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ABSTRACT

Realistic and accurate room reverberation time (RT) extraction is very 

im portant in room acoustics. Occupied room RT extraction is even 

more a ttractive but it is technically challenging, since the presence of 

the audience changes the room acoustics. Recently, some m ethods have 

been proposed to  solve the occupied room RT extraction problem by 

utilizing passively received speech signals, such as the maximum like­

lihood estim ation (MLE) technique and the artificial neural network 

(ANN) scheme. Although reasonable RT estim ates can be extracted by 

these methods, noise may affect their accuracy, especially for occupied 

rooms, where noise is inevitable due to the presence of the audience. 

To improve the accuracy of the RT estim ates from high noise occupied 

rooms, adaptive techniques are utilized in this thesis as a preprocess­

ing stage for RT estimation. As a dem onstration, this preprocessing 

together with the MLE m ethod will be applied to extract the RT of a 

room in which there is significant noise from passively received speech 

signals. This preprocessing can also be potentially used to aid in the 

extraction of other acoustic param eters, such as the early decay time 

(EDT) and speech transmission index (STI).

The motivation of the proposed approach is to utilize adaptive tech­

niques, namely blind source separation (BSS) and adaptive noise can­

cellation (ANC), based upon the least mean square (LMS) algorithm,
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to  reduce the noise level contained in the received speech signal, so th a t 

the RT extracted from the signal outpu t generated by the preprocessing 

can be more accurate.

Further research is also performed on some fundam ental topics re­

lated to adaptive techniques. The first topic is variable step size LMS 

(VSSLMS) algorithms, which are designed to enhance the convergence 

rate of the LMS algorithm. The concept of gradient based VSSLMS 

algorithm s is described, and new gradient based VSSLMS algorithms 

are proposed for applications where the input signal is statistically sta­

tionary and the signal-to-noise ratio  (SNR) is zero decibels or less.

The second topic is variable tap-length LMS (VTLMS) algorithms. 

VTLMS algorithm s are designed for applications where the tap-length 

of the adaptive filter coefficient vector is unknown. The target of these 

algorithm s is to establish a good steady-state tap-length for the LMS 

algorithm. A steady-state performance analysis for a VTLMS algo­

rithm , the fractional tap-length (FT) algorithm  is therefore provided. 

To improve the performance of the FT  algorithm  in high noise condi­

tions, a convex combination approach for the F T  algorithm  is proposed. 

Furtherm ore, a new practical VTLMS algorithm  is also designed for 

applications in which the optimal filter has an exponential decay im­

pulse response, commonplace in enclosed acoustic environments. These 

original research outputs provide deep understanding of the VTLMS al­

gorithms.

Finally, the idea of variable tap-length is introduced for the first 

time into the BSS algorithm. Similar to the FT  algorithm, the tap- 

length of the natural gradient (NG) algorithm, which is one of the most 

im portant sequential BSS algorithms is also made variable rather than
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fixed. A new variable tap-length NG algorithm is proposed to search for 

a steady-state adaptive filter vector tap-length, and thereby provide a 

good compromise between steady-state performance and com putational 

complexity.

The research recorded in this thesis gives a first step in introduc­

ing adaptive techniques into acoustic param eter extraction. Limited 

by the performance of such adaptive techniques, only simulated studies 

and comparisons are performed to  evaluate the proposed new approach. 

W ith  further development of the associated adaptive techniques, prac­

tical applications of the proposed approach may be obtained in the 

future.
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Chapter 1

INTRODUCTION

Room reverberation time (RT) is a very important acoustic parameter 

for characterizing the quality of an auditory space. The estimation of 

room RT has been of interest to engineers and acousticians for nearly 

a century. This parameter is defined as the time taken by a sound 

to decay 60dB below its initial level after it has been switched off [2]. 

Reverberation time by this classical definition is referred to as RT60. 

For convenience of presentation, it will be denoted as Tqq throughout 

the thesis.

The reverberation phenomenon is due to multiple reflections of the 

sound from surfaces within a room. It distorts both the envelope and 

fine structure of the received sound. Room RT provides a measure 

of the listening quality of a room; so obtaining an accurate room RT 

is very important in acoustics. From an application perspective, ob­

taining accurate room acoustic measures such as room RT is often the 

first step in applying existing knowledge to engineering practices, diag­

nosing problems of spaces with poor acoustics and proposing remedial 

measures. From a scientific research perspective, more realistic and ac­

curate measurements axe demanded to enrich the existing knowledge 

base and correct its imperfections [3].

Many methods have been proposed to estimate RT. Typical meth­
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ods can be seen in [4], [5], [6], [7] and [8]. The first RT estimation 

method proposed by W. C. Sabine is introduced in [4]. It utilizes the ge­

ometrical information and absorption characteristics of the room. The 

methods presented in [5] and [6] extract RT by recording good con­

trolled excitation signals, and measuring the decay rate of the received 

signal envelope. These traditional methods are not suitable for occu­

pied rooms, where prior information of the room or good controlled 

excitation signals are normally difficult to obtain. In order to measure 

the RT of occupied rooms, an artificial neural network (ANN) method 

is proposed in [7], and a maximum likelihood estimation (MLE) based 

scheme is proposed in [8]. Both of them utilize modern digital signal 

processing techniques, and can extract RT from occupied rooms by 

only utilizing passively received speech signals (throughout this thesis 

RT estimation is assumed to be “in-situ”, i.e., the excitation signal 

is assumed to be one generated by someone already within the room, 

methods based on introducing an external source are not considered). 

The advantage of these methods is that no prior information of the room 

or good controlled excitation signals are necessary. However, their per­

formance will be degraded and generally biased by noise, thus they 

are not suitable for high noise conditions. In this thesis the term high 

noise is used to denote signal-to-noise ratios (SNR) of approximately 

OdB and below.

To solve the high noise occupied room RT estimation problem, a 

new approach is proposed in this thesis, which utilizes a combination 

of blind source separation (BSS) and adaptive noise cancellation (ANC) 

based upon the least mean square (LMS) algorithm. These adaptive 

techniques are exploited in a preprocessing stage before the RT estima­
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tion. The aim of this study is to improve the accuracy of the existing 

occupied room RT estimation methods by reducing the unknown noise 

contained in the received speech signals. Fundamentally new research 

on the adaptive techniques is also provided.

In this chapter, traditional room RT estimation methods proposed 

in [4], [5] and [6] are firstly introduced, followed by the description of 

occupied room RT estimation methods in [7] and [8]. The background 

and motivation of the new occupied room RT estimation technique is 

then provided. On the basis of this proposed approach, the scope of 

the study within this thesis is given, which concentrates mainly on 

the topics of variable step size LMS (VSSLMS) algorithms, variable 

tap-length LMS (VTLMS) algorithms, and a new variable tap-length 

natural gradient (NG) algorithm. Finally, the organization of the thesis 

is provided.

1.1 Traditional RT estimation methods

1.1.1 Geometrical based method

An early RT estimation method is proposed by W. C. Sabine [2] and 

presented in [4]. This method is derived under the condition that the 

sound energy in a room is uniformly distributed.

According to the formulation in [4], if a sound source s(t) radiates 

into a room, where t denotes continuous time, its power can be balanced 

by the variation of the energy content Vw, where V is the volume of 

the room in m3 and w is the sound energy density in J/m 3, and also 

by the losses due to the absorption of the room boundary which has
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the absorption coefficient a

£ { s2(l)} =  V ^  +  BaS  (1.1.1)
at

dwwhere —  denotes the differential of w with respect to t, S is the total 
at

surface area of the room in m2, and B is the irradiation strength to the 

surface wails in units W/m2

B =  -̂w (1.1.2)4

where c is the velocity of the sound in air, 331m/s. After the sound is 

switched off, i.e., s(t) =  0 for t > 0, substituting (1.1.2) into (1.1.1) the 

solution for the energy density is obtained

w(t) =  WQe~2tfT t >  0 (1.1.3)

where wq is the sound energy density when the source sound is switched 

off, and r is the decay constant in seconds

For convenience of presentation, the discrete formulation of signals 

and parameters will be used for the remainder of this thesis. Assuming 

the sampling frequency of signals is Fs , i.e., the sampling period is 

T  =  jjjj, and the unit of time will be the sample period rather than 

seconds. The discrete formulation of the energy density is

w(n) =  woe 2n/T n >  0 (1.1.5)
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where n denotes the sample index and r is the decay constant in sample 

periods

8VFs n i ^
T =  l S ^  (1 U 5 )

Note that the theoretical value E{yj.(n)} of the received sound se­

quence yrip)  is proportional to the energy density w(n), E{y^(n)} =  

w(n)K where i f  is an unknown constant. Substituting (1.1.5) into this 

formulation yields

E{y$(n)} =  E { ^ ( 0 ) } e ~ ^  (1.1.7)

where E{yr(Q)} is corresponding to w0. The natural logarithm of 

E{y^(n)} can then be formulated as

 9<n

ln[^{2/r(n)}] =  ln[£{yj(0)}] +  — -  (1.1.8)

It is clear to see from (1.1.8) that the logarithm of E{y^(n)} has the 

form of a straight line with respect to the sample index. From the 

definition of RT the following equation is obtained

-im -^{S/rC^O * F s ) }  a n  ■, n \10log10— @ -(-0— =  —60 (1.1.9)

Substituting (1.1.8) into (1.1.9) the RT can be calculated as

T6o =  6.91r (1.1.10)

This is a very important formulation of the relationship between the 

decay constant and the RT which is used in most RT estimation meth­

ods. For the geometrical based method, the decay constant is calculated
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from (1.1.6), and the RT can then be obtained directly from (1.1.10). 

This method has been widely used in anechoic chamber measurements, 

design of concert halls, classrooms, and other acoustic spaces where the 

quality of the received sound is of importance [4].

1.1.2 Interrupted noise method

This method is formulated in [5]. According to the definition, room RT 

can be determined from decay curves obtained by radiating sound into 

test rooms. The sound source is switched on, and switched off when the 

received sound energy reaches a steady-state. When the sound source is 

switched off, the decay curve of the received sound energy is recorded. 

Assuming the excitation noise signal s(n)  is statistically stationary and 

white, and h(n)  is the room impulse response, a single realization of 

the received sound signal y(n)  from the interrupted noise method can 

be described as
o

y(n)  =  ^ 2  s(T)h(n -  t) ( 1. 1. 11)

T = —OO

where the excitation signal is assumed to be switched off at n =  0. The 

lower limit of the sum, —oo, indicates that the excitation noise signed 

has been switched on for a sufficiently long time, so that when it is 

switched off, the sound level has reached its steady-state. Since the 

decay curve obtained from the excitation noise signal will be different 

from trial-to-trial due to the random fluctuations of the signal, many 

experiments are needed to obtain a set of decay curves, and the averaged 

received signal decay curve, denoted as y(n), is used to extract the RT.

Similar to that in the geometrical based method in (1.1.7), the ex­

ponential decay model is also used in the value y2(n). With a poly fit 

operation, the decay rate parameter r can be estimated from the nat-
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ural logaxithm of y2(n). (The function poly fit can be found in Matlab, 

and is used to find the best fit damping decay constant r  from the 

logarithm of y2(n) in a least-squares-sense). Then the RT can be de­

termined by equation (1.1.10).

1.1.3 Schroeder’s method

Schroeder’s method is also called the integrated impulse response method, 

or backward integration method [6]. By using equation (1.1.11), Schroeder 

establishes a relationship between the mean squared average of the 

decay curve y(n) and the impulse response h(n). In this method, a 

smoothed decay curve is produced by backward integration summation 

of the impulse response h(n)

sive nature, such as a pistol shot or a hand-clap, which is used to excite 

the impulse response of the room. A smoothed decay curve E{y2(n)} 

is obtained from equation (1.1.12), and the decay rate constant r  can 

be extracted from E{y2{n)} by using the poly fit operation, similar to 

that in the interrupted noise method. The room RT can thereby be 

obtained. As compared with the interrupted noise method, in which 

many experiments are needed to obtain an averaged decay curve, the 

advantage of Schroeder’s method is that only a single measurement of 

the room impulse response is needed.

Although all the above methods have been used successfully in many 

applications, they are not suitable for occupied rooms, mainly because

oo
(1.1.12)

where a2 is the power of the excitation signal, assumed to be of impul-
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of the following reasons:

(1) In many applications, both the room geometry and the absorp­

tive characteristics are difficult to obtain, especially for occupied rooms, 

where the presence of the audience changes the room acoustic charac­

teristics. This limits the application of the geometrical based method 

for occupied rooms.

(2) In both the interrupted noise method and Schroeder’s method, 

high sound pressure noises are used as excitation signals. However, for 

the audience, exposure to loud noise for a long period is difficult or 

impractical.

(3) Maintaining the required SNR is another technical obstacle in 

occupied measurements. The presence of the audience inevitably ag­

gravates the noise and consequently reduces measurement accuracy.

In summary, to estimate the room RT for an occupied room, the 

presence of the audience must be considered.

1.2 Occupied room RT estimation methods

Some modern digital signal processing techniques have been utilized to 

estimate occupied room RT. One of the occupied room RT estimation 

methods is proposed in [3] and [7], where the RT is extracted by using 

an ANN approach, and another is proposed in [8], in which an MLE 

method is utilized.

1.2.1 ANN method

According to the formulation in [3], the application of the ANN method 

for RT estimation can be divided into two stages: the training stage, 

as shown in Fig.1.1, and the operational stage as shown in Fig.1.2.
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Figure 1.1. The training stage of the ANN method

Mic
Preprocessor

Trained 
Neural Network

Figure 1.2. The operational stage of the ANN method

In the training stage, a large number of anechoic speech examples 

are convolved with known room impulse responses to generate training 

samples. These training samples are firstly passed through a band pass 

filter (BPF) with a range of 63 — 6300Hz according to the speech spec­

trum bandwidth [3]. This range of frequencies only pertains to this 

ANN method and is not adopted in the processing proposed in this 

thesis. Then a preprocessor is used to normalize the band filtered sig­

nals, and transfer them to suitable ANN inputs, such as the short-time 

average root-mean-square values. The impulse responses are band pass 

filtered first, then the backward integration method, i.e., Schroeder’s
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method is performed to calculate the RTs from these impulse responses. 

With these calculated values of RTs, the ANN is trained to learn the 

nonlinear relationship between the input and real RTs, as such the ANN 

is performing functional approximation.

Following the training stage, an operational stage can then be per­

formed. Similar to as in the training stage, the recorded speech signals 

are passed through the preprocessor, and the output of the preprocessor 

is used as input to the trained ANN. Since the nonlinear relationship 

between RTs and the inputs has been setup in the training stage, with 

a new input, the corresponding RT can then be found by the trained 

ANN.

As shown by the authors, reasonable RTs can be extracted by the 

ANN method, but the generalization performance of the network is 

very much dependent upon the richness of the training data.

1.2.2 MLE method

The MLE method is also based upon utilizing a passively received 

speech signal to extract room RT. In this method, the received speech 

signal is divided into a set of overlapped segments. An observed sig­

nal vector can be obtained from each segment. With an exponentially 

damped Gaussian white noise model, the decay rate of each segment 

envelope can be obtained by using an MLE approach. One RT estimate 

can be calculated from the decay rate, and a series of RT estimates can 

be obtained from the whole passively received speech signal. All these 

estimates are accumulated in a histogram, and the most likely RT is 

identified as the first dominant peak of the histogram. As compared 

with the ANN method, the MLE method is easier to implement since
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no training stage is needed.

Although both methods have been demonstrated to be good RT 

estimation methods for certain occupied rooms by only utilizing pas­

sively received speech signals, their performance will be degraded and 

generally biased if the noise level is high. Therefore, both methods are 

limited by the noise level.

To make the occupied room RT estimation methods more robust 

and accurate, an intuitive way is to remove the unknown noise signal 

from the received speech signal as much as possible before the RT esti­

mation. This is also the motivation of the work in this thesis. Since as 

compared with the ANN approach, the MLE method is easier to im­

plement and not limited by extensive available training data, the study 

for the remainder of this thesis will be based on the MLE method. A 

detailed introduction of the MLE method can be found in the next 

chapter.

1.3 Background and motivation of the proposed approach

This work was supported by the Engineering and Physical Sciences Re­

search Council (EPSRC) of the U.K. funded project “Room Acoustics 

Parameters from Music” under grant number GR/S77530/01, which 

was proposed by Prof Jonathon A. Chambers from the Centre of Digital 

Signal Processing, Cardiff University, together with Prof Trevor J. Cox, 

Dr Francis F. Li, and Mr Paul Kendrick from the School of Acoustic 

and Electronic Engineering, University of Salford. This project followed 

a previous EPSRC project namely “Quantifying Room Acoustic Qual­

ity Using Artificial Neural Networks” under grant number GR/L34396 

and completed by Prof Trevor J. Cox and Dr Francis F. Li. In that
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Figure 1.3. RT estimation from high noise occupied rooms

project, a neural network approach was setup to extract room acoustic 

parameters from passively received speech signals, as introduced in the 

previous section, and can be seen in [3] and [7].

As a part of the project “Room Acoustics Parameters from Music”, 

the object of the work in this thesis is to utilize adaptive techniques 

to improve the accuracy of RT estimates in high noise conditions. If 

RT can be reliably estimated from high noise speech signals, a simi­

lar approach can be potentially performed on passively received music 

signals, and for estimating other acoustic parameters such as the early 

decay time (EDT) and speech transmission index (STI).

Since for the passively received speech signal, both the prior knowl­

edge of the noise component and the excitation speech component are 

unknown, some blind signal processing approaches are necessary. A
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powerful tool for extracting some unknown noise interference signal 

from a mixture of speech signals is the convolutive BSS method [9] 

and [10]. Naturally, given two spatially distinct observations, BSS can 

attempt to separate the mixed signals to yield two independent signals. 

One of these two signals consists mainly of the excitation speech sig­

nal plus residue of the noise and the other signal contains mostly the 

noise. The estimated noise signal obtained from BSS then serves as a 

reference signal within an ANC, in which an LMS algorithm is utilized. 

The output of the ANC is a reverberant speech signal with reduced 

noise component. In this work it is assumed that the ANC only locks 

onto the contaminated noise component. As will be shown by the sim­

ulations, the accuracy of RT obtained from the output of the ANC is 

improved, due to the noise reducing preprocessing. Different stages of 

this framework are shown in Fig. 1.3.

Although the performance of the proposed approach depends on 

the performance of BSS, and the noise is modelled as directional noise, 

the idea of noise reducing preprocessing can be potentially extended 

to more complex models with the concomitant development of more 

powerful BSS algorithms.

1.4 Scope of this study

In this study, a new approach for high noise occupied room RT esti­

mation is proposed. As byproducts of this study, further research on 

adaptive techniques is also performed. The main contributions of this 

thesis can be summarized as follows:

1. A noise reducing approach by utilizing BSS and ANC is intro­

duced into the RT estimation problem to improve the accuracy of RT
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estimates.

2. The concept of gradient based VSSLMS algorithms is proposed. 

New VSSLMS algorithms designed for applications with high level (typ­

ically SNR=0dB or below) statistically stationary noise or nonstation- 

ary noise are proposed to accelerate the convergence of the LMS al­

gorithm which is used in the ANC stage. In this thesis only stochas­

tic gradient type algorithms are considered due to their well-known 

lower computational complexity, better convergence and tracking per­

formance in low, typically OdB SNR environments [11].

3. New research results have been obtained for VTLMS algorithms, 

which are designed to search for a good choice of the steady-state adap­

tive filter tap-length. Although many VTLMS algorithms have been 

proposed in recent years, the fractional tap-length (FT) algorithm pro­

posed in [12] has been shown to be more robust as compared with 

other methods. The contributions of the work concerned with VTLMS 

algorithms are as follows: a steady-state performance analysis of the 

FT algorithm; improvement of the convergence performance of the FT 

algorithm in a high noise condition by utilizing a convex combination 

approach; and a new practical variable tap-length LMS algorithm for 

applications in which the optimal filter has an exponential decay im­

pulse response. These research results are potentially very useful in 

many applications where the optimal tap-length of the LMS algorithm 

is unknown.

4. The idea of variable tap-length is introduced for the first time 

into the BSS research area, in particular for a key sequential BSS al­

gorithm, the NG algorithm. A variable tap-length NG algorithm is 

proposed to search for a good choice of the adaptive tap-length, which
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provides a good trade-off between the steady-state performance and 

computational complexity. Due to the similarity of the optimal tap- 

length model between the LMS algorithm and the BSS algorithms, 

more research is required for variable tap-length BSS algorithms.

1.5 Organization of the thesis

This thesis is divided into seven chapters:

Following the introduction chapter, the MLE based RT estimation 

method is described in detail in Chapter 2. A background introduc­

tion for the adaptive schemes, including the LMS algorithm and BSS 

techniques, is provided in Chapter 3. To solve the high noise occu­

pied room RT estimation problem, a new framework using BSS and 

ANC is proposed in Chapter 4. Further research on BSS and ANC is 

given in the remaining chapters. In Chapter 5, VSSLMS algorithms 

are discussed and the concept of gradient based VSSLMS algorithms is 

described. New gradient based VSSLMS algorithms with robustness to 

statistically stationary or nonstationary noise signals are also proposed. 

Research on VTLMS algorithms is performed in Chapter 6, where the 

FT algorithm is introduced first, and a steady-state performance anal­

ysis of the FT algorithm follows. To improve the performance of the 

FT algorithm in high noise environments, a new convex combination 

approach for the FT algorithm is provided. A practical variable tap- 

length algorithm is also proposed for applications in which the optimal 

filter has an exponential decay impulse response. In Chapter 7, the NG 

algorithm for blind deconvolution is introduced, and a new variable tap- 

length NG algorithm is presented. Chapter 8 provides the summary of 

this thesis and gives suggestions for future work.



Chapter 2

MAXIMUM LIKELIHOOD 

ESTIMATION BASED ROOM 

RT ESTIMATION METHOD

In this chapter a detailed introduction to the maximum likelihood esti­

mation (MLE) based room reverberation time (RT) estimation method 

[8] is given.

In this method, the RT of an occupied room is extracted from a 

passively received speech signal. At first, the passively received speech 

signal is divided into several overlapped segments with the same length. 

Each segment can be deemed as an observed vector. This observed vec­

tor is modelled as an exponentially damped Gaussian random sequence,

i.e., it is modelled as an element-by-element product of two vectors, one 

is a vector with an exponentially damped structure, and the other is 

composed of independent identical distributed (i.i.d.) Gaussian random 

samples. Note that the exponentially damped vector also models the 

envelope of the speech segment. The MLE approach is applied to the 

observed vector to extract the decay rate of its envelope. The RT can 

then be easily obtained from the decay rate, according to its definition. 

An estimation of RT can be extracted from one segment, and a series of

16
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RT estimates can be obtained from the whole passively received speech 

signal. The most likely RT of the room can then be identified from 

these estimates.

In this chapter, the exponentially damped Gaussian random se­

quence model is introduced first, and then the MLE method extracting 

a RT estimate from one segment of speech signal is described. Two 

methods for calculating the decay rate of the speech segment enve­

lope in the MLE approach are provided. One is an online method, the 

other is a block-based method. Based on the MLE approach, iden­

tifying the most likely RT from a passively received speech signal is 

finally presented. The MLE based RT estimation method introduced 

in this chapter will be used together with the proposed noise reduc­

ing preprocessing in Chapter 4 to show the advantage of the proposed 

preprocessing in a high noise environment.

2.1 Exponentially damped Gaussian white noise model

In the MLE based RT estimation method, an exponentially damped 

Gaussian white noise model is utilized. This model is motivated by 

recorded room responses generated from some impulsive signals, such as 

a hand-clap or a pistol shot. In the recorded response, there is a direct 

sound due to the delay induced by the transmission path, followed 

by a series of early reflections, and then a reverberant tail appears, 

which consists of dense reflections due to multiple scattering. Unlike 

the direct sound and early reflections, acoustic reverberation consists 

of a fine structure that can be described only statistically. Usually, 

the fine structure is considered to be an uncorrelated random process. 

However, the decaying envelope is a deterministic signal parameterized
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by a time-constant, which is linearly proportional to the reverberation 

time. Based on the above characteristics of the reverberant tails, a 

convenient and highly simplified model is to consider the reverberation 

tail to be an exponentially damped uncorrelated noise sequence with

where y(n)  is the observed reverberant tail signal, x(n)  is an i.i.d. ran­

dom sequence with a normal distribution N(0, a) where 0 is the zero 

mean value and a  is the standard deviation, a(n) is a time-varying 

term which formulates the decay envelope of y(n).  FVom this model it 

is apparent that the samples from y(n)  are independent but not iden­

tically distributed. The probability density function (PDF) of y{n)  is 

N(0, cra(n)). That is, the sequence o(n) modulates the instantaneous 

energy of the fine structure of the speech segment. Denoting the damp­

ing rate of the sound envelope by a single decay rate r, the sequence 

a(n) can be uniquely determined by

Gaussian characteristics [8]:

y(n) =  a(n)x(n) (2 .1.1)

a(n) =  exp(—t i / t ) (2 .1.2)

Thus sequence a(n) can be replaced by a scalar parameter a

a(n) =  an (2.1.3)

where

a = exp(—1/r) (2.1.4)

Substituting (2.1.3) into (2.1.1), the observed sequence y(n)  can be
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modelled as

y(n) =  anx(n) (2.1.5)

With a set of observed signal samples, the MLE approach can be 

applied to extract the estimates of both the parameter a and the param­

eter a. The decay parameter r can then be obtained from (2.1.4). As 

introduced in the previous chapter, the RT can be directly calculated 

; from the decay rate parameter Tqq =  6.91r.

2.2 MLE method to extract the decay rate constant

The MLE approach can be used to extract some unknown parameters 

from a set of observed samples. This approach has many attractive 

attributes. First, it has good convergence properties as the number of 

observed signal samples increases. Furthermore, it is generally simpler 

than alternative methods, such as Bayesian techniques [13].

Denote the N-dimensional vector of the observed signal samples y(n) 

by y, the likelihood function of y from the model described in (2.1.5) 

can be formulated as [8]:

L ( y ' a ' a ) = ( *exp(- Ea=&L* y  (n)) (2-21)

where a and a are unknown parameters to be estimated from the ob­

servation y. The log-likelihood function is

In L(y; a, a) =  in(0) _  E  \n(2n<72) -  a"2V (« )
n=0

(2 .2 .2)

Thus for a given observation window N  and observed signal vec­

tor y, the log-likelihood function is determined by parameters a and



Section 2.3. Calculation methods for the MLE approach 20

a. These two parameters can be estimated using an MLE approach. 

Differentiating the log-likelihood function in (2.2.2) with respect to a 

and a yields

By setting the partial derivatives of the log-likelihood function (2.2.3) 

and (2.2.4) to zero, the MLE estimates of a and a can be obtained from 

the following equations

with respect to a and a are less than zero [8], thus the solutions of (2.2.5) 

and (2.2.6) maximize the log-likelihood function. The problem of RT 

estimation from an observed vector now transfers to two equations, 

which will be solved in the following section.

2.3 Calculation methods for the MLE approach

In this section, two methods are introduced to calculate the parameter 

a from equations (2.2.5) and (2.2.6). One of them is an online method, 

and the other is a block-based method [14].

d In L(y; a, a) 
da

and
01nL(y;a, a) 

da

and
N - 1

(2 .2.6)

Note that both second derivatives of the log-likelihood functions
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2.3.1 The online calculation method

According to equation (2.1.4) the parameter a is known to fall in the 

range a G [0,1). In the online method, the range of parameter a is 

quantized into Q values, represented by a,j,j =  1,..., Q. For each aj, 

substituting (2.2.6) into (2.2.2), the log-likelihood function with respect 

to aj becomes [14]

N  27T
In L(y< “j) =  —2  {(-^ -  1) ln(“j) -  ln[-Tf Y  “72V ( n)l -  1} (2-3.1)

n = 0

The solution of a is determined as

a =  argmax{lnL(y; dj)} (2.3.2)
ai

The motivation of this quantized approach is that for most appli­

cations, it is not necessary to determine the decay time-constant to 

arbitrary precision [14]. The computation of ln L ^ jy )  can be per­

formed in an online way as follows. By defining

n

ff(n) = 0 N 1  Y ,  ^ ' V ( r )  (2.3.3)
r = n —N + l

where /3 =  a“2, the log-likelihood function with the currently given 

observed vector yn with respect to aj can be formulated as

\nL(yn;a,j) =  - y { ( W  -  l)ln (aj) -  Ing(n) -  1} (2.3.4)

where yn is the vector which contains the samples [y(n-N+l),...,y(n)],
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and the recursive update rule for g(n) is

g(n 4-1) =  P~l \g{n) +  0Ny2(n + 1) -  y2(n + 1  — N)] (2.3.5)

For each Oj, with a calculated estimation of the log-likelihood func­

tion lnL(y„;aj), the next log-likelihood function lnL(y„+i; a7) can be 

updated using (2.3.4) together with the update of g(n) in (2.3.5). For 

Q bins, this online method requires 5Q MULS, 5Q ADDS, and the 

evaluation of Q logarithms [14]. Since the parameter a is an exponen­

tial formulation of the decay constant r, it is quantized logarithmically, 

so that the corresponded decay constant r is quantized linearly. To 

choose the number of bins Q, the only information needed is whether 

the reverberation is high, moderate or low. A recommendation is that 

one bin can be used for very high (> 10s) and one bin for low RT values 

(< 0.01s). Estimates falling within these bins may be rejected, since 

the estimates Tqo > 10 indicate that the algorithm is tracking a region 

that may not be a decay, and estimates Tqo < 0.01 suggest open-air or 

anechoic conditions. For the values between these extremes, 5-6 bins 

can be selected. Thus, the number of bins that are required may not 

exceed 10 [14].

The advantage of this online method is that an online histogram 

in pre-determined bins can be constructed, and the calculation results 

from the previous observed vector can be used in the next iterative 

calculation, which speeds up the estimation process.

Note that the online algorithm is run at intervals of one sample, i.e., 

the next observed vector is obtained by advancing the previous observed 

vector one sample, due to the update rule in (2.3.4) and (2.3.5).
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2.3.2 The block-based calculation method

The block-based algorithm is to perform a single estimate of the param­

eter a with an observed vector y. This algorithm is a gradient based 

algorithm, and designed to search for the solution of equation (2.2.5) 

in an iterative way. Substituting (2.2.6) into (2.2.3) yields the gradient 

of the log-likelihood function with respect to a:

d InL(y;a) N , IV -1  «
— —  + E " - ‘ « - * y ( n ) } (2  3 ' 6 )

The update rule for solving equation (2.2.5) with respect to a is

where /i is a fixed parameter which controls the speed of the conver­

gence.

For the block-based method, the calculation of the parameter a with 

a given observed vector is independent of the previous calculation, thus 

the choice of the interval between neighboring observed vectors is more 

flexible.

In most applications, the online method is preferred, because as 

compared with the block-based method, it can not only generate on­

line RT estimations, which is very useful in many applications, but 

also generally has a lower computational complexity. Furthermore, the 

choice of the step size fi in (2.3.7) in the block-based method is difficult 

to analyze. Based on the above consideration, the online method will 

be utilized in the application of MLE based RT estimation method for 

the remainder of this thesis.
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2.4 RT extraction from a running speech signal

With a passively received speech signal y(n), the MLE approach pro­

ceeds by sliding the window of length N  over y(n) with intervals deter­

mined by the step size of the advancing window. This process produces 

a series of estimates of a and all these estimates are accumulated in a 

histogram.

Since the estimates of a track the sound decay, some of them are ob­

tained during a free decay following the cessation of a sound segment, 

while others are obtained when the sound is ongoing. Two kinds of 

observed vectors y will make the model fail: y  is not in the free decay 

period or y  is in the free decay period, but initiated by a sound with 

a gradual rather than rapid offset. In the former case, the parameter 

a will likely be implausible, due to the wide fluctuations of the ongo­

ing speech signal. In the latter case, the resulting estimates of a will 

always be larger than the true room RT. The reason is that they are ob­

tained from a signal which is generated by a gradual offset decay signal 

convolved with the room impulse response, which biases the extracted 

decay rate parameter to be larger than the real decay rate parameter.

By considering the above two failure cases, a simple and intuitive 

way for selecting a from a set of estimates is to choose the dominant 

peak value of a from its histogram at the lower end of the range [8].

In practice, the performance of an MLE based method depends on 

the choice of the window length N. Although the window length in the 

model should be long enough to cover the decay period, it is limited 

by the duration and occurrence of gaps between sound segments. As 

discussed in [8], window lengths around N  =  At *F s are good choices in 

practice. This criterion will also be used in the simulations in Chapter
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4.

As can be seen in [8], several simulations of the MLE method have 

been performed, in which room RTs are extracted from broadband 

white noise bursts, isolated speech words, and connected speech signals. 

In all these simulations, the MLE based RT estimation method provides 

reasonable results in noise free environments.

; 2.5 Conclusion

In this chapter, a detailed introduction of the MLE based RT estimation 

method is provided. The great advantage of this method is that, as 

compared with other techniques, only the passively received speech 

signal is needed, which is particularly useful for occupied room RT 

estimations. The room RT is obtained by utilizing the envelope of 

the free decay speech segment. Although the free decay segments are 

unknown, with the advancing of a window, a series of estimates of the 

RT will accumulate on certain values, and the first dominant peak of the 

histogram is identified as the most likely room RT. It is straightforward 

to see that the performance of this approach still depends on the noise 

level. When the noise level is high, the fine structure of the free decay 

speech segment will be contaminated, and the estimated RT will be 

generally biased, as can be seen in the simulations in Chapter 4. This 

method will be used in Chapter 4, together with the noise reducing 

preprocess to extract the RTs from high noise environments.



Chapter 3

BACKGROUND 

INTRODUCTION TO 

ADAPTIVE TECHNIQUES

As can be seen in the first chapter, the adaptive least-mean-square 

(LMS) algorithm and the blind source separation (BSS) scheme are 

utilized in the proposed RT estimation framework. In this chapter 

a background introduction to both adaptive techniques is given. The 

material included in this chapter also provides a basis for the remaining 

chapters.

This chapter is organized as follows: the LMS algorithm is intro­

duced in Section 3.1. The BSS problem is formulated in Section 3.2. 

Instantaneous BSS algorithms are described in Section 3.3. Convolu- 

tive BSS algorithms are presented in Section 3.4. The permutation 

issue which occurs in frequency domain convolutive BSS algorithms is 

discussed in Section 3.5. Section 3.6 provides the conclusion.

26
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3.1 Introduction to the LMS algorithm

The LMS algorithm can be derived from the Wiener filter, which is a fi­

nite impulse response (FIR) filter that minimizes the mean-square-error 

(MSE) between the desired signal and its linear estimate obtained from 

another reference signal. The Wiener filter is a theoretical and ideal so­

lution, and its design needs a priori information about the statistics of 

the input and desired signals. To avoid the matrix inverse operation in 

the Wiener filter, the steepest descent algorithm can be utilized which 

is designed to converge to the Wiener solution in an iterative manner. 

Furthermore, since the statistical values of the signals are unavailable in 

some situations, the LMS algorithm is derived, in which the statistical 

values are replaced with their instantaneous estimates. This algorithm 

has been extensively used in many applications as a consequence of its 

simplicity and robustness [15] and [16].

3.1.1 The FIR Wiener filter

The Wiener filter is an optimum filter in the least MSE sense, i.e., it 

can minimize the MSE value of the error signal which is defined as the 

difference between the desired signal and its estimate. The model of 

the Wiener filter is as follows:

It is assumed that the input signal x(n) and the desired signal d(n) 

are jointly wide-sense stationary and zero-mean signals, n denotes the 

discrete time index, and their relationship can be formulated as

d(n) =  wj*x(n) + t(n) (3.1.1)

where wopt is an unknown optimal filter coefficient vector with a tap-
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length of L, (-)T denotes the transpose operation, x(n) =  [x(n), ...,x(n— 

L +  1)]T, t(n) is the unknown noise signal and uncorrelated with x{n). 

The error between the desired signal and its estimate is defined as

where w is a coefficient vector to model the unknown optimal filter w^e. 

The MSE is then defined as E{e2(n)}, and the least MSE is obtained 

when w =  w ^ . Using (3.1.2) the MSE can also be formulated as

The Wiener filter is designed to find the filter coefficient vector w =  

wopt which minimizes the MSE. It is straightforward to see from (3.1.3) 

that E{e2(n)} is a quadratic function of w, and generally has a single 

global minimum. To obtain the minimum value of E{e2(n)}, taking 

the partial derivative on the r.h.s. of (3.1.3) with respect to w, and 

making it equal to zero, the optimal solution, i.e., the Wiener solution 

for w is then obtained

e(n) =  d(n) — wTx(n) (3.1.2)

E{e2(n)} =  E{[d(n) — wTx(n)]2} (3.1.3)

Wap( = (3.1.4)

where r^  is an L-by-1 cross-correlation vector

Tdx{ 0) E{d(n)x(n)}

Tdx — (3.1.5)

*Vb(£ —1) E { d ( n ) x ( n - L +  1)}



Section 3.1. Introduction to the LMS algorithm 29

and Rx is an L-by-L autocorrelation matrix

fl* =  E{ xkt ) (3.1.6)

Equation (3.1.4) is called the Wiener-Hopf equation.

The Wiener solution is a block-based solution, i.e., it requires that 

all the input and the desired signal samples are available, since the sta­

tistical values are utilized in (3.1.4). Furthermore, the matrix inverse 

operation is also needed in (3.1.4), which results in a heavy computar 

tional complexity if the tap-length L is large. Both properties limit its 

application in practice.

Next the steepest descent algorithm is introduced, which is designed 

to establish the Wiener solution w^  in an iterative way to avoid the 

matrix inverse operation.

3.1.2 The steepest descent algorithm

In the steepest descent algorithm the filter coefficient vector is updated 

in an iterative way and it will approach the Wiener solution at steady- 

state. The steepest descent method is a general scheme that uses the 

following steps to search for the minimum point of any convex function 

of a set of parameters [15]:

1. Start with an initial guess of the parameters whose optimum 

values are to be found for minimizing the function.

2. Find the gradient of the function with respect to these parameters 

at their present values.

3. Update the parameters by taking a step in the opposite direction 

of the gradient vector obtained in step 2.
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4. Repeat steps 2 and 3 until no further significant change is ob­

served in the parameters.

The steepest descent algorithm to establish the Wiener solution can 

then be described as

w(n +  1) =  w(n) — fiVE{e2(n)} (3.1.7)

where w(n) is the adaptive coefficient vector, /i is the step size which 

controls the convergence rate, and Vl?{e2(n)} is the gradient of the 

MSE with respect to w(n). Prom (3.1.3) the gradient vector V £{e2(n)} 

can be formulated as

V £{e2(n)} =  —2?{e(n)x(n)} (3.1.8)

Substituting (3.1.2) into (3.1.8) yields

VE{e2(n)} =  E{[d(n) — wT(n)x(n)]x(n)} (3.1.9)

Utilizing (3.1.5) and (3.1.6) equation (3.1.9) becomes

VE{e2(n)} =  rdx-  i?*w(n) (3.1.10)

Substituting (3.1.10) into (3.1.7) the steepest descent algorithm coeffi­

cient update can then be formulated as

w(n + 1) =  w(n) -  ulTfa -  /2a.w(n)] (3.1.11)

where typically w(0) =  0. As can be seen in (3.1.11) the matrix in­

verse operation is no longer needed in the steepest descent algorithm.
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However, the statistical values are still necessary for the update.

3.1.3 The LMS algorithm

In practice, the statistical values used in the steepest decent algorithm 

are normally unknown. The LMS algorithm is obtained by replacing 

these statistical values with their instantaneous estimates:

w (n +  1) =  w(n) + /ie(n)x(n) (3.1.12)

where

e(n) =  d(n) — wT(n)x(n) (3.1.13)

The LMS algorithm provides a recursive adaptation of the filter 

coefficient vector with every new arriving sample. The eminent feature 

of the LMS algorithm is that the adaptation is very simple, as can be 

seen in (3.1.12). It requires only 2L+1 multiplications and 2L additions. 

Furthermore, it is a very robust algorithm, since the update in (3.1.12) 

itself has a time average operation on instantaneous gradient estimates. 

It has been widely used in many signal processing applications such as in 

system identification, adaptive noise cancellation and linear prediction.

The step size parameter /i in (3.1.12) plays a very important role for 

the LMS algorithm. According to the analysis in [15], the convergence 

in the mean condition for the step size can be formulated as

0 < H <  -T-—  (3.1.14)
A m ax

where A max is the maximum eigenvalue of the autocorrelation matrix 

Rx- The convergence rate can be denoted by the time constant r, which
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is defined as the maximum value of the time for the absolute values of 

all the elements of the deviation vector wopt — w(n) to reach 1/e of 

their initial amplitudes, and can be formulated as [15]

r =  h w i  i d *  -T — (3.1.15)l n ( l  ^Amin) A^min

where Amin is the minimum eigenvalue of the matrix jR*. It is straight­

forward to see in (3.1.15) that with the increase of the step size, the 

convergence time constant r will decrease, which indicates that the 

convergence rate will increase.

With the assumptions that both the input and the noise signals are 

statistically stationary, the data vector x(n) and the coefficient vector 

w(n) are statistically independent, and the step size is sufficiently small, 

the steady state excess mean square error (EMSE) which is defined as 

limn_Kjof2(n) =  E{[e(n) — t(n)]2} can be formulated as [16]:

?2(oo) (3.1.16)

where <72 is the variance of the noise signal and Tr(-) denotes the trace 

of the matrix.

It is clear to see from (3.1.16) that the steady state EMSE is propor­

tional to the step size. Together with equation (3.1.15) the conclusion 

can be drawn that the step size value provides a tradeoff between the 

convergence rate and the steady state EMSE. An intuitive way to im­

prove the performance of the LMS algorithm is to make the step size 

variable rather than fixed, i.e., choose large step size values during the 

initial convergence of the LMS algorithm, and use small step size values 

when the system is close to its steady-state, so that both a fast con­
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vergence rate and a small steady-state EMSE can be obtained. This 

results in variable step size LMS (VSSLMS) algorithms, which will be 

discussed in Chapter 5.

Note that in all the above formulations, the adaptive filter coefficient 

vector w(n) is assumed to have the same tap-length as the optimal 

coefficient vector w ^ . However, in certain situations the tap-length of 

the optimal coefficient vector is unknown or variable, and variable tap- 

length LMS (VTLMS) algorithms are needed to find a proper choice for 

the tap-length. The topic of VTLMS algorithms is the focus of Chapter 

6 .

3.2 BSS: problem formulation

BSS algorithms are designed to recover unobservable source signals 

from observed mixtures with the assumption that the sources are in­

dependent [17] and [18]. Due to various potential applications in com­

munications, speech signal processing and biomedical signal processing, 

it has received much attention recently. FYom the perspective of the 

mixing model, the BSS problem can be divided into two classes: the 

instantaneous BSS problem, which is normally solved by independent 

component analysis (ICA) methods, and the convolutive BSS problem, 

which is more complex and more close to reality.

3.2.1 Instantaneous mixtures of sources

The problem of blind source separation is traditionally approached by 

observing instantaneous mixtures of sources. Assuming that N  source 

signals Sj(n) are ordered in a vector sT(n) =  [si(rc),..., sw(n)], upon 

transmission through a medium these signals are collected by M  sen-
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sors, from which an observed vector xT(n) =  [xi(n), is ob­

tained. For simplicity, N — M  is always assumed in the reminder of 

this chapter. This assumption is idealistic in as much as there will be 

many sources in a real acoustic environment, however, it provides a 

framework for the initial work in the area of reverberation time estima­

tion in occupied rooms described in this thesis. On the basis of linear 

superposition the vector x(n) can be formulated as

x(n) =  Hs(n) +  v(n) (3.2.1)

where H  is assumed to be an invertible N-by-N matrix and called the 

mixing matrix (situations such as when sources arrive from identi­

cal directions which cause it to be singular are not considered), and 

v(n) =  [vi(n) , ..., Vtf(n)] is the noise vector. The objective is to recover 

the original signals s»(n) given only the observed vector x(n) and the 

assumption that all the source signals are independent of each other. 

The recovered signals can be formulated as

s(n) =  # -1x(n) (3.2.2)

However, the inverse matrix H~1 is unavailable since the mixing matrix 

H is unknown, as the term blind suggests. The goal of blind source

separation is to find an N-by-N matrix W  such that the components of

the reconstructed signals

y (n) =  Wx(n) (3.2.3)
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where y T(n) =  [j/i(n ),j/^ (n )] are mutually independent, without 

knowing the mixing matrix H and the probability distribution of the 

source signals s(n). Ideally, the matrix W  is expected to be the inverse 

of the mixing matrix H. In practice, the unmixing matrix W  should 

satisfy that

WH  =  AD (3.2.4)

where A is a permutation matrix, i.e. all the elements of each column 

and row are zero except for one element with value unity, and D is a 

diagonal matrix. The existence of the matrix A and D  is because that 

signals obtained by changing the order of independent source signals or 

their amplitudes will still be independent, and satisfy the independence 

assumption.

3.2.2 Convolutive mixtures of sources

Practically, perfectly instantaneous mixtures of sounds are seldom en­

countered. For example, in the acoustic field the observed signals which 

are collected by microphones are convolutive mixtures of source signals 

because of the reverberant environment, in which reflections will make 

the mixing model more complex. Similar to the previous subsection, 

supposing that there are N  mutually independent source signals s*(n) 

and N  observed signals Xj(n), the convolutive mixing model can be 

formulated as

N  P - l

xi(n) =  ^ 2  '£2 hij(p)sj(n -  p) +  Vi(n) i =  1,..., N  (3.2.5) 
i -1  p=o

where /fy (p) represents the impulse response from source j  to micro­

phone i and P  is the length of the impulse response.
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Again, the goal of convolutive BSS algorithms is to separate ob­

served signals Xi(n) into N  independent signals, without knowing the 

mixing impulse responses or the probability distribution information of 

the original source signals s»(n). This is normally achieved by searching 

for the unmixing FIR filter Wij (q) with a tap-length of Q, so that the 

signals obtained as

N  Q - 1

Vi(n) =  EE ~  q) * =  1. •••.N  (3.2.6)
J=1 9=0

are mutually independent. It is clear to see from (3.2.5) that when 

P — 1 and Q =  1, the convolutive BSS problem will be identical to 

the instantaneous BSS problem. When N  =  1, the convolutive BSS 

problem becomes the blind deconvolution problem [18]. The convolu­

tive BSS problem involves the inverse of the mixing filters. However, 

only the FIR filters with minimum phase have causal infinite impulse 

response (HR) inverse filters. In practice, the unmixing filters are mod­

elled as FIR filters, as shown in (3.2.6), and estimated to make the 

unmixing signals 2/»(n) to be as mutually independent as possible.

3.3 Instantaneous BSS algorithms

In the standard blind source separation problem, the mixtures are as­

sumed to be instantaneous. Herault and Jutten seem to be the first to 

have addressed the problem of source separation [19]. Comon [20] for­

mulated the problem of separating instantaneous linear mixtures and 

clearly defined the term independent component analysis (ICA), which 

is an efficient way to solve the instantaneous BSS problem.

One class of ICA algorithms is based on information theory and
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utilizes the non-Gaussianity of the source signals [20] [21] [22] [23]. Es­

sentially, all these algorithms are designed to approximately measure 

the independence between the separated signals by higher order statis­

tics. Also there are many methods that have been proposed which 

utilize second order statistics [24] [25] [26] [27]. Methods proposed 

in [24] [25] [26] utilize the time structure of the mixture signals, and 

are designed to simultaneously diagonalize the correlation matrix of ob­

served signals at one or several time delays, while the method proposed 

in [27] is to simultaneously diagonalize the time-varying covariance ma­

trices. An overview for these approaches can be seen in [28] [29] and 

the text books [17] [18] [30].

Next, typical principles and algorithms for instantaneous BSS will 

be introduced.

3.3.1 BSS algorithms utilizing non-Gaussianity of the source sig­

nals

A good starting point for developing instantaneous BSS algorithms is 

to utilize the property that the source signals are mutually indepen­

dent. By assuming the source signals are statistically stationary, and 

at most one signal is Gaussian distributed, the independence of the re­

constructed signals can be measured by the Kullback-Leibler divergence 

between their joint distribution and the product of their marginal distri­

butions. This Kullback-Leibler divergence is also named as the mutual 

information of the separated signals. Since the signals are assumed to 

be statistically stationary, for convenience of formulation, all the sig­

nals x»(n), Si(n) and yi(n) will be replaced with random variables x{, 

Si and 2/t in this subsection. The mutual information of the separated



Section 3.3. Instantaneous BSS algorithms 38

signals can then be formulated as

I(Vu - , Vn ) =  J  Pv(u) • log (3-31)

where J  denotes the integral operation, py(-) is the joint probabil­

ity density function (PDF) of the separated signals, and pVi(-) is the 

marginal PDF of the ith separated signal y*. The mutual information 

formulated in (3.3.1) is always positive and zero only if the separated 

signals are mutually independent, thus it is a good cost function for 

the BSS algorithms.

The mutual information can also be written in terms of the entropy 

of the separated signals

As can be seen in (3.2.3), the random vector y is a linear trans­

formation of the observed vector x. Based on information theory the 

following relationship exists [17]:

N

(3.3.2)

where H(-) denotes the entropy of random variables

/oo
P y ( U) \ O g P y ( u ) d \

■oo

(3.3.3)

and

(3.3.4)

tf(y) =  .ff(x) +  log|W'| (3.3.5)

where | • | indicates the determinant of a matrix. Substituting (3.3.5)
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into (3.3.2) yields

N

U v u Vn) =  Y ,  H(Vi) -  H{x) -  log \W\ (3.3.6)
t= l

The solution of the BSS algorithm then becomes to find an unmix­

ing matrix W  to minimize the mutual information of the separated 

signals. With such an unmixing matrix W , the original source signals 

can be reconstructed up to an arbitrary scale and possible permutation 

of indices.

Another approach for ICA is the maximum likelihood estimation 

method. According to the mixing model formulated in (3.2.1), the 

joint PDF of the observed vector x can be formulated as [17]

N

P*(x) =  \H\-' (3.3.7)
i= l

where pSi(-) is the marginal PDF of the ith source signal s». The PDF 

of the observed vector x can also be written as

N

p*(x) = | # r ‘ f J p Si(hfx) (3.3.8)
»=1

where h* is the ith column of the matrix (H~1)T. Since H~l is unavail­

able in practice, it is replaced with an estimate W. The log-likelihood 

function of the observed samples x (l), ...,x(S) with respect to the es­

timated unmixing matrix W  can then be obtained [17]

s N

log L(W) =  5 Z ^ lo g p a<(wfx(n)) +  S'log|W| (3.3.9)
n = l i= l

where w< is the ith column of the matrix W T. By approximating the
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sample average in (3.3.9) with the statistical average, equation (3.3.9) 

can be approximately rewritten as

1 N
■gkgHW)  =  ^ £ { l o g p a,(w,Tx)} + log|lV| (3.3.10)

1 = 1

Utilizing the definition of the entropy in (3.3.4), and assuming the PDF 

of the separated signals are very close to that of the source signals, 

equation (3.3.10) can also be written as

1 N
■= logL(W') *  -  £  H(3h) +  log \W\ (3.3.11)
* i=i

It is clear to see that equation (3.3.11) is equivalent to equation (3.3.6) 

except the global sign and the additive constant given by H(x). Thus 

the criterion of maximizing the likelihood of the observed signals is the 

same as that of minimizing the mutual information of the separated 

signals.

Both criteria formulated in (3.3.6) and (3.3.11) can not be used 

directly in practice, since the PDF of the source signals are unknown. 

To deriving practical BSS algorithms, different approximations of the 

PDF and different optimization approaches have been utilized [17] [18] 

(20] [21] [22],

The first class of approaches is to approximate the PDF of the 

signals by higher order cumulants. Since the term H(x) is a constant, 

and independent of the unmixing matrix W , minimizing the mutual 

information formulated in (3.3.6) is equivalent to minimize the term 

J2iL\ H(Vi) -  log |VF|. A reasonable constraint for the unmixing matrix 

is that the determinant of the unmixing matrix \W\ is a constant, since 

the solution of the BSS itself has an amplitude ambiguity. The criterion
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of minimizing the mutual information then becomes to minimize the 

sum of entropies of the separated signals YliLi #(?/*) • The entropy is 

also a measurement of the Gaussianity, or non-Gaussianity of the signal, 

since a Gaussian variable has the largest entropy among all random 

variables with equal variance. A more convenient measurement of the 

non-Gaussianity is the negentropy, which is defined as:

J(y) =  H(ygau8s) ~ H(y) (3.3.12)

where ygauss is a Gaussian random variable with the same variance as 

y. In practice, the negentropy can be approximated by higher order 

statistics

J(y)  =  ^ j£{y3}2 +  -^[fcurt(y)]2 (3.3.13)

where kurt(-) denotes the kurtosis of the variable, which can be formu­

lated as

kurt(y) =  E{y4} -  3[jE7{y2}]2 (3.3.14)

When the random variables have approximately symmetric distribu­

tions, which is very common in practice, the first term in (3.3.13) will 

be very small, thus the criterion of minimizing the mutual information 

is approximated as maximizing the negentropy, which is again approxi­

mated as maximizing the kurtosis of the separated signals. By replacing 

the kurtosis with its time average estimate, gradient based algorithms 

can be utilized to search for the unmixing matrix W  [17]. The crite­

rion discussed above is essentially equivalent to maximizing the non- 

Gaussianity of the separated signals, which can also be explained based 

upon the central limit theorem, i.e., sums of non-Gaussian random vari­

ables are closer to Gaussian than the original ones. Therefore, a linear
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combination of the observed mixture variables will be maximally non- 

Gaussian if it equals one of the independent components. This is why 

the condition that at most one signal is Gaussian is necessary for higher 

order statistics based BSS algorithms.

The second class of approaches is to approximate the unknown PDF 

of source signals by some nonlinear functions. Substituting (3.2.3) into 

(3.3.6) and differentiating (3.3.6) with respect to W  yields [17]

where g(y) =  [<?i(yi), •••, 9 n ( v n )],  and the function <&(•) is a nonlinear 

function which is approximated as

By replacing the statistic value in (3.3.16) with its instantaneous esti­

mate the update of the unmixing matrix W  becomes

This algorithm was firstly derived in [21], although by using the infor- 

max principle, which in essence is equivalent to the ML approach [23].

It is shown in [22] that the unmixing matrix parameter space has a 

Riemannian metric structure, and the natural gradient works more effi­

ciently as compared with the gradient approach formulated in (3.3.17). 

The natural gradient can be formulated in terms of the gradient as

dl(vu-,yN)
dW

— £{g(W x)xr } +  [WT] 1 (3.3.15)

(3.3.16)

AW oc g(Wx)xT +  [WT] 1 (3.3.17)

(3.3.18)
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where J is the cost function, W  is the parameter matrix to be found, 

is the natural gradient, and is the gradient. Utilizing (3.3.17) 

and (3.3.15), the natural gradient algorithm is then obtained

A W  oc (I +  g(y)yT)W (3.3.19)

As shown in [17], a good choice of the nonlinear function g(-) for 

super-Gaussian source signals is

9(y)  =  -  tanh(y) (3.3.20)

and for sub-Gaussian source signals is

g(y) =  tanh(y) -  y (3.3.21)

or

g(y)  =  y 3 (3.3.22)

It is clear to see in the above discussion that the key step for the 

instantaneous BSS algorithms utilizing non-Gaussianity of the source 

signals is to approximate the PDF of the source signals by higher or­

der statistics or nonlinear functions. It has been shown that both ap­

proaches can result in good separation performance, although these 

approximations are likely to be fairly inaccurate [17].

3.3.2 BSS algorithms utilizing time structure of the source signals

In the previous subsection, BSS algorithms utilizing the non-Gaussianity 

of the source signals have been discussed. These algorithms can not 

solve the BSS problem with Gaussian distributed source signals. It will
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be shown in this subsection that second order statistics obtained from 

the time structure of the observed signals can also be used to perform 

BSS, without the non-Gaussianity condition.

One class of second order statistics based algorithms is to elimi­

nate the temporal cross-correlation functions of the separated signals 

as much as possible, i.e., to simultaneously diagonalize the autocor­

relation matrix of the observed signals at one or several time delays. 

According to the linear mixing model formulated in (3.2.1), the au­

tocorrelation matrix of the observed signals with a time lag r can be 

formulated as

Rx(r) =  E{x(t)xT(t — t)}  (3.3.23)

With the assumption of independence, the autocorrelation matrix of 

the source signals is a diagonal matrix

E{s(t)sT(t -  t )}  =  A. (3.3.24)

Defining a modified version of the autocorrelation matrix of the ob­

served matrix as

= i(R*(r) +  Rj(r)) (3.3.25)

then

R*(r) =  WTA,W  (3.3.26)

and the rows of the unmixing matrix W  can be obtained as the eigen­

vectors of the matrix Rx(r). In practice, the autocorrelation matrix is

obtained by sample averaging. This algorithm is termed as the algo­

rithm for multiple unknown signals extraction (AMUSE) algorithm [25]. 

A similar approach can be seen in [24]. It is clear to see that if there
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is no linear time correlations for the observed signals, for example, if 

E{x.(t)xT(t — t) =  0} for any lag r ^  0, the AMUSE method will 

fail. This method can be extended to several time lags, i.e., to si­

multaneously diagonalize all the corresponding lagged covariance mar 

trices, which results in the second-order blind identification (SOBI) 

algorithm [26].

Another class of approaches is to utilize the nonstationary of the ob­

served signals. In these approaches, different estimated autocorrelation 

matrices at different times can be obtained, due to the nonstationary of 

the source signals, and the unmbdng matrix W  can be obtained by joint 

diagonalizing all these autocorrelation matrices in an adaptive way [27].

In general, estimation of higher order statistics is more sensitive to 

noise and outliers than that of second order statistics, and the resulting 

cost functions often suffer from undesired local minima especially in the 

adaptive algorithms. Second order statistics have the advantage that 

they can be estimated more reliably using less computational power 

than higher order statistics. It is clear to see that in practice, the 

choice of the criterion for ICA depends on the property of the source 

signals. The criteria discussed in this section can also be utilized in 

convolutive BSS algorithms, as will be shown in the next section.

3.4 Convolutive BSS algorithms

The convolutive BSS problem is different from the instantaneous one 

due to the difference of the mixing models, as can be seen in Section 3.2. 

However, with the same assumption that the source signals are mutu­

ally independent, similar criteria to those utilized in the instantaneous 

BSS algorithms can be used in the convolutive case. Some convolutive
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BSS algorithms are performed in the time domain [31] [32] [33], while 

others are designed in the frequency domain [9] [34] [35] [36] [37] [38]. 

The frequency domain methods are more attractive for applications 

where the unknown unmixing filter tap-length is long, since in contrast 

to time domain approaches, where a large number of coefficients of the 

unmixing filters have to be estimated, frequency domain approaches 

simplify the convolutive BSS problem into the instantaneous BSS prob­

lem at each frequency bin. The number of frequency bins is equal to 

the DFT length which is chosen from prior knowledge of the unknown 

mixing filter impulse response sequence length and the nonstationarity 

of the input signals [39]. However, the permutation problem occurs 

at each frequency bin, and must be solved to recover the separated 

signals correctly from the frequency domain. In this section, both typi­

cal time domain and frequency domain convolutive BSS algorithms are 

described, and the permutation problem will be discussed in the next 

section.

3.4.1 Time domain convolutive BSS algorithms

Many time domain convolutive BSS algorithms are obtained by extend­

ing the instantaneous BSS algorithms into the convolutive case [31] [32] 

[33], and a summary work for convolutive BSS algorithms can be found 

in the book [18].

As an example, a NG convolutive BSS algorithm is proposed in [31], 

where the unmixing matrix is directly updated as

A Wq(n) oc Wq(n) -  g(y(n -  Q))uT(n -  q), q =  0,..., Q - l  (3.4.1)
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where
Q - 1

UM  = S  w Q-i (n)y (n -  0  (3-4-2)
1 = 0

and Wq is an N-by-N matrix composed of the elements Wij(q), g(-) is the 

nonlinear function the same as that in (3.3.15). Note no pre-whitening 

is required by this algorithm. It is clear to see that the update of the 

unmixing matrix in (3.4.1) is very similar to that in (3.3.19), and will 

be the same if Q =  1.

Although time domain convolutive BSS algorithms have been shown 

to have good separation performance when the mixing filter length is 

short, which is close to the instantaneous cases, the performance will 

degrade and the computational complexity will increase if the mixing 

filter length is long, as is the case for room impulse responses [39]. As 

will be shown in the next subsection, a more efficient way for convolutive 

BSS is to transform the problem into the frequency domain.

3.4.2 Frequency domain convolutive BSS algorithms

Many investigators transform the problem into the frequency domain 

to solve an instantaneous BSS problem for every frequency bin simul­

taneously. The advantages of the frequency domain methods mainly 

include mathematical simplicity, reduction of the computational com­

plexity, and quick convergence property.

By using a T-point discrete Fourier transform (DFT) (for discus­

sions of the selection of T see [39]), the time domain mixing signal Xi(n) 

can be written in the frequency domain as

T - l

Xi( w, n) =  ^ 2  xi(n  +  T)w(r)e~i2ltUT (3.4.3)
T —0
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where w{t) denotes a window function, j  =  %/—T and lj is sampled 

over the frequency range u  =  0, ^ 2 7 r , ~^2n.  With the convolutive 

mixing model formulated in (3.2.5), as assumed by many workers in 

the field [34] [36] [37] [38] [9], a compact form for the frequency domain 

convolutive mixing model can be obtained

x(u;, n) — H(u )s(uj, n) (3.4.4)

wherex(w,n) =  [xi(o;,n), ...,a;jy(u;,n)]T, s(uj,n) =  [si(u;,n), ...,sw(u;,n)]T 

and H(u>) is assumed to be an N-by-N invertible matrix composed of 

hij(u), which is the frequency representation for the mixing impulse re­

sponse hij(p). It is clear to see that by utilizing a DFT, the time domain 

convolutive mixing model formulated in (3.2.5) becomes an instanta­

neous mixing model at each frequency bin, as can be seen in (3.4.4). 

The frequency domain BSS problem then becomes an instantaneous 

BSS problem at each frequency bin. By utilizing the instantaneous 

BSS algorithms discussed in the previous section, an N-by-N frequency 

domain separating matrix W(lj) can be found for each frequency bin, 

so that the frequency domain separated signals

y (uj, ti) — W (u>)x( u, n) (3.4.5)

are mutually independent, where W(u) is an N-by-N matrix composed 

of Wij(u), which is the frequency domain representation for the un­

mixing impulse response Wij{q)- The existence of the inverse follows 

from the assumption that H(u) is invertible at each frequency bin. 

The time domain separated signals y(n) can then be obtained from 

y(w, n) by using an inverse DFT (IDFT) operation. By using differ-



Section 3.4. Convolutive BSS algorithms

ent criteria and approaches discussed in the previous section, differ­

ent convolutive BSS algorithms can then be obtained, as can be seen 

in [34] [35] [36] [37] [38] [9].

As an example, a frequency domain convolutive BSS algorithm 

namely Parra & Spence’s method [9] which is used in the BSS stage in 

the RT estimation framework is introduced in detail. Similar to the cri­

terion of the ICA algorithms that exploit the statistical nonstationarity 

of the source signals, Parra & Spence’s method jointly diagonaUzes the 

autocorrelation matrices at different times for each frequency bin. An 

advantage of this method is that the uncorrelated noise can be esti­

mated and removed from the separated signals.

Considering the mixing model formulated in (3.2.5), the autocor­

relation matrix of the observed signals at one frequency bin can be 

approximated by the sample mean

-  1 N~l
Rx(u, n) =  — x(u>, n +  iT)xT(u>, n +  iT) (3.4.6)

t=0

With appropriate choice of N, which is proportional to the signal length 

and inversely proportional to the length of the DFT, as discussed in 

[40], from the independence assumption the estimated autocorrelation 

matrix can be written as

Rx(u, n) «  H(u>)Aa(uj, ti)Ht (uj) +  At,(u;, n) (3.4.7)

where A3(lj, n) and Av(u, n) are the time-frequency formulations of the 

autocorrelation matrices for the source signals and the noise signals, and 

both are diagonal matrices. Thus the unmixing matrix W(uj) should 

satisfy that the estimated autocorrelation matrix of the source signals
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which is obtained as

As((j, n) =  W(u)^Rx(u, n) — Av(a;, n)]WT(u) (3.4.8)

can be a diagonal matrix. Dividing the observed signals into K  sections, 

K  estimated autocorrelation matrices can be obtained from (3.4.6). By 

utilizing the nonstationary of the observed signals, the unmixing matrix 

is then updated to simultaneously diagonalize these K  autocorrelation 

matrices, or equivalently, to simultaneously minimize the off-diagnonal 

elements of the K  matrices obtained from (3.4.8). The cost function 

can then be formulated as

u>=0 fc=l

where || • ||2 denotes the Euclidean norm and

|| E(u, k)\\2 =  k) -  Av(u;, k)]WT(u;) -  A a(u;, k) (3.4.10)

The least squares estimates of the unmixing matrix and the autocorre­

lation matrices of the source signals and noise signals can be obtained

0 ^  =  2'£E(u,k)W(u;){Rx(u,t) -  (3.4.12)

W y An, As =  arg min JW,An»Aj (3.4.11)

The gradients of the cost function are

K

(3.4.13)
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dA^  k) =  - diag[WT(u;)E(i*, k)W(u)] (3.4.14)

where diag(-) denotes the diagonahzation operator which zeros the off- 

diagonal elements of the matrix. The optimal unmixing matrix W  (cj) 

and the noise autocorrelation matrix Av(cj, k) can then be obtained by 

a gradient descent algorithm using the gradients formulated in (3.4.12) 

and (3.4.14), and the autocorrelation matrix of the source signals can 

be obtained by setting the gradient in (3.4.13) to zero. A more detailed 

introduction for this approach can be seen in [9].

Although it has been shown that frequency domain methods are 

more efficient and have a better convergence property, the permutation 

problem in the frequency domain is more serious as compared with 

that in the time domain, since the blind estimated unmixing matrix 

at one frequency bin can at best be obtained up to a scale and per­

mutation. Therefore, at each frequency bin the separated signal s<(a;) 

can be recovered at an arbitrary output channel. Consequently, the 

recovered source signal is not necessarily a consistent estimate of the 

real source over all frequencies. So it is necessary to solve the permu­

tation problem and align the unmixing matrix to an appropriate order, 

so that the source signals can be recovered correctly. This problem will 

be discussed in the next section. The scale ambiguity problem at each 

frequency bin is mitigated simply by normalizing the unmixing matrix 

at each frequency bin [10].

3.5 Solving the permutation problem

Typical methods for solving the permutation problem are introduced 

in this section. These methods can be divided into four classes:
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1. Exploiting unmixing matrix spectral continuity.

2. Exploiting the similarity of the signal envelope structure at dif­

ferent frequency bins from the same source signal.

3. Utilizing geometrical constraints, i.e., exploiting the difference of 

the positions of the source signals.

4. Combined methods, which use the advantages of different ap­

proaches, whilst avoid their disadvantages.

3.5.1 Exploiting unmixing matrix spectral continuity

Parra & Spence [9] suggest to solve the permutation problem by impos­

ing a smoothness constraint on the unmixing filters, i.e., a constraint on 

the filter length Q < T, where T  is the FFT window length. This finite 

length constraint in the time domain forces the solution to be smooth 

or continuous in the frequency domain, thus promoting convergence to 

a global minimum.

Smaragdis [34] [35] worked wholly with this problem in the fre­

quency domain by using ICA algorithms such as the natural gradient 

algorithm for each frequency bin. To solve the permutation problem, 

he proposed an adaptive scheme to exploit frequency coupling between 

neighboring frequency bins. The adaptation of unmixing matrics is 

formulated as follows:,

AW) = AWf +  kAWf- U 0 < k < l  (3.5.1)

where Wf  is the unmixing matrix W  at frequency bin / .

Obviously, both methods have an implicit assumption of spectral 

continuity, i.e., the neighboring unmixing matrix are similar to each
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other.

3.5.2 Exploiting signal envelope structure

Murata et al. [38] solve the permutation problem by exploiting the 

similarity of the signal envelope structure at different frequency bins 

from the same source signal. This method can be formulated as follows: 

l.Sort u; in order of the weakness of correlation between the sepa­

rated signals 2/<(w,n), i.e., is chosen as the frequency bin in which 

the separated signals have the weakest correlation.

2.For o>i, fix the order of separated signals.

3.For Uk find the permutation of the order of separated signals which 

maximizes the correlation between the envelope of the separated signals 

Viiojk, n) and the aggregated envelope of the separated signals from 

yi(uu n) through yi(uk- i ,n) .

4.Assign the appropriate permutation to all the frequency bins.

It is clear to see that this approach implicitly assumes that at dif­

ferent frequency bins, the envelope structure from the same signal is 

similar.

3.5.3 Utilizing geometrical constraints

All BSS methods make no assumption about the positions of the sources 

in the 3-dimensional space. As shown in [41] and [40], the source sig­

nals generally originate from different spatial locations in practice, and 

this geometrical information can be utilized to solve the permutation 

problem. This approach is motivated by the beamforming technique, 

which estimates the direction of arrival (DOA) of signals in order to 

steer the beam of an array of sensors to focus on a specific source [42].
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A beamformer consists of an array of sensors in a particular config­

uration. The output of each sensor is properly filtered and the filtered 

outputs of all the sensors are added up. Typically, a beamformer lin­

early combines the spatially sampled waveform from each sensor in the 

same way as an FIR filter which linearly combines temporally sam­

pled data. In the beamforming technique, the beamformer response is 

defined as the amplitude and phase presented to a plain wave as a func­

tion of location and frequency. Consider the signal is a plain wave with 

DOA 0 and frequency u>, and for convenience let the phase be zero 

at the first sensor, the sensor array response vector can be generally 

expressed as

where r, is the time delay of the source signal at the ith sensor, j  =  

y/^l.  The beamformer response can then be formulated as

where w is the beamformer filter vector. It is straightforward to see in

(3.5.3) that the angle between w and d(0, uj) determines the response 

r(Q,uj). The ability to discriminate sources at different locations and 

frequency is obtained by utilizing the difference of angles of their array 

response vectors.

It is clear to see that the model used in the beamformer is very 

similar to that of BSS, in which the row vector of the unmixing matrix 

can be deemed as a beamformer, and one source from one direction 

is extracted. The equivalence between frequency-domain blind source 

separation and frequency-domain adaptive beamforming for convolu-

(3.5.2)

r(9, u>) — wTd(0, u>) (3.5.3)
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tive mixtures is discussed in detail in [43]. By constraining the beam- 

former response to be a constant, the permutation of the unmixing 

matrix at different frequency bins can be removed [41] and [40]. Simi­

lar approaches can be seen in [44] [45] and [46].

3.5.4 Combined methods

A combined approach for solving the permutation problem is proposed 

in [47], which uses both the signal envelope structure and the geomet­

rical information of source signals. A more robust and precise method 

for the permutation problem is obtained by utilizing the good proper­

ties of both single approaches, whilst avoiding their disadvantages. The 

advantage of the geometrical information based method is the robust­

ness since a misalignment at one frequency bin does not affect other 

frequencies. However, DOA cannot be well estimated at some frequen­

cies, especially at low frequencies where the phase difference caused by 

the sensor spacing is very small, and also at high frequencies where 

spatial aliasing might occur. In essence, the DOA approach is not pre­

cise since the evaluation is based on an approximation of the mixing 

system. The correlation approach is not robust since a misalignment 

at one frequency bin may cause consecutive misalignments. The corre­

lation approach is precise as long as signals are well separated by ICA 

since the measurement is based on separated signals.

The combined approach integrates the two approaches to solve the 

permutation problem in the two following steps:

1) Fix the permutations at some frequencies where the confidence 

of the DOA approach is sufficiently high;

2) Decide the permutations for the remaining frequencies based on
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correlations of signal envelope structure without changing the permu­

tations fixed by the DOA approach.

As compared with each single approach, the combined method is 

more robust and precise [47].

3.6 Chapter Summary

The background introduction for the adaptive techniques, i.e., the LMS 

algorithm and BSS algorithms, is provided in this chapter. The purpose 

was to give a broad discussion as details are available in the cited works. 

Both techniques will be utilized in the RT estimation framework, as 

will be described in the next section. The introduction also provides a 

basis for the further research on adaptive techniques, i.e., the VSSLMS 

algorithms in Chapter 5, the VTLMS algorithms in Chapter 6 and a 

variable tap-length NG algorithm in Chapter 7.



Chapter 4

A COMBINED BSS AND ANC 

SCHEME WITH POTENTIAL 

APPLICATION IN BLIND 

ACOUSTIC PARAMETER

EXTRACTION

For most existing ET estimation methods, including the maximum like­

lihood estimation (MLE) based method introduced in Chapter 2, the 

condition of low noise level is necessary to obtain accurate RT esti­

mates. With the increase of the noise level, the RT estimates will gen­

erally be biased, or even wrong, since the noise will contaminate the 

fine structure of the received excitation signal. To improve the accuracy 

of the RT estimates, a preprocessing is introduced in this chapter, in 

which the blind source separation (BSS) technique and adaptive noise 

cancellation (ANC) scheme, based upon the least mean square (LMS) 

algorithm are combined to reduce the unknown noise level from the 

passively received speech signal. As a demonstration this preprocess­

ing will be used together with the MLE based method to estimate the

57
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RT of a synthetic noise room. Simulation results show that the pro­

posed new approach can improve the accuracy of the RT estimation in 

a simulated high noise environment. The potential application of the 

proposed approach for realistic acoustic environments is also discussed, 

which motivates the need for further development of more sophisticated 

frequency domain BSS algorithms.

This chapter is organized as follows: the novel framework which 

utilizes the proposed preprocessing together with the MLE based RT 

estimation method is introduced in Section 4.1. The BSS stage of the 

framework is discussed in Section 4.2. The ANC stage of the framework 

is described in Section 4.3. The MLE based RT estimation stage is 

formulated in Section 4.4. Simulations are given in Section 4.5, in 

which the proposed approach is utilized to extract the RT in a synthetic 

high noise room. The potential application of the proposed approach 

in a real acoustic environment is discussed in Section 4.6. Section 4.7 

provides the conclusion.

4.1 Introduction of the proposed RT estimation framework

As have been introduced in Chapter 1 and Chapter 2, many methods 

have been proposed to estimate the RT [4] [6] [5]; ‘blind’ methods which 

utilize the passively received speech signals are particularly attractive 

in certain environments as good controlled excitation signals are un­

necessary [7] [8]. In [7] an artificial neural network (ANN) is trained to 

extract the RT from passively received speech utterances. In [8], an ex­

ponentially damped Gaussian white noise model is used to describe the 

reverberation tail of the received speech signal, and an MLE method is 

then performed on segments of the speech signal to extract the RT. As
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shown by the authors, both of these algorithms provide reliable RT es­

timates in a noise free environment. When estimating RT in high noise 

environments, however, the results of these methods will be degraded 

and generally biased, as can be seen in [3] and the later simulations. 

Therefore both methods are limited by the noise level.

To make the RT estimation methods more robust and accurate, an 

intuitive way is to remove the unknown noise signal from the received 

speech signal as much as possible before the RT estimation. A powerful 

tool for extracting some noise interference signal from a mixture of 

signals is the convolutive BSS method [9]. Naturally, given two spatially 

distinct observations, BSS can attempt to separate the mixed signals to 

yield two independent signals. One of these two signals mainly consists 

of the excitation speech signal plus residue of the noise and the other 

signal contains mostly the noise signal [9]. The estimated noise signal 

can then serve as a reference signal within an ANC, which is then used 

to remove the noise component contained in the received speech signal. 

The different stages of this framework are shown in Fig. 4.1. The signal 

si(n), which is assumed to be the noise signal in this work, is assumed 

statistically independent of the excitation speech signal s2(n). The 

passively received signals x\(n) and X2 (n) are modelled as convolutive 

mixtures of Si(n) and s2(n). The room impulse response hij(n) is the 

impulse response from source j  to microphone i. BSS is used firstly to 

obtain the estimated excitation speech signal s2(n) and the estimated 

noise signal Si(n). The estimated noise signal si(n) then serves as 

the reference signal for the ANC to remove the noise component from 

Xi(n). The output of the ANC yi2(n) is an estimation of the noise free 

reverberant speech signal 2/i2(n). As compared with xi(n), it crucially
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Figure 4.1. Proposed blind RT estimation framework

retains the reverberant structure of the speech signal and has a low level 

of noise, therefore it is more suitable to estimate the RT of the occupied 

room. As will be shown by the later simulations, the proposed method 

can improve the accuracy of the RT estimation in a simulated high 

noise environment. Note that due to the symmetrical structure of the 

proposed approach, the signal Si (n) can also be deemed as an excitation 

speech signal, the signal S2 (n) can then be deemed as a noise signal, 

and a similar approach can be performed to extract the RT. Likewise, 

x2(n) can also be used as a basis for estimating RT at the expense of 

additional computational complexity. This aspect is however left as 

future work.

From Fig. 4.1 it is clear to see that the key stage of the proposed 

method is the BSS stage. The performance of the whole framework 

depends on the performance of BSS. If a good estimation of the noise 

signal can be obtained, the noise contained in the mixture signal can 

be removed by the ANC, and the output of the ANC can be a good 

signal to estimate the RT. In the rest of this chapter, different stages of 

the proposed method will be described, and a detailed discussion and
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simulation study of its performance will be given.

4.2 BSS stage

As shown by Fig. 4.1, the goal of BSS is to extract the estimated 

noise signal si(n) from the received mixture signals x\(n) and £2(71). 

By assuming that the room environment is time invariant, the received 

mixtures x\(n) and X2  (n) can be modelled as weighted sums of convolu­

tions of the source signals si(n) and S2(n). The equation that describes 

this convolved mixing process is:

2 p-i
xi(n) =  S  si(n ~ * =  2 C4-2-1)

i=1 p=o

where Sj(n) is the source signal from a source j, Xi(n) is the received 

signal by a microphone i, hij(p) is the P-point response from source j  

to microphone i , and Vi(n) is additive white noise, which is assumed to 

be zero, as indicated in Fig. 4.1. Using a T-point windowed discrete 

Fourier transformation (DFT), the time domain signal Xi(n) can be 

converted into the time-frequency domain signal Xi(u>,n) where uj is 

a frequency index and n is a time index. For each frequency bin the 

following equation is obtained

x(u>, n) =  H(u)s (u , n) +  v(a;, n) (4.2.2)

where s(w,n) =  [si(u>,n),S2(w,n)]T, x(u;,n) =  [xi(uj,n)iX2 (ujin)]T and 

v(a;, n) = [vi(u, n), v2(oj, n)]T are the time-frequency representations of 

the source signals, the observed signals and the noise signals, H(lj) is a 

2-by-2 matrix composed of hij(u>), which is the frequency representation
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for the mixing impulse response hij(p), (•)T denotes vector transpose. 

The separation can be completed by a 2-by-2 unmixing matrix W(u) 

of a frequency bin uj

s(u>, n) =  W  (u>)x(u, n) (4.2.3)

where s(cj,n) =  [si(cj,n), S2(u;,n)]T is the time-frequency representa­

tion of the estimated source signals and W(uj) is the frequency repre­

sentation of the unmixing matrix. W(uj) is determined so that si(u;, n) 

and S2 (uj, n) become mutually independent.

As a demonstration of the proposed approach, the frequency do­

main convolutive BSS method which exploits the nonstationary of the 

observed signals is utilized [9]. For each frequency bin, exploiting the 

statistical nonstationarity of the speech signal, the unmixing matrix 

W (a;) can be found by jointly diagonalizing K  autocorrelation matri­

ces of the observed signals at K  different times [9]. This approach has 

also been introduced in the previous chapter. The separated signals 

si(n) and 52(71) can then be obtained from (4.2.3) after applying an 

inverse DFT (IDFT). The scale ambiguity problem as previously dis­

cussed is addressed by matrix normalization [10] and the permutation 

problem is mitigated by using the unmixing filter tap-length constraint, 

as discussed in [9]. One advantage of this approach is that it incorpo­

rates uncorrelated noise, although in practice the noise may degrade its 

performance.

The performance of BSS can be evaluated by checking the separated 

noise signal si(n) or the excitation signal S2 (n). According to the above 

description, the frequency domain mathematical representation of the
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separated noise signal can be formulated as

si(u;, n) =  Cn(u;)si(t<;, n) + C\2 (u)s2 (w, n) (4.2.4)

where cn(u;) and 012(0;) are the frequency-domain representations of 

the combined system responses:

cu (lj) =  hn (u)wu(u) +  /121MW12M  (4.2.5)

and

ci2(o;) =  hi2(w)wn{uj) +  h22(u)wn(u) (4.2.6)

The performance of BSS can be classified into three possible cases:

1. A perfect performance, which is obtained if the separated noise 

signal can be approximately deemed as a scaled or delayed version of 

the original noise signal. In this case, the z-domain representation of 

the combined response filter cn can be formulated as Cn(z) = Cz~A 

where C  is a scalar and A is an integer to denote the delay, and the 

combined system response C12 is close to zero.

2. A good performance, which is obtained if the separated noise 

signal is approximately a filtered version of the source noise signal. 

In this case, the filter cn is an unknown filter, and the filter C12 is 

approximately zero.

3. A normal performance, which is obtained if the separated noise 

signal contains both components of the original noise signal and the 

excitation speech signal. In this case, both filters cn and C12 are two 

unknown filters. In this situation the performance of the adaptive noise 

canceller may also be degraded but this aspect is not considered in the
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thesis.

If the performance of BSS is perfect, the estimation of the structure 

of the room impulse responses can be obtained from the inverse of 

the unmixing filters, and the room RT can then be estimated directly 

from the room impulse responses. However, in real applications, the 

performance of most existing BSS algorithms are between case 2 and 

case 3, and the inverse of the unmixing matrix filters will be seriously 

biased from the room impulse responses. This is why an extra ANC 

stage is needed in the proposed framework.

4.3 ANC stage

After the BSS stage the estimated noise signal si(n) is obtained, which 

is highly correlated with the noise signal si(n). This signal is then used 

as a reference signal in the ANC stage to remove the noise component 

from the received signal x\(n). A introduction of the LMS algorithm 

can be seen in the previous chapter. Since the target signal yu (n) 

which is to be recovered is a highly nonstationary speech signal, a 

modified LMS algorithm namely the sum method [48] is combined with 

the proportional adaptation [49] in this ANC stage to obtain both a 

fast convergence rate and a small steady state excess mean square error 

(EMSE). The update of this new approach, which is named as the 

proportional sum method, can be summarized as follows:

e(n) =  xi (n) — sf(n)w(n) (4.3.1)

l(n) = max{\wi{n)\,..., |u/L(n)|} (4.3.2)

l'(n) =  max{6,l(n)} (4.3.3)
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9k(n) =  max{pl'(n), |w*(n)|} k =  1 , L (4.3.4)

1 L
§{n) =  j ^ 9 i ( n) (4.3.5)

,|

where e(n) is the output error of the adaptive filter, §i(n) is the input 

vector with a tap-length of L, §i(n) =  [si(n),..., si(n—L+l)] and si,fc(n) 

is its kth element, w(n) is the weight vector of the adaptive filter and

Wk(n) is its kth element, | • | denotes the absolute value operation, l(n)

is the maximum absolute value of the elements of the adaptive filter 

vector, V(n) is a slight modification of l(n) which avoids the situation 

when all the absolute values of the elements of the adaptive filter vector 

are small by utilizing the constant 6, pis  another constant which is used 

to avoid the situation that at some iterations Wk(n) may equal to zero, 

9k{n) is the gain distributor of the kth element of the adaptive filter, 

g(n) is approximately the average value of the absolute values of the 

elements of the adaptive filter vector, <72(n) and o^{n) are estimations 

of the temporal error energy and the temporal input energy, which are 

obtained by first order smoothing filters:

<7g(n) =  0.99 £g(n — !) +  (! — 0.99)e2(n) (4.3.7)

and

<r2(n) =  0.99<r2(n — 1) 4- (1 — 0.99)sf(n) (4.3.8)

where <3-2(0) =  0 and <72(0) =  0. The choice of 0.99 is related to the 

window length of such estimates and is approximately jrogg = 100. 

Moreover, the term 1 — 0.99 ensures unbiased estimates.
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The proportional adaptive filter is suitable for applications where 

the energy of the adaptive filter elements are distributed unevenly over 

L taps [49]. Intuitively, gain distributors are proportional to the mag­

nitude of the current impulse response sample estimates. Tap weights 

that are currently being estimated as far from zero get significantly 

more update energy than those currently being estimated as close to 

zero, which speeds up the convergence rate with a similar EMSE as 

compared with the normalized LMS (NLMS) algorithm. More details 

and discussions of the proportional adaptive filter can be found in [49].

The adaptation of the weight vector in (4.3.6) is based on the sum 

method in [48]. As explained by the author, the adaptation in (4.3.6) is 

adjusted by the input and output error variance automatically, which 

reduces the influence brought by the fluctuation of the input and the 

target signals.

If the BSS stage performs well, the output signal of the ANC yu(n) 

should be a good estimation of the noise free reverberant speech signal 

3/12(71). By denoting the steady state adaptive filter vector as w s and its 

frequency domain representation as w s ( l j ) } the time-frequency domain 

representation of 2/12(71) can be formulated as follows:

yi2(u,n) =  xi(u,n) -  wa{u)si{u,n)

=  pi(u;)si(a;, n) +  g2(u)s2{u, n) (4.3.9)

where g\(u>) and g2(u)) are combined system responses:

gi(u) =  hn(a?) -  wa(u)cn (u) (4.3.10)
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and ~

toiuj) =  hX2(w) -  wa{u)cX2{u) (4.3.11)

where cn(u;) and 012(0;) are formulated in (4.2.5) and (4.2.6). With the 

three kinds of performance of BSS which are discussed in the previous 

section, three kinds of performance of the ANC are obtained, based on 

the output signal $12(71):

1. If the BSS stage has a perfect performance, according to the 

discussion in the previous section the following equation is obtained

2/12(0;,n) =  [hn((jj) -  u;s(o;)C'e”-77W]si(o;, n) +  h12(<jj)s2(uj, n) (4.3.12)

It is clear to see that if the adaptive filter of the ANC converges to 

the value of w s (uj)  — , a noise free reverberant speech signal

$12(71) =  2/12(71) can be obtained at the output of the ANC.

2. If the BSS stage has a good performance, the following equation 

can be obtained

$12(0;, 7i) =  [hn(a>) -  ius(a>)cn(a;)]si(u;, n) +  hX2(u)s2(uj, n) (4.3.13)

To remove the noise component from $12(71), the first term of the right 

hand side of (4.3.13) should be equal to zero, which results in w3(w) =  

hn(u))/cu(uj). It requires that the combined system response c\i{u) has 

an inverse. Thus if the inverse of the combined system response is not 

realizable, the ANC can not remove the noise component completely. 

According to the simulation experience, in most cases the ANC stage 

can partially remove the noise component from the received mixture 

signal, and improve the accuracy of the RT estimates.
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3.' If the BSS stage has a normal performance, the output signal 

of the ANC will contain both components of the noise signal and the 

speech signal. The reverberant structure contained in y \ 2  will be dam­

aged. In practice, if the performance of BSS is poor, the noise contained 

in the mixture signal can not be removed, and an extra noise component 

will be introduced.

If both the BSS stage and the ANC stage perform well, the out­

put signal of the ANC stage can then be used for acoustic parameter 

extraction. In the next section the MLE based RT estimation method 

will be introduced.

4.4 MLE based RT estimation method

In this method, the RT of an occupied room is extracted from a pas­

sively received speech signal [8]. At first, the passively received speech 

signal is divided into several overlapped segments with the same length. 

Each segment can be deemed as an observed vector. This observed vec­

tor is modelled as an exponentially damped Gaussian random sequence, 

i.e., it is modelled as an element-by-element product of two vectors, one 

is a vector with an exponentially damped structure, and the other is 

composed of independent identical distributed (i.i.d.) Gaussian random 

samples. Note that the exponentially damped vector also models the 

envelope of the speech segment. The MLE approach is applied to the 

observed vector to extract the decay rate of its envelope. The RT can 

then be easily obtained from the decay rate, according to its definition. 

An estimation of RT can be extracted from one segment, and a series of 

RT estimates can be obtained from the whole passively received speech 

signal. The most likely RT of the room can then be identified from
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these'estimates.

In the MLE based RT estimation stage, the fine structure of the 

reverberant tail of the output signal yn{ri) is overlap segmented by a 

window with a width of N. At each segment an observed vector is 

obtained. The mathematical formulation for the exponentially damped 

Gaussian random sequence model used on is as follows [8]:

yN(i) =  x.N(i)aN(i), i =  1 ...TV (4.4.1)

where is a vector whose elements are drawn from a random white

Gaussian sequence x(n) ~  (0, a2) and a at is an exponentially damped 

sequence whose elements are determined by arf(i) =  ax,i =  1...N where 

a =  l/ex p (—r), t  is a constant which describes the damping rate. It 

is easy to see that r actually describes the damping rate of sequence 

a (̂*)> which is used to model the envelope of the reverberant speech 

signal. According to the definition the RT can be obtained from this 

decay rate:

T6o =  6.91r (4.4.2)

By using an MLE approach, both the parameters a and a can be

obtained according to the model formulated in (4.4.1) [14]. With the 

estimate of parameter a, the decay parameter r and the RT can also 

be calculated. Prom each segment an estimate of RT can be obtained, 

and a series of estimates of RT can be obtained with the total output 

signal yn{n). These estimates can then be used to identify the most 

likely RT of the room by using an order-statistic filter [8]. A simple and 

intuitive way to identify the RT from a series estimations is to choose 

the peak of a histogram of the RT estimations. Detailed introduction
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of the MLE based RT estimation method can be seen in Chapter 2.

In the next section the proposed framework is utilized to extract 

the RT of a simulated high noise room. The RT estimates obtained 

from the proposed approach will be compared with the original MLE 

approach to show its advantage.

4.5 Simulation

In this section the performance of the proposed approach is examined. 

To confirm the discussion in previous sections, three simulations are 

performed based on different performance of the BSS stage. The flow 

chart of the simulations is shown in Fig. 4.1. All these simulations 

are based on the same environment: the simulated room and its im­

pulse responses hij between source j  and microphone i are simulated 

by a simplistic image room model which generate only positive impulse 

response coefficients [50]. The room size is set to be 10*10*5 meter3 

and the reflection coefficient is set to be 0.7 in rough correspondence 

with the actual room. The RT of this room measured by Schroeder’s 

method [6] is 0.27s. The excitation speech signal and the noise sig­

nal are two anechoic 40 seconds male speech signals with a sampling 

frequency of 8kHz, and scaled to have a unit variance over the whole 

observation. The first 10s of these two signals can be seen in Fig. 4.2. 

The position of these two sources are set to be [lm 3m 1.5m] and [3.5m 

2m 1.5m]. The positions of the two microphones are set to be [2.45m 

4.5m 1.5m] and [2.55m 4.5m 1.5m] respectively. The impulse responses 

/in, hu, /121, /122 are shown in Fig. 4.3. The setup of the simulation 

can be seen in Fig. 4.4. The selection of the room geometry is a typi­

cal example of many examples tried in the related simulation studies.
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Figure 4.3. Simulated room impulse responses

This example only suggests the potential applicability of the proposed 

approach for occupied room RT estimation. An extensive evaluation is 

left for future work, once the component processing schemes have been 

optimized. The focus of the remainder of this thesis is to investigate 

improvements for the ANC stage.
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Figure 4.4. Simulated room (unit in meter)

The parameter setting for the BSS algorithm is as follows: the mix­

ture signals are divided into K  =  5 sections, so that 5 autocorrelation 

matrices of the mixture signals at each frequency bin are obtained. The 

DFT length is set to T  =  2048. The unmixing filter tap-length is set 

to Q — 512, which is much less than T, to reduce the permutation 

ambiguity [9]. The step size of the update of the frequency domain un­

mixing matrix is set to unity. The parameter setting for the ANC stage 

is as follows: the tap-length of the adaptive filter coefficient vector is 

set to 500. The step size p. is set to 0.005. The parameter S is set to

0.001. The parameter p is set to 0.01. The smoothing parameter (3 is 

set to 0.99. The window width which is used to obtain the observed 

vector in the MLE based RT estimation method is set to 1,200. All 

these parameters have been chosen empirically to yield the best perfor­

mance. The online method which is introduced in Chapter 2 is used to 

calculate the RT.

For each simulation, the performance of ANC combined with BSS
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Figure 4 .5 . The histogram of the RT estimation results with different 
signals



Section 4.5. Simulation 74
----------------------------------------------------------------------------------i-----------

is shown by comparing the combined system responses g\ and <72 which

are formulated in (4.3.10) and (4.3.11) with the room impulse responses

fin and h\2. According to the motivation of the approach, g2 should be

close to the filter /112, which contains the RT information, and <71 should

contain less energy as compared with /in, so that the noise contained

in £12(71) is reduced as compared with the mixture signal x\ (n).

The output signal of the ANC stage £12(71) will then be used to ex­

tract the RT by using the MLE method. The RT results extracted from 

£12(71) and xi(ti) will be compared with the RT results extracted from 

the noise free reverberant speech signal 2/12(71), to show the advantage 

of the proposed approach. The histogram of the RT results extracted 

from 2/12(71) and xi(n) can be seen in Fig. 4.5(a) and Fig. 4.5(b). It 

is clear to see from these two figures that RT can be easily identified 

from Fig. 4.5(a), which is obtained by using the noise free reverberant 

speech signal 2/12(71): the peak of the RT estimation results appears at

0.3s, and it is close to the real RT 0.27s. There are many peaks in 

Fig. 4.5(b) which are obtained from the mixture signal x\ (n) due to 

the high level noise, thus RT is difficult to be identified.

In the first simulation, the BSS stage is assumed to have a perfect 

performance, and the separated signal is equal to the original signal,

1.e., Si =  Si. In this case the combined system response g2 is equal 

to h\2 - To show the performance of ANC combined with BSS, both 

combined system responses g\ and g2 are plotted in Fig. 4 .6 . It can 

be clearly seen that the combined system response g\ is close to zero, 

which indicates the output signal £12(71) is very close to the noise free 

reverberant speech signal 2/12(71), according to (4 .3 .12).

The RT extracted from signal £12 is shown in Fig. 4.5(c). It is clear
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to see in Fig. 4.5 that the histogram of the estimations obtained 

with the extracted signal £12(71) is very sitf^V to that obtained by 

using the noise free signal 2/12(11). An obvious of the RT estimation

results appears at 0.34s. Note that both the e#̂ l%#te$ in Fig. 4.5(a) and 

Fig. 4.5(c) are larger than the real RT due to l#ckof sharp transients 

in the clean speech [8]. The RT results in Fig* l^(c) are slightly larger 

than the results in Fig. 4.5(a) due to the i\ol^ interference.

In the second simulation, all the sets r̂# Hi# same as that of the 

first simulation, except that the reference 8i$* l̂ is replaced with a fil­

tered version of the noise signal. In this fche frequency domain 

representation of the reference signal of the cam be formulated as

Si(v,n) =  cu(o;)ai(w,ti) (4.5.1)

where cn(u>) is formulated in (4.2.5). The system responses

</i and <72 are shown in Fig. 4.7. From Fig.  ̂V it is clear to see that 

the combined system response <72 is very clc^ ^1 2 , which contains 

the information of the RT. The combined response gi, which

contains the noise component, has less enei’P  08 compared with the 

filter /in. Thus as compared with the rnixtuj^ zi(n), the output

signal yi2 (n) has a much lower level noise co^h^neait.

Similar to that of tjhe previous simulation' MLE based RT esti­

mation method is then used to extract the * T ie histogram of the 

RT estimations are shown in Fig. 4.5(d). peak of the RT esti­

mations appears at 0.35s, and this peak is dearer as compared

with that in Fig. 4.5(b), which indicates that result obtained from

£12(71) is better than the result obtained frort* \ ( n)-
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In the last simulation, the reference input of the ANC stage is the 

real output of the BSS stage. To show the performance of the BSS, the 

combined system responses cn, C12, C21, C22 axe plotted in Fig. 4.8. It is 

clear to see from Fig. 4.8 that the separated signal si(n) mainly comes 

from the original noise signal si(n), and the separated signal h i 71) 

mainly comes from the original speech signal 52(71) > thus the separated 

signal si(n) can be approximately deemed as a filtered version of the 

original noise signal si(n), and is highly correlated with Si(n).

The separated signal si(n) serves as a reference signal within the 

ANC, to remove the noise component contained in the mixture signal 

x\ (n). The MLE based RT estimation method is then used to extract 

the RT estimates from the output signal #12(71). The combined system 

responses g\ and p2 are shown in Fig. 4.9, and the histogram of the 

RT estimations are shown in Fig. 4.5(e). From Fig. 4.9 it is clear 

to see that although the combined filter g\ contains more energy as 

compared with that in Fig. 4.7, it is still much smaller as compared 

with /in, which indicates the noise level contained in #12(71) is still much 

less than that of x\ (n). The peak of the RT estimation results in Fig. 

4.5(e) appears at 0.34s, and it is also clearer as compared with Fig. 

4.5(b).

From the above simulations it is apparent that utilizing BSS com­

bined with ANC can potentially reduce the noise component from the 

mixture signal whilst retaining the reverberant structure, and a more 

accurate RT result can be obtained. Although the performance of the 

proposed approach highly depends on the performance of the BSS stage, 

as shown by the simulations above, nonetheless, the accuracy of the RT 

estimation is improved, and reliable RT can be extracted by using this
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method within a simulated highly noisy room, something that has not 

previously been possible. Typically, from much simulation experience, 

the adaptive schemes must improve the SNR at the input to the MLE 

RT estimation to 15dB, hence the focus of this thesis is now to enhance 

the ANC to move towards achieving this goal. Future work will also be 

required to enhance the frequency domain BSS algorithms.

4.6 Discussion

• It is clear to see in the above simulations that the key stage of the 

proposed approach is the BSS stage. Although, as shown in the sim­

ulation in the previous section, BSS is successfully used in a simple 

simulated room impulse response model, the application of BSS and 

ANC in acoustic parameter extraction is still limited in practice, mainly 

because of the performance of BSS for a real environment. Generally, 

there are three fundamental limitations of the BSS stage:

1. The permutation problem in the frequency domain BSS algo­

rithms, as has been introduced in Chapter 2. Since the blind estimated 

unmixing matrix at one frequency bin can at best be obtained up to a 

scale and permutation, at each frequency bin the separated signal can 

be recovered at an arbitrary output channel. Consequently, the recov­

ered source signal is not necessarily a consistent estimate of the real 

source over all frequencies. So it is necessary to solve the permutation 

problem and align the unmixing matrix to an appropriate order, so that 

the source signals can be recovered correctly. Many methods have been 

proposed to solve the permutation problem. In [9] the authors suggest 

to solve the permutation problem by imposing a smoothness constraint 

on the unmixing filters, i.e., exploiting unmixing matrix spectral con­
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tinuity. This method is used in the simulations in the thesis. The 

authors in [38] solve the permutation problem by exploiting the simi­

larity of the signal envelope structure at different frequency bins from 

the same source signal. Geometrical constraints are used in [40] and [46] 

to solve the permutation problem. A combined approach which utilizes 

both the similarity of the signal envelope structure and geometrical 

constraints is proposed in [47]. It has been shown that the combined 

approach is more robust and precise as compared with other methods, 

and can solve the permutation problem quite well. It must be pointed 

out that solving the permutation problem can improve the performance 

of frequency domain BSS algorithms only when the mixture signals have 

been well separated. Thus the separation process at each frequency bin 

is still the key problem for BSS.

2. The choice of the FFT frame size T. This parameter provides 

a trade-off between maintaining the independence assumption which is 

related with the sample number at each frequency bin, and covering the 

whole reverberation in frequency domain BSS [39]. On one hand, it is 

constrained that T > P  where P  is the tap-length of the room impulse 

response, more strictly, T > 2P, so that a linear convolution can be 

approximated by a circular convolution. On the other hand, if T  is 

too large, the sample number at each frequency bin may be too small, 

and the independence assumption will collapse. Thus it is important 

to choose a proper value of the parameter T, as explained in [39].

3. As discussed in [39], the frequency domain BSS system can be 

understood as two sets of adaptive beamformers (ABFs). As shown 

in the simulation in [39], although BSS can remove the reverberant 

jammer sound to some extent, it mainly removes the sound from the
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jammer direction, i.e., the unmixing matrix W(uj) mainly removes the 

direct sound of the jammer signal, and the other reverberant compo­

nents which arrive from different directions cannot be separated com­

pletely. For the room impulse response model used in this chapter, the 

energy contained in the reverberant tails is quite small as compared 

with that of the direct signal, and a good performance of BSS is ob­

tained. For real room impulses, however, the performance of current 

frequency domain BSS algorithms degrade.

Due to the fundamental limitations of current frequency domain 

BSS algorithms, more research is needed to make the proposed ap­

proach work in more realistic acoustic environments.

4.7 Conclusion

In this chapter, a new preprocessing for room acoustic parameter ex­

traction from high noise rooms by utilizing passively received speech 

signals is provided. Simulation results show that the noise is reduced 

greatly by the proposed framework from the reverberant speech signal 

and the performance of this framework is good in a simulated high noise 

room environment. The potential application of the proposed approach 

in practice is also discussed. Due to the motivation of the framework, 

BSS and ANC can be potentially used together in many acoustic param­

eter estimation methods as a preprocessing. This framework provides 

a new way to overcome the noise disturbance in RT estimation. How­

ever, to make the proposed approach work in real acoustic parameter 

extraction, more research is needed, especially on the convolutive BSS 

algorithms.



Chapter 5

VARIABLE STEP SIZE LMS 

ALGORITHMS

The LMS algorithm has been extensively used in many applications as 

a consequence of its simplicity and robustness [15] and [16]. A detailed 

introduction of the LMS algorithm can be found in Chapter 3. In the 

application of the LMS algorithm, a key parameter is the step size. As 

is well known, if the step size is large, the convergence rate of the LMS 

algorithm will be rapid, but the steady-state mean square error (MSE) 

will increase. On the other hand, if the step size is small, the steady- 

state MSE will be small, but the convergence rate will be slow. Thus 

the step size provides a tradeoff between the convergence rate and the 

steady-state MSE of the LMS algorithm. An intuitive way to improve 

the performance of the LMS algorithm is to make the step size variable 

rather than fixed, i.e., choose large step size values during the initial 

convergence of the LMS algorithm, and use small step size values when 

the system is close to its steady-state, which results in variable step 

size LMS (VSSLMS) algorithms. By utilizing such an approach, both 

a fast convergence rate and a small steady-state MSE can be obtained.

Many VSSLMS algorithms have been proposed during recent years

[51], [52], [53], [54], [55], [56], [57] and [58]. Although these methods
/

82
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perform well under certain conditions, noise can degrade their perfor­

mance. In this chapter, two new VSSLMS algorithms are proposed to 

enhance the convergence rate of the LMS algorithm in a high level sta­

tistically stationary or nonstationary noise environment, signal-to-noise 

ratio (SNR) approximately OdB, supported by theoretical steady-state 

performance analysis. As will be shown in the simulations, both pro­

posed algorithms have improved performance as compared with existing 

VSSLMS algorithms.

This chapter is organized as follows: a concise overview of existing 

VSSLMS algorithms is provided in Section 5.1. A theoretically opti­

mal VSSLMS algorithm is introduced in Section 5.2. Since for most 

existing VSSLMS algorithms their performance can be influenced by 

noise interference, two new VSSLMS algorithms are proposed in Sec­

tion 5.3 and Section 5.4 for high level noise conditions. One is designed 

for applications in which the noise is statistically stationary and the 

other is designed to be robust to statistically nonstationary noise in­

terference. Steady-state performance analysis for both algorithms is 

provided. Simulations support the theoretical analysis. Finally, con­

clusions are provided in Section 5.5.

5.1 An overview of VSSLMS algorithms

For convenience of description, the LMS algorithm is formulated firstly 

within the context of a system identification model. In this case, the 

zero mean desired signal d(n) is a filtered version of the input signal 

x{n) corrupted by the uncorrelated noise signal t(n). The mathematical
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formulation is as follows:

d(n) — xT(n)Wopt +  t(n) (5.1.1)

where w ^  is the unknown optimal filter, x(n) is the adaptive filter 

input vector, n denotes the discrete time index and ( )T denotes the 

vector transpose operator. The error output of the adaptive filter e(n) is 

the difference between the desired signal and the output of the adaptive 

filter:

e(n) =  d(n) — xT(n)w(n) (5.1.2)

where w(n) is the vector of the adaptive filter weights. The update 

equation of the LMS algorithm is given by

w (n +  1) =  w(n) +  //e(n)x(n) (5.1.3)

where /x is the step size. The excess error is defined as

£(n) =  e(n) — t(n) (5.1.4)

and the deviation between the optimal and adaptive filter weight vec­

tors is defined as

v(n) =  w^  -  w(n) (5.1.5)

Substituting (5.1.1), (5.1.2), (5.1.3), and (5.1.4) into (5.1.5) the re­

lationship between the excess error and the deviation vector can be 

formulated as

f(n) =  v r (n)x(n) (5.1.6)

In the VSSLMS algorithms, the step size \x is replaced with a vari-
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Table 5.1. A summary of the step size updates of certain existing 
VSSLMS algorithms ___________________________________

Name of the method Update of the step size

[51] Kami’s method 1989 / W e  — (L+l)al 

/*(") =  > w (  l - e - “»e<n>*<n>lla)

[52] K wong's method 1992 /x(n) *  pp{n  -  1) +  7 ea(n)

[53] Mathews’ method 1993 A*(n) =  /*(n -  1) +  pe(n)e(n -  l)x T(n)x(n -  1)

' [54] Aboulnasr’s method 1997 p(n) =  0p{n -  1) +  (1 -  0)e(n)e(n -  1) 

Ai(n) =  a/i(n -  1) +  7p*(n)

[55] Pazaitis’ method 1999 p{n) =  0p(n -  1) +  (1 -  0)e2(n) 

f{n)  =  /3f{n -  1) +  (1 -  P)eA(n) 

C{n) =  /(n ) -  3p*(n)

/*(n) =  /W r (l -  e“aC(n))

[56] Mader’s method 2000 m(« )  -  m o M m

[57] Ang’s method 2001 g(n) =  pjg(n -  1) +  e(n -  l)x(n  -  1) 

p(n) =  p(n  -  1) +  7 e(n)xT(n )f (n)

[58] Shin’s method 2004 g „ ( « ) - ^ g n ( «  ! )  +  ( !  ^ ) T f ^ f 7 e (n )

c =  l S f

able parameter /z(n), and the coefficient vector w (n) is updated as

w(n +  1) =  w(n) +  /i(n)e(n)x(n) (5.1.7)

Many VSSLMS algorithms have been proposed to improve the per­

formance of the LMS algorithm by using large step sizes at the early 

stages of the adaptive process and small step sizes after the system 

approaches convergence. Typical methods can be found in [51], [52], 

[53], [54], [55], [56], [57] and [58]. Based on the formulation of the LMS 

algorithm, the mathematical formulations of the updates of the step 

size /i(n) in these algorithms are summarized in Table 5.1.
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Note that the input and noise signals are assumed to be statistically 

stationary in all the formulations in Table 5.1, where o\  is the variance 

of the input signal, L is the tap-length of the adaptive filter vector, of 

is the variance of the noise signal, || • ||2 denotes the squared Euclidean 

norm operation, a, /?, 7  and p are positive constants, and guidelines 

for the choice of these parameters can be found in the corresponding 

literature, as shown in Table 5.1. The number such as 1989 in the name 

of the method is the year of publication in the literature.

As can be seen in Table 5.1, the step size in [51] is controlled by the 

squared Euclidean norm of the instantaneous gradient vector e(n)x(n). 

The step size in [52] is controlled by the squared instantaneous error. 

This method is improved to be robust to uncorrelated noise in [54] 

by using the squared autocorrelation of errors at adjacent times. The 

step size in [53] is controlled by the inner product between adjacent 

gradient vectors. This method is improved in [57], where a smoothing 

operation is utilized on one gradient vector to reduce the influence of 

noise interference. The step size in [55] is controlled by the fourth-order 

cumulant of the instantaneous error.

A theoretically optimal VSSLMS algorithm which can obtain the 

largest decrease of the mean square deviation (MSD) J5{||v(n)||2} at 

each iteration is proposed in [56], in which the step size is suggested 

to be proportional to the ratio between the excess mean square error 

(EMSE) value and the MSE value. The method proposed in [58] can 

be deemed as a practical version of the algorithm proposed in [56] by 

using some assumptions and approximations, as will be shown in the 

next section.

It is clear to see in Table 5.1 that these methods can be divided
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into two classes: the methods proposed in [52], [54] and [55] utilize the 

property that the squared value or forth-order cumulant of the output 

error is large initially and small at steady-state, while the methods pro­

posed in [51], [53], [57] and [58] are gradient-based VSSLMS algorithms 

which utilize two properties of the gradient vector:

1. The norm of the gradient vector will be large initially and con­

verge to a small value, potentially zero, at steady-state.

2. The polarity of the gradient vector will generally be consistent 

during the early stage of the adaptive process and change frequently 

after the system converges.

Methods proposed in [51] and [58] utilize property 1, whereas tech­

niques introduced in [53] and [57] utilize both of the properties.

All these algorithms introduced above perform well under certain 

conditions. However, from the perspective of robustness to high level 

noise interference, they all have disadvantages. It is clear to see from 

Table 5.1 that algorithms in [51], [52], [53] and [57] are sensitive to high 

level noise, since the instantaneous value e(n) is used in their imple­

mentations, and can be contaminated by the noise, while the method 

in [54] needs the noise signal to be uncorrelated, and the method in [55] 

assumes that the noise is Gaussian or Gaussian-like. The algorithm pro­

posed in [58] is more attractive as compared with other methods, but 

a low noise condition is necessary for the approximation used in the 

derivation. For high noise conditions, typically OdB SNR or lower, the 

parameter choice guideline provided in [58] will fail since the approxi­

mation used in the derivation is no longer reasonable, and it will be very 

difficult to find proper parameters. To enhance the convergence rate of 

the LMS algorithm in high noise conditions, new VSSLMS algorithms
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are needed.

Next the theoretically optimal VSSLMS algorithm provided in [56] 

will be introduced, which gives deeper insight into the selection of the 

step size at each iteration.

5.2 A theoretically optimal VSSLMS algorithm

In [56] a theoretically optimal VSSLMS algorithm, namely Mader’s 

algorithm is given. To make the formulation consistent, Mader’s al­

gorithm will be derived based on the LMS algorithm in this section 

rather than the normalized LMS (NLMS) algorithm as in its original 

derivation in [56].

To derive Mader’s method, the following assumptions are utilized:

A.5.2.1. The step size /z(n) is independent of e(n), x(n) and v(n).

A.5.2.2. The noise signal t(n) is independent of the excess error 

signal f(n).

A.5.2.3. The input signal is statistically stationary, and the term 

||x(n)||2 can be approximated by a constant Lcr2.

The optimal step size of the LMS algorithm formulated in [56] is 

defined as the value which can obtain the largest decrease of the MSD 

£ ’{||v(n)||2} at each iteration. The largest decrease of the MSD is 

obtained by maximizing £7{||v(n)||2} -  £{||v(n  +  1)||2}. Substituting 

equation (5.1.3) into (5.1.5) yields

v(n +  1) =  v(n) -  /z(n)e(n)x(n) (5.2.1)

By using equation (5.2.1) and assumption A.5.2.1, the term £{||v(n)||2}—
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I?{||v(n +  1)||2} can be expanded as

£{||v(n)||2} -  £ { ||v (n +  1)|*} = V ( n ) £ { e 2(n)||x(n)||2}

+2/j(n)£{e(n)vT(n)x(n)} (5.2.2)

Substituting equation (5.1.6) into (5.2.2) yields

£{l|v(n)||2} -  E{||v(n + l)||2} = V ( n ) £ { e 2(n)||x(n)||2}

+2fj,(n)E{e(n)£(n)} (5.2.3)

FVom (5.2.3) it is straightforward to obtain that the largest decrease of 

the MSD is achieved when the step size is set to the value

£{e(n)£(n)} , c n AS
Hopt(n) -  £ { e 2(n ) ||x ( n ) ||2}  (5 -2  4 )

Utilizing assumptions A.5.2.2 and A.5.2.3, the following optimal step 

size value is obtained by using (5.1.4) in (5.2.4) [56]

„ f a ) -  E{e2(n)} -  E{t2(«)}
J ||x(n)|PE{e2(n)} ||x(n)P£{^(„)} b)

Unfortunately, neither the noise signal t(n) nor its power are acces­

sible, which makes this algorithm impractical. In [56], many methods 

have been discussed to estimate the optimal step size by some further 

signal detection techniques, such as the detection of the power of t(n), 

which is the remote excitation signal within the context of adaptive 

noise cancellation (ANC). Since signal detection techniques are not the 

keystone in this chapter, the readers who are interested in this topic 

can refer to a key work in the literature [56].
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The theoretically optimal step size value formulated in (5.2.5) gives 

a general guideline for the design of the VSSLMS algorithms. Prom 

this formulation, Shin’s method [58] can be obtained directly by using 

some approximations. Utilizing (5.1.4) and assumption A.5.2.2, the 

theoretically optimal step size in (5.2.5) can be rewritten as

„  £{g2(n)} . .
^ [n) ~  ||x(n)||2(B{t2(„)} + « {? (« )})  { ' ]

Using assumption A.5.2.3 equation (5.2.6) can be approximated as

H l n ) . .  ,527)

Shin’s algorithm can then be obtained by approximating the term 

88 c- and the term } “  llln(«)ll2. where c

and gn(n) are shown in Table 5.11. As shown by the authors, this 

approximation is reasonable for low noise conditions (in the simulation 

in [58], the SNR is 30dB).

Although Shin’s algorithm is more attractive in practice since it can 

provide an approximately optimal step size value for each iteration, and 

performs better than other VSSLMS algorithms [52] and [54], the low 

noise condition is necessary for the approximation j f x f f  } ~

l|gn(n)ll2- For high noise conditions, this approximation is seriously bi­

ased, thus the parameter choice guideline provided in [58], that Umax =  
2

1 and c =  will no longer result in good performance, and choosing 

proper parameters will be a serious problem for this algorithm.

It has been shown in both [57] and [58] that the smoothing op­

eration performed on the gradient vector, such as the operation per-

1Note that Umax in Shin’s algorithm is suggested to be unity.



Section 5.3. A new VSSLMS algorithm with robustness to statistically stationary noise 91

formed on gn(ri) in Shin’s algorithm can reduce the interference of the 

noise. Whether the noise level is low or high, the squared norm of the 

smoothed gradient vector will be large initially, and small at steady- 

state, thus it is a good measure that can be used to control the step size. 

Motivated by this property of the gradient vector, two new VSSLMS 

algorithms are provided in the following sections, which are designed 

for applications with high level noise interference.

5.3 A new VSSLMS algorithm with robustness to statistically 

stationary noise

A new VSSLMS algorithm with robustness to statistically stationary 

noise is described in this section. In this algorithm, the gradient vector 

is smoothed by using a first order filter to reduce the disturbance of the 

noise signal. Then the step size is controlled to be proportional to the 

squared norm of the smoothed gradient vector. The theoretical steady- 

state performance analysis and guideline for the parameter choice are 

also provided. The proposed algorithm will be compared with Math­

ews’ algorithm [53], Ang’s algorithm [57] and Shin’s method [58] by 

simulations, to show its advantages.

5.3.1 Algorithm formulation

The update of the step size of the proposed VSSLMS algorithm can be 

formulated as follows:

g(n) =  0g(n -  1) +  (1 -  0)x(n)e(n) (5.3.1)

»(n) =  P ||l(n )||2 (5.3.2)
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where g(n) is the smoothed gradient vector, (3 is the smoothing par 

rameter which is set to be very close to unity to apply sufficient time 

smoothing, P  is a positive constant and can be chosen easily according 

to the analysis in the next subsection.

The motivation of the proposed algorithm is as follows: to develop a 

VSSLMS algorithm, the most important thing is to measure the prox­

imity of the adaptive process to the desired solution. An ideal measure 

of the adaptive process is the MSD £{||v(n)||2}. According to the for­

mulation in [58], with a statistically stationary input signal, the squared 

norm of the smoothed gradient vector, which is formulated in (5.3.1), 

can track the variation of the MSD. Thus, it is a good measure of the 

proximity of the adaptive process, and suitable to control the step size. 

As will be shown by simulations, the proposed algorithm performs well 

in both low and high noise conditions.

5.3.2 Steady-state performance analysis

An approximate steady-state performance analysis for the proposed 

VSSLMS algorithm is provided in this subsection. For convenience of 

analysis, several assumptions are utilized:

A.5.3.1. The input signal is zero-mean white statistically stationary. 

The noise signal is zero-mean statistically stationary and independent 

of the input signal.

A.5.3.2. At steady-state the excess error is much smaller as com­

pared with the noise signal, and therefore the error signal e(n) is ap­

proximately equal to the noise signal t(n).

Assumption A.5.3.1 is a general assumption for the analysis of the 

VSSLMS algorithms. Assumption A.5.3.2 is only true when the step
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size is very small. Using these assumptions gives insight into the al­

gorithm and provides a guideline for the parameter choice of the algo­

rithm.

Since the squared norm of the smoothed normalized gradient vector 

||g(n)||2 is the key term for the proposed algorithm, a steady-state 

performance analysis for this term is performed first. From (5.3.1) the 

following equation is obtained

n
g(n) =  ( l - ^ ) ^ / 3 n- ig(t) (5.3.3)

i - 1

assuming g(0) =  0 and denoting g(i) =  e(i)x(z). The expected value of 

the squared norm of the smoothed gradient vector can then be obtained

£ { | |g ( n ) H 2} =  (1 -  0 ?  £  E  <5 -3 -4 )
t=l j = l

where C(i ,j )  is defined as

C(*, j )  =  £ { /r - ‘gr (i)/r-; gO)} (5.3.5)

When n approaches infinity, the term 0 n~i in (5.3.5) approaches zero if 

i or j  is finite. So in the calculation of £7{||g(oo)||2}, the term C(i,j)  

can be ignored when i or j  is finite. The following analysis will only 

consider this term at steady-state, i.e., i and j  are both steady-state 

time indexes.

The term C ( i , j ) when i — j  is considered first. From assumption 

A.5.3.2 the error signal e(n) can be approximated as the noise signal

e(i) «  t(i) (5.3.6)
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With (5.3.6) the gradient vector g (i) can also be approximately written 

as

g(i) « t(i)x(i) (5.3.7)

Substituting this formulation into (5.3.5) yields

C(i,i) «  E{/32n~2 ixT(i)x(i)t2(i)} (5.3.8)

With assumption A.5.3.1, equation (5.3.8) becomes

C (i,i )n /3 2n- 2iL<r2 xa2  (5.3.9)

When i ^  j  similar derivation can be performed, and the following

equation can be obtained

j )  w 0 when i ^  j  (5.3.10)

Substituting (5.3.9) and (5.3.10) into (5.3.4) yields

lim £{||g(n)||2} »  (1 -  (5.3.11)
n —>oo *i=8

where s is the time index at which when i > s the system is assumed 

at steady-state. Equation (5.3.11) can be simplified as:

£{||g(°o)||2} »  (5.3.12)

Based on the steady-state formulation £{||g(oo)||2} in (5.3.12) the 

steady-state performance of the proposed algorithm can be easily ob­

tained. Taking the statistical expectation from both sides of (5.3.2) the
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following equation is obtained

E{p(n)} =  P£{||g(n)||2} (5.3.13)

Substituting (5.3.12) into (5.3.13) yields

E M oo)}  *  P (1 (1 y (5-3.14)

The steady-state EMSE of the LMS algorithm with a fixed step size 

value ulms can be formulated as [15]

oo) = t o * sL<& i 3  (5.3.15)

Note that at steady-state, /x(oo) can be approximately deemed as 

a fixed value, and the adaptation of the proposed algorithm will be 

similar to that of the fixed step size LMS algorithm. Assuming that 

at steady-state the step size of the proposed algorithm is very small, 

and fi(oo)Lo% <C 2, with equation (5.3.15) the EMSE of the proposed 

algorithm can be approximated as

Substituting (5.3.14) into (5.3.16) the steady-state EMSE for the pro­

posed VSSLMS algorithm is then obtained:

Jex,vss(oo) » -----2(1 +  0 )-----  (5.3.17)

The choice of the parameter P  is crucial for the application of 

the proposed algorithm. To choose this parameter, a desired EMSE
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Jex,vss(oo) is determined first according to the application. With 

Jexyss{oo) the parameter P  can be determined according to (5.3.17):

p  2Jexyss{oo)(l +  /?) (
P ~  (1 -  P ) L ^ X  (5'318)

Two simulations will be performed in the next subsection to support 

the analysis and show the advantages of the proposed algorithm.

5.3.3 Simulation

Two simulations are performed in this subsection to demonstrate the 

advantages of the proposed algorithm. In both simulations the pro­

posed algorithm will be compared with Mathews’ method, Ang’s method 

and Shin’s method. The implementations of all these algorithms can be 

found in Table 5.1. The system identification model is assumed in both 

simulations. The performance comparison is performed on the basis of 

the following measures: 1. The time evolution of the step size. 2. The

EMSE which is defined as £ { f 2(n)}. The results of both simulations

are obtained by 100 Monte Carlo trials.

In the first simulation, a five-point FIR filter Wop*=[0.1 0.3 0.5 0.3

0.1] is considered to be identified [53]. The input signal x(n) is a pseudo 

random, zero-mean, unit variance Gaussian process. The noise signal 

t(n) is a pseudo random, zero-mean, Gaussian process uncorrelated 

with x(n) and scaled to make the SNR 20dB. The initial step sizes and 

adaptive filter vectors of all algorithms are set to be zero. The param­

eter p for Mathews’ method [53] is set to 5 x 10-4. The smoothing 

parameter (3 for Ang’s method [57], Shin’s method [58] and the pro­

posed method is set to 0.99. The parameter 7 for Ang’s method is
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Figure 5.1. Monte Carlo averaged simulation results of the step size 
and EMSE for different algorithms when SNR=20dB

set to 2  x 10-4 . For Shin’s method, the param eter c is set to and 

the param eter fjLmax is set to 0.52. The param eter P  for the proposed 

algorithm is empirically set to 5, and produces a steady-state EMSE as 

predicted by (5.3.17). The evolutions of the step sizes and the EMSE 

curves are shown in Fig. 5.1.

The theoretical values of the step size and the EMSE of the proposed 

algorithm according to (5.3.14) and (5.3.17) are also plotted. From Fig. 

5.1 it is clear to see tha t both Shin’s method and the proposed method 

perform better than the other two algorithms in this case. The step sizes 

of both M athews’ method and Ang’s method converge slowly, which re­

sults in a slow convergence rate of the system. Although Shin’s method

2According to the guideline in [58], U m ax  should be set to 1. However, it has 
been observed from simulations that the value 0.5 is much better than 1, thus 0.5 
is chosen in both simulations.

The evolution curves of the step size
 1------- 1------- 1------- 1------- 1------- 1------- r

j|
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Figure 5.2. Monte Carlo averaged simulation results of the step size 
and EMSE for different algorithms when SNR=0dB

is derived from the theoretically optimal step size VSSLMS algorithm, 

the approximation used in the derivation influences its performance. 

As can be seen in Fig. 5.1, the proposed algorithm has a similar con­

vergence rate  as compared with Shin’s method, but the steady-state

EMSE is smaller. The theoretical value of the proposed algorithm is 

very close to  the simulation results, which confirms the analysis in the 

previous subsection.

The set up of the second simulation is similar to the first simula­

tion except the noise signal is scaled to make the SNR OdB. In this 

simulation, the param eter p for Mathews’ method is set to 1 x 10-4 . 

The smoothing param eter (3 for Ang’s method, Shin’s method and the 

proposed algorithm is set to  0.99. The parameter 7  for Ang’s method

1--------------------1------------------- 1--------------------1------------------- 1------------------- 1------------------- 1-------------------1------------------- T

Cm. •'
...... ......

The evolution curves of the step size
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2
is set to 2 x 10~6. For Shin’s method, the parameter c is set to and 

the parameter £Wx is set to 0.5. The parameter P  for the proposed 

algorithm is also empirically set to 0.05, and produces a steady-state 

EMSE as predicted by (5.3.17). The evolutions of the step sizes and 

the EMSE curves are shown in Fig. 5.2. The theoretical values are 

also plotted. Similar results are obtained, showing that the proposed 

algorithm performs better than all the other algorithms.

Both simulations support the analysis and show the advantages of 

the proposed algorithm. Since the theoretical values are very close to 

the simulation results, the conclusion can be made that the steady-state 

EMSE is related to the parameter P  as in (5.3.18). Under either low or 

high noise condition, the proposed algorithm has a good performance.

Note that according to the simulations not included in this thesis, 

although the performance of Shin’s algorithm can be improved slightly 

by different parameter settings of c and Umax, it is very difficult to 

find out the optimal parameter set. From the perspective of both good 

performance and easy implementation, the proposed algorithm is pre­

ferred.

All the algorithms discussed above are based on the assumption that 

the noise signal is statistically stationary. A new VSSLMS algorithm 

with robustness to statistically nonstationary noise will be introduced 

in the next section. ,
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5.4 A new VSSLMS algorithm with robustness to statistically 

nonstationary noise

In this section a new VSSLMS algorithm is proposed which is designed 

to be robust to high level, e.g., SNR= OdB or worse statistically nonsta­

tionary noise interference. The step size of the proposed VSSLMS algo­

rithm is controlled by the normalized square Euclidean norm of the av­

eraged gradient vector, and is henceforth referred to as the NSVSSLMS 

algorithm.

5.4.1 Algorithm formulation

The NSVSSLMS algorithm is motivated by the sum method which is 

proposed in [48]. This sum method is designed to be suitable for sta­

tistically nonstationary input and noise signals and can be formulated 

as follows:

< 5 a 1 >

where /L̂ um is the step size for this sum method, <7g(n) and &l(n) are 

time-varying estimations of the output error signal variance and the 

input signal variance respectively [48]. As explained in [48], the step 

size in (5.4.1) is adjusted by the input and output error variance au­

tomatically, which reduces the influence brought by the fluctuation of 

the input and the noise signals. However, it is based on a constant 

convergence rate. Similar to the case of the LMS algorithm, a variable 

step-size algorithm is also necessary to obtain both a fast convergence 

rate and a small steady-state MSE.

According to the properties of the sum method and the VSSLMS al­

gorithm proposed in the previous section, a new NSVSSLMS algorithm
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is designed for applications in which the noise level is high and statis­

tically nonstationary. The update of the step size of this NSVSSLMS 

algorithm can be formulated as follows:

„ r,d p llg(n)tl» (5 4 O)m vss(n ) W aj(n )+  **(„)]}*

where MnsvssM is the time-varying step size, g(n) is the smoothed 

gradient vector, as can be seen in (5.3.1), and P  is a positive constant 

which can be easily chosen according to the analysis in the next sub­

section.

This algorithm is motivated as follows: as shown in the previous 

section the squared norm of the smoothed gradient vector which is 

formulated in (5.3.1) is suitable to control the step size. The term 

L[<jg(n) +  d*(n)] in (5.4.2) is motivated by the sum method formulated 

in (5.4.1). The square of this term, as a novel normalization for the 

step size, is designed to make the steady-state EMSE of the proposed 

algorithm robust to the noise signal, according to the analysis in the 

next subsection. This algorithm can be deemed as a variable step-size 

version of the sum method.

It will be shown in the simulations that as compared with the sum 

method, the proposed algorithm has both a fast convergence rate and 

robustness to high level statistically nonstationary noise signal. Fur­

thermore, the parameter P  in the proposed algorithm can be easily 

determined according to the following steady-state performance analy­

sis.
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5.4.2 Steady-state performance analysis

For convenience of analysis, the same assumptions as in the previous 

section are made. The assumption that the noise is statistically sta­

tionary is justified as many signals such as speech can be assumed 

statistically stationary over a certain interval.

In the analysis in the previous section, the steady-state value of the 

squared norm of the smoothed gradient vector ||g(n)||2 is formulated in 

(5.3.12). Furthermore, since the term {L[&l(n) +  df (n)]}2 changes very 

slowly with statistically stationary input and noise signals, it is assumed 

to be a constant during the iteration. Taking statistical expectation on 

both sides of (5.4.2) and utilizing (5.3.12) the steady-state value of the 

step size is obtained

Similar to the analysis in the previous section, the step size of the 

NSVSSLMS algorithm is assumed to be very small at steady-state, and 

Mnsvss(oo)L(t% 2, the EMSE of the proposed algorithm can then be

formulated as

Substituting (5.4.3) into (5.4.4) the steady-state EMSE for the proposed 

NSVSSLMS algorithm can be obtained:

E { v >n s v s s ( o o ) }  ~ (1 + P){L[ol{n) +  ff?(n)]}2' (5.4.3)

■^{Mnsvss (oo) }Lcrl<Tt*4x,nsvss(oo)

*/ex,NSVSs(00)
P ( 1 -P )L 2 ct*xcj1

(5.4.5)2(1 + (3){L[&l(n) +  a?(n)]}2‘
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Since of (n) «  of, the following equation is obtained from (5.4.5)

^lini^ Jex^rsvss(oo) «  (5A6)

It can be clearly seen from (5.4.6) that the EMSE obtained by the 

proposed algorithm will be independent of the noise signal t(n) when 

the variance of the noise signal is very large. Although the analysis is 

based on the assumption that the noise signal is statistically stationary, 

an approximate indication of its general performance is also obtained. 

For some statistically nonstationary noise signals, such as speech, they 

can be deemed as approximately short-term statistically stationary over 

some short intervals. When the variance of some intervals of the noise 

signal is much higher than the input signal at steady-state, the EMSE 

will be independent of the variance of the noise signal; thus, the pro­

posed algorithm is robust for applications with high level statistically 

nonstationary noise signals.

The choice of the parameter P  is very important for the application 

of the NSVSSLMS algorithm. Note that (5.4.6) also gives an upper 

bound of the steady-state EMSE of the proposed algorithm with the 

variation of the noise variance. To choose this parameter, an upper 

bound value of Jex,NSVss is determined according to the application. 

With this value and the variance of the input signal, P  can be deter­

mined directly according to (5.4.6):

D «4x,NSVSS, m a x 2 ( l  +  / ? )  ,

p  =    <5-4 '7)

where Jex.NSvss, max is the upper bound value of the EMSE.

If the maximum short-interval variance of the statistically nonsta-



Section 5.4. A new VSSLMS algorithm with robustness to statistically nonstationary noise 1 0 4

tionary noise signal can be obtained, a more accurate criterion for the

practice, since the noise variance is not infinite, the parameter P  can 

be a little larger than the value obtained from (5.4.7).

In the next subsection, all the above analysis and discussion will be 

supported by simulations in the context of a statistically nonstationary 

noise signal.

5.4.3 Simulation

In this subsection the performance of the sum method and the proposed 

algorithm is compared. The input signal x{n) is a pseudo-random, zero- 

mean unit-variance Gaussian signal with a length of 100,000 samples. 

The noise signal t(n) is the first 100,000 samples of a speech signal 

which is available from

http:/ /www.voiptroubleshooter.com/openjspeech/american.html, and 

the file name is “OSR-us_000_0016_8k.wav”. This noise signal is scaled 

to make the average SNR OdB over the entire observation. The noise 

signal and one representation of the input signal can be seen in Fig.

choice of P  similar to (5.4.7) can be obtained according to (5.4.5). In

5.3.

The primary signal d(n) is obtained as follows:

d(n) =  x(n) * h(n) +  t(n) (5.4.8)

where h(n) is the causal optimal filter obtained by

h(n) =  i
e 0 05(n 1)r(n), n = l,...,100

(5.4.9)
0 otherwise

\

http://www.voiptroubleshooter.com/openjspeech/american.html


Section 5.4. A new VSSLM S algorithm with robustness to  statistically nonstationary noise 105

(a) The noise signal
1 0 i-------------------------1-------------------------1-------------------------1------------------------ r

,i------------------- 1------------------- 1-------------------1-------------------1-------------------
0 2 4 6 8 10

Sample number 
(b) One representation of the input signal

Sample number x

Figure 5.3. The noise signal (a) and one representation of the input 
signal (b).

where r(n ) is drawn from a zero mean unit variance Gaussian sequence. 

One representation of the nonzero terms of h(n) can be seen in Fig. 

5.4(a).

In this simulation the proposed algorithm will be compared with the 

sum method with different step sizes 0.1 and 0.02. The initial step sizes 

and adaptive filter vectors of the proposed algorithm are set to zero. 

The param eter (3 for the proposed algorithm is set to 0.999 to perform 

a sufficient smoothing operation. The parameter P  in the proposed 

algorithm is empirically set to 80, and produces a steady-state EMSE 

as predicted by (5.4.6). The param eter sets for the proposed algorithm 

are chosen to make its initial convergence rate approximately equal to 

tha t of the sum method with a step size 0.1. The estimates <r2 (n) 

and d 2 (n) used in the sum algorithm and the proposed algorithm are 

obtained by smoothing the input and error signals as

° e ( n ) =  0.99dg(n -  1) +  (1 -  0.99)e2(n) (5.4.10)
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(a) One representation of the optimal filter h(n)

0.2

1

-0.4

1000 40) so e
Sample number

60 70 80 9010 20 30

(b) The evolution curves of EMSE
20 

10 

0 
-1 0  

w -20 

-30 

-40
0 1 2 3 4 5 6 7 8 9  10

Sample number x , 0«

Figure 5.4. One representation of the optimal filter (a) and the Monte 
Carlo averaged evolution curves of the EMSE for the sum method and 
the proposed NSVSSLMS algorithms (b).

and

&l(n) =  0 .9 9 .7  l ( n  -  1) +  (1 -  0.99)x (5.4.11)

The initial values of o f (n) and df(n) are set to zero and unity re- 

spectively. The evolutions of the EMSE curves for all the experiments 

are shown in Fig. 5.4(b). The results are obtained over 200 Monte 

Carlo trials of the same experiment.

It is clear to see in Fig. 5.4(b) tha t the proposed algorithm has an 

EMSE convergence rate similar to  tha t of the sum method with a pa­

rameter 0.1 at the early s ta te  of the process. The EMSE of both meth­

ods converges to —20dB at approximately 3,000 samples. However, the 

EMSE of the sum method with param eter 0.1 fluctuates greatly with 

the variation of the noise signal energy. The performance of the sum 

method with param eter 0.02 has a small EMSE and slight fluctuation 

of the EMSE, but the convergence rate is very slow. The proposed al­

Greenburg's. 0.1 
Green burg's 0 02 

■ Proposed
- Theoretical Upper bound
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gorithm has a fast convergence rate which is similar to the sum method 

with parameter 0.1, and a small EMSE which is close to that of the 

sum method with parameter 0.02. Therefore, the proposed NSVSSLMS 

algorithm performs better than the sum method in this simulation.

The theoretical upper bound of the EMSE of the proposed algorithm 

according to (5.4.6) is also shown in Fig. 5.4(b). It can be seen that 

over the interval 15,000 to 20,000, where the variance of the noise 

signal is high, the EMSE of the simulation results is very close to this 

theoretical upper bound. Thus (5.4.6) can give a good upper bound of 

the steady-state EMSE for the proposed algorithm, and the conclusion 

can be made that with a given upper bound of the steady-state EMSE, 

the parameter P  can be properly chosen according to (5.4.7).

Note that all the analysis and simulations are based on a white 

input signal. When the input signal is correlated, the analysis results 

obtained from (5.4.3) and (5.4.5) are both incorrect, and smaller than 

the practical results. In this case, the parameter P  should be chosen 

smaller than the value obtained from (5.4.6). Finally, if both input 

and noise signals are statistically nonstationary signals, the smoothed 

gradient vector can not measure the proximity of the adaptive process, 

and the proposed algorithm has no advantage as compared with the 

sum method.

Although the proposed algorithm is only compared with the sum 

method in this section, many experiments which are not included in this 

section have been performed, and it has been shown that all the other 

existing VSSLMS algorithms perform poorly with such a nonstationary 

noise signal, since their EMSE is proportional to the noise variance.
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5.5 Conclusion '

In this chapter, an overview of typical existing VSSLMS algorithms 

and an introduction for a theoretically optimal VSSLMS algorithm has 

been given. Two new VSSLMS algorithms have also been proposed, 

which are designed for high level noise conditions. Simulations show 

that these algorithms can obtain both a fast convergence rate and a 

small EMSE with robustness to statistically stationary or nonstation­

ary noise signals, and perform better as compared with other existing 

VSSLMS algorithms. Both methods may be potentially used in many 

applications of adaptive filtering.



Chapter 6
i

VARIABLE TAP-LENGTH 

LMS ALGORITHMS

f The least mean square (LMS) algorithm has been widely used in many 

applications. A detailed introduction of the LMS algorithm is given 

in Chapter 3. Variable step-size LMS (VSSLMS) algorithms are dis­

cussed in Chapter 5. In this chapter, the topic of variable tap-length 

LMS (VTLMS) algorithms will be investigated. This topic is motivated 

by the assumption of a fixed tap-length, as in many applications of the 

LMS algorithm, potentially leading to degraded performance. In cer­

tain situations, for example, the tap-length of the optimal filter can be 

unknown or possibly variable. According to the analysis in [1] and [59], 

the mean square error (MSE) of the adaptive filter is likely to increase 

if the tap-length is undermodelled. To avoid such a situation, a suf­

ficiently large filter tap-length is needed. However, the computational 

cost and the misadjustment noise are proportional to the tap-length, 

thus variable tap-length LMS algorithms are needed to find a proper 

choice of the tap-length.

Several variable tap-length LMS algorithms have been proposed in 

recent years. Among existing variable tap-length LMS algorithms, some 

are designed to not only establish a suitable steady-state tap-length,

109
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but also to speed up the convergence rate [1]. Other methods are more 

general and are designed to search for the optimal filter tap-length 

at steady-state [60] [61] [62] [63]; a summary of these works is given 

in [12]. As analyzed in [12], the fractional tap-length (FT) algorithm is 

more robust and has lower computational complexity when compared 

with other methods. Since the methods in both [60] and [61] can be 

deemed as special cases of the method proposed in [12], the work on 

VTLMS algorithms in this chapter will mainly focus on the analysis 

and improvement of the FT algorithm. A new VTLMS algorithm to 

model an exponential decay impulse response is also provided in this 

chapter.

The organization of this chapter is as follows: an introduction of 

the FT algorithm is given in Section 6.1. The steady-state perfor­

mance analysis of the FT algorithm and the guideline for the param­

eters choice are provided in Section 6.2. To improve the performance 

of the FT algorithm in high noise conditions, a convex combination 

structure is utilized in Section 6.3. In Section 6.4, a practical opti­

mal variable tap-length LMS algorithm is proposed, which is designed 

for the applications where the optimal filter has an exponential decay 

impulse response. Section 6.5 concludes this chapter.

6.1 The FT VTLMS algorithm

The FT VTLMS algorithm is designed to find the optimal filter tap- 

length. In agreement with most approaches used to derive algorithms 

for adaptive filtering, the design problem is related to the optimiza­

tion of a certain criterion that is dependent on the tap-length. For 

convenience, the LMS algorithm is formulated within a system identi­
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fication framework, in which the unknown filter C£opt has an' unknown 

tap-length which is to be identified. In this model, the desired 

signal d(n) is represented as

d(n) =  x j ^ n )  + t>(n) (6.1.1)

where (n) is the input vector with a tap length of Lppt> v(n) is a 

zero mean additive noise term uncorrelated with the input, n denotes 

the discrete time index, and (*)T denotes the transpose operation. In 

the work in this chapter all quantities are assumed to be real valued.

For convenience of description the tap-length of the adaptive filter 

is assumed to be a fixed value at steady-state and denoted by L\ wl 

and xz,(n) are respectively the corresponding steady-state adaptive fil­

ter vector and input vector. Also, the segmented steady-state error is 

defined as [12]

e M}(n ) =  d (n ) -  WI,l:M XL ,l:M (n), 8S n OO (6.1.2)

where 1 < M  < L, and x l,i;m(7i) are respectively vectors con­

sisting of the first M  coefficients of the steady-state filter vector wL and 

the input vector x/,(n). The mean square of this segmented steady-state 

error is defined as =  E {(e^ \n ))2}. The underlying basis of the 

FT method is to find the minimum value of L satisfying [12]:

d -A  -  ' < * (6.1.3)

where A is a positive integer less than L (the guideline for the selection 

of this parameter is given in Section 6.2.2), and e is a small positive
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value determined by the system requirements. The minimum L that 

satisfies (6.1.3) is then chosen as the optimum tap-length. A detailed 

description of this criterion and another similar criterion can be found 

in [12].

Gradient-based methods can be used to estimate L on the basis of 

(6.1.3). However, the tap-length that should be used in the adaptive 

filter structure must be an integer, and this constrains the adaptation 

of the tap length. Different approaches have been applied to solve this 

problem [60] [61] [62] [63] [12]. In [12], the concept of “pseudo fractional 

tap-length”, denoted by Z/(n), is utilized to make instantaneous tap- 

length adaptation possible. The update of the fractional tap-length is 

as follows:

l/(n  +  1) =  (lf (n) -  a) -  7 [ ( e $ , f )2 -  (egg!!*)*] (6.1.4)

where 7 is the step size for the tap-length adaptation, and a is a pos­

itive leakage parameter [12]. As explained in [12], Z/(n) is no longer 

constrained to be an integer, and the tap-length L(n +  1), which will 

be used in the adaptation of the filter weights in the next iteration, is 

obtained from the fractional tap-length l/(n) as follows:

L(n +  1) = <
[lf (n)J if |L(n) -  lf (n)\ > 6

(6.1.5)
L(n) otherwise

where [.J is the floor operator, which rounds down the embraced value 

to the nearest integer and S is a small integer.

Next a steady-state performance analysis based on the above for­

mulation will be given.
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6.2 Steady-state performance of the FT algorithm

In the FT algorithm, the filter coefficients are updated as

w L(„)(n +  1) =  w t(n)(n) +  /Je „̂"))(n)xL(„)(n) (6.2.1)

where w£,(n) and X£,(n) are respectively the L(n)-tap adaptive filter vec­

tor and the input vector, (i is the positive step size for the update of 

the coefficients.

For convenience of analysis, a vector is used to denote the un­

known filter, where N  is an integer larger than both the optimal tap- 

length Lopt and the maximum value of the variable tap-length sequence 

L(n), and cyv is obtained by padding c ôp4 with zeros. This unknown 

filter vector Cn can be split into three parts:

where c' is the part modelled by w'(rc), w'(n) =  W£(n)>1:£,(n)_A(n), c" is 

the part modelled by w"(n), w"(n) =  wL(n))L(n)_A+1:L(n)(n) and cw is 

the under-modelled part. The total coefficient error vector is denoted 

as gN(n)

where Wjv(n) is obtained by padding wjr,(n)(n) with zeros. Therefore,

gN(n) =  cN -  w N(n) (6 .2.2)
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gAr(n) can be similarly split as

g '(n )  ^

g »

g"'(")

The mean square deviation (MSD) between the optimal filter vector 

and the adaptive filter vector is given by ^{IlgAfWII^}? where ||-H2 

denotes the squared Euclidean distance.

For convenience of description, the input vector Xjy(n) is split sim­

ilarly to that of cw(n) and gAr(n). With the above notation and sub­

stituting (6.1.1) and (6.2.2) into (6.1.2), and padding all the vectors in 

(6.1.1) and (6.1.2) with zeros to make their lengths equal to N  yields

a(£(n))
'L(n) (n)

t x»(n) ^
T

 ̂ g'(") ^

x " (n ) g » + v(n) (6.2.3)

x"'(n) , gjm
\  C J

and
(  .. , \  T x'(n)

,<£(»))
'L (n )-A"a(») x"(n)

x"'(n) /

g'(n) ^

+  v(n) (6.2.4)

/

The term (e^ ”^)2 — (e ^ ”^A)2, which is the key term in the fractional 

tap-length update equation (6.1.4), can then be written as

(eLti"”)2 -  (eiU"-^)2 =  IM") + 2x'T(n)g'(n) +  x^(n)g"(n) 

+x"r (n)c" +  2x"'T(n)c",][x"r (n)g"(n) -  x"T(n)c"]

(6.2.5)
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This term can be expanded as

7/

A BB

+  2x/T(n)g'(n)x/,r(n)g/,(n) -  2x/r(n)g'(n)x"T(n)c"
c D

+  [x//T(n)g"(n)]2 -  [x'^M c"]2
E F

+  2x/"T(n)c///x,/T(n)g,/(n) — 2x///T(n)c'"x,/T(n)c'
G HH

(6 .2 .6)

Substituting (6.2.6) into (6.1.4) the steady-state fractional tap-length 

update equation can be rewritten as:

Z^n +  1) =  lf { n ) - { a  +  7 ( A - B  +  C - D  +  E - F  +  G - H ) )  (6.2.7) 

where terms A, B , (7, D, E,  F , G and H are denoted in (6.2.6).

Next a steady-state performance analysis will be given based on this 

update equation.

6.2.1 Steady-state performance analysis

Before the steady-state analysis, the assumption is made that the sys-

tend to constants as n —* oo. To simplify the -analysis several further 

assumptions are also made:

A.I. At steady-state, the tap-length will converge, or can be ap­

proximately deemed to have converged to a fixed value L(oo). As will 

be shown by the simulations, if all the parameters are set properly, the 

tap-length will slightly fluctuate around a fixed value. Also the steady-

tem has arrived at steady-state if the quantities E { (e ^ f f )2} and E{lf(n)}
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state tap-length is assumed to be larger than the optimal tap-length

L(oo) > Lopt- The justification for this assumption is that in most sim­

ulations, if the parameter 7  is not chosen too small, the steady-state 

tap-length L(oo) will be always larger than Lop*. This overestimate 

phenomenon is also justified and discussed in [12], and can be seen in 

the simulations in the next subsection.

A.2. Both the input signal x(n) and the noise signal v(n) are statis­

tically independent identically distributed (i.i.d) zero mean Gaussian 

white signals with variances a\ and respectively.

A.3. The tail elements of the unknown optimal filter vector C£,opt 

can be deemed to be drawn from a random white sequence with zero 

mean and variance a\. This assumption is used to simplify the analysis. 

Note that even for a filter with a decaying impulse response structure, 

the tail elements can be approximately deemed as to have the same 

variance if the tap-length is long enough, thus this assumption matches 

the observations in many applications.

A.4 . At steady-state, the vectors g'(n) and g"(n), which are due to 

the adaptive noise, are independent of x^(n). The justification of this 

assumption is that the updates of g'(n) and g"(n) only depend on the 

past input vectors, and with assumption A.2, X//(n) is independent of 

*nU) if j  ^  n, thus g'(n) and g"(n) are independent of x//(n) [64]. 

Also, in order to simplify the analysis, the following assumption is made 

that at steady-state

(6 .2.8)

where I is the identity matrix and a* is the variance of the elements of
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g'(n) and g"(n).

Also the tap-length is constrained to be not less than a lower floor 

value Lmin, where Lmin >  A, during its evolution, i.e., if the tap-length 

fluctuates under Lm*n, it will be set to Lm,n. This operation is necessary 

since L{n) — A is used as a tap length in the FT algorithm, as can be 

seen in (6.1.4), and it should be positive.

Taking expectation of both sides of (6.2.7) yields

E { ( A - B  +  C - D  +  E - F  +  G - H ) }  =  ~  (6.2.9)

Using assumptions A. l  and A.3 the following equations are obtained

c'" =  0 (6.2.10)

and

{Lopt +  A — L(oo))(Tc if Li opt < L(oo) < Lopt +  A

0 if L(oo) > Lopt +  A
(6 .2 .11)

With equation (6.2.10) it is straightforward to see that the terms G and 

H in equation (6.2.9) will disappear at steady-state. Using assumptions 

A.l, A.2, A.3 and A.4, the expectations of terms A, B, C and D will

be zero at steady-state, and equation (6.2.9) can be written as

E { ( A - B  + C - D  + E - F ) }  =  <7l(E{\\^(n)\\l} -  ||c"||i)

(6.2.12)

It is straightforward to see that if L(oo) > Lopt+ A  it will imply that 

equations (6.2.9) and (6.2.12) contradict each other, i.e., together with
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(6.2.11) the r.h.s. of (6.2.12) will be larger than zero if L(oo) *> Lopt+A, 

but the r.h.s. of (6.2.9) is a negative value. Therefore the conclusion can 

be made that L(oo) < Lopt +  A, so that by also exploiting assumption 

A.l, the condition that Lopt < L{oo) < Lopt +  A will always be used in 

the following derivations.

In a manner similar to [1], in order to speed up the convergence 

rate of the FT variable tap-length LMS algorithm, the step size is made 

variable rather than fixed, according to the range of \i described in [1]:

H(n) =  / / / ((L(n)  +  2)al) (6.2.13)

where /if is a constant. With this variable step size the term ^dlg^MHi} 

can be derived as in (6.6.9) in Appendix A. Substituting (6.2.11) and 

(6.6.9) into (6.2.12) yields

E { A - B + C - D + E - F } «  o* [ - ( L +  +  A -  L(oo))al

(6.2.14)

Utilizing (6.2.9) in (6.2.14) yields

a  A / i ' <
-  {Lopt +  A -  L{oo))al (6.2.15)

7a 2x (2 -  fj!)Loptol 

From equation (6.2.15) the following equation can be obtained

L(oo) «. +  A -  -  y  (6.2.16)
^  la la*  (2 -  ^Loptcrle*

This equation gives a mathematical formulation of the steady-state 

tap-length. Since the steady-state tap-length value given in (6.2.16) will 

seldom be an integer, in practice the steady-state tap-length will flue-
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tuate around this value. This can be clearly seen in later simulations. 

The steady-state mean square error (MSE) can then be easily obtained 

with the steady-state tap-length given in (6.2.16) by using the analysis 

results provided in [1]. In practice, the last two terms of the r.h.s. of 

equation (6.2.16) will be small, and the steady-state tap-length will be 

close to the value -I- A, as will be shown in the later simulations.

To avoid the under-modelling situation, the parameters should be 

chosen to make L(oo) > Lopt, and obtain a small fluctuation of the 

steady-state tap-length. Next some guidelines for the parameter choice 

will be given.

6.2.2 Guidelines for the parameter choice

In this section some general guidelines for parameter choice are pro­

vided. To choose the parameters properly, estimations of the optimal 

tap-length, the input variance, the noise variance, and the desired sys­

tem MSE are needed. The availability of these estimations will be 

application dependent and therefore outside of the scope of this study. 

With these estimated values, the parameters used in the FT algorithm 

can be determined as follows:

1. The parameter S in (6.1.5) is not a crucial parameter, since it is 

just used to obtain an integer value of the tap-length for the coefficients 

adaptation, and can be easily set to a small integer.

2. The choice of the parameter yl can be determined according 

to the system MSE requirement. Similar to the step size choice of 

the LMS algorithm, / /  can be a large value in low noise conditions to 

obtain faster convergence of the MSE, and should be small in high noise 

conditions to avoid a large MSE.
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3. The parameter A should be as large as possible to*' obtain a 

fast convergence rate of the tap-length, but also much smaller than 

the estimate of so that the steady-state tap-length formulated 

in (6.2.16) will not be significantly biased from Lopt. For example, 

A «  O.lLopt will be a good choice for a wide range of optimal tap- 

lengths.

4. The leakage parameter a  should not be too large, so that it will 

not influence the initial tap-length convergence rate too much. The 

parameter a  should not be too small either, so that once the tap- 

length is over estimated, a  can make the tap-length converge close to 

the steady-state value as soon as possible. For example, a =  0.0001 

is not a good choice, since it means that after 10,000 iterations, the 

leakage parameter a  will reduce the tap-length by one tap, which is 

usually too slow. Generally, values between 0.001 and 0.01 are good 

choices for a.

5. The parameter 7 is the step size parameter which controls the 

adaptation process of the variable tap-length. Similar to the step size in 

the LMS algorithm, a large parameter 7  will speed up the convergence 

rate of the tap-length, but will result in a large fluctuation of the steady- 

state tap-length. On the other hand, a small parameter 7 can obtain 

a small fluctuation of the steady-state tap-length, but lead to a slow 

convergence rate. Thus 7 provides a trade-off between the convergence 

rate of the tap-length and the steady-state tap-length variance. The 

choice of this parameter is important in the FT algorithm. A detailed 

discussion for the choice of this parameter is as follows:

At first, to avoid under-modelling the optimal tap-length, the steady- 

state tap-length of the FT method, L(00), should not be less than L ^.
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Considering the fluctuation of the steady-state tap-length, the param­

eter 7  should be set properly so that L(oo) > L^t +  where k is 

a small positive integer and can be chosen according to the system 

requirement of the fluctuation of the steady-state tap-length. For ex­

ample, k — 2 is a reasonable choice. Substituting (6.2.16) into the 

inequality L(oo) > Lopt +  K<$ the lower bound value 7* is obtained:

7i = -----------------------------------  aT-5— (6.2.17)(A

Secondly, the parameter 7  should not be too large to avoid a large 

fluctuation of the steady-state tap-length. The update process for the 

steady-state fractional tap-length is formulated in (6.2.7). The fluctu­

ation of the steady-state fractional tap-length is brought about by the 

fluctuation of the term a  -I- j (A  — B +  C — D +  E — F +  G — H). 

It is straightforward to see in (6.2.7) that large variance of the term 

a  +  j (A  — B +  C — D +  E — F +  G — H ), which is denoted as rf, will 

result in large fluctuations of the steady-state fractional tap-length. To 

avoid such a situation, a simple and intuitive approach is to make the 

standard deviation af much smaller than the parameter 5 in equation

(6.1.5), so that the probability of the steady-state fractional tap-length 

fluctuating outside the range (L(oo) — 5, L(00) -I- 5) can be very small. 

A simple criterion to satisfy such a requirement is

<Tf < p S  (6.2.18)

where p is a small positive value and can be decided according to the 

system requirement of the fluctuation of the steady-state tap-length. 

The derivation of the variance aj is given in (6.7.18) in Appendix B.
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Using (6.7.18) in (6.2.18) and after rearrangement the uppier bound 

value 7U is obtained:

where K 2 and K$ are respectively formulated in Appendix B (6.7.20) 

and (6.7.21).

The parameter p should be chosen so that the possibility of the 

tap-length fluctuating under is nearly zero. In general, , for high 

noise condition, this parameter should be chosen small, and for low 

noise condition it can be chosen larger. Examples for the choice of 

p can be seen in the simulations in the next subsection. With the 

lower bound value given in (6.2.17) and the upper bound value given 

in (6.2.19), the parameter 7  can then he easily chosen. According to 

the motivation of the upper bound value 7„, the values close to this 

value are good choices to avoid a large fluctuation of the steady-state 

tap-length while retaining as quick as possible convergence rate; thus, 

in practice 7 should be chosen close to and larger than 7j.

Since in practice, all the parameters o\, o2, a2, especially the pa­

rameter Lopt are unknown, approximate estimations of these parame­

ters can be used in the calculations. Next several simulations will be 

performed to confirm the above analysis and discussions.

6.2.3 Simulation

In this subsection two simulations are performed to support the analysis 

and discussions in the previous subsection. In the first simulation a low 

noise condition is used while a high noise environment is utilized in the

(6.2.19)
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second simulation.

Low noise case: SNR =  20dB

The setup of this simulation is as follows. The impulse response se­

quence of the unknown filter is a white Gaussian sequence with zero 

mean and variance 0.01. The tap-length L ^ t  is set to  200. The input 

signal is another white Gaussian sequence with zero mean and unit vari­
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ance. The noise signal is a zero mean uncorrelated random Gaussian 

sequence and scaled to make the SNR 20dB. According to the param­

eter choice guidelines in Section 6.2.2, the parameter 6 is set as 2. The 

step size p! is set to 0.5. The leakage parameter a is set to 0.005, and 

A is set to 20.

By setting the parameter k =  2 and using the above parameter 

settings in equation (6.2.17) the lower bound value is obtained as 7/ =

0.0314. Similarly, the upper bound value is obtained as — 17.954 by 

using p =  0.5 in (6.2.19). To compare the performance with different 

values of 7 , 7 =  0. l7u, 7  =  7« and 7 =  107„ are respectively used in 

the simulation. Note that all these sets of 7 are larger than the lower 

bound value 7/. The evolution curves of the tap-length with different 

parameter 7  values are shown in Fig. 6.1. The evolution curves of the 

EMSE with different parameter 7  values are shown in Fig. 6.2.

It is clear to see in Fig. 6.1 that 7 =  7tt provides a good trade off 

between the convergence rate of the tap-length and the steady-state 

tap-length variance. The algorithm with a parameter 7 = 0. l7u gives a 

very smooth curve for the steady-state tap-length, but the convergence 

rate of both the tap-length and the EMSE is very slow. The algorithm 

with a parameter 7 =  107u provides a quick convergence rate, but the 

tap-length fluctuates greatly. When the tap-length is under-modelled,

1.e., L(n) < , the EMSE will increase, as can be seen in Fig. 6.2.

Substituting all the parameter sets into (6.2.16) the theoretical val­

ues of the steady-state tap-length are obtained L(oo|7 =  0. l7u) =  

219.65, L (oo|7  = 7*) =  219.90 and L(oo|7  =  107*) =  219.93, which 

are all close to It can be seen from Fig. 6.1 that for the param­

eter sets 7 =  7u and 7 =  0. l7„ the simulation results of the steady-state
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tap-length match the theoretical values very well: the steady-state tap- 

length fluctuates around the theoretical value L (oo), which confirms 

(6 .2 .16).

High noise case: SNR =  OdB

In this simulation a high noise environment is used. The setup for this 

simulation is as follows. The unknown filter is the same as th a t in the
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previous simulation, which is a filter with an impulse response sequence 

drawn from a white Gaussian sequence with zero mean and a variance 

of 0.01, and a tap-length of 200. The input signal is another white 

Gaussian sequence with zero mean and unit variance. The noise signal 

is a zero mean uncorrelated random Gaussian sequence, and scaled to 

make the SNE OdB. According to the parameter choice guidelines in 

Section 6.2.2, the parameter 6 is set as 2. The step size p! is set as 0.05 

to obtain a small EMSE. The leakage parameter a  is set to 0.005. A 

is set to 20.

Similar to the first simulation, by setting the parameter k =  2, and 

using the above parameter settings in equation (6.2.17) the lower bound 

value is obtained as 7/ =  0.0323. Similarly, the upper bound value is 

obtained as 7U =  1.0255 by using p =  0.2 in (6.2.19). To compare the 

performance with different values of 7 , 7  =  0. l7„, 7  =  7u and 7 =  107u 

are respectively used in the simulation. The evolution curves of the 

tap-length with different parameter 7  values are shown in Fig. 6.3. 

The evolution curves of the EMSE with different parameter 7 values 

are shown in Fig. 6.4.

Again from Fig. 6.3 it is clear to see that 7 =  7U provides a good 

trade off between the convergence rate of the tap-length and the steady- 

state tap-length variance. The convergence rate of both the tap-length 

and EMSE with parameter 7  =  0. l7u is too slow for the algorithm. The 

algorithm with parameter 7 =  107u provides a quick convergence rate 

of the tap-length, but the fluctuation of the steady-state tap-length 

is very large. Once the tap-length fluctuates under EMSE will 

increase, as can be seen in Fig. 6.4.

Substituting all the parameter sets into (6.2.16) the theoretical val­
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ues of the steady-state tap-length are obtained as L(oo|7 =± 0. l7u) =  

214.6, L ( oo |7  = 7„) =  219.0 and L(oo|7 =  107u) =  219.4, which are 

all close to Lppt +  A. For 7 =  7« the simulation results of the steady- 

state tap-length match the theoretical values very well, which confirms 

equation (6.2.16).

To obtain both a fast convergence rate and a small steady-state 

EMSE for high noise condition, the convex combination approach can 

be considered, in which two filters are updated simultaneously with 

different parameters 7  =  107u and 7 =  7U, so that the overall filter can 

obtain both a rapid convergence rate from the fast filter and a smooth 

curve for the steady-state tap-length from the slow filter. This convex 

combination approach will be described in the next section.

6.3 Convex combination approach for the FT algorithm

Although the FT method is more robust and has lower computational 

complexity compared with other methods [12], its performance can de­

pend on the parameter choice, particularly when the noise level is high. 

In a high noise environment, SNR<0dB, fixed parameters which achieve 

both fast convergence rate and small steady-state variance of the tap- 

length will be difficult to obtain, as can be seen in the previous section. 

As described in [65] and [66] the convex combination of adaptive filters 

can improve the performance of adaptive schemes. A convex combi­

nation of adaptive filters is introduced in this section to improve the 

performance of the FT method in high noise environments. Simulations 

will be performed to support the advantages of this new approach.
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6.3.1 Convex combination of adaptive filters

In previous research into a convex combination structure, two filters 

are adapted separately [65]. The output signals and the output errors 

of both filters are combined in such a manner that the advantages of 

both component filters are retained: the rapid convergence from the 

fast filter and the reduced steady-state error from the slow filter. Here 

the first filter is assumed to have a fast convergence rate throughout 

this section. The output of the overall filter is

y(n) =  X(n)yi(n) +  (1 -  X(n))y2(n) (6.3.1)

where y»(n) =  wf(n)xj(n), i =  1,2, w j(n ) and Xj(n) are the adaptive 

filter weight vector and input vector of the zth filter, and A(n) G [0,1] 

is a mixing scalar parameter. The output error of the overall filter is

e(n) =  A(n)ei(n) +  (1 — A(n))e2(n) (6.3.2)

where ei(n) and e2(n) are the output errors of the two component 

filters:

ei(n) =  d(n) — w f  (n )x j(n ), i =  1,2 (6.3.3)

The key point of the convex combination of adaptive filters is to con­

trol the overall filter by the mixing parameter A(n) according to the 

performance of the two component filters.

In the convex combination of adaptive filters, the mixing parameter 

A(n) is adapted to minimize the quadratic error of the overall filter [65]. 

Rather than adapting A(n) directly, a variable parameter a{n) which 

defines A(n) via a sigmoidal function is adopted. The sigmoidal function
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is

A (n) =  sgm(a(n)) =  (1 +  e~ ° ^ )_1 (6.3.4)

and the update equation for a(n) is given by

a(n +  1) =  o(n) +  fJ>ae(n)[yi(n) — y2(«)]A(n)[l -  A(n)] (6.3.5)

where na is the step size of the adaptation of a(n) and should be 

chosen appropriately to obtain a fast and stable convergence of the 

combination. The parameter a(n) is also restricted to the interval 

[—a+,a+] which limits the permissible range of A(n) to [1 — A+, A+] 

where A+ =  sgm(a+) is a constant close to unity [65]. A good choice 

for a+ is 4, which constrains A(n) to [0.018,0.982]. This value has been 

used in [65] and also will be used in the later simulations.

As shown in [65] the steady-state performance of the convex com­

bination of adaptive filters is better or as close as desired to its best 

component filter. By denoting the noise contained in the desired signal 

d(n) as v(n), and defining the EMSE of the overall filter as Jex(n) =  

E{(e(n) — v(n))2}, the advantage of the convex combination structure 

can be shown as [65]:

J e x (oo) < minfJe^ifoo), Jex,2(oo)] (6.3.6)

where Jex(oo), Jcx.i(oo) and Jex,2(00) denote respectively the steady- 

state EMSE of the overall filter, the first component filter and the 

second component filter. Note that no assumption is made about the

specific nature of the adaptive filter, and thus (6.3.6) is suitable for any

adaptive algorithm [65].
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Two modifications have been proposed to improve the performance 

of the original convex combination algorithm [66], and both are used in 

the later simulations. One of the modifications is to take advantage of 

the fast filter to speed up the convergence of the slow one. It is achieved 

by modifying the adaptation of the slow component filter at an early 

stage of the adaptation to approach that of the fast component filter.

Another modification is to improve the convergence of the parame­

ter a(n). It is clear that when both outputs of the two filters are similar, 

the factor yi(n)—y2 (n) in (6.3.5) will be very small and the convergence 

of a(n) will be slow. A momentum term for adapting parameter a(n) 

is then added to alleviate this problem [66]:

a(n +  1) =  a(n) +  /xae(n)[yi(n) -  7/2(n)]A(n)[l -  A(n)]

+p(a(n) — a(n — 1)) (6.3.7)

where p is a positive constant. In general, 0.5 is a good choice of 

the parameter p, as shown in [66]. Compared with the basic convex 

combination of adaptive filters these modifications have improved the 

convergence rate of the overall filter. Next this convex combination of 

filters will be applied in the FT variable tap-length algorithm.

6.3.2 Convex combination filters for the FT algorithm

In the structure of convex combination for the FT algorithm, two com­

ponent adaptive filters are utilized to implement the FT method sepa­

rately, but the philosophy for selecting parameters 7 , a and A in (6.1.4) 

of each component filter is different. The parameters in the first filter 

are set to provide quick convergence rate of the tap length, whereas
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parameters for the second filter are set to provide a smooth curve of 

the' evolution of the tap-length, which results in a small steady-state 

EMSE, as have been discussed in the previous section.

Both modifications of the basic convex combination structure which 

have been introduced in the previous subsection are adopted in the sim­

ulations. In the first modification, a simple criterion is set up to decide 

how and when should the modification be adopted for the adaptation 

of the fractional tap-length of the slow component filter:

lf2 (n +  1) == (n) +  (1 — <t>)lfi{n), if A(n) > t (6.3.8)

where l/i denotes the fractional tap-length of the zth filter, t is a thresh­

old between 0.5 and 1, and 0 is a weight parameter close to but less 

than unity. This criterion is easy to understand: when A(n) is larger 

than t, the first filter performs better than the second filter, and the 

fractional tap-length of the second filter should be modified to approach 

to that of the first filter, to speed up the convergence rate of the second 

filter. In general, a value between 0.6 and 0.8 is a good choice for t, 

and the value 0.99 is a good choice for <£, which gives both fast and star 

ble convergence for the fractional tap-length of the second filter. The 

second modification is described by (6.3.7).

By denoting the initial tap lengths of both component filters as Lini, 

the step size for the adaptation of the weights vector of both component 

filters as /z, the implementation of this convex combination method can 

then be summarized as follows:

Initialization: Qi, q2, 7i, 72, Ai, A2, /z, /za, 6, p, t , 0 , Lini, a+. 

All these values should be set according to the system requirement,
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and an example of the set of these parameters can be seen‘in the later 

simulations.

Update at each iteration:

1. Update the filter coefficients of both component filters by using 

the LMS or related algorithm with the current tap-lengths.

2. Adapt the fractional tap-lengths of both component filters re­

spectively according to (6.1.4);

3. Calculate parameters a(n) and A(n) according to (6.3.4) and

(6.3.7);

4. Modify the fractional tap-length of the slow component filter 

according to (6.3.8).

5. Update the current tap-lengths of both filters according to (6.1.5). 

As will be confirmed in the later simulations, the first component

filter provides a good tracking ability of the tap-length for the over­

all filter. On the other hand, a smooth curve of tap-length and small 

EMSE is obtained from the second component filter. Through appro­

priate update of the mixing parameter A, both advantages of these two 

filters are extracted and a better performance can thereby be obtained. 

Similarly to (6.3.6), the overall EMSE performance of the convex com­

bination of filters is better or as close as desired to the best component 

filter.

6.3.3 Simulation

A simulation is provided in this subsection to support the advantages 

of the proposed convex combination approach. The setup of this sim­

ulation is similar to that in [12]. In the simulations in [12] a low noise 

environment where SNR is 20dB is used. Since the performance of the
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proposed approach is comparable with the FT method in k low noise 

level, a high noise level environment where the SNR is OdB is used in 

the simulation, to highlight the advantages of the proposed approach. 

The normalized LMS (NLMS) algorithm [15] [16] is also used in this 

simulation.

The input signal x(n) is obtained by passing white Gaussian noise 

through a spectral shaping filter with a z-domain transfer function of 

H(z) =  0.35 -I- z"1 +  0.35z“2. Similar as that in [12], two unknown 

systems are tested:

where a* and 6* are chosen from a white Gaussian random sequence 

with zero mean and unit variance. The desired signal is obtained by 

filtering the input signal with hi or h2 in different time intervals:

where w(n) =  hi for n < 10,000 or n > 20,000 and w(n) =  h2 for 

10, 000< n <  20, 000.

Independent, zero mean Gaussian noise is then added to the un­

known system output to provide an SNR of OdB. The common param­

eters are set the same for all the following experiments: p =  0.1, pa =  1, 

8 =  2, p =  0.5, t =  0.8, <f> =  0.99, =  20, and a+ =  4. Also the

tap-lengths during the adaptation are constrained to be no less than 

Lini- Two sets of parameters are tested with the FT method and the 

convex combination approach:

A. a  =  0.08, 7 =  4, A =  15.

80 30

(6.3.9)

d(n) =  wT(n)x(n) (6.3.10)
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Figure 6.5. Learning curves of tap-lengths of simulations A, B and C

(a) Learning curves of EMSE of simulations A, B and C
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B. a =  0.01, 7  =  0.5, A =  4. ;

C. Convex combination of A and B

Note that the parameters of both simulations A and B are set empir­

ically to obtain the best performance for the overall filter in simulation 

C.

Fig. 6.5 shows the learning curves of the tap-lengths of simulations 

A, B and C. Note that the learning curve of the tap-length of the first 

component filter in Simulation C is the same as that in Simulation A. 

It is clear to see in Fig. 6.5 that the set of parameters in simulation 

A is good for tracking the variability of the tap-length. However, the 

fluctuation of the tap-lengths is large due to the high level interference 

signal. The parameter set of simulation B is good for the interval where 

the optimal tap-length is 30. However, it is too small to estimate the 

channel length during intervals with optimal tap-length of 80. Both 

component filters in simulation C have good tracking abilities, and the 

second component filter has a very smooth tap-length curve. Further­

more, nearly all the estimations of the optimal filter tap-lengths in both 

component filters of simulation C are larger than the real optimal fil­

ter tap-lengths, but the estimations of the second filter with smaller 

parameter A are closer to the real optimal filter tap-lengths.

To make the comparison clear, the learning curves of EMSE rather 

than MSE are shown in Fig. 6.6.(a). All EMSE curves are obtained by 

averaging the results over 100 Monte Carlo trials of the same experi­

ment. Note that in Fig. 6.5. the results are obtained by one realization 

for the experiment, to show the fluctuation of the tap-lengths in the 

filter with large parameters. It is clear to see in Fig. 6.6. (a) that the 

EMSE of simulation B is large at the intervals where the optimal filter
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length is 80, because the set of its parameters can not estimate the 

associated tap-length. The EMSE of simulation A is also large over the 

interval where the optimal filter length is 30 because of the large fluctu­

ations in the tap-length estimate, which may result in under-modelling 

of the tap-length. Simulation C performs better than both simulations 

A and B due to the combination approach, and is robust to system 

variation.

The evolution of the mixing parameter A (n) in simulation C is shown 

in Fig. 6.6. (b). This curve is also obtained over 100 Monte Carlo 

trials of the same experiment. FYom this figure it is clear to see that 

the parameter A(n) increases towards unity initially, to provide a good 

tracking performance for the overall filter, and then converges to a small 

value to obtain a small steady-state EMSE from the second component 

filter. This behavior is repeated in the different regions of the figure. 

The evolution of this parameter clearly matches the requirements of 

the convex combination.

6.4 A new VTLMS algorithm to model an exponential decay im­

pulse response

In many applications such as echo cancelling, the unknown filter ex­

hibits a constant exponential decay envelope. Modelling the unknown 

impulse response in such applications is typically achieved with a length 

N  FIR filter, denoted by c#. In practice, N  is chosen as a compromise 

between modelling the significant energy within the impulse response 

and limiting computational complexity. In this section an adaptive so­

lution is proposed for the choice of N. The evolution of the tap-length 

of the proposed algorithm is designed in an iterative way to minimize
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the MSD at each iteration, which is defined as i?{||cjv — 

where w^(n) is the adaptive filter weight vector. The target of the 

proposed approach is not only to find a good choice of the steady-state 

tap-length for the adaptive filter, but also to ensure well behaved tran­

sient tap length convergence, so that a better performance as compared 

with the fixed tap-length algorithm is obtained.

In a previous research study [1] a theoretically optimal variable tap- 

length sequence for the LMS algorithm in such applications has been 

introduced. However, this algorithm suffers from heavy computational 

complexity due to solving for Lambert’s W-function [1], thus it is not 

suitable in practice. The derivation of the proposed algorithm is based 

on the method in [1], but the computational complexity is greatly re­

duced. As will be shown by the simulation results the proposed algo­

rithm converges faster than the fixed tap-length LMS algorithm, and 

is very robust to the initial tap-length choice.

6.4.1 The new VTLMS algorithm

For convenience the LMS algorithm is formulated with a system iden­

tification model, and the desired unknown filter impulse response se­

quence is assumed to have a constant exponential decay envelope. In 

this model the desired signal d(n) is formulated as follows

 ̂ d(n) =  xJf(n)cN +  v{n) (6.4.1)

where (*)T denotes the transpose operator, xjv is the input vector with 

a tap length of N , v(n) is the noise signal and can be modelled as
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follows

c(i) =  2 =  1,..., N  (6.4.2)

where c(i) is the ith coefficient of the unknown filter vector Cat, t  is

a positive constant to model the decay rate, and r(i) is drawn from a

zero mean unit variance Gaussian sequence.

Since in the variable-tap length LMS algorithm, the tap-length is 

time-varying rather than fixed, the parameter L(n) is used to denote 

the integer tap-length which is used for the coefficient update of the 

LMS algorithm at the nth iteration, and assume L(n) < N. The filter 

coefficients can be updated as

wL(«)(n +1) =  wL(n ) ( n )  + /ie(n)xL(n)(n) (6.4.3)

where W£,(n) and X£(n) are respectively the L(n)-tap adaptive filter vec­

tor and the input vector, fj, is the step size for the update of the coeffi­

cients, and e(n) is the output error defined as

e(n) =  d(n) -  x£(n) (n)wL(n) (n) (6.4.4)

Similar to the formulation in [1], is split into two parts as

where c' is the part modelled by wz,(n)(n) and c" is the part undermod­

elled. Defining gAr(n) as the total coefficient error vector Cn — w^(n) 

where w^(n) is obtained by padding W£,(n)(n) with zeros, the MSD can 

then be formulated by £{||gAr(n)||2}.
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Since the tap-length should not be constrained to be an integer to 

find a continuous update, similar to as in [1] and [12] the fractional-tap 

length concept is used in the following derivations, where the fractional- 

tap length denoted by Z/(n) will be used in the update of the tap-length, 

and the tap-length L(n) which is used for the update of the adaptive 

filter coefficients is assigned to the integer immediately below l/(n).

Similar to [1], both the input signal x(n) and the noise signal v(n) 

are assumed to be statistically independent identically distributed (i.i.d) 

zero mean Gaussian white noise signals with variances o\  and re­

spectively. According to the analysis in [1] the evolution of the MSD 

can be formulated as follows:

£ { l l f t r ( »  +  1)11’ }  =  / 5 £ { | |g * ( n ) | | f }  +  ( v - P )  I |C " ||| +  7

(6.4.5)

where

/? =  1 -  2fio* +  (lf (n +  1) +  2 ( 6 . 4 . 6 )  

r} =  1 + lf (n +  1 )n2aAx (6.4.7)

and

7 =  I f{n +  l)n2o*o* (6.4.8)

The range of the step size which ensures the convergence of (6.4.5) is [1]

0  <  fi <  7 7 - 7 ------------- r r -------------r  ( 6 . 4 . 9 )(Z,(n+ 1) +  2)<j2  ̂ >

At first to speed up the convergence rate of the LMS algorithm, the 

step size is made variable rather than fixed, according to the range of
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y  described in (6.4.9). In [1] the step size is set to y{n) — y'/((lf(n) +  

2)a%) where y' is a fixed constant and less than 2. To remove the 

dependence between the step size y(n) and the fractional tap length 

lf(n), and noting that l f ( n — 1) is very close to Z/(n), the step size is 

set as follows

y(n) =  y'/{{lf{n -  1) +  5)al) (6.4.10)

where <5 is an integer larger than 2 to ensure stability of the algorithm.

Secondly, the squared norm of the partial response of cjv can be 

expressed in the form [1]

e —2lf(n)T _  e - 2 N r

lc 112 =  i - e - l N r  ■ Ilc"ll2 (6.4.11)

As shown in [1] the derivative (dE{\\gN(n +  l)\\22} / dl2f(n+l))  is pos­

itive, thus a tap-length //(n+1) exists to minimize the term -E'{||gAr(n + l)!^}- 

Replacing y  in (6.4.5) with y ( n +  1) and substituting (6.4.6), (6.4.7),

(6.4.8) and (6.4.11) into (6.4.5), and setting (diS{||gAr(n +

1)) =  0 yields

p —2lf (n+ l )r
H(n +  l)o2£{||»r(»)|g} -  4 t (1  -  fj,(n +  1)^) x _  g_2Nr |M | ,

+lf(n +  1 )p(n + l)(?l =  0

(6.4.12)

After rearranging the following equation can be obtained 

/ (n +  1) =  log +  l)^x£ {llgw(n)ll2} +  n(n +  1 )trg
2t At(\ -  n{n +

(6.4.13)
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Substituting (6.4.10) into (6.4.13) yields

' (6A14)
2r 4Tal{lf{n) +  6 -fj.')

By defining A If — lf(n +  1) — lf(n) and using equation (6.4.14) the 

following equation is obtained

A . 1 i (« f f i |g ir (» ) ia  +  al)(h(n  -  1 ) +  6 - t f
1 2r {alE{\\f,N{n -  l)||j} +  a2)(lf (n) + & ~n‘)

(6.4.15)

The update of the tap-length of the new variable tap-length LMS algo­

rithm is then obtained:

h(n + 1) =  h(n) ~
1 loc MS{||g*r(n)lg} +  crlWAn — 1) +  S — fi')

2r 8 (<TlE{\\gN(n -  1)||’} +  a2){lf (n) +  & — fi')
(6.4.16)

Assuming that the input signals are independent of the adaptive weight 

coefficients the following equation exists [15]

£ {e2(n)} =  <7*£{||g„(n)||’ } + (6.4.17)

Substituting (6.4.17) into (6.4.16) yields

1  1 —  E W ( n) W A n - 1) +  <5 -  m')l,(n +  1) -  l,(n) -  -  log - e— i m ( n ) + s _ ^

(6.4.18)

In practice the statistical average term E{e2(n)} can be approxi­
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mated by it’s time average estimation e2(n), which can be obtained 

as:

e2(n) =  0e2(n — 1) + (1 — <f>)e(n) (6.4.19)

where 0 is a positive constant close to but less than unity. The new 

variable-tap length algorithm is then obtained as follows:

. /  i \  . /  \ 1 i e2(n)(lf(n — 1) + 6 — jj,') . .

i- (,‘ + 1 1 1 0 8 - ■ ) ( , , ( . ! + I - J )  (6 4 !0 ,

Since the tap length which is used in the update of the filter co­

efficients must be an integer, the floor of lf(n -I- 1) is chosen for the 

coefficient update:

L(n +1) =  [lf(n +  1)J (6.4.21)

where [.J is the floor operator which rounds down the embraced value 

to the nearest integer. By replacing the /z in equation (6.4.3) with /i(n), 

the full adaptive algorithm can consequently then be implemented by 

equations (6.4.4), (6.4.10), (6.4.3), (6.4.19), (6.4.20) and (6.4.21).

6.4.2 Steady-state performance of the proposed algorithm

According to the update equation (6.4.20) it is straightforward to obtain 

that

Woo) = 1, ( 0) -  ± l o g ^  (6.4.22)
*r e2(0)(Z/(oo) + 8 — fi')

where Z/(0) and l/(oo) are the initial and steady-state values of the

fractional tap-length, e2(0) and e2(oo) are the initial and steady-state

values of the smoothed square error. The initial value e2(0) can be set 

as cr% +  where a\ is the variance of the desired signal and can be
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formulated as a\  Hc/yll*. Substituting (6.4.17) into (6.4.22) yields 

Z/(oo) =  1, ( 0) -

1 log +  g?)(*/(°) +  S-M')
2t  (°l llcjvlla + ff2)((/(°°) + s ~ V1)

FVom equation (6.4.5), (6.4.6), (6.4.7), (6.4.8) and (6.4.10) the fol­

lowing equation can be obtained

■ e{||g * (o o )||:j}  =

2al{lf {cc) + 2 -  //) |lc"||| + n'lt (oo)al
(2 - /1')(*,(oo) +  2)<r2 • >

To simplify the formulation, N  is assumed to be very large and 

//(oo) is close to TV, thus //(oo) «  //(oo) + 2 «  //(oo) +  6 — / /  and 

the term ||c"||2 is very small. Furthermore, by assuming that / /  has 

been chosen properly so that the term 2a\ Hc"  ̂ //Vj, the following

equation can be obtained

£{l|g*(°°)l&  *  (6'4'25)

Substituting (6.4.25) into (6.4.23) yields

//(oo)» i/(0) -  

j - lo g _______  ^ « / ( ° )  +  < - ^ ) _________  (6.4.26)
2 r  IIcat||2 +  +  <* ~  m0 ( 2  -  /*')

From (6.4.26) the steady-state tap-length //(oo) is correlated with 

three parameters: the step size //, the parameter 5 and the initial tap- 

length Z/(0). Assuming that \j! has been chosen properly, and both 

L(oo) and L(0) are much larger than \£ and 5, then the influence of 6
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and y! can be ignored. Next a simulation will be performed to show 

that with wide range in the choice of the initial tap-length L(0), the 

steady-state tap-length L(oo) can converge to values which provide a 

good compromise between modelling the significant energy within the 

impulse response and limiting computational complexity.

6.4.3 Simulation

In this section the above derivations will be examined, and the proposed 

algorithm will be compared with the fixed-tap length LMS algorithm 

and the optimal variable tap length LMS algorithm [1] by simulations. 

The setup of all the simulations is similar to that in [1]: the unknown 

filter is a white Gaussian noise sequence with zero mean and a variance 

of 0.01 weighted by an exponential decay envelope. The tap length is set 

to 1024, and the decay parameter r is set to 0.005. One representation 

of the unknown filter can be seen in Fig. 6.7. The input signal is another 

white Gaussian noise sequence with zero mean and unit variance. The 

noise signal is a zero mean random Gaussian sequence with a variance 

of 0.01. The parameter 6 for the proposed algorithm is set to 5. The 

smoothing parameter (f> in (6.4.19) is set to 0.99. The step size / /  

for both the proposed algorithm and the optimal variable tap-length 

algorithm is set to 0.5. The initial value of e2(n), i.e., e2(0), is set to

The steady-state MSD with different steady-state tap-length values 

is shown in Fig. 6.8 (a), calculated from (6.4.24). It is clear to see in 

Fig. 6.8 (a) that the steady-state MSD decreases with the increase of 

the steady-state tap-length. However, due to the exponential damp­

ing envelope structure as shown in Fig. 1, the MSD will nearly be a
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Figure 6.7. One representation of the unknown impulse response se­
quence
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Figure 6.8. (a) Steady-state MSD with different values of the steady- 
state tap-length according to  (6.4.24). (b) Steady-state tap-lengths
with different initial tap-length values according to  (6.4.26)

constant if the steady-state tap-length is larger than  some value, such 

as 800 in the simulation. The main energy of the unknown impulse 

response is contained in approxim ately the first 800 coefficients, which 

is the part to  be found by the proposed approach.

The values of the steady-state tap-length with different initial tap- 

length values are shown in Fig. 6.8 (b), calculated from (6.4.26). It 

is clear to see from Fig. 6.8 (b), together with Fig. 6.8 (a) th a t w ith
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Figure 6.9. (a) The optim al variable tap-length sequence obtained 
from [1] and the evolution curves of the tap-length of the proposed 
m ethod w ith different initial tap-lengths. (MO: initial tap  length MS: 
simulated steady-state result MT: theoretical steady-state result) (b) 
The evolution curves of the MSD of the fixed tap-length LMS algorithm, 
optimal variable tap-length  LMS algorithm  and the proposed algorithm

a wide range of the initial tap-length , the steady-state tap-length can 

converge to  some values which give good compromise between mod­

elling the significant energy w ithin the impulse response and limiting 

com putational complexity, thus the conclusion can be made th a t the 

proposed algorithm  is robust to  the choice of the initial tap-length.

To confirm (6.4.26), several simulations are performed for the pro­

posed algorithm w ith different initial tap-length values. The evolu­

tion curves of the tap-length  w ith different initial tap-length values are 

shown in Fig. 6.9 (a), where different initial tap-length values, simu­

lated steady-state tap-length  values, and the theoretical steady-state 

tap-length values which are obtained from (6.4.26) are given in the 

legend of the plot. As a com parison, the optimal variable tap-length 

is also given. From these values it is clear to see th a t the simulated
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steady-state tap-lengths match the theoretical values quite well. Fur­

thermore, the initial parts of all the variable tap-length evolution curves
$

of the proposed algorithm are similar to those of the optimal variable 

tap-length sequence.

Finally, the proposed algorithm is compared with the fixed-tap 

length LMS algorithm and the optimal variable tap length algorithm 

by comparing the MSD. Two experiments are performed for the fixed- 

tap length algorithm with different tap lengths. In one experiment 

the tap length is set to 1024, and the step size is set to 0.5/1024. In 

another experiment the tap length is set to 512, and the step size is 

set to 0.5/512. The initial tap length of the proposed algorithm is set 

to 20. The evolution curves of the MSD of the fixed tap-length LMS 

algorithm, the optimal variable tap-length LMS algorithm and the pro­

posed algorithm are shown in Fig. 6.9 (b). All the results in Fig. 6.9 

are obtained by averaging the results over 100 Monte Carlo trials of the 

same experiment.

Fig. 6.9 (b) shows that although the steady-state tap-length of the 

proposed algorithm is less than that of the optimal variable tap-length 

algorithm, their MSD evolution curves are nearly the same. It is clear 

to see that with a similar steady-state MSD, the proposed algorithm 

converges faster than the fixed tap-length LMS algorithm with a tap 

length of 1024. The convergence rate of the fixed tap length LMS 

algorithm with a tap length of 512 is fast, but the MSD is large. The 

proposed algorithm has both fast convergence rate and small MSD, and 

a good steady-state tap-length is also found in an adaptive way.
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6.5 Conclusion

In this chapter, a detailed introduction of a VTLMS algorithm, the 

FT algorithm has been provided. A steady-state performance analysis 

for the FT algorithm is given. To improve the performance of the FT 

algorithm in high noise conditions, a convex combination approach for 

the FT algorithm is proposed. Furthermore, a new practical VTLMS 

algorithm is also designed for applications in which the optimal filter 

has an exponential decay impulse response. All these analyses or new 

approaches have been confirmed or supported by simulations. The 

research results in this chapter provide deeper understanding of the 

VTLMS algorithm. As a developing topic, more research is required 

for the VTLMS algorithms to make them to be robust to different 

environments, such as the environment in Chapter 4, where both the 

input and noise are highly nonstationary speech signals.

6.6 Appendix A: Derivation of the term -^{Ilg^M lli}

As analyzed in [1], with a fixed tap-length, the steady-state value of 

i?{||gjv(n)||2} can be expressed as

£ { | | g * ( n ) | | 22}  =
(s-Ollc'H + t (6 .6 .1)

1 — r

where

r — 1 — 2 iio\ +  (L(oo) +  2)/lt (6.6 .2)

5 = 1  +  L(oo)ll2(T* (6.6.3)

and

t =  L(oo)v2 trial (6.6.4)
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Moreover, the MSD can be divided into three parts [1]:

£ { M g ir (n ) |B }  =  £ { | | g » ! l ^ }  +  £ ? { ||g " (n ) ||i}  +  ||c" '|ll (6.6.5)

Substituting (6.6.1) into (6.6.5) yields

^ { | | k '(« )H 1> +  £ { | |g " ( n ) l l i }  =  -- - - r 1- - ! —  ̂ (6-6 .6)1 — r

Substituting (6.2.10), (6.6.2), (6.6.3) and (6.6.4) into (6.6.6), and with 

the approximation L(oo) «  L(oo) +  2 the following equation can be 

obtained

W M I I l }  +  ^{llK"(n)lll> «  ,9 (6.6.7)

Using assumption A.4 results in i^dlg'M lli} =  (^(°°) — ^ ) ag an<̂  

^{||g /,(n)||2} =  A c t together with equation (6.6.7) the following equa­

tion can be obtained

Since L(oo) < Lop* +  A, and in practice A Lopt, tbus if L{oo) > 

Lgpt, L(oo) will be very close to Lopt. Equation (6.6.8) can then be 

approximately written as

6.7 Appendix B: Derivation of the term

Note that all of the following derivation is based on the condition < 

L{oo) < L^t+ A, and the terms G and H are equal to 0 at steady-state.
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The variance of the term a  +  7  (A — B +  C — D +  E — F +  G - H )  is

<Tj =  E { ( a + ' f ( A - B + C - D + E - F ) ) - E { a + j ( A - B + C - D + E - F ) } } 2

(6.7.1)

Prom (6.2.9) we have

E {a  +  ~/(A — B +  C -  D +  E -  F)} =  0 (6.7.2)

Substituting equations (6.2.9) and (6.7.2) into (6.7.1), and using 

assumptions A.2, A.3, A . 4  and the mathematical formulation of terms 

A, £ , C, D, E  and F, it is straightforward to obtain that

a2 =  +  o \  +  o2c  +  a2D +  a% +  o2F -  2E{EF})  -  a 2 (6.7.3)

With assumptions A.2 and A.4 and using equation (6.6.9) in the 

mathematical formulation of term A, its variance can then be obtained

<->
Similarly, with assumptions A.2 and A .«?, and using (6.2.11) in the 

mathematical formulation of term B, its variance can be derived as

o \  «  kaliLopt +  A -  L(oo))a2al (6.7.5)

Substituting (6.2.16) into (6.7.5) yields

+  (6.7.6)
7 (2 fi> )Lopt)

Using assumptions A.2 and A.4 in the mathematical formulation
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of term C, its variance can be obtained

° c  a  4A(L(oo) — A)cr*a* (6.7.7)

With A.4 and using equation (6.6.9) the following equation can be 

obtained

•2  -  ( 6 7 -8 )

Substituting (6.7.8) into (6.7.7), and with the approximation Lopt »  

L(oo) — A results in

4A//2<7" (6.7.9)
°  (2

Similarly, with assumptions A.2, A.3 and A.4, and using equations 

(6.2.11), (6.2.16) and (6.7.8) in the mathematical formulation of term 

D, and with the approximation Lopt ~  L(oo) — A, the variance of term 

D can be obtained

t 2 _.  ( a  A n'ol \
^ ~  U  +  (2 - m ' ) ^ J  ( 6 J 1 0 )

Since the term x"T(n)g"(n) can be approximately deemed as a sum 

of A i.i.d random variables, from the central limit theory the probability 

density function (PDF) of this term will be very close to a Gaussian dis­

tribution with a zero mean, thus term E can be approximately deemed 

as chi-squared distributed with one degree of freedom. With assump­

tions A.2 and A.4, and using equation (6.6.9) the mean value of term
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E can be formulated as

( 6 7 1 1 )

Thus the variance of term E is

<j\ =  2 m B «  (6.7.12)

Similarly, the term x//T(n)c// can be approximately deemed as Gaus­

sian distributed, thus term F can be approximately deemed as chi- 

squared distributed with one degree of freedom. With assumptions A. 3 

and A.4, and using equations (6.2.11) and (6.2.16) the mean value of 

term F can be formulated as

m F * - +  -  (6.7.13)
7 (2 -  p!)Lapt

Thus the variance for term F is

4  =  2mF =  2 ( -  +   )  " (6.7.14)
\ 7  (2 — PjLopt)

With assumptions A.3 and A.4 the term E {E F }  can be expanded

as

E {E F } =  E {(x//T(n)g//(n))2(x//T(n)c//)2}

=  E{x'/T(n)g//(n)g//T(n)x//(n)x//T(n)c//c//Tx(n)}

«  <7gCr̂ E{x"T(n)x"(n)x//T(n)x//(n)} (6.7.15)

by approximating the instantaneous term c"c//T with its statistical av­

eraging value.
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The input signal is an i.i.d Gaussian sequence, thus E{xA} — 3o\. 

Prom equation (6.7.15) it is straightforward to obtain

E {E F }  =  cryc(A(A -  1 )aAx +  3Aa2x) (6.7.16)

Substituting (6.7.8) into (6.7.16) yields

E {E F }  =  ~T1)CI +  ^  (6.7.17)
(2 —  fi )Lopt

Substituting equations (6.7.4), (6.7.6), (6.7.9), (6.7.10), (6.7.12),

(6.7.14) and (6.7.17) into (6.7.3) yields

a) =  y 2 (K2-  +  K 3) -  c? (6.7.18)
7

where

and

and

*  =  ( ^ f b  ( 6 7 1 9 )

K 2  =  2 +  A ol+  AL°^K l (6.7.20)

K 3  =  2K lK 2  -  2K 1al((A  -  1)<t* +  3) (6.7.21)



Chapter 7

VARIABLE TAP-LEIMGTH 

NATURAL GRADIENT 

ALGORITHM

As has been introduced in Chapter 3, in the convolutive blind source 

separation (BSS) problem, if there is only one signal and one received 

convolutive mixture signal, the BSS problem then becomes the blind 

deconvolution, or blind equalization, .problem. Blind deconvolution is 

an important task for many applications in the communications and sig­

nal processing areas. The NG algorithm is a computationally efficient 

blind deconvolution algorithm [31]. In all the previous formulations of 

the NG algorithm, or modified NG algorithms, the tap-length of the 

deconvolution filter is assumed fixed. However, in many applications 

it is difficult to choose a good value for the deconvolution filter tap- 

length. If the tap-length is too long, the computational complexity will 

increase, whilst if the tap-length is too short, it will be inadequate for 

the deconvolution task. An excessive adaptive filter length can also 

be problematic due to the gradient noise, which is proportional to the 

tap-length. A variable tap-length NG algorithm is therefore needed 

to establish a good choice for the tap-length. In this chapter, the con­

154
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cept of variable tap-length is for the first time introduced into the blind 

adaptive schemes, particularly the NG algorithm in single channel blind 

deconvolution or equalization applications.

This chapter is organized as follows: the NG algorithm for single 

channel blind deconvolution is introduced in Section 7.1. The proposed 

variable tap-length NG algorithm is described in Section 7.2. Some 

discussions for the proposed algorithm are given in Section 7.3. Section

7.4 provides the conclusion.

7.1 Introduction of the NG algorithm for blind deconvolution

Blind deconvolution is aimed at recovering a desired discrete-time signal 

s(n) from its filtered and noisy version formulated as

p
x(n) =  his(n — i) + v(ri) (7.1.1)

*=i

where hi is the zth element of the unknown P-tap filter vector h, v(n) 

is the zero-mean additive noise, and n denotes the discrete time index. 

The NG blind deconvolution algorithm updates the adaptive filter co­

efficient vector w(n) so that on convergence the output of the adaptive 

filter y(n) is ideally a delayed and possibly scaled version of the original 

signal s(n). The criterion for the NG BSS algorithm has been intro­

duced in Chapter 3. As a special case, for the blind deconvolution NG 

algorithm, in which the number of the source signals and mixture sig­

nals is unity, the update of the deconvolution filter vector w(n) can be 

formulated as
Q

y(n) =  ^ 2  u>i(n)x(n -  i) (7.1.2)
t= 0
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Q
u (n ) =  y ] w Q-i(n )y(n  -  *) (7.1.3)

*=o

Wi(n+1) =  W i ( n ) + i i [ ( w i ( n ) - f ( y ( n - Q ) ) u ( n - i ) ] ,  i =  0, ...,Q (7.1.4)

where ^ (n ) is the zth element of the deconvolution filter vector w(n) 

with a tap-length of Q, /x is a positive step size, and /(•) is the nonlinear 

function, as has been discussed in Chapter 3. The tap-length Q used 

in the NG algorithm provides a trade-off between the computational 

complexity and the steady-state performance, and a variable tap-length 

NG algorithm is needed to provide a good choice for the tap-length.

7.2 A variable tap-length NG algorithm

Similar to that of the fractional tap-length (FT) algorithm introduced 

in Chapter 6, the tap-length of the NG algorithm is made variable 

so that at steady-state the tap-length converges to a value which can 

provide a good trade-off between the computational complexity and 

steady-state performance. The update of the proposed algorithm can 

be formulated as follows:

L(n)

y (n) =  X I  WiM n )(n ) x (n  -  0 (7.2.1)
t= 0

L(n)

u (n ) =  w Mri) - iM»)(n ) y ( n  -  0 (7.2.2)
t = 0

ui<(n+l) =  iu<,L(„)(n)+/i[(u;<jL(„)(ra)-/(3f(ra-Z,(n)))u(n-i)], i =  0 , L(n)

(7.2.3)

where WitL^n)(n) is the ith coefficient of the adaptive filter coefficient 

vector w(n) with a tap-length of L(n). It is clear to see that the only

difference between the proposed algorithm and the NG algorithm is
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that the tap-length of the deconvolution filter vector of the proposed 

algorithm is a variable value rather than a fixed value. „

The tap-length in the proposed algorithm should be updated to 

maximize the measure of the independence of the separated signals. As 

is well known, the normalized kurtosis is a measure of nonGaussianity, 

and also an approximate measure of the independence of signals [17]. 

The normalized kurtosis of the real output signal can be formulated as

K - E { [ y ( n )  P P " 3 (7'24)

where E { •} denotes the statistical expectation operator. In the NG 

algorithm for recovering nonGaussian signals, the absolute value of K  

should be maximized. To update the tap-length L(n), the cost function 

to establish the optimal tap-length Lppt is defined as the minimum value 

L such that

\K\ -  \K'\ <  e (7.2.5)

where e is a small positive value, | • | is the absolute value operation, 

and K ' is the normalized kurtosis of the output signal generated by the 

first L(n) — A coefficients of the adaptive filter vector

L (n ) - A

y'(n)=  ^2 WiMn)(n)X(n ~ (7 ‘2 ‘6 )
t=0

where A is a positive integer.

The motivation of this cost function is similar to that in [12]: the 

optimal tap-length of the adaptive filter is defined as the minimum 

value of the tap-length which ensures the difference between K  and K' 

satisfies the inequality in (7.2.6). To ensure that the update of the tap-
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length is continuous, similar to the approach in [12], in which a variable 

tap-length LMS algorithm is proposed, the concept of fractional tap- 

length If is also used in the proposed algorithm. The update of this 

fractional tap-length can be described as

lf{n +  1) =  lf (n) -  a  +  7Afc (7.2.7)

where a  is a leakage parameter to avoid over estimation of the tap-

length, 7  is the step size parameter for the fractional tap-length update,

and A* is defined as

A* =  \K\ -  \K'\ (7.2.8)

In practice, both the statistical values K  and K 7 are replaced by time 

average instantaneous values K est and K'est. To obtain the time average 

values and reduce the computational complexity, both the fractional 

tap-length lf(ri) and the tap-length L(n) will only be updated every W  

iterations, and the estimates K  and K' are obtained by averaging W  

instantaneous values

x ^ i _ W + l r  ,  X14

K e,t =  Y  wxi ■ i f  rnod(n, W) =  0 (7.2.9)

where mod(n, W) =  0 denotes that n is a multiple of W . The estimate 

K ’eat is obtained similarly to K est by replacing y(p) with y'(p) in (7.2.9). 

The statistical accuracy of this estimator has been found in later sim­

ulation to be sufficient for practical application. The practical update 

of the fractional tap length is then formulated as

lf (n +  1) =  lf (n) -  a  +  ^(\Kest\ -  K'est\) i f  mod(n, W) =  0 (7.2.10)
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The tap-length L(n + 1), which will be used in the update of the adap­

tive filter coefficients in the next W  iterations, is obtained from the 

fractional tap-length l / (n-1- 1) as

i f  |lf(n +  1) — L(n)\ > M  and mod(n, W) =  0 

L{n +  1) =  max[floor(lf(n +  1)), Lmin] 

else

L(n +  1) =  L(n) (7.2.11)

where floor is the operation which rounds down the embraced value 

to the nearest integer, M  is a small positive integer and Lmin is a 

positive integer. Note that the tap-length is constrained to be not less 

than Lmin, where Lmin >  A, since L{n) — A is used as a tap-length in 

(7.2.6), and it should not be less than unity.

Next a simulation will be performed to show the performance of the 

proposed algorithm.

7.3 Simulation

One example simulation framework is used to compare the performance 

of the proposed variable tap-length NG algorithm with the original NG 

algorithm. In all the simulations the original signal s(n) is a sub- 

Gaussian pseudo-random sequence which is uniformly-distributed in 

the range [—0.5,0.5]. The channel which needs to be equalized is mod­

elled by a finite impulse response (FIR) filter h =  [1.0,0.8, —0.75,0.5, —0.4,

0.3,0.2,0.15,-0.07,0.1]. The noise signal is a pseudo-random zero- 

mean Gaussian sequence, and scaled to make the signal-to-noise ratio 

(SNR) 20dB. The performance of the proposed algorithm and the NG
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algorithm with different tap-lengths L — 10,15,20 and 25 is examined 

by measuring the inter-symbol interference (ISI), defined  ̂as

ISI(n) =  _  i  (7.3.x)
maxo<j<7v-i 9i(n)

where gfin) is the squared zth element of g(n), which is the convolution 

of the channel vector h and the adaptive filter vector w(n), and N  is 

its tap-length. For both the NG algorithm and the proposed variable 

tap-length NG algorithm the nonlinear function is chosen as f(y)  =  j/3, 

Wi(0) =  Si- 4  (i.e. the fourth coefficient of the adaptive filter is initialized 

to unity, and the others are zeros), and [i =  0.001. For the proposed 

algorithm, the parameters for updating the fractional tap-length are 

set as 7  =  1, a  — 0.001, M  =  1, A =  8, W  =  100 and Lmin =  10. 

The initial value of the tap-length is set to 10. One hundred Monte 

Carlo trails are run and the results are obtained by averaging all the 

cases. The evolution curves of the ISI for the proposed algorithm and 

the original NG algorithm with different tap-lengths are shown in Fig. 

7.1(a). The evolution curve of the fractional tap-length for the proposed 

algorithm is shown in Fig. 7.1(b).

It is apparent to see in Fig. 7.1(a) that with a tap-length L — 10 

the performance of the NG algorithm is poor, and the ISI level is high, 

which indicates that the tap-length value 10 is inadequate for the de- 

convolution. The performance of the NG algorithm with tap-length 

value 15 is generally good enough for most applications (ISI level is less 

than -20dB). The performances of the NG algorithm with tap-lengths 

20 and 25 are very similar, which indicates that with the increase of 

the tap-length, the improvement of the performance is very limited,
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(a) The evolution curves of the  ISI
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(b) T he evolution curve of the fractional tap -length

Figure 7.1. Perform ance of the proposed algorithm and the NG algo­
rithm  with different tap-length  values.

and the com putational com plexity will increase. Thus values around 

15 will be good choices for the  tap-length of the NG algorithm, which 

provide good compromise between the performance and the com puta­

tional complexity.

From Fig. 7.1(b) it is clear to  see th a t the fractional tap-length 

of the proposed algorithm  converges to  values close to 16, and this 

steady-state tap-length provides good performance with the proposed 

algorithm, which can be seen in Fig. 7.1(a), and a lower computational 

complexity as com pared w ith tap-length values 20 and 25, since equa­

tion (7.2.7) is only evaluated twice, and equations (7.2.8) and (7.2.9) 

are evaluated once for each W  measurem ent samples (equation (7.2.7) 

is the most significant te rm  requiring approxim ately two additions and 

m ultiplications per sample). Note th a t the initial convergence of the 

fractional tap-length in Fig. 7.1(b) is because the coefficients of the 

adaptive filter are still to  converge.
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7.4 Discussion

It is straightforward to see in the proposed algorithm that‘the update of 

the fractional tap-length is related to the measurement of the indepen­

dence of the separated signals generated by using different tap-lengths. 

Thus to obtain a good performance of the proposed algorithm, i.e., 

both a fast convergence rate of the fractional tap-length and a proper 

steady-state tap-length value, the parameters used in the proposed al­

gorithm should be chosen carefully. The sensitivity in their selection 

falls outside the scope of this demonstrative example, but it is clear 

that appropriate settings can be found.

7.5 Conclusion

A new variable tap-length NG algorithm for single channel blind decon­

volution has been proposed in this chapter. This is the first example 

of a variable tap-length sequential blind adaptive algorithm. As shown 

by the simulations, the tap-length of the proposed algorithm converges 

to values which provide good compromise between the steady-state ISI 

and the computational complexity. This algorithm can be potentially 

used in many applications.



Chapter 8

CONCLUSION

In this final chapter of the thesis, the work and results presented in the 

previous chapters are summarized. Overall conclusions of this study 

are made and further work is suggested.

8.1 Summary of the thesis

This thesis concerns estimation of the reverberation time (RT) in high 

noise occupied rooms. Room RT is a very important acoustic parameter 

for characterizing the quality of an auditory space. The RTs of occupied 

rooms are particularly important since they are more close to reality 

by considering the existence of the audience. Some traditional RT es­

timation methods which normally utilize high sound pressure noises as 

excitation signals are not suitable for occupied rooms, since for the au­

dience, exposure to loud noise for a long period can be disturbing. The 

methods utilizing passively received signals, especially speech signals, 

are more attractive for occupied rooms, since good controlled excitation 

signals are not necessary. However, the accuracy of these methods may 

be influenced by the noise, which is generated by the audience. Thus 

new approaches are needed to improve the RT estimation accuracy in 

a high noise environment.

In this thesis, the maximum likelihood estimation (MLE) based RT

163
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estimation method is firstly described. A background introduction to 

the adaptive techniques, i.e., the blind source separation (BSS) scheme 

and the least mean square (LMS) algorithm, is also provided. By uti­

lizing the BSS algorithm, the LMS algorithm and the MLE based RT 

estimation method, a new framework for high noise environment RT 

estimation is proposed. The motivation of the proposed approach is to 

reduce the noise level from the passively received speech signal before 

the RT estimation. Since both the excitation speech signal and the 

noise signal are unknown, the proposed noise reducing preprocessing 

can be deemed as a blind process, in which the BSS technique can be 

utilized. Ideally, the BSS technique can extract estimations of the orig­

inal excitation signal and noise signal, from which estimations of room 

impulse responses can be obtained, and consequently the room RT can 

be calculated. However, in practice, the convolutive BSS algorithm 

can only extract an estimation of an unknown filtered version of source 

signals. To remove the noise component from the passively received 

speech signal, an extra ANC stage is needed by using the estimation of 

the noise signal coming from the BSS as a reference signal. The output 

of the ANC is then an estimation of the noise free reverberant speech 

signal, from which a more accurate RT estimation can potentially be 

extracted. As shown by the simulation results, the noise reducing pre­

processing works well in a simulated high noise room, and accuracy of 

the RT estimate is improved as compared with the original MLE based 

RT estimation method.

Further research results on adaptive techniques are also provided in 

this thesis. At first, to speed up the convergence rate of the LMS algo­

rithm, the concept of gradient based variable step size LMS (VSSLMS)

/
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algorithms is introduced. Two new gradient based VSSLMS algorithms 

are proposed. Simulations are performed which show that the proposed 

algorithms are robust to high level, a signaJ-to-noise ratio (SNR) of 

approximately OdB, statistical stationary or nonstationary noise. Al­

though both algorithms can not be used directly in the ANC stage 

of the proposed RT estimation framework due to the statistical non­

stationary of both the input and noise signals, these research results 

provide a deeper understanding of the VSSLMS algorithms, and may 

be potentially used in other applications.

It is clear to see that in the ANC stage, the optimal tap-length 

for the adaptive filter is unknown. To search for a good choice of 

the steady-state adaptive filter tap-length, variable tap-length LMS 

(VTLMS) algorithms are needed. New research results have been ob­

tained for VTLMS algorithms, i.e., a steady-state performance analysis 

of the FT algorithm, which is a robust VTLMS algorithm; improvement 

of the convergence performance of the FT algorithm in a high noise con­

dition by utilizing a convex combination approach; and a new practical 

variable tap-length LMS algorithm for applications in which the opti­

mal filter has an exponential decay impulse response. All the analysis 

and proposed algorithms are confirmed and supported by simulations. 

Again, although these research results can not be used directly in the 

proposed RT estimation framework due to the statistical nonstationary 

of both the input and noise signals, they are potentially very useful in 

many applications yrhere the optimal tap-length of the LMS algorithm 

is unknown.

The idea of variable tap-length is also introduced for the first time 

into the BSS research area, in particular for a key sequential BSS algo­
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rithm, the NG algorithm. A variable tap-length NG algorithm is pro­

posed to search for a good choice of the adaptive filter tap-length. As 

shown by the simulation results, the proposed algorithm can converge 

to a tap-length which provides a good trade-off between the steady- 

state performance and computational complexity. Due to the similarity 

of the optimal tap-length model for the LMS algorithm and the BSS 

algorithms, more research is required for variable tap-length BSS algo­

rithms. The idea of variable tap-length can be potentially extended to 

multi-channel BSS problems.

8.2 Overall conclusions and future work

It has been shown that the proposed RT estimation framework performs 

well under a simulated high noise environment. The accuracy of the 

RT estimations is improved due to the noise reducing preprocessing. 

The research results on VSSLMS algorithms are very useful for a high 

noise environment. The research results on VTLMS algorithms and the 

variable tap-length NG algorithm provide new blind signal processing 

techniques for applications where the optimal tap-length of the adaptive 

filter is unknown. To make the proposed RT estimation approach more 

practical in reality, future research is suggested:

1. The key step of the proposed method is clearly the BSS stage. 

Normally, the outputs of BSS are not exactly filtered versions of the 

source signals, especially in a high RT environment, due to certain 

fundamental limitations, such as data length restrictions and modelling 

uncertainties. In practice, the outputs of BSS contain components from 

different source signals. It has been shown in the thesis that when the 

RT is less than 0.3s, the performance of BSS can be good for the RT
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estimation in a simulated high noise room. However, the room RT in 

many applications is larger than 0.3s, and therefore the performance 

of convolutive BSS algorithm is still poor. The improvement of the 

performance of convolutive BSS algorithms for long RT rooms is then 

the most valuable work for the proposed framework. Note that this 

work is also important to the BSS problem itself.

2. The existing VSSLMS algorithms and VTLMS algorithms, in­

cluding the research results presented in this thesis are not suitable for 

applications where both input and noise signals are statistical nonsta- 

tionary. New VSSLMS algorithms and VTLMS algorithms are needed 

to obtain robustness to such signals.

3. The concept of variable tap-length can be potentially utilized 

in other BSS algorithms, including muti-channel convolutive BSS algo­

rithms. More theoretical research is needed to investigate the relation­

ship between the performance of the BSS algorithms and their adaptive 

filter vector/matrix tap-length/order.
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