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ABSTRACT

Machine learning has been studied intensively during the past two decades. One 

motivation has been the desire to automate the process of knowledge acquisition during 

the construction of expert systems. The recent emergence of data mining as a major 

application for machine learning algorithms has led to the need for algorithms that can 

handle very large data sets. In real data mining applications, data sets with millions of 

training examples, thousands of attributes and hundreds of classes are common. 

Designing learning algorithms appropriate for such applications has thus become an 

important research problem.

A great deal of research in machine learning has focused on classification learning. 

Among the various machine learning approaches developed for classification, rule 

induction is of particular interest for data mining because it generates models in the form 

o f IF-THEN rules which are more expressive and easier for humans to comprehend. One 

weakness with rule induction algorithms is that they often scale relatively poorly with 

large data sets, especially on noisy data. The work reported in this thesis aims to design 

and develop scalable rule induction algorithms that can process large data sets efficiently 

while building from them the best possible models.

There are two main approaches for rule induction, represented respectively by CN2 and 

the AQ family of algorithms. These approaches vary in the search strategy employed for 

examining the space of possible rules, each of which has its own advantages and 

disadvantages. The first part of this thesis introduces a new rule induction algorithm for 

learning classification rules, which broadly follows the approach of algorithms 

represented by CN2. The algorithm presents a new search method which employs several 

novel search-space pruning rules and rule-evaluation techniques. This results in a highly 

efficient algorithm with improved induction performance.

Real-world data do not only contain nominal attributes but also continuous attributes. The 

ability to handle continuously valued data is thus crucial to the success of any general



purpose learning algorithm. Most current discretisation approaches are developed as pre- 

processes for learning algorithms. The second part of this thesis proposes a new approach 

which discretises continuous-valued attributes during the learning process. Incorporating 

discretisation into the learning process has the advantage of taking into account the bias 

inherent in the learning system as well as the interactions between the different attributes. 

This in turn leads to improved performance.

Overfitting the training data is a major problem in machine learning, particularly when 

noise is present. Overfitting increases learning time and reduces both the accuracy and 

the comprehensibility of the generated rules, making learning from large data sets more 

difficult. Pruning is a technique widely used for addressing such problems and 

consequently forms an essential component of practical learning algorithms. The third 

part of this thesis presents three new pruning techniques for rule induction based on the 

Minimum Description Length (MDL) principle. The result is an effective learning 

algorithm that not only produces an accurate and compact rule set, but also significantly 

accelerates the learning process.

RULES-3 Plus is a simple rule induction algorithm developed at the author’s laboratory 

which follows a similar approach to the AQ family of algorithms. Despite having been 

successfully applied to many learning problems, it has some drawbacks which adversely 

affect its performance. The fourth part of this thesis reports on an attempt to overcome 

these drawbacks by utilising the ideas presented in the first three parts of the thesis. A 

new version of RULES-3 Plus is reported that is a general and efficient algorithm with a 

wide range of potential applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent developments in information technology have facilitated the collection and 

storage of massive amounts of data. It is no longer practical to rely on traditional manual 

data analysis due to the large amount of data involved. To utilise this abundant data 

resource effectively, a way of distilling information and knowledge from the data has to 

be found. There is a need for effective techniques to refine such data.

Statistics is a powerful tool in data analysis. From a modelling perspective, it mainly 

focuses on finding a model to fit the available data. However, this model is usually 

determined a priori and comes from a restricted set, e.g. a linear model, or additive 

Gaussian model. There are also computational and theoretical difficulties in applying 

statistical methods to data having high dimensions and large volumes. Furthermore, it is 

not easy for a user to employ statistical modelling techniques without a deep knowledge 

of statistics and the underlying domain.

Machine learning helps this work by finding patterns, trends and dependencies hidden in 

the data and inducing models that have predictive power. Machine learning techniques 

have greatly extended and enhanced traditional statistical data analysis. However, they 

also have limitations. First, the volume of data these techniques can handle is usually



small. Second, they concentrate on simulating the reasoning intelligence of human beings 

while ignoring important practical issues such as how to prepare the data. Consequently, 

the applications of these techniques are generally limited to particular areas, e.g. medical 

diagnosis.

The new field of data mining (DM) has attracted research efforts from the domains of 

databases, enterprise information systems, statistics, machine learning, artificial 

intelligence and pattern recognition with the aim of transferring the rich data possessed 

by enterprises into rich knowledge for better decision making. Data mining includes all 

the activities involved in finding interesting patterns in data. A clear definition of data 

mining is given in (Fayyad et al., 1996a).

“Data mining, which is also referred to as knowledge discovery in databases 

(KDD), means a process o f  nontrivial extraction o f  implicit, previously unknown 

and potentially useful information, such as rules, constraints, regularities from  

data in databases

The most important step in data mining concerns applying appropriate data mining 

algorithms to the prepared data. There are many different kinds of algorithms, such as 

those for association rule discovery (Agrawal et al., 1993; Megiddo and Srikant, 1998), 

classification learning (Quinlan, 1993; Cohen, 1995; Mehta et al., 1996; Shafer et al., 

1996; Rastogi and Shim, 1998), and clustering (Zhang et al., 1997; Guha et al., 1998).
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Classification learning is the most common data mining technique. It employs a set of 

pre-categorised examples to develop a model that can classify new examples from the 

same population. Classification learning has a wide range of applications, including 

scientific experimentation, manufacturing, telecommunications, medical diagnosis, fraud 

detection, credit approval and target marketing (Braha, 2001; Monostori, 2002; Pham et 

al., 2002; Lavrad et al., 2004; Pham and Afify, 2004). Among the techniques developed 

for classification learning, popular ones include inductive learning algorithms such as 

decision tree induction and rule induction, instance-based learning, neural networks, 

genetic algorithms and Bayesian learning algorithms (Han and kamber, 2001; Witten and 

Frank, 2000; Giudici, 2003). Among these techniques, inductive learning techniques are 

particularly suited to data mining (Apte and Weiss, 1997; Pham and Afify, 2002). They 

are simple and fast. Another advantage is that they generate models that are easy to 

understand. Finally, inductive learning classifiers are more accurate compared with other 

classification techniques.

Inductive learning algorithms have proven to be valuable, practical tools for 

classification, but run into difficulties in their application to large, complex problems. 

Most existing algorithms are prohibitively inefficient when it comes to dealing with large 

data sets (Aronis and Provost, 1997). One of the defining challenges for the knowledge 

discovery and data mining community is to develop inductive learning algorithms that 

can scale up to large data sets (Fayyad et al., 1996; Fayyad et al., 1996b; Piatetsky- 

Shapiro et al., 1996; Mitchell, 1999a; Provost and Kolluri, 1999; Klosgen and Zytkow, 

2002). “Scalability” means the ability of an algorithm to process large data sets
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efficiently, while building from them the best possible models. However, the existence of 

very large data sets is not the only reason for scalability. The most cited reason for 

scaling up is that increasing the size of the training set often improves the accuracy of 

learned classification models (Catlett, 1991a). Another reason is that scaling up to very 

large data sets implies, in part, that fast learning algorithms must be developed. There are, 

however, other motivations for fast learning. For example, interactive induction, in which 

an inductive learner and a human analyst interact in real time, requires very fast learning 

algorithms in order to be practical. Wrapper approaches, which for a particular problem 

and algorithm iteratively search for feature subsets or good parameter settings (Provost, 

1992; Kohavi, 1995a; Provost and Buchanan, 1995; Kohavi and John, 1997), also require 

very fast learning because such systems run the learning algorithms multiple times, 

evaluating them under different conditions. Furthermore, each evaluation may involve 

multiple runs to produce performance statistics (e.g., using cross-validation). As a final 

example, the popular practice of learning multiple models and combining their 

predictions also multiplies the execution time.

Different techniques have been proposed and implemented for scaling up inductive 

learning algorithms. Several scalable decision tree learning algorithms have been 

developed, which are considerably faster than their predecessors (Mehta et al., 1996; 

Shafer et al., 1996; Rastogi and Shim, 1998). However, due to its representation of rules 

and its strategy for induction, decision tree learning has a number of problems. The first 

problem is called the replication problem (Pagallo and Hausseler, 1990). It often happens 

that identical subtrees have to be learned at various places in a decision tree. Another

4



problem is known as the redundancy problem (Cendrowska, 1987). By minimising the 

average entropy of a set of instances, a decision tree algorithm, such as ID3, disregards 

the fact that some attributes or attribute values may be irrelevant to a particular 

classification. Rule induction algorithms, on the other hand, do not suffer from these 

problems. They have the advantage that the knowledge of domain experts can be 

incorporated into the rule learning process. Also, rule induction algorithms can be 

extended naturally to the first-order inductive logic programming framework (Fumkranz, 

1999). One weakness with rule induction algorithms, however, is that they often scale 

relatively poorly with the sample size, particularly on noisy data. Given the prevalence of 

large noisy data sets in real-world applications, this problem is of critical importance.

1.2 Research Objectives

The overall aim of this research was to design and develop scalable rule induction 

algorithms suitable for data mining applications. These algorithms should be able to 

handle large noisy data sets in an efficient and effective way. Moreover, they should be 

able to deal properly with both continuous and nominal attributes. Finally, their generated 

models should be comprehensible to users without machine learning expertise. 

Accordingly, they would be able to achieve good accuracy, compact rule sets and fast 

execution times. To achieve the overall aim of the research, the following objectives were 

set:

♦ To perform a detailed analysis of existing machine learning techniques for 

classification learning, with particular emphasis on inductive learning, and to assess their 

appropriateness for data mining applications.
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♦ To develop computationally efficient rule induction algorithms that can scale up well 

to larger and more complex problems.

♦ To design a fast and effective on-line discretisation method for use in rule induction 

algorithms.

♦ To develop new pruning techniques for rule induction algorithms that can significantly 

reduce rule-set sizes and execution times, and also improve accuracy.

1.3 Thesis Organisation

The remainder of the thesis is organised as follows:

Chapter 2 defines the classification learning problem, presents a framework for viewing 

approaches to it, discussing in some detail inductive learning algorithms and briefly 

reviews other machine learning approaches. Current trends and recent developments in 

machine learning research are also presented.

Chapter 3 presents a new rule induction algorithm which broadly follows the approach of 

CN2-like learning algorithms. The proposed algorithm uses advanced search techniques 

and rule-space pruning strategies to efficiently explore the exponential rule spaces 

involved in many learning problems. These techniques and strategies are detailed and 

analysed. A comprehensive empirical evaluation of the algorithm is also reported and 

discussed.
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Chapter 4 proposes a new method for discretising continuous-valued attributes during the 

learning process. The chapter starts with a review of current discretisation approaches in 

classification learning and is followed by a detailed description of the new discretisation 

method. Finally, the chapter gives the results of experiments carried out to demonstrate 

the performance of the proposed method.

Chapter 5 addresses the problem of handling noisy data by developing three novel 

pruning techniques that can be used with rule induction systems. These techniques are 

built on the theoretically sound Minimum Description Length (MDL) principle. The 

chapter first reviews previous work on pruning in the context of inductive learning. The 

principles of MDL as used in pruning and a modified coding scheme are then presented. 

This is followed by a description of the complete pruning techniques. Finally, the 

performance results are discussed.

Chapter 6 focuses on the improvement of a simple rule induction algorithm, RULES-3 

Plus, based on the results of the last three chapters. RULES-3 Plus, which follows the 

approach of AQ-like learning family of algorithms, is extended so that it works faster and 

can effectively handle continuous attributes and noisy data. The chapter first gives a brief 

description of the RULES-3 Plus algorithm. Then, extensions to the algorithm are 

discussed. Finally, details of the various conducted experiments are provided.

Finally, chapter 7 summarises the contributions and conclusions of the thesis and 

proposes directions for further research.

7



Appendix A describes all the data sets used in this work.

Appendix B contains a pseudo-code of the AQ15 algorithm.

Appendix C shows the control procedure of the CN2 algorithm for both ordered and 

unordered rules as well as the beam search procedure.
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CHAPTER 2

APPROACHES TO CLASSIFICATION LEARNING

2.1 Preliminaries

Artificial intelligence is a subfield of computer science, which is concerned with 

designing intelligent computer systems, that is, systems that exhibit the characteristics 

associated with intelligence in human behaviour -  understanding language, learning, 

reasoning, solving problems, and so on. Learning is clearly one of the hallmarks of 

intelligence and the subfield of artificial intelligence concerned with it is called machine 

learning. The field of machine learning is concerned with enabling computer programs 

automatically to improve their performance at some tasks through experience.

A great deal of research in machine learning has focused on concept learning or 

classification learning, that is, the task of inducing the definition of a general category 

from specific positive and negative examples of that category. Among the various 

machine learning approaches developed for classification, inductive learning from 

instances is perhaps the most commonly adopted in real-world application domains. 

Inductive learning is the inference of general patterns from data. The study of inductive 

learning is mainly motivated by the desire to automate the process of knowledge 

acquisition during the construction of expert systems. Inductive learning has gained 

attention recently in the context of data mining (DM) and knowledge discovery in 

databases (KDD).



This chapter gives an overview of machine learning approaches to classification learning. 

The chapter is organised as follows. Section 2 formally defines the classification learning 

problem and presents a framework for viewing approaches to it. Section 3 describes in 

some detail different techniques for inductive learning. Section 4 briefly reviews other 

major machine learning approaches. Current trends and recent developments in machine 

learning research are presented in Section 5. Section 6 concludes the chapter with a 

summary of some of the key research issues in machine learning.

2.2 The Supervised Classification Learning Problem

In classification learning, a learning algorithm is given a sample of pre-classified 

examples from the problem domain called the training set. Each example is described by 

a vector of attributes. An attribute is either nominal or continuous. The algorithm learns a 

model that is used to predict the class of future examples.

Learning methods can be divided into supervised and unsupervised schemes based on 

whether or not a dedicated target function for prediction has been defined. In 

unsupervised methods, such a function is not available and the goal is grouping or 

clustering instances based on some similarity or distance measure. In supervised learning, 

there is either a nominal or continuous-valued target function to be predicted. The former 

case is referred to as classification and the latter as regression or continuous prediction. In 

this thesis, only methods for supervised classification learning will be addressed.
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If the examples in the training set are presented and used all at once, learning is said to be 

batch or off-line. If the examples are presented one at a time, and the concept definition 

evolves over time as successive examples are incorporated, learning is said to be 

incremental or on-line. This thesis concentrates on batch learning.

The main goal of a classification learning system is to produce a classifier that will assign 

previously-unseen examples (i.e., examples not in the training set) to the corresponding 

classes with high accuracy. The accuracy of a classifier is defined as the probability that 

it will correctly classify a new, unlabelled example. This accuracy can be estimated by 

presenting the classifier with unlabelled examples from a test set.

Ideally, given a complete description of an example (i.e., the values of all its attributes), 

its class should be unambiguously determined. In practical tasks, however, the available 

attributes will often not contain all the information necessary to do this. The training set 

may contain examples with the same attribute values but in different classes. Also, 

examples may appear with erroneous class values, or with erroneous attribute values, or 

both. These errors may stem from a diversity of sources, including limitations of 

measuring instruments, and human error while typing examples into a computer. All 

these phenomena, referred to collectively as noise, limit the achievable accuracy in an 

induction problem. The degree of robustness of a learning system with respect to noise is 

one of its most important characteristics. It also occurs often in practice that the values of 

certain attributes for certain examples are simply not available. These are called missing 

values, and again a practical induction system must be able to handle them.
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2.3 Description of Inductive Learning Algorithms

A classification learning algorithm can be viewed as having three components: 

representation, search, and evaluation (Fayyad et al., 1996a). The representation 

component is the formal language in which concepts are described; the output of the 

learning algorithm is a statement in this language. The search procedure is the process by 

which the learning algorithm finds the concept description in the space of possible 

descriptions defined by the representation language. The evaluation component takes a 

candidate concept description and returns a measure of its quality. This is used to guide 

the search, and possibly to decide when to terminate it. Often, different evaluation 

procedures are used for these two purposes.

Inductive learning algorithms can be divided into two main categories, namely, decision 

tree induction and rule induction. Each of these categories will be analysed in view of the 

above three components.

2.3.1 Decision Tree Induction

There are a variety of algorithms for building decision trees. The most popular are: 

CART (Breiman et al., 1984), ID3 and its descendants C4.5 and C5.0 (Quinlan, 1983; 

1986; 1993; ISL, 1998; RuleQuest, 2001). These learning systems are categorised as 

“divide-and-conquer” inductive systems. The knowledge induced by these systems is 

represented as decision trees. A decision tree consists of internal nodes and leaf nodes. 

Each internal node represents a test on an attribute and each outgoing branch corresponds 

to a possible result of this test. For a nominal attribute At with nA possible values
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v,/, v,2,..., v,y,....,virtA there are nAj different branches originating from an internal node.

For a continuous attribute A„ a binary test is carried out, and a corresponding branch A, < 

tij is created, with a second branch corresponding to At > tij9 where tv is a threshold in the 

domain of A,. Each leaf node represents a classification to be assigned to an example. 

Table 2.1 shows an example data set and Figure 2.1 displays a decision tree constructed 

from this data.

To classify a new example, a path from the root of the decision tree to a leaf node is 

identified based on values of the attributes of the example. The class at the leaf node 

represents the predicted class for that example.

Decision trees are generated from training data in a top-down, general-to-specific 

direction. The initial state of a decision tree is the root node that is assigned all the 

examples from the training set. If it is the case that all examples belong to the same class, 

then no further decisions need to be made to partition the examples, and the solution is 

complete. If examples at this node belong to two or more classes, then a test is made at 

the node, which will result in a split. The process is recursively repeated for each of the 

new intermediate nodes until a completely discriminating tree is obtained.

CART is a binary decision tree algorithm that is extensively used. The evaluation 

function used for splitting in CART is the Gini index. Given a labelled data set S  with k 

classes, let k classes be Ch G,...., C* and let P(Cjt S) be the proportion of instances in S 

which are in class C,. Then the index is defined as:
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Vibration Pressure Temperature Fault Type

Present 30 65 A

Absent 23 15 B

Absent 40 75 B

Present 55 40 A

Absent 55 100 B

Present 45 60 A

Present 25 55 A

Absent 24 20 B

Table 2.1 An example of a data set.

Pressure

>35 <=35.

Vibration Temperature

Absent Present <=50 >50

Figure 2.1 A decision tree constructed from the data in Table 2.1.

14



Gini ( S )  = l - £  P (C  j , S ) 2 (2 . 1)

For each candidate split, the “impurity” (as defined by the Gini index) of all the sub­

partitions is summed and the split that causes the maximum reduction in impurity is 

chosen.

ID3 is a well-known decision tree system. It utilises the information gain criterion for 

splitting nodes. The information gain is computed from the entropy measure that 

characterises the impurity in a collection of training instances as explained below. For a 

given data set S, the entropy is defined as:

Let a test T with b outcomes partition the data set S  into Sh S2, , Sb. Then, the total

entropy of the partitioned data set is defined as the weighted sum of the entropy of the 

subsets as described below:

where |S,| and \S\ are the numbers of instances in S', and S respectively.

The information gained by partitioning in accordance with the test T is measured by:

k
Entropy (2 .2)

b ly I
Entropy (S , T ) = V  1—̂  Entropy (S t) (2.3)
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Gain(S,T) = Entropy(S) -  Entropy(S,T) (2 .4)

Gain (S,T) is therefore the expected reduction in entropy as a result of partitioning the 

data set into mutually exclusive subsets based on test T. The gain criterion selects a test to 

maximise this information.

C4.5, a variant and extension of ID3, is another popular decision tree algorithm. It 

employs the gain ratio criterion, because the information gain criterion has a strong bias 

in favour of attribute tests with many values. To reduce the bias of the gain criterion, the 

split information measure as defined by the following equation is employed:

The split information measure can be regarded as the cost of selecting a given attribute as 

a test. Notice that it discourages the selection of attributes with many values.

The gain ratio is then given by:

The gain ratio computation for a nominal attribute test is relatively straightforward. For 

continuous attributes, the d  possible values appearing in the subset associated with an

b

SplitInformation(S, T) = (2.5)

GainRatio(T) =
Gain(S, T )

(2 .6)
SplitInformation(S, T)
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internal node are sorted. Then, all d- 1 possible splits on this continuous attribute are 

examined. The one that maximises the gain ratio criterion is selected as a threshold.

A decision tree generated as described above is potentially an over-fitted solution, i.e., it 

may have components that are too specific to noise and outliers that may be present in the 

training data. To relax this overfitting, C4.5 uses a tree pruning method that tries to 

simplify the tree by eliminating subtrees that seem too specific. Pruning is done by 

examining each subtree and replacing it with one of its branches or leaf nodes if such a 

replacement does not degrade the accuracy of the subtree.

The C4.5 inductive learning system can also transform the generated decision tree to a set 

of IF-THEN rules. For the transformation to a rule set, every path from the root of the 

unpruned tree to a leaf gives one initial rule, in which the left-hand side is the conjunction 

of all attribute-based tests established by the path, and the right-hand side specifies the 

class predicted at the leaf. If the path to each leaf node is transformed into a production 

rule, the resulting collection of rules would classify examples exactly as the tree and, as a 

consequence of their tree origin, the rules would be mutually exclusive and hence their 

order would not matter. After producing a rule set from an unpruned tree, C4.5 

implements a very complicated multiphase rule pruning procedure. First, each rule is 

simplified by deleting some conditions based on the pessimistic-error estimate as adopted 

in tree pruning. Second, the set of rules is partitioned into several groups according to the 

rule consequent, with one group corresponding to one class. All possible subsets of rules 

from each group are then examined and the best subset based upon the Minimum
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Description Length (MDL) principle is selected. In the third stage, all the rule subsets are 

ordered, based on their classification error on the training data set. A default rule is then 

chosen whose consequent is the class that contains the largest number of training 

instances not covered by any rule. The pruning procedure then attempts to reduce the size 

of the rule set further by eliminating rules, the removal of which does not cause a 

deterioration in the accuracy of training data classification.

2.3.2 Rule Induction

As with decision tree learning, there are many rule induction algorithms. Among them 

are AQ (Michalski, 1969; Michalski et al., 1986; Cervone et al., 2001; Michalski and 

Kaufman, 2001), CN2 (Clark and Niblett, 1989; Clark and Boswell, 1991) and RIPPER 

(Cohen, 1995) which can all be categorised as “separate-and-conquer” inductive systems.

In contrast to decision tree learning, rule induction directly generates IF-THEN rules. 

Each rule can be represented in the following form: CondtA...A Condi a . . . a  Condn —> Cjy

where the antecedent consists of a conjunction of conditions Condi Each condition takes 

the form \At = v,J or [tn <A, < ti2] depending on the property of the attribute A,. If A, is a 

nominal attribute, v(> is a valid nominal value that A, can take. If A, is a continuous 

attribute, tu and ti2 are two thresholds in the domain of attribute Ah The consequent is the 

class to which instances satisfying the antecedent can be assigned. Figure 2.2 displays a 

rule set generated from the data set given in Table 2.1.
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If [Pressure >35] [Vibration = Absent] -> B

If [Pressure >35] [Vibration = Present] -» A

If [Pressure <35] [Temperature <50] B

If [Pressure <35] [Temperature >50] —> A

Figure 2.2 A set of rules derived from the data in Table 2.1.
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Rule induction systems produce either an unordered set of IF-THEN rules or an ordered 

set of IF-THEN rules, also known as decision lists (Rivest, 1987), both including a 

default rule. To classify an instance in the case of ordered rules, the ordered list of rules is 

examined to find the first whose antecedent is satisfied by the instance. The predicted 

class is then the one nominated by this rule. If no rule antecedent is satisfied, the instance 

is predicted to belong to the default class. In the case of unordered rules, it is possible for 

some instances to be covered by more than one rule. To classify a new instance in this 

case, some conflict resolution approach must be employed.

The general operation of separate-and-conquer rule induction algorithms is the same. 

They create the rule set one rule at a time. After a rule is generated, the instances covered 

by it are removed from the training data set and the same induction procedure is applied 

to the remaining data set until all the instances are covered by at least one rule in the rule 

set.

AQ15 (Michalski et al., 1986) is a well-known inductive learning system. It is based on 

the AQ algorithm as originally described in (Michalski, 1969) and implements the STAR 

method of inductive learning (Michalski and Larson, 1983). A pseudo-code listing of the 

AQ15 algorithm is given in appendix B.

In AQ15, decision rules are represented as expressions in the Variable-valued Logic 

System 1 (VL1). VL1 is a multiple-valued extension to propositional logic. In VL1, a 

selector relates an attribute to an attribute value or disjunct of values using one of the
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relational operators <, <, =, !=, >, or >. A selector or a conjunction of selectors forms a 

complex. A cover is a disjunction of complexes describing all positive instances and none 

of the negative instances of the concept. A cover defines the condition part of a 

corresponding decision rule. AQ15 is able to implement a form of constructive induction 

as well. An example of a decision rule with an internal disjunct is:

[Outlook = sunny v cloudy] a [Temperature > 60] v [Wind = true] a [Temperature 

> 70] —> class [Nice]

When building a complex, AQ15 performs the general-to-specific beam search technique 

to find the best complex. The algorithm considers specialisations that exclude some 

particular covered negative instances from the complex, while ensuring some particular 

“seed” positive instances remain covered, iterating until all negative instances are 

excluded. As a result, AQ15 searches only the space of complexes that are completely 

consistent with the data. Seeds are selected at random and negative examples are chosen 

according to their distance from the seed (the nearest ones are picked first, where distance 

is the number of attributes with different values in the seed and negative instances).

The AQ15 system can generate unordered and ordered rules. In the case of unordered 

rules, a new instance is classified by finding which of the induced rules have their 

complexes satisfied by the instance. If the instance satisfies only one rule, then the class 

predicted by that rule is assigned to the instance. If the instance satisfies more than one 

rule, a heuristic called Estimate o f Probability (EP) is used to predict its class. With this
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method, each rule is weighted by the proportion of learning instances covered by it. The 

weights of rules of the same class are probabilistically combined to form a weight for the 

entire class and the class with the highest weight is taken as the predicted class of the test 

example. If the instance is not covered by any rule, a heuristic called Measure o f Fit (MF) 

is used. In this case the instance belongs to a part of the decision space that is not covered 

by any decision rule. The measure of best fit of a class can be interpreted as a 

combination of “closeness” of the instances to a class and an estimate of the prior 

probability of the class.

The AQ15 algorithm uses a post-pruning technique to remove redundant conditions from 

the body of a rule and to remove unnecessary rules from the rule set. Simplification 

generally leads to smaller, more accurate rule sets. This framework was later generalised 

in the POSEIDON system (Bergadano et al., 1992). POSEIDON can simplify a complete 

and consistent concept description, which has been induced by the AQ15 algorithm, by 

removing conditions and rules, and by contracting and extending intervals and internal 

disjunctions. POSEIDON successively applies the operator that results in the highest 

coverage gain as long as the resulting rule set increases some quality criterion.

CN2 is a rule induction algorithm that incorporates ideas from both ID3 and AQ. The 

representation of decision rules in CN2 is very similar to that of AQ15 and can be viewed 

as a subset of VL1. The inductive learning system CN2 was developed by Clark and 

Niblett (1987; 1989) and later modified by Clark and Boswell (1991). The objective 

behind the design of CN2 was to modify the AQ algorithm by retaining its beam search
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through the space of complexes, but removing its dependency on specific training 

instances during search. While the AQ algorithm searches only the space of complexes 

that are completely consistent with the training data, CN2 extends its search space to 

rules that do not perform perfectly on the training data by broadening the specialisation 

process to examine all specialisations of a complex, in much the same way as ID3 

considers all attribute tests when growing a node in a tree. A cut-off method similar to 

decision tree pruning is applied to halt specialisation when no further specialisations are 

statistically significant. The modified version of CN2 produces either an ordered set of 

IF-THEN rules like the original CN2 version or an unordered set of IF-THEN rules. The 

control procedure of the CN2 algorithm for both ordered and unordered rules as well as 

the beam search procedure are given in appendix C.

The CN2 algorithm consists of two main procedures: a search algorithm performing a 

beam search for a good rule and a control algorithm for repeatedly executing the search. 

The control procedure of the CN2 algorithm for ordered rules iteratively calls the beam 

search procedure to find the best complex, until no better complexes are found. It then 

appends a rule to the rule set with this best complex as the condition and the most 

common class among the instances covered by this complex as the prediction. The 

instances covered by a rule are removed from the training set. The last rule in the rule list 

is a default rule predicting the most common class among the training examples not 

covered. The beam search procedure to find the best complex corresponds to the STAR 

procedure of the AQ algorithm. The pruned general-to-specific search retains a size- 

limited set or star of “best complexes found so far”. The system examines only
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specialisations of this set, carrying out a beam search for the space of complexes. A 

complex is specialised by either adding a new selector to the conjunction or by removing 

a disjunctive element in one of its selectors.

The CN2 algorithm can be easily modified to generate an unordered rule set by changing 

only the control procedure, leaving the beam search procedure unaltered (apart from the 

evaluation function, described below). The main modification to the algorithm is to 

iterate the search for each class in turn, removing only covered instances of the current 

class where a rule has been found. Unlike the case for ordered rules, the negative 

instances remain because now each rule must independently stand against all negatives. 

The covered positives must be removed to stop CN2 from repeatedly finding the same 

rule.

The CN2 algorithm employs two types of heuristics in the search for the best complexes, 

goodness and significance. Goodness is a measure of the quality of the complex that is 

used for ordering complexes that are candidates for inclusion in the final cover. Like ID3, 

the original CN2 version used the information-theoretic entropy measure to evaluate the 

quality of the complex (the lower the entropy, the better the complex). This function 

prefers complexes covering a large number of instances of a single class and few 

examples of other classes, but it tends to select very specific rules covering only a few 

training instances. The modified version of CN2 employs the Laplacian error estimate 

instead. The expected accuracy, one minus the expected Laplacian error estimate, is 

given by:

24



nclass + 1
Laplace A cc uracy (nclass ’ covered + k

(2.7)
ncovered

where k is the number of classes, nciass is the number of positive instances covered by

special case of the m-probability-estimate developed in (Cestnik, 1990). This estimate 

avoids the downward bias of the entropy measure of favouring very specific complexes 

in the general-to-specific search operation.

The second evaluation function tests whether a complex is statistically significant, i.e. 

whether it locates a regularity that is unlikely to have occurred by chance and thus 

reflects a genuine correlation between attribute values and classes in the training data. To 

test significance, CN2 uses the likelihood ratio statistic (Kalbfleish, 1979). This is given

where the distribution F  = (fi, f 2,......., fr) is the observed frequency distribution of

instances among classes satisfying a given complex and E = (eh e2, ...... , eJ  is the

expected frequency distribution of the same number of instances under the assumption 

that the complex selects instances randomly from the training set. Thus the two functions, 

the Laplacian error estimate and statistical significance serve to determine whether 

complexes found during the search are both “good” (have high accuracy when predicting

the rule and ncovered is the number of instances covered by the rule. This formula is a

by:

LikelihoodRatio(F', E) = 2 • f . -  log— (2 .8)
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the majority class covered) and “reliable” (the high accuracy on the training data is not 

just due to chance).

CN2 performs another check that can be viewed as a form of pre-pruning. It checks 

whether the Laplace estimate of the best complex is greater than that of the default rule 

predicting the class with the largest number of training instances. If this is not the case, 

then the new complex does not contribute any new information and the generation of 

complexes for the current class is terminated.

To apply unordered rules to classify a new instance, all rules are tried and those whose 

conditions are all satisfied are collected. If a clash occurs, i.e., more than one class is 

predicted by the collected rules, a probabilistic method is employed to resolve the clash. 

Each rule is tagged with the distribution of covered instances among classes and these 

distributions are summed to find the most probable class.

RULES (RULe Extraction System) is a set of inductive learning algorithms that follow a 

similar approach to the AQ family. The first three algorithms in the RULES family of 

algorithms (RULES-1, 2 and 3) were developed by Pham and Aksoy (1993; 1995a; 

1995b). Later, Pham and Dimov (1997a) introduced a new algorithm called RULES-3 

Plus. Compared to its immediate predecessor RULES-3, RULES-3 Plus has two new 

strong features. First, it employs a more efficient search procedure instead of the 

exhaustive search conducted in RULES-3. Second, it incorporates a metric for selecting 

and sorting candidate rules according to their generality and accuracy. RULES-3 does not
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employ any measure for assessing the information content of rules. The first incremental 

learning algorithm in the RULES family was RULES-4 (Pham and Dimov, 1997b). It 

allows the stored knowledge to be updated and refined rapidly when new examples are 

available. RULES-4 employs a Short Term Memory (STM) to store training examples 

when they become available. The STM has a user-specified size. When the STM is full, 

the RULES-3 Plus algorithm is used to generate rules. In order to increase the efficiency 

of the RULES family of algorithms, Pham et al. (2000) used a simple clustering 

technique to select a good set of training examples that were representative of the overall 

data set. The method was tested on different problems. The results showed that when the 

algorithm was applied to clustered data sets, the execution time was reduced, as well as 

the size of the generated rule sets. Pham et al. (2003) described a new algorithm, called 

RULES-5, which overcomes some of the deficiencies of the RULES family. In particular, 

RULES-5 employs a new method for handling continuous attributes and uses a simple 

and more efficient search method. The test results obtained with RULES-5 showed that 

the rule sets extracted were more accurate and compact than those obtained using its 

immediate predecessor RULES-3 Plus. One of the main weaknesses of the RULES-5 

algorithm is its inability to handle noisy data. Pham et al. (2004) proposed a new pruning 

technique that improved significantly the performance of the RULES-5 algorithm on data 

sets containing noisy examples.
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2.4 Other Machine Learning Approaches to Classification Learning

Besides decision trees and rule induction, several other approaches to classification 

learning exist. This section will briefly review some of the main alternatives: instance- 

based learning, neural networks, genetic algorithms and Bayesian methods.

2.4.1 Instance-based Learning

Instance-based learning is based upon the idea of letting the examples themselves form 

an implicit representation of the target concept (Aha et al., 1991; Aha, 1997). In contrast 

to learning methods that construct a general, explicit description of the target concept 

when training instances are provided, instance-based learning methods, such as those 

using nearest-neighbour methods, simply store the training instances. Generalising 

beyond these instances is postponed until a new instance must be classified. Because of 

this, instance-based methods are sometimes referred to as “lazy” learning methods. A test 

instance is classified by finding the nearest stored instance according to some similarity 

function, and assigning the class of the latter to the former. Advantages of instance-based 

methods include the ability to model complex target concepts and the fact that 

information present in the training instances is never lost (because the instances 

themselves are stored explicitly). One disadvantage of instance-based approaches is that 

the cost of classifying new instances can be high. This is because nearly all the 

computation takes place at classification time rather than when the training instances are 

first encountered. Therefore, techniques for efficiently indexing training instances are a 

significant practical issue in reducing the computation required at classification time. A 

second disadvantage of many instance-based approaches, especially nearest-neighbour
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methods, is that they typically consider all attributes of the instances when attempting to 

retrieve similar training instances from the memory. If the target concept depends on only 

a few of the many available attributes, then the instances that are really most “similar” 

may be a long distance apart.

2.4.2 Neural Networks

Neural networks provide a general practical method for learning real-valued and discrete­

valued target concepts in a way that is robust to noise in the training data (Haykin, 1994; 

Michie et al., 1994; Chauvin and Rumelhart, 1995; Hassoun, 1995; Mitchell, 1997; Pham 

and Liu, 1999). Neural network learning is well-suited to problems in which the training 

data corresponds to noisy and complex sensor data, such as inputs from cameras and 

microphones. The backpropagation algorithm is a common learning method adopted for 

multi-layer perceptrons, the most popular type of neural networks. Neural networks have 

been successfully applied to a variety of learning tasks, such as setting the number of 

kanbans in a dynamic just-in-time (JIT) factory (Wray et al., 1997; Markham et al., 

2000), modelling and controlling dynamic systems including robot arms (Pham and Liu, 

1999), identifying arbitrary geometric and manufacturing categories in CAD databases 

(Ip et al., 2003) and minimising the makespan in a flow shop scheduling problem (Akyol, 

2004). One of the chief advantages of neural networks is their wide applicability, 

however, they also have two particular drawbacks. The first is the difficulty in 

understanding the models they produce. The second is the often time-consuming training. 

Recent years have seen much research in developing new neural network methods that
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effectively address these comprehensibility and speed issues (Towell and Shavlik, 1993; 

Craven and Shavlik, 1997; Zhou et al., 2000; Jiang et al., 2002; Duch et al., 2004).

2.4.3 Genetic Algorithms

Genetic algorithms provide a learning method motivated by analogy with biological 

evolution (Holland, 1975; Goldberg, 1989; Davis, 1991; Michalewicz, 1996; Mitchell, 

1996; Liu and Kwok, 2000; Pham and Karaboga, 2000; Freitas, 2002). Rules may be 

represented by bit strings whose particular interpretation depends on the application. The 

search for an appropriate rule begins with a population, or collection, of initial rules. 

Members of the current population give rise to the next-generation population by means 

of operations such as random mutation and crossover. At each step, the rules in the 

current population are evaluated relative to a given measure of fitness, with the fittest 

rules selected probabilistically as seeds for producing the next generation. The process 

performs generate-and-test beam-search of the rules, in which variants of the best current 

rules are most likely to be considered next. Genetic algorithms have been applied 

successfully to a variety of learning tasks and to other optimisation problems. For 

example, they have been used to form manufacturing cells and to determine machine 

layout information for cellular manufacturing (Wu et al., 2002), to optimise the topology 

and learning parameters for neural networks (Oztiirk and Ozturk, 2004) and to solve job- 

shop scheduling problems (Chryssolouris and Subramaniam, 2001; Perez et al., 2003). 

Genetic algorithms have a potentially greater ability to avoid local minima than is 

possible with the simple greedy search employed by most learning techniques. On the 

other hand, they have a high computational cost.
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2.4.4 Bayesian Approaches

Bayesian approaches employ probabilistic concept representations, and range from a 

simple Bayesian classifier (Domingos and Pazzani, 1996) to Bayesian networks, which 

learn the full joint probability distributions of the attributes and class, as opposed to just 

the class description (Heckerman, 1996). Bayesian networks provide a natural platform 

for combining domain knowledge and empirical learning. However, inference in 

Bayesian networks can have a high time complexity, and as tools for classification 

learning, they are not yet as mature or well-tested as other approaches. More generally, as 

Buntine (1991) notes, the Bayesian paradigm extends beyond any single representation 

and forms a framework in which many learning tasks can be usefully studied.

2.5 Current Trends in Machine Learning Research

Machine learning research has been making significant progress in many directions. This 

section examines two of the most important directions and discusses some current 

problems. The two directions are scaling up of machine learning algorithms and learning 

multiple models.

2.5.1 Scaling up Machine Learning Algorithms

The first major research area concerns techniques for scaling up machine learning 

algorithms so that they can process very large data sets efficiently, while building from 

them the best possible models. The recent emergence of data mining as a major 

application of machine learning algorithms has underlined the need for algorithms to be 

able to handle large data sets that are currently beyond their scope. In data mining
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applications, data sets with millions of training examples, thousands of attributes and 

hundreds of classes are common. Fayyad et al. (1996a) cited several representative 

examples of databases containing many gigabytes (even terabytes) of data. Designing 

learning algorithms appropriate for such applications has thus become an important 

research problem.

Many approaches have been proposed and implemented for scaling up machine learning 

algorithms (Dash and Liu, 1997; Fiimkranz, 1998; Liu and Setiono, 1998; Moore and 

Lee, 1998; Zaki, 1998; Opitz, 1999; Ye and Li, 2002; Blockeel and Sebag, 2003). The 

most straightforward approach is to produce more efficient algorithms or increase the 

efficiency of the existing algorithms. This approach includes a wide variety of algorithm 

design techniques for optimising the search and representation, for finding approximate 

instead of exact solutions, or for taking advantage of the inherent parallelism of the task. 

A second approach is to partition the data, avoiding the need to run algorithms on very 

large data sets. This approach involves breaking the data set up into subsets, learning 

from one or more of the subsets, and possibly combining the results. Data partitioning is 

useful to avoid memory management problems that occur when algorithms try to process 

huge data sets in main memory. An approach orthogonal to the selection of example 

subsets is to select subsets of relevant features upon which to focus attention.

In order to provide focus and specific details, the application of inductive learning 

techniques to very large data sets is now reviewed; the issues and techniques discussed 

generalise to other types of machine learning.
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Decision tree algorithms have been improved to handle large data sets efficiently and 

several new algorithms have been proposed. Catlett (1991a; 1991b) proposed two 

methods for improving the time taken to develop a classifier. The first method used data 

sampling at each node of the decision tree, and the second method discretised continuous 

attributes. These methods decrease classification time significantly but also reduce the 

classification accuracy. Moreover, Catlett only considered data sets that could fit in the 

main computer memory. Methods for partitioning the data set such that each subset fits in 

main memory were considered in (Chan and Stolfo, 1993; 1997; Zhang and Wu, 2001). 

Although these methods enable classification of large data sets, studies show that the 

quality of the resulting decision tree is worse than that of a classifier that was constructed 

by using the complete data set at once. Incremental learning methods, where the data are 

classified in batches, have also been studied (Wu and Lo, 1998). However, the 

cumulative cost of classifying data incrementally can sometimes exceed the cost of 

classifying the entire training set once. The decision tree classifier in (Mehta et al., 1996), 

called SLIQ, utilised the novel techniques of pre-sorting, breadth-first growth, and MDL- 

based pruning to improve learning time for the classifier without loss of accuracy. At the 

same time, these techniques allowed classification to be performed on large amounts of 

disk-resident training data. However, due to the use of a memory-resident data structure 

that scales with the size of the training set, SLIQ has an upper limit on the number of 

examples it can process. Shafer et al. (1996) presented a classification algorithm called 

SPRINT that removes all memory restrictions that limit existing decision tree algorithms, 

and yet exhibits the same excellent behaviour as SLIQ. SPRINT efficiently allows 

classification of virtually any sized data set. Also, the algorithm can be easily and
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efficiently parallelised. However, SPRINT has been criticised for several reasons. For 

example, it utilises data structures called attribute lists that can be costly to maintain, 

including a potential tripling of the size of the data set and an associated significant 

increase in scan cost (Graefe et al., 1998). Like C4.5, both SLIQ and SPRINT are two- 

stage algorithms which include building and pruning phases. Generating the decision tree 

in two distinct phases could result in a substantial amount of wasted effort since an entire 

subtree constructed in the first phase may later be pruned in the next phase. PUBLIC 

(Rastogi and Shim, 1998) is a decision tree classifier that tightly integrates the pruning 

phase into the building phase instead of performing them one after the other. Its tree- 

growing phase is the same as that of SPRINT except that it uses entropy instead of the 

Gini index. However, when a leaf node is generated, PUBLIC can immediately decide 

whether there is a need to split it further by estimating a lower bound on the cost of 

coding the subtree rooted at this leaf node. The integrated approach of PUBLIC can result 

in substantial performance improvements compared to traditional classifiers such as 

SPRINT. In recent work, Gehrke et al. (1998) proposed Rainforest, a framework for 

developing fast and effective algorithms for constructing decision trees that gracefully 

adapt to the amount of main memory available. Finally, Morimoto et al. (1998) 

developed algorithms for decision tree construction for categorical attributes with large 

domains. The emphasis of this work was to improve the quality of the resulting tree.

As with decision tree learning, there are a number of rule induction algorithms that can 

scale up to large data sets. IREP (Fumkranz and Widmer, 1994) is a rule learning 

algorithm that can efficiently handle large sets of noisy data. The main reason for its
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efficiency is the use of a technique called incremental reduced error pruning, which 

prunes each rule immediately after it has been induced, rather than after all rules have 

been generated. This speeds up the induction process as the pruned rules allow larger 

subsets of the remaining positive instances to be removed at each iteration compared to 

the non-pruned rules. Unfortunately, the accuracy of the class descriptions learned by 

IREP is often lower than the accuracy of those learned with the C4.5rules algorithm 

(Quinlan, 1993), a rule-inducing variant of C4.5. Cohen (1995) detailed several 

modifications to improve the accuracy of IREP, including a different rule-evaluation 

criterion, a different stopping criterion and a post-processing optimisation operation, 

producing an algorithm called RIPPER. He showed that RIPPER is competitive with 

C4.5rules in terms of error rates and that it maintains the efficiency of IREP. RIPPER 

supports missing attributes, continuous variables and multiple classes. This makes it 

applicable to a wider range of benchmark problems.

2.5.2 Learning Multiple Models

The second active research area concerns a particular method for improving accuracy in 

supervised learning. The term multiple models or ensemble of classifiers is used to 

identify a set of classifiers whose individual decisions are combined in some way 

(typically by voting) to classify new examples (Dietterich, 1997). Ensembles have been 

found to be more accurate than the individual classifiers that make them up (Pham and 

Oztemel, 1996; Bauer and Kohavi, 1999; Dietterich, 2000; Fern and Givan, 2003; 

Kuncheva and Whitaker, 2003), and also have substantial theoretical foundations 

(Friedman, 1996; Madigan et al., 1996; Schapire et al., 1997; Schapire, 1999). An
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ensemble can be more accurate than any of its component classifiers only if the 

individual classifiers are “accurate” and “diverse” (Hansen and Salamon, 1990). An 

accurate classifier is one that performs at least better than random guessing. Two 

classifiers are diverse if they make different errors on new data points. The reason why 

ensembles improve performance can be intuitively explained in that taking a majority 

vote of several hypotheses reduces the random variability of individual hypotheses.

Several methods have been proposed for generating multiple classifiers using the same 

learning algorithm. Most of them manipulate the training set to generate multiple 

hypotheses. The learning algorithm runs several times, each time using a different 

distribution of the training instances. This technique works especially well for unstable 

learning algorithms -  algorithms whose output classifier undergoes major changes in 

response to small changes in the training data.

Breiman (1996a) described a technique called bagging that manipulates the training data 

to generate different classifiers. Bagging produces a replication of the training set by 

sampling with replacement from the training instances. Each replication of the training 

set has the same size as the original data. Some examples do not appear at all while others 

may appear more than once. Such a training set is called a bootstrap replicate of the 

original training set, and the technique is called bootstrap aggregating (from which the 

term bagging is derived). From each replication of the training set a classifier is 

generated. All classifiers are used to classify each instance in the test set, usually using a 

uniform voting scheme where each component classifier has the same vote. Bagging
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methods require that the learning system should be unstable, so that small changes to the 

training set should lead to different classifiers. Although Breiman also notes that poor 

predictors can be transformed into worse ones by bagging, it is a simple and easy way to 

improve an existing learning method. All that is required is the addition of a pre­

processor that selects the bootstrap sample and sends it to the learning algorithm and a 

post-processor that does the aggregation of votes. What one loses, in comparison with 

decision trees and rule sets, is a simple and interpretable structure. What one gains is 

increased accuracy.

Freund and Schapire (1996; 1997) presented another method for manipulating the 

training set called boosting. Instead of drawing a succession of independent bootstrap 

samples from the original instances, boosting maintains a weight for each instance in the 

training set that reflects its importance -  the higher the weight the more the instance 

influences the learned classifier. During each iteration, the weights are adjusted in 

accordance with the performance of the corresponding classifier, with the result that the 

weight of misclassified instances is increased. Adjusting the weights causes the learner to 

focus on different instances, leading to different classifiers. The final classifier is 

constructed from the learned classifiers by a weighted voting scheme where each 

component classifier contributes to the final classification with a different strength based 

on its accuracy on the training instances that it was trained with. Like bagging, boosting 

depends on instability of the boosted learning system. However, it does not preclude poor 

predictors, provided that their error on the given distribution of instances can be kept 

below 50%.
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A third technique for constructing a good ensemble of classifiers is to manipulate the set 

of classes that are given to the learning algorithm. Dietterich and Bakiri (1995) described 

a technique called error-correcting output coding (ECOC). This method was originally 

designed to handle multi-class problems by solving multiple two-class problems. ECOC 

represents classes with a set of output bits, where each bit encodes a binary classification 

function corresponding to a unique partition of the classes. Algorithms that use ECOC 

learn a function corresponding to each bit. All functions are then combined to generate 

class predictions.

Bagging, boosting and ECOC are general combining algorithms that significantly 

improve classifiers such as decision trees, rule learners, or neural networks. Quinlan 

(1996a) conducted experiments with boosting and bagging over a diverse collection of 

data sets. His experiments confirmed that boosted and bagged versions of C4.5 produced 

noticeably more accurate classifiers than the standard version. The results also showed 

that boosting seemed to be more effective than bagging when applied to C4.5, although 

the performance of the bagged C4.5 was less variable than that of its boosted counterpart. 

Freund and Schapire (1996) also applied boosting and bagging to C4.5 on 27 data sets. 

Their results confirmed that the error rates of boosted and bagged classifiers were 

significantly lower than those of single classifiers. However, they found bagging much 

more competitive than boosting. Bauer and Kohavi (1999) presented an empirical 

comparison between boosting and bagging, and argued that both techniques, when 

applied to decision trees, were able to reduce the error rate at the cost of increased tree 

size. They also observed that boosting was not robust when dealing with noise. This is
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expected, because noisy examples tend to be misclassified, and their weight will 

consequently increase. Dietterich and Bakiri (1995) reported that ECOC improved the 

performance of both the C4.5 and backpropagation algorithms on a variety of different 

classification problems. Schapire (1997) showed how boosting can be combined with 

ECOC to yield an excellent ensemble classification method that was superior to the 

ECOC method.

In addition to these methods for generating ensembles using a single learning algorithm, 

there are other methods that produce an ensemble by combining classifiers constructed 

with different learning algorithms. When classifiers from different learning algorithms 

are combined, as in stacked generalisation (Wolpert, 1992), diversity is implied. 

Therefore, they only need to be checked (e.g., by cross-validation) for accuracy, with 

some form of weighted combination employed. This approach of generating ensembles 

has been shown to be effective in some applications (Zhang et al., 1992; Breiman, 1996b; 

Ting and Witten, 1997).

2.6 Summary

This chapter has given background information on different machine learning algorithms 

with attention focused on inductive learning. The basic concepts of inductive learning 

algorithms have been described and the two main types of these algorithms currently 

available presented. The chapter has also outlined a number of algorithms of each type 

and discussed their suitability for handling very large data sets. Finally, recent directions 

in the machine learning research have been presented.
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CHAPTER 3

SRI: A SCALABLE RULE INDUCTION ALGORITHM

3.1 Motivation

Classification learning can be viewed as conducting a search over the space of 

possible rules for the rules that best fit the training data. The large number of potential 

rules has prevented most induction algorithms from evaluating every rule. Most 

algorithms use greedy search to find a good rule by evaluating only a small fraction of 

all rules. Greedy search, also known as hill-climbing search, tries to find a rule with 

an optimal evaluation by repeatedly choosing the best partial rule at each 

specialisation step and halting when no further improvement is possible. While greedy 

search performs well on many problems, it is not guaranteed to find the best rule. 

Exhaustive search, on the other hand, explores all the rule space to find the best rule. 

This simple method will find a complete and consistent model if there is one in the 

search space. In theory, exhaustive search does not miss the best rule. However, this 

approach can have high computational costs and often decreases generalisation 

accuracy instead of improving it. For example, Webb (1993) used the efficient best- 

first search algorithm OPUS for inducing decision lists in a covering framework and 

found, surprisingly, that the generalisations discovered by the limited search method 

of CN2 were often superior to those found by an exhaustive best-first search. This is 

essentially because when a very large space of possible rules is exhaustively searched, 

there is a high probability of finding a rule set that is highly accurate on the training 

data purely by chance. This rule set will be chosen over others that are in fact more 

accurate outside the training set, leading to poorer results (Quinlan and Cameron-



This chapter is organised as follows. In section 3.2, a detailed description of the new 

rule induction algorithm is given. The description includes the representation scheme, 

the basic search method, the various forms of inductive biases, the search-space 

pruning rules and other efficiency considerations. The different possibilities that 

might result when using the learned rule set to classify unseen instances are discussed 

and analysed in section 3.3. A new method to solve the overlapping problem (where 

more than one rule match the same instances) is also presented. Section 3.4 describes 

the experimental method and the data sets used in empirical evaluations in this thesis. 

Section 3.5 gives empirical evidence that the new search-space pruning rules 

significantly reduce the learning time while increasing the accuracy and 

comprehensibility of the learned rules. This section also reports on experiments 

performed on real data sets to demonstrate the effectiveness of the algorithm. Section 

3.6 summarises the chapter.

3.2 The SRI Algorithm

As pointed out in chapter 2, algorithms such as those in the AQ and RULES families 

search only the space of rules that are completely consistent with the training data. 

Although this reduces the search space significantly, it prevents the algorithm from 

exploring the complete training data space. Therefore, specific rules based on a few 

training examples tend to be selected. Although these rules perform perfectly on the 

training examples, their predictive accuracy on future test examples is often lower 

because rules formed on the basis of small numbers of examples are susceptible to 

noise. Consequently, the rule set is both large and not of the highest accuracy. For an 

induction system to induce accurate rules in domains containing noise, which is the 

norm in real-world data mining applications, the search space must be extended to
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include rules for which counter-examples exist and the evaluation of rules 

appropriately modified to enable the most accurate rules to be located. CN2 is an 

algorithm that functions in this way and that has significant advantages. Because 

statistical measures rather than individual examples are used to evaluate induction 

steps, good noise immunity can be achieved. Also, when the induction process stops 

early, as it often does, learning can be fast and the resulting rule set concise. For 

example, in spite of its greater computational complexity, CN2 is faster overall than 

AQ (Clark and Niblett, 1989). This is because the number of iterations in producing a 

new rule is lower in CN2 than in the AQ algorithm, as CN2 may halt specialisation of 

a rule before it performs perfectly on the training examples. Also, CN2 may halt the 

entire search for rules before all the training examples are covered if no further 

statistically significant rules can be found. In this section, a new rule induction 

algorithm, called SRI (for Scalable Rule Induction), is presented. The proposed SRI 

algorithm broadly follows the approach of CN2 and similar algorithms.

3.2.1 Representation and Basic Concepts

SRI extracts IF-THEN rules directly from a set of instances called the training set. 

Each instance is described by a vector of attribute-value pairs, together with a 

specification of the class to which it belongs. An attribute is either nominal or 

continuous. In supervised learning, the class to be learned is called the target class. 

Instances of the target class in the training set are called positive instances. Instances 

in the training set that do not belong to the target class are called negative instances. 

In SRI, an attribute-value pair constitutes a condition. Each rule, or concept 

description, consists of a conjunction of antecedents and a predicted class. Each 

antecedent is a condition on a single attribute and there is at most one antecedent per
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attribute. Conditions on nominal attributes are equality tests of the form [A, = v<y], 

where A,- is the attribute and v,7 is one of its valid values. Conditions on continuous

attributes are inequalities of the form [A, > tn] or [A, < ti2], where tn and ti2 are two

thresholds in the domain of attribute A,. A rule is said to cover an instance if the 

instance satisfies all of the rule conditions. A rule is said to be consistent if it covers 

none of the negative instances in the training set, and it is complete if it covers all the 

positive instances in the training set. A rule set is the disjunction of a number of rules.

3.2.2 The Search Method

SRI follows the general one-rule-at-a-time procedure of separate-and-conquer rule 

induction algorithms. It searches the rule space in a top-down fashion. A pseudo-code 

description of SRI is given in Figure 3.1. The procedure Induce Rules () starts with an 

empty rule set. It generates rules for each class in turn. Having chosen a class on 

which to focus, it calls the procedure Induce O neRule () to extract a rule that will 

cover a subset of the positive instances. The Induce_One Rule () procedure is 

outlined in Figure 3.2. All positive instances covered are then temporarily removed 

from the training set, the learned rule is added to the rule set and another rule is 

learned from the remaining instances. Rules are learned in this way until no positive 

instances are left or until the rule stopping criterion is satisfied. The test in the Rule_ 

Generation Stopping Criterion () procedure is employed to decide when to stop 

adding rules for a given class. This will be further detailed in section 3.2.3.3. Once all 

the rules for one class are produced, all removed instances are put back into the 

training set before the induction of rules for the next class. In this way, the algorithm 

is always based on all available training instances to form rules for a specific class. 

This whole process is repeated for each class to produce an unordered set of rules.
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Procedure InduceR ules  (TrainingSet, Beam Width)

RuleSet = 0

For each class in the TrainingSet Do 

Instances = TrainingSet 

While Positives (Instances) * 0  Do 

Rule = Induce_One Rule (Instances, CurrentClass, BeamWidth)

If Rule_Generation_Stopping_Criterion (Rule, Instances) is True Then 

Exit While

Instances = Instances -  Covered_Positives (Rule, Instances)

RuleSet = RuleSet u  (Rule)

End While 

End For 

Return RuleSet 

End

Figure 3.1 A pseudo-code description of SRI.
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Procedure Induce_One_Rule (Instances, ClassLabel, w)

PartialRules = NewPartialRules = 0

BestRule = most general rule (the rule with no conditions) (step 1)

PartialRules = PartialRules u  {BestRule}

While PartialRules * 0  Do (step 2)

For each Rule e PartialRules Do

{First, generate all specialisations of the current rule, save useful ones and determine all the

InvalidValues according to one o f the conditional tests in steps (6), (7) or (8).}

For each nominal attribute A,- that does not appear in Rule Do

For each valid value v,7 o f A-t e Rule.ValidValues Do

NewRule = Rule a  [A, = v,-,] (step 3)

NewRule.Instances = Covered lnstances (Rule.Instances, v,7) (step 4)

If NewRule.Score > BestRule.Score Then (step 5)

BestRule = NewRule

If Covered Positives (NewRule) < MinPositives OR (step 6)

Covered_Negatives (Rule) -  Covered_Negatives (NewRule) < MinNegatives O R  (step 7)

Consistency (NewRule) = 100% Then (step 8)

Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v,7} (step 9)

Else

NewPartialRules = NewPartialRules u  {NewRule} (step 10)

End For

End For

End For

Empty PartialRules

Figure 3.2 A pseudo-code description of the In d u c e _ O n e _ R u le  () procedure of SRI. 

PartialRules: a list of rules to be specialised and NewPartialRules'. a new list of rules

to be used for further specialisations.
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For each Rule e NewPartialRules Do

{Next, delete partial rules that cannot lead to an improved rules and determine all the

InvalidValues according to the conditional test in step (11).}

If Rule.OptimisticScore < BestRule.Score Then (step 11)

NewPartialRules = NewPartialRules -  {Rule} (step 12)

Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last Value_Added (Rule)

(step 13)

End For

For each Rule e NewPartialRules Do

{Finally, remove from the ValidValues set o f each rule all the values that will lead to

unnecessary construction o f useless specialisations at subsequent specialisation steps.}

Rule.ValidValues = Rule.ValidValues -  Parent (Rule).InvalidValues (step 14)

End For

If vv > 1 Then

Remove from NewPartialRules all duplicate rules.

Select vv best rules from NewPartialRules and insert into PartialRules. (step 15)

Remove all rules from NewPartialRules.

End While

Return BestRule

End

Figure 3.2 A pseudo-code description of the Induce One Rule () procedure of SRI

(continued).

47



Given a training instance list, a class label and the beam width, the procedure 

Induce One Rule () searches for a rule that optimises a given quality criterion by 

performing a pruned general-to-specific beam search. The search for rules is aimed at 

covering as many positive instances and as few negative instances as possible. It starts 

with the most general rule that has no conditions on the left hand side of the rule (step

(1) in Figure 3.2) and gradually specialises it by considering all possible 

specialisations. For each nominal attribute, conditions of the form \A, = v,7] are created 

for each one of its values. One new rule is then created for each such condition by 

appending the condition to the current rule (step (3) in Figure 3.2), provided that the 

attribute does not already appear in it. This prevents the construction of a rule that 

contains a pair of incompatible conditions such as [Attribute A / = yes] a  [Attribute A i 

= no]. The version of SRI described here deals only with nominal attributes; a method 

for handling continuous attributes is given in chapter 4.

Each new rule is evaluated and if the evaluation is better than that of the best rule 

found previously, the best rule is set to the new rule (step (5) in Figure 3.2). The new 

rule is then inserted into the NewPartialRules list (step (10) in Figure 3.2) unless one 

of the conditional tests (step (6), (7) or (8) in Figure 3.2) prevents this because it is 

deemed that no improved rule will be obtained from the new rule. In the latter case, 

the new rule is regarded as ineffective and additional specialisations will not improve 

the values for the quality measure. If the new rule is discarded, the last attribute value 

used to form it is added to the set of invalid attribute values (InvalidValues) of its 

immediate parent, the current rule, so as to ensure that it will be removed from the 

other specialisations of the same parent rule (step (9) in Figure 3.2). Thus, the 

NewPartialRules list only contains useful rules that can be employed for further
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specialisation. This process is repeated until there are no remaining rules to be 

specialised in the PartialRules list.

Another test that allows sections of the search space to be pruned away is now applied 

to each rule in the NewPartialRules list after the best rule overall in the current 

specialisation step is identified. Rules that satisfy the conditional test at step (11) are 

removed from the NewPartialRules list (step (12) in Figure 3.2), again, because they 

will not lead to improved rules. The last attribute values used to generate these rules 

are added to the InvalidValues set of their parents (step (13) in Figure 3.2). All 

InvalidValues are then deleted from the set of ValidValues for each rule in the 

NewPartialRules list (step (14) in Figure 3.2). Invalid values cannot lead to a viable 

specialisation from any point in the search space that can be reached via identical sets 

of specialisations and thus excluding them will prevent the unnecessary construction 

of ineffective specialisations at subsequent specialisation steps.

After eliminating all duplicate rules, the best w rules from the NewPartialRules list 

are chosen to replace all rules in the PartialRules list (step (15) in Figure 3.2). The 

comparison between rules is based on the quality measure as defined in the next 

section. If two rules have an equal value for the quality measure, the simplest rule is 

favoured. In other words, one with fewer conditions is selected. If both the value of 

the quality measure and the simplicity of the rules are the same, the most general rule 

that covers more instances is preferred.

The specialisation process is then repeated until the PartialRules list becomes empty 

(step (2) in Figure 3.2) due to the tests in steps (6), (7), (8) and (11). It should be
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noted that the PartialRules and NewPartialRules lists are reused after each iteration. 

During specialisation, the best rule obtained is stored and returned at the end of the 

procedure.

3.2.3 Learning System Biases

A system is considered a learning system if it makes an “inductive leap”. A system 

that performs inductive leaps is one that is able to produce knowledge that was not 

previously known either explicitly or implicitly. In principle, this is impossible. The 

goal of inductive learning is to infer a general model M  from a set of training 

instances. It is impossible to make such inference on the basis of the training data 

because nothing in the data can help in deciding whether the inferred model will be 

true when applied to fresh data. To circumvent such a problem, some assumptions 

concerning M  must be imposed. These assumptions are called the “bias” of the 

learning system and they provide it with some means for making a guess concerning 

M  This section discusses various forms of biases that are implemented in the new 

rule induction algorithm.

3.2.3.1 Employing a general-to-specific beam search

Like most widely-used rule learners, SRI performs a top-down general-to-specific 

search, thus intentionally being biased towards generality. In this approach, the 

learning algorithm starts with a general concept description (step (1) in Figure 3.2) 

and gradually specialises it (step (3) in Figure 3.2) until some stopping growth 

criterion is met. Because of its bias towards generality, this approach is less 

susceptible to overfitting of the training data which occurs when a complex rule is 

learned that too closely mimics the training data. As a result, accurate and simple
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concept descriptions can be induced in an efficient way. Other methods for searching 

the hypothesis space are bottom-up (specific-to-general) and bi-directional 

(Fiimkranz, 1999). These methods have not come into widespread use because they 

cope poorly with noise.

Since exhaustive search is impractical for large data sets and greedy search is less 

likely to find the best rule, as with most rule induction algorithms, beam search is also 

implemented in SRI. This is done by using two rule lists named PartialRules and 

NewPartialRules. PartialRules, which is the same size as the beam width w, stores the 

vv best partial rules during the specialisation process. Only the rules in PartialRules 

are considered for further specialisation since they are regarded as the rules that will 

most likely lead to truly optimal rules. NewPartialRules is used to save valid partial 

rules obtained by specialising the rules in PartialRules. Only the w best rules from 

NewPartialRules are selected to replace the rules in PartialRules. In this way, the 

search space is considerably reduced.

A beam search of width vv improves on greedy search by giving the learning system w 

more chances to find the best rule. Beam search is practical because the added 

complexity grows linearly with vv. Although increasing the beam width will lead the 

algorithm to search larger portions of the solution space, it does not mean that the 

algorithm will generate a better rule set. In fact, the larger the beam width, the more 

likely it is that the algorithm will find rules that overfit the training data (Quinlan and 

Cameron-Jones, 1995). In SRI, vv is a parameter of the algorithm that can be specified 

by the user. An appropriate empirical range for this parameter is between 1 and 32.
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3.2.3.2 Assessing rule quality

Given that the rule induction process could be conceived as a search process, a metric 

is needed to estimate the quality of rules found in the search space and to direct the 

search towards the best rule. The rule quality measure is the most influential bias in 

rule induction. In real-world applications, a typical objective of a learning system is to 

find rules that optimise a rule quality criterion that takes both training accuracy and 

rule coverage into account so that the rules learned are both accurate and reliable.

A quality measure must be estimated from the available data. All common measures 

are based on the number of positive and negative instances covered by a rule. Several 

different metrics are used in existing algorithms. These include purity (utilised in 

GREEDY (Pagallo and Haussler, 1990) and SWAP-1 (Weiss and Indurkhya, 1991)), 

information content (employed in PRISM (Cendrowska, 1987)), entropy (adopted in 

the original version of the CN2 algorithm (Clark and Niblett, 1989)), the metric 

applied in RIPPER (Cohen, 1995) and accuracy (used in I-REP (Ftimkranz and 

Widmer, 1994) and PROLOG (Muggleton, 1995)). The problem of the first four 

measures is that they obtain their optimal values when no negative instances are 

covered. For example, a rule r/ that only covers one positive instance scores more 

highly than a rule r? covering 999 positive instances and one negative instance. Also, 

they do not aim to cover many positive instances. For example, a rule rj that covers 

100 positive and 10 negative examples is deemed of identical value to another rule r4 

that covers 10,000 positive and 1000 negative examples. As a result, these metrics 

tend to select very specific rules covering only a small number of instances. This is 

undesirable since rules covering few instances are unreliable, especially where there is 

noise in the data. The accuracy of these rules on the training data does not adequately
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reflect their true predictive accuracy on new test data. The problem of the accuracy 

measure, as pointed out by Cohen (1995), is that this measure sometimes does not 

lead to a satisfactory behaviour. For example, it favours a rule rs that covers 2000 

positive and 1000 negative examples over a rule r6 that covers 1000 positive and only 

1 negative example.

One of the popular metrics that penalises rules with low coverage is the Laplace 

accuracy estimate (used in CN2 (Clark and Boswell, 1991), COVER (Webb, 1993; 

1995) and several other algorithms). The Laplace formula is given in chapter 2 

(Equation 2.7). The Laplace function trades-off accuracy against generality. In 

general, it favours rules that cover more positive instances over rules that cover fewer 

instances and prefers rules with a lower proportion of the cover that is negative over 

those for which that proportion is higher. Segal (1997) showed that the Laplace 

estimate has the desirable property of taking into account both accuracy and coverage 

when estimating rule accuracy. However, it has a problem when learning rules with 

less than 50% training accuracy. The Laplace estimate does not satisfy the 

requirement that the rule quality value should rise with increased coverage. Cestnik 

(1990) also conducted experiments in four medical domains and his results indicated 

that the Laplace accuracy estimate was often unrealistic, especially in multi-class 

decision problems. This occurred because of the assumption that underlies Laplace 

accuracy estimate, namely, that the a priori distribution is uniform.

A more general version of the Laplace measure, called the m-probability-estimate, has 

been developed by Cestnik (1990) and is defined as follows:
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covered

(3. 1)

where PQ(C ) is the a priori probability of the target class and m is a domain

dependent parameter. The value of m is related to the amount of noise in the domain. 

m can be small if little noise is expected and should increase if the amount of noise is 

substantial. The Laplace estimate can be obtained from the m-probability-estimate 

when m is set to k, the total number of classes, and PQ(C ) is assumed to be uniform.

It should be noted that the m-probability-estimate generalises the Laplace estimate so 

that rules that cover no instances will be evaluated with the a priori probability 

instead of the value 1 Ik, which is more flexible and convenient.

The performance of the seven quality measures mentioned above when used in the 

SRI algorithm was evaluated empirically. The evaluation was carried out on a large 

number of data sets and the results showed that the m-probability-estimate 

outperformed the other measures. Therefore, SRI employs the m-probability-estimate 

(Equation 3.1) to select the best rule (step (5) in Figure 3.2) and to decide on the best 

specialisations to retain (step (15) in Figure 3.2) after each specialisation step. In SRI, 

the m value is set to k and the a priori probability Pq(C ) is assumed to be equal to

the training accuracy of the empty rule that predicts the target class, namely:

where P is the number of instances in the target class Ct and N  is the total number of 

instances in the training data set. This version of the Laplace accuracy estimate is a
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good choice because it has a strong theoretical background (Good, 1965) and it meets 

the requirements of a good estimation function.

For the examples mentioned above, if it is assumed that k equals 2 and that both the 

total numbers of positive and negative instances are equal, the rule rj that only covers 

one positive instance scores 0.667 and the rule rj that covers 999 positive instances 

and one negative instance scores 0.998. Scores of the rules r?, r4< and r6 with positive 

and negative coverages of (100, 10), (10,000, 1000), (2000, 1000) and (1000, 1) are 

0.902, 0.909, 0.667 and 0.998 respectively. Therefore, rules r4 and are considered 

better than rules ry, r* and rs respectively, which seems intuitively correct. This 

indicates that the m-probability-estimate prefers rules that cover many positive 

instances and few negative instances, thus being biased towards finding general rather 

than more specific rules.

3.2.3.3 Stopping rule generation

In learning tasks known to involve no noise, a complete and consistent rule set that 

covers all of the positive and none of the negative training instances is usually 

preferred. Where there is noise, absolute completeness and consistency becomes 

unrealistic as this will result in the generation of over-specific rules that overfit the 

training data. Various studies have indicated that if the training data is noisy, some 

degree of inconsistency and incompleteness of the rule set is not only acceptable, but 

also desirable (e.g., Bergadano et al., 1988; Michalski and Kaufman, 1999).

Short rules are often preferred to avoid the problem of overfitting. Such a bias 

towards short rules is known as overfitting avoidance bias (Schaffer, 1993).
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Preference for short rules can be implemented using stopping criteria, which can be 

viewed as a form of pre-pruning. Pre-pruning and other forms of pruning are 

discussed in detail in chapter 5. A simple criterion called minimum purity criterion is 

used in FOIL (Quinlan, 1990) to stop generating new rules when the percentage of 

positive instances covered by the current rule is below a certain purity threshold 

(usually 80%). A more flexible criterion is employed in SRI 

(Rule Generation^topping_Cr iter ion () procedure in Figure 3.1). This criterion 

terminates the induction process for the current class when the accuracy of the current 

rule is not greater than the accuracy of the empty rule. The rationale for this is that the 

proportion of positive instances covered by the induced rule should be greater than the 

proportion of instances of its class with regard to the training data. Another stopping 

criterion based on the Minimum Description Length (MDL) principle is introduced in 

chapter 5.

3.2.4 Search-space Pruning Rules

As pointed out earlier, the size of the search space for inducing one rule grows 

exponentially with both the number of attributes used to describe each instance and 

the number of values allowed for each attribute. The search space can be efficiently 

organised by taking advantage of a naturally occurring structure over the hypothesis 

space that exists for any classification learning problem -  a general-to-specific partial 

ordering of hypotheses (Mitchell, 1997). This structure implies that all specialisations 

of a rule cover a monotonically decreasing number of positive and negative instances. 

This organisation property provides a powerful source of constraints on the search 

performed by the SRI algorithm.
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SRI constrains the search space by employing the four pruning rules listed in Table 

3.1. These pruning rules remove portions of the search space that do not maximise the 

quality measure. The effectiveness of these pruning rules depends upon how 

efficiently they can be implemented and upon the regularity of the data to which the 

search is applied. The remainder of this section describes the pruning rules in detail.

The pruning rules in Table 3.1 are derived from the following ideas. As the aim of 

specialisation is to find a rule that maximises the quality measure, further 

specialisation of a rule can be stopped the moment it becomes clear that additional 

specialisation will not improve the quality measure for the rule. Furthermore, in order 

to reduce the number of specialisation steps and thus speed up the learning process, a 

rule ought to be an improvement over its parent. If this is not the case, the rule should 

not be further specialised. Finally, as only one solution is sought, further 

specialisation of a rule can be terminated when it cannot improve on the current best 

rule.

The first pruning rule (step (6) in Figure 3.2) is used to stop further specialisation 

when the number of positive instances covered by a rule is below a threshold 

(MinPositives) and thus can be viewed as implementing a form of pre-pruning. Such 

specialisations are deemed ineffective since the goal is to find rules that cover as 

many positive instances as possible. In SRI, MinPositives is a user specified 

parameter. The value of this parameter should be kept low, especially in domains that 

are free of noise, to avoid generating over-simplified rule sets. An appropriate 

empirical range for this parameter is between 1 and 5. This pruning rule requires 

almost no additional overhead to employ since the number of positive instances
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(1) If CoveredPositives (r) < MinPositives Then Prune (r)

(2) If CoveredNegatives (r) -  Covered_Negatives (r') < MinNegatives Then Prune (r')

(3) If Consistency (r) = 100% Then Prune (r)

(4) If OptimisticScore (r) < Score (BestRule) Then Prune (r)

Table 3.1 Search-space pruning rules employed by SRI. 

r' is any specialisation of rule r and Prune (r) indicates that the children of r should

not be searched.
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covered by a rule must in any case be determined to calculate its accuracy. Section

3.5.1 gives empirical evidence that this pruning rule reduces the learning time of SRI 

without decreasing the accuracy of its rule sets.

The second pruning rule (step (7) in Figure 3.2) discards descendants of a rule that 

does not exclude at least some new negative instances. A rule that does not remove 

any new negative instances is deemed ineffective since either it excludes positive 

instances only, or it keeps the covered instances unchanged. With greater values of 

the minimum number of removed negative instances (MinNegatives), this pruning 

rule ensures that each specialisation step changes a rule significantly. As a result, part 

of the search space can be eliminated in the early stages of the rule specialisation 

process, which speeds up the execution of the algorithm. In SRI, MinNegatives is a 

parameter of the algorithm that can be specified by the user. An appropriate empirical 

range for this parameter is between 1 and 5. As is the case for the first pruning rule, 

no additional overhead is required to employ this pruning rule since the number of 

negative instances covered by a rule must be determined for the quality measure. 

Section 3.5.1 shows that this pruning rule improves the quality of the generated rules 

and speeds up the execution of the algorithm.

The third pruning rule (step (8) in Figure 3.2) avoids expanding rules that have 

become consistent. The reason is that any further specialisation will only decrease the 

number of positive instances covered by these rules and therefore yield lower values 

for the quality measure. It should be noted that the best overall rule will still be 

returned because the best rule is retained after each specialisation step. Again, no
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additional overhead is required to use this pruning rule. Section 3.5.1 demonstrates 

the effectiveness of this pruning rule.

The fourth pruning rule (step (11) in Figure 3.2) removes all specialisations of a rule 

if its optimistic value of the quality measure cannot improve on the current best rule. 

The optimistic value can be determined by observing that the specialisation of a rule 

can only make it become more specific and thereby decrease the number of instances 

that it covers. As the quality measure is highest when positive cover is maximised and 

negative cover is minimised, a simple optimistic value is obtained by determining the 

quality measure of a rule with the same positive cover as the current rule but with a 

negative cover of zero. If this value is lower than that for the current best rule, 

specialisation is terminated because none of the rule specialisations can improve on 

the current best value. Section 3.5.1 confirms that this pruning rule improves the 

quality of the rule sets of SRI substantially and reduces its learning time.

Clearly, the effectiveness of this pruning rule depends on the value of the current best 

rule. In general, the larger the best rule value, the greater the search space that can be 

removed. As a result, the implementation of the fourth pruning rule is delayed until 

the best overall rule in the current specialisation step is determined. In this way, the 

performance of this rule is maximised. It should be noted that when all rules at a 

certain specialisation level satisfy any of the above-mentioned pruning rules, the 

PartialRules set becomes empty. This terminates the search for the best rule (step (2) 

in Figure 3.2).
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The pruning rules discussed above only remove specialisations of rules that are 

guaranteed not to be a solution. The effect of these rules can be maximised based on 

the following ideas. If it can be determined that an attribute value used to specialise a 

certain rule in the search space cannot lead to a solution, then it follows that no 

solution can also result from the application of such an attribute value to the other 

specialisations of this rule. This can be justified as follows. Consider the rule r, = A a  

G —» target class where condition G is used to specialise a conjunct A. Let r2 = A a  B 

a  G —> target class be another rule where conditions B and G are successively used to 

specialise the same conjunct A. If rule r, resulting from the application of condition G 

to conjunct A does not cover any positive instances, then it follows that rule r, will not 

be considered for further specialisation according to the first pruning rule. 

Furthermore, as conjunct A a  B is a specialisation of conjunct A, it must cover fewer 

instances than are covered by A. As a result, rule r2 resulting from the application of 

condition G to conjunct A a  B will also not cover any positive instances and 

consequently rule r: should also be excluded from further specialisation.

A similar argument demonstrates that if the application of condition G to conjunct A 

causes rule r, to be discarded according to any of the other pruning rules in Table 3.1, 

then it follows that rule r: should also be discarded as it covers a subset of instances 

covered by rule r,.

The above idea can be implemented by maintaining and manipulating for each rule, r, 

a separate list containing all possible attribute values, r. ValidValues, that can be 

applied in the search space below r. Initially, the list contains all the nominal attribute 

values. A rule is only specialised by appending to it values, provided that the
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attributes of such values do not already appear in the rule. Each value that is appended 

to a rule is removed from its r. ValidValues list. When the rule is specialised, the 

values are examined to determine if any can be pruned away. Any values that can be 

pruned away are deleted from r. ValidValues to prevent the unnecessary construction 

of ineffective specialisations at subsequent specialisation steps. New rules are then 

created for each of the attribute values remaining in r. ValidValues.

3.2.5 Other Efficiency Improvements

Given the exponential growth in the size of the search space and the iterative nature of 

rule induction algorithms, it is important that SRI be as efficient as possible in order 

to be a practical algorithm. The efficiency of SRI is determined by two factors, 

namely, the number of rules that must be examined and the cost of evaluating each 

rule. Each of these factors presents an opportunity for improving efficiency. Section

3.2.4 has discussed increasing efficiency by developing pruning rules that can 

significantly reduce the number of rules the algorithm has to process by pruning away 

portions of the search space that do not contain the best rule. This section considers 

techniques for reducing the cost of rule evaluation.

As mentioned previously, SRI induces a rule through the iterative specialisation of the 

most general rule. The fundamental operation is evaluation of the accuracy of each 

specialised rule. A straightforward approach to rule evaluation is to scan all the 

instances in the training set and count the number of positive and negative instances 

covered by the current rule. These counts are used as input to the quality measure 

function to compute an estimate of the rule quality. This approach would entail a high 

computational cost if it was applied repeatedly as outlined.

62



The efficiency of rule evaluation can be improved by keeping a list of pointers to the 

instances covered by each rule. Initially, the list contains a pointer to every instance in 

the training data set, as rule specialisation starts with the most general rule which 

covers all instances. As the rule is specialised, only the instances covered by the rule 

are retained and those not covered are removed (step (4) in Figure 3.2). As a result, in 

subsequent specialisation steps, it is only necessary to check instances in the list, 

consequently eliminating the need to scan all the training data set. In the later stages 

of the specialisation process, the size of the instance pointer list is generally small and 

this significantly reduces the cost of rule evaluation.

It is possible to improve the rule evaluation process further as follows. A rule is said 

to cover an example if all its conditions hold for that example. Storing the examples 

covered by each rule makes it possible to evaluate the set of its specialisations by only 

examining the newly added conditions against the corresponding attribute-values of 

the instance. This reduces the number of comparisons required for processing each 

example and thus speeds up the rule evaluation.

3.3 Classification of New Instances

When the rule set generated by SRI is used to classify a new instance, three outcomes 

are possible:

♦ Only one rule covers the new instance,

♦ More than one rule covers the new instance, or

♦ No rules cover the new instance.
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Each case requires a different classification procedure to predict a label for the new 

instance. In the first case, the class predicted by that rule is simply assigned to the new 

instance. The conflict between rules in the second case may be due to one or more of 

the following reasons. First, during the learning process, different forms of biases 

towards general rules are adopted in SRI to avoid overfitting of the training data. 

Rules that are too general will be in conflict with others when classifying new 

instances. It was assumed that this conflict would be dealt with in the classification 

phase by a resolution method based on a more suitable preference criterion. Second, 

the generated rule set is usually simplified in a post-processing phase by removing 

specific rules and deleting superfluous conditions. This is to increase both the 

predictive accuracy on unseen instances and the comprehensibility of the resulting 

rule set. Again this will result in an overlapping rule set where two or more rules 

match the same instances. Finally, as mentioned previously, SRI generates a rule set 

separately for each class. This has the disadvantage that rule sets for different classes 

can overlap in the instance space. As a result, a test instance can be assigned to more 

than one class and some conflict resolution scheme must be applied to determine a 

prediction.

One possible solution to this problem is to select the rule with the highest value for 

the quality measure to classify the new instance. This solution overlooks the effect of 

other rules that might help in determining the best or the most probable decision. 

Another method that takes into consideration the effect of all matching rules is as 

follows. When classifying a new instance, each rule is examined and rules that cover 

the instance and belong to the same class are collected. The proportions of correctly 

classified instances of such rules are probabilistically summed to form a value for the
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entire class. For example, if there are two rules r, and r2 that cover an instance a and 

belong to the same class Ch then the entire class value for that instance can be 

determined as follows:

Value (Ch a) = Value (rh a) + Value (r:, a) - Value (rh a) * Value (r2, a) (3.3)

where Value (rh a) and Value (r2, a) are the proportions of correctly classified 

instances of rules r, and r2 that cover an instance a respectively.

When all the rules have been scanned, the class with the largest value is taken as the 

class of the new instance.

These two methods together with the classification methods of AQ15 and CN2 

discussed in chapter 2 were applied in SRI. Experimental results on a large range of 

data sets showed that the second method of the two proposed outperformed the other 

three methods and was thus adopted in SRI.

In the final case, the new instance belongs to a part of the instance space that is not 

covered by any rule in the rule set. The rule set generated by SRI is incomplete, that 

is, it does not cover all the positive instances in the training set, due to the use of the 

rule stopping criterion discussed in section 3.2.3.3. As a result, it is possible to find 

instances that do not satisfy any rule in this incomplete rule set and a method for 

specifying how these instances are to be classified is required. The generally adopted 

solution is to use a default rule which simply assigns the most frequent class in the 

entire training set to the new instance to be classified, independent of its attributes.
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Another method is to classify the new instance by assigning it to the class of the 

nearest rule (according to some distance measure) in the rule set. However, because 

separate metrics are used for nominal and continuous attributes, poor results may arise 

from combining such different metrics. Consequently, the default rule approach is 

implemented in SRI.

3.4 Data Sets and Experimental Methodology

All the data sets employed in this research were obtained from the University of 

California at Irvine (UCI) repository of machine learning databases (Blake and Merz, 

1998). These data sets are representative of many different types of classification 

learning problems and are commonly used to evaluate machine learning algorithms. 

They differ regarding the number of learning instances that are available, the degree 

of noise in these instances, the number of classes and the proportion of instances 

belonging to each class, the number of nominal and continuous-valued attributes used 

to describe the instances, and the application area from which the data was obtained. 

A detailed description of these data sets is given in appendix A.

The most widely used schemes for evaluating the performance of a classifier are the 

“hold-out” scheme and the “cross-validation” scheme (Devijver and Kittler, 1982; 

Langley and Kibler, 1988; Efron and Tibshirani, 1993). The hold-out scheme 

randomly partitions a data set into two mutually exclusive subsets, of which one is the 

training data set, and the other is the test data set. The training data is used for 

inducing a classifier and the test data is then used for accuracy estimation. The hold­

out accuracy estimate is usually taken n times for different partitions where n ranges 

from 10 to 50. The accuracy of the classifier is then computed as the average of n
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estimated accuracies and its standard deviation could also be calculated. For large 

data set, the hold-out method is still preferred due to its efficiency (Brieman et al., 

1984). In n-fold cross-validation, the whole data set is randomly divided into n 

approximately equal-sized disjoint subsets (folds), n classifiers are constructed and 

tested, each classifier is built using data from (n-\) folds, and tested on the remaining 

one fold. The accuracy of the classifier estimated by cross-validation is defined as the 

average of n estimated accuracies. The advantage of n-fold cross-validation is that it 

makes use of all the available data. Usually the parameter n is set to ten. It has been 

found empirically that this choice produces the most reliable estimate of the 

classifier’s true performance on average (Kohavi, 1995a). To achieve a more reliable 

estimate, n-fold cross validation is usually executed for many times. However, this 

method is prohibitively expensive on large data sets and is only preferred when the 

number of instances in the data set is a few hundreds or less in total (Breiman et al., 

1984; Kohavi, 1995b).

In the experiments conducted in this thesis, the hold-out approach was used. For large 

data sets with more than 1000 instances, each set was randomly divided once into a 

training set with two-thirds of the data and a test set with the remaining one-third. For 

small data sets with fewer than 1000 instances, the above procedure was repeated ten 

times, and the results were averaged.

3.5 Empirical Evaluation of SRI

This section presents an empirical evaluation of the pruning rules of the SRI 

algorithm. Experiments were conducted to explore the relative contribution of each of 

these rules to the performance of the algorithm. SRI was also compared to the well-



known inductive learner C5.0 which is probably the best performing commercially 

available induction algorithm.

Three criteria were used to evaluate the performance of the tested algorithms, namely, 

classification accuracy, rule set complexity and execution time. Classification 

accuracy is generally the most important criterion in induction tasks. It is defined as 

the percentage of instances from the test set that were correctly classified when the 

rules developed from the corresponding training set were applied. The complexity of 

a rule set is measured by the total number of rules or total number of conditions in 

that rule set. The execution time measures were taken as the total CPU time in 

seconds and the number of rules evaluated during the search process.

In order to draw reliable conclusions about the behaviour of the learning algorithms, 

12 data sets shown in Table 3.2 were considered. As the current implementation of the 

SRI algorithm is not capable of handling continuous attributes, the chosen data sets 

were limited to those that had only nominal attributes.

3.5.1 Evaluation of the Search-space Pruning Rules

To evaluate the relative effectiveness of each of the search-space pruning rules given 

in Table 3.1, the SRI algorithm was employed to find rule sets using first none of the 

pruning rules and then each individual rule. Results are also reported where all 

pruning rules are employed. SRI was used with a beam width of 8 and no pre-pruning 

(the Rule Generation Stopping_Criterion () procedure of Figure 3.1 was de­

activated). Recall from section 3.2.4 that SRI can employ the two parameters
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Data Set Name
No. of 

Instances
No. of 

Nominal Attributes
No. of 

Classes
Breast-cancer 286 9 2
Car 1728 6 4
Chess 3196 36 2
Monkl 556 6 2
Monk2 601 6 2
Monk3 554 6 2
Mushroom 8124 22 2
Promoter 106 57 2
Soybean-large 683 35 19
Splice 3190 61 3
Tic-tac-toe 958 9 2
Vote 435 16 2

Table 3.2 Summary of the data sets used in the experiments (Nominal data).
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MinNegatives and MinPositives as pre-pruning tests. In the experiments reported here, 

these two parameters were set to 1 and 2 respectively.

Table 3.3 presents the number of rules explored for each search method. Also given is 

the percentage by which the number of rules examined is reduced by the addition of 

each pruning rule. This equals (x-y)/y*100, where jc is the number of rules explored 

when no pruning rules were applied and y  is the number of rules considered using the 

added pruning rule(s). A rule is deemed to have been examined if it is generated at 

step (3) of the SRI algorithm (Figure 3.2).

As can be seen, the addition of each pruning rule reduced the number of rules that SRI 

had to process for all the data sets. Further, in many cases the magnitude of this 

reduction was very large. For example, for the Promoter data set, the number of rules 

to explore dropped by 99.3 % from 513000 to 3750 when all the four rules were 

applied. It is also notable that the second pruning rule had the largest impact on the 

number of rules examined. The order of importance of the remaining pruning rules 

appeared to be as follows: fourth pruning rule (most important), first pruning rule and 

third pruning rule (least important).

Table 3.4 shows the execution time in CPU seconds for each additional pruning rule. 

The percentage reduction in the execution time for each search method is also 

indicated. All execution times were obtained on a Pentium IV computer with a 2.4 

GHz processor, 512 MB of memory and the Windows NT 4.0 operating system. For 

all the data sets, the addition of the pruning rules resulted in a decrease in the 

computation time.
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SRI with 
no pruning rules

SRI with 
rule (1) added

SRI with 
rule (2) added

SRI with 
rule (3) added

SRI with 
rule (4) added

SRJ with 
all pruning rules

Data Set Name Number Number % Red. Number % Red. Number % Red. Number % Red. Number % Red.

Breast-cancer 72900 8615 88.2 16430 77.5 62574 14.2 23392 67.9 5802 92.0

Car 43917 18939 56.9 37243 15.2 42281 3.7 29735 32.3 17022 61.2

Chess 353607 228716 35.3 14864 95.8 222849 37.0 9 6 357 72.8 19402 94.5

Monkl 7405 4727 36.2 4686 36.7 6695 9.6 3974 46.3 3310 55.3

\1onk2 31216 10217 67.3 21531 31.0 27958 10.4 23544 24.6 9314 70.2

Monk3 4163 2832 32.0 1937 53.5 3387 18.6 1217 70.8 1102 73.5

Mushroom 277821 64402 76.8 4473 98.4 160204 42.3 6537 97 .6 2765 99.0

Promoter 513000 18317 96.4 11733 97.7 246155 52.0 12467 97.6 3750 99.3

Soybean-large 690783 169881 75.4 89001 87.1 582159 15.7 4 6 4 3 8 93.3 11463 98.3

Splice 5557095 784013 85.9 335862 94.0 3201674 42.4 441421 92.1 273236 95.1

1 ic-tac-toe 21384 13126 38.6 10967 48.7 16484 22.9 9714 54.6 7468 65.1

Cote 64416 11022 82.9 8688 86.5 45048 30.1 11792 81.7 2592 96.0

Table 3.3 Total number of rules explored for each search method.
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Data Set Name

SRI with 
no pruning rules

SRI with 
rule (1) added

SRI with 
rule (2) added

SRI with 
rule (3) added

SRI with 
rule (4 ) added

SRI with 
all pruning rules

Time (s) Time (s) % Red. Time (s) % Red. Time (s) % Red. T im e (s) % Red. Tim e (s) % Red.

Breast-cancer 22 5 77.3 9 59.1 17 22.7 10 54.5 3 86.4

Car 40 17 57.5 29 27.5 29 27.5 24 40.0 16 60.0

Chess 302 235 22 2 37 87.7 208 31.1 115 61.9 46 84.8

Monkl 3 2 33.3 2 33.3 3 0.0 2 33.3 2 33.3

Monk2 10 4 60.0 8 20.0 8 20.0 8 20.0 4 60.0

Monk3 1 1 0.0 1 0.0 1 0.0 1 0.0 1 0.0

Mushroom 431 185 57.1 56 87.0 216 49.9 85 80.3 47 89.1

Promoter 402 32 92.0 30 92.5 286 28.9 15 96.3 7 98.3

Soy bean-large 474 160 66.2 120 74.7 414 12.7 54 88.6 27 94.3

Splice 6210 1575 74.6 1009 83.8 4174 32.8 1199 80.7 989 84.1

T ic-tac-toe 10 8 20.0 8 20.0 9 10.0 6 40 .0 5 50.0

Vote 19 6 68.4 5 73.7 14 26.3 6 68.4 2 89.5

Table 3.4 Execution times taken for each search method.
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It is worth noting the computation times for the Mushroom, Promoter and Soybean- 

large data sets.

Table 3.5 shows the complexity of the rule sets generated with each of the pruning 

rules. The percentage reduction in the number of conditions obtained with each 

experiment is also given. Table 3.6 gives the classification accuracies obtained with 

each of the search-space pruning rules. The percentage increase in the classification 

accuracy achieved with each condition is also given. A number of results are notable. 

First, the application of the fourth pruning rule resulted in a minor increase in the 

complexity of the rule sets. Second, the other pruning rules caused a large reduction in 

the complexity of the rule sets and an improved classification accuracy in most cases. 

For example, for the Car data set the number of conditions dropped from 423 to 311, 

while the accuracy increased from 93.2 % to 95.3 % when all the pruning rules were 

employed.

3.5.2 Comparison with C5.0

SRI was compared to C5.0 on the twelve data sets listed in Table 3.2. C5.0 has a 

facility to generate a set of pruned production rules from a decision tree. SRI and C5.0 

each has a number of parameters whose values determine the quality of their induced 

rule sets. For SRI, the beam width was set to 4 and the 

Rule Generation Stopping Criterion () procedure of Figure 3.1 was activated. The 

two parameters MinNegatives and MinPositives were set to 1 and 2 respectively. For 

C5.0, the default settings were used.
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Data Set Name

SRI with 
no pruning rules

SRI with 
rule (1) added

SRI with 
rule (2) added

SRI with 
rule (3) added

SRI with 
rule (4 ) added

SRI with 
all pruning rules

Number Number % Red. Number % Red. Number % Red. Number % Red. Number % Red.

Breast-cancer 108 111 -2.8 103 4.6 111 -2.8 121 -12.0 109 -0.9

Car 423 311 26.5 423 0.0 423 0.0 431 -1.9 311 26.5

Chess 62 83 -33.9 49 21.0 50 19.4 88 -41.9 79 -27.4

Monk 1 61 61 0.0 61 0.0 61 0.0 61 0.0 61 0.0

Monk2 375 204 45.6 335 10.7 349 6.9 351 6.4 201 46.4

Monk3 23 23 0.0 23 0.0 23 0.0 23 0.0 23 0.0
Mushroom 26 26 0.0 26 0.0 27 -3.8 27 -3.8 26 0.0

Promoter 19 14 26.3 18 5.3 18 5.3 18 5.3 14 26.3

Soybean-large 113 104 8.0 113 0.0 113 0.0 118 -4.4 105 7.1

Splice 218 300 -37.6 221 -1.4 220 -0.9 305 -39.9 249 -14.2
T ic-tac-toe 82 77 6.1 89 -8.5 84 -2.4 84 -2.4 78 4.9

Vote 56 39 30.4 57 -1.8 54 3.6 54 3.6 43 23.2

Table 3.5 Total number of conditions generated for each search method.
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Data Set Nam e

SRI with 

no pruning rules
SRI with 

rule (1) added

SRI with 

rule (2 ) added
SRI with 

rule (3) added
SRI with 

rule (4 ) added
SRI with 

all pruning rules

Ace. (%) Acc. (%) % Incr. Acc. (%) % Incr. Acc. (%) % Incr. Acc. (%) % Incr. Acc. (%) % Incr.

Breast-cancer 75.8 70.5 -6.9 71.6 -5.6 77.9 2.8 77.9 2.8 72.6 -4.2

Car 93.2 95.3 2.2 93.2 0.0 93.2 0.0 93.6 0.4 95.3 2.2

Chess 95.7 99.1 3.5 96.2 0.6 96.3 0.7 99.2 3.6 98.7 3.1

Monkl 100.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Monk2 67.5 63.8 -5.5 65.7 -2.6 66.9 -0.9 66.9 -0.9 65.4 -3.1

Monk3 100.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Mushroom 99.7 100.0 0.3 99.7 0.0 100.0 0.3 100.0 0.3 100.0 0.3

Promoter 71.4 74.3 4.0 71.4 0.0 71.4 0.0 71.4 0.0 74.3 4.0

Soybean-large 93.0 92.1 -0.9 91.7 -1.4 93.0 0.0 93.0 0.0 91.2 -1.9

Splice 88.0 87.7 -0.3 89.5 1.7 88.0 0.0 86.7 -1.5 89.0 1.2

T ic-tac-toe 97.8 97.2 -0.6 98.1 0.3 98.8 1.0 98.8 1.0 98.1 0.3

Vote 97.8 96.3 -1.5 95.6 -2.3 96.3 -1.5 96.3 -1.5 95.6 -2.3

Table 3.6 Classification accuracies obtained with each search method.
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Table 3.7 presents the results for each algorithm on each data set. In each case, the 

accuracy on the test data and the complexity of the resulting rule sets are given. The 

number of rules was taken as a measure of the complexity of the rule set. A 

complexity of one was assigned to the default rule.

It is clear from Table 3.7 that the accuracy obtained by SRI was in total higher than 

that of C5.0. In addition, on 6 of the 12 data sets, SRI achieved higher accuracy than 

C5.0. On three data sets, Monkl, Monk2, Monk3, both algorithms had the same 

accuracy. On the remaining three data sets, SRI was inferior to C5.0. However, with 

SRI, the number of rules was higher in 9 data sets. The smaller number of rules 

produced by C5.0 can be attributed to the rule set (decision tree) pruning techniques 

employed. Much simpler and also more accurate rules are obtained when the pruning 

techniques of chapter 5 are incorporated into the SRI algorithm.

3.6 Summary

This chapter has presented a new rule induction algorithm for classification learning 

which includes a new heuristic search technique and search-space pruning rules. The 

search technique performs a pruned general-to-specific beam search and employs 

other search biases to traverse the large search spaces involved in many machine 

learning problems. These strategies enable efficient processing of such search spaces 

and induction of accurate and simple rules from a set of data. The search technique 

also uses several novel pruning rules that take advantage of the special structure of the 

search space to eliminate portions that do not contain a solution. Experimental results 

have demonstrated that the new pruning rules can significantly reduce the number of
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Data Set Name
C5.0 SRI

Acc. (%) No. of Rules Acc. (%) No. of Rules
Breast-cancer 75.8 17 73.7 15
Car 91.8 58 94.3 78
Chess 97.2 21 98.8 36
M onkl 100.0 17 100.0 23
Monk2 65.7 1 65.7 19
Monk3 100.0 6 100.0 13
Mushroom 99.8 10 100.0 15
Promoter 74.3 7 76.3 9
Soybean-large 93.4 32 90.4 27
Splice 92.7 60 91.1 74
T ic-tac-toe 92.2 34 97.8 21
Vote 97.0 5 97.8 10
Total 1079.9 268 1085.7 340

Table 3.7 Results for C5.0 and SRI.
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rules considered during the rule learning process and greatly increase the efficiency of 

the algorithm.

The algorithm presented in this chapter is limited to nominal attributes. A method for 

learning directly from continuously valued data is considered in the next chapter.
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C H A PTER  4

DISCRETISATION OF CO NTINUOUS-VALUED  

ATTRIBUTES FOR LEARNING  CLASSIFICATIO N RULES

4.1 Motivation
Since most real-world applications of classification learning involve continuous­

valued attributes, properly addressing the discretisation process is an important 

problem to be solved in developing generally applicable methods for data mining. 

Discretisation of a continuous attribute involves finding an appropriate set of cutting 

points for that continuous attribute. “Appropriate” means that the information in the 

data for discriminating the classes is not lost. Discretisation can improve the accuracy 

of the learned model. The reason is that discretisation produces a concise 

representation of continuous attributes and this helps learning algorithms to capture 

the relationship between different attributes.

The usual approach to discretisation of continuous-valued attributes is to perform this 

discretisation off-line, prior to the learning process (Ting, 1994; Wu, 1996; Ho and 

Scott, 1997; Jun et al., 1997; Kontkanen et al., 1997; Liu and Setiono, 1997; Zighed et 

al., 1997; Frank and Witten, 1998; Pemer and Trautzsch, 1998; Wang and Liu, 1998; 

An and Cercone, 1999; Peng, 2004). First, all continuous attributes in the data are 

discretised to obtain a discrete data set. Then learning algorithms are applied to this 

discretised data set. Off-line discretisation is useful for several reasons. First, it 

enables learning algorithms that can inherently only handle nominal attributes to 

process continuous-valued attributes in a consistent manner. Furthermore, it can



effectively speed up inductive learning. It has been shown that, for some learning 

algorithms, efficient discretisation as a pre-processing operation resulted in significant 

speed increases (Catlett, 1991b). Finally, off-line discretisation can produce simpler 

classifiers than those learned from the raw continuous data. Discretisation produces 

inherent generalisation by grouping data into several ranges, representing it in a more 

general way. Also, by restricting the search space that the learning algorithm can 

explore the likelihood of overfitting the training data is reduced and hence the chance 

of finding a less complex classifier is increased.

Off-line discretisation, however, suffers from at least two problems. First, the 

discretisation process is independent of the learning process and therefore does not 

comply with the demands of the learning algorithm. Second, independent 

discretisation of attributes may destroy the higher-order correlation between them 

(Ventura, 1995). Higher-order correlation between attributes means that an attribute 

by itself may not directly correlate with the output class, but in combination with one 

or more of the other attributes, it may have a very high correlation with the output 

class.

As a result, a different approach is proposed and a method of learning directly from 

continuous-valued attributes is developed. By handling continuous-valued attributes 

during induction, the bias of the induction system can be taken into account and 

interactions among different attributes considered. Therefore, this approach should 

yield even greater improvements in the performance of the learning algorithm than 

achieved with off-line discretisation. However, the execution speed of an induction 

algorithm incorporating on-line discretisation would increase since the discretisation

80



process may need to be repeated many times within the inductive process. The main 

purpose of this chapter is to develop an effective and a computationally efficient on­

line discretisation method for use in rule induction algorithms.

This chapter is organised as follows. First, a review of existing discretisation 

approaches, their defining characteristics and their strengths and limitations is given 

in the context of inductive learning. This is followed by a detailed description of the 

new discretisation method. Then, an empirical evaluation of the method is presented. 

Finally, a summary of the findings of the chapter is given.

4.2 Survey of Methods for Discretisation of Continuous-valued

Attributes

4.2.1 Overview

Current discretisation methods can be divided in four ways, namely, supervised vs. 

unsupervised, multivariate vs. univariate, off-line vs. on-line and parametric vs. non- 

parametric.

Supervised vs. Unsupervised

Supervised discretisation techniques take the relationship between the class label and 

the continuous attribute to be discretised into account during the discretisation 

process. On the other hand, unsupervised methods do not consider the class label, and 

hence are “class-blind”. Class-blind methods are typically used in unsupervised 

learning where there are no assigned class labels, whereas supervised discretisation 

methods are naturally adopted when supervised learning are used. Comparative 

studies have shown that supervised discretisation generally performs better than
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unsupervised discretisation (Ching et al., 1995; Dougherty, et al., 1995; Liu et al., 

2002).

Multivariate vs. Univariate

Many data sets have more than one continuous attribute. Multivariate discretisation 

refers to the discretisation of several continuous attributes simultaneously. This 

approach can take interactions between different attributes into account. The 

univariate method discretises one attribute at a time, with the discretisation of the next 

continuous attribute beginning after the discretisation of the current attribute has 

finished. The drawback of this method is that once a continuous attribute has been 

discretised, this discretisation cannot be revoked. Most of the current discretisation 

methods are univariate.

Off-line vs. On-line

As previously mentioned, if discretisation is performed while the data is pre- 

processed and before learning has begun, it is regarded as off-line. The off-line 

method discretises the data only once and therefore it is efficient. With an on-line 

discretisation approach, discretisation is an integral component of the learning 

algorithm itself. For instance, the discretisation approach of the decision-tree 

induction algorithm C4.5 (Quinlan, 1993) falls into this category. At each node of the 

tree, the continuous attribute is binarised based only on instances associated with this 

node and competes with other attributes during the attribute selection process. 

Consequently, one continuous attribute can be discretised several times at different 

levels of the tree.
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Parametric vs. Non-parametric

Parametric discretisation methods require the user to specify some parameters. The 

most important parameter is the number of intervals into which a continuous attribute 

can be partitioned. If the method can be executed without this kind of user 

intervention, it is non-parametric. The number of intervals has an important effect on 

learning performance and classification accuracy (Ching el al., 1995). For inductive 

learning, a large number of intervals is not always desired because the performance of 

many inductive learners deteriorates dramatically with large numbers of discrete 

intervals. After all, the reason for discretisation is to reduce the number of possible 

values an attribute can take. Therefore, for the purpose of supervised learning, the 

optimal number of intervals can be regarded as the smallest number that does not 

significantly weaken the interdependency between attribute values and classes 

(Kurgan and Cios, 2001).

4.2.2 Discretisation Methods

A typical unsupervised discretisation method is equal-width interval discretisation 

(Wong and Chiu, 1987). This is perhaps the simplest discretisation procedure. It 

simply involves dividing the range of a continuous variable into / equal intervals, 

where / is a user-defined parameter. Since the equal-width approach considers neither 

the distribution of the values of the continuous attribute, nor the dependency between 

the class label and the continuous attribute, it is likely that classification information 

will be lost as a result of combining values that are closely associated with different 

classes into the same interval. Furthermore, the number of intervals has a strong 

impact on performance. If too many intervals are specified, the learned model will be
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complex. If too few intervals are specified, information that can be used to distinguish 

instances will be lost.

A related method, equal-frequency intervals, divides the range into / intervals each of 

which contains the same number of instances (Wong and Chiu, 1987). A variation of 

the equal-frequency approach, called maximum marginal entropy, adjusts the interval 

boundaries using an entropy measure so as to reduce the amount of information lost 

due to discretisation (Wong and Chiu, 1987; Chmielewski and Grzymala-Busse, 

1994).

ChiMerge (Kerber, 1992) and StatDisc (Richeldi and Rossotto, 1995) are two 

supervised parametric discretisation methods. Both approaches employ a bottom-up 

merging process, where intervals are repeatedly merged until a termination condition 

is met. However, StatDisc is more general than ChiMerge in that it considers merging 

up to a user-defined number of intervals at a time, rather than just two adjacent 

intervals as in ChiMerge. They are, also, different in the interval initialisation scheme 

and in the statistical measure which they employ. ChiMerge is initialised by putting 

each instance into its own interval, and uses the statistic to decide whether two 

adjacent intervals should be merged. StatDisc is initialised by grouping adjacent 

instances labelled with the same class into the same interval, and uses the 0  statistic 

to measure the association of adjacent intervals. Compared with class-blind 

techniques, these two methods are more robust. The main drawback is that both 

methods require users to specify the significance level which is employed to control 

the merge granularity.
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A number of information-theory-based discretisation methods have been developed. 

Among these are methods belonging to the entropy-based discretisation approach 

(Catlett, 1991b; Fayyad and Irani, 1993; Phahringer, 1995a) and the distance-based 

approach (Cerquides and Lopez de Mantaras, 1997). They are mostly inspired by 

Quinlan’s decision tree induction algorithms ID3 and C4.5 (1986; 1993).

Catlett (1991b) proposed a supervised discretisation method called D2 as a means of 

reducing the learning time of the ID3 algorithm when continuous attributes are 

encountered. In D2 the discretisation is carried out off-line at the pre-processing stage. 

D2 adopts a greedy top-down approach. To find the set of intervals, the training 

instances are first sorted on the values of the continuous attribute in question. The 

method then evaluates all candidate cut points and selects the one that maximises the 

information gain. The training set is then split into two subsets by the cut point value. 

Subsequent cut points are selected by recursively applying the same binary 

discretisation method to each of the newly generated subsets until one of four 

stopping conditions is satisfied: the number of instances in an interval is sufficiently 

small, the number of cut points produced for any attribute reaches a maximum limit, 

the gain for all intervals is equal or all instances in an interval are in the same class. 

Since the instances are not reordered, they need not be re-sorted, and this is the reason 

for reduced learning times. If u cut points are found, the continuous attribute is 

mapped to a discrete attribute with u+\ values, one for each interval. One of the main 

problems with this discretisation method is that it is rather computationally expensive. 

It must be evaluated N-1 times for each attribute (assuming that the N  examples have 

distinct values). Typically N  is very large.



Fayyad and Irani (1993) introduced a similar method to that of Catlett, but developed 

an elegant test based on the Minimum Description Length (MDL) principle to 

determine a stopping criterion for the recursive discretisation strategy. Moreover, the 

method takes advantage of the fact (Fayyad, 1992) that the optimal cutting points 

when discretising a continuous attribute using an average class entropy evaluation 

function can only be selected from a set called the boundary points. This can be used 

to improve the efficiency of the discretisation method, as the latter needs only to 

examine the boundary points of each continuous attribute rather than all its distinct 

values.

Phahringer (1995a) proposed a two-step discretisation method called MDL-DISC. 

First, a simplified version of Catlett’s D2 method is used to select a set of promising 

split points. Second, this set is searched thoroughly by a best-first search to determine 

a good discretisation according to the Minimum Description Length (MDL) estimate. 

Special provisions (for example, escape to a class-blind method) are made for the 

degenerate case where just a single interval results from the discretisation.

Holte (1993) described a simple example of a supervised discretisation method called 

1R Discretizer. This method first sorts the values of a continuous attribute in 

ascending order and then puts instances having equal values or having the same class 

label into one interval. Adjacent intervals can then be merged if they share the same 

majority class label. To avoid too many intervals being generated, each interval must 

include at least a pre-specified number of instances.
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The above-mentioned methods are heuristic and, therefore, they cannot guarantee 

finding the optimal discretisation. However, their efficiency makes them attractive 

choices in practical applications. In recent years, several optimisation techniques for 

discretisation of continuous-valued attributes have been developed. Maass (1994) was 

the first to suggest a dynamic programming method which finds the minimum 

partitioning of a continuous attribute with respect to the training set error evaluation 

function in polynomial time. This method was implemented as part of the T2 

induction algorithm (Auer et al., 1995) which induces one- or two-level decision 

trees. Fulton et al. (1995) followed by introducing a quadratic-time general method 

which works for a class of evaluation functions in two-class learning tasks. They also 

proposed a linear-time method, which works for a narrower range of evaluation 

measures than the quadratic-time method. Later, Birkendorf (1997) devised linear­

time methods for the multi-class case. Elomaa and Rousu (1999a) and Rousu (2001) 

extended the work of Fulton et al. by introducing a pruning technique to improve 

dynamic programming search and by operating on example intervals instead of 

individual examples. These enhancements resulted in a general and efficient method. 

Following a similar approach, Cai (2001) proposed an efficient discretisation method 

using an evaluation function based on the Minimum Description Length (MDL) 

principle. The optimal number of intervals is obtained by examining only the search 

space of boundary points of each continuous attribute and selecting those points that 

optimise the evaluation metric.

Empirical evaluations of the different methods of discretising continuous attributes 

have been conducted. Dougherty et al. (1995) compared the equal-width approach, the 

1R Discretizer proposed by Holte, the entropy-based discretisation method by Fayyad
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and Irani and the binary discretisation method of C4.5 using two induction algorithms, 

C4.5 (Quinlan, 1993) and a Naive-Bayesian classifier (Good, 1965). They reported in 

their study that the entropy-based discretisation method was the best. This method 

was compared to the “optimal” discretisation method of Maass in a study presented 

by Kohavi and Sahami (1996). These discretisation methods were also evaluated on 

C4.5 and Nai've-Bayesian classifiers on data sets from the UCI repository. Results 

showed that the entropy-based method generally outperformed the “optimal” 

discretisation method.

Quinlan (1996b) conducted experiments similar to those described by Dougherty et al. 

on twenty databases from the UCI repository that involve continuous attributes, either 

alone or in combination with nominal attributes. In this study, a new version of C4.5, 

which modifies the formation and evaluation of tests on continuous attributes, is 

employed. The results showed that the binary discretisation method of the new C4.5 

algorithm was superior to the entropy-based method of Fayyad and Irani. 

Comparisons with the T2 induction system, which employs the dynamic discretisation 

method of Maass (1994), again confirmed the superiority of C4.5. However, T2 trees 

were much smaller than those found by C4.5 -  less than half the size on average.

Trautzsch and Pemer (1996) evaluated three methods of discretisation, namely, the 

binary discretisation method of C4.5, the entropy-based method of Fayyad and Irani 

and the ChiMerge method. The results showed that neither of the latter two 

discretisation methods outperformed the method used in C4.5 significantly.



Elomaa and Rousu (1996b) compared three different discretisation strategies and 

examined their impact on decision tree learning. The contrasted strategies were the 

C4.5 binarisation strategy, an implementation of the entropy-based strategy and the 

“optimal” splitting strategy. Experiments on a large number of commonly used data 

sets showed that the entropy-based and “optimal” strategies did not give any higher 

prediction accuracy than the binarisation strategy. This confirms the results of 

Quinlan (1996b). Also, the entropy-based and “optimal” strategies were slower than 

binarisation; the entropy-based method took on average twice the time of the 

binarisation method in decision tree learning and the “optimal” splitting method 

further doubled the average time of the entropy-based method.

4.3 Proposed Discretisation Method

The simplest method for discretising continuous attributes during learning is to 

determine for each attribute A, all the distinct values that occur in the instances 

covered by the current partial rule, create conditions of the form (A, < v(/) and (A/ > v,y) 

for each value v,7 and evaluate all the rules that can be formed by adding such 

conditions to the current rule. All such rules and those resulting from specialising the 

current rule with nominal conditions can then be compared according to the 

evaluation metric to select a size-limited set of best rules at each specialisation step. 

One problem with this method is that a continuous attribute with numerous distinct 

values will have an advantage over a nominal attribute and also over other continuous 

attributes that have fewer distinct values as a large number of rules generated with 

such an attribute might be selected within the size-limited set of rules considered for 

further specialisations. These rules typically have very small differences and thus the 

search can be concentrated in a limited region of the rule space with a possible
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degradation of performance. Another problem with this simplistic method is that it is 

very expensive computationally, especially for data sets involving continuous 

attributes with a large number of values.

The efficiency of this method can be improved by only examining the boundary 

points of each continuous attribute rather than all of its individual values. A boundary 

point occurs if, in the sorted list of values for attribute A„ vn and v,: are adjacent and 

they are associated with different classes. However, boundary points may change 

from point to point in the rule space as their determination depends on the frequencies 

of classes as well as the distribution of values of each continuous attribute in the set of 

instances covered by each rule. Recalculating the boundary points for each rule is 

computationally expensive. Moreover, the change of boundary points makes it 

difficult to apply the pruning rules discussed in chapter 3 (section 3.2.4), which have 

proved useful for discarding large portions of the search space.

As mentioned earlier, a practical approach effective in the context of decision trees is 

the binary discretisation method. This involves partitioning the range of values for a 

continuous attribute into only two intervals at any node in the search space. This 

section proposes a new discretisation method also based on binary discretisation but 

suitable for use in rule learning systems. The implementation of this method in the 

SRI rule induction algorithm presented in chapter 3 and the possibility of applying the 

search-space pruning rules of SRI are also discussed.
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4.3.1 The Basic Method

As mentioned in chapter 3, the SRI rule induction algorithm can only handle nominal 

attributes. The search procedure of SRI can be easily modified to deal with continuous 

attributes by changing only the Induce-One-Rule () procedure (Figure 3.2), leaving 

the Induce-Rules () procedure (Figure 3.1) unchanged. A pseudo-code of the modified 

Induce-One-Rule () procedure is shown in Figure 4.1.

This procedure starts with a check to see if there are continuous attributes in the given 

training instance list (step (1) in Figure 4.1). If this is the case, a separate list called 

AttributeAndLabel list is created for each continuous attribute in the current instance 

list of the rule to be specialised. An entry in an AttributeAndLabel list consists of an 

attribute value and a class label. A pass is made over the current instance list, 

distributing values of the continuous attributes for each instance across all the lists. 

Each attribute value is also tagged with the corresponding class label. This allows for 

independent processing of each continuous attribute and thus improves efficiency.

A continuous-valued attribute is typically discretised during rule generation by 

partitioning its range into two intervals. A threshold value, tin for the continuous­

valued attribute A , is determined and two conditions of the form (A, < tu) and (A, > t,,) 

are created. The next section discusses how the threshold value can be calculated for 

each continuous attribute. A rule is formed by adding the condition (A, < t,-,) to the 

current rule. The accuracy of the new rule is computed and compared with that of the 

best rule found so far and the one with the largest value is remembered. The new rule 

is then added to the NewPartialRules list if it satisfies the conditional test at step (5) in 

Figure 4.1. The same is done for the condition (A, > t0). SRI determines at most one
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Procedure Induce One Rule (Instances, ClassLabel, xv)

PartialRules = NewPartialRules = 0

BestRule = most general rule (the rule with conditions)

PartialRules = PartialRules u  {BestRule}

While PartialRules * 0  Do 

For each Rule € PartialRules Do

{First, generate all specialisations o f the current rule and save useful ones according to the 

conditional tests in steps (2) and (5). Determine all the InvalidValues for nominal attributes 

only (step 3).}

If there are continuous attributes Then (step 1)

Create a separate AttributeAndLabel list for every continuous attribute in the instance list 

o f the current rule.

For each attribute At Do 

If Aj is a nominal attribute Then 

If A, does not exist in Rule Then 

For each valid value v,7of A, g  Rule.ValidValues Do 

NewRule = Rule a  [A, = v/;]

NewRule.Instances = Covered_Instances (Rule.Instances, v,7)

If NewRule.Score > BestRule.Score Then 

BestRule = NewRule 

If (CoveredPositives (NewRule) < MinPositives OR 

Covered_Negatives (Rule) -  Covered Negatives (NewRule) < MinNegatives OR 

Consistency (NewRule) = 100%) Then (step 2)

Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v,7} (step 3) 

Else

NewPartialRules = NewPartialRules u  {NewRule}

End For

Figure 4.1 A pseudo-code description of the modified In d u c e  O n e  R u le  () procedure

of SRI.

PartialRules: a list of rules to be specialised and NewPartialRules: a new list of rules

to be used for further specialisations.
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Else If Aj is a continuous attribute Then 

If Aj does not have both bounds set in Rule Then (step 4)

♦ Sort the attribute list for Aj from small to large to get an ordered list o f attribute 

values, {v,/, vi2, ..., v,7, vkl }.

♦ Compute the Information Gain for each midpoint value, (v,7 + v,(/W,)/2, where v,7, 

are two distinct values o f the attribute Aj.

♦ Find the best threshold value, t,h which has the highest Information Gain.

If the upper bound does not exist in Rule Then

NewRule = Rule a  [At < t,f\

NewRule.Instances = Covered lnstances (Rule.Instances, /,7)

If NewRule.Score > BestRule.Score Then 

BestRule = NewRule 

If (Covered Positives (NewRule) > MinPositives AND 

CoveredN egatives (Rule) -  C overedN egatives (NewRule) > MinNegatives AND  

Consistency (NewRule) < 100%) Then (step 5)

NewPartialRules = NewPartialRules u  {NewRule}

If the lower bound does not exist in Rule Then 

Do the same for [A, > /,7] interval.

End For 

End For

Empty PartialRules.

For each Rule e NewPartialRules Do

{Next, delete partial rules that cannot lead to an improved rules according to the conditional test 

in step (6). Determine all the InvalidValues for nominal attributes only (step 8).}

If Rule.OptimisticScore < BestRule.Score Then (step 6)

NewPartialRules = NewPartialRules -  {Rule} (step 7)

If Last Value Added (Rule) is a nominal attribute value Then 

Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last_Value_Added (Rule)

(step 8)

End For

Figure 4.1 A pseudo-code description of the modified Induce One Rule () procedure

of SRI (continued).
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For each Rule € NewPartialRules Do

{Finally, remove from the ValidValues set o f each rule all the values that will lead to 

unnecessary construction o f useless specialisations at subsequent specialisation steps.} 

Rule.ValidValues = Rule.ValidValues -  Parent (Rule).InvalidValues 

End For 

If w > 1 Then 

Remove from NewPartialRules all duplicate rules.

Select w best rules from NewPartialRules and insert into PartialRules.

Remove all rules from PartialRules.

End While 

Return BestRule 

End

(step 9)

Figure 4.1 A pseudo-code description of the modified Induce_One_Rule () procedure

of SRI (continued).



lower and one upper bound for a continuous attribute (step (4) in Figure 4.1). As soon 

as both bounds have been determined, no further specialisations are considered that 

involve that particular attribute. This preference for simple rules was empirically 

found more effective than continuing the specialisation process and making the 

intervals more specific. This speeds up the learning process and increases the 

comprehensibility of the learned rule set.

Note that rules that do not satisfy the conditional test in step (5) are only prevented 

from being added to the N e w P a r tia lR u le s  list. Unlike for nominal attributes, the last 

intervals used to specialise these rules are not added to the set of invalid attribute 

values (In v a lid V a lu e s ). Therefore, the full benefits of the search-space pruning rules 

as explained in chapter 3 (section 3.2.4) is not realised. The reason for this is that 

intervals (boundary points) for continuous attributes may change at any location in the 

rule space as mentioned before. Consequently, if the pruning rules determined that 

such intervals when used to specialise a certain rule in the search space cannot lead to 

a solution, then it cannot be concluded that rules resulting from the application of 

these same intervals to the other specialisations of the current rule are also not 

solutions. Consideration of the attributes of such intervals for further specialisations in 

this context may result in better rules.

Rules that satisfy the conditional test in step (6) are removed from the 

N e w P a r tia lR u le s  list (step (7) in Figure 4.1). Again, only the invalid values of 

nominal attributes are appended to the I n v a lid V a lu e s  set (step (8) in Figure 4.1). All 

In v a lid V a lu e s  of nominal attributes are then removed from the set of V a lid V a lu es  for 

each rule in the N e w P a r tia lR u le s  list (step (9) in Figure 4.1).



4.3.2 Best Threshold Determination

For each continuous-valued attribute A h the best threshold is selected from its range of 

values by evaluating every candidate threshold in the range of values. The 

A ttr ib u te A n d L a b e l list for attribute A, is first sorted from small to large based on the 

attribute values. Then, the midpoint between each successive pair of distinct values in 

the sorted list is taken as a potential threshold. Midpoints are chosen because any 

value between every two consecutive attribute values will divide the set of instances 

into the same two subsets. While splitting attribute A„ the goal is to determine the 

threshold that best divides the training instances belonging to that attribute. The value 

of a threshold depends upon how well it separates the classes. The information gain 

criterion (Equation (2.4) in chapter 2) is used to evaluate the appropriateness of each 

threshold. An efficient way of performing this evaluation is discussed in the next 

section. Finally, the threshold with the highest information gain is used to split 

attribute A,.

4.3.3 Data Structures

To compute the best threshold for each continuous-valued attribute efficiently, three 

array structures are attached to each rule that is under consideration for specialising. 

These arrays are used to record the class distribution of the attribute’s instances for a 

given rule. The first array, called S p litA n d L a b e lD is t , is a two-dimension array in 

which the rows correspond to labels and the columns correspond to split type.

There are three types of splits denoted as L e ssT h a n O rE q u a l (L T E ), G re a te rT h a n  (G T )  

and U n kn ow n . The L T E  and G T  columns record the class distribution for instances 

that satisfy tests of the form (A, < /„) and (A, >  t,,) respectively, whereas the U n k n o w n
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column stores the distribution for those that contain missing values. The other two 

arrays, denoted as S p li tD is t and L a b e lD is t , are derived from the first array to facilitate 

the computation of the best split. Each element in the S p li tD is t  array corresponds to 

the total number of instances for each split type and is obtained by summing up a 

certain split column. Also, each element in the L a b e lD is t  array corresponds to the 

total number of instances for each label and is obtained by summing up a certain 

labelled row.

To determine the best threshold for a continuous-valued attribute at a given rule, the 

L T E  column of the S p litA n d L a b e lD is t array is initialised to zero whereas the G T  and 

U n kn ow n  columns are initialised with the class distribution for all the instances at that 

rule. This distribution is obtained when the A ttr ib u te A n d L a b e l list is created (step (1) 

in Figure 4.1). The sorted A ttr ib u te A n d L a b e l list is scanned from the beginning and 

for each threshold value, the class distributions in the L T E  and G T  columns of the 

S p litA n d L a b e lD is t array are updated by shifting one instance from right to left 

according to the label associated with the threshold value. Figure 4.2 shows the 

schematic for this update. It should be noted that the S p li tA n d L a b e lD is t array has all 

the necessary information to compute the information gain. Since the lists for 

continuous attributes are kept in a sorted order, the information gain for each 

threshold can thus be efficiently computed. If a winning threshold was found during 

the scan, it is saved and the A ttr ib u te A n d L a b e l list and all the distribution arrays are 

de-allocated before processing the next attribute.
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Position of Cursor LTE GT Unknown
cursor in scan position 0: A 0 4 0

position 0 Pressure Class B 0 4 0
15 B
20 B Cursor
25 B position 4: A 1 3 0

position 4 40 A B 3 1 0
50 A
52 B Cursor
56 A position 8: A 4 0 0

position 8 65 A B 4 0 0

AttributeAndLabel List State of SplitAndLabelDist arrays

Cursor LTE GT Unknown Cursor A 4
position 0 : |  0 1 8 1 o | position 0: B 4

Cursor Cursor A 4
position 4: | 4 1 4 1 o | position 4: B 4

Cursor Cursor A 4
position 8: | 8 \ o 1 0 1 position 8: B 4

State of SplitDist arrays State of LabelDist arrays

Figure 4.2 Evaluating thresholds for continuous attributes.

98



4.4 Experimental Results

A series of tests was conducted to assess the performance of the proposed on-line 

discretisation method. The proposed method was compared with four state-of-the-art 

off-line discretisation procedures. These are the equal-width method, the 1R 

Discretizer proposed by Holte, the entropy-based discretisation method introduced by 

Fayyad and Irani and the “optimal’' discretisation method of Cai. These methods are 

representative of the different discretisation techniques described in section 4.2.2 and 

widely used in other comparative studies. Each of the off-line procedures was first 

employed to discretise all the data sets. The discretised data sets were then used to 

generate classification rules by the SRI algorithm and the results obtained were 

compared with those produced with the built-in discretisation procedure of SRI. The 

quality of the discretisation was evaluated based on the accuracy and complexity of 

the generated rules, as well as the time of execution.

The data sets used in this experiment were obtained from the UCI repository. The 

selected data sets either have only continuous attributes or a mixture of nominal and 

continuous attributes. They are summarised in Table 4.1. For details of these data sets, 

see appendix A. It is important to note that in performing the hold-out test, the 

training instances for each data set are separately discretised. Discretising all the data 

once before creating the partitions allows the discretisation method to have access to 

the test data, which is known to result in optimistic accuracy estimates. For SRI, the 

same parameters setting as given in chapter 3 (section 3.5.2) was followed. For the 

equal-width discretisation method, the number of intervals was set to 6. For the 1R 

Discretizer, the number of instances in one interval was set to 6 for large data sets, 

while the number was set to 3 for small data sets as recommended in (Holte, 1993).
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No. of No. of No. of No. of
Data Set Name Instances Nominal Attributes Continuous Attributes Classes
Abalone 4177 1 7 29
Anneal 898 32 6 6
Australian 690 8 6 2
Auto 205 10 15 6
Balance-scale 625 0 4 3
Breast 699 0 10 2
Cleve 303 7 6 2
Crx 690 9 6 2
Diabetes 768 0 8 2
German 1000 13 7 2
German-organisation 1000 12 12 2
Glass2 163 0 9 2
Heart-disease 270 0 13 2
Heart-Hungarian 294 5 8 2
Hepatitis 155 13 6 2
Horse-colic 368 15 7 2
Hypothyroid 3163 18 7 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Lymphography 148 15 3 4
Segment 2310 0 19 7
Shuttle 58000 0 9 7
Sick-euthyroid 3163 18 7 2
Sonar 208 0 60 2
Tokyo 961 0 46 2
Vehicle 699 0 18 4

Table 4.1 Summary of the data sets used in the experiments (Continuous and mixed-

type data).
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Table 4.2 shows the results of employing the SRI learning system using all considered 

discretisation schemes. As shown in the table, the accuracy obtained with the on-line 

discretisation method over all the data sets was in total higher than that produced with 

all the other off-line methods. Moreover, it produced significantly fewer rules in total 

than the other discretisation methods. The table also shows that the on-line 

discretisation method achieved results as good as the best off-line method in terms of 

the total CPU time and the number of rules evaluated during the search process. It 

should be noted that the execution time required by each of the four off-line methods 

to discretise the data sets was not included in the figures reported in the table. It could 

therefore be concluded that the proposed on-line discretisation method gives the best 

performance among the five methods tested.

4.5 Summary

Discretisation of continuous-valued attributes can be performed both as a pre­

processing step preceding the learning phase and as a step integrated into the 

induction algorithm. In most classification rule learning systems, continuous-valued 

attributes are discretised prior to the learning process as a pre-processing step. This 

chapter has addressed the problem of inducing classification rules from data having 

both nominal and continuous-valued attributes by proposing a new method that 

discretises the continuous-valued attributes during the learning process. Incorporating 

discretisation into the learning process has the advantage of taking into account the 

bias inherent in the learning system as well as the different relationships among 

continuous and nominal attributes, leading to improved performance. The careful 

implementation of the discretisation method and the SRI pruning rules which discard 

portions of the search space without losing the best solution enables an elegant and
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On-line Optimal Entropy 1RD Equal-width

Acc. # # Rules Time Acc. # # Rules Time Acc. U # Rules Time Acc. # # Rules Time Acc. # # Rules Time

Data Set Name (%) Rules explored (s) (%) Rules explored (s) (%) Rules explored <s) (%) Rules explored (s) (%) Rules explored (s)

Abalonc 25.4 66 21766 262 24.4 35 10045 100 25.0 30 6218 59 22.0 40 12379 125 24.1 36 8209 64

Anneal 97.3 17 1291 1 1 97.7 18 1639 9 97.0 14 1076 7 95.7 19 1294 10 95.3 22 2149 14

Australian 83.7 35 4139 7 82.6 35 4937 7 83.0 34 4851 6 78.3 46 5920 20 82.6 47 6017 13

Auto 65.2 15 2865 5 62.3 15 1792 4 65.2 14 2111 6 60.9 19 1923 5 60.9 18 2053 7

Balancc-scalc 83.7 19 954 1 79.4 28 1407 2 71.8 10 511 0 71.8 12 573 1 73.7 36 2495 3

Breast 93.1 9 742 1 95.7 13 747 2 96.6 1 1 721 1 95.7 9 742 1 93.1 1 1 649 1
Clcvc 81.3 22 2033 2 82.2 19 1950 2 74.3 21 2230 2 77.2 24 2557 3 74.3 24 2437 3

Crx 82.5 28 3671 6 77.5 34 4916 7 82.5 28 4013 7 78.0 43 5686 18 77.0 31 4232 9

Diabetes 67.2 23 2435 6 68.8 20 2045 2 67.6 17 1096 2 64.5 26 3451 7 67.2 32 4308 9

German 70.9 33 6972 13 73.1 40 8385 15 73.1 40 8385 15 72.5 49 7749 15 71.2 53 13336 19

German-org. 73.6 32 7991 17 75.1 33 7289 10 74.0 33 7298 1 1 71.0 40 8301 18 73.3 45 1 1721 27

Glass2 74.5 10 531 1 76.4 9 215 0 70.9 5 126 0 70.9 13 507 1 81.8 15 965 1

Heart-disease 80.0 12 1262 1 86.7 17 1446 1 87.8 15 1462 1 81.1 23 2134 2 76.7 23 2218 3

Hcart-Hungarian 79.5 1 1 815 1 80.6 8 497 1 79.6 7 380 0 74.5 14 1040 1 76.5 14 149! 1

Hepatitis 82.7 7 583 1 80.8 5 314 1 80.8 5 316 1 80.8 6 379 1 80.8 7 455 1

Horse-colic 86.8 21 3623 4 73.5 22 3769 5 77.9 20 3799 6 76.5 31 5304 10 79.4 23 4851 8

Hypothyroid 98.6 12 1698 14 98.9 12 1357 10 97.9 15 1698 13 97.3 19 1757 19 94.1 33 5505 45

Ionosphere 88.8 10 2511 5 86.3 14 2603 6 86.3 13 1593 4 89.7 20 4242 13 83.8 21 4843 14

Iris 94.0 6 93 0 96.0 6 35 0 96.0 6 43 0 94.0 6 35 0 94.0 7 56 0

Lymphography 84.0 9 1072 1 78.0 8 874 I 84.0 7 845 1 78.0 8 874 1 84.0 8 1050 1

Segment 93.1 31 8565 53 93.9 43 7551 43 91.2 64 9620 64 76.2 117 22114 154 91.6 62 9751 70

Shuttle 99.5 14 1932 260 99.6 17 2334 278 99.5 30 4012 351 95.6 21 2348 283 91.6 17 1449 243
Sick-cuthyroid 96.7 25 4235 25 95.5 34 4763 27 97.3 20 2863 13 96.4 31 3973 23 83.5 45 9072 56

Sonar 72.9 10 2538 7 71.4 12 1262 4 71.4 12 1262 4 67.9 26 8178 51 65.7 20 6870 27

Tokyo 91.7 10 3210 11 92.9 18 4335 19 90.4 13 2672 8 88.1 16 4889 26 89.0 17 3375 14

Vehicle 69.9 38 9942 20 67.4 61 12583 25 64.9 57 111 79 22 58.2 82 13053 27 60.6 73 15576 33

Total 2116.4 525 97469 735 2096.6 576 89090 581 2085.8 541 80380 604 2012.5 760 121402 835 2025.6 740 125133 686

Table 4.2 Performance of discretisation methods when used in SRI.
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efficient implementation of the search procedure. The proposed on-line discretisation 

method and four other state-of-the-art off-line discretisation methods have been tested 

on well-known machine learning data sets consisting of continuous and mixed-mode 

attributes. In all cases, the SRI algorithm has been used to generate the rule set, but in 

the four off-line methods the data has been pre-processed using the corresponding 

procedure to discretise all continuous attributes. The tests have shown that the 

proposed method significantly improves the classification accuracy. It also achieves 

results comparable with those of the best off-line method in terms of execution time 

and compactness of the rule set.
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CHAPTER 5

MDL-BASED PRUNING OF RULE SETS

5.1 Motivation

For any learning method to work successfully with large data sets, it must be capable of 

learning accurately in the presence of noise. Existing rule learning systems are 

computationally expensive when applied to large noisy data sets (Cohen, 1995). Noisy 

data are also a problem for most learning algorithms because it is hard to distinguish 

between rare exceptions and erroneous examples. Pruning is a standard way of dealing 

with noisy data so as to avoid overfitting the training data set. Pruning is a method for 

reducing the error and complexity of induced models.

Several pruning techniques have been developed. They can be categorised as pre­

pruning, post-pruning and hybrid pruning (Ftimkranz, 1996). Pre-pruning techniques deal 

with noise during concept generation. Their basic idea is to stop the specialisation of 

rules, although rules so produced may be over-general. Rules are therefore allowed to 

cover a few negative examples, if the alternative is deemed to be too costly.

While pre-pruning techniques deal with noise in the data during rule set construction, 

post-pruning techniques attempt to improve the rule set after it has been extracted. A 

commonly used post-pruning technique aims to remove conditions from rules and 

eliminate certain rules from the rule set. The basic idea is to test whether the removal of a



single condition or even of an entire rule would lead to a decrease in the quality of the 

concept description, usually measured in terms of classification accuracy on the test set. 

If this is not the case, the condition or rule is removed.

Research has been carried out to combine these two techniques by initially applying pre­

pruning to reduce the over specialisation of the rule sets and then using post-pruning to 

complete the process. This hybrid approach provides a balance between pre-pruning 

speed and accuracy of the pruned rule set.

Most of the existing pruning techniques were originally designed for decision trees and 

only a few can be used directly for rule set processing. Moreover, a significant drawback 

of many of these techniques is the necessity to split the training data set into a growing 

set and a pruning set. Dividing the data set raises two problems. First, setting aside some 

data for the pruning set reduces the number of instances available for learning. Second, 

discarding portions of the generated rules based only on their evaluation on the pruning 

set makes pruning techniques very sensitive to the size of this set. In the case of a small 

pruning set, which is always true in the later stages of the processing, the error estimate 

usually has a high variance and is therefore not reliable.

In this chapter, three different techniques for pruning rule sets based on the Minimum 

Description Length (MDL) principle are presented. An important advantage of these 

techniques is the fact that all of the training data can be used for both inducing and 

evaluating rule sets.
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This chapter is organised as follows. Section 2 reviews current pruning techniques in the 

context of inductive learning. Section 3 presents the MDL criteria used for pruning and 

discusses previous coding strategies. It also introduces a new MDL measure for rule sets 

based on the ideas of Quinlan (1995). Section 4 describes the SRI rule induction 

algorithm using the new MDL measure as a stopping criterion and as a criterion for 

incremental, post-, and hybrid pruning. Empirical results are reported in section 5.

5.2 Existing Pruning Techniques

Pre-pruning usually employs some stopping criterion for deciding when to stop adding 

conditions to a rule and when to stop adding rules to the rule set. CN2, for instance, 

utilises a significance test to check whether the current rule correctly captures the class 

distribution of the training instances and to decide whether or not to specialise the rule 

further. Pre-pruning techniques are generally fast, but there is always the danger that a 

predefined criterion will over-simplify the rule set (Ftimkranz, 1994a; Frank, 2000).

Post-pruning techniques are commonly used in decision tree learning algorithms. 

Reviews of the most well-known post-pruning techniques can be found in (Mingers, 

1989), (Breslow and Aha, 1996) and (Esposito et al., 1997). Generally, post-pruning 

techniques are more accurate than pre-pruning techniques, but are also more 

computationally expensive.

The most common post-pruning technique is Reduced Error Pruning (REP). This simple 

technique which was designed for decision tree learning (Quinlan, 1987) has been

1 0 6



adopted for rule learning (Pagallo and Haussler, 1990; Brunk and Pazzani, 1991). After 

the training set is split into a growing and a pruning set according to some user-specified 

ratio, a consistent rule set that covers all of the positive and none of the negative 

examples is learned from the growing set. This rule set is then simplified by repeatedly 

deleting conditions and rules until any further deletion would result in a decrease in 

predictive accuracy as measured on the pruning set.

Using REP for rule learning has proved effective in raising predictive accuracy in noisy 

domains (Cohen, 1993; Frank and Witten, 1999; Elomaa and kaariainen, 2001). 

However, this technique has several shortcomings. REP is very inefficient because the 

overly specific rule set it generates in its first phase can be much more complex than the 

final rule set. Therefore, much work is wasted in learning and subsequently removing 

superfluous conditions and rules. Another problem with REP, as pointed out by 

Fiimkranz and Widmer (1994), is that it is not appropriate for rule induction. This is 

because, in rule learning, the induction of the second rule is based on the instances 

remaining after the removal of the instances covered by the first rule. If the first rule is to 

be pruned away, this would affect the induction of the second rule.

To solve the inefficiency problem, Cohen (1993) proposed an alternative overfit-and- 

simplify technique called Grow that was competitive with REP with respect to error rate 

and was an order of magnitude faster on a set of benchmark problems. However, Grow 

still suffers from the inefficiency caused by the need to generate an overly specific rule 

set first. Moreover, it has been shown that Grow systematically overfits the target concept
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on noisy data. Cohen, subsequently, tried to improve Grow by adding two stopping 

heuristics to the initial overfitting stage, thus achieving a further speed-up in the 

technique. The goal of the stopping conditions in this context is not to prevent overfitting 

entirely, but to reduce its extent so that the post-pruning phase can start with a better rule 

set and hence requires less computational effort. Fiimkranz (1994b) proposed a different 

implementation of this approach. He developed a technique called Top-Down Pruning 

(TDP) that uses a simple method to generate rule sets pruned to different degrees in a top- 

down, general-to-specific order. The accuracies of the rule sets were evaluated on a 

separate set of data and the most specific rule set with an accuracy comparable to that of 

the best rule set up to that point was selected to start the post-pruning phase. TDP was 

compared to REP in a variety of domains. Experiments have shown that TDP is 

significantly faster and a little more accurate than REP.

In another attempt to solve the above-mentioned problems of REP, Fiimkranz and 

Widmer (1994) developed a learning algorithm called Incremental Reduced Error 

Pruning (IREP). IREP integrates pre-pruning and post-pruning in a way that avoids the 

expensive initial phase of overfitting. When a rule is to be pruned, the training data set is 

split into a growing set and a pruning set. After a rule is generated from the growing set, 

it is immediately pruned based on its performance on the pruning set. This ensures that 

the algorithm can remove training instances covered by the pruned rule before subsequent 

rules are learned. Thus the influence of these instances on the learning of future rules can 

be avoided. It has been confirmed experimentally that IREP gives significant run-time
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improvements over REP and Grow, and learns a much better rule set. However, in 

domains with a very specific concept description, REP is more appropriate.

5.3 Minimum Description Length (MDL) Principle

The Minimum Description Length (MDL) principle (Rissanen, 1986; Barron et al., 1998; 

Grunwald, 2000; Tirri, 2001), also called the Minimum Message Length (MML) 

principle (Georgeff and Wallace, 1984), is a powerful method for inductive inference. It 

states that the best model derivable from a set of observed data is the one that permits the 

greatest compression of the data. This is based on the idea that the greater the 

compression of the data, the greater the ability to discover regularity in the data.

Among the many techniques for pruning, those based on the MDL principle are 

particularly attractive because they provide a framework for balancing the complexity 

and the accuracy of a particular induced model. Several authors have proposed pruning 

techniques based on the MDL principle (Quinlan and Rivest, 1989; Wallace and Patrick, 

1993; Forsyth et al., 1994; Kovacic, 1994; Mehta et el., 1995; Pfahringer, 1995b; 1997; 

Robnik-sikonja and Kononenko, 1998). These methods seek models that maximally 

compress the data and differ in the coding scheme they employ. In the following sub­

sections, existing coding schemes are briefly described and a new scheme for encoding 

rule sets is presented.
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5.3.1 Existing Coding Methods

The application of the MDL principle to the problem of pruning rule sets can be seen as a 

data communication problem. Let a sender and a receiver both have information on the 

number of attributes, the number of possible values for each attribute and the number of 

possible classes and a description of the training instances in terms of attribute values. 

The sender also knows the label of each instance and must communicate this information 

to the receiver. Obviously, the sender can transmit each instance together with the label to 

the receiver. Alternatively, the sender can also find a model that will enable the receiver 

to determine the labels of the instances, send the receiver a description of this model, and 

then transmit the instances that are the “exceptions” to the model. The sender may have a 

series of choices between a more complex model that fits the training data well and a 

simpler model that is less accurate. The MDL principle states that the best model to infer 

from a set of data is the one that minimises the sum of the coding length of the model and 

the coding length of the data given the model. If M is a model derived from the training 

data D, the total coding length, L(M, D), is defined as:

L(M, D) = L(M) + L(D/M) (5.1)

where L(M) is the coding length to describe the model M  and L(D/M) is the coding length 

to describe the data given model M. Both L(M) and L(D/M) are measured in “bits” using 

an appropriate coding scheme. In the context of rule induction, the models are the 

different rule sets that can be obtained by pruning the initial rule set, and the data is the 

training set. The objective of MDL pruning is to find the model that minimises the value
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L(M, D). The model with the minimal total coding length is also the most probable model 

explaining the data as pointed out by Rissanen (1986), and thus will have the greatest 

accuracy when classifying new unseen instances.

Based on this idea, the coding strategy is now detailed.

5.3.1.1 Model encoding

The coding length of a model M, L(M), is the sum of the coding lengths of its rules:

Each rule consists of a sequence of conditions where each condition is either a value of 

the nominal attribute or an interval of values (either greater-than, GT, or less-than-or- 

equal-to, LTE, some threshold value) of the continuous attribute. Therefore, the coding 

length for all conditions of a single rule is the sum of the coding lengths of these three 

different possible kinds of conditions:

The coding length of the nominal conditions is given by Equation 5.4 (adapted from 

(Pfahringer, 1997) and (Robnik-sikonja and Kononenko, 1998)):

L(M) = X  LCrJ (5.2)

L(rJ = L(Nominal Conds) + L(GTConds) + L(LTE_Conds) (5.3)

( n  \
L(Nominal_Conds) = Log2 + T] Log: nA

V W I )  i=\
(5.4)



where Nn is the number of all nominal attributes, m, the number of nominal attributes 

involved in the antecedent of the rule and nA the number of possible values that a

certain nominal attribute A, can take.

The first term on the right-hand side of the above equation is the average coding length 

for selecting a subset of attributes from the set of all nominal attributes. The second term 

is the coding length for specifying the respective values for each of the selected 

attributes.

Similarly, the coding lengths of the continuous conditions, L(GT Conds), L(LTE_Conds), 

are estimated by first selecting the continuous attributes actually involved in the 

antecedent of the rule and then encoding the respective thresholds as shown in Equations 

5.5 and 5.6 (adapted from (Pfahringer, 1997) and (Robnik-sikonja and Kononenko, 

1998)):

( N \  '”2
L(GT_Conds) = Log2 L + ^  L (t,L) (5.5)

(N \
L(LTE_Conds) = Log2 c + T] L(tn)

\ ”h )  / = !

(5.6)

where Nc is the number of all continuous attributes, and m2 and m3 are the numbers of 

continuous attributes used to create conditions of the form A, > r,7 and A-t < ty respectively.



The cost o f specifying a single threshold for a continuous attribute At is given by:

L(t,J = Log2 (d-1) (5.7)

where d-1 is the number of possible thresholds, and d is the number of distinct values for 

the attribute A, occurring in the examples covered by the current rule.

5.3.1.2 Data encoding

Encoding the data given the model may be thought of either as encoding the data points 

that are covered by the model or as encoding the exceptional instances that are 

erroneously classified by the model. There are several different schemes for encoding the 

classes of the instances covered by model M. Let S be a set of instances covered by model 

M  containing N instances, each belonging to one of k classes. Let nc be the number of

instances in class Cr The cost of encoding the classes for the N  instances is given in 

(Quinlan and Rivest, 1989) as:

L(S/M) = Log2
'N + k - \

k -1  j
+ Log2 (5.8)

The first term in Equation 5.8 is the number of bits needed to specify the class 

distribution of the training instances, that is, the number of instances in each class. The 

second term is the number of bits required to encode the class for each instance once the 

class distribution is known.
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Krichevsky and Trofimov (1983) proposed another scheme (Equation 5.9):

(5.9)

where T () is the Gamma function and is defined by the integral:

f ( z ) =  '<? y dy (5.10)

It has been shown that Equation 5.9 yields more accurate encoding costs than Equation 

5.8, especially when some nc are close to either 0 or N  (Mehta et al., 1995).

A scheme for coding the exceptions to the model was first introduced in Quinlan (1993) 

and then in Quinlan (1994) with a slight modification. The basic idea can be outlined as

be given by identifying the misclassified instances of the rules R. Assuming a binary- 

class problem, misclassified instances can be specified by indicating which of the 

instances covered by the rules R are false positives and which of those not covered are 

false negatives, i.e. two sets of exceptions. It should be noted that learning tasks 

involving multiple classes, when being dealt with on a class-by-class basis, are essentially 

a two-class problem in which the goal is to generate rules that cover instances of one of 

the classes, called the target class, while not covering instances belonging to any other 

class. The coding length of a sensible encoding scheme for identifying t exceptions in N  

instances is (assuming all ways of selecting t of the N  instances are equally likely):

follows. Given a set of rules R describing the positive class, the class of each instance can
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( N \
L(N, t) = Log2 (N + \)  + Log2

I t (5 . 11 )

which may be interpreted as the cost of specifying t in the range 0 to N, plus the cost of 

specifying which selections of t out of N  instances are exceptions.

Let C be the number of instances covered by the rules and C the number of instances not 

covered. Further, let f p be the number of false positive instances (instances that are 

covered by the rules but are really negative) and f n the number of false negative instances 

(positive instances not covered by the rules). The exceptions cost of specifying the data 

given the model is then:

L(D/M) = L(C,fp) + L(C,f„) (5.12)

The first term is the number of bits needed to indicate the false positives among the 

instances covered by the rules and the second term gives a similar expression for 

identifying the false negatives among the instances not covered. This is called the divided 

strategy since errors are separated into two groups.

This scheme for encoding exceptions has two problems. First, it is symmetric and would 

give ambiguous results as the cost of encoding f p and f n can be the same as that of 

encoding (N-P) - f p and P - f„ respectively, where P is the number of instances belonging 

to the target class and (N-P) is the number of negative instances. Second, it could lead to



poor choices among contending models. In order to solve the second problem, Quinlan 

(1994) described a simple approach which attempts to restrict the candidate models from 

which the final model is selected. He introduced a bias in favour of models whose 

predicted class distribution matches that observed in the data. This bias was justified in 

that a model learned from the data should accurately summarise that data. To implement 

this bias, an ad-hoc penalty function that significantly increases the description length of 

unsatisfactory models was employed. Empirical results showed that this bias was 

effective in selecting models with a lower error rate on unseen instances.

Quinlan (1994) also explored an alternative scheme called uniform coding strategy for 

estimating L(D/M). This scheme (Equation 5.13) encodes errors in a single group rather 

than separating them into false positives and false negatives:

L(D/M) = L(N, e) (5.13)

where N  is the total number of instances in the training data set and e is the total number 

of errors, calculated as f p + f„.

Equation 5.13 still exhibits a counter-intuitive symmetry: the cost of encoding e errors is 

the same as the cost for N  - e errors.

Instead of relying on an artificial penalty function, Quinlan (1995) presented a biased 

exceptions coding strategy that achieves the same effect in a manner consistent with the 

MDL principle itself. It is based on the observation that the proportions of the target class



instances predicted by a model and observed in the training data are the same when the 

numbers of false positive and false negative errors are equal. Before the strategy is 

defined, a theoretically optimal scheme for coding the exceptions needs to be introduced.

In Equation 5.11, the t exceptions are encoded based on the assumption that t is equally 

likely a priori. The length of an ideal coding scheme in which t may have unequal 

likelihoods is given by:

where p  is the probability of a message selection. Of course, this assumes that p  is 

independent of the previous messages and that it is known to the receiver.

The coding length of the data given the model can then be defined by:

The term L(C, f p. e/(2C)) is the number of bits needed to specify the error messages for 

covered instances. The term L (C . f n, f n /C )  is the number of bits required to encode the 

error messages for instances not covered. The error probabilities of covered and non­

covered instances are derived from the assumption that false positives and false negatives 

are balanced and that the sender first transmits the errors in the C instances covered by

the model and then communicates those in the C instances not covered. There is a slight

L(N, t, p) = Log2 (N+l) + t Log2 (I/p) + (N-t) Log2 (l/(l-p)) (5.14)

L(D/M) = L(C,fp, e/(2C)) + L ( C , f hf „ / C) (5.15)
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complication: if the number C of covered instances is small, e/2C may be greater than 

one. To overcome this problem, the above equation is followed when the model covers at 

least half the instances. If less than half are covered, the following equation is used:

L(D/M) = L(C,f„, e/(2C)) + L(C Jp, f p /C) (5.16)

where the false negative errors in the instances not covered are transmitted first, using the 

probability e/(2C), followed by the false positives using f p/C.

Adopting the coding scheme represented by Equation 5.14, Equations 5.12 and 5.13 can 

be rewritten as:

L(D/M) = L(C, fp, f P /C) + L ( C . U  f J C )  (5.17)

L(D/M) = L(N, e, e/N) (5.18)

The biased strategy and the divided strategy, represented respectively by Equation 5.15 

and Equation 5.17, are similar except that the former uses the initial assumption of equal 

numbers of false positive and false negative errors to derive error probabilities for 

covered and non-covered instances.



5.3.2 An Alternative Coding Method

The encoding schemes represented by Equations 5.15 to 5.18 can still lead to anomalous 

choices among candidate models. This can be illustrated by a hypothetical example. 

Suppose a data set of 1000 instances, of which 300 belong to the target class, has six 

candidate models that give rise to various numbers of false positive and false negative 

errors as shown in Table 5.1. The models vary from over-specific to over-general. All six 

models are further presumed to have the same model cost so that the model with the 

lowest exceptions cost will be chosen. The number C of instances covered by a model is 

given by: P+fp - f n- In this situation, the divided strategy will choose Me, with 197 errors, 

instead of the equally complex model Mi that makes far fewer errors. The uniform 

approach will find an exact tie between Mi, with 152 errors on the training data, and Me, 

with 848 errors. The biased approach has no difficulty in distinguishing between Mi and 

Me. However, it fails to select Mi and M2 , with 152 and 158 errors respectively, which 

have much higher predictive accuracy than M 3 ,  M 4 ,  M 5  and Me with 170, 186, 197 and 

848 errors. The choices made based on MDL in this example are clearly counter­

intuitive.

In the above example, where the positive instances are in the minority, the divided 

strategy tends to select over-general models. Conversely, it has been found that it tends to 

select over-specific models when the positive instances are in the majority. The biased 

strategy substantially increases the coding length of the over-general models especially 

when the assumption of balanced errors is grossly incorrect. However, it also increases 

the coding length of the over-specific models, thereby still favouring over-general
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Model

False

Pos

False

Neg

Instances

Covered

Divided

Encoding

Uniform

Encoding

Biased

Encoding

Alternative 

Biased Encoding

Mi 6 146 160 613.7 624.8 655.0 613.7

m 2 29 129 200 646.6 639.5 668.3 646.6

m 3 85 85 300 649.1 667.7 649.1 649.1

m 4 134 52 382 632.4 703.0 650.2 650.2

m 5 192 5 487 529.7 725.9 657.3 657.3

m 6 694 154 840 613.7 624.8 886.5 886.5

Table 5.1 Exceptions costs for six competing models.
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models. This suggests an alternative one-sided biased coding scheme as follows: if either 

positive instances are in the minority and the model is too general, or positive items are in 

the majority and the model is too specific, the biased encoding method, Equation 5.15 or 

5.16, should be used. Otherwise, the divided strategy, Equation 5.17, should be 

employed. The final column of Table 5.1 shows the exceptions costs of the alternative 

biased coding method for the given six models. In this example, MDL would now place 

Mi and Atwell ahead of the other models, which is an intuitively sensible outcome.

To test the usefulness of the new encoding method, three versions of the SRI rule 

induction learner were prepared that differ only in the method used to calculate 

exceptions costs. The first version used the new strategy described in this section. The 

other two versions employed the strategies of Equation 5.9 and Equation 5.15 or 5.16, 

respectively. It should be noted that when using Equation 5.9, it is assumed that the last 

rule of the model is the default rule, which uses the majority class in the training set to 

assign class labels to examples not covered by any previous rule. Thereby the whole 

training set is taken into account when estimating the total coding length. The tests 

showed that the new version led to much better results. Therefore, the new version is 

adopted for the rest of the experiments in this thesis.

5.4 Proposed Pruning Techniques

Using the encoding scheme proposed in section 5.3.2, three different pruning techniques 

for rule induction systems have been developed. This section describes the way in which 

these pruning techniques are used in the SRI inductive learner.



5.4.1 MDL-based Post Pruning (MDL PP)

MDL_PP is performed after a rule set accurately classifying every instance in the training 

set has been constructed. The task is to find the rule set for each class that minimises the 

total coding length. The pruning procedure consists of two phases. In the first phase, the 

rule set is “greedily” pruned using a “delete-rule” operator. Rules are deleted one after 

another, starting from the last rule, so long as the total coding length does not increase. In 

the second phase, each of the remaining rules is pruned using another “delete-condition” 

operator. Conditions are repeatedly deleted starting from the last condition, whenever this 

improves (decreases) the total coding length, until no further improvements in the coding 

length is possible. Figure 5.1 shows an adaptation of the SRI algorithm in order to handle 

noisy data with post-pruning. The algorithm is identical to the one in Figure 3.1, except 

for the addition of the procedure Prune Rule Set ().

5.4.2 MDL-based Hybrid Pruning (MDL HP)

This strategy combines pre- and post-pruning. It first uses a stopping heuristic to find an 

intermediate rule set and then prunes this set to an appropriate level of generality in a 

subsequent post-pruning phase. The implementation of this approach is as follows.

After an induced rule is added to the current rule set, the total description length is 

computed. The new version of SRI stops adding rules when this description length is 

larger than the smallest description length obtained so far, or when there are no more 

positive examples. The rule set is then simplified by examining each rule in turn starting 

with the last rule added and deleting conditions from this rule in a greedy fashion,
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Procedure InduceRules  (TrainingSet, Beam Width)

RuleSet = 0

For each class in the TrainingSet Do 

CurrentClassRuleSet = 0  

Instances = TrainingSet 

While Positives (Instances) * 0  Do 

Rule = In d u ceO n eR u le  (Instances, CurrentClass, BeamWidth) 

Instances = Instances -  Covered Positives (Rule, Instances) 

CurrentClassRuleSet = CurrentClassRuleSet u  {Rule}

End While

CurrentClassRuleSet = Prune Rule Set (CurrentClassRuleSet,TrainingSet) 

RuleSet = RuleSet u  CurrentClassRuleSet 

End For 

Return RuleSet 

End

Figure 5.1 A pseudo-code description of SRI with MDL_PP.
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beginning from the last condition, until any further deletion would increase the total 

coding length. This pruning strategy does not need the delete-rule operator, because the 

rules are constructed so as to reduce the total coding length, and learning stops when no 

more useful rules can be found. A pseudo-code version of the SRI algorithm that 

implements this procedure is given in Figure 5.2.

5.4.3 MDL-based Incremental Pruning (MDL IP)

This pruning strategy is similar to IREP. It tightly integrates pruning into the learning 

procedure and thus allows more general rules to be constructed as early as possible 

during the learning process, as well as requiring less computation to build a rule set. 

However, unlike IREP, the pruning is based on all the training instances, which avoids 

splitting the training data set into a growing set and a pruning set.

Figure 5.3 shows a pseudo-code version of the SRI algorithm with incremental pruning. 

When a rule is generated, conditions in the rule antecedent are examined and an attempt 

is made to delete one condition at a time starting from the last condition added. If, 

according to their coding lengths, the new rule is better than the unpruned one, then it is 

accepted and pruning continues. If one condition cannot be removed, pruning stops. The 

pruning procedure also stops deleting conditions from the current rule if the number of 

positive examples covered by the rule resulting from that deletion is less than the number 

of negative examples covered. This ensures that the overall accuracy of the final rule set 

increases. The pruned rule is then added to the rule set and all covered positive examples 

are removed from the training set. From this set the next rule is learned. If the pruned rule
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Procedure InduceRules (TrainingSet, BeamWidth)

RuleSet = 0

For each class in the TrainingSet Do 

CurrentClassRuleSet = NewCurrentClassRuleSet = 0  

Instances = TrainingSet 

MDL = L (CurrentClassRuleSet, TrainingSet)

While Positives (Instances) * 0  Do 

Rule = InduceO neR ule  (Instances, CurrentClass, BeamWidth) 

NewCurrentClassRuleSet = NewCurrentClassRuleSet u  (Rule) 

New_MDL = L (NewCurrentClassRuleSet, TrainingSet)

If New_MDL > MDL Then 

Exit While

Instances = Instances -  Covered_Positives (Rule, Instances)

MDL = NewMDL

CurrentClassRuleSet = NewCurrentClassRuleSet 

End While

CurrentClassRuleSet = Prune Rule Set (CurrentClassRuleSet,TrainingSet) 

RuleSet = RuleSet u  CurrentClassRuleSet 

End For 

Return RuleSet 

End

Figure 5.2 A pseudo-code description of SRI with MDL_HP.
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Procedure Induce Rules (TrainingSet, BeamWidth)

RuleSet = 0

For each class in the TrainingSet Do 

Instances = TrainingSet 

While Positives (Instances) ^ 0  Do 

Rule = Induce One Rule (Instances, CurrentClass, BeamWidth) 

Rule = Prune Rule (Rule, TrainingSet)

If Conditions (Rule) = 0  Then 

Exit While

Instances = Instances -  Covered Positives (Rule, Instances) 

RuleSet = RuleSet u  {Rule}

End While 

End For 

Return RuleSet 

End

Figure 5.3 A pseudo-code description of SRI with MDL_IP.
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has an empty body, it is assumed that no further rule can be found that explains the 

remaining positive examples and the learning process stops for the current class. Thus the 

MDL principle also serves as a stopping criterion.

The coding length calculation involves scanning all the training data set each time a rule 

or condition is considered for deletion. By gathering relevant information during the 

learning process, the efficiency of rule pruning can be significantly increased. Two data 

structures called positive-negative list and sequence list are attached to each rule. The 

sequence list memorises the order in which conditions are added to the antecedent of the 

rule during the specialisation process. Also, the distribution of instances covered by the 

rule among different classes is recorded in the positive-negative list when each condition 

is appended. Using this information, the coding length can be computed without scanning 

the whole training instance list.

5.5 Experimental Results

This section gives the results of a set of experiments designed to evaluate the 

performance of the three new pruning techniques when implemented in the SRI 

algorithm. Initially, the performance of SRI with each of these techniques was compared 

against that of SRI without pruning. Then, the performance of SRI together with the best 

of these three techniques was compared to that of C5.0 which, as previously mentioned, 

is probably the best performing commercially available induction algorithm.
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The techniques were tested on 38 data sets selected from the UCI machine learning 

repository. The domains have nominal, continuous and mixed-type attributes. Table 5.2 

summarises the main characteristics of the data sets. For a more detailed description of 

these data sets, see appendix A. The same experimental method as described in chapter 3 

(section 3.4) was followed. SRI was executed with parameter values of 4, 1 and 2 for 

beam width, MinNegatives and MinPositives respectively. The default parameters of 

C5.0 were used.

5.5.1 Evaluation of the Different Pruning Techniques

The results obtained are shown in Tables 5.3 -  5.5. Table 5.3 presents the predictive 

accuracy of SRI without pruning and SRI with each of the pruning techniques. Table 5.4 

presents the complexity of the rule sets. Table 5.5 presents the execution time in CPU 

seconds.

It is clear from the tables that the pruning techniques achieved a substantially lower 

complexity without sacrificing accuracy for most data sets. The pruning techniques when 

used with SRI even yielded better overall accuracy than SRI without pruning. In addition, 

the execution times of SRI when the pruning techniques were employed were 

significantly lower for all the data sets. Compared to the other pruning techniques, 

MDL IP when used with SRI achieved the highest overall accuracy. The worst accuracy 

over all the data sets was obtained by MDLHP.  This can be explained by the fact that 

the stopping criterion used in MDL HP resulted in over-general rule sets, causing a 

decrease in the classification accuracy. However, MDL HP could be adopted for large

128



No. of No. of No. of No. of
Data Set Name Instances Nominal Attributes Continuous Attributes Classes
Abalone 4177 1 7 29
Anneal 898 32 6 6
Australian 690 8 6 2
Auto 205 10 15 6
Balance-scale 625 0 4 3
Breast 699 0 10 2
Breast-cancer 286 9 0 2
Car 1728 6 0 4
Chess 3196 36 0 2
Cl eve 303 7 6 2
Crx 690 9 6 2
Diabetes 768 0 8 2
German 1000 13 7 2
German-organisation 1000 12 12 2
Glass2 163 0 9 2
Heart-disease 270 0 13 2
Heart-Hungarian 294 5 8 2
Hepatitis 155 13 6 2
Horse-colic 368 15 7 2
Hypothyroid 3163 18 7 2
Ionosphere 351 0 34 2
Iris 150 0 4 3
Lymphography 148 15 3 4
Monkl 556 6 0 2
Monk2 601 6 0 2
Monk3 554 6 0 2
Mushroom 8124 22 0 2
Promoter 106 57 0 2
Segment 2310 0 19 7
Shuttle 58000 0 9 7
Sick-euthyroid 3163 18 7 2
Sonar 208 0 60 2
Soybean-large 683 35 0 19
Splice 3190 61 0 3
Tic-tac-toe 958 9 0 2
Tokyo 961 0 46 2
Vehicle 699 0 18 4
Vote 435 16 0 2

Table 5.2 Summary o f the data sets used in the experiments (Nominal, continuous and

mixed-type data).
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Data Set Name
SRI

without pruning
SRI

with MDL PP
SRI

with MDL HP
SRI 

with MDL IP
Abalone 23.1 24.5 19.8 25.1
Anneal 97.7 92.7 93.7 97.7
Australian 81.7 86.5 83.9 87.8
Auto 63.8 59.4 58.0 62.3
Balance-scale 88.5 81.3 84.2 81.8
Breast 94.0 94.0 93.6 95.3
Breast-cancer 67.4 73.7 76.8 73.7
Car 95.3 91.7 90.8 92.0
Chess 99.0 98.9 98.9 98.1
Cl eve 70.3 81.2 77.2 76.2
Crx 75.5 83.0 83.5 82.5
Diabetes 67.6 69.5 64.8 67.6
German 71.2 74.8 69.4 70.6
German-organisation 71.8 72.7 73.6 72.1
Glass2 74.5 74.5 83.6 80.0
Heart-disease 80.0 77.8 76.7 76.7
Heart-Hungarian 74.5 76.5 77.6 77.6
Hepatitis 80.8 82.7 80.8 86.5
Horse-colic 82.4 85.3 82.4 85.3
Hypothyroid 99.0 98.9 98.9 99.0
Ionosphere 83.8 84.6 86.3 84.6
Iris 94.0 94.0 94.0 94.0
Lymphography 84.0 84.0 80.0 84.0
Monkl 100.0 100.0 100.0 100.0
Monk2 63.3 65.7 62.1 65.7
Monk3 100.0 100.0 100.0 99.2
Mushroom 100.0 100.0 100.0 100.0
Promoter 74.3 74.3 74.3 77.1
Segment 93.8 91.6 91.7 93.5
Shuttle 99.9 99.9 99.6 99.7
Sick-euthyroid 97.1 97.4 97.4 95.4
Sonar 70.0 71.4 71.4 74.3
Soybean-large 91.2 89.5 90.4 90.4
Splice 89.0 89.9 89.4 92.4
Tic-tac-toe 97.8 97.8 98.1 98.1
Tokyo 92.7 93.3 93.3 91.5
Vehicle 70.9 67.4 67.4 66.3
Vote 97.8 97.8 97.8 97.0
Total 3157.5 3178.1 3161.1 3191.0

Table 5.3 Summary o f  predictive accuracies (%).
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Data Set Name
SRI without pruning SRI with MDL PP SRI with MDL HP SRI with MDL IP
# Rules # Conditions # Rules # Conditions # Rules # Conditions # Rules # Conditions

Abalone 376 1807 45 202 24 87 64 329
Anneal 21 50 15 28 16 32 17 41
Australian 47 156 9 21 10 23 15 42
Auto 17 57 12 34 14 38 13 39
Balance-scale 39 115 23 65 23 64 16 44
Breast 14 32 8 15 11 23 6 7
Breast-cancer 38 107 2 1 3 3 2 1
Car 82 315 73 285 59 215 39 136
Chess 37 159 30 111 19 62 21 74
Cl eve 25 71 10 18 8 16 12 21
Crx 43 131 14 33 9 22 5 8
Diabetes 49 134 22 55 3 3 5 9
German 102 335 45 109 2 2 6 13
German-organisation 89 351 38 122 6 14 8 25
Glass2 11 19 10 17 10 16 9 14
Heart-disease 18 47 11 26 5 9 6 8
Heart-Hungarian 22 57 ■ 6 8 4 6 6 10

Hepatitis 11 24 3 3 11 23 2 2
Horse-colic 35 93 25 62 4 8 3 4
Hypothyroid 22 58 9 18 10 20 6 13
Ionosphere 14 27 1 1 21 9 15 8 12
Iris 6 9 4 4 6 9 6 9

Lymphography 13 30 10 22 7 14 7 13
Monkl 23 61 23 61 23 61 8 10
Monk2 54 183 6 15 2 1 1 0
Monk3 13 23 13 23 6 9 3 2
Mushroom 15 28 15 28 15 28 14 25
Promoter 9 14 9 14 4 6 3 3
Segment 36 135 20 66 20 66 27 90

Shuttle 25 83 21 64 7 16 9 24

Sick-euthyroid 37 122 18 54 7 25 10 39

Sonar 16 27 10 17 10 17 10 18

Soybean-large 33 92 26 56 28 59 27 69

Splice 106 372 60 173 27 119 19 76
Tic-tac-toe 24 76 21 62 9 24 9 24

Tokyo 17 35 9 16 6 9 6 8
Vehicle 52 180 12 29 12 29 31 101

Vote 14 35 8 20 10 24 4 5

Total 1605 5650 706 1978 459 1217 463 1368

Table 5.4 Summary o f the complexities o f  the rule sets.
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SRI without pruning SRI with MDL PP SRI with MDL HP SRI with MDL IP

Data Set Name
# Rules 
explored

CPU 
Time (s)

# Rules 
explored

CPU 
Time (s)

# Rules 
explored

CPU 
Time (s)

# Rules 
explored

CPU 
Time (s)

Abalone 68915 1234 68915 1278 8677 123 21086 256
Anneal 1401 11 1401 11 1291 9 1291 11
Australian 5105 10 5105 10 1608 4 1622 4
Auto 2865 5 2865 6 2808 5 2511 5
Balance-scale 1541 3 1541 4 1202 2 834 2
Breast 876 2 876 3 812 2 528 1
Breast-cancer 3018 4 3018 4 356 1 285 0
Car 9752 18 9752 18 8158 14 4171 9
Chess 11911 50 11911 52 5538 27 6224 29
Cl eve 2072 2 2072 2 915 1 1259 1
Crx 4631 9 4631 10 1482 2 724 2
Diabetes 4188 10 4188 10 450 1 572 2
German 17001 39 17001 40 799 2 1744 4
German-organisation 18580 44 18580 46 1949 3 2592 6
Glass2 531 0 531 1 531 0 500 1
Heart-disease 1461 2 1461 2 626 1 629 1
Heart-Hungarian 1190 2 1190 2 363 0 562 0
Hepatitis 712 1 712 1 712 1 277 1
Horse-colic 4417 8 4417 8 1010 1 758 2
Hypothyroid 2206 15 2206 16 1371 10 662 7
Ionosphere 2753 7 2753 7 2407 5 2078 5
Iris 93 0 93 0 93 0 93 0
Lymphography 1103 1 1103 1 847 1 809 1
Monkl 1838 1 1838 1 1838 2 505 0
Monk2 4697 3 4697 3 345 1 225 0
Monk3 647 0 647 0 288 0 158 0
Mushroom 1856 41 1856 42 1856 42 1717 41
Promoter 2380 5 2380 5 1748 3 1234 2
Segment 8892 89 8892 92 6504 57 6868 73
Shuttle 2517 1766 2517 1794 928 644 1928 1188
Sick-euthyroid 4769 35 4769 36 1910 14 2179 20
Sonar 3066 9 3066 9 2538 6 2544 6
Soybean-large 5577 18 5577 18 4940 16 5396 17
Splice 160041 754 160041 766 35823 199 29877 177
Tic-tac-toe 4079 4 4079 5 1834 3 1834 2
Tokyo 4079 14 4079 14 2180 8 2081 7
Vehicle 11994 33 11994 33 3640 9 8264 22
Vote 1092 1 1092 1 891 1 427 0
Total 383846 4250 383846 4351 111268 1220 117048 1905

Table 5.5 Summary o f the total number o f rules searched and the execution time in

CPU seconds.
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data sets because it is much faster than the other pruning techniques and produces rules 

that are more compact. It is also clear that MDL_IP when used with SRI yielded 

comparable results in terms of rule sets complexity and execution time with MDLHP,  

outperforming the MDL_PP method. Overall, the MDL_IP method appears to be the best 

choice for use with the SRI algorithm.

5.5.2 Comparison with C5.0

The performance of SRI with MDL_IP was compared against that of C5.0. In addition to 

the data sets of Table 5.2, the Adult data set (see appendix A for details) was also used in 

the comparison. The results are shown in Table 5.6. In terms of classification accuracy, 

SRI with MDLIP outperformed C5.0 for 20 out of 39 data sets. On 5 other data sets, SRI 

with MDL IP developed rule sets with accuracies similar to C5.0. Only on 14 data sets, 

did C5.0 outperform SRI with MDL_IP. In terms of the number of rules created, SRI 

with MDL IP obtained fewer rules 28 times and C5.0, 7 times. Taking into account both 

the classification accuracy and the number of rules, it can be concluded that SRI with 

MDL IP outperformed C5.0 in the classification experiments conducted.

5.6 Summary

This chapter has reviewed existing pruning techniques for inductive learning algorithms. 

Three new techniques that employ the MDL principle for pruning rule sets have been 

presented. These techniques have a distinct feature compared with other pruning 

procedures in that they do not require the training data set to be split into two separate 

growing and pruning sets. The proposed techniques are also capable of dealing with



Data Set Name
C5.0 SRI with MDL IP

Acc. (%) No. of Rules Acc. (%) No. of Rules
Aba lone 23.4 522 25.1 64
Adult 86.4 100 81.1 5
Anneal 93.3 11 97.7 17
Australian 87.4 20 87.8 15
Auto 62.3 23 62.3 13
Balance-Scale 81.3 19 81.8 16
Breast 95.0 9 95.3 6
Breast-cancer 75.8 17 73.7 2
Car 91.8 58 92.0 39
Chess 97.2 21 98.1 21
Cleve 77.2 13 76.2 12
Crx 84.5 23 82.5 5
Diabetes 70.7 14 67.6 5
German 72.7 15 70.6 6
German-organisation 71.8 17 72.1 8
Glass2 69.1 9 80.0 9
Heart-disease 78.9 12 76.7 6
Heart-Hungarian 74.5 7 77.6 6
Hepatitis 76.9 5 86.5 2
Horse-colic 83.8 10 85.3 3
Hypothyroid 94.8 5 99.0 6
Ionosphere 89.7 6 84.6 8
Iris 92.0 5 94.0 6
Lymphography 76.0 7 84.0 7
Monkl 100.0 17 100.0 8
Monk2 65.7 1 65.7 1
Monk3 100.0 6 99.2 3
Mushroom 99.8 10 100.0 14
Promoter 74.3 7 77.1 3
Segment 93.4 24 93.5 27
Shuttle 99.9 12 99.7 9
Sick-euthyroid 90.4 8 95.4 10
Sonar 74.3 11 74.3 10
Soybean-large 93.4 32 90.4 27
Splice 92.7 60 92.4 19
Tic-tac-toe 92.2 34 98.1 9
T okyo 92.3 8 91.5 6
Vehicle 69.9 46 66.3 31
Vote 97.0 5 97.0 4
Total 3242.0 1229 3272.0 468

Table 5.6 Results for C5.0 and SRI with MDL IP.
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continuous data and multi-valued classes, making them applicable to a wide range of 

real-world problems. Experiments using the SRI classifier have demonstrated the 

performance improvements achieved.
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CHAPTER 6

RULES-6: A SIMPLE RULE INDUCTION ALGORITHM

FOR DATA MINING

6.1 Motivation

RULES-3 Plus is a simple rule induction algorithm for extracting IF-THEN rules from a 

set of training examples. The algorithm still suffers from problems that limit its efficiency 

and widespread use. One of the main problems is that RULES-3 Plus induces rules that 

are both consistent and complete (i.e., covering all positive examples and no negative 

examples) with regard to the training data. In the case of noisy data, this leads to the 

generation of over-specific rules that overfit the training data. A second problem is that 

continuous-valued attributes are discretised using a simplistic equal-width method before 

data is passed to the learning algorithm. This discretisation method is arbitrary and does 

not seek to discover any information inherent in the data, thereby hampering the ability of 

RULES-3 Plus to learn. Finally, RULES-3 Plus does not employ any methods for dealing 

with noisy data.

This chapter presents RULES-6, a new rule induction algorithm which addresses the 

weaknesses of the RULES-3 Plus algorithm. In particular, it employs a new search 

method which relaxes the consistency constraint and uses search-space pruning rules 

which significantly reduce the search time. It also adopts effective methods for handling



continuous and noisy data. These enhancements enable the efficient generation of 

accurate and compact rule sets.

The chapter is organised as follows. Section 2 briefly reviews RULES-3 Plus. Section 3 

gives a detailed description of RULES-6. Section 4 discusses the evaluation of the 

performance of RULES-6 using real data.

6.2 The RULES-3 Plus Algorithm

RULES-3 Plus (RULe Extraction System -  Version 3 Plus) is a simple rule induction 

algorithm belonging to the RULES family. RULES-3 Plus and previous versions in the 

family have been employed for the extraction of classification rules for solving different 

manufacturing and engineering problems, e.g., the recognition of design form features in 

CAD models for computer aided process planning (Pham and Dimov, 1998), the mapping 

of manufacturing information to design features (Pham and Dimov, 1998) and the 

classification of defects in automated visual inspection (Jennings, 1996). This section 

gives a brief description of RULES-3 Plus.

6.2.1 Algorithm Description

RULES-3 Plus extracts a set of classification rules from a collection of examples, each 

belonging to one of a number of given classes. The examples together with their 

associated classes constitute the set of training examples from which the algorithm 

induces general rules. Every example is described in terms of a fixed set of attributes, 

each with its own set of possible values.
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In RULES-3 Plus, an attribute-value pair constitutes a condition. If the number of 

attributes is Na, a rule may contain between one and Na conditions, each of which must be 

a different attribute-value pair. Only conjunction of conditions is permitted in a rule and 

therefore the attributes must all be different if the rule comprises more than one 

condition.

RULES-3 Plus works in an iterative fashion. In each iteration, it takes a “seed” example 

not covered by previously created rules to form a new rule. Having found a rule, RULES- 

3 Plus marks those examples that the rule covers and appends the new rule to its rule set. 

The algorithm stops when all examples in the training set are covered. This produces an 

unordered set of complete and consistent rules. Note that the examples covered by 

previously formed rules are marked in order to stop RULES-3 Plus from repeatedly 

finding the same rule. However, these examples continue to be used to guide the 

specialisation process and to assess the accuracy and generality of newly formed rules. 

By considering the whole set of examples when forming rules, RULES-3 Plus is less 

prone to the fragmentation problem (i.e., the amount of available data reducing as 

induction progresses) (Pagallo and Haussler, 1990; Domingos, 1997b) and the small 

disjuncts problem (i.e., rules covering few training examples having a high error rate) 

(Holte et al., 1989; Weiss, 1995; Weiss and Hirsh, 1998; 2000; Frayman et al., 1999). As 

a result, a compact rule set is obtained. Also, RULES-3 Plus does not work on a class- 

per-class basis. The class of the selected seed example is considered positive and all the 

remaining classes are regarded as negative.
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To form a rule, RULES-3 Plus performs a general-to-specific beam search for the most 

general and consistent rule. It starts with the most general rule and gradually specialises it 

considering only conditions extractable from the selected seed example. The aim of 

specialisation is to construct a rule that covers the seed example and as many positive 

examples as possible while excluding all negative examples. The result is a rule that is 

consistent and as general as possible. To do this, an array called AttributesAndValues is 

constructed, the elements of which are attribute-value pairs associated with the seed 

example under consideration. The total number of elements in the array is equal to the 

number of attributes in the example. In the first step, each element of the array is 

examined to decide whether it can form a rule with that element as a condition. If any of 

the formed rules is consistent, it is taken as a candidate rule and the search process stops. 

Otherwise, if the formed rules pertain to more than one class, they are added to a list 

called PartialRules. The maximum number of rules in PartialRules, called the beam 

width, is specified by the user and determines how many alternatives are considered in 

each step. Only the rules in PartialRules are considered for further specialisations by 

appending new conditions to them. These rules have the highest information content 

among all the partial rules formed in each specialisation step. It should be noted that the 

appended condition has to differ from the conditions already included in the rule to be 

specialised.

To assess the information content of each newly formed rule, RULES-3 Plus uses a 

metric called the H  measure (Lee, 1994). For a particular rule, this measure is defined as:
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where ncoverecj number of instances covered by the rule, N  is the total number of

instances, «  ̂ is the number of instances covered by the rule and belonging to the

target class C, and P  is the number of instances in the training set belonging to the target 

class C,.

In Equation (6.1), the first term represents the generality of the rule, and the second term 

represents its accuracy.

During the rule forming procedure, the rules in P a r tia lR u le s  are ordered according to 

their H  measure values. If the H  measure value of a newly formed rule is higher than that 

of any rule in P a r tia lR u le s , the new rule replaces the rule having the lowest H  measure 

value.

The specialisation process can lead to the following three outcomes:

♦ No consistent rules. All rules in P a r tia lR u le s  are specialised further by repeating the 

same process.

♦ Only one consistent rule. The rule is added to the rule set and the search stops.

♦ More than one consistent rule. The rule having the highest value for the H  measure is 

added to the rule set and the search stops.
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An example to illustrate the operation of the RULES-3 Plus algorithm can be found in 

Pham and Dimov (1997a).

RULES-3 Plus deals with attributes having continuous values by dividing the range of 

each attribute into a fixed number of intervals using the equal-width discretisation 

method. With this method, the number of intervals for each attribute is specified by the 

user. From the given set of examples, RULES-3 Plus constructs a new set for which the 

values of all continuous attributes are represented by appropriate intervals. Induction is 

then carried out with the new set of examples, the intervals being treated as any other 

value. A pseudo-code description of the RULES-3 Plus algorithm is given in Figure 6.1.

6.2.2 Missing Attribute Values

In many real problems, there can be examples in which the values of some attributes are 

unknown. Several methods have been developed to overcome this problem (Quinlan, 

1989). In RULES-3 Plus, the following procedures are implemented:

♦ Create a new condition from the seed example. If the seed example does not have 

some attributes, no conditions are created for these attributes.

♦ Check if an example is covered by a rule. If an example does not have attributes for 

which conditions exist in a rule, the example is considered to be not covered by the 

rule.

The implementation of these procedures in RULES-3 Plus allows the algorithm to handle 

missing values.
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Quantize attributes that have nominal values. (step 1)

Take a seed example not covered by the rule set formed so far and form array AttributesAndValues. (step 2)

Initialise PartialRules with the most general rule (a rule with no conditions) and set nc = 0. (step 3)

If nc < Na Then (step 4)

uc = nc+ I
Initialise TPartialRules to empty and set n = 0.

Else

Take the example itself as a rule and go to step (7).

Do (step 5)

n = n +1

Form a list of rules (T Rules), the elements of which are combinations of rule n in PartialRules

with conditions from AttributesAndValues that differ from the conditions already included in rule n
(the number of elements in T_Rules is: Na - nc) and set / = 0.

Do

/ = /+  1

Compute the H measure for rule / in T Rules.

If number of rules in T PartialRules < w Then

Store rule / into T PartialRules.

Else

If the H measure of rule / is higher than the H measure of any rule in T_PartialRules Then

Replace the rule having the lowest H measure in T PartialRules with rule /.

Else Discard rule /.

While / < Na - «,

While PartialRules * 0  AND n < vv

If there are consistent rules in T PartialRules Then (step 6)

Add to the rule list the consistent rule that has the highest H measure and discard the others.

Mark the examples covered by this rule and go to step (7).

Else Copy T PartialRules into PartialRules and go to step (4).

If there are no more examples not covered Then Stop. (step 7)

Else Go to step (2).

Figure 6.1 A pseudo-code description of RULES-3 Plus.

nc\ number of conditions, Na\ number o f attributes, w. number of rules stored in PartialRules (the 

maximum value of w is user-defined), T' PartialRules: a temporary list of rules with the same 

size as PartialRules, and T Rules: a temporary list o f rules.
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6.2.3 Classification Procedure

There are three possible outcomes when using the rule set formed by RULES-3 Plus to 

classify a new example:

♦ Only one rule covers the new example. The example belongs to the class of the 

covering rule.

♦ More than one rule covers the example. The rule with the highest H  value is used to 

classify the example.

♦ No rules cover the example. The class of the “closest” rule in the rule set is assigned 

to the example. A simple distance measure to find the closest rule is introduced by 

Bigot (2003) and employed in the RULES-3 Plus algorithm. In the original RULES-3 

Plus algorithm, the example is added to the training set and the induction process 

reinitiated.

6.3 The RULES-6 Algorithm

Although RULES-3 Plus has been successfully employed for different applications as 

mentioned in section 6.2, several drawbacks have been identified. These drawbacks 

reduce the applicability of the algorithm to many real-world applications. In this section, 

based on the ideas presented in the last three chapters, a new rule induction algorithm 

called RULES-6 (RULe Extraction System -  Version 6) is proposed to overcome the 

drawbacks of RULES-3 Plus. A pseudo-code description of RULES-6 is given in Figure 

6.2. Like its predecessors in the RULES family, RULES-6 extracts rules by processing 

one example at a time. The algorithm first selects a seed example, the first example in the 

training set not covered by previously created rules, and then calls the Induce-One-Rule ()
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Procedure InduceRules (TrainingSet, Beam Width)

RuleSet = 0

While all the examples in the TrainingSet are not covered Do 

Take a seed example 5 that has not yet been covered.

Rule = Induce One Rule (s, TrainingSet, BeamWidth) 

Mark the examples covered by Rule as covered.

RuleSet = RuleSet u  {Rule}

End While 

Return RuleSet 

End

Figure 6.2 A pseudo-code description of RULES-6.

144



procedure to learn a rule that covers that example. Following this, all covered examples 

are marked, the learned rule is added to the rule set and the process repeated until all 

examples in the training set have been covered. The In d u ce-O n e-R u le  () procedure is 

outlined in Figure 6.3.

The In duce-O ne-R ule () procedure searches for rules by carrying out a pruned general-to- 

specific search. The search aims to generate rules which cover as many examples from 

the target class and as few examples from the other classes as possible, while ensuring 

that the seed example remains covered. As a consequence, simpler rules that are not 

consistent, but are more predictive on unseen data, can be learned. This contrasts with the 

rule forming procedure of RULES-3 Plus, which restricts its search to only those rules 

that are completely consistent with the training data, leading to overfitting if the data is 

noisy.

A beam search is employed to find the best rule. This is done by using two rule lists 

named P a rtia lR u les  and N ew P a rtia lR u le s . P a r tia lR u le s , which is the same size as the 

beam width w , stores the w  best rules during the specialisation process. Only the rules in 

this list are considered for further specialisation. N e w P a r tia lR u le s  is used to save valid 

partial rules obtained by specialising the rules in P a rtia lR u le s . The learning of rules starts 

with the most general rule whose body is empty (step (1) in Figure 6.3) and specialises it 

by incrementally adding conditions to its body (step (3) in Figure 6.3). Possible 

conditions are attribute-value pairs of the selected seed example. In the case of nominal 

attributes, conditions of the form [A, = v j  are created, where v is is the value of A { in the 

selected seed example 5. In the case of continuous attributes, an off-line discretisation
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Procedure Induce_One_Rule (5: Seed example, Instances: Training set, w: Beam width)

PartialRules = NewPartialRules = 0

BestRule = most general rule (the rule with no conditions) (step 1)

PartialRules = PartialRules u  {BestRule}

While PartialRules * 0  Do (step 2)

For each Rule e PartialRules Do

{First, generate all specialisations of the current rule, save useful ones and determine all the

InvalidValues according to one of the conditional tests in steps (5), (6) or (7).}

For each nominal attribute At that does not appear in Rule Do

If v,s e Rule.ValidValues, where vls is the value o f At in 5 Then

NewRule = Rule a  [At = v(i] (step 3)

If NewRule.Score > BestRule.Score Then (step 4)

BestRule = NewRule

If Covered_Positives (NewRule) < MinPositives OR (step 5)

Covered_Negatives (Rule) -  Covered_Negatives (NewRule) < MinNegatives OR (step 6)

Consistency (NewRule) = 100% Then (step 7)

Parent (NewRule).InvalidValues = Parent (NewRule).InvalidValues + {v,J (step 8)

Else

NewPartialRules = NewPartialRules u  {NewRule} (step 9)

End For

End For

Empty PartialRules

Figure 6.3 A pseudo-code description of the Induce OneJRule () procedure of

RULES-6.

PartialRules: a list of rules to be specialised, NewPartialRules: a new list of rules to be 

used for further specialisations and T' NewPartialRules: a temporary list of rules.



For each Rule e NewPartialRules Do

{Next, delete partial rules that cannot lead to an improved rules and determine all the

InvalidValues according to the conditional test in step (10).}

If Rule.OptimisticScore < BestRule.Score Then (step 10)

NewPartialRules = NewPartialRules -  {Rule} (step 11)

Parent (Rule).InvalidValues = Parent (Rule).InvalidValues + Last_Value_Added (Rule)

(step 12)

End For

For each Rule e NewPartialRules Do

{Finally, remove from the ValidValues set o f each rule all the values that will lead to

unnecessary construction of useless specialisations at subsequent specialisation steps.}

Rule.ValidValues = Rule.ValidValues -  Parent (Rule).InvalidValues (step 13)

End For

If w > 1 Then

Remove from NewPartialRules all duplicate rules

Select w best rules from NewPartialRules and insert into PartialRules (step 14)

Remove all rules from NewPartialRules

End While

Return BestRule

End

Figure 6.3 A pseudo-code description of the Induce One Rule () procedure of RULES-6

(continued).
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method (described in section 6.3.2) is used to split the range of each attribute into a 

number of smaller intervals that are then regarded as nominal values. For each condition, 

a new rule is formed by appending a condition to the current rule that differs from the 

conditions already included in the rule. The score of each new rule is computed and the 

rule with the best accuracy is remembered (step (4) in Figure 2). In RULES-3 Plus, the H  

measure is used to select the best rule. However, this measure is computationally 

complex and does not lead to the highest level of predictive accuracy and generality. On 

the other hand, the m-probability-estimate (defined in chapter 3, Equation 3.1) is found to 

produce better results when used in the RULES-6 algorithm. As a result, it is employed 

as a replacement for the H  measure.

Some of the new rules are pruned according to one of the conditional tests in steps (5), 

(6), (7) or (10). The pruned rules are regarded as useless and thus excluded from further 

specialisations at subsequent specialisation steps. By only considering useful rules at each 

specialisation step, the search effort for a good rule is effectively restricted, and this 

significantly speeds the search and improves performance without affecting the quality of 

the learned rules. The effect of the above pruning is maximised through the additional 

processing in steps (8), (12) and (13). The conditions for pruning and how their effect is 

maximised are detailed in chapter 3 (section 3.2.4).

After appropriate rules in the PartialRules list are specialised, the best w rules from 

NewPartialRules are chosen to replace all rules in the PartialRules list (step (14) in 

Figure 6.3). The comparison between rules is based on the employed quality measure. In
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the case of a tie, the simplest rule is selected. If there is a tie again, the general rule that 

covers the highest number of examples not already covered by rules formed so far is 

chosen. Unlike RULES-3 Plus, rules are not ordered when inserted into NewPartialRules, 

which accelerates the specialisation process. Scanning the NewPartialRules list w times 

to obtain the best w rules is much faster than ordering the rules in NewPartialRules each 

time a new rule is inserted into it.

Further specialisation ceases when the PartialRules list becomes empty (step (2) in 

Figure 6.3) due to the tests at steps (5), (6), (7) and (10). The best rule is returned at the 

end.

The following sections discuss the key ideas underlying RULES-6 in more detail.

6.3.1 The Search Method

As presented in section 6.2, RULES-3 Plus accepts only fully consistent rules and creates 

a complete cover. In real-world applications, however, data is often noisy and insisting on 

full completeness and consistency of the rule set is no longer essential. This section 

introduces a novel noise-tolerant search method, which enables the efficient generation of 

a more accurate and compact rule set.

6.3.1.1 Relaxing the consistency requirement

As mentioned previously, RULES-3 Plus uses a beam search strategy to find near- 

optimal generalisations of a seed example. After a set of consistent rules has been built,
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the best one is selected and added to the rule set. Once the best consistent rule that covers 

the seed example has been selected, the rule generation process stops. Thus, the result of 

this process is a rule set which is totally consistent with the training data.

One change to relax the consistency requirement would be to continue the rule generation 

process to the end (i.e., until the PartialRules list becomes empty (step (2) in Figure 6.3) 

and then choose the rule with the highest value of the quality measure as the best one. In 

this way, rules are allowed to cover a few negative examples, sacrificing the consistency 

with regard to the training data. In return, simplicity of rules and often better performance 

are gained. It should be noted that consistent rules having a very low coverage might be 

found in the early stages of the rule generation process and stopping the search process 

once a consistent rule has been found might lead to the generation of non-optimal rules. 

On the other hand, if the search process continues, more general rules could be created.

Another way to introduce inconsistency is through the use of post-pruning techniques, 

described in section 6.3.3. By dropping certain conditions and rules from the rule set, the 

resulting set will generally have lower consistency but may have a much higher coverage 

value and will score higher on future examples.

6.3.1.2 Learning incomplete rule sets

In simple machine learning problems, a complete rule set -  one that covers all of the 

positive examples -  is usually desired (Michalski and Kaufman, 2001). In any real-world 

data mining application, the data often contains errors and full completeness is not
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required, as overly complex and detailed rules may otherwise be produced. Such 

“complete” rules may depend strongly on the particular training set and, consequently, 

may perform poorly in classifying unseen examples. For that reason, when learning from 

noisy data, it is often better to produce rules that are only partially complete.

In order to relax the completeness requirement, stopping criteria are often used to halt the 

search for rules before all the training examples are covered. Such halting occurs when 

no further good rules can be found. This approach has been implemented in the SRI 

algorithm, described in chapter 3. However, it is risky to implement such an approach in 

RULES-6. This is because, with randomly selected seed examples from the set of 

examples yet to be covered, it is not certain that the most general rules will be generated 

first as the coverage level of the rules does not decrease consistently.

The approach followed in RULES-6 is to continue generating rules until a complete rule 

set is built. After that, a post-pruning technique is applied to remove rules that have low 

coverage. However, this approach is computationally expensive.

6.3.2 The Discretisation Method

As presented in chapter 4, there are two approaches for discretisation of continuous 

attributes, namely, on-line and off-line discretisation. The on-line discretisation method 

developed in chapter 4 was shown to outperform a number of off-line discretisation 

methods when incorporated into the SRI algorithm. However, there are at least two 

problems that make this method inappropriate if it is applied in the RULES-6 algorithm.
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Recall first that, in order to discretise a continuous attribute during learning, SRI divides 

the range of that attribute into two intervals by selecting one threshold value from the 

attribute domain. The best threshold for a certain attribute is chosen as the one that best 

separates the classes of the training instances belonging to that attribute. Two possible 

conditions are then created and new rules are formed by adding these conditions to the 

current rule. On the other hand, the specialisation process of RULES-6 aims to cover a 

specific seed example. By adopting this discretisation method, only one condition that 

covers the seed example will therefore be considered by RULES-6 for specialisation of 

the current rule and the other condition will be deleted, resulting in a loss of valuable 

information. It should also be noted that more appropriate conditions might be produced 

if the objective of covering the seed example is taken into consideration when selecting 

the best threshold value. Second, as explained in chapter 4, the main advantage of on-line 

discretisation, in comparison with off-line discretisation, is that higher-order correlations 

between attributes can be discovered in the learning process. However, the limited search 

of RULES-6, due to its dependence on specific training examples during its search, 

reduces the possibility of finding such correlations. As a result, the high computational 

cost resulting from discretising continuous attributes during learning is not justifiable. In 

this case, it would be better to employ an off-line discretisation method.

Several off-line discretisation methods have been developed. The experimental results of 

many studies (Ventura and Martinez, 1995; Cai, 2001) have indicated that the choice of 

which discretisation method to use depends both on the data to be discretised as well as 

on the learning algorithm. This section presents a study of the performance of the four
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off-line discretisation methods used in the experiments conducted in chapter 4 (section 

4.4) in order to identify the most appropriate method to be applied in RULES-6.

Experiments were carried out on the same data sets described earlier in Table 4.1, chapter 

4. All the data sets were first discretised using each of the discretisation methods and then 

passed to the learning algorithm. Table 6.1 summarises the results obtained for each 

discretisation method when used in RULES-6. From the table, it can be seen that the 

entropy method obtained better accuracy in total than the other methods over the 26 test 

domains. Moreover, it produced in total significantly fewer rules than the other 

discretisation methods. In terms of the total execution times, the entropy method was 

faster than the 1R Discretizer and the equal-width method, but slower than the optimum 

method. However, the time required by the optimal method to preprocess the data was 

significantly larger than that required by the entropy method. Overall, the entropy method 

seems to be the best choice among the descretisation methods tested. Consequently, this 

discretisation method is adopted for use with RULES-6.

By comparing the results from Table 6.1 with the corresponding results in Table 4.2, it 

can also be seen that the effect of the off-line discretisation methods was different for the 

two learning algorithms. For example, the 1R Discretizer method did quite well when 

combined with RULES-6, but not so well when combined with SRI. Thus, it can be 

concluded that the choice of the best discretisation method is dependent on the learning 

algorithm for which the preprocessing is being performed. This supports the findings in 

(Ventura and Martinez, 1995) and (Cai, 2001).



Data Set Name

Optimum Entropy 1RD Equal-width
Acc.
(%)

#
Rules

# Rules 
explored

Time
(s)

Acc.
(%)

#
Rules

# Rules 
explored

Time
(s)

Acc.
(%)

#
Rules

# Rules 
explored

Time
(s)

Acc.
(%)

#
Rules

# Rules 
explored

Time
(s)

Aba lone 24.7 21 1250 1 25.3 21 1012 1 24.7 20 189 0 24.8 22 1235 1
Anneal 95.7 22 2499 1 93.3 16 1912 1 94.3 16 1739 1 92.0 21 2772 2
Australian 81.3 31 3447 0 85.2 29 2892 0 89.1 29 1864 0 85.7 34 3179 0
Auto 56.5 11 738 0 62.3 14 1582 0 59.4 17 1117 0 49.3 19 1225 0
Balance-scale 74.6 21 261 1 64.6 11 155 0 65.6 11 161 0 79.9 39 363 1
Breast 92.7 14 261 0 92.3 10 257 0 97.4 12 380 0 93.6 18 278 0
Cl eve 76.9 16 838 0 82.2 17 913 0 82.2 20 1031 0 79.7 10 488 0
Crx 81.7 30 3233 1 79.5 34 3624 1 80.0 26 2121 0 77.5 25 2457 1
Diabetes 65.6 13 559 0 71.5 12 305 0 65.2 38 907 0 68.4 42 1779 1
German 75.7 95 10398 3 75.7 77 8402 3 72.2 104 10630 4 70.9 103 14432 5
German-org. 74.6 70 11166 5 76.6 58 9684 4 76.0 62 9545 3 72.7 101 18283 7
GIass2 74.5 6 67 0 78.2 5 43 0 72.7 17 248 0 72.7 16 380 0
Heart-disease 77.8 18 730 0 83.3 16 725 0 84.4 20 999 0 82.2 23 1248 0
Heart-Hungarian 79.6 12 476 0 79.6 11 396 0 78.6 13 604 0 77.6 20 1031 0
Hepatitis 84.6 11 569 0 82.7 11 519 0 84.6 11 555 0 76.9 10 581 0
Horse-colic 73.2 28 3238 1 80.9 31 3902 1 75.0 34 3011 1 70.6 38 3840 1
Hypothyroid 95.7 17 1257 3 95.5 17 1000 2 96.7 23 1561 3 95.8 37 4216 8
Ionosphere 92.3 20 1899 0 94.0 15 1588 0 93.2 25 1063 0 92.3 29 2778 1
Iris 96.0 4 17 0 96.0 4 20 0 96.0 4 15 0 94.0 6 23 0
Lymphography 74.0 11 661 0 86.0 15 882 0 74.0 11 661 0 84.0 14 884 0
Segment 93.1 41 3136 3 89.6 42 3529 3 79.6 90 2339 3 87.3 50 4912 5
Shuttle 98.9 19 503 28 99.7 27 1101 46 94.7 55 1327 50 89.9 25 1001 43
Sick-euthyroid 95.5 21 1776 3 97.2 22 1678 2 94.9 30 3070 3 89.9 32 3834 7
Sonar 72.9 13 921 0 70.0 13 921 0 67.4 31 3263 1 75.7 29 4619 1
Tokyo 90.8 16 1285 2 89.4 19 3673 2 87.1 27 3667 1 91.9 30 3715 2
Vehicle 70.6 40 3546 1 68.1 31 4032 1 61.7 68 5002 1 63.8 60 6650 2
Total 2069.7 621 54731 53 2098.8 578 54747 67 2046.8 814 57069 71 2038.9 853 86203 88

Table 6.1 Performance of descritisation methods as pre-processors to RULES-6.

154



6.3.3 The Pruning Technique

In chapter 5, three new pruning techniques and their application to the SRI algorithm 

were described. The aim of this section is to discuss the appropriateness of these 

techniques for use in the RULES-6 algorithm. Incremental and hybrid pruning techniques 

cannot be applied to rule sets created by RULES-6 because of the dependence of their 

pruning strategies on stopping heuristics. The use of stopping heuristics in RULES-6 is 

not appropriate as explained in section 6.3.1.2. In that section, it was suggested that post- 

pruning should be used to improve the performance of RULES-6 in the presence of noisy 

data. The post-pruning technique given in chapter 5 (MDL_PP) is therefore adopted for 

use in RULES-6. One modification is that, instead of employing a greedy strategy for 

deleting rules until no further deletion can improve the total coding length, each rule is 

examined to see whether it could be omitted or not. If a rule cannot be omitted, it is 

simplified using the delete-condition operator. A pseudo-code of RULES-6 with the post- 

pruning technique is presented in Figure 6.4. The Prune Rule Set () procedure simplifies 

the rules for each class in turn.

Note that the problem mentioned in chapter 5 (section 5.2), namely that post-pruning 

techniques are incompatible with the search strategy employed in rule induction systems, 

does not apply to the RULES-6 algorithm. This is because, in RULES-6, all of the 

training set is taken into account each time a new rule is formed as mentioned in section 

6.2.1. Consequently, all rules are independent and each can be pruned without affecting 

the rest of the rule set.
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Procedure Induce Rules (TrainingSet, Beam Width)

RuleSet = 0

While all the examples in the TrainingSet are not covered Do 

Take a seed example 5 that has not yet been covered.

Rule = Induce One Rule (5 , TrainingSet, BeamWidth) 

Mark the examples covered by Rule as covered.

RuleSet = RuleSet u  {Rule}

End While

RuleSet = Prune_ Rule Set (RuleSet, TrainingSet)

Return RuleSet 

End

Figure 6.4 A pseudo-code description of RULES-6 with MDL_PP.
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6.4 Empirical Evaluation of RULES-6

This section describes an empirical study testing RULES-6 with the MDL_PP technique 

against RULES-3 Plus and C5.0. The algorithms were tested on the same data sets given 

in Table 5.2, chapter 5 as well as the A d u lt data set (see appendix A for details). The 

experimental method described in chapter 3 (section 3.4) was used for estimating the 

performance criteria. RULES-3 Plus was executed with a value of 4 for beam width. 

RULES-6 was tested using parameter values of 4, 1 and 2 for beam width, MinNegatives 

and MinPositives respectively. C5.0 was run with the default settings. Tables 6.2 and 6.3 

list the results obtained.

As can be seen from Table 6.2, the performance obtained by RULES-6 with M D LPP 

was impressive. There were considerable improvements in classification accuracy for 25 

data sets. For the B rea s t-ca n cer , G e rm a n -o rg a n isa tio n , G la s s2, H ep a titis , H o rse -co lic , 

P rom oter, Shuttle  and S ic k -e u th y ro id  data sets the improvements were most obvious. The 

accuracy degraded for 12 data sets. For the remaining 2 data sets, equivalent results were 

obtained. It can also be seen from the table that RULES-6 with MDL PP produced much 

more compact rule sets than RULES-3 Plus. The total number of rules decreased by 

93.7% from 10739 to 677. Also, the total number of conditions dropped by 98.0% from 

93794 to 1874. The reduction in the number of rules and number of conditions for the 

A d u lt data set was particularly notable. The fewer and more general rules created by 

RULES-6 made it much faster than RULES-3 Plus as indicated in Table 6.2. The total 

number of evaluations fell by 94.9% from 3168403 to 161726 and this was accompanied 

by a total 97.8% reduction in the execution time from 31351 seconds to 700 seconds.



Data Set Name

RULES-3 Plus RULES-6 with MDL_PP

Acc.

(%)

#
Rules

#
Conditions

# Rules 
explored

CPU 
Time (s)

Acc.
(%)

#
Rules

#
Conditions

# Rules 
explored

CPU 
Time (s)

Aba lone 18.5 313 1947 26853 28 23.9 12 27 1012 1
Adult 77.5 6686 70144 1986685 29938 82.6 53 141 16193 435
Anneal 99.7 37 119 10119 3 98.3 16 35 1912 1
Australian 83.9 148 807 26301 4 86.5 7 18 2892 0
Auto 62.3 48 94 5534 0 59.4 11 31 1582 0

Balance-scale 77.0 213 691 3341 1 72.7 9 21 155 0
Breast 95.7 40 94 2023 1 95.3 8 17 257 0
Breast-cancer 68.4 86 284 5674 1 77.9 12 31 1311 0
Car 88.4 165 801 7826 2 90.1 35 114 1374 1
Chess 99.0 108 2164 176109 347 97.7 21 79 8728 19
Cleve 77.7 33 73 2214 0 80.2 11 25 913 0

Crx 80.0 142 863 30277 4 83.0 10 27 3624 1
Diabetes 66.8 190 739 12399 2 72.3 5 8 305 0
German 70.9 247 1043 57120 13 74.9 29 95 8402 3
German-organisation 66.4 252 1381 90770 29 76.0 23 103 9684 4
Glass2 69.1 46 154 2894 0 81.8 4 5 43 0

Heart-disease 81.1 60 158 4985 1 80.0 8 18 725 0
Heart-Hungarian 72.4 48 196 5611 1 77.6 2 3 396 0
Hepatitis 61.5 25 47 2023 0 84.6 6 13 519 0

Horse-colic 75.0 91 223 12526 1 85.3 6 19 3902 1

Hypothyroid 94.9 138 1743 88221 164 98.3 10 19 1000 3
Ionosphere 92.3 48 94 7654 2 94.9 13 31 1588 1
Iris 94.0 13 25 122 0 96.0 4 5 20 0

Lymphography 80.0 26 56 2431 0 84.0 11 25 882 0

Monkl 100.0 22 61 759 0 100.0 22 61 652 0

Monk2 98.8 262 1504 13709 1 77.2 38 142 1572 0
Monk3 95.1 12 23 270 0 95.1 12 23 263 0

Mushroom 100.0 25 37 1556 5 99.7 27 80 2779 15

Promoter 74.3 14 26 3481 1 82.9 5 8 1146 0
Segment 90.5 172 1198 51880 35 88.7 33 82 3136 3
Shuttle 91.7 63 289 4689 87 99.8 52 100 1927 61
Sick-euthyroid 89.4 195 3119 154065 291 97.2 9 23 1678 3
Sonar 68.6 37 67 9293 1 74.3 2 3 921 0
Soybean-large 93.9 76 542 46253 13 86.0 22 51 3953 1
Splice 91.8 239 1127 209203 340 89.8 67 190 66354 144
Tic-tac-toe 94.7 89 374 7970 1 98.1 29 100 1757 0
T okyo 91.3 83 478 48551 27 92.9 6 15 3673 2
Vehicle 59.6 214 875 42013 7 66.0 22 76 4032 1
Vote 97.0 33 134 4999 0 95.6 5 10 464 0

Total 3189.0 10739 93794 3168403 31351 3296.4 677 1874 161726 700

Table 6.2 Results for RULES-3 Plus and RULES-6 with MDL_PP.
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Data Set Name
C5.0 RULES-6 with MDL PP

Acc. (%) No. of Rules Acc. (%) No. of Rules
Abalone 23.4 522 23.9 12
Adult 86.4 100 82.6 53
Anneal 93.3 11 98.3 16
Australian 87.4 20 86.5 7
Auto 62.3 23 59.4 11
Balance-Scale 81.3 19 72.7 9
Breast 95.0 9 95.3 8
Breast-cancer 75.8 17 77.9 12
Car 91.8 58 90.1 35
Chess 97.2 21 97.7 21
Cleve 77.2 13 80.2 11
Crx 84.5 23 83.0 10
Diabetes 70.7 14 72.3 5
German 72.7 15 74.9 29
German-org 71.8 17 76.0 23
Glass2 69.1 9 81.8 4
Heart 78.9 12 80.0 8
Heart-Hungarian 74.5 7 77.6 2
Hepatitis 76.9 5 84.6 6
Horse-colic 83.8 10 85.3 6
Hypothyroid 94.8 5 98.3 10
Ionosphere 89.7 6 94.9 13
Iris 92.0 5 96.0 4
Lymphography 76.0 7 84.0 11
Monkl 100.0 17 100.0 22
Monk2 65.7 1 77.2 38
Monk3 100.0 6 95.1 12
Mushroom 99.8 10 99.7 27
Promoter 74.3 7 82.9 5
Segment 93.4 24 88.7 33
Shuttle 99.9 12 99.8 52
Sick-euthyroid 90.4 8 97.2 9
Sonar 74.3 11 74.3 2
Soybean-large 93.4 32 86.0 22
Splice 92.7 60 89.8 67
Tic-tac-toe 92.2 34 98.1 29
T okyo 92.3 8 92.9 6
Vehicle 69.9 46 66.0 22
Vote 97.0 5 95.6 5
Total 3242.0 1229 3296.4 677

Table 6.3 Results for C5.0 and RULES-6 with MDL PP.
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These results confirm that RULES-6 with MDL_PP is more robust with respect to noise 

and more accurate than RULES-3 Plus.

It is clear from Table 6.3 that the accuracy obtained by RULES-6 with M DLPP was in 

total higher than that of C5.0. In addition, RULES-6 with MDL_PP achieved higher 

accuracies for 23 out of 39 data sets, while C5.0 yielded better accuracies for 14 out of 39 

data sets. Both algorithms achieved similar accuracies for the remaining 2 data sets. It is 

also clear from the table that RULES-6 with MDL PP gave fewer rules in total than C5.0 

did. The number of rules was lower for 22 data sets and higher for 15 data sets for 

RULES-6 with MDL_PP when compared with C5.0.

6.5 Summary

This chapter has presented RULES-6, a simple rule induction algorithm designed for the 

efficient extraction of comprehensible IF-THEN rules in domains where noise may be 

present. It employs a simple but robust rule search method which relaxes the search for 

consistency and reduces the problem of overfitting the induced rules to the training data. 

It also adopts an alternative method for continuous attributes handling based on a 

comparative study of the most frequently used methods. Finally, RULES-6 uses a new 

MDL-based post-pruning technique to address the problem of dealing with noisy data.

RULES-6 with MDL_PP has been empirically compared with its immediate predecessor 

RULES-3 Plus using a large number of real-world data sets from the UCI machine 

learning repository. The results have shown that RULES-6 with MDL PP is better than
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RULES-3 Plus in terms of accuracy in classifying unseen instances, size of the generated 

rule sets and learning time.

In addition, a comparison with the commercial software C5.0 has been made. The results 

have indicated that RULES-6 in combination with MDL_PP outperforms C5.0.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter summarises the main contributions and the conclusions reached in this work. 

It also provides suggestions for future work.

7.1 Contributions

This research addressed the problem of scaling up rule induction algorithms so that they 

can be successfully applied to large data sets. Its contributions include:

♦ A thorough a n a lysis  o f  the is su e  o f  s c a l in g  u p  in d u c tive  le a rn in g  tech n iqu es. A critical

study of the currently available inductive learning techniques and a discussion of their 

usefulness for data mining applications were made. This led to the design of learning 

algorithms that can handle large-scale data.

♦ An effic ien t h eu r is tic -sea rch  m e th o d  f o r  ru le  le a rn in g  a lgorith m s. The proposed 

method employed advanced search heuristics, optimisation techniques and search- 

space pruning strategies that significantly reduced search time.

♦ An on -lin e d isc re tisa tio n  m e th o d  f o r  ru le  lea rn ers . The new method took advantage of

the bias inherent in the learning algorithm to improve its performance. It produced



simpler and more accurate rule sets as well as comparable run-time efficiency when 

incorporated into a rule learning system.

♦ Increm enta l, h y b r id  a n d  p o s t-p r u n in g  te c h n iq u e s  f o r  ru le  in d u c tio n  a lg o rith m s. The

presented techniques were built on the theoretically sound Minimum Description 

Length (MDL) principle. They adopted an alternative MDL-based formula for rule 

sets based on the ideas of Quinlan (1995). This formula overcame drawbacks in the 

formula employed in C4.5. The improved version of the MDL principle and its new 

usage resulted in a significant reduction in execution time and rule-set sizes as well as 

an improved accuracy.

♦ C la ssifica tio n  ru le  in d u c tio n  a lg o r ith m s  a p p r o p r ia te  f o r  d a ta  m in ing . Two new 

scalable rule induction algorithms were developed, SRI and RULES-6. SRI follows 

the approach of CN2-like learning algorithms and is based on the integration of the 

three techniques mentioned above. Such integration led to efficient and effective 

induction of classification rules from large data sets. RULES-6 is an improved 

version of the RULES-3 Plus algorithm which follows the approach of AQ-like 

learning algorithms. The main advantageous features of RULES-6 over RULES-3 

Plus are the relaxation of the requirement for a perfect training set, the more efficient 

noise-tolerant search method and the elegant handling of continuous and noisy data. 

Enriched with these new features, RULES-6 should be a powerful practical tool for 

data mining applications.
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♦ Demonstration o f improved inductive performance. A comprehensive empirical 

evaluation of all the algorithms and techniques presented in this thesis was made. The 

results obtained demonstrated the significant performance improvements achieved.

7.2 Conclusions

Rule induction as a method for constructing classifiers is particularly attractive in data 

mining applications, where the comprehensibility of the generated models is very 

important. Most existing algorithms were designed for small data sets and thus are not 

practical for direct use on very large data sets because of their computational cost. 

Scaling up rule induction algorithms to handle such data sets is a formidable challenge. 

This study presented new algorithms for rule induction that can efficiently extract 

accurate and comprehensible models from large and noisy data sets. These algorithms 

were tested on several complex real-world data sets and the results proved that they 

scaled up well and were extremely effective learners.

Chapter 3 focused on developing a scalable rule induction algorithm that is suitable for 

data mining applications. Rule induction extracts IF-THEN rules directly from the data. 

The proposed algorithm presented a new search method, which employs several novel 

search-space pruning rules and rule evaluation techniques. This not only minimised the 

search space, but also considerably improved the whole induction process.

Handling of both nominal and continuous attributes is a central issue for practical 

applications of classification learning. Most of the work on discretisation of continuous­
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valued attributes has been done under the framework of decision trees. Very little work 

has been done in treating continuous-valued attributes and nominal attributes in a 

consistent manner in the framework of inductive rule learning systems. The objective of 

chapter 4 was to explore a way in which continuous-valued attributes and nominal 

attributes can be treated consistently in inductive rule learning systems. To reach this 

objective, the discretisation of continuous attributes in the context of inductive learning 

was studied in detail. Current discretisation methods were categorised based on 

predefined properties, such as supervised vs. unsupervised, multivariate vs. univariate, 

etc. A new on-line discretisation method was presented, aiming to take into account the 

bias underlying the rule learning algorithm. Experiments indicated that the proposed 

method substantially improved performance.

When learning is based on noisy data, the induced rule sets have a tendency to overfit the 

training data, and this degrades the performance of the resulting classifier. Consequently, 

the ability to tolerate noise is a necessity for robust, practical learning algorithms. 

Pruning is a common way of handling noisy data. Based on an analysis of the existing 

techniques for pruning rule sets, chapter 5 introduced three new pruning techniques. 

These techniques were built on the sound foundation of the Minimum Description Length 

(MDL) principle. The proposed pruning techniques have the advantage that they do not 

require the set of examples employed for pruning to be distinct from the set used to build 

the rule set. The new techniques were tested in the SRI rule induction algorithm and 

showed an improved performance.
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RULES-3 Plus is a member of the RULES family of simple inductive learning 

algorithms, which has proven useful in several manufacturing and engineering 

applications. However, it requires modification in order to be a practical tool for data 

mining applications. In particular, mechanisms for effectively handling continuous 

attributes and noisy data are needed. Chapter 6 presented a new rule induction algorithm 

called RULES-6, derived from the RULES-3 Plus algorithm. The innovation in RULES- 

6 is that it has the ability to handle noise in the data, which is achieved by employing a 

search method that tolerates inconsistency in the rule specialisation process and by using 

a post-pruning technique that removes unreliable components from the generated rules at 

the expense of the completeness and/or consistency. This makes the rule sets extracted by 

RULES-6 both more accurate and substantially simpler than those produced using 

RULES-3 Plus. RULES-6 also employs effective search-space pruning rules to avoid 

useless specialisations and to terminate a non-productive search during rule construction. 

This substantially increases the efficiency of the learning process. Finally, RULES-6 

adopts a robust method for handling attributes with continuous values, which further 

improves the performance of the algorithm. The new features of RULES-6 make it not 

only more robust and effective but also more efficient, thus enhancing the usefulness of 

the algorithm for data mining applications.

7.3 Future Work

This section discusses some of the ways in which the methods and algorithms developed 

in this thesis could be enhanced.
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♦ The rule induction algorithms developed in this work, SRI and RULES-6, employ 

heuristic search techniques with different learning biases and rule-space pruning 

strategies that significantly reduce the proportion of the search space examined during 

the learning process, resulting in substantial performance benefits. An area for further 

research is the investigation of the learning biases and the evaluation of their effect on 

the performance of the learning algorithms. Additional rule-space pruning strategies 

could be considered to improve the performance of the learning algorithms. It may 

also be possible to speed up the search process even more through the use of efficient 

data structures (e.g., bit vectors (Segal, 1997)), which reduce the amount of CPU time 

required to process each example, and through optimisation techniques (e.g., 

bookkeeping techniques (Aronis and Provost, 1997; Graefe et al., 1998)), which 

concentrate on eliminating unnecessary components.

♦ In chapter 4, an on-line method for discretisation of continuous attributes was 

introduced. Further work could be carried out to increase the efficiency and 

effectiveness of this method. First, when a continuous attribute is being evaluated, a 

threshold must be selected. This entails a sorting operation, which must be performed 

for each attribute in turn, for each rule in the search space. These sorting operations 

usually account for a large portion of the learning time for large data sets with 

continuous attributes. This can be avoided by careful bookkeeping: it is only actually 

necessary to sort the data once for each attribute. The fundamental limitation of this 

approach is its memory requirement, because the examples covered by a rule need to 

be stored as example lists. Second, it is possible to generalise the method by
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extending it to extract multiple intervals, rather than just two, in a single discretisation 

pass (see, for example, Fayyad and Irani, 1993 and Berka and Bruha, 1996). The 

motivation for doing this is to obtain rule sets with smaller sizes and higher 

accuracies.

♦ The Minimum Description Length (MDL) principle, used in the study in chapter 5,

forms the basis of a criterion to evaluate rule quality in the proposed incremental, 

hybrid and post-pruning techniques. There are two possibilities in this direction worth 

further exploration. First, a more optimal coding strategy could be attempted. Such a 

coding strategy could be derived once the strengths and weaknesses of using the 

MDL principle are better understood. Second, more research could be carried out to 

combine other criteria with an MDL-based metric in order to overcome the tendency, 

shown in this work, of pure MDL strategies to over-prune the generated rules.

♦ Further developments of SRI and RULES-6 could include methods for increasing 

representational power (e.g., the attributional calculus employed in AQ19 (Michalski 

and Kaufman, 2001), a much richer and highly expressive description language based 

on variable-valued logic system VL1 (Michalski, 2001)), methods for dealing with 

missing values (Ramoni and Sebastiani, 2001) and mislabelled training data (Brodley 

and Friedl, 1999; Mitchell, 1999b), methods for incorporating domain knowledge to 

control search (Clearwater and Provost, 1990) and alternative conflict resolution 

schemes and stopping criteria suitable for various trade-offs between accuracy, 

generality and complexity. Other work that could be considered in this direction
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include methods for learning in vague environments (e.g., through inducing a set of 

fuzzy rules from fuzzy data (Wang et al., 1996; Tsang et al., 2000; Drobics and 

Bodenhofer, 2002; Hoffmann, 2004)) and methods for choosing useful features 

(Almuallim and Dietterich, 1994; Baluja, 1994; 1995; Caruana and Fritag, 1994; John 

et al., 1994; Aha and Bankert, 1995; Yang and Honavar, 1997; Hall and Smith, 1998) 

and constructing new ones, referred to as c o n s tru c tiv e  in du ction  (Sethi and 

Savarajudu, 1982; Rendell, 1989; de raedt, 1992; Kramer, 1994; Wneck and 

Michalski, 1994), from the available features in order to not only reduce the number 

of features used by the learning algorithms, but also improve their generalisation 

ability.

♦ In this work, only one approach of scaling up rule induction algorithms was utilised, 

namely, designing fast and effective learners. Other approaches that could be 

considered include sa m p lin g  (Lewis and Catlett, 1994; John and Langley, 1996; 

Provost et al., 1999), which selects a single subset from the initial data set using 

different strategies such as random or stratified sampling, p a r ti t io n in g , which divides 

the data into disjoint subsets, learns a model (rule set) from each subset and 

aggregates the results obtained by either combining the learned models (typically by 

merging) (Hall et al., 1998) or their predictions (typically by voting) (Chan and 

Stolfo, 1993; 1997), in c re m e n ta l b a tc h  le a rn in g  (Clearwater et al., 1989; Domingos, 

1996), which is closely related to partitioning, but processes subsets of examples in 

sequence, taking advantage of knowledge learned in one iteration to guide learning in 

a subsequent iteration, c o o p e r a t iv e  le a rn in g  (Provost and Hennessy, 1994; 1996),
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which is similar to partitioned-data techniques, but allows cooperation between the 

group of learners to obtain a global view of the problem and parallelisation (Cook 

and Holder, 1990; Freitas and Lavington, 1998; zaki et al., 1999), which decomposes 

the search of the rule space such that different processors search different portions of 

the rule space in parallel.

♦ More work could be carried out to improve the predictive accuracy of SRI and 

RULES-6 through the use of techniques such as bagging and boosting (described in 

chapter 2). Improvements in accuracy should not be obtained at the expense of 

efficiency and comprehensibility. Examples of work in this area can be found in 

Domingos (1997a; 1998), Cohen (1999) and Ferri et al., (2002).

♦ Another promising direction for research is to extend SRI and RULES-6 to perform

regression. A number of techniques for doing this are possible, e.g., each rule predicts 

the average value of the training examples it covers (Breiman et al., 1984) or forms a 

local linear regression function from those examples (Karalic, 1992). More recently, 

an efficient fuzzy inductive learning algorithm for continuous output prediction has 

been developed by Bigot (2003).
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APPENDIX A

DATA SETS

All data sets used in this work were obtained from the University of California at Irvine 

(UCI) repository of machine learning databases (Blake and Merz, 1998). These databases 

were contributed by many researchers, mostly from machine learning fields, and 

collected by the Machine Learning group in the University of California, Irvine. These 

data sets are described below.

Abalone: This data set is used to predict the age of abalone from physical measurements. 

There are 4177 instances in the data; each is described by 8 attributes.

Adult: There are 48842 instances in this data set. Each instance is described by 14 

attributes, such as age, work class, native country, education, marital status, and so on. 

These attributes are used to predicate whether a person will earn a salary of greater or less 

than $50,000 in US.

Anneal: This data set concerns appropriate actions to take during coating of steel 

products. The data set contains 898 instances described in terms of 38 attributes that 

cover aspects such as the width of the steel, its type, hardness, composition, surface 

quality etc. There are six classes corresponding to alternative coating sub-procedures.



Australian: This data set is almost the same as the original Crx data, but all missing 

values have been replaced with the medians.

Auto: This data set consists of three types of entities: a) the specification of an auto in 

terms of various characteristics, b) its assigned insurance risk rating and c) its normalised 

losses in use as compared to other cars. The second rating corresponds to the degree to 

which the auto is more risky than its price indicates. Cars are initially assigned a risk 

factor symbol associated with its price. Then, if it is more risky (or less), this symbol is 

adjusted by moving it up (or down) the scale. Actuarians call this process "symboling". 

A value of +3 indicates that the auto is risky, -3 that it is probably quite safe. The third 

factor is the relative average loss payment per insured vehicle year. This value is 

normalised for all autos within a particular size classification (two-door small, station 

wagons, sports/speciality, etc.), and represents the average loss per car per year. The data 

set contains 205 instances in 6 classes, 10 nominal attributes and 15 continuous attributes.

Balance-scale: This data set was generated to model psychological experimental results. 

Each example is classified as having the balance scale tip to the right, tip to the left, or be 

balanced. The attributes are the left weight, the left distance, the right weight, and the 

right distance.

Breast: This data set contains 699 instances. Each instance is described by 10 continuous 

attributes. There are two classes, which identify that the tumor is benign or malignant.
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Breast-cancer: This data set includes 201 instances of one class (no-recurrence-events) 

and 85 instances of another class (recurrence-events). The instances are described by 9 

nominal attributes that cover aspects such as the age of the patient, tumor size, 

menopause etc.

Car: This data set is used to evaluate cars according to attributes that describe the price, 

technical characteristics, and safety of the car. There are 1728 instances; each is 

described by 6 attributes and can be categorised into one of 4 classes.

Chess: This data set has 36 nominal attributes to describe the board positions, and the 

task is to determine which position will lead to a win.

Cleve: This data set contains instances on patients who may suffer from heart disease. It 

contains 303 instances in two classes (healthy or sick), 7 nominal attributes and 6 

continuous attributes.

Crx: This data set was originally used by Quinlan in C4.5. The task is to determine 

whether to give a credit card to an applicant. All the attribute names and values have been 

changed to meaningless symbols to protect confidentiality of the data.

Diabetes: There are 768 instances in this data set, each is described by 8 continuous 

attributes, such as number of times pregnant, diastolic blood pressure, body mass index,



etc. The data is used to classify whether the patient tests are positive or negative for 

diabetes.

German: This data set classifies people described by a set of attributes as good or bad 

credit risks. There are 1000 instances in the data; each is described by 20 attributes of 

which 13 are nominal.

German-organisation: This data set is similar to the German data set but in a slightly 

different format.

Glass2: This is a collection of data from crime lab reports. There are 163 instances in this 

data set; each is described by 9 continuous attributes. The attributes are measures of 

mineral content such as Mg, Al, et. and refractive index of different samples of glass. The 

problem is to determine whether the glass was used for windows, container, head lamp, 

etc.

Heart-disease: This data set contains 13 continuous attributes which have been extracted 

from a larger set of 75. The class refers to the presence of heart disease in the patient.

Heart-Hungarian: This data set is very close to C leve . It contains 294 instances in two 

classes, 5 nominal attributes and 8 continuous attributes.
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Hepatitis: This data contains 155 instances; each instance is represented by 19 attributes, 

describing age, sex and 17 other symptoms. The task is to determine whether the patient 

is at risk of death.

Horse-colic: There are 368 instances in this data set. 22 attributes are used to describe 

information on the horses, including their age, pulse, rectal temperature etc, and the task 

is to classify whether a lesion is surgical or not.

Hypothyroid: This data set comes from an assay screening service related to the thyroid 

function, and concerns one aspect of thyroid diagnosis. The 25 attributes are a mixture of 

measured values and information obtained from the referring physician. There are two 

classes (hypothroid, negative).

Ionosphere: This data set concerns classification of radar returns from the ionosphere. 

“Good” radar returns are those showing evidence of some type of structure in the 

ionosphere. “Bad” returns are those that do not; their signals pass through the ionosphere. 

There are 351 instances; each is described by 34 continuous attributes.

Iris: This is the most widely used data set in the literature. The data set contains 3 

classes of 50 instances each, where each class refers to a type of iris plant. Each instance 

is described by four continuous attributes, namely, sepal length, sepal width, petal length 

and petal width. '
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Lymphography: This data set contains 148 instances in 4 classes (normal find, 

metastases, malign lymph and fibrosis), 15 nominal attributes and 3 continuous attributes.

Monkl, 2 and 3: The Monk data sets are a collection of three binary classification 

problems over a six-attribute nominal domain. These data sets include 556, 601 and 554 

instances respectively.

Mushroom: This data set consists of descriptions of hypothetical samples corresponding 

to 23 species of gilled mushrooms in the Agaricus and Lepiota family. Each species is 

identified as definitely edible or definitely poisonous. There are 8124 instances; each 

instance is described by 22 nominal attributes.

Promoter: This data set consists of 106 instances and 57 nominal attributes representing 

nucleotides of the DNA sequence (a , t, c or g). The task is to decide whether a sequence 

is a promoter region (+) or not (-).

Segment: This is an image segmentation data drawn randomly from a database of 7 

outdoor images. There are 2310 instances; each is described by 19 continuous attributes 

and can be categorised into one of 7 classes.

Shuttle: This data set contains 58000 instances in 7 classes. Each instance is described by 

9 continuous attributes.
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Sick-euthyroid: This data set has approximately the same data format and set of 

attributes as the hypothyroid data set. The classes of this data set are sick-euthyroid and 

negative.

Sonar: This data set consists of 208 instances and 60 continuous attributes representing 

measures of the energy within a particular frequency band. The task is to determine 

whether the sonar image is a rock or a mine.

Soybean-large: This data set consists of 683 instances and 35 nominal attributes 

describing leaf properties and various abnormalities. The task is to diagnose soybean 

disease based on the measures and observations.

Splice: There are 3190 instances in this data set. Each instance is described by 61 

nominal attributes (the instance name and the sequential DNA nucleotide positions). 

There are three classes (donors, acceptors and neither).

Tic-tac-toe: This data set encodes the complete set of possible board configurations at the 

end of tic-tac-toe games. There are 958 instances; each is described by 9 nominal 

attributes and can be categorised into one of 2 classes.

Tokyo: This is performance co-pilot data for the Tokyo server at SGI. There are 961 

instances in two classes (good, bad) and 46 continuous attributes.
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Vehicle: This data set consists of 699 instances and 18 continuous attributes. The task is 

to classify a given silhouette as one of four types of vehicles, using a set of features 

extracted from the silhouette.

Vote: This data set includes votes for each of the U.S. House of Representatives 

Congressmen on 16 key votes, such as water project cost sharing, crime and duty-free 

exports. The problem is to identify whether a person is republican or democrat based on 

these votes.
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APPENDIX B 

A PSEUDO-CODE OF THE AQ15 ALGORITHM

Let POS be a set of positive examples of class C.

Let NEG be a set of negative examples of class C.

Procedure AQ15 (POS, NEG):

Let COVER be the empty cover.

While COVER does not cover all positive examples in POS Do

Select a SEED, a positive example previously not covered by COVER.

Let STAR be STAR (SEED, NEG), a set of maximally general complexes that cover 

SEED but no examples in NEG.

Let BEST be the best complex in STAR according to the user-defined preference criteria. 

Add BEST as an extra disjunct to COVER.

Return COVER.

Procedure STAR (SEED, NEG):

Let STAR be the set containing the empty complex, which covers the whole domain.

While any complex in STAR covers some negative examples in NEG Do 

Select a negative example Eneg covered by a complex in STAR.

Specialize complexes in STAR to exclude E„eg by:

Let EXTENSION be the set of all selectors that cover SEED but not Eneg.

Let STAR be the set (x a  y I x e STAR, y e EXTENSION}.

Remove all complexes in STAR subsumed by other complexes.

Remove the worst complexes from STAR until the size of STAR is less than or equal 

to the user-defined maximum star size, maxstar.

Return STAR. _________________________

Table B.l The AQ15 algorithm (Clark andNiblett, 1989).



APPENDIX C

THE CONTROL PROCEDURE OF THE CN2 ALGORITHM 

FOR BOTH ORDERED AND UNORDERED RULES AS 

WELL AS THE BEAM SEARCH PROCEDURE

Procedure CN2_Ordered (EXAMPLES, CLASSES):

Let RULELIST be the empty list.

Repeat

Let BESTCOMPLEX be FindBestComplex (EXAMPLES).

If BEST_COMPLEX is not null Then

Let CLASS be the most common class of examples covered by BEST_COMPLEX. 

Add rule “If BEST_COMPLEX Then predict CLASS” to the end of the RULE LIST. 

Remove from EXAMPLES all examples covered by BEST_COMPLEX.

End If

Until BEST COMPLEX is null.

If there are any examples left in EXAMPLES Then

Let CLASS be the most common class in EXAMPLES.

Add the default rule “Predict CLASS” to the end of the RULE LIST.

End If

Return RULE LIST.

Table C.l The CN2 ordered rules algorithm (Clark and Boswell, 1991).



Procedure CN2_Unordered (ALL_EXAMPLES, CLASSES):

Let RULESET be the empty list.

For each class in CLASSES Do

Let RULES be CN2_ForOneCIass (ALL EXAMPLES, CLASS).

Add RULES to RULE SET.

End For
Return RULE SET

Procedure CN2_ForOneCIass (ALL EXAMPLES, CLASS):

Let RULES be the empty set.

Repeat

Let BEST COMPLEX be FindBestComplex (EXAMPLES, CLASS).

If BEST COMPLEX is not null Then

Add the rule “If BEST COMPLEX Then predict CLASS” to RULES.

Remove from EXAMPLES all examples in CLASS covered by BEST_COMPLEX. 

End If

Until BEST COMPLEX is null 

Return RULES

Table C.2 The CN2 unordered rules algorithm (Clark and Boswell, 1991).
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Procedure FindBestComplex (EXAMPLES [, CLASS]3):

Let MGC be the most general complex (= “true”).

Let STAR be the set containing only MGC (= {MGC}).

Let BEST COMPLEX be null.

While STAR is not empty Do

Let NEW_STAR be the empty set (= {}).

For each COMPLEX in STAR Do

For each possible attribute test TEST not already tested on in COMPLEX Do 

Let NEWCOMPLEX be a specialization of COMPLEX, formed by adding 

TEST as an extra conjunct to COMPLEX (i.e. NEW_COMPLEX = 

COMPLEX & TEST).

If NEWCOMPLEX is better than BEST COMPLEX AND 

NEWCOMPLEX is statistically significant Then 

Let BEST COMPLEX = NEW_COMPLEX.

Add NEW COMPLEX to NEW STAR.

If size of NEW STAR > maxstar (a user-defined constant) Then 

Remove the worst complex in NEW STAR.

End If 

End If 

End For 

End For

Let STAR = NEW STAR.

End While

Return BEST COMPLEX.

3 CLASS is only required for generating unordered rules.

Table C.3 The CN2 rule search algorithm (Clark and Boswell, 1991).
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