thus, LXR/RXR-mediated induction of ABCA1 expression was significantly 

attenuated by LY294002 (Figure 3.5). As mentioned earlier in General Introduction, the 

predominant form of PI3K is a member of the class I subfamily of PI3K enzymes and 

consists of the p8sa regulatory subunit and the pno catalytic subunit (Carpenter and 

Cantley, 1996; Cuevas et al., 2001). A number of signalling effectors function 

downstream of PI3K (Figure 1.10) and one of the best characterised targets is PKB. 

Having determined that PI3K was involved in the induction of ABCA1 expression by 

activation of LXRs by the use of a pharmacological inhibitor, transient co-transfection 

assays were carried out using DN constructs specifying for the catalytic subunit pno and 

the downstream target PKB. Both DN constructs attenuated the activation of the LXRa 

gene promoter by the ligands (Figure 3.6). These results also suggest that PKB is a 

potential downstream effector of PI3K action in the up regulation of ABCA1 gene 

expression by 22(R)-HC and 9CRA. It is therefore important to substantiate this link 

further by monitoring, for example, the activity of PKB in response to LXR activators.

GSK-3 belongs to a family of conserved Ser/Thr kinases present in all eukaryotic 

organisms and one of its primary function is to phosphorylate and inactivate glycogen 

synthase in response to insulin (Cross et al., 1995). In addition to its role in metabolic and 

neurological abnormalities, GSK-3 is also implicated in the regulation of many 

transcription factors. These include cAMP response element binding protein, nuclear 

factor of activated T cells, heat shock factor-1, AP-1 and NF-kB (Tavares et al., 2004). 

mTOR is a Ser/ Thr protein kinase with highly conserved homologues that are found in all 

eukaryotic organisms. The enzyme plays a key role in the control of protein synthesis 

activated by metabolic agents (e.g. glucose and amino acids), growth factors and 

cytokines (Fingar and Blenis, 2004; Manning, 2004). GSK and mTOR are important 

downstream targets of PKB actions in the PI3K pathway and involved in NR signalling 

(Choi et al., 2004; Doronzo et al., 2006; Krasilnikov, 2000). The phosphorylation of NRs, 

such as GR and AR, by GSK-3 'n response to a variety of signals reduces their 

transcriptional activity (Hirota et al., 2003; Moeller et al., 2006; Salas et al., 2004). PKB 

phosphorylation of GSK-3 results in the activation of these NRs by inhibition of GSK-3. 

Thus, as GSK-3 and mTOR are potential candidates that may link the PI3K pathway with



CHAPTER THREE- 132

LXR transcriptional regulation of genes, its potential role was investigated further by the 

use of pharmacological inhibitors. The GSK inhibitors, SB216763 and SB415286, nor 

rapamycin, an inhibitor of the P70S6 kinase that binds and prevents the function of 

mTOR, had any effect on the induction of ABCA1 expression by LXR activation (Figures 

3.7 and 3.9). These results therefore rule out GSK and mTOR as downstream targets for 

PKB in the regulation of ABCA1 expression. However, the possibility that the PI3K 

pathway is mediating its effects on the LXR regulation of ABCA1 expression through 

another downstream component of PKB cannot be ruled out.

Because of the importance of the PI3K pathway in the regulation of LXRs and the 

previously noted phosphorylation of NRs, a search was carried out on the presence of 

potential consensus sites for components of the PI3K pathway in LXRs using Scan site 

database (Obenauer et al., 2003). The results of this analysis indicated several PI3K 

pathway motifs, including PI3K p8s and PDK1 binding sites and putative phosphorylation 

sites for PKB and GSK-3 (Obenauer et al., 2003). For example, a number of putative 

consensus sites for PKB exist in both LXRa (Seri98 and Ser23o) and LXRp (Ser244). Thus, 

PKB may directly phosphorylate LXRa and/or LXRp (Greenow, K., 2004). These results 

indicate that the necessary sequences for PI3K binding exist in this NR. Indeed, recent 

data show that PI3K may affect several other key genes of LXR actions such as SREBP-ic 

and apoAs (Ballerini et al., 2006; Barthel and Schmoll, 2003; Chen et al., 2004; Doronzo 

et al., 2006; Jakel et al., 2004; Nowak et al., 2005; Taniguchi et al., 2003; Wellen and 

Hotamisligil, 2005).

The role of the JNK/SAPK pathway was also investigated via the use of tw o structurally 

distinct inhibitors, curcumin and SP600125. SP600125 failed to inhibit the LXR/RXR- 

induced ABCA1 mRNA expression (Figure 3.11). DN constructs against JNK/SAPK were 

used to further investigate the role o f this pathway. Again, the expression o f such a DN 

form failed to prevent the ligand-mediated activation of the LXRa promoter in 

transfected cells. In contrast to SP600125, the inhibitor curcumin was found to be toxic 

to the cells even at very low concentrations. Overall, these results are in contrast to  

previous studies that showed a role for the JNK/SAPK signal transduction pathway in the 

22(R)-HC-mediated induction of apoE expression in THP-1 macrophages (Greenow, K., 

2004). This response was affected by both SP600125 and curcumin. The exact reasons 

for such a discrepancy are currently unclear but may be due to the use of human
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macrophages in the previous study and murine macrophages in the present study. 

Indeed, differences between macrophages of human and mouse origins have been 

described previously (Chen et al., 2002; Cook et al., 2001; Kiss et al., 2005; Menke et al., 

2002; Vu-Dac et al., 1998; Wagner, 2000; Yanai et al., 2004). For example, Whitney et al. 

(2001) reported that natural and synthetic LXR ligands induce the expression of the 

LXRa gene in primary human macrophages and differentiated THP-1 macrophages but 

not in any mouse tissues or cell lines examined. In contrast to ABCA1, the expression of a 

number of other LXR target genes, such as ABCG1, LXRa, SREBP-ic and apoE, show weak 

or no induction in mouse macrophages but stronger induction in human macrophages 

(Costet et al., 2003). In addition, Kiss et al. (2005) showed a unique regulation of 

cholesterol efflux by cAMP and 9CRA in human macrophages that is different from that 

seen in murine macrophages.

It was worth noting that the inhibitors used in this study have been employed 

successfully for a number of projects in the laboratory (Singh, N. 2003; Greenow, K.

2004). For example, it has already been shown that both GSK inhibitors, SB216763 and 

SB415286, inhibit the induction of MCP-1 expression by IFN-y in the J774.2 cell line 

(Harvey, E. 2005). In addition, rapamycin has been found to prevent the IFN-y-mediated 

suppression of LPL mRNA expression in THP-1 macrophages (Evans, S. 2005) and 

SP600125 was shown to inhibit the TGF-p-mediated activation of apoE mRNA and 

protein expression in THP-1 monocytes and macrophages (Singh and Ramji, 2006). These 

studies along with experiments carried out in this study (Figures 3.8; 3.10; and 3.12) 

prove the effectiveness of these three inhibitors.

The J774.2 cell line chosen for this study has been used widely to investigate regulation 

of gene expression in differentiated macrophages that is relevant to atherosclerosis 

(Hughes et al., 2002; Kiss et al., 2005; Mead et al., 2002; Piraino et al., 2006; Tengku- 

Muhammad et al., 1996). It has a major advantage over the use of monocytic cell lines in 

that there is no requirement o f additional stimuli to induce differentiation, such as PMA 

in the case of THP-1 cells, which might complicate the analysis (Auwerx et al., 1988; Perez 

et al., 2003). However, there are several limitations to the use of J774.2 cells as a model 

system. For example, these cells do not express the apoE gene (Mazzone et al., 1987), 

which plays an important role in the pathogenesis of atherosclerosis (llveskoski et al.,

1999). ApoE is a lipid transport protein with a variety of physiological functions and has
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potent anti-atherogenic activities (Curtiss and Boisvert, 2000; Fazio et al., 1997; Larkin et 

al., 2000). For example, apoE within HDL plays a key role in RCT from peripheral tissues 

to the liver (Von Eckardstein et al., 2001b). Moreover, apoE knock-out mice develop 

atherosclerosis even when fed a diet that is low in cholesterol (Linton and Fazio, 1999; 

Perez et al., 2003). In addition, response elements for LXRa and PPARy have been 

identified in the apoE gene promoter (Laffitte e t al., 2001b), thereby showing that NRs 

are regulators of apoE expression. Finally, species-dependent metabolic differences 

cannot be overlooked (Mead et al., 2002; Schmitz and Langmann, 2001). In addition to  

differences in gene regulation by mouse and human LXRs, mice also lack plasma CETP 

activity that is present in humans (Zelcer and Tontonoz, 2006). A recent study 

demonstrated that in tw o CETP containing animal models, Syrian hamsters and 

cynomolgus monkeys, activation of LXRs induced a significant increase in LDL 

cholesterol levels that was not previously observed in mice (Groot et al., 2005). Direct 

induction of CETP by LXRs, which has been demonstrated in human cell lines, may 

contribute to this increase (Luo and Tall, 2000).

Although the use of J774.2 macrophages confirmed the role of the PI3K pathway in the 

action of LXR activators, definitive conclusions on the JNK/SAPK pathway could not be 

made because SP600125 had no effect and curcumin was found to be toxic. Because 

J774.2 macrophages are difficult to transfect with exogenous DNA, Hep3B cells were 

used to investigate the action of the DN JNK/SAPK plasmid. However, no attenuation of 

the LXR agonist-induced LXRa promoter activity was seen. Because of various difficulties 

detailed above and as it was not possible to rule-out that the JNK/SAPK pathway was 

not required for the response, it was decided to use of THP-1 cells for subsequent 

studies. This was because of previous studies in the laboratory on the action of 22(R)-HC 

on apoE expression had identified a conclusive role for JNK/SAPK and PI3K pathways 

and the findings correlated with primary cultures of human monocyte-derived 

macrophages (Greenow, K., 2004). The THP-1 cell line also offers a number of other 

advantages. Firstly, the action of ligands and signalling pathways on apoE expression 

can be investigated along with ABCA1. Secondly, these cells could be transfected with 

exogenous DNA. Thirdly, they are human in origins.
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Chapter 4: Effect of pharmacological inhibitors on the LXR 
agonist-induced expression of key genes implicated in the 
control of cholesterol homeostasis in THP-i macrophages

4.1 Introduction
Previous studies in the laboratory had shown that 22(R)-HC induces apoE expression in 

THP-1 macrophages and this requires the JNK/SAPK and PI3K pathways (Greenow, K.,

2004). The main aim of the work presented in this thesis is to extend these findings to  

other LXR regulated genes (e.g. ABCA1) and other activators of these NRs (e.g. 

combinations of 22(R)-HC and 9CRA, synthetic ligands). As THP-1 monocytes require 

differentiation into macrophages, it was decided to use J774.2 macrophages (an 

adherent cell line) in the studies described in chapter 3. These studies showed a dramatic 

induction of ABCA1 mRNA expression by combinations of 22(R)-HC plus 9CRA than that 

seen with either of the ligand. Whilst the previously noted role of the PI3K pathway in 

this response was confirmed, a role for JNK/SAPK could not be verified as curcumin was 

toxic to these cells and SP600125 had no effect.

It was decided to carry out experiments for subsequent studies in human THP-1 

macrophages because of the problems detailed above and in chapter 3 in relation to  

mouse J774.2 macrophages (e.g. transfection with exogenous DNA) and given that 

atherosclerosis is in essence a human disease. Indeed, several recent studies have 

demonstrated species-specific differences in NR signalling (Schmitz and Langmann,

2005). For example, the Laffitte group have shown that human LXRa is subject to 

positive autoregulation and the ability of LXRa to regulate its own promoter is species 

specific (Laffitte et al., 2001a). Such species-specific differences in the ability to amplify 

the LXR response (i.e. autoregulation o f LXRa) raises the possibility that humans may be 

more responsive than mice to LXR agonists (Laffitte et al., 2001a). In addition, different 

groups have demonstrated differential induction of LXR regulated gene expression in 

human and murine macrophages (Laffitte et al., 2001a; Li et al., 2004; Repa et al., 

2000b). Furthermore, murine and human LXRs appear to direct distinct transcriptional 

activities (Lee and Plutzky, 2006). For example, certain LXR target genes, such as CETP, 

CYP7A1 and ABCG1, are regulated by LXRs in a species specific manner (Lund et al., 

2003). The expression of CETP is induced by LXRs in humans as it contains a functional
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LXR-RE in its promoter region whereas mice do not express this gene (Luo and Tall,

2000). On the other hand, the expression of the mouse Cyp7a gene is induced by LXR 

activation but no such effect is seen in humans (Chen et al., 2002; Lehmann et al., 1997; 

Tontonoz and Mangelsdorf, 2003). In addition, although the regulatory regions of both 

the human and murine ABCG1 gene contain LXR-RE, the magnitude of the induction of 

human ABCG1 expression by LXR agonists is much greater than the murine counterpart 

(Kennedy et al., 2001). Moreover, the apoE gene is significantly more responsive to LXR 

ligands in human macrophages than in murine macrophages (Laffitte et al., 2001a). 

Finally, substantial difference in lipid metabolism exist between mice and humans (Lee 

and Plutzky, 2006; Repa et al., 2000a; Tangirala et al., 2002; Zelcer and Tontonoz, 2006).

In order to investigate the effect of LXR agonists on ABCA1 and apoE protein levels, THP- 

1 and U937 macrophages were used as model systems during the rest of this study. Both 

cell lines have previously been widely used as in vitro models for studying the 

mechanisms involved in the regulation of macrophage gene expression relevant to  

atherogenesis (Auwerx, 1991; Kohro et al., 2004; Larigauderie et al., 2004; Olsson et al., 

1983; Ricote et al., 1998; Via e t al., 1989; Wang et al., 2003b; Wu et al., 1994). Several 

studies have shown similarities in responses in these cells with those observed in 

primary cultures of human monocyte-derived macrophages (Matheson et al., 2002). 

Both these cell lines can be considered as monoblasts as they represent a relatively 

immature cell of the monocyte-macrophage cell lineage. However, these cell lines are 

blocked at certain steps in the differentiation process but they can be induced to  

differentiate into macrophages by treatm ent with phorbol esters, such as PMA (Auwerx, 

1991; Koren et al., 1979; Tsuchiya et al., 1982; Tsuchiya et al., 1980). This differentiation 

process is associated with a dramatic change in cell morphology and membrane 

expression of antigens and receptors associated with native monocyte-derived 

macrophages (Auwerx, 1991; Tsuchiya et al., 1982).

LXRs regulate the levels of the ABCA1 and ABCG1 cholesterol transporters as well as 

apoE in various cells, thereby affecting cholesterol transport and metabolism. ApoE, 

ABCA1 and ABCG1 proteins are major players in mediating cellular efflux of cholesterol 

and phospholipids from macrophages to apoA-l containing lipoproteins including prep- 

HDL and, thereby, exert anti-atherogenic activities (Venkateswaran et al., 2000b; Perez 

et al., 2003; Lawn et al., 1999; Bortnick et al., 2000; Chawla et al., 2001b). Previous work
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has shown that the expression of LXR target genes apoE, ABCA1 and ABCG1 is induced in 

human and murine macrophages by agonists of this NR (Laffitte et al., 2001a; Laffitte et 

al., 2001b; Venkateswaran et al., 2000a). The studies presented in this chapter therefore 

aimed to investigate the action of natural and synthetic LXR activators on apoE and 

ABCA1 expression in THP-1 macrophages. A number of synthetic LXR agonists, which are 

structurally unrelated to oxysterols, have been developed. The increased potency of 

these compounds compared to physiological iigands makes them useful tools for the 

study of LXR function. The first such synthetic LXR ligands w ere the compounds 

T0901317 (Schultz e t al., 2000) and GW3965 (Collins et al., 2002). These were shown to  

promote cellular cholesterol efflux and to inhibit atherosclerosis in animal models of the 

disease (Joseph et al., 2002b). The secondary aim of the research presented in this 

chapter was to further delineate whether the same signalling pathways were involved in 

LXR-mediated activation of ABCA1 and apoE genes. This was achieved initially by 

studying the effects o f specific pharmacological inhibitors of signalling pathways on the  

induction of ABCA1 and apoE expression by either natural or synthetic LXR agonists. 

Data from these experiments were then confirmed by co-transfection assays using 

ABCA1 promoter-reporter DNA constructs and plasmids specifying for DN forms of 

specific signalling proteins. Additionally, key finding were confirmed in human primary 

macrophages to rule out the possibility that the results obtained were peculiar to the 

transformed cell line. Figure 4.1 illustrates the overall experimental strategy for the work 

presented in this chapter.
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Figure 4.1 Summary of the experimental strategy used to delineate the signal transduction 
pathways underlying LXR agonist-mediated activation of genes involved in the cholesterol

homeostasis in THP-1 macrophages.

4.2 Results

4.2.1 E x p e rim e n ta l des ign

In order to achieve the aims detailed above, THP-1 monocytes were differentiated for 

24h with 0 .i 6|jM PMA in RPMI medium 1640 containing 10% (v/v) LPDS. After this 

differentiation period, LXR agonists at appropriate concentration were added and the 

cells left to incubate for a further 24h. Additionally, all control samples were treated with 

an equal volume of DMSO. In addition to LXR agonists, THP-1 cells were also treated in 

some experiments with the inactive ligand 22(S)-HC (2pg/ml). Because the function of 

apoE and ABCA1 in the control of cholesterol homeostasis is carried out by proteins, it 

was decided to apply western blot analysis for subsequent work to examine the effect 

of LXR agonists on ABCA1 and apoE protein levels in differentiated THP-1 macrophages. 

For this, total protein from THP-1 macrophages was isolated, quantified and subjected to 

western blot analysis using conditions shown in Tables 2.8 and 2.9. Thus, equal amount 

of total protein was subjected to SDS-PAGE and then transferred to PVDF membranes.
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The membranes were then incubated with an appropriate primary antibody (polyclonal 

IgG) and immunodetection was carried out using the appropriate horseradish 

peroxidise-conjugated secondary antibody and the ECL detection system. The relative 

intensity of immunoreacted proteins were determined using the Syngene Gene Tools 

software. The software assigns numerical values to each signal relating directly to the 

intensity of the immunoreacted proteins. The relative expression o f each protein was 

determined by relating its optical density to the intensity o f the immunoreacted 

housekeeping protein in the equivalent sample (P-actin). The data was expressed as 

mean fold induction ±SD with the basal level arbitrarily assigned as 1 except where 

stated otherwise.

4.2.2 Effect of natural LXR agonists on ABCA1 and apoE protein 
expression in THP-1 macrophages
Previous studies in the laboratory had shown that 22(R)-HC induces the expression of 

the apoE protein in THP-1 macrophages (Greenow, K., 2004). It was decided to extend  

this finding by investigating the ability of 22(R)-HC or 9CRA either alone or in 

combination to modulate apoE and ABCA1 expression in THP-1 macrophages by Western  

blot analysis. As shown in Figure 4.2, 22(R)-HC or 9CRA, either alone or in combination, 

induced the expression of the apoE and ABCA1 proteins in THP-1 macrophages whereas 

the inactive enantiomer, 22(S)-HC, had no such effect. In the case of ABCA1 but not apoE, 

the induction in expression by combinations of 22(R)-HC and 9CRA was much greater 

than that produced by the individual ligands.

4.2.3 Effect o f synthetic LXR agonists on ABCA1 and apoE protein 
expression in THP-1 macrophages
The next line o f investigation involved determining the effect of synthetic LXR ligands on 

the expression of ABCA1 and apoE protein levels in THP-1 cells using Western blotting. 

The non-steroidal LXR agonists, GW3965 and T0901317 (denoted T1317 hereafter), have 

potent anti-atherogenic activities in tw o  different murine models of this disease [LDLR(- 

/-) and apoE(-/-) mice] (Joseph e t al., 2002b; Tangirala et al., 2002; Terasaka et al., 2003). 

Figures 4.3 and 4.4 show that GW3965 and T0901317, at two different concentrations, 

induce the expression of ABCA1 and apoE proteins. Whilst the induction of apoE and 

ABCA1 expression by GW3965 was of a similar extent, the degree of induction of ABCA1 

by T0901317 was much greater than that seen with GW3965 (Figures 4.3-4.4). To further
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Figure 4.2 Effect of natural LXR agonists on ABCAi and apoE protein expression in THP-1 
macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) or 9CRA (iopM) either alone or in combination. In addition, 
cells were treated with 22(S>HC (2pg/ml) or DMSO as a vehicle control (C). Western blot analysis 
was carried out using 20-40pg of whole cell extracts. Blotted membranes were incubated with 
antibodies against apoE, ABCA1 or the p-actin control. Antigen-antibody complexes were 
detected using the ECL detection system. Results shown in panels A and B are representative of 
four and three independent experiments respectively except for 9CRA treatment which has 
carried out twice. Densitometric analysis was carried out on the data and presented as mean fold 
induction (±SD) in relation to basal levels (in the presence of vehicle alone; C) assigned as 1 as 
shown in panels C and D (**P<o.oi, ***P<o.ooi compared to controls).
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Figure 4.3 Induction of ABCA1 and apoE protein levels by GW3965 in THP-1 macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with synthetic LXR agonist GW3965 at the indicated 
concentrations. In addition, cells were treated with 22(S)-HC (2pg/ml) or DMSO as a 
vehicle control. Western blot analysis was carried out using 20-40pg of whole cell 
extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE or 
the p-actin control. Antigen-antibody complexes were detected using the ECL detection 
system. Results shown in panels A and B are representative of three independent 
experiments. Densitometric analysis was carried out on the data and presented as mean 
fold induction (±SD) in relation to basal levels (i.e. DMSO treated cells) assigned as 1 as 
shown in panels C and D (*P<0.03, **P<0.01, ***P<o.ooi compared to controls).
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Figure 4.4 Induction of ABCA1 and apoE protein levels by T0901317 in THP-i macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with the indicated concentrations of the synthetic LXR agonist 
T0901317 (T1317). In addition, cells were treated with 22(S)-HC (2pg/ml) or DMSO as a 
vehicle control. Western blot analysis was carried out using 20-40pg of whole cell 
extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE or 
the p-actin control. Antigen-antibody complexes were detected using the ECL detection 
system. Results shown in panels A and B are representative of two independent 
experiments. Densitometric analysis was carried out on the data and presented as 
average fold induction in relation to basal levels (i.e. in the presence of DMSO alone) 
assigned as 1 as shown in panels C and D.
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confirm the induction of ABCA1 and apoE protein expression by T0901317 and to 

determine an optimal concentration of the ligand that is required for maximal activation, 

dose-response experiments were carried out. A dramatic induction of expression of 

both apoE and ABCA1 was seen with o.spM of the ligand (Figure 4.5). The expression 

continued to increase slightly with further increases in the concentration of the ligands 

with maximal induction seen at 7.5-iopM (Figure 4.5). The slight reduction in the 

expression of apoE seen with ipM  T0901317 appears to be an anomaly. A concentration 

of iopM  T0901317 was used for subsequent studies.

4.2.4 Time course for activation of ABCAi and apoE expression by LXR 
agonists in THP-1 macrophages
The activation of ABCA1 and apoE expression by the natural LXR agonists, 22(R)- 

HC/9CRA, and the synthetic LXR ligand, T0901317, was investigated further by time 

course Western blot analysis. Both agonists produced a marked increase in ABCA1 

protein levels at 3h and this increased further at subsequent time points reaching 

maximal levels at 24h (Figures 4.6-4-7). The induction seen with the natural agonist was 

greater than that with the synthetic ligand. A similar time course of activation of apoE 

protein expression was produced by both agonists (Figures 4.6-4.7). However, the 

extent of induction by 22(R)-HC/9CRA was only slightly greater than that produced by 

T0901317. Overall, maximal stimulation of expression of both proteins was seen at 24h. 

This time point was used for subsequent studies.

4.2.5 Role of JNK/SAPK pathway in the LXR agonist-mediated induction of 
ABCA1 and apoE expression in THP-i macrophages
Previous studies in the laboratory had shown that 22(R)-HC activates JNK/SAPK in THP-1 

macrophages and indicated a role for this kinase in the stimulation of apoE gene 

expression by this ligand (Greenow, K., 2004). However, the role of this pathway in the 

actions of combinations of 22(R)-HC and 9CRA or the synthetic ligands in these cells was 

not analysed. In addition, the potential role for this pathway in the activation of ABCA1 

expression was not studied. It was therefore decided to investigate these aspects using 

the two pharmacological inhibitors of this pathway, SP600125 and curcumin. Initial 

experiments aimed to confirm the previously noted attenuation of 22(R)-HC-induced 

apoE expression and extend the analysis to ABCA1. The expression of apoE and ABCA1 

was monitored by Western blot analysis. As expected, the 22(R)-HC-induced apoE 

protein expression was significantly attenuated by treatment of the cells with SP600125
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Figure 4.5 Concentration-dependent increase in ABCA1 and apoE protein expression by 
T0901317.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with the indicated concentrations of T0901317 (T1317). In 
addition, cells were treated with DMSO as a vehicle control (C). Western blot analysis 
was carried out using 20-40pg of whole cell extracts. Blotted membranes were 
incubated with antibodies against ABCA1, apoE or the p-actin control. Antigen-antibody 
complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as fold induction in 
relation to basal levels (in the presence of vehicle alone; C) assigned as 1 as shown in 
panels C and D.
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Figure 4.6 Time course action of natural LXR agonist on ABCA1 and apoE expression in THP-t 
macrophages.

THP-1 macrophages were incubated fo r the time indicated in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) in combination with 9CRA (iopM). Western blot analysis was 
carried out using 20-40pg of whole cell extracts. Blotted membranes were incubated with 
antibodies against ABCA1, apoE or the p-actin control. Antigen-antibody complexes were 
detected using the ECL detection system (panels A and B). Densitometric analysis was carried out 
on the data and presented as fold induction in relation to basal levels (oh) assigned as 1 as shown 
in panels C and D.
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Figure 4.7 Time course action of synthetic LXR agonist T0901317 on ABCA1 and apoE protein 
expression in THP-1 macrophages.

THP-1 macrophages were incubated for the time indicated in RPMI medium 1640 
containing 10% (v/v) LPDS with T0901317 (iopM ). Western blot analysis was carried out 
using 20-40pg of whole cell extracts. Blotted membranes were incubated with 
antibodies against ABCA1, apoE or the p-actin control. Antigen-antibody complexes were 
detected using the ECL detection system (panels A and B). Densitometric analysis was 
carried out on the data and presented as fold induction in relation to basal levels (oh) 
assigned as 1 as shown in panels C and D.
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or curcumin (Figure 4 .8). Similarly, the induction of ABCA1 expression by this ligand was 

attenuated in the presence of both these inhibitors. The effect of curcumin and 

SP600125 on the induction o f ABCA1 and apoE expression by combinations of 22(R)-HC 

and 9CRA or the synthetic ligands was next investigated. As shown in Figures 4«9-4*n> 

both inhibitors attenuated, in a statistically significant manner, the induction of ABCA1 

and apoE protein expression by 22(R)-HC plus 9CRA or the synthetic ligands GW3965 

except for T0901317 treatm ent which was carried out twice. Overall, these results 

strongly suggest that the JNK/SAPK pathway is involved in the induction of ABCAl and 

apoE expression by both natural and synthetic LXR agonists.

4.2.6 Concentration-dependent effects o f JNK/SAPK inhibitors on LXR 
agonist-induced ABCAl and apoE expression in THP-imacrophages
The experiments with the JNK/SAPK inhibitors shown in Figures 4.8-4.11 used a single

concentration of SP600125 and curcumin (ioopM  and 25pM, respectively). It was 

decided to extend these findings by concentration-response experiments. Because 

combinations of 22(R)-HC and 9CRA and/or the synthetic ligand T0901317 are used 

extensively in LXR research (Balierini et al., 2006; Chen et al., 2004; Costet et al., 2000; 

Crestani et al., 2004b; Hu et al., 2003; Jakel et al., 2004; Laffitte et al., 2001a; Laffitte et 

al., 2001b; Liao et al., 2002; Perez et al., 2003; Schmuth et al., 2004; Schultz e t al., 2000; 

Tang et al., 2004b; Wagner et al., 2003), it was decided to restrict the analysis to these 

two activators. As shown in Figures 4.12-4.15, 22(R)-HC/9CRA or T0901317 produced a 

dramatic increase in the expression of ABCA1 and apoE proteins, which was attenuated 

by both inhibitors. Thus, the inhibition of ABCA1 expression induced by 22(R)-HC plus 

9CRA or T0901317 was seen with 25pM SP600125 and this was attenuated further as the 

concentration o f this pharmacological agent was increased. For apoE, no inhibition was 

obtained with i5pM  SP600125 (Figures 4.12-4.13). However, there was a concentration- 

dependent attenuation of the response at subsequent concentration of the inhibitor 

used (Figure 4.12-4.13). Similarly, curcumin produced a concentration-dependent 

attenuation of ABCA1 and apoE expression that was induced in the presence of 22(R)-HC 

plus 9CRA or T0901317 (Figures 4.14-4.15). However, whereas a marked inhibition of 

22(R)-HC plus gCRA-induced expression of both proteins was obtained with i5pM  of the 

inhibitor, higher concentrations were required in the case of T0901317 (Figures 4.14-4.15). 

Overall, these results show that SP600125 and curcumin inhibit the LXR agonist-induced 

expression of ABCA1 and apoE proteins at several different concentrations.
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Figure 4.8 Effect of JNK/SAPK inhibitors on 22(R)-HC-mediated induction of ABCA1 and apoE 
expression.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (Lig) (2pg/ml) in the absence or the presence of SP600125 (SP) (loopM) or curcumin (Cure) 
(25pM). In addition, cells were treated with 22(S)-HC (2pg/ml) or DMSO as a vehicle control (C). The 
inhibitors were added ih before the ligand (pre-treatment). Western blot analysis was carried out using 20- 
40pg of whole cell extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE and 
the p-actin control. Antigen-antibody complexes were detected using the ECL detection system. Results 
shown in panels A and B are representative of three independent experiments. Densitometric analysis was 
carried out on the data and presented as relative expression (mean ±SD) normalised to the expression of P- 
actin. The relative expression in the presence of the Ligand alone (Lig) has been assigned as 1 as shown in 
panels C and D (***P<o.ooi).
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Figure 4.9 Effect of JNK/SAPK inhibitors on 22(R)-HC/9CRA-mediated induction of ABCA1 and 
apoE expression in THP-i macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (2pg/ml) and 9CRA (iopM)] (Lig) in the absence or the presence of SP600125 (SP) (ioopM) or 
curcumin (Cure) (25pM). In addition, cells were treated with 22(S)-HC (2pg/ml) or DMSO as a vehicle control 
(C). The inhibitors were added ih before the ligand (pre-treatment). Western blot analysis was carried out 
using 20-4opg of whole cell extracts. Blotted membranes were incubated with antibodies against ABCA1, 
apoE and the p-actin control. Antigen-antibody complexes were detected using the ECL detection system. 
Results shown in panels A and B are representative of three independent experiments. Densitometric 
analysis was carried out on the data and presented as relative expression (mean ±SD) normalised to the 
expression of p-actin. The relative expression (Rel Exp) in the presence of the ligand alone (Lig) has been 
assigned as 1 as shown in panels C and D (*P<0.05, **P<0.01 compared to controls).
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Effect of JNK/SAPK inhibitors on GW3965-mediated induction of ABCAl and apoE

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with GW3965 (Lig) (ipM) in the absence or the presence of SP600125 (SP) (ioopM) or curcumin (Cure) 
(25pM). In addition, cells were treated with 22(S)-HC (2pg/ml) or DMSO as a vehicle control (C). The 
inhibitors were added ih before the ligand (pre-treatment). Western blot analysis was carried out using 20- 
4opg of whole cell extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE and 
the p-actin control. Antigen-antibody complexes were detected using the ECL detection system. Results 
shown in panels A and B are representative of three independent experiments. Densitometric analysis was 
carried out on the data and presented as relative expression (mean ±SD) normalised to the expression of p- 
actin. The relative expression in the presence of the ligand alone (Lig) has been assigned as 1 as shown in 
panels C and D (***P<o.ooi).
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Figure 4.11 Effect of JNK/SAPK inhibitors on To90i3i7-mediated induction of ABCA1 and apoE 
expression.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with T 0 9 0 1 3 1 7  (T 1 3 1 7 ) (Lig) (iopM) in the absence or the presence of SP600125 (SP) (loopM) or curcumin 
(Cure) (25pM). In addition, cells were treated with 22(S>HC (2pg/ml) or DMSO as a vehicle control (C). The 
inhibitors were added ih before the ligand (pre-treatment). Western blot analysis was carried out using 20- 
40pg of whole cell extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE and 
the p-actin control. Antigen-antibody complexes were detected using the ECL detection system. Results 
shown in panels A and B are representative of two independent experiments. Densitometric analysis was 
carried out on the data and presented as relative expression (average) normalised to the expression of p- 
actin. The relative expression in the presence of the ligand alone (Lig) has been assigned as 1 (panels C and 
D).
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Figure 4.12 Concentration-dependent inhibition of 22(R)-HC/9CRA-mediated induction of ABCA1 
and apoE expression by SP600125.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM ) (Lig). In addition, 
cells were treated with DMSO as a vehicle control (C). The inhibitor, SP600125 (SP), at 
the indicated concentrations was added ih before the ligand (pre-treatment). Western 
blot analysis was carried out using 20-40pg of whole cell extracts. Blotted membranes 
were incubated with antibodies against ABCA1, apoE or the p-actin control. Antigen- 
antibody complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as relative expression 
(average) normalised to the expression of p-actin. The relative expression in the 
presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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Figure 4.13 Concentration-dependent inhibition of T090i3i7-mediated induction of ABCA1 and 
apoE expression by SP600125.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with T0901317 (T1317) (Lig) (iopM ). In addition, cells were 
treated with DMSO as a vehicle control (C). The inhibitor, SP600125 (SP), at the indicated 
concentrations was added ih before the ligand (pre-treatment). Western blot analysis 
was carried out using 20-40pg of whole cell extracts. Blotted membranes were 
incubated with antibodies against ABCA1, apoE or the p-actin control. Antigen-antibody 
complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as relative expression 
(average) normalised to the expression of p-actin. The relative expression in the 
presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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Figure 4.14 Concentration-dependent inhibition of 22(R)-HC/9CRA-mediated induction of ABCA1 
and apoE expression by curcumin.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM ) (Lig). In addition, 
cells were treated with DMSO as a vehicle control (C). The inhibitor, curcumin (cure), at 
the indicated concentrations was added ih before the ligand (pre-treatment). Western 
blot analysis was carried out using 20-40pg of whole cell extracts. Blotted membranes 
were incubated with antibodies against ABCA1, apoE or the p-actin control. Antigen- 
antibody complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as relative expression 
(average) normalised to the expression of p-actin. The relative expression in the 
presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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Figure 4.15 Concentration-dependent inhibition of To90i3i7-mediated induction of ABCAl and 
apoE expression by curcumin.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with T0901317 (T1317) (Lig) (iopM ). In addition, cells were 
treated with DMSO as a vehicle control (C). The inhibitor, curcumin (cure), at the 
indicated concentrations was added ih before the ligand (pre-treatment). Western blot 
analysis was carried out using 20-40pg of whole cell extracts. Blotted membranes were 
incubated with antibodies against ABCA1, apoE or the p-actin control. Antigen-antibody 
complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as relative expression 
(average) normalised to the expression of p-actin. The relative expression in the 
presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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4.2.7 Role of the PI3K pathway in the LXR agonist-mediated induction of 
ABCAl and apoE expression in THP-1 macrophages
Previous studies in the laboratory had also revealed an important role for the PI3K 

pathway in the activation of apoE gene expression in THP-1 macrophages in response to 

22(R)-HC (Greenow, K., 2004). It was therefore, decided to extend these findings to 

ABCA1 and other LXR activators. The widely used PI3K inhibitor, LY294002, was 

employed in these studies.

Initial experiments aimed to confirm the previous finding that LY294002 attenuates the 

22(R)-HC-mediated induction of apoE protein expression and extend the analysis to  

ABCA1. As shown in Figure 4.16, the previously noted action of LY294002 on apoE 

protein expression was confirmed. In addition, LY294002 attenuated the 22(R)-HC- 

mediated induction of ABCA1 expression. Further experiments on the effects of 

LY294002 were extended to the actions of combinations of 22(R)-HC and 9CRA or the  

synthetic ligands GW3965 or T0901317. In all cases, LY294002 was found to attenuate  

the expression of ABCA1 and apoE proteins that was induced by the ligands (Figures 

4.17- 4.19). These data therefore suggest an important role for the PI3K pathway in the  

induction of apoE and ABCA1 protein expression by LXR agonists.

4.2.8 Concentration-dependent effects of the PI3K inhibitor on LXR 
agonist-induced ABCA1 and apoE expression in THP-1 macrophages
To further confirm the role of the PI3K pathway in the induction of apoE and ABCA1

expression by LXR agonists, and to rule out the possibility that the previous results in 

relation to LY294002 were due to the concentration of the inhibitor used, further 

experiments were carried out using a range of concentrations of this pharmacological 

agent. Similar to such experiments with the JNK/SAPK inhibitors SP600125 and curcumin, 

the analysis was restricted to combinations of 22(R)-HC and 9CRA or T0901317. In both 

cases, LY294002 was found to attenuate the expression of ABCA1 and apoE proteins 

that was induced by the ligands (Figures 4.20-4.21).

4.2.9 Effect of LXR agonists on ABCA1 and apoE expression in human 
primary macrophages
In order to rule out the possibility that the results obtained are peculiar to the 

transformed THP-1 cell line, the effects o f LXR agonists on the expression of the ABCA1 

and apoE genes in human primary monocyte-derived macrophages (HM DMs) were
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Figure 4.16 Effect of the PI3K inhibitor LY294002 on the 22(R)-HC-mediated induction of ABCA1 
and apoE expression.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (2pg/ml) (Lig) in the absence or the presence of LY294002 (LY) (ioopM). In addition, cells 
were treated with 22(S)-HC (2pg/ml) or DMSO as a vehicle control (C). The inhibitor was added ih before the 
ligand (pre-treatment). Western blot analysis was carried out using 20-40pg of whole cell extracts. Blotted 
membranes were incubated with antibodies against ABCA1, apoE and the p-actin control. Antigen-antibody 
complexes were detected using the ECL detection system. Results shown in panels A and B are 
representative of three independent experiments. Densitometric analysis was carried out on the data and 
presented as relative expression (mean ±SD) normalised to the expression of p-actin. The relative 
expression in the presence of the ligand (Lig) alone has been assigned as 1 as shown in panels C and D 
(**P<0.01, ***P<0.001).
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Figure 4.17 Effect of the PI3K inhibitor LY294002 on the 22(R)-HC/9CRA-mediated induction of 
ABCA1 and apoE expression.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (2pg/ml) and 9CRA (iop M ) (Lig) in the absence or the presence of LY294002 (LY) (ioopM). In 

addition, cells were treated with 22(S)-HC (2pg/ml) or DMSO as a vehicle control (C). The inhibitor was added 

ih before the ligand (pre-treatm ent). Western blot analysis was carried out using 20 -4 0 pg of whole cell 
extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE and the P-actin control. 
Antigen-antibody complexes were detected using the ECL detection system. Results shown in panels A and 

B are representative of three independent experiments. Densitometric analysis was carried out on the data 

and presented as relative expression (mean ±SD) normalised to the expression of p-actin. The relative 

expression in the presence of the ligand (Lig) alone has been assigned as 1 as shown in panels C and D 

(**P<0.01).
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Figure 4.18 Effect of the PI3K inhibitor LY294002 on the GW3965-mediated induction of ABCAi 
and apoE expression.

Differentiated THP-1 macrophages were incubated for 24(1 in RPMI medium 1640 containing 10% (v/v) LPDS 
with GW3965 (ipM) (Lig) in the absence or the presence of LY294002 (LY) (loopM). In addition, cells were 
treated with 22(S>HC (2pg/ml) (22S) or DMSO as a vehicle control (C). The inhibitor was added ih before the 
ligand (pre-treatment). Western blot analysis was carried out using 20-40pg of whole cell extracts. Blotted 
membranes were incubated with antibodies against ABCA1, apoE and the p-actin control. Antigen-antibody 
complexes were detected using the ECL detection system. Results shown in panels A and B are 
representative of three independent experiments. Densitometric analysis was carried out on the data and 
presented as relative expression (mean ±SD) normalised to the expression of p-actin. The relative 
expression in the presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and D 
(**P<0.01).
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Figure 4.19 Effect of the PI3K inhibitor LY294002 on the T090i3i7-mediated induction of ABCA1 
and apoE expression.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with T0901317 (T1317) (iopM) (Lig) in the absence or the presence of LY294002 (LY) (ioopM). In addition, 
cells were treated with 22(S)-HC (2pg/ml) (22S) or DMSO as a vehicle control (C). The inhibitor was added ih 
before the ligand (pre-treatment). Western blot analysis was carried out using 20-40pg of whole cell 
extracts. Blotted membranes were incubated with antibodies against ABCA1, apoE and the p-actin control. 
Antigen-antibody complexes were detected using the ECL detection system. Results shown in panels A and 
B are representative of two independent experiments. Densitometric analysis was carried out on the data 
and presented as relative expression (average) normalised to the expression of p-actin. The relative 
expression in the presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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Figure 4.20 Concentration-dependent inhibition of 22(R)-HC/9CRA-mediated induction of ABCA1 
and apoE expression by LY294002.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM ) (Lig). In addition, 
cells were treated with DMSO as a vehicle control (C). The inhibitor, LY294002 (LY), at 
the indicated concentrations was added ih before the ligand (pre-treatment). Western 
blot analysis was carried out using 20-40pg of whole cell extracts. Blotted membranes 
were incubated with antibodies against ABCA1, apoE and the p-actin control. Antigen- 
antibody complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as relative expression 
normalised to the expression of p-actin. The relative expression in the presence of the 
ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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Figure 4.21 Concentration-dependent inhibition of Togoi^-m ediated induction of ABCAi and 
apoE expression by LY294002.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 
containing 10% (v/v) LPDS with T0901317 (T1317) (Lig) (iopM ). In addition, cells were 
treated with DMSO as a vehicle control (C). The inhibitor, LY294002 (LY), at the indicated 
concentrations was added ih before the ligand (pre-treatment). Western blot analysis 
was carried out using 20-40pg of whole cell extracts. Blotted membranes were 
incubated with antibodies against ABCA1, apoE and the p-actin control. Antigen-antibody 
complexes were detected using the ECL detection system (panels A and B). 
Densitometric analysis was carried out on the data and presented as relative expression 
normalised to the expression of p-actin. The relative expression in the presence of the 
ligand alone (Lig) has been assigned as 1 as shown in panels C and D.
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investigated. Primary monocytes were isolated from human blood and allowed to 

differentiate in culture over 7-10 days. Macrophages were treated with natural/synthetic 

LXR agonists or DMSO as a vehicle control. Total cellular protein was subjected to  

Western blot analysis using antibodies against ABCA1, apoE or p-actin. Figure 4.22 shows 

that combinations of 22(R)-HC plus 9CRA or the synthetic LXR agonists GW3965 or 

T0901317 induce ABCA1 and apoE expression in HMDMs. In contrast, 22(S)-HC was 

ineffective in inducing ABCA1 and apoE protein expression.

4.2.10 Inhibition of LXR agonists-mediated induction o f ABCAi and apoE 
protein levels by JNK/SAPK and PI3K inhibitors in HMDMs
Further analysis of the actions of JNK/SAPK and PI3K inhibitors on the expression of

ABCA1 and apoE in HMDMs was restricted to combinations of 22(R)-HC and 9CRA. 

Curcumin and LY294002 slightly decreased the basal expression of ABCA1 and apoE, 

respectively. More importantly, the dramatically increased level of both of these 

proteins seen in the presence of combinations of 22(R)-HC and 9CRA was attenuated by 

all three inhibitors (Figure 4.23). These results therefore strongly suggest a potentially 

important role for the JNK/SAPK and PI3K pathways in the actions of LXR agonists in 

HMDMs.

4.2.11 Analysis o f the activity o f the ABCAi gene prom oter in relation to  
the action of LXR activation
At this point in the study, tw o ABCAi promoter-luciferase DNA constructs became 

available. These contained the -928/+101 region of the human ABCAi gene promoter with 

an intact or mutated LXR-RE called DR4. Costet e t al. (2000) has demonstrated 

transcriptional activation of the ABCAi promoter by oxysterols in the murine 

macrophage RAW264.7 ceil line. Mutation of this DR4 element abolished the oxysterol- 

mediated induction of the hABCAi promoter (Costet et al., 2003; Costet et al., 2000) in 

RAW264.7 macrophages. However, similar studies have not been carried out in human 

macrophages. Therefore, it was decided to use these DNA constructs as additional tools 

for the investigation of the signal transduction pathways activated by LXR agonists.
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Figure 4.22 Effect of LXR agonists on ABCAi and apoE protein expresstion in HMDMs.

Human monocytes were isolated and cultured for 7-10 days in RPMI medium 1640 supplemented with 5% 
(v/v) FCS. Differentiated macrophages were incubated for 24h in medium containing 10% LPDS with 22(R)-HC 
(3pg/ml), 22(S)-HC (3pg/ml), 9CRA (iopM), GW3963 (ipM) or T1317 (iopM). In addition, cells were treated 
with DMSO as a vehicle control (C). Western blot analysis was carried out using 2o-4opg of whole cell 
extracts. Blotted membranes were incubated with antibodies against apoE, ABCAi or the p-actin control. 
Antigen-antibody complexes were detected using the ECL detection system. Results shown in panels A and 
B are representative of two independent experiments except for 9CRA treatment alone, which has been 
carried out once. Densitometric analysis was carried out on the data and presented as fold induction 
(average) in relation to basal levels (in the presence of vehicle alone; C) assigned as 1 as shown in panels C 
and D.
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Figure 4.23 Effect of JNK/SAPK and PI3K inhibitors on LXR/RXR ligand-induced ABCAi and apoE 
protein expresstion in HMDMs.

Human monocytes were isolated and cultured for 7-10 days in RPMI medium 1640 supplemented with 5% 
(v/v) FCS. Differentiated macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) 
LPSD with 22(R)-HC (3pg/ml) and gCRA (iopM) in the absence or the presence of SP600125 (SP) (sopM), 
curcumin (cure) (25pM) and LY294002 (LY) (ioopM). The inhibitors were added ih before the ligand (pre­
treatment). In addition, cells were treated with DMSO as a vehicle control (C). Western blot analysis was 
carried out using 20-4opg of whole cell extracts. Blotted membranes were incubated with antibodies against 
apoE, ABCAi or the p-actin control. Antigen-antibody complexes were detected using the ECL detection 
system. Results shown in panels A and B are representative of two independent experiments. Densitometric 
analysis was carried out on the data and presented as relative expression normalised to that for p-actin. The 
Relative expression in the presence of the ligand alone (Lig) has been assigned as 1 as shown in panels C and 
D.
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The studies presented in the previous chapter showed that the LXRa gene promoter 

was regulated by LXR agonists in human hepatoma Hep3B cells. It was, however, 

decided to use a homologous macrophage system for subsequent studies. Previous 

studies in the laboratory have shown that THP-1 macrophages are difficult to  transfect at 

high efficiencies with exogenous DNA. On the other hand, U937 macrophages can be 

transfected with high efficiency and have therefore been used for numerous studies 

analysing promoter regions in relation to macrophage gene expression (Hughes et al., 

2002; Irvine et al., 2005; Koren et al., 1979; Olsson et al., 1983; Wang et al., 2003b). Similar 

to THP-1 cells, U937 are cultured as monocytes but can be differentiated into 

macrophages with PMA(Rao, 2001).

U937 cells were transfected with the hABCAi promoter using the Superfect™ 

transfection method. Following differentiation in the presence of PMA, transfected cells 

were treated with combinations of 22(R)-HC and 9CRA or the synthetic ligand T0901317. 

Hep3B cells were included in some experiments for comparative purposes. In addition, 

the ABCAi promoter construct containing mutations in the DR4 element was included in 

some experiments. As shown in Figure 4.24A, combinations of 22(R)-HC and 9CRA 

produced an approximate 6-fold induction of ABCAi promoter activity in Hep3B cells. 

Such an induction was not seen with the DR4 mutant construct (Figure 4.24A). Having 

confirmed that the ABCAi promoter behaved in an expected manner in Hep3B cells, 

which were used for all transfection studies in chapter 3, further experiments were 

carried out on U937 cells. The ABCAi promoter activity was induced by combinations of 

22(R)-HC and 9CRA or T0901317 in U937 macrophages (Figure 4.24B). However, the 

induction by combinations of 22(R)-HC and 9CRA (about 37-fold) was more dramatic 

than that seen with T0901317 (approximately 10-fold) (Figure 4.24B).

In order to further confirm that the induction of ABCAi promoter activity by the LXR 

agonists was indeed mediated through LXRs, experiments were carried out using a DN 

form of LXRa. The empty plasmid vector pcDNA3 was used as a control. The induction of 

ABCAi promoter activity in cells transfected with the control plasmid and then treated 

with combinations of 22(R)-HC and 9CRA or T0901317 was decreased by approximately 

75% in cells expressing DN LXRa (Figure 4.25). These results therefore show that the 

ABCAi gene promoter is regulated by LXR agonists in the U937 transfection system in a 

similar manner to the endogenous gene in THP-1 macrophages.
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Figure 4.24 Effect of LXR agonists on the activity of ABCAi promoter in transfected cells.

Hep3B cells (A) or U937 cells (B) were transfected with the indicated ABCAi promoter constructs. The cells 
were then treated with either DMSO as a vehicle control (C) or 22(R)-HC (2pg/ml) and 9CRA (iopM) (Lig) for 
i8h (U937 cells) and 24h (Hep3B cells). PMA (o.i6pM/ml) was included for U937 cells in order to initiate 
differentiation. The cells were then harvested and luciferase activity and protein assays were carried out as 
described in Materials and Methods. Relative counts were normalised to protein concentration and values 
are expressed as fold induction (average, panel A; mean ±SD, panel B) (the value in cells treated with vehicle 
alone has been arbitrarily assigned as 1). The results represent the outcome of two (panel A) to five (panel B, 
except for T1317 treatment, which has been carried out twice) independent experiments carried out in 
triplicate. The data was analysed by student’s t-test (**P<o.oi compared to untreated cells).
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Figure 4.25 Effect of DN LXR-a on the stimulation of ABCAi promoter activity by LXR agonists.

U937 cells were co-transfected with an expression plasmid specifying for a DN form of 
LXR-a (DN LXR) or the vector pcDNA3. The cells were then treated with either DMSO as 
a vehicle control (C) or the indicated LXR ligands (Lig) [22(R)-HC (2pg/ml) and 9CRA 
(iopM ) or T1317 (io p M )] for i8h. PMA (o.i6pM /m l) was included in order to initiate 
differentiation. The cells were then harvested and luciferase activity and protein assays 
were carried out as described in Materials and Methods. Relative counts were 
normalised to protein concentration and values are expressed as mean fold induction 
(±SD) (the value in cells treated with vehicle alone has been arbitrarily assigned as 1). The 
results represent the outcome of three independent experiments carried out in 
triplicate. The data was analysed by student’s t-test (*P<o.os compared to pcDNA3 
transfected cells treated with the indicated LXR agonists).
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4.3 Discussion
Macrophages contribute to the formation of arterial atherosclerotic lesions by 

accumulating excessive amounts of lipids, mainly CE, through the uptake of modified 

lipoproteins via scavenger receptors (Brown and Goldstein, 1983; Febbraio et al., 2001; 

Steinberg et al., 1989; Vainio and Ikonen, 2003; Yamada et al., 1998). Thus, elimination of 

accumulated CE from macrophage foam cells represents a promising therapeutic 

approach to prevent the development of atherosclerosis. Indeed, different strategies 

have been reported to  reduce cellular CE content, one of which is to increase the 

expression of ABCAi and apoE genes implicated in the efflux of cellular cholesterol 

(Santamarina-Fojo e t al., 2001). Several studies have established that LXRs are regulators 

of lipid-inducible expression of ABCAi and apoE genes in macrophages (Costet et al., 

2000; Laffitte et al., 2001b; Lawn et al., 1999; Perez et al., 2003; Repa et al., 2000b; 

Venkateswaran et al., 2000a). For example, Tang et al. (2004) reported that ABCAi gene 

expression at the mRNA and protein levels was significantly increased in cholesterol- 

loaded THP-1 macrophages as a result of activation of LXRs. In addition, ABCAi 

expression and cholesterol efflux in brain cells has been shown to be induced by 

combinations of 22(R)-HC and 9CRA (Koldamova et al., 2003). There are multiple 

regulatory sequence elements in the proximal promoter region o f the ABCAi gene that 

may play an important role in regulating its expression (Langmann et al., 2000). Work in 

several laboratories have shown that the LXR/RXR heterodimer regulates ABCAi and 

apoE gene transcription through interaction with LXR-REs present in the promoter 

regions of these genes (Costet et al., 2000; Joseph et al., 2003; Laffitte et al., 2001b; Lin 

et al., 2005; Repa e t al., 2000b; Schwartz et al., 2000; Venkateswaran et al., 2000a). 

Therefore, initial studies were conducted to ascertain whether this response could be 

reproduced in the THP-1 model system. Hence it was first decided to study the ability of 

natural or synthetic LXR agonists to increase ABCAi and apoE protein expression in THP- 

1 macrophages. To our knowledge no studies have previously been carried out in 

relation to signalling pathways involved in the LXR-mediated regulation of gene 

expression. The aim of the subsequent studies presented in this thesis was therefore to  

investigate this key aspect using ABCAi and apoE as model genes.

The studies showed that natural LXR/RXR ligands, 22(R)-HC and 9CRA, and the synthetic 

agonists, GW3965 and T0901317, induce ABCAi and apoE expression in THP-1 

macrophages (Figures 4 -2-4 -4 )- In general, combinations of 22(R)-HC and 9CRA produced
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the most extensive activation of expression of both proteins followed by T0901317 and 

GW3965. We also showed that this response requires the activation of the JNK/SAPK 

and PI3K signalling pathways, as specific pharmacological inhibitors against the two  

pathways attenuated the induction of ABCAi and apoE protein expression by the ligands 

in a concentration-dependent manner (Figures 4.8-4.21). Such an attenuation of the 

responses by the JNK/SAPK and PI3K inhibitors was seen in both THP-1 cells and HMDMs. 

These findings are in agreement with previous work in the laboratory that showed an 

important role for JNK/SAPK and PI3K pathways in the 22(R)-HC-induced expression of 

apoE in THP-1 macrophages (Greenow, K., 2004). Further studies on the ABCAi promoter 

showed that its activity was induced by combinations of 22(R)-HC and 9CRA in Hep3B 

and U937 cells (Figure 4.24). However, the 22(R)-HC and 9CRA-mediated activation of 

the ABCAi promoter activity was much greater in U937 cells than Hep3B cells (Figure 

4.24). Because the previously noted induction of ABCAi promoter activity in murine 

RAW264.7 macrophages was also high (37 fold) (Costet et al., 2000), it appears that the 

activation of ABCAi promoter by LXR agonists is greater in macrophages than in 

hepatocytes. The activation of ABCAi promoter by 22(R)-HC and 9CRA was abrogated 

when the LXR-binding DR4 element was mutated (Figure 4.24). In addition, the 

expression of a DN form of LXR-a attenuated the induction of ABCAi promoter activity 

by combinations of 22(R)-HC and 9CRA (Figure 4.25). Furthermore, the ABCAi promoter 

was also activated by the synthetic ligand T0901317 (Figure 4.24).

This study has investigated the effects of natural and tw o different synthetic LXR 

agonists on ABCAi and apoE gene expression and the corresponding signalling 

pathways in THP-1 macrophages. However, our results show differential quantitative 

effect of natural and synthetic LXR agonists on the induction of ABCAi and apoE 

expression. In addition, the results suggest the potential involvement of the same cell 

signalling pathways, JNK/SAPK and PI3K, in the activation of ABCAi and apoE expression 

by natural and synthetic LXR ligands. However, recent work has reported differential 

modulation of COX-2 expression in a human epithelial cell line by structurally distinct 

PPARy agonists (Li et al., 2004; Patel et al., 2005). Thus, Patel et al. (2005) reported the 

involvement of PI3K and ERK pathways in the induction of COX-2 expression by the  

synthetic PPARy ligand troglitazone. On the other hand, l5-deoxy-PGJ2, a natural PPARy 

agonist, activated only the PI3K pathway and had no effect on COX-2 expression (Park et 

al., 2004; Patel et al., 2005). These data are in contrast with our finding where it seems
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very likely that ABCAi and apoE expression is activated by diverse LXR agonists via 

similar signal transduction pathways.

NRs can positively or negatively regulate gene expression by several mechanisms. They 

regulate transcription by binding to specific DNA sequences in the promoter or enhancer 

regions of target genes known as hormone response element (HRE). The DNA bound 

NRs recruit coactivator proteins in a ligand-dependent manner (Aranda and Pascual, 

2001; Glass, 2006). The binding of the ligand leads to a conformational change, which 

alters the affinity of the NRs for coregulator proteins, and results in the dissociation of 

corepressors and the recruitment of coactivators. The new complex attracts a large 

number of proteins which engages the RNA polymerase enzyme II in the transcription of 

the target genes (Bastien and Rochette-Egly, 2004). In addition, NRs can also modulate 

gene expression by mechanisms independent o f binding to HRE. For example, they can 

alter expression of genes that do not contain a HRE through positive or negative 

interference with the activity of other transcription factors, a mechanism generally 

referred to as transcriptional cross-talk (Aranda and Pascual, 2001; Gottlicher et al., 1998; 

Gronemeyer et al., 2004). Such cross-talk can occur in three ways. The first way is based 

on the interference between the transcriptional activities of certain NRs and other 

transcription factors (e.g. AP-1 and NF-kB). For example, ERs utilize protein-protein 

interactions to enhance transcription of genes that contain AP-1 sites (Gaub et al., 1990). 

The second way arises from the NRs themselves being the target of other signalling 

pathways that modify the receptors post-translationally (e.g. phosphorylation, 

ubiquitylation and acetylation) (Fu et al., 2002; Wang et al., 2001a) and alter their 

function. The phosphorylation of NRs by signalling pathways may occur in response to  

the ligand or in the absence o f the ligand, and individual phosphorylation can act either 

to enhance or to inhibit the trans-activation potential of the receptor (Rochette-Egly, 

2003). The third way o f NR cross-talk is called a non-genomic action of ligands that has 

been seen for several NRs, which is mediated through putative membrane receptors 

(Gronemeyer et al., 2004; Losel and Wehling, 2003; Schmidt et al., 2000; Wehling, 1997). 

It is becoming increasingly clear that non-genomic signalling by NR agonists is an 

important aspect o f NR-regulated activation of gene expression. The non-genomic 

action of NRs is rapid and inhibitors of transcription and protein synthesis have no effect 

(Gronemeyer et al., 2004; Hafezi-Moghadam et al., 2002; Schmidt et al., 2000; Simoncini
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et al., 2000). This non-genomic function is thought to be the mechanism responsible for 

the recently observed effects of NR agonists on intracellular signalling pathways.

Cell signalling pathways have been implicated in the trans-activation of several NRs 

(Aranda and Pascual, 2001; Gronemeyer et al., 2004; Rochette-Egly, 2003). Multiple 

signal-dependent kinases activated by extracellular signals that bind to cell surface 

receptors (e.g. MAPKs, cell cycle-dependent kinases (CDKs), casein kinases and PKA) 

affect receptor activity (Shao and Lazar, 1999). This effect is mediated either through 

direct phosphorylation of the NR itself or through the modification of coregulator 

proteins required by them (Rochette-Egly, 2003). Phosphorylation can lead to changes in 

DNA binding, ligand binding or interaction with coactivator proteins. The exact 

mechanism used often depends on the specific kinase, the NR and the domain in the 

receptor that is phosphorylated (Shao and Lazar, 1999). For example, the ER is 

phosphorylated at specific serine or threonine residues by MAPK in vitro and in cells 

treated with growth factors that stimulate the Ras-MAPK cascade, leading to enhanced 

transcriptional activity (Aranda and Pascual, 2001; Kato et al., 1995). Phosphorylation 

events can also inactivate NRs, probably by switching off their activity. Recently, the  

transcriptional activity of NRs that bind to DNA as a heterodimer with RXRs (e.g. 

RAR/RXR) (Adam-Stitah et al., 1999; Lee et al., 2000; Matsushima-Nishiwaki et al., 2001) 

and VDR/RXR (Solomon et al., 1999) have been shown to be negatively modulated by 

phosphorylation of the RXRa heterodimerization partner by JNK/SAPK (Lee et al., 2000; 

Rochette-Egly, 2003). Furthermore, Sugawara et al. (2003) showed that the PPARy- 

mediated suppression of angiotensin II type 1 receptor (ATIR) gene transcription is 

augmented by treatm ent o f the cells with the ERK inhibitor PD98059 but not with the 

P38 kinase inhibitor SB203580 (Sugawara et al., 2003). These results suggest that 

potential phosphorylation of PPARy by the ERK pathway attenuates PPARy-mediated 

ATIR transcriptional suppression possibly by inhibiting PPARy activity (Sugawara et al., 

2003). In addition, inhibition of the transcriptional activity of other NRs, such as GR 

(Rogatsky et al., 1998a) and PPARy (Adams et al., 1997; Camp and Tafuri, 1997; Camp et 

al., 1999; Hu et al., 1996), has been correlated with the phosphorylation of their N- 

terminal domain by MAPK (ERK and/or JNK/SAPK). This negative regulation of PPARy 

results from a reduced ligand binding affinity due to intramolecular communication 

between the phosphorylated AF-1 domain and the COOH-terminus of the ligand binding 

pocket (Rochette-Egly, 2003; Shao et al., 1998).
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Our results demonstrate that a similar mechanism of regulation may occur in the LXR- 

mediated induction of ABCAi and apoE expression in THP-1 macrophages and primary 

HMDMs as the pharmacological inhibitors of JNK/SAPK and PI3K abolished the induction 

of ABCAi and apoE expression by 22(R)-HC and 9CRA in both cellular systems. These 

findings are similar to those seen for PPARs as Chinetti e t al. (2001) demonstrated that 

PPARa and PPARy activators induce ABCAi gene expression in human primary 

macrophages and in differentiated THP-1 cells (Chinetti e t al., 2001). Such confirmation 

of the results seen in THP-1 macrophages was necessary as there are a few  instances 

where differences in responses to mediators have been seen between primary 

monocytes or macrophages and transformed cell lines (Pei et al., 2005; Quinn et al., 

2005; Vosper et al., 2001). For example, Quinn et al. (2005) showed that the induction of 

CYP27A1 expression by PPARy and RXR ligands was greater in HMDMs than in THP-1 

macrophages. With respect to the cell signalling pathways, Rao e t al. (2001) reported 

that LPS stimulates JNK/SAPK activity in THP-1 macrophages whereas all three branches 

of the MAPK cascade are activated by LPS in primary human macrophages. Similar 

differences between primary cultures and transformed cell lines have been found in 

relation to PI3K and the P70S6 kinase (Rao, 2001). In addition, inhibition of DNA 

synthesis by rapamycin in bone marrow-derived macrophages was much less than that 

observed in a mouse macrophage BAC1.2F5 cell line (Hamilton et al., 1998). The similarity 

between the mechanisms underlying LXR-mediated regulation of expression of ABCAi 

and apoE genes in human primary macrophages and THP-1 macrophages indicates that, 

consistent with over hundred publications in the field, the THP-1 cell line represents a 

good model system to study the regulation of gene expression relevant to 

atherosclerosis. The use of THP-1 cells also overcomes the donor-specific variability that 

is seen with HMDMs.

4.3.1 Selective role o f JNK/SAPK in the regulation of macrophage gene 
expression by LXRs
The JNK/SAPK pathway has been found in the laboratory to be involved in the induction 

of apoE and ABCAi expression by TGF-p (Singh and Ramji 2006; Singh, N., 2003). Thus, 

the regulation of tw o important genes involved in RCT by TGF-P requires the JNK/SAPK 

pathway. This pathway may also play a potential role in regulating cholesterol efflux. 

Recently, Witting et al. (2003) reported that ceramide induces ABCAi-dependent 

cholesterol efflux through JNK/SAPK (Chung et al., 2003; Willaime-Morawek et al., 2003;
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Witting et al., 2003). In addition, work by Nofer et al. (2003) demonstrated that the 

apoA-l-induced cholesterol efflux was reduced in cells pre-treated with inhibitors of the 

JNK/SAPK pathway. ABCAi is a major player in the control of cholesterol efflux and 

would therefore be an obvious target for the action of JNK/SAPK (Nofer et al., 2003). 

Moreover, a recent study has demonstrated that the PPARy agonist, i5-deoxy-PGJ2, 

stimulates differentiation of embryonic midbrain cell in a PPARy-dependent manner that 

requires activation of the JNK/SAPK pathway (Park et al., 2004). In addition, another 

study has also shown that the induction of ABCAi protein and mRNA expression by the 

22(R)-HC/9CRA combination was decreased by treatm ent of the cells with As20 3, which 

inhibits NR function via SEK1/MKK4- and JNK/SAPK-mediated phosphorylation of RXRa 

(Mann et al., 2005). Indeed, previous work in our laboratory has shown that 22(R)-HC 

induces JNK/SAPK activity in macrophages and that this is inhibited by the JNK/SAPK 

inhibitors SP600125 and curcumin (Greenow, K., 2004). Maximal activation of JNK/SAPK 

was observed following stimulation of the cells with 22(R)-HC for 30mm, which may be 

due to a non-genomic action of the ligand.

4.3.2 Role o f PI3K in the regulation o f macrophage gene expression by 
LXRs
Data regarding the possible involvement of PI3K in LXR-mediated regulation of target 

gene expression is still limited. Recent studies in the laboratory have shown that the  

PI3K inhibitor, LY294002, inhibits the 22(R)-HC-mediated induction of apoE gene 

expression in macrophages (Greenow, K., 2004). Indeed, it has been reported that the 

synthetic LXR agonists, GW3965 and T0901317, decrease blood glucose levels in rodent 

models of diabetes, which suggests that LXR may be involved in physiological 

mechanisms which control the homeostasis of glucose metabolism (Barthel and 

Schmoll, 2003; Cao et al., 2003). The decrease in blood glucose levels brought about by 

LXR agonist treatm ent is due, in part, because of the suppression of expression of genes 

for the gluconeogenic enzymes phosphoenolpyruvate carboxykinase (PEPCK), fructose 

2, 6-bisphosphatase (FBPase) and glucose-6-phosphatase (G-6-Pase) (Cao et al., 2003; 

Stulnig et al., 2002). PI3K signalling pathway also suppresses the expression of these 

genes and is activated by insulin (Desbois-Mouthon et al., 2000; Lizcano and Alessi, 2002; 

Nowak et al., 2005; Taniguchi et al., 2005), so both LXRs and insulin may work through 

the same signalling mechanism to suppress gluconeogenesis. It is not known if the 

downregulation of gluconeogenesis enzymes by LXR agonists involves the binding of
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LXR/RXR heterodimers to regulatory regions of genes for PEPCK, FBPase and G-6-Pase, 

or is mediated by an indirect mechanism, maybe through PI3K (Barthel and SchmoII, 

2003). Taniguchi et ai. (2005) found that LXRa mRNA levels were unchanged after 

treatm ent with recombinant adenovirus expressing RNA interference (RNAi) against 

insulin receptor substrate (IRS)-1 or IRS-2 proteins or both, but the expression of the 

downstream LXRa genes, including ABCAi and CYP7A1 isoforms was increased three­

fold. This increase in lipogenic gene expression correlated with increased triglyceride 

accumulation in the serum and the liver. Changes were also noted in liver morphology, 

with the animals exhibiting a microvascular hepatic steatosis resembling fatty hepatic 

lesions seen in human patients with type 2 diabetes mellitus. This, the increased LXR 

activity suggested by the elevated expression of LXR downstream genes probably 

contributed significantly to the increased expression of SREBPi-c, which has been 

reported to affect the expression of PEPCK. Because insulin induces the expression of 

LXR itself (Edwards et al., 2002a), LXRs may contribute to  the regulation of 

gluconeogenesis through insulin (Cao et al., 2003; Stulnig et al., 2002). It has been shown 

that the increase in SREBPi-c transcription could be mediated by LXRs binding to the 

LXR-REs in the promoter of these gene (Chen et al., 2004), and that the downstream  

target of PI3K, PKB, could be a potential regulator of SREBP-ic transcription (Ono et al., 

2003).

In summary, the outcome of the studies presented in this chapter show that natural and 

synthetic LXR agonists upregulate the expression of ABCAi and apoE genes in THP-1 cells 

and HMDMs. A novel involvement of JNK/SAPK and PI3K signal transduction pathways in 

the response was also identified, and allows to propose a potential model shown in 

Figure 4.26. These novel results provide the basis for further investigation of these 

pathways in the regulation of ABCAi and apoE expression by 22(R)-HC and 9CRA. The 

following chapters will look at each of these pathways in detail.
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Figure 4.26 Schematic illustration of the involvement of signal transduction pathways in the 

LXR-mediated induction of ABCAi and apoE expression.
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Chapter 5: The role of the JNK/SAPK pathway in the 
activation of ABCAi and apoE expression in THP-i 
macrophages

5.1 Introduction
Regulation of gene expression by LXR agonists is of particular therapeutic interest in the 

light of an important role for this NR in inhibiting macrophage foam cell formation and 

atherosclerosis (Joseph et al., 2002b; Joseph and Tontonoz, 2003; Levin et al., 2005; Li et 

al., 2004; Li and Glass, 2002; Tangirala e t al., 2002; Venkateswaran et al., 2000a). Both 

ABCAi and apoE stimulate macrophage cholesterol efflux. It has been shown that in 

ABCAi transgenic mice, cholesterol efflux from macrophages was enhanced and this 

resulted in decreased atherosclerotic lesion formation (Srivastava, 2002a). In addition, 

deficiency of ABCAi in macrophages of LDLR-/- mice increases the development of 

atherosclerosis, thereby suggesting that this protein plays a key role in the regulation of 

cholesterol homeostasis and function of macrophages (Francone e t al., 2005).

Studies presented in chapter 4 showed a critical role for the JNK/SAPK and PI3K 

signalling pathways in the induction of ABCAi and apoE protein expression by LXR 

agonists. The potential involvement of these pathways at this stage was restricted to 

the use of pharmacological inhibitors. It was therefore decided to confirm and extend 

these findings by alternative, complimentary approaches. The aims of the studies 

presented in this chapter were to investigate the role of the JNK/SAPK pathway in detail. 

Firstly, the activation o f JNK/SAPK phosphorylation was monitored by Western blot 

analysis of cellular proteins isolated at various time points following exposure of THP-1 

cells with combinations o f 22(R)-HC and 9CRA. Secondly, the effect of these ligands on 

JNK/SAPK activity was determined. Thirdly, the effect of curcumin and SP600125 to 

inhibit any changes in activity and/or phosphorylation of JNK/SAPK was studied. 

Fourthly, the effect of DN constructs against key components of the JNK/SAPK pathway 

on the induction of ABCAi prom oter activity by LXR agonists was investigated. Fifthly, 

RNA interference (RNAi) assays were used to further confirm the role of JNK/SAPK in 

the response. Finally, EMSA was also employed in order to study the activation of AP-1 

binding by treatm ent of the cells w ith 22(R)-HC and 9CRA. Figure 5.1 illustrates the  

overall experimental strategy for the work presented in this chapter.
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Figure 5.1 Summary of the experimental strategy used for further analysis of the role of 
JNK/SAPK pathways in the activation of gene expression by LXR agonists in THP-1 macrophages.

5.2 Results

5.2.1 Time course of JNK/SAPK activation by LXR agonists in THP-1 
macrophages
JNK/SAPK was originally identified by its ability to bind to and phosphorylate the amino- 

terminal activation domain of the c-Jun transcription factor in response to a variety of 

stress-inducing signals. These included UV stimulation, heat shock, oxidant stress, 

ionizing radiation, DNA damaging chemicals (e.g. alkylating agents) and exposure to 

protein synthesis inhibitors such as anisomycin and cycloheximide (Derijard et al., 1994; 

Hibi et al., 1993; Kyriakis and Avruch, 2001). At least twelve distinct JNK/SAPK isoforms 

have been identified as the product of three genes JNK-1, -2 or -3 (Dreskin et al., 2001; 

Gupta et al., 1996; Kallunki et al., 1994; Waetzig and Herdegen, 2005). At least ten 

different isoforms of p46 and p54 are possible because of differential mRNA splicing 

(Dreskin et al., 2001; Gupta et al., 1996; Kyriakis and Avruch, 2001). JNK-1 and JNK-2 are 

ubiquitously expressed whereas JNK-3 is found mainly in neuronal tissues (Dreskin et al.,
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2001). JNK/SAPK is regulated by an upstream kinase cascade and is activated by direct 

phosphorylation at Thn83 and Tyn85 by the dual specificity MAPK kinases SEK1/MKK4 

or MKK7 (Nishina et al., 2004). Activated JNK/SAPK then phosphorylates downstream  

transcription factors, especially c-Jun (Gupta et al., 1996; Manning and Davis, 2003). The 

actions of LXR agonists on the levels of activated, phosphorylated form of JNK/SAPK at 

residues Thn83 and Tyri85 was therefore analysed in THP-1 cells by time course Western 

blot analysis. The total level of JNK/SAPK protein was also determined for comparative 

purposes.

Initial experiments were carried out on cells that had been treated with combinations of 

22(R)-HC and 9CRA for a shorter time course (o-i8omin). Incubation of the cells with the  

ligands caused a rapid increase in the levels of phosphorylated p46 and p54 JNK/SAPK 

isoforms reaching maximal levels at 15mm (Figure 5.2). The levels of phospho-p46 then 

decreased at subsequent time points to basal levels (i.e. oh). On the other hand, the  

levels of phospho-p54 remained at similar levels. The amount of total JNK/SAPK protein 

levels (p46 and p54) did not vary with treatm ent of the ligands, thereby indicating that 

the changes in phospho-p46 and p-54 levels were due to phosphorylation and not 

increased expression of the JNK/SAPK proteins.

As detailed above, JNK/SAPK is an important upstream activator of c-Jun. The JNK/SAPK 

activity can therefore be determined by a non-radioactive kit from Cell Signalling 

Technology which analyses the ability of this kinase to phosphorylate the recombinant c- 

Jun protein. This kit was therefore used to investigate if, similar to the changes in 

JNK/SAPK phosphorylation (Figure 5.2), combinations of 22(R)-HC and 9CRA also induce 

the activity o f the enzyme. For this, THP-1 macrophages were treated with 22(R)-HC and 

9CRA as Figure 5.2 (i.e. 0, 30, 45, 60, 90 and i8omin). An antibody to the c-Jun fusion 

protein linked to agarose beads (provided in the kit) was then used to selectively 

immunoprecipitate the active JNK/SAPK enzyme from cell lysates.
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Figure 5.2 Time course action of 22(R)-HC and 9CRA on JNK/SAPK phosphorylation in THP-t 
macrophages.

Differentiated THP-1 macrophages were incubated for the indicated period of time with 
combinations of 22(R)-HC (2pg/ml) and 9CRA (iopM ). Western blot analysis was carried 
out using 8opg of whole cell extracts. Blotted membranes were incubated with anti- 
phospho-JNK/SAPK (Thn83/Tyn85) or anti-total-JNK/SAPK primary antibodies as 
indicated (rabbit polyclonal IgG) and detected with anti-rabbit HRP-conjugated 
secondary antibodies. The image shown in panel A is representative of two independent 
experiments. Densitometric analysis was carried out on the data and presented as fold 
induction (average) in relation to basal expression at oh (assigned as 1).
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The immunoprecipitate was then incubated in the presence of ATP and kinase buffer, 

which allows the immunoprecipitated JNK/SAPK to phosphorylate the c-Jun substrate. 

Western blot analysis was then carried out using a phospho-c-Jun (serine 63) antibody. 

As shown in Figure 5.3, the ligands induced JNK/SAPK activity within 15mm. With the 

exception of an anomaly at 45min, the JNK/SAPK activity that was induced by incubation 

of the cells w ith the ligands for ismin remained at a similar level until 90mm and 

decreased thereafter. Thus, combinations of 22(R)-HC and 9CRA induce the 

phosphorylation and the activity of JNK/SAPK.

Recent work has shown that tw o active peaks of JNK/SAPK activation (30 min and 3 

days) occurs during reperfusion after preconditioning ischemia in the hippocampus of 

Sprague-Dawley rats (Gu et al., 2000; Hui et al., 2005). It was therefore decided to carry 

out a longer time course (o-24h) to  investigate whether any phosphorylation-dependent 

activation of JNK/SAPK occurred at later time points. As shown in Figure 5.4, treatm ent 

of the cells with combinations of 22(R)-HC and 9CRA caused a biphasic increase in the 

levels of phosphorylated JNK/SAPK (p46 and P54) with peaks at 30mm (consistent with 

Figure 5.2) and 24h. The levels of total JNK/SAPK protein did not vary following 

treatm ent of the cells with the ligands, thereby indicating that the changes in phospho- 

P46 and p54 levels were due to increased phosphorylation and not elevated expression 

of the JNK/SAPK proteins. Thus, there is a biphasic activation of JNK/SAPK by 

combinations of 22(R)-HC and 9CRA.

5.2.2 Time course action of ligands on phosphorylation o f SEK1/MKK4 at 
serine 257 and threonine 261 in THP-1 macrophages
Previous studies have implicated SEK1/MKK4 as an immediate upstream kinase for the 

activation of JNK/SAPK (Derijard et al., 1995; Sanchez et al., 1994). Activation of 

SEK1/MKK4 occurs through phosphorylation o f tw o residues in this protein, serine 257 

and threonine 261 by the protein kinase MEKK1. The activation of SEK1/MKK4 by 

phosphorylation following stimulation o f the cells with the ligands was therefore 

monitored by time course Western blot analysis. Similar analysis with an antibody 

against total SEK1/MKK4 was also included for comparative purposes. According to the 

data sheet provided by the manufacturer (Cell Signalling Technology), the phospho- and 

total-SEKi/MKK4 antibodies should detect tw o closely migrating polypeptides of similar 

molecular weight (44kDa) that could produce a single signal. Figure 5.5 shows that
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Figure 5.3 The effect of 22(R)-HC and 9CRA on JNK/SAPK activity in THP-i macrophages.

The cells were treated for the indicated time with 22(R)-HC (2|jg/ml) and 9CRA (lopM). 
The JNK/SAPK activity assay was then carried out on whole cell extracts (200 pg) as 
described in Materials and Methods. Phosphorylated c-Jun (Ser63) was detected by 
Western blot analysis. Equal amount of proteins in the different samples was verified by 
Western blot analysis using a (3-actin antibody. Antigen-antibody complexes were 
detected using the ECL detection system. The image shown in panel A is representative 
of two independent experiments. Densitometric analysis was carried out on the data 
and presented as average of fold induction of c-Jun phosphorylation normalised to the 
expression of p-actin in relation to basal expression at oh (arbitrarily assigned as 1).
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Figure 5.4 Time course of JNK/SAPK phosphorylation by LXR agonists in THP-1 macrophages.

The cells were treated for the indicated time with combinations of 22(R)-HC (2pg/ml) and 
9CRA (iopM). Western blot analysis was carried out using equal volume of lysates (sopl). 
Blotted membranes were incubated with anti-phospho-JNK/SAPK (Thn83/Tyn85) or 
anti-total-JNK/SAPK primary antibodies as indicated (rabbit polyclonal IgG) and detected 
with an anti-rabbit HRP-conjugated secondary antibody. The image shown in panel A is 
representative of two independent experiments. Densitometric analysis was carried out 
on the data and presented as average fold induction in relation to basal expression at oh 
(assigned as 1) (panel B).
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Figure 5.5 Time course of SEK1/MKK4 phosphorylation by LXR agonists in THP-1 macrophages.

The cells were treated for the indicated time with combinations of 22(R)-HC (2pg/ml) and 
9CRA ( iojjM). Western blot analysis was carried out using equal volume of lysates (50|j|). 
Blotted membranes were incubated with anti-phospho-SEKi/MKK4 (Ser257/Thr26i) or 
with anti-total-SEKi/MKK4 primary antibodies as indicated (rabbit polyclonal IgG) and 
detected with anti-rabbit HRP-conjugated secondary antibodies. The image shown in 
panel A is representative of two independent experiments. Densitometric analysis was 
carried out on the data and presented as average fold induction in relation to basal 
expression at oh (assigned as 1) (panel B).
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treatment of the cells with 22(R)-HC and 9CRA causes a biphasic increase in the levels of 

phosphorylated SEK1/MKK4 with peaks at ih and at 24h. This is particularly apparent 

with the faster migrating “band” in panel A. Overall, there was an approximate 4-5-fold 

induction in the phosphorylation of the protein. The total cellular levels of SEK1/MKK4 

protein were not affected by combinations of 22(R)-HC and 9CRA.

5.2.3 Time course action of LXR agonists on phosphorylation-dependent 
activation of c-Jun in THP-1 macrophages
As mentioned above, c-Jun is an important downstream target for JNK/SAPK action. The 

enzyme activates it by phosphorylation of serines 63 and 73 in the transcriptional 

activation domain. Time course Western blot analysis using an antibody that recognises 

c-Jun phosphorylated on serine 63 was therefore carried out to investigate the effect of 

combinations of 22(R)-HC and 9CRA on the activation of this transcription factor. Similar 

Western blots probed with an antibody against total c-Jun were also included for 

comparative purposes. As shown in Figure 5.6, there was a biphasic phosphorylation- 

dependent activation of c-Jun in response to treatm ent of the cells with combinations of 

22(R)-HC and 9CRA (peaks at 30mm and 24h). These results therefore suggest that the 

changes in phospho-c-Jun levels were due to  phosphorylation and not increased 

expression of the protein.

5.2.4 The effect of SP600125 on the 22(R)-HC and 9CRA-mediated 
activation of JNK/SAPK, SEK1/MKK4 and c-Jun in THP-1 cells
Studies presented in chapter 4 showed that SP600125 attenuated the induction of

ABCA1 and apoE expression by combinations of 22(R)-HC and 9CRA. In order to confirm 

that SP600125 indeed inhibited JNK/SAPK activation, the effect of this inhibitor on the 

22(R)-HC and gCRA-mediated increase in the levels of phospho-JNK/SAPK was analysed. 

In addition, the effect of this inhibitor on the activation of SEK1/MKK4 and c-Jun was 

studied. The 24h incubation period was chosen as it corresponds to the activation of all 

three proteins by the ligands along with the induction of ABCA1 and apoE expression. 

Thus, differentiated THP-1 macrophages were pre-treated with SP600125 for ih prior to  

stimulation of the cells with 22(R)-HC and 9CRA for 24h. The cellular proteins were
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Figure 5.6 Time course of c-Jun phosphorylation by LXR agonists in THP-1 macrophages.

The cells were treated for the indicated time with combinations of 22(R)-HC (2pg/ml) and 
9CRA (iopM ). Western blot analysis was carried out using equal volume of lysates (25pl). 
Blotted membranes were incubated with anti-phospho-c-Jun or anti-total-c-Jun primary 
antibodies as indicated. Antigen-antibody complexes were detected using the ECL 
detection system. The image shown in panel A is representative of two independent 
experiments. Densitometric analysis was carried out on the data and presented as 
average fold induction in relation to basal expression at oh (assigned as 1) (panel B).
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subjected to  Western blot analysis using antibodies against phosphorylated and total 

JNK/SAPK, SEK1/MKK4 and c-Jun. As expected, combinations of 22(R)-HC and 9CRA 

induced the levels o f phosphorylated proteins at 24h without having any effect on the 

total levels of these proteins (Figure 5.7). The vehicle control in these experiments was 

at the same time point as that for the ligands (i.e. 24h), thereby showing that the 

observed changes in phosphorylation were not because of culturing of the cells for this 

time period. Inclusion of SP600125 at tw o different concentrations (50 and ioopM) 

attenuated both the basal and ligand-induced phosphorylation of phospho-p46 and 

phospho-p54 JNK/SAPK proteins without affecting the total protein levels (Figure 5.7). In 

addition, inclusion of SP600125 attenuated both the basal and ligand-induced levels of 

phospho-SEKi/MKK4 and c-Jun proteins. Overall, these results confirm the positive 

action of SP600125 in THP-1 macrophages.

5.2.5 The effect o f curcumin on the 22(R)-HC and gCRA-mediated 

phosphorylation of JNK/SAPK, SEK1/MKK4 or c-Jun in THP-i cells
Curcumin also inhibited the 22(R)-HC and gCRA-mediated induction of ABCA1 and apoE

expression (See chapter 4). Experiments were therefore carried out to investigate 

whether, similar to SP600125, it also affected the increased phosphorylation of 

JNK/SAPK, SEK1/MKK4 or c-Jun seen in the presence of the ligands. The concentration of 

curcumin used (30pg) corresponded to that which produced inhibition of ABCA1 and 

apoE expression by the ligands. As shown in Figure 5.8, combinations of 22(R)-HC and 

9CRA induced the phosphorylation o f JNK/SAPK, SEK1/MKK4 and c-Jun, as expected. 

However, inclusion of curcumin had no effect on this ligand-induced phosphorylation of 

these proteins.

Analysis of JNK/SAPK activity by the use of non-radioactive, in vitro kinase assay had 

shown that combinations of 22(R)-HC and 9CRA induces JNK/SAPK activity (Figure 5.3).

In order to clarify the action of curcumin further, the effect of this inhibitor on JNK/SAPK 

activity was investigated. As shown in Figure 5.9, inclusion of 30pM of curcumin 

attenuated the basal and the induced JNK/SAPK activity seen in the presence of 22(R)-HC 

and 9CRA. This result therefore suggests that curcumin inhibits the 22(R)-HC and 9CRA- 

mediated stimulation of JNK/SAPK enzymatic activity without affecting the increased 

phosphorylation of JNK/SAPK, SEK1/MKK4 or c-Jun.
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Figure 5.7 The effect of SP600125 on LXR agonist-mediated phosphorylation of JNK/SAPK, 
SEK1/MKK4 and c-Jun in THP-1 macrophages.

Differentiated THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 9CRA (iopM) in the 
absence or the presence of SP600125 at the indicated concentrations. In addition, cells were treated with 
DMSO as a vehicle control (C). The inhibitor was added ih before the ligand (pre-treatment). Western blot 
analysis was carried out using equal amount of the lysates. Blotted membranes were incubated with primary 
antibodies against phospho-JNK/SAPK or total-JNK/SAPK (A), phospho-SEKi/MKK4 or total-SEKi/MKK4 (B) 
and phospho-c-Jun or total-c-Jun (C). Antigen-antibody complexes were detected using the ECL detection 
system. The images shown in panels A and C are representative of two independent experiments whereas 
the image in panel B is representative of three independent experiments. Densitometric analysis was carried 
out on the data and presented as relative expression (mean ±SD, panel E; average panels D and F) in relation 
to basal expression (C). The relative expression in the presence of the ligand alone (Lig) has been arbitrarily 
assigned as 1 (panel E; **P<o.oi).
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Figure 5.8 The effect of curcumin on the 22(R)-HC and gCRA-mediated phosphorylation of 
JNK/SAPK, SEK1/KK4 and c-Jun in THP-1 macrophages.

Differentiated THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 9CRA (lopM) in the 
absence or the presence of 3opM of curcumin. In addition, cells were treated with DMSO as a vehicle control 
(C). The inhibitor was added ih before the ligand (pre-treatment). Western blot analysis was carried out 
using equal amount of the lysates. Blotted membranes were incubated with primary antibodies aga inst 
phospho-JNK/SAPK or total-JNK/SAPK (A), phospho-SEKi/MKK4 or total-SEKi/MKK4 (B) and phospho-c-Jun 
or total-c-Jun (C). Antigen-antibody complexes were detected using the ECL detection system. The images 
shown in panels A, B and C are representative of three, two and four independent experiments respectively. 
Densitometric analysis was carried out on the data and presented as relative expression (C) (mean ±.5D, 
panels D and F; average, panel E) in relation to basal expression. The relative expression in the presence of 
the ligand alone (Lig) has been arbitrarily assigned as 1 (panels D-F).
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Figure 5.9 The effect of curcumin on the 22(R)-HC and 9CRA-induced JNK/SAPK activity in THP-i 
macrophages.

Differentiated THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 
9CRA (iopM ) in the absence or the presence of curcumin as indicated. In addition, cells 
were treated with DMSO as a vehicle control (C). The inhibitor was added ih before the 
ligand (pre-treatment). The JNK/SAPK activity assay was then carried out on whole cell 
extracts (200 pg) as described in Materials and Methods. Phosphorylated c-Jun (Ser63) 
was detected by Western blot analysis. Equal amount of proteins in the different 
samples was verified by Western blot analysis using a p-actin antibody. Antigen-antibody 
complexes were detected using the ECL detection system. The image shown in panel A 
is representative of two independent experiments. Densitometric analysis was carried 
out on the data and presented as relative expression (average) normalised to the 
expression of p-actin. The relative expression in the presence of the ligand alone (Lig) 
has been assigned as 1 as shown in panel B.
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5.2.6 Effect of DN forms of JNK/SAPK, SEK1/MKK4 and c-Jun on LXR 
agonist-induced activation of ABCA1 promoter activity
Previous studies showed that 22(R)-HC and 9CRA induces ABCA1 promoter activity in

U937 macrophages (Figure 4.24). In order to provide further independent confirmation 

for the role of the JNK/SAPK pathway in the activation of ABCA1 promoter activity, the 

effect of DN forms of JNK/SAPK, SEK1/MKK4 and c-Jun was analysed by co-transfection 

assays. Cells transfected with the pcDNA3 plasmid were included for comparison. The 

DN JNK/SAPK plasmid, SAPKa-VPA, was generated by changing the phosphorylation site 

Thr-Pro-Tyr to Val-Pro-Ala (Kawasaki et al., 1996). In DN SEK1/MKK4, the phosphorylation 

and activation sites at Ser 220 and Thr 224 in the wild type protein have been changed to  

alanine and leucine respectively (Yan et al., 1994). DN c-Jun, called Tam 67, contains 

deletions in amino acids 3-122 that are present in the wild type protein (Alani e t al., 1991). 

This mutant protein can dimerize with c-Jun and translocate to the nucleus to interact 

with its recognition sequence in the promoter regions of target genes. However, it 

cannot trans-activate because it lacks most of the activation domain, which contains the 

phospho-acceptor sites for JNK/SAPK (Brown et al., 1994).

As expected, the ABCA1 promoter activity in cells transfected with the control pcDNA3 

vector was induced dramatically when the cells were treated with combinations of 

22(R)-HC and 9CRA. Expression of DN JNK/SAPK had no effect on this induction of ABCA1 

promoter activity (Figure 5.10). This finding is similar to that observed when the 

transfection experiments were carried out in Hep3B cells (See chapter 3). On the other 

hand, DN forms of both SEK1/MKK4 and c-Jun attenuated the induction of ABCA1 

promoter by the ligands.

5.2.7 Further analysis of the role of the JNK/SAPK pathway in the actions 
of 22(R)-HC and 9CRA on apoE expression
In contrast to co-transfection assays with the ABCA1 gene promoter, previous studies 

have shown that the DN form of JNK/SAPK is able to attenuate the 22(R)-HC-induced 

expression of the endogenous apoE protein in THP-1 macrophages (Greenow, K., 2004). 

It was therefore decided to investigate if DN JNK/5APK could also act in a similar manner 

in relation to the induction of apoE expression by combinations of 22(R)-HC and 9CRA. 

For this, THP-1 monocytes were transfected with the control pcDNA3 plasmid or DN



CHAPTER FIVE - 194

18 -

16 ]

pcDNA3 DN JNK/SAPK DN SEK1 DN c-Jun

Figure 5.10 The effect of DN constructs on the 22(R)-HC and 9CRA-mediated induction of ABCA1 
promoter activity.

U937 cells were co-transfected with the human ABCA1 promoter [from -928 to +ioibp] construct 
and expression plasmids for DN forms of JNK/SAPK, SEK1/MKK4 or c-Jun (Tam67). Cells 
transfected with the control pcDNA3 plasmid were included for comparison. The cells were 
then treated with DMSO as a vehicle control (C) or combinations of 22(R)-HC (2pg/ml) and 9CRA 
(lopM) (Lig) for i8h. The transfected cells were then harvested and luciferase reporter activity 
was determined. Relative counts were normalised to protein concentration and values are 
expressed as mean fold induction (±SD) in the presence of the ligands in relation to basal levels 
(assigned as 1). The results are from three independent experiments carried out in triplicate 
(*P<o.oi).
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JNK/SAPK and then differentiated for 24h in the presence of PMA (o.i6pM ). The 

differentiated cells were then cultured for 24K in the presence of combinations of 22(R)- 

HC and 9CRA (DMSO vehicle- and 22(S)-HC-treated cells were used as controls). Equal 

amount of whole cell extracts were then subjected to Western blot analysis using 

antibodies against apoE or p-actin. The expression of apoE was induced by combinations 

of 22(R)-HC and 9CRA but not by the inactive enantiomer 22(S)-HC (Figure 5.11). DN 

JNK/SAPK inhibited this induction of apoE expression by 22(R)-HC and 9CRA (Figure 5.11). 

These results therefore confirm the positive action of the DN JNK/SAPK plasmid and the 

role of this kinase in the induction of apoE expression by the ligands. Because of the 

limitation of cell numbers, dictated by the expensive transfection reagents that are used 

for such assays, Laemmli buffer was added directly to the cells and the mixture was 

boiled and loaded on an SDS-PAGE gel (see Materials and Methods). Such conditions 

cause degradation of ABCA1, a large (22okDa) membrane-bound protein. The procedure 

in this form therefore, could not be used for analysing the effect of DN JNK/SAPK on the 

induction of ABCA1 expression by the ligands.

5.2.8 The effect of knock down of JNK/SAPK1/2 expression on the 22(R)- 
HC and 9CRA-mediated induction of apoE expression
RNAi was used to further confirm the role of JNK/SAPK in the induction of apoE 

expression by combinations of 22(R)-HC and 9CRA. For this, THP-1 cells were transfected 

with small interfering RNA (siRNA) targeted against JNK/SAPK1/2 or the control GAPDH 

using the INTERFERin™ transfection reagent (Invitrogen). Equal amount of cellular 

proteins were then subjected to Western blot analysis using antisera against JNK/SAPK, 

apoE or p-actin. As shown in Figure 5.12, the levels of endogeneous JNK/SAPK1/2 were 

reduced to approximately 50-60% in cells transfected with the corresponding siRNA 

compared to that present in cells expressing the control GAPDH siRNA. Combinations of 

22(R)-HC and 9CRA induced apoE protein expression in cells expressing GAPDH siRNA 

(Figure 5.12). This induced expression of apoE was attenuated by knockdown of 

JNK/SAPK1/2 (Figure 5.12). These results therefore further substantiate an important role 

for JNK/SAPK in the induction of apoE expression by LXR agonists. Again, because of 

restrictions on cell numbers, dictated by the expensive siRNA and associated 

transfection reagents, and the method used for preparing cellular extracts, it was not 

possible to investigate ABCA1 protein expression.
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Figure 5.11 Effect of DN JNK/SAPK on the induction of apoE expression by LXR agonists.

THP-cells were transfected with the expression plasmid specifying for DN JNK/SAPK or the 
vector pcDNA3. The transfected cells were treated with either DMSO as a vehicle control (C), 
combinations of 22(R)-HC and 9CRA (2pg/ml and lopM respectively) (Lig) or 22(S)-HC (2pg/ml) 
for a further 24h. Whole cell protein extracts were prepared and equal amount were subjected 
to Western blot analysis using antibodies against apoE and p-actin as indicated (panel A). The 
apoE protein levels were normalised to p-actin and the values obtained from densitometric 
analysis of the data is shown in panel B. The value for cells incubated in the presence of the 
DMSO vehicle has arbitrarily been assigned as 1.
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Figure 5.12 Effect of knock down of JNK/SAPK1/2 expression on LXR agonist-mediated activation 
of apoE expression.

THP-cells were transfected with the indicated siRNAs using INTERFERin™ siRNA transfection 
reagent. At 48h post-transfection, the cells were treated with 22(R)-HC (2pg/ml) and 9CRA 
(iopM) (Lig) or DMSO as a vehicle control (C) for a further 24h. The total cell lysates were 
prepared and subjected to Western blot analysis using antibodies against JNK/SAPK, apoE and 
the p-actin control. The image shown in panel A is representative of two independent 
experiments. Densitometric analysis was carried out on the data and presented as average of fold 
induction in relation to basal expression seen in the presence of DMSO control (assigned as 1).
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5.2.9 EMSA analysis of protein binding to activator protein-1 binding sites
Previous studies have shown that AP-1 is a major downstream target for JNK/SAPK

action (Hill and Treisman, 1995; Whitmarsh and Davis, 1996; Xiao and Lang, 2000). A 

recent study has shown that the expression of AP-1-regulated genes is activated by LXR 

agonists in keratinocytes (Schmuth et al., 2004). It was therefore decided to investigate 

the action of LXR agonists on AP-1 activity in THP-1 macrophages using EMSA. A 

consensus AP-1 binding site was used as a probe and initial experiments were carried out 

using both whole cell and nuclear extracts. In addition, the action of both the natural 

and the synthetic LXR agonists was analysed (combinations of 22(R)-HC and 9CRA and 

T0901317 respectively) [22(S)-HC was included in some experiments for comparison]. As 

shown in Figure 5.13A, both combinations of 22(R)-HC and 9CRA or the synthetic ligand 

T0901317 increased AP-1 DNA binding activity. Because induction of AP-1 binding was 

seen with both nuclear and whole cell extracts, the latter were used for the majority of 

subsequent experiments because of a rapid and simple sample preparation protocol.

In order to determine if the induction o f AP-1 binding activity was specific to this 

transcription factor and not generally applicable to other DNA binding proteins, EMSA 

was repeated using oligonucleotides containing the binding site for NF-1 or the DR4 

element. As shown in Figures 5.13B-C, binding of the proteins to the NF-1 binding site or 

the DR4 sequence was not induced following incubation of the cells with 22(R)-HC/9CRA 

or T0901317. The positive action of the ligands was also confirmed using the same whole 

cell extracts for Western blot analysis using antibodies against ABCA1 or p-actin (Figure 

5.13D).

Competition experiments were carried out in order to  confirm specific binding of AP-1 in 

THP-1 extracts to the probe used for EMSA. For such competition assays, extracts were 

pre-incubated for lomin in the presence or absence o f 200-fold molar excess of double 

stranded DNA competitor (AP-1 and C/EBP or NF-k B binding sites as specific and non­

specific sequences, respectively) before addition of the radiolabelled probe. As shown 

in Figure 5.14, AP-1 binding was induced by combinations of 22(R)-HC and 9CRA or 

T0901317. This increase in binding was almost totally inhibited by the inclusion of 200- 

fold molar excess of oligonucleotides containing the specific AP-1 binding sequenc but 

not by those containing the unrelated C/EBP or NE-k B recognition sequence.
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Figure 5.13 The effect of LXR agonists on AP-1 DNA binding and ABCA1 expression.

Differentiated THP-1 macrophages were cultured for 24h in the presence of the indicated LXR agonists 22(R)- 
HC (2pg/ml) and 9CRA (iopM) or T0901317 (iopM); referred to as Lig and T1317, respectively in panels B and 
C. In addition, cells were treated with DMSO as a vehicle control (C) or 22(S)-HC (2pg/ml) as shown. Whole 
cell protein or nuclear extracts were prepared and then EMSA were carried out using radiolabelled probe 
AP-1 (A), NF-1 (B) and DR4 (C). The protein extracts were also used to determine the expression of ABCA1 
and p-actin by Western blot analysis using antibodies against ABCA1 or p-actin (D). The major DNA-protein 
complexes and free probe are shown by a vertical line labelled C and FP respectively. The free probe has 
migrated off the gel in EMSA using nuclear extracts. The results shown are representative of three (panel A) 
and two (panel B) independent experiments.
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Figure 5.14 Competition EMSA on AP-1 DNA binding.

Differentiated THP-1 macrophages were cultured for 24h in the presence of the indicated LXR 
agonists 22(R)-HC (2pg/ml) and 9CRA (iopM) or T0901317 (iopM), or DMSO as a vehicle control. 
EMSA analysis was carried out using whole cell protein or nuclear extracts and radiolabelled AP-1 
consensus sequence probe. Competition assays were carried out in the presence of 200 molar 
excess of unlabeled specific (AP-1) or nonspecific (C/EBP or NF-kB) competitor oligonucleotides. 
DNA-protein complexes and free probe are shown by vertical lines labelled C and FP, respectively. 
The free probe has migrated off the gel in the case of EMSA using nuclear extracts. The results 
shown are representative of two independent experiments (whole cell extract) and one 
independent experiments (nuclear extract).
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These results therefore confirm the specificity of protein binding to the AP-1 recognition 

sequence.

c-Jun is a major member of the AP-1 family of transcriptional regulators and a well 

established key target for JNK/SAPK action (Kyriakis and Avruch, 2001). In order to 

determine if c-Jun was present in the AP-1 DNA binding complex induced by 

combinations of 22(R)-HC and 9CRA, supershift EMSA was carried out using the c-Jun 

antibody. Non immune serum was included for comparative purposes. The extracts 

were pre-incubated with the antisera for 30mm on ice before the addition of the 

radiolabelled AP-1 binding site oligonucleotide. As shown in Figure 5.15, inclusion of the 

c-Jun antibody, but not the non-immune serum, supershifted the c-Jun protein present 

in the AP-1 complex. These results therefore suggest that c-Jun is one of the proteins 

present in the AP-1 DNA binding complex when THP-1 macrophages are treated with 

combinations of 22(R)-HC and 9CRA.

5.2.10 The effect of inhibitors on LXR agonist-induced AP-1 DNA binding
Previous studies have shown that curcumin can directly inhibit the binding of AP-1 to its

DNA recognition sequence (Hahm et al., 2002; Hergenhahn et al., 2002; Tomita et al.,

2006). The action of curcumin and SP600125 on the induction of AP-1 activity by 

combinations of 22(R)-HC and 9CRA or T0901317 was therefore investigated. As shown in 

Figure 5.16, inclusion of SP600125 or curcumin at the indicated concentrations 

attenuated the increase in AP-1 DNA binding activity by combinations of 22(R)-HC and 

9CRA or by the synthetic ligand T0901317.

5.3 Discussion
Mammalian cells have developed complex feedback mechanisms to ensure sufficient 

supply of cholesterol is available to them and excessive accumulation is inhibited. These 

homeostatic mechanisms probably fail in macrophages during atherogenesis. 

Uncontrolled cholesterol accumulation is promoted by scavenger receptors of 

macrophages leading to the formation of lipid-loaded foam cells. In this study, the cell 

signalling pathways that are potentially involved in the expression of key genes 

implicated in the control of foam cell formation and atherosclerosis by LXR agonists 

were investigated. Studies in chapter 4 showed a potential role for the JNK/SAPK and 

PI3K pathways in such an action of LXR agonists. Therefore, the primary aim of the
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Figure 5.15 Supershift EMSA using c-Jun antibody.

Differentiated THP-1 macrophages were incubated for 24h in the presence of 
combinations of 22(R)-HC (2pg/ml) and 9CRA (iopM ). Whole cell protein extracts were 
prepared and pre-incubated for 30mm with non-immune serum (NIS) or c-Jun antibody 
as shown. EMSA was carried out using radiolabelled AP-1 consensus sequence probe. 
The DNA-protein complex, the DNA-protein- antibody supershift complex and the free 
probe are shown by vertical lines labelled C, SS and FP, respectively. Results shown are 
representative of two independent experiments.
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Figure 5.16 The effect of inhibitors on the LXR ligand-induced binding of AP-1.

Differentiated THP-1 macrophages were treated for 24h with combination of 22(R>HC (2pg/ml) and 9CRA 
(iopM), T0901317 (iopM) or DMSO as a vehicle control in the absence or the presence of the inhibitors 
SP600125 and curcumin at the indicated concentrations. The inhibitors were added ih before the ligand (pre­
treatment). EMSA was carried out using radiolabelled AP-1 consensus probe. DNA-protein complex and free 
probe are shown by vertical lines labelled C and FP, respectively (the free probe has migrated off the gel on 
the right side of panel A).
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studies presented in this chapter was to investigate whether LXR agonists activate the 

JNK/SAPK pathway in THP-1 macrophages and to elucidate which components of 

JNK/SAPK cascade were involved in the induction of ABCA1 and apoE expression. The 

role of the JNK/SAPK pathway could then be confirmed by expression of DN mutants. 

The second aim was to investigate how this pathway may potentially affect LXR 

signalling.

Several lines of evidence support the novel finding that activation o f JNK/SAPK plays an 

important role in the induction of ABCA1 and apoE expression in THP-1 macrophages by 

LXR agonists. For example, the phosphorylation of JNK/SAPK at residues Thr 183 and Tyr 

185 along with the corresponding kinase activity was induced in THP-1 macrophages 

following treatm ent of the cells with combinations of 22(R)-HC and 9CRA (Figures 5.2- 

3.4). These findings are consistent with previous studies in the laboratory that showed 

an important role for the JNK/SAPK pathway in the 22(R)-HC-induced expression of apoE 

in THP-1 macrophages (Greenow, K., 2004). Further studies on the

upstream/downstream targets for JNK/SAPK actions showed that the levels of 

phosphorylated, activated forms of both SEK1/MKK4 and c-Jun were increased following 

stimulation of THP-1 macrophages with combinations of 22(R)-HC and 9CRA (Figures 5.5- 

5.6). Such a phosphorylation-mediated activation of JNK/SAPK, SEK1/MKK4 and c-Jun by 

combinations of 22(R)-HC and 9CRA was inhibited by pre-treatment of the cells w ith the  

pharmacological inhibitor SP600125 but not curcumin (Figures 5.7-5.8). On the other 

hand, curcumin did indeed inhibit JNK/SAPK activity (Figure 5.9).

DN constructs against specific components of the JNK/SAPK pathway were used to  

further delineate the role of individual proteins in the induction of ABCA1 expression by 

LXR agonists. Such an approach is commonly used by investigators studying signal 

transduction pathways (Gilchrist et al., 1999; Izumi et al., 2001). Expression of a DN form  

of SEK-1 or c-Jun (Tam67) attenuated the induction of ABCA1 promoter activity by 

combinations of 22(R)-HC and 9CRA (Figure 5.10). The data on the action of DN c-Jun are 

similar to previous studies in the laboratory where it inhibited the induction of apoE 

expression in response to TGF-p in THP-1 monocytes (Singh and Ramji, 2006). DN 

SEK1/MKK4 has also been shown previously to significantly inhibit the 22(R)-HC activated 

expression of the apoE gene in THP-1 macrophages (Greenow, K., 2004). In contrast to 

SEK1/MKK4 or c-Jun, the expression of DN JNK/SAPK had no effect on the induction of
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ABCA1 promoter activity by 22(R)-HC and 9CRA (Figure 5.10). However, the potential role 

for JNK/SAPK in the induction of apoE expression by the ligands was confirmed by RNAi 

(Figures 5.11- 5.12). The precise reasons why the expression of DN JNK/SAPK had no 

effect on the activation of ABCA1 promoter activity by LXR agonists is currently unclear. 

Functional redundancy between JNK/SAPK and another pathway required for the full 

activation of the ABCA1 promoter by LXR agonists is a possible reason. It is also possible 

that the action of JNK/SAPK on ABCA1 mRNA or protein expression requires a particular 

chromatin configuration that is absent in the transfected plasmids.

Our findings show that whereas both p46 and p54 JNK/SAPK are phosphorylated after 

treatment of THP-1 cells with 22(R)-HC and 9CRA, the p54 isoform is more activated by 

these ligand at 24h (second peak) compared to oh (Figure 5.4). As with the ERK 

subfamily of MAP kinases, emerging data suggest that p46 and p54 JNK/SAPKs, whilst 

showing a number of overlapping features, may also have distinct substrate preferences 

(Chan et al., 1997). For example, Kallunki et al. (1994) have shown p54 JNK/SAPK binds c- 

Jun with greater affinity than the p46 isoform. They suggest that at the concentration of 

c-Jun encountered intracellularly, the p54 subunit is more likely to phosphorylate it than 

P 46 ,  thereby raising the question of alternative roles for p54 and p46 JNK/SAPK. It has 

also been shown that specific activation of p54 in COS cells by UV radiation and pro- 

inflammatory cytokines was approximately 10-fold greater than that of the p46 isoform 

(Sluss et al., 1994). Thus, these issues raise the question of the role that signalling 

heterogeneity within the JNK/SAPK subfamily may play in the varied functional 

responses in macrophages (Riches, 1995), in particular with respect to activation of the 

AP-1 family.

Previous work has shown that curcumin can block cytokine- and phorbol ester- 

stimulated JNK/SAPK activation, c-Jun phosphorylation and AP-1 transcriptional activity 

(Chen and Tan, 1998; Han et al., 2002; Squires et al., 2003). In addition, it has been shown 

that curcumin can act as an inhibitor of AP-1 DNA binding (Hahm et al., 2002; 

Hergenhahn et al., 2002). On this basis, curcumin has been used as an inhibitor for 

JNK/SAPK and AP-1. However, other studies have shown that curcumin inhibits an 

upstream kinase of the JNK/SAPK pathway, most likely MEKK1 (Jobin et al., 1999). There 

are also studies that show that curcumin does not directly inhibit the kinase function of 

JNK/SAPK, SEK1/MKK4 or MEKKi activity and suggest a more complex mode of action
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(Chen and Tan, 1998). Some of these discrepancies could reflect differences in cell types 

and/or mediators used. Our results show that curcumin has no effect on the 

phosphorylation of JNK/SAPK, SEK1/MKK4 or c-Jun at specific sites when a concentration 

of 30pM was used (Figure 5.8). However, JNK/SAPK activity, which could potentially be 

dependent on multiple phosphorylation, was attenuated and also there was a 

concentration-dependent decrease in AP-1 DNA binding activity by curcumin (Figures 5.9- 

5.16). Our data are in agreement with a study by Singh and Ramji (2006) that showed 

that curcumin had no effect on JNK/SAPK activation by TGF-J3 in THP-1 monocytes whilst 

JNK activity was inhibited in concentration-dependent manner (Singh and Ramji, 2006). 

In contrast, work in our laboratory showed that curcumin inhibits JNK/SAPK 

phosphorylation and kinase activity in THP-1 macrophages induced by 22(R)-HC and in 

Hep3B cells stimulated with IL1 (Greenow, K., 2004, Ali, S., personal communication). 

Indeed, these findings are in agreement with a previous study that showed that 

curcumin prevents JNK/SAPK activation by various agonists, including anisomycin, UV, 

gamma radiation and TNFa (Chen and Tan, 1998).

An attractive hypothesis on the mechanisms underlying the involvement o f cell 

signalling pathways, such as JNK/SAPK, in NR-mediated regulation of target genes is that 

the NR protein or one of the coregulator components of the transcription complex is 

being targeted for phosphorylation (See previous chapter for more detail). Therefore, 

according to the results in the present chapter, the possibility that any one o f the  

components of the JNK/SAPK pathway may be affecting the LXR transcriptional 

complex (e.g. LXR itself or one or more of the coregulators) is the most likely hypothesis 

for the involvement of the JNK/SAPK pathway in LXR-regulated gene transcription. Such 

phosphorylation would result in an increase in transcriptional activation of the target 

genes.

Further studies focussed on the major downstream targets of JNK/SAPK pathway 

involved in the LXR-mediated regulation of ABCA1 and apoE gene expression. EMSA 

showed an increase in protein binding to AP-1 recognition sequence when extracts were  

used from cells that had been treated with either combinations of 22(R)-HC and 9CRA or 

T0901317 (Figure 5.13). Such an activation of AP-1 DNA binding activity was inhibited by 

pre-treatment of the cells with SP600125 and curcumin (Figure 5.16). The AP-1 family 

mainly consists of members of the Jun and Fos families. The Jun family includes c-Jun,
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JunB and JunD whereas the Fos family includes c-Fos, Fos-B, Fra-1 and Fra-2 (Wisdom,

1999). The AP-1 DNA binding complex consists of various combinations of Fos and Jun 

family members (homodimers between the Jun family members or heterodimers 

between the Jun and Fos family members) (Hess et al., 2004; Karin et al., 1997)* API 

dimers stimulate transcription by binding to a palindromic DNA sequence (5-TGAG/CTCA- 

3; often called Tumour Promoter Activator element) usually present in the enhancer 

regions of many genes implicated in the control of cell division, growth and 

differentiation (Shaulian and Karin, 2001). Regulation of AP-1 activity is complex and 

involves transcriptional and post-transcriptional mechanisms (Hess e t al., 2004; Karin, 

1995; Tomita et al., 2006). An important post-transcriptional control mechanism is the 

direct phosphorylation of AP-1 components (Whitmarsh and Davis, 1996), thereby 

leading to changes in DNA binding and/or trans-activation potential. For example, c-Jun 

is efficiently phosphorylated by JNK/SAPK at sites within its N-terminal trans-activation 

domain and by ERKs at an inhibitory site located within the C-terminal DNA-binding 

domain (Chou et al., 1992; Hess et al., 2004; Karin, 1995; Karin e t al., 1997). By contrast, 

the kinases that regulate the activity of c-Fos are not yet fully understood. Potential 

candidates are, as yet, undefined Fos-related kinase (Deng and Karin, 1994) and ERK 

(Chen et al., 1996). However, the significance of these kinases in the control of Fos 

activity and function remains elusive (Hess et al., 2004).

NRs can also cross-talk with other transcription factors and, thereby, interfere with their 

regulation of target gene expression. Schmuth et al. (2004) first demonstrated that 

oxysterols, via activation of LXRs, induce a general increase in expression of AP-1 

regulated genes during keratinocyte differentiation, and this effect can be abolished by 

mutation of the distal AP-1 response element in the involucrin promoter. In addition, AP-1 

binding activity was shown by EMSA to be induced by oxysterols along with an increase 

in the activity of an AP-1 reporter plasmid. Furthermore, Fra-1 was identified as a key 

component in the AP-1 DNA binding complex by antibody interference/supershift EMSA 

using nuclear extracts from oxysterol treated keratinocytes. Additionally, oxysterol 

treatment increased both the binding and the expression of two other AP-1 proteins, 

JunD and c-Fos, whereas Fra-2, Jun B and c-Jun were not affected (Schmuth et al., 2004). 

Similar alterations in AP-1 proteins were also seen when natural (25-OH-cholesterol) or 

non-steroidal LXR agonists (GW3965 or T0901317) were used (Schmuth et al., 2004).
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The influence of cross-talk by LXR, ERs, GR and PPARs on cytokine signal transduction 

has been reviewed previously (Wang et al., 2004a). Ogawa et al. (2005) showed that two 

synthetic agonists for LXRs (GW3965 and T0901317) inhibit cytokine-induced expression 

of osteopontin in RAW 264.7 macrophages, and this inhibition was mediated through 

interference with AP-1 signalling pathways (Ogawa et al., 2005). In further support for 

the role of the AP-1 family in signalling by NRs, Patel et al. (2005) have reported that the 

regulation of COX-2 expression by PPARy agonist, troglitazone, involves the activation 

of AP-1. In addition, a cross-talk between GR and AP-1 or NF-kB results in the 

transcriptional repression of their target genes (De Bosscher e t al., 2003; Liberman et al.,

2007). Although, in most cases, the cross-talk results in repression, there is also data 

showing the cross-talk between NRs and AP-1 promotes transcription, for example, 

ligand-bound ERs induce AP-1 activity (Bjornstrom and Sjoberg, 2002).

Several NRs have also been shown to alter transcription through the AP-1 response 

element in various cell types (Uht et al., 1997). The involvement of the AP-1 family in NR 

signalling may occur through several mechanisms, including direct interaction with NRs 

or coregulators, binding to AP-1 elements in the promoters of the NR genes or even 

through the binding to AP-1 elements in the regulatory regions of target genes (Uht et 

al., 1997). Previous studies have demonstrated that the major sequence elements 

required for the transcriptional regulation of the ABCA1 gene include binding sites for 

LXRs, AP-1, -2 and -4, SPi, NF-kB as well as three E-box motifs (Costet et al., 2000; 

Santamarina-Fojo et al., 2000; Yang et al., 2002). Yang et al. (2002) reported that the E- 

box motif present H 7bp upstream of the transcriptional start site of the hABCAi gene 

promoter binds to the transcription factors USF1 and USF2 as well as Fra-2 (Yang et al., 

2002).

From the results presented here, it is possible to suggest that the regulation of ABCA1 

and apoE expression by LXR agonists in THP-1 macrophages may involve the activation 

of the AP-1 pathway. A possible mechanism is that c-Jun, as a member of AP-1 complex, 

may be interacting with the LXR transcriptional complex at the ABCA1 promoter. Such a 

mechanism has been shown previously to  occur in estrogen signalling, whereby ERa, c- 

Jun and the transcriptional coactivator, pi6o/GRIPi, form a multiprotein complex at the 

promoter in vitro and in vivo, and the ERa-c-Jun interaction is crucial for the stability of 

this complex (Teyssier et al., 2001; Webb et al., 1999). Furthermore, the PPARy ligand,
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i5d-PGJ2 has been shown to directly inhibit AP-1 DNA binding by forming a covalent 

adduct with c-Jun (P^rez-Sala et al., 2003). The second and the most likely potential 

mechanism for the role of c-Jun in LXR signalling is that, as a part of the AP-1 complex, it 

is activating ABCA1 through the AP-1 m otif present in its promoter region. Therefore, it is 

possible that AP-1 may be required for the full stimulatory response of LXR agonists on 

promoters regulated by this NR. Such a requirement for additional transcription factors 

have been seen in other studies. For example, full activation o f the SREBP-ic promoter 

by insulin requires LXR-REs and Spi binding sites (Cagen et al., 2004). It is also worth  

noting that the AP-1 element has already been shown to be essential for the induction of 

apoE expression during macrophage differentiation (Basheeruddin et al., 1994). The 

third possibility is that c-Jun is up-regulating the expression o f genes encoding 

coactivator proteins necessary for the LXR activation of ABCA1. Recently, a model for 

the regulation of CYP7A1 gene transcription by FXR has been proposed by Gupta et al. 

(2001), which also involves the JNK/SAPK-c-Jun pathway. In this model, bile acids 

activate PKC leading to phosphorylation and activation of JNK/SAPK1/2 and c-Jun in 

addition to FXR (Chiang John, 2002). Both c-Jun and FXR bind to different elements (AP-1 

and IR-1 respectively) in the CYP7A1 promoter (Gupta et al., 2001). In addition, the same 

study showed that phosphorylated c-Jun could also induce the transcription of the non­

specific small heterodimer partner (SHP)-1 corepressor by binding to  an AP-1 site in its 

promoter, which in turn represses CYP7A1 transcription (Gupta et al., 2001). This model 

could potentially be applied to the LXR regulation of genes implicated in the control of 

macrophage cholesterol homeostasis such as ABCA1 and apoE, with the JNK/SAPK 

pathway inducing activation of a coactivator protein. This mechanism may also provide 

explanation for the potential role for the second peak of induction of JNK/SAPK and c- 

Jun phosphorylation seen in the studies.

The rapid activation of the JNK/SAPK pathway by LXR ligands (first peak at 30mm) 

suggests that the initial activation of this pathway by LXR agonists is probably not 

dependent on gene activation. This ability of a NR agonist to rapidly activate a cell 

signalling pathway independent of gene transcription is just beginning to be recognized. 

Actually, the importance of the so called non-genomic or extranuclear signalling action 

of NR ligands that does not involve its cognate receptor have been recently identified 

and well described for several members o f the NR family (Aranda and Paseual, 2001; 

Germain et al., 2006; Gronemeyer et al., 2004; Moeller et al., 2006; Simoncini et al.,
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2000). The definition of non-genomic effects given by Losel and Wehling is “any action 

that does not directly and initially influence gene expression, but rather drives more 

rapid effects such as the activation of signalling cascades” (Losel and Wehling, 2003). 

These rapid actions of agonists have been subsequently described to generate 

intracellular second messengers to activate or inhibit cell signalling pathways (Davis and 

Davis, 2002; Davis et al., 2002). Recent studies have identified that this initiation of 

intracellular signalling mechanisms occurs through the NR ligand binding to a receptor 

present at the plasma membrane or in the cytoplasm (Boonyaratanakornkit and 

Edwards, 2004; Schmidt et al., 2000). To include this alternative mode of action in the 

definition of non-genomic effects, the term membrane-initiated NR signalling has been 

proposed (Schmidt et al., 2000). However, the identities or nature of these receptors 

have been elusive so far. In addition, it is likely that a subclass of NRs mediate these 

actions by somehow associating with the cell membrane and/or signalling complexes in 

the cytoplasm (Schmidt et al., 2000). However, studies have also suggested the 

potential existence of separate membrane receptors unrelated to the classical NRs 

which are responsible for this non-genomic action of NR ligands (Boonyaratanakornkit 

and Edwards, 2004; Gronemeyer et al., 2004).

Steroids can induce an increase in several second messengers such as inositol 

triphosphotes, cAMP, Ca2+ and the activation of MAPK and PI3K pathways, which occurs 

very rapidly within seconds or minutes and is receptor-mediated (Aranda and Pascual, 

2001; Germain et al., 2006). The ERK1/2 MAPK pathway can be activated by thyroid 

hormone binding to the integrin aVp3, located in the cell membrane, without entering 

the cell. Thus, this mechanism leads to phosphorylation of NRs which can promote cell 

growth (Bergh et al., 2005; Moeller et al., 2006; Tang et al., 2004c). This non-genomic 

action of TH is mostly extranuclear, appears to be independent of TH receptors and has 

rapid effects on proteins rather than the regulation of gene expression (Moeller et al., 

2006). Consistent with these findings, recent work has also reported a non-genomic 

action for PPARy-mediated gene regulation, where its ligand, i5-d-PGJ2, causes 

enhanced AP-1 binding activity in VSMCs. This induction of AP-1 activity occurs within 30 

min and was shown to be due to activation of the ERK pathway and was partially 

dependent on PI3K (Takeda et al., 2001). Therefore, in addition to the 22(R)-HC and 

9CRA-mediated activation of the LXR/RXR heterodimer at the ABCA1 promoter, classical 

genomic action of LXR agonist (See chapter 4), it is also likely that the LXR-mediated
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regulation of ABCA1 and apoE expression requires the non-genomic activation of the 

JNK/SAPK pathway by 22(R)-HC and 9CRA or T0901317.

As no previous work has explored a non-genomic action for LXR agonists, it is unclear 

how the ligand is activating the JNK/SAPK pathway. One possible way is that a 

membrane bound LXR receptor exists. Another possibility is that the ligands may be 

acting independently of the LXRs as signalling molecules. Regulation via membrane- 

bound receptor is the most likely possibility as our studies have demonstrated that the 

induced expression of ABCA1 and apoE by LXR is ligand specific as 22(S)-HC, which does 

bind to, but not activate the receptor, did not induce ABCA1 and apoE expression. 

Indeed, several unrelated membrane receptors contribute to a large diversity of rapid 

responses (Picard, 1998; Wehling, 1997). In addition, the existence of binding sites for TH 

on the cell surface has been known for many years (Giguere et al., 1996; Schwartz et al., 

1967). Thus, on the basis of published literature and the present results, a hypothetical 

scheme can be proposed to explain, at least partially, the mechanisms by which LXR 

agonists induce ABCA1 and apoE expression in THP-1 cells by stimulating LXR activity via 

the JNK/SAPK pathway (Figure 5.17).

In summary, the work presented in this chapter implicates activation of SEK1/MKK4- 

JNK/SAPK and c-Jun/AP-1 signalling as an important signal transduction pathway in 

LXR/RXR-inducible expression of apoE and ABCA1 in macrophages. To our knowledge, 

this is the first study to demonstrate that LXR agonists induce SEK1/MKK4-JNK/SAPK-C- 

Jun pathway. Collectively, this novel study demonstrates that the JNK/SAPK signalling 

pathway plays important roles in LXR-mediated regulation of key genes involved in the 

control of cholesterol homeostasis. Our finding provides new potential targets for 

therapeutic intervention of atherosclerosis.
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Figure 5.17 Hypothetical scheme of the signal transduction pathway activated by LXR 
agonists leading to increased expression of ABCA1 and apoE in THP-i macrophages.
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Chapter 6: The role of PI3K signalling in the regulation of 
expression of key genes implicated in the control of 
cholesterol homeostasis by LXR agonists in THP-i 
macrophages

6.1 Introduction
The data presented in chapters 3 and 4 revealed a potentially important role for the PI3K 

pathway in the LXR agonist-induced expression o f ABCA1 and apoE in murine and human 

macrophages. As discussed earlier, the roles of ABCA1 and apoE in the control of 

cholesterol efflux and the prevention of atherosclerosis are well established. The 

regulation of ABCA1 and apoE expression by LXR agonists therefore represents a 

potentially important target for therapeutic intervention of atherosclerosis. The aim of 

the studies presented in this chapter was to carry out further investigation of the role of 

the PI3K signalling pathway in the regulation of ABCA1 and apoE expression by LXR 

agonists.

PI3K is a heterodimeric enzyme composed of a regulatory polypeptide p85 and a 

catalytic subunit pno (Carpenter and Cantley, 1996; Hawkins e t al., 2006; Hirsch et al., 

2007; Rameh and Cantly, 1999). PI3K catalyses the synthesis of 3-phosphorylated 

phosphoinositides and affects cell survival, metabolism and membrane trafficking. One 

of the best characterized downstream targets of the lipid metabolites produced by the 

action of PI3K is the Ser/Thr protein kinase PKB. This plays an important role in a variety 

of biological processes, including the control of cell survival, cell growth and regulation 

of gene expression. Various peptide growth factors, including insulin and insulin-like 

growth factor I, are known activators of PKB (Downward, 1998). The binding of such 

growth factors to their cell surface receptors results in the recruitment of PI3K to the 

plasma membrane. There are tw o main stages involved in the activation of PKB: the 

binding of the main lipid products of PI3K actions [Ptdlns(3)P and/or Ptdlns(3,4)P2] to 

the pleckstrin homology domain present in the amino terminus of PKB, and the 

phosphorylation of PKB at Thr308 and Ser473 residues by PDK-1 or -2 leading to full 

activation of enzyme activity. These changes cause its translocation from the cytoplasm 

to the nucleus (Hresko et al., 2003; Krasilnikov, 2000; Toker and Newton, 2000; 

Vanhaesebroeck et al., 1997). Several downstream targets of PKB have been identified.
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The majority of these have been implicated in insulin signalling and the promotion of cell 

survival by phosphorylation and inactivation of various proteins, such as GSK-3P, mTOR, 

the transcription factor forkhead (FKHR), endothelial nitric oxide synthase (eNOS) and 

several anti-apoptotic effectors, such as Bd-2-associated death promoter (BAD) 

(Krasilnikov, 2000; Rameh and Cantly, 1999; Toker, 2000). PDK1 also activates the kinase 

P7o(S6K) and PKC isoforms (Cantly, 2002; Toker, 2000; Vanhaesenbroeck and Alessi, 

2000; Yang et al., 2004).

As the phosphorylated lipid products of PI3K activate various isoforms of PKC in vitro 

(Toker, 2000), PKC may lie downstream of PI3K (Reddy e t al., 1997). PKC is a Ser/Thr- 

specific protein kinase that is involved in a number of important biological processes, 

such as cell cycle progression, apoptosis, differentiation and immune responses (Saijo et 

al., 2003). At present, 11 different PKC isoforms have been identified and grouped into 

three subsets based on their ability to respond to Ca2+ and/or diacylglycerol, a lipid 

produced by the action of phospholipase C (PLC) (Nishizuka, 1992, 1995). Both the 

classical PKC isoforms (a , pi, pll and y) and the novel PKC isoforms, including 6, e, 0 and 

r| are activated by diacyglycerols or PMA. The classical PKCs, but not the novel PKCs, also 

respond to a change in the intracellular concentration of Ca2+ ions. Unlike the classical 

and novel PKC isoforms, atypical PKC isoforms, such as A and x do not respond to 

either Ca2+ or PMA. Each of these isoforms are organized into tw o domains, a C-terminal 

catalytic domain and an N-terminal regulatory domain. The different PKC isoform are 

expressed in a ubiquitous manner (Delm otte et al., 1999). Activation of PKC often leads 

to the expression of the Jun and fos transcription factors that then interact with an AP-1 

recognition site.

The primary aim of the studies presented in this chapter was to confirm whether the LXR 

agonists activate the PI3K/PKB pathway in THP-1 macrophages, and to elucidate which 

components of the PKB signalling cascade were involved in the induction of ABCA1 and 

apoE expression by such agonists. The secondary aim was to investigate exactly how 

this cellular signalling pathway may potentially affect LXR-mediated regulation of ABCA1 

and apoE expression. As the increase in ABCA1 expression is likely to enhance 

mobilization of cholesterol across cell membranes and, thereby, regulate cellular 

cholesterol homeostasis (W agner et al., 2003), such studies might identify potentially 

novel therapeutic targets for the treatm ent of atherosclerosis. Therefore, the overall
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experimental strategy was to first investigate the activation of PKB by phosphorylation 

in THP-1 cells stimulated with LXR agonists via time course Western blot analysis using 

phospho-specific antibodies. In addition, non-radioactive, in vitro  kinase assays were 

carried out to monitor changes in PKB activity. Furthermore, DNA constructs specifying 

for DN mutant proteins were used in transfection assays to confirm an important role 

for components of the PI3K pathway in the action of LXR activators. EMSA was also 

employed in order to study the activation of AP-1 binding by treatm ent of the cells with 

22(R)-HC and 9CRA. Figure 6.1 illustrates the overall experimental strategy for the work 

presented in this chapter.

P H A S E  2

P H A S E  1

Transfection 
of DN 

mutants

Pretreatment
with

pharmacological
inhibitors

EMSA analysis of protein binding

Role of the PI3K pathway in the regulation of 
ABCA1 and apoE expression by LXR agonists in 

THP-1 cells

Analyse 
phosphorylation 

of signalling 
proteins by 

Western blot 
analysis

Kinase
activity
assays

Figure 6.1 Summary of the experimental strategy used for further analysis of the role of the 

PI3K pathway in the activation of gene expression by LXR agonists in THP-1 macrophages.

6.2 Results

6.2.1 Time course of PKB phosphorylation by LXR agonists in THP-1 
macrophages
Stimulation of cell surface RTK by growth factors leads to activation of PKB (Wymann et 

al., 2003). Full activation of PKB requires phosphorylation at two sites (Wymann and
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Pirola, 1998), one in its catalytic domain (Thr 308) by PDK1 (Bayascas and Alessi, 2005) 

and another in the hydrophobic carboxyl terminal regulatory region (Ser 473) by the 

putative kinase PDK2 (Wymann et al., 1998; Yang et al., 2004; Lessmann et al., 2006). 

Previous work in the laboratory showed that phosphorylation of PKB on Ser 473 but not 

on Thr 308 is induced by stimulation o f THP-1 macrophages with 22(R)-HC (Greenow, K.,

2004). However, the action o f combinations o f 22(R)-HC and 9CRA on PKB 

phosphorylation on Ser 473 had not been determined and was therefore analysed by 

time course Western blot analysis. Treatm ent o f THP-1 macrophages with 22-(R)-HC plus 

9CRA resulted in a marked increase in the levels of phospho-PKB (Ser 473) within 15mm, 

reaching maximal levels at 30-6omin, and declining gradually at subsequent time points 

(Figure 6.2). The total level of the PKB protein was not affected by the ligand.

To further confirm the activation of PKB at Ser 473 by 22(R)-HC and 9CRA, additional 

experiments were carried out using the ih incubation period with the ligands. The 

control cells were treated with the vehicle DMSO fo r also ih . As shown in Figure 6.3, a 

marked increase in the levels of phospho, but not total, PKB was seen following 

incubation of the cells for ih with the ligands. The result also shows that such an 

increase in PKB phosphorylation was specific to  the ligands and not due to culturing the 

cells for ih.

6.2.2 Effect of LY294002 on the phosphorylation o f PKB
Studies presented in the previous chapter showed that the PI3K inhibitor LY294002

attenuated the induction of ABCA1 and apoE expression by LXR agonists. As 

combinations of 22(R)-HC and 9CRA were found to increase the levels of PKB 

phosphorylated on Ser473, it was decided to  investigate if this was inhibited by 

LY294002. As shown in Figure 6.4, pre-treatm ent o f the cells with LY294002 indeed 

inhibited the increase in the levels of phospho-PKB seen in the presence of combinations 

of 22(R)-HC plus 9CRA. In contrast, LY294002 had no effect on the levels of total PKB 

(Figure 6.4).
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Figure 6.2 Effect of 22(R)-HC and 9CRA on PKB posphorylation at Ser 473 in THP-i macrophages.

Differentiated THP-1 macrophages were incubated for the indicated time points with 
combinations of 22(R)-HC (2pg/ml) and 9CRA (iopM ). Western blot analysis was carried 
out using 8opg of whole cell extracts. Blotted membranes were incubated with 
phospho-PKB (Ser473) and total-PKB primary antibodies. Antigen-antibody complexes 
were detected using the ECL detection system. The image shown in panel A is 
representative of three independent experiments. Densitometric analysis was carried 
out on the data and presented as mean fold induction (±SD) in relation to basal 
expression at oh (assigned as 1) (panel B; *P<0.05, **P<o.oi compared to control oh).
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Figure 6.3 Activation of PKB by phosphorylation on Ser 473 after ih treatment of THP-1 
macrophages with 22(R)-HC and 9CRA.

Differentiated THP-1 macrophages were incubated for ih with combinations of 22(R)-HC 
(2pg/ml) and 9CRA (iopM ) or DMSO as vehicle control. Western blot analysis was carried 
out using equal volume of lysates (5opl). Blotted membranes were incubated with 
phospho-PKB (Ser473) and total-PKB primary antibodies. The image shown in panel A is 
representative of three independent experiments. Densitometric analysis was carried 
out on the data and presented as mean fold induction (±SD) in relation to basal 
expression at ih (assigned as 1) (panel B; *P<0.05 compared to control).
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Figure 6.4 inhibition of 22(R)-HC and gCRA-induced posphorylation of PKB at Ser 473 by 
LY294002 in THP-1 macrophages.

Differentiated THP-1 macrophages were treated for ih with combinations of 22(R)-HC 
(2pg/ml) and 9CRA (iopM ) or DMSO as a vehicle control in the absence or the presence 
ioopM of LY294002. The inhibitor was added ih before the ligand (pre-treatment). 
Western blot analysis was carried out using equal volume of lysates (50pl). Blotted 
membranes were incubated with anti-phospho-PKB and anti-total-PKB primary 
antibodies. Antigen-antibody complexes were detected using the ECL detection system. 
The image shown in panel A is representative of three independent experiments. 
Densitometric analysis was carried out on the data and presented as relative expression 
(mean ±SD) normalised to the expression of T-PKB. The relative expression in the 
presence of the ligand alone (Lig) has been arbitrarily assigned as 1 (panel B; **P<0.01 
compared to control at ih).
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6.2.3 The effect of 22(R)-HC plus 9CRA on PKB activity in THP-i 
macrophages
Previous studies showed that stimulation of THP-1 macrophages with combinations of 

22(R)-HC and 9CRA resulted in an increase in the levels of phospho-PKB and this was 

inhibited by LY294002. In order to confirm that such changes also occurred at the level 

of PKB enzymatic activity, the experiments were repeated using a non-radioactive PKB 

kinase assay kit from Cell Signalling Technology. For this, an immobilised monoclonal 

antibody to PKB was used to selectively immunoprecipitate the protein from cell lysates. 

The immunoprecipitate was then incubated with a key downstream substrate of PKB 

(GSK-30C/P fusion protein) in the presence of ATP and kinase buffer. The reaction was 

then subjected to Western blot analysis using antibodies that recognise phosphorylated 

GSK-3a/(3. Western blot analysis of cell lysates with a p-actin antibody was also carried 

out to confirm equal amount of proteins in each sample. As shown in Figure 6.5, 

treatment of THP-1 macrophages with combinations o f 22(R)-HC plus 9CRA increased 

PKB activity without affecting the expression of the control P-actin protein.

In order to further confirm the action o f LY294002, its effect on such an increase in PKB 

activity was analysed. As shown in Figure 6.6, inclusion of LY294002 indeed attenuated 

the increase in PKB activity seen in cells treated with combinations of 22(R)-HC plus 

9CRA. On the other hand, the expression o f the p-actin protein was not affected by the 

ligands or the inhibitor.

6.2.4 Effect of DN PKB on the activation of ABCAi promoter by LXR 
agonists
In order to further confirm the role of PKB in the induction of ABCA1 gene expression by 

combinations of 22(R)-HC plus 9CRA, the effect o f a DNA construct specifying for a DN 

form of PKB on ABCA1 promoter activity was analysed. For this, U937 cells were co­

transfected with the ABCA1 promoter plasmid and either DN PKB or the control pcDNA3 

vector. The transfected cells were then treated w ith combinations of 22(R)-HC plus 

9CRA or the DMSO vehicle control. As shown in Figure 6.7, the ligands indeed stimulated 

ABCA1 promoter activity when the cells were transfected with the control PCDNA3 

plasmid and this was attenuated in a statistically significant manner by expression of DN 

PKB.



CHAPTER SIX- 2 2 2

22(R)HC/9CRA

B

P-actin
42kDa

control

Figure 6.5 Stimulation of PKB activity by 22(R)-HC and 9CRA in THP-1 macrophages.

Differentiated THP-1 macrophages were incubated for ih with combinations of 22(R)-HC 
(2pg/ml) and 9CRA (iopM ) or the DMSO vehicle control. The PKB activity was analysed 
using a non- radioactive kit as described in Materials and Methods. Western blot analysis 
was carried out using anti-phospho-GSK-3a/p primary antibody. The cell extracts were 
also subjected to Western blotting with P-actin antibody as a loading control. The image 
shown in panel A is representative of three independent experiments. Densitometric 
analysis was carried out on the data and presented as mean fold induction (±SD) in 
relation to basal expression (assigned as 1) (panel B; **P<0.01 compared to control).
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Figure 6.6 The effect of LY294002 on 22(R)-HC and gCRA-induced PKB activity in THP-t 
macrophages.

Differentiated THP-1 macrophages were treated for ih with 22(R)-HC (2pg/ml) and 9CRA 
(iopM ) in the absence or the presence of ioopM LY294002 (LY). The inhibitor was added 
ih before the ligand (pre-treatment). The PKB activity was analysed using a non 
radioactive kit as described in Materials and Methods. Western blot analysis was carried 
out and blotted membranes were incubated with primary antibodies against anti- 
phospho-GSK-3a/p and p-actin. Antigen-antibody complexes were detected using the 
ECL detection system. The image shown in panel A is representative of three 
independent experiments. Panel B shows the relative expression from three 
experiments (mean ±SD) normalised to the expression of p-actin a determined by 
densitometric analysis (**P<o.oi). The relative expression in the presence of the ligand 
alone (Lig) has been arbitrarily assigned as 1.
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PCDNA3

Figure 6.7 The effect of DN PKB on 22(R)-HC and gCRA-induced ABCA1 promoter activity.

U937 cells were co-transfected with human ABCA1 promoter [from -928 to +ioibp] 
construct and the expression plasmid for DN form of PKB. Cells transfected with the 
control pcDNA3 plasmid were included for comparison. The cells were then treated with 
DMSO as a vehicle control (C) or combinations of 22(R)-HC (2pg/ml) and 9CRA (iopM) 
(Lig) for i8h. The transfected cells were then harvested and luciferase reporter activity 
was determined. Relative counts were normalised to protein concentration and values 
are expressed as mean fold induction (±SD) in the presence of the ligands in relation to 
basal levels (assigned as 1). The results were from three independent experiments each 
carried out in triplicate (*P<o.oi).
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These results therefore lend further support to PKB as a key downstream component of 

the PI3K pathway involved in the activation of ABCA1 expression by LXR agonists.

6.2.5 Potential downstream targets for PKB actions in the induction of 
ABCA1 and apoE expression by LXR agonists
A number of downstream targets for PKB actions have been identified, including GSK- 

a/p, P70S6K, which is a target of mTOR, inhibitor kappaB ( IkB), FKHR and isoforms of 

PKC (Bjornsti and Houghton, 2004; Cantly, 2002; Krasilnikov, 2000; Yang et al., 2004). 

GSK-a/p and FKHR are regulated by changes in phosphorylation status (Hirota et al., 

2003; Salas et al., 2004) and previous studies in the laboratory showed that 22(R)-HC 

had no effect on the phosphorylation of both these proteins in THP-1 macrophages 

(Greenow, K., 2004). It was therefore decided to investigate the potential role of mTOR 

and PKC further using pharmacological inhibitors.

Initial experiments were carried out using the Pan PKC inhibitor bisindoylmaleimide 

(BIM) and the mTOR inhibitor rapamycin. BIM acts as an ATP competitive inhibitor for 

the ATP binding site of PKC (Hers et al., 1999). As shown in Figure 6.8, the 22(R)-HC and 

9CRA-induced expression of ABCA1 and apoE was attenuated in a statistically significant 

manner by BIM. Such a dramatic inhibition was specific to BIM and not seen with 

rapamycin (Figure 6.9). Further studies therefore focussed on PKC.

6.2.6 Further analysis of the role of PKC in the 22(R)-HC plus 9CRA- 
induced expression of apoE and ABCA1 in THP-1 macrophages
Studies presented in the previous section showed that BIM inhibited the 22(R)-HC plus

9CRA-induced expression of ABCA1 and apoE in THP-1 macrophages. As mentioned 

above, BIM is a pan inhibitor of PKC. There is increasing evidence that individual PKC 

isoforms are involved in different signal transduction pathways (Valledor et al., 1999). 

Further experiments were therefore carried out using more selective PKC inhibitors 

G06983, G06976 and rottlerin.

G06983 affects classical, novel and atypical PKC isoenzymes in a concentration 

dependent manner (Gschwendt e t al., 1996), with IQo value less than ionM  for 

conventional PKC, ionM for PKC5 and 6onM for PKC£. Thus, novel and classical PKC 

isoforms will be mostly inhibited at a concentration of ionM and atypical PKC^ 

isoenzymes will be affected mainly at a concentration of 6onM. Thus, the use of G06983



CHAPTER SIX- 226

22(R)-HC/9CRA
BIM (pM )

ABCAl
22okDa

P-actin
42kDa

B

apoE
34kDa

p-actin
42kDa

ro
CO.

CO<'—s
aX
LU

"3CO

1.2 ABCAi

1 1 

0.8 - 

0.6 

0.4 

0.2 

0

-0.2 J

* *

i * *

i
Lig BIM BIM+ BIM BIM+ 

ipM 2pM

1.2 napoE

1  0.8CfL
lii
Q. 0 .6  -  
H3

X 0.4
LU

"3
cc 0.2 H

0 -h 1 1 A

rx

I
* *

I  i
C Lig BIM BIM+ BIM BIM+ 

ipM 2(jM

Figure 6.8 Effect of PKC Inhibitor bisindolylmaleimide on the induction of ABCAi and apoE 
protein expression by 22(R)-HC and 9CRA in THP-i macrophages.

Differentiated THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 
9CRA (iopM ) in the absence or the presence of BIM at the indicated concentrations. The 
inhibitor was added ih before the ligand (pre-treatment). Western blot analysis was 
carried out using 20-40pg of whole cell extracts. Blotted membranes were incubated 
with antibodies against ABCAi, apoE or the p-actin control as shown. Antigen-antibody 
complexes were detected using the ECL detection system. The image shown in panels A 
and B is representative of three independent experiments. The histogram C and D show 
relative expression (Rel Exp) from three experiments (mean ±SD) normalised to the 
expression of p-actin. The relative expression in the presence of the ligand alone (Lig) 
has been arbitrarily assigned as 1, as determined by densitometric analysis (**P<o.o i).
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Figure 6.9 Effect of rapamycin on the induction of ABCAi and apoE protein expression by 
combinations of 22(R)-HC and 9CRA in THP-1 macrophages.

THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 9CRA iopM) in the 
absence or the presence of rapamycin at the indicated concentrations. The inhibitor was 
added ih before the ligand (pre-treatment). Equal amount of protein (20-4opg) was 
subjected to SDS-PAGE and Western blot analysis using antibodies against ABCAi, apoE 
and the p-actin control as shown (panels A and B). The results in the histogram in panels 
C and D show the relative expression (Rel Exp) normalised to the expression of p-actin. 
The relative expression in the presence of the ligand alone (Lig) has been arbitrarily 
assigned as 1.
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at these two concentrations should allow some indication of the potential role of 

atypical and other classes of PKC isoforms in the response. Figure 6.10 shows the 

outcome of the effect of ionM and 6onM G06983 on the induction of apoE and ABCAi 

expression by combinations of 22(R)-HC and 9CRA. The induction of ABCAi expression 

was inhibited at both concentrations of the inhibitor, though the inhibition at 6onM was 

more extensive than that seen at ionM . On the other hand, inhibition of the ligand- 

induced expression of apoE was seen at both concentration of the inhibitor. These 

results therefore suggest a potential similarity in the PKC isoforms required for the 

regulation of ABCAi and apoE expression in response to the ligands.

G06976 is a highly isoenzyme-specific inhibitor of the classical Ca2+-dependent PKCa 

(IC50 = 2.3nM). Figure 6.11 shows that G06976 has no significant effect on the activation 

of ABCAi and apoE expression by 22(R)-HC plus 9CRA in THP-1 macrophages. Although 

these data suggest that PKCa is probably not involved in the action of LXR agonists in 

the regulation of ABCAi and apoE expression, a definitive conclusion cannot be made in 

the absence of any positive control for the action of this inhibitor.

Rottlerin is a specific inhibitor of PKCS, with IC50 values of between 3-6pM (Gschwendt 

et al., 1994)- Figure 6.12 shows that rottlerin significantly inhibits the induction of ABCAi 

expression by combinations of 22(R)-HC plus 9CRA. In contrast, no such statistically 

significant attenuation of the ligand-induced apoE expression was seen (Figure 6.12).

In summary, G06976 at a concentration of 6pM  did not markedly inhibit LXR/RXR- 

induced ABCAi or apoE protein expression in this study, thereby suggesting that PKCa 

was not required for the response. However, rottlerin completely inhibited LXR/RXR- 

induced expression of ABCAi, but not apoE, in THP-1 cells, thereby suggesting that a 

novel PKC isoform might be important for the induced expression of ABCAi expression 

by LXR agonists.
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Figure 6.10 Effect of G06983 on the induction of ABCAi and apoE protein expression by 22(R)-HC 
and 9CRA in THP-1 macrophages.

THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 9CRA (iopM) in the 
absence or the presence of G06983 at the indicated concentrations. The inhibitor was 
added ih before the ligand (pre-treatment). Equal amount of protein (20-40pg) was 
subjected to SDS-PAGE and Western blot analysis using antibodies against ABCAi, apoE 
and the p-actin control as shown (panels A and B). The results in the histogram in panels 
C and D show relative expression (Rel Exp) from two independent experiments 
(average) normalised to the expression of p-actin. The relative expression in the 
presence of the ligand alone (Lig) has been arbitrarily assigned as 1.
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Figure 6.11 The effect of G06976 on the induction of ABCAi and apoE protein expression by 
22(R)-HC and 9CRA in THP-1 macrophages.

THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 9CRA (iopM) in the 
absence or the presence of G06976 at the indicated concentrations. The inhibitor was 
added ih before the ligand (pre-treatm ent). Equal amount of protein (20-40pg) was 
subjected to SDS-PAGE and Western blot analysis using antibodies against ABCAi, apoE 
and the p-actin control as shown (panels A and B). The results in the histogram in panels 
C and D show relative expression (Rel Exp) (mean ±SD) normalised to the expression of 
P-actin. The relative expression in the presence of the ligand alone (Lig) has been 
arbitrarily assigned as 1 (from four independent experiments), as determined by 
densitometric analysis.
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Figure 6.12 The effect of rottlerin on the induction of ABCAi and apoE protein expression by 
22(R)-HC and 9CRA in THP-i macrophages.

Differentiated THP-1 macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 
9CRA (iopM ) in the absence or the presence of rottlerin (Rott) at the indicated 
concentrations. The inhibitor was added ih before the ligand (pre-treatment). Western 
blot analysis was carried out using 20-40pg of whole cell extracts. Blotted membranes 
were incubated with antibodies against ABCAi, apoE or the p-actin control as shown. 
Antigen-antibody complexes were detected using the ECL detection system. The image 
shown in panels A and B is representative of five independent experiments. The 
histogram in panels C and D show the relative expression (Rel Exp) (mean ±SD) 
normalised to the expression of p-actin. The relative expression in the presence of the 
ligand alone (Lig) has been arbitrarily assigned as 1, as determined by densitometric 
analysis (*P<o.os, **P<o.oi).
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6.2.7 Effect of DN forms of PKCs on the activation of ABCAi promoter by 
combinations of 22(R)-HC and 9CRA
To further analyse the role of PKCs in the activation of ABCAi gene expression, co­

transfection assays were carried out using piasmids specifying for DN forms of different 

PKC isoenzymes that were available in the laboratory. These kinase inactive DN mutants 

of PKCs were constructed by converting a critical lysine within the catalytic domain to an 

arginine, at position 368 for PKCa, at position 437 for PKCs, at position 376 for PKC5 , at 

position 384 for PKCq, at position 218 for PKC^ and at position 257 for PKCX 

(http://www.pkclab.org/index.htm) (Soh et al., 1999; Soh and Weinstein, 2003). As 

shown in Figures 6.13 and 6.14, the induction of ABCAi promoter activity seen when the 

cells were transfected with the control pcDNA3 plasmid was attenuated by expression 

of DN forms of PKC-a, 8 and e but not X, and £. Unfortunately, the experiment for the 

data shown in Figure 6.14 has only been carried out once because of tim e limitations. 

Thus, more experiments will be required for confirmation.

6.2.8 The effect of LY294002 on the 22(R)-HC and 9CRA-induced AP-1 DNA- 
binding activity
The effect of the PI3K inhibitor, LY294002, on the induction o f AP-1 DNA binding by 

treatment of the cells with combinations of 22(R)-HC and 9CRA in THP-1 macrophages 

was examined by EMSA. A consensus AP-1 binding site was used as a probe and the 

experiments were carried out using whole cell extracts. As shown in Figure 6.15, the 

induction of AP-1 DNA binding activity seen in cells treated w ith combinations of 22(R)- 

HC and 9CRA or the synthetic ligand T0901317 was inhibited in the presence of 

LY294002. These results therefore strongly suggest an im portant role for PI3K in the 

induction of AP-1 DNA binding activity by the ligands.

6.2.9 The effect of PKC inhibitors on AP-1 DNA-binding activity
To explore the action of the PKC inhibitors on the induction of AP-1 DNA binding activity

by combinations of 22(R)-HC and 9CRA, EMSA was carried out using a consensus AP-1 

binding site probe. As shown in Figure 6.16, the AP-1 DNA binding activity seen when 

cells were treated with combinations of 22(R)-HC and 9CRA was inhibited in the 

presence of BIM, G06976 or rottlerin. These results therefore further substantiate a 

potentially important role for PKC in the activation of AP-1 binding by the ligands.

http://www.pkclab.org/index.htm
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Figure 6.13 Effect of DN constructs of PKC-e and -A on the 22(R)-HC and 9CRA induced ABCA1 
promoter activity.

U937 cells were transfected with the human ABCA1 promoter construct and DN constructs for 
PKC-e (A) and -A (B). Transfected cells were treated with combinations of 22(R)-HC (2pg/ml) and 
9CRA (iopM) (Lig) or DMSO as a vehicle control (C) for i8h. The cells were then harvested and 
luciferase activity and protein assays carried out as described in Materials and Methods. Relative 
counts were normalised to protein concentration and values are expressed as relative expression 
(mean ±SD). The relative expression in cells transfected with the pcDNA3 vector and treated with 
the ligands has been arbitrarily assigned as 1. The results show the outcome of three independent 
experiments carried out in triplicate. The data was analysed by student’s t-test, (**P<o.oi).
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Figure 6.14 The effect of DN constructs for PKC isoforms on the 22(R)-HC and 9CRA-mediated 
induction of ABCA1 promoter activity.

U937 cells were co-transfected with the human ABCA1 promoter construct and the expression 
plasmids for DN PKC-a, -5, -r) or Cells transfected with the control pcDNA3 plasmid were 
included for comparison. The cells were then treated with either DMSO as a vehicle control or 
combinations of 22(R)-HC (2pg/ml) and 9CRA (iopM) for i8h. The transfected cells were then 
harvested and the luciferase reporter activity was determined. Relative counts were normalised 
to protein concentration and values are expressed as relative expression. The relative 
expression in cells transfected with the pcDNA3 plasmid and treated with the ligands has been 
arbitrarily assigned as 1.
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Figure 6.15 The effect of LY294002 on the LXR agonist-induced binding of AP-i.

Differentiated THP-i macrophages were treated for 24h with 22(R)-HC (2pg/ml) and 9CRA 
(lopM) or T0901317 (iopM) or DMSO as a vehicle control in the absence or the presence of 
ioopM LY 294002. The inhibitor was added ih before the ligand (pre-treatment). EMSA analysis 
was carried out using radiolabelled AP-1 consensus sequence probe. DNA protein complexes are 
shown by a vertical line labelled C. The free probe has migrated off the gel.
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Figure 6.16 The effect of PKC inhibitors on AP-t DNA-binding activity.

Differentiated THP-1 macrophages were treated for 24h with combinations of 22(R)-HC (2pg/ml) 
and 9CRA (iopM) in the absence or the presence of PKC inhibitors BIM (2pM), G06976 (3pM and 
5pM) and Rottlerin (3pM and 6pM). The inhibitors were added ih before the ligand (pre­
treatment). EMSA analysis was carried out using radiolabelled AP-t consensus sequence probe. 
DNA-protein complexes are shown by a vertical line labelled C. The free probe has migrated off 
the gel. The image shown is representative of two independent experiments.
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6.3 Discussion
Studies presented in chapter 3 showed a potential role for the PI3K pathway in the 

regulation of gene expression by LXR/RXR agonists, as identified by the use of the 

inhibitor LY294002 in murine J774.2 macrophages and by co-transfection of a DN form of 

PKB and pno with the LXR promoter in Hep3B. Studies presented in chapter 4 further 

showed a role of PI3K in the regulation o f ABCA1 and apoE protein expression by LXR 

agonists in THP-1 macrophages through the use of LY294002. Together these results 

implicate an important role for the PI3K pathway in the LXR-mediated regulation of gene 

expression in murine and human macrophages. The aim of the studies presented in this 

chapter was to confirm the activation of this pathway in THP-1 cells in response to 

treatment with 22(R)-HC/9CRA and analyse its potential role in the responses mediated 

by these ligands. Several lines of evidence lend further support to PI3K/PKB playing an 

important role in the induction of ABCA1 and apoE expression by LXR agonists in THP-1 

macrophages. For example, the phosphorylation of PKB at Ser 473 and its kinase activity 

were induced in THP-1 macrophages following treatm ent of the cells with 22(R)-HC plus 

9CRA (Figures 6.2-6.5). Such an activation of PKB was inhibited by pre-treatment of the 

cells with LY294002 (Figures 6.4-6.6). In addition, the induction of ABCA1 promoter by 

22(R)-HC/9CRA was inhibited in U937 cells transfected with a DN construct specifying for 

a mutant form of PKB compared to transfection with the empty vector, pcDNA3 (Figure 

6.7).

Having concluded that treatm ent of THP-1 macrophages with LXR agonists results in an 

increase in PI3K phosphorylation and kinase activity, experiments were carried out to 

investigate whether any downstream targets o f this pathway were involved in LXR- 

mediated regulation of ABCA1 and apoE expression. Several downstream targets of PKB, 

including GSK-3, mTOR, eNOS and FKHR, have been shown to be involved in NR 

signalling (Campbell e t al., 2001; Gianni et al., 2002b; Lin et al., 2001; Rogatsky et al., 

1998a). For example, recent work has shown that T0901317 and insulin down-regulate 

the transcription of the APOA5 gene in human and primary rat hepatocytes through the 

PI3K/ P70S6 kinase signalling pathways (Jakel e t al., 2004; Nowak et al., 2005). However, 

further studies on the downstream targets for PKB actions showed that inhibition of 

neither GSK-3 nor rnTOR affected the induction of ABCA1 and apoE expression by 

combinations of 22(R)-HC and 9CRA (Figure 6.9). Indeed, previous studies in the 

laboratory had shown that 22(R)-HC does not affect the phosphorylation-mediated
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activation/deactivation of GSK-3 and FKHR (Greenow, K., 2004). In contrast to these 

findings, the use of both inhibitors and DN constructs showed a key role for PKC in the 

response (Figures 6.8, 6.10 - 6.14).

Several lines of evidence point to a direct role o f the PKC signalling pathway in the 

regulation of transcriptional activity of some members of the NR family. For example, 

receptors for TH, vitamin D and RARa appear to be targets for PKCs (Delmotte et al., 

1999; Goldberg et al., 1988; Hsieh et al., 1991; Tahayato et al., 1993). It has been shown 

that PKC phosphorylates the DNA binding domain o f several NRs (e.g. RARa, RXRa, VDR 

and THR(3) and that phosphomimetic mutants o f the Ser/Thr phosphorylation sites 

results in the cytoplasmic localization o f RXRa and PPARa (Hsieh et al., 1991; Hsieh et al., 

1993; Pailler-Rodde et al., 1999; Sun e t al., 2007). In addition, it has been demonstrated 

that vitamin D3, estrogens and retinoids can modulate the expression of PKC isoforms in 

certain cells (Berry e t al., 1996; Lissoos et al., 1993; Marino et al., 2002; Simboli-Campbell 

et al., 1994). Research by Delmotte et al. (1999) characterized PKC isoforms for their 

ability to phosphorylate hRARa and identified that PKCa can directly regulate its 

transcriptional activity by altering its ability to dimerize w ith RXRs (Delmotte et al.,

1999). Recently, it has been shown that PKCs also control the transcriptional activity of 

PPARa in rat and human hepatocytes (Blanquart e t al., 2004; Yaacob et al., 2001). 

However, so far, direct regulation of LXRs by the PKC pathway has not been reported. In 

our present study, we demonstrate for the first time, by using PKC inhibitors and by 

transfecting DN PKC plasmids, that they are required for the induction of LXR target 

genes by combinations of 22(R)-HC and 9CRA.

The regulation of AP-1 activity is complex and occurs at several levels, including c-Jun and 

c-Fos gene transcription along with its mRNA and protein turnover. (De Bosscher et al., 

2003; Hazzalin and Mahadevan, 2002; Karin, 1995; Karin et al., 1997; Thomson et al., 1999; 

Wisdom, 1999). Reddy et al. (1997) have presented evidence that IL-1 not only causes a 

rapid and dramatic increase in PI3K activity but also induces the physical interaction of 

its receptor with the regulatory subunit of PI3K, and that overexpression of PI3K may be 

sufficient to induce AP-1 activity and increase c-Fos protein levels. In addition, Bian et al. 

(2004) recently linked the activation of AP-1 (c-Fos) to MCP-1 gene expression in human 

retinal pigment epithelial cells through the PI3K/PKB pathway, which was independent 

of ERK, P38 and JNK/SAPK pathways. Indeed, several previous studies have associated
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PKCa and PKCe to the activation of AP-1 in a variety of cells (Hirai et al., 1994; Soh et al., 

1999; Soh and Weinstein, 2003; Ueda et al., 1996; Vuong et al., 2000). For example, 

Genot et al. (1995) showed that PKCs and, to a lesser extent PKCa, but not PKC^, can 

regulate AP-1 transcriptional activity. In addition, Akimoto et al. (1996) have implicated 

PI3K in the epidermal growth factor-induced AP-1 activation and reported that PKCA, was 

involved in such activation. In addition, another study demonstrated that transcriptional 

activation of both c-Fos and c-Jun by PKCa/5 enhances AP-1 activity (Soh and Weinstein, 

2003). Moreover, a recent study by Song et al. (2005) indicated that bile acids induce 

mucin expression by activation of AP-1 via PKC (Song et al., 2005). In the light of these 

previous studies, the effect o f LY294002 and PKC inhibitors on the LXR agonist-induced 

binding of AP-1 was investigated. EMSA revealed that the LXR ligands induced binding 

of AP-1 to its recognition sequence, and this was almost completely inhibited by 

LY294002 (Figure 6.15) and by inhibitors of PKC-a and -6 (Figure 6.16). It is worth noting 

that AP-1 has already been shown to be essential for the induction of ABCA1 expression 

by LXR agonists through the AP-1 binding site in its prom oter region (See chapter 7).

The observed rapid effects of LXR ligands, 22(R)-HC/9CRA, to induce PKB activity after 

only ih  suggests the existence o f an alternative mechanism in the regulation of ABCA1 

and apoE expression by LXRs, in which LXR activators elicit a non-genomic effect. This 

time period (ih ) is far too rapid to account for the activation of RNA and protein 

synthesis, which starts at 3h and peaks at 24h (Figure 4.6). Non-genomic actions are a 

common property of steroid hormones and other NRs and are frequently associated 

with the activation of various protein-kinase cascades (Losel and Wehling, 2003). Indeed, 

the non-genomic activation of the PI3K pathway has been observed for steroid hormone 

receptors (Bjornstrom and Sjoberg, 2004; Hafezi-Moghadam et al., 2002; Simoncini et al.,

2000). For example, it has been reported that direct interaction between ER-a and the 

P85 regulatory subunit of PI3K results in the phosphorylation o f PKB at Ser473and the 

subsequent regulation of eNOS expression in endothelial cells (Gronemeyer et al., 2004; 

Pozo-Guisado et al., 2004; Simoncini et al., 2000). This concept of non-genomic effect 

has been further substantiated by studies on the actions of androgens (Baron et al., 

2004; Heinlein and Chang, 2002). The androgen receptor interacts directly with the p85 

regulatory subunit of PI3K and promotes the accumulation of PI3K generated lipid 

products, which increase PKB activity. Furthermore, the effect of the GR ligand
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dexamethasone on the activation o f eNOS expression in human endothelial cells is very 

rapid, which indicates a potential non-genomic nature of regulation (Hafezi-Moghadam  

et al., 2002). This effect was found to  be mediated by GR-induced activation of PI3K 

which, through an increase in Ptdlns(3,4,5)P3 levels, activated downstream pathways 

involving PKB (Stellato, 2004). Recently, Moeller e t al. (2006) have reported a new 

model for the action of TH that is very rapid and independent of protein synthesis, which 

is typical of non-genomic actions, and involves the PI3K pathway. In this new mechanism 

of TH action, the ligand bound-TR-|3 interacts directly w ith the regulatory subunit of PI3K 

(P85) in the cytosol (Cao et al., 2005). This leads to the activation of PI3K, and sequential 

phosphorylation and activation o f PKB, leading to rapid activation of mTOR and its 

substrate P70S6K, with detectable phosphorylation within iomin after ligand treatment 

(Moeller et al., 2006). Two aspects distinguish this mechanism of TH action from most 

other non-genomic effects of the hormone. Firstly, it requires ligand binding to TH 

receptors. Secondly, its ultimate effect is genomic with the expression of specific genes 

being induced by this mechanism (M oeller e t al., 2006). This novel model of regulating 

transcription via non-genomic-to-genomic signalling was also found to be applicable in a 

model for the action of ERs, whereby signal transduction pathways connect the non- 

genomic actions of estrogens to genomic responses (Bjornstrom and Sjoberg, 2 0 0 4 ,,

2005). Such a mechanism could potentially be applied to the LXR regulation of ABCA1 

and apoE expression through activation o f the PI3K pathway.

It is at present unclear how ligands could potentially activate downstream signalling 

pathways. Previous studies in vascular SMCs have indicated that the non-genomic 

activation of the PI3K and ERK pathways by PPARy ligands is mediated via novel 

membrane receptors (Patel et al., 2003; Takeda et al., 2001). Therefore, it may be 

possible that a membrane bound LXR exists, however further investigation of this 

aspect is required. On the basis o f published literature and the results presented, a 

hypothetical scheme can be proposed to  explain, at least partially, the mechanisms by 

which LXR agonists (i.e. 22(R)-HC/9CRA) act through membrane bound LXR, which have 

not yet been identified, to induce ABCA1 and apoE expression in THP-1 cells by 

stimulating LXR activity via the PI3K pathway (Figure 6.17).
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consensus sites for proline-dependent kinases, which include MAPKs such as JNK/SAPK 

and ERK1/2 (Chang and Karin, 2001; Morgan, 1997). Hence, such kinases, together with 

kinases that are activated by other signals (e.g. PKB and PKC) could cooperate with the 

NR ligands to enhance transcriptional activation (Germain et al., 2006). Li et al. 2000b  

have demonstrated a molecular link between the activation of PKC-e and the 

transcription factors NF-k B and AP-1 in cardiac myocytes. Furthermore, it was 

demonstrated that both ERK1/2 and JNK/SAPK signalling pathways were essential 

mediators in the activation of these two factors (Li et al., 2000b). In the light of two  

signalling pathways, JNK/SAPK and PI3K, being involved in the upregulation of ABCA1 

expression by LXR agonists, further studies are therefore required to clarify whether 

there is any cross-talk between these pathways. This aspect forms the focus of studies 

presented in the next chapter.

In conclusion, the work presented in this chapter has demonstrated that the PI3K 

pathway is activated in response to treatment of THP-1 macrophages with LXR agonists. 

In addition, our results also show that this pathway is activated rapidly, suggesting once 

again that combinations of 22(R)-HC and 9CRA may have a potential non-genomic 

action. These results are novel and may also be extended to other LXR target genes. 

Ultimately, further knowledge about the molecular mechanisms by which LXR regulates 

transcription of target genes should provide new potential targets for therapeutic 

intervention of atherosclerosis.
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Chapter 7: The interplay between the JNK/SAPK and the 
PI3K signalling pathways in the regulation of ABCA1 gene 
expression by LXR agonists

7.1 Introduction
The studies presented in chapters 5 and 6 demonstrated an important role for the 

JNK/SAPK and PI3K signalling pathways in the 22(R)-HC and gCRA-induced expression of 

ABCA1 and apoE in THP-1 macrophages. Increasing number of recent studies suggest 

that activation of target gene expression by NRs is more complicated than initially 

thought, and may involve the regulation of receptor function through a potential cross­

talk with other transcription factors and intracellular signalling pathways. There are 

several studies that indicate that NRs are also substrates for a multitude of kinases 

activated by a variety of signals, some of which are independent o f the ligands, and such 

phosphorylation is important for ligand-dependent and -independent trans-activation 

(Cenni and Picard, 1999; Mani, 2001; Weigel and Zhang, 1998). Individual phosphorylation 

changes can act to either enhance or inhibit the trans-activation potential of the  

receptor (Table 7.1) (Rochette-Egly, 2003; Shao and Lazar, 1999). For example, ERs are 

phosphorylated at specific serine or threonine residues by MAPK in cells treated with 

epidermal growth factor (EGF) and insulin-like growth factor (IGF) in vivo and these 

phosphorylations enhance the transcriptional activity o f ER (Kato et al., 1995). A specific 

tyrosine phosphorylation site located at the C-terminal region of the ER, which is a target 

for MAPK signalling pathway, is involved in ligand-independent transcriptional activity 

(Bunone et al., 1996; White et al., 1997). Furthermore, the action of a strong AF-1 domain 

in PPARa is modulated by phosphorylation by MAPK and this phosphorylation enhances 

its transcriptional activity (Juge-Aubry et al., 1999). However, phosphorylation of the A/B 

domain of PPARy by the same kinase negatively regulates its transcriptional function. 

Interestingly, this modification reduces the binding of the ligand to the receptor, 

thereby showing that binding can be regulated by intermolecular communication 

between the modulatory domain and the C-terminal LBD (Shao et al., 1998). MAPK- 

dependent phosphorylation of RXR can also alter the biological actions of a partner 

receptor engaged in heterodimerisation (Solomon et al., 1999).
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Table 7.1: Phosphorylation of NRs
NR Kinase Effect of phosphorylation Reference
AR PKA Promotes ligand-dependent and -  

independent transcriptional activation
Nazareth and Weigel, 1996

ER-a PKA Inhibits dimerization and DNA binding Chen et al., 1999
ER-a MAPK Promotes ligand-dependent and -  

independent trans-activation
Kato etal., 1998

ERp MAPK Promotes ligand-dependent and -  
independent trans-activation

Tremblay et al., 1999

GR MAPK Inhibits ligand-dependent trans­
activation

Krstic et al., 1997

GR GSK-3 Inhibits ligand-dependent trans­
activation

Rogatsky et al., 1998b

PR CK2 Regulates hormone-dependent trans­
activation

Zhang et al., 1994

TR-a CK2 Inhibits monomer DNA binding Katz et al., 1995
TR-a PKA Inhibits monomer DNA binding Tzagarakis-Foster and 

Privalsky, 1998
TR-p PKA Promotes RXR heterodimerization Bhat etal., 1994
RAR PKA RA-dependent trans-activation Taneja etal., 1997
RXR MAPK Inhibits RXR and VDR ligand-dependent 

trans-activation
Dowhan and Muscat, 1996

RXR PKA RA-dependent trans-activation in 
muscle cells

Solomon et al., 1999

PPAR-y 2 MAPK Decreases ligand-independent trans­
activation

Adams et al., 1997

PPAR-y 2 MAPK Decreases ligand-binding affinity Shao et al., 1998

PPAR-y 1 JNK/SAPK Decreases ligand-dependent trans­
activation

Camp et al., 1999

HNF4 PKA Promotes DNA binding Jiang etal., 1997
Abbreviations: AR, androgen receptor; CIO, casein kinase2; ER-a/|3, estrogen receptor-a/(3; CR, 
glucocorticoid receptor; GSK-3, glycogen synthase kinase-3; HNF4, hepatocytes nuclear factor-4; 
JNK/SAPK, c-Jun N-terminal kinase/ Stress activated protein kinase; MAPK, mitogen activated 

protein kinase; PKA, protein kinase A; PPAR-y, peroxisome proliferator-activated receptor-y; PR, 
progesterone receptor; RAR, retinoic acid receptor; RXR, retinoid X receptor; TR-a/p, thyroid 
hormone receptor-a/p.

Although cross-talk between NRs and signal transduction pathways primarily involves 

the phosphorylation of NRs, cell signalling pathways can also regulate the action of such 

receptors through direct modification of the coregulator proteins, including coactivators 

and corepressors (Table 7.2) (Lonard and O'Malley, 2007; Rochette-Egly, 2003). For 

most NRs (e.g. ERa/p, PPARa and AR), the phosphorylation of the N-terminal A/B region 

by MAPKs or PKB helps the recruitment of specific coactivators (Barger et al., 2001; 

Driggers et al., 2001; Lin et al., 2001; Mckenna and O'Malley, 2002b; Watanabe et al.,
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2001; Yeh et al., 1999). Indeed, coactivators, such as SRC-1, PGC-1 and P300/CBP, are 

themselves targets for a variety of kinases, including PKA and MAPKs, which enhance 

their ligand-dependent binding to NRs, thereby facilitating the recruitment of chromatin 

remodelers and modifiers such as SWI/SNF and TRAP/DRIP, which decompact the 

repressive chromatin (Huang et al., 2003; Rochette-Egly, 2003).

Table 7.2: Post-translational modifications of selected coregulators
Coregulator Posttranslational

modification
Regulatory effect Reference

PGC-ia Phosphorylation Increased transcriptional activity Puigserver et al., 
2001

SRC-i Phosphorylation Increased transcriptional activity Rowan etal., 
2000

SRC-2 Phosphorylation Increased transcriptional activity Lopez etal., 2001
SRC-3 Phosphorylation Increased transcriptional activity Wu et al., 2002; 

Wu etal., 2004b
N-CoR Phosphorylation Nuclear export Hermanson et 

al., 2002
SMRT Phosphorylation Nuclear export Jonas and 

Privalsky, 2004
CBP-1 Phosphorylation Loss of repressor activity Barnes et al., 

2003
PCBP-1 Phosphorylation Conversion to a transcriptional coactivator Meng etal., 2007
Abbreviations: CBP, CREB binding protein; N-CoR, nuclear receptor corepressor; PCBP-1, poly(rC) 
binding protein-1; PGC-ia, peroxisome proliferator-activated receptor gamma coactivator-ia; 
SMRT, Silencing mediator for retinoid and thyroid hormone receptors; SRC, steroid receptor 
coactivator.

These interactions between chromatin remodelling complexes and coactivators increase 

the efficiency of recruitment of components of the RNA polymerase II transcriptional 

machinery and modulate positively the expression of target genes in response to a 

particular ligand (Figure 7.1) (Rochette-Egly, 2003). In contrast, phosphorylation of 

corepressors, such as NCoR and SMRT subsequent to the activation of MAPKs, has been 

shown to induce their redistribution from the nucleus to  the cytoplasm and this 

correlates with an inhibition of their interaction with NRs (Germain et al., 2006; Hong 

and Privalsky, 2000).

It is also possible that phosphorylation can contribute to the attenuation and/or 

termination of the ligand response. However, the mechanisms by which post- 

translational modification facilities such an inhibition of NR action remains unknown. 

Phosphorylation may potentially inhibit receptor signalling at several levels, including
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exclusion of NRs from the transcription complex, reduction in the affinity of ligand 

binding or induction of NR degradation by the ubiquitin-proteasome pathway (Aranda 

and Pascual, 2001; Bastien and Rochette-Egly, 2004; Gronemeyer et al., 2004). Purpose 

of such negative effects would be to ensure the activation of the right gene by the right 

activator at the right time for a defined period (Rochette-Egly, 2003).

M e d ia to r  j  GTFs

Interaction Nuclear
receptor

P O 4

Pecruitsnent o f the 
transcription 

machinery

Figure 7.1 Positive regulation of nuclear receptor trans-activation through phosphorylation.

NR phosphorylation by kinases, activated in response to a variety of signals (MAPKs or PKB), aids 
the recruitment of coactivators, thereby facilitating the recruitment of histone remodelling 
complexes, which decondense the repressive chromatin. In addition, NR phosphorylation 
synergizes with the concomitant phosphorylation of the associated coactivators, thereby 
affecting the trans-activation potential of the NRs. Phosphorylation of the NR also participates in 
the recruitment of components of the RNA polymerase II transcriptional machinery. CBP, 
p30o/CREB-binding protein; HAT, histone acetyltransferase; HMT, histone methyltransferase; 
pi6o family coactivators proteins (SRC-1,-2,-3 and GRIP1). Figure modified from Rochette-Egly, 
2003.
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Overall, therefore, phosphorylation has been shown to modulate the activity of many 

NRs, with a range of functions being affected, such as dimerisation, DNA binding and 

interactions with cofactors, all of which are likely to affect the trans-activation function 

of these transcription factors (Table 7.1 and 7.2) (Chen e t al., 1999; Hammer et al., 1999). 

Although phosphorylation is usually secondary to ligand activation for most NRs, it is 

becoming increasingly apparent that phosphorylation may be the primary means for 

modulating the action of certain receptors (Hammer et al., 1999; Lee et al., 2000). The 

ability of kinase cascades to regulate NR function demonstrates that the activity of these 

receptors can be modified depending on the physiological state of the cell. Thus, many 

factors acting on kinases can modulate the response of NRs to their ligands (Germain et 

al., 2006). In addition, it is becoming increasingly clear that phosphorylation of NRs and 

the modification of coregulators is necessary for the trans-activation of certain genes, 

and that these modification cooperate with the receptor-ligand complex in order to 

achieve maximal transcription activity (Germain et al., 2006; Rochette-Egly, 2003).

Recent work has demonstrated that LXRs require coactivators for effective 

transcriptional activation of certain genes (Huuskonen et al., 2004a; Oberkofler et al.,

2 0 0 3 ). These authors showed that overexpression of the coactivators SRC-1 and P 30 0 , 

either alone or in combination, increased the luciferase activity driven by the wild-type 

ABCA1 promoter, and that the same coactivators bound to the ABCA1 promoter when 

the cells were treated with oxysterols as judged by chromatin immunoprecipitation 

(ChIP) assays. In addition, a recent study showed for the first time that LXRs are 

phosphoproteins and that LXR-a is phosphorylated at a single Ser 198 site in the hinge 

region of the protein, which is a consensus sequence for MAPK (Chen et al., 2006). 

Furthermore, it has been shown that direct phosphorylation of LXR-a by PKA results in a 

decrease in its DNA binding and recruitment of coactivators by LXRs (Yamamoto et al., 

2007 ). Moreover, its dimerization partner RXR has been shown to be affected by several 

kinases, including MAPKs and PKA (Mann et al., 2005; Solomon et al., 1999). In the light 

of these studies and the outcome of previous research on this project (Chapters 3-6), the 

aim of the studies presented in this chapter was to investigate the potential interplay 

between the two identified cell signalling pathways in the LXR-mediated activation of 

ABCA1 and apoE expression in macrophages.
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The experiments in this chapter were carried out with the aim of determining whether 

there was a cross-talk between JNK/SAPK and PI3K/PKB pathways in the regulation of 

ABCA1 and apoE gene expression by 22(R)-HC and 9CRA. For these investigations, the 

effect of SP600125 on the activation of PKB by 22(R)-HC and 9CRA in THP-1 macrophages 

was studied first. Secondly, the effect of LY294002 on the phosphorylation of JNK/SAPK 

was examined. Thirdly, the effect of a PAN PKC inhibitor BIM on the phosphorylation of 

PKB, JNK/SAPK, SEK1/MKK4 and c-Jun was analysed. All these aims were achieved 

through the continuing use of pharmacological inhibitors and antibodies specifically 

reacting with phosphorylated epitopes. Further studies on the potential role of the AP1 

family in the activation of the ABCA1 promoter, and the potential interactions between 

the JNK/SAPK and PI3K/PKB pathways on this transcription factor were carried out by 

EMSA. Figure 7.2 illustrates the overall experimental strategy for the work presented in 

this chapter.

EMSA analysis o f p ro te in  

b ind ing

Analysis o f the  in te rac tions be tw een  th e  

JNK/SAPK and PI3K pathw ays in th e  re g u la tio n  

o f  ABCA1 gene expression by LXRs

1. P re-treatm ent fo r ih  w ith  

inh ib ito rs

2 . M o n ito r changes in 

phosphory la tion  o f s ignalling 

pro te ins by W estern b lo ttin g

Figure 7.2 Summary of the experimental strategy used to delineate the cross-talk between 

signal transduction pathways underlying LXR agonist-mediated activation of ABCA1 gene 

expression in THP-1 macrophages.
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7.2 Results 

7.2.1 Effect of SP600126 on the phosphorylation of PKB induced by 22(R)- 
HC and 9CRA
In order to determine any potential cross-talk between the PI3K/PKB and JNK/SAPK 

signalling pathways, the effect of JNK/SAPK inhibitor SP600125 on the phosphorylation 

status of PKB in THP-1 macrophages by 22(R)-HC/9CRA was assessed. As shown in Figure 

7.3, pre-treatment of THP-1 cells with 50pM and ioopM  SP600125 inhibited the 22(R)- 

HC/9CRA-stimu!ated phosphorylation of PKB. On the other hand, the levels of total PKB 

were not affected. These results therefore suggest the existence of a potential cross­

talk between the PI3K/PKB and JNK/SAPK signalling pathways.

7.2.2 Effect of the PI3K inhibitor LY294002 on the 22(R)-HC and 9CRA- 
mediated phosphorylation of JNK/SAPK in THP-1 macrophages
The phosphorylation status of JNK/SAPK by 22(R)-HC and 9CRA in the presence of the

PI3K/PKB pathway inhibitor, LY294002, was next evaluated. As shown in Figure 7.4, the 

increased levels of phospho-JNK/SAPK seen in the presence of 22(R)-HC and 9CRA was 

enhanced further by LY294002. The amount of total JNK/SAPK protein was not affected 

by LY294002.

Previous work by Peron et al. (2001) reported that PI3K, and its downstream targets, can 

also activate c-Jun in a JNK/SAPK independent manner. Because it was possible that the 

PI3K pathway may converge with the JNK/SAPK pathway at the level of c-Jun, the effect 

of LY294002 on the 22(R)-HC and gCRA-mediated induction o f c-Jun phosphorylation 

was examined. Following inhibition of PI3K by LY294002, the level o f phosphorylated c- 

Jun was not changed compared to the control (Figure 7.4). Similarly, inhibition of PI3K 

increased the total cell content of c-Jun protein seen in cells treated with 22(R)-HC and 

9CRA (Figure 7.4). The expression of (5-actin was monitored as a loading control by re­

probing the blots with an anti-p-actin antibody. These results suggest once again some 

form of interplay between the JNK/SAPK and PI3K/PKB signalling pathways that may 

play an important role in the LXR agonist-induced ABCA1 and apoE gene expression in 

THP-1 cells.
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A
22(R)HC/9CRA - + - + +
SP600125 (pM) -_________-_______ 50_______50______ too______ too

P- PKB
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Figure 7.3 Effect of SP600125 on the 22(R)-HC and gCRA-mediated posphorylation of PKB at Ser 
473 in THP-1 macrophages.

Differentiated THP-1 macrophages were incubated for ih in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM) (Lig) in the absence or the presence of 
SP600125 at the indicated concentrations (50 and ioopM). In addition, cells were treated with 
DMSO as a vehicle control (Cih). The inhibitors were added ih before the ligand (pre-treatment). 
Western blot analysis was carried out using equal volume of lysates (5opI). Blotted membranes 
were incubated with anti-phospho-PKB and anti-total-PKB primary antibodies. Antigen-antibody 
complexes were detected using the ECL detection system. The image shown in panel A is 
representative of four independent experiments. Densitometric analysis was carried out on the 
data and presented as relative expression (Rel Exp) (mean ±SD) normalised to the expression of 
T-PKB). The relative expression in the presence of the ligand alone (Lig) has been arbitrarily 
assigned as 1, as shown in panel B (*P<0.05, **P<o.oi compared to control).
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Figure 7.4 Effect of LY294002 on the phosphorylation of JNK/SAPK by 22(R)-HC and 9CRA in THP- 
1 macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (2pg/ml) and 9CRA (iopM) (Lig) in the absence or the presence of LY294002 at the indicated 
concentrations. In addition, cells were also treated with DMSO as a vehicle control (C24h). The inhibitors 
were added ih before the ligand (pre-treatment). Western blot analysis was carried out using 25-sopl of 
lysates. Blotted membranes were incubated with primary antibodies against phospho-JNK/SAPK 
(Thri83/Tyri85) and total-JNK/SAPK (A) or phospho-c-Jun and total-c-Jun (B). Antigen-antibody complexes 
were detected using the ECL detection system. Blotted membrane for c-Jun Western was re-probed with an 
anti-p-actin antibody to ensure equal loading of protein in each samples. The image shown in panels A and B 
is representative of two and three independent experiments respectively. Densitometric analysis was 
carried out on the data and presented as relative expression (Rel Exp) (average panel C) and (mean +SD 
panel D) normalised to the expression of total JNK/SAPK (panel A) or (3-actin (panel B). The relative 
expression in the presence of the ligand alone (Lig) has been arbitrarily assigned as 1.
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7.2.3 Effect of inhibition of PKC on the activation of PKB by 22(R)-HC and 

9CRA
The effect of inhibition of PKC on the activation of PKB by combinations of 22(R)-HC and 

9CRA was examined using the PAN PKC inhibitor B1M. As shown in Figure 7.5, the level 

of phospho-PKB was strongly enhanced following incubation of the cells with BIM, 

thereby suggesting some sort of interaction. However, pre-treatment of the cells with 

BIM does not inhibit induced phosphorylation of PKB by 22(R)-HC plus 9CRA thereby 

suggesting that PKC is not required for the activation of PKB in THP-1 cells.

7.2.4 Effect of BIM on the 22(R)-HC and 9CRA-medlated phosphorylation 
of JNK/SAPK in THP-1 macrophages
Western blot analysis was carried out in order to investigate whether BIM affected the 

activation of JNK/SAPK by 22(R)-HC plus 9CRA in THP-1 cells. As shown in Figure 7.6, BIM 

attenuated the enhanced phosphorylation of JNK/SAPK seen in the presence of the 

ligands without affecting the total levels of the protein. These data therefore suggests 

that the increased phosphorylation of JNK/SAPK in the presence of the ligands was 

dependent on the activation of PKC.

To further analyse exactly where PKC signalling converges on the JNK/SAPK cascade 

following stimulation of THP-1 cells with the ligands, the effect o f BIM on the changes in 

phosphorylation of SEK1/MKK4 and c-Jun were examined. As shown in Figure 7.7, pre­

treatment of the cells with BIM attenuated the phosphorylation of SEK1/MKK4 seen in 

the presence of combinations of 22(R)-HC and 9CRA without affecting the total level of 

the protein. On the other hand, BIM attenuated the ligand-induced levels of phospho- 

and total-c-Jun (Figure 7.7). Overall, these results support the hypothesis that the 

activation of the SEKi/MKK4-JNK/SAPK-c-Jun signalling pathway in THP-1 macrophages 

by the ligands was PKC dependent. Thus, PKC was likely to be an upstream component 

in the JNK/SAPK pathway responsible for the regulation o f ABCA1 and apoE expression 

by 22(R)-HC and 9CRA.

7.2.5 Effect of other PKC inhibitors on JNK/SAPK activation by 22(R)-HC 
and 9CRA
To investigate the potential role of various isoforms of PKC on 22(R)-HC plus 9CRA- 

mediated activation of JNK/SAPK in THP-1 macrophages, three isoform-specific inhibitors 

were used, rottlerin, G06976 and G06983. These inhibitors have been shown to
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Figure 7.5 Effect of PKC inhibitor bisindoylmaleimide on the 22(R)-HC and gCRA-mediated PKB 
posphorylation at Ser 473 in THP-1 macrophages.

Differentiated THP-1 macrophages were incubated for ih in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM) in the absence or the presence of 2pM of 
BIM. In addition, cells were treated with DMSO as a vehicle control (Cih). The inhibitors were 
added ih before the ligand (pre-treatment). Western blot analysis was carried out using equal 
volume of lysates (5opl). Blotted membranes were incubated with anti-phospho-PKB and anti- 
total-PKB primary antibodies. Antigen-antibody complexes were detected using the ECL 
detection system. The image shown in panel A is representative of three independent 
experiments. Densitometric analysis was carried out on the data and presented as relative 
expression (mean ±SD, from three experiments). The relative expression in the presence of the 
ligand alone (Lig) has been arbitrarily assigned as 1, as shown in panel B; *P<0.05; **P<o.oi.
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Figure 7.6 Effect of bisindoylmaleimide on JNK/SAPK phosphorylation by 22(R)-HC and 9CRA in 
THP-t macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM) in the absence or the presence of 2pM of 
BIM. In addition, cells were also treated with DMSO as a vehicle control (C24I-1). The inhibitors 
were added ih before the ligand (pre-treatment). Western blot analysis was carried out using 
equal volume of lysates (sopl). Blotted membranes were incubated with anti-phospho-JNK/SAPK 
(Thn83/Tyn85) or anti-total-JNK/SAPK primary antibodies. Antigen-antibody complexes were 
detected using the ECL detection system. The image shown in panel A is representative of three 
independent experiments. Densitometric analysis was carried out on the data and is presented as 
relative expression (mean ±SD, from three experiments). The relative expression in the presence 
of the ligand alone (Lig) has been arbitrarily assigned as 1, as shown in panel (B) (**P<o.oi; 
***P<0.001).
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Figure 7.7 The effect of bisindoylmaleimide on the 22(R)-HC and gCRA-mediated SEKt/MKK4 and 
c-Jun phosphorylation in THP-i macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (2pg/ml) plus 9CRA (iopM) in the absence or the presence of 2pM of BIM. In addition, cells 
were treated with DMSO as a vehicle control (C24h). The inhibitors were added ih before the ligand (pre­
treatment). Western blot analysis was carried out using equal volume of the lysates (25-50PI). Blotted 
membranes were incubated with primary antibodies against phospho-SEKi/MKK4 or total-SEKi/MKK4 (A) 
and phospho-c-Jun or total-c-Jun (B). Antigen-antibody complexes were detected using the ECL detection 
system. The image shown in panels A and B is representative of three independent experiments. 
Densitometric analysis was carried out on the data and presented as relative expression (Rel Exp) (mean 
±SD, from four experiments) normalised to the expression of total-SEK1 /M KK4 (panel A) or p-actin (panel B). 
The relative expression in the presence of the ligand alone (Lig) has been arbitrarily assigned as 1, as shown 
in panels C and D (***P<o.ooi).
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selectively inhibit PKC isoforms 8, a  and £ respectively (Gschwendt e t al., 1994; Martiny- 

Baron et al., 1993; Wang et al., 1998).

The increased phosphorylation of JNK/SAPK on Thn83/Tyn85 seen in cells treated with 

combinations of 22(R)-HC and 9CRA was attenuated by pre-treatment of the cells with  

G06976 or Rottlerin (Figure 7.8). The amount of total JNK/SAPK protein levels did not 

vary with ligand treatment. On the other hand, treatm ent of the cells with G06983, a 

selective inhibitor of PKC£, had no effect on the levels of phospho- and total-JNK/SAPK 

proteins (Figure 7.8). Overall, these results with pharmacological inhibition of PKCa 

(G06976) and PKC8 (Rottlerin) strongly suggest that these kinases are likely to regulate 

the phosphorylation of JNK/SAPK.

7.2.6 EMSA analysis of protein binding to the ABCA1 promoter
Our studies into the regulation of ABCA1 expression in response to LXR agonists have

suggested a potentially important role for the PI3K and JNK/SAPK pathways. Oxysterols 

and other NR agonists have been shown to affect AP-1 DNA binding activity in several 

cell lines and a recent study demonstrated that oxysterols induce the binding of AP-1 

proteins via EMSA, and an increase in the expression of an AP-1 reporter as a result of 

activation of LXRs during keratinocyte differentiation (Schmuth et al., 2004). Analysis of 

the proximal promoter region of the human ABCA1 gene has revealed the presence of 

several putative regulatory elements for a number of transcription factors, including AP- 

1, NF-k B and SP-1 (see Figure 1.6). Therefore, the putative AP-1 binding site in the human 

ABCA1 promoter was selected for EMSA to further determine the role of JNK/SAPK in 

the LXR-mediated upregulation of ABCA1 gene expression and to investigate the  

potential involvement of this transcription factor in the response.

Whole cell protein extracts were prepared from untreated THP-1 macrophages and 

those treated for 24h with LXR agonists. The EMSA probe, containing the AP-1 element 

of the human ABCA1 promoter, was radiolabeled and incubated in a protein binding 

reaction with whole cell protein extracts. As shown in Figure 7.9A, the AP-1 DNA-binding 

activity was increased when extracts were used from THP-1 cells stimulated with either 

22(R)-HC/9CRA or T0901317. The specificity of DNA-protein interactions was 

demonstrated by the ability of excess unlabeled DNA probe to  compete for complex
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Figure 7.8 The effect of isoform-specific PKC inhibitors on JNK/SAPK phosphorylation by 22(R)- 
HC and 9CRA in THP-t macrophages.

Differentiated THP-1 macrophages were incubated for 24h in RPMI medium 1640 containing 10% 
(v/v) LPDS with combination of 22(R)-HC (2pg/ml) and 9CRA (iopM) in the absence or the 
presence of the PKC isoform inhibitors Rottlerin (6pM), G06976 (5pM) and G06983 (ionM, 
6onM). In addition, cells were treated with DMSO as a vehicle control (C). The inhibitors were 
added ih before the ligand (pre-treatment). Western blot analysis was carried out using sopl of 
cell lysates. Blotted membranes were incubated with primary antibodies against phospho- 
JNK/SAPK (Thn83/Tyn85) or total-JNK/SAPK. Antigen-antibody complexes were detected using 
the ECL detection system. The image shown in panel A is representative of two independent 
experiments. Densitometric analysis was carried out on the data and presented as relative 
expression (Rel Exp) (average). The relative expression in the presence of the ligand alone (Lig) 
has been arbitrarily assigned as 1, as shown in panel B.
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Figure 7.9 Effect of LXR agonists on binding of AP-i to a putative recogination sequence in the 
ABCAi and apoE gene promoters.

Differentiated THP-1 macrophages were cultured for 24h in RPMI medium 1640 containing 10% (v/v) LPDS 
with 22(R)-HC (2pg/ml) and 9CRA (iopM ) or T1317 (iopM ). In addition, cells were also treated with DMSO as a 
vehicle control. Whole cell protein extracts were prepared. EMSA analysis was carried out using the 
radiolabelled AP-1 genomic probe as indicated. DNA-protein complexes and free probe are shown by vertical 
lines labelled C and FP, respectively. The results shown are representative of three and tw o (panel A and B) 
independent experiments respectively.
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formation whereas no such competition was seen with a nonspecific NF-k B binding site 

probe (Figure 7.10). These findings therefore suggest that activation of LXRs by natural 

or synthetic agonists increases the activity of AP-1 to its putative recognition sequence in 

the ABCA1 gene promoter. A similar action o f LXR agonists was also seen with the AP-1- 

like sequence from the apoE gene promoter (Figure 7.9B).

7.2.7 The effect of inhibitors on LXR agonist-mediated changes in AP-1 
DNA-binding
The potential role of the JNK/SAPK and PI3K pathways on the induction of AP-1 DNA 

binding was investigated using the inhibitors SP600125, curcumin and LY294002. The 

cells were pre-treated with these inhibitors in the presence or the absence of 22(R)- 

HC/9CRA or T0901317. Protein extracts were then subjected to EMSA. As shown in Figure 

7.11, the activity of AP-1 binding was increased after treatm ent of the cells for 24h with  

22(R)-HC/9CRA or T0901317. This ligand-dependent stimulation of AP-1 DNA binding was 

attenuated in the presence of the JNK/SAPK inhibitors, SP600125 and curcumin, and the 

PI3K inhibitor LY294002.

7.3 Discussion
The trans-activation potential of NRs is regulated by both ligand binding and 

phosphorylation, and they are substrates for the actions o f a variety of kinases (Bastien 

and Rochette-Egly, 2004; Gianni et al., 2002a; Rochette-Egly, 2003). Studies presented in 

the previous chapters showed that ABCA1 and apoE expression was induced by LXR 

agonists and this was attenuated by inhibitors of JNK/SAPK and PI3K signalling pathways 

(Chapter 4). In addition, we have previously shown that the 22(R)-HC/9CRA-induced 

expression of LXR target genes is mediated through the activation of the JNK/SAPK and 

PI3K pathways (See chapters 5 and 6). In the present study, the potential cross-talk 

between these tw o pathways was investigated. Our results indicate for the first time 

that there is a potential cross-talk between the tw o signal transduction pathways, 

JNK/SAPK and PI3K, activated by LXR agonists in THP-1 macrophages. The 22(R)- 

HC/gCRA-dependent phosphorylation of both JNK/SAPK and PKB was attenuated by 

treatment of the cells with the JNK/SAPK inhibitor SP600125 (Figure 7.3). On the other 

hand, inhibition of the PI3K pathway with LY294002 amplified the observed 22(R)- 

HC/gCRA-induced increase in JNK/SAPK and c-Jun phosphorylation (Figure 7.4). In 

addition, the cell content of the c-Jun protein was increased by the inhibitor in the
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Figure 7.10 Competition EMSA on binding of AP-1 to a putative recogination sequence in the 
ABCA1 promoter.

Differentiated THP-1 macrophages were cultured for 24h in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM) or T1317 (iopM). In addition, cells were 
treated with DMSO as a vehicle control. Whole cell protein extracts were prepared. EMSA 
analysis was carried out using radiolabelled AP-1 genomic sequence probe. Competition assays 
were carried out in the presence 200-fold molar excess of unlabeled specific (AP-1) or nonspecific 
(NF-kB) competitor oligonucleotides. The major AP-1: DNA- protein complex is shown by a vertical 
line labelled C. The free probe has migrated off the gel. The result shown is representative of two 
independent experiments.
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Figure 7.11 The effect of inhibitors on the LXR ligands-induced binding to AP-1 genomic 
sequence.

Differentiated THP-1 macrophages were treated fo r 24h in RPMI medium 1640 containing 10% 
(v/v) LPDS with 22(R)-HC (2pg/ml) and 9CRA (iopM ) or T1317 (iopM ) in the absence or the 
presence of the inhibitors SP600125, curcumin and LY294002 at the indicated concentrations. In 
addition, cells were also treated with DMSO as a vehicle control. The inhibitors were added ih 
before the ligand (pre-treatment). Whole cell protein extracts were prepared and EMSA analysis 
was carried out using radiolabelled AP-1 genomic probe. The major AP-1: DNA-protein complexes 
are shown by a vertical line labelled C. The free probe has migrated o ff the gel. The results shown 
are representative of two independent experiments.



CHAPTER SEVEN - 2 6 3

presence of the ligands (approximately 2-fold induction) (Figure 7.4). Feedback response 

mechanism represents one potential explanation for these results. In addition, 22(R)- 

HC/9CRA activated the JNK/SAPK pathway through a PKC-dependent pathway as the 

PAN PKC inhibitor BIM attenuated the phosphorylation of JNK/SAPK, SEK1/MKK4 and c- 

Jun by LXR agonists in THP-1 cells. Finally, another important result from the studies 

presented in this chapter was the binding of AP-1 to its putative recognition sequence in 

the human ABCA1 promoter and that such binding was induced by LXR agonists in THP-1 

macrophages. Overall, therefore, our results allow postulation of a potential model for 

this interesting cross-talk between signal transduction pathways (Figure 7.12) in the 

actions of LXR agonists. Further studies could therefore focus on confirming this model.

Figure 7.12 Potential model for LXR agonist-induced JNK/SAPK- and Pl3K-dependent activation of 
ABCA1 and apoE gene expression in THP-1 macrohages.

LXR agonists stimulate the phosphorylation and activation of SEK1/MKK4, which then induces c- 
Jun-mediated AP-1 activation in a JNK/SAPK dependent manner. In addition, 22(R)-HC/9CRA also 
activates PKB by phosphorylation on Ser473 residue leading to PKC activation. PKC then causes 
cross-talk between PI3K/PKB/PKC and SEKi/MKK4/JNK/SAPK/c-Jun pathways. These pathways 
then regulate AP-1-dependent activation of ABCA1 and apoE gene expression, and hence 
cholesterol efflux. Whether the activation of these pathways requires direct binding of the LXR 
agonists to its receptor or if this is a non-genomic effect remains to be determined.
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Phosphorylation of NRs provides an important link between signalling pathways and the  

regulation of expression of downstream genes. Such cross-talk has previously been 

described for several NRs. For example, recent reports have demonstrated that PKB 

negatively regulates retinoic acid (RA)-induced P38 activation (Gianni et al., 2002b; Kim 

et al., 2001; Park e t al., 2002). Interestingly, Gianni e t al. (2002b) also demonstrated that 

the RA-induced downregulation of the PI3K/PKB pathway targets the phosphorylation of 

RARy2 through the activation of the P38 kinase. Thus, RARy2 phosphorylation, RARy2 

turnover and RARy2-mediated transcription of target genes are interrelated events 

resulting from the RA-induced downregulation of the PI3K/PKB pathway. The 

mechanism by which RA inhibits the PI3K/PKB pathway has been elucidated by Gianni et 

al. (2002b). They showed that RA acts at tw o levels, phosphorylation of the phosphotase 

PTEN and inhibition of PI3K through its p85a subunit, both of which lead to  inhibition of 

PKB. Srinivas et al. (2005) showed that activation of JNK/SAPK by stress signals leads to  

phosphorylation of RARa, resulting in the ubiquitin-mediated proteasomal degradation 

of the receptor. Later on, the authors explored the role of PKB in the regulation o f RAR 

function and found that constitutively active PKB phosphorylates RARa at Serg6 residue 

in its DNA binding domain and inhibits its trans-activation potential (Srinivas et al., 2006). 

While the mechanism has not been fully defined, one possibility is that RARa 

phosphorylation by PKB inhibits the ability of RAR to recruit essential coactivators to the 

receptor complex.

The potential cross-talk between the JNK/SAPK and the survival-associated PI3K/PKB 

pathways may have relevance to other aspects of cellular function as LXR-dependent 

gene expression has been found to be important for macrophage survival (Joseph et al.,

2004). In addition, such a role has also been shown in signalling by other NRs. For 

example, Lin et al. (2001) demonstrated that Akt phosphorylates AR at Ser-210, inhibits 

AR trans-activation and blocks AR-induced apoptosis. Analysis of the literature suggests 

that PI3K is a key anti-apoptotic effector in the growth factor signalling pathway. PKB, 

beyond its role in regulating NR function, is also the product o f a proto-oncogene and 

phosphorylates a number of substrates that are important regulators of cell survival via 

anti-apoptotic effects (Srinivas et al., 2006; Vivanco and Sawyers, 2002). Such an action 

serves a key role in mediating the anti-apoptotic actions of growth factors on cells 

(Datta et al., 1997). JNK/SAPK is a pathway well known for mediating stress-related 

responses and is important in inducing apoptosis. Indeed, several studies have shown



CHAPTER SEVEN - 2 6 5

that the activation of MAPKs and, particularly JNK/SAPKs, might be positively or 

negatively regulated by the activation of PI3K. Some investigators have reported that 

inhibitors of PI3K block activation of MAPKs and JNK/SAPK, suggesting a positive 

regulatory role for the PI3K pathway in the MAPK cascade (Klippel et al., 1996; Logan et 

al-> 1997; Lopez-llasaca et al., 1997). However, an increase in MAPK activity in some cell 

types in response to PI3K inhibitors implies a potential negative regulatory effect of 

PI3K/PKB on the MAPK pathway (Hui e t al., 2005; Kwon et al., 2000; Levresse et al., 

2000; Madge and Pober, 2000; Murakami, 2005; Park et al., 2002). For example, 

Murakami et al. (2005) showed that angiopoietin-1-dependent phosphorylation of PKB 

through PI3K leads to the inhibition of SEK1/MKK4-JNK/SAPK phosphorylation in human 

endothelial cells. In this case, inhibiting SEK1/MKK4 activation by angiopoietin-1, which 

occurs via phosphorylation of PKB at Ser 80, leads to the suppression of JNK/SAPK 

signalling pathway (Murakami et al., 2005; Park et al., 2002).

Recently, several mechanisms of cross-talk between JNK/SAPK and PKB pathways have 

been reported where the activation o f PKB, as a potent survival factor, inhibits 

JNK/SAPK phosphorylation in many cell types. For example, PKB decreases JNK/SAPK 

signalling by phosphorylating apoptosis signal regulating kinase 1 (ASK1) at residue Ser 

83 (Kim et al., 2001). It has also been shown that PKB interacts w ith JNK-associated 

scaffolding protein (JIP1) and decreases the ability o f JIP1 to  enhance JNK/SAPK 

activation (Kim et al., 2002). Barthwal et al. (2003) reported that phosphorylated PKB 

(Ser 473) could also phosphorylate Mixed lineage kinase3 (MLK3) on Ser 674, which then 

inhibits MLK3-mediated JNK/SAPK activation. Other studies indicate that PKB can 

regulate protein kinases upstream of JNK/SAPK, thereby inhibiting the phosphorylation 

of JNK/SAPK and protecting against JNK/SAPK-dependent apoptosis in susceptible cells 

(Brazil et al., 2004; Shahabi et al., 2006).

Cross-talk between different signalling pathways is relatively common and the 

involvement of PKC in NR regulation of target gene expression has been discussed in the 

previous chapter. Although studies in chapter 6 had shown that inhibitors of PKCs were 

able to inhibit the 22(R)-HC/9CRA-mediated induction of ABCA1 and apoE expression, it 

was necessary to investigate any potential cross-talk between PKC and JNK/SAPK and 

PI3K/PKB. Our results show that inhibition of PKC causes PKB activation by 22(R)- 

HC/9CRA to increase slightly (approximately 2-fold) (Figure 7.5). Accordingly, it would be
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reasonable to speculate that PI3K-PKB modulates PKC activity and PKC could potentially 

negatively regulate PKB activity. Previous studies suggested that PI3K activity, through 

the generation of 3-phosphorylated lipids, could act as a second messenger for the 

regulation of most PKC isoforms (Akimoto et al., 1996; Moriya et al., 1996; Zhang et al., 

1995). In addition, Konishi et al. (1996) have shown that PKB is able to phosphorylate 

PKC-5, with which it associates via the PH domain.

Our results also suggest that PKC is potentially an upstream effector o f the JNK/SAPK 

pathway activated by LXR agonists as inhibition of phosphorylation of JNK/SAPK 

cascade via PAN PKC inhibitor BIM was seen in THP-1 cells treated with 22(R)-HC/gCRA 

(Figures 7.6-7.7). Accordingly, it would be reasonable to speculate that PKB-nPKCe/6- 

dependent JNK/SAPK activation by 22(R)-HC/9CRA mediates ABCA1 and apoE gene 

expression in THP-1 cells. In addition, the stimulatory effect of the ligand-mediated 

phosphorylation of JNK/SAPK was inhibited in THP-1 cells by inhibitors of PKCa/8 (Figure 

7.8). Furthermore, the results also showed that the PKC£ inhibitor G06983 had no effect 

on the activation of JNK/SAPK by the ligands (Figure 7.8). However, PKC^ inhibitor 

G06983 attenuated the expression of ABCAi-induced by 22(R)-HC and 9CRA (Figure 

6.10). Indeed, regulation of several other NRs (e.g. GR, PPAR and ER) through the  

activation of the MAPK cascade has also been documented and several studies suggests 

that PKC, as an activator of the MAPK pathway, might participate indirectly in the 

control of the transcriptional activity of these NRs (Hu e t al., 1996; Kato et al., 1995; 

Schonwasser et al., 1998; Ueda et al., 1996). For example, vitamin D3 has been shown to  

activate the MAPK signalling cascade, including JNK/SAPK, through the activation of PKC 

(Beno et al., 1995). In this context, down regulation of PKC has been reported to block 

completely the activation of JNK/SAPK by phorbol esters in HeLa cells (Werlen et al., 

1998).

Accordingly, our results suggest that novel PKC isoforms could be a link connecting PI3K 

to JNK/SAPK signalling pathways, and also suggests a link between PKC and JNK/SAPK 

since the PKC inhibitor BIM completely blocked the phosphorylation of the JNK/SAPK 

cascade. On the other hand, inhibition of PKC h$d a stimulatory effect on PKB 

phosphorylation, thereby indicating that PKB stimulation could be upstream of PKC in 

the PI3K pathway. However, further studies such as monitoring the effect of the  

pharmacological inhibitor LY294002 on PKC activity are required to confirm these
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finding. Several studies demonstrate a cross-talk between the JNK/SAPK and PI3K 

signalling pathways (Greco et al., 2006; Hui et al., 2005; Lee et al., 2006a; Shahabi e t al., 

2006). Numerous studies also implicate PKC in signalling pathways leading to the 

activation of various MAPKs (Berra et al., 1995; Chang et al., 1998; Ghaffari-Tabrizi et al., 

1999; Vincent et al., 2006). For example, PKCs have been shown to function as upstream 

components of the JNK/SAPK pathway. In addition, PKCs has been shown to induce the 

phosphorylation and activation of ERK1/2 and JNK/SAPK in rabbit cardiomyocytes (Ping 

et al., 1999a; Ping et al., 1999b). Moreover, work by Li et al. (2000) has established that 

MAPKs function as critical intermediate signalling molecules that transduce signals from  

PKC-s to produce the activation of AP-1 and NF-k B in cardiomyocytes (Li e t al., 2000b). It 

has also been shown that bile acids activate PKC, which then initiate a MAPK signal 

transduction pathway to phosphorylate JNK/SAPK, and thereby suppress the expression 

of the CYP7A1 gene (Chiang John, 2002). Recently, Greco et al. (2006) have shown that 

direct activation of PKC occurs through phosphorylation of PKB on Ser473, suggesting 

that PKB is upstream to PKC-6/s. The authors also showed that this activation was 

sufficient to activate the JNK/SAPK cascade. Taken together, our novel results, along 

with those from other laboratories detailed above, suggest that a potential interaction 

between the activation of PI3K/PKB/PKC and JNK/SAPK signalling cascade is mediated by 

22(R)-HC and 9CRA, which work together in the upregulation of ABCA1 expression in 

human THP-1 macrophages.

Because of the essential role played by ABCA1 gene expression induced by LXR agonists 

in macrophages in relation to RCT, and its identification as a protector against the risk of 

CVD (Schmitz and Langmann, 2005), further studies were carried out on the regulation 

of ABCA1 expression by LXR agonists. Figure 1.6 illustrates the presence of several 

putative regulatory elements for known transcription factors in the ABCA1 promoter, 

including AP-1, SP-1 and NF-k B. It has been shown earlier in chapter 5 that AP-1 activity is 

increased by LXR ligands. In addition, AP-1 activity induced by LXR agonists was inhibited 

by inhibitors of PI3K and PKCs (See chapter 6). Consistent w ith these observations, AP-1 

has been found to bind to its putative recognition sequence in the human ABCA1 

promoter, with the binding induced in response to treatm ent of THP-1 macrophages to  

LXR ligands (Figure 7.9). This binding was competed by an excess of specific unlabelled 

probe but not by a consensus sequence for NF-k B (Figure 7.10). This binding of AP-1 to 

the proximal promoter of the human ABCA1 gene was inhibited in the presence of
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specific pharmacological inhibitors of both the JNK/SAPK and PI3K pathways in THP-1 

cells (Figure 7.11). In addition, the activation of AP-1 binding to a putative recognition site 

in the apoE gene promoter by 22(R)-HC/9CRA and T0901317 was also seen (Figure 7.9). 

This AP-1 element has already been shown to be essential for the induction of apoE 

expression during macrophage differentiation (Basheeruddin et al., 1994) and may 

additionally play a role in the LXR-mediated activation o f apoE expression. Such a 

requirement for the AP-1 element in the LXR-mediated induction o f apoE expression may 

be due to the low affinity o f the LXR-REs present in the proximal promoter of the apoE 

gene for this NR (Laffitte et al., 2001b). Therefore, AP-1 may be required for the full 

stimulatory response of the apoE promoter to LXR agonists.

In summary, the results presented in this chapter have shown that a potential cross-talk 

between PI3K/PKB/PKC and JNK/SAPK signalling cascade exists in the action of 22 (R)- 

HC/9CRA in THP-1 macrophages. We have also shown that novel PKC isoforms can act as 

a link between the PI3K/PKB and JNK/SAPK pathways, indicating that Pl3K/novel PKCe, 8- 

dependent JNK/SAPK activation may be essential for the ligand-induced expression of 

ABCA1 and apoE. This cross-talk between tw o identified pathways suggests a novel 

regulatory mechanism in LXR signalling and could offer new  direction for therapeutic 

intervention of atherosclerosis.
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Chapter 8: General Discussion

8.1 Overview o f the results presented In this thesis

An initiating step in atherosclerosis is the formation of macrophage foam cells, which 

occurs when macrophages in the arterial wall become overloaded with excess 

cholesterol. Unlike other cells, macrophages take up cholesterol via scavenger receptors 

and therefore are highly dependent on RCT to reduce their cellular cholesterol content. 

The strong inverse relationship between circulating levels of HDL-cholesterol and the 

incidence of atherosclerosis is clearly evident (Cuchel and Rader, 2006). The LXRs are 

members of the NR superfamily, which are activated by oxysterols and play an 

important role in maintaining macrophage cholesterol homeostasis. Previous studies 

have identified the LXRs as important regulators of HDL metabolism because o f their 

ability to control the expression of genes involved in RCT. For example, LXRs control the 

cholesterol efflux pathway in macrophages through the regulation of target genes 

implicated in the process, including ABCA1 and apoE (Laffitte et al., 2001b; 

Venkateswaran et al., 2000a; Repa and Mangelsdorf, 2000; Chawla et al., 2001b). The 

synthetic LXR ligand, GW3965, reduces the development of atherosclerosis in LDLR-/- 

and apoE-/- mice (Joseph et al., 2002b). Conversely, LXRa/p-/- mice exhibit accumulation 

of foam cells in multiple tissues (Joseph et al., 2002b; Schuster e t al., 2002; Tangirala et 

al., 2002). Transplantation of LXRa(3-deficient bone marrow into LDLR-/- and apoE-/- mice 

results in increased atherosclerosis, thereby demonstrating the relevance of 

macrophage LXR activity in the prevention of atherosclerosis (Tangirala et al., 2002). The 

importance of ABCA1 in RCT is also exemplified by studies on the ABCA1 knockout mice. 

These mice have almost no circulating HDL and show signs of cholesterol accumulation 

in macrophages that is similar to that in patients with TD (Mcneish et al., 2000). 

Additionally, cells overexpressing human ABCA1 show increased cholesterol efflux 

activity (Lawn et al., 1999). Moreover, study by Wagner et al. (2003) have demonstrated 

that LXRs not only induce RCT when cholesterol levels are high but also mediate active 

repression of the process in the unliganded state, thereby also linking transcriptional 

repression to regulation of cholesterol homeostasis (Wagner et al., 2003). Under normal 

resting conditions, ABCA1 levels are low or absent (Langmann et al., 1999) and require 

specific stimuli to increase its expression (see Table 1.1). The combined ability to repress



CHAPTER EIGHT- 271

or activate the expression of ABCA1 allows the existence of a tightly regulated and 

responsive system to handle sudden and pronounced changes in cellular cholesterol 

levels (Wagner et al., 2003). ApoE represents another LXR target gene that also 

contributes to the anti-atherogenic effects of the LXRs (Laffitte e t al., 2001b). 

Macrophage apoE expression can significantly reduce atherosclerotic development as 

demonstrated by decreased lesion area in apoE-deficient mice that have received a bone 

marrow transplant from apoE+/+ donors (Boisvert et al., 1995; Linton et al., 1995). In 

summary, therefore, LXRs play a key role in the control o f RCT and suggest that 

pharmaceuticals that increase their action, and thereby expression of their downstream  

targets such as ABCA1 and apoE, may be useful in the prevention of, or a decrease in, the 

incidence of CVD, and as a treatm ent for atherosclerosis.

Recent studies in the laboratory had demonstrated a novel role for PI3K and JNK/SAPK 

signalling pathways in the 22(R)-HC-mediated induction of apoE expression in THP-1 

macrophages (Greenow, K., 2004). However, the potential role o f these pathways in the  

action of other LXR agonists, such as T0901317, or in the regulation of expression of 

other downstream targets, such as ABCA1, had not been investigated. Such studies 

could identify potentially novel targets for therapy against atherosclerosis. The major 

focus of the studies presented in this thesis was therefore to delineate fully the signal 

transduction pathways underlying LXR agonist-mediated upregulation of ABCA1 and 

apoE expression in macrophages.

Studies presented in chapter 3 investigated the potential mechanisms underlying the 

regulation of ABCA1 gene expression by LXR agonists using J774.2 macrophages as a 

model system. It was found that LXR activators induce the expression o f ABCA1 in these 

cells and that an additive activation was obtained when combinations of 22(R)-HC and 

9CRA were used. We next investigate the potential signalling pathways that might be 

involved in the induction of ABCA1 mRNA expression by these ligands. This activation of 

ABCA1 expression by LXR/RXR was attenuated by LY294002, thereby extending the  

previous finding on apoE (Greenow, K., 2004) to ABCA1 and combinations of 22-(R)-HC 

and 9CRA. However, definitive conclusions on the role of the JNK/SAPK pathway could 

not be made as SP600125 had no effect and curcumin'was found to be toxic to J774.2 

macrophages. In the light of these results along with the various limitations associated 

with the J774.2 cell line (e.g. problems of efficient transfection with exogenous DNA), it
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was decided to use human THP-1 macrophages for subsequent studies. These cells are 

human in origins and therefore more directly relevant to atherosclerosis, given that it is 

in essence a human disease.

The work presented in chapter 4 aimed to examine the effects of natural and synthetic 

LXR agonists on ABCA1 and apoE gene expression in differentiated THP-1 macrophages. 

Given that the function of apoE and ABCA1 in the control of cholesterol homeostasis is 

carried out by proteins, Western blot analysis was used to examine the changes in their 

expression rather than RT-PCR, as used for the studies presented in chapter 3. Transient 

transfection assays using the ABCA1 gene promoter were also used for further 

confirmation. The studies showed that natural and synthetic LXR agonists induce ABCA1 

and apoE expression in THP-1 macrophages, with the overall induction levels being 

dependent on the ligands. Combinations of 22(R)-HC/9CRA produced the most 

activation followed by T0901317 and GW3965. Transfection assays in U937 cells also 

confirmed the induction of ABCA1 promoter activity by LXR agonists. The use of an 

ABCA1 promoter construct containing mutations in LXR-RE along with a DN form of LXR- 

a  showed that LXRs play a crucial role in the induced expression of ABCA1. In addition, 

we assessed the involvement of the JNK/SAPK and PI3K pathways through the use of 

commercially available inhibitors. W e showed that inhibitors o f both these pathways 

attenuated the activation of ABCA1 and apoE gene expression by LXR agonists. Such an 

inhibition of the responses by the JNK/SAPK and PI3K inhibitors was also seen in 

HMDMs.

Further investigation of the ability of combinations o f LXR/RXR to activate the 

JNK/SAPK pathway was then carried out (Chapter 5). The phosphorylation of JNK/SAPK 

and its enzyme activity was also induced in response to treatm ent o f THP-1 macrophages 

with LXR agonists. Further studies also demonstrated that SEK1/MKK4 and c-Jun, 

upstream and downstream targets respectively for JNK/SAPK actions, become 

phosphorylated in response to treatm ent of THP-1 macrophages with combinations of 

22(R)-HC and 9CRA. Experiments with the use of DN mutants against key components of 

the JNK/SAPK pathway showed that DN SEK1/MKK4 and DN c-Jun attenuated the 

induction of ABCA1 promoter activity by combinations pf 22(R)-HC/9CRA. Although, the  

expression of DN JNK/SAPK had no effect on the induction of ABCA1 prom oter activity 

by 22(R)-HC/9CRA, the potential role of JNK/SAPK in the induction of apoE expression by
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the ligands was confirmed by siRNA-based knockdown. Another novel observation was 

that EMSA showed an increase in protein binding to an AP-1 recognition sequence in 

THP-1 macrophages treated with LXR ligands. Such activation of AP-1 DNA binding 

activity was inhibited by pre-treatment the cells with the inhibitors SP600126 and 

curcumin.

Studies presented in chapter 6 investigated the role of the PI3K pathway in detail. The 

results showed that phosphorylation of PKB at serine 473 was induced in THP-1 

macrophages treated with combinations of 22(R)-HC and 9CRA. Such an activation of 

PKB was inhibited by pre-treatment of the cells with LY294002. The role o f PI3K/PKB was 

substantiated further through the use o f PKB kinase assays and a DN PKB plasmid in 

transfection assays with the ABCA1 promoter. Thus, the key role o f the PI3K pathway in 

the LXR agonist-mediated induction of ABCA1 promoter activity was conserved in both 

human THP-1 and mouse J774.2 macrophages. In contrast to GSK-3 arid mTOR, PKC was 

found to play an important role in the LXR-mediated regulation o f ABCA1 and apoE 

expression in THP-1 macrophages. Inhibition of PKC action by the use of selective 

inhibitors effectively attenuated the LXR agonist-induced expression of ABCA1 and apoE 

in THP-1 cells. The role of PKC was also supported further by experiments using DN 

constructs. Thus, a DN form PKC-e almost completely prevented the activation of the 

ABCA1 promoter in response to combinations of 22(R)-HC and 9CRA, and DN PKC-a and - 

6 did this to a slightly lesser extent. In contrast, PKCA, $ and n DN constructs did not 

inhibit the ABCA1 response. EMSA indicated that the LXR ligands-induced binding of AP-1 

to its recognition sequence was almost completely inhibited by LY294002 and inhibitors 

of PKC-a and -6 .

The results so far demonstrated that the JNK/SAPK and PI3K pathways play a potentially 

important role in the LXR agonist-mediated regulation of ABCA1 and apoE expression in 

THP-1 macrophages. These findings therefore provided a base for further investigation 

of the cross-talk between these tw o pathways (Chapter 7). Initial observations indicated 

a potential cross-talk between JNK/SAPK and PI3K, a novel finding. Thus, activation of 

both JNK/SAPK and PKB by combinations of 22-(R)-HC and 9CRA was inhibited by pre­

treatment of the cells with SP600125. On the other hand, treatm ent of the cells with 

LY294002 failed to inhibit the activation of JNK/SAPK and its downstream target c-Jun 

but instead slightly potentiated the response, thereby suggesting the possibility of the
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existence of a negative regulatory loop between PI3K/PKB and the JNK/SAPK pathway. 

In addition, our results showed that 22(R)-HC/9CRA activated the JNK/SAPK pathway in a 

PKC dependent manner as the PAN PKC inhibitor BIM attenuated the phosphorylation- 

mediated activation of the JNK/SAPK cascade by LXR ligands in THP-1 macrophages. 

Finally, EMSA showed that the binding of AP-1 to  its putative recognition sequence in the  

human ABCA1 and apoE gene promoters was induced by LXR agonists in THP-1 

macrophages, and the response was attenuated by inhibition of JNK/SAPK and 

PI3K/PKB.

In summary, the work presented in this thesis have been successful in enhancing our 

understanding of the mechanisms underlying the 22(R)-HC/9CRA-mediated activation of 

ABCA1 and apoE expression in THP-1 macrophages. The major important findings are as 

follows:

1. Induction of ABCA1 and apoE protein expression by natural and synthetic LXR 

agonists in THP-1 macrophages.

2. Identification of a novel role for the JNK/SAPK and PI3K/PKC pathways in the 

22(R)-HC/9CRA-mediated induction of ABCA1 and apoE gene expression in THP-1 

macrophages.

3. The binding of AP-1 to its consensus sequence and a putative recognition 

element in the human ABCA1 and apoE promoters.

4. Convergence of the JNK/SAPK and PI3K pathways on AP-1, thereby suggesting 

that the full inducibility of ABCA1 and apoE gene transcription by LXR agonists 

may require AP-1 binding to the promoter region in addition to that of LXR/RXR 

to LXR-REs.

5. The existence of a potential cross-talk between both pathways, and the 

potential requirement of PKC in the activation of the JNK/SAPK pathway.
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The maximal activation of ABCAi and apoE expression by LXR agonists occurred at 24h. 

In contrast, the activation of the JNK/SAPK and PI3K signalling pathways was rapid 

within an increase in phosphorylation following treatm ent of the cells with the ligands 

occurring after 30mm for JNK/SAPK and ih for PI3K. These kinetics are clearly more rapid 

than that for the induction of ABCA1 and apoE expression by the ligands. Such rapid 

activation of the signalling pathways is unlikely to be due to gene transcription, and it is 

therefore possible that 22(R)-HC/9CRA may be able to exert a non-genomic effect in 

addition to its action on gene transcription. A putatitive model can be derived from all 

these studies as shown in Figure 8.1. A major focus of future studies should therefore be 

to investigate the genomic and non-genomic actions of LXRs and the potential 

interactions between them (See section 8.3 for details on future work).

Overall, the findings presented in this thesis can be approached with a good degree of 

confidence given that we have used a range of complementary techniques, performed 

appropriate positive controls, and accurately reproduced key findings in human 

monocyte-derived macrophages. Consequently, the next tw o sections will attem pt to 

discuss the greater significance of the findings and the future studies that could be 

performed in order to advance the studies towards the ultimate goal of therapeutic 

treatment of atherosclerosis.

8.2 Wider perspectives of the novel findings in this thesis

Recent studies have demonstrated the selective targeting o f protein kinases as a 

therapeutic approach, and it is a common procedure to use small inhibitor molecules 

(Buschbeck, 2006; Daub et al., 2004; Hannon and Rossi, 2004; Sawyer et al., 2005). 

Indeed, potential therapeutic strategies have been investigated in relation to the  

treatment of CVD that involves the inhibition of JNK/SAPK- or Pl3K-dependent signalling 

(Andres, 2004; Koh, 2007; Monaco and Paleolog, 2004; Verdeguer et al., 2007). The 

identification of a potential involvement of cell signalling pathways in the regulation of 

NR action provides another potential mechanism for therapeutic intervention. Further 

research into these pathways could lead to the development of specific therapeutics 

without undesired side effect.

An excellent therapeutic strategy against the development of atherosclerosis would be 

to enhance RCT by modulating ABCA1 gene transcription. ABCA1 mediates the initial step
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Figure 8.1 A putative model for the genomic and non-genomic actions of LXR agonists.

The LXR agonists 22(R)-HC and 9CRA could potentially exert their actions through a genomic and 
a non-genomic pathway. In the genomic pathway, 22(R)-HC/gCRA enters the target cells and 
binds to  nuclear LXRs, thereby leading to  its heterodimerization w ith RXR. The LXR/RXR 
heterodimer then induces target gene transcription by interacting w ith LXR-REs in their 
regulatory region (1). In the non-genomic pathway, LXR agonists activate PKB/PKC, possibly 
through interaction with a putative membrane bound or cytosolic receptor(s) (2), as found for 
other NRs, thereby leading to activation of JNK/SAPK and c-Jun. The subsequent increase in AP-1 
binding might be required for the full inducibility of target genes.
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of RCT, the efflux of cholesterol from cells to HDL particles (Oram and Vaughan, 2000). 

ABCA1 transcription is regulated by LXR (Costet et al., 2000; Repa et al., 2000b). Similarly 

the potent anti-atherogenic actions o f apoE, its key role in RCT and its inducibility by 

LXRs is well documented (Greenow et al., 2005; Joseph et al., 2002b; Laffitte e t al., 

2001b; Repa and Mangelsdorf, 2002; Singh and Ramji, 2006). The ability o f LXRs to  

promote RCT makes them attractive targets for drug developed for the treatm ent of 

CVD. Indeed, activation of the action of LXRs has been investigated as a potential 

treatm ent for inflammatory metabolic disease and CVD (Geyeregger et al., 2006). For 

example, previous studies have demonstrated that synthetic LXR ligands reduce the 

development of atherosclerosis in LDLR-/- and apoE-/- mice (Joseph et al., 2002b). The 

findings in this study may highlight further mechanisms by which the stimulatory effects 

of LXRs may be increased. Thus, developing agents that enhance the actions of 

JNK/SAPK and PI3K in relation to activation of ABCA1 and apoE gene transcription 

represents an excellent therapeutic avenue against atherosclerosis.

The finding that synthetic LXR agonists markedly increase hepatic lipogenesis and 

plasma triglyceride levels (Schultz et al., 2000; Tontonoz and Mangelsdorf, 2003) is 

clearly a major current limitation of using LXR agonists in the treatm ent of 

atherosclerosis. The increase in hepatic lipogenesis has been attributed in large part to 

the direct induction of SREBP-ic expression by LXRs (Repa et al., 2000a). Therefore, the  

development of selective mediators that are designed to increase RCT, but not induce 

hepatic SREBP-ic expression, would be a better therapeutic approach. Additionally, a 

better understanding of potential gene-specific differences in the action of LXRs would 

be useful, such as signalling pathways that are involved in the activation of individual 

genes. The development of partial or gene-specific agonists of NRs (e.g. selective ER 

modulators (SERMs)) have provided a fram ework on how such ligands could be 

identified (Bian et al., 2001; Gustafsson, 1998). Indeed, a newly developed LXR agonist, 

DMHCA, has been reported to have such a selective activity (Muscat et al., 2002; Quinet 

et al., 2004). Both In vitro and in vivo studies have shown that DMHCA mediates potent 

transcriptional activation of genes implicated in the control of RCT while exhibiting 

minimal effects on SREBP-ic expression (Quinet e t al'., 2004). In addition, it should also 

be taken into consideration that the effects of LXRs on lipogenesis may be tissue specific 

since it has been observed that in skeletal muscles, LXR ligands increase cholesterol 

efflux without affecting lipid deposition (Muscat et al., 2002).
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In addition to gene- or tissue-specific agonists, an alternative approach to  overcome the  

undesirable effects o f LXR agonists on hepatic lipogenesis would be to  develop isoform- 

specific LXR ligands. The development o f LXRp selective agonists could be a potential 

solution to dissociate LXR activation of RCT from the hepatic side effects. Indeed, in 

contrast to LXR(3-/- mice, LXRa-/- mice have reduced plasma triglyceride levels and 

decreased hepatic mRNA levels for multiple enzymes involved in fa tty  acid synthesis, 

thereby suggesting that LXRa is the isoform that controls the transcription of hepatic 

SREBP-ic (Alberti et al., 2001; Peet et al., 1998). Alberti and co-workers have therefore  

proposed that LXRp-specific ligands may induce the desired RCT pathway but 

circumvent the hepatic complications that are attributed to  LXRa (Alberti et al., 2001). 

On the other hand, macrophages from LXR(3-/- mice, but not LXRa-/- mice, have 

increased basal ABCA1 mRNA expression, indicating that LXRp is the isoform responsible 

for controlling basal transcription of the ABCA1 gene in these cells (Laffitte e t al., 2001b). 

In contrast, LXR agonist treatm ent of macrophages from LXRa-/- or LXRp-/- mice show a 

comparable increase in expression of ABCA1 mRNA compared to wildtype mice (Repa et 

al., 2000b), thereby indicating that both LXRa/P are equally im portant for inducing 

ABCA1 transcription. Recently, Molteni and co-workers have identified a novel LXR 

agonist, N-acylthiadiazolines that activates the LXRp subtype w ith selectivity over LXRa 

(Molteni et al., 2007). This selectivity of LXRp was confirmed using macrophages derived 

from LXRa or p knockout mice (M olteni e t al., 2007). Treatm ent o f LXRa-/-apoE-/- mice 

with this ligand has also been found to ameliorate the cholesterol overload phenotype 

and reduce atherosclerosis (Bradley et al., 2007). Collectively, these observations 

provide in vivo support for drug development strategies on the developm ent o f agonists 

specific for LXRp.

An additional alternative approach for the undesirable effects o f LXR ligands on hepatic 

lipogenesis would be to target potential differences in coregulators requirements for 

different target genes (e.g. ABCA1/ apoE v/s SREBP-ic). This would require more research 

to be initially carried out on this aspect.

8.3 Future work
From the work presented in this thesis, we have gained significant new knowledge 

about LXR signalling in macrophages. Prior to  these studies, relatively few  investigations 

on LXR signalling had been reported. As a direct result of the studies presented herein,
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several avenues for further investigations become apparent For example, the 

widespread role of the JNK/SAPK and PI3K signalling could be identified by profiling 

expression in macrophages of known target genes (e.g. ABCG1, SREBP-ic) or at the  

whole genome level using either pharmacological inhibitors or expression of siRNA or 

DN constructs. The outcome of these investigation would reveal about potential gene- 

specific actions of these signalling pathways.

Although the potential involvement of the JNK/SAPK and PI3K pathways and their major 

upstream and downstream components have been identified, their exact roles in the  

LXR-mediated induction of ABCA1 and apoE expression should be extended to a detailed 

understanding of the potential genomic or non genomic effects along with the 

mechanisms in operation. Firstly, the role of LXRs on the ligand-mediated activation of 

JNK/SAPK and PI3K/PKB should be investigated. This can be achieved by transfection of 

cells with DN constructs for LXR-a and -p, which lack AF2 domain, or siRNA against LXR-a 

and/or LXR-f5. The ligand-mediated activation of JNK/SAPK and PI3K/PKB should then be 

followed. The use of macrophages from LXR knockout mice represents another 

approach. The results of these investigations would verify whether LXRs are required for 

the activation of these signalling cascades.

Investigation of potential LXR phosphorylation by the ligands would also be important. 

For this, cells could be metabolically labelled with 32P orthophosphate in the absence or 

the presence of the ligands. Equal amount of cellular extracts could be subjected to  

immunoprecipitation using LXR isoform-specific antibodies followed by SDS-PAGE and 

autoradiography. It is likely that subtle phosphorylations may remain undetected using 

this method, thereby possibly requiring 2D gel electrophoresis, which examines changes 

in protein isoelectric point due to phosphorylation. The role of the JNK/SAPK or PI3K 

pathways in any identified changes in phosphorylation of LXRs could then be analysed 

by repeating the analysis with cells incubated with pharmacological inhibitors or in 

which the expression of key kinases has been knocked down by siRNA. In the case of any 

problems with detection due to low expression of NRs in cells, the analysis could be 

carried out on cells transfected with plasmids specifying for epitope-tagged LXRs 

(antibodies against the epitope is used for immunoprecipitation). In the long-term, it 

would be useful to map the site(s) of phosphorylation, if any, and recent advances in 

mass spectrometry could be exploited.
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Experiments could also be carried out to investigate whether any changes in 

phosphorylation affect the cellular localization of LXRs, and to  delineate if any 

membrane-bound LXR exists, like other NRs, and if ligand-binding by such a receptor 

causes activation of upstream components of the JNK/SAPK and PI3K signalling 

pathways. This could be achieved by Western blot analysis o f membrane fractions with  

antibodies against LXRs. The potential role of phosphorylation could be identified by 

immunocytochemistry on cells transfected with expression plasmids specifying for 

wildtype or mutant forms of hLXRa or p (e.g. mutations in the phosphorylation sites) 

using fluorescent antibodies.

ChIP is an elegant technique to study the mode of activation of NR (e.g. LXR) target 

genes. Importantly, this technique allows determination o f which coactivators and 

corepressors are involved in the transcriptional regulation of a certain gene (e.g. ABCA1). 

Indeed, several new perspectives on NR function have emerged from the use of this 

technique (Auwerx et al., 2003; Mahajan and Samuels, 2005; Pellegrini e t al., 2004; 

Yamamoto et al., 2007). In this technique, cells are first treated with vehicle or the LXR 

ligands and the DNA-bound proteins are then cross-linked to the coregulators by 

treatm ent with formaldehyde. Following this fixation step, nuclei are isolated and the  

chromatin fragmented to 500-iooobp size by sonication. Then, protein-DNA complexes 

are immunoprecipitated using an antibody specific for the coregulator protein of 

interest. The cross-links are then reversed and DNA from the immunoprecipitated 

protein/DNA fraction is purified. The identity and the amount o f DNA fragments isolated 

from the complex with the coregulator protein of interest can then be determined by 

PCR using primers specific for the LXR-RE in the regulatory regions of target genes (e.g. 

ABCA1 or apoE). The results of these investigations would verify w hether these 

sequences bind to coregulator proteins under investigation and reveal any potential 

gene-specific differences. The effect of blockage of JNK/SAPK and PI3K pathways on the  

recruitment of such coregulators could also be investigated. The role of a particular 

coregulator in governing expression o f tw o different isoforms o f LXR target genes could 

be carried out using macrophages in which the expression of individual isoform has been 

knocked down by siRNA or knocked out. In addition, potential phosphorylation of 

coregulators could be explored essentially as described above for LXRs.
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It would be o f interest to further analyse the involvement of PKCs in LXR action. This 

could include analysis of the phosphorylation or the activity o f individual PKC isoforms in 

response to LXR agonists. For this, THP-1 macrophages are treated w ith LXR ligands in 

the absence or the presence of the isoform-specific PKC inhibitor and the activation of 

individual isoform followed by Western blot analysis using phospho-specific antibodies 

or by in vitro kinase activity, as used for JNK/SAPK and PKB in the studies presented in 

this thesis. The potential role of individual members could be confirmed by siRNA- 

mediated knockdown or use of macrophages from knockout mice.

It is also important that further investigations are carried out in relation to the potential 

cross-talk between the JNK/SAPK and PI3K/PKC pathways. Such studies could involve 

analysis of the activation of a particular pathway (e.g. JNK/SAPK) in cells where the  

action of individual signalling proteins, has been inhibited either by the use of 

pharmacological agents, siRNA-mediated knockdown or use of macrophages from  

knockout mice. Also, the potential involvement of several other key pathways that have 

been implicated in NR signalling, such as cdks and PKA, should be investigated. In this 

regard, it is of interest that PKA suppresses SREBP-ic expression via phosphorylation of 

LXR in the liver (Yamamoto et al., 2007).

Finally, the roles of JNK/SAPK and PI3K/PKB/PKC signalling in cellular changes, such as 

macrophage cholesterol efflux, should be investigated. This can be achieved by 

converting macrophages into foam cells using acetylated LDL in the presence of 14C 

cholesterol before treatm ent of the cells with the vehicle or the LXR ligands, in the  

presence or the absence of specific inhibitors for JNK/SAPK, PI3K or PKC. The cholesterol 

efflux to HDL3 acceptor could then be determined. The analysis could be extended to  

the use of cells following siRNA-mediated knockdown of key component or the use of 

macrophages from knockout mice.

Finally, it would be of great interest to perform at least some of the studies in apoE- or 

LDLR-deficient mice that have been fed an atherosclerotic diet, a system that has 

previously been used to elucidate the roles of numerous genes in the pathogenesis of 

atherosclerosis (Boucher and Gotthardt, 2004; Chow et al., 2007; Joseph et al., 2002b; 

Repa and Mangelsdorf, 2002; Shi et al., 2000; Su et al.,'2006).
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8.4 Concluding remarks
In summary, the studies presented in this thesis have identified the signalling pathways 

underlying the LXR agonist-mediated regulation of tw o key genes implicated in the  

control of macrophage cholesterol efflux. More specifically, the LXR agonist-inducible 

ABCA1 expression was mainly mediated by the Pl3K/PKB-PKC-dependent-JNK/SAPK 

signal transduction pathway. Our studies, therefore, provide im portant new insights into 

LXR signalling, and reveal potential new avenues for therapeutic intervention. The use of 

specific LXR isoform- or tissue-specific agonists could be pharmaceutically attractive as 

far as treatm ent of CVD is concerned. It is therefore crucial to gain as complete an 

understanding as possible on the cellular actions o f LXRs. The studies presented in this 

thesis are an important step towards this goal, and it is hoped that more significant 

progress will be made by pursuing the future studies suggested above.
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Appendix I 

DNA Molecular weight Marker

NEB loobp ladder Invitrogen ikb ladder Gibco ikb plus ladder

Base Pairs DNA Mass

12,000-

5 0 0 /5 1 7  9 7

Hin f I f ra gm en ts  
o f  the v e c to r

1.3% agarose gel 0.9% agarose gel 0.9% agarose gel

o.5pg/lane o.5pg/lane o.gpg/lane
Cat No. N3231S/N3231L Cat No. 15613-016 Cat No. 10787-018
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Appendix II 

Protein Molecular weight Marker

Amersham Full-Range Rainbow™ 

Molecular W eight Markers

250

160

105

75

50

35

30

25

15

10

12% SDS-PAGE gel 
Cat. No. RPN800



APPENDICES- 332

Appendix III

Plasmid vectors

c c o oS«- o 15 ra a m w o u M O r n a  
| W X  ^ C O C O l l l l J J C Q Z X X C

Bglll

Pvul
pcDNA3

5.4 kb

Smal

Tth111l

There is an ATG upstream  
of the Xba  I site. Bsml

2010 Sail
2004 BamHI

&
pGL3-Basic 

Vector
(4818bp)

Synthetic poly(A) 
signal / transcriptional 
pause site 
(for background 
reduction)

, Kpnl 5
/ Sac I 11
I Mlul 15

Nhel 21
Smal 28
Xhol 32
Bglll 36

\  Hindlll 53

Ncol 86

Narl 121

SV40 late 
poly(A) signal 

(for luc+ reporter)
Hpal 1902 Xbal 1742
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Appendix IV 

t-Test
Mean 1 = x'\ Standard deviation 1 = 0 1

M ea n 2 = T 2 Standard deviation 2 = 02  

Variance = cc\2

ni  n2

t - X\ «2

t-Table
A difference between tw o  means is significant (at the given probability level) if the 

calculated t value is greater than the value given in this table. A probability of p = 0.05  

(9 5 % probability o f making a correct statem ent) is usually acceptable for biological work.

When comparing tw o  means, the number of degrees of freedom is (m  + n2)-2, where m 

is the number of replicates o f treatm ent 1, and n2 is the number of replicates of 

treatm ent 2 adapted from  the following website:

http://helios.bto.ed.ac.uk/bt0 /statistics/tress4 a.html#Student's%20 t-test.

Degrees of t-Value
Freedom

P-Value 0.1 0.05 0.01 0.001

1 6.31 12.71 63.66 636.62

2 2.92 4.30 9-93 31.60

3 2-35 3.18 5.84 12.92

4 2.13 2.78 4.60 8.61

5 2.02 2-57 4.03 6.87

6 1.94 2-45 3.71 5.96

7 1.89 2-37 3.50 3-41
8 1.86 2.31 3.36 5.04

9 1.83 2.26 3.25

00r>.

http://helios.bto.ed.ac.uk/bt0/statistics/tress4a.html%23Student's%20t-test
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Appendix V

Figure 3.2C ■ M il
E23EB51I M e a n  SO

C12h 1 1 1 1 1
22(R)-HC 3 .0 5 1 0 4 4 .6 4 1 9 4 6 .6 0 3 0 3 2 .2 8 9 4 0 4 .1 4 6 3 5 1 .9 0 8 6 5 2
22(S)-HC 0 .3 3 6 6 7 1 .7 1 9 2 1 1 .8 3 1 9 8 1 .0 8 5 6 0 1 .2 4 3 3 6 2 0 .6 8 7 9 6 4
C24h 1 1 1 1 1
22(R)-HC 1 .2 8 3 6 5 1 .2 9 1 9 0 2 .0 0 3 1 2 1 .6 4 0 6 2 1 .5 5 4 8 2 3 0 .3 4 2 0 5
22(S)-HC 1 .1 5 3 2 3 1 .0 7 8 6 4 2 .1 1 4 9 2 0 .4 8 1 6 2 1 .2 0 7 1 0 4 0 .6 7 5 7 3 6

t-test I P-value

3 .3 0  0 .0 5

3 .2 4  0 .0 5

Figure 3.3C m s m \n a i
m m m ic a n a l w m xm i Mean SD 61
C12h 1 1 1 1
9CRA 3.21859 2.49567 2.37856 2.697606 0.454967 6.46
22(R)HC 3.02976 2.29624 2.48080 2.602265 0.381545 7.27
9CRA/22(R)HC 5.50164 3.84876 5.27228 4.874228 0.895459 7.49

0.01 * *  

0.01 * *  

0.01 * *

Figure 3.4?
samples
C
Lig

Exp 1 Exp 2
Fold Ind Fold Ind IEE1H1I Mean 

1 1 1
■ I  I I

4.05387 5.21588 3.39316 4.220968 0.922777

t-test P-value

6.05 0.01

Figure 3.5C E xp 3

Re I Ex
C 12h 0 .1 5 0 8 1 0 .2 3 5 2 3 0 . 0 9 0 4 4

0 .0 6 0 8 4 0 .1 3 3 0 2 0 .2 6 8 5 7

0 .5 4 6 0 8 0 .3 8 9 5 7 0 .4 2 8 2 9

lean
0 .0 9 2 2 1  0 .1 4 2 1 7 2  0 .0 6 8 0 8 4  

1 1 
0 . 1 9 0 8 7  0 .1 6 3 3 2 4  0 .0 8 8 0 4 8  

0 . 3 3 1 4 0  0 .4 2 3 8 3 6  0 .0 9 0 7 0 3

t-test P-value

1 2 .7 0 0.001

Figure 3.6A /B WK3 im

LXR+pcDNA
UT
T
LXR+DN p l lO
UT
T

1 1 
3 .2 8 7 3 8  4 .6 6 8 8 4

1
3 .4 3 1 6 8

1
2 .3 5 9 0 3

1
4 .8 3 8 1 0

1
3 .0 7 6 5 4

1
3 .8 5 3 6 3

1
2 .7 3 4 9 7

LXR+ DN PKB
UT 1 l l

T 2 .5 0 7 0 4  3 .3 0 2 6 0  2 .3 0 8 4 0  3 .0 7 6 7 0

Figure 3.7Cb s h
■ m i 3H3 9 IAverage

Control 0.15701 0 .22177 0 .18939

Lig 1 1 1

SB216 0.06846 0 .19634 0 .132401

SB216+ 0.42474 0 .77154 0 .598142

SB216+ 0.66379 0 .97101 0 .817400

SB415 0.06189 0 .16591 0 .113901

SB415+ 0 .75014 0 .87069 0 .810417

SB415+ 0 .70177 0 .82371 0 .762737

t-test P-value

4 .1 6 1 9 9  0 .7 2 4 3 5 3

2 .9 0 0 5 6  0 .4 5 9 6 1 3

2 .7 9 8 6 9  0 .4 6 7 8 5 2

8 .7 3

2 .9 4

3 .1 6

0.001

0 .0 5

0 .0 5
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Figure 3 .8B m m e b i
RelExp

Control 3149 5 .2 4 4977 .49 6 .32753 0.416809
IFNy 72173 .05 4754 .20 15.18089 1

SB216 5 7 0 .15 4755 .46 0 .11989 0 .007898
SB216+IFNY 2 4612 .05 2814 .26 8 .74548 0.576085
SB415 1672.41 3554 .50 0 .47050 0.030993
SB415+IFNY 414 .91 3095 .95 0 .13402 0.008828

Figure 3.9C m s s m  im i l Average
Control 0 .15701 0 .13948 0.14824
Lig 1 1 1

Rapa 0 .21230 0 .11334 0.16282
Rapa5(H 0 .99406 1 .04405 1.01905
RapalOCH- 1 .59856 1.27453 1.43654
Rapal50+ 1.03577 0 .98197 1.00887

Figure 3.11C ■ 3 9 1 W Z 3 M I

M E E O H E s n s m i Mean SD |
Control 0.19323 0.17847 0.14917 0.173622 0.022425
Lig 1 1 1 1
SP50 0.31161 0.50223 0.36966 0.394502 0.097711
SP5Q+ 1.19841 1.02086 1.16034 1.126536 0.093479
SP100+ 1.16693 0.82137 0.90293 0.963744 0.180629

t-test P-value

63.83 0.001

Figure 3 .12C 1 11 Hili7 1 —
B B I

- ■ ;; •
Rel Exp

Control 4 4 5 4 .1 5 2 6 0 9 .0 8 1 .7 0 7 1 7 0 .2 5 4 5 5 1
TGFp 7 0 6 3 .1 1 10 5 3 .1 6 6 .7 0 6 6 0 1

SP 2 6 5 1 .1 1 5 8 0 6 .5 1 0 .4 5 6 5 8 0 .0 6 8 0 7 8
SP+TGF0 6 1 2 6 .2 2 2 3 0 8 .3 5 2 .6 5 3 9 4 0 .3 9 5 7 2 1

Figure 3.13 ■ a i
m zm rm \

LXR+pcDNA
UT 1 1
T 3.28738 4.56884
LXR+ DN JNK
UT 1 1

■ n r i i f f j l  Mean SD

8.60983 7.55648 5.71978 7.295366 1.462613

t-test P-value

3.29 0.05

Figure 4.2C MMM1■ ̂ 1 E9SIIMi JEM
w m m i M ean SD ksssmi

C i 1 i 1 1
9CRA 4 .6 4 4 4 9 5 .1 4 2 0 4 4 .8 9 3 2 6

22(R)-HC 4 .0 0 1 2 3 6 .4 8 5 6 8 6 .9 2 9 5 9 6 .7 5 8 8 4 6 .0 4 3 8 4 1 .3 7 3 9 5 6 2 7 .3 4

22(R)-HC+9CRA 1 1 .2 0 9 5 1 7 .6 6 1 4 7 8 .5 6 9 9 6 1 5 .0 8 6 6 1 1 0 .6 3 1 8 9 3 .3 2 9 3 2 0 9 5 .7 9

22(S)-HC 1 .1 4 2 6 2 1 .1 8 4 3 5 1 .7 1 6 3 5 1 .3 0 2 7 1 4 1 .3 3 6 5 1 0 .2 6 2 1 5 2

0.01 * *  

0.01 * *
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Figure 4.2D 1 l £ H f l H 9
Mean SD

C
9CRA
22(R)-HC

1
2.40450
7.80943

1 1 
3.06618
7.43717 6.59001

1
2.73534
7.27887 0.624936 17.40 0.001 * * *

22(R)-HC+9CRA 4.27482 3.28825 4.46498 4.00935 0.631685 8.25 0.01 **
22(S)-HC 

Figure 4.3C

1.33116

lE H E B j

1.21541 1.06876 1.20511 0.131503

B.ffii/, h it .1 i £ i r .  in S l ■ Mean SD E S S S I f l H H H
DMSO
GW3965 ( l|iM )  
GW3965 (5|iM) 
22(S)-HC 

Figure 4.3D

1
3.35321
2.51479
0.69478

1
3.42592
2.31333
1.22659

1 1 
2.71814 3.165754 0.389345 

2.414063 0.142455 
0.28355 0.734973 0.472803

Fold Ind.
C
0 .5nM
1|J.M
5|iM
7.5nM
10^M

9 912 .18
174487.45  

162946 .10
166227.46  

190703 .20  
187147.78

190544 .96
222 1 4 5 .9 4
162112 .66
159139 .19
163872 .45
147683 .80

0 .05202
0 .7 8 5 4 6
1 .00514
1.04454
1.16373
1.26722

l |
15.09921 

1 9 .3 2 2 l|  
2 0 .0 7 9 5 1 
2 2 .3 7 0 7 1 
24.36021

9.63
14.04

0.01 * *  

0.01 * *

w r r n m w r m m w w im  Mean SD I B
DMSO
GW3965 (l|iM )  
GW3965 (5|iM) 
22(S)-HC

1
2.31333
1.88903
1.21633

1 1 1  
1.65903 2.13547 2.035943 
1.76891 1.828971 
0.60531 1.17437 0.998672

0.338318
0.084934
0.341302

Figure 4.4C ■ u n z s
Average

DMSO 
T1317 (l|aM ) 
T1317(10nM ) 
22(S)-HC

1

21.05673
27.56209

1.75786

1

19.32215
24.36016

1.30271

1

20.18944
25.96112

1.53029

Figure 4.4D
Average

DMSO 
T1317( l | iM )  
T1317( 10|oM) 
22(S)-HC

1

3.51148
4.92417
1.34818

1

3.18047
5.67440
1.18435

1

3.345975
5.299286
1.266264

Figure 4 .5C |

t-test P-value

5.30
13.80

0.05 * 
0 . 0 0 1  * * *
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Figure 4 .5D ■35391
E 9 B I Fold Ind .]

C 3 1 4 13 .07 190544.96 0.16486 l l
0 .5nM 1 41234 .64 222145 .94 0.63577 3 .8 5 6 5 1
1HM 8 5 0 00 .56 162112 .66 0 .52433 3.1805
5| iM 1 30093 .34 159139 .19 0.81748 4 .9587
7.5nM 155012 .44 163872.45 0 .94593 5 .7378
10nM 138154 .75 147683 .80 0 .93548 5.6744

Figure 4 .6C ■ ■ ■ ■
Fold Ind.

C 6 73 7 .2 0 139549 .53 0 .04828 1

0.5h 9 190 .58 132352 .88 0 .06944 1.43833
lh 11242 .96 113355 .15 0 .09918 2 .05442
3h 136305 .17 117339 .31 1.16163 24 .06121
6h 3 1 2152 .60 145712 .30 2.14225 44 .37306
12h 333882 .65 132545 .51 2 .51900 52.17681
24h 5525 2 3 .5 8 122139 .58 4 .52371 93 .70075

Figure 4.6D
Fold Ind.

C 17469 .83 139549 .53 0 .12519 1

0 .5h 15938 .83 132352 .88 0 .12043 0 .96197
lh 26225.55 113355 .15 0 .23136 1.84809
3h 79349 .57 117339 .31 0 .6 7 6 2 4 5 .40183
6h 162565 .64 145712 .30 1 .11566 8 .91194
12h 184029 .51 132545 .51 1 .38843 11.09078
24h 316659 .38 122139 .58 2 .59260 20 .70978

Figure 4.7C
I K S S S I I Fold Ind.

C 5753.10 142236.18 0.04045 l |
0.5h 3544.36 135680.04 0.02612 0.64585|
lh 4600.20 129794.74 0.03544 0.87625
3h 23959.17 118072.11 0.20292 5.01687
6h 106432.73 113179.77 0.94039 23 .24951
12h 159614.30 132781.75 1.20208 29 .71951
24h 411953.39 163004.11 2.52726 62.4824

Figure 4.7D P S B 1 fr'i i
Fold Ind.

C 21732.25 142236.18 0.15279 l |
0.5h 33107.81 135680.04 0.24401 1.59706|
lh 28483.87 129794.74 0.21945 1 .4363l|
3h 60499.78 118072.11 0.51240 3 .3536 l|
6h 98971.88 113179.77 0.87447 5.723331
12h 214083.51 132781.75 1.61230 10.5524|
24h 332626.50 163004.11 2.04060 13.3556
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Figure 4.8C B O K Q H B E H E S I H E J i H l ___________________
M ean SD JB W B ffB F J C T T B II

c 0.106475 0.154186 0.144309 0.134990 0.025183
22( R)-HC 1 1 1 1 59.49 0.001 * * *
22S 0.155529 0.151596 0.247685 0.184937 0.054377
SP- 0.128655 0.060922 0.079707 0.089761 0.034968
SP+ 0.124190 0.260891 0.306929 0.230670 0.095044 14.02 0.001 * * *
Curc- 0.105374 0.030404 0.075694 0.070491 0.037755
Curc+ 0.021895 0.013595 0.082478 0.039323 0.037603 44.25 0.001 * * *
Figure 4.8D ■ i l l ' i M I E m i

e manmean Mean SD
C 0.21221 0.13446 0.45340 0.266688 0.166301
22(R)-HC 1 1 1 1 7.64 0.01 **
22S 0.25792 0.18797 0.39390 0.279933 0.104715
SP- 0.31819 0.04390 0.12908 0.163722 0.140389
SP+ 0.23846 0.26263 0.30541 0.268834 0.033903 37.35 0.001 ***
Curc- 0.14976 0.22454 0.10991 0.161405 0.058197
Curc+ 0.18183 0.21087 0.13981 0.177506 0.035725 39.88 0.001 ***

Figure 4.9C E 7 S 1 I
E S E S a i E S E 9 3 I m s s u Mean SD 1 2 9 ^ 3  H H H

C 0.13052 0.14069 0.01376 0.09499 0.07053
9CRA+22R 1 1 1 1 22.22 0.001 * **
22S 0.15459 0.07801 0.01593 0.08284 0.06946
SP- 0.31298 0.06845 0.01869 0.13337 0.15752
SP+ 0.24995 0.47096 0.37594 0.36562 0.11087 9.91 0.01 **
Curc- 0.11753 0.01356 0.01808 0.04972 0.05876
Curc+ 0.10275 0.50907 0.01531 0.20904 0.26349 5.20 0.05 *
Figure 4.9D E U B I u m m W E B fE M

m s s s m I S E 1 I Mean SD
C 0.32614 0.38002 0.22397 0.310042 0.079264
9CRA+22R 1 1 1 1 15.08 0.001 ***
22S 0.34856 0.18803 0.42339 0.319991 0.120254
SP- 0.33623 0.18317 0.21958 0.246326 0.079958
SP+ 0.10203 0.57781 0.42690 0.368917 0.243132 4.50 0.05 *
Curc- 0.08265 0.42128 0.22839 0.244107 0.169863
Curc+ 0.10848 0.66114 0.38750 0.385707 0.276337 3.85 0.05 *

Figure 4.10C B E 5 $ M E 9 ! B i
l E s i s a i Mean SD w m a i

c 0.36790 0.04040 0.29325 0.233851 0.171640
GW 3965 1 1 1 1 7.73 0.01 **
22S 0.10432 0.08556 0.21558 0.135149 0.070280
SP- 0.38752 0.01389 0.08515 0.162187 0.198371
SP+ 0.34261 0.22851 0.14976 0.240295 0.096964 13.57 0.001 ***
Curc- 0.26664 0.00135 0.07387 0.113953 0.137116
Curc+ 0.03222 0.02299 0.16923 0.074814 0.081897 19.57 0.001 ***
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Figure 4.10D
E B 3 3 9 H
c
GW3965
22S
SP-
SP+
Curc-
Curc+

Rel Exp Rel Exf a
0.60276

1
0.34225
0.39973
0.38066
0.25406
0.19979

aem aai Mean SD
0.36917

1
0.51183
0.21057
0.42219
0.38819
0.32679

0.38179
1

0.34202
0.27986
0.28017
0.22903
0.15660

0.45124
1

0.39870
0.29672
0.36101
0.29043
0.22773

0.131375

0.097974
0.095702
0.073022
0.085585
0.088464

t-test P-value

7.23 0.01 **

15.16 0.001 * * *

15.12 0.001 * * *

Figure 4 .1 ic ! Exp 1
Rel Ex Average

c 0.15162 0.31612 0.23387
T1317 1 1 1
22S 0.16651 0.25775 0.212133
SP- 0.01500 0.04570 0.030351
SP+ 0.23953 0.28318 0.261352
Curc- 0.10030 0.14419 0.122246
Curc+ 0.08229 0.02023 0.051261
Figure 4.11D m s m i

E S E S S E S U m i Average
C 0.43963 0.34036 0.389995
Lig 1 1 1
22S 0.45648 0.54870 0.502587
SP 0.36578 0.32251 0.344146
SP+ 0.49023 0.42502 0.457625
Curc 0.21611 0.12841 0.17226
Curc+ 0.41946 0.26124 0.340352

Figure 4 .12C
RelExp |

C 5529.31 146504.69 0.03774 0.0099721
Lig 512234.02 135347.85 3.78457 ii
+SP25 265591.08 137666.91 1.92923 0.509761
+SP50 271864.45 142040.30 1.91400 0.505736
+SP75 42579.35 117087.03 0.36366 0.096089
+SP100 57874.18 163114.39 0.35481 0.093751
Figure 4 .12D H H H W i

Rel Exp
C 40445.70 146504.69 0.27607 0.329933
Lig 113252.00 135347.85 0.83675 1
+SP15 198272.81 137666.91 1.44024 1.721231
+SP25 144399.03 137666.91 1.04890 1.253546
+SP50 83699.44 142040.30 0.58927 0.704233
+SP75 44354.74 117087.03 0.37882 0.452727
+SP100 24913.65 163114.39 0.15274 0.182537



Figure 4 .13C I E B 1
i m t u j l lR e l  Exp

C
Lig

38668.515
321929.16

148149.24
132710.81

0.26101
2.42579

0.107598| 
1

+SP15
+SP25
+SP50
+SP75
+SP100

227140.03
153098.12
116287.07
124029.30
96016.510

128404.42
149896.91
142030.76
120956.26
167467.38

1.76894
1.02136
0.81875
1.02541
0.57334

0.729222|
0.421040
0.337517j
0.422709
0.236353

Figure 4 .13D i n \wmm
RelExp

C
Lig

14564.61
216331.23

148149.24 0.09831 0.060310 
132710.81 1.63009 1

+SP15
+SP25
+SP50
+SP75
+SP100

231344.43
187383.07
100345.18
37662.07
28091.96

128404.42
149896.91
142030.76
120956.26
167467.38

1.80169
1.25008
0.70650
0.31137
0.16775

1 1.105264 
I 0.766875 
1 0.433412 

0.191013 
0.102906

Figure 4 .14C
RelExp

C
Lig
+Curcl5
+Curc25
+Curc35
+Curc50

6964.29
543031.24
194566.36
48562.90
4356.58
2624.35

146504.69
135347.85
137666.91
142040.30
117087.03
163114.39

0.04754
4.01212
1.41331
0.34190
0.03721
0.01609

0.011848
1

0.352261
0.085216
0.009274
0.004010

Figure 4 .14D | ■ ■ ■ ■ ■ ■
— Rel Exp
c
Lig
+Curcl5
+Curc25
+Curc35
+Curc50

5891.39
98396.75
20856.19
22633.71
9712.83
5814.38

146504.69
135347.85
137666.91
142040.30
117087.03
163114.39

0.04021
0.72699
0.15150
0.15935
0.08295
0.03565

0.055314
1

0.208390
0.219187
0.114106
0.049032

Figure 4 .15C m m n E s m m wmm
lA n m iiim E S H B H B I R e le x p  j

C
Lig
+Curcl5
+Curc25
+Curc35
+Curc50

51668.84 
247934.42 
220917.26 
172179.18
35561.85 
2622.47

124119.10
105309.16
103186.80
105364.29
130135.72
122180.55

0.41628
2.35435
2.14094
1.63413
0.27327
0.02146

0.176815| 
1

0.909358| 
0.694091 
0.116069 
0.009117|
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F ig u re  4 .1 5 D

R e le x p
C 83153.71 124562.91 0.66756 0.280697
Lig 253413.89 106555.36 2.37824 1
+ C u rc l5 183658.99 94092.45 1.95190 0.820734
+C u rc25 101908.16 96400.10 1.05714 0.444505
+C u rc35 93749.17 127562.43 0.73493 0.309022
+ C u rc50 56200.98 112780.71 0.49832 0.209534

Figure 4.16C

Exp 1
Rel Ex

Figure 4.16D

0.21221
22(R)-HC

0.25792
0.17342
0.23848

m n s m iE S E S I M ean SD k s s i i E S E H 3 I
0.10648 0.14795 0.07008 0.108169 0.038965

1 1 1 1 39.64 0.001 * * *
0.15553 0.22118 0.58194 0.319551 0.229598
0.26894 0.00553 0.32422 0.199562 0.170293
0.23680 0.15700 0.25036 0.214720 0.050444 26.96 0.001  * * *

Exp 2
Rel Exm \
0.24897

1
0.45468
0.06450
0.15388

Exp 3
RelExp Mean m  11
0.46693

1
0.46205
0.22184
0.40156

0.30937
1

0.391551
0.153255

0.26464

0.137685

0.115785
0.080585
0.125897

t-test P-value

8.69

10.12

0.01

0.01

Figure 4.17C jE n i ■ a a i
1 3 1 3 1 1 m n s a n

C 0.13052 0.11669
9CRA+22R 1 1
22S 0.15459 0.16902
LY- 0.22029 0.07557
LY+ 0.14375 0.33688
Figure 4.17C m m m \

I c S B l I E s m i i
C 0.32614 0.40621
9CRA+22R 1 1
22S 0.34856 0.51135
LY- 0.09024 0.36128
LY+ 0.24815 0.52963

Figure 4.18C w m m \■ 3 H I I
■ a a a i i w m m i i

C 0.36790 0.02317
GW3965 1 1
22S 0.10432 0.09202
LY- 0.33292 0.05660
LY+ 0.28208 0.10710

Exp 3
Rel Ex Mean SD
0.06617 

1
0.05108 
0.09339 0.12975
0.07984 0.186821

Exp 3
Rel Ex

0.104458 0.033877 
1

0.12490 0.064334 
0.078912 
0.133822

M ea n
0.30411 0.345488 0.053731

0.402512 0.094257 
0.189019 0.149715

0.34762 
0.11554 
0.20335 0.327044 0.176869

t-test P-value

Mean
0.29189 0.2276539 0.181120

1 1 
0.20123 0.1325196 0.059818
0.09169 0.1604022 0.150434
0.37632 0.255168 0.1366152

45.79

10.52

21.10

6.59

0.001

0.01

P-value

0.001

0.01

t-test P-value

7.39

9.44

0.01

0.010
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Figure 4.18D W T ffT M
ES0J1IES133I M ean SD | | wsssm\IZ 5S 9H H H I

control 0.60276 0.38426 0.46828 0.485101 0.11022
GW 3965 1 1 1 1 8.09 0.01 * *
22S 0.36486 0.42535 0.54993 0.446714 0.094368
LY- 0.31154 0.12995 0.38092 0.274137 0.129597
LY+ 0.16695 0.44356 0.45247 0.354327 0.162335 6.89 0.01 * *

F ig u re  4 .1 9C IH S 3 X I
IESE93 Average

c 0.24143 0.14217 0.1918
T1317 1 1 1
22S 0.27483 0.10653 0.1907
LY- 0.09469 0.07960 0.0871
LY+ 0.14970 0.08807 0.1189
Figure 4 .1 9 D ■ 3 0 1

■ S S I H B ! H I Average
C 0.35173 0.27063 0.311184
T1317 1 1 1
22S 0.47225 0.55350 0.512873
LY- 0.26185 0.29552 0.278685
LY+ 0.35887 0.44607 0.402470

F ig u re  4 .20C

RelExp
C 3766.57 149351.25 0.02522 0.004877]
L'g 547251.83 105832.95 5.17090 ii
+LY25 315150.41 115384.09 2.73132 0.528209|
+LY50 320800.48 105832.10 3.03122 0.586207
+LY75 265737.46 115380.11 2.30315 0.445405
+LY100 263158.31 105834.68 2.48650 0.480865
F ig u re  4 .2 0 D I H H H

Relexp
C 53823.47 149351.25 0.36038 0.169338
Lig 225231.60 105832.95 2.12818 1

+LY25 95128.40 115384.09 0.82445 0.387397
+LY50 61949.01 105832.10 0.58535 0.275048
+LY75 54537.14 115380.11 0.47267 0.222102
+LY100 33480.92 105834.68 0.31635 0.148649



F ig u re  4 .2 1 C

R el Exp
C 21716.07 130626.16 0.16625 0.081981
L'g 188938.19 93171.53 2.02785 il
+LY25 93299.72 108547.53 0.85953 0.423861
+LY50 55420.25 120656.33 0.45932 0.2265071
+LY75 49575.06 124308.48 0.39881 0.196664
+LY 100 48832.84 143904.15 0.33934 0.1673411
F ig u re  4 .2 1 D  | IB B 1m i i « i R e le x p
c 141300.51 130626.16 1.08172 0.405420
Lig 248594.28 93171.53 2.66814 1
+LY25 138435.46 108547.53 1.27534 0.477991
+LY50 71302.31 120656.33 0.59095 0.221486
+LY75 60161.45 124308.48 0.48397 0.181388
+LY 100 37566.32 143904.15 0.26105 0.097840

Figure 4.22C
A v erag e

C 1 1 1
22(R)-HC 2.42825 3.25992 2.84408
9CRA 2.14505 2.14505
22( R)-HC+9CRA 5.85906 8.24860 7.05383
G W 3 96 5 4.63100 5.77934 5.20517
T1317 7.33582 5.87168 6.60375
22S 1.20030 1.36268 1.28149
Figure 4.22D

ESE33I A v erag e
C 1 1 1
22(R)-HC 3.45038 3.01094 3.23066
9 CRA 2.33783 2.33783
22(R)-HC+9 CRA 3.13300 3.28009 3.20654
CW3965 2.65336 2.89375 2.77355
T1317 3.50923 2.64703 3.07813
22S 1.35401 0.85213 1.10307

Figure 4.23C ■ S O U
A v e ra g e

C 0.27364 0.19087 0.2323
9CRA+22R 1 1 1
SP 0.41372 0.30384 0.35878
SP+ 0.40556 0.18761 0.29658
Cure 0.03302 0.01706 0.02504
Curc+ 0.04838 0.01243 0.03040
LY 0.55480 0.07355 0.31418
LY+ 0.05897 0.21275 0.13586



APPENDICES 3 4 4

F ig u re  4 .2 3 D W E S TM W E s a
Average

C 0.33526 0.28025 0.30776
9CRA+22R 1 1 1
SP 0.22925 0.27013 0.24969
SP+ 0.35077 0.15849 0.25463
Cure 0.40463 0.35593 0.38028
Curc+ 0.34614 0.23256 0.28935
LY 0.27079 0.09709 0.18394
LY+ 0.17122 0.01661 0.09392

Figure 4 .2 4 A

E E E E 1 I Average
W T A B C A 1

U T 1 1 1
T 5.68490 6.45706 6.070981
M u t  ABCA1

F ig u re  4 .2 4 8

9CRA/22RHC

1
0.53968 0.01221 0.275949

wnnm whii'imWEOTM

i

3 5 .6 4 1 9 1

1

8 .9 6 3 2 2

i

3 7 .6 2 5 2 2

1

1 3 .5 3 1 6 1

i

5 5 .7 2 2 7 8

i

1 7 .7 6 8 5 2

i

4 5 .5 3 7 9 8

Average
1

1 1 .2 4 7 4 2

t-test I P-value

0.01

Figure 4.25 B U Iwssmi
m i Mean SD ■SSfllIZ9B9HHHI

pcDNA3
UT 1 l 1 1
T 14.88867 9.40993 11.12610 11.80823 2.802341
DN LXR
UT 1 1 1 1
T 4.19291 4.74135 2.47496 3.803076 1.182417 4.56 0.05 *
pcDNA3
UT 1 1 1 1
T 9.88867 7.40993 6.12610 7.80823 1.912645 3.70 0.05 *
DN LXR
UT 1 1 1 1
T 3.71940 3.95684 2.49744 3.391229 0.783096 5.01 0.05 *



Figure 5.2B

Average d-46
Oh 1 1 1
15m in 2.50037 2.61396 2.557165
30m  in 1.76100 1.52208 1.641539
45m in 1.53369 1.32906 1.431378
60m  in 0.65980 0.48357 0.571685
90m  in 0.45135 0.32730 0.389323
180m  in 0.45032 0.12404 0.287176

1
Figure 5.2B|■3311M s s a m
m \ m u \ E3EEII Average p-54
Oh 1 1 1
15m in 1.76080 1.92520 1.843002
30m in 1.59756 1.83948 1.718522
45m in 1.94990 2.20575 2.077826
60m  in 1.52645 1.76625 1.646350
90m in 1.72206 2.02927 1.875663
180m  in 1.73343 1.84294 1.788186

F ig u re  5 .3B U S S M
A verage

Oh 1 i 1
1 5 m in 1.96633 1.46761 1.716972
3 0 m in 1.75957 1.47038 1.614975
4 5 m in 0.93234 0.69982 0.816079
60m  in 1.79182 1.13932 1.465572
9 0 m in 2.36069 1.21987 1.790283
180m  in 0.84640 0.62378 0.735090

Figure 5.4B W E B S M lH H H H
IE3DE1 Average p-46

Oh i 1 i
l /2 h 1.30871 1.28997 1.299342
lh 0.84841 0.90321 0.875806
3h 0.95616 1.06192 1.009039
6h 0.59608 0.71804 0.657059
12h 0.11049 0.16277 0.136628
24h 0.41467 0.58104 0.497854
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Figure 5 .4B

Oh
l /2 h

lh
3h
6h

12h

24h

n o ■ 3 9 1

1
1.45659
0.93225
0.47171
0.59520
0.76356
1.22914

1
1.48671
0.99082
0.52694
0.60134
1.10575
1.55213

1
1.47165
0.96154
0.49932
0.59827
0.93465
1.39063

Figure 5 .5B

Oh 

l / 2 h  

lh  

3h 

6h 

12h 

24h

Exp 1
Fold Ind

1
1.84249
2.97560
2.94785
1.92745
1.42085
4.31343

Exp 2

1
1.59569
3.58901
2.67468
2.76973
2.96261
6.41282

1
1.719091
3.282304
2.811268
2.348592
2.191727
5.363125

F ig u re  5 .6 B

A v e ^ e  |
Oh 1 1 1
l / 2 h 1.94917 1.15580 1.552488
lh 1.12902 1.10351 1.116264
3h 0.24334 0.66457 0.453953
6h 0.64038 0.28851 0.464444
12h 0.78179 0.39823 0.59001
24h 1.23191 0.72060 0.976253

Figure 5.7D ■ B W I
w m m \ Average p-46

C 0.24378 0.41623 0.33000
Lig 1 1 1
SP50 0.33750 0.41790 0.37770
SP50+ 0.07922 0.30719 0.19321
SP100 0.32024 0.24003 0.28013
SP100+ 0.39358 0.32505 0.35932
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Figure 5.7D
sam ples | Rel Exp | Rel Exp
C
Lig
SP50
SP50+
SP100
SP10CH-

m
0.41544

1
0.15016
0.10149
0.18546
0.33571

Avei
0.58051

1
0.23817
0.27217
0.53977
0.57442

ige p -54
0.49797

1
0.19416
0.18683
0.36262
0.45507

Figure 5.7E ■ m imsaiiwsxmi Mean SD 1 KSSfll
c 0.60108 0.69690 0.62082 0.63960 0.050598
Lig 1 1 1 1 10.07 0.01
SP50 0.45171 0.49697 0.67989 0.54285 0.120811
SP+50 0.33350 0.36514 0.48432 0.39432 0.079529 10.77 0.01
SP100 0.41802 0.35013 0.33639 0.36818 0.043706
SP100+ 0.09630 0.33449 0.26649 0.23242 0.122695 8.85 0.01
Figure 5.7F IB S ■

Average
C
Lig
SP50
SP50+
SP100
SP100+

0.33914
1

0.18084
0.34034
0.13706
0.08317

0.49925
1

0.16902
0.16215
0.17658
0.11248

0.41920
1

0.17493
0.25124
0.15682
0.09782

Figure 5.8D
w m m m s im Mean p-46 SD

C 0.63433 0.53211 0.16295 0.4431291 0.247966
Lig
Cure

1

4.93215
1

5.54175
1

4.40385
1

4.9592488 0.569432
3.89 0.05 *

Curc+ 3.79002 3.46771 2.83494 3.3642275 0.485877

Figure 5.8D m m m ■ ■ ■ ■ I ■ ■ ■
Mean p-54 SD |

C 0.69558 0.42931 0.444463 0.5231179 0.149547
Lig 1 1 1 1 5.52 0.05 *

Cure 1.71711 1.64163 1.350103 1.5696158 0.193814
Curc+ 1.66709 1.43324 1.305258 1.4685321 0.183481
Figure 5.8E 

C

Lig 
Cure 
Curc+

m i
A v e ra g e

0.59625 0.50530 0.55078
1 1 1

0.95516 0.59843 0.77680
2.69693 2.84259 2.76976
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Figure 5.8F

C
Lig
Cure
Curc+

r m m \E3E 1 I Mean SD fll
0 .7 3 0 3 6 0 .6 5 8 9 7 0 .8 8 0 4 8 0 .7 8 5 9 3 0 .7 6 3 9 4 0 .0 9 3 4 7 4

1 1 1 1 1
1 .1 5 3 8 7 1 .0 1 3 3 5 2 .0 2 6 3 3 1 .1 7 6 6 7 1 .3 4 2 5 5 0 .3 9 9 7 0 3
0 .8 4 7 9 2 0 .9 7 1 5 2 2.20120 1 .1 5 9 9 4 1 .2 9 5 1 4 0 .5 3 4 7 8 0

t-test P-value

5 .0 5 0.01

Figure 5.9B wsrmmzzM
f m t m m i E S E S S E S E S S I Average
c 0.41987 0.39690 0.40838
Lig 1 1 1
Cure 0.04367 0.32166 0.18267
Curc+ 0.13292 0.24401 0.18847

Figure 5.10 W £ T M \
\w m s m w m m m \w s h s m \

pcDNA3
UT 1 1 1
T 15.88867 8.40993 12.12610
DN JNK/SAPK 
UT 1 1 1
T 12.00598 19.08112 13.80307
DN SEK-1 
UT 1 1 1
T 4.01527 4.71168 5.60488
DN c-Jun 
UT 1 1 1
T 2.96661 2.04218 3.93621

Mean SD

5.16

P-value

0.05

Figure 5.11B
samples
C
Lig
22(S)-HC

samples
C
Lig
22(S)-HC

Figure 5.12B 

C
Lig
C
Lig

46273.24
108043.61
35813.30

230471.47
177208.30
184628.91

29105.06
30566.97
60354.86

168591.23
106900.87
153556.41

m s m m

R a tio  F o ld  In d

0.20078
3.036703

R a tio  F o ld  In d

0.634083
0.910821

F o ld  In d lEBEEBEI Average  
1 1 1  

2.15450 1.80754 1.98102
0.58405 1.08590 0.83498
1.11867 1.12770 1.12318

0.05

0.05
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Figure 6.2B §

u m i Mean SD U issai
Oh i 1 1 1
15min 1.84168 1.87657 1.53563 1.75129 0.187579 6.94 0.01 **
30m in 1.83407 2.74168 2.22832 2.26803 0.455107 4.83 0.05 ♦
45min 1.00726 1.76657 2.13552 1.636452 0.575272
60m in 2.61325 3.26806 2.30081 2.727372 0.493618 6.06 0.01 **
90m in 1.69135 1.95346 2.26652 1.970443 0.287959 5.84 0.01 **
180m in 0.48005 0.50855 0.71004 0.566217 0.125371 5.99 0.01 **

Figure 6.3B

Control

Lig

Figure 6.4B

Control
Lig
LY-
LY+

2.95064

9
1

1.98808
1

2.13958

Mean ■ ■

2.359436 0.517573

3 S E B  Mean SD
0.17800 0.50493 0.46738 0.383436 0.178902

1 1 1 1  
0.36130 0.10943 0.06190 0.17754 0.160904
0.33879 0.12095 0.10968 0.189807 0.129149

4.55

P-value

o.o5

t-test P-value

5.97

10.87

0.01 * *  

0.01 * *

Figure 6.5B jtSST

control 1

Lig 2.28330

Figure 6 .6 B
m m m w s m m
control 0.60286
Lig 1
LY 0.25812
LY+ 0.20253

Figure 6.7 E 9 S II
E5EEE1E

pcDNA3
UT i
T 15.88867
DN PKB
UT 1
T 6.02230

Exp 2
Rel Ex 3 E 3 E 3 3 I H H H R  sd

i l l  
2.73446 2.59290 2.536885 0.230736

! 3 l E £ £ 0 3 3  Mean  
0.36570 0.30750 0.425356 0.156455

1 1 1  
0.32407 0.64962 0.410604 0.2096
0.33829 0.52142 0.354082 0.160026

m m  M ean SD

Mean
1 1

t-test P-value

11.54 0.01

t-test P-value

6.36

6.99

0.01 * *  

0.01 * *

t-test P-value

3.19 0.05
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c
Lig
BIM
BIM+
BIM
BIM+
Figure 6.8D

m
0.01107

1
-0.00016
0.11092

-0.00016
0.05278

m \
0.02430

1
0.00007
0.30900
0.00006
0.01964

Figure 6.8C
samples Rel Exp Rel Exp Rel Ex Mean SD t-test P-value

0.02958
1

-0.00014
0.40207

- 0.00011

0.27787

0.021649
1

- 0.00012

0.009538

0.009538
0.273996 0.148695 
-0.00011 0.009538 
0.116764 0.140502

8.46

10.89

0.01 * *  

0.01 * *

E s n s s i Mean SD 1 3 3 3 1 1 i s a i
c 0.16079 0.23696 0.18563 0.194459 0.0388457
Lig 1 1 1 1 35.92 0.001
BIM 0.04816 0.06919 0.02568 0.047675 0.021760
BIM+ 0.28131 0.42305 0.59994 0.434769 0.1596382 6.13 0.01
BIM 0.03944 0.07868 0.02028 0.046135 0.0297722
BIM+ 0.19728 0.21137 0.52582 0.311489 0.1857473 6.42 0.01

Figure 6 .9C
RelExp

C 8876 .96 142254.35 0 .0 6 2 4 0 0 .03566

Lig 233245.10 133302.20 1.74975 1

Rapa500 -6 8 .41 150852.96 -0 .0 0 0 4 5 -0 .0 0 0 2 6
Rapa500+ 176633.64 140508.13 1 .25711 0 .71845
R apal50 128.37 127457.02 0 . 0 0 1 0 1 0 .00058
Rapa150+ 195204.75 123774.99 1.57709 0.90133

Figure 6.9D I H H H
R elExp

C 76315 .39 142254 .35 0 .53647 0 .430383

Lig 166160 .73 133302 .20 1.24650 1

Rapa500 2 7317 .26 150852 .96 0 .18109 0.145275

Rapa500+ 123605 .64 140508.13 0 .87970 0.705742

R apal50 31928 .81 127457.02 0 .25051 0 .200968

R apal50+ 124870.07 123774 .99 1 .00885 0 .809346

Figure 6.10C msmimssm
E 5 E 3 1 I Average

C 0.08491 0.01906 0.051989
Lig
G66983

1
-0.00011

1
-0.00021

1
-0.000158

G66983+ 0.73395 0.81050 0.772222
G66983 -0.00008 -0.00021 -0.000144
G66983+ 0.53445 0.41398 0.474218
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F igure  6 .1 0 D H333IHMSSMtrnmiwmmi Avg ragG
C 0.39028 0.19095 0.2906159
L'g 1 1 1
G 6 6 9 8 3 0.15616 0.10555 0.1308526
G 6 6 9 83 + 0.64875 0.77230 0.7105235
G 6 6 9 83 0.12777 0.08625 0.1070105
G 6 6 9 8 3 + 0.45669 0.52947 0.493081

Figure 6.11C MSSMl■aiaai■ H E E M S I  Mean SD
C 0 .0 1 9 2 2 0 .0 3 4 1 3 0 .0 7 2 0 7 0 .0 6 2 0 1 0 .0 4 6 8 5 9 0 .0 2 4 4 3 4

L'g 1 1 1 1 1
G66976+ 0 .7 8 7 4 0 1 .6 0 2 2 5 0 .3 6 8 3 2 0 .9 2 4 7 7 0 .9 2 0 6 8 5 0 .5 1 2 3 2 3

G66976+ 0 .6 3 6 5 3 1 .5 9 7 3 8 0 .4 4 8 8 3 0 .7 3 5 2 6 0 .8 5 4 4 9 9 0 .5 0 9 3 0 5

G66976+ 0 .5 6 7 9 7 1 .9 6 3 8 3 0 .3 4 4 6 1 0 .9 5 6 1 7 0 .9 5 8 1 4 7 0 .7 1 6 4 8 9

G66976+ 0 .5 4 7 9 7 1 .7 4 1 2 0 0 .3 4 8 4 2 0 .8 9 0 5 0 0 .8 8 2 0 2 1 0 .6 1 4 9 7 4

Figure 6.11D
rnMsmwsssmi Mean SD

C 0 .3 4 6 3 1 0 .1 0 6 3 0 0 .2 8 8 5 9 0 .3 3 8 4 6 0 .2 6 9 9 1 6 0 .1 1 2 0 3 3

Lig 1 1 1 1 1
G66976+ 1 .3 2 5 7 7 1 .6 6 9 5 1 0 .8 2 0 9 4 1 .0 0 2 2 3 1 .2 0 4 6 1 6 0 .3 7 3 7 0 8

G66976+ 1 .1 2 7 3 5 1 .5 9 6 7 0 1 .0 2 5 6 6 0 .9 4 7 2 7 1 .1 7 4 2 4 5 0 .2 9 1 1 2 5

G66976+ 1 .5 4 4 5 0 1 .4 3 9 0 6 1 .0 5 4 7 0 1 .1 7 3 4 8 1 .3 0 2 9 3 4 0 .2 2 7 4 9 8

G66976+ 1 .2 5 3 7 4 1 .1 0 1 5 3 0 .9 6 9 4 7 0 .9 2 5 4 9 1 .0 6 2 5 5 7 0 .1 4 7 7 8 7

Figure 6.12C ■ £ U I I I S 9 I m hm mwmrm\ Mean SD i m m —
c 0.06717 0.00223 0.01118 0.14994 0.03394 0.052892 0.059769
Lig 1 1 1 1 1 1
Rott+ 0.27136 0.26355 0.88757 0.86048 1.10435 0.677462 0.386042 1.87
Rott+ 0.37912 0.18559 0.91098 0.88246 0.32272 0.536174 0.336724 3.08 0.05 *

Rott+ 0.57689 0.13841 0.73665 0.76624 0.44065 0.531768 0.255943 4.09 0.01 * *

Rott+ 0.05183 0.10169 0.38082 0.92356 0.30824 0.353227 0.347194 4.17 0.01 * *

Figure 6.12D USUIMJUII■ 1 9 1KgWBilwmmi\wmmi Mean SD
C 0.29038 0.06317 0.16539 0.31468 0.33801 0.234328 0.116614
Lig 1 1 1 1 1 1
Rott+ 0.64897 1.21814 1.15004 1.33630 1.23788 1.118266 0.270677
Rott+ 0.39568 1.75432 1.09932 1.30775 0.47125 1.005662 0.574064
Rott+ 0.37776 1.80430 1.06921 1.03164 0.60015 0.976611 0.547042
Rott+ 0.30938 1.31716 0.72343 0.83916 0.43292 0.724412 0.394252

Figure 6.13A
M ean SD

pCDNA3 0 . 0 4 4 7 1 0 . 2 9 3 2 6 0 . 0 7 6 1 8 0 . 1 3 8 0 5 3 0 . 1 3 5 3 3 2

DN PKCe 0 . 0 4 4 7 1 0 . 2 9 3 2 6 0 . 0 7 6 1 8 0 . 1 3 8 0 5 2 6 0 . 1 3 5 3 3 2

pCDNA3+Lig 1 1 1 1
DN PKCe+Lig 0 .1 1 0 2 1 0 . 2 3 0 8 4 0 . 3 3 8 4 5 0 .2 2 6 4 9 9 5 0 . 1 1 4 1 8

Figure 6.13B
M ean SD

pCDNA3 0 . 0 4 4 7 1 0 . 2 9 3 2 6 0 . 0 7 6 1 8 0 . 1 3 8 0 5 3 0 .1 3 5 3 3 2

DN PKCX 0 . 0 4 4 7 1 0 . 2 9 3 2 6 0 . 0 7 6 1 8 0 . 1 3 8 0 5 2 6 0 . 1 3 5 3 3 2

pCDNA3+Lig 1 1 1 1

DN PKCX +Lig 8 .5 1 4 9 5 1 0 . 7 0 8 3 0 7 . 7 1 9 7 2 8 .9 8 0 9 9 1 1 .5 4 7 8 3 4

t-test P-value

1 1 .7 3 0.01
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Figure 6.14
Rel Exi Rel ExiRel Exi

CDNA3
Rel Exi

PKCaDN
Rel Exp

UT
T

0.02908 0.07350 0.08311 1.218490 7.020931
1 0.21446 0.35552 3.9047216 22.42197

Figure 7.3B m s m \n a i w m m i
w m s m im s m \ Mean SD | | wmm\ES5EEHHHI

C lh 0 .4 7 5 0 1 0 . 7 7 3 8 8 0 .8 3 0 3 9 0 .4 8 2 9 1 0 .6 4 0 5 5 0 .1 8 8 0 3 3

U g 1 1 1 1 1 3 .8 2 0 .0 5  *
SP50 0 .4 9 6 7 4 0 .2 2 4 1 8 0 .3 6 0 4 6 0 .1 9 2 7 2 5

SP50+ 0 .5 3 1 9 4 0 .3 3 1 2 1 0 .4 3 1 5 7 0 .1 4 1 9 3 9 5 .6 6 0 .0 5  *
SP100 0 .1 5 0 4 4 0 .0 1 6 3 7 0 . 6 1 0 3 9 0 . 4 8 2 4 3 0 .3 1 4 9 1 0 .2 7 7 8 1 8

SP100+ 0 . 1 4 6 4 7 0 .0 1 6 3 0 0 .6 6 4 8 5 0 .3 4 4 2 1 0 .2 9 2 9 6 0 .2 8 2 2 1 2 5 .0 1 0.01 * *

Average p-46
C24h 0 . 0 9 7 7 5 0 . 0 2 8 7 4 0 . 0 6 3 2 4 4

L'g 1 1 1
LY25 0 .0 4 8 4 2 0 . 0 4 8 4 2

LY25+ 0 .1 9 1 0 2 0 .1 9 1 0 2

LY50 0 . 2 2 2 1 9 0 . 0 4 3 1 2 0 .1 3 2 6 5

LY50+ 1 . 8 3 3 6 0 1 . 4 0 3 6 6 1 .6 1 8 6 3

LY100 0 . 3 4 0 2 7 0 . 1 1 4 7 4 0 .2 2 7 5 1

LY10CH- 0 .5 1 1 9 1 0 . 2 9 0 0 8 0 . 4 0 0 9 9

w m s m Average p-54
C24h 0 . 4 2 4 1 2 4 0 . 4 3 9 0 9 3 0 . 4 3 1 6 0 9

Lig 1 1 1
LY25 0 .4 1 7 1 3 3 0 . 4 1 7 1 3 3

LY25+ 1 .4 7 3 1 4 9 1 . 4 7 3 1 4 9

LY50 0 .5 9 2 7 0 7 0 . 2 0 4 4 6 8 0 . 3 9 8 5 8 7

LY50+ 2 . 4 1 3 0 2 4 2 . 0 4 4 0 2 9 2 . 2 2 8 5 2 7

LY100 0 . 4 4 7 4 4 1 0 . 4 2 6 4 6 4 0 . 4 3 6 9 5 2

LY100+ 0 . 4 9 9 9 9 0 1 . 3 2 1 3 5 4 0 . 9 1 0 6 7 2

F ig u re  7 .4 D W K S H E M i
Mean SD

C24h 0 .6 6 5 6 1 0 .5 8 4 8 8 0 .6 0 0 8 6 0 .6 1 7 1 2  0 .0 4 2 7 4 9

Lig 1 1 1 1
LY25 0 .4 2 3 3 3 0.22020 0 .3 2 1 7 6  0 .1 4 3 6 3 7

LY25+ 1 .1 8 4 2 1 0 .7 3 8 7 5 0 .9 6 1 4 8  0 .3 1 4 9 8 4

LY50 0 .3 9 6 4 8 0 .0 5 3 4 4 0 .2 2 4 9 6  0 .2 4 2 5 6 4

LY5CH 1 .0 6 8 8 8 0 .3 9 6 8 9 0 .7 3 2 8 9  0 .4 7 5 1 6 9

LY100 0 .0 4 1 5 4 0 .1 3 8 2 8 0 .0 8 9 9 1  0 .0 6 8 4 0 6

LY100+ 0 .3 1 7 6 2 0 .6 8 4 7 2 0 .5 0 1 1 7  0 .2 5 9 5 8

1 5 .5 1 0.001

Figure 7.5B msmiwsmi
KSISklESB3IS M ean SD

C lh 0.76596 0.59996 0.45983 0.608583 0.15325
Lig 1 1 1 1 4.42 0.05 *
BIM 1.31379 1.37393 1.39864 1.362118 0.043643
BIM+ 1.53547 1.73738 1.52848 1.600444 0.118639 8.77 0.01 **
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Figure 7.6B

C24h
Lig
BIM
BIM+

Figure 7.6B

C24h 
Lig 
BIM 
BIM+

Rel Exp Mean p-46 P-valueRel Exp Rel Ex
0.33117

1
0.33798
0.37492

m  
0.26811 

1
0.13361
0.11841

0.36268 0.32065 0.0481576
1 1

0.11228 0.19462 0.1246091
0.32738 0.27357 0.136459

24.43 0.001 ***

9.22 0.01 **

Rel Exp Rel Exm
0.51560

1
0.44041
0.50235

!91
0.67169

1
0.15111
0.30552

RelExp Mean p-54 SD
0.60505 0.597448 0.078322

1 1
0.07439 0.221970 0.193023
0.19545 0.334438 0.155482

t-test P-value

8.90 0.01 **

7.41 0.001 ***

Figure 7.7C Exp 1 Exp 2
RelExpsamples

C24h
Lig
BIM
BIM+

0.51797
1

0.13937
0.30350

0.67166
1

0.08323
0.32150

Mean SD
0.35999 0.51654 0.155843

1 1 
0.24205 0.154885 0.08054
0.15862 0.261205 0.089297

P-value

5.37

14.33

0.05 * 

0 . 0 0 1  * * *

Figure 7.7D 1 3 9 1 U B I
m m m I S B W E B B a i Mean SD | | K 5 E 5 M 2 3 S M H H

C24h 0.36593 0.64706 0.54263 0.518541 0.142105
Lig 1 1 1 1 5.87 0.01 **
BIM 0.20344 0.35023 0.07052 0.208063 0.139913
BIM+ 0.27052 0.39188 0.16584 0.276083 0.113123 11.08 0.01 **
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Figure 7.8B ■ 3 9 !
msEsm. Average p-46

C 0.10194 0.03487 0.06841
L'g 1 1 1
R o tt 0.06249 0.54665 0.30457
R ott+ 0.21732 0.17224 0.19478
G 6 6 97 6 0.47556 0.31863 0.39710
G 66976+ 0.58004 0.40408 0.49206
G 66 98 3 2.65076 0.78106 1.71591
G 66983+ 3.51683 3.20008 3.35846
G 66 98 3 2.14176 0.65590 1.39883
G 66983+ 1.78738 4.33632 3.06185

P-54
Figure 7.8B K 3 3 H i

E S E 3 3 Average p-54
C 0.10670 0.21036 0.15853
Lig 1 1 1
R ott 0.04267 0.43681 0.23974
R ott+ 0.09349 0.39098 0.24224
G 66 97 6 0.55261 0.58240 0.56750
G 66976+ 0.44242 0.58335 0.51288
G 66983 1.27904 0.82342 1.05123
G 66983+ 1.74465 1.27348 1.50906
G 66983 1.04126 0.52655 0.78390
G 66983+ 0.97184 1.36497 1.16840
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