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SUMMARY

Infectious disease can affect the demography o f natural populations and, as a 
consequence, can alter the genetic variation within and between those populations. 
This study investigated long-term effects o f rabies-induced mortality on the 
demography and genetic variation in two Swiss red fox populations over ten to 
fourteen generations. In Switzerland, the last rabies epizootic persisted from 1967 to 
1999 and was continuously monitored by collecting fox carcasses throughout the 
country. Alongside records o f rabies tests and post-mortem data, tooth samples were 
systematically archived for ageing. In this study, DNA from 666 individual teeth was 
extracted. For 279 extracts, the concentration o f nuclear DNA was estimated in a 
quantitative PCR and found to be negatively correlated with storage time. After 
excluding samples with insufficient DNA concentration for reliable genotyping, 382 
samples were screened using between nine and seventeen canine and red fox specific 
microsatellites. Tooth samples were combined with 189 modem tissue samples. By 
assessing the age structure continuously throughout and after the rabies epizootic for 
the first population, population census size and age structure were found to be altered 
by the high rabies-induced mortality. In contrast, no long-term trends in genetic 
diversity were identified although a high variation of Ho, H e, Fis was discovered both 
in short-term and longer-term. A strong isolation-by-distance pattern was revealed for 
the second population by comparing individual pairwise genetic with spatial distances 
using modem samples. Furthermore, genetic data demonstrated that dispersal was sex- 
biased and diverted by the topography o f the landscape. When investigating isolation- 
by-distance patterns within the same population in 1971-73 and 1982-84 at lower 
population densities, density-dependant dispersal was observed. In conclusion, this 
study revealed no loss of genetic diversity in red foxes following a rabies epizootic 
despite a population bottleneck, yet highlights population density as an important 
factor to determine local spatial genetic structure.
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GENERAL INTRODUCTION

The red fox is one of the best-studied wild carnivores worldwide. A large variety of 

literature describes the red fox’s ecology and behaviour from the discovery o f its 

occurrence in urban habitat (Teagle 1967) to its threat to native species in Australia 

(Dickman et al. 1993). Most research on the red fox, however, has considered its role 

as a potential carrier and vector for disease, particularly rabies. The impact of the last 

rabies epizootic on the abundance of red fox populations in Europe has been 

documented in several countries and, dependent on the initial density, was reported to 

reduce populations substantially (Macdonald 1980; Macdonald & Voigts 1985). To 

date, rabies has been eradicated in all Western European countries {reviewed in 

Vitasek 2004). Nonetheless, the potential of re-infection is high (Chautan et al. 2000) 

because most populations recovered from the rabies-induced mortality and have even 

reached higher densities than prior the epizootic. Furthermore, rabies has remained 

widespread in Eastern Europe (Vitasek 2004).

Rabies epidemiology is tightly associated with the social structure, population 

dynamics and ecology o f the red fox (Steck & Wandeler 1980, Macdonald 1980). Fox 

dispersal is considered an important cause o f the spread of rabies {e.g. Wandeler et al. 

1974). Several studies have been carried out to describe fox density and social 

organization and with these findings obtained, models on fox contact rate and its 

implication for rabies control have been developed {e.g. Trewhella & Harris 1988, 

White et al. 1995). Infected foxes change their behaviour shortly after infection (Steck 

& Wandeler 1980, Artois et al. 1990). They become more active during daylight and 

lose their territoriality. By entering into neighbouring territories the disease can 

therefore be rapidly transmitted throughout the population (Artois et al. 1990). In 

general, the dynamics o f rabies is a function o f the density o f foxes -  or of the carrying 

capacity o f the habitat type -  and of their ability to disperse (Steck & Wandeler 1980, 

Macdonald 1980, Funk 1994). As a consequence, dispersal distances and directions 

have been the subject o f several field {reviewed in Chautan et al. 2000) and simulation 

studies {e.g. Artois et al. 1997, Tischendorf et al. 1998). Dispersal in red foxes is 

thought to be male biased and negatively correlated with population density 

(Trewhella et al. 1988). Despite the importance of dispersal for the spread of rabies, so
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INTRODUCTION

far, no study has yet applied population genetic methods to improve knowledge o f the 

rabies epizootiology in red foxes.

In a more general context, dispersal is central to our understanding o f the ecology and 

evolution o f species on a population and individual level (Clobert et al. 2001). 

Nonetheless gaining direct information about dispersal in the field is difficult (Koenig 

et al. 1996). As a consequence, population genetic methods based on Wright’s F- 

statistics and neutral genetic markers have been widely used to infer the rate of 

migration between populations (Neigel 2002). However, these estimates o f migration 

often reflect past rather than current levels o f gene flow (Rousset 2001). Recently, 

Rousset (2000) developed a method to infer dispersal pattern on an individual level 

assuming isolation-by-distance (IBD , Wright 1943, 1946). By estimating dispersal at a 

local scale, this method is less sensitive to temporal and spatial heterogeneity (Leblois 

et al. 2004).

Infectious disease can threaten small and endangered populations by making them 

more vulnerable to stochastic factors and, as a consequence, reducing their viability 

(May 1988, Woodroffe 1999). In this context, disease might have a serious impact on 

the genetic structure o f  populations (O’Brien & Evermann 1988) by reducing the 

population size significantly {i.e. demographic bottleneck). The consequence o f lower 

genetic variability can limit the adaptive potential o f a population and increase the rate 

o f inbreeding {e.g. Lande 1988). Despite the importance o f infectious diseases in 

conservation, little is known about its potential influence on the genetic structure of 

natural population. Furthermore, our understanding of mechanics, dynamics and 

persistence o f disease in natural systems remains poor (Funk et al. 2001).

Recent advances in molecular methods have revealed genetic information of historic 

samples by applying mitochondrial (Pichler & Baker 2000, Consuegra et al. 2002, 

Hadly et al. 2004) and nuclear genetic markers {e.g. Bouzat et al. 1998, Groombridge 

et al. 2000). Comparing the genetic structure o f historic and recent samples not only 

permits an assessment o f the level o f genetic diversity for a given time period, but can 

also provide and estimate for the rate at which genetic diversity changes (Pichler &
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INTRODUCTION

Baker 2000). Furthermore, temporal changes in allele frequencies facilitate estimating 

variance effective population size (e.g. Berthier et al. 2002) and population growth or 

decline (Beaumont 2003). Nonetheless, as DNA degrades over time (reviewed in 

Lindahl 1993), it is difficult to gain reliable genotype data from historic samples. In 

addition, sample size and sampling information of museum collections are often 

limited (Nielsen et al. 1999a). So far, only a few studies (e.g. Queney et al. 2000) have 

estimated the impact o f an infections disease on the genetic structure in natural 

populations. Finally, little is known about how changes in population size might affect 

the spatial genetic structure within and between populations over time.

The main objective o f my thesis was to assess the population genetic structure within 

two red fox populations following a rabies epizootic. Red foxes are substantially 

hunted, providing easy access for post-mortem analyses and tissue for population 

genetic studies. The convenience of the latter is further facilitated by the red fox’s 

relatedness to the domestic dog. Indirectly, this guarantees access to a large set of 

potential genetic markers (from the dog genome project). In Switzerland, monitoring 

o f red foxes is unique since hunting statistics have been recorded since the early 20th 

century. Following the arrival o f rabies in 1967, a long-term collection of foxes 

throughout Switzerland has been carried out to observe the ongoing rabies epizootic 

(Zanoni et al. 2000). As a result, a large number of historical tooth samples, individual 

rabies virus tests and post-mortem data have been continuously collected over 35 

years. Using these canine teeth as a source for DNA and accurate ageing, it was 

possible to reconstruct past genetic and demographic population structure.

This thesis is subdivided into four independent chapters followed by a combined list o f 

references. Contents and format o f each chapter are expected to represent one scientific 

publication. The general aims and a brief summary for the four chapters are the 

following:

The objective o f the first two chapters was to gain information on the quantity and 

quality of extracted DNA from historic tooth samples and subsequently to assess their 

feasibility for reliable genotyping. Moreover, patterns o f DNA decay were investigated
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by estimating the amount o f nuclear DNA for samples collected continuously over 35 

years. Methodological solutions were explored to facilitate consistent and efficient 

genotyping. The first chapter has already been published (Wandeler et. al. 2003a).

In the third chapter, the primary objective was to test for IBD within a continuous red 

fox population. Topographic effects on dispersal were inferred by comparing pairwise 

genetic with spatial distances in an IBD context. For this purpose, pairwise spatial 

distances between individuals were computed using a Geographic Information System 

(GIS). Based on the slope o f the regression between relatedness and spatial distance, 

an estimate o f average dispersal distance was inferred and compared with demographic 

data from the literature. In addition, sex-specific dispersal patterns were examined.

In chapter four, the effect o f rabies-induced mortality was assessed for age structure, 

sex-ratio and genetic diversity o f a local red fox population. Analyses were based on 

post-mortem data and historic and recent tooth samples, collected before, during and 

after a rabies epizootic and covering continuously 35 years.

The primary aim of the last chapter was to assess the spatial genetic structure within an 

growing and continuous red fox population. Individual based IBD was inferred for 

three distinct time periods representing three different population densities. Average 

gene dispersal distances were estimated for each period and temporal changes in allele 

frequencies and genetic diversity between time periods were assessed.

4



CHAPTER 1_____________________________________

Decay of Nuclear DNA in Historic Tooth Samples: 

Patterns, Methodological Constraints and Solutions.

Abstract
The amount o f nuclear DNA extracted from teeth of 279 individual red foxes {Vulpes 

vulpes) collected the last three decades was determined by quantitative PCR. Although 

teeth were autoclaved during initial collection, 73.8% o f extracts contained sufficient 

DNA concentration (> 5pg/pL) suitable for reliable microsatellite genotyping. 

However the quantity o f nuclear DNA significantly decreased over time in a non-linear 

pattern. The success o f PCR amplification using four examined canine microsatellites 

was dependent on fragment size and storage time. By including data from two different 

tests for human contamination and from frequencies of allelic dropout and false alleles, 

the methodological constraints o f population genetic studies using microsatellite loci 

amplified from historic DNA are discussed.
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CHAPTER 1

Introduction

Historic samples o f species are an important source for DNA in conservation and 

evolutionary studies. They allow us to reveal the evolutionary history of extinct 

species (e.g. Shapiro et al. 2002) and to address loss o f genetic variation in species 

with declining populations (e.g. Bouzat et al. 1998, Pichler & Baker 2000, Pertoldi et 

al. 2001). Furthermore, samples collected over several generations from different 

populations allow us to identify temporal dynamics of gene flow, genetic drift and 

selection (Nielsen et al. 1999a).

Nucleic acids gradually degrade over time owing to the accumulation of hydrolytic and 

oxidative damage (reviewed in Lindahl 1993). Thus one o f the main problems in using 

ancient and historic samples for genetic studies - apart from the frequently limited 

number o f samples and sample information available (Nielsen et al. 1999a) - is related 

to problems arising from low concentrations of DNA (Taberlet et al. 1996) and 

degraded DNA (Nielsen et al. 1999b). Studies using ancient DNA preferentially utilise 

mitochondrial DNA markers, mainly because up to 1000 more DNA copies per cell are 

available compared to single-copy nuclear DNA (Hoss 2000). Even so, small nuclear 

DNA sequences can be amplified in well-preserved specimens, as demonstrated in 

permafrost mammoth samples from the late Pleistocene (Greenwood et al. 1999). In 

fact, individual DNA profiles from human specimens up to 3,000-year-old were 

assessed by simultaneous amplification of microsatellite loci (Hummel et al. 1999). 

Using these polymorphic genetic markers to genotype historic samples allows the 

identification o f spatial and temporal genetic structure of natural populations, 

especially when historic and recent samples can be combined (e.g. Nielsen et al. 

1999a, Bouzat et al. 1998, Pertoldi et al. 2001). However, there may be a bias in 

genotyping results due to genotyping errors in samples with degraded DNA or very 

low amounts of DNA, and consequently special precautions are needed in order to 

ensure the accuracy o f microsatellite data (e.g. Navidi et al. 1992, Taberlet et al. 1996, 

Morin et al. 2001).

One error that may occur is allelic dropout, which is though to be the stochastic 

amplification of only one o f two alleles at a heterozygote locus. Allelic dropout is 

mainly explained by stochastic events when pipetting very diluted DNA (Taberlet et
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CHAPTER 1

al. 1996). The clear relationship between the initial amount o f template DNA and the 

proportion o f PCRs with allelic dropout in microsatellite markers was demonstrated by 

Morin et al. (2001) by initially quantifying the amount of extracted DNA from non- 

invasive samples using a quantitative PCR (qPCR) assay. Furthermore, low numbers 

o f target molecules can also lead to PCR-generated false alleles, probably 

corresponding to slippage during the first few cycles o f amplification (Taberlet et al. 

1996, Goossens et al. 1998).

Although the decay o f nuclear DNA over time has been demonstrated in a number of 

empirical studies (e.g. Nielsen et al. 1999b, Hummel et al. 1999), to the best of my 

knowledge it has not previously been quantified. The objective o f this study was to 

quantify amplifiable amounts o f nuclear DNA extracted from samples o f red fox teeth 

collected and stored over a period of 30 years, to test their quality in relation to storage 

time and to discuss methodological limitations when using this DNA as a template for 

microsatellite amplification.

Methods

Historic tooth samples

Since 1967, hunters and game wardens provided red fox carcasses throughout 

Switzerland to the Swiss Rabies Centre at the University of Bem for the surveillance 

o f rabies. Individual data were systematically recorded on date o f delivery and 

included sex and site o f origin. Age of individuals was initially estimated as either 

juvenile or adult by measuring the relative width of the pulp cavity of a canine tooth by 

X-ray (Kappeler 1985). In order to extract the caninus tooth, the lower jaw of each 

carcass was removed and autoclaved with the objectives of eradication of any rabies 

virus and facilitation o f removal of the teeth. One tooth per individual was then fixed 

onto strong paper by adhesive tape and X-rayed. Subsequent storage o f teeth was at 

room temperature in laboratories or cellars until 2000, when all teeth were moved to 

the Natural History Museum o f Bem for archiving. A portion (10mm) o f the root-tip of 

all adult individuals was removed and subsequently aged by counting annual
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cementum lines (Kappeler 1985)1. Under the assumption that all animals were bom on 

the 1st April, we estimated lifespan in months. Individual storage time o f teeth was 

calculated as the number of days between delivery to the Swiss Rabies Centre and 

DNA extraction date.

DNA extraction from  teeth

DNA from tooth samples was extracted following a revised protocol after Yang et a l 

(1998) using a PCR purification kit (QLAquick®, Qiagen). For juveniles the whole 

tooth, or for adults, the tooth crown remaining after ageing was sealed in a zip-bag and 

frozen for 20s in liquid nitrogen. After grinding the sample in a small steel mortar, the 

powder was transferred into a 2mL microcentrifuge tube and 1.1 -  1.7mL of EDTA 

buffer (0.5M, pH 8.0) was added. The mixture was incubated under agitation at room 

temperature for 72h. The samples were digested twice at 56°C under agitation over­

night. For the first digestion, 60pL of 10% N-sarcosyl and 540pg o f proteinase K were 

added. For the second digestion, an additional 260pg of proteinase K was used. After 

centrifugation, lm L o f supernatant was transferred in a lOmL tube containing 5mL PB 

Buffer (Qiagen) and mixed. The remaining supernatant was stored at -70°C for future 

DNA extractions. DNA was bound to the QLAquick silica membrane using a vacuum 

manifold (QIAvac24; Qiagen) at -400mmHg. Multiple loading was avoided by 

transferring the total solution into a small funnel (55mm disposable funnel; CAMLAB) 

resting on the QIAquick column. Silica membranes were washed twice with 500pL of 

PE Buffer (Qiagen) and then dried by centrifugation. DNA was eluted in 100pL of 

lOmM Tris-Cl (pH 8.5) and diluted to a final volume of 200pL with distilled water. 

Before each extraction mortars and disposable equipment were decontaminated by 

exposure to UV-light or by thoroughly rinsing with 4% bleach.

Quantification o f  nuclear DNA2

Total amount o f extracted nuclear DNA was estimated by qPCR. A 5’ exonuclease 

assay was used, which targets an 81 bp portion of the highly conserved c-myc proto­

oncogene (Morin et al. 2001). The assay was performed using an ABI Prism® 7700 

Sequence Detector (ABI) in 20pL PCR reactions containing 5pL of DNA extract as

1 All tooth samples were aged by Matthias Ulrich, Bem, CH.
2 QPCR assay was developed by Phil Morin and Steve Smith, Leipzig, G. Quantification o f nuclear 
DNA was performed by PW and Steve Smith.
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described in Smith et al. (2002). A triplicate set o f eight standards of known DNA 

quantity and no-template controls were included in the assay. A single preparation of 

the PCR reagent mix for all DNA extracts, standards and controls was applied. 

Amounts o f nuclear DNA per PCR sample were estimated on the basis of the standards 

according to Morin et al. (2001). The total quantity o f extractable DNA per tooth was 

then estimated taking into account the proportion of supernatant, which was not 

extracted after the digestion steps.

Human contamination tests3

The c-myc81 assay does not target exclusively the DNA of a species of interest, but 

also contaminant human or other DNA, if present. Consequently, we tested all extracts 

for contamination using two different methods. The first method is based on 

differences between red fox and human target sequences in 5’ exonuclease assay 

efficiency caused by oligonucleotide mismatches (Smith et al. 2002). The efficiency of 

the #PCR amplification for all extracts was attained by using a 239bp assay targeting 

the c-myc proto-oncogene and by subsequent comparison o f amplification plot slopes 

(APS; Smith et al. 2002 / Red fox template DNA does not perfectly match the 5’ 

exonuclease assay probe in the c-myc239 assay (three mismatches, data not shown), 

leaving a less efficient template for cleavage o f the probe. Dilution series of known 

levels of human and red fox DNA (percentage o f human DNA were: 100, 75, 50, 40, 

25, 15, 10, 5, 2.5, 1, 0.5 and 0; a constant total DNA concentration o f 6ng/pL was 

maintained) were analyzed to define the threshold of APS value to detect human 

contamination. PCR conditions were identical with c-myc81 except that the annealing 

temperature was reduced from 59°C to 55°C and the subsequent ramp time to 95°C 

was slowed to 45s.

The second test for contamination with human DNA utilized a human microsatellite 

(HLABC-CA2; International Histocompatibility Working Group; www.ihwg.org) of 

small fragment-size (between 96 -  134bp). PCR was performed in a lOpL reaction 

volume containing 2pL o f DNA extract, 0.5mM dNTPs, 3pmol primers, 2pg BSA, 

0.4U HotStarTaq (Qiagen), PCR-buffer (Qiagen) and 2mM MgCb- PCR was carried 

out in a GeneAmp ® PCR System 9700 (ABI) using the following cycling parameters: 

lOmins o f initial denaturation at 95°C, followed by 50 cycles of 25s at 94°C, 30s at

3 APS -  values were computed by Steve Smith and PW.
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60°C annealing temperature and 40s extension at 72°C, finished by a final extension of 

12mins at 72°C. All PCR products were electrophoretically separated using an ABI 

Pnsm 377 DNA sequencer (ABI). Allele sizes were scored against the size standard 

GS350 Tamra™ (ABI) using GENESCAN™ Analysis and GENOTYPER™ software.

Canine microsatellite markers

All DNA extracts were genotyped twice for four canine microsatellites (AHT-130; 

Holmes et al. 1995; CXX-466, CXX-374 and CXX 436; all Ostrander et al. 1995), 

which amplify fragment sizes ranging from 118 to 246bp in red fox. PCR was carried 

out in a 6pL reaction volume containing 2pL o f template DNA, 0.5mM of dNTPs, 

2.5pmol primers, 1.2pg of BSA, 0.3U HotStarTaq® (Qiagen), PCR PARR™ Buffer 

(CAMBIO) and 1.5mM MgCh. Cycling conditions and genotyping procedure were 

identical with HLABC-CA2 apart from locus specific annealing temperatures (AHT- 

130: 56°C; CXX-466, CXX-374 and CXX-436: 60°C). The number o f positive 

amplifications in two independent PCR reactions was recorded. Two subsets of 

samples collected before 1974 (n = 48) and after 1994 (n = 41), respectively, were 

genotyped a further three times to a total of five independent PCR amplifications for 

loci AHT-130, CXX-466 and CXX-374. For these two subsamples, the frequency of 

allelic dropout and false alleles across successful PCR amplifications was calculated 

only for extracts with three or more positive amplifications per locus.

The DNA extraction of the teeth and the PCR preparations for the human and canine 

microsatellite markers were performed within a spatially isolated laboratory dedicated 

for samples with low-copy DNA at the Institute of Zoology in London, UK. 

Throughout all procedures, special care was taken to avoid cross-contamination and 

contamination with contemporary DNA. Replicas of the canine microsatellite 

amplifications for all four polymorphic loci together with the sequential number and 

batch number of the DNA extraction allowed to detect contamination and hence to 

verify the viability o f individual genotypes. Extraction and genotyping was not 

replicated in a second laboratory because no such evidence for contamination between 

extracts or contamination with contemporary fox DNA was obtained (Hofreiter et al. 

2001). QPCR assays were carried out at the Laboratories for Conservation Genetics in 

Leipzig, Germany.
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Statistics

The statistical significance o f explanatory variables in relation to the amount o f the 

quantified nuclear DNA per tooth extract was tested using generalized linear models 

(GLM’s; Crawley 1993). The frequency distribution of the response variable (estimate 

o f nuclear DNA present in each sample) was skewed; however, the log transformation 

o f the values normalised the data and allowed a Gaussian error distribution to be fitted. 

All relevant explanatory variables were then added to the model, and non-significant 

variables sequentially removed in order of lowest explanatory power until only those 

terms that were significant remained in the model. The deleted terms were then 

reintroduced into the model to confirm their non-significance.

The relationship between the probability of successful PCR amplification at each locus 

and the storage time o f each tooth sample was analysed using logistic regression 

within a generalized linear mixed model (GLMM) framework.4 This mixed modelling 

is used specifically to account for the non-independence of data (Goldstein 1995; 

Longford 1993); in this instance, the four microsatellites amplified from each tooth 

sample were not independent of one another. For this approach, the relationship 

between the four outcomes (the success score for each microsatellite) for each tooth is 

explicitly coded as a random effect at the lowest level, ‘nested’ within the second 

random effect, namely tooth identity code (see Goldstein 1995; Rasbash et al. 2000). 

The fixed effects are then entered as explanatory variables as described for the GLM 

above. The GLMs and the logistic regression models were fitted using S-PLUS 2000 

(MathSoft) and MLwiN (Rasbash et al. 2000) was used to fit the GLMMs.

Results

DNA was extracted from 279 tooth samples (0.72 ± 0.16g) collected between 1969 and 

2000. Twenty (7.12%) extractions failed to amplify in the c-myc81 assay, of which 18 

were stored for more than 10,000 days. The estimated nuclear DNA concentration 

ranged between 0.42pg/pL and 8,747pg/pL per extract. In 22 extracts (7.88%), a 

concentration higher than l,000pg/pL was calculated. 73.8% o f extracts contained

4 GLMM analyses were performed by Richard Pettifor, London, UK in the presence of PW.
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sufficient DNA concentration (> 5pg/pL) in 200pL volume suitable for microsatellite 

genotyping (Morin et al. 2001).

Statistical analyses showed that storage time was a highly significant explanatory 

variable (Figure 1; p  < 0.0001), alongside tooth mass and the age o f the individual 

(juvenile or adult; Table 1). The quantified amount of DNA extracted from each tooth 

sample decayed non-linearly with storage time (Figure 1). The presence of human 

contamination also significantly explained some o f the total variance in the estimated 

amount of DNA extracted; however, this was only true for the microsatellite based 

(HLABC-CA2) method, and not for the qPCR (c-myc239) based approach (Table 1).

Across the series o f twelve known contamination levels, the APS values for the c- 

myc239 assay varied between 0.030 for 100% fox DNA to 0.124 for 100% human 

DNA (data not shown). Based on these results, an APS value greater than 0.045 was 

taken to indicate human contamination level of at least 5% because smaller levels of 

human contamination could not be reliably distinguished from pure fox DNA. In total, 

107 samples (38.9%) failed across all 275 tested extracts. Based on the predefined 

threshold APS value, 109 (64.9%) of the 168 remaining extracts indicated human 

contamination. Human contamination was detected in 110 (40.0%) o f 279 tested 

samples by microsatellite typing (HLABC-CA2) and a total number of 13 different 

human alleles were revealed. The mean number o f amplified alleles across 

contaminated extracts was 1.423 (range 1-3). Both test revealed human contamination 

in 72 (25.8%) samples, whilst one or the other test indicated contamination in a further 

60 (21.5%) samples.
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Figure 1 Relationship between the estimated quantity o f nuclear DNA (c-myc81 assay) in DNA 
extractions from teeth versus storage time. Note that values for the estimated quantity o f nuclear DNA are 
shown in a logarithmic scale on the y axis. The cross refers to an outlier, by excluding this sample the 
equation for the regression is: log(DNA quantity) = 5.550 -  3.862E"4 * time + 1.597E'8 * time2 ; r2 = 0.471).

Across all four loci, the probability of a positive amplification of the two independent 

PCR reactions declined significantly with storage time (X*i = 151 J ; p < 0  .001, Figure 

2). After controlling for storage time, there were also significant differences in the 

probabilities o f amplification across the four microsatellites (A’S  = 155.7; p  < 0.001). 

The mean observed success-rate in two independent PCR reactions were 0.56 (AHT- 

130), 0.54 (CXX-466), 0.39 (CXX-374) and 0.27 (CXX-436). Based on their joint 

confidence intervals (to account for multiple testing) there were significant differences 

between all pair-wise comparisons across all loci (all p  < 0.0001), except between loci 

AHT-130 and CXX-466 (X2] = 0.60; ns). Amplification performance among the four 

canine loci was dependent on fragment-size, as indicated by the dissimilar slopes for 

positive PCR and as represented by a significant interaction between time and 

microsatellites (X2} = 33.1; p  < 0.001, Figure 2). Whilst all four loci showed similar 

PCR performance in more recently collected tooth samples, the slopes of the
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regressions declined at differing rates according to ffagment-size (Figure 2), such that 

the largest microsatellites decayed more rapidly than the shorter ones.

Table 1 GLM o f variables determining the estimated total quantity o f nuclear DNA extracted from teeth. 
The estimation o f nuclear DNA quantity was based on the c-myc81 assay. Shown are the results for the 
significant and non-significant coefficients. One outlier (see Figure 1) was excluded from the model. 
Overall statistic for the GLM was: Fs, 252= 62.94; p  < 0.001; r2 = 0.555.

Dependent variable Log o f pgDNA / tooth sample

Significant coefficients
DF t P Estimate SE

(Intercept) 4.7182 0.2312
Storage time [day] 1 -7.193 <0.0001 -4.198E-4 5.836E'5
Tooth mass [g] 1 5.176 <0.0001 1.2776 0.2468
Storage time [day]2 1 4.165 <0.0001 1.885E'8 4.527E'9
Human contamination (HLABC-CA2) 1 2.561 <0.02 0.1069 0.0417
Age (Juvenile or adult) 1 2.202 <0.03 0.0953 0.0433

Non-significant coefficients
Individual age [month] 1 1.899 0.059
Human contamination (c-myc239) 1 1.221 0.223
Sex (female) 1 0.235 0.814

(male) 1 0.931 0.353
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Figure 2 Probability o f positive PCR amplification in four microsatellites different in fragment size 
versus storage time o f historic tooth samples. Shown are the predicted models o f the logistic regressions 
for each locus based on two independent PCR amplifications per loci for 257 extracts. Circles indicate 
categorical means for observed values.
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Mean storage time ± SD for the two sample sets collected before 1974 and after 1994 

were 1,461 ± 472 and 10,640 ± 327 days, respectively. The frequencies of allelic 

dropout within the subsample ‘>1994’ compared with subsample ‘<1974’ were 

consistently smaller for the three examined loci (AHT-130: 2.69% vs. 17.91%; CXX- 

466: 2.50% vs. 19.64% and CXX-374: 8.15% vs. 52.20%). Further the frequency o f 

allelic dropout for both subsamples was considerably higher for the largest examined 

locus CXX-374 compared with AHT-130 and CXX-466 (Table 2). The frequency of 

false alleles ranged between 0.0% and 4.00% across the three loci and subsample 

(Table 2).

Table 2 Frequency o f allelic dropout and false alleles o f three microsatellite loci in two sub­
samples o f teeth extractions across a total of five independent PCR amplifications with three or 
more successful amplification. Shown are the total number of tested (n) and successful extracts, 
mean o f successful PCR amplifications per extract, and the percentage (total number) of allelic 
dropout and false alleles.

n Successful extracts Allelic dropout False alleles

AHT-130 (98-118bps)r v i  i  i  -  i  v /  i  i  u o p

<1974  48 17 3.94 17.91 (12) 2.99 (2)
>1994 41 41 4.53 2.69 (5) 1.08 (2)

CXX-466 (144-154bps)
<1974 48 13 4.30 19.64 (ID 1.79 (1)
>1994 41 41 4.87 2.50 (5) 1.00 (2)

CXX-374 (189-203bps)
<1974 48 6 4.17 52.00 (13) 4.00 (2)
>1994 41 40 4.84 8.15 (15) 0.00 (0)

Discussion

A unique set o f historic tooth samples collected continuously over three decades 

provided the opportunity to describe and to quantify the pattern o f nuclear DNA decay 

over time. This study indicates that historic teeth can be a good source for extracting 

DNA even after being autoclaved and stored at room temperature. Similar findings of 

the usefulness o f tooth samples as a reliable source for DNA from museum samples 

were described e.g. by Pichler & Baker (2001) and Pertoldi et al. (2001). Nevertheless, 

nuclear DNA degraded rapidly in a non-linear pattern in the examined teeth and PCR 

amplification from older samples often failed or did not provide reliable genotyping.
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It can be well assumed that the initial treatment o f the samples by autoclaving caused a 

rapid initial decay o f DNA whereas the subsequent storage in very dry conditions may 

have delayed further decay. DNA in dental pulp is thought to be more stable against 

heating, because the hard tooth tissue mitigates the effect o f heating (Murakami et al. 

2000). The higher amount of tissue within the pulp of a juvenile tooth - which is 

responsible for the growth of it - determined the greater amount of quantified DNA in 

juvenile samples. Bones and skulls from vertebrate specimens in museums are often 

boiled within organic or inorganic solutions to macerate and degrease for preservation 

(Piechocki 1979). Therefore, similar initial decay as demonstrated in this study might 

have taken place in other museum collections. On the other hand, even more rapid 

degradation over storage time may be expected under non-ideal conditions such as the 

absence o f central heating or more fluctuating and higher humidity.

The degradation o f DNA in our samples determined also the PCR success-rate over 

time o f the four tested microsatellites differing in fragment size, which is characteristic 

for the amplification o f degraded DNA from ancient material (Hummel et al. 1999). 

As a result o f the highly diluted and degraded template DNA in the samples older than 

1974, the frequency o f allelic dropout and false alleles were consistently higher than in 

the samples from 1994 onwards. Additionally, the rate of dropout tended to be 

positively correlated with the fragment size of the examined loci. To address the 

degraded quality o f nuclear DNA and the demonstrated dissimilarity of success-rate in 

PCR amplification of loci different in size, only short microsatellite markers with 

small differences in allele sizes should be chosen for studies based on historical 

material, as recommended by Nielsen et al. (1999b).

Human contamination was common in the extracts. Because no precautions were taken 

when the samples were collected, and when they were moved and archived, human 

DNA was likely to be transmitted when teeth were handled without adequate 

precautions {e.g. no gloves were used for handling). The results o f the two tests for 

human contamination (c-myc239 and HLABC-CA2) were not identical. Because the 

human DNA could be expected to be highly diluted, it caused random lack o f template 

DNA for individual PCR amplifications, leading to negative PCR reactions. This effect 

was more distinct in the microsatellite-based method where less template DNA per
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single PCR reaction was used. A second explanation for the dissimilar results of the 

two tests might lie in the minimum level of human template DNA required for 

detection in the qPCR assay, which was probably not attained in some of the 

contemporary samples with a high quantity o f red fox DNA. Finally, the 239bp long c- 

myc239 qPCR could have simply failed because the nuclear DNA was too degraded in 

older samples. Although the general presence o f traces of human DNA does not 

influence the outcome of non-human species-specific genotyping, the incidence of 

contamination has to be addressed on an individual level when samples are pre­

screened to quantify the amount of nuclear DNA for accurate genotyping (Morin et al. 

2001).

Comparing the genetic composition of past and recent populations is a convincing 

approach to gain new and valuable insight in a population’s interaction with its 

environment over time. As demonstrated in this study, nuclear DNA can rapidly decay, 

leaving only low copy numbers of degraded template DNA for microsatellite 

amplification. Moreover, the decay may reduce significantly the number of samples 

suitable for analysis. Since the risk of genotyping error and in particular the frequency 

o f allelic dropout covaries with the available concentration of DNA (Morin et a l  2001) 

and with fragment size (in this study), the genetic polymorphism of older samples can 

be systematically underestimated. This might be the case when the number of required 

repetitions for accurate genotyping of homozygotes is defined by the frequencies of 

allelic dropout averaged over all individuals (Gagneaux et al. 1997). Hence, for each 

individual, independent replications of PCR reactions (Navidi et al. 1992, Taberlet et 

al. 1996, but see Valiere et al. 2002) are consequently needed for reliable genotyping. 

This multiple tubes approach (Taberlet et al. 1996) requires a priori, and without 

consideration o f the likelihood of allelic dropout, as defined by DNA quantity, a 

substantial number o f replicates -  including failed PCR amplifications - which will 

limit the number o f analysable loci (Morin et al. 2001). Quantification of DNA is 

extremely useful not only because it identifies those DNA extracts with increased 

likelihood o f dropout, but also because it avoids waste of limited samples when DNA 

quantity is high (Morin et al. 2001).
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Short microsatellite DNA markers for the red fox 

{Vulpes vulpes).

Abstract
Seven short microsatellites loci (< 165bps) and species-specific primers were 

characterized for red foxes with the emphasis to amplify degraded DNA from historic 

samples. Following PCR amplification using primers developed in the domestic dog, 

red fox specific primers were designed within the flanking region. The number of 

detected alleles ranged between six and 15 alleles and the expected heterozygosities 

ranged between 0.67 and 0.92. No deviations from Hardy-Weinberg equilibrium were 

detected for any of the markers.
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The red fox ( Vulpes vulpes) is one of the best-studied wild mammals worldwide. A 

large variety o f literature is available on red fox ecology and behaviour, it’s 

introductions and the resulting implications for endangered species and its role as a 

vector of zoonotic diseases. Several studies have applied dog-specific microsatellite 

primers to assess the genetic structure between and within red fox populations (Baker 

et al., 2004; Lade et al., 1996; Robinson, Marks, 2001; Swanson et al., 2005; 

Wandeler et al., 2003a).

Comparing historic and recent samples allows to assess the temporal dynamics of 

genetic drift, gene flow and selection. However, DNA degrades over time (Lindahl, 

1993) and as a consequence the success of PCR amplification in microsatellites from 

historic DNA is found to be higher for shorter PCR products {e.g. Hummel et al., 

1999; Nielsen et al., 1999; Wandeler et al., 2003b). PCR success for historic DNA 

samples is also reduced by the use of degenerate primers since degenerate primers 

have an increased likelihood of primer mismatches. Furthermore, primer mismatches 

can increase the potential of null-alleles. The aim of this study was to design primers 

that are specific for red foxes and produce short PCR products. New primers were 

designed in the flanking region o f microsatellites amplified using primers 

characterized in domestic dogs {Canis familiaris).

Eight canine microsatellite loci (AHT-142, Holmes et al. unpublished; CXX-374, 

CXX-402, CXX-436, CXX-468, CXX-502, CXX-602, CXX-622; all Ostrander et al., 

1995) were selected, based on successful cross-specific amplification o f red foxes 

(Funk, unpublished), and screened in three samples representing different Swiss 

populations. PCR was carried out in a 30 pL  reaction volume consisting of 3 pL  of 

template DNA, 0.8 pM  o f each dNTP, 0.5 U of taq polymerase and two different
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MgCh concentrations (1.5 mM and 3 mM, respectively). PCR amplification was 

performed in a GeneAmp® PCR System 9700 (ABI) using the following cycling 

parameters: 4 min of initial denaturation at 95 °C, followed by 30 cycles o f 30 s at 94 

°C, 30 s at two annealing temperatures (60 °C and 55 °C, respectively) and 30 s 

extension at 72 °C, and a final extension o f 10 min. PCR products were 

electrophoretically separated on an agarose gel alongside size standards and visually 

analysed with regard to amplification intensity and size. The most unambiguous PCR 

products for the three individuals across the two different MgCh concentrations and 

annealing temperatures were pooled for each locus and subsequently purified using a 

PCR purification kit (QIAquick®; Qiagen). Purified PCR products were cloned using 

standard TA cloning following the manufacturer’s protocol (TOPO TA Cloning® kit or 

TA Cloning® kit; Invitrogen). Plasmids were tested for the correct insert size by ECO- 

R1 digestion and plasmid DNA was subsequently purified using the QIAGEN’s 

miniprep kit (QIAprep®). Forward and reverse sequencing was performed using 

BigDye™ Terminator v3.0 (ABI), Better Buffer (webscientific) chemistry on a ABI 

Prism® 377 DNA sequencer. Sequences were aligned and edited in B io E d it (v.5.0.9.). 

Between one and six clones were sequenced for each primer pair.

Sequence data o f between one and six different clones for each locus revealed 

microsatellite tandem repeats homologous to the domestic dog. In addition, several 

point mutations and deletions within the flanking regions were detected (data not 

shown). Finally, primers specific for red foxes were designed in P rim e r3  (Rozen, 

Skaletsky, 2000).
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Fox-specific primers were tested in 26 foxes from Eastern Switzerland. Genomic DNA 

was isolated from muscle tissue using a Wizard® SV96 Genomic extraction kit 

(PROMEGA). Amplification was conducted in a final volume o f 6 pL  containing 3 pL  

o f PCR master-mix (Qiagen’s PCR multiplex kit), 0.2 pM  o f each primer (one of 

which was labelled with a fluorescent dye) and 2pL  o f template DNA. PCR was 

performed in a GeneAmp® PCR System (ABI) using the following cycling parameters: 

15 min o f initial denaturation at 95 °C, followed by 30 cycles o f 30 s at 94 °C, 120 s at 

58 C° and 60 s extension at 72 °C and a final extension of 30 min at 60 °C. Fragment 

analysis was performed on a ABI Prism® 377 DNA sequencer (ABI).

Fragment analysis for V I42, V374, V402, V468, V502, V602 and V622 indicated 

consistent results across different alleles and individuals. However, allele sizes for 

V I42 and V602 followed a mononucleotide repeat distribution, most likely caused by 

an inconsistent single nucleotide deletion within the flanking region. Locus V436 

showed irregular positive stutter-bands for several of the scored alleles and was 

therefore excluded from further analyses. The number of alleles per locus, fragment 

size range and observed and expected heterozygosity are listed in Table 1. PCR 

success across all individuals and loci was 100%. Using G enepop v3.1 (Raymond, 

Rousset, 1995; probability-test), no significant deviation from Hardy-Weinberg 

equilibrium was detected. By combining these seven red fox specific genetic markers 

with eight short canine microsatellite markers (AHT-130, Holmes et al., 1995; CXX- 

156, CXX-250, CXX-279 Ostrander et al., 1993; CXX-434, CXX-466, CXX-606, 

CXX-608, Ostrander et al., 1995; all less than 175 bps in size, Wandeler et al., 

unpublished) a set o f highly polymorphic genetic markers to study historic samples of 

red foxes is now available.
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Table 1 Characterization o f seven red fox ( Vulpes vulpes) microsatellite loci based on a sample o f 26 individuals.

Locus
dog fox

Nc Repeat pattern Primer sequence 
5 ’-> 3 ’

Size range 
[bp]

n a H0 h e

AHT-142 V142 3 (TG)i4|6,18
AAGCAGATCCTAGAGCAGCA
CCCCACAGTTTAGAAATATCTGC 133-148 10 0.85 0.80

CXX-374 V374 6 (CA)g.j3 GACAGAAAGACAGAAGGCTTAG
TACACACAGGAAGTAATGGGG 106-118 6 0.88 0.89

CXX-402 V402 3 (TG)9h i3 GGGTAATTCATCCAGTGCCTT
TATGCAAACATGCAAACATGC 7 8 -9 0 7 0.69 0.78

CXX-468 V468 4 (AC)|6-|9
TCTCCCACCCAAATCTCTTG
GCCTGTAGACTTTTTAGTCCCG 8 2 -9 4 7 0.96 0.92

CXX-502 V502 1 (AC)8T(CA)7 ACCCAAGTGTCCTCCATAGAT
TGGCCAAGTACTCTTCCACT 7 9 -9 1 6 0.62 0.67

CXX-602 V602 5 f'rT'k ( C A \  CAGCCTGGACTACAATTCTCTTT 
t'- 1 ll3,l4,18\C^vl5,18,l9 CCCCAAGTCTTTTGTCCAGA 140- 162 15 0.88 0.77

CXX-622 V622 4 (TG)i7.2o
TTTTTTGAAAAGCACACCC
TGCTTTGTGTATCTTTTCTTTC 91 - 115 6 0.73 0.77

jVc, Number o f different clone sequences (GenBank accession nos AXXX - AXXX)
Na, Number o f alleles; HQ, observed heterozygosity; HE expected heterozygosity

23



CHAPTER 3

Inferring Dispersal in a Continuous Population of 

Red Foxes Using Genetic Methods.

Abstract
Dispersal is one o f the most important factors in shaping the genetic structure of 

populations. An understanding of dispersal is consequently essential when studying 

the ecology, evolution and conservation of a species. Yet, gaining direct information 

on dispersal in natural populations is considered to be difficult. In an attempt to better 

understand dispersal in red foxes ( Vulpes vulpes), individual genetic and accurate 

spatial data o f a continuous population in the Swiss Alps (study area of 4189km2) 

were combined to obtain indirect estimates of sex-bias, distances and direction of 

dispersal. A total of 145 tissue samples were sexed using a molecular marker (SRY) 

and genotyped using 17 microsatellite loci. Isolation-by-distance (IBD) was tested by 

comparing pairwise individual genetic with Euclidian spatial distances. Given the 

slope o f the IBD  regression and effective population size, the mean effective dispersal 

distance was inferred and contrasted with a demographic estimation of dispersal 

distance from mark-recapture studies. Sex-biased dispersal was investigated by 

comparing sex-specific heterozygote deficits (Fis - values) and IBD patterns. Spatial 

analyses were performed in a geographic information system (GIS) based on an 

elevation model. Pairwise genetic distances between individuals were compared with 

a sequence o f ten spatial distance matrices, which accounted increasingly for the 

topographic structures of the study area. Significant IBD  and male-biased dispersal 

was observed. The effective dispersal distance (3,794m; 95%CI: 2,764-11,134m) 

inferred from genetic data was considerably smaller compared to the demographic 

estimate (8,925m) from the literature. The sum of fit (r ) for the regressions between 

individual spatial and genetic distances increased when topographic structures were 

taken into account. Differences between sex-biased dispersal and the estimated 

genetic and demographic dispersal distance are discussed in respect to the relationship 

between topography and fine-scale spatial genetic structure.
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Introduction

Dispersal and estimating dispersal in the fie ld

Studying dispersal is central to our understanding of the ecology and evolution of 

species on an individual, population and species level (Clobert et a l 2001). Natal 

dispersal, or the permanent movement from an animal’s birthplace to that of its first 

offspring (Greenwood 1980) counteracts local adaptation and genetic drift (e.g. 

Wright 1977). From an ecological viewpoint, dispersal influences the distribution 

pattern, the dynamics and persistence of populations and therefore affects the 

abundance of a species and its distribution (Dieckmann et al. 1999). In conservation, 

dispersal can be vital in maintaining gene flow between small populations by reducing 

the effects of inbreeding (e.g. Vila et al. 2003) and by allowing the natural re­

colonization o f areas in which populations have become extinct (Hanski 1998, Sumner 

et al. 2001). Moreover, dispersal and its restoration by management is vital for 

conservation planning for fragmented populations.

Gaining direct estimates o f dispersal distances from natural populations by capture- 

mark-recapture is difficult (Koenig et al. 1996). By applying this method, direct 

estimates o f dispersal can underestimate large-scale dispersal events systematically 

because the fate o f dispersing animals often remains unknown (Koenig et al. 1996, 

Spong & Creel 2001). Although radio-tracking techniques might represent a good 

alternative approach for studying dispersal pattern (Koenig et al. 1996), the logistic 

and personal effort involved is extensive (Funk 1994, Zimmermann et al. unpublished 

data). Moreover, both methods of assessing direct dispersal distances fail to address 

the issue o f whether successful dispersers reproduce after successful colonization 

(Koenig et al. 1996).

Population genetic methods to infer dispersal

Population genetics has long been recognized to contribute to our understanding of 

dispersal. Based on Wright’s F-statistics and neutral genetic markers, indirect 

estimates for dispersal - by the number of migrants (Nm) - can be inferred (e.g. Neigel 

1997). However, these estimations often estimate historical rather than current degrees 

o f gene flow (Koenig et al. 1996, Thompson & Goodman 1996, Rousset 2001; but see 

Neigel 2002).
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An alternative approach is to use ‘assignment-tests’, which estimate recent migration 

patterns between known populations by assigning individual genotypes to populations 

in which their greatest frequency is expected (e.g. Paetkau et al. 1995, Waser & 

Strobeck 1998). Because this approach requires a significant level of genetic 

differentiation among populations (Comuet et al. 1999) it is less suitable when the 

genetic structure among populations is expected to be small. Assignment-tests rely on 

a priori defined discrete population patterns, which might not reflect population 

subdivision in reality (Manel et al. 2004). Further, these tests are less informative 

when potential source populations are not sampled. However, such ‘cryptic 

population’ can be theoretically detected by using admixture models (e.g. 

STRUCTURE, Prichard et al. 2000; Falush et al. 2003) and a sufficiently large 

number o f immigrant individuals from the non-sampled population. Finally, it is 

important to emphasize that all the genetic methods presented above only describe 

inter-population dispersal patterns and therefore do not infer dispersal patterns within 

populations.

Population genetics can further help to reveal sex-biased dispersal. While most studies 

concentrated on addressing sex-biased dispersal relied on sex-specific genetic markers 

such as mitochondrial DNA (reviewed in Prugnolle & Meeus 2002) and more recently 

Y-linked markers (Petit et al. 2002), sex-biased dispersal can also be detected using 

codominant genetic markers (Goudet et al. 2002, Prugnolle & Meeus 2002). Provided 

that adults are sampled and sampling therefore includes potentially dispersed 

individuals, theory predicts that the dispersing sex is genetically less structured 

compared to the more phylopatric sex and should present further a larger heterozygote 

deficit (Goudet et al. 2002).

The non-random spatial distribution of genotypes at a large spatial scale is the result 

o f different processes such as selection, mutation and historic events (e.g. post glacial 

re-colonization; Vekemans & Hardy 2004). Yet at a finer spatial scale, the observed 

distribution of genotypes is most likely caused by the accumulation of local genetic 

drift under restricted dispersal (e.g. Sumner et al. 2001, Vekemans & Hardy 2004). 

Restricted dispersal will lead to genetic differentiation with increasing spatial distance 

as predicted by the theory o f isolation-by-distance (IBD\ e.g. Wright 1943, Rousset
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1997). Consequently, estimating dispersal pattern can be expected to be more accurate 

on a local population scale (Leblois et al. 2003).

Describing the slope o f the regression line between genetic and spatial distance 

amongst individuals can disclose the mean parent-offspring dispersal distances in a 

continuous population when applied on a small geographical scale alongside data on 

effective population density (Rousset 2000, Vekemans & Hardy 2004). In this context, 

the inverse of the slope can be expressed as Wright’s (1946) neighbourhood size (NS). 

Nonetheless, spatial data can be expected to explain only a small proportion of the 

total genetic sampling variance (r2 % 1%) due to the high sampling variance expected 

when estimating pairwise relatedness or genetic distances on an individual level 

(Lynch & Ritland 1999, Wang 2002, Coulon et al. 2004). Moreover, low explanatory 

power is a general observation in migration-drift models (Rousset 2000). Whereas 

most research using an individual based IBD approach was done on plant species 

(reviewed in Vekemans & Hardy 2004), studies in animals remain rare with only a 

few focused on vertebrates to date (Waser & Elliott 1991, Rousset 2000, Leblois et al. 

2000, Peakall et al. 2003, Sumner et al. 2001, Caizergues et al. 2003, Coulon et al. 

2004).

Red fo x  dispersal and social structure

By applying an individual based IBD approach; this study combined genetic data 

based on 17 polymorphic microsatellites with accurate spatial data from a continuous 

red fox population in a mountainous habitat in Switzerland. To my knowledge, this is 

one o f the first studies investigating dispersal patterns inferred from fine-scale spatial 

genetic structure in a widely dispersing mammal.

The red fox is a habitat generalist (Macdonald 1980), with an area-wide distribution in 

Switzerland up to 2500m altitude (Wandeler 1995). For this reason, the red fox 

represents a good example o f a species with a continuous population distribution, 

necessary for fine-scale IBD analyses. To date, the red fox is the main vector of rabies 

in Western Europe (Steck & Wandeler 1980). Since fox dispersal is considered to be 

important for the rate o f rabies spread {e.g. Wandeler et al. 1974) dispersal distances 

and directions in foxes were the subject o f several field {reviewed in Chautan et al.

2000) and simulation studies {e.g. Artois et al. 1997). Although in general dispersal
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distances have been observed to be longer for males (reviewed in Trewhella et al. 

1988), other studies reported differently (Englund 1980; Funk et al. 1994). Beeline 

recovery distances for tagged foxes longer than 300km have been recorded in North 

America (Rosatte 1992; Allen & Sargeant 1993) while in rural Europe maximum 

dispersal distances have been reported to be below 100km (e.g. Zimen 1984, 

Trewhella et al. 1988, Funk 1994). A negative correlation between population density 

and dispersal distance has been observed (reviewed in Trewhella et al. 1988, but see 

Funk 1994) across different habitat types. In addition, several studies have indicated 

that dispersal directions in red foxes were altered by environmental factors (e.g. 

topography, habitat type; Zimen 1984) and human built barriers (motorways; Allen & 

Sargeant 1993, Funk 1994; but see Trewhella & Harris 1990).

Social organization in red fox is variable. They defend territories and live in pairs or in 

family groups, which can be often explained by the abundance o f food and the pattern 

o f fox mortality (Voigt & Macdonald 1984). Fox populations with high densities, such 

as in urban habitat, are characterized by reduction of reproducing females and the 

formation of family groups larger than the breeding pair (review in Cavallini 1996) 

Larger groups have been described to include one male and several related females 

(Voigt & Macdonald 1984). At high density, only a minority of females will rear cubs 

while barren and socially sub-ordinate females tend to act as helpers (Macdonald 

1979, Kolb 1986). In contrast, breading yearling females are common at lower density 

(Vos 1994). The red fox social organization at high density is reflected by small and 

vastly overlapping home ranges (Baker et al. 1998, Baker et al. 2000) and anegative 

correlation between home range size and population density has been described 

(White et al. 1995).

Objectives

The primary objective o f this study was to test the occurrence of IBD by analysing a 

continuous population of red foxes at a local scale. IBD  could be expected by 

assuming a predominance o f small average dispersal distances in relation to the total 

spatial expansion of the studied population.

The second objective was to investigate different dispersal patterns o f males and 

females. Based on the observation that dispersal in red foxes is predominantly sex-
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biased, differences in sex-specific IBD pattern can be hypothesized. Furthermore, 

males, who are reported to disperse more, could display a higher heterozygote deficit 

compared to females.

The third objective was to compare an indirect (genetic) estimate of an average 

dispersal distance in red foxes against a direct (demographic) estimate from published 

recovery distances o f ten mark-recapture studies. Given the difficulty to estimate for 

long-distance dispersal in field studies, one may assume that indirect estimated 

dispersal distances inferred in capture-mark-recapture studies should be longer than 

distances estimated from demographic data.

The final objective was to investigate the effect of topographic structures on the 

dispersal in red foxes. As reported previously (Zimen 1984, Allen & Sargeant 1993, 

Funk 1994) dispersal in foxes should follow distinct topographic structures such as 

river-valleys and mountain ranges. As a result, spatial matrices of individual pairwise 

distances, which account for topographic structures, can be expected to better explain 

more o f the total genetic sampling variance than pairwise Euclidian distances only.
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Methods

Study site and red fo x  samples

The study area (4189km2) was located in the eastern part of the Swiss Alps and the 

Canton Grisons and is surrounded by the watershed of the river Rhine (Figure 1). 

Local hunters and hunting authorities provided over 380 fox tissue samples between 

mid November until February of 2001-02 and 2002-03. Because the onset of dispersal 

in rural areas occurs primarily between September and November in red foxes (e.g. 

Zimen 1984), a high proportion of the sampled foxes could be considered as dispersed 

or resident individuals. Attention was given to obtaining accurate individual 

geographic data by evaluating local field names with individual XY-coordinates. Each 

sampling location was represented by one tissue sample only. Thus, where more than 

one fox sample was provided from the same sampling location, only one sample was 

randomly chosen. Finally a sub-sample was selected for a consistent distribution of 

sampling across the study and to fulfil the required sample size (n > 100; Leblois et al. 

2003) for an informative IBD analyses based on individual genotypes.

Spatial distances analyses between foxes5

Pairwise distances between individual locations were computed in a Geographic 

Information System (GIS; Arc View®, ESRI) using a cost-ffiction-analysis based on an 

elevation model (250x250m grid cell resolution; MONA, GEOSYS). In a cost- 

friction-analyses a distance / proximity surface (cost-surface) is generated based on a 

digital map (e.g. landscape model, vegetation model, altitude model, or a combination 

o f them) across the area o f interest. Based on the digital model used, a value of 

friction is assigned to each grid cell (e.g. the effort of a fox to cross a specific grid cell 

at a given altitude). All possible paths between two given points are computed. Finally 

the path with the least sum o f friction (also referred to as a least-cost distance or 

ecological distance) is chosen. However, because red fox specific values of friction for 

a given altitude were unknown, pairwise distances between individual locations were 

thus calculated as follows:

A sequence of ten different altitude thresholds (1200m, 1400m, 1600m, 1800m, 

2000m, 2200m, 2400m, 2600m, 2800m and 3000m) was arbitrarily defined. For each

5 GIS analyses were computed by Fridolin Zimmermann, Bern, CH and PW.
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given threshold a cost-friction surface was computed across the whole study area. 

Grid cells were coded as one for cells below the given altitude threshold (potential 

area) and no data (impenetrable) for all other cells, respectively. Pairwise distances 

(least-cost distance) between all individual spatial locations were thus calculated by 

taking into account only cells below the threshold (see Figure 2 for a hypothetical 

example). In addition, Euclidian pairwise distances were computed across a cost- 

friction surface with coded cells as one only. Distances calculated by this method do 

not represent true Euclidian distances (for details see ESRI 1996a-c). However, the 

method allows them to be directly compared with the pairwise distance calculations 

for the ten different altitude thresholds.

o  Female
•  Male10 kilometer*

Figure 1 Location o f study area in the Swiss Alps (Canton Grisons). Circles indicate individual red fox 
samples. Grey-scale refers gradually to the elevation (low altitude = white; high altitude = dark-grey).

All pairwise distances for each altitude threshold and all Euclidian distances were 

combined within a matrix using Rey’s (2002) cost-distance matrix extension. 

Analyses were notably eased by the hierarchical topography (watershed) of the study 

area, which prevented a situation in which individual locations at a given altitude were 

enclosed by a sequence of grid cells with a higher altitude.
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Figure 2 Principal of the calculation of a spatial distance (black lines) between the 
hypothetical locations of two individuals (X  and Y; filled cell). White, grey and dark-grey 
represents low, medium and high altitude, respectively, a.) Euclidian distance b.) Distance 
calculated for a high altitude threshold c.) Distance calculated for a medium altitude 
threshold, d.) Hypothetical example of sample X  collected at the same altitude (medium) as 
the altitude threshold. Sample X  was at first shifted to the nearest grid cell (fasciated) and an 
altitude below the threshold. The distance between the new location and sample Y was 
calculated (arrow) and subsequently added to the distance between the new and the original 
location. Note that the black lines do not exactly reflect the path of how the spatial distances 
were calculated.

A number of individuals locations were at a higher altitude than the a priori set 

altitude thresholds for some of the spatial matrices. Therefore, these locations were 

shifted to the nearest grid cell with an elevation below the threshold in question, prior 

to the cost-friction analyses. Subsequently, the Euclidian distances between the 

corrected and the original locations were calculated and summarized in an additional 

correction matrix. Pairwise distances were then calculated by including the corrected 

locations as described above. Finally, the correction matrix was added to the 

corresponding distance matrix (Figure 2).
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Genotyping

DNA was extracted from frozen muscle tissue by using a Wizard® SV96 Genomic 

DNA extraction kit (PROMEGA). Extracted DNA was eluted in 400|iL H2O. All 

samples were sexed by the presence/absence o f a PCR product (132bps) at a Y- 

chromosome marker (SRY -  gene; Breen et al. 2001). This enabled sexing of samples 

whose sex has not been recorded. To account for PCR failure, SRY PCR amplification 

for possible female samples (no visible PCR product) were repeated. PCR was 

performed in a lOpL reaction volume containing 2pL o f DNA extract, 0.5mM dNTPs, 

0.2pM of each primer, 0.3U taq (Invitrogene), and 1.5mM MgCb- PCR was carried 

out in a GeneAmp® PCR System 9700 (ABI) using the following cycling parameters: 

4min of initial denaturation at 95°C, followed by 30 cycles of 30s at 94°C, 30s at 

61 °C annealing temperature and 45s extension at 72°C, finished by a final extension 

of 7min at 72°C. PCR products were separated by electrophoresis and visually 

analysed on an agarose gel.

Ten canine microsatellite loci (AHT-130, Holmes et al. 1995, CXX-156, CXX-279, 

CXX-466, CXX-606, CXX-608 Ostrander et al. 1993, 1995; c2010, c2017, c2054 and 

c2088; Francisco et al. 1996) and seven re-designed red fox specific canine 

microsatellite loci (V142, V374, V402, V468, V502, V602, V622; Chapter 2) were 

used in this study. Between three and five loci were amplified within the same PCR 

reaction using Qiagen’s PCR multiplex kit, which co-amplifies numerous primer pairs 

within the same PCR reaction despite different locus specific PCR conditions. 

Amplification was carried out in a total volume o f 6/xL containing 3/xL of 2x 

multiplex master-mix, 0.07 - 0.3pM  of each primer and 2pL  o f template DNA. PCR 

was performed using a GeneAmp® PCR System 9700 (ABI) and applying the 

following cycling parameters: 15min of initial denaturation at 95°C, followed by 30 

cycles o f 30s at 94°C, 120s at 58 - 60°C and 60s extension at 72°C, with a final 

extension o f 30min at 60°C. For all PCR amplifications, a blank sample and three 

positive controls of known genotypes were used. PCR products were 

electrophoretically separated on an ABI Prism® 377 DNA sequencer (ABI). Allele 

sizes were scored against the size standard GS350 Tamra™ (ABI) using 

GENESCAN™ and GENOTYPER™ software.
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General population genetic analyses and testing fo r  sex biased dispersal 

To evaluate whether all examined loci could be considered as independent replicates 

of population structure, genotypic linkage disequilibrium between all pairs of loci 

(Gamier-Gere & Dillmann 1992) were tested in GENEPOP v3.1 (Raymond & 

Rousset 1995b). Single locus genetic diversity (H e \ Nei 1987) and probability-tests for 

deviation from Hardy-Weinberg equilibrium across all samples were computed using 

the same software package. Critical significance levels were adjusted for multiple tests 

using Bonferroni corrections (Rice 1989).

To examine current sex-biased dispersal, single locus Fjs - values (Weir & Cockerham 

1984) were computed across all males and females, respectively, using GENEPOP 

(Raymond & Rousset 1995b). Pairwise F/s -  values for males and females were 

subsequently compared for statistical significance with a Wilcoxon sign-rank test. The 

dispersing sex is expected to demonstrate a higher mean F/s compared to the 

philopatric sex, due to mixture of resident and current immigrant individuals within 

the tested genepool (Goudet et al. 2002). The allele frequency distribution between 

males and females was compared using a genic differentiation test (Raymond & 

Rousset 1995a) implemented in GENEPOP.

Analyses o f  spatial genetic structure

IBD was described using two different individual pairwise genetic estimators (aT, 

Rousset 2000 and Rw, Wang 2002; nomenclature based on Van de Casteele et al.

2001) and pairwise logarithmic transformed spatial distances. Rousset’s (2000) 

estimator ar is a genetic distance measure that is analogous to F st/O -^st) but is 

performed between pairs o f individuals instead o f populations. Moreover, the slope of 

the regression line between genetic and spatial distances was used to infer effective 

dispersal distances (Rousset 2000). Unlike other individual genetic estimators, aT does 

not depend on a ‘reference’ population for allele frequency distribution. However, it 

tends to suffer higher sampling variance and thus has less statistical power (Vekemans 

& Hardy 2004). Wang’s (2002) /?w estimator performed better in a simulation study 

(Wang 2002) compared to other relatedness estimators (i.e. Rl&r, Lynch & Ritland 

1999; Rq&g, Queller & Goodnight 1989). This was in particular true for uneven allele 

frequency distributions, which can be expected when using highly polymorphic
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markers such as microsatellites. Multilocus estimators were calculated and compared 

with the logarithmic transformed pairwise Euclidian distances.

The spatial genetic structure was tested for both estimators against the logarithmic (In) 

transformed Euclidian pairwise spatial distances by assessing the significance o f the 

regression slope using a Mantel test (10,000 permutations o f individual spatial 

location). For computing Rw measures, allele frequency distributions were calculated 

across all individuals used in this study. Spatial genetic analyses were performed 

using the software SPAGEDI (Hardy & Vekemans 2002).

Mean gene dispersal distance a  (axial parent-offspring distance; Rousset 2000) per 

generation72 was estimated based on the regression slope between aT against the In 

transformed spatial distance. The inverse of the slope (blog) equals in a two-

dimensional space per generation (Rousset 2000) and can be further referred as 

neighbourhood (Wright 1946) or neighbourhoodsize (NS, e.g. Sumner et a l 2001). 

NS  can be interpreted as the number of individuals defining the strength of local 

genetic drift (Wright 1946). The parameter D  is the effective population density, 

which is the effective population size (Ne) divided by the area (km2) of the study site 

(Rousset 1997).

Ne was calculated for populations with overlapping generations based on demographic 

data (Johnson 1977). Assuming a constant population size, sex ratio and age 

distribution, Nc can be estimated in terms of two matrices specifying the passage of 

genes between different age groups (and sexes) and the number o f individuals in each 

age group (equation 10 in Johnson 1977). An estimate o f the effective population 

density D  was calculated based on the average number of killed (hunting and roadkill) 

red foxes for 2001 and 2002 in the study area. However, because no detailed 

demographic data were available for this population the Ne estimations were based on 

the following demographic data sets: a global estimate o f juvenile - adult ratio in 

Switzerland (Rabies data set; n = 4122) and a life table o f 160 adult foxes from the 

Canton Aargau from 1995 to 2000 (Appendix; Chapter 4). Because a significant 

proportion of adult foxes in their second year may not reproduce (Harris & Smith 

1987, Vos 1994), a second estimation of the effective density (Dmod) was computed by 

applying a 50% reduced reproduction for this age class.
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The effective dispersal distance crwas calculated for the two effective densities D and 

Anod across all pairwise spatial distances (global regression). Approximate 95% 

confidence intervals were computed as ± 2SE, where SE is the standard error of blog 

estimated by jackknifing over loci (Fenster et al. 2003). The linear relationship 

between genetic and spatial distance can be expected to hold best only within the 

distance range o  - 20cr(for details see Rousset 1997, 2000). Therefore, an iterative 

approach (Heuertz et al. 2003) was applied to estimate cr for both densities D  and 

Anod- At first, a  was extracted from the global regressions covering all pairwise 

distance comparisons for each of the two densities and subsequently new estimates of 

Do? were calculated based on a restricted regression considering distances only 

between o  and 20 o  . These procedures were repeated until 6  estimations stabilized 

and converted (Vekemans & Hardy 2004). Approximate confidence intervals of 95% 

for the cr- values were computed.

The two indirect genetic cr estimations for both densities D and Dmod were compared 

with a demographic estimation of cr. The parameter cr was estimated using a linear 

regression between the mean inverse beeline recovery distances (km) for tagged males 

and females against fox density (family groups * k m ') across ten red fox populations 

of different habitat types (Trewhella et al. 1988). The density of family groups (FD) 

across the whole study area was calculated as follows: it was assumed that the 

population density was constant and that the number of dead foxes reported (based on 

the annual hunting and road-kill statistic from the Canton Grisons) within the study 

area equalled the number of the annual generation of cubs (Wandeler et a l  1974). 

Then,

_2 number of dead foxes
FD  = number of fox family groups km = --------------------- «---------------------------

study area km’ * mean litter size

where mean litter size was assumed to be 4.7 (Wandeler et al. 1974; Harris & 

Trewhella 1988). Subsequently, the mean recovery distance for males and females 

was derived using equations 5 and 7 from Trewhella et al.'s  (1988) publication. To 

allow for direct comparison of genetic and demographic cr estimation, the mean 

recovery distance was averaged across males and females. Finally, to account for the
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non-axial estimation of individual movements of the recovery distance the 

demographic cr estimation was divided by two (for details see Sumner et al. 2001).

All ten spatial matrices computed in GIS were In transformed and regressed against 

two pairwise genetic (ar and Rw) matrices in SPAGEDI (Hardy & Vekemans 2002). 

For each individual regression the measure of fit (r -  value) was recorded.

To compare sex specific dispersal patterns, fine-scale spatial genetic structure was 

assessed independently for males and females. Average (± SE jackknifed over loci) 

relatedness (R^; Wang 2002) for seven a priori defined and by the natural logarithm 

(In) transformed distance categories (<8,106m, 8,107m -  12,182m, 12,183m -  

18,174m, 18,175m -  27,113m, 27,114m -  40,447m, 40,448m -  60,340m and 

>60,34 lm ) were computed in SPAGEDI (Hardy & Vekemans 2002). Spatial data 

were based on the altitude threshold matrix with the best measure of fit (highest r2 - 

value) of genetic against spatial distances (see paragraph above). Allele frequency 

distributions were calculated across all individuals used in this study.

Results

Sampling and spatial GIS analyses

A total o f 145 individual samples from red foxes (73 males and 72 females) were used 

in this study. Mean altitude for all individual locations was 1169m (min 505m; max 

1944m, for spatial distribution see Figure 1). The potential surface (the surface below 

a given altitude threshold) for computing pairwise distances decreased markedly for 

each lower altitude threshold to less than 15% for the 1200m threshold (Table 1). In 

contrast, the average distance and standard deviation across all individuals increased 

for each lower threshold from 34,951m ± 6,953m for the 3000m - to 45,236m ± 

10,046m for the 1200m altitude threshold (Table 1). The total number o f corrected 

individual locations increased from 4 (2.8%) to 76 (52.4%; Table 1) individuals for 

the four lowest altitude thresholds.
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Table 1 Spatial distances between red fox samples are summarized in an 
Euclidian (E) and a sequence o f ten altitude matrices. Shown are the potential 
surface, the mean ± SD o f pairwise individual spatial distances and the 
absolute and relative number o f corrected individual locations and pairwise 
distances.

Altitude
threshold
matrix

Potential area 
(Surface below a 
given threshold) 

Area [km2]  %

Pairwise spatial 
distance

Mean [m] SD [m]

Corrected individual 
locations

# %
E 4189 100.0 34950 6935
3000 4166 99.9 34951 6935
2800 4068 97.1 34956 6937
2600 3787 90.4 35080 7011
2400 3296 78.7 36117 7513
2200 2741 65.4 37407 7883
2000 2198 52.5 38431 8222
1800 1698 40.5 39600 8528 4 2.8
1600 1262 30.1 41819 9536 17 11.7
1400 884 21.1 44042 9861 41 28.3
1200 594 14.2 45236 10046 76 52.4

Microsatellite genotyping and sex biased dispersal

Total genotyping success across all samples and the 17 loci was 99.9%. No significant 

linkage disequilibrium was found among all pairs of loci after adjusting for multiple 

comparisons (data not shown; k= 136; all tests p  > 0.05/k with Bonferroni correction of 

a = 0.05). Single locus genetic diversity (H e) across all samples was high ranging 

from 0.599 (V502) to 0.914 (V602) with a multilocus mean ± SD o f 0.808 ± 0.077. 

The total number o f alleles per locus ranged from four (c2010) to 20 (c2054; mean ± 

SD = 10.24 ± 3.78; Table 2). Deviation from Hardy-Weinberg was significant for loci 

V622 (p = 0.021) and c2017 (p = 0.030), whilst no significant deviation was observed 

after correcting for multiple testing. In contrast, the overall deviation across all loci 

was significant (X2 = 49.4; d f= 3 4 tp <  0.05; Fisher’s method, Table 2).

Observed Fis -  values across loci were significantly higher in males (mean ± SD = 

0.027 ± 0.056) than in females (mean ± SD = -0.008 ± 0.055; n = 17, z = 2.3432, 

p<0.02; Wilcoxon sign-rank test; Table 2). A total of twelve (6.9%) and five (2.9%) 

sex-specific alleles were recorded in males and females respectively. Global test for 

allele frequency distribution (Genic test) across all loci revealed no difference in allele 

frequency distribution between sexes (X2 = 32.9; df=  34; p  = 0.523; Fisher’s method).
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Table 2 Measures o f genetic diversity and inbreeding coefficients in red foxes for all individuals, and 
for females (f; N= 72) and males (m; N=73) only. Shown are the number o f detected alleles (A), 
expected heterozygosity (HE ; Nei 1987), F1S values (Weir & Cockerham 1984) and p  -  value for the 
probability o f Hardy-Weinberg deviation for each locus and multilocus means ± SD.

Locus
N
all all

A
f m all

He

f m all
F/s
f m

HW 
p-valuea

AHT-130 145 10 10 9 0.815 0.802 0.822 -0.050 -0.074 -0.033 0.528
V142 145 13 11 13 0.881 0.889 0.874 -0.002 0.000 -0.003 0.490
CXX-156 145 9 9 9 0.841 0.840 0.844 0.008 -0.075 0.091 0.605
CXX-279 145 10 9 10 0.842 0.839 0.845 0.033 0.040 0.028 0.110
V374 145 6 6 6 0.797 0.795 0.796 -0.074 -0.084 -0.068 0.295
V402 145 7 7 7 0.821 0.815 0.828 0.017 0.012 0.024 0.394
CXX-466 145 8 8 7 0.747 0.735 0.749 0.031 0.037 0.012 0.063
V468 145 10 9 9 0.834 0.839 0.834 -0.017 -0.060 0.031 0.273
V502 145 8 7 8 0.599 0.578 0.620 0.045 0.014 0.073 0.757
V602 145 17 16 17 0.914 0.915 0.915 0.050 0.029 0.072 0.221
CXX-606 145 10 7 10 0.794 0.784 0.807 -0.033 -0.028 -0.036 0.613
CXX-608 145 10 8 10 0.806 0.797 0.818 -0.044 -0.081 -0.005 0.446
V622 144 10 9 10 0.820 0.825 0.817 0.103 0.041 0.168 0.030
c2010 145 4 4 4 0.674 0.679 0.670 0.099 0.121 0.080 0.243
c2017 145 11 11 11 0.839 0.818 0.851 0.006 -0.001 0.003 0.021
c2054 145 20 20 18 0.901 0.903 0.900 -0.010 -0.031 0.011 0.164
c2088 144 11 11 11 0.811 0.805 0.820 0.007 0.000 0.018 0.461
mean 10.2 9.5 9.9 0.808 0.803 0.812 0.010 -0.008 0.027 0.043 b
SD 3.78 3.75 3.54 0.077 0.081 0.074 0.048 0.055 0.056
“Probability test (Raymond & Rousset 1995b), bcombined p-value after Fisher’s methods

Isolation by distance

Both matrices of pairwise aT and Fw estimators showed a significant correlation with 

the logarithmic transformed Euclidian spatial distances (aT: blog = 0.00740 p  < 

0.0005, r2 = 0.0054; R ^\ blog = - 0.00981, p  < 0.0001, r2 = 0.0038; Mantel test; for 

details see Table 3). This strongly indicates IBD. Two loci (V602 and c2054) 

exceeded the recommended level of genetic diversity (> 0.85) for unbiased estimation 

of cr (Leblois et al. 2003). However, comparing single locus blog - values and single 

locus He didn’t reveal a correlation (n = 17; ar: r -  -0.108; R^\ r = 0.145).

The regression slope between the genetic, au and the logarithmic transformed spatial 

distances corresponded to a NS of 135.1 individuals (95% confidence interval = 78.5 - 

484.6 individuals). Based on the estimated annual number of 2,412 dead foxes in the 

study area between 2001 and 2002 and from the used live-table for red foxes, the 

computed Ne and generation interval L were 3907 individuals and 2.75 years 

respectively. Assuming that only 50% of one year old foxes reproduce, Nt estimation

39



CHAPTER 3

decreased to 3,646 individuals (L = 3.24 years) resulting in a Ne/N  ratio (TV = adult 

population size per generation) of 0.44 and 0.35, respectively (see Appendix A l for 

details). Effective population densities based on D  and Dmod were 0.933 and 0.870 

respectively. These corresponded to mean axial dispersal distances a  across all 

pairwise spatial distances (global regressions) of 3,395m (2,588 -  6,429m, 95% 

confidence interval) for D  and 3,516m (2,680 -  6,658m) for Dmod, respectively (Table 

5).

Table 3 Results o f the global regressions between individual 
pairwise genetic distances (ar) and Euclidian spatial distances, and 
between relatedness (/?w) and Euclidian spatial distances in red 
foxes. For each locus, the microsatellite repeat structure (2 for di­
nucleotides, 4 for tetra-nucleotides) and the blog -  values (slope) for 
ar and /?w, respectively, are shown. The summary statistics show 
multilocus means and SE (Jackknifed over loci).

Microsatellite Microsatellite blog - values
repeat pattern ar Rfy

AHT-130 2 0.0067 -0.0113
V142 2 0.0030 -0.0128
CXX-156 2 0.0107 -0.0060
CXX-279 2 0.0002 0.0029
V374 2 -0.0058 0.0104
V402 2 0.0285 -0.0296
CXX-466 2 0.0195 -0.0279
V468 2 0.0123 -0.0309
V502 2 0.0212 -0.0239
V602 2 0.0195 -0.0145
CXX-606 2 0.0152 -0.0215
CXX-608 2 0.0046 -0.0032
V622 2 0.0164 0.0031
c2010 4 -0.0094 0.0049
c2017 4 -0.0045 0.0039
c2054 4 -0.0045 -0.0016
c2088 4 -0.0043 0.0002
mean 0.0074 -0.0098
SE 0.0027 0.0031

NS calculated from the inverse slope of the restricted regressions for D (162.3) and 

Anod (157.4) were larger compared to the NS derived from the global regression (NS = 

135.1; Table 4). The restricted regressions result in estimated mean axial dispersal 

distances <7 for D and Anod of 3,720m (2691 -  12,534 m, 95% confidence interval)
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and 3,794m (2764 -  11134m) respectively. Both slopes deviated significantly from 

zero (D : p  < 0.005, r2 = 0.0027; Dmod- P < 0.005, f 2 = 0.0028; Mantel tests).

Estimated fox density FD  (total number of fox families*km‘2) was 0.123, resulting in 

a demographic a  - value of 8,925m. Compared with the mean values of the genetic 

estimation for the effective dispersal distance, the demographic cr estimation was 

considerable larger, but was within the 95% confidence interval of restricted 

regression (Table 4).

Table 4 Indirect estimation o f the average dispersal distance in red foxes for the effective 
population densities D  and Dmod. Shown are the genetic estimates for the global and restricted 
regressions for ‘neighbourhood size’ (NS), effective dispersal distance cr per generation7', 
95% confidence interval for a, absolute and relative number of individual pairwise 
comparisons (see text for details).

Effective density NS <7 Genetic 
[Individuals * [Individuals] [m/generation1 

generation/km2]

95% Cl 
2] [m/generationl/2]

N
[dyads]

%
[dyads]

Global regression
D =0.933 135.1 3395 2588-6429 10440 100
Dmod =0.870 135.1 3516 2680-6658 10440 100
Restricted regression
D =0.933 162.3 3720 2691-12534 9973 95.5
Dmod =0.870 157.4 3794 2764- 11134 9999 95.8

Table 5 Estimation o f cr from demographic data based on Trewhella’s (1988) function 
between red fox density and the recovery distances o f tagged individuals. Shown are the 
demographic estimates o f the recovery distance for males, females and across both sexes 
and the effective dispersal distance a.

Fox density 
[Family groups/km']

Expected recovery distance 
[m]

Males Female Average

*7 Demographic

[m]

FD =0.123 24,828 10,873 17,850 8,925

Measures of fit (r2)  for the regressions of the two genetic estimators ar and Rw against 

the Euclidian and the ten altitude matrices are shown in Figure 3. For both genetic 

estimators the highest r2 -  values were computed with the 1400m-altitude matrix (aT: 

0.0082; Rw’. 0.0042). The 1400m-altitude matrix explained 53.2% and 9.6% more of
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the genetic variance compared with the Euclidian matrix for the aT and Rw estimators, 

respectively (Figure 3). Overall, the variance explained by using the ax estimator was 

higher compared with the Rw relatedness estimator.

C\l

O
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<D
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a -  ar (Rousset 2000) 

o -  Rw (Wang 2002)
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Figure 3 Results o f the isolation-by-distance analyses between pairwise individual genetic and In 
transformed spatial distances in a continuous red fox population. Shown are measures o f fit (r2 -  
values) for global regressions using two genetic estimates (ar Rousset 2000; /?w Wang 2002) against a 
spatial Euclidian matrix (E) and a sequence o f ten different spatial matrices. Each of theses spatial 
matrices accounted gradually for the topographic structure o f the landscape by restricting pairwise 
spatial distance calculations to pre-defined altitude thresholds (see text for details). Filled symbols refer 
to the highest observed r2 -  value.

Sex specific IBD  patterns for seven distance categories are shown in Figure 4. A 

general pattern of IBD  for males and females was observed. Females were more 

closely related to each other than males were across all distance categories, with the 

exception of the second distance category (8,107 -  12,182m), where the highest 

average relatedness across males was found. Across all samples and pairwise spatial 

distances, relatedness amongst females was greater than relatedness amongst males (z 

= -2.864; nLoci= 17 ; p <  0.005; Wilcoxon signed-rank test).
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Discussion

Given the central importance of studying dispersal in order to understand the ecology 

and evolution of a species, it is essential that reliable and precise information on 

dispersal pattern is obtained. In this study we found evidence of male biased dispersal 

and topographic effects on dispersal direction, and we obtained an estimate for 

average dispersal distance in red foxes by applying population genetic methods in 

combination with geographic and demographic data. This study is the first to reveal 

sex-biased and directed dispersal pattern in red foxes using genetic methods, 

demonstrating the potential usefulness of individual based IBD  methods, especially 

for widely dispersing species.

Isolation by distance

A strong IBD  pattern was found between pairwise individual genetic and spatial 

distances. This demonstrated a non-random distribution of genotypes, indicating that 

red foxes in close proximity to each other are genetically more alike than individuals 

separated over longer distances. As predicted, dispersal was restricted and thus could 

not counteract local genetic drift. This result is in agreement with Trewhella et al. ’s 

(1988) review on several red fox studies, where the recovery distance of tagged foxes 

was generally short with only a few long distance movements. In contrast, beeline 

recovery distances of over 300km in tagged red foxes (Rosatte 1992, Allen & 

Sargeant 1993) were recorded, being more than twice as long as the total width of the 

study area. This comparison illustrates that dispersal distances in red foxes are flexible 

and differ between populations and at different population densities. The observed 

IBD pattern also questions the assumption that the development of fine-scale spatial 

genetic structure is unlikely to occur in widely dispersing taxa (Peakall et al. 2003). 

Moreover, these results leave little doubt that IBD can be tested in a wide number of 

different animal taxa, provided that sufficient genetic markers are used in combination 

with a thorough sampling regime.
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Sex-biased dispersal

Based on the comparison between the observed sex-specific F/s-values, dispersal was 

male biased, indicating an existing mixed male population of resident and immigrant 

individuals (Goudet et al. 2002). In addition, the trend of the observed higher number 

o f sex-specific private alleles detected in male foxes emphasized that males were the 

sex that dispersed the most. The observed differences between the sex specific F\s - 

values indicated that the recent dispersal rate was sufficient to be detected yet not 

widespread enough to erase the signature of genetic differentiation between the study 

and the adjacent populations.

Breeding groups are an important component of population structure, yet they are 

ignored in most population genetic models (Sugg et al. 1996) as well as in the 

methods (F-statistics, IBD) applied in this study. As social organization in red foxes is 

complex (Cavallini 1996) the general deficit o f heterozygosity observed might reflect 

some unaccounted social subdivision in the examined population. In fact, the observed 

significant IBD pattern specifies per se non-random mating. However, unclear were 

the potential effects of the social system on the differences observed in the sex- 

specific Fis -  values. It should be noted, that the difference in Fis -  values revealed 

current dispersal within an interval of one generation rather than a historic dispersal 

pattern (Goudet et al. 2002). Nonetheless, by incorporating only one sample from the 

same sampling site (Figure 1) sampling of closely related females occupying the same 

territory could be eliminated.

Inferring a sex-biased dispersal pattern from sex-specific IBD pattern (Figure 4) 

proved to be more difficult. Females, showed consistently higher relatedness amongst 

themselves compared with males for the seven spatial distance categories. Yet, despite 

the expected lower population structure in the more dispersive sex (Goudet et al.

2002) males showed a distinct IBD pattern (Figure 4). Sex-biased dispersal was 

further revealed by the observed higher mean relatedness among male foxes in the 

second distance category (8,107-12,182m) in relation to the first spatial distance 

category (Figure 4), which could indicate that a significant proportion of male foxes 

examined did in fact move away from their place of birth. Examining IBD patterns on 

a sex-specific level reduced the number of pairwise comparisons (dyads) per distance 

category to one quarter. For that reason, the number of seven arbitrary defined
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distance categories was a trade-off between the level of variance per category 

expected and the spatial resolution of the analyses.
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Figure 4 Sex-specific isolation-by-distance in a continuous red fox population. Shown are the average 
(± SE; jackknifing over loci) relatedness (/?w Wang 2002) for males and females for seven log 
transformed and a priori defined distance categories. Spatial data were based on the 1400m threshold 
altitude matrix (see text for details). Figures represent the total number of dyads for each distance 
category.

The interpretation of sex-biased dispersal by applying autosomal genetic markers 

revealed to be pretty complex. Although both methods suggested male-biased 

dispersal, alternative explanations could not be entirely excluded. Furthermore the 

results of the IBD analyses disclosed the need for future simulation studies to 

investigate the conditions under which sex-biased dispersal pattern can be expected 

using individually based analyses. Finally, sex-biased dispersal could also be assessed 

using an assignment test implemented in G e n e C la ss2  (Piry et al. 2004). Although 

this study consists only of one population, G e n e C la s s 2  computes a probability - 

value for each individual genotype belonging to the focal population. By comparing 

the sex -  ratio of individual genotypes with a low probability value (e.g. < 0.01) it 

should be possible to identify differences in sex biased dispersal.

45



CHAPTER 3

The observed pattern of male biased dispersal confirmed previous results of studies 

addressing sex-specific dispersal pattern in red foxes and reflects the general rule 

according to which males represent the more dispersive sex among most carnivores 

and mammals (Waser 1996). These data were consistent with results from mark- 

recapture studies, where mean recovery distances for males foxes were significantly 

compared with females (<reviewed in Trewhella et al. 1988, Allen & Sargeant 1993).

It is important to note that although the two methods applied highlighted male-biased 

dispersal, they did not reveal any successful reproduction by individuals who moved 

to a new location through natal dispersal. In fact, the observed mortality of dispersing 

foxes was described to be significantly higher (reviewed in Chautan et al. 2000, Harris 

and Trewhella 1988; Woollard & Harris 1990) compared with philopatric individuals. 

Therefore, a significant proportion of dispersed males could be expected to have died 

before reproducing successfully. Actual gene flow between the studied population and 

its surroundings might therefore be lower than assumed by the apparent number of 

detected current immigrants.

Dispersal distances

The average dispersal distance cr for the effective population densities D  and the more 

realistic density /)mod were smaller than the demographic cr values for the extrapolated 

and corresponding fox density FD. Furthermore, simulations indicated that a twofold 

difference in accuracy between the demographic and genetic estimates can be 

expected (Rousset 2000). The deviation between the two estimates may be explained 

by the lack of precision in one or both of the estimates. Therefore some potential 

causes o f imprecision and / or biases are specified and discussed below:

The model assumptions for the genetic estimation of cr might not reflect reality 

(Rousset 2000; Sumner et al. 2001). The effective fox density was likely to be uneven 

across the study area because fox abundance is higher at lower altitude (Wandeler

1995), resulting in a lower level of precision of the genetic estimation. As determined 

by the estimated a  value, the study site somewhat exceeded the recommended area of 

lOcr* lOcrfor an unbiased estimation of Dc? (Rousset 2000; Leblois et al. 2003). Due 

to the expected mutation process and the high mutation rate of microsatellites, 

sampling at large distances can lead to an underestimation of the regression slope and
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therefore to an overestimation of D<? (Leblois et a l  2003). This bias might to some 

degree be reflected by the estimated average multilocus relatedness for males and 

females examined for the largest pairwise distance category (> 60,340m), which did 

not follow the general trend of IBD (Figure 4). In contrast, the restricted regression 

analyses for the two given effective densities resulted in less steep slopes (smaller 

blog -  values) and thus longer estimates of dispersal distance.

The examined red fox population was subject to a two - to threefold density increase 

following a severe rabies epidemic in the early 1980s along a long-term trend of a 

growing caring-capacity for foxes in Switzerland (Breitenmoser unpublished; Chapter 

4). It can therefore be speculated that the population might not yet be in a drifl- 

migration equilibrium and so the D ci estimation reflects past rather than recent 

demographic parameters (Leblois et al. 2004).

Trewhella et a l ’s (1988) general regression model for the average beeline recovery 

distance in relation to the observed density was inferred from studies across different 

habitat types. Thus, deviations between this model and the specific study area could 

be expected, especially since the study site is in an Alpine habitat, which was not 

included in Trewhella et al.'s  (1988) analysis. In addition, the genetic estimation of cr 

refers to a time period of one generation. In contrast, no temporal information was 

available for the demographic cr estimation derived from the literature. Moreover, 

although foxes are thought to disperse predominantly as juveniles, dispersal of adult 

individuals was reported in other studies (Harris & Trewhella 1988; Zimen 1984). 

Hence, given that the time period over which capture-mark-recapture studies were 

conducted, the demographic estimation of a  might be therefore underestimated.

The recorded difference between indirect and direct dispersal distance estimation 

contradicted the prediction that, because of the difficulty to detect long dispersal 

distances, the genetic estimation should be longer (but see Rousset 2001). In fact, the 

estimated genetic distance was substantially smaller than the dispersal distance 

inferred from demographic data. As previously discussed, it is important to distinguish 

between an individual that moved to a new location and an individual which moved 

and subsequently reproduced successfully. The genetic estimation of dispersal 

distances addressed the actual genetic input that dispersed foxes had in the examined
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population. In contrast, the demographic estimate of beeline recovery distances 

represents spatial movement of individuals only. Despite the methodological 

constraints imposed by the limited demographic data available, it can be assumed that 

actual gene flow appears more spatially restricted when inferred from demographic 

data only. So far, only a few studies (Rousset et al. 2000, Sumner et a l 2001) have 

compared direct and indirect dispersal distances in animals. Therefore a general 

discussion of observed differences between genetic and demographic dispersal 

distances is inappropriate. However, it is well accepted that the cost of dispersal is 

higher than that for phylopatric behaviour (e.g. Rousset & Gandon 2002) and thus 

mortality for dispersing individuals is high. As a result, effective dispersal distances 

that are small in relation to demographic estimates can be expected across a wider 

range of species.

Dispersal and topographic structures

Despite the calculated differences of the two pairwise genetic estimators aT and i?w, 

the results across the ten spatial matrices were similar with both estimators, achieving 

the highest r2- values with the /400m-altitude matrix. Although expected, the overall 

genetic variance explained by the set of different spatial matrices was small (< 1%). 

Consequently it would be useful to validate the observed r - values with simulated 

values for both pairwise genetic estimators under ideal conditions. In fact, an 

informative simulation study across the whole range of individual relatedness and 

distance estimators (for a summary see Vekemans & Hardy 2004) would help to 

choose the most appropriate genetic estimator for future individual based IBD 

analyses. Furthermore, a primary objective was to keep the spatial analyses in GIS as 

simple and thus transparent as possible. Therefore it is reasonable, that a more 

complex cost-friction analysis (e.g. energetic model, habitat model) based on 

additional assumptions, could have helped to explain more of the genetic sampling 

variation compared with the results from the ten altitude threshold matrices.

Despite an expected continuum of fox abundance up to 2500m elevation, the best fit 

between genetic and spatial distances in the individual based IBD  analyses was 

observed for the second lowest (1400m) altitude threshold matrix. The most 

parsimonious explanation for this result is that red foxes disperse along valleys rather
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than across them and thus supports the assumption that dispersal direction in red foxes 

can be altered by topography. Moreover, it emphasizes that habitat requirements 

during dispersal might be different to general habitat requirements in red foxes. The 

topographic effect on red fox dispersal direction was indirectly reflected by the spread 

o f the last rabies epidemic (1967-96) in Switzerland (Kappeler 1991). The rabies 

epidemic was observed to be repeatedly channelled and delayed by various natural 

and artificial structures, such as lakes and large rivers, mountain chains over 2 0 0 0 m 

altitude, agglomerations and fenced-off motorways (Kappeler 1991). To the best of 

my knowledge this is the first genetic study showing that red foxes prefer to disperse 

along topographic features. Furthermore the present study confirms the findings of 

ecological data (Zimen 1984, Funk 1994).

White at a l  (1995) demonstrated a negative relationship between red fox density and 

home range size. As previously discussed, red fox density is likely to be higher at 

lower altitude than at higher altitude. Assuming that red fox dispersal distances are 

reflected by the number of territories crossed rather than by an absolute distance in 

meters (Macdonald & Bacon 1982, Trewhella et a l  1988), the expected average 

dispersal distance at lower altitude is likely to be shorter. Under these conditions and 

by neglecting any topographic effects on dispersal direction, the best fit for an IBD 

analysis between genetic and spatial distances should be demonstrated with an 

Euclidian distance matrix. Consequently, the actual effect of topographic structures on 

dispersal direction might be even more pronounced than observed.

Conclusions

This study demonstrates a strong relationship between the topography of a landscape 

and the fine-scale spatial genetic structure of red foxes. This study demonstrated that 

spatial data computed using GIS methods, based on accurate individual sampling and 

combined with genetic data based on a set polymorphic loci, can help to analyse the 

landscape context of dispersal (Coulon et a l 2004, Sacks et a l  2004). While this 

study incorporated elevation data for the spatial analyses only, future studies might 

benefit from a growing set of geographic reference data {e.g. high resolution height 

models, landscape models including a set of thematic layers such as habitat, human 

use, etc.). This study further pointed out the possibility to gain indirect estimates of
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dispersal distances and sex-biased dispersal. In general, it follows the emerging field 

o f moving from population genetic research based on allele frequencies and arbitrary 

defined populations to research centred on analysing individual multilocus genotypes 

in a continuous population (Vrana & Wheeler 1992, Manel et a l  2003, Coulon et al. 

2004). Given the potential to obtain diverse information on dispersal, combining 

individual spatial and genetic data from continuous populations might soon be the 

method of choice to infer data of dispersal pattern in ecology and evolution.
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Temporal Demography and Genetic Diversity of a 

Red Fox Population Following a Rabies Epizootic.

Abstract
Infectious diseases can pose a serious threat to natural population viability. In this study, 

the demography and genetic variation of a local red fox ( Vulpes vulpes) population 

(411km2, Switzerland) before, during and after a rabies epizootic from 1966 onwards 

were analysed. Post mortem data on rabies tests (n=2658), juvenile - adult ratio 

(n=1628), accurate adult age (n=561) and sex (n=1612) were complemented by small- 

scale roadkill (roadkill index) and hunting records (hunting index). A total o f 16 

polymorphic microsatellite loci were successfully amplified in historic tooth and tissue 

samples (n=184). In particular, care was taken to account for genotyping reliability. In 

1975, the red fox population declined by 79% based on the roadkill index as a result of 

the first rabies infection. Following this decline, the population increased continuously 

by over 600% (roadkill index) until it reached a plateau in the mid-1990s, which likely 

corresponded with the carrying capacity. Throughout these 35 years, the age distribution 

altered significantly. Whilst the juvenile proportion decreased from 56% to 40% during 

the phase of population growth (1976-94), the average adult age increased from 1.78 to 

2.86 years. In contrast, no long-term trends in heterozyosity (H o  and H e), allelic diversity 

and inbreeding coefficient (Fis) could be identified although for all three estimators 

considerable variation was found both short-term and longer-term. Alterations in the 

demographic structure were explained by a general lower mortality subsequent to the 

population decline and by variance in female reproduction over time. The interpretation 

of the absence of a genetic bottleneck needs to take into account immigration and the 

relation between remnant local and regional effective population size following the first 

rabies infection.
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Introduction

Infectious diseases are considered to play a central role in natural systems, ranging from 

influencing species compositions in ecological communities to the genetic diversity of 

hosts (Altizer et al. 2003). Because of their potential to trigger sudden and unexpected 

epidemics (Altizer et al. 2003), infectious diseases can pose a serious threat to 

endangered species and small populations (e.g. Smith 1982, May 1988). They can 

negatively influence population viability by direct deterministic extinction or by 

suppressing the size or growth rate and thus making small populations vulnerable to 

stochastic factors (Woodroffe 1999). The biggest threat usually comes from virulent 

pathogens, which can ‘spill over’ from other and more numerous host species 

(Woodroffe 1999, see also Daszak et al. 2000). Carnivores in particular are vulnerable to 

infectious disease and several dramatic declines in populations o f different species have 

occurred since the beginning of the 1990s (reviewed in Funk et al. 2001). However, the 

effect o f infectious disease and its dynamics in wild populations is complex and our 

understanding o f mechanics, dynamics and persistence of disease is still poor (Funk et al. 

2001).

Infectious diseases can have serious consequences to the genetic diversity of populations 

by causing drastic reductions in population size (O’Brien & Evermann 1988). In general, 

demographic bottlenecks can limit the adaptive potential of a population and increase the 

probability o f extinction due to a higher rate of inbreeding, fixation of deleterious alleles 

and loss of genetic variation (e.g. Lande 1988). Furthermore, the potential genetic 

consequences caused by a demographic bottleneck such as a strong selection for 

resistance against an infectious disease, might further reduce genetic diversity (O’Brien 

& Evermann 1988). Despite the importance of infectious diseases in conservation, little 

is known about the genetic consequences caused by diseases in natural populations. This 

applies to small and large populations. An apparent explanation for this deficit may be 

the absence o f pre-bottleneck sampling, which is essential for assessing the temporal 

genetic diversity o f populations.
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The dynamics of gene flow and selection in natural populations on a spatial and temporal 

scale is fundamental in ecological and evolutionary processes. While a large number of 

studies exist on genetic differentiation on a spatial scale, relatively little effort has been 

directed towards studies on temporal dynamics o f genetic diversity, drift and gene flow 

in natural populations (Nielsen et al. 1999a). Nonetheless, it is widely accepted that 

observed genetic patterns are stable over time and that other factors, which may cause 

temporal genetic differences, are negligible (Tessier & Bematchez 1999).

In conservation, knowledge of the demographic history of populations is important when 

making decisions about population management (Bruford & Beaumont 1999). 

Consequently, current low levels of genetic variability based on neutral genetic markers 

have been used to infer past population bottlenecks (e.g. O’Brien et al. 1983, Ellegren et 

al. 1996). Data on allele frequencies could further help to identify recent bottlenecked 

populations by testing for heterozygosity excess (Luikart & Comuet 1998). However, 

analysing DNA from historical samples collected before bottlenecks or from extinct 

populations could give more informative insight into the past demographic history of 

populations and species (Bouzat et al. 1998). Furthermore, by combining historical with 

recent samples, levels o f genetic diversity could be compared across different time 

periods, while the rate in which diversity has changed can be estimated (Pichler & Baker 

2000).

Since DNA gradually degrades over time (reviewed in Lindahl 1993), the extracted DNA 

from historic samples can be expected to be highly degraded and diluted. Development 

of molecular methods in general, and short polymorphic genetic markers amplified by 

PCR, for example microsatellites, have nonetheless allowed even genetic data to be 

gained from traces o f nuclear DNA (e.g. Bouzat et al. 1998, Nielsen et al. 1999b, 

Chapter 1). However, along with the necessity to verify sample authenticity (Hoss 2000), 

genotyping errors due to highly diluted historic samples can be expected (e.g. Navidi et 

al. 1992, Taberlet et al. 1996, Chapter 1).

It is obvious that the main problem of using historic samples for population genetic 

studies - apart from dealing with low copy and quality DNA - is related to sampling. 

Investigations based on historic samples rely almost explicitly on museum collections, 

and obviously, these collections have not been created to conduct population genetic
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studies in the first place. Therefore, sample sizes have often been inadequate to estimate 

allele frequencies for a given population (Nielsen et al. 1999a). In addition, information 

on individual samples {e.g. age, sex, sampling site) is often limited. Exceptions are long­

term collections of scale samples for age surveillance of fish populations {e.g. Nielsen et 

al. 1999a, Heath et al. 2002, Meldgaard et al. 2003).

Most studies using historic samples have focussed on reconstructing phylogenies based 

on mitochondrial DNA sequence variability {e.g. Leonard et al. 2000, Hammond et al. 

2001, Shapiro et al. 2002). In contrast, relatively few studies have addressed temporal 

population genetic structure by comparing the genetic diversity inferred from autosomal 

inherited genetic markers {e.g. microsatellites) between historic and contemporary 

samples (Bouzat et al. 1998, Nielsen et al. 1999a, Groombridge et al. 2000, Pertoldi et 

al. 2001, Walker et al. 2001, Larson et al. 2002, Miller & Waits 2003).

The present study assessed the dynamics of a red fox population in Switzerland 

following a rabies epizootic and investigates its effects on the demography and the 

genetic diversity o f the population. Rabies is a viral infection in mammalian species of 

the central nervous system (Blancou et al. 1991). The principal hosts and vectors for the 

classical rabies are the domestic dog (urban rabies) and the red fox (silvatic rabies, 

Macdonald 1980). Red foxes are very susceptible to rabies infection (Macdonald & 

Voigt 1985) and dependent on the initial population density, their populations can be 

severely reduced by it (Anderson et al. 1981, Macdonald & Voigt 1985). Despite the 

high selective pressure imposed by the high rabies-induced mortality, red foxes seem 

however, not to have developed resistance to rabies (Macdonald & Voigt 1985). In this 

context, silvatic rabies differs from a general host-parasite evolution model, where the 

host’s immune competence is thought to counteract parasite virulence {e.g. Wakelin & 

Apanius 1997). Consequently, the epidemic of rabies is tightly associated with the social 

structure, population dynamics and ecology of the red fox, the only vector species in 

Western Europe {e.g. Steck & Wandeler 1980, Macdonald 1980, Anderson et al. 1981). 

Based on the findings of numerous studies on fox density and social organisation, models 

o f fox contact rate and its implication for rabies control have been developed {e.g. 

Trewhella & Harris 1988, White et al. 1995). In general, the dynamics of rabies is a 

function o f fox density, dispersal and the carrying capacity o f the habitat type (Steck & 

Wandeler 1980, Macdonald 1980, Funk 1994). The mass immunisation of the principal
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wild host with live attenuated, and later recombinant vaccines, led to the successful 

establishment of oral immunisation of red foxes (Wandeler 2000).

The current silvatic rabies epizootic in Europe started in Poland in 1939 and 

subsequently spread westwards (Macdonald 1980). In Western Europe, the disease 

reached its maximum extension around the early 1980s, before oral vaccination 

campaigns led to a significant decrease in the number of rabies cases (Stohr & Meslin

1996). At present, red fox rabies is no longer present in most initially infected Western 

European countries, while in Eastern Europe the epizootic has remained prevalent 

(www.who-rabies-bulletin.orgV

The rabies epizootic reached Northern Switzerland in 1967 and subsequently swept 

through the country. In the 1980s, the cumulative area infected reached 55% of the total 

area o f Switzerland, but following the successful initiation of oral wildlife vaccination, 

the disease was soon eliminated from most parts of Switzerland (Kappeler 1991). Since 

September 1996, no more rabid foxes have been recorded and in 1999, Switzerland was 

declared rabies-free according to WHO guidelines (Breitenmoser et a l  2000).

Since 1967, the European rabies epizootic has been thoroughly monitored by sampling 

red foxes throughout Switzerland. In addition, local hunting authorities recorded long­

term roadkill and hunting data. By combining these post-mortem data with a 

comprehensive collection of historic tooth samples of foxes accumulated during the 

epizootic, this study aimed to assess the demography and genetic structure in a local red 

fox population before, during and after a rabies infection.

The study had three main objectives: i) To assess the population dynamics of red foxes 

over the last 35 years in relation to the observed number of recorded rabies cases, ii) To 

investigate the effect o f the induced mortality on age structure and sex ratio, iii) To 

assess temporal genetic changes in genetic structure following the rabies epizootic by 

using polymorphic microsatellites markers.
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Materials and Methods

Historic samples and study area

Between 1967 and 2000, hunters and game wardens provided more than 50,000 fox 

carcasses for the surveillance of the epizootic to the Swiss Rabies Centre at the 

University of Bern. Individual data for each fox was systematically recorded including 

date of delivery, sex, sampling site and results from the rabies virus test. For monitoring 

the oral wildlife vaccination, fox samples were additionally tested for the successful 

uptake of the vaccine bait. To discriminate between juveniles and adults the relative 

width of the pulp cavity of a canine tooth was measured using X-ray (Kappeler 1985). In 

order to extract the caninus tooth, the lower jaw of the fox carcass was removed and 

subsequently autoclaved with the objective to eradicate any potential rabies virus and to 

facilitate the removal of the tooth. Therefore, one tooth per fox sample was 

systematically collected and stored. Throughout the rabies epizootic, a total of over 

28,000 individual tooth samples were systematically collected.

R h i n e

10km

Figure 1 Location of the study area (411km2; grey area) in the Canton Aargau, Switzerland. The 
dark and light lines represent rivers and approximate hunting ground boundaries, respectively.
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Despite the large number of teeth available, samples were not randomly distributed in 

time or space. In general, sampling efforts were biased towards rabies-infected areas and 

vaccination zones. Since the objective of this study was to investigate a continuously

sampled population over time, a confined study area was selected in Northern
# ^

Switzerland (Canton Aargau). This 411km area is encompassed by the two main rivers

Rhine and Aare (Figure 1), which prevented the spread o f the first rabies wave in 1967.

However, in 1975 the epizootic swept across the whole region. Nevertheless, foxes were

collected from 1967 onwards, thus providing pre- samples before the rabies infection hit

the study area. Following some single positive rabies records in the late 1980s and the

1990s, a continuous surveillance of the disease and vaccination programme was

necessary. To supplement the historic tooth collection, recent tissue samples were

provided by the local hunting authorities in 2 0 0 1 -0 2 .

Rabies epidemic and demographic data

Based on the available data records from the study area, the annual numbers of observed
-y

positive rabies cases per km (rabies index), and the annual and three-year sliding means 

for female and juvenile proportions of the red fox population studied were computed. 

Additionally, a number o f historic and recently collected teeth from adult foxes were 

accurately aged; the root-tip was removed and subsequently aged by counting annual 

cementum lines following a modified protocol by Kappeler (1985) based on Grue & 

Jensen’s (1973) method6. Annual mean and three-year sliding means for adult age were 

computed. Furthermore, the age distribution based on accurate individual age data from 

adult foxes collected in 1971-73, 1983-85 and 1996-98 was tested in a contingency table. 

Hence an unbiased estimate of the p  - value of the probability test (Fisher’s exact test) 

was performed by a Markov chain method using the sub-program STRUCT implemented 

in GENEPOP (Raymond & Rousset 1995b).

To assess the red fox population dynamics, an additional and independent data set of the 

annual number o f foxes killed by traffic (roads and rails) and hunting was provided by 

the hunting authorities of the Canton Aargau for the study area between 1970 and 1967, 

respectively. These data records were based on individual or joint local hunting grounds 

on a borough level (Figure 1). To account for missing data and the size of individual 

hunting grounds, roadkill and hunting data were recorded as the number of foxes killed

6 All tooth samples were aged by Matthias Ulrich, Bern, CH.

57



CHAPTER 4

per km (roadkill index and hunting index) for each hunting ground. Annual means, 

three-year sliding means and standard errors (SE) across grounds were computed. 

Finally, the annual growth rate of the fox populations was calculated as: rx = In ( A [ r0adkiii- 

index] i /  ^[roadkiii-index] i - i )  (McCallum 2000). All data records and analyses were based on 

biological years by assuming that all foxes were bom on the 1st April.

Laboratory work

Only individual samples with a complete record, i.e. accurate age, date of delivery, sex, 

sampling site, rabies test results and an undamaged tooth sample, were selected for 

genetic analyses. DNA was extracted from the tooth using a silica-based spin column 

(QIAquick® -  PCR purification kits, Qiagen). In brief, the whole canine tooth or the 

remaining tooth crown (« 0.7g) for juveniles and accurately aged adults, respectively, 

were ground to powder using a steel mortar. After decalcification (EDTA, pH8.0, 0.5M, 

72h), samples were digested (proteinase K) twice overnight. DNA was bound to the 

silica membrane by vacuuming the supernatant through the QIAquick column, purified 

following the manufacturers protocol (for details see Chapter 1) and finally eluted in 

200/iL o f H2O. DNA from recent tissue samples was extracted using a DNeasy® tissue kit 

(Qiagen).

Based on the results o f successful PCR amplification in historic tooth extracts in relation 

to different microsatellite loci in size (Chapter 1), only loci were used with less than 170 

bps of maximum fragment size. Nine canine microsatellite loci (AHT-130, Holmes et al. 

1995; CXX-156, CXX-250, CXX-279, CXX-434, CXX-466, CXX-606, CXX-608 

Ostrander et a l  1993, 1995; and c2088; Francisco et a l  1996) and seven re-designed red 

fox-specific canine microsatellite (V142, V374, V402, V468, V502, V602, V622; 

Chapter 2) were used in this study. Single PCR reactions for loci AHT-130, CXX-156, 

CXX-250, CXX-434, CXX-466, CXX-608 and c2088 were performed in a total volume 

of 6 /iL containing 2/iL of template DNA, following a hotstart PCR protocol (for details 

see Chapter 1). For all other loci, PCR efficiency and success was significantly improved 

by using Qiagen’s PCR multiplex kit. Between two and three loci were co-amplified. 

PCR was carried out in a total volume o f 8 /1L containing 4^tL o f multiplex PCR master- 

mix, \.2fxg BSA, 0.08-0.4/xM of each primer and 3/*L of template DNA. PCR 

amplifications were performed in a GeneAmp® PCR System 9700 (ABI) using the 

following cycling parameters: 12mins o f initial denaturation at 95°C, followed by 40
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cycles of 30s at 94°C, 120s at 58°C and 60s extension at 72°C, with a final extension of 

30mins at 60°C. All PCR products were electrophoretically separated using an ABI 

Prism® 377 DNA sequencer (ABI). Allele sizes were scored against the size standard 

GS350 Tamra™ (ABI) using GENESCAN™ Analysis and GENOTYPE™ software.

To account for allelic drop-out and false alleles by PCR amplification of microsatellite 

loci from highly diluted DNA (e.g. Navidi et al. 1992, Gagneaux et al. 1997, Morin et al. 

2001, Chapter 1), the nuclear DNA concentration for all individual tooth samples was 

initially estimated by a quantitative PCR (5’ exonuclease assay), which targets a 81 bps 

portion of the highly conserved c-myc proto-oncogene (Morin et al. 2001, for details see 

Chapter 1). Only samples with an estimated DNA concentration of 5 pg//iL or more were 

considered for subsequent microsatellite genotyping. Heterozygote genotypes were 

independently and successfully amplified at least twice, whereas homozygote genotypes 

were repeated according to the estimated DNA concentration (Morin et al. 2001). Hence, 

extracts with an estimated concentration of more than 200pg for a single PCR reaction 

were amplified twice, samples between 1 0 0  -  2 0 0 pg, four times and extracts with less 

than lOOpg at least five times. DNA extraction of all tooth samples and PCR mix 

preparations were performed within a spatially isolated laboratory dedicated for working 

with low-copy DNA samples. Special care was taken to avoid cross-contamination and 

contamination with contemporary DNA. Quantitative PCR assays were carried out at the 

Laboratories for Conservation Genetics in Leipzig, Germany.

Population genetic analyses

Global estimates o f single locus genetic diversity (He\  Nei 1987) and observed 

heterozygosity (H o)  across all samples and years were computed in GENEPOP 

(Raymond & Rousset 1995b). Genotypic linkage disequilibrium between all pairs o f loci 

(Gamier-Gere & Dillmann 1992) was tested in GENEPOP. Using the same software, 

single and multilocus deviation from Hardy-Weinberg equilibrium was tested 

(probability test). Annual estimates for He, Ho and the inbreeding coefficient F\s (Weir & 

Cockerham 1984) were calculated using the same software package. Further, to estimate 

the allelic diversity (A3),  the mean number and SE o f detected alleles across all loci were 

permuted ( 1 0 0 0  iterations) for a minimum number of three individuals for each year 

using POP ASSIGN (Funk, unpublished). To account for missing genotypes, 

permutations were computed for each locus independently. A genic differentiation test
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across all annual samples was applied to test for the global allelic distribution using 

GENEPOP (Raymond & Rousset 1995b). For each locus a contingency table was 

computed and an unbiased estimate of the p  - value of the probability test was performed 

(Raymond & Rousset 1995a). Subsequently, single locus probability values were 

combined according to Fisher’s method (Sokal & Rolf 1995). Because alleles are 

expected to be lost faster than heterozygosity following a demographic bottleneck 

(Luikart & Comuet 1998), annual A 3 and He measures were correlated to identify a 

potential recent bottleneck. For all population genetic analyses on an annual basis, 

individual samples were allocated to their year of birth, with the exception of nine 

temporally isolated individuals, which were assigned to either the previous or the 

following year.

To establish a smoother function of the observed genetic estimates over time, annual 

multilocus means were also computed for He, Ho, F\s and A 3 by including all individual 

samples bom within a time period of three years. In contrast to the single annual values, 

an individual sample could thus be represented in up to three annual genetic estimates. 

Finally, global genic differentiation and Fst - values were computed across all individual 

samples from 1971-73, 1983-85 and 1996-98.

Results

Population dynamics and demography

Annual roadkill and hunting data were available for up to 40 local hunting grounds and 

combined, represented 95.6% (mean: 9.8km2; min -  max: 2.5 -  30.5km2) of the total size 

of the study area (Table 1). From 1967 to 2000 a total of 2658 fox carcasses from the 

study area were posted to the Rabies Centre. 742 foxes were tested rabies positive, 

peaking in 1975 with 558 recorded cases (rabies index = 1.36). The whole region 

remained rabies-infected until 1984 and was re-infected in the first half of the 1990s 

(Table 1; Figure 2). Between 1984-86 and 1989-98, the red fox population studied was 

subjected to oral rabies vaccination. Post-mortem data on sex and age (juvenile and 

adults) were recorded for 1612 and 1628 individuals, respectively. The absence of data 

recording was prominent for the first three years of rabies surveillance and during the

60



CHAPTER 4

first rabies wave between 1974 and 1976, while from 1978 onwards, records were 

complete. A total of 561 adult individuals were accurately aged (Table 1).

A positive correlation between the roadkill and hunting index was observed and 

subsequently improved when an outlier (1975) was excluded (roadkill index = 0.013 + 

3.54*hunting index; r = 0.93, n = 30). After the first rabies infection in 1975, the roadkill 

index in 1976 dropped from 0.445 to 0.0175 by 79.2%, indicating a severe decline in 

population size. However, following the rabies-induced population crash, the roadkill 

index increased by over 600%, therefore exceeding pre-rabies population size from the 

mid-1980s onwards. The dynamics of this population can be divided into three periods: 

‘pre-rabies’ (< 1976), ‘recovery and growth’ (1977-94) and ‘carrying capacity’ (> 1995; 

Figure 2). Finally, the average annual population growth rate between 1970 and 2000 

was 0.031.

Mean ± SD o f female and juvenile proportion across all years was 0.45 ± 0.08 and 0.47 ± 

0.13, respectively (Table 1). During the period of population recovery the estimated 

proportion of juveniles declined from 56% to 40% (juvenile proportion = 20.5 - 

0.0101 *year; n = 17; r = -0.51; Figure 2). Although there was no apparent trend for the 

sex ratio observed, the proportion of recorded females in relation to males was low 

between 1981 and 1988 (0.35 -  0.44). The ratio between rabies-infected and non-infected 

foxes was not affected by sex or age (adults versus juveniles), although the observed 

proportion of infected males compared to females tended to be higher (sex: X * ] , \ ( > \ 2  = 

3.008; p = 0.08; age: = 0.73; p>0.39; Chi-square test). Following the first rabies

infection, average adult individual observations increased from 1.78 (1984) to 2.86 years 

(1994) during the population growth period (mean adult age = -211.1 + 0.107*year; n = 

10; r = 0.85; Figure 2). The observed distribution of adult age classes for 1971-73, 1983- 

85 and 1996-98 differed significantly (p < 0.009, Table 2). Finally, no adult individual 

collected and accurately aged between 1983 and 1985 (n = 63) was older than five years 

(Table 2).
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Table 1 Summary of the demographic and epidemic data for a red fox population (Canton Aargau, Switzerland) following a rabies epizootic from 1966-2001. 
Shown are the annual (biological year) data / estimates for sample size of provided foxes and recovered individual tooth samples, absolute number of recorded rabies 
cases and rabies index (recorded positive cases per km2), oral vaccination (yes / no), female and juvenile population ratios, average adult age, average (± SE) roadkill
and hunting index and growth rate (McCallum 2000).
Year Sample size 

Foxes Teeth 
N N

Rabies
Rabies
N

& Vaccination 
cases Vacc. 
index yes/no

Female
Mean

Sex
prop.

N

ratio & Age structure 
Juvenile prop. Adult 
Mean N Mean

age
N

Roadkill & Growth rate 
Index (cases/km2) Growth 

Mean SE N r

Hunting 
Index (cases/km2) 

Mean SE N
1966 - . - _ _ _ _ . 1.89 1.37 38
1967 38 0 0 0.000 0 _ - - - 2.32 1.06 38
1968 32 0 0 0.000 0 0.38 13 0.69 13 - - _ - - - 1.32 0.81 32
1969 13 4 0 0.000 0 0.60 10 0.40 10 3.00 3 - _ - - 0.86 0.68 32
1970 7 4 0 0.000 0 0.50 6 0.29 7 1.00 3 0.18 0.17 35 - 0.74 0.61 38
1971 89 10 0 0.000 0 0.47 87 0.80 87 2.00 14 0.26 0.30 39 0.56 0.87 0.53 38
1972 177 70 0 0.000 0 0.47 177 0.51 176 2.35 62 0.34 0.35 40 0.17 1.36 0.71 38
1973 133 45 0 0.000 0 0.52 111 0.47 111 2.07 44 0.27 0.25 40 -0.34 1.27 0.88 38
1974 115 0 3 0.007 0 - - - - - - 0.44 0.33 38 0.29 2.02 1.05 38
1975 854 25 558 1.358 0 0.33 39 0.46 37 3.10 10 0.43 0.44 33 0.29 4.98 2.71 37
1976 6 0 2 0.005 0 - - - - - - 0.09 0.17 40 -0.94 0.32 0.31 38
1977 4 0 0 0.000 0 - - - - - - 0.14 0.21 40 0.17 0.35 0.32 38
1978 10 3 5 0.012 0 0.56 9 0.60 10 - - 0.15 0.21 40 0.00 0.48 0.42 38
1979 56 4 45 0.109 0 0.40 55 0.60 55 1.67 3 0.17 0.24 39 0.14 1.12 0.78 37
1980 10 0 9 0.022 0 0.56 9 0.44 9 - - 0.11 0.16 40 -0.42 0.29 0.36 38
1981 23 0 16 0.039 0 0.35 23 0.70 23 - - 0.14 0.23 40 0.37 0.27 0.32 38
1982 10 1 7 0.017 0 0.44 9 0.40 10 - - 0.12 0.17 40 -0.26 0.30 0.29 38
1983 25 1 15 0.036 0 0.42 24 0.54 24 - - 0.21 0.24 40 0.32 0.34 0.29 38
1984 70 71 24 0.058 1 0.35 66 0.39 70 1.53 43 0.21 0.23 40 -0.03 0.40 0.41 38
1985 67 62 0 0.000 1 0.35 65 0.63 67 1.75 20 0.26 0.30 39 0.25 0.70 0.49 38
1986 82 78 0 0.000 1 0.41 79 0.52 82 2.14 36 0.24 0.21 39 -0.37 0.97 0.53 38
1987 45 23 0 0.000 0 0.43 44 0.53 45 - 1 0.41 0.43 39 0.74 1.42 0.86 38
1988 25 23 0 0.000 0 0.36 25 0.36 25 2.42 12 0.50 0.40 39 -0.07 1.51 0.88 38
1989 50 49 1 0.002 1 0.50 48 0.37 49 1.92 26 0.50 0.42 39 0.04 2.48 1.93 37
1990 34 33 1 0.002 1 0.53 34 0.53 34 2.25 8 0.51 0.34 39 -0.20 2.54 1.72 38
1991 136 130 1 0.002 1 0.46 136 0.42 136 2.43 60 0.58 0.40 40 0.15 2.35 1.35 38
1992 91 88 5 0.012 1 0.36 91 0.41 91 2.57 44 0.61 0.50 38 0.22 1.61 0.99 38
1993 116 109 19 0.046 1 0.45 114 0.43 116 3.00 47 0.60 0.38 40 -0.26 2.18 1.23 38
1994 135 117 29 0.071 1 0.45 133 0.45 135 2.50 26 0.73 0.44 40 0.15 2.11 1.17 38
1995 65 53 2 0.005 1 0.49 65 0.28 65 3.09 33 0.61 0.44 40 -0.01 2.22 1.03 38
1996 50 47 0 0.000 1 0.43 49 0.44 50 2.92 24 0.69 0.45 40 0.02 2.29 1.28 38
1997 25 24 0 0.000 1 0.44 25 0.20 25 2.27 15 0.62 0.38 40 -0.17 2.16 1.00 38
1998 35 33 - - 1 0.49 35 0.37 35 3.00 14 0.58 0.39 40 0.05 2.23 1.36 38
1999 12 5 - - 0 0.58 12 0.50 12 3.50 2 0.71 0.46 40 0.16 2.48 1.45 38
2000 2 2 - - 0 - - - - - 2 0.78 0.42 40 -0.07 2.58 1.79 38
2001 16 16 - - 0 0.3125 16 0.44 16 2 9 - - . -

Mean 75.9 32.3 - - - 0.447 0.472 - 2.369 0.394 0.324 - 0.031 1.524 0.941 -

SD - - - - - 0.077 - 0.130 - 0.602 ~ 0.218 0.106 - - 1.005 0.549 -

Total 2658 1130 742 - 13 - 1609 - 1625 - 561 - - - - - - -
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Figure 2 The dynamics of population size (mean ± SE, roadkill index; a), juvenile proportion (b), average adult 
age (c) and sex ratio (female proportion; d) of a red fox population (Aargau, Switzerland) in relation to a rabies 
epizootic (rabies index, grey bars) from 1966-2001. Shown are annual means (symbols) and three-year sliding 
means. (For details see Table 1).

Pre-rabies

0
16 8
1.4 EL 

0
1 .2  Q -

1.0 8 
0

0 8 ® tn
0.6 ^  
0.4 

0.2 

0.0

E-l —? ^  1   » , r

Recovery and growth
— ...............

j Carrying capacity

T 16
-  1.4

- 1.2 

1.0

63



CHAPTER 4

Table 2 Age distribution o f a red fox population (Aargau, Switzerland) 
for three time periods following a rabies epizootic. Shown are the ratios 
between juveniles and adults, and the absolute and relative number of 
individuals per age class for each of the three sampling periods.

1971-73 1983-85 1996-98

Juveniles: Adults 1:0.76 1:0.96 1:1.75
(N=374) (N=161) (N=l 10)

Age in years N % N % N %
1-2 65 0.54 35 0.56 20 0.38
2-3 20 0.17 20 0.32 10 0.19
3-4 10 0.08 6 0.10 10 0.19
4-5 11 0.09 2 0.03 2 0.04
5-6 4 0.03 - - 4 0.08
6-7 5 0.04 - - 5 0.09
7-8 4 0.03 - - 1 0.02
8-9 1 0.01 - - - -

9-10 - - - - - -

10-11 - - - - 1 0.02
Total 120 100 63 100 53 100

Population genetics

DNA was extracted from 262 tooth and 16 tissue samples. The extracted DNA from 

three tooth samples revealed traces of cross-contamination by amplifying consistently 

more than two alleles for several loci and were thus excluded from further analyses.

All tissue and 168 (64.1%) tooth samples were genotyped. Based on the estimated 

DNA concentration, homozygote genotypes for 96, 24 and 48 samples in that order, 

were twice, four and at least five times independently amplified. Homozygote and 

heterozygote genotypes were successfully amplified on average 3.33 and 2.95 times, 

respectively, across all samples and loci. Mean genotyping success across all loci and 

samples was 96.3% and varied across loci between 90.2% for CXX-606 and 100% for 

V374 and V486 (Table 3). A total of 142 different alleles were detected while the 

number across loci varied between six for V374 and CXX466, and 17 for V602. 

Multilocus values (mean ± SD) for He and Ho were 0.785 ± 0.065 and 0.760 ± 0.075. 

No significant linkage disequilibrium was found among all pairs of loci after adjusting for 

multiple comparisons (data not shown; A=136; all tests p > 0.05Ik with Bonferroni correction 

of a = 0.05). None o f the loci departed from Hardy-Weinberg equilibrium after 

Bonferroni correction for multiple testing (a = 0.05; k =16), but the global multilocus 

value deviated significantly (Fisher’s method: p  < 0.0002). A slightly positive Fis - 

value (mean ± SD) o f 0.032 ± 060 across loci was observed (Table 3).
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Table 3 Summary of the observed genetic diversity, PCR success and the number of independent PCR 
repetitions for accurate microsatellite genotyping across all historic (n= 168) and recent (n = 16) red fox 
samples collected continuously over 35 years. Shown are single-locus values for the absolute and relative 
number of successful genotyping, average number o f independent and successful PCR repetitions for 
homozygote {Horn) and heterozygote {Het) genotypes, range of microsatellite fragment size, number of 
detected alleles (A), expected ( / /E; Nei 1987) and observed heterozygosity (H0), inbreeding coefficient (FiS; 
Weir & Cockerham 1984) and p  - values for Hardy-Weinberg deviation.

Locus

PCR success & PCR repetitions

Success* Repetitions* Fragment 
r size [bps]

N % Horn Het Min Max

Genetic diversity & Test for HW-deviation

HW-testb

A He Ho Fis P*
AHT-130 167 99.5 4.36 3.51 98 120 8 0.741 0.743 -0.003 0.047
V142 159 95.1 2.58 2.62 133 147 10 0.875 0.840 0.040 0.589
CXX-156 161 96.2 3.15 2.95 131 131 9 0.797 0.746 0.064 0.023
CXX-250 161 96.2 3.44 2.63 124 140 9 0.805 0.802 0.003 0.091
CXX-279 161 96.2 2.79 2.65 114 142 9 0.788 0.825 -0.047 0.315
V374 168 100.0 3.78 3.92 106 118 6 0.813 0.766 0.057 0.086
V402 167 99.5 2.91 2.39 78 90 7 0.784 0.798 -0.018 0.234
CXX-434 158 94.6 4.15 3.37 102 110 7 0.709 0.655 0.076 0.385
CXX-466 162 96.7 3.74 3.98 144 154 6 0.735 0.787 -0.071 0.179
V486 168 100.0 3.11 2.98 82 98 9 0.835 0.793 0.049 0.728
V502 166 98.9 2.87 2.17 79 95 9 0.656 0.560 0.146 0.071
V602 164 97.8 3.52 3.00 140 172 17 0.904 0.878 0.029 0.076
CXX-606 150 90.2 2.66 2.43 152 166 8 0.709 0.735 -0.037 0.565
CXX-608 158 94.6 2.82 2.75 129 147 8 0.778 0.770 0.010 0.056
V622 153 91.8 2.95 2.59 91 119 9 0.835 0.763 0.086 0.020
c2088 156 93.5 4.09 3.01 116 156 11 0.802 0.703 0.124 0.015
Mean 161.2 963 333 2.95 113.7 131.6 8.88 0.785 0.760 0.032 0.0002
SD 5.4 - 0.57 0.53 23.8 25.4 2.55 0.064 0.075 0.060 -
* Based on historic samples only.
b p  - value (probability test; Raymond & Rousset 1995a) before Bonferroni correction for multiple testing.

The temporal allelic distribution across loci and the 27 annual samples did not differ 

significantly (Fisher’s method, X2 = 45.39; d f = 3 2 ; p >  0.059), although the computed 

p  -  value was just outside the significance level of 0.05. The dynamics of the annual 

and the combined three year multi locus means for He-, Hq, A 3 and Fis are shown in 

Table 4 and Figure 3. None of the temporal trends of He, Hq and A3 indicated a 

reduction of genetic diversity following the rabies-induced population crash in 1975. 

Indeed, He and A3 demonstrated a slightly higher genetic diversity after the epidemic 

(Figure 3).
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Table 4 Summary of the population genetic estimates for a red fox population (Aargau, Switzerland) following a rabies epizootic from 1966-2001. Shown are the sample 
size for extracted historic tooth samples (NEX), successful genotyped samples (iVGT), samples sorted by year o f birth (jVb), samples used to calculate annual estimates for 
one year only (N\) and for three years pooled (jV3). Annual multilocus means and SE (across loci) for the inbreeding coefficient (Fis; Nei 1987), expected (HE\ Nei 1987)
and observed heterozygosity (//q), and allelic richness (randomised across three individuals) are calculated for one year and three years pooled.
Year

Nex
Sample size 

Ngr Ng N/ N,
Annual population genetics (one year)

Fis HE H0 A 
mean SE mean SE mean SE mean

3
SE

Annual population genetics (three vears pooled) 
Ft s He Ho A 

mean SE mean SE mean SE mean
3

SE
1966 - - 4 5 - 0.101 0.067 0.735 0.039 0.669 0.060 3.455 0.210 - - - - - - -

1967 - - 1 10 - _ _ - - - _ - 0.065 0.043 0.755 0.026 0.717 0.047 3.526 0.167
1968 - - 5 5 8 -0.047 0.053 0.748 0.041 0.778 0.059 3.533 0.246 -0.030 0.054 0.753 0.027 0.772 0.046 3.511 0.177
1969 4 2 2 - 10 . . - - -0.055 0.060 0.753 0.029 0.784 0.044 3.542 0.198
1970 4 0 3 5 12 -0.064 0.092 0.765 0.029 0.797 0.062 3.525 0.233 0.007 0.035 0.787 0.020 0.778 0.029 3.724 0.150
1971 5 0 7 7 17 0.042 0.050 0.805 0.022 0.776 0.046 3.819 0.179 0.045 0.035 0.784 0.019 0.750 0.033 3.707 0.140
1972 44 20 7 8 15 0.074 0.055 0.770 0.023 0.720 0.048 3.623 0.161 0.049 0.040 0.784 0.020 0.748 0.039 3.705 0.150
1973 29 5 1 - 9 - - - - - - - - 0.074 0.050 0.766 0.022 0.716 0.045 3.582 0.150
1974 0 0 1 - 8 - - - - - - - - 0.084 0.065 0.761 0.031 0.698 0.055 3.519 0.157
1975 18 10 6 7 0.060 0.060 0.746 0.039 0.704 0.058 3.493 0.184 - _ _ _ - - -

1976 0 0 - - - - - - - - - - - - - - - - - - -

1977 0 0 _ - - - - - - - - - - - - - _ - - - -

1978 3 2 3 5 - 0.095 0.041 0.810 0.022 0.738 0.035 3.828 0.169 - - - - - - - -

1979 4 1 2 - 6 - - - - - - - - 0.084 0.035 0.799 0.022 0.738 0.034 3.785 0.158
1980 0 0 1 - 6 - - - - - - - - 0.037 0.046 0.772 0.024 0.748 0.043 3.656 0.157
1981 0 0 3 4 11 0.041 0.082 0.789 0.031 0.766 0.070 3.737 0.171 0.025 0.044 0.766 0.022 0.747 0.039 3.583 0.136
1982 1 0 7 7 18 0.031 0.060 0.766 0.025 0.738 0.044 3.537 0.170 0.002 0.032 0.771 0.017 0.769 0.028 3.618 0.115
1983 0 0 8 8 22 -0.036 0.051 0.773 0.020 0.796 0.040 3.666 0.117 0.002 0.030 0.771 0.017 0.771 0.030 3.631 0.118
1984 22 19 7 7 20 -0.002 0.069 0.777 0.026 0.774 0.055 3.655 0.183 -0.021 0.030 0.777 0.017 0.792 0.026 3.687 0.114
1985 10 4 5 5 20 -0.008 0.044 0.808 0.016 0.814 0.037 3.808 0.141 0.030 0.028 0.797 0.014 0.775 0.029 3.736 0.130
1986 16 13 8 8 19 0.089 0.057 0.812 0.017 0.746 0.050 3.791 0.154 0.017 0.029 0.796 0.015 0.780 0.024 3.735 0.120
1987 3 2 6 6 20 -0.026 0.057 0.785 0.021 0.794 0.036 3.735 0.162 0.037 0.029 0.803 0.016 0.771 0.023 3.762 0.125
1988 4 4 6 6 19 -0.017 0.061 0.778 0.021 0.781 0.039 3.633 0.121 -0.021 0.029 0.781 0.020 0.793 0.022 3.696 0.136
1989 8 6 7 7 19 -0.034 0.066 0.764 0.030 0.793 0.058 3.652 0.222 -0.019 0.029 0.775 0.021 0.786 0.024 3.650 0.152
1990 3 3 6 6 20 -0.024 0.052 0.770 0.025 0.777 0.034 3.577 0.180 -0.033 0.035 0.785 0.021 0.809 0.030 3.735 0.153
1991 13 8 7 7 21 -0.033 0.033 0.823 0.018 0.847 0.031 3.986 0.166 0.000 0.031 0.776 0.019 0.775 0.028 3.647 0.152
1992 10 10 8 8 22 0.070 0.052 0.763 0.024 0.711 0.042 3.559 0.175 0.055 0.026 0.786 0.018 0.744 0.026 3.684 0.136
1993 10 8 7 7 23 0.137 0.067 0.783 0.024 0.677 0.056 3.573 0.175 0.075 0.035 0.787 0.018 0.729 0.031 3.669 0.139
1994 9 9 8 8 23 0.035 0.060 0.814 0.020 0.789 0.051 3.901 0.154 0.051 0.034 0.795 0.017 0.757 0.031 3.740 0.133
1995 9 9 8 8 24 -0.012 0.045 0.784 0.018 0.789 0.032 3.702 0.134 0.040 0.038 0.794 0.016 0.763 0.033 3.729 0.111
1996 12 12 8 8 25 0.093 0.057 0.785 0.020 0.711 0.042 3.605 0.123 0.015 0.026 0.787 0.016 0.775 0.024 3.692 0.118
1997 8 8 9 9 23 -0.031 0.042 0.797 0.017 0.819 0.036 3.807 0.149 0.033 0.026 0.780 0.016 0.753 0.021 3.633 0.115
1998 10 10 6 6 22 0.085 0.042 0.772 0.021 0.708 0.032 3.559 0.162 0.007 0.030 0.778 0.018 0.772 0.028 3.677 0.136
1999 3 3 7 8 14 0.012 0.052 0.780 0.027 0.765 0.039 3.696 0.177 0.039 0.040 0.774 0.022 0.740 0.029 3.645 0.152
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Figure 3 Temporal population genetics of a red fox population (Aargau, Switzerland) following a rabies epizootic 
from 1966-2001. Shown are the annual means (symbols) ± SE (calculated across loci) and three-year means (lines) 
for expected (a; HE) and observed heterozygosity (b; H0), allelic richness (c; A3, permuted for three individuals) 
and inbreeding coefficient (d; Fis). Grey bars represent the annual number of recorded rabies cases in red foxes 
(rabies index). For details see Table 1 and 4.
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The first annual estimate obtained for He and A3 (1978), after the population reduction 

following the rabies infection, aligned within the distribution of all other annual values 

(Figure 4). Although the global observed F\S was positive across the 35 years studied, 

eight out of nine annual estimates were negative during the most significant periods of 

population growth between 1983 and 1991 (Figure 3). Finally, no genic differentiation 

across loci and the three time periods 1971-73 (n=15), 1983-85 (n=20) and 1996-98 

(n=23) was detected (X1 = 40.6; df = 32; p  > 0.14; global Fst = 0.0002).
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Figure 4 Relationship between genetic ( H E) and allelic diversity (Ay,  permuted for three individuals), 
showing annual estimates of a red fox population (Aargau, Switzerland) following a rabies epizootic 
from 1966-2001. Values.represent pre-rabies (filled circles), population recovery and growth (grey 
circles) and carrying capacity phase (clear circles). The square symbol represents the first population 
genetic estimation (1978) following the rabies-induced population reduction of 79% in 1975.
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Discussion

A combination of detailed and long-term epidemiological, demographic and 

population genetic data enabled questions on the effects of a rabies epizootic on the 

population dynamics, age structure and genetic diversity in a local red fox population 

to be addressed. The main findings were as follows: i) Following the rabies outbreak, 

the red fox population was estimated to be reduced by 79%. Subsequent to this 

reduction the population size increased by over 600% until it most likely reached its 

carrying capacity, ii) The age distribution altered over time following the population 

reduction and the recovery phase, iii) No genetic bottleneck was detected.

Population dynamics

Indicated by the roadkill index, the red fox population size was reduced by 79% 

following the first infection of rabies in 1975. Thus, the observed level of reduction 

was higher than the expected proportion o f 50% to 60% of red foxes killed by rabies 

(Bogel et al. 1974). In addition, only a minor proportion of the total number of rabid 

foxes are being detected (Macdonald & Voigt 1985). Yet, variation in mortality rates 

across different fox populations can be expected because the effect of rabies is thought 

to be habitat dependent (Zimen 1982); this is due to dissimilar levels of habitat 

carrying capacities and the resulting different fox densities. Consequently, a fox 

population infected by rabies will be reduced to a certain threshold density (about one 

fox per km2), where the epizootic cannot be transmitted further independently from its 

preliminary density (see also Anderson et a l 1981). Similar levels of mortality (70%) 

were recorded in Scandinavian red fox populations, which were infested by sarcoptic 

mange (Lindstrom et al. 1994). Furthermore, Young (1994) reported levels of die-offs 

between 50-85% for different diseases and carnivore species. However, it is important 

to emphasise that rabies-induced mortality might be much higher, when the disease is 

transmitted via a sympatric reservoir host. For example, severe population declines 

were reported in the Ethiopian wolf Canis simiensis (see Sillerio-Zubiri et al. 1996) 

and the African wild dog Lycaon pictus (see Alexander et a l 1993) after transmission 

of rabies through domestic dogs.

Human intervention such as disproportionately high hunting pressure during the peak 

o f the rabies epizootic in 1975 is likely to have affected the observed population

69



CHAPTER 4

reduction. In fact, more than 2000 foxes were culled in the study area during the first 

year of the rabies epizootic. In contrast, it can be speculated that most of these foxes 

would have been killed by rabies nonetheless. It can be assumed, that the fox density 

dropped substantially below the expected threshold of one fox per km2. The low 

number or absence o f recorded rabies cases in the following three years (1976-78) 

further supports this assumption. Hence, the population size for the study area 

(411km2) following the first rabies infection could have significantly dropped below 

400 individuals.

In 1988, the population reached the same density as before the rabies outbreak. The red 

fox population continued to grow until it reached a population plateau in the mid- 

1990s. Furthermore, fox abundance subsequently experienced a two-fold increase 

following the progressive elimination of rabies. Indeed, this observation is consistent 

with the general trend of a current high abundance of red foxes in Switzerland 

(Breitenmoser, unpublished data) and Europe (reviewed in Chautan et al. 2000). 

Moreover, this highlights the mounting potential of re-infection of rabies or infection 

o f other zoonoses (Chautan et al. 2000).

Finally, it is important to emphasise, that although the study area was unaffected by the 

first rabies wave between 1968-70, the red fox population studied was nonetheless 

subject to population control measures such as gassing of dens (until 1972) and high 

hunting pressure. Therefore, the population dynamic and the pre-rabies data on 

population demography and genetic might have been altered by human interventions 

and do not precisely reflect an altogether rabies unbiased population structure.

Demography and age structure

The observed age distribution changed significantly over time. The high rabies- 

induced mortality alongside human intervention in 1975, lead to a significant reduction 

in adult average age and an increase in the proportion of juveniles in the subsequent 

decade. Moreover, the age distribution continued to change after reaching pre-rabies 

density. Given the age distribution before the rabies infection, only a small number of 

adult animals older than three years would have survived the epizootic. Indeed, no 

individual older than five years was found between 1976 and 1985.

70



CHAPTER 4

Following the observed reduction of population size, an increased reproduction could 

have compensated for the observed losses and could have consequently advanced the 

long-term population growth. The reproduction of fox populations depends on litter 

size and the proportion of adult females reproducing, while female productivity can 

differ between areas and, where food availability cycles, between years (Macdonald & 

Voigt 1985). Nonetheless, whether litter size increases in a reduced fox population is 

controversial. No difference in the mean number of litter sizes, by counting placental 

scars between rabies-endemic and rabies-free areas, has been found (Wandeler et al. 

1974, Vos 1994). In contrast, Funk (1994) revealed a significant increase in litter size, 

defined as counted cubs at the den, following a rabies outbreak.

The proportion of barren females and, in particular, the postponement of reproduction 

by subordinate and younger females (Macdonald 1979, reviewed in Cavallini 1996), is 

thought to be density-dependent (Englund 1980, Macdonald 1980). The red fox social 

structure varies from monogamous pairs to small to medium-sized groups, while 

groups consist o f a dominant breeding pair and one or more subdominant females 

(Cavallini 1996, but see Baker et al. 1998). Furthermore, Baker et al. (2000) revealed a 

decline in group size following a mange epizootic in an urban fox population. It can 

thus be assumed that following the first rabies infection most animals, which survived 

the epizootic, could have indeed reproduced in the following years. In contrast, a 

significant portion of subordinate and younger females are likely not to have 

reproduced before 1975 and, in particular, subsequent to the population growth since 

the mid-1980s (Vos 1995). Despite the broad range of data available for female 

productivity, in relation to population density, ecological factors and social status, little 

is known about male reproductive success.

Combining the results of the observed age distribution and the variance of female 

reproduction in relation to population density and to the rabies epidemic, the average 

generation time was not constant over time. Therefore, a considerable shorter 

generation time subsequent to the rabies infection could be expected.

Alongside the observed and expected temporal changes in mortality and reproduction, 

the rabies epizootic may also have affected dispersal patterns. In this context, an area 

with a transiently disease-induced high mortality could act as a ‘sink’, whereas the

71



CHAPTER 4

‘source’ is an area with no or little mortality (Artois et al. 1990, Zimen 1984). Thus, 

the rabies-affected population studied should consist of a mixture of resident survivors 

and predominantly juvenile immigrants (Harris 1977). Furthermore, the overall 

expected sex ratio should be male-biased based on the assumption that males in red 

foxes are in general the more dispersive sex (reviewed in Trewhella et al. 1988, 

Chapter 3). Although the observed juvenile ratio was high subsequent to the rabies- 

induced population reduction, the data collected do not allow us to distinguish between 

immigration and, as previously discussed, changes in mortality rates and reproduction. 

Nonetheless, the higher proportion of males observed in the mid-1980s might indicate 

some immigration into the study area.

Population genetics

The DNA extracted from the historic tooth samples was poor in terms of quality (DNA 

degeneration) and quantity, which further decreased with storage time (Chapter 1). 

Consequently, one third of all extracts, with a bias towards older samples, was not 

suitable for microsatellite genotyping due to the estimated insufficient DNA 

concentration (<5pg//il, Morin et al. 2001; Chapter 1). Furthermore, because of the 

highly degenerated DNA observed, only loci with a maximum of 170 bps in fragment - 

size could be amplified by PCR. Thus, the operational range o f the ABI Prism® 377 

sequencer was limited to less than 100 bps (78-172 bps). Therefore, only between two 

and three loci could simultaneously be electrophoretically separated and analysed. 

Knowledge of the accurate age of each genotyped individual allowed us to assign each 

sample to its year of birth. This approach was preferred to sorting the samples into 

years o f delivery, because by doing so, changes in genetic diversity could be 

immediately detected. In contrast, each individual was represented in one annual 

sample only. Thus, differences in reproductive success across individuals, which can 

be expected to correlate with sample age, were not considered. Sorting individual 

samples by age of birth, improved the sample distribution significantly over time, yet 

resulted in small annual sample sizes.

In contrast to the temporal age distribution, no evidence was found for the alteration of 

the genetic population structure during the rabies-induced demographic bottleneck and 

the subsequent population growth. The following three interpretations might help to 

explain the observed results.
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Firstly, because the transmission of rabies in a red fox population is density-dependent, 

the disease is unable to persist at a given density threshold within a population 

(Anderson et al. 1981). Therefore, a certain number of foxes should have survived 

rabies. Although the red fox population size in the study area was considerably 

reduced as revealed by the roadkill records, the effective local population size (Ne), 

based upon the non-infected individuals by rabies, remained sufficiently large to 

maintain the pre-rabies genetic diversity. Subsequent to the demographic bottleneck, 

the high reproductive potential of red foxes and the resulting population recovery 

prevented further genetic drift over time. Similar results were observed in a natural 

rabbit population reduced by the rabbit viral haemorraghic disease (Queney et al.

2000). Despite the estimated high mortality o f 88-99% no loss o f genetic diversity was 

detected following the bottleneck by comparing the genetic diversity over time; this 

was due to the sufficiently large remnant population size and a fast population 

recovery (Queney et al. 2000).

Secondly, immigration could have prevented the lasting effects of a genetic bottleneck. 

As previously discussed, the high rabies-induced mortality might have acted as a 

demographic ‘sink’. Thus, dispersing and predominantly juvenile foxes could have 

moved into the rabies-affected study area following the infection. The importance of 

immigration for rescue of a small and inbred wolf population Canis lupus was reported 

by Vila et al. (2003). Further, the ephemerality o f a natural demographic bottleneck, 

which was caused by a severe winter storm in an insular population of song sparrows 

Melospiza melodia, was demonstrated by Keller et al. (2001). While the genetic 

diversity had declined after the demographic bottleneck, the genetic diversity regained 

pre-bottleneck levels within three years ( » one generation) of the crash due to 

migration (Keller et al. 2001). In the present study, historic samples were only 

available for one year (1978) out of five years subsequent to the rabies-induced 

population decline. Therefore a potential short-term genetic bottleneck might not have 

been noticed. However, this is dependent upon the assumption that the rabies epizootic 

caused a temporal heterogeneous distribution of mortality across the whole region to 

create demographic ‘sinks’ and ‘sources’. Successful immigration might also be 

reflected by the observed negative F\$ - values during the most significant period of 

population growth in the mid-1980s.
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Thirdly, the red fox is a habitat generalist (Macdonald 1980), with an area-wide 

distribution in Switzerland up to 2500m altitude (Wandeler 1995). Despite being 

partially enclosed by two rivers, the examined red fox population might represent only 

a portion of the regional population rather than an isolated part. Hence, although the 

rabies epizootic swept throughout the whole region and reduced the red fox density 

substantially, the regional Ne can be expected to have remained sufficiently large 

enough to have maintained all the genetic diversity existing before the rabies epizootic. 

Assuming a continuous red fox population and a spatial genetic structure following an 

isolation-by-distance pattern (Chapter 3, Chapter 5), dispersal should have obscured 

local deficits in genetic diversity within a few generations. In fact, the spatial genetic 

structure of red foxes in Switzerland can be expected to be only moderately 

differentiated (Chapter 5, but see Wandeler et al. 2003a).

Although no clear long-term trends in genetic diversity were detected, variation in 

annual estimations of Ho, He, F\$ was found both short-term and longer-term. In 

particular, annual Fis - estimates varied considerably. Moreover this variation could be 

observed, when annual estimations were calculated based on samples pooled over 

three years. This result contradicts therefore studies which inferred general levels of 

genetic diversity and population inbreeding from temporal point-estimates.

Detecting losses of genetic diversity following a demographic bottleneck by using 

historic samples proves in general to be difficult. For example, Nielsen et al. (1999a) 

described the temporal population genetics in Atlantic salmon Salmo salar, but found 

the genetic diversity to be unaffected over time. Similar results were found for the 

European otter Luttra luttra (see Pertoldi et al. 2001) and Scandinavian wolverine 

Gulo gulo (see Walker et al. 2001). In both studies the historic samples did not show 

higher levels of genetic variability compared to contemporary samples, despite a 

significant reduction of population size in both species over the last century. In 

contrast, declines in genetic variation in the Greater Prairie chicken Tympanuchus 

cupido (see Bouzat et al. 1998), Mauritius kestrel Falco punctatus (see Groombridge 

et al. 2000) and sea otter Enhydra lutris (see Larson et al. 2002) were revealed by 

comparing pre- and post-bottleneck genetic diversity.
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The overall European red fox population and the studied population are thought to 

have experienced long-term population growth due to an increased carrying capacity 

independent from the recent rabies epizootic {reviewed in Chautan et a l 2000). 

Although the rabies-induced effects on the population dynamics and demography are 

evident in the earlier years following the first infection in 1975, the effects might have 

been much less evident in the long-term. Although no apparent temporal genetic effect 

could be revealed in relation to the rabies-induced demographic bottleneck, all four 

population genetic estimates and in particular the Fis - values showed considerable 

variation over time (Figure 3). However, red fox social structure is very variable, 

ranging from a monogamous pair at lower population size to complex family groups at 

higher densities (Cavallini 1996). Therefore, this variation observed might be caused 

by the six-fold increase in population size and its effect on the red fox social structure, 

rather than by the initially expected consequences of the rabies-induced demographic 

bottleneck.
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Density-Dependent Dispersal in a Continuous Red 

Fox Population with Changing Density.

Abstract
Dispersal and effective population size (Ne) are fundamental parameters of ecological 

and evolutionary processes. Whilst a growing number of studies have addressed the 

effects of demographic heterogeneities over time on Ne (e.g. bottlenecks), much less is 

known about such effects on dispersal and the resulting genetic structure within and 

between populations. In this study, the spatio-temporal genetic structure was assessed 

for a red fox (Vulpes vulpes) population in Switzerland during an estimated two to 

threefold density increase following a rabies epizootic. Under isolation-by-distance 

(IBD), the balance between gene dispersal and effective population density defines the 

level of local genetic drift in a continuous population and therefore its spatial genetic 

structure. Moreover, theoretical and empirical studies predict a negative correlation 

between dispersal and population density in red foxes. To assess the effects of an 

increasing density on the spatial genetic structure in a natural population, microsatellite 

data (nine loci) for three distinct time periods (1971-73; 1982-84, and 2001-03) 

representing ten to fourteen generations, were collected in a 4189km2 Alpine area 

using historic tooth (n = 214) and recent tissue samples (n = 118). Individual samples 

were collected in topographically distinct sampling sites within the study area. 

Although allele frequencies between time periods (1971-73 vs. 1982-84 and 1982-84 

vs. 2001-03 were significantly different, the observed level of temporal genetic 

differentiation was small (Fst: 0.009 ± 0.013 and 0.005 ± 0.007, respectively). 

Significant IBD was revealed when pairwise relatedness and spatial distances between 

individual samples were compared for the time periods 1982-84 and 2001-03 whilst a 

lower level of genetic structure was observed for the period 1971-73. Similarly, 

temporal discrepancies were reflected by global F st -  values calculated across 

sampling sites for each time period (1971-73: 0.002 ± 0.013; 1982-84: 0.008 ± 0.010; 

2001-03: 0.012 ± 0.009). Furthermore, inferring gene dispersal distances for the three 

sampling periods confirmed the predictions of negative density-dependent dispersal.

76



CHAPTER 5

Introduction

Effective population size (Ne) and dispersal are important parameters in evolutionary 

processes (e.g. Leblois et al. 2003). Ne determines rates of loss or maintenance of 

genetic variation, selection efficiency, inbreeding and inbreeding depression, while 

dispersal and the resulting gene flow counteracts local adaptation and genetic drift (e.g. 

Wright 1977, Hartl & Clark 1977). However, both demographic parameters are subject 

to spatial and in particular temporal heterogeneities and, therefore, are often not 

constant over space and time. In conservation, demographic bottlenecks are expected 

to reduce levels of genetic variation (Nei et al. 1975) and, if  Ne is maintained at a small 

size over a long period, higher levels of inbreeding may result, which in turn might 

result in inbreeding depression leading to a reduction in fitness (Keller & Waller 

2002). In contrast, dispersal between small populations can increase meta-population 

size and reduce the effects of inbreeding and loss of genetic variability (e.g. Keller et 

al. 2001; Vila et al. 2003).

Several population genetic methods allow the estimation of the variance Ne based on 

neutral genetic markers (reviewed in Schwarz et al. 1998, Beaumont 2003). One 

method of inferring demographic history employs population genetic theory that 

relates the structure of allelic genealogies observed in recent samples to historical 

changes in Ne (Beaumont 1999, Storz & Beaumont 2002). In addition, Ne o f a 

population can be inferred based on temporal changes o f neutral allele frequencies 

between samples of populations collected at different time intervals (e.g. Berthier et al. 

2002, Wang 2001, Wang & Whitlock 2003, Tallmon et al. 2004). In this context, 

historic samples from museums can serve as a valuable source of reference (Bouzat et 

al. 1998).

It has been noted that the usefulness and practicality of historic samples for population 

genetic studies are often restricted by inadequate sampling and DNA quality (Nielsen 

1999a, Chapter 1). Historic collections were often not conducted for the purpose of a 

population genetic study and, therefore, often lack adequate individual sampling 

information (e.g. age, sex, accurate data on sampling site) and sample size (Nielsen 

1999a, Chapter 1). In addition, DNA degrades over time (reviewed in Lindahl 1993, 

Chapter 1). As a consequence, extracted DNA is not only highly degraded but also
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highly diluted and can be contaminated (Chapter 1). Therefore, reliable genotyping 

from historic samples is particularly difficult (Taberlet et al. 1996, Hoss 2000, Chapter 

1). Despite these issues, the use of archival DNA samples in population genetic studies 

has increased recently using mitochondrial DNA markers (e.g. Pichler & Baker 2000, 

Matocq & Villablanca 2001) and nuclear DNA markers (Bouzat et al. 1998, Nielsen et 

al 1999a, Groombridge et al. 2000, Pertoldi et al. 2001, Walker et al. 2001, Larson et 

al. 2002, Miller & Waits 2003).

Environmental conditions such as habitat quality, social and demographic structures 

and population density, can induce dispersal of species (reviewed in Ims & Hjermann

2001). In particular, several empirical studies suggest that for many species dispersal 

rate depends on local population density and can be positively or negatively-density 

dependent (for references see Travis et al. 1999). Negative density-dependent effects 

on dispersal, in which a smaller fraction of individuals disperse at higher density, can 

be expected in territorial animals (reviewed in Wolff 1997). According to theoretical 

model territoriality can suppress migration by increasing costs of emigration due to the 

social fence of aggressive and territorial individuals. In this context, dispersal distances 

should experience the least resistance and lowest cost and thus should be smaller at 

higher density (from Wolff 1997).

Several studies have estimated dispersal rates in natural populations based on direct 

demographic methods (e.g. capture-mark-recapture and radio-telemetry; reviewed in 

Bennetts et al. 2001) and indirect population genetic methods (e.g. Rousset 2001, 

Chapter 2). However, discrepancies between indirect and direct estimations have often 

been attributed to the general inadequacy of the assumptions of genetic models such as 

the Wright-Fisher population model and the violation of the assumption of 

demographic stability in time and space (Leblois et al. 2003, 2004).

Restricted dispersal in space, together with local genetic drift, leads to genetic 

differentiation with increasing spatial distance as described by the theory of isolation- 

by-distance (IBD; e.g. Wright 1943, Rousset 1997). A substantial number of studies 

assessed IBD by comparing the genetic and spatial distance between populations (e.g. 

Slatkin 1993, Rueness et al. 2003). More recently, restricted dispersal has also been 

demonstrated for a number of species in a continuous population using individual
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based genetic and geographic data (for animals see: e.g. Rousset 2000, Spong & Creel 

2001, Sumner et al. 2001; Chapter 2; for a review of plants see: Vekemans & Hardy 

2004).

Following Wright (1943), models of IBD consider ‘neighbourhood size’ (NS) as the 

basic unit o f population structure. Although the biological significance of NS is often 

difficult to assess and even misleading (e.g. Rousset 1997), NS is a convenient way to 

express the balance between genetic drift and gene dispersal (Vekemans & Hardy 

2004). In a continuous population NS can be calculated as the inverse of the regression 

slope (blog) between genetic and spatial distances (Rousset 1997, 2000). NS equals the 

product of 4 tzDo2, where D  is the effective population density and o2 a measure for 

gene dispersal, the average squared parent-offspring distance (for details see Chapter 2, 

Sumner et al. 2001). In an growing population (increasing D) but with constant gene 

dispersal cr, NS will increase representing a lower level of spatial genetic 

differentiation (flatter regression slope). In contrast, NS will remain unchanged if  a 

shorter average dispersal distance can keep the product of Dc? constant. Investigating 

the population genetic structure at a local scale has the additional advantage that 

mutation processes and the potential non-neutrality of the genetic markers applied 

have little or no effect on the estimation of the product D o2 (Rousset 2000, Leblois et 

al. 2003). Although some empirical studies have described spatial genetic 

differentiation across natural populations for different time periods (e.g. Nielsen et al 

1999a, Tessier & Bematchez 1999, Pertoldi et al. 2001), so far and to the best of my 

knowledge, no study investigated temporal changes in spatial genetic structure within 

populations.

Here I present the first empirical study which describes the spatial genetic structure of 

a continuous natural population for different time periods. The study investigated the 

genetic structure of an increasing red fox population in the Swiss Alps, following the 

recovery of a rabies epizootic.

With an area-wide distribution of up to 2500m altitude in Switzerland, the red fox is a 

habitat generalist (Wandeler 1995, Macdonald 1980). For that reason, the red fox 

represents a good example of a territorial species with a continuous population 

distribution. By comparing pairwise genetic and spatial distances of individual fox
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dyads, IBD pattern was found in a red fox population in the Swiss Alps (Chapter 2). 

Moreover, dispersal was male biased and dispersal was shown being affected by 

topography (Chapter 2). A review of capture-mark-recapture studies in different 

habitats demonstrated that red fox dispersal distances is density-dependent, based on a 

negative correlation found between the recovery distance of tagged foxes and 

estimated population density (Trewhella et al. 1988). However, exceptions from this 

general rule have also been reported (Funk 1994).

The current silvatic rabies epizootic in Europe started in Poland in 1939, spread 

westwards and reached Switzerland in 1967 (Macdonald 1980). The red fox is the 

main vector of this epizootic (Steck & Wandeler 1980). After 1967, rabies swept 

throughout Switzerland before the disease was successfully eliminated by oral wildlife 

vaccination in 1999 (Kappeler 1991, Breitenmoser et al. 2000, Chapter 3). After the 

cessation of rabies as a substantial mortality factor, the population density increased. 

This increase in population density appears to follow a long-term increase o f red fox 

carrying capacity (Breitenmoser unpublished, Chautan et a l 2000). Throughout the 

rabies epizootic, the disease was monitored by sampling fox carcasses across 

Switzerland. Consequently, a large set of post-mortem and epidemiological data along 

an extensive collection of individual tooth samples were compiled over the last three 

decades (for details see Chapter 2, Chapter 3). Depending on their initial population 

density, red fox populations can be severely reduced by rabies (Anderson et al. 1981, 

Bogel et al. 1974, Chapter 3). Whilst this reduction of population size and density can 

change the age structure of a population, the genetic variation might remain unaffected 

(Chapter 3). Dispersal in foxes affects the rate o f the spread of rabies (Wandeler et al. 

1974). Consequently, research on red fox dispersal has been the subject o f several field 

(reviewed in Chautan et al. 2000) and simulation studies (Artois et al. 1997, 

Tischendorf et al. 1998).

The objective of this study was to assess the spatial and temporal genetic structure of a 

Alpine red fox population in Switzerland over three decades following significant 

changes in population density, induced by the arrival and the eradication of rabies. The 

genetic structure of a continuous population for three distinct time periods (1971-73, 

1982-84 and 2001-03) was assessed based on microsatellite data from historic tooth 

and recent tissue samples.
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M a te r ia l a n d  M eth o d s

Study area and sampling

The study area was situated in the Eastern Alps of Switzerland (Canton Grisons), 

identical with the study area from Chapter 2. Unlike in Chapter 2, sampling was 

restricted to five distinct sites (160 -  693km2) representing 50.4% of the total study 

area (GRm  and GI%; Figure 1).

D 1971-73 

A 1982-84 

•  2001-02

Figure 1 Red fox sampling sites in the study (dash line; Canton Grisons) and control area (solid line; 
Canton Uri) in Switzerland. Shown are individual sampling locations (boroughs) for three time periods. 
Grey scale refers gradually to the elevation (low altitude = white; high altitude = dark-grey). Note that 
one symbol might represent several individuals from the same period and sampling location.

Fox samples were chosen for three short time periods: early rabies (1971-73) late 

rabies (1982-84) and post rabies (2001-03; Figure 2). Fox samples from 1971-73 and 

1982-84 derived from a large collection of historic teeth samples collected throughout 

Switzerland following the last rabies epizootic (for details see Chapter 1, Chapter 3). 

No historic samples were available for sampling site GR6 and time period 1982-84. For
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time period 2001-03, local hunting authorities provided tissue samples (Chapter 2). In 

addition, historic and recent samples for the same time periods were included from an 

adjacent control area (URo; Canton Uri) that was not affected by rabies. Data on sex, 

individual sampling location (local borough name) and results from rabies virus tests 

were available for all collected foxes.
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Figure 2 Dynamic of an Alpine red fox population (Canton Grisons; Switzerland) in relation to rabies 
over the last sixty years. Shown are the annual numbers km*2 of foxes killed by hunting (black line) and 
the total number of recorded rabid foxes (grey bars). Triangles represent years of sampling (time 
periods). Note that due to the rabies epizootic the hunting pressure was likely higher between the years 
1966 and ca. 1980.

Laboratory work

DNA was extracted from historic tooth samples using silica-based spin columns 

(QIAquick® -  PCR purification kits, Qiagen; Yang et al. 1998). The whole canine 

tooth or the tooth crown only was pulverized in a steel mortar. After decalcification 

(EDTA, 0.5M, pH 8.0) and digestion (proteinase K), DNA was bound to the silica 

membrane by vacuuming the supernatant through a QIAquick column. Subsequently, 

the extracted DNA was purified and eluted in 150pL H2O (for details see Chapter 1). 

DNA from recent samples (2001-03) was extracted from muscle tissue by using a 

Wizard® SV96 Genomic DNA extraction kit (PROMEG A) following the 

manufacturer’s protocol and subsequently eluted in 400pL H20.
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Based on previous results of the PCR amplification success-rate of microsatellite loci 

in historic extracts (Chapter 1 and Chapter 3), four canine (AHT-130, Holmes et a l 

1995; CXX-156, CXX-279, Ostrander et a l 1993; CXX-466, Ostrander et a l  1995) 

and five re-designed red fox specific microsatellites (V142, V374, V402, V468, V502, 

Chapter 1) were used. Up to three loci were co-amplified using the Qiagen PCR 

multiplex kit. PCR conditions were identical with the conditions described in Chapter 

3. Amplified products were electrophoretically separated using an ABI Prism® 377 

DNA sequencer (ABI). Subsequently, allele sizes were scored against the size standard
TM  TM  Til

GS350 Tamra (ABI) using GENESCAN Analysis and GENOTYPER software.

Unlike in Chapter 3, no estimation of DNA concentration by a quantitative PCR was 

performed for the historic tooth extracts. Thus, the selection of samples suitable for 

reliable genotyping was carried out as follows: All historic tooth extracts were 

independently pre-screened in a multiplex PCR twice by simultaneously amplifying 

three different microsatellite loci in fragment size (V468, CXX-279 and V I42). For 

further genotyping, only extracts with a 6 6 % or a higher PCR success-rate across loci 

and amplification were chosen. All heterozygote genotypes were independently and 

successfully amplified at least twice. Potential homozygote genotypes for the historic 

samples from 1971-73 and 1982-84 were successfully amplified for at least four and 

three times, respectively based on previous experiences (Chapter 1, Chapter 3). Special 

care was taken to avoid cross-contamination and contamination with contemporary 

DNA. Consequently, historic DNA extraction and PCR preparation were performed 

within a spatially isolated laboratory dedicated for working with low-copy DNA.

Population genetic analyses

Single and multi-locus genetic diversity (H e, Nei 1987; mean ± SD, jackknifed over 

loci) for all sampling sites (GRm, GR6 and URo) and for all three time periods (1971- 

73, 1982-84 and 2001-03) were calculated in GENEPOP, v3.1 (Raymond & Rousset 

1995b). Using the same software package, global / / E, observed heterozygosity (Ho), 

and inbreeding coefficient (Fis; Weir & Cockerham 1984) across all samples (mean ± 

SD, jackknifed across loci) for each of the three time periods were computed. 

Additionally, single-locus deviation from Hardy-Weinberg equilibrium was tested for 

the three time periods separately (probability-test in GENEPOP). Subsequently, single-
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locus probability-values were combined according Fisher’s method (Sokal & Rolf 

1995).

The distribution o f allele frequencies for each time period across sampling sites (GRm 

and GR6) was assessed using the genic differentiation test (Raymond & Rousset 

1995a) implemented in GENEPOP (Raymond & Rousset 1995b). To estimate the 

spatial genetic differentiation for each period, global single-locus Fst-'values were 

calculated across sampling sites and subsequently averaged across loci (mean ± SD, 

jackknifed over loci). No historic samples were available for sampling site GR6 in 

1982-84, and therefore analyses were repeated for the time periods 1971-73 and 2001- 

03 by excluding site GR6 . Finally, single-locus Fsr-values for each time period (1971- 

73 vs. 1982-84; 1971-73 vs. 2001-03; 1982-84 vs. 2001-03) were compared using a 

Wilcoxon sign-rank test.

The temporal genetic differentiation ( F s t )  between 1971-73 and 1982-84 and 1982-84 

and 2001-03, respectively, was estimated for the whole study area. Pairwise single­

locus Fst- values for each of the four sampling sites GR1-4 were calculated and 

subsequently averaged (mean ± SD, jackknifed over loci) across sampling sites and 

loci. In addition, the allelic distribution between 1971-73 and 1982-84 and 1982-84 

and 2001-03, respectively, was assessed for each sampling site (GR1-4; genic 

differentiation test; Raymond & Rousset 1995a). Finally, for each of the two temporal 

comparisons the probability-values across sampling sites were combined according to 

Fisher’s method (Sokal & Rolf 1995)

Global multi-locus values for He, Ho and Fis (mean ± SD, jackknifed over loci) across 

the three time periods were calculated for the control area (UR) using GENEPOP 

(Raymond & Rousset 1995b). In addition, allelic distributions (genic differentiation 

test) and global F s t -  values across loci and the three time periods were calculated.

No temporal difference in allelic distribution (genic differentiation test) was revealed 

for the control area (UR) across sampling periods (see results section). Consequently, 

all samples from the control area were pooled irrespective of sampling period for 

subsequent analyses. Pairwise genetic differentiation and allelic distribution (genic 

differentiation test) was assessed between each sampling site of the study area and the
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control area. For each of the three time periods, computed F st -  values were averaged 

across sampling sites and loci (mean ± SD, jackknifed over loci). Single-locus 

probability-values for the genic differentiation test were combined across sites and loci 

(Fisher’s method). Analyses were repeated for the two periods 1971-73 and 1982-84 

by excluding site GR6.

Finally, critical significance levels were adjusted for multiple testing by Bonferroni 

corrections (Rice 1989).

Individual based IBD analyses

For the study area (G R u  and GR6) and each time period, pairwise spatial distances 

between individual locations were computed in a Geographic Information System 

(GIS; ArcView; ESRI 1996a-c)7. Because precise data for individual geographic 

sampling locations for the time period 1971-73 were not available, spatial analyses for 

all time periods were computed based on administrative community (borough) data. 

Therefore, the geographic location of an individual sample was approximated by the 

location (XY-coordinates) of the borough’s church tower. Previous results 

demonstrated that the topographic structure of a landscape could alter the fine-scale 

spatial genetic structure of red foxes (Chapter 2). Therefore, two different spatial 

distance matrixes for each of the three time periods were computed. The first matrix 

represented pairwise Euclidian distances between individuals. The second matrix was 

computed in a cost-ffiction analysis. A cost-surface was generated based on an 

elevation model (MONA, GEOSYS) across the study area and a geographic distance 

(least cost distance) between individual locations was calculated restricted to areas 

below an altitude of 1400m. By doing so, pairwise spatial distances between 

individuals were calculated around rather than across mountain ridges (for details see 

Chapter 2).

Pairwise relatedness was estimated using Wang’s (2002) Rw - estimator. For 

computing Fw - values, the expected allele frequencies were calculated across all 

individuals (study area) for each of the three time periods. To account for imprecision 

in the geographic origin of the samples, pairwise genetic and spatial data for 

individuals representing the same borough were excluded from further analyses. For

7 GIS analyses were computed by Fridolin Zimmermann, Bern, CH and PW.
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each sampling period, the slope (blog - values; inverse of NS) was computed. IBD was 

tested by assessing the significance of the regression slope between the genetic matrix 

and each of the two logarithmic transformed spatial matrixes for each of the three time 

periods in a Mantel test (10,000 permutations of spatial location). Mean relatedness for 

five a priori defined and by the natural logarithm transformed distance categories 

(<8956m, 8956m - 16317m, 16318m -  29733m, 29734m -  54176m and >54176m, 

1400m-altitude threshold matrix) were computed for each time period. SE were 

calculated by jackknifing over loci. All spatial genetic analyses were performed using 

the software SPAGEDI (Hardy & Vekemans 2002). Finally, average parent-offspring 

distances (o) were assessed for each of the three time periods based on an initial 

effective population density (D) of 0.87 individual*km‘2 for the sampling period 2001- 

03 (for details see Chapter 2). To account for lower historic population density, two 

independent <r estimations were performed for the sampling periods 1971-73 and
'y

1982-84 based on densities of 0.435 and 0.290 individual*km' representing an 

assumed population increase of two and three times, respectively.

Results

Microsatellite genotyping

The genomic DNA of 262 and 125 historic tooth samples from the time periods 1971- 

73 and 1982-84, respectively, was extracted. After pre-screening, 107 (40.8%; 1971- 

73) and 97 (77.6%; 1982-84) extracts were selected for further genotyping (Table 1). 

Independent PCR amplifications for hetero- and homozygote genotypes were (± SD, 

jackknifed over loci) 3.88 ± 0.50 and 4.64 ± 0.37 times (1971-73) and 3.04 ± 0.17 and 

3.66 ± 0.45 times (1982-84), respectively. Total success-rate of genotyping across loci 

and all historic samples was 87.3% and varied across loci between 72.5% for CXX- 

466 and 99.5% for V486 and V502 (Table 2, Table 3). A strong correlation between 

genotyping success-rate and maximal microsatellite ffagment-size was found (r = - 

0.98, n = 9). Finally, a total of 118 tissue samples were extracted and subsequently 

genotyped, of which 90 (76.3%) samples were also used in Chapter 2.
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Table 1 Summary of red fox samples from the control area (Canton Uri; Switzerland) and study area 
(Canton Grisons, Switzerland). The number o f extracted historic tooth and tissue samples (NEX) and 
successfully genotyped samples (N) are shown for all sampling sites and for three time periods.

Sampling
site

N ex

1971-73
Tooth

N % N ex

1982-84
Tooth

N %

2001-03
Tissue

N

Total

N

Control area
URo 26 16 61.5 23 20 87.0 19 55

Study area
GR, 40 15 37.5 28 18 64.3 20 53
g r 2 44 15 34.1 25 19 76.0 19 53
g r 3 52 23 44.2 24 21 87.5 20 64
GR* 43 18 41.9 25 19 76.0 20 57
GR* 57 20 35.1 - - - 20 40
Total 262 107 40.8 125 97 77.6 118 322

Population genetic analyses based on sampling areas

Total number of detected alleles per locus and across all individual samples (study and 

control area) ranged from seven alleles (V374, V402, CXX-466) to thirteen alleles 

(V I42; mean ± SD = 9.22 ± 1.99). Genetic diversity ( H e , mean ± SD, jackknifed over 

loci) across study sites varied between 0.761 ± 0.145 (GR3, 2001-02) and 0.805 ± 

0.080 (GRi, 1971-73; Table 2) for the study area and between 0.791 ± 0.058 (URo, 

1982-84) and 0.809 ± 0.050 (URo, 2001-2003; Table 3) for the control area.

Overall observed ( H o )  and expected heterozygosity ( H e )  for the three time periods and 

the study area were 0.808 ± 0.141 and 0.795 ± 0.092 (1971-73), 0.807 ± 0.169 and 

0.800 ± 0.096 (1982-84) and 0.795 ± 0.107 and 0.793 ± 0.098 (2001-03), respectively. 

Multi-locus Fis -  values for the three periods were -0.011 ± 0.079, -0.001 ± 0.115 and 

-0.002 ± 0.048, respectively (Table 2). No significant deviation from Hardy-Weinberg 

equilibrium was observed after correcting for multiple testing across loci (Bonferroni 

correction; a  = 0.05; k = 9, Sokal & Rolf 1995, Table 2).
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Table 2 Measures o f genetic diversity for nine microsatellite in red foxes (study area, Canton Grisons; Switzerland) across five sampling sites (GR1 - GR4, GR6) and three 
time periods. For each of the three periods and sites single-locus estimates of the number of individual genotypes ( N Gt) , genetic diversity (//E; Nei 1987) are shown. In 
addition, for each period N Gt , He, observed heterozygosity (H0), allelic diversity {A), inbreeding coefficients (P is ;  Weir and Cockerham 1984) and p-value for the probability of 
Hardy-Weinberg deviation across all samples are summarized. The summary statistics shows multi-locus means and SD jackknifed over loci.

Microsatellie

1971-73
N q j

GR,
He

n=15
N q j

g r 2
He

n=15
Hgi

g r 3
He

n=23
N q j

GR«
He

n=18
H q j

GR*
He

n=20
Mgt %

n=91

All individual samples 
A H0 He F i S P3

AHT-130 11 0.844 14 0.762 19 0.829 11 0.874 17 0.811 72 79.1 9 0.861 0.815 -0.057 0.309
V142 8 0.875 11 0.874 20 0.891 13 0.889 14 0.907 66 72.5 13 0.939 0.893 -0.053 0.018
CXX-156 8 0.842 11 0.836 21 0.812 13 0.742 15 0.844 68 74.7 10 0.824 0.819 -0.006 0.801
CXX-279 11 0.810 11 0.857 22 0.818 13 0.834 14 0.780 71 78.0 10 0.831 0.828 -0.004 0.392
V374 11 0.853 13 0.843 22 0.802 15 0.811 18 0.783 79 86.8 6 0.810 0.821 0.014 0.192
V402 14 0.762 15 0.832 23 0.794 18 0.816 20 0.826 90 98.9 7 0.811 0.818 0.008 0.276
CXX-466 9 0.745 12 0.743 18 0.773 10 0.747 12 0.685 61 67.0 6 0.770 0.734 -0.050 0.209
V486 14 0.868 15 0.814 23 0.788 18 0.822 20 0.829 90 98.9 9 0.911 0.828 -0.101 0.389
V502 14 0.646 15 0.639 23 0.572 18 0.592 20 0.603 90 98.9 9 0.511 0.603 0.153 0.169
mean 11.1 0.805 13.0 0.800 21.2 0.787 14.3 0.792 16.7 0.785 76.3 83.9 8.78 0.808 0.795 -0.011 0.077b
SD 0.080 0.079 0.102 0.097 0.096 2.31 0.141 0.092 0.079
1982-84 n=18 n=19 n=21 n=19 n=77
AHT-130 17 0.783 18 0.835 21 0.829 19 0.791 75 97.4 10 0.893 0.820 -0.090 0.186
V142 13 0.868 16 0.897 20 0.868 17 0.875 66 85.7 11 0.879 0.882 0.004 0.711
CXX-156 13 0.840 14 0.847 19 0.845 16 0.831 62 80.5 11 0.871 0.839 -0.038 0.504
CXX-279 16 0.887 15 0.814 19 0.787 19 0.846 69 89.6 10 0.899 0.840 -0.070 0.151
V374 16 0.710 19 0.794 20 0.836 18 0.800 73 94.8 7 0.795 0.792 -0.003 0.067
V402 18 0.816 19 0.825 21 0.846 19 0.852 77 100.0 7 0.844 0.839 -0.007 0.076
CXX-466 14 0.802 14 0.791 17 0.783 16 0.794 61 79.2 7 0.820 0.788 -0.041 0.171
V486 18 0.803 19 0.727 21 0.765 19 0.822 77 100.0 9 0.805 0.799 -0.007 0.240
V502 18 0.673 19 0.639 21 0.617 19 0.437 77 100.0 7 0.455 0.597 0.240 0.007
mean 15.9 0.798 17.0 0.796 19.9 0.797 18.0 0.783 70.8 91.9 8.78 0.807 0.800 -0.001 0.007b
SD 0.072 0.080 0.086 0.170 1.80 0.169 0.096 0.115
2001-2003 n=20 n=19 n=20 n=20 n=20 n=99
AHT-130 20 0.850 19 0.789 20 0.764 20 0.846 20 0.781 99 100 10 0.869 0.810 -0.073 0.514
V142 20 0.872 19 0.896 20 0.876 20 0.873 20 0.878 99 100 12 0.919 0.885 -0.039 0.657
CXX-156 20 0.851 19 0.832 20 0.801 20 0.831 20 0.821 99 100 9 0.778 0.827 0.060 0.373
CXX-279 20 0.835 19 0.782 20 0.753 20 0.803 20 0.887 99 100 9 0.788 0.824 0.044 0.079
V374 20 0.753 19 0.794 20 0.785 20 0.812 20 0.799 99 100 6 0.818 0.785 -0.043 0.242
V402 20 0.812 19 0.782 20 0.778 20 0.846 20 0.835 99 100 7 0.778 0.819 0.051 0.208
CXX-466 20 0.749 19 0.694 20 0.764 20 0.801 20 0.719 99 100 8 0.758 0.755 -0.004 0.399
V486 20 0.799 19 0.851 20 0.874 20 0.779 20 0.856 99 100 9 0.869 0.844 -0.030 0.453
V502 20 0.705 19 0.617 20 0.455 20 0.546 20 0.556 99 100 8 0.576 0.587 0.019 0.777
mean 20.0 0.803 19.0 0.782 20.0 0.761 20.0 0.793 20.0 0.792 99.0 100 8.67 0.795 0.793 -0.002 0.383b
SD 0.058 0.087 0.145 0.118 0.113 m 9,107 Q,Q?8 0.048

oo ap- value (probability -test; Raymond & Rousset 1995b); combinedp-value after Fisher’s methods
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Global deviation (Fisher’s method) from Hardy-Weinberg equilibrium was significant 

for the second time period (A2 = 36.0, d f  = 18, p  < 0.007; Bonferroni correction: a  = 

0.05; k = 3; 1982-84), while non-significant deviations were observed for the time 

period 1971-73 (X* = 27.1, d f=  18, p  = 0.077) and 2001-03 = 19.1, d f=  18, p  =

0.383; Table 2).

Table 3 Measures o f genetic diversity o f red foxes for the control area (Canton Uri; Switzerland) for three 
time periods. Shown are single-locus values for nine microsatellite loci of the number of individual 
genotypes (Agt) and genetic diversity (HE) for each time period and NGT, HE, observed heterozygosity (H0), 
allelic diversity (A), inbreeding coefficients (F1S) across all samples. The summary statistics shows multi­
locus means and SD jackknifed over loci.

Microsatellite 1971-73 1982-84 2001-03 All individual samples
Act h e NCj h e Agt h e Nc T % A Ho h e Fi s

n=16 n==20 n= 19 n==55
AHT-130 16 0.756 15 0.708 19 0.817 50 90.9 8 0.780 0.765 -0.020
V142 14 0.881 11 0.840 19 0.853 44 80.0 12 0.886 0.848 -0.045
CXX-156 15 0.828 13 0.871 19 0.842 47 85.5 8 0.872 0.850 -0.026
CXX-279 13 0.843 14 0.751 19 0.828 46 83.6 9 0.804 0.814 0.012
V374 16 0.802 19 0.808 19 0.795 54 98.2 6 0.815 0.802 -0.016
V402 16 0.847 19 0.825 19 0.788 54 98.2 7 0.833 0.810 -0.029
CXX-466 12 0.859 14 0.802 19 0.785 45 81.8 7 0.822 0.807 -0.019
V486 16 0.774 20 0.803 19 0.862 55 100.0 8 0.745 0.819 0.090
V502 16 0.669 20 0.710 19 0.710 55 100.0 7 0.691 0.693 0.003
mean 14.9 0.807 16.1 0.791 19.0 0.809 50.0 90.1 8.00 0.806 0.801 -0.006
SD 0.069 0.058 0.050 1.92 0.063 0.052 0.045

Global test for the spatial genic differentiation across sampling sites revealed a 

difference in the distribution of allele frequency for the time period 1971 -73 (Al2 =  

33.9, d f  — 18, p  = 0.013) across all sampling sites (GRm and GR6); but no genic 

differentiation was revealed when calculated across four sampling sites (GRm) (A'2 =

29.2, d f  = 18, p  = 0.046; Bonferroni correction: a  = 0.05; k = 3). The genic 

differentiation test for the two later time periods was significant across all sampling 

sites (2001-03: Â2 = 54.9, d f=  18, p  < 0.0001; GRm and GR$) and across the four 

selected sites (1982-84: X 2 = 50.3, df=  18,/? < 0.0001; 2001-03: A2 = 52.5, df=  18,/? < 

0.0001; GRm)* Global Fst values for the three time periods and across the four 

sampling sites GRm were 0.002 ± 0.013 in 1971-73, 0.008 ± 0.010 in 1982-84 and 

0.012 ± 0.009 in 2001-2003, respectively. Across all sampling sites (GRm and GR6), 

global Fsi^values for the time period 1971-73 and 2001-03 were 0.003 ± 0.009 and 

0.009 ± 0.008, respectively (Figure 3).
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No pairwise differences in the spatial genetic differentiation based on single-locus F st 

- values between the three time periods were detected (1971-73 vs. 1982-84: z = - 

1.186,/? < 0.24; 1971-73 vs. 2001-03: z = -1.244,/? <0.21; 1982-84 vs. 2001-03: z = - 

0.770,/? < 0.44; for all test: n = 9; Wilcoxon signed-rank test; Figure 3).

Control area Study area
0.002 ± 0.013NS (0.003 ± 0.009*)

CO

f*.
05 0.009 ± 0.008*** 

(0.010 ± 0.006)***

0.009 ± 0.013

0.015 ±0.014’

0.008 ±0.010***

0.011 ±0.007*’ 
(0.012 ± 0.008)'CO

GR.GR.GR

ji= 2 l
oo
CM n=1 n=2l

(0.009 ± 0.008***)0.012 ±0.009***

Space•4

Figure 3 Spatio - temporal population genetic differentiation in red foxes (Canton Uri and Grisons; 
Switzerland) following a rabies epizootic. Circles represent individual sampling sites. Rounded boxes 
show temporal and spatial pairwise Fst -  values (mean ± SD, jackknifed over loci). Numbers within the 
large square boxes represent global F$t - values. Values in brackets were calculated based on all (incl. 
GR<0 sampling sites. Differences in allele frequencies were assessed using a genic differentiation test 
(Raymond & Rousset 1995a; * = p  < 0.05; ** = p<  0.01; *** = p  < 0.001; NS = not significant). Thick 
dashed and solid lines represent the path how genetic differentiation (FST and genetic differentiation 
test) were calculated for all sites (dashed) and for all sites exclusive GR6.

Temporal genetic differentiation, as calculated by pairwise Fst, for the study area 

(GRm) of 1971-73 vs. 1982-84 and of 1982-84 vs. 2001-03 was 0.008 ±0.013 and 

0.005 ± 0.007, respectively. For both comparisons, the genic differentiation test was 

significant (1971-73 vs. 1982-84: X 2 = 38.7, df=  18,/? < 0.003; 1982-84 vs. 2001-03: 

X 2 = 33.4, d f  = 18,/? < 0.015; Bonferroni correction: a  < 0.05, k  = 2; Figure 3).
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For the control area UR, overall Ho, He and F\$ averaged across loci and across all fox 

samples were 0.806 ± 0.063, 0.801 ± 0.052 and -0.006 ± 0.045, respectively (Table 3). 

No genic differentiation over time was detected across the three time periods (A2 =

17.3, d f  = 18,/? < 0.503; F ST = 0.000 ± 0.008).

Finally, the spatial genetic differentiation (Fst) between control area (UR) and the 

study area (G R m ) for the three time periods were 0.009 ± 0.008 (1971-73), 0.015 ± 

0.014 (1982-84) and 0.011 ± 0.007 (2001-03), respectively. Based on all sampling 

sites (G R m  and GR6), overall F st for the time period 1971-73 and 2001-03 were 0.010 

± 0.006 and 0.012 ± 0.008. The test for allelic differentiation between the control and 

the study area for all three time periods was significant based on four sampling sites 

(G R m : 1971-73: X 2 = 84.9; 1982-84: ^  = 117.2; 2001-03: X 1 = 88.4; all df=  18, p  < 

0.0001) and based on all sampling sites (G R m : and GR«: 1971-73: X 2 =  103.0; 2001- 

03: X 2 = 102.6; all df=  18,/) < 0.0001; Figure 3).

IBD analyses o f  pairs o f  individuals

Three historic samples (G196, G197, G335; all 1971-73) with less than four 

successfully genotyped loci were excluded from subsequent IBD analysis. Average 

Euclidian distances (mean ± SD) between individual samples for the three time periods 

1971-73, 1982-83 and 2001-03 were 32,043m ± 8,448m, 30,465m ± 6,849m and 

35,732m ± 7,094m, respectively. Averaged geographic distances (mean ± SD) between 

individuals computed in GIS and restricted below a 1400m-altitude threshold were 

38,755m ± 9,806m (1971-73), 32,410m ± 7,342m (1982-84) and 41,089m ± 9,008m 

(2001-03).

A total of 119 dyads (3.11%) in 1971-73, 109 dyads (3.73%) in 1982-83 and 103 

dyads (2.12%) in 2001-03 were excluded for the Mantel tests, because they were 

individuals from the same borough (Table 4). No significant correlation between the 

logarithmic transformed Euclidian distances and the genetic relatedness (Fw) was 

detected for the time period 1971-73 (blog = -0.0012, r2 = 0.002, p  = 0.0747, n = 88; 

Mantel test). In contrast, significant IBD patterns were revealed for the time periods 

1982-84 (blog = -0.026, r2 = 0.012,p <  0.0001, n = 77) and 2001-03 (blog = -0.021, r2 

= 0.010,/? < 0.0001, n = 99; Mantel test, Table 4, Figure 4a).
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Based on the spatial distances computed below a 1400m-altitude threshold, no 

significant IBD was observed for the time period 1971-73 (blog = -0.009, r2 = 0.001,/? 

= 0.1061), while the correlation was significant for 1982-84 (blog = -0.026, r2 = 0.011, 

p  < 0.0001) and 2001-03 (blog = -0.019, r2 = 0.009,/? < 0.0001; Table 4, Figure 4).

Table 4 Results o f the isolation-by-distance (IBD) analyses in a continuous red fox 
population for three time periods. Shown are the number of used and excluded dyads, the 
slope, slope SE, intercept and measure of fit (r2) for the regression computations between 
spatial distance (log transformed) and relatedness (/?w; Wang 2002). Results are shown for 
two spatial distance matrices: Euclidian distances and spatial distances, which accounted 
for the topography of the study area given an a priori defined altitude threshold of 1400m 
altitude (see text for details). The significance of the slopes was assessed in a Mantel test.

1971-73 1982-84 2001-03
n=88 n=77 n=99

Dyads
all 3828 2926 4851
excluded (same borough) 119 109 103
used 3709 2817 4748

Euclidian
Slope -0.0117 -0.0255 -0.0209
SE Slope 0.0497 0.0393 0.0225
Intercept 0.1245 0.2523 0.2175
t2 0.0018 0.0115 0.0095
P 0.0747 <0.0001 <0.0001

1400m altitude threshold
Slope (blog) -0.0090 -0.0249 -0.0189
SE Slope 0.0476 0.0380 0.0202
Intercept 0.0984 0.2476 0.1989
r2 0.0013 0.0114 0.0088
P 0.1061 < 0.0001 <0.0001

The fine-scale spatial genetic structures for five a priori defined spatial categories and 

for the three time periods are shown in Figure 4b. In general, all three sampling 

periods demonstrated a decrease of average relatedness with each longer spatial 

category (Table 5). However, a noticeable deviation from IBD pattern was revealed for 

the period 1971-73 in the second spatial category (8956m - 16317m; Figure 4).
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Table 5 Summary of the isolation-by-distance (IBD) analyses in red foxes for five a priori defined 
spatial distance classes and three time periods. The number of dyads, the percentages that each 
individual is represented in a given distance class (%partic), the average and SE of relatedness (/?w, 
Wang 2002) are presented for each distance class and time period. Spatial distances were corrected for 
the topography of the study area. (1400m altitude threshold, see text for details).

Spatial distances
Spatial classes

1971-73
n=88

Dyads %partic Dyads

1982-84
n=77

%partic Dyads

2001-03
n=99

%partic
< 8956m 475 100 432 100 513 99

8956- 16317m 390 97.7 391 97.4 430 100
16318-29733m 683 100 702 100 765 100
29734-54176m 1055 100 829 100 1578 100

> 54176m 1225 86.4 572 83.1 1565 94.9
Total 3828 2926 4851

Relatedness (Rw, Wang 2002)
Spatial classes Mean SE Mean SE Mean SE

< 8956m 0.022 0.064 0.019 0.091 0.037 0.021
8956- 16317m -0.007 0.072 0.021 0.075 0.014 0.049

16318-29733m 0.022 0.047 0.021 0.097 0.019 0.033
29734 - 54176m -0.001 0.059 -0.023 0.087 0.003 0.025

> 54176m -0.002 0.078 -0.039 0.076 -0.018 0.024
Total 0.005 0.057 -0.004 0.079 0.003 0.012

Based on the computed blog - values for each of the three time periods and an assumed 

two and three-times population increase, the estimated <j  - values were 4508m and 

5522m for the sampling period 1971 -  73 and 271 lm  and 3320m for the period 1982- 

84 (Table 6).

Table 6 Estimates for gene dispersal (d) and effective population density (D) for three time 
periods in an increasing red fox population. Shown are values for D, o, estimated slope 
between genetic and spatial distance (blog) and ‘neighbourhood size’ (NS) for two levels (2 x 
and 3 x) o f assumed population increase in relation to the recent sampling period 2001-2003.

Sampling
period

Population
increase

D
[Individuals

*generation/knrl

blog NS
[Individuals

1

<J [m/generation1:]
(% deviation)

1 9 7 1 - 7 3 2  x 0 .4 3 5 0 .0 0 9 0 111.1 4 5 0 8 (204.9)
3 x 0 .2 9 0 0 .0 0 9 0 111.1 5 5 2 2 (251.0)

1 9 8 2  - 8 4 2  x 0 .4 3 5 0 .0 2 4 9 4 0 .2 2 7 1 1 (123.2)
3 x 0 .2 9 0 0 .0 2 4 9 4 0 .2 3 3 2 0 (150.9)

2 0 0 1  - 0 3 - 0 .8 7 0 * 0 .0 1 8 9 5 2 .9 2 2 0 0 -

* D for sampling period 2001-03 was calculated based on demographic data; Chapter 2.
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Discussion

The main aim of this study was to assess the temporal and spatial population genetic 

structure in an Alpine red fox population following and after successful eradication of 

a rabies epizootic. Microsatellite data were collected from historic and recent fox 

samples spanning three decades. The major result of this chapter is that the observed 

temporal and spatial genetic population structure is likely to be the consequence of 

changing population density and dispersal distances. This result is discussed separately 

for population dynamics, temporal population genetic structure and spatial population 

genetic structure.

Population dynamics

According to the hunting records of the Canton Grisons, the red fox population 

experienced a two to three fold increase in estimated density following the eradication 

of rabies (Figure 2). Although the estimated population density is likely to have 

reached pre-rabies abundance within a decade after the first and most severe outbreak 

of the disease, it continued in what appears to be a long-term growth. This trend was 

consistent with the observation of a generally growing red fox population in 

Switzerland and Europe (Breitenmoser unpublished, reviewed in Chautan et al. 2000, 

Chapter 3). Rabies induced mortality is thought to be density dependent (e.g. Anderson 

et al. 1981). Because fox abundance at lower altitude is higher (Wandeler 1995; e.g. 

the Swiss plateau, Chapter 3), the mortality rate following a rabies epizootic can be 

expected to be considerably lower in Alpine habitat.

Average generation time for red foxes in Switzerland was estimated to be 2.75 years 

based on recent demographic data and assuming an equal reproduction across age 

classes and sex (Chapter 2). In addition, the age structure of a red fox population was 

found to be altered following a rabies epizootic (Chapter 3). Therefore, a shorter 

generation-time than 2.75 years subsequent to the rabies infection can be expected 

(Chapter 3). Based on these assumptions, the number of generations between the 

sampling periods 1971-73 and 1982-84, and 1982-84 and 2001-03 were approximated 

to be between four to six and six to eight generations, respectively. Overall, the 

population genetic structure described in this study represented ten to fourteen 

generations.
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Temporal changes in population genetic structure

The observed allele frequencies o f the red fox population changed significantly 

between sampling periods in the study area. The potential causes for the temporal 

changes in allele frequencies are random genetic drift and migration / immigration.

The red fox population described in the study area is enclosed by topographic features 

such as Alpine mountain ridges (Figure 1). Dispersal in red foxes is affected by the 

topography based on both direct, demographic methods (Zimen 1984, Funk 1994) and 

indirect, genetic methods (Chapter 2). Therefore the examined fox population can be 

assumed to be partially isolated from its surrounding populations. Nevertheless, based 

on an estimated Ne o f 3907 individuals for the red fox population of the study area (for 

details see Chapter 2) and a total sampling period of ten to fourteen generations, the 

effect of random genetic drift might be small. Minor effects of genetic drift for the 

whole red fox population in the study area were reflected by two marginal pairwise F st 

- values computed between the three sampling periods. Despite the assumed smaller 

number of generations between the sampling periods 1971-73 and 1982-84 versus 

1982-84 and 2001-2004, the observed genetic differentiation ( F s t )  for the earlier time 

span was slightly higher. Therefore, the Ne in the 1970s and early 1980s during the 

rabies epizootic can be expected to be lower than in the present.

In contrast to the detected minor temporal differences in allele frequencies, the genetic 

diversity (estimated by Ho, H e and A) remained constant over time (Table 2, Table 3). 

This result confirms previous findings (Chapter 3) where the rabies induced mortality 

did not affect the genetic diversity. Analogous to the study area, the control area is 

well surrounded by mountains, but smaller in size (Figure 1). Under these 

circumstances, a smaller Ne and as a consequence higher random genetic drift in the 

fox population could be expected. Nonetheless, no significant changes in allele 

frequencies were observed.

Male biased dispersal in red foxes was revealed in the study area by comparing single­

locus Fis - values for males and females (Chapter 2). The observed male biased 

dispersal not only revealed immigration into the study area but also implies a certain 

level of genetic differentiation between the study area and its surroundings (Chapter 2,
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Goudet et a l 2002). The level of genetic differentiation expected between the study 

area and its surroundings was confirmed by the significant but minor observed genetic 

differentiation between the study and the control area. Although the control area 

represents only one of several areas from which potential immigrants might originate 

from (Figure 2), a similar level of genetic differentiation across the mountain ridges 

encompassing the study area can be expected.

The observed genetic differentiation between the study and the control area was 

relatively constant over the three decades examined, although the highest genetic 

differentiation was calculated for the second time period (1982-84) at the end of the 

rabies epizootic. It can be speculated whether this result reflects a lower rate of 

migration across the mountain ridge during rabies or increasing genetic drift due to 

small effective population size. Recent studies documented higher values of genetic 

differentiation between populations due to genetic drift (Goodman et a l  2001, Keller 

& Largiader 2003, Johnson et a l 2004). The latter found reduced gene flow and 

increased genetic drift between fragmented populations of the endangered greater 

prairie-chicken (Tympanuchus cupido) by comparing the population genetics based on 

historic (1950) and recent samples. The higher genetic differentiation observed 

between the study and control area following the rabies epizootic are therefore 

consistent with the expected smaller Ne for the study area based on the temporal 

estimates of genetic differentiation. Finally, these results are supported by the 

dynamics of the red fox population for the study area as described above.

Spatial genetic structure within the study area

There was clear evidence for spatial genetic structure within the study area. Analyses 

revealed differences for the three time periods examined. Whilst significant genic 

differentiation and IBD pattern were inferred for the two time periods at the end of the 

rabies epizootic (1982-84) and for recent times (2001-03), a lower level of spatial 

genetic structure was found for the first sampling period (1971-73).

Several methodological constraints could have affected the temporal variations of the 

estimated spatial genetic differentiation. As previously reported, the amount of 

extracted nuclear DNA from historic tooth samples in this study correlated negatively 

with storage time (Chapter 2). This resulted in a non-random distribution of
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genotyping success among the three time periods (Table 3). The negative relationship 

between genotyping success-rate and storage time was further reflected by the higher 

variance of relatedness calculated for the five spatial distance classes in the two earlier 

time periods (Figure 4b). A similar pattern was revealed for the computed variance of 

the three global Fs-r-values (Figure 3). Given the higher sampling variance, in 

particular for the earliest sampling period (1971-73), the non-random distribution of 

genotyping success-rate might have therefore affected the power of the applied genic 

differentiation and Mantel test.

— □■— 1971-73
—A— 1982-84 
—• —  2001-030.04 n

y = 0.199 - 0.019 x ; /*= 0.0088

0.02
y = 0.098 - 0.009x ; r* = 0.0013 NS

0.00

^  - 0.02 -

LU
CO
-H -0.04 J 
c

y = 0.248 - 0.025x ; r2 = 0.0115

(0<D
E,
(/)
C/5
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c
■O
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_aj
CDa:

0.06 1
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0.02 -

0

- 0.02 -

-0.04 -

-0.06 J
<8956m 8956-16317m 1618-29733m 29734 -  54176m > 54176m mean
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Figure 4 Isolation-by-distance for three time periods in a continuous red fox population (Canton 
Grisons, Switzerland) following a rabies epizootic. Spatial distances accounted for the topography of 
the study area. (1400m altitude threshold, see text for details) .a) Regression slopes between pairwise 
spatial distances and relatedness (/?w; Wang 2002) for three time periods, b) Average (± SE; 
jackknifmg over loci) relatedness across all individuals for five log transformed and a priori defined 
distance categories (*** ~ p < 0.001; NS = not significant).
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In contrast to Chapter 2, the geographic origin for individual samples was based on 

borough data only and was considerably less accurate. In addition, the clustered 

distribution of individual samples for each of the three time periods was not optimal 

for representing a ‘continuous’ population. Despite this, a significant IBD pattern was 

observed. Furthermore, the estimated slope between geographic and genetic 

relatedness (Rw) was considerably steeper in this study than compared to Chapter 2. 

This is not unexpected, based on the previously observed variance of computed single 

locus slopes in Chapter 2 (Table 3, Appendix) and the selection of microsatellite 

markers chosen for this study.

The lack of historic samples for site GR6 for time period 1982-84 and its resulting 

effect on the estimated parameters was difficult to assess. However, it is interesting to 

note that by calculating the global Fst for the latest time period (2001-03) and across 

all sample sites instead for GR1-4 only, the genetic differentiation observed was smaller 

(Figure 3). It can be speculated whether the lack of sampling for site GRs could be 

account for the somehow steeper slope revealed in the IBD analyses for the time period 

1982-84.

A lower level of local genetic drift was revealed for the sampling period 2001-03 

compared to the period 1982-84. This is in accordance with the theory of IBD, where a 

flatter regression slope between genetic and spatial individual distances can be 

expected given an increasing population density and a constant average dispersal 

distance. However, there was strong evidence that between 1982 and 2003 average 

gene dispersal decreased. Further to this, the computed dispersal distance for sampling 

period 1971-73 was substantially longer than for the sampling period 1982-84. 

Overall, this result supports the general prediction of a negative correlation between 

population density and gene dispersal (Table 6 ) and therefore is in concordance with 

theoretical models (Wolff 1997) and Trewhella’s et al. (1988) empirical review of 

recovery distance and population density in red foxes.

It is important to point out that average gene dispersal distance per generation72 a  does 

not directly relate to average natal dispersal distance. Because measuring gene 

dispersal in an IBD context estimates the average distance a gene disperses in a 

population per generation, this method does not differentiate between the proportion of
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juveniles dispersing and the distance o f dispersal. In addition, IBD -  models can only 

help to infer dispersal based on successful reproduction of a dispersed individual at its 

new location (Chapter 2). Finally, correlating red fox Ne with census population size or 

density is dependent upon the assumption that Ne increases in a linear way with red fox 

abundance. However, social systems in red foxes are variable, ranging from 

monogamous pairs to complex family groups, and are further thought to be density- 

dependent (review in Cavallini 1996). Therefore, the number of breeding individuals 

and thus Ne might have increased at a lower rate over the past three decades than the 

red fox population density.

Although density is likely to be the most important factor determining the observed 

discrepancy in spatial genetic structure over time, the rabies epizootic could have 

indirectly altered dispersal pattern. In this context, the higher mortality induced by 

rabies could have let to a transiently higher proportion of juveniles to disperse. Rabies 

is a contact transmitted disease (Macdonald 1980). Therefore, the probability of 

transmitting the disease between neighbours (closely related animals) can be expected 

to be more likely than between non-neighbours (less or none-related animals). In 

addition, rabies can change behaviour to increase contact rates (Blancou et a l 1991). 

As a consequence, this pattern of non-random mortality could decrease the average 

relatedness within a rabies-affected population compared to the level of relatedness 

before the outbreak of the disease. All three factors have the potential to bias the slope 

of the IBD analyses towards zero.

It is difficult to balance the importance of density and non-density dependent effects 

on the temporal changes of gene dispersal. Nonetheless, the rabies-related effects are 

temporally and spatially limited and thus only partially affect the relationship between 

spatial and genetic individual distances in an IBD context. In addition, the annual 

number of recorded rabies cases for the study area (Figure 2) was low, even when 

taking into account the small likelihood of discovery of a rabid fox (Macdonald & 

Voigt 1985). It can thus be hypothesized that the rabies related factors have less impact 

than density dependent factors in shaping the spatial genetic structure of the red fox 

population examined.
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This study illustrates the potential of combining historic with recent molecular, 

demographic and geographic data in studies of individuals within populations over 

several generations. In the near future individual based IBD methods could be 

combined with genetic methods estimating the variance Ne from observed changes in 

allele frequencies of temporal samples. In this context, two of the most important 

demographic parameters, dispersal distance and Nc, could be estimated using genetic 

information only. The combination of those two methods, alongside non-invasive 

sampling may help to gain central information on the ecology of endangered and 

cryptic species.
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This study describes the first investigation into the long-term dynamics of genetic 

variation in red foxes following a rabies epizootic, based on microsatellites and 

demographic data to detail population structure over time and space. Using a large data 

set on historic tooth samples, genetic structure could be analysed over 35 years, 

representing ten to fourteen generations in red foxes. Furthermore, genetic data were 

completed with detailed demographic data. Comprehensive discussions of the results 

of this study are provided in each of the four independent chapters. I will therefore 

only discuss briefly the general findings of this study and will primarily focus upon 

further work extending from it.

Historic samples and population genetics

Using historic samples is a convincing and powerful method to infer changes in 

genetic structure of natural populations over time. Museums can provide reference 

samples for endangered and fragmented populations (Bouzat et al. 1998) and by 

comparing the genetic structure of historic and recent samples, losses of genetic 

diversity (e.g. Bouzat et al. 1998, Groombridge et al. 2000) and changes in effective 

population size (Ne) can be estimated (e.g. Miller & Waits 2003). Museum samples can 

further help to reveal the phylogeny of locally or globally extinct species (e.g. 

Hammond et al. 2001). Based on the quality and quantity of sampling and samples 

accessible, not only the temporal genetic structure can be assessed but also the 

variance in spatial genetic structure between (Johnson et al. 2004) and - as 

demonstrated in this study -  even within populations. Research based on historic 

samples therefore augments studies that reconstruct demographic history based on the 

genealogy found in modem samples (e.g. Storz & Beaumont 2002).

Almost all genetic studies in historic samples are based on mitochondrial DNA 

sequences or microsatellite genotype data. Because research on historic and 

particularly ancient DNA poses substantial technical problems related to the highly 

degraded and diluted DNA extracted, guidelines for studies based on mitochondrial 

sequences have been established (Cooper & Poinar 2000). Yet, no such guidelines 

have been defined for microsatellite studies in historic samples. Whilst the authenticity 

of historic samples based on microsatellite can be assessed by testing for the
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probability of identity (Taberlet & Luikart 1999), the likelihood of genotyping errors 

due to allelic dropouts and false alleles remains high (Miller & Waits 2003, Chapter 1). 

The bases for genotyping errors in historic and non-invasive samples are very similar 

and can be explained by the diminutive concentration of template DNA (Morin et al. 

2001). This study revealed a strong negative relationship between storage time and 

nuclear DNA concentration measured in historic samples. Therefore, differences in the 

distribution of genotyping errors between non-invasive and historic samples can be 

expected. In addition, microsatellite studies can be biased by null alleles (Callen et a l 

1993), homoplasy and complex mutation processes (Estoup et a l 2002), which have 

all been shown leading to ambiguity in data analyses {reviewed in Balloux & Lugon- 

Moulin 2002, Dakin & Avis 2004). Under these circumstances, studies using historic 

samples might benefit in the near future from applying single nucleotide 

polymorphisms (SNPs). SNP data can be obtained from very small PCR products 

(<80bps) and therefore are in particular suitable for the highly degraded DNA 

extracted from ancient and historic samples. Although applications using SNPs can be 

biased by the selection of an unrepresentative sample of loci {i.e. ascertainment bias; 

Nielsen 2000) genotyping efficiency, data quality and analytical simplicity are superior 

to microsatellites (Morin et al. 2004). Consequently, SNPs could soon become the 

marker of choice not only in studies based on historic samples but in the broader field 

of population genetics (Morin et al. 2004).

The importance of long-term studies in the ecology and evolution of natural systems 

has become widely recognized in science, since only long-term research can reveal 

unpredictable and slow or even cryptic evolutionary processes (Grant & Grant 2002). 

Long-term studies can help to associate evolutionary changes with environmental 

factors, rare events such as bottlenecks caused by population crashes and temporally 

inconsistent processes such as gene flow (Grant & Grant 2002). In this context, 

temporal genetic data based on neutral or selective genetic markers should 

significantly help to improve our understanding of the interactions between an 

organism and its environment over time. So far, most population genetic studies based 

on historic samples focused on describing the dynamic of genetic variation in relation 

to changes in population size only (Bouzat et al. 1998, Groombridge et al. 2000, 

Nielsen et al. 1999b, Chapter 4). Recently, Hadly et al. (2004) revealed genetic 

responses to climate changes in two small and widespread mammalian species
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(Thomomys talpoides and Microtus montanus). By successfully extracting and 

sequencing small fragments of mitochondrial DNA from fossil records dating back 

over 2500 years, varying effects on the genetic structure among the two species were 

revealed. Nonetheless, studies combining environmental (i.e. climatic and habitat 

changes) with genetic data over time are rare.

Population genetics at an individual based level

Assessing the spatial genetic pattern at an individual level rather than using a priori- 

defined discrete populations has been proposed as a new method to infer how 

geographical and environmental features might shape genetic variation in natural 

populations (reviewed in Manel et al. 2003). This approach, landscape genetics, should 

help to discover discontinuities in population genetic structure by applying statistical 

tools such as e.g. Bayesian clustering methods (Prichard et al. 2000) or the Monmonier 

algorithm (Manni et al. 2004). The individual based isolation-by-distance (IBD) 

analysis chosen in my thesis was different in the way that the best fit between a set of 

geographic and genetic distance matrices was inferred rather than genetic 

discontinuities explored. Moreover IBD analyses can be easily combined with a 

Geographic Information System (GIS) one of the most compelling tools in recent 

ecological research. However, IBD analyses based on microsatellites loci and on an 

individual level are only applicable in smaller areas due to the high mutation rate of the 

genetic markers in use (Leblois et al. 2003). Recent studies (Sumner et al. 2002, 

Coulon et al. 2004, Chapter 3 and 5) demonstrated that IBD patterns can be observed 

in animals, indicating that continuous populations evolving under IBD might be rather 

common. However, if  IBD can be expected, current clustering methods applied in 

population genetics are not suitable because they do not account for the continuous 

change in allele frequencies.

Yang (2004) demonstrated a likelihood-based approach for estimating and testing 

general IBD patterns. This method allows the user to combine several explanatory 

matrices (e.g. environmental and habitat data) within a single analyses. In addition, 

Yang’s (2004) method can test for homogeneity between slopes of different regression 

lines. For example, differences in the spatial genetic structure observed between 

populations or within a population but estimated for different time periods (e.g. 

Chapter 5) can be assessed. Moreover, the computed likelihood values for different
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IBD models can be used to select the best model based on Akaike’s information 

criterion and for multimodel inference (Burnham & Anderson 2002). By applying this 

approach across the eleven altitude models in Chapter 3, the best model could be 

selected based on Akaike weights rather on r - values. Furthermore, model averaging 

across all altitude models should improve the slope estimation of the regression line 

between genetic and spatial distances and as a consequence the inferred average gene 

dispersal distance a.

Taking into account landscape structure for estimating ecological distances between 

individuals in a heterogeneous habitat can improve the amount of genetic variation 

explained in an IBD context (Coulon et al. 2004, Chapter 3). Although the principle of 

cost-friction analyses is straightforward, the difficulty is, however, to assess a species- 

specific friction value for a given type of habitat {i.e. the cost for an individual to cross 

a specific habitat type relative to all other habitat types). IBD analyses based on such 

detailed environmental data therefore require particularly good knowledge of the 

ecology of the species of interest.

Probably the weakest element of individual based IBD analyses, however, is the weak 

estimation of genetic distance or relatedness between a pair of individuals. In general, 

relatedness estimators cannot be used to make a precise statement about the degree of 

relatedness between two individuals (Lynch & Ritland 1999). Although a large 

proportion of the observed variance between genetic and spatial distances in an IBD 

context is explained by Mendelian segregation, a significant proportion of it can be 

attributed to the sampling variance of the applied genetic estimators (see Wang 2002 

for a discussion on sampling variance in relatedness estimators). Consequently, 

simulations are needed to gain a better understanding of how these two parameters 

determine the overall variance in an individual based IBD analyses. Furthermore, 

studies comparing IBD in natural populations based on molecular and pedigree data 

would additionally help to assess the robustness of individual based IBD methods.

The temporal and spatial genetic structure observed in this study has been repeatedly 

discussed in relation to past and recent effective population size (Ne). To date, several 

statistical methods are available for estimating the variance Nc based on temporal 

sampling and neutral genetic markers {e.g. Wang 2001, Berthier et al. 2002, Beaumont
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2003). Therefore, Ne estimations could have been applied in this study. However, 

given the complexity of these methods, such analyses could not be realized within the 

timeframe of this study.

I can see great potential in the application o f genetic Ne estimations for each of the 

three empirical data chapters. In Chapter 3, the demographic estimation of Ne could be 

replaced by a genetic estimation of Ne based on temporal changes in allele frequencies 

between historic samples from 1982-84 (Chapter 5) and modem samples. Preliminary 

results applying Wang’s 2001 pseudo-likelihood approach for the two temporal 

samples 1982-84 and 2001-03 using twelve microsatellites revealed a harmonic mean 

of 840 individuals (95%CI: 402 -  4829). This reflects a lower estimate of effective 

population density (D) and consequently resulted in a larger estimated effective 

dispersal distance o of 7’188m (95%CI: 3’044 -  10’376m). By incorporating the 

computed Ne estimations into the individual based IBD analyses, the two important 

demographic population parameters Ne and dispersal distance can therefore be assessed 

based on population genetic data only.

Furthermore, changes in red fox population size during the rabies epizootic in Chapter 

4 might be inferred using Beaumont’s (2003) Bayesian approach for estimation 

population growth. However, because the expected dispersal rate and average dispersal 

distance is likely to have changed over time (Chapter 5), the effect of immigration on 

temporal Ne estimation has to be taken into account. Furthermore, the inferred genetic 

data on changes in population size could be directly compared with the detailed 

demographic population records based on annual roadkill and hunting statistics. 

Finally, the conclusions of Chapter 5 could be substantially improved by replacing the 

assumed ratio of population growth following rabies (2 and 3 times respectively) with 

Ne estimations among the three sampling periods.

Population genetics in red foxes and rabies

Infectious diseases can play a central role in natural systems (Altizer et a l 2003). In 

particular diseases can decrease the size of populations substantially and as a 

consequence can negatively affect the viability of populations (Woodroffe 1999). In 

this study, long-term effects of rabies induced mortality were revealed in population 

size and age structure (Chapter 4). However, demographic effects were less apparent
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for the observed temporal and spatial genetic population structure. No long-term trends 

in temporal genetic diversity were observed (Chapter 4). More difficult was the 

interpretation of the observed dynamic of the fine-scale spatial genetic structure in 

respect to population density and rabies (Chapter 5). Rabies is though to change the 

behaviour of infected foxes and consequently will increase contact rates between 

individuals (Macdonald 1980). For example, a proportion of rabies infected animals, 

the so called furious form, can become highly mobile (Macdonald & Voigt 1985). 

Further work could therefore assess the spatial genetic structure based on rabies 

infected and non-infected foxes within a continuous population.

More generally, the large collection of historic samples analysed here could help to 

investigate sex-specific migration patterns in red fox populations with changing 

density. Although male biased dispersal was revealed based on autosomal genetic 

markers (Chapter 3), the difference in genetic variation revealed between males and 

females holds only for one generation. However to assess sex-specific spatial genetic 

patterns more in detail, sex-specific genetic markers (mitochondrial DNA and Y- 

chromosome) could be applied. In general, a four times smaller Ne for both types of 

markers compared with nuclear markers can be assumed when reproductive success 

among sexes is equal (Petit et a l 2001). Mitochondrial DNA and Y-chromosome 

markers are therefore very sensitive to genetic drift and could help to assess more 

effectively the rabies induced demographic effects on the genetic structure between 

and within red fox populations.
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APPENDICES

Al: Demographic Ne estimation in populations with overlapping

generations.

To investigate the effective dispersal distance in an isolation-by-distance context in 

Chapter 2, an estimate of the effective population size (Ne) for the study area was 

needed. Based on Wright’s infinite island model without overlapping generations, Ne 

was calculated from demographic data assuming constant population size, sex ratio 

and age distribution. In brief, Ne can be estimated in terms of two matrices specifying 

the passage of genes between different age groups (and sexes) and the number of 

individuals in each age group (Equation 10; Johnson 1977). This model was then 

further simplified by assuming a balanced sex ratio and that the reproductive success 

for each age group was equal for both sexes. If individuals are retained in the 

population for n mating seasons, the population can be divided into i age classes if n > 

i > 1. Because reproduction in red foxes occurs once a year, the unit o f time and age 

classes are based on years. Let TV, be the number of individuals of age class i and be 

the probability that a gene in a newborn individual came from a parent of age class i. 

Under these assumptions the effective population size can be derived as

J _ _ _ l _  
AL ~ 2 L 7^r+t M0.5 N t tS {0.5N, 0.5 N m )

where N\ equals the number of newborn individuals while the generation interval L is 

given by

L = ± i Pi = ± q , .
»=1 »=1

To calculate Ne, the red fox abundance was assumed to be constant and that mortality 

was human induced only (hunting or roadkill). Consequently, the average recorded 

number of foxes killed in the study site in 2001 and 2002 (n = 2412) represents N\ as 

the total annual number of newborn individuals. Because accurate age data were not 

available for this part of Switzerland, the expected age distribution in the study site

was derived as follows: First, the total number of adult individuals
f  n \

was
v »=i v

calculated from N\ given the total ratio of recorded juvenile and adult foxes in the
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Swiss rabies data base from 1995 onwards (1:1.343; n=4122). Second, the proportion 

of adult individuals for each age class i was computed based on the observed age 

distribution of 160 accurately aged adult individuals from the canton of Aargau 

collected from 1995 onwards (Table A l, for details see Chapter 3). To account for 

sampling error in age classes with small samples size (i.e. for i > 3), the proportion for 

a given age class i was described using an exponential function (y = 0.5483e'044495'), 

which was extrapolated based on the observed age data distribution using S-plus 2000 

(Mathsoft). Finally, a second estimate of Nc_m0d was calculated assuming a 50% 

reduced reproduction (pimod) in age class / = 1.

Table A l Summary of the parameters needed to calculate Ne from demographic data 
(Johnson 1977). Shown are the age classes i, the expected number of individuals for 
each class A;, the probability pi and pi mo<j that a gene in a newborn individual derived 
from a parent of age class i. and the observed age data for a sample from the Canton 
of Aargau (for details see text).

Age Class i Ni* Pi Pi mod Observed data
1 1 1 6 8 0 . 3 6 0 0 . 1 8 0 7 3

2 7 4 8 0 . 2 3 1 0 . 2 9 6 3 0

3 4 8 0 0 . 1 4 8 0 . 1 9 0 1 4

4 3 0 8 0 . 0 9 5 0 . 1 2 2 1 2

5 1 9 6 0 . 0 6 0 0 . 0 7 7 1 2

6 1 2 6 0 . 0 3 9 0 . 0 5 0 8

7 8 0 0 . 0 2 5 0 . 0 3 2 7

8 5 2 0 . 0 1 6 0 . 0 2 1 2

9 3 4 0 . 0 1 0 0 . 0 1 3 1

1 0 2 2 0 . 0 0 7 0 . 0 0 9 1

1 1 1 4 0 . 0 0 4 0 . 0 0 6 -

1 2 8 0 . 0 0 2 0 . 0 0 3 -
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A2: Performance of Di - vs. tetranucleotide microsatellite loci under 

IBD.

In Chapter 2, additional analyses revealed a significant difference for the blog -  values 

between di -  and tetranucleotide microsatellite loci (aT: n̂ i = 13, m tetra = 4, W= 140, p  

< 0.006; Ryj'. W= 99, p < 0.05; Wilcoxon rank sum tests, Table 3). Although there is a 

significant difference, the reason is not clear. It is likely to be a sampling error, 

considering the small sample size (n = 4). Therefore, calculations were conducted 

using the total data set.

Based on dinucleotide loci only, the regression between pairwise genetic distance aT 

and relatedness Rw with Euclidian distance remained significant (aT: p  < 0.0001, r2 = 

0.0098; R^: blog = - 0.0130,/? < 0.0001, r2 = 0.0050; Mantel test) and further resulted 

in steeper multilocus regression slopes (<aT: blog = 0.0113; Rw: blog = - 0.01230). 

Hence, the overall blog value calculated on individual genetic distance (aT) revealed a 

smaller NS of 88.9 individuals (95% confidence interval = 60.0 -  171.2 individuals) 

compared with the mean NS o f 135.1 individuals computed across all seventeen 

microsatellites. Finally, the computed measure of fit (r2) for dinucleotide loci between 

individual genetic and spatial matrices were consistently higher compared to r2 - 

values calculated across all loci {e.g. aT for 1400m altitude threshold: r2 = 0.016).

Given the wide range of single locus He -  values for both tetra -  and dinucleotides 

(Table 2), the dissimilarity between the observed blog - values, was unlikely to be 

caused by differences in mutation rates between the two types of microsatellites as 

emphasized by Leblois et al. ’s (2003) simulation study. Furthermore, an unintended 

swap of individual samples during genotyping of tetranucleotide loci can be ruled out, 

because both types of micosatellites were co-amplified within the same PCR reaction. 

Based on the small sample size of loci compared in these analyses, the observed 

differences between tetra- and dinucleotide loci in relation to IBD , should be thus 

interpreted with caution. Nevertheless, comparing different types of microsatellites in 

an IBD context might help to improve our understanding of the mutation process in 

microsatellites.


