
Design and Analysis of Scalable Rule

Induction Systems

.•* *Al V

A thesis submitted to the University of Wales, Cardiff

for the degree of

Doctor of Philosophy

by

Ashraf A. Afify: B.Sc., M.Sc.

Intelligent Systems Research Laboratory

Manufacturing Engineering Centre

Systems Engineering Division

School of Engineering

University of Wales, Cardiff

United Kingdom

2004

UMI Number: U584662

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U584662
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

Machine learning has been studied intensively during the past two decades. One

motivation has been the desire to automate the process of knowledge acquisition during

the construction of expert systems. The recent emergence of data mining as a major

application for machine learning algorithms has led to the need for algorithms that can

handle very large data sets. In real data mining applications, data sets with millions of

training examples, thousands of attributes and hundreds of classes are common.

Designing learning algorithms appropriate for such applications has thus become an

important research problem.

A great deal of research in machine learning has focused on classification learning.

Among the various machine learning approaches developed for classification, rule

induction is of particular interest for data mining because it generates models in the form

o f IF-THEN rules which are more expressive and easier for humans to comprehend. One

weakness with rule induction algorithms is that they often scale relatively poorly with

large data sets, especially on noisy data. The work reported in this thesis aims to design

and develop scalable rule induction algorithms that can process large data sets efficiently

while building from them the best possible models.

There are two main approaches for rule induction, represented respectively by CN2 and

the AQ family of algorithms. These approaches vary in the search strategy employed for

examining the space of possible rules, each of which has its own advantages and

disadvantages. The first part of this thesis introduces a new rule induction algorithm for

learning classification rules, which broadly follows the approach of algorithms

represented by CN2. The algorithm presents a new search method which employs several

novel search-space pruning rules and rule-evaluation techniques. This results in a highly

efficient algorithm with improved induction performance.

Real-world data do not only contain nominal attributes but also continuous attributes. The

ability to handle continuously valued data is thus crucial to the success of any general

purpose learning algorithm. Most current discretisation approaches are developed as pre-

processes for learning algorithms. The second part of this thesis proposes a new approach

which discretises continuous-valued attributes during the learning process. Incorporating

discretisation into the learning process has the advantage of taking into account the bias

inherent in the learning system as well as the interactions between the different attributes.

This in turn leads to improved performance.

Overfitting the training data is a major problem in machine learning, particularly when

noise is present. Overfitting increases learning time and reduces both the accuracy and

the comprehensibility of the generated rules, making learning from large data sets more

difficult. Pruning is a technique widely used for addressing such problems and

consequently forms an essential component of practical learning algorithms. The third

part of this thesis presents three new pruning techniques for rule induction based on the

Minimum Description Length (MDL) principle. The result is an effective learning

algorithm that not only produces an accurate and compact rule set, but also significantly

accelerates the learning process.

RULES-3 Plus is a simple rule induction algorithm developed at the author’s laboratory

which follows a similar approach to the AQ family of algorithms. Despite having been

successfully applied to many learning problems, it has some drawbacks which adversely

affect its performance. The fourth part of this thesis reports on an attempt to overcome

these drawbacks by utilising the ideas presented in the first three parts of the thesis. A

new version of RULES-3 Plus is reported that is a general and efficient algorithm with a

wide range of potential applications.

In The Name o f Allah,

The Most Gracious, The Most Merciful

iv

ACKNOWLEDGEMENTS

First of all I thank Allah (My Lord) the all high, the all great who made it possible for me
to complete this work.

I wish to express my sincere thanks to the University of Wales Cardiff, especially the
Intelligent Systems Laboratory, Systems Engineering Division, Cardiff School of
Engineering for the use of the facilities to pursue this research.

I am privileged to have Professor D. T. Pham as my supervisor. The high standard of his
research has always been an inspiration and a goal to me. I am deeply grateful to him for
his consistent encouragement, invaluable guidance and strong support during the course
of this study. His thoughtful advice and constant support extended to me will always be
remembered.

Grateful acknowledgement of my funding and support must be made to my home country
Egypt and the Egyptian Ministry of Higher Education. Also, my sincere thanks go to their
representative in UK, the Egyptian Educational and Cultural Bureau in London and all of
its members for their advice, encouragement and support.

Thanks are also due to all the members of staff of the Department of Systems
Engineering, Faculty of Engineering, Zagazig University, Zagazig, Egypt, who taught me
and gave me the scientific base to continue my postgraduate studies.

I am also very grateful to all the members of the Manufacturing Engineering Centre for
their friendship and help. Special thanks go to my fellow Ph.D. students Mr. Z. Cai and
Mr. S. Bigot for their useful technical discussions.

My most sincere gratitude and appreciation go to my dear wife Z. Said for her patience,
continuous encouragement and support over the past difficult years. Thanks as well to
Allah for his gifts; my beloved daughter “Rofaida” is truly one of them.

1 am deeply indebted to my parents and all the members of my family who gave me
continuous support and encouragement throughout my life.

DECLARATION

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed.. (Candidate)

Date..

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other

sources are acknowledged by footnotes giving explicit references. A bibliography is

appended.

S igned.. (Candidate)

Date..

Statement 2
I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed (Candidate)

CONTENTS

ABSTRACT... ii

ACKNOWLEDGEMENTS... v

DECLARATION.. vi

CONTENTS... vii

LIST OF FIGURES... xii

LIST OF TABLES.. xiii

ABBREVIATIONS..xv

SYMBOLS...xvi

CHAPTER 1 INTRODUCTION..1

1.1 Motivation.. 1

1.2 Research Objectives.. 5

1.3 Thesis Organisation...6

CHAPTER 2 APPROACHES TO CLASSIFICATION LEARNING 9

2.1 Preliminaries...9

2.2 The Supervised Classification Learning Problem... 10

2.3 Description of Inductive Learning Algorithms... 12

2.3.1 Decision Tree Induction.. 12

2.3.2 Rule Induction 18

2.4 Other Machine Learning Approaches to Classification Learning..........................28

2.4.1 Instance-based Learning... 28

2.4.2 Neural Networks.. 29

2.4.3 Genetic Algorithms..30

2.4.4 Bayesian Approaches...31

2.5 Current Trends in Machine Learning Research... 31

2.5.1 Scaling up Machine Learning Algorithms..31

2.5.2 Learning Multiple Models.. 35

2.6 Summary...39

CHAPTER 3 SRI: A SCALABLE RULE INDUCTION ALGORITHM

...40

3.1 Motivation.. 40

3.2 The SRI Algorithm.. 42

3.2.1 Representation and Basic Concepts...43

3.2.2 The Search Method..44

3.2.3 Learning System Biases.. 50

3.2.3.1 Employing a general-to-specific beam search.................................... 50

3.2.3.2 Assessing rule quality...52

3.2.3.3 Stopping rule generation.. 55

3.2.4 Search-space Pruning Rules... 56

3.2.5 Other Efficiency Improvements...62

3.3 Classification of New Instances...63

3.4 Data Sets and Experimental Methodology.. 66

3.5 Empirical Evaluation of SRI..67

3.5.1 Evaluation of the Search-space Pruning Rules...68

3.5.2 Comparison with C5.0...73

3.6 Summary.. 76

CHAPTER 4 DISCRETISATION OF CONTINUOUS-VALUED

ATTRIBUTES FOR LEARNING CLASSIFICATION RULES......... 79

4.1 Motivation.. 79

4.2 Survey of Methods for Discretisation of Continuous-valued Attributes.................81

4.2.1 Overview..81

4.2.2 Discretisation Methods...83

4.3 Proposed Discretisation Method... 89

4.3.1 The Basic Method..91

4.3.2 Best Threshold Determination... 96

4.3.3 Data Structures... 96

4.4 Experimental Results.. 99

4.5 Summary..101

CHAPTER 5 MDL-BASED PRUNING OF RULE SETS.....................104

5.1 Motivation.. 104

5.2 Existing Pruning Techniques.. 106

5.3 Minimum Description Length (MDL) Principle... 109

5.3.1 Existing Coding Methods..110

5.3.1.1 Model encoding... I l l

5.3.1.2 Data encoding.. 113

5.3.2 An Alternative Coding Method.. 119

5.4 Proposed Pruning Techniques... 121

5.4.1 MDL-based Post Pruning (MDL PP)...122

5.4.2 MDL-based Hybrid Pruning (MDL HP)... 122

5.4.3 MDL-based Incremental Pruning (MDL IP)...124

5.5 Experimental Results.. 127

5.5.1 Evaluation of the Different Pruning Techniques... 128

5.5.2 Comparison with C5.0..133

5.7 Summary... 133

CHAPTER 6 RULES-6: A SIMPLE RULE INDUCTION

ALGORITHM FOR DATA MINING...136

6.1 Motivation..136

6.2 The RULES-3 Plus Algorithm.. 137

6.2.1 Algorithm Description..137

6.2.2 Missing Attribute Values... 141

6.2.3 Classification Procedure.. 143

6.3 The RULES-6 Algorithm.. 143

6.3.1 The Search Method...149

6.3.1.1 Relaxing the consistency requirement...149

6.3.1.2 Learning incomplete rule sets.. 150

6.3.2 The Discretisation Method... 151

6.3.3 The Pruning Technique...155

6.4 Empirical Evaluation of RULES-6... 157

6.5 Summary..160

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 162

7.1 Contributions.. 162

7.2 Conclusions... 164

7.3 Future Work..166

APPENDIX A: DATA SETS...171

APPENDIX B: A PSEUDO-CODE OF THE AQ15 ALGORITHM 179

APPENDIX C: THE CONTROL PROCEDURE OF THE CN2

ALGORITHM FOR BOTH ORDERED AND UNORDERED RULES

AS WELL AS THE BEAM SEARCH PROCEDURE 180

REFERENCES..183

xi

LIST OF FIGURES

Figure 2.1 A decision tree constructed from the data in Table 2.1................................... 14

Figure 2.2 A set of rules derived from the data in Table 2.1...19

Figure 3.1 A pseudo-code description of SRI..45

Figure 3.2 A pseudo-code description of the Induce One Rule () procedure of SRI... 46

Figure 4.1 A pseudo-code description of the modified Induce One_Rule () procedure

of SRI... 92

Figure 4.2 Evaluating thresholds for continuous attributes.. 98

Figure 5.1 A pseudo-code description of SRI with M D L P P ...123

Figure 5.2 A pseudo-code description of SRI with MDL HP...125

Figure 5.3 A pseudo-code description of SRI with MDL IP..126

Figure 6.1 A pseudo-code description of RULES-3 Plus.. 142

Figure 6.2 A pseudo-code description of RULES-6... 144

Figure 6.3 A pseudo-code description of the Induce One Rule () procedure of

RULES-6... 146

Figure 6.4 A pseudo-code description of RULES-6 with MDL PP................................. 156

LIST OF TABLES

Table 2.1 An example of a data set... 14

Table 3.1 Search-space pruning rules employed by SRI... 58

Table 3.2 Summary of the data sets used in the experiments (Nominal data).................69

Table 3.3 Total number of rules explored for each search method................................... 71

Table 3.4 Execution times taken for each search method.. 72

Table 3.5 Total number of conditions generated for each search method....................... 74

Table 3.6 Classification accuracies obtained with each search method.......................... 75

Table 3.7 Results for C5.0 and SRI... 77

Table 4.1 Summary of the data sets used in the experiments (Continuous and mixed-

type data)... 100

Table 4.2 Performance of discretisation methods when used in SRI...............................102

Table 5.1 Exceptions costs for six competing models..120

Table 5.2 Summary of the data sets used in the experiments (Nominal, continuous and

mixed-type data).. 129

Table 5.3 Summary of predictive accuracies (%)..130

Table 5.4 Summary of the complexities of the rule sets...131

Table 5.5 Summary of the total number of rules searched and the execution time in

CPU seconds...132

Table 5.6 Results for C5.0 and SRI with MDL IP... 134

Table 6.1 Performance of descritisation methods as pre-processors to RULES-6 154

Table 6.2 Results for RULES-3 Plus and RULES-6 with MDL PP................................158

Table 6.3 Results for C5.0 and RULES-6 with MDL PP... 159

Table B .l The AQ15 algorithm (Clark and Niblett, 1989).. 179

Table C .l The CN2 ordered rules algorithm (Clark and Boswell, 1991)........................ 180

Table C.2 The CN2 unordered rules algorithm (Clark and Boswell, 1991).................... 181

Table C.3 The CN2 rule search algorithm (Clark and Boswell, 1991).............................182

xiv

ABBREVIATIONS

DM Data Mining

ECOC Error Correcting Output Coding

IREP Incremental Reduced Error Pruning

JIT just-in-time

KDD Knowledge Discovery from Databases

MDL Minimum Description Length

MDL_PP Minimum Description Length based Post Pruning

MDL_HP Minimum Description Length based Hybrid Pruning

MDL_IP Minimum Description Length based Incremental Pruning

MML Minimum Message Length

REP Reduced Error Pruning

RULES RULe Extraction System

RULES-3 Plus RULe Extraction System - Version 3 Plus

RULES-6 RULe Extraction System - Version 6

SRI Scalable Rule Induction

STM Short Term Memory

TDP Top-Down Pruning

VL1 Variable-valued Logic System 1

XV

SYMBOLS

Aj — the ith attribute in an example.

b — the number of partitions resulting from the test T.

C — the number of instances covered by the rule set R.

C — the number of instances not covered by the rule set R.

Cj — the j ,h class.

C, — the target class (the class to be learned).

Condi — the i,h condition in a given rule.

d — the number of distinct values for a continuous attribute A,.

D — a training data set.

e — the total number of errors (fP+ fn)•

E — the expected frequency distribution of instances.

f n — the number of false negative instances.

f p — the number of false positive instances.

F — the observed frequency distribution of instances among classes satisfying a given

complex.

GT — a continuous attribute split of type “greater-than (>)”.

GT Conds — a sequence of conditions where each condition is an interval of values

(greater than some threshold value) of the continuous attribute.

k — the number of classes in a data set.

LTE — a continuous attribute split of type “less-than-or-equal (<)”.

LTE Conds — a sequence of conditions where each condition is an interval of values

(less-than-or-equal-to some threshold value) of the continuous attribute.

m — a domain dependent parameter.

m, — the number of nominal attributes out of Nn attributes in the antecedent of the rule.

m2 — the number of continuous attributes out of Nc attributes used to create conditions of

the form A, > ttJ.

m3 — the number of continuous attributes out of Nc attributes used to create conditions of

the form A, < ttJ

M — a possible model that might explain the training data set D.

nc — the number of conditions in a rule.

nclass ~ num^er Posihve instances covered by a given rule.

n , — the total number of instances covered by a given rule.covered °

n ^ — the number of possible values for a nominal attribute Ah

nc — the number of instances in class Q.
' j

N — the total number of instances in the training data set D.

Na — the total number of attributes.

Nc — the total number of continuous attributes.

Nn — the total number of nominal attributes.

Nominal Conds — a sequence of conditions where each condition is a value of the

nominal attribute.

p — the probability of a message selection.

P — the number of instances belonging to the target class C,.

X V ll

P(Cj, S) — the proportion of instances in S which are in class Cy.

P0 (C) — the a priori probability of the target class C,.

r — a rule in the rule set R.

r' — any specialisation of rule r.

R — a set of rules.

s — a seed example.

S — a set of instances.

\S\ — the number of instances in S.

Si — the ith partitions of the data set S.

t — the number of exceptional instances that are erroneously classified by a model M.

tij — the j th threshold value (cutting point) in the domain of a continuous attribute A,.

T — a test for partitioning S at a decision-tree node.

v,j — the j ,h value for a nominal attribute A,.

v„ — the value of attribute At in the seed example s.

Value (Cp a) — The proportions of correctly classified instances of all the rules that cover

an instance a and belong to the same class C;.

Value (r, a) — The proportion of correctly classified instances of rule r that covers an

instance a.

w — the beam width.

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent developments in information technology have facilitated the collection and

storage of massive amounts of data. It is no longer practical to rely on traditional manual

data analysis due to the large amount of data involved. To utilise this abundant data

resource effectively, a way of distilling information and knowledge from the data has to

be found. There is a need for effective techniques to refine such data.

Statistics is a powerful tool in data analysis. From a modelling perspective, it mainly

focuses on finding a model to fit the available data. However, this model is usually

determined a priori and comes from a restricted set, e.g. a linear model, or additive

Gaussian model. There are also computational and theoretical difficulties in applying

statistical methods to data having high dimensions and large volumes. Furthermore, it is

not easy for a user to employ statistical modelling techniques without a deep knowledge

of statistics and the underlying domain.

Machine learning helps this work by finding patterns, trends and dependencies hidden in

the data and inducing models that have predictive power. Machine learning techniques

have greatly extended and enhanced traditional statistical data analysis. However, they

also have limitations. First, the volume of data these techniques can handle is usually

small. Second, they concentrate on simulating the reasoning intelligence of human beings

while ignoring important practical issues such as how to prepare the data. Consequently,

the applications of these techniques are generally limited to particular areas, e.g. medical

diagnosis.

The new field of data mining (DM) has attracted research efforts from the domains of

databases, enterprise information systems, statistics, machine learning, artificial

intelligence and pattern recognition with the aim of transferring the rich data possessed

by enterprises into rich knowledge for better decision making. Data mining includes all

the activities involved in finding interesting patterns in data. A clear definition of data

mining is given in (Fayyad et al., 1996a).

“Data mining, which is also referred to as knowledge discovery in databases

(KDD), means a process o f nontrivial extraction o f implicit, previously unknown

and potentially useful information, such as rules, constraints, regularities from

data in databases

The most important step in data mining concerns applying appropriate data mining

algorithms to the prepared data. There are many different kinds of algorithms, such as

those for association rule discovery (Agrawal et al., 1993; Megiddo and Srikant, 1998),

classification learning (Quinlan, 1993; Cohen, 1995; Mehta et al., 1996; Shafer et al.,

1996; Rastogi and Shim, 1998), and clustering (Zhang et al., 1997; Guha et al., 1998).

2

Classification learning is the most common data mining technique. It employs a set of

pre-categorised examples to develop a model that can classify new examples from the

same population. Classification learning has a wide range of applications, including

scientific experimentation, manufacturing, telecommunications, medical diagnosis, fraud

detection, credit approval and target marketing (Braha, 2001; Monostori, 2002; Pham et

al., 2002; Lavrad et al., 2004; Pham and Afify, 2004). Among the techniques developed

for classification learning, popular ones include inductive learning algorithms such as

decision tree induction and rule induction, instance-based learning, neural networks,

genetic algorithms and Bayesian learning algorithms (Han and kamber, 2001; Witten and

Frank, 2000; Giudici, 2003). Among these techniques, inductive learning techniques are

particularly suited to data mining (Apte and Weiss, 1997; Pham and Afify, 2002). They

are simple and fast. Another advantage is that they generate models that are easy to

understand. Finally, inductive learning classifiers are more accurate compared with other

classification techniques.

Inductive learning algorithms have proven to be valuable, practical tools for

classification, but run into difficulties in their application to large, complex problems.

Most existing algorithms are prohibitively inefficient when it comes to dealing with large

data sets (Aronis and Provost, 1997). One of the defining challenges for the knowledge

discovery and data mining community is to develop inductive learning algorithms that

can scale up to large data sets (Fayyad et al., 1996; Fayyad et al., 1996b; Piatetsky-

Shapiro et al., 1996; Mitchell, 1999a; Provost and Kolluri, 1999; Klosgen and Zytkow,

2002). “Scalability” means the ability of an algorithm to process large data sets

3

efficiently, while building from them the best possible models. However, the existence of

very large data sets is not the only reason for scalability. The most cited reason for

scaling up is that increasing the size of the training set often improves the accuracy of

learned classification models (Catlett, 1991a). Another reason is that scaling up to very

large data sets implies, in part, that fast learning algorithms must be developed. There are,

however, other motivations for fast learning. For example, interactive induction, in which

an inductive learner and a human analyst interact in real time, requires very fast learning

algorithms in order to be practical. Wrapper approaches, which for a particular problem

and algorithm iteratively search for feature subsets or good parameter settings (Provost,

1992; Kohavi, 1995a; Provost and Buchanan, 1995; Kohavi and John, 1997), also require

very fast learning because such systems run the learning algorithms multiple times,

evaluating them under different conditions. Furthermore, each evaluation may involve

multiple runs to produce performance statistics (e.g., using cross-validation). As a final

example, the popular practice of learning multiple models and combining their

predictions also multiplies the execution time.

Different techniques have been proposed and implemented for scaling up inductive

learning algorithms. Several scalable decision tree learning algorithms have been

developed, which are considerably faster than their predecessors (Mehta et al., 1996;

Shafer et al., 1996; Rastogi and Shim, 1998). However, due to its representation of rules

and its strategy for induction, decision tree learning has a number of problems. The first

problem is called the replication problem (Pagallo and Hausseler, 1990). It often happens

that identical subtrees have to be learned at various places in a decision tree. Another

4

problem is known as the redundancy problem (Cendrowska, 1987). By minimising the

average entropy of a set of instances, a decision tree algorithm, such as ID3, disregards

the fact that some attributes or attribute values may be irrelevant to a particular

classification. Rule induction algorithms, on the other hand, do not suffer from these

problems. They have the advantage that the knowledge of domain experts can be

incorporated into the rule learning process. Also, rule induction algorithms can be

extended naturally to the first-order inductive logic programming framework (Fumkranz,

1999). One weakness with rule induction algorithms, however, is that they often scale

relatively poorly with the sample size, particularly on noisy data. Given the prevalence of

large noisy data sets in real-world applications, this problem is of critical importance.

1.2 Research Objectives

The overall aim of this research was to design and develop scalable rule induction

algorithms suitable for data mining applications. These algorithms should be able to

handle large noisy data sets in an efficient and effective way. Moreover, they should be

able to deal properly with both continuous and nominal attributes. Finally, their generated

models should be comprehensible to users without machine learning expertise.

Accordingly, they would be able to achieve good accuracy, compact rule sets and fast

execution times. To achieve the overall aim of the research, the following objectives were

set:

♦ To perform a detailed analysis of existing machine learning techniques for

classification learning, with particular emphasis on inductive learning, and to assess their

appropriateness for data mining applications.

5

♦ To develop computationally efficient rule induction algorithms that can scale up well

to larger and more complex problems.

♦ To design a fast and effective on-line discretisation method for use in rule induction

algorithms.

♦ To develop new pruning techniques for rule induction algorithms that can significantly

reduce rule-set sizes and execution times, and also improve accuracy.

1.3 Thesis Organisation

The remainder of the thesis is organised as follows:

Chapter 2 defines the classification learning problem, presents a framework for viewing

approaches to it, discussing in some detail inductive learning algorithms and briefly

reviews other machine learning approaches. Current trends and recent developments in

machine learning research are also presented.

Chapter 3 presents a new rule induction algorithm which broadly follows the approach of

CN2-like learning algorithms. The proposed algorithm uses advanced search techniques

and rule-space pruning strategies to efficiently explore the exponential rule spaces

involved in many learning problems. These techniques and strategies are detailed and

analysed. A comprehensive empirical evaluation of the algorithm is also reported and

discussed.

6

Chapter 4 proposes a new method for discretising continuous-valued attributes during the

learning process. The chapter starts with a review of current discretisation approaches in

classification learning and is followed by a detailed description of the new discretisation

method. Finally, the chapter gives the results of experiments carried out to demonstrate

the performance of the proposed method.

Chapter 5 addresses the problem of handling noisy data by developing three novel

pruning techniques that can be used with rule induction systems. These techniques are

built on the theoretically sound Minimum Description Length (MDL) principle. The

chapter first reviews previous work on pruning in the context of inductive learning. The

principles of MDL as used in pruning and a modified coding scheme are then presented.

This is followed by a description of the complete pruning techniques. Finally, the

performance results are discussed.

Chapter 6 focuses on the improvement of a simple rule induction algorithm, RULES-3

Plus, based on the results of the last three chapters. RULES-3 Plus, which follows the

approach of AQ-like learning family of algorithms, is extended so that it works faster and

can effectively handle continuous attributes and noisy data. The chapter first gives a brief

description of the RULES-3 Plus algorithm. Then, extensions to the algorithm are

discussed. Finally, details of the various conducted experiments are provided.

Finally, chapter 7 summarises the contributions and conclusions of the thesis and

proposes directions for further research.

7

Appendix A describes all the data sets used in this work.

Appendix B contains a pseudo-code of the AQ15 algorithm.

Appendix C shows the control procedure of the CN2 algorithm for both ordered and

unordered rules as well as the beam search procedure.

8

CHAPTER 2

APPROACHES TO CLASSIFICATION LEARNING

2.1 Preliminaries

Artificial intelligence is a subfield of computer science, which is concerned with

designing intelligent computer systems, that is, systems that exhibit the characteristics

associated with intelligence in human behaviour - understanding language, learning,

reasoning, solving problems, and so on. Learning is clearly one of the hallmarks of

intelligence and the subfield of artificial intelligence concerned with it is called machine

learning. The field of machine learning is concerned with enabling computer programs

automatically to improve their performance at some tasks through experience.

A great deal of research in machine learning has focused on concept learning or

classification learning, that is, the task of inducing the definition of a general category

from specific positive and negative examples of that category. Among the various

machine learning approaches developed for classification, inductive learning from

instances is perhaps the most commonly adopted in real-world application domains.

Inductive learning is the inference of general patterns from data. The study of inductive

learning is mainly motivated by the desire to automate the process of knowledge

acquisition during the construction of expert systems. Inductive learning has gained

attention recently in the context of data mining (DM) and knowledge discovery in

databases (KDD).

This chapter gives an overview of machine learning approaches to classification learning.

The chapter is organised as follows. Section 2 formally defines the classification learning

problem and presents a framework for viewing approaches to it. Section 3 describes in

some detail different techniques for inductive learning. Section 4 briefly reviews other

major machine learning approaches. Current trends and recent developments in machine

learning research are presented in Section 5. Section 6 concludes the chapter with a

summary of some of the key research issues in machine learning.

2.2 The Supervised Classification Learning Problem

In classification learning, a learning algorithm is given a sample of pre-classified

examples from the problem domain called the training set. Each example is described by

a vector of attributes. An attribute is either nominal or continuous. The algorithm learns a

model that is used to predict the class of future examples.

Learning methods can be divided into supervised and unsupervised schemes based on

whether or not a dedicated target function for prediction has been defined. In

unsupervised methods, such a function is not available and the goal is grouping or

clustering instances based on some similarity or distance measure. In supervised learning,

there is either a nominal or continuous-valued target function to be predicted. The former

case is referred to as classification and the latter as regression or continuous prediction. In

this thesis, only methods for supervised classification learning will be addressed.

10

If the examples in the training set are presented and used all at once, learning is said to be

batch or off-line. If the examples are presented one at a time, and the concept definition

evolves over time as successive examples are incorporated, learning is said to be

incremental or on-line. This thesis concentrates on batch learning.

The main goal of a classification learning system is to produce a classifier that will assign

previously-unseen examples (i.e., examples not in the training set) to the corresponding

classes with high accuracy. The accuracy of a classifier is defined as the probability that

it will correctly classify a new, unlabelled example. This accuracy can be estimated by

presenting the classifier with unlabelled examples from a test set.

Ideally, given a complete description of an example (i.e., the values of all its attributes),

its class should be unambiguously determined. In practical tasks, however, the available

attributes will often not contain all the information necessary to do this. The training set

may contain examples with the same attribute values but in different classes. Also,

examples may appear with erroneous class values, or with erroneous attribute values, or

both. These errors may stem from a diversity of sources, including limitations of

measuring instruments, and human error while typing examples into a computer. All

these phenomena, referred to collectively as noise, limit the achievable accuracy in an

induction problem. The degree of robustness of a learning system with respect to noise is

one of its most important characteristics. It also occurs often in practice that the values of

certain attributes for certain examples are simply not available. These are called missing

values, and again a practical induction system must be able to handle them.

11

2.3 Description of Inductive Learning Algorithms

A classification learning algorithm can be viewed as having three components:

representation, search, and evaluation (Fayyad et al., 1996a). The representation

component is the formal language in which concepts are described; the output of the

learning algorithm is a statement in this language. The search procedure is the process by

which the learning algorithm finds the concept description in the space of possible

descriptions defined by the representation language. The evaluation component takes a

candidate concept description and returns a measure of its quality. This is used to guide

the search, and possibly to decide when to terminate it. Often, different evaluation

procedures are used for these two purposes.

Inductive learning algorithms can be divided into two main categories, namely, decision

tree induction and rule induction. Each of these categories will be analysed in view of the

above three components.

2.3.1 Decision Tree Induction

There are a variety of algorithms for building decision trees. The most popular are:

CART (Breiman et al., 1984), ID3 and its descendants C4.5 and C5.0 (Quinlan, 1983;

1986; 1993; ISL, 1998; RuleQuest, 2001). These learning systems are categorised as

“divide-and-conquer” inductive systems. The knowledge induced by these systems is

represented as decision trees. A decision tree consists of internal nodes and leaf nodes.

Each internal node represents a test on an attribute and each outgoing branch corresponds

to a possible result of this test. For a nominal attribute At with nA possible values

12

v,/, v,2,..., v,y,....,virtA there are nAj different branches originating from an internal node.

For a continuous attribute A„ a binary test is carried out, and a corresponding branch A, <

tij is created, with a second branch corresponding to At > tij9 where tv is a threshold in the

domain of A,. Each leaf node represents a classification to be assigned to an example.

Table 2.1 shows an example data set and Figure 2.1 displays a decision tree constructed

from this data.

To classify a new example, a path from the root of the decision tree to a leaf node is

identified based on values of the attributes of the example. The class at the leaf node

represents the predicted class for that example.

Decision trees are generated from training data in a top-down, general-to-specific

direction. The initial state of a decision tree is the root node that is assigned all the

examples from the training set. If it is the case that all examples belong to the same class,

then no further decisions need to be made to partition the examples, and the solution is

complete. If examples at this node belong to two or more classes, then a test is made at

the node, which will result in a split. The process is recursively repeated for each of the

new intermediate nodes until a completely discriminating tree is obtained.

CART is a binary decision tree algorithm that is extensively used. The evaluation

function used for splitting in CART is the Gini index. Given a labelled data set S with k

classes, let k classes be Ch G,...., C* and let P(Cjt S) be the proportion of instances in S

which are in class C,. Then the index is defined as:

13

Vibration Pressure Temperature Fault Type

Present 30 65 A

Absent 23 15 B

Absent 40 75 B

Present 55 40 A

Absent 55 100 B

Present 45 60 A

Present 25 55 A

Absent 24 20 B

Table 2.1 An example of a data set.

Pressure

>35 <=35.

Vibration Temperature

Absent Present <=50 >50

Figure 2.1 A decision tree constructed from the data in Table 2.1.

14

Gini (S) = l - £ P (C j , S) 2 (2 . 1)

For each candidate split, the “impurity” (as defined by the Gini index) of all the sub­

partitions is summed and the split that causes the maximum reduction in impurity is

chosen.

ID3 is a well-known decision tree system. It utilises the information gain criterion for

splitting nodes. The information gain is computed from the entropy measure that

characterises the impurity in a collection of training instances as explained below. For a

given data set S, the entropy is defined as:

Let a test T with b outcomes partition the data set S into Sh S2, , Sb. Then, the total

entropy of the partitioned data set is defined as the weighted sum of the entropy of the

subsets as described below:

where |S,| and \S\ are the numbers of instances in S', and S respectively.

The information gained by partitioning in accordance with the test T is measured by:

k
Entropy (2 .2)

b ly I
Entropy (S , T) = V 1—̂ Entropy (S t) (2.3)

15

Gain(S,T) = Entropy(S) - Entropy(S,T) (2 .4)

Gain (S,T) is therefore the expected reduction in entropy as a result of partitioning the

data set into mutually exclusive subsets based on test T. The gain criterion selects a test to

maximise this information.

C4.5, a variant and extension of ID3, is another popular decision tree algorithm. It

employs the gain ratio criterion, because the information gain criterion has a strong bias

in favour of attribute tests with many values. To reduce the bias of the gain criterion, the

split information measure as defined by the following equation is employed:

The split information measure can be regarded as the cost of selecting a given attribute as

a test. Notice that it discourages the selection of attributes with many values.

The gain ratio is then given by:

The gain ratio computation for a nominal attribute test is relatively straightforward. For

continuous attributes, the d possible values appearing in the subset associated with an

b

SplitInformation(S, T) = (2.5)

GainRatio(T) =
Gain(S, T)

(2 .6)
SplitInformation(S, T)

16

internal node are sorted. Then, all d- 1 possible splits on this continuous attribute are

examined. The one that maximises the gain ratio criterion is selected as a threshold.

A decision tree generated as described above is potentially an over-fitted solution, i.e., it

may have components that are too specific to noise and outliers that may be present in the

training data. To relax this overfitting, C4.5 uses a tree pruning method that tries to

simplify the tree by eliminating subtrees that seem too specific. Pruning is done by

examining each subtree and replacing it with one of its branches or leaf nodes if such a

replacement does not degrade the accuracy of the subtree.

The C4.5 inductive learning system can also transform the generated decision tree to a set

of IF-THEN rules. For the transformation to a rule set, every path from the root of the

unpruned tree to a leaf gives one initial rule, in which the left-hand side is the conjunction

of all attribute-based tests established by the path, and the right-hand side specifies the

class predicted at the leaf. If the path to each leaf node is transformed into a production

rule, the resulting collection of rules would classify examples exactly as the tree and, as a

consequence of their tree origin, the rules would be mutually exclusive and hence their

order would not matter. After producing a rule set from an unpruned tree, C4.5

implements a very complicated multiphase rule pruning procedure. First, each rule is

simplified by deleting some conditions based on the pessimistic-error estimate as adopted

in tree pruning. Second, the set of rules is partitioned into several groups according to the

rule consequent, with one group corresponding to one class. All possible subsets of rules

from each group are then examined and the best subset based upon the Minimum

17

Description Length (MDL) principle is selected. In the third stage, all the rule subsets are

ordered, based on their classification error on the training data set. A default rule is then

chosen whose consequent is the class that contains the largest number of training

instances not covered by any rule. The pruning procedure then attempts to reduce the size

of the rule set further by eliminating rules, the removal of which does not cause a

deterioration in the accuracy of training data classification.

2.3.2 Rule Induction

As with decision tree learning, there are many rule induction algorithms. Among them

are AQ (Michalski, 1969; Michalski et al., 1986; Cervone et al., 2001; Michalski and

Kaufman, 2001), CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991) and RIPPER

(Cohen, 1995) which can all be categorised as “separate-and-conquer” inductive systems.

In contrast to decision tree learning, rule induction directly generates IF-THEN rules.

Each rule can be represented in the following form: CondtA...A Condi a . . . a Condn —> Cjy

where the antecedent consists of a conjunction of conditions Condi Each condition takes

the form \At = v,J or [tn <A, < ti2] depending on the property of the attribute A,. If A, is a

nominal attribute, v(> is a valid nominal value that A, can take. If A, is a continuous

attribute, tu and ti2 are two thresholds in the domain of attribute Ah The consequent is the

class to which instances satisfying the antecedent can be assigned. Figure 2.2 displays a

rule set generated from the data set given in Table 2.1.

18

If [Pressure >35] [Vibration = Absent] -> B

If [Pressure >35] [Vibration = Present] -» A

If [Pressure <35] [Temperature <50] B

If [Pressure <35] [Temperature >50] —> A

Figure 2.2 A set of rules derived from the data in Table 2.1.

19

Rule induction systems produce either an unordered set of IF-THEN rules or an ordered

set of IF-THEN rules, also known as decision lists (Rivest, 1987), both including a

default rule. To classify an instance in the case of ordered rules, the ordered list of rules is

examined to find the first whose antecedent is satisfied by the instance. The predicted

class is then the one nominated by this rule. If no rule antecedent is satisfied, the instance

is predicted to belong to the default class. In the case of unordered rules, it is possible for

some instances to be covered by more than one rule. To classify a new instance in this

case, some conflict resolution approach must be employed.

The general operation of separate-and-conquer rule induction algorithms is the same.

They create the rule set one rule at a time. After a rule is generated, the instances covered

by it are removed from the training data set and the same induction procedure is applied

to the remaining data set until all the instances are covered by at least one rule in the rule

set.

AQ15 (Michalski et al., 1986) is a well-known inductive learning system. It is based on

the AQ algorithm as originally described in (Michalski, 1969) and implements the STAR

method of inductive learning (Michalski and Larson, 1983). A pseudo-code listing of the

AQ15 algorithm is given in appendix B.

In AQ15, decision rules are represented as expressions in the Variable-valued Logic

System 1 (VL1). VL1 is a multiple-valued extension to propositional logic. In VL1, a

selector relates an attribute to an attribute value or disjunct of values using one of the

20

relational operators <, <, =, !=, >, or >. A selector or a conjunction of selectors forms a

complex. A cover is a disjunction of complexes describing all positive instances and none

of the negative instances of the concept. A cover defines the condition part of a

corresponding decision rule. AQ15 is able to implement a form of constructive induction

as well. An example of a decision rule with an internal disjunct is:

[Outlook = sunny v cloudy] a [Temperature > 60] v [Wind = true] a [Temperature

> 70] —> class [Nice]

When building a complex, AQ15 performs the general-to-specific beam search technique

to find the best complex. The algorithm considers specialisations that exclude some

particular covered negative instances from the complex, while ensuring some particular

“seed” positive instances remain covered, iterating until all negative instances are

excluded. As a result, AQ15 searches only the space of complexes that are completely

consistent with the data. Seeds are selected at random and negative examples are chosen

according to their distance from the seed (the nearest ones are picked first, where distance

is the number of attributes with different values in the seed and negative instances).

The AQ15 system can generate unordered and ordered rules. In the case of unordered

rules, a new instance is classified by finding which of the induced rules have their

complexes satisfied by the instance. If the instance satisfies only one rule, then the class

predicted by that rule is assigned to the instance. If the instance satisfies more than one

rule, a heuristic called Estimate o f Probability (EP) is used to predict its class. With this

21

method, each rule is weighted by the proportion of learning instances covered by it. The

weights of rules of the same class are probabilistically combined to form a weight for the

entire class and the class with the highest weight is taken as the predicted class of the test

example. If the instance is not covered by any rule, a heuristic called Measure o f Fit (MF)

is used. In this case the instance belongs to a part of the decision space that is not covered

by any decision rule. The measure of best fit of a class can be interpreted as a

combination of “closeness” of the instances to a class and an estimate of the prior

probability of the class.

The AQ15 algorithm uses a post-pruning technique to remove redundant conditions from

the body of a rule and to remove unnecessary rules from the rule set. Simplification

generally leads to smaller, more accurate rule sets. This framework was later generalised

in the POSEIDON system (Bergadano et al., 1992). POSEIDON can simplify a complete

and consistent concept description, which has been induced by the AQ15 algorithm, by

removing conditions and rules, and by contracting and extending intervals and internal

disjunctions. POSEIDON successively applies the operator that results in the highest

coverage gain as long as the resulting rule set increases some quality criterion.

CN2 is a rule induction algorithm that incorporates ideas from both ID3 and AQ. The

representation of decision rules in CN2 is very similar to that of AQ15 and can be viewed

as a subset of VL1. The inductive learning system CN2 was developed by Clark and

Niblett (1987; 1989) and later modified by Clark and Boswell (1991). The objective

behind the design of CN2 was to modify the AQ algorithm by retaining its beam search

22

through the space of complexes, but removing its dependency on specific training

instances during search. While the AQ algorithm searches only the space of complexes

that are completely consistent with the training data, CN2 extends its search space to

rules that do not perform perfectly on the training data by broadening the specialisation

process to examine all specialisations of a complex, in much the same way as ID3

considers all attribute tests when growing a node in a tree. A cut-off method similar to

decision tree pruning is applied to halt specialisation when no further specialisations are

statistically significant. The modified version of CN2 produces either an ordered set of

IF-THEN rules like the original CN2 version or an unordered set of IF-THEN rules. The

control procedure of the CN2 algorithm for both ordered and unordered rules as well as

the beam search procedure are given in appendix C.

The CN2 algorithm consists of two main procedures: a search algorithm performing a

beam search for a good rule and a control algorithm for repeatedly executing the search.

The control procedure of the CN2 algorithm for ordered rules iteratively calls the beam

search procedure to find the best complex, until no better complexes are found. It then

appends a rule to the rule set with this best complex as the condition and the most

common class among the instances covered by this complex as the prediction. The

instances covered by a rule are removed from the training set. The last rule in the rule list

is a default rule predicting the most common class among the training examples not

covered. The beam search procedure to find the best complex corresponds to the STAR

procedure of the AQ algorithm. The pruned general-to-specific search retains a size-

limited set or star of “best complexes found so far”. The system examines only

23

specialisations of this set, carrying out a beam search for the space of complexes. A

complex is specialised by either adding a new selector to the conjunction or by removing

a disjunctive element in one of its selectors.

The CN2 algorithm can be easily modified to generate an unordered rule set by changing

only the control procedure, leaving the beam search procedure unaltered (apart from the

evaluation function, described below). The main modification to the algorithm is to

iterate the search for each class in turn, removing only covered instances of the current

class where a rule has been found. Unlike the case for ordered rules, the negative

instances remain because now each rule must independently stand against all negatives.

The covered positives must be removed to stop CN2 from repeatedly finding the same

rule.

The CN2 algorithm employs two types of heuristics in the search for the best complexes,

goodness and significance. Goodness is a measure of the quality of the complex that is

used for ordering complexes that are candidates for inclusion in the final cover. Like ID3,

the original CN2 version used the information-theoretic entropy measure to evaluate the

quality of the complex (the lower the entropy, the better the complex). This function

prefers complexes covering a large number of instances of a single class and few

examples of other classes, but it tends to select very specific rules covering only a few

training instances. The modified version of CN2 employs the Laplacian error estimate

instead. The expected accuracy, one minus the expected Laplacian error estimate, is

given by:

24

nclass + 1
Laplace A cc uracy (nclass ’ covered + k

(2.7)
ncovered

where k is the number of classes, nciass is the number of positive instances covered by

special case of the m-probability-estimate developed in (Cestnik, 1990). This estimate

avoids the downward bias of the entropy measure of favouring very specific complexes

in the general-to-specific search operation.

The second evaluation function tests whether a complex is statistically significant, i.e.

whether it locates a regularity that is unlikely to have occurred by chance and thus

reflects a genuine correlation between attribute values and classes in the training data. To

test significance, CN2 uses the likelihood ratio statistic (Kalbfleish, 1979). This is given

where the distribution F = (fi, f 2,......., fr) is the observed frequency distribution of

instances among classes satisfying a given complex and E = (eh e2, , eJ is the

expected frequency distribution of the same number of instances under the assumption

that the complex selects instances randomly from the training set. Thus the two functions,

the Laplacian error estimate and statistical significance serve to determine whether

complexes found during the search are both “good” (have high accuracy when predicting

the rule and ncovered is the number of instances covered by the rule. This formula is a

by:

LikelihoodRatio(F', E) = 2 • f . - log— (2 .8)

25

the majority class covered) and “reliable” (the high accuracy on the training data is not

just due to chance).

CN2 performs another check that can be viewed as a form of pre-pruning. It checks

whether the Laplace estimate of the best complex is greater than that of the default rule

predicting the class with the largest number of training instances. If this is not the case,

then the new complex does not contribute any new information and the generation of

complexes for the current class is terminated.

To apply unordered rules to classify a new instance, all rules are tried and those whose

conditions are all satisfied are collected. If a clash occurs, i.e., more than one class is

predicted by the collected rules, a probabilistic method is employed to resolve the clash.

Each rule is tagged with the distribution of covered instances among classes and these

distributions are summed to find the most probable class.

RULES (RULe Extraction System) is a set of inductive learning algorithms that follow a

similar approach to the AQ family. The first three algorithms in the RULES family of

algorithms (RULES-1, 2 and 3) were developed by Pham and Aksoy (1993; 1995a;

1995b). Later, Pham and Dimov (1997a) introduced a new algorithm called RULES-3

Plus. Compared to its immediate predecessor RULES-3, RULES-3 Plus has two new

strong features. First, it employs a more efficient search procedure instead of the

exhaustive search conducted in RULES-3. Second, it incorporates a metric for selecting

and sorting candidate rules according to their generality and accuracy. RULES-3 does not

26

employ any measure for assessing the information content of rules. The first incremental

learning algorithm in the RULES family was RULES-4 (Pham and Dimov, 1997b). It

allows the stored knowledge to be updated and refined rapidly when new examples are

available. RULES-4 employs a Short Term Memory (STM) to store training examples

when they become available. The STM has a user-specified size. When the STM is full,

the RULES-3 Plus algorithm is used to generate rules. In order to increase the efficiency

of the RULES family of algorithms, Pham et al. (2000) used a simple clustering

technique to select a good set of training examples that were representative of the overall

data set. The method was tested on different problems. The results showed that when the

algorithm was applied to clustered data sets, the execution time was reduced, as well as

the size of the generated rule sets. Pham et al. (2003) described a new algorithm, called

RULES-5, which overcomes some of the deficiencies of the RULES family. In particular,

RULES-5 employs a new method for handling continuous attributes and uses a simple

and more efficient search method. The test results obtained with RULES-5 showed that

the rule sets extracted were more accurate and compact than those obtained using its

immediate predecessor RULES-3 Plus. One of the main weaknesses of the RULES-5

algorithm is its inability to handle noisy data. Pham et al. (2004) proposed a new pruning

technique that improved significantly the performance of the RULES-5 algorithm on data

sets containing noisy examples.

27

2.4 Other Machine Learning Approaches to Classification Learning

Besides decision trees and rule induction, several other approaches to classification

learning exist. This section will briefly review some of the main alternatives: instance-

based learning, neural networks, genetic algorithms and Bayesian methods.

2.4.1 Instance-based Learning

Instance-based learning is based upon the idea of letting the examples themselves form

an implicit representation of the target concept (Aha et al., 1991; Aha, 1997). In contrast

to learning methods that construct a general, explicit description of the target concept

when training instances are provided, instance-based learning methods, such as those

using nearest-neighbour methods, simply store the training instances. Generalising

beyond these instances is postponed until a new instance must be classified. Because of

this, instance-based methods are sometimes referred to as “lazy” learning methods. A test

instance is classified by finding the nearest stored instance according to some similarity

function, and assigning the class of the latter to the former. Advantages of instance-based

methods include the ability to model complex target concepts and the fact that

information present in the training instances is never lost (because the instances

themselves are stored explicitly). One disadvantage of instance-based approaches is that

the cost of classifying new instances can be high. This is because nearly all the

computation takes place at classification time rather than when the training instances are

first encountered. Therefore, techniques for efficiently indexing training instances are a

significant practical issue in reducing the computation required at classification time. A

second disadvantage of many instance-based approaches, especially nearest-neighbour

28

methods, is that they typically consider all attributes of the instances when attempting to

retrieve similar training instances from the memory. If the target concept depends on only

a few of the many available attributes, then the instances that are really most “similar”

may be a long distance apart.

2.4.2 Neural Networks

Neural networks provide a general practical method for learning real-valued and discrete­

valued target concepts in a way that is robust to noise in the training data (Haykin, 1994;

Michie et al., 1994; Chauvin and Rumelhart, 1995; Hassoun, 1995; Mitchell, 1997; Pham

and Liu, 1999). Neural network learning is well-suited to problems in which the training

data corresponds to noisy and complex sensor data, such as inputs from cameras and

microphones. The backpropagation algorithm is a common learning method adopted for

multi-layer perceptrons, the most popular type of neural networks. Neural networks have

been successfully applied to a variety of learning tasks, such as setting the number of

kanbans in a dynamic just-in-time (JIT) factory (Wray et al., 1997; Markham et al.,

2000), modelling and controlling dynamic systems including robot arms (Pham and Liu,

1999), identifying arbitrary geometric and manufacturing categories in CAD databases

(Ip et al., 2003) and minimising the makespan in a flow shop scheduling problem (Akyol,

2004). One of the chief advantages of neural networks is their wide applicability,

however, they also have two particular drawbacks. The first is the difficulty in

understanding the models they produce. The second is the often time-consuming training.

Recent years have seen much research in developing new neural network methods that

29

effectively address these comprehensibility and speed issues (Towell and Shavlik, 1993;

Craven and Shavlik, 1997; Zhou et al., 2000; Jiang et al., 2002; Duch et al., 2004).

2.4.3 Genetic Algorithms

Genetic algorithms provide a learning method motivated by analogy with biological

evolution (Holland, 1975; Goldberg, 1989; Davis, 1991; Michalewicz, 1996; Mitchell,

1996; Liu and Kwok, 2000; Pham and Karaboga, 2000; Freitas, 2002). Rules may be

represented by bit strings whose particular interpretation depends on the application. The

search for an appropriate rule begins with a population, or collection, of initial rules.

Members of the current population give rise to the next-generation population by means

of operations such as random mutation and crossover. At each step, the rules in the

current population are evaluated relative to a given measure of fitness, with the fittest

rules selected probabilistically as seeds for producing the next generation. The process

performs generate-and-test beam-search of the rules, in which variants of the best current

rules are most likely to be considered next. Genetic algorithms have been applied

successfully to a variety of learning tasks and to other optimisation problems. For

example, they have been used to form manufacturing cells and to determine machine

layout information for cellular manufacturing (Wu et al., 2002), to optimise the topology

and learning parameters for neural networks (Oztiirk and Ozturk, 2004) and to solve job-

shop scheduling problems (Chryssolouris and Subramaniam, 2001; Perez et al., 2003).

Genetic algorithms have a potentially greater ability to avoid local minima than is

possible with the simple greedy search employed by most learning techniques. On the

other hand, they have a high computational cost.

30

2.4.4 Bayesian Approaches

Bayesian approaches employ probabilistic concept representations, and range from a

simple Bayesian classifier (Domingos and Pazzani, 1996) to Bayesian networks, which

learn the full joint probability distributions of the attributes and class, as opposed to just

the class description (Heckerman, 1996). Bayesian networks provide a natural platform

for combining domain knowledge and empirical learning. However, inference in

Bayesian networks can have a high time complexity, and as tools for classification

learning, they are not yet as mature or well-tested as other approaches. More generally, as

Buntine (1991) notes, the Bayesian paradigm extends beyond any single representation

and forms a framework in which many learning tasks can be usefully studied.

2.5 Current Trends in Machine Learning Research

Machine learning research has been making significant progress in many directions. This

section examines two of the most important directions and discusses some current

problems. The two directions are scaling up of machine learning algorithms and learning

multiple models.

2.5.1 Scaling up Machine Learning Algorithms

The first major research area concerns techniques for scaling up machine learning

algorithms so that they can process very large data sets efficiently, while building from

them the best possible models. The recent emergence of data mining as a major

application of machine learning algorithms has underlined the need for algorithms to be

able to handle large data sets that are currently beyond their scope. In data mining

31

applications, data sets with millions of training examples, thousands of attributes and

hundreds of classes are common. Fayyad et al. (1996a) cited several representative

examples of databases containing many gigabytes (even terabytes) of data. Designing

learning algorithms appropriate for such applications has thus become an important

research problem.

Many approaches have been proposed and implemented for scaling up machine learning

algorithms (Dash and Liu, 1997; Fiimkranz, 1998; Liu and Setiono, 1998; Moore and

Lee, 1998; Zaki, 1998; Opitz, 1999; Ye and Li, 2002; Blockeel and Sebag, 2003). The

most straightforward approach is to produce more efficient algorithms or increase the

efficiency of the existing algorithms. This approach includes a wide variety of algorithm

design techniques for optimising the search and representation, for finding approximate

instead of exact solutions, or for taking advantage of the inherent parallelism of the task.

A second approach is to partition the data, avoiding the need to run algorithms on very

large data sets. This approach involves breaking the data set up into subsets, learning

from one or more of the subsets, and possibly combining the results. Data partitioning is

useful to avoid memory management problems that occur when algorithms try to process

huge data sets in main memory. An approach orthogonal to the selection of example

subsets is to select subsets of relevant features upon which to focus attention.

In order to provide focus and specific details, the application of inductive learning

techniques to very large data sets is now reviewed; the issues and techniques discussed

generalise to other types of machine learning.

32

Decision tree algorithms have been improved to handle large data sets efficiently and

several new algorithms have been proposed. Catlett (1991a; 1991b) proposed two

methods for improving the time taken to develop a classifier. The first method used data

sampling at each node of the decision tree, and the second method discretised continuous

attributes. These methods decrease classification time significantly but also reduce the

classification accuracy. Moreover, Catlett only considered data sets that could fit in the

main computer memory. Methods for partitioning the data set such that each subset fits in

main memory were considered in (Chan and Stolfo, 1993; 1997; Zhang and Wu, 2001).

Although these methods enable classification of large data sets, studies show that the

quality of the resulting decision tree is worse than that of a classifier that was constructed

by using the complete data set at once. Incremental learning methods, where the data are

classified in batches, have also been studied (Wu and Lo, 1998). However, the

cumulative cost of classifying data incrementally can sometimes exceed the cost of

classifying the entire training set once. The decision tree classifier in (Mehta et al., 1996),

called SLIQ, utilised the novel techniques of pre-sorting, breadth-first growth, and MDL-

based pruning to improve learning time for the classifier without loss of accuracy. At the

same time, these techniques allowed classification to be performed on large amounts of

disk-resident training data. However, due to the use of a memory-resident data structure

that scales with the size of the training set, SLIQ has an upper limit on the number of

examples it can process. Shafer et al. (1996) presented a classification algorithm called

SPRINT that removes all memory restrictions that limit existing decision tree algorithms,

and yet exhibits the same excellent behaviour as SLIQ. SPRINT efficiently allows

classification of virtually any sized data set. Also, the algorithm can be easily and

33

efficiently parallelised. However, SPRINT has been criticised for several reasons. For

example, it utilises data structures called attribute lists that can be costly to maintain,

including a potential tripling of the size of the data set and an associated significant

increase in scan cost (Graefe et al., 1998). Like C4.5, both SLIQ and SPRINT are two-

stage algorithms which include building and pruning phases. Generating the decision tree

in two distinct phases could result in a substantial amount of wasted effort since an entire

subtree constructed in the first phase may later be pruned in the next phase. PUBLIC

(Rastogi and Shim, 1998) is a decision tree classifier that tightly integrates the pruning

phase into the building phase instead of performing them one after the other. Its tree-

growing phase is the same as that of SPRINT except that it uses entropy instead of the

Gini index. However, when a leaf node is generated, PUBLIC can immediately decide

whether there is a need to split it further by estimating a lower bound on the cost of

coding the subtree rooted at this leaf node. The integrated approach of PUBLIC can result

in substantial performance improvements compared to traditional classifiers such as

SPRINT. In recent work, Gehrke et al. (1998) proposed Rainforest, a framework for

developing fast and effective algorithms for constructing decision trees that gracefully

adapt to the amount of main memory available. Finally, Morimoto et al. (1998)

developed algorithms for decision tree construction for categorical attributes with large

domains. The emphasis of this work was to improve the quality of the resulting tree.

As with decision tree learning, there are a number of rule induction algorithms that can

scale up to large data sets. IREP (Fumkranz and Widmer, 1994) is a rule learning

algorithm that can efficiently handle large sets of noisy data. The main reason for its

34

efficiency is the use of a technique called incremental reduced error pruning, which

prunes each rule immediately after it has been induced, rather than after all rules have

been generated. This speeds up the induction process as the pruned rules allow larger

subsets of the remaining positive instances to be removed at each iteration compared to

the non-pruned rules. Unfortunately, the accuracy of the class descriptions learned by

IREP is often lower than the accuracy of those learned with the C4.5rules algorithm

(Quinlan, 1993), a rule-inducing variant of C4.5. Cohen (1995) detailed several

modifications to improve the accuracy of IREP, including a different rule-evaluation

criterion, a different stopping criterion and a post-processing optimisation operation,

producing an algorithm called RIPPER. He showed that RIPPER is competitive with

C4.5rules in terms of error rates and that it maintains the efficiency of IREP. RIPPER

supports missing attributes, continuous variables and multiple classes. This makes it

applicable to a wider range of benchmark problems.

2.5.2 Learning Multiple Models

The second active research area concerns a particular method for improving accuracy in

supervised learning. The term multiple models or ensemble of classifiers is used to

identify a set of classifiers whose individual decisions are combined in some way

(typically by voting) to classify new examples (Dietterich, 1997). Ensembles have been

found to be more accurate than the individual classifiers that make them up (Pham and

Oztemel, 1996; Bauer and Kohavi, 1999; Dietterich, 2000; Fern and Givan, 2003;

Kuncheva and Whitaker, 2003), and also have substantial theoretical foundations

(Friedman, 1996; Madigan et al., 1996; Schapire et al., 1997; Schapire, 1999). An

35

ensemble can be more accurate than any of its component classifiers only if the

individual classifiers are “accurate” and “diverse” (Hansen and Salamon, 1990). An

accurate classifier is one that performs at least better than random guessing. Two

classifiers are diverse if they make different errors on new data points. The reason why

ensembles improve performance can be intuitively explained in that taking a majority

vote of several hypotheses reduces the random variability of individual hypotheses.

Several methods have been proposed for generating multiple classifiers using the same

learning algorithm. Most of them manipulate the training set to generate multiple

hypotheses. The learning algorithm runs several times, each time using a different

distribution of the training instances. This technique works especially well for unstable

learning algorithms - algorithms whose output classifier undergoes major changes in

response to small changes in the training data.

Breiman (1996a) described a technique called bagging that manipulates the training data

to generate different classifiers. Bagging produces a replication of the training set by

sampling with replacement from the training instances. Each replication of the training

set has the same size as the original data. Some examples do not appear at all while others

may appear more than once. Such a training set is called a bootstrap replicate of the

original training set, and the technique is called bootstrap aggregating (from which the

term bagging is derived). From each replication of the training set a classifier is

generated. All classifiers are used to classify each instance in the test set, usually using a

uniform voting scheme where each component classifier has the same vote. Bagging

36

methods require that the learning system should be unstable, so that small changes to the

training set should lead to different classifiers. Although Breiman also notes that poor

predictors can be transformed into worse ones by bagging, it is a simple and easy way to

improve an existing learning method. All that is required is the addition of a pre­

processor that selects the bootstrap sample and sends it to the learning algorithm and a

post-processor that does the aggregation of votes. What one loses, in comparison with

decision trees and rule sets, is a simple and interpretable structure. What one gains is

increased accuracy.

Freund and Schapire (1996; 1997) presented another method for manipulating the

training set called boosting. Instead of drawing a succession of independent bootstrap

samples from the original instances, boosting maintains a weight for each instance in the

training set that reflects its importance - the higher the weight the more the instance

influences the learned classifier. During each iteration, the weights are adjusted in

accordance with the performance of the corresponding classifier, with the result that the

weight of misclassified instances is increased. Adjusting the weights causes the learner to

focus on different instances, leading to different classifiers. The final classifier is

constructed from the learned classifiers by a weighted voting scheme where each

component classifier contributes to the final classification with a different strength based

on its accuracy on the training instances that it was trained with. Like bagging, boosting

depends on instability of the boosted learning system. However, it does not preclude poor

predictors, provided that their error on the given distribution of instances can be kept

below 50%.

37

A third technique for constructing a good ensemble of classifiers is to manipulate the set

of classes that are given to the learning algorithm. Dietterich and Bakiri (1995) described

a technique called error-correcting output coding (ECOC). This method was originally

designed to handle multi-class problems by solving multiple two-class problems. ECOC

represents classes with a set of output bits, where each bit encodes a binary classification

function corresponding to a unique partition of the classes. Algorithms that use ECOC

learn a function corresponding to each bit. All functions are then combined to generate

class predictions.

Bagging, boosting and ECOC are general combining algorithms that significantly

improve classifiers such as decision trees, rule learners, or neural networks. Quinlan

(1996a) conducted experiments with boosting and bagging over a diverse collection of

data sets. His experiments confirmed that boosted and bagged versions of C4.5 produced

noticeably more accurate classifiers than the standard version. The results also showed

that boosting seemed to be more effective than bagging when applied to C4.5, although

the performance of the bagged C4.5 was less variable than that of its boosted counterpart.

Freund and Schapire (1996) also applied boosting and bagging to C4.5 on 27 data sets.

Their results confirmed that the error rates of boosted and bagged classifiers were

significantly lower than those of single classifiers. However, they found bagging much

more competitive than boosting. Bauer and Kohavi (1999) presented an empirical

comparison between boosting and bagging, and argued that both techniques, when

applied to decision trees, were able to reduce the error rate at the cost of increased tree

size. They also observed that boosting was not robust when dealing with noise. This is

38

expected, because noisy examples tend to be misclassified, and their weight will

consequently increase. Dietterich and Bakiri (1995) reported that ECOC improved the

performance of both the C4.5 and backpropagation algorithms on a variety of different

classification problems. Schapire (1997) showed how boosting can be combined with

ECOC to yield an excellent ensemble classification method that was superior to the

ECOC method.

In addition to these methods for generating ensembles using a single learning algorithm,

there are other methods that produce an ensemble by combining classifiers constructed

with different learning algorithms. When classifiers from different learning algorithms

are combined, as in stacked generalisation (Wolpert, 1992), diversity is implied.

Therefore, they only need to be checked (e.g., by cross-validation) for accuracy, with

some form of weighted combination employed. This approach of generating ensembles

has been shown to be effective in some applications (Zhang et al., 1992; Breiman, 1996b;

Ting and Witten, 1997).

2.6 Summary

This chapter has given background information on different machine learning algorithms

with attention focused on inductive learning. The basic concepts of inductive learning

algorithms have been described and the two main types of these algorithms currently

available presented. The chapter has also outlined a number of algorithms of each type

and discussed their suitability for handling very large data sets. Finally, recent directions

in the machine learning research have been presented.

39

CHAPTER 3

SRI: A SCALABLE RULE INDUCTION ALGORITHM

3.1 Motivation

Classification learning can be viewed as conducting a search over the space of

possible rules for the rules that best fit the training data. The large number of potential

rules has prevented most induction algorithms from evaluating every rule. Most

algorithms use greedy search to find a good rule by evaluating only a small fraction of

all rules. Greedy search, also known as hill-climbing search, tries to find a rule with

an optimal evaluation by repeatedly choosing the best partial rule at each

specialisation step and halting when no further improvement is possible. While greedy

search performs well on many problems, it is not guaranteed to find the best rule.

Exhaustive search, on the other hand, explores all the rule space to find the best rule.

This simple method will find a complete and consistent model if there is one in the

search space. In theory, exhaustive search does not miss the best rule. However, this

approach can have high computational costs and often decreases generalisation

accuracy instead of improving it. For example, Webb (1993) used the efficient best-

first search algorithm OPUS for inducing decision lists in a covering framework and

found, surprisingly, that the generalisations discovered by the limited search method

of CN2 were often superior to those found by an exhaustive best-first search. This is

essentially because when a very large space of possible rules is exhaustively searched,

there is a high probability of finding a rule set that is highly accurate on the training

data purely by chance. This rule set will be chosen over others that are in fact more

accurate outside the training set, leading to poorer results (Quinlan and Cameron-

This chapter is organised as follows. In section 3.2, a detailed description of the new

rule induction algorithm is given. The description includes the representation scheme,

the basic search method, the various forms of inductive biases, the search-space

pruning rules and other efficiency considerations. The different possibilities that

might result when using the learned rule set to classify unseen instances are discussed

and analysed in section 3.3. A new method to solve the overlapping problem (where

more than one rule match the same instances) is also presented. Section 3.4 describes

the experimental method and the data sets used in empirical evaluations in this thesis.

Section 3.5 gives empirical evidence that the new search-space pruning rules

significantly reduce the learning time while increasing the accuracy and

comprehensibility of the learned rules. This section also reports on experiments

performed on real data sets to demonstrate the effectiveness of the algorithm. Section

3.6 summarises the chapter.

3.2 The SRI Algorithm

As pointed out in chapter 2, algorithms such as those in the AQ and RULES families

search only the space of rules that are completely consistent with the training data.

Although this reduces the search space significantly, it prevents the algorithm from

exploring the complete training data space. Therefore, specific rules based on a few

training examples tend to be selected. Although these rules perform perfectly on the

training examples, their predictive accuracy on future test examples is often lower

because rules formed on the basis of small numbers of examples are susceptible to

noise. Consequently, the rule set is both large and not of the highest accuracy. For an

induction system to induce accurate rules in domains containing noise, which is the

norm in real-world data mining applications, the search space must be extended to

42

include rules for which counter-examples exist and the evaluation of rules

appropriately modified to enable the most accurate rules to be located. CN2 is an

algorithm that functions in this way and that has significant advantages. Because

statistical measures rather than individual examples are used to evaluate induction

steps, good noise immunity can be achieved. Also, when the induction process stops

early, as it often does, learning can be fast and the resulting rule set concise. For

example, in spite of its greater computational complexity, CN2 is faster overall than

AQ (Clark and Niblett, 1989). This is because the number of iterations in producing a

new rule is lower in CN2 than in the AQ algorithm, as CN2 may halt specialisation of

a rule before it performs perfectly on the training examples. Also, CN2 may halt the

entire search for rules before all the training examples are covered if no further

statistically significant rules can be found. In this section, a new rule induction

algorithm, called SRI (for Scalable Rule Induction), is presented. The proposed SRI

algorithm broadly follows the approach of CN2 and similar algorithms.

3.2.1 Representation and Basic Concepts

SRI extracts IF-THEN rules directly from a set of instances called the training set.

Each instance is described by a vector of attribute-value pairs, together with a

specification of the class to which it belongs. An attribute is either nominal or

continuous. In supervised learning, the class to be learned is called the target class.

Instances of the target class in the training set are called positive instances. Instances

in the training set that do not belong to the target class are called negative instances.

In SRI, an attribute-value pair constitutes a condition. Each rule, or concept

description, consists of a conjunction of antecedents and a predicted class. Each

antecedent is a condition on a single attribute and there is at most one antecedent per

43

attribute. Conditions on nominal attributes are equality tests of the form [A, = v<y],

where A,- is the attribute and v,7 is one of its valid values. Conditions on continuous

attributes are inequalities of the form [A, > tn] or [A, < ti2], where tn and ti2 are two

thresholds in the domain of attribute A,. A rule is said to cover an instance if the

instance satisfies all of the rule conditions. A rule is said to be consistent if it covers

none of the negative instances in the training set, and it is complete if it covers all the

positive instances in the training set. A rule set is the disjunction of a number of rules.

3.2.2 The Search Method

SRI follows the general one-rule-at-a-time procedure of separate-and-conquer rule

induction algorithms. It searches the rule space in a top-down fashion. A pseudo-code

description of SRI is given in Figure 3.1. The procedure Induce Rules () starts with an

empty rule set. It generates rules for each class in turn. Having chosen a class on

which to focus, it calls the procedure Induce O neRule () to extract a rule that will

cover a subset of the positive instances. The Induce_One Rule () procedure is

outlined in Figure 3.2. All positive instances covered are then temporarily removed

from the training set, the learned rule is added to the rule set and another rule is

learned from the remaining instances. Rules are learned in this way until no positive

instances are left or until the rule stopping criterion is satisfied. The test in the Rule_

Generation Stopping Criterion () procedure is employed to decide when to stop

adding rules for a given class. This will be further detailed in section 3.2.3.3. Once all

the rules for one class are produced, all removed instances are put back into the

training set before the induction of rules for the next class. In this way, the algorithm

is always based on all available training instances to form rules for a specific class.

This whole process is repeated for each class to produce an unordered set of rules.

44

Procedure InduceR ules (TrainingSet, Beam Width)

RuleSet = 0

For each class in the TrainingSet Do

Instances = TrainingSet

While Positives (Instances) * 0 Do

Rule = Induce_One Rule (Instances, CurrentClass, BeamWidth)

If Rule_Generation_Stopping_Criterion (Rule, Instances) is True Then

Exit While

Instances = Instances - Covered_Positives (Rule, Instances)

RuleSet = RuleSet u (Rule)

End While

End For

Return RuleSet

End

Figure 3.1 A pseudo-code description of SRI.

45

Procedure Induce_One_Rule (Instances, ClassLabel, w)

PartialRules = NewPartialRules = 0

BestRule = most general rule (the rule with no conditions) (step 1)

PartialRules = PartialRules u {BestRule}

While PartialRules * 0 Do (step 2)

For each Rule e PartialRules Do

{First, generate all specialisations of the current rule, save useful ones and determine all the

InvalidValues according to one o f the conditional tests in steps (6), (7) or (8).}

For each nominal attribute A,- that does not appear in Rule Do

For each valid value v,7 o f A-t e Rule.ValidValues Do

NewRule = Rule a [A, = v,-,] (step 3)

NewRule.Instances = Covered lnstances (Rule.Instances, v,7) (step 4)

If NewRule.Score > BestRule.Score Then (step 5)

BestRule = NewRule

If Covered Positives (NewRule) < MinPositives OR (step 6)

Covered_Negatives (Rule) - Covered_Negatives (NewRule) < MinNegatives O R (step 7)

Consistency (NewRule) = 100% Then (step 8)

Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v,7} (step 9)

Else

NewPartialRules = NewPartialRules u {NewRule} (step 10)

End For

End For

End For

Empty PartialRules

Figure 3.2 A pseudo-code description of the In d u c e _ O n e _ R u le () procedure of SRI.

PartialRules: a list of rules to be specialised and NewPartialRules'. a new list of rules

to be used for further specialisations.

46

For each Rule e NewPartialRules Do

{Next, delete partial rules that cannot lead to an improved rules and determine all the

InvalidValues according to the conditional test in step (11).}

If Rule.OptimisticScore < BestRule.Score Then (step 11)

NewPartialRules = NewPartialRules - {Rule} (step 12)

Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last Value_Added (Rule)

(step 13)

End For

For each Rule e NewPartialRules Do

{Finally, remove from the ValidValues set o f each rule all the values that will lead to

unnecessary construction o f useless specialisations at subsequent specialisation steps.}

Rule.ValidValues = Rule.ValidValues - Parent (Rule).InvalidValues (step 14)

End For

If vv > 1 Then

Remove from NewPartialRules all duplicate rules.

Select vv best rules from NewPartialRules and insert into PartialRules. (step 15)

Remove all rules from NewPartialRules.

End While

Return BestRule

End

Figure 3.2 A pseudo-code description of the Induce One Rule () procedure of SRI

(continued).

47

Given a training instance list, a class label and the beam width, the procedure

Induce One Rule () searches for a rule that optimises a given quality criterion by

performing a pruned general-to-specific beam search. The search for rules is aimed at

covering as many positive instances and as few negative instances as possible. It starts

with the most general rule that has no conditions on the left hand side of the rule (step

(1) in Figure 3.2) and gradually specialises it by considering all possible

specialisations. For each nominal attribute, conditions of the form \A, = v,7] are created

for each one of its values. One new rule is then created for each such condition by

appending the condition to the current rule (step (3) in Figure 3.2), provided that the

attribute does not already appear in it. This prevents the construction of a rule that

contains a pair of incompatible conditions such as [Attribute A / = yes] a [Attribute A i

= no]. The version of SRI described here deals only with nominal attributes; a method

for handling continuous attributes is given in chapter 4.

Each new rule is evaluated and if the evaluation is better than that of the best rule

found previously, the best rule is set to the new rule (step (5) in Figure 3.2). The new

rule is then inserted into the NewPartialRules list (step (10) in Figure 3.2) unless one

of the conditional tests (step (6), (7) or (8) in Figure 3.2) prevents this because it is

deemed that no improved rule will be obtained from the new rule. In the latter case,

the new rule is regarded as ineffective and additional specialisations will not improve

the values for the quality measure. If the new rule is discarded, the last attribute value

used to form it is added to the set of invalid attribute values (InvalidValues) of its

immediate parent, the current rule, so as to ensure that it will be removed from the

other specialisations of the same parent rule (step (9) in Figure 3.2). Thus, the

NewPartialRules list only contains useful rules that can be employed for further

48

specialisation. This process is repeated until there are no remaining rules to be

specialised in the PartialRules list.

Another test that allows sections of the search space to be pruned away is now applied

to each rule in the NewPartialRules list after the best rule overall in the current

specialisation step is identified. Rules that satisfy the conditional test at step (11) are

removed from the NewPartialRules list (step (12) in Figure 3.2), again, because they

will not lead to improved rules. The last attribute values used to generate these rules

are added to the InvalidValues set of their parents (step (13) in Figure 3.2). All

InvalidValues are then deleted from the set of ValidValues for each rule in the

NewPartialRules list (step (14) in Figure 3.2). Invalid values cannot lead to a viable

specialisation from any point in the search space that can be reached via identical sets

of specialisations and thus excluding them will prevent the unnecessary construction

of ineffective specialisations at subsequent specialisation steps.

After eliminating all duplicate rules, the best w rules from the NewPartialRules list

are chosen to replace all rules in the PartialRules list (step (15) in Figure 3.2). The

comparison between rules is based on the quality measure as defined in the next

section. If two rules have an equal value for the quality measure, the simplest rule is

favoured. In other words, one with fewer conditions is selected. If both the value of

the quality measure and the simplicity of the rules are the same, the most general rule

that covers more instances is preferred.

The specialisation process is then repeated until the PartialRules list becomes empty

(step (2) in Figure 3.2) due to the tests in steps (6), (7), (8) and (11). It should be

49

noted that the PartialRules and NewPartialRules lists are reused after each iteration.

During specialisation, the best rule obtained is stored and returned at the end of the

procedure.

3.2.3 Learning System Biases

A system is considered a learning system if it makes an “inductive leap”. A system

that performs inductive leaps is one that is able to produce knowledge that was not

previously known either explicitly or implicitly. In principle, this is impossible. The

goal of inductive learning is to infer a general model M from a set of training

instances. It is impossible to make such inference on the basis of the training data

because nothing in the data can help in deciding whether the inferred model will be

true when applied to fresh data. To circumvent such a problem, some assumptions

concerning M must be imposed. These assumptions are called the “bias” of the

learning system and they provide it with some means for making a guess concerning

M This section discusses various forms of biases that are implemented in the new

rule induction algorithm.

3.2.3.1 Employing a general-to-specific beam search

Like most widely-used rule learners, SRI performs a top-down general-to-specific

search, thus intentionally being biased towards generality. In this approach, the

learning algorithm starts with a general concept description (step (1) in Figure 3.2)

and gradually specialises it (step (3) in Figure 3.2) until some stopping growth

criterion is met. Because of its bias towards generality, this approach is less

susceptible to overfitting of the training data which occurs when a complex rule is

learned that too closely mimics the training data. As a result, accurate and simple

50

concept descriptions can be induced in an efficient way. Other methods for searching

the hypothesis space are bottom-up (specific-to-general) and bi-directional

(Fiimkranz, 1999). These methods have not come into widespread use because they

cope poorly with noise.

Since exhaustive search is impractical for large data sets and greedy search is less

likely to find the best rule, as with most rule induction algorithms, beam search is also

implemented in SRI. This is done by using two rule lists named PartialRules and

NewPartialRules. PartialRules, which is the same size as the beam width w, stores the

vv best partial rules during the specialisation process. Only the rules in PartialRules

are considered for further specialisation since they are regarded as the rules that will

most likely lead to truly optimal rules. NewPartialRules is used to save valid partial

rules obtained by specialising the rules in PartialRules. Only the w best rules from

NewPartialRules are selected to replace the rules in PartialRules. In this way, the

search space is considerably reduced.

A beam search of width vv improves on greedy search by giving the learning system w

more chances to find the best rule. Beam search is practical because the added

complexity grows linearly with vv. Although increasing the beam width will lead the

algorithm to search larger portions of the solution space, it does not mean that the

algorithm will generate a better rule set. In fact, the larger the beam width, the more

likely it is that the algorithm will find rules that overfit the training data (Quinlan and

Cameron-Jones, 1995). In SRI, vv is a parameter of the algorithm that can be specified

by the user. An appropriate empirical range for this parameter is between 1 and 32.

51

3.2.3.2 Assessing rule quality

Given that the rule induction process could be conceived as a search process, a metric

is needed to estimate the quality of rules found in the search space and to direct the

search towards the best rule. The rule quality measure is the most influential bias in

rule induction. In real-world applications, a typical objective of a learning system is to

find rules that optimise a rule quality criterion that takes both training accuracy and

rule coverage into account so that the rules learned are both accurate and reliable.

A quality measure must be estimated from the available data. All common measures

are based on the number of positive and negative instances covered by a rule. Several

different metrics are used in existing algorithms. These include purity (utilised in

GREEDY (Pagallo and Haussler, 1990) and SWAP-1 (Weiss and Indurkhya, 1991)),

information content (employed in PRISM (Cendrowska, 1987)), entropy (adopted in

the original version of the CN2 algorithm (Clark and Niblett, 1989)), the metric

applied in RIPPER (Cohen, 1995) and accuracy (used in I-REP (Ftimkranz and

Widmer, 1994) and PROLOG (Muggleton, 1995)). The problem of the first four

measures is that they obtain their optimal values when no negative instances are

covered. For example, a rule r/ that only covers one positive instance scores more

highly than a rule r? covering 999 positive instances and one negative instance. Also,

they do not aim to cover many positive instances. For example, a rule rj that covers

100 positive and 10 negative examples is deemed of identical value to another rule r4

that covers 10,000 positive and 1000 negative examples. As a result, these metrics

tend to select very specific rules covering only a small number of instances. This is

undesirable since rules covering few instances are unreliable, especially where there is

noise in the data. The accuracy of these rules on the training data does not adequately

52

reflect their true predictive accuracy on new test data. The problem of the accuracy

measure, as pointed out by Cohen (1995), is that this measure sometimes does not

lead to a satisfactory behaviour. For example, it favours a rule rs that covers 2000

positive and 1000 negative examples over a rule r6 that covers 1000 positive and only

1 negative example.

One of the popular metrics that penalises rules with low coverage is the Laplace

accuracy estimate (used in CN2 (Clark and Boswell, 1991), COVER (Webb, 1993;

1995) and several other algorithms). The Laplace formula is given in chapter 2

(Equation 2.7). The Laplace function trades-off accuracy against generality. In

general, it favours rules that cover more positive instances over rules that cover fewer

instances and prefers rules with a lower proportion of the cover that is negative over

those for which that proportion is higher. Segal (1997) showed that the Laplace

estimate has the desirable property of taking into account both accuracy and coverage

when estimating rule accuracy. However, it has a problem when learning rules with

less than 50% training accuracy. The Laplace estimate does not satisfy the

requirement that the rule quality value should rise with increased coverage. Cestnik

(1990) also conducted experiments in four medical domains and his results indicated

that the Laplace accuracy estimate was often unrealistic, especially in multi-class

decision problems. This occurred because of the assumption that underlies Laplace

accuracy estimate, namely, that the a priori distribution is uniform.

A more general version of the Laplace measure, called the m-probability-estimate, has

been developed by Cestnik (1990) and is defined as follows:

53

, "class + '”Po(C,)mAccuracyin , ,n »>£)- ------------------------class covered pj + m
covered

(3. 1)

where PQ(C) is the a priori probability of the target class and m is a domain

dependent parameter. The value of m is related to the amount of noise in the domain.

m can be small if little noise is expected and should increase if the amount of noise is

substantial. The Laplace estimate can be obtained from the m-probability-estimate

when m is set to k, the total number of classes, and PQ(C) is assumed to be uniform.

It should be noted that the m-probability-estimate generalises the Laplace estimate so

that rules that cover no instances will be evaluated with the a priori probability

instead of the value 1 Ik, which is more flexible and convenient.

The performance of the seven quality measures mentioned above when used in the

SRI algorithm was evaluated empirically. The evaluation was carried out on a large

number of data sets and the results showed that the m-probability-estimate

outperformed the other measures. Therefore, SRI employs the m-probability-estimate

(Equation 3.1) to select the best rule (step (5) in Figure 3.2) and to decide on the best

specialisations to retain (step (15) in Figure 3.2) after each specialisation step. In SRI,

the m value is set to k and the a priori probability Pq(C) is assumed to be equal to

the training accuracy of the empty rule that predicts the target class, namely:

where P is the number of instances in the target class Ct and N is the total number of

instances in the training data set. This version of the Laplace accuracy estimate is a

54

good choice because it has a strong theoretical background (Good, 1965) and it meets

the requirements of a good estimation function.

For the examples mentioned above, if it is assumed that k equals 2 and that both the

total numbers of positive and negative instances are equal, the rule rj that only covers

one positive instance scores 0.667 and the rule rj that covers 999 positive instances

and one negative instance scores 0.998. Scores of the rules r?, r4< and r6 with positive

and negative coverages of (100, 10), (10,000, 1000), (2000, 1000) and (1000, 1) are

0.902, 0.909, 0.667 and 0.998 respectively. Therefore, rules r4 and are considered

better than rules ry, r* and rs respectively, which seems intuitively correct. This

indicates that the m-probability-estimate prefers rules that cover many positive

instances and few negative instances, thus being biased towards finding general rather

than more specific rules.

3.2.3.3 Stopping rule generation

In learning tasks known to involve no noise, a complete and consistent rule set that

covers all of the positive and none of the negative training instances is usually

preferred. Where there is noise, absolute completeness and consistency becomes

unrealistic as this will result in the generation of over-specific rules that overfit the

training data. Various studies have indicated that if the training data is noisy, some

degree of inconsistency and incompleteness of the rule set is not only acceptable, but

also desirable (e.g., Bergadano et al., 1988; Michalski and Kaufman, 1999).

Short rules are often preferred to avoid the problem of overfitting. Such a bias

towards short rules is known as overfitting avoidance bias (Schaffer, 1993).

55

Preference for short rules can be implemented using stopping criteria, which can be

viewed as a form of pre-pruning. Pre-pruning and other forms of pruning are

discussed in detail in chapter 5. A simple criterion called minimum purity criterion is

used in FOIL (Quinlan, 1990) to stop generating new rules when the percentage of

positive instances covered by the current rule is below a certain purity threshold

(usually 80%). A more flexible criterion is employed in SRI

(Rule Generation^topping_Cr iter ion () procedure in Figure 3.1). This criterion

terminates the induction process for the current class when the accuracy of the current

rule is not greater than the accuracy of the empty rule. The rationale for this is that the

proportion of positive instances covered by the induced rule should be greater than the

proportion of instances of its class with regard to the training data. Another stopping

criterion based on the Minimum Description Length (MDL) principle is introduced in

chapter 5.

3.2.4 Search-space Pruning Rules

As pointed out earlier, the size of the search space for inducing one rule grows

exponentially with both the number of attributes used to describe each instance and

the number of values allowed for each attribute. The search space can be efficiently

organised by taking advantage of a naturally occurring structure over the hypothesis

space that exists for any classification learning problem - a general-to-specific partial

ordering of hypotheses (Mitchell, 1997). This structure implies that all specialisations

of a rule cover a monotonically decreasing number of positive and negative instances.

This organisation property provides a powerful source of constraints on the search

performed by the SRI algorithm.

56

SRI constrains the search space by employing the four pruning rules listed in Table

3.1. These pruning rules remove portions of the search space that do not maximise the

quality measure. The effectiveness of these pruning rules depends upon how

efficiently they can be implemented and upon the regularity of the data to which the

search is applied. The remainder of this section describes the pruning rules in detail.

The pruning rules in Table 3.1 are derived from the following ideas. As the aim of

specialisation is to find a rule that maximises the quality measure, further

specialisation of a rule can be stopped the moment it becomes clear that additional

specialisation will not improve the quality measure for the rule. Furthermore, in order

to reduce the number of specialisation steps and thus speed up the learning process, a

rule ought to be an improvement over its parent. If this is not the case, the rule should

not be further specialised. Finally, as only one solution is sought, further

specialisation of a rule can be terminated when it cannot improve on the current best

rule.

The first pruning rule (step (6) in Figure 3.2) is used to stop further specialisation

when the number of positive instances covered by a rule is below a threshold

(MinPositives) and thus can be viewed as implementing a form of pre-pruning. Such

specialisations are deemed ineffective since the goal is to find rules that cover as

many positive instances as possible. In SRI, MinPositives is a user specified

parameter. The value of this parameter should be kept low, especially in domains that

are free of noise, to avoid generating over-simplified rule sets. An appropriate

empirical range for this parameter is between 1 and 5. This pruning rule requires

almost no additional overhead to employ since the number of positive instances

57

(1) If CoveredPositives (r) < MinPositives Then Prune (r)

(2) If CoveredNegatives (r) - Covered_Negatives (r') < MinNegatives Then Prune (r')

(3) If Consistency (r) = 100% Then Prune (r)

(4) If OptimisticScore (r) < Score (BestRule) Then Prune (r)

Table 3.1 Search-space pruning rules employed by SRI.

r' is any specialisation of rule r and Prune (r) indicates that the children of r should

not be searched.

58

covered by a rule must in any case be determined to calculate its accuracy. Section

3.5.1 gives empirical evidence that this pruning rule reduces the learning time of SRI

without decreasing the accuracy of its rule sets.

The second pruning rule (step (7) in Figure 3.2) discards descendants of a rule that

does not exclude at least some new negative instances. A rule that does not remove

any new negative instances is deemed ineffective since either it excludes positive

instances only, or it keeps the covered instances unchanged. With greater values of

the minimum number of removed negative instances (MinNegatives), this pruning

rule ensures that each specialisation step changes a rule significantly. As a result, part

of the search space can be eliminated in the early stages of the rule specialisation

process, which speeds up the execution of the algorithm. In SRI, MinNegatives is a

parameter of the algorithm that can be specified by the user. An appropriate empirical

range for this parameter is between 1 and 5. As is the case for the first pruning rule,

no additional overhead is required to employ this pruning rule since the number of

negative instances covered by a rule must be determined for the quality measure.

Section 3.5.1 shows that this pruning rule improves the quality of the generated rules

and speeds up the execution of the algorithm.

The third pruning rule (step (8) in Figure 3.2) avoids expanding rules that have

become consistent. The reason is that any further specialisation will only decrease the

number of positive instances covered by these rules and therefore yield lower values

for the quality measure. It should be noted that the best overall rule will still be

returned because the best rule is retained after each specialisation step. Again, no

59

additional overhead is required to use this pruning rule. Section 3.5.1 demonstrates

the effectiveness of this pruning rule.

The fourth pruning rule (step (11) in Figure 3.2) removes all specialisations of a rule

if its optimistic value of the quality measure cannot improve on the current best rule.

The optimistic value can be determined by observing that the specialisation of a rule

can only make it become more specific and thereby decrease the number of instances

that it covers. As the quality measure is highest when positive cover is maximised and

negative cover is minimised, a simple optimistic value is obtained by determining the

quality measure of a rule with the same positive cover as the current rule but with a

negative cover of zero. If this value is lower than that for the current best rule,

specialisation is terminated because none of the rule specialisations can improve on

the current best value. Section 3.5.1 confirms that this pruning rule improves the

quality of the rule sets of SRI substantially and reduces its learning time.

Clearly, the effectiveness of this pruning rule depends on the value of the current best

rule. In general, the larger the best rule value, the greater the search space that can be

removed. As a result, the implementation of the fourth pruning rule is delayed until

the best overall rule in the current specialisation step is determined. In this way, the

performance of this rule is maximised. It should be noted that when all rules at a

certain specialisation level satisfy any of the above-mentioned pruning rules, the

PartialRules set becomes empty. This terminates the search for the best rule (step (2)

in Figure 3.2).

60

The pruning rules discussed above only remove specialisations of rules that are

guaranteed not to be a solution. The effect of these rules can be maximised based on

the following ideas. If it can be determined that an attribute value used to specialise a

certain rule in the search space cannot lead to a solution, then it follows that no

solution can also result from the application of such an attribute value to the other

specialisations of this rule. This can be justified as follows. Consider the rule r, = A a

G —» target class where condition G is used to specialise a conjunct A. Let r2 = A a B

a G —> target class be another rule where conditions B and G are successively used to

specialise the same conjunct A. If rule r, resulting from the application of condition G

to conjunct A does not cover any positive instances, then it follows that rule r, will not

be considered for further specialisation according to the first pruning rule.

Furthermore, as conjunct A a B is a specialisation of conjunct A, it must cover fewer

instances than are covered by A. As a result, rule r2 resulting from the application of

condition G to conjunct A a B will also not cover any positive instances and

consequently rule r: should also be excluded from further specialisation.

A similar argument demonstrates that if the application of condition G to conjunct A

causes rule r, to be discarded according to any of the other pruning rules in Table 3.1,

then it follows that rule r: should also be discarded as it covers a subset of instances

covered by rule r,.

The above idea can be implemented by maintaining and manipulating for each rule, r,

a separate list containing all possible attribute values, r. ValidValues, that can be

applied in the search space below r. Initially, the list contains all the nominal attribute

values. A rule is only specialised by appending to it values, provided that the

61

attributes of such values do not already appear in the rule. Each value that is appended

to a rule is removed from its r. ValidValues list. When the rule is specialised, the

values are examined to determine if any can be pruned away. Any values that can be

pruned away are deleted from r. ValidValues to prevent the unnecessary construction

of ineffective specialisations at subsequent specialisation steps. New rules are then

created for each of the attribute values remaining in r. ValidValues.

3.2.5 Other Efficiency Improvements

Given the exponential growth in the size of the search space and the iterative nature of

rule induction algorithms, it is important that SRI be as efficient as possible in order

to be a practical algorithm. The efficiency of SRI is determined by two factors,

namely, the number of rules that must be examined and the cost of evaluating each

rule. Each of these factors presents an opportunity for improving efficiency. Section

3.2.4 has discussed increasing efficiency by developing pruning rules that can

significantly reduce the number of rules the algorithm has to process by pruning away

portions of the search space that do not contain the best rule. This section considers

techniques for reducing the cost of rule evaluation.

As mentioned previously, SRI induces a rule through the iterative specialisation of the

most general rule. The fundamental operation is evaluation of the accuracy of each

specialised rule. A straightforward approach to rule evaluation is to scan all the

instances in the training set and count the number of positive and negative instances

covered by the current rule. These counts are used as input to the quality measure

function to compute an estimate of the rule quality. This approach would entail a high

computational cost if it was applied repeatedly as outlined.

62

The efficiency of rule evaluation can be improved by keeping a list of pointers to the

instances covered by each rule. Initially, the list contains a pointer to every instance in

the training data set, as rule specialisation starts with the most general rule which

covers all instances. As the rule is specialised, only the instances covered by the rule

are retained and those not covered are removed (step (4) in Figure 3.2). As a result, in

subsequent specialisation steps, it is only necessary to check instances in the list,

consequently eliminating the need to scan all the training data set. In the later stages

of the specialisation process, the size of the instance pointer list is generally small and

this significantly reduces the cost of rule evaluation.

It is possible to improve the rule evaluation process further as follows. A rule is said

to cover an example if all its conditions hold for that example. Storing the examples

covered by each rule makes it possible to evaluate the set of its specialisations by only

examining the newly added conditions against the corresponding attribute-values of

the instance. This reduces the number of comparisons required for processing each

example and thus speeds up the rule evaluation.

3.3 Classification of New Instances

When the rule set generated by SRI is used to classify a new instance, three outcomes

are possible:

♦ Only one rule covers the new instance,

♦ More than one rule covers the new instance, or

♦ No rules cover the new instance.

63

Each case requires a different classification procedure to predict a label for the new

instance. In the first case, the class predicted by that rule is simply assigned to the new

instance. The conflict between rules in the second case may be due to one or more of

the following reasons. First, during the learning process, different forms of biases

towards general rules are adopted in SRI to avoid overfitting of the training data.

Rules that are too general will be in conflict with others when classifying new

instances. It was assumed that this conflict would be dealt with in the classification

phase by a resolution method based on a more suitable preference criterion. Second,

the generated rule set is usually simplified in a post-processing phase by removing

specific rules and deleting superfluous conditions. This is to increase both the

predictive accuracy on unseen instances and the comprehensibility of the resulting

rule set. Again this will result in an overlapping rule set where two or more rules

match the same instances. Finally, as mentioned previously, SRI generates a rule set

separately for each class. This has the disadvantage that rule sets for different classes

can overlap in the instance space. As a result, a test instance can be assigned to more

than one class and some conflict resolution scheme must be applied to determine a

prediction.

One possible solution to this problem is to select the rule with the highest value for

the quality measure to classify the new instance. This solution overlooks the effect of

other rules that might help in determining the best or the most probable decision.

Another method that takes into consideration the effect of all matching rules is as

follows. When classifying a new instance, each rule is examined and rules that cover

the instance and belong to the same class are collected. The proportions of correctly

classified instances of such rules are probabilistically summed to form a value for the

64

entire class. For example, if there are two rules r, and r2 that cover an instance a and

belong to the same class Ch then the entire class value for that instance can be

determined as follows:

Value (Ch a) = Value (rh a) + Value (r:, a) - Value (rh a) * Value (r2, a) (3.3)

where Value (rh a) and Value (r2, a) are the proportions of correctly classified

instances of rules r, and r2 that cover an instance a respectively.

When all the rules have been scanned, the class with the largest value is taken as the

class of the new instance.

These two methods together with the classification methods of AQ15 and CN2

discussed in chapter 2 were applied in SRI. Experimental results on a large range of

data sets showed that the second method of the two proposed outperformed the other

three methods and was thus adopted in SRI.

In the final case, the new instance belongs to a part of the instance space that is not

covered by any rule in the rule set. The rule set generated by SRI is incomplete, that

is, it does not cover all the positive instances in the training set, due to the use of the

rule stopping criterion discussed in section 3.2.3.3. As a result, it is possible to find

instances that do not satisfy any rule in this incomplete rule set and a method for

specifying how these instances are to be classified is required. The generally adopted

solution is to use a default rule which simply assigns the most frequent class in the

entire training set to the new instance to be classified, independent of its attributes.

65

Another method is to classify the new instance by assigning it to the class of the

nearest rule (according to some distance measure) in the rule set. However, because

separate metrics are used for nominal and continuous attributes, poor results may arise

from combining such different metrics. Consequently, the default rule approach is

implemented in SRI.

3.4 Data Sets and Experimental Methodology

All the data sets employed in this research were obtained from the University of

California at Irvine (UCI) repository of machine learning databases (Blake and Merz,

1998). These data sets are representative of many different types of classification

learning problems and are commonly used to evaluate machine learning algorithms.

They differ regarding the number of learning instances that are available, the degree

of noise in these instances, the number of classes and the proportion of instances

belonging to each class, the number of nominal and continuous-valued attributes used

to describe the instances, and the application area from which the data was obtained.

A detailed description of these data sets is given in appendix A.

The most widely used schemes for evaluating the performance of a classifier are the

“hold-out” scheme and the “cross-validation” scheme (Devijver and Kittler, 1982;

Langley and Kibler, 1988; Efron and Tibshirani, 1993). The hold-out scheme

randomly partitions a data set into two mutually exclusive subsets, of which one is the

training data set, and the other is the test data set. The training data is used for

inducing a classifier and the test data is then used for accuracy estimation. The hold­

out accuracy estimate is usually taken n times for different partitions where n ranges

from 10 to 50. The accuracy of the classifier is then computed as the average of n

66

estimated accuracies and its standard deviation could also be calculated. For large

data set, the hold-out method is still preferred due to its efficiency (Brieman et al.,

1984). In n-fold cross-validation, the whole data set is randomly divided into n

approximately equal-sized disjoint subsets (folds), n classifiers are constructed and

tested, each classifier is built using data from (n-\) folds, and tested on the remaining

one fold. The accuracy of the classifier estimated by cross-validation is defined as the

average of n estimated accuracies. The advantage of n-fold cross-validation is that it

makes use of all the available data. Usually the parameter n is set to ten. It has been

found empirically that this choice produces the most reliable estimate of the

classifier’s true performance on average (Kohavi, 1995a). To achieve a more reliable

estimate, n-fold cross validation is usually executed for many times. However, this

method is prohibitively expensive on large data sets and is only preferred when the

number of instances in the data set is a few hundreds or less in total (Breiman et al.,

1984; Kohavi, 1995b).

In the experiments conducted in this thesis, the hold-out approach was used. For large

data sets with more than 1000 instances, each set was randomly divided once into a

training set with two-thirds of the data and a test set with the remaining one-third. For

small data sets with fewer than 1000 instances, the above procedure was repeated ten

times, and the results were averaged.

3.5 Empirical Evaluation of SRI

This section presents an empirical evaluation of the pruning rules of the SRI

algorithm. Experiments were conducted to explore the relative contribution of each of

these rules to the performance of the algorithm. SRI was also compared to the well-

known inductive learner C5.0 which is probably the best performing commercially

available induction algorithm.

Three criteria were used to evaluate the performance of the tested algorithms, namely,

classification accuracy, rule set complexity and execution time. Classification

accuracy is generally the most important criterion in induction tasks. It is defined as

the percentage of instances from the test set that were correctly classified when the

rules developed from the corresponding training set were applied. The complexity of

a rule set is measured by the total number of rules or total number of conditions in

that rule set. The execution time measures were taken as the total CPU time in

seconds and the number of rules evaluated during the search process.

In order to draw reliable conclusions about the behaviour of the learning algorithms,

12 data sets shown in Table 3.2 were considered. As the current implementation of the

SRI algorithm is not capable of handling continuous attributes, the chosen data sets

were limited to those that had only nominal attributes.

3.5.1 Evaluation of the Search-space Pruning Rules

To evaluate the relative effectiveness of each of the search-space pruning rules given

in Table 3.1, the SRI algorithm was employed to find rule sets using first none of the

pruning rules and then each individual rule. Results are also reported where all

pruning rules are employed. SRI was used with a beam width of 8 and no pre-pruning

(the Rule Generation Stopping_Criterion () procedure of Figure 3.1 was de­

activated). Recall from section 3.2.4 that SRI can employ the two parameters

68

Data Set Name
No. of

Instances
No. of

Nominal Attributes
No. of

Classes
Breast-cancer 286 9 2
Car 1728 6 4
Chess 3196 36 2
Monkl 556 6 2
Monk2 601 6 2
Monk3 554 6 2
Mushroom 8124 22 2
Promoter 106 57 2
Soybean-large 683 35 19
Splice 3190 61 3
Tic-tac-toe 958 9 2
Vote 435 16 2

Table 3.2 Summary of the data sets used in the experiments (Nominal data).

69

MinNegatives and MinPositives as pre-pruning tests. In the experiments reported here,

these two parameters were set to 1 and 2 respectively.

Table 3.3 presents the number of rules explored for each search method. Also given is

the percentage by which the number of rules examined is reduced by the addition of

each pruning rule. This equals (x-y)/y*100, where jc is the number of rules explored

when no pruning rules were applied and y is the number of rules considered using the

added pruning rule(s). A rule is deemed to have been examined if it is generated at

step (3) of the SRI algorithm (Figure 3.2).

As can be seen, the addition of each pruning rule reduced the number of rules that SRI

had to process for all the data sets. Further, in many cases the magnitude of this

reduction was very large. For example, for the Promoter data set, the number of rules

to explore dropped by 99.3 % from 513000 to 3750 when all the four rules were

applied. It is also notable that the second pruning rule had the largest impact on the

number of rules examined. The order of importance of the remaining pruning rules

appeared to be as follows: fourth pruning rule (most important), first pruning rule and

third pruning rule (least important).

Table 3.4 shows the execution time in CPU seconds for each additional pruning rule.

The percentage reduction in the execution time for each search method is also

indicated. All execution times were obtained on a Pentium IV computer with a 2.4

GHz processor, 512 MB of memory and the Windows NT 4.0 operating system. For

all the data sets, the addition of the pruning rules resulted in a decrease in the

computation time.

70

SRI with
no pruning rules

SRI with
rule (1) added

SRI with
rule (2) added

SRI with
rule (3) added

SRI with
rule (4) added

SRJ with
all pruning rules

Data Set Name Number Number % Red. Number % Red. Number % Red. Number % Red. Number % Red.

Breast-cancer 72900 8615 88.2 16430 77.5 62574 14.2 23392 67.9 5802 92.0

Car 43917 18939 56.9 37243 15.2 42281 3.7 29735 32.3 17022 61.2

Chess 353607 228716 35.3 14864 95.8 222849 37.0 9 6 357 72.8 19402 94.5

Monkl 7405 4727 36.2 4686 36.7 6695 9.6 3974 46.3 3310 55.3

\1onk2 31216 10217 67.3 21531 31.0 27958 10.4 23544 24.6 9314 70.2

Monk3 4163 2832 32.0 1937 53.5 3387 18.6 1217 70.8 1102 73.5

Mushroom 277821 64402 76.8 4473 98.4 160204 42.3 6537 97 .6 2765 99.0

Promoter 513000 18317 96.4 11733 97.7 246155 52.0 12467 97.6 3750 99.3

Soybean-large 690783 169881 75.4 89001 87.1 582159 15.7 4 6 4 3 8 93.3 11463 98.3

Splice 5557095 784013 85.9 335862 94.0 3201674 42.4 441421 92.1 273236 95.1

1 ic-tac-toe 21384 13126 38.6 10967 48.7 16484 22.9 9714 54.6 7468 65.1

Cote 64416 11022 82.9 8688 86.5 45048 30.1 11792 81.7 2592 96.0

Table 3.3 Total number of rules explored for each search method.

71

Data Set Name

SRI with
no pruning rules

SRI with
rule (1) added

SRI with
rule (2) added

SRI with
rule (3) added

SRI with
rule (4) added

SRI with
all pruning rules

Time (s) Time (s) % Red. Time (s) % Red. Time (s) % Red. T im e (s) % Red. Tim e (s) % Red.

Breast-cancer 22 5 77.3 9 59.1 17 22.7 10 54.5 3 86.4

Car 40 17 57.5 29 27.5 29 27.5 24 40.0 16 60.0

Chess 302 235 22 2 37 87.7 208 31.1 115 61.9 46 84.8

Monkl 3 2 33.3 2 33.3 3 0.0 2 33.3 2 33.3

Monk2 10 4 60.0 8 20.0 8 20.0 8 20.0 4 60.0

Monk3 1 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0

Mushroom 431 185 57.1 56 87.0 216 49.9 85 80.3 47 89.1

Promoter 402 32 92.0 30 92.5 286 28.9 15 96.3 7 98.3

Soy bean-large 474 160 66.2 120 74.7 414 12.7 54 88.6 27 94.3

Splice 6210 1575 74.6 1009 83.8 4174 32.8 1199 80.7 989 84.1

T ic-tac-toe 10 8 20.0 8 20.0 9 10.0 6 40 .0 5 50.0

Vote 19 6 68.4 5 73.7 14 26.3 6 68.4 2 89.5

Table 3.4 Execution times taken for each search method.

72

It is worth noting the computation times for the Mushroom, Promoter and Soybean-

large data sets.

Table 3.5 shows the complexity of the rule sets generated with each of the pruning

rules. The percentage reduction in the number of conditions obtained with each

experiment is also given. Table 3.6 gives the classification accuracies obtained with

each of the search-space pruning rules. The percentage increase in the classification

accuracy achieved with each condition is also given. A number of results are notable.

First, the application of the fourth pruning rule resulted in a minor increase in the

complexity of the rule sets. Second, the other pruning rules caused a large reduction in

the complexity of the rule sets and an improved classification accuracy in most cases.

For example, for the Car data set the number of conditions dropped from 423 to 311,

while the accuracy increased from 93.2 % to 95.3 % when all the pruning rules were

employed.

3.5.2 Comparison with C5.0

SRI was compared to C5.0 on the twelve data sets listed in Table 3.2. C5.0 has a

facility to generate a set of pruned production rules from a decision tree. SRI and C5.0

each has a number of parameters whose values determine the quality of their induced

rule sets. For SRI, the beam width was set to 4 and the

Rule Generation Stopping Criterion () procedure of Figure 3.1 was activated. The

two parameters MinNegatives and MinPositives were set to 1 and 2 respectively. For

C5.0, the default settings were used.

73

Data Set Name

SRI with
no pruning rules

SRI with
rule (1) added

SRI with
rule (2) added

SRI with
rule (3) added

SRI with
rule (4) added

SRI with
all pruning rules

Number Number % Red. Number % Red. Number % Red. Number % Red. Number % Red.

Breast-cancer 108 111 -2.8 103 4.6 111 -2.8 121 -12.0 109 -0.9

Car 423 311 26.5 423 0.0 423 0.0 431 -1.9 311 26.5

Chess 62 83 -33.9 49 21.0 50 19.4 88 -41.9 79 -27.4

Monk 1 61 61 0.0 61 0.0 61 0.0 61 0.0 61 0.0

Monk2 375 204 45.6 335 10.7 349 6.9 351 6.4 201 46.4

Monk3 23 23 0.0 23 0.0 23 0.0 23 0.0 23 0.0
Mushroom 26 26 0.0 26 0.0 27 -3.8 27 -3.8 26 0.0

Promoter 19 14 26.3 18 5.3 18 5.3 18 5.3 14 26.3

Soybean-large 113 104 8.0 113 0.0 113 0.0 118 -4.4 105 7.1

Splice 218 300 -37.6 221 -1.4 220 -0.9 305 -39.9 249 -14.2
T ic-tac-toe 82 77 6.1 89 -8.5 84 -2.4 84 -2.4 78 4.9

Vote 56 39 30.4 57 -1.8 54 3.6 54 3.6 43 23.2

Table 3.5 Total number of conditions generated for each search method.

74

Data Set Nam e

SRI with

no pruning rules
SRI with

rule (1) added

SRI with

rule (2) added
SRI with

rule (3) added
SRI with

rule (4) added
SRI with

all pruning rules

Ace. (%) Acc. (%) % Incr. Acc. (%) % Incr. Acc. (%) % Incr. Acc. (%) % Incr. Acc. (%) % Incr.

Breast-cancer 75.8 70.5 -6.9 71.6 -5.6 77.9 2.8 77.9 2.8 72.6 -4.2

Car 93.2 95.3 2.2 93.2 0.0 93.2 0.0 93.6 0.4 95.3 2.2

Chess 95.7 99.1 3.5 96.2 0.6 96.3 0.7 99.2 3.6 98.7 3.1

Monkl 100.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Monk2 67.5 63.8 -5.5 65.7 -2.6 66.9 -0.9 66.9 -0.9 65.4 -3.1

Monk3 100.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Mushroom 99.7 100.0 0.3 99.7 0.0 100.0 0.3 100.0 0.3 100.0 0.3

Promoter 71.4 74.3 4.0 71.4 0.0 71.4 0.0 71.4 0.0 74.3 4.0

Soybean-large 93.0 92.1 -0.9 91.7 -1.4 93.0 0.0 93.0 0.0 91.2 -1.9

Splice 88.0 87.7 -0.3 89.5 1.7 88.0 0.0 86.7 -1.5 89.0 1.2

T ic-tac-toe 97.8 97.2 -0.6 98.1 0.3 98.8 1.0 98.8 1.0 98.1 0.3

Vote 97.8 96.3 -1.5 95.6 -2.3 96.3 -1.5 96.3 -1.5 95.6 -2.3

Table 3.6 Classification accuracies obtained with each search method.

75

Table 3.7 presents the results for each algorithm on each data set. In each case, the

accuracy on the test data and the complexity of the resulting rule sets are given. The

number of rules was taken as a measure of the complexity of the rule set. A

complexity of one was assigned to the default rule.

It is clear from Table 3.7 that the accuracy obtained by SRI was in total higher than

that of C5.0. In addition, on 6 of the 12 data sets, SRI achieved higher accuracy than

C5.0. On three data sets, Monkl, Monk2, Monk3, both algorithms had the same

accuracy. On the remaining three data sets, SRI was inferior to C5.0. However, with

SRI, the number of rules was higher in 9 data sets. The smaller number of rules

produced by C5.0 can be attributed to the rule set (decision tree) pruning techniques

employed. Much simpler and also more accurate rules are obtained when the pruning

techniques of chapter 5 are incorporated into the SRI algorithm.

3.6 Summary

This chapter has presented a new rule induction algorithm for classification learning

which includes a new heuristic search technique and search-space pruning rules. The

search technique performs a pruned general-to-specific beam search and employs

other search biases to traverse the large search spaces involved in many machine

learning problems. These strategies enable efficient processing of such search spaces

and induction of accurate and simple rules from a set of data. The search technique

also uses several novel pruning rules that take advantage of the special structure of the

search space to eliminate portions that do not contain a solution. Experimental results

have demonstrated that the new pruning rules can significantly reduce the number of

76

Data Set Name
C5.0 SRI

Acc. (%) No. of Rules Acc. (%) No. of Rules
Breast-cancer 75.8 17 73.7 15
Car 91.8 58 94.3 78
Chess 97.2 21 98.8 36
M onkl 100.0 17 100.0 23
Monk2 65.7 1 65.7 19
Monk3 100.0 6 100.0 13
Mushroom 99.8 10 100.0 15
Promoter 74.3 7 76.3 9
Soybean-large 93.4 32 90.4 27
Splice 92.7 60 91.1 74
T ic-tac-toe 92.2 34 97.8 21
Vote 97.0 5 97.8 10
Total 1079.9 268 1085.7 340

Table 3.7 Results for C5.0 and SRI.

77

rules considered during the rule learning process and greatly increase the efficiency of

the algorithm.

The algorithm presented in this chapter is limited to nominal attributes. A method for

learning directly from continuously valued data is considered in the next chapter.

78

C H A PTER 4

DISCRETISATION OF CO NTINUOUS-VALUED

ATTRIBUTES FOR LEARNING CLASSIFICATIO N RULES

4.1 Motivation
Since most real-world applications of classification learning involve continuous­

valued attributes, properly addressing the discretisation process is an important

problem to be solved in developing generally applicable methods for data mining.

Discretisation of a continuous attribute involves finding an appropriate set of cutting

points for that continuous attribute. “Appropriate” means that the information in the

data for discriminating the classes is not lost. Discretisation can improve the accuracy

of the learned model. The reason is that discretisation produces a concise

representation of continuous attributes and this helps learning algorithms to capture

the relationship between different attributes.

The usual approach to discretisation of continuous-valued attributes is to perform this

discretisation off-line, prior to the learning process (Ting, 1994; Wu, 1996; Ho and

Scott, 1997; Jun et al., 1997; Kontkanen et al., 1997; Liu and Setiono, 1997; Zighed et

al., 1997; Frank and Witten, 1998; Pemer and Trautzsch, 1998; Wang and Liu, 1998;

An and Cercone, 1999; Peng, 2004). First, all continuous attributes in the data are

discretised to obtain a discrete data set. Then learning algorithms are applied to this

discretised data set. Off-line discretisation is useful for several reasons. First, it

enables learning algorithms that can inherently only handle nominal attributes to

process continuous-valued attributes in a consistent manner. Furthermore, it can

effectively speed up inductive learning. It has been shown that, for some learning

algorithms, efficient discretisation as a pre-processing operation resulted in significant

speed increases (Catlett, 1991b). Finally, off-line discretisation can produce simpler

classifiers than those learned from the raw continuous data. Discretisation produces

inherent generalisation by grouping data into several ranges, representing it in a more

general way. Also, by restricting the search space that the learning algorithm can

explore the likelihood of overfitting the training data is reduced and hence the chance

of finding a less complex classifier is increased.

Off-line discretisation, however, suffers from at least two problems. First, the

discretisation process is independent of the learning process and therefore does not

comply with the demands of the learning algorithm. Second, independent

discretisation of attributes may destroy the higher-order correlation between them

(Ventura, 1995). Higher-order correlation between attributes means that an attribute

by itself may not directly correlate with the output class, but in combination with one

or more of the other attributes, it may have a very high correlation with the output

class.

As a result, a different approach is proposed and a method of learning directly from

continuous-valued attributes is developed. By handling continuous-valued attributes

during induction, the bias of the induction system can be taken into account and

interactions among different attributes considered. Therefore, this approach should

yield even greater improvements in the performance of the learning algorithm than

achieved with off-line discretisation. However, the execution speed of an induction

algorithm incorporating on-line discretisation would increase since the discretisation

80

process may need to be repeated many times within the inductive process. The main

purpose of this chapter is to develop an effective and a computationally efficient on­

line discretisation method for use in rule induction algorithms.

This chapter is organised as follows. First, a review of existing discretisation

approaches, their defining characteristics and their strengths and limitations is given

in the context of inductive learning. This is followed by a detailed description of the

new discretisation method. Then, an empirical evaluation of the method is presented.

Finally, a summary of the findings of the chapter is given.

4.2 Survey of Methods for Discretisation of Continuous-valued

Attributes

4.2.1 Overview

Current discretisation methods can be divided in four ways, namely, supervised vs.

unsupervised, multivariate vs. univariate, off-line vs. on-line and parametric vs. non-

parametric.

Supervised vs. Unsupervised

Supervised discretisation techniques take the relationship between the class label and

the continuous attribute to be discretised into account during the discretisation

process. On the other hand, unsupervised methods do not consider the class label, and

hence are “class-blind”. Class-blind methods are typically used in unsupervised

learning where there are no assigned class labels, whereas supervised discretisation

methods are naturally adopted when supervised learning are used. Comparative

studies have shown that supervised discretisation generally performs better than

8 1

unsupervised discretisation (Ching et al., 1995; Dougherty, et al., 1995; Liu et al.,

2002).

Multivariate vs. Univariate

Many data sets have more than one continuous attribute. Multivariate discretisation

refers to the discretisation of several continuous attributes simultaneously. This

approach can take interactions between different attributes into account. The

univariate method discretises one attribute at a time, with the discretisation of the next

continuous attribute beginning after the discretisation of the current attribute has

finished. The drawback of this method is that once a continuous attribute has been

discretised, this discretisation cannot be revoked. Most of the current discretisation

methods are univariate.

Off-line vs. On-line

As previously mentioned, if discretisation is performed while the data is pre-

processed and before learning has begun, it is regarded as off-line. The off-line

method discretises the data only once and therefore it is efficient. With an on-line

discretisation approach, discretisation is an integral component of the learning

algorithm itself. For instance, the discretisation approach of the decision-tree

induction algorithm C4.5 (Quinlan, 1993) falls into this category. At each node of the

tree, the continuous attribute is binarised based only on instances associated with this

node and competes with other attributes during the attribute selection process.

Consequently, one continuous attribute can be discretised several times at different

levels of the tree.

82

Parametric vs. Non-parametric

Parametric discretisation methods require the user to specify some parameters. The

most important parameter is the number of intervals into which a continuous attribute

can be partitioned. If the method can be executed without this kind of user

intervention, it is non-parametric. The number of intervals has an important effect on

learning performance and classification accuracy (Ching el al., 1995). For inductive

learning, a large number of intervals is not always desired because the performance of

many inductive learners deteriorates dramatically with large numbers of discrete

intervals. After all, the reason for discretisation is to reduce the number of possible

values an attribute can take. Therefore, for the purpose of supervised learning, the

optimal number of intervals can be regarded as the smallest number that does not

significantly weaken the interdependency between attribute values and classes

(Kurgan and Cios, 2001).

4.2.2 Discretisation Methods

A typical unsupervised discretisation method is equal-width interval discretisation

(Wong and Chiu, 1987). This is perhaps the simplest discretisation procedure. It

simply involves dividing the range of a continuous variable into / equal intervals,

where / is a user-defined parameter. Since the equal-width approach considers neither

the distribution of the values of the continuous attribute, nor the dependency between

the class label and the continuous attribute, it is likely that classification information

will be lost as a result of combining values that are closely associated with different

classes into the same interval. Furthermore, the number of intervals has a strong

impact on performance. If too many intervals are specified, the learned model will be

83

complex. If too few intervals are specified, information that can be used to distinguish

instances will be lost.

A related method, equal-frequency intervals, divides the range into / intervals each of

which contains the same number of instances (Wong and Chiu, 1987). A variation of

the equal-frequency approach, called maximum marginal entropy, adjusts the interval

boundaries using an entropy measure so as to reduce the amount of information lost

due to discretisation (Wong and Chiu, 1987; Chmielewski and Grzymala-Busse,

1994).

ChiMerge (Kerber, 1992) and StatDisc (Richeldi and Rossotto, 1995) are two

supervised parametric discretisation methods. Both approaches employ a bottom-up

merging process, where intervals are repeatedly merged until a termination condition

is met. However, StatDisc is more general than ChiMerge in that it considers merging

up to a user-defined number of intervals at a time, rather than just two adjacent

intervals as in ChiMerge. They are, also, different in the interval initialisation scheme

and in the statistical measure which they employ. ChiMerge is initialised by putting

each instance into its own interval, and uses the statistic to decide whether two

adjacent intervals should be merged. StatDisc is initialised by grouping adjacent

instances labelled with the same class into the same interval, and uses the 0 statistic

to measure the association of adjacent intervals. Compared with class-blind

techniques, these two methods are more robust. The main drawback is that both

methods require users to specify the significance level which is employed to control

the merge granularity.

84

A number of information-theory-based discretisation methods have been developed.

Among these are methods belonging to the entropy-based discretisation approach

(Catlett, 1991b; Fayyad and Irani, 1993; Phahringer, 1995a) and the distance-based

approach (Cerquides and Lopez de Mantaras, 1997). They are mostly inspired by

Quinlan’s decision tree induction algorithms ID3 and C4.5 (1986; 1993).

Catlett (1991b) proposed a supervised discretisation method called D2 as a means of

reducing the learning time of the ID3 algorithm when continuous attributes are

encountered. In D2 the discretisation is carried out off-line at the pre-processing stage.

D2 adopts a greedy top-down approach. To find the set of intervals, the training

instances are first sorted on the values of the continuous attribute in question. The

method then evaluates all candidate cut points and selects the one that maximises the

information gain. The training set is then split into two subsets by the cut point value.

Subsequent cut points are selected by recursively applying the same binary

discretisation method to each of the newly generated subsets until one of four

stopping conditions is satisfied: the number of instances in an interval is sufficiently

small, the number of cut points produced for any attribute reaches a maximum limit,

the gain for all intervals is equal or all instances in an interval are in the same class.

Since the instances are not reordered, they need not be re-sorted, and this is the reason

for reduced learning times. If u cut points are found, the continuous attribute is

mapped to a discrete attribute with u+\ values, one for each interval. One of the main

problems with this discretisation method is that it is rather computationally expensive.

It must be evaluated N-1 times for each attribute (assuming that the N examples have

distinct values). Typically N is very large.

Fayyad and Irani (1993) introduced a similar method to that of Catlett, but developed

an elegant test based on the Minimum Description Length (MDL) principle to

determine a stopping criterion for the recursive discretisation strategy. Moreover, the

method takes advantage of the fact (Fayyad, 1992) that the optimal cutting points

when discretising a continuous attribute using an average class entropy evaluation

function can only be selected from a set called the boundary points. This can be used

to improve the efficiency of the discretisation method, as the latter needs only to

examine the boundary points of each continuous attribute rather than all its distinct

values.

Phahringer (1995a) proposed a two-step discretisation method called MDL-DISC.

First, a simplified version of Catlett’s D2 method is used to select a set of promising

split points. Second, this set is searched thoroughly by a best-first search to determine

a good discretisation according to the Minimum Description Length (MDL) estimate.

Special provisions (for example, escape to a class-blind method) are made for the

degenerate case where just a single interval results from the discretisation.

Holte (1993) described a simple example of a supervised discretisation method called

1R Discretizer. This method first sorts the values of a continuous attribute in

ascending order and then puts instances having equal values or having the same class

label into one interval. Adjacent intervals can then be merged if they share the same

majority class label. To avoid too many intervals being generated, each interval must

include at least a pre-specified number of instances.

86

The above-mentioned methods are heuristic and, therefore, they cannot guarantee

finding the optimal discretisation. However, their efficiency makes them attractive

choices in practical applications. In recent years, several optimisation techniques for

discretisation of continuous-valued attributes have been developed. Maass (1994) was

the first to suggest a dynamic programming method which finds the minimum

partitioning of a continuous attribute with respect to the training set error evaluation

function in polynomial time. This method was implemented as part of the T2

induction algorithm (Auer et al., 1995) which induces one- or two-level decision

trees. Fulton et al. (1995) followed by introducing a quadratic-time general method

which works for a class of evaluation functions in two-class learning tasks. They also

proposed a linear-time method, which works for a narrower range of evaluation

measures than the quadratic-time method. Later, Birkendorf (1997) devised linear­

time methods for the multi-class case. Elomaa and Rousu (1999a) and Rousu (2001)

extended the work of Fulton et al. by introducing a pruning technique to improve

dynamic programming search and by operating on example intervals instead of

individual examples. These enhancements resulted in a general and efficient method.

Following a similar approach, Cai (2001) proposed an efficient discretisation method

using an evaluation function based on the Minimum Description Length (MDL)

principle. The optimal number of intervals is obtained by examining only the search

space of boundary points of each continuous attribute and selecting those points that

optimise the evaluation metric.

Empirical evaluations of the different methods of discretising continuous attributes

have been conducted. Dougherty et al. (1995) compared the equal-width approach, the

1R Discretizer proposed by Holte, the entropy-based discretisation method by Fayyad

87

and Irani and the binary discretisation method of C4.5 using two induction algorithms,

C4.5 (Quinlan, 1993) and a Naive-Bayesian classifier (Good, 1965). They reported in

their study that the entropy-based discretisation method was the best. This method

was compared to the “optimal” discretisation method of Maass in a study presented

by Kohavi and Sahami (1996). These discretisation methods were also evaluated on

C4.5 and Nai've-Bayesian classifiers on data sets from the UCI repository. Results

showed that the entropy-based method generally outperformed the “optimal”

discretisation method.

Quinlan (1996b) conducted experiments similar to those described by Dougherty et al.

on twenty databases from the UCI repository that involve continuous attributes, either

alone or in combination with nominal attributes. In this study, a new version of C4.5,

which modifies the formation and evaluation of tests on continuous attributes, is

employed. The results showed that the binary discretisation method of the new C4.5

algorithm was superior to the entropy-based method of Fayyad and Irani.

Comparisons with the T2 induction system, which employs the dynamic discretisation

method of Maass (1994), again confirmed the superiority of C4.5. However, T2 trees

were much smaller than those found by C4.5 - less than half the size on average.

Trautzsch and Pemer (1996) evaluated three methods of discretisation, namely, the

binary discretisation method of C4.5, the entropy-based method of Fayyad and Irani

and the ChiMerge method. The results showed that neither of the latter two

discretisation methods outperformed the method used in C4.5 significantly.

Elomaa and Rousu (1996b) compared three different discretisation strategies and

examined their impact on decision tree learning. The contrasted strategies were the

C4.5 binarisation strategy, an implementation of the entropy-based strategy and the

“optimal” splitting strategy. Experiments on a large number of commonly used data

sets showed that the entropy-based and “optimal” strategies did not give any higher

prediction accuracy than the binarisation strategy. This confirms the results of

Quinlan (1996b). Also, the entropy-based and “optimal” strategies were slower than

binarisation; the entropy-based method took on average twice the time of the

binarisation method in decision tree learning and the “optimal” splitting method

further doubled the average time of the entropy-based method.

4.3 Proposed Discretisation Method

The simplest method for discretising continuous attributes during learning is to

determine for each attribute A, all the distinct values that occur in the instances

covered by the current partial rule, create conditions of the form (A, < v(/) and (A/ > v,y)

for each value v,7 and evaluate all the rules that can be formed by adding such

conditions to the current rule. All such rules and those resulting from specialising the

current rule with nominal conditions can then be compared according to the

evaluation metric to select a size-limited set of best rules at each specialisation step.

One problem with this method is that a continuous attribute with numerous distinct

values will have an advantage over a nominal attribute and also over other continuous

attributes that have fewer distinct values as a large number of rules generated with

such an attribute might be selected within the size-limited set of rules considered for

further specialisations. These rules typically have very small differences and thus the

search can be concentrated in a limited region of the rule space with a possible

89

degradation of performance. Another problem with this simplistic method is that it is

very expensive computationally, especially for data sets involving continuous

attributes with a large number of values.

The efficiency of this method can be improved by only examining the boundary

points of each continuous attribute rather than all of its individual values. A boundary

point occurs if, in the sorted list of values for attribute A„ vn and v,: are adjacent and

they are associated with different classes. However, boundary points may change

from point to point in the rule space as their determination depends on the frequencies

of classes as well as the distribution of values of each continuous attribute in the set of

instances covered by each rule. Recalculating the boundary points for each rule is

computationally expensive. Moreover, the change of boundary points makes it

difficult to apply the pruning rules discussed in chapter 3 (section 3.2.4), which have

proved useful for discarding large portions of the search space.

As mentioned earlier, a practical approach effective in the context of decision trees is

the binary discretisation method. This involves partitioning the range of values for a

continuous attribute into only two intervals at any node in the search space. This

section proposes a new discretisation method also based on binary discretisation but

suitable for use in rule learning systems. The implementation of this method in the

SRI rule induction algorithm presented in chapter 3 and the possibility of applying the

search-space pruning rules of SRI are also discussed.

90

4.3.1 The Basic Method

As mentioned in chapter 3, the SRI rule induction algorithm can only handle nominal

attributes. The search procedure of SRI can be easily modified to deal with continuous

attributes by changing only the Induce-One-Rule () procedure (Figure 3.2), leaving

the Induce-Rules () procedure (Figure 3.1) unchanged. A pseudo-code of the modified

Induce-One-Rule () procedure is shown in Figure 4.1.

This procedure starts with a check to see if there are continuous attributes in the given

training instance list (step (1) in Figure 4.1). If this is the case, a separate list called

AttributeAndLabel list is created for each continuous attribute in the current instance

list of the rule to be specialised. An entry in an AttributeAndLabel list consists of an

attribute value and a class label. A pass is made over the current instance list,

distributing values of the continuous attributes for each instance across all the lists.

Each attribute value is also tagged with the corresponding class label. This allows for

independent processing of each continuous attribute and thus improves efficiency.

A continuous-valued attribute is typically discretised during rule generation by

partitioning its range into two intervals. A threshold value, tin for the continuous­

valued attribute A , is determined and two conditions of the form (A, < tu) and (A, > t,,)

are created. The next section discusses how the threshold value can be calculated for

each continuous attribute. A rule is formed by adding the condition (A, < t,-,) to the

current rule. The accuracy of the new rule is computed and compared with that of the

best rule found so far and the one with the largest value is remembered. The new rule

is then added to the NewPartialRules list if it satisfies the conditional test at step (5) in

Figure 4.1. The same is done for the condition (A, > t0). SRI determines at most one

91

Procedure Induce One Rule (Instances, ClassLabel, xv)

PartialRules = NewPartialRules = 0

BestRule = most general rule (the rule with conditions)

PartialRules = PartialRules u {BestRule}

While PartialRules * 0 Do

For each Rule € PartialRules Do

{First, generate all specialisations o f the current rule and save useful ones according to the

conditional tests in steps (2) and (5). Determine all the InvalidValues for nominal attributes

only (step 3).}

If there are continuous attributes Then (step 1)

Create a separate AttributeAndLabel list for every continuous attribute in the instance list

o f the current rule.

For each attribute At Do

If Aj is a nominal attribute Then

If A, does not exist in Rule Then

For each valid value v,7of A, g Rule.ValidValues Do

NewRule = Rule a [A, = v/;]

NewRule.Instances = Covered_Instances (Rule.Instances, v,7)

If NewRule.Score > BestRule.Score Then

BestRule = NewRule

If (CoveredPositives (NewRule) < MinPositives OR

Covered_Negatives (Rule) - Covered Negatives (NewRule) < MinNegatives OR

Consistency (NewRule) = 100%) Then (step 2)

Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v,7} (step 3)

Else

NewPartialRules = NewPartialRules u {NewRule}

End For

Figure 4.1 A pseudo-code description of the modified In d u c e O n e R u le () procedure

of SRI.

PartialRules: a list of rules to be specialised and NewPartialRules: a new list of rules

to be used for further specialisations.

92

Else If Aj is a continuous attribute Then

If Aj does not have both bounds set in Rule Then (step 4)

♦ Sort the attribute list for Aj from small to large to get an ordered list o f attribute

values, {v,/, vi2, ..., v,7, vkl }.

♦ Compute the Information Gain for each midpoint value, (v,7 + v,(/W,)/2, where v,7,

are two distinct values o f the attribute Aj.

♦ Find the best threshold value, t,h which has the highest Information Gain.

If the upper bound does not exist in Rule Then

NewRule = Rule a [At < t,f\

NewRule.Instances = Covered lnstances (Rule.Instances, /,7)

If NewRule.Score > BestRule.Score Then

BestRule = NewRule

If (Covered Positives (NewRule) > MinPositives AND

CoveredN egatives (Rule) - C overedN egatives (NewRule) > MinNegatives AND

Consistency (NewRule) < 100%) Then (step 5)

NewPartialRules = NewPartialRules u {NewRule}

If the lower bound does not exist in Rule Then

Do the same for [A, > /,7] interval.

End For

End For

Empty PartialRules.

For each Rule e NewPartialRules Do

{Next, delete partial rules that cannot lead to an improved rules according to the conditional test

in step (6). Determine all the InvalidValues for nominal attributes only (step 8).}

If Rule.OptimisticScore < BestRule.Score Then (step 6)

NewPartialRules = NewPartialRules - {Rule} (step 7)

If Last Value Added (Rule) is a nominal attribute value Then

Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last_Value_Added (Rule)

(step 8)

End For

Figure 4.1 A pseudo-code description of the modified Induce One Rule () procedure

of SRI (continued).

93

For each Rule € NewPartialRules Do

{Finally, remove from the ValidValues set o f each rule all the values that will lead to

unnecessary construction o f useless specialisations at subsequent specialisation steps.}

Rule.ValidValues = Rule.ValidValues - Parent (Rule).InvalidValues

End For

If w > 1 Then

Remove from NewPartialRules all duplicate rules.

Select w best rules from NewPartialRules and insert into PartialRules.

Remove all rules from PartialRules.

End While

Return BestRule

End

(step 9)

Figure 4.1 A pseudo-code description of the modified Induce_One_Rule () procedure

of SRI (continued).

lower and one upper bound for a continuous attribute (step (4) in Figure 4.1). As soon

as both bounds have been determined, no further specialisations are considered that

involve that particular attribute. This preference for simple rules was empirically

found more effective than continuing the specialisation process and making the

intervals more specific. This speeds up the learning process and increases the

comprehensibility of the learned rule set.

Note that rules that do not satisfy the conditional test in step (5) are only prevented

from being added to the N e w P a r tia lR u le s list. Unlike for nominal attributes, the last

intervals used to specialise these rules are not added to the set of invalid attribute

values (In v a lid V a lu e s). Therefore, the full benefits of the search-space pruning rules

as explained in chapter 3 (section 3.2.4) is not realised. The reason for this is that

intervals (boundary points) for continuous attributes may change at any location in the

rule space as mentioned before. Consequently, if the pruning rules determined that

such intervals when used to specialise a certain rule in the search space cannot lead to

a solution, then it cannot be concluded that rules resulting from the application of

these same intervals to the other specialisations of the current rule are also not

solutions. Consideration of the attributes of such intervals for further specialisations in

this context may result in better rules.

Rules that satisfy the conditional test in step (6) are removed from the

N e w P a r tia lR u le s list (step (7) in Figure 4.1). Again, only the invalid values of

nominal attributes are appended to the I n v a lid V a lu e s set (step (8) in Figure 4.1). All

In v a lid V a lu e s of nominal attributes are then removed from the set of V a lid V a lu es for

each rule in the N e w P a r tia lR u le s list (step (9) in Figure 4.1).

4.3.2 Best Threshold Determination

For each continuous-valued attribute A h the best threshold is selected from its range of

values by evaluating every candidate threshold in the range of values. The

A ttr ib u te A n d L a b e l list for attribute A, is first sorted from small to large based on the

attribute values. Then, the midpoint between each successive pair of distinct values in

the sorted list is taken as a potential threshold. Midpoints are chosen because any

value between every two consecutive attribute values will divide the set of instances

into the same two subsets. While splitting attribute A„ the goal is to determine the

threshold that best divides the training instances belonging to that attribute. The value

of a threshold depends upon how well it separates the classes. The information gain

criterion (Equation (2.4) in chapter 2) is used to evaluate the appropriateness of each

threshold. An efficient way of performing this evaluation is discussed in the next

section. Finally, the threshold with the highest information gain is used to split

attribute A,.

4.3.3 Data Structures

To compute the best threshold for each continuous-valued attribute efficiently, three

array structures are attached to each rule that is under consideration for specialising.

These arrays are used to record the class distribution of the attribute’s instances for a

given rule. The first array, called S p litA n d L a b e lD is t , is a two-dimension array in

which the rows correspond to labels and the columns correspond to split type.

There are three types of splits denoted as L e ssT h a n O rE q u a l (L T E), G re a te rT h a n (G T)

and U n kn ow n . The L T E and G T columns record the class distribution for instances

that satisfy tests of the form (A, < /„) and (A, > t,,) respectively, whereas the U n k n o w n

96

column stores the distribution for those that contain missing values. The other two

arrays, denoted as S p li tD is t and L a b e lD is t , are derived from the first array to facilitate

the computation of the best split. Each element in the S p li tD is t array corresponds to

the total number of instances for each split type and is obtained by summing up a

certain split column. Also, each element in the L a b e lD is t array corresponds to the

total number of instances for each label and is obtained by summing up a certain

labelled row.

To determine the best threshold for a continuous-valued attribute at a given rule, the

L T E column of the S p litA n d L a b e lD is t array is initialised to zero whereas the G T and

U n kn ow n columns are initialised with the class distribution for all the instances at that

rule. This distribution is obtained when the A ttr ib u te A n d L a b e l list is created (step (1)

in Figure 4.1). The sorted A ttr ib u te A n d L a b e l list is scanned from the beginning and

for each threshold value, the class distributions in the L T E and G T columns of the

S p litA n d L a b e lD is t array are updated by shifting one instance from right to left

according to the label associated with the threshold value. Figure 4.2 shows the

schematic for this update. It should be noted that the S p li tA n d L a b e lD is t array has all

the necessary information to compute the information gain. Since the lists for

continuous attributes are kept in a sorted order, the information gain for each

threshold can thus be efficiently computed. If a winning threshold was found during

the scan, it is saved and the A ttr ib u te A n d L a b e l list and all the distribution arrays are

de-allocated before processing the next attribute.

97

Position of Cursor LTE GT Unknown
cursor in scan position 0: A 0 4 0

position 0 Pressure Class B 0 4 0
15 B
20 B Cursor
25 B position 4: A 1 3 0

position 4 40 A B 3 1 0
50 A
52 B Cursor
56 A position 8: A 4 0 0

position 8 65 A B 4 0 0

AttributeAndLabel List State of SplitAndLabelDist arrays

Cursor LTE GT Unknown Cursor A 4
position 0 : | 0 1 8 1 o | position 0: B 4

Cursor Cursor A 4
position 4: | 4 1 4 1 o | position 4: B 4

Cursor Cursor A 4
position 8: | 8 \ o 1 0 1 position 8: B 4

State of SplitDist arrays State of LabelDist arrays

Figure 4.2 Evaluating thresholds for continuous attributes.

98

4.4 Experimental Results

A series of tests was conducted to assess the performance of the proposed on-line

discretisation method. The proposed method was compared with four state-of-the-art

off-line discretisation procedures. These are the equal-width method, the 1R

Discretizer proposed by Holte, the entropy-based discretisation method introduced by

Fayyad and Irani and the “optimal’' discretisation method of Cai. These methods are

representative of the different discretisation techniques described in section 4.2.2 and

widely used in other comparative studies. Each of the off-line procedures was first

employed to discretise all the data sets. The discretised data sets were then used to

generate classification rules by the SRI algorithm and the results obtained were

compared with those produced with the built-in discretisation procedure of SRI. The

quality of the discretisation was evaluated based on the accuracy and complexity of

the generated rules, as well as the time of execution.

The data sets used in this experiment were obtained from the UCI repository. The

selected data sets either have only continuous attributes or a mixture of nominal and

continuous attributes. They are summarised in Table 4.1. For details of these data sets,

see appendix A. It is important to note that in performing the hold-out test, the

training instances for each data set are separately discretised. Discretising all the data

once before creating the partitions allows the discretisation method to have access to

the test data, which is known to result in optimistic accuracy estimates. For SRI, the

same parameters setting as given in chapter 3 (section 3.5.2) was followed. For the

equal-width discretisation method, the number of intervals was set to 6. For the 1R

Discretizer, the number of instances in one interval was set to 6 for large data sets,

while the number was set to 3 for small data sets as recommended in (Holte, 1993).

99

No. of No. of No. of No. of
Data Set Name Instances Nominal Attributes Continuous Attributes Classes
Abalone 4177 1 7 29
Anneal 898 32 6 6
Australian 690 8 6 2
Auto 205 10 15 6
Balance-scale 625 0 4 3
Breast 699 0 10 2
Cleve 303 7 6 2
Crx 690 9 6 2
Diabetes 768 0 8 2
German 1000 13 7 2
German-organisation 1000 12 12 2
Glass2 163 0 9 2
Heart-disease 270 0 13 2
Heart-Hungarian 294 5 8 2
Hepatitis 155 13 6 2
Horse-colic 368 15 7 2
Hypothyroid 3163 18 7 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Lymphography 148 15 3 4
Segment 2310 0 19 7
Shuttle 58000 0 9 7
Sick-euthyroid 3163 18 7 2
Sonar 208 0 60 2
Tokyo 961 0 46 2
Vehicle 699 0 18 4

Table 4.1 Summary of the data sets used in the experiments (Continuous and mixed-

type data).

1 0 0

Table 4.2 shows the results of employing the SRI learning system using all considered

discretisation schemes. As shown in the table, the accuracy obtained with the on-line

discretisation method over all the data sets was in total higher than that produced with

all the other off-line methods. Moreover, it produced significantly fewer rules in total

than the other discretisation methods. The table also shows that the on-line

discretisation method achieved results as good as the best off-line method in terms of

the total CPU time and the number of rules evaluated during the search process. It

should be noted that the execution time required by each of the four off-line methods

to discretise the data sets was not included in the figures reported in the table. It could

therefore be concluded that the proposed on-line discretisation method gives the best

performance among the five methods tested.

4.5 Summary

Discretisation of continuous-valued attributes can be performed both as a pre­

processing step preceding the learning phase and as a step integrated into the

induction algorithm. In most classification rule learning systems, continuous-valued

attributes are discretised prior to the learning process as a pre-processing step. This

chapter has addressed the problem of inducing classification rules from data having

both nominal and continuous-valued attributes by proposing a new method that

discretises the continuous-valued attributes during the learning process. Incorporating

discretisation into the learning process has the advantage of taking into account the

bias inherent in the learning system as well as the different relationships among

continuous and nominal attributes, leading to improved performance. The careful

implementation of the discretisation method and the SRI pruning rules which discard

portions of the search space without losing the best solution enables an elegant and

1 0 1

On-line Optimal Entropy 1RD Equal-width

Acc. # # Rules Time Acc. # # Rules Time Acc. U # Rules Time Acc. # # Rules Time Acc. # # Rules Time

Data Set Name (%) Rules explored (s) (%) Rules explored (s) (%) Rules explored <s) (%) Rules explored (s) (%) Rules explored (s)

Abalonc 25.4 66 21766 262 24.4 35 10045 100 25.0 30 6218 59 22.0 40 12379 125 24.1 36 8209 64

Anneal 97.3 17 1291 1 1 97.7 18 1639 9 97.0 14 1076 7 95.7 19 1294 10 95.3 22 2149 14

Australian 83.7 35 4139 7 82.6 35 4937 7 83.0 34 4851 6 78.3 46 5920 20 82.6 47 6017 13

Auto 65.2 15 2865 5 62.3 15 1792 4 65.2 14 2111 6 60.9 19 1923 5 60.9 18 2053 7

Balancc-scalc 83.7 19 954 1 79.4 28 1407 2 71.8 10 511 0 71.8 12 573 1 73.7 36 2495 3

Breast 93.1 9 742 1 95.7 13 747 2 96.6 1 1 721 1 95.7 9 742 1 93.1 1 1 649 1
Clcvc 81.3 22 2033 2 82.2 19 1950 2 74.3 21 2230 2 77.2 24 2557 3 74.3 24 2437 3

Crx 82.5 28 3671 6 77.5 34 4916 7 82.5 28 4013 7 78.0 43 5686 18 77.0 31 4232 9

Diabetes 67.2 23 2435 6 68.8 20 2045 2 67.6 17 1096 2 64.5 26 3451 7 67.2 32 4308 9

German 70.9 33 6972 13 73.1 40 8385 15 73.1 40 8385 15 72.5 49 7749 15 71.2 53 13336 19

German-org. 73.6 32 7991 17 75.1 33 7289 10 74.0 33 7298 1 1 71.0 40 8301 18 73.3 45 1 1721 27

Glass2 74.5 10 531 1 76.4 9 215 0 70.9 5 126 0 70.9 13 507 1 81.8 15 965 1

Heart-disease 80.0 12 1262 1 86.7 17 1446 1 87.8 15 1462 1 81.1 23 2134 2 76.7 23 2218 3

Hcart-Hungarian 79.5 1 1 815 1 80.6 8 497 1 79.6 7 380 0 74.5 14 1040 1 76.5 14 149! 1

Hepatitis 82.7 7 583 1 80.8 5 314 1 80.8 5 316 1 80.8 6 379 1 80.8 7 455 1

Horse-colic 86.8 21 3623 4 73.5 22 3769 5 77.9 20 3799 6 76.5 31 5304 10 79.4 23 4851 8

Hypothyroid 98.6 12 1698 14 98.9 12 1357 10 97.9 15 1698 13 97.3 19 1757 19 94.1 33 5505 45

Ionosphere 88.8 10 2511 5 86.3 14 2603 6 86.3 13 1593 4 89.7 20 4242 13 83.8 21 4843 14

Iris 94.0 6 93 0 96.0 6 35 0 96.0 6 43 0 94.0 6 35 0 94.0 7 56 0

Lymphography 84.0 9 1072 1 78.0 8 874 I 84.0 7 845 1 78.0 8 874 1 84.0 8 1050 1

Segment 93.1 31 8565 53 93.9 43 7551 43 91.2 64 9620 64 76.2 117 22114 154 91.6 62 9751 70

Shuttle 99.5 14 1932 260 99.6 17 2334 278 99.5 30 4012 351 95.6 21 2348 283 91.6 17 1449 243
Sick-cuthyroid 96.7 25 4235 25 95.5 34 4763 27 97.3 20 2863 13 96.4 31 3973 23 83.5 45 9072 56

Sonar 72.9 10 2538 7 71.4 12 1262 4 71.4 12 1262 4 67.9 26 8178 51 65.7 20 6870 27

Tokyo 91.7 10 3210 11 92.9 18 4335 19 90.4 13 2672 8 88.1 16 4889 26 89.0 17 3375 14

Vehicle 69.9 38 9942 20 67.4 61 12583 25 64.9 57 111 79 22 58.2 82 13053 27 60.6 73 15576 33

Total 2116.4 525 97469 735 2096.6 576 89090 581 2085.8 541 80380 604 2012.5 760 121402 835 2025.6 740 125133 686

Table 4.2 Performance of discretisation methods when used in SRI.

102

efficient implementation of the search procedure. The proposed on-line discretisation

method and four other state-of-the-art off-line discretisation methods have been tested

on well-known machine learning data sets consisting of continuous and mixed-mode

attributes. In all cases, the SRI algorithm has been used to generate the rule set, but in

the four off-line methods the data has been pre-processed using the corresponding

procedure to discretise all continuous attributes. The tests have shown that the

proposed method significantly improves the classification accuracy. It also achieves

results comparable with those of the best off-line method in terms of execution time

and compactness of the rule set.

103

CHAPTER 5

MDL-BASED PRUNING OF RULE SETS

5.1 Motivation

For any learning method to work successfully with large data sets, it must be capable of

learning accurately in the presence of noise. Existing rule learning systems are

computationally expensive when applied to large noisy data sets (Cohen, 1995). Noisy

data are also a problem for most learning algorithms because it is hard to distinguish

between rare exceptions and erroneous examples. Pruning is a standard way of dealing

with noisy data so as to avoid overfitting the training data set. Pruning is a method for

reducing the error and complexity of induced models.

Several pruning techniques have been developed. They can be categorised as pre­

pruning, post-pruning and hybrid pruning (Ftimkranz, 1996). Pre-pruning techniques deal

with noise during concept generation. Their basic idea is to stop the specialisation of

rules, although rules so produced may be over-general. Rules are therefore allowed to

cover a few negative examples, if the alternative is deemed to be too costly.

While pre-pruning techniques deal with noise in the data during rule set construction,

post-pruning techniques attempt to improve the rule set after it has been extracted. A

commonly used post-pruning technique aims to remove conditions from rules and

eliminate certain rules from the rule set. The basic idea is to test whether the removal of a

single condition or even of an entire rule would lead to a decrease in the quality of the

concept description, usually measured in terms of classification accuracy on the test set.

If this is not the case, the condition or rule is removed.

Research has been carried out to combine these two techniques by initially applying pre­

pruning to reduce the over specialisation of the rule sets and then using post-pruning to

complete the process. This hybrid approach provides a balance between pre-pruning

speed and accuracy of the pruned rule set.

Most of the existing pruning techniques were originally designed for decision trees and

only a few can be used directly for rule set processing. Moreover, a significant drawback

of many of these techniques is the necessity to split the training data set into a growing

set and a pruning set. Dividing the data set raises two problems. First, setting aside some

data for the pruning set reduces the number of instances available for learning. Second,

discarding portions of the generated rules based only on their evaluation on the pruning

set makes pruning techniques very sensitive to the size of this set. In the case of a small

pruning set, which is always true in the later stages of the processing, the error estimate

usually has a high variance and is therefore not reliable.

In this chapter, three different techniques for pruning rule sets based on the Minimum

Description Length (MDL) principle are presented. An important advantage of these

techniques is the fact that all of the training data can be used for both inducing and

evaluating rule sets.

105

This chapter is organised as follows. Section 2 reviews current pruning techniques in the

context of inductive learning. Section 3 presents the MDL criteria used for pruning and

discusses previous coding strategies. It also introduces a new MDL measure for rule sets

based on the ideas of Quinlan (1995). Section 4 describes the SRI rule induction

algorithm using the new MDL measure as a stopping criterion and as a criterion for

incremental, post-, and hybrid pruning. Empirical results are reported in section 5.

5.2 Existing Pruning Techniques

Pre-pruning usually employs some stopping criterion for deciding when to stop adding

conditions to a rule and when to stop adding rules to the rule set. CN2, for instance,

utilises a significance test to check whether the current rule correctly captures the class

distribution of the training instances and to decide whether or not to specialise the rule

further. Pre-pruning techniques are generally fast, but there is always the danger that a

predefined criterion will over-simplify the rule set (Ftimkranz, 1994a; Frank, 2000).

Post-pruning techniques are commonly used in decision tree learning algorithms.

Reviews of the most well-known post-pruning techniques can be found in (Mingers,

1989), (Breslow and Aha, 1996) and (Esposito et al., 1997). Generally, post-pruning

techniques are more accurate than pre-pruning techniques, but are also more

computationally expensive.

The most common post-pruning technique is Reduced Error Pruning (REP). This simple

technique which was designed for decision tree learning (Quinlan, 1987) has been

1 0 6

adopted for rule learning (Pagallo and Haussler, 1990; Brunk and Pazzani, 1991). After

the training set is split into a growing and a pruning set according to some user-specified

ratio, a consistent rule set that covers all of the positive and none of the negative

examples is learned from the growing set. This rule set is then simplified by repeatedly

deleting conditions and rules until any further deletion would result in a decrease in

predictive accuracy as measured on the pruning set.

Using REP for rule learning has proved effective in raising predictive accuracy in noisy

domains (Cohen, 1993; Frank and Witten, 1999; Elomaa and kaariainen, 2001).

However, this technique has several shortcomings. REP is very inefficient because the

overly specific rule set it generates in its first phase can be much more complex than the

final rule set. Therefore, much work is wasted in learning and subsequently removing

superfluous conditions and rules. Another problem with REP, as pointed out by

Fiimkranz and Widmer (1994), is that it is not appropriate for rule induction. This is

because, in rule learning, the induction of the second rule is based on the instances

remaining after the removal of the instances covered by the first rule. If the first rule is to

be pruned away, this would affect the induction of the second rule.

To solve the inefficiency problem, Cohen (1993) proposed an alternative overfit-and-

simplify technique called Grow that was competitive with REP with respect to error rate

and was an order of magnitude faster on a set of benchmark problems. However, Grow

still suffers from the inefficiency caused by the need to generate an overly specific rule

set first. Moreover, it has been shown that Grow systematically overfits the target concept

107

on noisy data. Cohen, subsequently, tried to improve Grow by adding two stopping

heuristics to the initial overfitting stage, thus achieving a further speed-up in the

technique. The goal of the stopping conditions in this context is not to prevent overfitting

entirely, but to reduce its extent so that the post-pruning phase can start with a better rule

set and hence requires less computational effort. Fiimkranz (1994b) proposed a different

implementation of this approach. He developed a technique called Top-Down Pruning

(TDP) that uses a simple method to generate rule sets pruned to different degrees in a top-

down, general-to-specific order. The accuracies of the rule sets were evaluated on a

separate set of data and the most specific rule set with an accuracy comparable to that of

the best rule set up to that point was selected to start the post-pruning phase. TDP was

compared to REP in a variety of domains. Experiments have shown that TDP is

significantly faster and a little more accurate than REP.

In another attempt to solve the above-mentioned problems of REP, Fiimkranz and

Widmer (1994) developed a learning algorithm called Incremental Reduced Error

Pruning (IREP). IREP integrates pre-pruning and post-pruning in a way that avoids the

expensive initial phase of overfitting. When a rule is to be pruned, the training data set is

split into a growing set and a pruning set. After a rule is generated from the growing set,

it is immediately pruned based on its performance on the pruning set. This ensures that

the algorithm can remove training instances covered by the pruned rule before subsequent

rules are learned. Thus the influence of these instances on the learning of future rules can

be avoided. It has been confirmed experimentally that IREP gives significant run-time

108

improvements over REP and Grow, and learns a much better rule set. However, in

domains with a very specific concept description, REP is more appropriate.

5.3 Minimum Description Length (MDL) Principle

The Minimum Description Length (MDL) principle (Rissanen, 1986; Barron et al., 1998;

Grunwald, 2000; Tirri, 2001), also called the Minimum Message Length (MML)

principle (Georgeff and Wallace, 1984), is a powerful method for inductive inference. It

states that the best model derivable from a set of observed data is the one that permits the

greatest compression of the data. This is based on the idea that the greater the

compression of the data, the greater the ability to discover regularity in the data.

Among the many techniques for pruning, those based on the MDL principle are

particularly attractive because they provide a framework for balancing the complexity

and the accuracy of a particular induced model. Several authors have proposed pruning

techniques based on the MDL principle (Quinlan and Rivest, 1989; Wallace and Patrick,

1993; Forsyth et al., 1994; Kovacic, 1994; Mehta et el., 1995; Pfahringer, 1995b; 1997;

Robnik-sikonja and Kononenko, 1998). These methods seek models that maximally

compress the data and differ in the coding scheme they employ. In the following sub­

sections, existing coding schemes are briefly described and a new scheme for encoding

rule sets is presented.

109

5.3.1 Existing Coding Methods

The application of the MDL principle to the problem of pruning rule sets can be seen as a

data communication problem. Let a sender and a receiver both have information on the

number of attributes, the number of possible values for each attribute and the number of

possible classes and a description of the training instances in terms of attribute values.

The sender also knows the label of each instance and must communicate this information

to the receiver. Obviously, the sender can transmit each instance together with the label to

the receiver. Alternatively, the sender can also find a model that will enable the receiver

to determine the labels of the instances, send the receiver a description of this model, and

then transmit the instances that are the “exceptions” to the model. The sender may have a

series of choices between a more complex model that fits the training data well and a

simpler model that is less accurate. The MDL principle states that the best model to infer

from a set of data is the one that minimises the sum of the coding length of the model and

the coding length of the data given the model. If M is a model derived from the training

data D, the total coding length, L(M, D), is defined as:

L(M, D) = L(M) + L(D/M) (5.1)

where L(M) is the coding length to describe the model M and L(D/M) is the coding length

to describe the data given model M. Both L(M) and L(D/M) are measured in “bits” using

an appropriate coding scheme. In the context of rule induction, the models are the

different rule sets that can be obtained by pruning the initial rule set, and the data is the

training set. The objective of MDL pruning is to find the model that minimises the value

1 1 0

L(M, D). The model with the minimal total coding length is also the most probable model

explaining the data as pointed out by Rissanen (1986), and thus will have the greatest

accuracy when classifying new unseen instances.

Based on this idea, the coding strategy is now detailed.

5.3.1.1 Model encoding

The coding length of a model M, L(M), is the sum of the coding lengths of its rules:

Each rule consists of a sequence of conditions where each condition is either a value of

the nominal attribute or an interval of values (either greater-than, GT, or less-than-or-

equal-to, LTE, some threshold value) of the continuous attribute. Therefore, the coding

length for all conditions of a single rule is the sum of the coding lengths of these three

different possible kinds of conditions:

The coding length of the nominal conditions is given by Equation 5.4 (adapted from

(Pfahringer, 1997) and (Robnik-sikonja and Kononenko, 1998)):

L(M) = X LCrJ (5.2)

L(rJ = L(Nominal Conds) + L(GTConds) + L(LTE_Conds) (5.3)

(n \
L(Nominal_Conds) = Log2 + T] Log: nA

V W I) i=\
(5.4)

where Nn is the number of all nominal attributes, m, the number of nominal attributes

involved in the antecedent of the rule and nA the number of possible values that a

certain nominal attribute A, can take.

The first term on the right-hand side of the above equation is the average coding length

for selecting a subset of attributes from the set of all nominal attributes. The second term

is the coding length for specifying the respective values for each of the selected

attributes.

Similarly, the coding lengths of the continuous conditions, L(GT Conds), L(LTE_Conds),

are estimated by first selecting the continuous attributes actually involved in the

antecedent of the rule and then encoding the respective thresholds as shown in Equations

5.5 and 5.6 (adapted from (Pfahringer, 1997) and (Robnik-sikonja and Kononenko,

1998)):

(N \ '”2
L(GT_Conds) = Log2 L + ^ L (t,L) (5.5)

(N \
L(LTE_Conds) = Log2 c + T] L(tn)

\ ”h) / = !

(5.6)

where Nc is the number of all continuous attributes, and m2 and m3 are the numbers of

continuous attributes used to create conditions of the form A, > r,7 and A-t < ty respectively.

The cost o f specifying a single threshold for a continuous attribute At is given by:

L(t,J = Log2 (d-1) (5.7)

where d-1 is the number of possible thresholds, and d is the number of distinct values for

the attribute A, occurring in the examples covered by the current rule.

5.3.1.2 Data encoding

Encoding the data given the model may be thought of either as encoding the data points

that are covered by the model or as encoding the exceptional instances that are

erroneously classified by the model. There are several different schemes for encoding the

classes of the instances covered by model M. Let S be a set of instances covered by model

M containing N instances, each belonging to one of k classes. Let nc be the number of

instances in class Cr The cost of encoding the classes for the N instances is given in

(Quinlan and Rivest, 1989) as:

L(S/M) = Log2
'N + k - \

k -1 j
+ Log2 (5.8)

The first term in Equation 5.8 is the number of bits needed to specify the class

distribution of the training instances, that is, the number of instances in each class. The

second term is the number of bits required to encode the class for each instance once the

class distribution is known.

113

Krichevsky and Trofimov (1983) proposed another scheme (Equation 5.9):

(5.9)

where T () is the Gamma function and is defined by the integral:

f (z) = '<? y dy (5.10)

It has been shown that Equation 5.9 yields more accurate encoding costs than Equation

5.8, especially when some nc are close to either 0 or N (Mehta et al., 1995).

A scheme for coding the exceptions to the model was first introduced in Quinlan (1993)

and then in Quinlan (1994) with a slight modification. The basic idea can be outlined as

be given by identifying the misclassified instances of the rules R. Assuming a binary-

class problem, misclassified instances can be specified by indicating which of the

instances covered by the rules R are false positives and which of those not covered are

false negatives, i.e. two sets of exceptions. It should be noted that learning tasks

involving multiple classes, when being dealt with on a class-by-class basis, are essentially

a two-class problem in which the goal is to generate rules that cover instances of one of

the classes, called the target class, while not covering instances belonging to any other

class. The coding length of a sensible encoding scheme for identifying t exceptions in N

instances is (assuming all ways of selecting t of the N instances are equally likely):

follows. Given a set of rules R describing the positive class, the class of each instance can

114

(N \
L(N, t) = Log2 (N + \) + Log2

I t (5 . 11)

which may be interpreted as the cost of specifying t in the range 0 to N, plus the cost of

specifying which selections of t out of N instances are exceptions.

Let C be the number of instances covered by the rules and C the number of instances not

covered. Further, let f p be the number of false positive instances (instances that are

covered by the rules but are really negative) and f n the number of false negative instances

(positive instances not covered by the rules). The exceptions cost of specifying the data

given the model is then:

L(D/M) = L(C,fp) + L(C,f„) (5.12)

The first term is the number of bits needed to indicate the false positives among the

instances covered by the rules and the second term gives a similar expression for

identifying the false negatives among the instances not covered. This is called the divided

strategy since errors are separated into two groups.

This scheme for encoding exceptions has two problems. First, it is symmetric and would

give ambiguous results as the cost of encoding f p and f n can be the same as that of

encoding (N-P) - f p and P - f„ respectively, where P is the number of instances belonging

to the target class and (N-P) is the number of negative instances. Second, it could lead to

poor choices among contending models. In order to solve the second problem, Quinlan

(1994) described a simple approach which attempts to restrict the candidate models from

which the final model is selected. He introduced a bias in favour of models whose

predicted class distribution matches that observed in the data. This bias was justified in

that a model learned from the data should accurately summarise that data. To implement

this bias, an ad-hoc penalty function that significantly increases the description length of

unsatisfactory models was employed. Empirical results showed that this bias was

effective in selecting models with a lower error rate on unseen instances.

Quinlan (1994) also explored an alternative scheme called uniform coding strategy for

estimating L(D/M). This scheme (Equation 5.13) encodes errors in a single group rather

than separating them into false positives and false negatives:

L(D/M) = L(N, e) (5.13)

where N is the total number of instances in the training data set and e is the total number

of errors, calculated as f p + f„.

Equation 5.13 still exhibits a counter-intuitive symmetry: the cost of encoding e errors is

the same as the cost for N - e errors.

Instead of relying on an artificial penalty function, Quinlan (1995) presented a biased

exceptions coding strategy that achieves the same effect in a manner consistent with the

MDL principle itself. It is based on the observation that the proportions of the target class

instances predicted by a model and observed in the training data are the same when the

numbers of false positive and false negative errors are equal. Before the strategy is

defined, a theoretically optimal scheme for coding the exceptions needs to be introduced.

In Equation 5.11, the t exceptions are encoded based on the assumption that t is equally

likely a priori. The length of an ideal coding scheme in which t may have unequal

likelihoods is given by:

where p is the probability of a message selection. Of course, this assumes that p is

independent of the previous messages and that it is known to the receiver.

The coding length of the data given the model can then be defined by:

The term L(C, f p. e/(2C)) is the number of bits needed to specify the error messages for

covered instances. The term L (C . f n, f n /C) is the number of bits required to encode the

error messages for instances not covered. The error probabilities of covered and non­

covered instances are derived from the assumption that false positives and false negatives

are balanced and that the sender first transmits the errors in the C instances covered by

the model and then communicates those in the C instances not covered. There is a slight

L(N, t, p) = Log2 (N+l) + t Log2 (I/p) + (N-t) Log2 (l/(l-p)) (5.14)

L(D/M) = L(C,fp, e/(2C)) + L (C , f hf „ / C) (5.15)

117

complication: if the number C of covered instances is small, e/2C may be greater than

one. To overcome this problem, the above equation is followed when the model covers at

least half the instances. If less than half are covered, the following equation is used:

L(D/M) = L(C,f„, e/(2C)) + L(C Jp, f p /C) (5.16)

where the false negative errors in the instances not covered are transmitted first, using the

probability e/(2C), followed by the false positives using f p/C.

Adopting the coding scheme represented by Equation 5.14, Equations 5.12 and 5.13 can

be rewritten as:

L(D/M) = L(C, fp, f P /C) + L (C . U f J C) (5.17)

L(D/M) = L(N, e, e/N) (5.18)

The biased strategy and the divided strategy, represented respectively by Equation 5.15

and Equation 5.17, are similar except that the former uses the initial assumption of equal

numbers of false positive and false negative errors to derive error probabilities for

covered and non-covered instances.

5.3.2 An Alternative Coding Method

The encoding schemes represented by Equations 5.15 to 5.18 can still lead to anomalous

choices among candidate models. This can be illustrated by a hypothetical example.

Suppose a data set of 1000 instances, of which 300 belong to the target class, has six

candidate models that give rise to various numbers of false positive and false negative

errors as shown in Table 5.1. The models vary from over-specific to over-general. All six

models are further presumed to have the same model cost so that the model with the

lowest exceptions cost will be chosen. The number C of instances covered by a model is

given by: P+fp - f n- In this situation, the divided strategy will choose Me, with 197 errors,

instead of the equally complex model Mi that makes far fewer errors. The uniform

approach will find an exact tie between Mi, with 152 errors on the training data, and Me,

with 848 errors. The biased approach has no difficulty in distinguishing between Mi and

Me. However, it fails to select Mi and M2 , with 152 and 158 errors respectively, which

have much higher predictive accuracy than M 3 , M 4 , M 5 and Me with 170, 186, 197 and

848 errors. The choices made based on MDL in this example are clearly counter­

intuitive.

In the above example, where the positive instances are in the minority, the divided

strategy tends to select over-general models. Conversely, it has been found that it tends to

select over-specific models when the positive instances are in the majority. The biased

strategy substantially increases the coding length of the over-general models especially

when the assumption of balanced errors is grossly incorrect. However, it also increases

the coding length of the over-specific models, thereby still favouring over-general

119

Model

False

Pos

False

Neg

Instances

Covered

Divided

Encoding

Uniform

Encoding

Biased

Encoding

Alternative

Biased Encoding

Mi 6 146 160 613.7 624.8 655.0 613.7

m 2 29 129 200 646.6 639.5 668.3 646.6

m 3 85 85 300 649.1 667.7 649.1 649.1

m 4 134 52 382 632.4 703.0 650.2 650.2

m 5 192 5 487 529.7 725.9 657.3 657.3

m 6 694 154 840 613.7 624.8 886.5 886.5

Table 5.1 Exceptions costs for six competing models.

1 2 0

models. This suggests an alternative one-sided biased coding scheme as follows: if either

positive instances are in the minority and the model is too general, or positive items are in

the majority and the model is too specific, the biased encoding method, Equation 5.15 or

5.16, should be used. Otherwise, the divided strategy, Equation 5.17, should be

employed. The final column of Table 5.1 shows the exceptions costs of the alternative

biased coding method for the given six models. In this example, MDL would now place

Mi and Atwell ahead of the other models, which is an intuitively sensible outcome.

To test the usefulness of the new encoding method, three versions of the SRI rule

induction learner were prepared that differ only in the method used to calculate

exceptions costs. The first version used the new strategy described in this section. The

other two versions employed the strategies of Equation 5.9 and Equation 5.15 or 5.16,

respectively. It should be noted that when using Equation 5.9, it is assumed that the last

rule of the model is the default rule, which uses the majority class in the training set to

assign class labels to examples not covered by any previous rule. Thereby the whole

training set is taken into account when estimating the total coding length. The tests

showed that the new version led to much better results. Therefore, the new version is

adopted for the rest of the experiments in this thesis.

5.4 Proposed Pruning Techniques

Using the encoding scheme proposed in section 5.3.2, three different pruning techniques

for rule induction systems have been developed. This section describes the way in which

these pruning techniques are used in the SRI inductive learner.

5.4.1 MDL-based Post Pruning (MDL PP)

MDL_PP is performed after a rule set accurately classifying every instance in the training

set has been constructed. The task is to find the rule set for each class that minimises the

total coding length. The pruning procedure consists of two phases. In the first phase, the

rule set is “greedily” pruned using a “delete-rule” operator. Rules are deleted one after

another, starting from the last rule, so long as the total coding length does not increase. In

the second phase, each of the remaining rules is pruned using another “delete-condition”

operator. Conditions are repeatedly deleted starting from the last condition, whenever this

improves (decreases) the total coding length, until no further improvements in the coding

length is possible. Figure 5.1 shows an adaptation of the SRI algorithm in order to handle

noisy data with post-pruning. The algorithm is identical to the one in Figure 3.1, except

for the addition of the procedure Prune Rule Set ().

5.4.2 MDL-based Hybrid Pruning (MDL HP)

This strategy combines pre- and post-pruning. It first uses a stopping heuristic to find an

intermediate rule set and then prunes this set to an appropriate level of generality in a

subsequent post-pruning phase. The implementation of this approach is as follows.

After an induced rule is added to the current rule set, the total description length is

computed. The new version of SRI stops adding rules when this description length is

larger than the smallest description length obtained so far, or when there are no more

positive examples. The rule set is then simplified by examining each rule in turn starting

with the last rule added and deleting conditions from this rule in a greedy fashion,

122

Procedure InduceRules (TrainingSet, Beam Width)

RuleSet = 0

For each class in the TrainingSet Do

CurrentClassRuleSet = 0

Instances = TrainingSet

While Positives (Instances) * 0 Do

Rule = In d u ceO n eR u le (Instances, CurrentClass, BeamWidth)

Instances = Instances - Covered Positives (Rule, Instances)

CurrentClassRuleSet = CurrentClassRuleSet u {Rule}

End While

CurrentClassRuleSet = Prune Rule Set (CurrentClassRuleSet,TrainingSet)

RuleSet = RuleSet u CurrentClassRuleSet

End For

Return RuleSet

End

Figure 5.1 A pseudo-code description of SRI with MDL_PP.

123

beginning from the last condition, until any further deletion would increase the total

coding length. This pruning strategy does not need the delete-rule operator, because the

rules are constructed so as to reduce the total coding length, and learning stops when no

more useful rules can be found. A pseudo-code version of the SRI algorithm that

implements this procedure is given in Figure 5.2.

5.4.3 MDL-based Incremental Pruning (MDL IP)

This pruning strategy is similar to IREP. It tightly integrates pruning into the learning

procedure and thus allows more general rules to be constructed as early as possible

during the learning process, as well as requiring less computation to build a rule set.

However, unlike IREP, the pruning is based on all the training instances, which avoids

splitting the training data set into a growing set and a pruning set.

Figure 5.3 shows a pseudo-code version of the SRI algorithm with incremental pruning.

When a rule is generated, conditions in the rule antecedent are examined and an attempt

is made to delete one condition at a time starting from the last condition added. If,

according to their coding lengths, the new rule is better than the unpruned one, then it is

accepted and pruning continues. If one condition cannot be removed, pruning stops. The

pruning procedure also stops deleting conditions from the current rule if the number of

positive examples covered by the rule resulting from that deletion is less than the number

of negative examples covered. This ensures that the overall accuracy of the final rule set

increases. The pruned rule is then added to the rule set and all covered positive examples

are removed from the training set. From this set the next rule is learned. If the pruned rule

124

Procedure InduceRules (TrainingSet, BeamWidth)

RuleSet = 0

For each class in the TrainingSet Do

CurrentClassRuleSet = NewCurrentClassRuleSet = 0

Instances = TrainingSet

MDL = L (CurrentClassRuleSet, TrainingSet)

While Positives (Instances) * 0 Do

Rule = InduceO neR ule (Instances, CurrentClass, BeamWidth)

NewCurrentClassRuleSet = NewCurrentClassRuleSet u (Rule)

New_MDL = L (NewCurrentClassRuleSet, TrainingSet)

If New_MDL > MDL Then

Exit While

Instances = Instances - Covered_Positives (Rule, Instances)

MDL = NewMDL

CurrentClassRuleSet = NewCurrentClassRuleSet

End While

CurrentClassRuleSet = Prune Rule Set (CurrentClassRuleSet,TrainingSet)

RuleSet = RuleSet u CurrentClassRuleSet

End For

Return RuleSet

End

Figure 5.2 A pseudo-code description of SRI with MDL_HP.

125

Procedure Induce Rules (TrainingSet, BeamWidth)

RuleSet = 0

For each class in the TrainingSet Do

Instances = TrainingSet

While Positives (Instances) ^ 0 Do

Rule = Induce One Rule (Instances, CurrentClass, BeamWidth)

Rule = Prune Rule (Rule, TrainingSet)

If Conditions (Rule) = 0 Then

Exit While

Instances = Instances - Covered Positives (Rule, Instances)

RuleSet = RuleSet u {Rule}

End While

End For

Return RuleSet

End

Figure 5.3 A pseudo-code description of SRI with MDL_IP.

1 2 6

has an empty body, it is assumed that no further rule can be found that explains the

remaining positive examples and the learning process stops for the current class. Thus the

MDL principle also serves as a stopping criterion.

The coding length calculation involves scanning all the training data set each time a rule

or condition is considered for deletion. By gathering relevant information during the

learning process, the efficiency of rule pruning can be significantly increased. Two data

structures called positive-negative list and sequence list are attached to each rule. The

sequence list memorises the order in which conditions are added to the antecedent of the

rule during the specialisation process. Also, the distribution of instances covered by the

rule among different classes is recorded in the positive-negative list when each condition

is appended. Using this information, the coding length can be computed without scanning

the whole training instance list.

5.5 Experimental Results

This section gives the results of a set of experiments designed to evaluate the

performance of the three new pruning techniques when implemented in the SRI

algorithm. Initially, the performance of SRI with each of these techniques was compared

against that of SRI without pruning. Then, the performance of SRI together with the best

of these three techniques was compared to that of C5.0 which, as previously mentioned,

is probably the best performing commercially available induction algorithm.

127

The techniques were tested on 38 data sets selected from the UCI machine learning

repository. The domains have nominal, continuous and mixed-type attributes. Table 5.2

summarises the main characteristics of the data sets. For a more detailed description of

these data sets, see appendix A. The same experimental method as described in chapter 3

(section 3.4) was followed. SRI was executed with parameter values of 4, 1 and 2 for

beam width, MinNegatives and MinPositives respectively. The default parameters of

C5.0 were used.

5.5.1 Evaluation of the Different Pruning Techniques

The results obtained are shown in Tables 5.3 - 5.5. Table 5.3 presents the predictive

accuracy of SRI without pruning and SRI with each of the pruning techniques. Table 5.4

presents the complexity of the rule sets. Table 5.5 presents the execution time in CPU

seconds.

It is clear from the tables that the pruning techniques achieved a substantially lower

complexity without sacrificing accuracy for most data sets. The pruning techniques when

used with SRI even yielded better overall accuracy than SRI without pruning. In addition,

the execution times of SRI when the pruning techniques were employed were

significantly lower for all the data sets. Compared to the other pruning techniques,

MDL IP when used with SRI achieved the highest overall accuracy. The worst accuracy

over all the data sets was obtained by MDLHP. This can be explained by the fact that

the stopping criterion used in MDL HP resulted in over-general rule sets, causing a

decrease in the classification accuracy. However, MDL HP could be adopted for large

128

No. of No. of No. of No. of
Data Set Name Instances Nominal Attributes Continuous Attributes Classes
Abalone 4177 1 7 29
Anneal 898 32 6 6
Australian 690 8 6 2
Auto 205 10 15 6
Balance-scale 625 0 4 3
Breast 699 0 10 2
Breast-cancer 286 9 0 2
Car 1728 6 0 4
Chess 3196 36 0 2
Cl eve 303 7 6 2
Crx 690 9 6 2
Diabetes 768 0 8 2
German 1000 13 7 2
German-organisation 1000 12 12 2
Glass2 163 0 9 2
Heart-disease 270 0 13 2
Heart-Hungarian 294 5 8 2
Hepatitis 155 13 6 2
Horse-colic 368 15 7 2
Hypothyroid 3163 18 7 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Lymphography 148 15 3 4
Monkl 556 6 0 2
Monk2 601 6 0 2
Monk3 554 6 0 2
Mushroom 8124 22 0 2
Promoter 106 57 0 2
Segment 2310 0 19 7
Shuttle 58000 0 9 7
Sick-euthyroid 3163 18 7 2
Sonar 208 0 60 2
Soybean-large 683 35 0 19
Splice 3190 61 0 3
Tic-tac-toe 958 9 0 2
Tokyo 961 0 46 2
Vehicle 699 0 18 4
Vote 435 16 0 2

Table 5.2 Summary o f the data sets used in the experiments (Nominal, continuous and

mixed-type data).

129

Data Set Name
SRI

without pruning
SRI

with MDL PP
SRI

with MDL HP
SRI

with MDL IP
Abalone 23.1 24.5 19.8 25.1
Anneal 97.7 92.7 93.7 97.7
Australian 81.7 86.5 83.9 87.8
Auto 63.8 59.4 58.0 62.3
Balance-scale 88.5 81.3 84.2 81.8
Breast 94.0 94.0 93.6 95.3
Breast-cancer 67.4 73.7 76.8 73.7
Car 95.3 91.7 90.8 92.0
Chess 99.0 98.9 98.9 98.1
Cl eve 70.3 81.2 77.2 76.2
Crx 75.5 83.0 83.5 82.5
Diabetes 67.6 69.5 64.8 67.6
German 71.2 74.8 69.4 70.6
German-organisation 71.8 72.7 73.6 72.1
Glass2 74.5 74.5 83.6 80.0
Heart-disease 80.0 77.8 76.7 76.7
Heart-Hungarian 74.5 76.5 77.6 77.6
Hepatitis 80.8 82.7 80.8 86.5
Horse-colic 82.4 85.3 82.4 85.3
Hypothyroid 99.0 98.9 98.9 99.0
Ionosphere 83.8 84.6 86.3 84.6
Iris 94.0 94.0 94.0 94.0
Lymphography 84.0 84.0 80.0 84.0
Monkl 100.0 100.0 100.0 100.0
Monk2 63.3 65.7 62.1 65.7
Monk3 100.0 100.0 100.0 99.2
Mushroom 100.0 100.0 100.0 100.0
Promoter 74.3 74.3 74.3 77.1
Segment 93.8 91.6 91.7 93.5
Shuttle 99.9 99.9 99.6 99.7
Sick-euthyroid 97.1 97.4 97.4 95.4
Sonar 70.0 71.4 71.4 74.3
Soybean-large 91.2 89.5 90.4 90.4
Splice 89.0 89.9 89.4 92.4
Tic-tac-toe 97.8 97.8 98.1 98.1
Tokyo 92.7 93.3 93.3 91.5
Vehicle 70.9 67.4 67.4 66.3
Vote 97.8 97.8 97.8 97.0
Total 3157.5 3178.1 3161.1 3191.0

Table 5.3 Summary o f predictive accuracies (%).

130

Data Set Name
SRI without pruning SRI with MDL PP SRI with MDL HP SRI with MDL IP
Rules # Conditions # Rules # Conditions # Rules # Conditions # Rules # Conditions

Abalone 376 1807 45 202 24 87 64 329
Anneal 21 50 15 28 16 32 17 41
Australian 47 156 9 21 10 23 15 42
Auto 17 57 12 34 14 38 13 39
Balance-scale 39 115 23 65 23 64 16 44
Breast 14 32 8 15 11 23 6 7
Breast-cancer 38 107 2 1 3 3 2 1
Car 82 315 73 285 59 215 39 136
Chess 37 159 30 111 19 62 21 74
Cl eve 25 71 10 18 8 16 12 21
Crx 43 131 14 33 9 22 5 8
Diabetes 49 134 22 55 3 3 5 9
German 102 335 45 109 2 2 6 13
German-organisation 89 351 38 122 6 14 8 25
Glass2 11 19 10 17 10 16 9 14
Heart-disease 18 47 11 26 5 9 6 8
Heart-Hungarian 22 57 ■ 6 8 4 6 6 10

Hepatitis 11 24 3 3 11 23 2 2
Horse-colic 35 93 25 62 4 8 3 4
Hypothyroid 22 58 9 18 10 20 6 13
Ionosphere 14 27 1 1 21 9 15 8 12
Iris 6 9 4 4 6 9 6 9

Lymphography 13 30 10 22 7 14 7 13
Monkl 23 61 23 61 23 61 8 10
Monk2 54 183 6 15 2 1 1 0
Monk3 13 23 13 23 6 9 3 2
Mushroom 15 28 15 28 15 28 14 25
Promoter 9 14 9 14 4 6 3 3
Segment 36 135 20 66 20 66 27 90

Shuttle 25 83 21 64 7 16 9 24

Sick-euthyroid 37 122 18 54 7 25 10 39

Sonar 16 27 10 17 10 17 10 18

Soybean-large 33 92 26 56 28 59 27 69

Splice 106 372 60 173 27 119 19 76
Tic-tac-toe 24 76 21 62 9 24 9 24

Tokyo 17 35 9 16 6 9 6 8
Vehicle 52 180 12 29 12 29 31 101

Vote 14 35 8 20 10 24 4 5

Total 1605 5650 706 1978 459 1217 463 1368

Table 5.4 Summary o f the complexities o f the rule sets.

131

SRI without pruning SRI with MDL PP SRI with MDL HP SRI with MDL IP

Data Set Name
Rules
explored

CPU
Time (s)

Rules
explored

CPU
Time (s)

Rules
explored

CPU
Time (s)

Rules
explored

CPU
Time (s)

Abalone 68915 1234 68915 1278 8677 123 21086 256
Anneal 1401 11 1401 11 1291 9 1291 11
Australian 5105 10 5105 10 1608 4 1622 4
Auto 2865 5 2865 6 2808 5 2511 5
Balance-scale 1541 3 1541 4 1202 2 834 2
Breast 876 2 876 3 812 2 528 1
Breast-cancer 3018 4 3018 4 356 1 285 0
Car 9752 18 9752 18 8158 14 4171 9
Chess 11911 50 11911 52 5538 27 6224 29
Cl eve 2072 2 2072 2 915 1 1259 1
Crx 4631 9 4631 10 1482 2 724 2
Diabetes 4188 10 4188 10 450 1 572 2
German 17001 39 17001 40 799 2 1744 4
German-organisation 18580 44 18580 46 1949 3 2592 6
Glass2 531 0 531 1 531 0 500 1
Heart-disease 1461 2 1461 2 626 1 629 1
Heart-Hungarian 1190 2 1190 2 363 0 562 0
Hepatitis 712 1 712 1 712 1 277 1
Horse-colic 4417 8 4417 8 1010 1 758 2
Hypothyroid 2206 15 2206 16 1371 10 662 7
Ionosphere 2753 7 2753 7 2407 5 2078 5
Iris 93 0 93 0 93 0 93 0
Lymphography 1103 1 1103 1 847 1 809 1
Monkl 1838 1 1838 1 1838 2 505 0
Monk2 4697 3 4697 3 345 1 225 0
Monk3 647 0 647 0 288 0 158 0
Mushroom 1856 41 1856 42 1856 42 1717 41
Promoter 2380 5 2380 5 1748 3 1234 2
Segment 8892 89 8892 92 6504 57 6868 73
Shuttle 2517 1766 2517 1794 928 644 1928 1188
Sick-euthyroid 4769 35 4769 36 1910 14 2179 20
Sonar 3066 9 3066 9 2538 6 2544 6
Soybean-large 5577 18 5577 18 4940 16 5396 17
Splice 160041 754 160041 766 35823 199 29877 177
Tic-tac-toe 4079 4 4079 5 1834 3 1834 2
Tokyo 4079 14 4079 14 2180 8 2081 7
Vehicle 11994 33 11994 33 3640 9 8264 22
Vote 1092 1 1092 1 891 1 427 0
Total 383846 4250 383846 4351 111268 1220 117048 1905

Table 5.5 Summary o f the total number o f rules searched and the execution time in

CPU seconds.

132

data sets because it is much faster than the other pruning techniques and produces rules

that are more compact. It is also clear that MDL_IP when used with SRI yielded

comparable results in terms of rule sets complexity and execution time with MDLHP,

outperforming the MDL_PP method. Overall, the MDL_IP method appears to be the best

choice for use with the SRI algorithm.

5.5.2 Comparison with C5.0

The performance of SRI with MDL_IP was compared against that of C5.0. In addition to

the data sets of Table 5.2, the Adult data set (see appendix A for details) was also used in

the comparison. The results are shown in Table 5.6. In terms of classification accuracy,

SRI with MDLIP outperformed C5.0 for 20 out of 39 data sets. On 5 other data sets, SRI

with MDL IP developed rule sets with accuracies similar to C5.0. Only on 14 data sets,

did C5.0 outperform SRI with MDL_IP. In terms of the number of rules created, SRI

with MDL IP obtained fewer rules 28 times and C5.0, 7 times. Taking into account both

the classification accuracy and the number of rules, it can be concluded that SRI with

MDL IP outperformed C5.0 in the classification experiments conducted.

5.6 Summary

This chapter has reviewed existing pruning techniques for inductive learning algorithms.

Three new techniques that employ the MDL principle for pruning rule sets have been

presented. These techniques have a distinct feature compared with other pruning

procedures in that they do not require the training data set to be split into two separate

growing and pruning sets. The proposed techniques are also capable of dealing with

Data Set Name
C5.0 SRI with MDL IP

Acc. (%) No. of Rules Acc. (%) No. of Rules
Aba lone 23.4 522 25.1 64
Adult 86.4 100 81.1 5
Anneal 93.3 11 97.7 17
Australian 87.4 20 87.8 15
Auto 62.3 23 62.3 13
Balance-Scale 81.3 19 81.8 16
Breast 95.0 9 95.3 6
Breast-cancer 75.8 17 73.7 2
Car 91.8 58 92.0 39
Chess 97.2 21 98.1 21
Cleve 77.2 13 76.2 12
Crx 84.5 23 82.5 5
Diabetes 70.7 14 67.6 5
German 72.7 15 70.6 6
German-organisation 71.8 17 72.1 8
Glass2 69.1 9 80.0 9
Heart-disease 78.9 12 76.7 6
Heart-Hungarian 74.5 7 77.6 6
Hepatitis 76.9 5 86.5 2
Horse-colic 83.8 10 85.3 3
Hypothyroid 94.8 5 99.0 6
Ionosphere 89.7 6 84.6 8
Iris 92.0 5 94.0 6
Lymphography 76.0 7 84.0 7
Monkl 100.0 17 100.0 8
Monk2 65.7 1 65.7 1
Monk3 100.0 6 99.2 3
Mushroom 99.8 10 100.0 14
Promoter 74.3 7 77.1 3
Segment 93.4 24 93.5 27
Shuttle 99.9 12 99.7 9
Sick-euthyroid 90.4 8 95.4 10
Sonar 74.3 11 74.3 10
Soybean-large 93.4 32 90.4 27
Splice 92.7 60 92.4 19
Tic-tac-toe 92.2 34 98.1 9
T okyo 92.3 8 91.5 6
Vehicle 69.9 46 66.3 31
Vote 97.0 5 97.0 4
Total 3242.0 1229 3272.0 468

Table 5.6 Results for C5.0 and SRI with MDL IP.

134

continuous data and multi-valued classes, making them applicable to a wide range of

real-world problems. Experiments using the SRI classifier have demonstrated the

performance improvements achieved.

135

CHAPTER 6

RULES-6: A SIMPLE RULE INDUCTION ALGORITHM

FOR DATA MINING

6.1 Motivation

RULES-3 Plus is a simple rule induction algorithm for extracting IF-THEN rules from a

set of training examples. The algorithm still suffers from problems that limit its efficiency

and widespread use. One of the main problems is that RULES-3 Plus induces rules that

are both consistent and complete (i.e., covering all positive examples and no negative

examples) with regard to the training data. In the case of noisy data, this leads to the

generation of over-specific rules that overfit the training data. A second problem is that

continuous-valued attributes are discretised using a simplistic equal-width method before

data is passed to the learning algorithm. This discretisation method is arbitrary and does

not seek to discover any information inherent in the data, thereby hampering the ability of

RULES-3 Plus to learn. Finally, RULES-3 Plus does not employ any methods for dealing

with noisy data.

This chapter presents RULES-6, a new rule induction algorithm which addresses the

weaknesses of the RULES-3 Plus algorithm. In particular, it employs a new search

method which relaxes the consistency constraint and uses search-space pruning rules

which significantly reduce the search time. It also adopts effective methods for handling

continuous and noisy data. These enhancements enable the efficient generation of

accurate and compact rule sets.

The chapter is organised as follows. Section 2 briefly reviews RULES-3 Plus. Section 3

gives a detailed description of RULES-6. Section 4 discusses the evaluation of the

performance of RULES-6 using real data.

6.2 The RULES-3 Plus Algorithm

RULES-3 Plus (RULe Extraction System - Version 3 Plus) is a simple rule induction

algorithm belonging to the RULES family. RULES-3 Plus and previous versions in the

family have been employed for the extraction of classification rules for solving different

manufacturing and engineering problems, e.g., the recognition of design form features in

CAD models for computer aided process planning (Pham and Dimov, 1998), the mapping

of manufacturing information to design features (Pham and Dimov, 1998) and the

classification of defects in automated visual inspection (Jennings, 1996). This section

gives a brief description of RULES-3 Plus.

6.2.1 Algorithm Description

RULES-3 Plus extracts a set of classification rules from a collection of examples, each

belonging to one of a number of given classes. The examples together with their

associated classes constitute the set of training examples from which the algorithm

induces general rules. Every example is described in terms of a fixed set of attributes,

each with its own set of possible values.

137

In RULES-3 Plus, an attribute-value pair constitutes a condition. If the number of

attributes is Na, a rule may contain between one and Na conditions, each of which must be

a different attribute-value pair. Only conjunction of conditions is permitted in a rule and

therefore the attributes must all be different if the rule comprises more than one

condition.

RULES-3 Plus works in an iterative fashion. In each iteration, it takes a “seed” example

not covered by previously created rules to form a new rule. Having found a rule, RULES-

3 Plus marks those examples that the rule covers and appends the new rule to its rule set.

The algorithm stops when all examples in the training set are covered. This produces an

unordered set of complete and consistent rules. Note that the examples covered by

previously formed rules are marked in order to stop RULES-3 Plus from repeatedly

finding the same rule. However, these examples continue to be used to guide the

specialisation process and to assess the accuracy and generality of newly formed rules.

By considering the whole set of examples when forming rules, RULES-3 Plus is less

prone to the fragmentation problem (i.e., the amount of available data reducing as

induction progresses) (Pagallo and Haussler, 1990; Domingos, 1997b) and the small

disjuncts problem (i.e., rules covering few training examples having a high error rate)

(Holte et al., 1989; Weiss, 1995; Weiss and Hirsh, 1998; 2000; Frayman et al., 1999). As

a result, a compact rule set is obtained. Also, RULES-3 Plus does not work on a class-

per-class basis. The class of the selected seed example is considered positive and all the

remaining classes are regarded as negative.

138

To form a rule, RULES-3 Plus performs a general-to-specific beam search for the most

general and consistent rule. It starts with the most general rule and gradually specialises it

considering only conditions extractable from the selected seed example. The aim of

specialisation is to construct a rule that covers the seed example and as many positive

examples as possible while excluding all negative examples. The result is a rule that is

consistent and as general as possible. To do this, an array called AttributesAndValues is

constructed, the elements of which are attribute-value pairs associated with the seed

example under consideration. The total number of elements in the array is equal to the

number of attributes in the example. In the first step, each element of the array is

examined to decide whether it can form a rule with that element as a condition. If any of

the formed rules is consistent, it is taken as a candidate rule and the search process stops.

Otherwise, if the formed rules pertain to more than one class, they are added to a list

called PartialRules. The maximum number of rules in PartialRules, called the beam

width, is specified by the user and determines how many alternatives are considered in

each step. Only the rules in PartialRules are considered for further specialisations by

appending new conditions to them. These rules have the highest information content

among all the partial rules formed in each specialisation step. It should be noted that the

appended condition has to differ from the conditions already included in the rule to be

specialised.

To assess the information content of each newly formed rule, RULES-3 Plus uses a

metric called the H measure (Lee, 1994). For a particular rule, this measure is defined as:

139

H = \ " c o v e r e d [2 - 2 P n c la s s 2 (1 - n<:lass) (! - —)1 (6 1)
V N VNn , f n . N K ' ’I c o v e r e d || c o v e r e d

where ncoverecj number of instances covered by the rule, N is the total number of

instances, « ̂ is the number of instances covered by the rule and belonging to the

target class C, and P is the number of instances in the training set belonging to the target

class C,.

In Equation (6.1), the first term represents the generality of the rule, and the second term

represents its accuracy.

During the rule forming procedure, the rules in P a r tia lR u le s are ordered according to

their H measure values. If the H measure value of a newly formed rule is higher than that

of any rule in P a r tia lR u le s , the new rule replaces the rule having the lowest H measure

value.

The specialisation process can lead to the following three outcomes:

♦ No consistent rules. All rules in P a r tia lR u le s are specialised further by repeating the

same process.

♦ Only one consistent rule. The rule is added to the rule set and the search stops.

♦ More than one consistent rule. The rule having the highest value for the H measure is

added to the rule set and the search stops.

140

An example to illustrate the operation of the RULES-3 Plus algorithm can be found in

Pham and Dimov (1997a).

RULES-3 Plus deals with attributes having continuous values by dividing the range of

each attribute into a fixed number of intervals using the equal-width discretisation

method. With this method, the number of intervals for each attribute is specified by the

user. From the given set of examples, RULES-3 Plus constructs a new set for which the

values of all continuous attributes are represented by appropriate intervals. Induction is

then carried out with the new set of examples, the intervals being treated as any other

value. A pseudo-code description of the RULES-3 Plus algorithm is given in Figure 6.1.

6.2.2 Missing Attribute Values

In many real problems, there can be examples in which the values of some attributes are

unknown. Several methods have been developed to overcome this problem (Quinlan,

1989). In RULES-3 Plus, the following procedures are implemented:

♦ Create a new condition from the seed example. If the seed example does not have

some attributes, no conditions are created for these attributes.

♦ Check if an example is covered by a rule. If an example does not have attributes for

which conditions exist in a rule, the example is considered to be not covered by the

rule.

The implementation of these procedures in RULES-3 Plus allows the algorithm to handle

missing values.

141

Quantize attributes that have nominal values. (step 1)

Take a seed example not covered by the rule set formed so far and form array AttributesAndValues. (step 2)

Initialise PartialRules with the most general rule (a rule with no conditions) and set nc = 0. (step 3)

If nc < Na Then (step 4)

uc = nc+ I
Initialise TPartialRules to empty and set n = 0.

Else

Take the example itself as a rule and go to step (7).

Do (step 5)

n = n +1

Form a list of rules (T Rules), the elements of which are combinations of rule n in PartialRules

with conditions from AttributesAndValues that differ from the conditions already included in rule n
(the number of elements in T_Rules is: Na - nc) and set / = 0.

Do

/ = /+ 1

Compute the H measure for rule / in T Rules.

If number of rules in T PartialRules < w Then

Store rule / into T PartialRules.

Else

If the H measure of rule / is higher than the H measure of any rule in T_PartialRules Then

Replace the rule having the lowest H measure in T PartialRules with rule /.

Else Discard rule /.

While / < Na - «,

While PartialRules * 0 AND n < vv

If there are consistent rules in T PartialRules Then (step 6)

Add to the rule list the consistent rule that has the highest H measure and discard the others.

Mark the examples covered by this rule and go to step (7).

Else Copy T PartialRules into PartialRules and go to step (4).

If there are no more examples not covered Then Stop. (step 7)

Else Go to step (2).

Figure 6.1 A pseudo-code description of RULES-3 Plus.

nc\ number of conditions, Na\ number o f attributes, w. number of rules stored in PartialRules (the

maximum value of w is user-defined), T' PartialRules: a temporary list of rules with the same

size as PartialRules, and T Rules: a temporary list o f rules.

142

6.2.3 Classification Procedure

There are three possible outcomes when using the rule set formed by RULES-3 Plus to

classify a new example:

♦ Only one rule covers the new example. The example belongs to the class of the

covering rule.

♦ More than one rule covers the example. The rule with the highest H value is used to

classify the example.

♦ No rules cover the example. The class of the “closest” rule in the rule set is assigned

to the example. A simple distance measure to find the closest rule is introduced by

Bigot (2003) and employed in the RULES-3 Plus algorithm. In the original RULES-3

Plus algorithm, the example is added to the training set and the induction process

reinitiated.

6.3 The RULES-6 Algorithm

Although RULES-3 Plus has been successfully employed for different applications as

mentioned in section 6.2, several drawbacks have been identified. These drawbacks

reduce the applicability of the algorithm to many real-world applications. In this section,

based on the ideas presented in the last three chapters, a new rule induction algorithm

called RULES-6 (RULe Extraction System - Version 6) is proposed to overcome the

drawbacks of RULES-3 Plus. A pseudo-code description of RULES-6 is given in Figure

6.2. Like its predecessors in the RULES family, RULES-6 extracts rules by processing

one example at a time. The algorithm first selects a seed example, the first example in the

training set not covered by previously created rules, and then calls the Induce-One-Rule ()

143

Procedure InduceRules (TrainingSet, Beam Width)

RuleSet = 0

While all the examples in the TrainingSet are not covered Do

Take a seed example 5 that has not yet been covered.

Rule = Induce One Rule (s, TrainingSet, BeamWidth)

Mark the examples covered by Rule as covered.

RuleSet = RuleSet u {Rule}

End While

Return RuleSet

End

Figure 6.2 A pseudo-code description of RULES-6.

144

procedure to learn a rule that covers that example. Following this, all covered examples

are marked, the learned rule is added to the rule set and the process repeated until all

examples in the training set have been covered. The In d u ce-O n e-R u le () procedure is

outlined in Figure 6.3.

The In duce-O ne-R ule () procedure searches for rules by carrying out a pruned general-to-

specific search. The search aims to generate rules which cover as many examples from

the target class and as few examples from the other classes as possible, while ensuring

that the seed example remains covered. As a consequence, simpler rules that are not

consistent, but are more predictive on unseen data, can be learned. This contrasts with the

rule forming procedure of RULES-3 Plus, which restricts its search to only those rules

that are completely consistent with the training data, leading to overfitting if the data is

noisy.

A beam search is employed to find the best rule. This is done by using two rule lists

named P a rtia lR u les and N ew P a rtia lR u le s . P a r tia lR u le s , which is the same size as the

beam width w , stores the w best rules during the specialisation process. Only the rules in

this list are considered for further specialisation. N e w P a r tia lR u le s is used to save valid

partial rules obtained by specialising the rules in P a rtia lR u le s . The learning of rules starts

with the most general rule whose body is empty (step (1) in Figure 6.3) and specialises it

by incrementally adding conditions to its body (step (3) in Figure 6.3). Possible

conditions are attribute-value pairs of the selected seed example. In the case of nominal

attributes, conditions of the form [A, = v j are created, where v is is the value of A { in the

selected seed example 5. In the case of continuous attributes, an off-line discretisation

145

Procedure Induce_One_Rule (5: Seed example, Instances: Training set, w: Beam width)

PartialRules = NewPartialRules = 0

BestRule = most general rule (the rule with no conditions) (step 1)

PartialRules = PartialRules u {BestRule}

While PartialRules * 0 Do (step 2)

For each Rule e PartialRules Do

{First, generate all specialisations of the current rule, save useful ones and determine all the

InvalidValues according to one of the conditional tests in steps (5), (6) or (7).}

For each nominal attribute At that does not appear in Rule Do

If v,s e Rule.ValidValues, where vls is the value o f At in 5 Then

NewRule = Rule a [At = v(i] (step 3)

If NewRule.Score > BestRule.Score Then (step 4)

BestRule = NewRule

If Covered_Positives (NewRule) < MinPositives OR (step 5)

Covered_Negatives (Rule) - Covered_Negatives (NewRule) < MinNegatives OR (step 6)

Consistency (NewRule) = 100% Then (step 7)

Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v,J (step 8)

Else

NewPartialRules = NewPartialRules u {NewRule} (step 9)

End For

End For

Empty PartialRules

Figure 6.3 A pseudo-code description of the Induce OneJRule () procedure of

RULES-6.

PartialRules: a list of rules to be specialised, NewPartialRules: a new list of rules to be

used for further specialisations and T' NewPartialRules: a temporary list of rules.

For each Rule e NewPartialRules Do

{Next, delete partial rules that cannot lead to an improved rules and determine all the

InvalidValues according to the conditional test in step (10).}

If Rule.OptimisticScore < BestRule.Score Then (step 10)

NewPartialRules = NewPartialRules - {Rule} (step 11)

Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last_Value_Added (Rule)

(step 12)

End For

For each Rule e NewPartialRules Do

{Finally, remove from the ValidValues set o f each rule all the values that will lead to

unnecessary construction of useless specialisations at subsequent specialisation steps.}

Rule.ValidValues = Rule.ValidValues - Parent (Rule).InvalidValues (step 13)

End For

If w > 1 Then

Remove from NewPartialRules all duplicate rules

Select w best rules from NewPartialRules and insert into PartialRules (step 14)

Remove all rules from NewPartialRules

End While

Return BestRule

End

Figure 6.3 A pseudo-code description of the Induce One Rule () procedure of RULES-6

(continued).

147

method (described in section 6.3.2) is used to split the range of each attribute into a

number of smaller intervals that are then regarded as nominal values. For each condition,

a new rule is formed by appending a condition to the current rule that differs from the

conditions already included in the rule. The score of each new rule is computed and the

rule with the best accuracy is remembered (step (4) in Figure 2). In RULES-3 Plus, the H

measure is used to select the best rule. However, this measure is computationally

complex and does not lead to the highest level of predictive accuracy and generality. On

the other hand, the m-probability-estimate (defined in chapter 3, Equation 3.1) is found to

produce better results when used in the RULES-6 algorithm. As a result, it is employed

as a replacement for the H measure.

Some of the new rules are pruned according to one of the conditional tests in steps (5),

(6), (7) or (10). The pruned rules are regarded as useless and thus excluded from further

specialisations at subsequent specialisation steps. By only considering useful rules at each

specialisation step, the search effort for a good rule is effectively restricted, and this

significantly speeds the search and improves performance without affecting the quality of

the learned rules. The effect of the above pruning is maximised through the additional

processing in steps (8), (12) and (13). The conditions for pruning and how their effect is

maximised are detailed in chapter 3 (section 3.2.4).

After appropriate rules in the PartialRules list are specialised, the best w rules from

NewPartialRules are chosen to replace all rules in the PartialRules list (step (14) in

Figure 6.3). The comparison between rules is based on the employed quality measure. In

148

the case of a tie, the simplest rule is selected. If there is a tie again, the general rule that

covers the highest number of examples not already covered by rules formed so far is

chosen. Unlike RULES-3 Plus, rules are not ordered when inserted into NewPartialRules,

which accelerates the specialisation process. Scanning the NewPartialRules list w times

to obtain the best w rules is much faster than ordering the rules in NewPartialRules each

time a new rule is inserted into it.

Further specialisation ceases when the PartialRules list becomes empty (step (2) in

Figure 6.3) due to the tests at steps (5), (6), (7) and (10). The best rule is returned at the

end.

The following sections discuss the key ideas underlying RULES-6 in more detail.

6.3.1 The Search Method

As presented in section 6.2, RULES-3 Plus accepts only fully consistent rules and creates

a complete cover. In real-world applications, however, data is often noisy and insisting on

full completeness and consistency of the rule set is no longer essential. This section

introduces a novel noise-tolerant search method, which enables the efficient generation of

a more accurate and compact rule set.

6.3.1.1 Relaxing the consistency requirement

As mentioned previously, RULES-3 Plus uses a beam search strategy to find near-

optimal generalisations of a seed example. After a set of consistent rules has been built,

149

the best one is selected and added to the rule set. Once the best consistent rule that covers

the seed example has been selected, the rule generation process stops. Thus, the result of

this process is a rule set which is totally consistent with the training data.

One change to relax the consistency requirement would be to continue the rule generation

process to the end (i.e., until the PartialRules list becomes empty (step (2) in Figure 6.3)

and then choose the rule with the highest value of the quality measure as the best one. In

this way, rules are allowed to cover a few negative examples, sacrificing the consistency

with regard to the training data. In return, simplicity of rules and often better performance

are gained. It should be noted that consistent rules having a very low coverage might be

found in the early stages of the rule generation process and stopping the search process

once a consistent rule has been found might lead to the generation of non-optimal rules.

On the other hand, if the search process continues, more general rules could be created.

Another way to introduce inconsistency is through the use of post-pruning techniques,

described in section 6.3.3. By dropping certain conditions and rules from the rule set, the

resulting set will generally have lower consistency but may have a much higher coverage

value and will score higher on future examples.

6.3.1.2 Learning incomplete rule sets

In simple machine learning problems, a complete rule set - one that covers all of the

positive examples - is usually desired (Michalski and Kaufman, 2001). In any real-world

data mining application, the data often contains errors and full completeness is not

150

required, as overly complex and detailed rules may otherwise be produced. Such

“complete” rules may depend strongly on the particular training set and, consequently,

may perform poorly in classifying unseen examples. For that reason, when learning from

noisy data, it is often better to produce rules that are only partially complete.

In order to relax the completeness requirement, stopping criteria are often used to halt the

search for rules before all the training examples are covered. Such halting occurs when

no further good rules can be found. This approach has been implemented in the SRI

algorithm, described in chapter 3. However, it is risky to implement such an approach in

RULES-6. This is because, with randomly selected seed examples from the set of

examples yet to be covered, it is not certain that the most general rules will be generated

first as the coverage level of the rules does not decrease consistently.

The approach followed in RULES-6 is to continue generating rules until a complete rule

set is built. After that, a post-pruning technique is applied to remove rules that have low

coverage. However, this approach is computationally expensive.

6.3.2 The Discretisation Method

As presented in chapter 4, there are two approaches for discretisation of continuous

attributes, namely, on-line and off-line discretisation. The on-line discretisation method

developed in chapter 4 was shown to outperform a number of off-line discretisation

methods when incorporated into the SRI algorithm. However, there are at least two

problems that make this method inappropriate if it is applied in the RULES-6 algorithm.

151

Recall first that, in order to discretise a continuous attribute during learning, SRI divides

the range of that attribute into two intervals by selecting one threshold value from the

attribute domain. The best threshold for a certain attribute is chosen as the one that best

separates the classes of the training instances belonging to that attribute. Two possible

conditions are then created and new rules are formed by adding these conditions to the

current rule. On the other hand, the specialisation process of RULES-6 aims to cover a

specific seed example. By adopting this discretisation method, only one condition that

covers the seed example will therefore be considered by RULES-6 for specialisation of

the current rule and the other condition will be deleted, resulting in a loss of valuable

information. It should also be noted that more appropriate conditions might be produced

if the objective of covering the seed example is taken into consideration when selecting

the best threshold value. Second, as explained in chapter 4, the main advantage of on-line

discretisation, in comparison with off-line discretisation, is that higher-order correlations

between attributes can be discovered in the learning process. However, the limited search

of RULES-6, due to its dependence on specific training examples during its search,

reduces the possibility of finding such correlations. As a result, the high computational

cost resulting from discretising continuous attributes during learning is not justifiable. In

this case, it would be better to employ an off-line discretisation method.

Several off-line discretisation methods have been developed. The experimental results of

many studies (Ventura and Martinez, 1995; Cai, 2001) have indicated that the choice of

which discretisation method to use depends both on the data to be discretised as well as

on the learning algorithm. This section presents a study of the performance of the four

152

off-line discretisation methods used in the experiments conducted in chapter 4 (section

4.4) in order to identify the most appropriate method to be applied in RULES-6.

Experiments were carried out on the same data sets described earlier in Table 4.1, chapter

4. All the data sets were first discretised using each of the discretisation methods and then

passed to the learning algorithm. Table 6.1 summarises the results obtained for each

discretisation method when used in RULES-6. From the table, it can be seen that the

entropy method obtained better accuracy in total than the other methods over the 26 test

domains. Moreover, it produced in total significantly fewer rules than the other

discretisation methods. In terms of the total execution times, the entropy method was

faster than the 1R Discretizer and the equal-width method, but slower than the optimum

method. However, the time required by the optimal method to preprocess the data was

significantly larger than that required by the entropy method. Overall, the entropy method

seems to be the best choice among the descretisation methods tested. Consequently, this

discretisation method is adopted for use with RULES-6.

By comparing the results from Table 6.1 with the corresponding results in Table 4.2, it

can also be seen that the effect of the off-line discretisation methods was different for the

two learning algorithms. For example, the 1R Discretizer method did quite well when

combined with RULES-6, but not so well when combined with SRI. Thus, it can be

concluded that the choice of the best discretisation method is dependent on the learning

algorithm for which the preprocessing is being performed. This supports the findings in

(Ventura and Martinez, 1995) and (Cai, 2001).

Data Set Name

Optimum Entropy 1RD Equal-width
Acc.
(%)

#
Rules

Rules
explored

Time
(s)

Acc.
(%)

#
Rules

Rules
explored

Time
(s)

Acc.
(%)

#
Rules

Rules
explored

Time
(s)

Acc.
(%)

#
Rules

Rules
explored

Time
(s)

Aba lone 24.7 21 1250 1 25.3 21 1012 1 24.7 20 189 0 24.8 22 1235 1
Anneal 95.7 22 2499 1 93.3 16 1912 1 94.3 16 1739 1 92.0 21 2772 2
Australian 81.3 31 3447 0 85.2 29 2892 0 89.1 29 1864 0 85.7 34 3179 0
Auto 56.5 11 738 0 62.3 14 1582 0 59.4 17 1117 0 49.3 19 1225 0
Balance-scale 74.6 21 261 1 64.6 11 155 0 65.6 11 161 0 79.9 39 363 1
Breast 92.7 14 261 0 92.3 10 257 0 97.4 12 380 0 93.6 18 278 0
Cl eve 76.9 16 838 0 82.2 17 913 0 82.2 20 1031 0 79.7 10 488 0
Crx 81.7 30 3233 1 79.5 34 3624 1 80.0 26 2121 0 77.5 25 2457 1
Diabetes 65.6 13 559 0 71.5 12 305 0 65.2 38 907 0 68.4 42 1779 1
German 75.7 95 10398 3 75.7 77 8402 3 72.2 104 10630 4 70.9 103 14432 5
German-org. 74.6 70 11166 5 76.6 58 9684 4 76.0 62 9545 3 72.7 101 18283 7
GIass2 74.5 6 67 0 78.2 5 43 0 72.7 17 248 0 72.7 16 380 0
Heart-disease 77.8 18 730 0 83.3 16 725 0 84.4 20 999 0 82.2 23 1248 0
Heart-Hungarian 79.6 12 476 0 79.6 11 396 0 78.6 13 604 0 77.6 20 1031 0
Hepatitis 84.6 11 569 0 82.7 11 519 0 84.6 11 555 0 76.9 10 581 0
Horse-colic 73.2 28 3238 1 80.9 31 3902 1 75.0 34 3011 1 70.6 38 3840 1
Hypothyroid 95.7 17 1257 3 95.5 17 1000 2 96.7 23 1561 3 95.8 37 4216 8
Ionosphere 92.3 20 1899 0 94.0 15 1588 0 93.2 25 1063 0 92.3 29 2778 1
Iris 96.0 4 17 0 96.0 4 20 0 96.0 4 15 0 94.0 6 23 0
Lymphography 74.0 11 661 0 86.0 15 882 0 74.0 11 661 0 84.0 14 884 0
Segment 93.1 41 3136 3 89.6 42 3529 3 79.6 90 2339 3 87.3 50 4912 5
Shuttle 98.9 19 503 28 99.7 27 1101 46 94.7 55 1327 50 89.9 25 1001 43
Sick-euthyroid 95.5 21 1776 3 97.2 22 1678 2 94.9 30 3070 3 89.9 32 3834 7
Sonar 72.9 13 921 0 70.0 13 921 0 67.4 31 3263 1 75.7 29 4619 1
Tokyo 90.8 16 1285 2 89.4 19 3673 2 87.1 27 3667 1 91.9 30 3715 2
Vehicle 70.6 40 3546 1 68.1 31 4032 1 61.7 68 5002 1 63.8 60 6650 2
Total 2069.7 621 54731 53 2098.8 578 54747 67 2046.8 814 57069 71 2038.9 853 86203 88

Table 6.1 Performance of descritisation methods as pre-processors to RULES-6.

154

6.3.3 The Pruning Technique

In chapter 5, three new pruning techniques and their application to the SRI algorithm

were described. The aim of this section is to discuss the appropriateness of these

techniques for use in the RULES-6 algorithm. Incremental and hybrid pruning techniques

cannot be applied to rule sets created by RULES-6 because of the dependence of their

pruning strategies on stopping heuristics. The use of stopping heuristics in RULES-6 is

not appropriate as explained in section 6.3.1.2. In that section, it was suggested that post-

pruning should be used to improve the performance of RULES-6 in the presence of noisy

data. The post-pruning technique given in chapter 5 (MDL_PP) is therefore adopted for

use in RULES-6. One modification is that, instead of employing a greedy strategy for

deleting rules until no further deletion can improve the total coding length, each rule is

examined to see whether it could be omitted or not. If a rule cannot be omitted, it is

simplified using the delete-condition operator. A pseudo-code of RULES-6 with the post-

pruning technique is presented in Figure 6.4. The Prune Rule Set () procedure simplifies

the rules for each class in turn.

Note that the problem mentioned in chapter 5 (section 5.2), namely that post-pruning

techniques are incompatible with the search strategy employed in rule induction systems,

does not apply to the RULES-6 algorithm. This is because, in RULES-6, all of the

training set is taken into account each time a new rule is formed as mentioned in section

6.2.1. Consequently, all rules are independent and each can be pruned without affecting

the rest of the rule set.

155

Procedure Induce Rules (TrainingSet, Beam Width)

RuleSet = 0

While all the examples in the TrainingSet are not covered Do

Take a seed example 5 that has not yet been covered.

Rule = Induce One Rule (5 , TrainingSet, BeamWidth)

Mark the examples covered by Rule as covered.

RuleSet = RuleSet u {Rule}

End While

RuleSet = Prune_ Rule Set (RuleSet, TrainingSet)

Return RuleSet

End

Figure 6.4 A pseudo-code description of RULES-6 with MDL_PP.

156

6.4 Empirical Evaluation of RULES-6

This section describes an empirical study testing RULES-6 with the MDL_PP technique

against RULES-3 Plus and C5.0. The algorithms were tested on the same data sets given

in Table 5.2, chapter 5 as well as the A d u lt data set (see appendix A for details). The

experimental method described in chapter 3 (section 3.4) was used for estimating the

performance criteria. RULES-3 Plus was executed with a value of 4 for beam width.

RULES-6 was tested using parameter values of 4, 1 and 2 for beam width, MinNegatives

and MinPositives respectively. C5.0 was run with the default settings. Tables 6.2 and 6.3

list the results obtained.

As can be seen from Table 6.2, the performance obtained by RULES-6 with M D LPP

was impressive. There were considerable improvements in classification accuracy for 25

data sets. For the B rea s t-ca n cer , G e rm a n -o rg a n isa tio n , G la s s2, H ep a titis , H o rse -co lic ,

P rom oter, Shuttle and S ic k -e u th y ro id data sets the improvements were most obvious. The

accuracy degraded for 12 data sets. For the remaining 2 data sets, equivalent results were

obtained. It can also be seen from the table that RULES-6 with MDL PP produced much

more compact rule sets than RULES-3 Plus. The total number of rules decreased by

93.7% from 10739 to 677. Also, the total number of conditions dropped by 98.0% from

93794 to 1874. The reduction in the number of rules and number of conditions for the

A d u lt data set was particularly notable. The fewer and more general rules created by

RULES-6 made it much faster than RULES-3 Plus as indicated in Table 6.2. The total

number of evaluations fell by 94.9% from 3168403 to 161726 and this was accompanied

by a total 97.8% reduction in the execution time from 31351 seconds to 700 seconds.

Data Set Name

RULES-3 Plus RULES-6 with MDL_PP

Acc.

(%)

#
Rules

#
Conditions

Rules
explored

CPU
Time (s)

Acc.
(%)

#
Rules

#
Conditions

Rules
explored

CPU
Time (s)

Aba lone 18.5 313 1947 26853 28 23.9 12 27 1012 1
Adult 77.5 6686 70144 1986685 29938 82.6 53 141 16193 435
Anneal 99.7 37 119 10119 3 98.3 16 35 1912 1
Australian 83.9 148 807 26301 4 86.5 7 18 2892 0
Auto 62.3 48 94 5534 0 59.4 11 31 1582 0

Balance-scale 77.0 213 691 3341 1 72.7 9 21 155 0
Breast 95.7 40 94 2023 1 95.3 8 17 257 0
Breast-cancer 68.4 86 284 5674 1 77.9 12 31 1311 0
Car 88.4 165 801 7826 2 90.1 35 114 1374 1
Chess 99.0 108 2164 176109 347 97.7 21 79 8728 19
Cleve 77.7 33 73 2214 0 80.2 11 25 913 0

Crx 80.0 142 863 30277 4 83.0 10 27 3624 1
Diabetes 66.8 190 739 12399 2 72.3 5 8 305 0
German 70.9 247 1043 57120 13 74.9 29 95 8402 3
German-organisation 66.4 252 1381 90770 29 76.0 23 103 9684 4
Glass2 69.1 46 154 2894 0 81.8 4 5 43 0

Heart-disease 81.1 60 158 4985 1 80.0 8 18 725 0
Heart-Hungarian 72.4 48 196 5611 1 77.6 2 3 396 0
Hepatitis 61.5 25 47 2023 0 84.6 6 13 519 0

Horse-colic 75.0 91 223 12526 1 85.3 6 19 3902 1

Hypothyroid 94.9 138 1743 88221 164 98.3 10 19 1000 3
Ionosphere 92.3 48 94 7654 2 94.9 13 31 1588 1
Iris 94.0 13 25 122 0 96.0 4 5 20 0

Lymphography 80.0 26 56 2431 0 84.0 11 25 882 0

Monkl 100.0 22 61 759 0 100.0 22 61 652 0

Monk2 98.8 262 1504 13709 1 77.2 38 142 1572 0
Monk3 95.1 12 23 270 0 95.1 12 23 263 0

Mushroom 100.0 25 37 1556 5 99.7 27 80 2779 15

Promoter 74.3 14 26 3481 1 82.9 5 8 1146 0
Segment 90.5 172 1198 51880 35 88.7 33 82 3136 3
Shuttle 91.7 63 289 4689 87 99.8 52 100 1927 61
Sick-euthyroid 89.4 195 3119 154065 291 97.2 9 23 1678 3
Sonar 68.6 37 67 9293 1 74.3 2 3 921 0
Soybean-large 93.9 76 542 46253 13 86.0 22 51 3953 1
Splice 91.8 239 1127 209203 340 89.8 67 190 66354 144
Tic-tac-toe 94.7 89 374 7970 1 98.1 29 100 1757 0
T okyo 91.3 83 478 48551 27 92.9 6 15 3673 2
Vehicle 59.6 214 875 42013 7 66.0 22 76 4032 1
Vote 97.0 33 134 4999 0 95.6 5 10 464 0

Total 3189.0 10739 93794 3168403 31351 3296.4 677 1874 161726 700

Table 6.2 Results for RULES-3 Plus and RULES-6 with MDL_PP.

158

Data Set Name
C5.0 RULES-6 with MDL PP

Acc. (%) No. of Rules Acc. (%) No. of Rules
Abalone 23.4 522 23.9 12
Adult 86.4 100 82.6 53
Anneal 93.3 11 98.3 16
Australian 87.4 20 86.5 7
Auto 62.3 23 59.4 11
Balance-Scale 81.3 19 72.7 9
Breast 95.0 9 95.3 8
Breast-cancer 75.8 17 77.9 12
Car 91.8 58 90.1 35
Chess 97.2 21 97.7 21
Cleve 77.2 13 80.2 11
Crx 84.5 23 83.0 10
Diabetes 70.7 14 72.3 5
German 72.7 15 74.9 29
German-org 71.8 17 76.0 23
Glass2 69.1 9 81.8 4
Heart 78.9 12 80.0 8
Heart-Hungarian 74.5 7 77.6 2
Hepatitis 76.9 5 84.6 6
Horse-colic 83.8 10 85.3 6
Hypothyroid 94.8 5 98.3 10
Ionosphere 89.7 6 94.9 13
Iris 92.0 5 96.0 4
Lymphography 76.0 7 84.0 11
Monkl 100.0 17 100.0 22
Monk2 65.7 1 77.2 38
Monk3 100.0 6 95.1 12
Mushroom 99.8 10 99.7 27
Promoter 74.3 7 82.9 5
Segment 93.4 24 88.7 33
Shuttle 99.9 12 99.8 52
Sick-euthyroid 90.4 8 97.2 9
Sonar 74.3 11 74.3 2
Soybean-large 93.4 32 86.0 22
Splice 92.7 60 89.8 67
Tic-tac-toe 92.2 34 98.1 29
T okyo 92.3 8 92.9 6
Vehicle 69.9 46 66.0 22
Vote 97.0 5 95.6 5
Total 3242.0 1229 3296.4 677

Table 6.3 Results for C5.0 and RULES-6 with MDL PP.

159

These results confirm that RULES-6 with MDL_PP is more robust with respect to noise

and more accurate than RULES-3 Plus.

It is clear from Table 6.3 that the accuracy obtained by RULES-6 with M DLPP was in

total higher than that of C5.0. In addition, RULES-6 with MDL_PP achieved higher

accuracies for 23 out of 39 data sets, while C5.0 yielded better accuracies for 14 out of 39

data sets. Both algorithms achieved similar accuracies for the remaining 2 data sets. It is

also clear from the table that RULES-6 with MDL PP gave fewer rules in total than C5.0

did. The number of rules was lower for 22 data sets and higher for 15 data sets for

RULES-6 with MDL_PP when compared with C5.0.

6.5 Summary

This chapter has presented RULES-6, a simple rule induction algorithm designed for the

efficient extraction of comprehensible IF-THEN rules in domains where noise may be

present. It employs a simple but robust rule search method which relaxes the search for

consistency and reduces the problem of overfitting the induced rules to the training data.

It also adopts an alternative method for continuous attributes handling based on a

comparative study of the most frequently used methods. Finally, RULES-6 uses a new

MDL-based post-pruning technique to address the problem of dealing with noisy data.

RULES-6 with MDL_PP has been empirically compared with its immediate predecessor

RULES-3 Plus using a large number of real-world data sets from the UCI machine

learning repository. The results have shown that RULES-6 with MDL PP is better than

160

RULES-3 Plus in terms of accuracy in classifying unseen instances, size of the generated

rule sets and learning time.

In addition, a comparison with the commercial software C5.0 has been made. The results

have indicated that RULES-6 in combination with MDL_PP outperforms C5.0.

161

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter summarises the main contributions and the conclusions reached in this work.

It also provides suggestions for future work.

7.1 Contributions

This research addressed the problem of scaling up rule induction algorithms so that they

can be successfully applied to large data sets. Its contributions include:

♦ A thorough a n a lysis o f the is su e o f s c a l in g u p in d u c tive le a rn in g tech n iqu es. A critical

study of the currently available inductive learning techniques and a discussion of their

usefulness for data mining applications were made. This led to the design of learning

algorithms that can handle large-scale data.

♦ An effic ien t h eu r is tic -sea rch m e th o d f o r ru le le a rn in g a lgorith m s. The proposed

method employed advanced search heuristics, optimisation techniques and search-

space pruning strategies that significantly reduced search time.

♦ An on -lin e d isc re tisa tio n m e th o d f o r ru le lea rn ers . The new method took advantage of

the bias inherent in the learning algorithm to improve its performance. It produced

simpler and more accurate rule sets as well as comparable run-time efficiency when

incorporated into a rule learning system.

♦ Increm enta l, h y b r id a n d p o s t-p r u n in g te c h n iq u e s f o r ru le in d u c tio n a lg o rith m s. The

presented techniques were built on the theoretically sound Minimum Description

Length (MDL) principle. They adopted an alternative MDL-based formula for rule

sets based on the ideas of Quinlan (1995). This formula overcame drawbacks in the

formula employed in C4.5. The improved version of the MDL principle and its new

usage resulted in a significant reduction in execution time and rule-set sizes as well as

an improved accuracy.

♦ C la ssifica tio n ru le in d u c tio n a lg o r ith m s a p p r o p r ia te f o r d a ta m in ing . Two new

scalable rule induction algorithms were developed, SRI and RULES-6. SRI follows

the approach of CN2-like learning algorithms and is based on the integration of the

three techniques mentioned above. Such integration led to efficient and effective

induction of classification rules from large data sets. RULES-6 is an improved

version of the RULES-3 Plus algorithm which follows the approach of AQ-like

learning algorithms. The main advantageous features of RULES-6 over RULES-3

Plus are the relaxation of the requirement for a perfect training set, the more efficient

noise-tolerant search method and the elegant handling of continuous and noisy data.

Enriched with these new features, RULES-6 should be a powerful practical tool for

data mining applications.

163

♦ Demonstration o f improved inductive performance. A comprehensive empirical

evaluation of all the algorithms and techniques presented in this thesis was made. The

results obtained demonstrated the significant performance improvements achieved.

7.2 Conclusions

Rule induction as a method for constructing classifiers is particularly attractive in data

mining applications, where the comprehensibility of the generated models is very

important. Most existing algorithms were designed for small data sets and thus are not

practical for direct use on very large data sets because of their computational cost.

Scaling up rule induction algorithms to handle such data sets is a formidable challenge.

This study presented new algorithms for rule induction that can efficiently extract

accurate and comprehensible models from large and noisy data sets. These algorithms

were tested on several complex real-world data sets and the results proved that they

scaled up well and were extremely effective learners.

Chapter 3 focused on developing a scalable rule induction algorithm that is suitable for

data mining applications. Rule induction extracts IF-THEN rules directly from the data.

The proposed algorithm presented a new search method, which employs several novel

search-space pruning rules and rule evaluation techniques. This not only minimised the

search space, but also considerably improved the whole induction process.

Handling of both nominal and continuous attributes is a central issue for practical

applications of classification learning. Most of the work on discretisation of continuous­

164

valued attributes has been done under the framework of decision trees. Very little work

has been done in treating continuous-valued attributes and nominal attributes in a

consistent manner in the framework of inductive rule learning systems. The objective of

chapter 4 was to explore a way in which continuous-valued attributes and nominal

attributes can be treated consistently in inductive rule learning systems. To reach this

objective, the discretisation of continuous attributes in the context of inductive learning

was studied in detail. Current discretisation methods were categorised based on

predefined properties, such as supervised vs. unsupervised, multivariate vs. univariate,

etc. A new on-line discretisation method was presented, aiming to take into account the

bias underlying the rule learning algorithm. Experiments indicated that the proposed

method substantially improved performance.

When learning is based on noisy data, the induced rule sets have a tendency to overfit the

training data, and this degrades the performance of the resulting classifier. Consequently,

the ability to tolerate noise is a necessity for robust, practical learning algorithms.

Pruning is a common way of handling noisy data. Based on an analysis of the existing

techniques for pruning rule sets, chapter 5 introduced three new pruning techniques.

These techniques were built on the sound foundation of the Minimum Description Length

(MDL) principle. The proposed pruning techniques have the advantage that they do not

require the set of examples employed for pruning to be distinct from the set used to build

the rule set. The new techniques were tested in the SRI rule induction algorithm and

showed an improved performance.

165

RULES-3 Plus is a member of the RULES family of simple inductive learning

algorithms, which has proven useful in several manufacturing and engineering

applications. However, it requires modification in order to be a practical tool for data

mining applications. In particular, mechanisms for effectively handling continuous

attributes and noisy data are needed. Chapter 6 presented a new rule induction algorithm

called RULES-6, derived from the RULES-3 Plus algorithm. The innovation in RULES-

6 is that it has the ability to handle noise in the data, which is achieved by employing a

search method that tolerates inconsistency in the rule specialisation process and by using

a post-pruning technique that removes unreliable components from the generated rules at

the expense of the completeness and/or consistency. This makes the rule sets extracted by

RULES-6 both more accurate and substantially simpler than those produced using

RULES-3 Plus. RULES-6 also employs effective search-space pruning rules to avoid

useless specialisations and to terminate a non-productive search during rule construction.

This substantially increases the efficiency of the learning process. Finally, RULES-6

adopts a robust method for handling attributes with continuous values, which further

improves the performance of the algorithm. The new features of RULES-6 make it not

only more robust and effective but also more efficient, thus enhancing the usefulness of

the algorithm for data mining applications.

7.3 Future Work

This section discusses some of the ways in which the methods and algorithms developed

in this thesis could be enhanced.

166

♦ The rule induction algorithms developed in this work, SRI and RULES-6, employ

heuristic search techniques with different learning biases and rule-space pruning

strategies that significantly reduce the proportion of the search space examined during

the learning process, resulting in substantial performance benefits. An area for further

research is the investigation of the learning biases and the evaluation of their effect on

the performance of the learning algorithms. Additional rule-space pruning strategies

could be considered to improve the performance of the learning algorithms. It may

also be possible to speed up the search process even more through the use of efficient

data structures (e.g., bit vectors (Segal, 1997)), which reduce the amount of CPU time

required to process each example, and through optimisation techniques (e.g.,

bookkeeping techniques (Aronis and Provost, 1997; Graefe et al., 1998)), which

concentrate on eliminating unnecessary components.

♦ In chapter 4, an on-line method for discretisation of continuous attributes was

introduced. Further work could be carried out to increase the efficiency and

effectiveness of this method. First, when a continuous attribute is being evaluated, a

threshold must be selected. This entails a sorting operation, which must be performed

for each attribute in turn, for each rule in the search space. These sorting operations

usually account for a large portion of the learning time for large data sets with

continuous attributes. This can be avoided by careful bookkeeping: it is only actually

necessary to sort the data once for each attribute. The fundamental limitation of this

approach is its memory requirement, because the examples covered by a rule need to

be stored as example lists. Second, it is possible to generalise the method by

167

extending it to extract multiple intervals, rather than just two, in a single discretisation

pass (see, for example, Fayyad and Irani, 1993 and Berka and Bruha, 1996). The

motivation for doing this is to obtain rule sets with smaller sizes and higher

accuracies.

♦ The Minimum Description Length (MDL) principle, used in the study in chapter 5,

forms the basis of a criterion to evaluate rule quality in the proposed incremental,

hybrid and post-pruning techniques. There are two possibilities in this direction worth

further exploration. First, a more optimal coding strategy could be attempted. Such a

coding strategy could be derived once the strengths and weaknesses of using the

MDL principle are better understood. Second, more research could be carried out to

combine other criteria with an MDL-based metric in order to overcome the tendency,

shown in this work, of pure MDL strategies to over-prune the generated rules.

♦ Further developments of SRI and RULES-6 could include methods for increasing

representational power (e.g., the attributional calculus employed in AQ19 (Michalski

and Kaufman, 2001), a much richer and highly expressive description language based

on variable-valued logic system VL1 (Michalski, 2001)), methods for dealing with

missing values (Ramoni and Sebastiani, 2001) and mislabelled training data (Brodley

and Friedl, 1999; Mitchell, 1999b), methods for incorporating domain knowledge to

control search (Clearwater and Provost, 1990) and alternative conflict resolution

schemes and stopping criteria suitable for various trade-offs between accuracy,

generality and complexity. Other work that could be considered in this direction

168

include methods for learning in vague environments (e.g., through inducing a set of

fuzzy rules from fuzzy data (Wang et al., 1996; Tsang et al., 2000; Drobics and

Bodenhofer, 2002; Hoffmann, 2004)) and methods for choosing useful features

(Almuallim and Dietterich, 1994; Baluja, 1994; 1995; Caruana and Fritag, 1994; John

et al., 1994; Aha and Bankert, 1995; Yang and Honavar, 1997; Hall and Smith, 1998)

and constructing new ones, referred to as c o n s tru c tiv e in du ction (Sethi and

Savarajudu, 1982; Rendell, 1989; de raedt, 1992; Kramer, 1994; Wneck and

Michalski, 1994), from the available features in order to not only reduce the number

of features used by the learning algorithms, but also improve their generalisation

ability.

♦ In this work, only one approach of scaling up rule induction algorithms was utilised,

namely, designing fast and effective learners. Other approaches that could be

considered include sa m p lin g (Lewis and Catlett, 1994; John and Langley, 1996;

Provost et al., 1999), which selects a single subset from the initial data set using

different strategies such as random or stratified sampling, p a r ti t io n in g , which divides

the data into disjoint subsets, learns a model (rule set) from each subset and

aggregates the results obtained by either combining the learned models (typically by

merging) (Hall et al., 1998) or their predictions (typically by voting) (Chan and

Stolfo, 1993; 1997), in c re m e n ta l b a tc h le a rn in g (Clearwater et al., 1989; Domingos,

1996), which is closely related to partitioning, but processes subsets of examples in

sequence, taking advantage of knowledge learned in one iteration to guide learning in

a subsequent iteration, c o o p e r a t iv e le a rn in g (Provost and Hennessy, 1994; 1996),

169

which is similar to partitioned-data techniques, but allows cooperation between the

group of learners to obtain a global view of the problem and parallelisation (Cook

and Holder, 1990; Freitas and Lavington, 1998; zaki et al., 1999), which decomposes

the search of the rule space such that different processors search different portions of

the rule space in parallel.

♦ More work could be carried out to improve the predictive accuracy of SRI and

RULES-6 through the use of techniques such as bagging and boosting (described in

chapter 2). Improvements in accuracy should not be obtained at the expense of

efficiency and comprehensibility. Examples of work in this area can be found in

Domingos (1997a; 1998), Cohen (1999) and Ferri et al., (2002).

♦ Another promising direction for research is to extend SRI and RULES-6 to perform

regression. A number of techniques for doing this are possible, e.g., each rule predicts

the average value of the training examples it covers (Breiman et al., 1984) or forms a

local linear regression function from those examples (Karalic, 1992). More recently,

an efficient fuzzy inductive learning algorithm for continuous output prediction has

been developed by Bigot (2003).

170

APPENDIX A

DATA SETS

All data sets used in this work were obtained from the University of California at Irvine

(UCI) repository of machine learning databases (Blake and Merz, 1998). These databases

were contributed by many researchers, mostly from machine learning fields, and

collected by the Machine Learning group in the University of California, Irvine. These

data sets are described below.

Abalone: This data set is used to predict the age of abalone from physical measurements.

There are 4177 instances in the data; each is described by 8 attributes.

Adult: There are 48842 instances in this data set. Each instance is described by 14

attributes, such as age, work class, native country, education, marital status, and so on.

These attributes are used to predicate whether a person will earn a salary of greater or less

than $50,000 in US.

Anneal: This data set concerns appropriate actions to take during coating of steel

products. The data set contains 898 instances described in terms of 38 attributes that

cover aspects such as the width of the steel, its type, hardness, composition, surface

quality etc. There are six classes corresponding to alternative coating sub-procedures.

Australian: This data set is almost the same as the original Crx data, but all missing

values have been replaced with the medians.

Auto: This data set consists of three types of entities: a) the specification of an auto in

terms of various characteristics, b) its assigned insurance risk rating and c) its normalised

losses in use as compared to other cars. The second rating corresponds to the degree to

which the auto is more risky than its price indicates. Cars are initially assigned a risk

factor symbol associated with its price. Then, if it is more risky (or less), this symbol is

adjusted by moving it up (or down) the scale. Actuarians call this process "symboling".

A value of +3 indicates that the auto is risky, -3 that it is probably quite safe. The third

factor is the relative average loss payment per insured vehicle year. This value is

normalised for all autos within a particular size classification (two-door small, station

wagons, sports/speciality, etc.), and represents the average loss per car per year. The data

set contains 205 instances in 6 classes, 10 nominal attributes and 15 continuous attributes.

Balance-scale: This data set was generated to model psychological experimental results.

Each example is classified as having the balance scale tip to the right, tip to the left, or be

balanced. The attributes are the left weight, the left distance, the right weight, and the

right distance.

Breast: This data set contains 699 instances. Each instance is described by 10 continuous

attributes. There are two classes, which identify that the tumor is benign or malignant.

172

Breast-cancer: This data set includes 201 instances of one class (no-recurrence-events)

and 85 instances of another class (recurrence-events). The instances are described by 9

nominal attributes that cover aspects such as the age of the patient, tumor size,

menopause etc.

Car: This data set is used to evaluate cars according to attributes that describe the price,

technical characteristics, and safety of the car. There are 1728 instances; each is

described by 6 attributes and can be categorised into one of 4 classes.

Chess: This data set has 36 nominal attributes to describe the board positions, and the

task is to determine which position will lead to a win.

Cleve: This data set contains instances on patients who may suffer from heart disease. It

contains 303 instances in two classes (healthy or sick), 7 nominal attributes and 6

continuous attributes.

Crx: This data set was originally used by Quinlan in C4.5. The task is to determine

whether to give a credit card to an applicant. All the attribute names and values have been

changed to meaningless symbols to protect confidentiality of the data.

Diabetes: There are 768 instances in this data set, each is described by 8 continuous

attributes, such as number of times pregnant, diastolic blood pressure, body mass index,

etc. The data is used to classify whether the patient tests are positive or negative for

diabetes.

German: This data set classifies people described by a set of attributes as good or bad

credit risks. There are 1000 instances in the data; each is described by 20 attributes of

which 13 are nominal.

German-organisation: This data set is similar to the German data set but in a slightly

different format.

Glass2: This is a collection of data from crime lab reports. There are 163 instances in this

data set; each is described by 9 continuous attributes. The attributes are measures of

mineral content such as Mg, Al, et. and refractive index of different samples of glass. The

problem is to determine whether the glass was used for windows, container, head lamp,

etc.

Heart-disease: This data set contains 13 continuous attributes which have been extracted

from a larger set of 75. The class refers to the presence of heart disease in the patient.

Heart-Hungarian: This data set is very close to C leve . It contains 294 instances in two

classes, 5 nominal attributes and 8 continuous attributes.

174

Hepatitis: This data contains 155 instances; each instance is represented by 19 attributes,

describing age, sex and 17 other symptoms. The task is to determine whether the patient

is at risk of death.

Horse-colic: There are 368 instances in this data set. 22 attributes are used to describe

information on the horses, including their age, pulse, rectal temperature etc, and the task

is to classify whether a lesion is surgical or not.

Hypothyroid: This data set comes from an assay screening service related to the thyroid

function, and concerns one aspect of thyroid diagnosis. The 25 attributes are a mixture of

measured values and information obtained from the referring physician. There are two

classes (hypothroid, negative).

Ionosphere: This data set concerns classification of radar returns from the ionosphere.

“Good” radar returns are those showing evidence of some type of structure in the

ionosphere. “Bad” returns are those that do not; their signals pass through the ionosphere.

There are 351 instances; each is described by 34 continuous attributes.

Iris: This is the most widely used data set in the literature. The data set contains 3

classes of 50 instances each, where each class refers to a type of iris plant. Each instance

is described by four continuous attributes, namely, sepal length, sepal width, petal length

and petal width. '

175

Lymphography: This data set contains 148 instances in 4 classes (normal find,

metastases, malign lymph and fibrosis), 15 nominal attributes and 3 continuous attributes.

Monkl, 2 and 3: The Monk data sets are a collection of three binary classification

problems over a six-attribute nominal domain. These data sets include 556, 601 and 554

instances respectively.

Mushroom: This data set consists of descriptions of hypothetical samples corresponding

to 23 species of gilled mushrooms in the Agaricus and Lepiota family. Each species is

identified as definitely edible or definitely poisonous. There are 8124 instances; each

instance is described by 22 nominal attributes.

Promoter: This data set consists of 106 instances and 57 nominal attributes representing

nucleotides of the DNA sequence (a , t, c or g). The task is to decide whether a sequence

is a promoter region (+) or not (-).

Segment: This is an image segmentation data drawn randomly from a database of 7

outdoor images. There are 2310 instances; each is described by 19 continuous attributes

and can be categorised into one of 7 classes.

Shuttle: This data set contains 58000 instances in 7 classes. Each instance is described by

9 continuous attributes.

176

Sick-euthyroid: This data set has approximately the same data format and set of

attributes as the hypothyroid data set. The classes of this data set are sick-euthyroid and

negative.

Sonar: This data set consists of 208 instances and 60 continuous attributes representing

measures of the energy within a particular frequency band. The task is to determine

whether the sonar image is a rock or a mine.

Soybean-large: This data set consists of 683 instances and 35 nominal attributes

describing leaf properties and various abnormalities. The task is to diagnose soybean

disease based on the measures and observations.

Splice: There are 3190 instances in this data set. Each instance is described by 61

nominal attributes (the instance name and the sequential DNA nucleotide positions).

There are three classes (donors, acceptors and neither).

Tic-tac-toe: This data set encodes the complete set of possible board configurations at the

end of tic-tac-toe games. There are 958 instances; each is described by 9 nominal

attributes and can be categorised into one of 2 classes.

Tokyo: This is performance co-pilot data for the Tokyo server at SGI. There are 961

instances in two classes (good, bad) and 46 continuous attributes.

177

Vehicle: This data set consists of 699 instances and 18 continuous attributes. The task is

to classify a given silhouette as one of four types of vehicles, using a set of features

extracted from the silhouette.

Vote: This data set includes votes for each of the U.S. House of Representatives

Congressmen on 16 key votes, such as water project cost sharing, crime and duty-free

exports. The problem is to identify whether a person is republican or democrat based on

these votes.

178

APPENDIX B

A PSEUDO-CODE OF THE AQ15 ALGORITHM

Let POS be a set of positive examples of class C.

Let NEG be a set of negative examples of class C.

Procedure AQ15 (POS, NEG):

Let COVER be the empty cover.

While COVER does not cover all positive examples in POS Do

Select a SEED, a positive example previously not covered by COVER.

Let STAR be STAR (SEED, NEG), a set of maximally general complexes that cover

SEED but no examples in NEG.

Let BEST be the best complex in STAR according to the user-defined preference criteria.

Add BEST as an extra disjunct to COVER.

Return COVER.

Procedure STAR (SEED, NEG):

Let STAR be the set containing the empty complex, which covers the whole domain.

While any complex in STAR covers some negative examples in NEG Do

Select a negative example Eneg covered by a complex in STAR.

Specialize complexes in STAR to exclude E„eg by:

Let EXTENSION be the set of all selectors that cover SEED but not Eneg.

Let STAR be the set (x a y I x e STAR, y e EXTENSION}.

Remove all complexes in STAR subsumed by other complexes.

Remove the worst complexes from STAR until the size of STAR is less than or equal

to the user-defined maximum star size, maxstar.

Return STAR. _________________________

Table B.l The AQ15 algorithm (Clark andNiblett, 1989).

APPENDIX C

THE CONTROL PROCEDURE OF THE CN2 ALGORITHM

FOR BOTH ORDERED AND UNORDERED RULES AS

WELL AS THE BEAM SEARCH PROCEDURE

Procedure CN2_Ordered (EXAMPLES, CLASSES):

Let RULELIST be the empty list.

Repeat

Let BESTCOMPLEX be FindBestComplex (EXAMPLES).

If BEST_COMPLEX is not null Then

Let CLASS be the most common class of examples covered by BEST_COMPLEX.

Add rule “If BEST_COMPLEX Then predict CLASS” to the end of the RULE LIST.

Remove from EXAMPLES all examples covered by BEST_COMPLEX.

End If

Until BEST COMPLEX is null.

If there are any examples left in EXAMPLES Then

Let CLASS be the most common class in EXAMPLES.

Add the default rule “Predict CLASS” to the end of the RULE LIST.

End If

Return RULE LIST.

Table C.l The CN2 ordered rules algorithm (Clark and Boswell, 1991).

Procedure CN2_Unordered (ALL_EXAMPLES, CLASSES):

Let RULESET be the empty list.

For each class in CLASSES Do

Let RULES be CN2_ForOneCIass (ALL EXAMPLES, CLASS).

Add RULES to RULE SET.

End For
Return RULE SET

Procedure CN2_ForOneCIass (ALL EXAMPLES, CLASS):

Let RULES be the empty set.

Repeat

Let BEST COMPLEX be FindBestComplex (EXAMPLES, CLASS).

If BEST COMPLEX is not null Then

Add the rule “If BEST COMPLEX Then predict CLASS” to RULES.

Remove from EXAMPLES all examples in CLASS covered by BEST_COMPLEX.

End If

Until BEST COMPLEX is null

Return RULES

Table C.2 The CN2 unordered rules algorithm (Clark and Boswell, 1991).

181

Procedure FindBestComplex (EXAMPLES [, CLASS]3):

Let MGC be the most general complex (= “true”).

Let STAR be the set containing only MGC (= {MGC}).

Let BEST COMPLEX be null.

While STAR is not empty Do

Let NEW_STAR be the empty set (= {}).

For each COMPLEX in STAR Do

For each possible attribute test TEST not already tested on in COMPLEX Do

Let NEWCOMPLEX be a specialization of COMPLEX, formed by adding

TEST as an extra conjunct to COMPLEX (i.e. NEW_COMPLEX =

COMPLEX & TEST).

If NEWCOMPLEX is better than BEST COMPLEX AND

NEWCOMPLEX is statistically significant Then

Let BEST COMPLEX = NEW_COMPLEX.

Add NEW COMPLEX to NEW STAR.

If size of NEW STAR > maxstar (a user-defined constant) Then

Remove the worst complex in NEW STAR.

End If

End If

End For

End For

Let STAR = NEW STAR.

End While

Return BEST COMPLEX.

3 CLASS is only required for generating unordered rules.

Table C.3 The CN2 rule search algorithm (Clark and Boswell, 1991).

182

REFERENCES

Agrawal, R., Imielinski, T. and Swami, A. (1993). Mining association rules between sets

of items in large databases. P ro c . o f A C M S IG M O D Conf. on M a n a g e m e n t o f D a ta ,

Washington D.C., pp. 207-216.

Aha, D. W. (1997). A r tif ic ia l I n te llig e n c e R e v ie w - Special issue on lazy learning. Vol.

11, pp. 7-10.

Aha, D. W. and Bankert, R. (1995). A comparative evaluation of sequential feature

selection algorithms. P ro c . o f th e 5 th Int. W o rk sh o p on A r tif ic ia l In te llig e n c e a n d

S ta tis tics , Ft, Lauderdale, pp. 1-7.

Aha, D., Kibler, D. and Albert, M. (1991). Instance-based learning algorithms. M a ch in e

L ea rn in g , Vol. 6, No. 1, pp. 37-66.

Akyol, D. E. (2004). Application of neural networks to heuristic scheduling algorithms.

C o m p u ters & In d u s tr ia l E n g in e e r in g , Vol. 46, pp. 679-696.

Almuallim, H. and Dietterich, T. (1994). Learning boolean concepts in the presence of

many irrelevant features. A r tif ic ia l In te llig e n c e , Vol. 69, No. 1-2, pp. 279-305.

An, A. and Cercone, N. (1999). Discretisation of continuous attributes for learning

classification rules. P ro c . o f th e 3 nl P a c if ic -A s ia C onf. on K n o w le d g e D is c o v e r y a n d D a ta

M in in g (P A K D D -9 9 '), Kyoto, Japan, pp. 509-514.

Apte, C. and Weiss, S. (1997). Data mining with decision trees and decision rules. F u tu re

G en era tio n C o m p u te r S y s te m s , Vol. 13, pp. 197-210.

Aronis, J. and Provost, F. (1997). Increasing the efficiency of data mining algorithms

with breadth-first marker propagation. P ro c . o f th e 3 r d Int. Conf. on K n o w le d g e

D isc o v e ry a n d D a ta M in in g , Newport Beach, CA, pp. 119-122.

Auer, p., Holte, R. C. and Maass, W. (1995). Theory and application of agnostic PAC-

leaming with small decision trees. P ro c . o f th e 1 2 th Int. Conf. on M a ch in e L e a rn in g ,

Tahoe City, California, USA, pp. 21-29.

Baluja, S. (1994). Population based incremental learning: A method for integrating

genetic search based function optimisation and competitive learning. T ech n ica l R e p o r t,

Carnegie Mellon University, CMU-CS-94-163.

Baluja, S. (1995). An empirical comparison of seven iterative and evolutionary function

optimisation heuristics. T e c h n ic a l R e p o r t , Carnegie Mellon University, CMU-CS-95-193.

Barron, A., Rissanen, J. and Yu, B. (1998). The minimum description length principle in

coding and modelling. IE E E T ra n sa c tio n s o n In fo rm a tio n T h eo ry , Vol. 44, No. 6, pp.

2743-2760.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification

algorithms: Bagging, boosting and variants. M a c h in e L e a rn in g , Vol. 36, pp. 105-139.

Bergadano, F., Giordana, A. and Saitta, L. (1988). Automated concept acquisition in

noisy environments. IE E E T ra n sa c tio n s on P a tte r n A n a ly s is a n d M a ch in e L e a rn in g , Vol.

10, pp. 555-578.

Bergadano, F., Matwin, S., Michalski, R. S. and Zhang, J. (1992). Learning tow-tiered

descriptions of flexible concepts: The POSEIDON system. M a ch in e L ea rn in g , Vol. 8, pp.

5-43.

184

Berka, P. and Bruha, I. (1998). Empirical comparison of various discretization

procedures. Int. J. o f P a tte rn R e c o g n itio n a n d A r tif ic ia l In te ll ig e n c e , Vol. 12, No. 7, pp.

1017-1032.

Bigot, S. (2003). N e w T ech n iq u es f o r H a n d lin g C o n tin u o u s V alues in In d u c tiv e L ea rn in g .

Ph.D. thesis, Systems Engineering Division, University of Wales, Cardiff, UK.

Birkendorf, A. (1997). On fast and simple algorithms for finding maximal subarrays and

applications on computational learning theory. L e c tu re N o te s in A r tif ic ia l In te llig e n c e ,

Vol. 1208, Heidelberg, Springer-Verlag, pp. 198-209.

Blake, C. L. and Merz, C. J. (1998). U C I R e p o s ito r y o f M a c h in e L e a rn in g D a ta b a se s .

University of California, Department of Information and Computer Science, Irvine, CA.

Available from: http://\v\v vv.ics.uci.edu/~-micam/MLRepositorv.html [Accessed: 1

February 2003].

Blockeel, H. and Sebag, M. (2003). Scalability and efficiency in multi-relational data

mining. A C M S I G K D D E x p lo ra tio n s N e w s le tte r , Vol. 5, No. 1, pp. 17-30.

Braha, D. (2001). D a ta M in in g f o r D e s ig n a n d M a n u fa c tu rin g : M e th o d s a n d

A p p lica tio n s . Kluwer Academic Publishers, Boston, MA.

Breiman, L. (1996a). Bagging predictors. M a c h in e L e a rn in g , Vol. 24, No. 2, pp. 123-

MO.

Breiman, L. (1996b). Stacked regressions. M a c h in e L e a rn in g , Vol. 24, No. 1, pp. 49-64.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). C la ss if ic a tio n a n d

R eg ress io n T rees. Belmont, Wadsworth.

185

http:///v/v

Breslow, A. and Aha, D. W. (1996). Simplifying decision trees: A survey. K n o w le d g e

E n g in eerin g R e v ie w , Vol. 12, pp. 1-40.

Brodley, C. E. and FriedI, M. A. (1999). Identifying mislabeled training data. J. o f

A rtif ic ia l In te llig en ce R e s e a r c h , Vol. 11, pp. 131-167.

Brunk, C. A. and Pazzani, M. J. (1991). An investigation of noise-tolerant relational

concept learning algorithms. P ro c . o f th e 8 th Int. W o rk sh o p on M a ch in e L earn in g ,

Evanston, Illinois, pp. 389-393.

Buntine, W. (1991). A T h eo ry o f L e a r n in g C la s s if ic a tio n R u le s . Ph.D. Thesis, School of

Computer Science, University of Technology, Sydney, Australia.

Cai, Z. (2001). T ech n ica l A s p e c ts o f D a ta M in in g . Ph.D. thesis, Systems Engineering

Division, University of Wales, Cardiff, UK.

Caruana, R. and Freitag, D. (1994). Greedy attribute selection. P ro c . o f th e 1 1 th Int. C onf.

on M ach in e L ea rn in g , New Brunswick, NJ, pp. 28-36.

Catlett, J. (1991a). M e g a in d u c tio n : M a c h in e L e a rn in g on V ery L a r g e D a ta b a s e s . Ph.D.

Thesis, School of Computer Science, University of Technology, Sydney, Australia.

Catlett, J. (1991b). On changing continuous attributes into ordered discrete attributes.

P roc . o f the E u ro p ea n W o rk in g S e s s io n o n L e a rn in g , Porto, Portugal, Springer-Verlag,

pp. 164-178.

Cendrowska, J. (1987). PRISM: An algorithm for inducing modular rules. Int. J. o f M an-

M ach in e S tu d ies , Vol. 27, pp. 349-370.

186

Cerquides, J. and Lopez de Mantaras, R. (1997). Proposal and empirical comparison of a

parallelizable distance based discretization method. P ro c . o f th e 3 rd Int. Conf. on

K n o w le d g e D is c o v e r y a n d D a ta M in in g , Newport Beach, CA, pp. 139-142.

Cervone, G., Panait, L. A. and Michalski, R. S. (2001). The development of the AQ20

learning system and initial experiments. P ro c . o f th e 1 0 th Int. S ym p o siu m on In te llig en t

In form ation S y s te m s , Poland, pp. 13-29.

Cestnik, B. (1990). Estimating probabilities: A crucial task in machine learning. P ro c . o f

th e 3 rd E u ro p ea n Conf. on A r t if ic ia l In te l l ig e n c e (E C A I-9 0), pp. 147-149.

Chan, P. and Stolfo, S. (1993). Toward parallel and distributed learning by meta-leaming.

W orking N o tes o f A A A I W o rk sh o p o n K n o w le d g e D is c o v e r y in D a ta b a s e s , pp. 227-240.

Chan, P. and Stolfo, S. (1997). On the accuracy of meta-leaming for scalable data

mining. J. o f In te llig e n t In fo rm a tio n S y s te m s , Vol. 8, pp. 5-28.

Chauvin, y. and Rumelhart, D. (1995). B a c k p ro b a g a tio n : T heory, A rc h ite c tu re a n d

A p p lica tio n s . Lawrence Erlbaum Associates, Hillsdale, NJ.

Ching, J. Y., Wong, A. K. C. and Chan, C. C. (1995). Class dependent discretization for

inductive learning from continuous and mixed-mode data. IE E E T ra n sa c tio n s on P a tte rn

A n a lysis a n d M a ch in e In te llig e n c e , Vol. 17, No. 7, pp. 641-651.

Chmielewski, M. R. and Grzymala-Busse, J. W. (1994). Global discretization of

continuous attributes as preprocessing for machine learning. P ro c . o f th e 3 >d Int.

W orkshop on R o u g h S e ts a n d S o ft C o m p u tin g , San Jose, CA, pp. 294-301.

Chryssolouris, G. and Subramaniam, V. (2001). Dynamic scheduling of manufacturing

job shops using genetic algorithms. J. o f I n te llig e n t M a n u fa c tu rin g , Vol. 12, pp. 281-293.

187

Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent improvements.

P roc. o f th e 5 ,h E u ro p ea n C onf. on A r t i f ic ia l In te ll ig e n c e , Porto, Portugal, pp. 151-163.

Clark, P. and Niblett, T. (1987). Induction in noisy domains. P ro c . o f the 2 nd E u ro p ea n

W orking S essio n on L e a rn in g , Sigma, Wilmslow, UK, pp. 11-30.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. M a ch in e L ea rn in g , Vol.

3, pp. 261-284.

Clearwater, S., Cheng, T., Hirsh, H. and Buchanan, B. (1989). Incremental batch

learning. P roc . o f th e 6 th Int. W o rk sh o p on M a c h in e L e a rn in g , San Mateo, CA, Morgan

Kaufmann, pp. 366-370.

Clearwater, S. and Provost, F. (1990). RL4: A tool for knowledge-based induction. P ro c .

o f the 2 nd Int. IE E E Conf. o n T o o ls f o r A r t if ic ia l In te llig e n c e , IEEE Press, pp. 24-30.

Cohen, W. W. (1993). Efficient pruning methods for separate-and-conquer rule learning

systems. P roc. o f th e 1 3 th Int. J o in t C onf. on A r tif ic ia l In te llig e n c e , Chambery, France,

pp. 988-994.

Cohen, W. W. (1995). Fast effective rule induction. P ro c . o f th e 1 2 th Int. Conf. on

M ach in e L ea rn in g , Tahoe City, California, USA, pp. 115-123.

Cohen, W. W. and Singer, Y. (1999). A simple, fast and effective rule learner. P ro c . o f

the 16 th N a tio n a l Conf. on A r tif ic ia l In te llig e n c e , Menlo Park, CA, AAAI/MIT Press, pp.

335-342.

Cook, D. and Holder, L. (1990). Accelerated learning on the connection machine. P roc .

o f the 2nd Int. IE E E C onf. on T o o ls f o r A r tif ic ia l In te llig en ce , San Mateo, CA, Morgan

Kaufmann, pp. 366-370.

188

Craven, M. W. and Shavlik, J. W. (1997). Using neural networks for data mining. F u tu re

G en era tio n C o m p u te r S y s te m s , Vol. 13, pp. 211-229.

Dash, M. and Liu, H. (1997). Feature selection for classification. In te llig e n t D a ta

A n a lysis , V ol. l,pp . 131-156.

Davis, L. (1991). H a n d b o o k o f G e n e tic A lg o r ith m s . Van Nostrand, New York.

De Raedt, L. (1992). Interactive concept-learning and constructive induction by analogy.

M ach in e L ea rn in g , Vol. 8, pp. 107-150.

Devijver, P. A. and Kittler, J. (1982). P a tte r n R e c o g n itio n : A S ta tis t ic a l A p p ro a c h .

Prentice Hall, Englewood Cliffs, London.

Dietterich, T. G. (1997). Machine learning research: Four current directions. A rtif ic ia l

In te llig en ce M a g a zin e , Vol. 18, No. 4, pp. 97-136.

Dietterich, T. G. (2000). An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. M a ch in e L ea rn in g ,

Vol. 40, pp. 139-157.

Dietterich, T. G. and Bakiri, G. (1995). Solving multi-class problems via error-correcting

output cods. J. o f A r tif ic ia l In te ll ig e n c e R e s e a r c h , Vol. 2, pp. 263-286.

Domingos, P. (1996). Efficient specific-to-general rule induction. P ro c . o f th e 2 nd Int.

C o n f on K n o w le d g e D is c o v e r y a n d D a ta M in in g , Menlo Park, CA, AAAI Press, pp. 319-

322.

Domingos, P. (1997a). Knowledge acquisition from examples via multiple models. P ro c .

o f the 14 th Int. C onf. on M a c h in e L e a rn in g , San Francisco, CA, Morgan Kaufmann, pp.

98-106.

189

Domingos, P. (1997b) A U n if ie d A p p r o a c h to C o n c e p t L ea rn in g . Ph.D. Thesis,

University of California, Irvine, USA.

Domingos, P. (1998). Knowledge discovery via multiple models. In te llig e n t D a ta

A n a lysis , Vol. 2, No. 1-4, pp. 187-202.

Domingos, P. and Pazzani, M. (1996). Beyond independence: Conditions for the

optimality of the simple Bayesian classifier. P ro c . o f th e 1 3 th Int. Conf. on M ach in e

L earn in g , Bari, Italy, Morgan Kaufmann, pp. 105-112.

Dougherty, J., Kohavi, R. and Sahami, M. (1995). Supervised and unsupervised

discretization of continuous features. P ro c . o f th e 1 2 th Int. C o n f on M a ch in e L ea rn in g ,

Tahoe City, California, USA, pp. 194-202.

Drobics, M. and Bodenhofer, U. (2002). Fuzzy modeling with decision trees. IE E E Int.

Conf. on S ystem s, M an a n d C y b e r n e tic s , Vol. 4, pp. 6-9.

Duch, W., Setiono, R. and Zurada, J. M. (2004). Computational intelligence methods for

rule-based data understanding. P ro c . o f th e IE E E , Vol. 92, No. 5, pp. 771-805.

Efron, B. and Tibshirani, R. (1993). A n In tro d u c tio n to th e B o o ts tra p . Chapman & Hall,

USA.

Elomaa, T. and Kaariainen, M. (2001). An analysis of reduced error pruning. J. o f

A rtif ic ia l In te llig en ce R e se a rc h , Vol. 15, pp. 163-187.

Elomaa, T. and Rousu, J. (1999a). Speeding up the search for optimal partitions. L e c tu re

N o tes in A r tif ic ia l In te llig e n c e , Vol. 1704, Springer-Verlag, pp. 89-97.

Elomaa, T. and Rousu, J. (1999b). General and efficient multisplitting of numerical

attributes. M a ch in e L e a rn in g , Vol. 36, No. 3, pp. 201-244.

190

Esposito, F., Malerba, D. and Semeraro, G. (1997). A comparative analysis of methods

for pruning decision trees. IE E E T ra n sa c tio n s on P a tte rn A n a ly s is a n d M ach in e

In te llig en ce , Vol. 19, No. 5, pp. 476-491.

Fayyad, U. M., Haussler, D. and Stolorz, P. (1996). KDD for science data analysis: Issues

and examples. P ro c . o f th e 2 nd Int. C onf. on D a ta M in in g a n d K n o w le d g e D isc o v e ry ,

Menlo Park, CA, AAAI Press, pp. 50-56.

Fayyad, U. M. and Irani, K. B. (1992). On the handling of continuous-valued attributes in

decision tree generation. M a c h in e L e a r n in g , Vol. 8, pp. 87-102.

Fayyad, U. M. and Irani, K. B. (1993). Multi-inteval discretization of continuous-valued

attributes for classification. P ro c . o f th e 1 3 th Int. J o in t C o n f on A r tif ic ia l In te llig e n c e ,

Chambery, France, pp. 1022-1027.

Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P. (1996a). From data mining to

knowledge discovery: An overview. In: A d v a n c e s in K n o w le d g e D is c o v e r y a n d D a ta

M ining (U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy, (Eds.)),

Menlo Park, CA, AAAI Press.

Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P. (1996b). Knowledge Discovery and

Data-Mining: Towards a unifying framework P ro c . o f th e 2 nd Int. C o n f on D a ta -M in in g

a n d K n o w le d g e D is c o v e r y , Menlo Park, CA, AAAI Press, pp. 82-88.

Fern, X. Z. and Brodley, C. E. (2003). Boosting lazy decision trees. P ro c . o f th e 2 0 th Int.

Conf. on M ach in e L e a rn in g , Washington, DC, pp. 178-185.

Fern, A. and Givan, R. (2003). Online ensemble learning: An empirical study. M ach in e

L earn in g , Vol. 53, pp. 71-109.

191

Ferri, C., Hemandez-Orallo, J. and Ramirez-Quintana, M. J. (2002). From ensemble

methods to comprehensible models. L e c tu re N o te s in C o m p u te r S c ien ce , Vol. 2534,

pp. 165 - 177.

Forsyth, R. S., Clarke, D. D. and Wright, R. L. (1994). Overfitting revisited: An

information theoretic approach to simplifying discrimination trees. J. o f E x p erim en ta l

a n d T h eo re tica l A r tif ic ia l I n te ll ig e n c e , Vol. 6, No. 3, pp. 289-302.

Frank, E. (2000). P ru n in g D e c is io n T rees a n d L is ts . Ph.D. Thesis, Department of

Computer Science, University of Waikato, Hamilton, New Zealand.

Frank, E. and Witten, I. H. (1998). Making better use of global discretization. P ro c . o f the

15th Int. Conf. on M a ch in e L ea rn in g , Madison, Wisconsin, USA, pp. 152-160.

Frank, E. and Witten, I. H. (1999). Reduced-error pruning with significant tests. W orkin g

p a p e r , Department of Computer Science, University of Waikato, Hamilton, New

Zealand.

Frayman, Y., Ting, K. M. and Wang, L. (1999). A fuzzy neural network for data mining:

Dealing with the problem of small disjuncts. IE E E Int. J o in t C onf. on N e u ra l N e tw o rk s

(IJC N N -99), Vol. 4, pp. 2490-2493.

Freitas, A. A. (2002). D a ta m in in g a n d k n o w le d g e d is c o v e r y w ith e v o lu tio n a ry

a lg o rith m s. Springer-Verlag, Berlin, New York.

Freitas, A. A. and Lavington, S. H. (1998). Mining very large databases with parallel

processing. K lu w e r A c a d e m ic P u b lis h e r s , Boston, MA.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. P roc .

o f the 13 th Int. Conf. on M a c h in e L e a r n in g , pp. 148-156.

192

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalisation of on-line

learning and an application to boosting. J. o f C o m p u te r a n d S ys tem S cien ces, Vol. 55, No.

l,pp. 119-139.

Friedman, J. H. (1996). On bias, variance, 0/1-loss, and the curse-of-dimensionality,

T echnical r e p o r t, Department of Statistics and Stanford Linear Accelerator Center,

Stanford University, Stanford, CA.

Fulton, T., Kasif, S. and Salzberg, S. (1995). Efficient algorithms for finding multi-way

splits for decision trees. P ro c . o f th e 1 2 th Int. C onf. on M a c h in e L e a rn in g , Tahoe City,

California, USA, Morgan Kaufmann, pp. 244-251.

Ftimkranz, J. (1994a). E ffic ien t P ru n in g M e th o d s f o r R e la tio n a l L e a rn in g . Ph.D. Thesis,

Technisch-Naturwissens chaftlichen Fakultat, Techniscen Universitat Wien.

Fiimkranz, J. (1994b). Top-down pruning in relational learning. P ro c . o f th e 11 th

E u ropean Conf. on A r tif ic ia l In te l l ig e n c e , Amsterdam, The Netherlands, pp. 453-457.

Fiimkranz, J. (1996). Pruning algorithms for rule learning. M a c h in e L e a rn in g , Vol. 27,

pp. 139-171.

Fiimkranz, J. (1998). Integrative windowing. J. o f A r tif ic ia l In te llig e n c e R esea rch , Vol.

8, pp. 129-164.

Ftimkranz, J. (1999). Separate-and-conquer rule learning. A rtif ic ia l In te llig e n c e R ev iew ,

Vol. 13, No. l,pp. 3-54.

Ftimkranz, J. and Widmer, G. (1994). Incremental reduced error pruning. P ro c . o f the

I I th Int. Conf. on M a ch in e L e a r n in g , New Brunswick, NJ, pp. 70-77.

193

Gehrke, J., Ramakrishnan, R. and Ganti, V. (1998). Rainforest - A framework for fast

decision tree construction of large datasets. P ro c . o f th e 2 4 th Int. Conf. on V ery L a rg e

D a ta B ases (V L D B), New York, USA, pp. 416-427.

Georgeff, M. P. and Wallace, C. S. (1984). A general selection criterion for inductive

inference. P roc. o f th e 8 th E u ro p e a n C onf. on A r tif ic ia l In te llig e n c e (E C A I-8 8), New

York, pp. 473-482.

Giudici, P. (2003). A p p l ie d D a ta M in in g : S ta t is t ic a l M e th o d s f o r B u sin ess a n d In d u stry .

John Wiley, England.

Goldberg, D. E. (1989). G e n e tic A lg o r ith m s in S ea rch , O p tim iza tio n , a n d M a ch in e

L ea rn in g . Addison-Wesley, Reading, MA.

Good, I. J. (1965). The E s tim a tio n o f P r o b a b i l i t ie s : A n E s s a y on M o d e rn B a y e s ia n

M eth ods. MIT Press, Cambridge, MA.

Graefe, G., Fayyad, U. and Chaudhuri, S. (1998). On the efficient gathering of sufficient

statistics for classification of large SQL databases. P ro c . o f th e 4 th Int. Conf. on

K n o w le d g e D is c o v e r y a n d D a ta -M in in g , New York, NY, AAAI Press, pp. 204-208.

Grunwald, P. (2000). Model selection based on minimum description length. J. o f

M a th em a tica l P s y c h o lo g y , Vol. 44, pp. 133-170.

Guha, S., Rastogi, R. and Shim, K. (1998). CURE: An efficient clustering algorithm for

large databases. P ro c . o f th e A C M S IG M O D C onf. on M a n a g e m e n t o f D a ta , Seattle, WA,

pp. 73-84.

Hall, L. O., Chawla, N. and Bowyer, K. W. (1998). Combining decision trees learned in

parallel. W orkin g N o te s o f th e K n o w le d g e D is c o v e r y in D a ta b a s e s (K D D -9 7) W orksh op

on D is tr ib u te d D a ta M in in g , pp. 10-15.

194

Hall, M. A. and Smith, L. A. (1998). Practical feature subset selection for machine

learning. P ro c . o f th e 2 1 st A u s tra lia n C o m p u te r S c ie n c e C o n f., Perth, Australia, pp. 181-
191.

Han, J. and kamber, M. (2001). D a ta M in in g : C o n c e p ts a n d T ech n iqu es. Academic Press,

USA.

Hansen, L. K. and Salamon, P. (1990). Neural Networks ensembles. IE E E T ra n sa c tio n s

on P a tte rn A n a ly s is a n d M a c h in e In te ll ig e n c e , Vol. 12, No. 10, pp. 993-1001.

Hassoun, M. H. (1995). F u n d a m e n ta ls o f A r tif ic ia l N e u r a l N e tw o rk s . MIT Press,

Cambridge, MA.

Haykin, S. S. (1994). N e u r a l N e tw o rk s : A C o m p re h e n s iv e F o u n d a tio n . Macmillan

College Publishing, New York.

Heckerman, D. (1996). Bayesian networks for knowledge discovery. In: A d v a n c e s in

K n o w le d g e D is c o v e r y a n d D a ta M in in g (U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth

and R. Uthurusamy, (Eds.)), Menlo Park, CA, AAAI Press, pp. 273-305.

Ho, K. M. and Scott, P. D. (1997). Zeta: A global method for discretization of continuous

variables. IE E E T ra n sa c tio n s on K n o w le d g e a n d D a ta E n g in e e r in g , Vol. 9, No. 5, pp.

718-730.

Hoffmann, F. (2004). Combining boosting and evolutionary algorithms for learning of

fuzzy classifications rules. Fuzzy Sets and Systems, Vol. 141, pp. 47-58.

Holland, J. H. (1975). A d a p ta tio n in N a tu r a l a n d A r tif ic ia l S ystem s. The University of

Michigan Press, Ann Arbor, MI.

195

Holte, R. C. (1993). Very simple classification rules perform well on most commonly

used data sets. M a ch in e L e a rn in g , Vol. 11, pp. 63-90.

Holte, R. C., Acker, L. E. and Porter, B. W. (1989). Concept learning and the problem of

small disjuncts. P ro c . o f th e 1 I th Int. J o in t C onf. on A r tif ic ia l In te llig en ce , Detroit,

Michigan, USA, pp. 813-818.

Ip, C. Y., Regli, W. C., Sieger, L. and Shokoufandeh, A. (2003). Automated learning of

model classification. P ro c . o f th e 8 ,h A C M S ym p o siu m on S o l id M o d e lin g a n d

A pplica tion s, Seattle, Washington, USA, ACM Press, pp. 322-327.

ISL. (1998). C lem en tin e D a ta M in in g P a c k a g e . SPSS UK Ltd., 1st Floor, St. Andrew's

House, West Street, Woking, Surrey, United Kingdom.

Jennings, N. R. (1996). Automated visual inspection of engine valve stem seals. In te rn a l

R e p o r t, Systems Engineering Division, University of Wales, Cardiff, UK.

Jiang, Y., Zhou, Z. H., and Chen, Z. Q. (2002). Rule learning based on neural network

ensemble. P roc. o f th e Int. J o in t C onf. on N e u r a l N e tw o rk s , Honolulu, HI, pp. 1416-1420.

John, G., Kohavi, R. and Pfleger, K. (1994). Irrelevant features and the subset selection

problem. P roc. o f th e 1 1 th Int. C onf. on M a c h in e L e a rn in g , New Brunswick, NJ, pp. 121-

129.

John, G. and Langley, P. (1996). Static versus dynamic sampling for data minig. P ro c . o f

the 2 ndInt. Conf. on K n o w le d g e D is c o v e r y a n d D a ta M in in g , AAAI Press, pp. 367-370.

Jun, B. H., Kim, C. S. and Kim, J. (1997). A new criterion in selection and discretisation

of attributes for the generation of decision trees. IE E E T ra n sa c tio n s on P a tte rn A n a ly s is

a n d M ach in e In te llig e n c e , Vol. 19, No. 12, pp. 1371-1375.

196

Kalbfleish, J. (1979). P r o b a b il i ty a n d S ta t is t ic a l In feren ce . Vol. 2, Springer-Verlag, New
York.

Karalic, A. (1992). Employing linear regression in regression tree leaves. P ro c . o f the 6th

E u ropean C o n f on A r tif ic ia l I n te l l ig e n c e , Vienna, Austria, pp. 440-441.

Kerber, R. (1992). ChiMerge: Discretization of numeric attributes. P ro c . o f th e 10 th

N a tio n a l C o n f on A r tif ic ia l I n te l l ig e n c e , San Jose, CA, pp. 123-128.

Klosgen, W. and Zytkow, J. M. (2002). H a n d b o o k o f D a ta M in in g a n d K n o w le d g e

D isc o v e ry . Oxford University Press, New York.

Kohavi, R. (1995a). W ra p p e rs f o r P e r fo r m a n c e E n h a n cem en ts a n d O b liv io u s D e c is io n

G raph s. Ph.D. Thesis, Department of Computer Science, Stanford University, Palo Alto,

CA.

Kohavi, R. (1995b). A study of cross-validation and bootstrap for accuracy estimation

and model selection. P ro c . o f th e 1 4 th Int. J o in t Conf. on A r tif ic ia l In te llig e n c e , Montreal,

Canada, Morgan Kaufmann, pp. 1 137-1143.

Kohavi R. and John G. H., (1997), Wrappers for feature subset selection. A rtif ic ia l

In te llig en ce J ., Vol. 97, No. 1, pp. 273-324.

Kohavi, R. and Sahami, M. (1996). Error-based and entropy-based discretization of

continuous features. P ro c . o f th e 2 nd Int. C onf. on K n o w le d g e D is c o v e r y in D a ta b a se s

(K D D), Montreal, Canada, AAAI Press, pp. 114-119.

Kontkanen, P., Myllymaki, P., Silander, T. and Tirri, H. (1997). A Bayesian approach to

discretisation. P ro c . o f th e E u ro p e a n S y m p o s iu m on In te llig e n t T ech n iq u es , Bari, Italy,

pp. 265-268.

197

Kovacic, M. (1994). S to c h a s tic In d u c tiv e L o g ic P ro g ra m m in g . Ph.D. Thesis, Faculty of

Electrical Engineering and Computer Science, University of Ljubljana.

Kramer, S. (1994). CN2-MCI: A two-step method for constructive induction. P ro c . o f the

W orkshop on C o n s tru c tiv e In d u c tio n a n d C h a n g e o f R e p re se n ta tio n , 11 th Int. Conf. on

M achine L ea rn in g (M L -9 4 /C O L T -9 4) , New Brunswick, New Jersey.

Krichevsky, R. E. and Trofimov, V. K. (1983). The performance of universal coding.

IE E E T ran saction s on In fo rm a tio n T h eo ry , Vol. IT-27, No. 2, pp. 199-207.

Kuncheva, L. I. and Whitaker, C. J. (2003). Measures of diversity in classifier ensembles

and their relationship with the ensemble accuracy. M a c h in e L e a rn in g , Vol. 51, pp. 181-

207.

Kurgan, L. and Cios, K. J. (2001). Discretisation algorithm that uses class-attribute

independence maximization. P ro c . o f th e 1 7 th Int. Conf. on A r tif ic ia l In te llig e n c e (IC -A I

2001), Las Vegas, Nevada, pp. 980-987.

Langley, P. and Kibler, D. (1988). Machine learning as empirical science. M a ch in e

L earn in g , Vol. 3, No. 1, pp. 5-8.

Lavrac, N., Motoda, H., Fawcett, T., Holte, R., Langley, P. and Adriaans, P. (2004).

Introduction: Lessons learned from data mining applications and collaborative problem

solving. M ach in e L e a rn in g , Vol. 57, pp. 13-34.

Lee, C. (1994). Generating classification rules from databases. P ro c . o f th e 9 th Conf. on

A p p lica tio n o f A r tif ic ia l In te llig e n c e in E n g in e e r in g , PA, USA, pp. 205-212.

Lewis, D. D. and Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised

learning. P roc. o f th e 1 l ,h Int. C onf. on M a c h in e L ea rn in g , New Brunswick, NJ, Morgan

Kaufmann, pp. 148-156.

198

Liu, H., Hussain, F., Tan, C. L. and Dash, M. (2002). Discretization: An enabling

technique. D a ta M in in g a n d K n o w le d g e D is c o v e r y , Vol. 6, pp. 393-423.

Liu, J. and Kwok, J. T. (2000). An extended genetic rule induction algorithm. P ro c . o f the

2 0 0 0 C o n g ress on E v o lu tio n a ry C o m p u ta tio n , California, USA, pp. 458-463.

Liu, J. and Setiono, R. (1997). Feature selection via discretisation. IE E E T ra n sa c tio n s on

K n o w le d g e a n d D a ta E n g in e e r in g , Vol. 9, No. 4, pp. 642-645.

Liu, H. and Setiono, R. (1998). Some issues on scalable feature selection. E x p e r t S ystem s

w ith A p p lica tio n s , Vol. 15, pp. 333-339.

Maass, W. (1994). Efficient agnostic PAC-leaming with simple hypotheses. P ro c . o f the

7th A n n u al A C M Conf. on C o m p u ta tio n a l L e a rn in g T h eo ry , New Brunswick, New Jersey,

USA, pp. 67-75.

Madigan, D., Raftery, A. E., Volinsky, C. T. and Hoeting, J. A. (1996). Bayesian model

averaging. P roc. o f th e W o rk sh o p on I n te g r a tin g M u ltip le L e a r n e d M o d e ls f o r Im p ro v in g

a n d S ca lin g M ach in e L e a rn in g A lg o r ith m s , Portland, OR, AAAI Press, pp. 77-83.

Markham, I. S., Mathieu, R. G. and Wray, B. A. (2000). Kanban setting through artificial

intelligence: A comparative study of artificial neural networks and decision trees.

In te g ra te d M a n u fa c tu rin g S y s te m s , Vol. 11, No. 4, pp. 239-246.

Megiddo, N. and Srikant, R. (1998). Discovering predictive association rules. P ro c . o f the

4 th Int. Conf. on K n o w le d g e D is c o v e r y in D a ta b a s e s a n d D a ta M in in g , New York, pp.

274-278.

Mehta, M., Agrawal, R. and Rissanen, J. (1996). SLIQ: A fast scalable classifier for data

mining. P roc. o f th e 5 th Int. Conf. o n E x te n d in g D a ta b a s e T ech n o lo g y , Avignon, France,

pp. 18-32.

199

Mehta, M., Rissanen, J. and Agrawal, R. (1995). MDL-based decision tree pruning.

P ro c e e d in g s o f th e 1st Int. C onf. on K n o w le d g e D is c o v e r y in D a ta b a s e s a n d D a ta M ining,

Montreal, Canada, 216-221.

Michalewicz, Z. (1996). G e n e tic A lg o r ith m s + D a ta S tru c tu res = E vo lu tio n P ro g ra m s.

3rd Edition, Springer-Verlag, Berlin.

Michalski, R. S. (1969). On the quasi-minimal solution of the general covering problem.

P roc. o f the 5 th Int. S ym p o s iu m on In fo rm a tio n P ro c e s s in g , Vol. A3 (Switching Circuits),

Bled, Yugoslavia, pp. 125-128.

Michalski, R. S. (2001). Natural induction: A theory and methodology. R e p o r ts o f the

M ach in e L ea rn in g a n d In fe re n c e L a b o ra to ry , M L I0 1 -1 , George Mason University,

Fairfax, VA.

Michalski, R. S. and Kaufman, K.A. (1999). A measure of description quality for data

mining and its implementation in the AQ18 learning system. P ro c . o f th e 1 9 9 9 Int. IL S C

C o n g ress on C o m p u ta tio n a l I n te ll ig e n c e M e th o d s a n d A p p lic a tio n s , Rochester, NY,

USA, pp. 369-375.

Michalski, R. S. and Kaufman, K.A. (2001). The AQ19 system for machine learning and

pattern discovery: A general description and user guide. R e p o r ts o f th e M a ch in e L e a rn in g

a n d In ference L a b o r a to r y , MLI 01-2, George Mason University, Fairfax, VA, USA.

Michalski, R. S. and Larson, J. B. (1983). Incremental generation of VL1 hypotheses:

The underlying methodology and the descriptions of program AQ11. IS G 8 3 -5 ,

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,

Illinois.

Michalski, R. S., Mozetic, I., Hong, J. and Lavrac, N. (1986). The multi-purpose

incremental learning system AQ15 and its testing application to three medical domains.

2 0 0

A m erica n A sso c ia tio n o f A r tif ic ia l In te ll ig e n c e , Los Altos, CA, Morgan Kaufmann, pp.

1041-1045.

Michie, D., Spiegelhalter, D. J. and Taylor, C. C. (1994). M a ch in e L ea rn in g , N eu ra l a n d

S ta tis tic a l C la ss if ic a tio n . Ellis Horwood, New York.

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree

induction. M ach in e L e a rn in g , Vol. 4, pp. 227-243.

Mitchell, M. (1996). A n In tro d u c tio n to G e n e tic A lg o r ith m s . MIT Press.

Mitchell, T. M. (1997). M a c h in e L e a rn in g . McGraw Hill, New York.

Mitchell, T. M. (1999a). Machine learning and data mining. C o m m u n ica tio n s o f the

A C M , Vol. 42, No. 11, pp. 31-36.

Mitchell, T. M. (1999b). The role of unlabeled data in supervised learning. P ro c . o f the

6th Int. C o lloqu iu m on C o g n itiv e S c ie n c e (IC C S -9 9), San Sebastian, Spain, pp. 1-8.

Monostori, L. (2002). AI and machine learning techniques for managing complexity,

changes and uncertainties in manufacturing. P ro c . o f th e 1 5 th T rien n ia l W o rld C o n g ress ,

Barcelona, Spain, pp. 119-130.

Moore, A. and Lee, M. (1998). Cached sufficient statistics for efficient machine learning

with large datasets. J. o f A r tif ic ia l In te ll ig e n c e R esea rch , Vol. 8, pp. 67-91.

Morimoto, Y., Fukuda, T., Matsuzawa, H., Tokuyama, T. and Yoda, K. (1998).

Algorithms for mining association rules for binary segmentations of huge categorical

databases. P roc . o f th e 2 4 th Int. C onf. on V ery L a rg e D a ta B a se s (V LD B), N e w York,

USA, pp.380-391.

201

Muggleton, S. (1995). F o u n d a tio n s o f In d u c tiv e L o g ic P ro g ra m m in g . Prentice Hall,
Englewood Cliffs, NJ.

Opitz, D. W. (1999). Feature selection for ensembles. P ro c . o f th e 1 6 th N a tio n a l C o n f on

A rtific ia l In te llig e n c e , Orlando, FL, pp. 379-384.

Oztiirk, N. and Ozturk, F. (2004). Hybrid neural network and genetic algorithm based

machining feature recognition. J. o f I n te ll ig e n t M a n u fa c tu r in g , Vol. 15, pp. 278-298.

Pagallo, G. and Haussler, D. (1990). Boolean feature discovery in empirical learning.

M ach in e L earn in g , Vol. 3, pp. 71-99.

Peng, Y. (2004). Intelligent condition monitoring using fuzzy inductive learning. J. o f

In te llig en t M an u factu rin g , Vol. 15, pp. 373-380.

Perez, E., Herrera, F. and Hernandez, C. (2003). Finding multiple solutions in job shop

scheduling by niching genetic algorithms. J. o f In te ll ig e n t M a n u fa c tu rin g , Vol. 14, pp.

323-339.

Pemer, P. and Trautzsch, S. (1998). Multi-interval discretization methods for decision

tree learning. In: A d v a n c e s in P a tte r n R e c o g n itio n (A. Amin, D. Dori, P. Pudil and H.

Freeman, (Eds.)), Vol. 1451 of LNCS, Springer-Verlag, pp. 475-482.

Pfahringer, B. (1995a). Compression-based discretization of continuous attributes. P roc .

o f the 12th Int. C o n f on M a c h in e L ea rn in g , Tahoe City, California, USA, Morgan

Kaufmann, pp. 339-350.

Pfahringer, B. (1995b). P r a c t ic a l U se s o f th e M in im u m D e sc r ip tio n L en g th P r in c ip le in

In du ctive L ea rn in g . Ph.D. Thesis, Institut Fur Med.Kybemetik u. AI, Techniscen

Universitat Wien.

2 0 2

Pfahringer, B. (1997). Compression-based pruning of decision lists. P ro c . o f the 14 th

E u ropean Conf. on M a ch in e L e a rn in g , Nashville, Tennessee, pp. 199-212.

Pham, D. T. and Afify, A. A. (2002). Machine learning: Techniques and trends. P roc . o f

the 9th Int. W ork sh o p on S y s te m s , S ig n a ls a n d Im a g e P r o c e s s in g (IW SSIP (02),

Manchester Town Hall, UK, World Scientific, pp. 12-36.

Pham, D. T. and Afify, A. A. (2004). Machine learning techniques and their applications

in manufacturing. Submitted to P ro c . o f th e In s titu tio n o f M e c h a n ic a l E n g in eers , Part B.

Pham, D. T., Afify, A. A. and Dimov, S. S. (2002). Machine learning in manufacturing.

P roc. o f the 3 rd C IR P Int. S e m in a r o n I n te ll ig e n t C o m p u ta tio n in M a n u fa c tu rin g

E n gin eerin g (IC M E 2 0 0 2) , Ischia, Italy, pp. III-XII.

Pham, D. T. and Aksoy, M. S. (1993). An algorithm for automatic rule induction.

A rtific ia l In te llig en ce in E n g in e e r in g , Elsevier Science Limited, pp. 227-282.

Pham, D. T. and Aksoy, M. S. (1995a). RULES: A simple rule extraction system. E x p e r t

S ystem s w ith A p p lic a tio n s , Vol. 8, No. 1, pp. 59-65.

Pham, D. T. and Aksoy, M. S. (1995b). A new algorithm for inductive learning. J. o f

S ystem s E n g in eerin g , Vol. 5, pp. 115-122.

Pham, D. T. and Dimov, S. S. (1997a). An efficient algorithm for automatic knowledge

acquisition. P a tte rn R e c o g n itio n , Vol. 30, No. 7, pp. 1137-1143.

Pham, D. T. and Dimov, S. S. (1997b). An algorithm for incremental inductive learning.

P roc. o f the In s titu tio n o f M e c h a n ic a l E n g in e e rs , Vol. 211, Part B, pp. 239-249.

Pham, D. T. and Dimov, S. S. (1998). An approach to concurrent engineering. P ro c . o f

the In stitu tion o f M e c h a n ic a l E n g in e e rs , Vol. 212, Part B, pp. 13-27.

203

Pham, D. T., Bigot, S. and Dimov, S. S. (2003). RULES-5: A rule induction algorithm

for problems involving continuous attributes. P ro c . o f th e In stitu tio n o f M ech a n ica l

E n gin eers, Vol. 217, Part C, pp. 1273-1286.

Pham, D. T., Bigot, S. and Dimov, S. S. (2004). RULES-5: A rule merging technique for

handling noise in inductive learning. Submitted to P ro c . o f th e In s titu tio n o f M ech a n ica l

E n gin eers, Part (C).

Pham, D. T., Dimov, S. S. and Salem, Z. (2000). Technique for selecting examples in

inductive learning. P ro c . o f th e E u ro p e a n S y m p o s iu m on In te llig e n t T ech n iqu es (E SIT -

2 0 0 0), Erudit Aachen Germany, pp. 119-127.

Pham, D. T. and Karaboga, D. (2000). In te ll ig e n t O p tim isa tio n T ech n iqu es: G en e tic

A lgorith m s, Tabu S earch , S im u la te d A n n e a lin g a n d N e u ra l N e tw o rk s . Springer-Verlag,

London.

Pham, D. T. and Liu, X. (1999). N e u r a l N e tw o rk s f o r Id en tifica tio n , P re d ic tio n a n d

C ontrol. Springer-Verlag, London.

Pham, D. T. and Oztemel, E. (1996). In te ll ig e n t Q u a lity S ys tem s . Springer-Verlag,

London.

Piatetsky-Shapiro, G., Brachman, R., Khabaza, T., Kloesgen, T. and Simoudis, E. (1996).

An overview of issues in developing industrial data mining and knowledge discovery

applications. P roc . o f th e 2 nd Int. C onf. on D a ta M in in g a n d K n o w le d g e D is c o v e r y , Menlo

Park, CA, AAAI Press, pp. 89-95.

Provost, F. (1992). P o lic ie s f o r th e S e le c tio n o f B ia s in In d u c tive M a ch in e L ea rn in g .

Ph.D. Thesis, Department of Computer Science, University of Pittsburgh, Pittsburgh, PA.

2 0 4

Provost, F. and Buchanan, B. (1996). Inductive policy: The pragmatics of bias selection.

M achine L e a rn in g , Vol. 20, pp. 35-61.

Provost, F. and Hennessy, D. (1994). Distributed machine learning: Scaling up with

coarse-grained parallelism. P ro c . o f th e 2 nd Int. Conf. on In te llig e n t S ys tem s f o r

M o lecu la r B io lo g y , AAAI Press.

Provost, F. and Hennessy, D. (1996). Scaling up: Distributed machine learning with

cooperation. P roc . o f th e 1 3 ,h N a tio n a l C onf. on A r tif ic ia l In te ll ig e n c e , Menlo Park, CA,

AAAI Press.

Provost, F., Jensen, D. and Oates, T. (1999). Efficient progressive sampling. P ro c . o f th e

5 th A C M S1G K D D Int. Conf. on K n o w le d g e D is c o v e r y a n d D a ta M in in g , San Diego, CA,

USA, pp. 23-32.

Provost, F. and Kolluri, V. (1999). A survey of methods for scaling up inductive

algorithms. D a ta M in in g a n d K n o w le d g e D is c o v e r y , Vol. 2, pp. 1-42.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to

chess endgames. In: M a c h in e L e a rn in g : A n A r tif ic ia l In te llig e n c e A p p ro a c h (R. S.

Michalski, J. G. Carbonell and T. M. Mitchell (Eds.)), Vol. I, Tioga Publishing Co., Palo

Alto, CA, pp. 463-482.

Quinlan, J. R. (1986). Induction of decision trees. M a ch in e L e a rn in g , Vol. 1, pp. 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. Int. J. o f M a n -M a ch in e S tu d ie s , Vol.

27, pp. 221-234.

Quinlan, J. R. (1989). Unknown attribute values in induction. P ro c . o f th e 6 th Int.

W orkshop on M a ch in e L ea rn in g , Ithaca, New York, Morgan Kaufmann, pp. 164-173.

2 0 5

Quinlan, J. R. (1990). Learning logical definitions from relations. M a ch in e L earn in g ,

Vol. 5, pp. 239-266.

Quinlan, J. R. (1993). C 4 .5 : P r o g r a m s f o r M a c h in e L ea rn in g . Morgan Kaufmann, San

Mateo, CA.

Quinlan, J. R. (1994). The minimum description length principle and categorical theories.

P roc. o f the 1 1th Int. Conf. on M a c h in e L e a rn in g , New Brunswick, NJ, pp. 233-241.

Quinlan, J. R. (1995). MDL and categorical theories (continued). P ro c . o f th e 1 2 th Int.

Conf. on M ach in e L e a rn in g , Tahoe City, California, USA, pp. 464-470.

Quinlan, J. R. (1996a). Bagging, boosting and C4.5. P ro c . o f th e 1 3 th N a tio n a l Conf. on

A rtif ic ia l In te lligen ce , AAAI Press and the MIT Press, pp. 725-730.

Quinlan, J. R. (1996b). Improved use of continuous attributes in C4.5. J. o f A r tif ic ia l

In te llig en ce R esea rch , Vol. 4, pp. 77-90.

Quinlan, J. R. and Cameron-Jones, R. M. (1995). Over-searching and layered search in

empirical learning. P ro c . o f th e 1 4 th Int. J o in t C onf. on A r tif ic ia l In te llig e n c e , Montreal,

Quebec, Canada, pp. 1019-1024.

Quinlan, J. R. and Rivest, R. L. (1989). Inferring decision trees using minimum

description length principle. In fo rm a tio n a n d C o m p u te r , Vol. 80, pp. 227-248.

Ramoni, M. and Sebastiani, P. (2001). Robust learning with missing data. M a ch in e

L earn in g , Vol. 45, No. 2, pp. 147-170.

Rastogi, R. and Shim, K. (1998). PUBLIC: A decision tree classifier that integrates

building and pruning. P ro c . o f th e 2 4 th Int. Conf. on Very L a rg e D a ta B a se s (VLD B),

New York, USA, pp. 404-415.

2 0 6

Rendell, L. (1989). Comparing systems and analysing functions to improve constructive

induction. P ro c . o f th e 6 th Int. W o rk sh o p on M a ch in e L ea rn in g , Ithaca, New York,

Morgan Kaufmann, pp.461-464.

Richeldi, M. and Rossotto, M. (1995). Class-driven statistical discretisation of continuous

attributes. P roc . o f th e 12 th E u ro p e a n C onf. on M a ch in e L ea rn in g , Heraclion, Crete,

Greece, Springer-Verlag, pp. 335-338.

Rissanen, J. (1986). Stochastic complexity and modelling. A n n a ls o f S ta tis tic s , Vol. 14,

No. 3, pp. 1080-1100.

Rivest, R. (1987). Learning decision lists. M a c h in e L e a rn in g , Vol. 2, pp. 229-246.

v
Robnik-Sikonja, M. and Kononenko, I. (1998). Pruning regression trees with MDLP.

P roc. o f the 13 th E u ro p ea n C onf. on A r tif ic ia l In te llig e n c e (E C A I-98), Brighton, UK,

Wiley, pp. 455-459.

Rousu, J. (2001). E ffic ien t R a n g e P a r t i t io n in g in C la ss if ic a tio n L ea rn in g . Ph.D. Thesis,

Department of Computer Science, University of Helsinki, Finland.

RuleQuest. (2001). Data Mining Tools C5.0. Pty Ltd, 30 Athena Avenue, St Ives NSW

2075, Australia. Available from: http://www.rulequest.com/see5-info.html [Accessed: 1

February 2003].

Schaffer, C. (1993). Overfitting avoidance as bias. M a ch in e L ea rn in g , Vol. 10, pp. 153-

178.

Schapire, R. (1997). Using output codes to boost multiclass learning problems. P ro c . o f

the I4 'hInt. Conf. on M a c h in e L e a rn in g , San Francisco, CA, Morgan Kaufmann, pp. 313-

321.

2 07

http://www.rulequest.com/see5-info.html

Schapire, R. (1999). Theoretical views of boosting. P ro c . o f th e 4 th E u ro p ea n Conf. on

C o m p u ta tio n a l L e a rn in g T h eo ry , Nordkirchen, Germany, pp. 1-10.

Schapire, R., Freund, Y., Bartlett, P. and Lee, W. S. (1997). Boosting the margin: A new

explanation for the effectiveness of voting methods. P ro c . o f the 1 4 th Int. Conf. on

M achine L ea rn in g , San Francisco, CA, Morgan Kaufmann, pp. 322-330.

Segal, R. B. (1997). M a c h in e L e a rn in g a s M a ss iv e S ea rch . Ph.D. Thesis, Department of

Computer Science and Engineering, University of Washington, USA.

Sethi, I. and Savarajudu, G. (1982). Flierarchical classifier design using mutual

information. IE E E T ra n sa c tio n s P a tte r n A n a ly s is a n d M a ch in e In te llig e n c e , Vol. 4, pp.

441-445.

Shafer, J., Agrawal, R. and Mehta, M. (1996). SPRINT: A scalable parallel classifier for

data mining. P ro c . o f th e 2 2 nd Int. C onf. on V ery L a r g e D a ta B a se s (V L D B), Mumbai

(Bombay), India, pp. 544-555.

Smyth, P. and Goodman, R. (1992). An information theoretic approach to rule induction

from databases. IE E E T ra n sa c tio n s on K n o w le d g e a n d D a ta E n g in eer in g , Vol. 4, No. 4,

pp. 301-316.

Ting, K. M. (1994). Discretization of continuous-valued attributes and instance-based

learning. T ech n ica l R e p o r t 4 9 1 , Basser Department of Computer Science, University of

Sydney, Australia.

Ting, K. M. and Witten, I. H. (1997). Stacked generalization: when does it work? P ro c .

o f the 15th Int. J o in t Conf. on A r tif ic ia l In te llig e n c e , Morgan Kaufmann, Nagoya, Japan,

pp. 250-265.

2 0 8

Tirri, H. (2001). MDL and classification in machine learning. P ro c . o f th e N eu ra l

In form ation P r o c e s s in g S y s te m s (N IP S) W ork sh o p on M in im u m D e sc r ip tio n L en gth ,

Whistler, British Columbia, Canada.

Towell, G. G. and Shavlik, J. W. (1993). The extraction of refined rules from knowledge-

based neural networks. M a c h in e L e a rn in g , Vol. 13, No. 1, pp. 71-101.

Trautzsch, S. and Perner, P. (1996). A comparison of different multi-interval

discretization methods for decision tree learning. In s titu te o f C o m p u te r V ision a n d

A p p lie d C o m p u ter S c ie n c e , Germany. Available from: http://lareina.imise.uni-

leipzig.de/~perner [Accessed: 1 February 2003].

Tsang, E. C. C., Li, H., Veung, D. S. and Lee, J. W. T. (2000). Fuzzy weighted

classification rules induction from data. IE E E Int. Conf. on S ystem s, M an, a n d

C ybern etics, Vol. 1, pp. 230-235.

Ventura, D. (1995). O n D is c r e t iz a tio n a s a P r e p r o c e s s in g S te p f o r S u p e r v is e d L e a rn in g

M odels. M.Sc. Thesis, Brigham Young University, Provo, UT.

Ventura, D. and Martinez, T. R. (1995). An empirical comparison of discretization

methods. P roc. o f th e 1 0 4 th Int. S y m p o s iu m on C o m p u te r a n d In fo rm a tio n S c ie n c e s , pp.

164-178.

Wallace, C. S. and Patrick, J. D. (1993). Coding decision Trees. M a ch in e L ea rn in g , Vol.

11, pp. 7-22.

Wang, C., Hong, T. and Tseng, S. (1996). Inductive learning from fuzzy examples. P roc .

o f the 5 th IE E E Int. Conf. on F u zzy S y s te m s , Vol. 1, pp. 13-18.

Wang, K. and Liu, B. (1998). Concurrent discretisation of multiple attributes. P ro c . o f the

5 th P a c ific R im Int. Conf. on A r tif ic ia l In te llig e n c e , Singapore, pp. 250-259.

2 0 9

http://lareina.imise.uni-

Webb, G. (1993). Systematic search for categorical attribute-value data-driven machine

learning. P roc . o f th e 6 th A u s tra lia n J o in t Conf. on A r tif ic ia l In te llig e n c e (.A I-94),

Melbourne, World Scientific, pp. 342-347.

Webb, G. (1995). OPUS: An efficient admissible algorithm for unordered search. J. o f

A rtific ia l In te llig en ce R e s e a r c h , Vol. 3, pp. 431-465.

Weiss, G. M. (1995). Learning with rare cases and small disjuncts. P ro c . o f th e 1 2 th Int.

Conf. on M ach in e L ea rn in g , Tahoe City, California, USA, pp. 558-565.

Weiss, G. M. and Hirsh, H. (1998). The problem with noise and small disjuncts. P ro c . o f

the 15th Int. Conf. on M a ch in e L e a rn in g , Madison Wisconsin, USA, Morgan Kaufmann,

pp. 574-578.

Weiss, G. M. and Hirsh, H. (2000). A quantitative study of small disjuncts. P ro c . o f the

17th N a tio n a l Conf. on A r tif ic ia l In te ll ig e n c e , Austin, Texas, pp. 665-670.

Weiss, S. and Indurkhya, N. (1991). Reduced complexity rule induction. P ro c . o f th e 12 th

Int. Jo in t Conf. on A r tif ic ia l In te llig e n c e , Sydney, Australia, Morgan Kaufmann, pp. 678-

684.

Witten, I. H. and Frank, E. (2000). D a ta M in in g: P r a c tic a l M a ch in e L e a rn in g T oo ls a n d

Techniques w ith J a v a Im p le m e n ta tio n s . Morgan Kaufmann Publishers, USA.

Wneck, J. and Michalski, R. S. (1994). Hypothesis-driven constructive induction in

AQ17-HCI: A method and experiments. M a ch in e L ea rn in g , Vol. 14, No. 2, pp. 139-168.

Wolpert, D. (1992). Stacked generalization. N e u ra l N e tw o rk s , Vol. 5, pp. 241-259.

2 1 0

Wong, A. K. C. and Chiu, D. K. Y. (1987). Synthesizing statistical knowledge from

incomplete mixed-mode data. IE E E T ra n sa c tio n s on P a tte rn A n a ly s is a n d M ach in e

In te llig en ce , Vol. 9, No. 6, pp. 796-805.

Wray, B. A., Rakes, T. R. and Rees, L. (1997). Neural network identification of critical

factors in dynamic just-in-time kanban environment. J. o f In te llig e n t M a n u fa c tu rin g , Vol.

8, pp. 83-96.

Wu, X. (1996). A Bayesian discretizer for real-valued attributes, C o m p u te r J o u rn a l, Vol.

39, No. 8, pp. 688-694.

Wu, X., Chu, C. H., Wang, Y. and Yan, W. (2002). A genetic algorithm for integrated

cell formation and layout decisions. P ro c . o f th e C o n g re ss on E v o lu tio n a ry C o m p u ta tio n

(C E C -02). V oL 2, pp. 1866-1871.

Wu, X. and Lo, W. H. (1998). Multi-layer incremental induction. P ro c . o f th e 5 th P a c if ic

R im Int. Conf. on A r tif ic ia l In te l l ig e n c e , Singapore, pp. 24-32.

Yang, J. and Honavar, V. (1998). Feature selection using a genetic algorithm. IE E E

In te lligen t S ystem s, Vol. 13, No. 2, pp. 44-49.

Ye, N. and Li, X. (2002). A scalable incremental learning algorithm for classification

problems. C o m p u ters & In d u s tr ia l E n g in e e r in g , Vol. 43, pp. 677-692.

Zaki, M. (1998). S c a la b le D a ta M in in g f o r R u les. Ph.D. Thesis, Department of Computer

Science, University of Rochester, Rochester, NY.

Zaki, M. J., Ho, C. and Agrawal, R. (1999). Scalable parallel classification for data

mining on shared memory multiprocessors. P ro c . o f th e 1 5 th IE E E Int. Conf. on D a ta

E ngineering, Sydney, Australia, pp. 198-205.

Zhang, X., Mesirov, J. and Waltz, D. (1992). A hybrid system for protein secondary

structure prediction. J. o f M o le c u la r B io lo g y , Vol. 225, pp. 1049-1063.

Zhang, T., Ramakrishnan, R. and Livny, M. (1997). BIRCH: A new data clustering

algorithm and its applications. Int. J. o f D a ta M in in g a n d K n o w le d g e D is c o v e r y , Vol. 1,

No. 2, pp. 141-182.

Zhang, S. and Wu, X (2001). Large scale data mining based on data partitioning. A p p lie d

A rtific ia l In te llig en ce , Vol. 15, pp. 129-139.

Zhou, Z. H., Jiang, Y. and Chen, S. F. (2000). A general neural framework for

classification rule mining. Int. J. o f C o m p u te rs , S ystem s, a n d S ig n a ls , Vol. 1, No. 2, pp.

154-168.

Zighed, D. A., Rakotomalala, R. and Feschet, F. (1997). Optimal multiple intervals

discretization of continuous attributes for supervised learning. P ro c . o f th e 3 rd Int. C onf.

on K n o w le d g e D is c o v e r y a n d D a ta M in in g (K D D -9 7), Newport beach, California, USA,

AAAI Press, pp. 295-298.

