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Abstract 
Using state space techniques we study a “myopic” order-up-to policy.   The policy is 
myopic because is it is optimal at minimising local inventory holding and shortage 
costs.  In particular we study the bullwhip effect produced by the replenishment 
policy reacting arbitrary stochastic demand processes.   We reveal that bullwhip is 
fundamentally caused by the co-variance between the inventory level and the demand 
forecast.   We go on to highlight the impact of a simple control engineering inspired 
bullwhip reduction technique, a proportional controller in the inventory feedback 
loop. Although it can be shown this approach is always able to remove bullwhip, we 
expose that is not possible to arbitrary “tune” the proportional controller, without 
knowing in advance the likely structure of the demand process.     
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1. Introduction 
Recently, a number of papers have appeared that investigate the “bullwhip effect” (the 
variance amplification of ordering decisions in the supply chain) produced by the 
Order-Up-To (OUT) replenishment policy after the seminal papers of Chen, Drezner, 
Ryan and Simchi-Levi (2000) and Lee, Padmanabhan and Whang (1997).   The 
bullwhip problem is especially important as it results in unnecessary costs in supply 
chains (see for example, Metters (1997) and Carlsson and Fullér (2000)).   This 
includes costs such as inefficient use of production, distribution and storage capacity, 
recruitment and training costs, increased inventory and poor customer service levels.    
 
The bullwhip problem is widespread throughout industry.   Figure 1 shows 6 months 
of daily data from a real supply chain.   Here, “retail sales” represents the movement 
of a particular (high volume, own label) product though the supermarkets tills of a 
major retailer.  “Production” represents the manufacturer’s production of the product 
to satisfy this demand.   In between the retailer and the manufacturer two orders have 
been placed, one to replenish (the several hundred) individual supermarkets, and one 
to replenish the (half a dozen) distribution centres.   There is a 5 to 1 increase in the 
variance in this real-life supply chain.     
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Figure 1.   Bullwhip observed in the real world 
 
The OUT policy has become a popular replenishment policy to study in bullwhip 
literature.  This is due to its wide applicability at representing industrial ordering 
policies and it mathematical tractability.  Indeed, a variant of the OUT policy was 
actually used in the supply chain of Figure 1.   Of course, the industrial strength 
version, had a lot of “bells and whistles”, but its fundamental structure is an OUT 
policy.    
 
Statistical approaches are popular mechanism to study the bullwhip problem.    Lee, 
Padmanabhan, and Whang (1997), explored different sources of the bullwhip problem 
in an OUT policy.   They highlighted five sources; lead-times, forecasting 
mechanisms, gaming, batching and promotions.  Chen Drezner, Ryan and Simchi-
Levi (2000) showed that the classical OUT policy with simple forecasting techniques 
always results in bullwhip for the class of AR demands.  
 
Control theory and transform techniques have also been applied to the bullwhip 
problem.   The field was initiated by the Nobel Laureate, Herbert Simon (1952) who 
used the Laplace transform to study a continuous time ordering policy.  This was 
quickly replicated in discrete time by Vassian (1954), Magee (1956) and Brown 
(1962).   Adelson (1966) appears to be the first to explicitly study what we would now 
call bullwhip.  Deziel and Eilon (1967) provide an insightful study of bullwhip and 
inventory variance an OUT policy. Schneeweiβ (1971, 1975, 1977) and Inderfurth 
(1977) used z-transforms and Wiener filtering theory to find optimal linear production 
or replenishment decisions for production systems with non-linear costs. Gaalman 
(1976, 1978 and 1979) considered the optimal linear control for a general multi 
dimensional production inventory systems, using the so called modern control 
theoretic principles.  
 
Innovative supply chain structures have also been investigated for bullwhip effects.  
Lee, So and Tang (2000) take statistical approach to study a Vendor Managed 
Inventory (VMI) scenario. Disney and Towill (2002) investigate stability issues in 
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VMI supply chains.   Dejonckheere, Disney, Lambrecht and Towill (2004) study a 
scenario where end consumer demand is shared throughout a four-echelon supply 
chain with z-transform techniques. 
 
It is often supposed that the bullwhip problem cannot be avoided.   Indeed it has been 
shown by Dejonckheere, Disney, Lambrecht and Towill (2003) that the classical OUT 
policy, with exponential smoothing (Brown (1963)), moving average or demand 
signal process (Lee, Padmanabhan and Whang, 1997) forecasting, will always 
produce bullwhip, for all possible demand patterns.   However, recently, it has been 
shown (Gilbert (2002) and Chen and Disney (2003)) that the use of conditional 
expectation forecasting can allow the OUT policy to smooth demand (i.e. avoid the 
bullwhip problem) for some classes of stochastic demand patterns.   
 
Modifying the classical OUT policy, by incorporating a gain in the inventory feed-
back loop, ‘bullwhip’ reduction can be observed in the OUT policy.   Indeed 
Dejonckheere, Disney, Lambrecht and Towill (2003), have shown, that it is always 
possible to avoid the bullwhip problem with such a technique for all classes of 
demand processes.   At first sight, this bullwhip avoidance technique will come at the 
cost of holding extra inventory to achieve target customer service levels, and this is 
true for i.i.d stochastic demands, Magee (1956). Dejonckheere, Disney, Farasyn, 
Janssen, Lambrecht, Towill and van de Velde (2002) investigate this scenario 
explicitly.  
 
A characteristic of recent papers is the use of slightly more realistic stochastic demand 
models such as the Auto Regressive Moving Average demand model (Box and 
Jenkins 1970).  Commonly, a classical control engineering approach of is taken to 
analyse the system’s dynamic behaviour.   For example, Disney, Farasyn, Lambrecht, 
Towill, and Van de Velde, (2003) study the ARMA model and show there are win-
win scenarios resulting from the proportional controller, 1/Ti (here called f). They 
show it is actually possible to avoid bullwhip, reduce inventory requirements and 
achieve a desired fill-rate simultaneously.    
 
An expected cost approach may also be applied to the OUT policy.   For example, 
Kim and Ryan (2003) assume the demand process is Guassian and study the 
probability density function that describes the inventory levels over time; assigning 
costs to expected inventory holding and backlog positions.   Disney and Grubbström 
(2003) applied the same technique to the probability density function of the orders 
and assigned costs to the fraction of production produced in normal working hours, 
and those produced in a capacitated position with subcontracting or over-time 
working.  There the order policy was the OUT with exponential smoothing and the 
demand was assumed to be Auto Regressive.  Chen and Disney (2003) studied 
expected inventory and order related costs in the myopic OUT policy with conditional 
expectation and ARMA(1,1) demand.  They show that the proportional controller 
(f=1/Ti) always results in more economical performance than the classical OUT 
policy (where f=Ti=1). 
 
Herein we introduce a general state space demand model and apply minimum 
variance forecasts. The demand model covers a large number of demand models, for 
instance; the ARIMA models of Box and Jenkins, the Brown-Meyer adapted 
smoothing models and the General Polynomial Growth-model of Harrison.  We 
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derived directly, by means of matrix calculations, the variance of the states of the 
system (the inventory and the forecast). This results in a matrix difference equation 
that under stability conditions converges to stationary values.  In general this 
stationary variance matrix equation can be solved numerically. However, in this 
particular case, a closed form analytical expression for the variances of the state 
variables can be derived. From this the variance amplification of the ordering rule can 
be easily found.  
 
Analysing the ordering rule variance expression in this way highlights the essential 
role of the co-variance between inventory and the state of the demand forecast model 
on the bullwhip effect.  This is directly related to the eigenvalues of the system.  In 
addition, given the expression of the ordering variance a polynomial equation can be 
derived that surrenders the value of the feedback parameter for which the variance 
amplification is 1. 
 
The structure of our paper is as follows. In section 2 a matrix model of the myopic 
OUT policy is introduced.   In section 3, we add the proportional controller into the 
classical OUT policy.  Section 4 presents a state space model of a generalised 
stochastic demand process.  Section 5 investigates the matrix variance equation of our 
modified OUT policy.   Section 6 further analyses the order variance.  We conclude in 
section 7.  
 

2. The myopic order-up-to policy 
The order-up-to policy is often used in inventory theory as it minimises the long-run 
expected inventory related costs consisting of piece-wise linear holding and stock-out 
costs. The inventory is reviewed and the ordering decision is made at the beginning of 
the period. During the period the customer orders are received and fulfilled before or 
at the end of the period. The inventory balance equation is given by 
 

11   tttt zoii ,        (1) 

 
where; it is the inventory at time t, ot is the order placed to replenish the inventory and 

1tz   the demand during the period (t, t+1). 
 
The (classical) order-up-to policy is completed by replenishment decision as 
 

1,ˆ( )t t t tno i i z             (2) 
 
where; 

 ni  is the inventory norm value (a time invariant constant used to achieve a 
given customer service metric, such as availability, fill-rate or economic 
criteria, often solved via the “newsboy” technique). We may set ni  to zero 
without loss of generality here. 

 and 1,ˆt tz   is the forecast  of demand at time t for the next period.  
 
Note that the lead-time consists of a review period only and the demand forecast 
mechanism is based on the minimum mean squared error criterion.  Thus, we are 
considering a “myopic” OUT policy, Chen and Disney (2003).   Johnson and 
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Thompson (1975) proved that this policy, with 0to  , is optimal at minimising 
inventory costs. Usually it is assumed that the demand is a normally distributed 
variable with a constant mean and random uncorrelated error component with 
constant variance: 
 
 1 1t tz z            (3) 
 
Thus this “myopic” OUT policy minimizes the inventory fluctuations around the 
average value ni . Little attention has traditionally been given to the fluctuations in the 
ordering decision until the recent interest in the bullwhip problem. These fluctuations 
might become large for some demand characteristics 
 
In this paper we want to analyse the effects on the inventory and the ordering decision 
relaxing the restrictive assumption in (3).  That is, we wish to gain insight into the 
behaviour of the OUT policy for a general demand process that is auto-correlated.  
This is important as real life demands are not always i.i.d. as implied by (3).  For 
example, see Figure 1 where there is clearly a weekly cycle in the demand pattern.  In 
particular we will model the demand characteristics as a linear state space model of 
arbitrary dimension. In order to perform a linear dynamic analysis we assume 0to  . 
This seems reasonable when the average demand is sufficient large and indeed was 
the case in the real life scenario in Figure 1.  
 
Eliminating to in the balance equation (1) using the replenishment equation (2) gives: 
 

1 1( )t tni i          (4) 
 
where 1 1, 1ˆt t t tz z      is the forecast error.  Note that if 11   tt  , the demand 

forecast minimizes the variance of the forecast error and the inventory variance will 
be minimal. This can be easily seen by squaring equation (4) and taking the expected 
values: 
 

, 1ii t            (5) 
 
where , 1ii t  ,   are the variances of the inventory at t+1 and the forecast error. Note 
that the inventory variance is time independent, so , 1ii t ii   . From a control 
engineering viewpoint the explanation is simple; the ordering rule feeds back the 
inventory deviation from the norm value completely and at the same time anticipates 
future demand as best as can possibly be achieved.  
 
From in (4) it can be shown that: 
 

1,ˆ( )t t t to z         (6) 
 
and the variance of the ordering decision is, 
 

ˆ ˆˆ, , ,2oo t z t zz t             (7) 
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with ,oo t , ˆˆ ,zz t the variances of  to  and 1,ˆt tz   respectively, ˆ ,z t the co-variance 
between the demand forecast 1,ˆt tz  and the forecast error t . Except for i.i.d random 
demand processes as described in equation (3), the co-variance will generally not be 
zero. If the co-variance is negative the variance of the ordering decision may even 
become very large. Without a further description of the demand characteristics the 
precise bullwhip effect cannot be further analysed. 

3. Adding a proportional controller to the myopic OUT policy 
The introduction of a proportional controller into the inventory feedback loop might 
improve the dynamic behaviour of the replenishment policy.   Indeed, this would be 
an obvious suggestion from basic control theory and actually has a long history in the 
field of production and inventory control, see Simon (1952), Magee (1956), Deziel 
and Eilon (1967), Towill (1982), Matsuyama (1997), Dejonckheere et al (2003), Chen 
and Disney (2003).  So let’s consider it here.  Incorporating the proportional 
controller, f, into the inventory feedback loop in the replenishment decision we have: 
 

1,ˆ( )t t tt no f i i z           (8) 
 
Using equation (8) in the inventory balance equation (1) yields: 
 

1 1(1 )( ) ( )t t tn ni i f i i             (9) 
  
From this it can be seen that the system will be stable within the interval 0 2f  . 
From equation (9) the inventory variance may be derived as: 
 

, 1 ,
2(1 )ii t ii tf            (10) 

 
Within the stability interval equation (10) will converge to a stationary linear 
expression from which the inventory variance can be calculated as: 
 

2{1/[1 (1 ) ]}ii f          (11) 
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Figure 2.   Inventory variance as a function of the inventory feedback gain,  f 
 
Figure 2 shows the inventory variance as function of f . As expected the variance is 
minimal for f=1.  For 0 1f   the variance is a decreasing function of f and for 
1 2f   an increasing function of f . Happily (10) also shows that the introduction 
of f  does not introduce a co-variance relationship between the inventory and the 
demand forecast. The variance of the ordering rule (8) becomes: 
 

ˆ ˆˆ, , , ,
2 2oo t ii t iz t zz tf f           (12) 

 
or in the stationary situation: 
 

ˆ ˆˆ
2 2oo ii iz zzf f           (13) 

 
We observe three terms, one related to the inventory variance, the second to the co-
variance of the inventory and the demand forecast and finally the variance of the 
forecast error. Using equation (11) the influence f  on the first term can be calculated. 
The third term is independent of f . When the demand satisfies (3) the co-variance ˆiz  
is zero.  Then oo  is an increasing function of f in the interval 0 2f  . As oo goes 
to infinity for 2f   for some f  the variance will be larger than the variance of the 
demand (the so called bullwhip effect). The critical point lies at 1f  . For 0 1f  , 
we also can observe that the inventory variance is decreasing and the ordering 
variance is increasing. So we are able to find in this interval a good balance between 
the inventory variance and the ordering variance, meaning that a weighted sum of 
both variances is minimal.   
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Figure 3.   Inventory and order variance when demand is i.i.d. 
 
For example when demand is i.i.d. (that is, given by (3)) the inventory and order 
variance and their sum is as shown in Figure 3.  This case has been studied by Disney, 
Farasyn, Lambrecht, Towill, and van de Velde (2004) with regard to the customer 
service metric, the fill-rate.   They also note, that in the case, the optimum value of the 
proportional controller to minimise the sum of the inventory and order variance is the 
golden ratio, 0.61803 for all lead-times.  

 
If the co-variance term in equation (13) is non-zero the effect of f on the ordering 
variance can only be shown if we know ˆiz  as function of f . However some general 
observations can still be made. If ˆiz  is negative over the interval 0 2f   then the 
second term in the ordering variance is positive. Compared with the random demand 
model the ordering variance will increase. So bullwhip may still arise in the interval 
0 1f  . But, since the inventory variance is decreasing and the ordering variance is 
still increasing a good balance can be found. If ˆiz  is positive the ordering variance 
might decrease. However if ˆiz  is bounded the first term in ordering variance 
becomes dominant for 2f  . This indicates that though the ordering variance is 
decreasing for some values of f  it will be increasing for larger values of f . 
However, bullwhip may still arise. 
 
Unfortunately the effects of the co-variance between the inventory and the demand 
forecast can only be studied further if a demand model is specified. In the next section 
we will introduce a general demand model that forms the basis of subsequent analysis. 
The policy is formulated as a state space model in order to derive a general expression 
for the co-variance.  
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4. A general linear state space demand and forecast model 
Assume the demand can be described by the sum of a constant mean term and a 
normally distributed random variable: 
    

1 1t tz z z         (14) 
 
Since, as shown in section 2, we are only interested in the fluctuation around a 
constant mean we may ignore the constant term and will model only the stochastic 
process. Let this term be described by the linear vector difference equation: 
 

1 1 1t t tz My           (15) 
 

1t t ty Dy E       (16)  
 
where ty  is an m-dimensional state vector, M  a m1  matrix, D  an mm   matrix 
and E  an km   matrix. The variable t  and the m dimensional vector t  form 
sequences of zero mean uncorrelated normal distributed random variables with 
positive definite variance matrices ,    and co-variance matrix  . If we consider 
the random variables as input variables, this model is a multi input single output 
model of order MISO (k+1, 1).  In contrast with the model introduced in Gaalman 
(1976) the matrix E  is introduced to explicitly demonstrate that E  need not necessary 
be the unit matrix.  
 
This model is rather general in the sense that a number of well-known demand models 
can be described in these terms. For instance the ‘General Polynomial Model” of 
Harrison (1967) and the polynomial, exponential and seasonal models of Brown-
Meyer (Brown 1963). Furthermore, Box and Jenkins (1970) single input single output 
ARIMA ( , , )Ip q  model (when Iq p  ) can be studied with this state space 
approach.  
 
Demand models can be approached from both a theoretical and a practical 
perspective. From the theoretical viewpoint there are, like in all physical sciences, 
arguments for the assuming a certain structure, here ( , )M D . For example a simple 
though frequently used demand model is given in equation (3).  If the constant term 
z changes slowly over time this may be modelled as a random walk, resulting in a 
model with M = 1, D =1. An example of a practice-oriented approach is the Box & 
Jenkins methodology. Using historical demand data an ARIMA ( , , )Ip q  model may 
be identified.  
 
Given that the demand realizations over a period of time D  and M  are not unique 
representations of the demand process. A (similarity) transformation t tw Ty , with T  
a non-singular mm   matrix, can be applied that change D  and M  without changing 
the demand realisations. Thus it provides an equivalent system representation. One 
important transformation leads to D  in model form. In this case D  is diagonal with 
the eigenvalues on the diagonal. More generally with some equal eigenvalues D  will 
have a Jordan canonical representation. Due to the single dimensional output of the 
demand model another important transformation converts D  and M  into the 
observable canonical form as follows:   
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 (17) 

 
Here D  is called the (left) companion matrix because the elements id  are the 

coefficients of the characteristic polynomial: 
 

1
1( ) det( ) m

m mCP I D d d              (18) 
 
By a suitable choice of the state variables ty  the ARMA ( , )Ip q  model, 
  

1 1 1 1 1 1I It t p t p t t q t qz z z                       (19) 
 
can directly be transformed into an observable canonical form. Because there is no 
fundamental difference between the Auto Regressive (AR) part and the Integrated (I) 
part of the Box & Jenkins model we might consider the ARMA ( , )Ip q  model in 
equation (19) as an ARIMA ( , , )Ip q .  The elements of D  are now equal to 

, 1, ,j j Id j m p      and: 

 
1 1 2 2( , , ) ',p I p I t tE                   (20) 

 
where 0 1j for j p     and the transpose of a vector or matrix is denoted by ( ) ' . 

Note as the ARMA model is a SISO system and thus the state space is now also a 
SISO system. The case for which Iq p   (i.e. the number of moving average 
parameters is larger than the number of autoregressive and integration parameters) 
cannot be modelled in the strict sense.  
 
Having explained the basic characteristics of our state space demand model we will 
now introduce the forecast model. The optimal forecast of 1tz   at time t, which is 
equal to the minimum variance estimation, can be obtained by the Kalman filter 
(Jazwinski 1970): 
 

1, 1,ˆˆt t t tz My     (21) 
 

1, , 1 , 1ˆ ˆ ˆ( )t t t t t t t ty Dy G z z           (22) 
 
where 1, 1,ˆˆ ,t t t tz y   are conditional expectations at time t given all the observed  
realisations of demand and tG  is the so called Kalman gain that can be calculated 
from the matrix Riccati equation. It can be shown that the forecast errors 

, 1ˆ( )t t t tz z    form a sequence of zero mean uncorrelated normally distributed 
random variables when the forecast is optimal.  
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Here we will consider only the steady state situation. So we assume that at time t an 
infinite number of demand observations from the past are available. If the system is 
observable then the Kalman gain converges to the stationary value G . Moreover the 
matrix ( )D GM , associated with the estimation error system , 1ˆt t t te y y    is stable.   

That is, the eigenvalues satisfy 1j  mj ,...,1 . If the demand model is represented 

in the observable canonical form then: 
 

1 1

2 2

1 0 0

0 1

0 0

1

0m m

d g

d g

D GM

d g

  
   
  
 
 
   




 
 



     (23) 

 
with the characteristic polynomial: 
 

1 1
1( ) ( ) ( )m m

m mCP d g d g              (24) 
 
The demand , 1ˆt t t tz z    and the equations (21), (22) form a SISO system with t  as 
the input variable. This system is equivalent with an ARMA ( , )m q  model with 

Iq p  . This means that for the demand model described in equation (15) and (16) 
a Box & Jenkins ARMA model is associated with parameters ,j j  . For this model 
( ) ( ( ))j j j j j jd g           . So the eigenvalues of the Moving Average (MA) part 

satisfy 1 1, ,j j m     just as Box & Jenkins asserted. But contrarily to the Box & 

Jenkins model the eigenvalues of the AR part might be larger than one. Note that 
given the ARIMA model of equation (19) a state space forecast model exists with 

t t  .  
 
Assume the demand system is represented by the observable canonical form.  Since 
the similarity with the ARIMA models we will use the parameters ,j j   instead of 

,j jd g . In addition for simplicity reasons we assume that the eigenvalues of D  are real 
and distinct. This means that the characteristic polynomial of D  can be written as the 
product of m distinct eigenvalues: 
 

1
1

1

det( ) ( )m

m
m m

i
i

I D       



             (25) 

 
Moreover, for the same reasons, we assume that the matrix ( )D GM  has real and 

distinct eigenvalues with 1 1, ,j j m    . So the characteristic polynomial now 

becomes:  
 

1
1

1

det( ( )) ( )m

m
m m

i
i

I D GM       



            (26) 

. 
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To summarise this section we shown how a demand model may be formulated as an 
MISO state space model and we have introduced a minimum variance forecast 
system. We will not go into the calculation of the Kalman gain G  by means of the 
matrix Riccati equation. We simply assume G  (or j ) is known.  In the next section 
we will integrate this forecast system into the inventory (state) model.  

5. The matrix variance equation 
In order to derive expressions for the variances and co-variances of the relevant 
variables in our system we need to match the forecast system and the inventory 
system.  Define tX  as the state variable of the joined system, consisting of the 
inventory state variable ti  and 1,ˆt ty   the state variable of the forecast system at time t 
(Note that since we calculate this forecast at time t it is part of tX  and not , 1ˆt ty  ). The 
total system is now be described by the difference equation: 
 

1 1t t t tX AX Bu C          (27) 
 
with: 
 

1 0 1 1
, ,

0 0
A B C

D G

     
       
     

      (28) 

 
where: 
 

1,ˆt t t tu o z       (29) 
 
Since it is not possible to influence the demand part of this system by tu  the system is 

not completely controllable. So if an eigenvalue of D 1 1, ,j j m   
 
than the 

system cannot be stationary. So from here on we assume that all the eigenvalues have 

1 1, ,j j m    . By introducing the inventory feedback rule t tu fi  , we are 

studying the OUT policy given by equation (8) and the system becomes: 
 

1 1( )t t tX A BF X C          (30) 
 
with ( ,0)F f   . The characteristic polynomial of the systems is: 
 
det( ( )) det( (1 ))det( )I A BF f I D             (31) 
 
(31) consists of the eigenvalue of the inventory system and the eigenvalues of the 
forecast system. As mentioned in section 3 1t   forms a sequence of zero mean 
uncorrelated normally distributed random variables. This property makes it easy to 
derive a matrix variance differential equation from (30).  Let the variance matrix of 
the state vector at time t be: 
 

1,

,

1, 1, 1,

'
ˆ( ) '

{ }
ˆ ˆ ˆ( ) ( )( ) '

t t t t t

XX t
t t

t t t t t t t

i i i y
E X X E

y i y y



  

 
    

 
    (32) 
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then multiplying equation (30) by the transpose of 1tX   and taking expectation we get 
the variance equation: 
 

, 1 ,
' '( ) ( )XX t XX tA BF A BF C C            (33) 

  
Note that 2

1{ }tE     the variance of the forecast error.  Under the condition 

0 2f   and 1 1, ,j j m   
 

the matrix variance equation converges to the 

stationary situation, expressed by: 
 

' '( ) ( )XX XXA BF A BF C C             (34) 
 
This equation can in general be solved by a range of numerical techniques. In this 
particular case the structure of A and B allows further analytical investigation.  
Equation (32) shows that three components are relevant to 
( ˆ ˆˆ1, 1, 1,

2 ˆ ˆ ˆ{ }, {( ) }, {( )( ) '}ii yi t t t yy t t t ttE i E y i E y y        ) resulting in: 

 
2(1 )ii iif            (35) 

 
ˆ ˆ(1 )yi yif D G             (36) 

 
ˆˆ ˆ ˆ

' '
yy yyD D GG            (37) 

 
Equation (35) corresponds with (10), the inventory variance those closed form 
solution was shown in (11). As expected the inventory variance is not influenced by 
the demand but only by the (minimum) variance of the forecast error. The variance of 
the forecast, ˆˆyy , (37) is not influenced by the feedback factor f . The co-variance 
between the inventory and the forecasted demand state is dependent of the feedback 
factor, the demand model (D) and the Kalman gainG . Equation (36) can be written 
as: 
 

ˆ
1[ (1 ) ]yi I f D G 

            (38) 
 
Since the eigenvalues [1 (1 ) ]j jf    

 
are 0 in the stability interval 0 2f  the 

matrix inverse exists.  
 
In the next section we will analyse the effects of the general demand model on the 
variance of the ordering policy. Here, equation (38) will play an important role. 
 

6. Analysis of the order variance 
The variance of the ordering policy was given in equation (13). Since 

ˆ ˆˆˆ ˆ ˆˆ, 'iz zi yi zz yyM M M         the ordering variance becomes: 
 

ˆˆˆ ˆˆ
2 22 2 ( ) 'oo ii iz zz ii yyf f f fW f M M                (39) 

 
where the scalar ( )W f is the function of f : 
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1( ) [ (1 ) ]W f M I f D G        (40) 

 
In order to evaluate the variance of the ordering rule we first concentrate on the co-
variance term in (39). Due to the observable canonical form of D the inverse can be 
calculated as: 
 

1

1

1

( )(1 )
( )

1 (1 )

j j

i

m j

j

m j

j

f
W f

f

 








 


 




     (41) 

 
(41) can be rewritten using the eigenvalues as: 
 

1

1

1

1

( )(1 )
( )

[1 (1 ) ][1 (1 ) ]

j j
j

m j
mj

m j
jjj

f r
W f

ff


 










 
 

  





   (42) 

 
The RHS of equation (42) is obtained using partial fraction expansion with: 
 

1

1

( )

( )
i

m

i jj

m
j i j
j i

r
 

 

 

 













     (43) 

 
We see that ( )W f consists of the sum of m hyperbolic functions with asymptotes 

at (1 ) /j jf     .  

 
For 0 1, (1 ) / 0j j j

       
 
and for 1 0, (1 ) / 2j j j

          so ( )W f has no 

asymptote in the stability interval 0 2f  . ( )W f  is bounded on this interval. Three 
interesting points are: 
 

1 1

1

1 1

1 1

( ) ( )( 1)
( 0) , ( 1) ( ), ( 2)

1 1 ( 1)

j j j j

j j

m m j

j j

m m j

j j

W f W f W f
   

 
 


 

 

  
      

  

 
 

  

     (44) 
    

All three values can be negative, though the denominators are always positive. The 
sign of ir  depends on the relative values of the j


 

and j
 ’s. If for instance 

the j
 and j

 ’s can be ordered as 1 1 j j m m
                then all ir  are 

positive. The sum of the ir ‘s is equal to 1 1( )  . 
 
With this insight into the characteristics of ( )W f  we may now consider its influence 
on the ordering variance.  Since the third term in equation (38) does not depend on f  
we need to only consider the first two terms. Using equation (11) we introduce ( )H f  
as the part of oo  dependent on f: 
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ˆ ˆ[ ( )] 'oo yyH f M M          (45) 
 
with: 
 

( ) 2 ( )
2

f
H f fW f

f
 


     (46) 

 
This function for f     has m+1 asymptotes, meaning that there are m+1 
values for which ( )H f   (and also m+1 values, H(f) ).  In the interval 
0 2f  the first term is a strictly increasing positive function with an asymptote 
for 2f  . The second term is bounded on this interval but could be large for 

1j
   . ( 0) 0H f    and 1 1( 1) 1 2( )H f      . The last value is remarkable 

since it depends only on the first parameters of the characteristic polynomial of D  
and of ( )D GM .       
                

( )W f  can be an increasing function of f  in the stability interval and so can be 
( )H f . A sufficient, but not necessary, condition is that all jr  are positive. Then 

also 1 1( ) 0   , so we have “already” a bullwhip effect oo zz    at 1f  .  Eliminating 
the second term in (44) using ˆˆ 'zz yyM M      gives: 
 

( ( ) 1)oo zz H f            (47) 
 
which is larger than zero for 1f   if 1 1( ) 0   . More generally when 

1
( ) 0j j j

m

j
r  


    bullwhip arises in the interval 0 1f  . 

 
Even though ( )W f is negative, ( )H f can still increase over the stability interval. As 
long as ( )H f  increases over the interval, the partial derivative of the ordering 
variance is positive. So we can find a suitable balance between the ordering variance 
and inventory variance in the interval 0 1f  . Moreover bullwhip might arise for 

1f   or for 1f  .  
 
If  ( )W f  is negative, ( )H f  might also be negative for some f . As ( )H f   
for 2f  , ( )H f  will have a minimum on the stability interval. A necessary 
condition for this case is that the partial derivative of ( )H f  at 0f   is negative. This 
gives: 
 

1 1

1 3 4 0j j

m m

j j

 
 

          (48) 

 
The minimum might occur at * 1f  or at * 1f  . In the first case as ( )H f  increases 
for *f f  a balance between the ordering variance and inventory variance can be 
found in the interval * 1f f  . In the latter case a balance can only be realized in 
1 *f f  . However f  in the interval 1 2f   is usually not being advised 
because it over compensates for inventory deviations (see (9)).  
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The nominator of the partial derivative of ( )H f  consists of the sum of m+1 terms. 

Each term is a product of m squared terms{2 ,1 (1 ) , 1, , }jf f j m     . Except for 

m=1 a closed form solution has been found. If 1 1( ) 0   the two solutions are: 
 

1 1

1 2

1 1

2 1 2 1
;f f

   
   
    

 
  

     (49) 

 

where 1 1 1( )(1 )       and 1f  gives the minimum and 2f  the maximum value. 

The minimum not necessarily lies in the stability interval. The necessary and 
sufficient condition is given by equation (48), so 1*f f  here. For 1   the 
minimum satisfies 1 * 2f  . By the way condition (48) includes 1 1( ) 0   , but not 
vice versa.  Figure 4 illustrates some typical order variances as a function of f in the 
class of ARMA (1,1) demands. 
  

 
 

Figure 4.  The order variance for different ARMA(1,1) demands 
    
The critical condition for bullwhip is defined as oo zz   which gives using equations 
(39) and (47): 
 
2 (2 ) ( ) 1f f W f f         (50) 
 
Using equation (41) this can be written as a polynomial with degree m+1: 
 
 

1 1

1 1
(1 ) (2 ) (1 ) (1 )j j

m mj j

j j
f f f f f  

 
          (51) 

  
For each of the m+1 asymptotes there is a solution of this polynomial. Consequently 
in the stability interval there is one solution. Closed form solutions have not been 
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derived for m>1, though relatively easy numerical techniques can be used, with the 
asymptotic values, for example, as starting values. For m=1 the solution in 0 2f   
is given by:  
 

1 1 1 1

1

2(2 1) (2 1) 4(1 )

2
f

   


      
      (52) 

 
(52) corresponds to the bullwhip boundary given in Chen and Disney (2003), thus 
supporting our findings. 

7. Conclusions 
The use of a proportional controller has been has often been proposed as a solution to 
the bullwhip problems caused the classical order-up-to policy. The classical order-up-
to policy minimizes inventory fluctuations (variance) but does not attempt to control 
ordering fluctuations. This may lead to the so-called bullwhip problem where the 
ordering variance is amplified as it moves through a production/ distribution/ 
replenishment decision. By a suitable choice of the feedback parameter value the 
proportional controller strives for a good balance between the ordering and inventory 
variances.  
 
However, relatively less is known about the behavior of the proportional policy for 
arbitrary demand characteristics. In this paper the performance of the proportional 
policy has been analyzed in a general state space demand model. The crucial role of 
the co-variance between the inventory and the demand forecast on the bullwhip effect 
has been highlighted. To derive an analytical expression of the ordering variance the 
so-called separation principle is used.  That is, a linear system disturbed by normally 
distributed stochastic variables can be separated into a minimum variance estimation 
problem and a control problem based on the estimated state variables.  
 
The separation principle has allowed us to obtain analytical expressions illustrating 
the influence of the parameters and/or eigenvalues of the demand (forecast) model. 
From this expression bullwhip generating and order smoothing components can be 
uncovered. In general this leads to a paradoxical situation. If the co-variance is 
negative the ordering variance increases (compared with the inventory related 
component or equally the random demand case) bullwhip arises in the control interval 
0 1f  , but at the same time a good balance between inventory and ordering 
variance can be found in this interval. If the co-variance is positive the ordering 
variance decreases with respect to the random demand case and even could have a 
minimum in the interval 1 2f  .   In the latter case though the ordering variance is 
relatively low no balance can be found between inventory and ordering variance in 
the control interval 0 1f  . However, a balance can be found in the region of 
1 2f  , but this not an attractive situation since this leads to an overreaction to 
inventory deviations.  
 
Our overall conclusion is that the functioning of the proportional controller heavily 
depends on the demand model and its parameters values and as such requires 
considerable care when used in a real-life situation. Moreover a reasonably 
functioning robust controller suitable for a broad class of demand models with their 
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parameter values is not immediately obvious.  Future research will analyze the effects 
of ordering delays when using this general demand model. Further work will be 
devoted to finding better performing ordering rules.  
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