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ABSTRACT

The concept of causality has been widely studied in econometrics and statistics since 1969,
when C. J. Granger published his paper "Investigating causal relations by econometric
models and cross-spectral methods". The intuitive basis for his de�nition of causality is
the following: time series Y is causing time series X if the use of the additional information
provided by Y improves the forecast of series X.

In the present thesis we focus on combining Granger's causality concept with the Sin-
gular Spectrum Analysis (SSA) technique. SSA is founded on the idea of transforming
the time series into a multidimensional trajectory form (Hankel matrices), Singular Value
Decomposition with subsequent projection to a lower-dimensional subspace and diagonal
averaging.

The main aim of the present thesis is to study the causality concept through SSA prism
in details and suggest a novel causality measure, which can be used outside the stationary
autoregressive class, which is the framework for Granger's original causality concept.

We �rst apply standard statistical tests directly to simulated data to assess the im-
provement of forecast quality of bivariate multidimensional SSA (MSSA) of time series X
and Y compared with SSA of time series X only. Although the results of performance of
these tests are reasonably conclusive, the simulation method is time consuming and, thus,
more theoretical understanding is desirable.

We solve a fundamental scaling problem of the MSSA approach by introducing so-
called linearized MSSA. The linearized MSSA approach shows a way towards a causality
measure, calculated from the forecast linear recurrence formula (LRF) coe�cients.

We �nally analyze SSA and (non-linear) bivariate MSSA approach in terms of �rst
order stability analysis under perturbations leading to the construction of a valid suitable
measure of causality. The construction of the measure requires some simplifying assump-
tions in the stability analysis whose validity we verify for both simulated and real data.
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INTRODUCTION

The concept of causality has been widely studied in econometrics and statistics since 1969,
when C. Granger published his paper "Investigating causal relations by econometric models
and cross-spectral methods" [15]. In the present thesis Granger's de�nition of causality
is taken as a conceptual basis, although we give it a di�erent mathematical expression.
Intuitively we say that a time series Y causes a time series X if the forecast of the time
series X is improved when Y is taken into account. C. Granger de�ned a measure of
causality, based on causality coherence, for the particular class of time series which are
realizations of stationary autoregressive stochastic processes. Although the stationarity
condition is widely used in time series analysis, it often remains unclear whether and how
real data meet this condition.

The focus of the thesis is to study causality appearing between two time series using the
Singular Spectrum Analysis (SSA) technique. SSA is a relatively new method which is now
often used in time series analysis. The �rst reference about SSA can be found in papers
written by Broomhead and King in 1986 [7, 6]. Main advantages of this technique are the
absence of the stochastic model for the noise (residuals), except the idea that noise should
have low self-correlation compared to the signal, and existence of a general and �exible
model for the signal, which can be described using linear recurrence. In other words, SSA
can be considered a nonparametric method and can be used for arbitrary time series.

The procedure of SSA is based on embedding the time series into multidimensional
trajectory space (building Hankel matrices) and Singular Value Decomposition (SVD)
with subsequent projection to a lower-dimensional subspace and averaging (Hankeliza-
tion). Typical tasks for SSA based algorithms include investigating the structure of the
time series, in particular identifying trends and periodicities, signal extraction, reducing
noise, forecasting time series. The monograph "Analysis of Time Series Structure" [11]
contains a detailed description of the method and its usage.

To be more precise, the aim of the present work is to combine Singular Spectrum
Analysis technique with Granger's causality concept in such a way that it is possible to
�nd a suitable measure for causality appearing between two time series, without recourse
to a stationary autoregressive model. According to Granger's de�nition of causality, the
concept of causality has an immediate connection with the ability to forecast. SSA is an
ideal candidate for a new causality test as it provides �exible tools for forecasting.

The thesis has the following structure.
Chapter 1 starts with a description of the basic SSA procedure for reconstruction and

forecasting of univariate and multivariate time series. In this chapter we introduce SSA
by representing the procedure in two di�erent ways as, �rst, the stage-to-stage algorithm
and as, second, a convolution (linear �lter) representation for both univariate and bivariate



cases.
To prepare our connection of Granger's idea to SSA, we study his causality concept

with underlying model in details in Chapter 2. This chapter contains the main de�ni-
tions and ideas introduced by C. Granger in 1969 and also describes the concept Granger
suggested as a measure of causality, so-called coherence, which is based on the cross spec-
trum of two stationary time series. In this chapter we also discuss the most common and
widely used Granger's causality tests and their implementation. These statistical tests are
ultimately based on regression done on two time series and therefore they do not need
the assumptions of autoregressive model. We perform numerical study for the time series
within the class of stationary autoregressive processes and also for the time series outside
this class. Performing Granger's causality test on di�erent time series reveals its sensitivity
to changes in model parameters.

However, these tests are not the only tools which can be used to detect a causal re-
lationship. Based on Granger's idea that causality means an improved forecast when the
second series is taken into account, we investigate, in Chapter 3, several di�erent statistical
tests combined with SSA/MSSA to see if causality takes place.

Chapter 3 contains a detailed description of statistical tests, which we use for causality
detection. The chapter is constructed in such a manner that each section consists of two
parts, theoretical and practical. Theoretical part contains information about the statistical
tests and the practical part contains several examples, which give a general overview on
the performance of statistical tests in di�erent cases. In addition to F-test, Kolmogorov-
Smirnov and Anderson-Darling tests, Sign test and its variations, we also study dominance
tests, which involve direct comparison of empirical distributions. However, distribution
comparison is a visual tool, which may be time consuming, if one looks at a large number
of distributions. Thus, in this chapter we introduce indicator measures, which are used to
help to decide which case of dominance occurs in a given data. At the end of this chapter
we summarize the observations and explain certain regular patterns that were revealed
during simulation studies.

Chapter 4 is dedicated to derivation of a novel approach to causality. Here using
Granger's concept we are trying to build a causality measure modeled more closely on
Granger's concept, but using SSA/MSSA which is suitable for time series outside the class
of stationary autoregressive time series. We show the fundamental di�erence between
the SSA based model and the autoregressive model. Our discussion highlights a general
di�culty one faces when dealing with bivariate SSA (MSSA). The main di�culty of the
MSSA approach is the lack of homogeneity, which means that if one changes the scaling
of one of the time series involved in MSSA the forecast is changing non-linearly. This is
problematic if two time series do not have a natural common unit. We propose a measure
of causality based on linearized MSSA using parts of the recurrence vectors, however it is
not quite clear how it links to either Granger's tests of Chapter 2 or those described in
Chapter 3. Therefore, we return to the non-linear MSSA in the next chapter.

Chapter 5 concentrates on the relationship between the noise component of the original
time series and the resultant output of SSA/MSSA analysis, i.e. the time series reconstruc-
tion and its forecast. This relationship is closely connected to the F-test, which lies at the
core of common Granger's causality tests, used for the stationary autoregressive model.

2



F-test considers the resultant variances in forecast, which in the case of Chapter 3 were
obtained with SSA/MSSA linear recurrence formulae. These variances in their turn arise
from randomness in the initial time series. Hence, we establish a connection between the
input and output noise by considering how the forecast of SSA/MSSA changes as we add
a random perturbation to the initial time series, which is the key idea of the stability
analysis in this chapter. In particular, we study the propagation of noise through the SSA
and MSSA procedures and look for a connection between the initial perturbation in time
series and the obtained forecast error.

Note that throughout the thesis we study the forecast as an intermediate tool to obtain a
causality measure. Speci�cally in Chapter 5, we use the recurrence vectors and convolution
kernels to construct such a measure. Hence, we are not interested in the forecast itself, but
only in linear recurrence formulae the forecast is obtained with and therefore we consider
SSA/MSSA forecast for one point only.

In order to obtain a managing formula for the variance,we need to make simplifying
assumptions, whose validity we discuss with regard to simulated and real data. On this
basis we derive a theoretical model for the output variance in terms of the recurrence
vectors and convolution kernels.

3



1. SINGULAR SPECTRUM ANALYSIS

In this chapter we describe in detail the Singular Spectrum Analysis (SSA) algorithms used
for series analysis, reconstruction and forecast. First two sections of this chapter contain
the description of the SSA reconstruction algorithms for univariate (SSA) and multivariate
cases (MSSA). The basic idea is to take a time series and present it in a multidimensional
form, speci�cally trajectory matrix, which gives the opportunity to study the structure
of the time series through spectral analysis, based on singular value decomposition of
this matrix. By choosing the parts of the spectral decomposition of the matrix we then
are able to reconstruct a partial one-dimensional time series. This approach is useful for
noise reduction, signal extraction, structure analysis and many other purposes. Also, we
introduce an alternative way of deriving the SSA and MSSA reconstructions.

We introduce the MSSA reconstruction procedure for general multivariate case. We
then narrow it down to the bivariate case throughout this thesis, since the subject of
interest is the interaction, i.e. causal relationship, between two time series.

The description of reconstruction algorithms is followed by the SSA forecast algorithms
for univariate and bivariate cases. The main idea of the SSA forecast algorithm is to �nd a
forecast, such that the distance between the projection subspace and the forecast trajectory
is minimal.

1.1 SSA reconstruction procedure

Consider a non-zero time series FN = (f1, ..., fN ). The Basic SSA algorithm starts from
decomposition stage and is followed by reconstruction stage.

First stage: decomposition
Embedding. Let us choose some window length L : 1 < L < N (which will be the

only parameter of the embedding) and de�ne K = N − L + 1. At this step we form K
lagged vectors {Xi} : Xi = (fi, ..., fL+i−1)T , i ∈ {1, ...,K} of dimension L, de�ning our
(L-)trajectory matrix (Hankel matrix) of the time series FN :

X =


f1 f2 f3 . . . fK
f2 f3 . . . fK+1

f3
...

. . .
...

...
...

. . .
...

fL fL+1 . . . fL+K−1

 (1.1)



In other words, embedding can be treated as a mapping which transfers a one-dimensional
time series FN = (f1, ..., fN ) to the multidimensional series X1, ..., XK .

The choice of window length L could be a task on its own. When choosing a window
length, one should consider all the information on the analyzed time series as well as
decide on the purpose of the analysis. The purpose could be time series trend extraction,
smoothening the series, looking for periodic or oscillation and many more.

Singular Value Decomposition (SVD) is the main tool in the Basic SSA algorithm.
Let us denote S = XXT and let λ1, ..., λL be eigenvalues of S: λ1 ≥ ... ≥ λL ≥ 0. By
η1, ..., ηL we de�ne orthonormal system of eigenvectors of S corresponding to eigenvalues
λi.

Let d = max{i : λi > 0}. If we denote Vi = XT ηi/
√
λi (i = 1, ..., d) then we can rewrite

our matrix X:

X = X1 + ...+ Xd, (1.2)

where Xi =
√
λiηiV

T
i have rank 1 and therefore are called elementary matrices. The col-

lection (
√
λi, ηi ,Vi) is called the ith eigentriple of the SVD of X.

Second stage: reconstruction
Grouping starts with separation of eigentriple into several groups. In other words if

we denote I as a set of indices {1, ..., d} and separate it into m disjoint sets:

I =

m⋃
i=1

Ii, such that Ii ∩ Ij = ∅ (i 6= j) (1.3)

Then we choose some sets of our indices (Ii for i = 1, ...,m). For simplicity let's take
m = 2. Then I1 = {i1, ..., ip} and I2 = I\I1. Computing a corresponding matrix XI1 we
get:

XI1 = Xi1 + ...+ Xip (1.4)

The choice of indices is called eigentriple grouping. We choose I1 so that
∑

i∈I1 Xi is the
approximation of Hankel matrix X

XI1 =
∑
i∈I1

√
λiηiV

T
i = PI1X (1.5)

where PI1 is the orthogonal projector in RL onto the subspace spanned by {ηi1 , ..., ηip}:

PI1 =

ip∑
k=i1

ηkη
T
k (1.6)

Diagonal averaging. After all the decomposition and grouping steps we need to come
back to the Hankel matrix form to obtain the reconstructed series.
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First of all, we set L? = min(L,K) and K? = max(L,K) and denote a matrix Y with
elements yij(resultant matrix of grouping step) and Y ? be a matrix, such that y?ij = yij if
L < K and y?ij = yji if L > K.

Diagonal averaging transfers arbitrary matrix Y ? into a Hankel matrix X̃:

X̃ = HY ?, (1.7)

where H is Hankelization operator and X̃ is a trajectory matrix of some series F̃N . There-
fore, we get decomposition of the initial series FN which is F̃N , where x̃ij = f̃i+j−1 : {i ∈
(1, ..., L), j ∈ (1, ...,K)}

f̃k =



1

k

k∑
m=1

y?m,k+1−m, for 1 ≤ k ≤ L? − 1,

1

L?

L?∑
m=1

y?m,k+1−m, for L? ≤ k ≤ K?,

1

N − k + 1

N−K?+1∑
m=k−K?+1

y?m,k+1−m, for K? + 1 ≤ k ≤ K? + L? − 1

(1.8)

where k ∈ (1, ..., N).

X̃ =


f̃1 f̃2 f̃3 . . . f̃K
f̃2 f̃3 . . . f̃K+1

f̃3
...

. . .
...

...
...

. . .
...

f̃L f̃L+1 . . . f̃N

 (1.9)

or X̃ can be represented in terms of K-lagged vectors X̃ = [X̃1 : ... : X̃K ].
This notation is a classical SSA algorithm, which could be also found in various sources.

For example, see [29].
There is also an alternative notation for the SSA procedure which combines all stages

of SSA into one expression. See Proposition 1.2.1.

1.2 Alternative representation of SSA reconstruction

Alternatively, SSA reconstruction procedure could be presented in the convolution form,
also known as linear �lter [14, p.113], [33].

Proposition 1.2.1. Let f = (f1, ..., fN ) be a time series and f̃ = (f̃1, ..., f̃N ) its SSA
reconstruction (for a suitable choice of window length L and I1 set of eigentriples). Then
there exists a convolution representation

f̃n = (q ? f)n =

L−1∑
m=−L+1

qmfn+m, n ∈ {L+ 1, ..., N − L} (1.10)
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where the reconstruction kernel q : {−L+1, ..., L−1} → R depends on the choice of window
length and eigentriples and has the symmetry property

q−m = qm, m ∈ {−L+ 1, ..., L− 1} (1.11)

Remark As shown in the above Proposition, the convolution formula gives the exact same
result as the standard SSA reconstruction, except in the �rst and last L terms. In fact,
the convolution concept is more natural to doubly-in�nite time series f = (fj)j∈Z. Our
approach for the proof is to derive the convolution formula for the doubly-in�nite case, and
make it possible to apply it to �nite series f by extending f to the doubly-in�nite time
series by zeros.

Proof. Consider a double in�nite time series f = (fj)j∈Z, where fj ∈ R(j ∈ Z) and a right
shift operator

S : RZ → RZ, such that Sft = ft+1 (t ∈ Z) (1.12)

so that the trajectory matrix of in�nite time series f is

X =


f
Sf
...

SL−1f

 (1.13)

and the lag-covariance matrix

XXT =


ffT f(Sf)T . . . f(S(L−1)f)T

(Sf)fT Sf(Sf)T . . . Sf(S(L−1)f)T

...

(S(L−1)f)fT S(L−1)f(Sf)T . . . S(L−1)f(S(L−1)f)T

 , (1.14)

assuming that inner products are �nite.
In fact, the matrix XXT is a Toeplitz matrix as

Sjf(Skf)T = S(j+k)ffT (i, j ∈ Z) (1.15)

The SSA projector P is a spectral projector of rank r

P =


p0,0 p0,1 p0,2 . . . p0,L−1

p1,0 p1,1 p1,2 . . . p1,L−1
...

...
...

...
...

pL−1,0 pL−1,1 pL−1,2 . . . pL−1,L−1

 , (1.16)

obtained for �rst r eigentriples from SVD of the Hankel matrix X, where

pk,j =

r∑
i=1

ηi,kηi,j , (1.17)
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where ηi,j corresponds to the jth term of ith eigenvector ηi. Note that

pk,j =

r∑
i=1

ηi,kηi,j =

r∑
i=1

ηi,jηi,k = pj,k (1.18)

Therefore, applying the SSA projector to the Hankel matrix we get

PX =



L−1∑
j=0

p0,jS
jf

L−1∑
j=0

p1,jS
jf

...
L−1∑
j=0

pL−1,jS
jf


, (1.19)

De�ne an operator H

H : Rn → R such that H(a0, ..., an−1) =
1

n

n−1∑
k=0

S−kak. (1.20)

Then applying (1.20) to (1.19) we get

f̃ = HPX =
1

L

L−1∑
k=0

PX

=
1

L

L−1∑
k=0

L−1∑
j=0

pk,jS
j−kf

=

L∑
m=−L

qmS
mf (1.21)

or

f̃n =

L−1∑
m=−L+1

qmfn+m (n ∈ Z)

which is the SSA reconstruction of the series written as a convolution with convolution
coe�cients qm

qm =



1

L

L−1∑
i=0

pi,i, m = 0

1

L

L−1∑
i=m

pi−m,i, m ∈ (1, ..., L− 1)

1

L

L−1∑
i=−m

pi,m+i, m ∈ (−L+ 1, ...,−1)

,
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As the calculation of convolution coe�cients qm is based on summing projector elements
(1.17), which have the symmetry (1.18), the qm are symmetric as well,

qm = q−m(m ∈ Z). (1.22)

The expression (1.21) can be rewritten as

f̃n =
∑
m∈Z

qn−mfm = (q ? f)n (1.23)

where we set

qm = 0 if m 6∈ (−L+ 1, ..., L− 1) (1.24)

If f is a �nite time series, convolution (1.23) will extend f by zeros to double-in�nite
time series and produce the correct reconstruction for f̃n for n ∈ (L + 1, ..., N − L). The
�rst and last L points will give reconstruction, which di�ers from the standard SSA one,
due to the the fact, that the series was extended by zeros, on both sides.

The SSA procedure presented in terms of convolution has an advantage in stability
analysis of SSA reconstruction, recurrence and forecasts. In particular, noise propagation
through SSA becomes more transparent using the convolution. These points are discussed
in more details in Chapter 5.

1.3 Multivariate SSA (MSSA) reconstruction procedure

MSSA is an extended version of the SSA algorithm applied to more than one series. Instead

of having one FN , we now have several series F
(s)
N = (f

(s)
0 , ..., f

(s)
N−1), where s is the number

of series and N is the length of F
(s)
N . De�ne trajectory matrices of each time series F

(s)
N as

X(s) as in (1.1). The combined trajectory matrix for multivariate case is

X =


X(1)

X(2)

...

X(s)

 (1.25)

If the length of time series F (i) vary, Ki should be adjusted for trajectory matrix so that
L = const, i.e. Ki = Ni − L+ 1.

Decomposition (SVD) and grouping steps are similar to the Basic SSA procedure. For
diagonal averaging �rst let us de�ne Ki (i = 1, ..., s) of the trajectory matrix X(i) and an
operator ∆i:

∆i =


0 for i = 1

i−1∑
s=0

Ks for i > 1
(1.26)
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Then the diagonal averaging has a following form:

f̃
(i)
k =



1

k

k∑
m=1

y?m,k+1−m+∆i
, for 1 ≤ k ≤ L− 1,

1

L

L∑
m=1

y?m,k+1−m+∆i
, for L ≤ k ≤ Ki,

1

Ni − k + 1

Ni−Ki+1∑
m=k−Ki+1

y?m,k+1−m+∆i
, for Ki + 1 ≤ k ≤ Ni

(1.27)

where y?ij are elements of matrix Y ?, result of grouping step.
Analogously to the univariate SSA procedure, the MSSA reconstruction can be repre-

sented by a convolution formula as well. We only consider bivariate case.

1.4 Alternative representation of bivariate SSA reconstruction

The possibility of representing the reconstruction as a convolution for the bivariate case
expand opportunities of stability analysis, in particular, studying noise propagation in the
bivariate case.

Proposition 1.4.1. Let f = (f1, ..., fN ), g = (g1, ..., gN ) be time series and f̃ = (g̃1, ..., g̃N )
f̃ = (f̃1, ..., f̃N ) their MSSA reconstruction respectively (for a suitable choice of window
length L and r eigentriples). Then there exists a convolution representation(

f̃
g̃

)
=

(
q1 ? f + q2 ? g

q3 ? f + q4 ? g

)
(1.28)

where the reconstruction kernel qi : {−L+ 1, ..., L− 1} → R for i ∈ {1, 2, 3, 4} depends on
the choice of window length and eigentriples

Proof. Suppose we now have two doubly-in�nite time series (fn)n∈Z, (gn)n∈Z ∈ RZ, i.e.
fj , gj ∈ R(j ∈ Z). Here (fn)n∈Z is the main series we are interested in and the (gn)n∈Z is
the support one.

The Hankel matrix for the two dimensional case is a block matrix consisting of two
blocks: one is the Hankel matrix X1 of fn and the other one is the Hankel matrix X2 of gn

X =

(
X1

X2

)
=



f
Sf
...

SL−1f
g
Sg
...

SL−1g


(1.29)
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and the lag-covariance matrix

XXT =



ffT . . . f(S(L−1)f)T fgT . . . f(S(L−1)g)T

(Sf)fT . . . . . . . . .
...

...
...

...

(S(L−1)f)fT . . . S(L−1)f(S(L−1)f)T . . .

gfT . . . g(S(L−1)f)T ggT . . . g(S(L−1)g)T

(Sg)fT . . . Sf(S(L−1)f)T (Sg)gT . . .
...

...
...

(S(L−1)g)fT . . . . . . S(L−1)g(S(L−1)g)T . . . . . .


(1.30)

The MSSA projector P is obtained for �rst r eigentriples from SVD of Hankel matrix X.

P =



p1
0,0 pi0,1 . . . p1

0,L−1 p2
0,L p2

0,L+1 . . . p2
0,2L−1

...
...

...
...

...
...

...
...

p1
L−1,0 p1

L−1,1 . . . p1
L−1,L−1 p2

L−1,L p2
L−1,L+1 . . . p2

L−1,2L−1

p3
L,0 p3

L,1 . . . p3
L,L−1 p4

L,L p4
L,L+1 . . . p4

L,2L−1
...

...
...

...
...

...
...

...
p3

2L−1,0 p3
2L−1,1 . . . p3

2L−1,L−1 p4
2L−1,L p4

2L−1,L+1 . . . p4
2L−1,2L−1


.

The projector P consist of 4 blocks

P =

(
p1 p2

p3 p4

)
where

p1
k,j =

r∑
i=1

ηi,kηi,j for k, j ∈ {0, ..., L− 1}

p2
k,j =

r∑
i=1

ηi,kηi,j for k ∈ {0, ..., L− 1}, j ∈ {L, ..., 2L− 1}

p3
k,j =

r∑
i=1

ηi,kηi,j for k ∈ {L, ..., 2L− 2}, j ∈ {0, ..., L− 1}

p4
k,j =

r∑
i=1

ηi,kηi,j for k, j ∈ {L, ..., 2L− 1}

(1.31)
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where ηi are eigenvectors, obtained from SVD of the matrix XXᵀ

PX =



L−1∑
j=0

p1
0,jS

jf +
L−1∑
j=0

p2
0,jS

jg

L−1∑
j=0

p1
1,jS

jf +
L−1∑
j=0

p2
1,jS

jg

...
L−1∑
j=0

p1
L−1,jS

jf +
L−1∑
j=0

p2
L−1,jS

jg

L−1∑
j=0

p3
0,jS

jf +

L−1∑
j=0

p4
0,jS

jg

L−1∑
j=0

p3
1,jS

jf +

L−1∑
j=0

p4
1,jS

jg

...
L−1∑
j=0

p3
L−1,jS

jf +

L−1∑
j=0

p4
L−1,jS

jg



, (1.32)

Similarly to the univariate case, we now can write down the expression for the reconstruc-
tion of fn and gn as a convolution

(
f̃
g̃

)
=


H

(
L−1∑
k=0

L−1∑
k=0

p1
k,jS

j−kf +

L−1∑
k=0

L−1∑
k=0

p2
k,jS

j−kg

)

H

(
L−1∑
k=0

L−1∑
k=0

p3
k,jS

j−kf +
L−1∑
k=0

L−1∑
k=0

p4
k,jS

j−kg

)
 (1.33)

=


L∑

m=−L
q1
mS

mf +
L∑

m=−L
q2
mS

mg

L∑
m=−L

q3
mS

mf +

L∑
m=−L

q4
mS

mg

 (1.34)

as Smf = fm and Smg = gm we get two reconstructions

(
f̃n
g̃n

)
=


∑
m∈Z

q1
n−mfm +

∑
m∈Z

q2
n−mgm∑

m∈Z
q3
n−mfm +

∑
m∈Z

q4
n−mgm

 =

(
(q1 ? f)n + (q2 ? g)n

(q3 ? f)n + (q4 ? g)n

)
(n ∈ Z) (1.35)
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or brie�y (
f̃
g̃

)
=

(
q1 ? f + q2 ? g

q3 ? f + q4 ? g

)
(1.36)

Here qjm(j ∈ {1, 2, 3, 4}) are convolution coe�cients

qjm =



1

L

L−1∑
i=0

pji,i, m = 0

1

L

L−1∑
i=m

pji−m,i, m ∈ (1, ..., L− 1)

1

L

L−1∑
i=−m

pji,m+i, m ∈ (−L+ 1, ...,−1)

, (1.37)

The expression (1.36) gives the reconstructions f̃n, g̃n of the main series fn and support
series gn for n ∈ {L+1, ..., N−L}. This expression is identical to the MSSA reconstructions,
provided that the parameters of both procedures are the same.

It is worth mentioning that convolution vectors q1 and q4 have the same symmetry as
in 1.22 as in the univariate case but q2, q3 are not. In fact, q2

m = q3
−m(m ∈ Z).

1.5 The standard SSA forecast

To show the continuation of the series we need a forecast base. The forecast base is
represented by the reconstructed series, which are described below. We are using the
following notation in this section, f = (f̃N−L+2, ..., f̃N )T , f+ = (f̃N−L+2, ...f̃N+1)T and f̃m
is an obtained forecast point for i ∈ {N + 1, ..., N +M}.

In terms of K-lagged vectors one needs to �nd X̃K+M vectors:

X̃K+M =


f̂K+M

f̂K+M+1
...

f̂N+M

 (1.38)

where

f̂i =

{
f̃i, if i = K + 1, ..., N

f̂i, if i = N + 1, ..., N +M

In other words, f̂i corresponds to the reconstructed time series for i ∈ {K + 1, ..., N} and
forecast points for i ∈ (N + 1, ..., N +M).
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M is the number of points to forecast. For simplicity we take M = 1. To �nd vector
X̃K+1 we choose f̂N+1 to minimize the distance from the span {ηi1 ...ηip} to the vector

X̃K+1, using that PI1f+ is the closest point to the point f+ in span {ηi1 ...ηip}:

z(f̂N+1) =‖ f+ − PI1f+ ‖2=‖ (I − PI1)f+ ‖2−→ min. (1.39)

Taking a derivative with respect to f̂N+1 we get:

z′(f̂N+1) = 2fT+(I − PI1)eL,

where eL = (0, ..., 0, 1)T and e ∈ RL.
To minimize the distance from the vector (fN−L+2, ..., fN+1)T onto space spanned by
{ηi1 ...ηip}, we obtain

z′(f̂N+1) = 2fT+(I − PI1)eL = 0,

which can be rewritten as

fT+(I − PI1)L = 0, (1.40)

where

(I − PI1)TL = eL −
ip∑
k=i1

ηkη
T
k eL.

Then we have

0 = (I − PI1)L f
T
+ = f̂N+1 −

ip∑
k=i1

eLη
T
k ηkf+,

where
ip∑
k=i1

eLη
T
k = ηk,L,

ηkf+ = η∇k
T
f + ηk,Lf̂N+1.

The solution of (1.40) is

f̂N+1 = fT
∑ip

k=i1
η∇k Uk,L

1−
∑ip

k=i1
η2
k,L

,

where Uk,L is the Lth component of eigenvector ηk and η
∇
k ∈ RL−1 (represents �rst ( L − 1 )

components of eigenvector ηk). In other words f̂N+1 can be expressed in terms of the
following linear recurrence formula:

f̂N+1 = a1f̂N + a2f̂N−1 + ...+ aL−1f̂N−L+1, (1.41)

where ai are components of the recurrent vector R = (aL−1, aL−2, ..., a1)T :

R =

∑ip
k=i1

ηk,Lη
∇
k

1−
∑ip

k=i1
η2
k,L

. (1.42)
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1.6 MSSA forecast

MSSA+ forecast
Here in addition to the notation in the previous section we use g = (g̃N−L+2, ..., g̃N )T ,
g+ = (g̃N−L+2, ..., g̃N+1)T , where g̃N+1 is known or unknown value depending on the
method used.

For the MSSA forecast we consider two possible scenarios. First scenario takes place if
the "future" value at (N + 1)th point of the support series is known. The second scenario
is if there is equal amount of information available on time series used for the forecast.

To distinguish between these two scenarios we use following notation: the procedure
with extra information on support series is de�ned as MSSA+ and with equal amount of
information - MSSA.

For MSSA+ forecast there is a Hankel matrix of the following form:

X =

(
X1

X2

)
,

X1 is a Hankel matrix of the main series FN (we are interested in) with window length
L1 and X2 is a Hankel matrix of a supportive series GN with window length L2. For the
simplicity we suppose that window lengths are equal L1 = L2 = L. Here we deal with the
scenario when extra information about supportive series GN , i.e. gN+1 is known. As in
previous case with SSA forecast algorithm we take an orthogonal projector P (a 2L× 2L
matrix) of the matrix X̃:

P = PI1 =

ip∑
k=i1

ηkη
T
k

and as in previously described SSA case we choose fN+1 to minimize the distance from
the span {ηi1 ...ηip} to the vector

X̃K+1 =

(
X̃1

X̃2

)
K+1

.

Then we take the following norm:

z(fN+1) =‖
(
f+

g+

)
− P

(
f+

g+

)
‖2−→ min, (1.43)

where f+ represents terms of the series FN and terms g+ represents terms of the series GN
and gN+1 is the known value in g+. We can rewrite the expression as

z(fN+1) =‖ (I − P )

(
f+

g+

)
‖2−→ min. (1.44)

When there is a known value of supportive series GN , and the only unknown value of
the given vector (f+, g+)T is fN+1 the problem is similar to SSA forecast case. The only
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change is the size of the vector X̃K+1.
Taking the derivative of (1.44) with respect to fN+1, we get

z′(fN+1) = 2

(
f+

g+

)T
(I − P )eL = 2

(
f+

g+

)T
(I − P )L,

where

(I − P )L = eL −
ip∑
k=i1

ηkη
T
k eL = eL −

ip∑
k=i1

ηkηk,L

or we can rewrite it as

eL −
ip∑
k=i1

 η1
k

ηk,L
η2
k

 ηk,L.

Thus the derivative can be rewritten as

z′(fN+1) =

(
f+

g+

)T
(eL −

ip∑
k=i1

η(1)
k

ηk,L

η
(2)
k

 ηk,L),

where eL = (0, ..., 0, 1, 0, ..., 0)T ∈ R2L, η
(1)
k = (η

(k)
1 , ..., η

(k)
L−1)T ∈ RL−1, ηk,L = (η

(k)
L ) and

η
(2)
k = (η

(k)
L+1, ..., η

(k)
2L )T ∈ RL. (I − P )L is the L-th row of the matrix (I − P ).

To �nd the the fN+1 value, which is optimal we need to �nd the solution to z′(fN+1) = 0,
where

z′(fN+1) = fN+1 − (fT
ip∑
k=i1

η
(1)
k +

ip∑
k=i1

η2
k,LfN+1 + gT+

ip∑
k=i1

η
(2)
k ).

Thus, we have

fN+1 =
1

1−
∑ip

k=i1
η2
k,L

fT ip∑
k=i1

ηk,LU
(1)
k + gT+

ip∑
k=i1

ηk,Lη
(2)
k


or

fN+1 = f

∑ip
k=i1

ηk,Lη
(1)
k

1−
∑ip

k=i1
η2
k,L

+ g+

∑ip
k=i1

ηk,Lη
(2)
k

1−
∑ip

k=i1
η2
k,L

We can express fN+1 using the following recurrence formula

fN+1 = a1fN + a2fN−1 + ...+ aL−1fN−L+1 + b1gN+1 + ...+ bLgN−L+2, (1.45)
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where R1 = (aL−1, aL−2, ..., a1)T , R2 = (bL, bL−1, ..., b1)T

R1 =

∑ip
k=i1

ηk,Lη
(1)
k

1−
∑ip

k=i1
η2
k,L

(1.46)

R2 =

∑ip
k=i1

ηk,Lη
(2)
k

1−
∑ip

k=i1
η2
k,L

(1.47)

In this case we get two recurrent vectors of di�erent sizes - R1 ∈ RL−1 and R2 ∈ RL.
MSSA forecast

For MSSA case there appears the second unknown value gN+1. So here we have 2 series
of the same length N . As in MSSA+ we take the same norm z (1.43), but here we need
to minimize it with respect to 2 unknown values fN+1 and gN+1. Di�erentiating will give
the following equations:

∂z

∂f̂N+1

= 2

(
f+

g+

)T
(I − P )L (1.48)

and

∂z

∂ĝN+1
= 2

(
f+

g+

)T
(I − P )2L (1.49)

now we need to solve the system of equations:
∂z

∂f̂N+1
= 0

∂z
∂ĝN+1

= 0
(1.50)

using the fact that P =

∂z

∂f̂N+1

=

(
f+

g+

)T
(eL −

ip∑
k=i1


η

(1)
k

ηk,L

η
(2)
k

ηk,2L

 ηk,L) (1.51)

and

∂z

∂ĝN+1
=

(
f+

g+

)T
(e2L −

ip∑
k=i1


η

(1)
k

ηk,L

η
(2)
k

ηk,2L

 ηk,2L) (1.52)

where e2L = (0, ..., 0, 1)T ∈ R2L. Rearranging the system of equations will give us next
system in matrix form

A

(
f̂N+1

ĝN+1

)
= b (1.53)
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where A is a 2× 2 matrix:

A =

 1−
∑ip

k=i1
η2
k,L −

∑ip
k=i1

ηk,2Lηk,L

−
∑ip

k=i1
ηk,Lηk,2L 1−

∑ip
k=i1

η2
k,2L

 (1.54)

and b is a vector:

b =

 f
∑ip

k=i1
η

(1)
k ηk,L + g

∑ip
k=i1

η
(2)
k ηk,L

g
∑ip

k=i1
η

(2)
k ηk,2L + f

∑ip
k=i1

η
(1)
k ηk,2L

 (1.55)

So the system (1.53) can be rewritten:(
f̂N+1

ĝN+1

)
= A−1b

where A−1 is an inverse matrix.

The solution to the system is vector (fN+1, gN+1)T so that:

f̂N+1 =
1−

∑ip
k=i1

η2
k,2L

detA
(fT

ip∑
k=i1

η
(1)
k ηk,L + gT

ip∑
k=i1

η
(2)
k ηk,L)

+

∑ip
k=i1

ηk,2Lηk,L

detA
(gT

ip∑
k=i1

η
(2)
k ηk,2L + fT

ip∑
k=i1

η
(1)
k ηk,2L) (1.56)

ĝN+1 =
1−

∑ip
k=i1

η2
k,L

detA
(gT

ip∑
k=i1

η
(2)
k ηk,2L + fT

ip∑
k=i1

η
(1)
k ηk,2L)

+

∑ip
k=i1

ηk,Lηk,2L

detA
(fT

ip∑
k=i1

η
(1)
k ηk,L + gT

ip∑
k=i1

η
(2)
k ηk,L) (1.57)

As can be seen from the formulae above, the forecast recurrence formula in this case
will consist of two parts, including values from two series FN and GN and the coe�cients
in this recurrent formula are represented as vectors ∈ RL−1.

We can express f̂N+1 and ĝN+1 using following linear recurrence formulae

f̂N+1 = a1,1f̃N + ...+ a1,L−1f̃N−L+1 + b1,1g̃N + ...+ b1,L−1g̃N−L+1 (1.58)

ĝN+1 = a2,1f̃N + ...+ a2,L−1f̃N−L+1 + b2,1g̃N + ...+ b2,L−1g̃N−L+1 (1.59)
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where R11 = (a1,L−1, a1,L−2, ..., a1,1)T is given by

R11 =
1

detA

(
(1−

ip∑
k=i1

η2
k,2L)

ip∑
k=i1

η
(1)
k ηk,L +

ip∑
k=i1

ηk,2Lηk,L

ip∑
k=i1

η
(1)
k ηk,2L

)
, (1.60)

R12 = (b1,L−1, b1,L−2, ..., b1,1)T is given by

R12 =
1

detA

(
(1−

ip∑
k=i1

η2
k,2L)

ip∑
k=i1

η
(2)
k ηk,L +

ip∑
k=i1

ηk,2Lηk,L

ip∑
k=i1

η
(2)
k ηk,2L

)
, (1.61)

R21 = (a2,L−1, a2,L−2, ..., a2,1)T is given by

R21 =
1

detA

(
(1−

ip∑
k=i1

η2
k,L)

ip∑
k=i1

η
(1)
k ηk,2L +

ip∑
k=i1

ηk,Lηk,2L

ip∑
k=i1

η
(1)
k ηk,L

)
, (1.62)

and R22 = (b2,L−1, b2,L−2, ..., b2,1)T is given by

R22 =
1

detA

(
(1−

ip∑
k=i1

η2
k,L)

ip∑
k=i1

η
(2)
k ηk,2L +

ip∑
k=i1

ηk,Lηk,2L

ip∑
k=i1

η
(2)
k ηk,L

)
(1.63)

Throughout this thesis we are using the MSSA forecast algorithm.

To summarize this chapter, we discussed the basic stages of the SSA technique in de-
tails. Theoretically there is no model restrictions for the current analysis. The technique
is �exible and may be applied to general time series. We looked at the reconstruction and
forecast algorithms for two cases, univariate and multivariate.

The main idea of SSA is to employ a time series in a multidimensional form as a
trajectory matrix, which makes it possible to treat the self-covariance in the structure of
the time series through spectral analysis. Speci�cally, by choosing parts of the spectral
decomposition of the matrix we then reconstruct a partial one-dimensional time series.

We have introduced the SSA and MSSA reconstructions as linear convolution �lter,
which later are required for the stability analysis we discuss in Chapter 5.

We have also described forecast algorithms for univariate and bivariate cases. The key
idea of the forecast in terms of SSA/MSSA is to minimize the distance between the forecast
value and the subspace, spanned by eigenvectors obtained from the original trajectory
matrix of one or two time series, which are involved in reconstruction. For the bivariate
forecast MSSA algorithm we considered two cases: MSSA+ forecast LRF if future values
of the support series are know and standard MSSA LRF otherwise.
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2. GRANGER CAUSALITY COHERENCE

One of the most known and widely used concepts of causality in time series analysis and
econometrics is the concept which was introduced by C.W.J. Granger [15]. However,
this concept was de�ned and developed for time series corresponding to the properties of
stationary autoregressive model.

Before introducing the concept itself we �rst need to describe the class of autoregressive
processes and study its main properties. Also, looking ahead, we need the formal descrip-
tion of autoregressive processes to be able to compare them with the time series models
obtained using (M)SSA.

2.1 The autoregressive model

In this section we consider discrete-time stochastic processes which are stationary in the
wide sense.

The stochastic process Xt is called strictly stationary if its cumulative distribution
function (FX) for (k + 1) consecutive times is not dependent on shift in time, for all
k ∈ N0:

FX(Xt, ...Xt+k) = FX(Xt+τ , ...Xt+k+τ ), τ ∈ Z. (2.1)

It is called weakly stationary or stationary in the wide sense if its expectation and variance
are constant and �nite, and the covariance cov(Xt, Xt+τ ) does not depend on t, for any
τ ∈ N, i.e.

1. EXt <∞,

2. σ2
Xt
<∞,

3. cov[XtXt+τ ] does not depend on time t for any τ .

The process X is denoted autoregressive moving average (ARMA(p,q)) process with mean
zero if (Xt) is stationary with mean EXt = 0 and can be written as

Xt − α1Xt−1 − ...− αpXt−p = εt + β1εt−1 + ...+ βqεt−q, (2.2)

where αi, βi are the parameters of the model and εt is i.i.d. white noise with mean zero and
common variance σ2

ε . More generally, Xt is an ARMA(p,q) process with mean EXt = m
if (Xt −m) is an ARMA(p,q) process with mean zero.

The autoregressive (AR) process is a special case of an ARMA(p,q) process describing
a stochastic linear dependence between present and past values of the same time series.



The autoregressive process of order p, AR(p), is ARMA(p,0), i.e. (2.2) simpli�es to

Xt − α1Xt−1 − ...− αpXt−p = εt. (2.3)

The moving average process of order q, MA(q), is ARMA(0,q) process, i.e. (2.2) simpli�es
to

Xt = εt + β1εt−1 + ...+ βqεt−q. (2.4)

In particular, the in�nite moving average process, MA(∞) is de�ned as

Xt =

∞∑
k=0

βtεt−k. (2.5)

Lemma 2.1.1. The MA(∞) process (2.5) is stationary if its coe�cients are absolutely
summable

∞∑
i=1

| βi |<∞

[19, p.69-70]

Proof. The process Xt =
∑∞

j=1 βjεt−j is stationary in the wide sense if:

1. The expectation is �nite

EXt =

∞∑
j=1

Eβjεt−j =

∞∑
j=1

βj Eεt−j︸ ︷︷ ︸
=0

⇒ EXt = 0, (2.6)

2. since
∑∞

i=1 | βi |< ∞, there ∃N :| βj |< 1 for j ≥ N ⇒ β2
j <| βj |, therefore, by

comparison test,
∑∞

i=1 β
2
i <∞.

Hence, the variance is �nite

σ2
X =

∞∑
j=1

β2
j <∞. (2.7)

3. The autocovariance function of Xt is independent of t

E[XtXt−τ ] = E[
∑∞

j=1 βjεt−j
∑∞

k=1 βkεt−τ−k]

= E[
∑∞

l=1

∑l
m=1 βmεt−mβl+1−mεt−τ−l−1+m]

=
∑∞

l=1

∑l
m=1 βmβl+1−mE[εt−mεt−τ−l−1+m]

=
∑∞

l=1

∑l
m=1 βmβl+1−m σ2

ε δ2m,τ+l+1,

(2.8)

where E[εt−m εt−τ−l−1+m] = 0, unless t−m = t−τ− l−1+m⇒ the autocovariance
function is independent on t.
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From above we conclude that MA(∞) is stationary.

Using the shift operator S de�ned in (1.12), we can formally rewrite (2.3) as

Xt − α1S
−1Xt − ...− αpS−pXt = εt (2.9)

or equivalently

(1− α1S
−1 − ...− αpS−p)Xt = εt (2.10)

For the purposes of this section only, we work in the Hilbert space `2(Z) = {Xt(t∈Z) :∑
t∈Z
|Xt|2 <∞}. The operator S is a bounded operator on this space. LetD =

∑p
j=1 αjS

−j , s.t.

(1−D)Xt = εt (2.11)

The operator D is a linear operator on Hilbert space with the characteristic polynomial

1− α1z − α2z
2 − ...− αpzp. (2.12)

The roots of this characteristic polynomial are the eigenvalues πi(i ∈ {1, ..., p}) of the
operator D.

If (1−D)−1 exists, it can be formally expressed as Neumann series

(1−D)−1 =
∞∑
j=0

Dj =
∞∑
j=0

(α1S
−1 + α2S

−2 + ...+ αpS
−p) =

= 1 + α1S
−1 + α2S

−2 + ...+ αpS
−p + (α1S

−1 + α2S
−2 + ...+ αpS

−p)2 + ...

(2.13)

This gives rise to a power series

(1−D)−1 = 1 + β̂1S
−1 + β̂2S

−2 + β̂3S
−3 + ...+ β̂pS

−p + .... =

∞∑
j=0

β̂jS
−j

(2.14)

where we de�ne β̂0 = 1, and (2.11) can be formally rewritten as

Xt = (1−D)−1εt. (2.15)

From (2.15) and (2.14), Xt is a MA(∞) process,

Xt =
∞∑
j=0

β̂jεt−j . (2.16)

Assume that the hypothesis of the Lemma 2.1.1 is satis�ed, i.e.

∞∑
i=0

| β̂i |<∞. (2.17)
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Then we can conclude that the process (2.16) is stationary.
Now under the assumption that the process (2.16) is stationary and assumption that

we are working in the Hilbert space described above, using the triangle inequality and
knowing that the operator norm of the shift operator is ‖ S−i ‖= 1, we obtain

‖
m∑
i=k

β̂iS
−i ‖≤

m∑
i=k

| β̂i |‖ S−i ‖=
m∑
i=k

| β̂i | −→
k,m→∞

0 (2.18)

which shows that the series (2.14) is norm convergent.
As the process (2.16) is stationary, which is equivalent to the stationarity of the AR

process (2.9), then cov[XtXt−τ ] does not depend on t ∀τ . Multiplying (2.3) by Xt−τ and
taking the expectation, we get

E[XtXt−τ ]− E[α1Xt−1Xt−τ ]− ...− E[αpXt−pXt−τ ] = E[εtXt−τ ] (2.19)

where

E[εtXt−τ ] =

∞∑
j=1

Eβ̂jεt−τ−jεt = 0, for all k ∈ Z0 (2.20)

so

E[XtXt−τ ]− α1E[Xt−1Xt−τ ]− ...− E[Xt−pXt−τ ] = 0. (2.21)

Now assuming that Xt is stationary, we get

E[XtXt−τ ]− α1E[XtXt−τ+1]− ...− E[XtXt−τ+p] = 0, (2.22)

or equivalently

R(τ) = α1R(τ − 1) + ...+ αpR(τ − p), (2.23)

where R(τ) = E[XtXt−τ ] is the autocovariance function.

Because σ2
Xt

is constant, it follows that the autocorrelation function ρ(τ) = R(τ)
σ2
X

satis�es

the recurrence.

ρ(τ) = α1ρ(τ − 1) + ...+ αpρ(τ − p) (2.24)

is the autocorrelation function. The di�erence equation (2.24) for the autocorrelation
function has the general solution

ρ(τ) = A1π
|τ |
1 + ...+Apπ

|τ |
p (τ ∈ Z), (2.25)

where πi are the roots of the characteristic polynomial

zp − α1z
p−1 − ...− αp−1z − αp = 0, (2.26)

see [4, A4.1]. The coe�cients Ai in (2.26) are arbitrary constants for the autocorrelation
function of a particular solution of (2.26), such that

∑
iAi = 1, which provides ρ(0) = 1.
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Proposition 2.1.2. The roots of characteristic polynomial of (2.24) are all in the unit
circle if and only if ‖ D ‖< 1.

Proof. The linear normal operator D has the same characteristic polynomial as (2.26), πi
are its eigenvalues.

To show that the operator D is normal one needs to show that DD∗ = D∗D, where
D∗ is an adjoint of D.

D∗ = (α1S
−1 + α2S

−2 + ...+ αpS
−p)∗ = α1(S−1)∗ + α2(S−2)∗ + ...+ αp(S

−p)∗ (2.27)

and (S−j)∗ = Sj , because S−j is a unitary operator. The equation (2.27) can be rewritten
as

D∗ = α1S + α2S
2 + ...+ αpS

p, (2.28)

and then

DD∗ =

p∑
j=1

αjS
−j

p∑
k=1

αkS
k =

p∑
k=1

p∑
j=1

αjαkS
−jSk =

p∑
k=1

p∑
j=1

αjαkS
kS−j = D∗D. (2.29)

Since the D operator is normal, its norm is equal to its spectral radius [22, I(6.44)]

‖ D ‖= max
i∈{1,...,p}

| πi | . (2.30)

If all πi are inside the unit circle, then the norm ‖ D ‖= max | πi |< 1.

Same results were obtained in a di�erent form in [4, p.51-52].

Remark If roots of the characteristic polynomial (2.12) are less than one, then ‖ D ‖< 1,
which provides the existence of the inverse (1 − D)−1 and lim

k→∞
ρ(k) = 0. Additionally,

‖ D ‖< 1 implies the convergence of Neumann series (2.13)

To sum up the above discussion, the AR(p) process can be rewritten as an MA(∞)
process with absolutely summable coe�cients, which ensures its stationarity.

2.2 Granger causality

The causality concept in general is very intuitive and small changes in the de�nition may
cause bigger changes in the way we understand it and approach it. It is necessary to refer
to the origins of the concept: the de�nition of causality, its proposed measures and tests
to verify such measures.

As it was mentioned in the introduction to this chapter, Granger's causality concept was
more or less fully described in Granger's paper [15]. There he gave the main de�nitions of
causal relations for stationary stochastic processes, which are now widely used in statistics
and econometrics. In this paper, he distinguishes several causal relationships: a simple
causal model, instantaneous causality and a feedback model. And also proposed ways of
detecting and measuring causality, if one occurs.
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De�nition The intuitive de�nition of Simple Causality states the following: suppose we
have two stationary stochastic processes FN and GN . It is said that GN is causing FN
(GN  FN ) if FN is better predictable with all available past information, rather than
with all available past information excluding the past and present values of GN [15].

Feedback occurs if simple causality appears in both directions (FN ! GN ).

De�nition Instantaneous Causality occurs when the time series FN is better predicted if
the present value of GN is included in the forecasting process [15].

The general model used for instantaneous causality is a stationary bi-variate (vector)
autoregressive (VAR) model of order m:

Xt + b0Yt =
m∑
j=1

ajXt−j +
m∑
j=1

bjYt−j + εt

Yt + c0Xt =

m∑
j=1

cjXt−j +

m∑
j=1

djYt−j + ξt

(2.31)

which can be written as

Xt =

m∑
j=1

ajXt−j +

m∑
j=0

bjYt−j + εt

Yt =
m∑
j=0

cjXt−j +
m∑
j=1

djYt−j + ξt

(2.32)

Here Xt and Yt are some multidimensional stationary time series, both with mean zero,
and εt, ξt are some uncorrelated white noise.

De�nition White noise εt is a strictly stationary stochastic process with mean zero and
variance σ2

ε , and with autocovariance function

E[εkεk+τ ] =

{
σ2
ε if τ = 0

0, otherwise
(2.33)

where εi are independent and identically distributed (i.i.d.) and uncorrelated random
variables.

For the simple causality model, the instantaneous terms are removed: b0 = c0 = 0.

Lemma 2.2.1. Let (2.32) be a stationary VAR model with b0 = c0 = 0. Then, without
loss of generality, one can subtracts mean to get a stationary process with mean zero

Proof. Calculating the expectation for the simple causality model, we �nd

EXt = E

m∑
j=1

ajXt−j + E

m∑
j=1

bjYt−j + Eεt︸︷︷︸
=0

EYt = E
m∑
j=1

cjXt−j + E
m∑
j=1

djYt−j + Eξt︸︷︷︸
=0

.

(2.34)
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Thus

EXt =
m∑
j=1

ajEXt−j +
m∑
j=1

bjEYt−j

EYt =
m∑
j=1

cjEXt−j +
m∑
j=1

djEYt−j

(2.35)

and de�ning X̃t = EXt and Ỹt = EYt, we get two non-random deterministic

X̃t =
m∑
j=1

ajX̃t−j +

m∑
j=1

bj Ỹt−j

Ỹt =
m∑
j=1

cjX̃t−j +
m∑
j=1

dj Ỹt−j

(2.36)

If we consider the di�erences F = X − X̃, G = Y − Ỹ , then their expectations are zero,
and we can show that they also satisfy the model (2.31):

Xt − EXt =
m∑
j=1

ajXt−j +
m∑
j=1

bjYt−j + εt −
m∑
j=1

ajEXt−j +
m∑
j=1

bjEYt−j

Yt − EYt =

m∑
j=1

cjXt−j +

m∑
j=1

djYt−j + ξt −
m∑
j=1

cjEXt−j +

m∑
j=1

djEYt−j

(2.37)

or

Xt − EXt =
m∑
j=1

aj(Xt−j − EXt−j) +
m∑
j=1

bj(Yt−j − EYt−j) + εt

Yt − EYt =

m∑
j=1

cj(Xt−j − EXt−j) +

m∑
j=1

dj(Yt−j − EYt−j) + ξt

(2.38)

which is equivalent to

Ft =
m∑
j=1

ajFt−j +
m∑
j=1

bjGt−j + εt

Gt =

m∑
j=1

cjFt−j +

m∑
j=1

djGt−j + ξt.

(2.39)

Obtained model (2.39) is identical to VAR model (2.31) with b0 = c0 = 0 (simple
causality case). This shows that when one uses the VAR model, without loss of generality
one can subtract mean and assume that the processes have mean zero.

Stationarity and zero mean imply that we can use the Cramer representation for Ft
(and analogously for Gt) [15]:

Ft =

∫ π

−π
eitωdZF (ω) (2.40)
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where the integrator ZF is a complex stochastic process with uncorrelated increments [15],
[30, p.558].

Proposition 2.2.2. Let (2.39) be a stationary VAR process with mean zero. Then the
power spectra of processes F and G are

fF (ω) = 1
2π|δ|2

(
| 1− d |2 σ2

ε+ | b |2 σ2
ξ

)
fG(ω) = 1

2π|δ|2

(
| c |2 σ2

ε+ | 1− a |2 σ2
ξ

) (2.41)

and the cross spectrum is

fFG(ω) =
1

2π | δ |2
(1− d(ω))c(ω)σ2

ε +
1

2π | δ |2
(1− a(ω))b(ω)σ2

ξ (2.42)

Remark This proposition is fully based on the Granger's paper [15].

Proof. Knowing that processes Ft and Gt have Cramer representation, using the (2.40) we
have

Ft−j =

∫ π

−π
ei(t−j)ωdZF (ω) (2.43)

so that the sum
∑m

j=1 ajFt−j can be rewritten as∑m
j=1 ajFt−j =

∑m
j=1 aj

∫ π
−π e

i(t−j)ωdZF (ω)

=
∫ π
−π e

itω
∑m

j=1 aj(e
−iω)jdZF (ω)

=
∫ π
−π e

itωa(eiω)dZF (ω)

(2.44)

where we de�ne a(z) =
∑m

j=1 ajz
j (z ∈ C).

Thus, the simple causal model (2.38) can be expressed in the following manner∫ π
−π e

itωdZF (ω) =
∫ π
−π ae

itω(e−iω)dZF (ω) +
∫ π
−π be

itω(e−iω)dZG(ω) +
∫ π
−π e

itωdZε(ω)∫ π
−π e

itωdZG(ω) =
∫ π
−π ce

itω(e−iω)dZF (ω) +
∫ π
−π de

itω(e−iω)dZG(ω) +
∫ π
−π e

itωdZξ(ω)

(2.45)

where ZG, Zε, Zξ are stochastic integrators analogous to ZF .
Now, bringing all except the noise components to the left hand side and rewriting the

set of equations in a matrix form, we get∫ π

−π
eitωA

[
dZF (ω)
dZG(ω)

]
=

∫ π

−π
eitω

[
dZε(ω)
dZξ(ω)

]
for all t ∈ Z (2.46)

where

A =

[
(1− a(e−iω)) −b(e−iω)
−c(e−iω) (1− d(e−iω))

]
. (2.47)
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If A is invertible, then we conclude[
dZF (ω)
dZG(ω)

]
= A−1

[
dZε(ω)
dZξ(ω)

]
(2.48)

for almost all ω ∈ [−π, π].
The power spectral density functions fF and fG of the series F and G respectively can

be obtained from the expectation of (2.48).
On one hand, the expectation is

E

 dZF (ω)

dZG(ω)

 [ dZF (λ) dZG(λ)
]

=

fF (ω)dω fFG(ω)dω

fGF (ω) fG(ω)dω

 (2.49)

where fFG and fGF correspond to the cross-spectrum.
And on the other hand, using the right hand side of the equation (2.48), the expectation

is

E

 dZF (ω)

dZG(ω)

 [ dZF (λ) dZG(λ)
]

= A−1E

 dZε(ω)

dZξ(ω)

 [ dZε(λ) dZξ(λ)
]

(A−1)T

= A−1

E[dZε(ω)dZε(λ)] E[dZε(ω)dZξ(λ)]

E[dZξ(ω)dZε(λ)] E[dZξ(ω)dZξ(λ)]

 (A−1)T

(2.50)

For ω = λ we express spectral density functions fξ and fε of ξ and ε respectively, using
the fact that ξ and ε are uncorrelated

E[dZε(ω)dZε(ω)] = fε(ω)dω =
σ2
ε

2π
dω

E[dZξ(ω)dZξ(ω)] = fξ(ω)dω =
σ2
ξ

2π
dω

E[dZε(ω)dZξ(ω)] = E[dZε(ω)dZξ(ω)] = 0

(2.51)

and for ω 6= λ all terms vanish:

E[dZεdZε] = E[dZξdZξ] = E[dZεdZξ] = E[dZεdZξ] = 0 (2.52)

The inverse of the matrix A is

A−1 =
1

δ

(1− d(e−iω)) b(e−iω)

c(e−iω) (1− a(e−iω))

 (2.53)
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where

δ = detA = (1− d(e−iω))(1− a(e−iω))− b(e−iω)c(e−iω). (2.54)

Then the (2.50) for ω = λ becomes

A−1

[
σ2
ε

2πdω 0

0
σ2
ξ

2πdω

]
(A−1)T =

1
|δ|2


(
| 1− d |2 σ2

ε
2πdω+ | b |2 σ2

ξ

2πdω

) (
(1− d)cσ

2
ε

2πdω + (1− a)b
σ2
ξ

2πdω

)
(
c(1− d)σ

2
ε

2πdω + (1− a)b
σ2
ξ

2πdω

) (
| c |2 σ2

ε
2πdω+ | 1− a |2 σ2

ξ

2πdω

)


(2.55)

Therefore the power spectra of F and G are

fF (ω) = 1
2π|δ|2

(
| 1− d |2 σ2

ε+ | b |2 σ2
ξ

)
fG(ω) = 1

2π|δ|2

(
| c |2 σ2

ε+ | 1− a |2 σ2
ξ

) (2.56)

respectively. As it was mentioned before, fFG(ω) corresponds to the cross-spectrum, which
is of interest for the question of causality,

fFG(ω) = 1
2π|δ|2

(
(1− d(ω))c(ω)σ2

ε + (1− a(ω))b(ω)σ2
ξ

)
= 1

2π|δ|2 (1− d(ω))c(ω)σ2
ε + 1

2π|δ|2 (1− a(ω))b(ω)σ2
ξ

(2.57)

The power spectrum fFG(ω) can be expressed as a sum of two components, one asso-
ciated with F via ε and another one with G via ξ:

fFG = C1(ω) + C2(ω) (2.58)

with

C1(ω) =
1

2π | δ |2
(

(1− d(ω))c(ω)
)
σ2
ε (2.59)

and

C2(ω) =
1

2π | δ |2
(

(1− a(ω))b(ω)
)
σ2
ξ (2.60)

If the coe�cients bi in model (2.31) are zero, then b(ω) = 0 consequently and C2(ω)
vanishes, therefore fFG = C1(ω). This is interpreted as time series G not causing F .
Similarly, if ci in (2.31) are zero, then fFG = C2(ω), and therefore G is not causing F .
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In view of this, Granger suggested the following measure for causality, which he de�ned
as causality coherence [15]

CFG(ω) =
| C1(ω) |2

fF (ω)fG(ω)
(2.61)

CGF (ω) =
| C2(ω) |2

fF (ω)fG(ω)
(2.62)

where CFG measures the strength of causality of F upon G (F  G) and CGF measures
the strength of causality of G F .

Denominators in (2.61) and (2.62) are added for normalization. Indeed, as

fF (ω)fG(ω) =
1

4π2 | λ |4
(
| 1− d(ω) |2 σ2

ε+ | b(ω) |2 σ2
ξ

) (
| c(ω) |2 σ2

ε+ | 1− a(ω) |2 σ2
ξ

)
,

(2.63)

we see that

fF (ω)fG(ω) ≥ | 1− d(ω) |2| c(ω) |2 σ4
ε

4π2 | λ |4
(2.64)

so

fF (ω)fG(ω) > 0 (2.65)

the inequality is strict, as fF (ω)fG(ω) = 0 only if σ2
ε = σ2

ξ = 0 and in terms of the
autoregressive model, that means that there is no noise to develop the model and therefore,
the model becomes deterministic.

Knowing that | C1(ω) |2≥ 0, we �nd

0 ≤ CFG ≤ |1−d|
2|c|2σ4

ε
|1−d|2|c|2σ4

ε
= 1 (2.66)

Thus, the measure is normalized s.t. 0 ≤ CFG ≤ 1.
By looking at (2.31) one can see that noise in this type of model plays the crucial role

in its development, as the future values contain the randomness of the past.
The expectation value of the process can be subtracted as in equations (2.37) and (2.38);

for a VAR model, the structure of the model is encoded in the noise pattern. This explains
why the noise variances σ2

ε and σ2
ξ enter the spectra (2.56) and (2.57) and measures for

causality (2.61) and (2.62).

2.3 Granger causality tests

There are several statistical tests for Granger causality estimation, which are widely used
in econometrics. The most common of them are: the Granger-Wald test (1969), the Sims
test (1972) and its modi�cations (Geweke, Meese, Dent, 1982) and the Granger-Sargent
test (1976) [18].
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Consider the following models:

Xt =
L∑
j=1

ajXt−j +
L∑
j=0

bjYt−j + εt (2.67)

and

Xt =

L∑
j=1

ãjXt−j + ε̃t (2.68)

Here (2.67) is a AR model of the time series Xt based on the past values of time series
Xt and Yt, and (2.68) is a AR model based only on the past values of Xt. Here L is a
time lag of last L values from the time series that being used for the regression. To obtain
coe�cients aj , bj and ãj , one would need to �t the real time series X to the above ARMA
model. For this purpose there exist several methods, such as least-square and maximum
likelihood methods.

For all mentioned tests and their variations in this section, we assume under the null
hypothesis that the main series (Xt) is not Granger-caused by the support series (Yt). In
other words, H0 : bj = 0 ∀j ∈ {1, ..., L}. To distinguish between the two models, we call
(2.68), the constrained when bi = 0 and (2.67) the unconstrained.

All tests are based on comparing the variance σ2ε of the constrained residual error εt
with the variance σ2

ε̃ of the unconstrained residual error ε̃t. For example, the Granger test
statistic or Granger-Sargent statistic [18] is

GS =

∑L
i=1 ε̃

2
i −

∑L
i=1 ε

2
i

L
· (N − (2L+ 2))∑L

i=1 ε
2
i

∼
χ2
L

L
under H0 (2.69)

here χ2
L stands for chi squared distribution with L degrees of freedom.

There are other statistics, which are calculated in a similar manner, but normalized
di�erently (for example, Sims test [32] and its modi�cations [18]).

The Granger-Wald test is the adaptation of the Wald test to estimating Granger
causality. The Granger-Wald statistic is de�ned as:

GW = N
σ̂2
ε̃ − σ̂

2
ε

σ̂2
ε

∼ χ2
L under H0 (2.70)

where again σ̂ε and σ̂ε̃ are the estimators of variances of the noise εt and ε̃t respectively.
The equation for GW (2.70) can be rewritten as

GW = N

(
σ̂2
ε̃

σ̂2
ε

− 1

)
(2.71)

which points to the main similarity with the F-test, since
σ̂2
ε̃
σ̂2
ε
is of the form of an F-

statistic, as in the F-test, the statistics is based on the ratio between error variances (see
the description of F-test in section 3.3).
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Tab. 2.1: Granger test p-values with null hypothesis s.s. 6 m.s.

time lag L case (1) case (2) case (3)

2 0 0 0.014
3 0 0 0.006
7 0 0 0.03
10 0 0 0.12
50 5.5 · 10−15 7.2 · 10−5 0.43

Now recalling the Granger's measure for causality, which is calculated from the cross
spectrum of analyzed process (2.62), one would not see obvious connection between the
F-test and the calculation of causality coherence. However, Granger's causality tests are
all derived from the F-test, based on the idea of error comparison.

The R project for statistical computing (package MSBVAR) provides us with the com-
mon Granger causality test (granger.test). This test is used for "bivariate Granger causality
testing for multiple time series". The null hypothesis is that the past values of some time
series Y do not improve the prediction of the time series X. As a result of the test, we get
two regressions of Xt based on lag time L: one is based on the L past values of Xt, and
another one is based on L past values of Xt and L past values Yt. By means of F-test, it is
determined whether the coe�cients of the past values of Y are jointly zero [5]. If we reject
the null hypothesis, we support the presence of Granger causality between time series.

The description of Granger causality test provided in R documentation [5], suggests
that as a test they have chosen straightforward F-test, described here in section 3.3.

To try out Granger causality test described above we generated several di�erent sets
of time series. Note that generated series are not all stationary AR processes. The reason
to choose some time series, which di�er from AR processes, is to see how the test is
implemented if the data is out of the common class of usage. In fact, the Granger test
is often used for the time series which cannot be considered AR processes, moreover,
stationary AR processes.

However, we start with AR processes. Firstly, using MATLAB command randn, we
generated normally distributed i.i.d. pseudo numbers, i.e. white noise εn ∼ N(0, 1) and
ξn ∼ N(0, 1), which correspond to the very common case of stationary AR processes.
Then we take two cases, which should pick up causality and one which should not. Let
n ∈ {1, ..., 200} and m = n− 1.

1. main series (m.s.) sin(εm) + 10−10ξm (is zero for n = 1 ), support series (s.s.) εn;

2. m.s. (εm + ξm) (is zero for n = 1), s.s. ξn;

3. m.s. εn, s.s. ξn.

We would expect causality in (1) and (2). Although processes in (3) come from the same
distribution, we still do not expect any causality, as the processes are still di�erent.

All p-values in Table (2.1) for the time lag L < 10 reject the null hypothesis that the
support time series do not cause main series (p-value≤ 0.05 ⇒ s.s.  m.s. ). Looking at
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Tab. 2.2: Granger test p-values with null hypothesis m.s. 6 s.s.

time lag L case (1) case (2) case (3)

2 0.46 0.98 0.99
3 0.15 0.96 0.99
7 0.44 0.87 0.9
10 0.59 0.91 0.95
50 0.77 0.81 0.92

Tab. 2.3: Granger test p-values with null hypothesis y(1) 6 x(1)

time lag L x(1)(0.1), y(1)(1) x(1)(0.01), y(1)(1) x(1)(0.1), y(1)(2)

10 3.03 · 10−10 2.62 · 10−10 7.82 · 10−10

25 0.417 0.228 0.488
50 0.76 0.478 0.664

the causality in di�erent direction, the null hypothesis is supported by p-values in Table 2.2
for all three cases. However, one would expect absence of causality between two processes
described in case (3). And it seems that the smaller is the chosen time lag, the more
di�cult it is for the test to pick up non-causal relationship. But if the time lag L is large
enough, then p-values support null hypothesis both ways (see Tables 2.1,2.2, p-values for
L = 10 and 50). The random variables described in case three were generated randomly and
independently one from another and, therefore, there should be no connection whatsoever.

The next set of examples are represented by series which are not in the class of sta-
tionary AR processes. Here are the examples of main series:

x
(1)
n (σ2) = sin(πnω) + σεn εn ∼WN(0, 1),

x
(2)
n = sin(3πnω),

x
(3)
n (σ2) = sin(πnω) + sin(3πnω) + σεn εn ∼WN(0, 1)

(2.72)

where WN(µ, σ2) stands for normally distributed white noise with mean µ and variance
σ2, and support series

y
(1)
n (λ) = λsin(πnω),

y
(2)
n = eπnω,

(2.73)

where n ∈ {1, ..., 200}, ω = 0.05, σ2 ∈ {0.1, 0.01} and λ ∈ {0.1, 1, 2, 10}.
The three tables related to this subsection, Tables 2.3 - 2.5, contain p-values of the

Granger test (obtained with R) with the null hypothesis that the past L values of y do not
help in predicting the value of x (y(i) 6 x(j)).

All three Tables 2.3 - 2.5 have the same consistent pattern: the bigger the time lag
L, the bigger is the p-value. The values in Table 2.3 for L = 10 are very close to zero.
Therefore, based on these values, we are rejecting the null hypothesis and conclude that
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Tab. 2.4: Granger test p-values with null hypothesis y 6 x

L x(2), y(1)(1) x(1)(0), y(2)

10 0.661 0.649
25 0.371 0.118
50 0.52 0.954

Tab. 2.5: Granger test p-values with null hypothesis y(1) 6 x(3)

L x(3)(0.1), y(1)(1) x(3)(0.1), y(1)(0.1) x(3)(0.1), y(1)(10)

10 3.33 · 10−16 3.33 · 10−16 3.33 · 10−16

25 0.273 0.273 0.273
50 0.482 0.482 0.482

y(1)  x(1). However, if we are taking bigger lag L, based on the results in Table 2.3, we
cannot reject the null hypothesis. Thus, no convincing conclusions can be achieved.

Nevertheless, the Granger test shows a convincing result for the counter example (see
Table 2.4, last column), where we do not expect any causality. All p-values here support
the null hypothesis. And in this case there is no monotonic dependence between p-values
and the time lag: p-value for time lag L = 25 (p25) is smaller then p-value for L = 10
(p10), p-value for time lag 10 is smaller then p-value for L = 50 (p50) (see Table 2.4, second
column).

In Table 2.5 p-values are di�erent, because they were obtained from di�erent runs. As
for p-values in Table 2.6, they were obtained from the same run (from identical generated
time series) and the only parameter which changes is the constant λ in the support series.

In the next set of examples, the main series xn di�ers from the support series yn only
by a �xed shift ν = 1, 2, 3 and the addition of noise.

xn(0.1) = sin(π(n− τ)ω) + σεn τ ∈ {1, 2, 3},
yn(1) = sin(πnω),

(2.74)

in other words, we know that signal yn is causing signal xn. Table 2.6 contains Granger
test p-values for (2.74) generated time series.

Example (2.74), similarly to previous examples, shows the same pattern for p-values,
which seem to be dependent on the chosen time lag: the bigger the lag, the bigger is the

Tab. 2.6: Granger test p-values (chi square p-values) with null hypothesis y(1) 6 x(0.1) for the
example (2.74) with three di�erent shifts, �rst trial

H
HHH

HHL
τ

1 2 3

10 1.94 · 10−09 (1.73 · 10−11) 9.49 · 10−09 (1.62 · 10−10) 9.46 · 10−11 (2.14 · 10−13)
25 0.001(9.54 · 10−05) 0.44 (0.427) 0.049 (0.030)
50 0.736 (0.790) 0.558 (0.554) 0.599 (0.612)

34



Tab. 2.7: Granger test p-values with null hypothesis y(1) 6 x(0.1) for the example (2.74) with
three di�erent shifts, check trial

HH
HHHHL

τ
1 2 3

10 1.66 · 10−10 1.64 · 10−11 2.53 · 10−09

25 0.057 0.071 0.0005
50 0.282 0.801 0.199

Tab. 2.8: Granger test p-values with null hypothesis z(0.1) 6 x(1)

L x(1)(0), z(0.1) x(1)(0.1), z(0.1) x(1)(0.01), z(0.1)

10 0.633 0.0002 0.583
25 0.471 0.774 0.815
50 0.893 0.842 0.626

p-value. Also, judging by the values in Table 2.7, one can notice that p-values are sensitive
not only to the lag time L, but to the size of the shift τ as well.

Recalling two measures C1 (2.59) and C2 (2.60), one can see that if the noise ε in main
series is absent, then C1 = 0 and if the noise ξ is absent in the support series, then C2 = 0
and hence, causality coherences CFG = 0 (2.61, F 6 G) and CGF = 0 (2.62, G 6 F ).
Suppose we have

zn(σ2) = y(1)
n (1) + σξ, ξ ∼WN(0, 1) (2.75)

with σ2 = 0.1
Table 2.8 illustrates that if we have two identical signal components in the main and

support series and change the noise level in the main series, then by Granger test there
is no clear indication of causal relationship, as the null hypothesis is rejected just for
x(1)(0.1), z(0.1) with time lag L = 10. In fact, this example shows that the identity of
the series does not mean causality in Granger's sense. From Granger's point of view,
the causality may occur only between di�erent time series with no redundant informa-
tion. For example, if there we have some data measured in kilograms and the same data,
measured in tonnes, there is no point to include both time series in one analysis [16, p.
330, Axiom B]. However, it is not always clear what should be considered identical, and
what redundant information actually means in this case. For example, if two time series
have exactly the same periodic but di�erent noise component, it is not clear if the periodic
component should be treated as an identical part and be excluded from the analysis or not.

To sum up all the observations, we see that Granger test in general is a very sensitive
tool. It seems to be very dependent on the chosen time lag and is sensitive to the shift
in the series. Even in the case of obvious causal relation between series, the test might
mislead the tester. However, looking at the p-values in Tables 2.5 and 2.3, the Granger
test behaves quite consistently under the change of multiplier of the causing series.
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3. STATISTICAL TESTS FOR SSA/MSSA CAUSALITY

In the �rst two chapters we described two essential subjects, on which this work is based.
As was discussed in Chapter 2, Granger's causality test by means of the F-test and some
slight variations have been used to estimate causality for stationary autoregressive models.
There also have been attempts to estimate causality for SSA based model (see [9], [20],
[25]).

In this chapter we are applying some basic tools, statistical tests, which can be used for
the purpose of causality detection. Here we use a wider de�nition of causality: time series
g causes time series f if the additional information that we get from series g improves the
forecast of the series f .

This chapter contains several section. Each section gives a description of the statistical
test, that could be used for forecast estimation and hence be useful to determine causality.
Each statistical test is validated by several generated data examples. We �rst study how
the test performs under the null hypothesis and/or if the null hypothesis is likely to be
rejected. Afterwards we look at several cases when the support series replicates the signal
of the main series fully or partially and also we study the case when the signal in the
support series has a delay in comparison to the main series.

Note that we are validating following tests only for one forecast point at a time as the
aim of this work is to build a causality measure analogous to Granger's measure, which
consider one forecast point at a time [15].

3.1 Data and basic test setup

To �nd and validate a suitable criterion, we need to analyze some simple predictable
data. For these purposes we choose a set of time series, consisting of data modeled as
combinations of a signal and white noise. As a signal, we choose a sine or a combination
of sines. This gives a signal series of periodic (or quasi periodic) structure, which can
be well represented by only few SSA eigentriples. In this case we know what to expect
from the forecast and we know its structure, so an improvement of the forecast using some
additional information will be easily recognizable.

We consider two cases of the main series (F ):

fn = sin(πnω) + σεn n = 1, ..., N, (3.1)

fn = sin(πnω) + sin(3πnω) + σεn n = 1, ..., N, (3.2)



and two cases of the support series (G):

gn = sin(πnω + τ) + σζn n = 1, ..., N, (3.3)

gn = exp(πnω) n = 1, ..., N, (3.4)

where εn, ζn ∼ N(0, σ2) are i.i.d. noise. We are going to look at the di�erent combinations
of main and support series described above.

The explanation of the choice of the support series is following. The time series (3.3)
has identical signal to the series (3.1) and corresponds to one part of the signal of the series
(3.2). Hence, one would expect feedback relationship (3.1)!(3.3) and causal relationship
respectively (3.3) (3.2). However, the time series (3.4) has completely di�erent structure
with (3.1)and (3.2) and therefore, we are expecting no causality at all.

The next essential moment of the test setup is to construct it in such a manner, that
it is possible to compare forecasts not only between each other, but also with some actual
values of the series. Of course, in real life it is not possible to do so, but for generated
series we are able to construct such a setup.

For simplicity we are going to use the notation f̂ , ĝ for both the reconstructed series
and the forecast of the series. This is reasonable as the reconstructed part of the series
presents the base for the linear recurrence formula.

We are going to look at the forecast of time series with di�erent types of signal as was
described above (see (3.1) - (3.4)). Noise for the time series F and G was generated within
MATLAB using the built-in pseudo-random randn command.

First we split both series into two parts. In the main series F = (f1, ..., fN+M ) we
distinguish two parts FR = (f1, ..., fN ) and FF = (fN+1, ..., fN+M ); similarly, the support
series G = (g1, ..., gN+M ) is split into GR = (g1, ..., gN ) and GF = (gN+1, ..., gN+M ), where
M is the number of forecast points. FF and GF are those parts of two given time series
F and G, which are used for comparing with a forecast (not forecast series themselves).
The �rst N points of both series are used for the reconstruction procedures: SSA, MSSA+,
MSSA. In fact, SSA procedure uses just FR (univariate case); MSSA+ uses FR, GR and
information known from GF part; whereas MSSA uses an equal amount of information
from both series, FR and GR only.

The SSA procedure starts from the series FR and produces a reconstructed series F̃R.
To forecast M points of the series, we use the linear recurrence formula obtained from
the SSA forecast algorithm (1.41), calculating point f̂N+1 from the (f̂N−L+2, ..., f̂N ) part
of the series F̃R. Generally, to forecast point f̂N+m we use (f̂N−L+m+1, ..., f̂N+m−1) in
formula (1.41), where m ∈ {1, ...,M}; here f̂i is the part of the reconstructed series for
i ∈ {1, ..., N} and previously forecasted values for i ∈ {N + 1, ..., N +M}.

For MSSA+ we take series FR and GR, applying the MSSA algorithm to obtain two
reconstructed series F̃R = (f̂1, ..., f̂N ) and G̃R = (ĝ1, ..., ĝN ). Here f̂N+m is obtained by
the MSSA+ linear recurrence formula (1.45). We take �rst (M − 1) points of the GF
part (g1, ..., gM−1) to get a valid comparison between three SSA-based procedures. For the
forecast we use f̂i from the reconstructed series for i ∈ {1, ..., N} and previously forecasted
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values for i ∈ {N + 1, ..., N + M}, ĝi from the reconstructed series for i ∈ {1, ..., N} and
actual gi values for i ∈ {N + 1, ..., N + M − 1}, so the expression for the f̂N+m is as
described in (1.45).

For MSSA we don't use the additional information in GF , i.e. by the obtaining recon-
structed series F̃R, G̃R by the MSSA algorithm, we use the MSSA forecast algorithm to
forecast values f̂i and ĝi for i ∈ {N + 1, ..., N +M − 1}. The values f̂N+m are calculated
using the linear recurrence formula (1.56), where m ∈ {1, ...,M}.

To see wider picture of the forecast behavior one can study its changing dynamic in
terms of di�erent parameters. These parameters can be divided in following groups: time
series parameters and procedure parameters. Time series parameters refer to properties
of the input series themselves, and cannot be controlled in case of real data. Procedure
parameters refer to choice made in the analysis and can always be controlled.

We study the following SSA/MSSA procedure parameters:

• window length L

• number of eigentriples Ir

• length of the forecast M

For our constructed test series, we also have control of the time series parameters:

• noise level σ2

• time delay τ in the support series

The choice of procedure parameters is shown in the order of their appearance in the proce-
dure. First, we choose the window length L, and run the �rst stage of the SSA algorithm.
On the second stage (grouping) we are choosing eigentriples Ir, which are going to be used
for the reconstruction. As we take them in order of decreasing singular values, the number
of �rst eigentriples, related to the biggest eigenvalues, is the usual choice for the eigentriple
parameter. After reconstruction, we can �nd the linear recurrence formula (LRF) for the
forecast. At this stage we are choosing the length M of the forecast we want to obtain.
We vary the sample size Ns to see whether and how quickly the applied tests converge.

By changing noise level σ2 and adding some time delay τ to the support series G one
can see the e�ect of changing these parameters.

The set of the scenarios was constructed so that it is possible to see the e�ect of all
parameters in di�erent combinations described above on the result of the forecast.

We de�ne a scenario as a procedure, repeated Ns times, performing SSA, MSSA+ and
MSSA forecast algorithms with chosen parameters. For each individual trial of the scenario
the noise of the main (and the support) series is regenerated. Thus, each scenario is based
on the principle of bootstrapping: as the noise is regenerated Ns times, the observations
we get for each forecast point can be considered independent.

For each scenario we obtain three sets of M distributions. Each set corresponds to
the forecast algorithm that was used; each distribution of the set corresponds to an mth

forecast point distribution (m ∈ {1, ...,M}).
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3.2 Simple causality criteria

The most straightforward comparison of forecasts, which can be used as a causality crite-
rion, is to look at the ratios of loss functions.

Theory
Loss functions in this case are functions assessing the forecast error. If these errors have

a random element arising from the noise in the main and support series, we run a number
Ns of trials to estimate the error distribution or some of its characteristics, especially the
variance.

We denote the forecast of jth point by

f̂
(i)
N+j (i ∈ {1, ..., Ns}, j ∈ {1, ...,M}),

the actual value, signal with noise, of the (N + j)th by

f
(i)
N+j (i ∈ {1, ..., Ns}, j ∈ {1, ...,M})

and the signal at the (N + j)th point by

fN+j,sig, (i ∈ {1, ..., Ns}, j ∈ {1, ...,M})| ∀ i, k ∈ Ns : f
(i)
N+j,sig = f

(k)
N+j,sig

Furthermore,

µN+j =
1

Ns

Ns∑
i=1

f
(i)
N+j

is the empirical mean of the (N + j)th point sample, which we take as an estimate for

the mean of its distribution. We use the general notation f
(i)
N+j,comp for the value used for

comparison at the ith trial, where comp designates its origin as signal value, actual value,
empirical mean or median.

For each trial the noise ε is regenerated as pseudo-random values, thus the trials can
be considered statistically independent. Therefore, values obtained for each forecast point
are i.i.d. random values. We consider the following loss functions

S
(1)
N+j =

∑Ns
i=1 (f̂

(i)
N+j − f

(i)
N+j,sig)

2

Ns
, (3.5)

S
(2)
N+j =

∑Ns
i=1 (f̂

(i)
N+j − f

(i)
N+j)

2

Ns
, and (3.6)

S
(3)
N+j =

∑Ns
i=1 (f̂

(i)
N+j − µN+j)

2

Ns
(3.7)

as measures of the forecast quality.
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S(1) is the measure for the accuracy of the forecast, where we test how close the forecast
value is to the signal at that point. S(2) measures the accuracy as well, but with respect to
the actual value (signal+noise) of the series at the point. S(3) is a measure of the stability
of the forecast.

With the help of these functions, the forecast can be analyzed from several points of
view: with respect to the actual (signal+noise) value of the time series, its signal and
the empirical mean of the distribution of the forecast point. In practice, comparing the
forecast with real data is not possible, because we don't know the actual future value of the
analyzed time series. Comparing the forecast with a signal value can be a complicated task.
In this case we know that the signal is just a sine wave, but for real data the extraction
of a signal is a problem. There is the residual correlation between noise and a signal, and
that is why it is di�cult to separate them. The most convenient comparison is with the
mean of the point distribution.

Clearly, a smaller value of S
(i)
N+j indicates a more accurate or stable forecast, respec-

tively.
As it was mentioned at the beginning of this section, the simple causality criteria is

the ratio of the loss functions. If S
(k)
SSA > S

(k)
MSSA (k = {1, 2, 3}) then MSSA is better,

otherwise worse or the same:
S
(k)
MSSA

S
(k)
SSA

< 1 MSSA improves upon SSA

S
(k)
MSSA

S
(k)
SSA

≥ 1 MSSA does not improve upon SSA
(3.8)

In fact, the ratio (3.8) with k = 3 corresponds to the F statistics of the F-test, which is
described in Section 3.3.

Practice
We start of with validating if loss functions ratios could be considered good criteria of

detecting the causality. And �rstly we look at their performance in case of null hypothesis
is true.

H0 hypothesis testing. We take time series FR (3.2) with the signal frequency ω = 0.046
to be of the length N = 200 and run the SSA procedure twice to obtain (N + 1)th

forecast pointNs times for each di�erent choice of time series and procedure parameters.
Then we choose time series parameters: the noise level to be σ2 = {0.01, 0.5, 1, 2};
due to the absence of the support series, there is no time delay τ . Moving on to
procedure parameters, we choose: window length to be L = {100, 50, 25}; �rst four
eigentriples for FR reconstruction; forecast only one point M = 1; the number of trials
Ns = {100, 200, ..., 500, 1000, 1500, ...3000}. Thus, for each sample size Ns we now have
12 scenarios (all possible combinations of the chosen window length L and the noise
level σ2).

The reconstruction of the time series is based on �rst four eigentriples, which corre-
spond to the signal sin (πnω) + sin (3πnω). We do the SSA analysis of series (3.2)
using Caterpillar software. The weight of �rst eigentriple varies from 13% to 15.6%
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Tab. 3.1: The loss function S(1) for the SSA procedure for sample sizes Ns = 100(3000)

.

H
HHH

HHσ2
L

100 50 25

1 0.10(0.11) 0.12 (0.11) 0.16 (0.16)
2 0.23 (0.24) 0.19 (0.22) 0.40 (0.32)
0.5 0.07 (0.05) 0.06 (0.06) 0.06 (0.09)
0.01 0.002 (0.003) 0.011 (0.009) 0.03 (0.03)
0 0.002 (0.002) 0.009 (0.009) 0.03 (0.03)

(depending on the choice of window length) and contains mostly information about the
�rst part of the signal sin (πnω); the weight of the second eigentriple is 10.5− 11% and
contains information of both parts of the signal; the weight of the third eigentriple is
10.2 − 10.8% and the fourth eigentriple is 9.4 − 10.3% containing information about
second part of the signal sin (3πnω). The weight of eigentriples vary depending on the
window length: the smaller is the window length, the bigger weight leading eigentriples
get.

Looking at the values of loss functions, we �rst study the relation between this loss
functions and their dependence on the noise level σ2 and procedure parameters. The
three Tables of loss functions S(k) 3.1-3.3, contain values for the smallest sample size
(Ns = 100) and contain the values in brackets corresponding to the largest sample size
(Ns = 3000). As we see from the values in Tables 3.1-3.3, the loss function S(k) gives a
consistent result under the sample size Ns variation. We also can notice that the values
obtained for the loss functions S(1) and S(3) are approximately the same, i.e. the ratio

of corresponding loss functions S(1)

S(3) ≈ 1.

Now moving on to the loss functions ratios (see Tables 3.4-3.6), we see that on average
mostly all values obtained are close to one, although there are several ratios, which are
slightly higher. However, we expect to see 5 rejections on null hypothesis due to the
5% chance for error.

Under the null hypothesis testing it does not make sense to look at the ratios of S(3)

values for noise level σ = 0, as the values themselves are practically zeros and obtained
ratios are dominated by random �uctuation.

All loss functions ratios
S
(i)
SSA1

S
(i)
SSA2

are ≈ 1 (i = 1, 2, 3), where SSA1 is the �rst run of SSA,

and SSA2 is the second one. Therefore both times we run SSA, we obtain very similar
results as expected. Also, if the signal of the time series was extracted correctly, i.e.
eigentriples were chosen correctly, then the mean of the �xed forecast point distribution
gives a value close to the real signal value, i.e. S(1) ≈ S(3).

The loss function, where we compare the forecast value with the actual value seem to
re�ect the variance of the noise directly S(2) ≈ S(1) + σ2.

The following example is to show the goodness of loss function based measures, i.e.
their ratios, when we compare SSA and MSSA procedures between each other.
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Tab. 3.2: The loss function S(3) for the SSA procedure for sample sizes Ns = 100(3000)

.

HHH
HHHσ2
L

100 50 25

1 0.10 (0.10) 0.10 (0.09) 0.12 (0.13)
2 0.23 (0.24) 0.18 (0.22) 0.36 (0.30)
0.5 0.07 (0.05) 0.05 (0.05) 0.04 (0.07)
0.01 0.001 (0.001) 0.0011 (0.0009) 0.001 (0.0012)
0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Tab. 3.3: The loss function S(2) for the SSA procedure for sample sizes Ns = 100(3000)

.

HH
HHHHσ2

L
100 50 25

1 1.09 (1.11) 1.12 (1.12) 1.04 (1.16)
2 2.48 (2.16) 1.74 (2.27) 1.88 (2.21)
0.5 0.47 (0.54) 0.66 (0.56) 0.56 (0.57)
0.01 0.012 (0.013) 0.018 (0.021) 0.04 (0.04)
0 0.002 (0.002) 0.009 (0.009) 0.03 (0.03)

Tab. 3.4: The loss functions S(1) ratio
S

(1)
SSA1

S
(1)
SSA2

for sample sizes Ns = 100(3000)

.

HHH
HHHσ2
L

100 50 25

1 0.82 (1.05) 0.97 (0.96) 1.12 (0.96)
2 0.83 (0.93) 1.36 (0.96) 0.83 (0.97)
0.5 0.68 (0.99) 0.98 (0.97) 1.40 (1.01)
0.01 1.36 (0.98) 0.93 (1.00) 1.05 (1.00)
0 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)

Tab. 3.5: The loss functions S(2) ratio
S

(2)
SSA1

S
(2)
SSA2

for sample sizes Ns = 100(3000)

HHHH
HHσ2
L

100 50 25

1 0.999 (0.99) 1.04 (0.99) 1.11 (1.00)
2 0.87 (1.00) 1.03 (0.98) 1.04 (1.01)
0.5 0.96 (1.00) 0.91 (0.99) 1.03 (1.02)
0.01 1.01 (0.99) 0.93 (1.00) 1.03 (1.00)
0 1.00 (1.00) 1.00 (1.00) 1.00 (1.00)
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Tab. 3.6: The loss functions S(3) ratio
S

(3)
SSA1

S
(3)
SSA2

for sample sizes Ns = 100(3000)

HHH
HHHσ2
L

100 50 25

1 0.87 (1.05) 0.90 (0.98) 1.26 (0.96)
2 0.82 (0.93) 1.38 (0.96) 0.80 (0.96)
0.5 0.70 (0.99) 1.01 (0.99) 1.48 (0.99)
0.01 1.50 (1.02) 0.94 (1.02) 1.30 (1.01)

Simple signal. We look at the case when the signal of the main fn and the support gn
series are the same. However, the main series is perturbed by the white noise εn with
given variance σ2

ε . For this example we take the time series fn (3.1) as main series and
gn (3.3) as a support time series with σ2

ζ = 0. Here there is no delay in time series
τ = 0 and the frequency ω = 0.046. The length of both time series is N = 200. The
variance σ2

ε = σ2, the window length L and the sample size Ns vary as in the example
H0 hypothesis testing.

The reconstruction of the time series is based on �rst two eigentriples, as they corre-
spond to the signal sin(πnω). The analysis of the time series have shown that these
are the components which contain the signal information.

The �rst eigentriple vary depending on the noise level, which is time series parameter,
and the choice of the window length L. For example, for the series (3.1) with σ2 = 2
for the SSA procedure �rst eigentriple weight varies from 12.5% to 17.5%. The smaller
is the window length, the bigger weight �rst eigentriple has. The second eigentriple is
of a slightly smaller weight, 10.38− 14.42% (same dependence on the window length).
As for MSSA, we get following weights, the �rst eigentriple varies 18.7−21.1% and the
second one varies 14.7 − 17%. Values of the loss functions, see Tables 3.7-3.9, show a
small improvement in the forecast obtained with MSSA for a higher noise variance σ2.
However for small noise level, the SSA and the MSSA forecasts seems to be equally
good. The explanation for this lies in the simplicity of chosen time series, where the
signal can be easily recognized without using this support series. Obviously, ratios of
the loss functions are approximately one.

We also observe the same relation between loss functions, which was discussed earlier
in H0 hypothesis testing.

The next example is to show the goodness of loss functions for the time series, where
the signal in main series is represented by combination of two simple sines and the support
series correspond to the signal in main series just partially.

Combination of signals with di�erent choice of eigentriples. We start by taking time
series (3.2) to be the main series and (3.3) to be the support series with σ2

ζ = 0, both
of length N = 200. There is no delay τ in the support series and the frequency ω
is chosen to be the same as in previously described examples, i.e. ω = 0.046. This
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Tab. 3.7: The loss function S(1) for Ns = 3000 with the window length L = 50

.

σ2 SSA MSSA+ MSSA

1 0.96 0.92 0.94
2 1.02 0.94 0.95
0.5 0.95 0.92 0.93
0.01 0.92 0.91 0.92
0 0.92 0.91 0.92

Tab. 3.8: The loss function S(2) for Ns = 3000 with the window length L = 50

.

σ2 SSA MSSA+ MSSA

1 1.05 1.03 1.02
2 2.13 2.07 2.07
0.5 0.52 0.51 0.51
0.01 0.01 0.01 0.01
0 0.00 0.00 0.00

Tab. 3.9: The loss function S(3) for Ns = 3000 with the window length L = 50 )

.

σ2 SSA MSSA+ MSSA

1 0.05 0.03 0.03
2 0.11 0.05 0.05
0.5 0.03 0.01 0.01
0.01 0.00 0.00 0.00
0 0.00 0.00 0.00
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example illustrates how the choice of eigentriples e�ects the measure based on the loss
functions.

The signal of the main series fn is a combination of two sines with di�erent frequencies
and could be described by the �rst four eigentriples.

We consider two cases, where forecast is based on either the �rst two or the �rst four
eigentriples.

Naturally, two eigentriples do not give a proper reconstruction of the main series, as
they describe just one part of the compound signal. But in this case we are able to study
to what consequence the wrong choice of eigentriples leads to (for all three SSA-based
procedures).

The �rst value we are looking at is empirical mean obtained for all scenarios for the 1st

forecast point (Ns = 3000). With generated data we have the advantage of knowing
a real signal value at the 1st forecast point. If the forecast is close to the real value,
the empirical mean of forecast sample should be close to it as well. For this example
with two eigentriples, empirical mean varies between −0.837 and 0.229 (see Table 3.14),
while the signal value is −1.3525.

Thus, in this particular case the empirical mean for all SSA-based procedures, with any
noise level and any window length is far o� the signal value, i.e. even if the forecasts
are stable, the mean was estimated incorrectly and obtained forecasts are not accurate.
This shows the importance of choosing right number of eigentriples.

As the mean of the forecast is misleading, we are not looking at the values of the loss
function S(3). Nevertheless, the relations between S(1) and S(2) described in previous
examples hold. Tables 3.15 - 3.17 show that the results depend on the window length
and the noise level. The smaller is the window length, the smaller is the loss function
S(1) for SSA, and for both MSSA it varies more for L = 100, but gives more stable
result for L = 50, and very stable result for L = 25. If we compare SSA and MSSA, it
seems that for the larger window length MSSA is better than SSA, but as the window
length decreases, S(1) gives a smaller error value for SSA, then for any of MSSA.

However, if we look at S(3) values in Table 3.18 it shows completely di�erent tendency

(for any noise level S
(3)
MSSA,MSSA+

< S
(3)
SSA), which leads us to a conclusion, that the

ratio test for the loss function S(3) might be overoptimistic in case, when there are not
enough eigentriples taken.

Wrong signal reconstructions leads to wrong mean estimation, which a�ects the relation
between S(1) and S(3): S(1) 6≈ S(3) (see Tables 3.16 and (3.18)).

With four eigentriples we get a reconstruction, which is close to the real signal of the
main series. The empirical mean obtained for the scenarios, where we used four eigen-
triples, varies from −1.329 to −1.183, while the real value of the signal is −1.3525.
Therefore, obtained distributions are closer to the real value of the signal, then distri-
butions obtained by scenarios with two eigentriples (data is not shown).

The values in Tables 3.10, 3.11 indicate the similarity of MSSA and MSSA+. For good
signal extraction there is no signi�cant improvement in forecast, when we use the future
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Tab. 3.10: The loss function S
(1)
N+1 for sample size Ns = 3000

.

SSA MSSA

HHH
HHHσ2
L

100 50 25 100 50 25

1 0.106 0.106 0.112 0.087 0.081 0.114
2 0.242 0.223 0.228 0.196 0.171 0.233
0.5 0.053 0.055 0.061 0.0439 0.039 0.061
0.01 0.003 0.010 0.019 0.002 0.002 0.017
0 0.002 0.009 0.018 0.001 0.001 0.017

Tab. 3.11: The loss function S
(1)
N+1 for sample size Ns = 3000

.

MSSA+
HHH

HHHσ2
L

100 50 25

1 0.086 0.078 0.112
2 0.193 0.163 0.228
0.5 0.043 0.039 0.061
0.01 0.002 0.006 0.019
0 0.001 0.005 0.018

Tab. 3.12: S
(1)
N+1 (Ns = 3000)

.

S
(1)
MSSA/S

(1)
SSA S

(2)
MSSA/S

(2)
SSA

HHHH
HHσ2
L

100 50 25 100 50 25

1 0.799 0.737 0.672 0.980 0.973 0.951
2 0.778 0.724 0.677 0.972 0.965 0.945
0.5 0.806 0.716 0.682 0.979 0.975 0.947
0.01 0.638 0.304 0.668 0.925 0.657 0.741
0 0.510 0.247 0.666 0.510 0.247 0.666
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Tab. 3.13: The loss function S
(3)
N+1 for sample size Ns = 3000

.

SSA MSSA

HHH
HHHσ2
L

100 50 25 100 50 25

1 0.104 0.098 0.133 0.087 0.080 0.098
2 0.241 0.217 0.301 0.196 0.170 0.219
0.5 0.052 0.047 0.065 0.043 0.038 0.046
0.01 0.001 0.0009 0.0012 0.0008 0.0007 0.0009
0 0.00 0.00 0.00 0.00 0.00 0.00

Tab. 3.14: The empirical mean of 201st forecast point when two components are chosen with the
signal value being −1.3525

.

SSA MSSA

H
HHH

HHσ2
L

100 50 25 100 50 25

1 -0.407 -0.691 -0.431 -0.362 -0.344 -0.416
2 -0.516 -0.676 -0.463 -0.342 -0.362 -0.448
0.5 -0.266 -0.686 -0.423 -0.376 -0.344 -0.408
0.01 0.228 -0.753 -0.410 -0.377 -0.341 -0.395
0 0.229 -0.747 -0.837 -0.377 -0.340 -0.394

information from the support series g, i.e. gF (see 3.1). Thus, for the modeled time
series, we are going to skip the MSSA+ forecast algorithm.

Comparing values in Tables 3.10 and 3.11 with the ones in Tables 3.15 - 3.17, we see
the obvious improvement for all implemented scenarios with four eigentriples.

Obtained values in Tables 3.10, 3.13 support the statement that S(1) ≈ S(3), which is
equivalent to µN+j ≈ fN+j,sig (see notation in Section 3.2).

Looking at the ratios of the loss function S(2) (3.12), and recalling the fact that S(2) ≈
S(2) + σ2, then S

(2)
MSSA/S

(2)
SSA can be rewritten as

S
(2)
MSSA

S
(2)
SSA

≈
S

(1)
MSSA + σ2

MSSA

S
(1)
SSA + σ2

SSA

. (3.9)

If S
(1)
(M)SSA << σ2

(M)SSA, then the noise is overtaking in the ratio (3.9). Therefore, even
if causality is obvious, it can be not recognized for a high noise level. Values in Table

(3.12) support this statement. For σ2 ≥ 0.5 the ratios
S
(2)
MSSA

S
(2)
SSA

≈ 1.

If σ2 = 0, then
S
(1)
MSSA

S
(1)
SSA

=
S
(2)
MSSA

S
(2)
SSA

.
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Tab. 3.15: The loss function S(1) for sample size Ns = 3000 with window length L = 100

.

σ2 SSA MSSA+ MSSA

1 1.17 1.02 1.02
2 1.02 1.12 1.12
0.5 1.44 0.97 0.97
0.01 2.50 0.95 0.95
0 2.50 0.95 0.95

Tab. 3.16: The loss function S(1) for sample size Ns = 3000 with window length L = 50

.

σ2 SSA MSSA+ MSSA

1 0.56 1.03 1.05
2 0.66 1.04 1.05
0.5 0.52 1.02 1.03
0.01 0.36 1.01 1.02
0 0.37 1.01 1.03

Tab. 3.17: The loss function S(1) for sample size Ns = 3000 with window length L = 25

.

σ2 SSA MSSA+ MSSA

1 0.53 0.89 0.92
2 0.63 0.89 0.92
0.5 0.47 0.88 0.91
0.01 0.28 0.89 0.92
0 0.27 0.89 0.92

Tab. 3.18: The loss function S(3) for sample size Ns = 3000 with window length L = 50

.

σ2 SSA MSSA+ MSSA

1 0.12 0.03 0.03
2 0.20 0.06 0.07
0.5 0.07 0.01 0.01
0.01 0.0006 0.0002 0.0002
0 0.00 0.00 0.00
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Tab. 3.19: The loss function S(1) for sample size Ns = 1000 with noise level σ2 = 1

.

σ2 2 0.5
HHH

HHHτ
L

100 50 25 100 50 25

SSA

0 0.22 0.23 0.30 0.05 0.05 0.09
0.1π 0.23 0.23 0.30 0.05 0.06 0.11
0.2π 0.24 0.22 0.33 0.05 0.06 0.12
0.3π 0.21 0.23 0.32 0.05 0.06 0.11
0.4π 0.24 0.22 0.32 0.06 0.06 0.10
0.5π 0.22 0.22 0.31 0.05 0.05 0.08

MSSA

0 0.18 0.18 0.22 0.04 0.04 0.06
0.1π 0.18 0.17 0.21 0.04 0.04 0.07
0.2π 0.19 0.17 0.23 0.04 0.04 0.08
0.3π 0.17 0.17 0.21 0.04 0.04 0.07
0.4π 0.19 0.16 0.22 0.04 0.04 0.06
0.5π 0.18 0.17 0.21 0.04 0.04 0.05

The last example was designed to study sensitivity of the MSSA forecast algorithm to
the delay of the signal in the support series.

Shifted signal. Suppose we have two time series, main time series (3.2) and the support
one (3.3) with the delay τ ∈ {0.1π, 0.2π, 0.3π, 0.4π, 0.5π}. The rest of parameters
are chosen similarly to previous examples, N = 200, σ2 = 1, L ∈ {25, 50, 100} and
Ns = 1000.

We already de�ned the relation between three introduced loss functions in the previous
examples, which holds for this one as well. To see how the delay re�ects on the loss
functions it is enough to check values just for one of them, for example, S(1) (see Table
3.19). The values in this Table suggest that the shift does not e�ect the causality
between time series (3.2) and (3.3).

3.3 Normality tests and F-test

Theory
The F-test is used to test the hypothesis that two samples arise from the same normal
distribution. If the data are normally distributed, they can be reasonably described by
their mean and variance only. In terms of the question of causality, smaller dispersion
means a more stable forecast.
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The F-test checks whether the variances of two normally distributed samples are sig-
ni�cantly di�erent. As we are only interested in the variances here, the mean can be
eliminated from both distributions. Suppose we have two samples of observations {xi},
{yi}, then we can introduce values {αi} and {βi} (i ∈ {1, ..., n}):

αi = xi − µ(x) (3.10)

βi = yi − µ(y) (3.11)

where µ(x), µ(y) are the empirical means of the corresponding samples. The F-test statis-
tics F is

F =
σαi
σβi

,

which corresponds to the ratio of the loss functions S(3) when they are calculated from the
samples coming from normal distributions.

Under the null hypothesis we assume that the variances of two modi�ed samples {αi},
{βi} are the same, i.e. both come from the same normal distribution. If they are signi�-
cantly di�erent, we reject the null hypothesis, and say that one method is outperforming
the another one. In other words, smaller variance ( smaller standard error) gives more
stable forecast. The F-test also can be used as a tool for checking the sensitivity of the
forecast, obtained by the (M)SSA algorithms, to changes in the procedure and the time
series parameters.

Several observations arise from F-test simulations while varying trials parameters. The
F-test p-value depend strongly on the sample size Ns of forecast distribution; the F statis-
tics, on the other hand, converge to some stable ratio of variances for large Ns. Moreover,
if there is no normality, the ratio of variances is still a reasonable measure to check forecast
stability.

As was mentioned previously, the F-test can be applied only to normally distributed
data. To test that data comes from normal distribution, we use following tests for normality
Kolmogorov-Smirnov (KS) or Anderson-Darling (AD) test.

Kolmogorov-Smirnov Test. Before describing KS test, it is worth mentioning the fact
that this test can be used for two di�erent purposes: checking if two samples have the
same unspeci�ed distribution or checking if a sample comes from a normal distribution. In
this section we are interested in normality.

For KS test, assuming that values of a sample come from a normal distribution, one
takes the maximum di�erence between empirical cumulative distribution functions and the
cdf of the standard normal distribution N(µ, σ2).

Dn = sup
t
| Fx(t)− F (t) |, (3.12)

where Fx are empirical cdf of some set of observations {xi} of size n and F is a cumulative
distribution function (cdf) of a theoretical (in this case, normal) distribution.
In fact, under the null hypothesis, it is true that Dn = O( 1√

n
), n→∞ [3].

Denote the signi�cance level as α and let Dstat =
√
nDn. Then the critical value Dα

is chosen so that the type I error probability is P (Dstat > Dα) = α.
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For n→∞ the asymptotic distribution is given as

P (Dstat > Dα) = 2
∞∑
k=1

(−1)k−1e−2k2D2
α , (3.13)

see [3].
For this test we are satis�ed with signi�cance level being α = 0.05 (type I error: if the

null hypothesis is true and we still reject it).
For KS normality test we compare given empirical cdf Fx of some i.i.d. observations

with a standard normal distribution. For a fair comparison (as we are interested if the
values come from any normal distribution) we normalize data x1, ..., xn by introducing
variables ξi such that

ξi =
xi − µ(x)

σ(x)
, (3.14)

where i ∈ {1, ..., Ns}, µ(x) is the empirical mean of {xi}n1 and σ(x) is its dispersion.
Under the null hypothesis we make the assumption that ξi ∼ N(0, 1), and we reject

the null hypothesis if p < 0.05.
Anderson-Darling test. AD test was derived from the Cramer von Mises test. Both

tests, like KS test, are based on the distance comparison between empirical cumulative
distribution functions. But while KS test is looking at the maximum di�erence between
empirical cumulative distribution functions, AD and von Mises tests are looking at averaged
weighted di�erence, but using slightly di�erent weight functions. In general, both tests are
described with the same expression

n

∫ ∞
−∞

(F (t)− Fn(t))2φ(t)d(F (t)) (3.15)

Here F is the distribution used for comparison, and Fn is the empirical cdf of known
observations. The weight function for the Cramer von Mises test is φ(t) ≡ 1, so that its
statistic W 2 is a measure of the mean square di�erence between empirical and normal
(or another theoretical) distributions; and for the AD test the weight function is φ(x) =
[F (t)(1−F (t))]−1, which gives more weight to di�erences in tails of the distribution, than
to the di�erences in its middle part [23].

The AD test uses the statistic A such that

A2 = −n− S, where S =
n∑
k=1

2k − 1

n
(lnF (xk) + ln (1− F (xn+1−k))) (3.16)

and A statistic is compared with the critical value of asymptotic distribution

P (A2 < A2
α) =

√
2π

A2
α

∞∑
j=0

(
−1

2
j

)
(4j + 1)e−((4j+1)2π2)/(8A2

α)

∫ ∞
0

ex/(8(ω2+1))−(4j+1)2π2ω2/(8A2
α)dω,

(3.17)
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where α is the signi�cance level and A2
α is the corresponding critical value. This asymptotic

distribution is suitable for the AD weighted function [2, 3].
If we have a sample of observations xi and we want to �nd out if this sample came

from a normal distribution by using AD test, we can compare it with the standard normal
distribution. Similarly to KS test, for a fair comparison xi are needed to be normalized
�rst as in 3.14. The p value is calculates as follows p = 1 − P (A2 < A2

α). If p < 0.05, we
reject the null hypothesis.

Remark KS and AD tests described in this section can be used not only for investigating
if some data come from a particular theoretical distribution, but also for the direct compar-
ison of two samples. Under the null hypothesis we assume that two empirical cumulative
distribution functions are the same, i.e. Fx = Fy. Thus, the alternative hypothesis for
the two-sided test is H1 : Fx 6= Fy. The only di�erence to normality tests is that we are
comparing two samples with each other, not a sample with a distribution.

Here we do not make any assumptions about how the data are distributed, which gives
a big advantage, when one is dealing with real data.

In terms of SSA/MSSA approaches, if the H0 hypothesis holds, then the distributions
of the forecast obtained by SSA and MSSA are the same and there is no bene�t in using
the support series.

Practice
Using the setup of the H0 hypothesis testing from the Section 3.2 we examine the

goodness of the F-test performance under the null hypothesis.

H0 hypothesis testing. Before applying F-test we need to check if the obtained forecast
values are normally distributed. For this test we have chosen the noise level, or variance,
to be σ2 = 1 and see if the result stays consistent under two changes: the change of the
window length L and the change of the sample size Ns. Tables 3.20 and 3.21 contain p-
values of two normality tests for two samples obtained by 3 scenarios ran with di�erent
window length L.

After satisfying the condition of normality, we can apply the F-test. Some of the results
are presented in Table 3.22. The p-values for the scenarios with window length L = 100,
Ns = 200 trials and with L = 25, Ns = 300 are relatively small (p ≤ 0.05), hence, we
may come to the conclusion that samples in this case come from di�erent distributions,
but for this test we expect an error in approximately 5% scenarios. Other p-values
in this table do not point to any signi�cant di�erence between the two samples, from
what we are concluding that samples come from the same normal distribution.

As it was mentioned in the remark in section 3.3 KS test can be also used for direct
distribution comparison. In fact, it seems that KS test gives more consistent result in
comparison with F-test (min p = 0.21, see Table 3.23). The KS test supports the null
hypothesis that values obtained by two run of SSA come from the same distribution.
Note, that here we do not check for normality. The only information that we get out
of performing KS test for direct distribution comparison is that data come from the
same distribution.
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Tab. 3.20: Kolmogorov-Smirnov Normality Test p-values (σ2 = 1)
H
HHHHHNs

L
100 50 25

100 0.96 (0.91) 0.96 (0.95) 0.95 (0.98)
200 0.74 (0.70) 0.58 (0.68) 0.80 (0.96)
300 0.92 (0.97) 0.90 (0.82) 0.97 (0.99)
400 0.97 (0.91) 0.22 (0.93) 0.998 (0.76)
500 0.76 (0.64) 0.06 (0.77) 0.95 (0.98)
1000 0.96 (0.94) 0.99 (0.91) 0.90 (0.87)
1500 0.63 (0.70) 0.70 (0.29) 0.47 (0.91)
2000 0.90 (0.18) 0.92 (0.39) 0.98 (0.97)
2500 0.28 (0.55) 0.997 (0.75) 0.74 (0.80)
3000 0.25 (0.75) 0.57 (0.32) 0.57 (0.96)

Tab. 3.21: Anderson-Darling Normality Test p-values (σ2 = 1)
H
HHH

HHNs

L
100 50 25

100 0.94 (0.41) 0.67 (0.89) 0.81 (0.61)
200 0.35 (0.46) 0.04 (0.13) 0.69 (0.81)
300 0.83 (0.57) 0.23 (0.28) 0.80 (0.88)
400 0.89 (0.29) 0.05 (0.85) 0.88 (0.10)
500 0.27 (0.44) 0.001 (0.06) 0.81 (0.85)
1000 0.80 (0.59) 0.72 (0.54) 0.39 (0.50)
1500 0.12 (0.15) 0.17 (0.09) 0.009 (0.81)
2000 0.90 (0.01) 0.56 (0.04) 0.85 (0.89)
2500 0.005 (0.07) 0.88 (0.38) 0.46 (0.19)
3000 0.0007 (0.12) 0.03 (0.003) 0.04 (0.61)
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Tab. 3.22: F-Test p-values with noise level σ2 = 1
HHHH

HHNs

L
100 50 25

100 0.70 0.40 0.55
200 0.05 0.54 0.26
300 0.73 0.94 0.002
400 0.82 0.45 0.59
500 0.48 0.10 0.80
1000 0.93 0.94 0.76
1500 0.96 0.99 0.36
2000 0.67 0.12 0.70
2500 0.50 0.40 0.71
3000 0.67 0.22 0.67

Tab. 3.23: Kolmogorov-Smirnov Test p-values with noise level σ2 = 1
HHH

HHHσ2
L

100 50 25

100 0.97 0.97 0.99
200 0.33 0.47 0.92
300 0.89 0.79 0.21
400 0.98 0.96 0.75
500 0.82 0.29 0.96
1000 0.85 0.76 0.83
1500 0.996 0.37 0.65
2000 0.61 0.51 0.92
2500 0.72 0.97 0.998
3000 0.93 0.39 0.84
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The other way of assessing the performance of statistical tests, described in this section,
F-test (AD and KS tests) is by trying them out in case when null hypothesis is likely to
be rejected, therefore causality is not expected. For this purpose we take two time series
with di�erent structures.

Rejecting H0 hypothesis example. Suppose we have main time series (3.1) and the
support time series (3.4), both of length N = 200. The analysis of the series using
Caterpillar software tools have shown that it is convenient to choose the following
(M)SSA procedure parameters: the window length L ∈ {20, 100} and �rst three eigen-
triples r, i.e. the set of eigentriples Ir = {1, 2, 3}. For this example we have chosen to
run the procedure Ns ∈ {1000, 3000} times.

For small window length L ≤ 10 the separation of two main trends of two chosen
time series seem to be more di�cult, i.e. we cannot obtain approximately clean signal
reconstruction.

First eigentriple (53.4−75.5%) corresponds to the exponent reconstruction, the second
(2.5− 4.5%) and the third (2.3− 3.9%) to the sine wave reconstruction. The weight of
the �rst eigentriple decrease as the window length increases.

Here statistical tests do not give any structural sets of results. Nevertheless, the nor-
mality is supported by KS test in most of the scenarios. Assuming that the data come
from a normal distribution, according to the KS test, we can apply the F-test. The F-
test rejects the similarity of the samples for most of the applied scenarios (all p-values,
apart from one, are practically zero). But if we look at the F statistic, it is clear that
varSSA < varMSSA ⇒ SSA obtained forecast is more concentrated, therefore, more
stable (see Table 3.24).

The next example is to see the performance of the tests in case of simple and similar
structured series. For this example we are using the setup of Simple signal example,
described in Section 3.2.

Simple signal. First we perform the KS and AD normality tests to see if obtained
forecasts data is normally distributed. Varying the noise level in the mains series σ2

and the window length L we look at the p-values of both normality tests for the large
sample size Ns = 3000, see Tables 3.25 - 3.27. The �rst thing that catches the eye is the
di�erence between KS and AD tests performances. KS test gives the consistent result
for all three forecasts, obtained by SSA-based algorithms. However, AD normality test
seems to reject null hypothesis in roughly half of the cases and seem to be not consistent
for this example.

Based on the KS normality test, we assume that all three forecasts obtained come from
normal distribution. Now, as the condition of normality is satis�ed we may use F-test.
Looking at the F-test statistic, Table 3.28, we see that the samples obtained are rather
di�erent. The F-test p-values obtained are all zeros and if we look at Table 3.28, we
see that MSSA clearly gives more stable result, with narrower variance. In fact, the
additional information which is used when we run the MSSA+ algorithm does not make
much di�erence for the F statistic.
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Tab. 3.24: Normality and F tests p-values

.

L 100 20 100 20 100 20 100 20

σ2 1 4 0.7 0.1

Anderson Darling

Normality test:

SSA

1000 0.12 0.02 0.00 0.07 0.06 0.52 0.82 0.63
3000 0.71 0.095 0.08 0.00 0.03 0.02 0.67 0.00

MSSA

1000 0.03 0.45 0.00 0.01 0.002 0.00 0.18 0.10
3000 0.24 0.24 0.67 0.51 0.09 0.03 0.64 0.98

Kolmogorov-Smirnov

Normality test:

SSA

1000 0.47 0.10 0.08 0.60 0.71 0.83 0.98 0.86
3000 0.98 0.71 0.72 0.43 0.66 0.49 0.91 0.35

MSSA

1000 0.48 0.87 0.14 0.45 0.26 0.001 0.61 0.34
3000 0.61 0.68 0.92 0.80 0.61 0.22 0.66 0.94

F-test:

p-value
1000 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00
3000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

varMSSA/varSSA
1000 1.02 1.13 1.01 1.03 1.31 1.55 6.15 5.72
3000 3.55 3.78 3.06 3.47 3.44 3.77 3.76 3.87

Tab. 3.25: KS (AD) Normality Test p-values, SSA for sample size Ns = 3000

.

H
HHHHHσ2

L
100 50 25

1 0.14 (0.00) 0.29 (0.001) 0.71 (0.40)
2 0.47 (0.13) 0.63 (0.06) 0.13 (0.003)
0.5 0.35 (0.104) 0.75 (0.34) 0.88 (0.42)
0.01 0.73 (0.20) 0.92 (0.47) 0.83 (0.52)
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Tab. 3.26: KS (AD) Normality Test p-values, MSSA+ for sample size Ns = 3000

.

HHH
HHHσ2
L

100 50 25

1 0.11 (0.00) 0.17 (0.001) 0.43 (0.01)
2 0.59 (0.12) 0.99 (0.75) 0.25 (0.001)
0.5 0.63 (0.08) 0.17 (0.01) 0.27 (0.04)
0.01 0.74 (0.22) 0.68 (0.49) 0.86 (0.39)

Tab. 3.27: KS (AD) Normality Test p-values, MSSA for sample size Ns = 3000

.

H
HHH

HHσ2
L

100 50 25

1 0.10 (0.00) 0.16 (0.001) 0.42 (0.009)
2 0.59 (0.12) 0.99 (0.72) 0.24 (0.001)
0.5 0.60 (0.08) 0.18 (0.01) 0.27 (0.04)
0.01 0.76 (0.22) 0.68 (0.49) 0.86 (0.39)

Tab. 3.28: F-Test statistics
varMSSA+

varSSA
( varMSSA

varSSA
) for sample sizeNs = 3000

.

H
HHH

HHσ2
L

100 50 25

1 0.63 (0.63) 0.48 (0.48) 0.40 (0.40)
2 0.59 (0.59) 0.48 (0.48) 0.42 (0.42)
0.5 0.63 (0.64) 0.49 (0.49) 0.40 (0.40)
0.01 0.64 (0.64) 0.48 (0.48) 0.38 (0.38)
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Tab. 3.29: p-values for F test for di�erent sample sizes with noise level σ2 = 1

.

MSSA+ vs SSA MSSA vs SSA

H
HHH

HHNs

L
100 50 25 100 50 25

100 0.35 0.44 0.11 0.40 0.65 0.15
200 0.11 0.06 0.01 0.14 0.20 0.02
300 0.05 0.01 0.00 0.08 0.05 0.00
400 0.06 0.01 0.00 0.10 0.07 0.00
500 0.02 0.00 0.00 0.05 0.01 0.00

Moving on two less simple signal structures, the next example will illustrate how the
tests from this section perform in case when the main series is slightly more complicated
and the support series contain just partial information about main series.

Using the setup of Combination of signals with di�erent choice of eigentriples from
Section 3.2. AD test supports the normality in nearly 80 − 87% of scenarios. The
smallest p-value for KS normality test is p = 0.05 (MSSA+: Ns = 3000, σ2 = 1,
L = 50), therefore all the distribution obtained can be considered as normal, according
to KS test. Therefore, according to KS test, the condition for using the F-test is
satis�ed.

Values in Table 3.29 show that the F test p-values rapidly converge to zero, as Ns −→
∞. In fact, for Ns ≥ 1000 p-values are practically zeros. On the other hand, the F-
statistics values are very stable for both MSSA algorithms and do converge to a number
greater than zero see Table 3.30.

Direct comparison of the given samples (SSA vs MSSA+ and SSA vs MSSA) using KS
test produces p-values, which converge to zero as Ns −→∞ (see Table 3.31).

There is no contradiction between F-test and direct comparison KS test; both show
signi�cant di�erence between distributions, obtained by SSA and MSSA (or MSSA+).

Comparing obtained values in Tables 3.29-3.31, we observe similar results for MSSA+

and MSSA, therefore, we can consider these two methods being approximately equiv-
alent in this particular set of scenarios.

In the last example we are looking at the modeled time series to see if MSSA is sensitive
to the delay of the signal in the support series. We use the setup of Shifted signal example
described in Section 3.2.

Shifted signal. Both AD and KS tests support the null hypothesis for SSA and MSSA
obtained forecast distributions similarly to the example of the same system of time
series, but with τ = 0 (for example, see p-values for scenarios with noise level σ2 = 1,
Table 3.32). AD test, similarly to the previous examples, is more sensitive test and it
does not support the normality for all scenarios.
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Tab. 3.30: F-test F statistic for di�erent sample sizes with noise level σ2 = 1

.

varMSSA+/varSSA varMSSA/varSSA
H
HHH

HHNs

L
100 50 25 100 50 25

100 0.83 0.85 0.72 0.84 0.91 0.75
200 0.79 0.77 0.69 0.81 0.83 0.71
300 0.80 0.74 0.68 0.82 0.79 0.70
400 0.83 0.77 0.69 0.85 0.84 0.71
500 0.82 0.74 0.69 0.84 0.79 0.71
1000 0.81 0.72 0.70 0.83 0.78 0.72
1500 0.81 0.74 0.69 0.83 0.80 0.72
2000 0.80 0.74 0.70 0.82 0.80 0.72
2500 0.81 0.76 0.70 0.83 0.82 0.72
3000 0.82 0.75 0.71 0.83 0.81 0.73

Tab. 3.31: p-values for KS test for di�erent sample sizes. σ2 = 1, L = 25

.

MSSA+ vs SSA MSSA vs SSA

HHH
HHHNs

L
100 50 25 100 50 25

100 0.97 0.99 0.47 0.97 0.99 0.47
200 0.96 0.47 0.33 0.92 0.54 0.33
300 0.45 0.65 0.25 0.45 0.72 0.34
400 0.86 0.58 0.52 0.86 0.70 0.70
500 0.72 0.46 0.26 0.82 0.77 0.26
1000 0.47 0.03 0.05 0.61 0.12 0.12
1500 0.31 0.09 0.05 0.45 0.33 0.07
2000 0.18 0.04 0.01 0.24 0.09 0.01
2500 0.11 0.06 0.00 0.22 0.14 0.00
3000 0.09 0.01 0.00 0.13 0.06 0.01
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Tab. 3.32: Normality tests p-values for the 201 point with σ2 = 1

.

Method SSA MSSA
HHH

HHHτ
L

100 50 25 100 50 25

KS

0 0.87 0.56 0.82 0.50 0.73 0.95
0.1π 0.17 0.92 0.42 0.26 0.78 0.67
0.2π 0.49 0.16 1.00 0.52 0.21 0.78
0.3π 0.20 0.42 0.90 0.63 0.67 0.99
0.4π 0.79 0.73 0.26 0.77 0.83 0.25
0.5π 0.95 0.21 0.84 0.77 0.29 0.97

AD

0 0.37 0.12 0.51 0.29 0.36 0.64
0.1π 0.00 0.66 0.02 0.00 0.35 0.09
0.2π 0.12 0.00 0.98 0.25 0.00 0.31
0.3π 0.03 0.002 0.63 0.14 0.02 0.75
0.4π 0.39 0.50 0.02 0.45 0.35 0.01
0.5π 0.75 0.01 0.73 0.60 0.02 0.65

The F-test p-values point at the signi�cant di�erence between the obtained distribution,
despite their normality (according to KS test). As was mentioned before, F-test p-value
is an easily manipulated parameter, i.e. the bigger are the samples, the bigger is their
di�erence. On the other hand, due to its stability, F-statistics may be considered as
a possible measurement of causality. Table 3.33 suggests that the causality does not
change and does not become weaker with a shift in the support series.

3.4 Sign tests

Theory
For each implementation of each scenario, described in 3.1, we obtain several values that
are lately used for the comparison: SSA and MSSA forecast values, signal and actual noisy
value of the forecast point.

Before describing sign test we need to mention another group of loss functions (3.18),
which are di�erent from loss functions (3.5). The sign test is based on the comparison

of the magnitude of the two loss functions e
(i)
N+j,SSA, e

(i)
N+j,MSSA for each trial separately.

Note that here we are not comparing empirical cumulative distribution functions, we are
comparing them pairwise for each individual trial

eiN+j,(M)SSA =| f̂ (i,(M)SSA)
N+j − fN+j,comp |, (3.18)
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Tab. 3.33: F-tests p-values and statistics for the (N + 1) point. σ2 = 1

.

H
HHH

HHτ
L

100 50 25

p

0 0.00 0.00 0.00
0.1π 0.002 0.001 0.00
0.2π 0.001 0.00 0.00
0.3π 0.00 0.005 0.00
0.4π 0.001 0.00 0.00
0.5π 0.001 0.00 0.00

F

0 0.83 0.78 0.72
0.1π 0.83 0.82 0.72
0.2π 0.82 0.79 0.73
0.3π 0.80 0.84 0.72
0.4π 0.82 0.79 0.74
0.5π 0.81 0.78 0.73

where fN+j,comp = fN+j,sig. By looking at the di�erences

dji = e
(i)
N+j,SSA − e

(i)
N+j,MSSA, (3.19)

one can estimate for which method the loss function (3.18) is smaller or bigger. Introducing
the indicator function

I+(dij) =

{
1 if dij > 0

0 otherwise
(3.20)

we can count how many times MSSA improves upon SSA. The frequency of MSSA being
better than SSA is calculated as follows:

ωNs =

∑Ns
i=1 I+(dij)

Ns
(3.21)

If the frequency is above 0.5 then we infer causality.
The sign test is a simple, nice, robust test, but does not take into account that some

di�erences dij are very small compared to others. If we want to distinguish dij di�erences,
it is reasonable to use Wilcoxon's Signed-Rank Test.

Wilcoxon's Signed-Rank test is similar to the sign test, but here we consider not only
the sign of errors di�erences, but the magnitude of those di�erences as well. All the
di�erences are ranked, i.e. ordered by increasing absolute value, and the indicator function
is multiplied with a weight given by the rank number. The smallest di�erence receives the
smallest weight. Both positive and negative dij are ranked, but counted separately,

W+ =
∑
i

I+(dji )R
+
i . (3.22)
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Tab. 3.34: H0 hypothesis test. Frequency of Sign test ω with noise level σ2 = 1
H

HHH
HHNs

L
100 50 25

100 0.45 0.52 0.47
200 0.55 0.53 0.53
300 0.50 0.47 0.50
400 0.54 0.53 0.51
500 0.51 0.54 0.49
1000 0.49 0.49 0.52
1500 0.51 0.50 0.48
2000 0.51 0.51 0.50
2500 0.50 0.50 0.51
3000 0.50 0.51 0.50

Lets de�ne another indicator function:

I−(dij) =

{
1 if dij < 0

0 otherwise
(3.23)

and

W− =
∑
i

I−(dji )R
−
i (3.24)

where R+
i , R

−
i are ranks of dji . The smallest R+

i is given to the smallest positive and R−i
is given to the smallest negative dji . The statistics for Wilcoxon's Signed-Rank two-sided
test is S = min(W+,W−).

Comparing the statistic S to the critical value Scv we accept the null hypothesis H0 if
S > Scv and reject it otherwise.

In case of causality study, we are interested in one-sided test, therefore we consider just
W+.

It is worth mentioning that S ∼ N(µ, σ2) as n → ∞, where µ = n(2n + 1)/2,
σ2 = n2(2n + 1)/12. Calculating Z = (S − µ)/σ we can �nd a p-value using standard
normal distribution.

Practice
Here we also start from the H0 hypothesis testing from the Section 3.2 to see the

performance of sign tests in case of null hypothesis is true.

H0 hypothesis testing. The sign test produces the frequency of one SSA forecast in
a �rst run outperforming SSA forecast in a second run. The values of frequencies in
Table 3.34 point out at the stability and consistency of the sign test result. Moreover,
the frequency values become nearly exact half as we increase the sample size Ns.
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Tab. 3.35: MSSA frequencies of sign test

.

L 100 20 100 20 100 20 100 20
HH

HHHHNs

σ2

1 4 0.7 0.1

1000 0.46 0.45 0.37 0.47 0.44 0.42 0.22 0.20
3000 0.60 0.45 0.57 0.55 0.61 0.43 0.76 0.33

Tab. 3.36: Frequency ω for sign test, where sample size Ns = 3000
H

HHH
HHσ2
L

100 50 25

2 0.61 0.61 0.63
1 0.53 0.53 0.45
0.5 0.51 0.53 0.54
0.01 0.49 0.50 0.50

We see that the sign test perform well under the null hypothesis assumption. In the
following example we are looking if its performance is as good when the null hypothesis
is likely to be rejected. For the next example we use a Rejecting H0 hypothesis example
setup from Section 3.3.

Rejecting H0 hypothesis example. For this example we observe that a bigger frequency
ω appear for a larger sample size, i.e. ω1000 ≤ ω3000, see Table 3.35. As the oscillation of
the frequency still stays around 0.5 the sign for this particular example is not conclusive.

For the next example we use the setup Simple signal from the Section 3.2.

Simple signal. The sign test resultant frequencies suggest that there is no signi�cant
improvement of the forecast for the relatively small noise level with variance σ2 < 2 in
the mains series. But if the noise is su�ciently large (see Table 3.36), the MSSA seems
to help to catch the signal better and as the result improve the forecast of the main
time series.

Moving on to the next example, where we look at the series with the signal consisting
of two sines with di�erent frequencies. The support series signal partially corresponds to
the signal of the mains series.

Using the setup of Combination of signals with di�erent choice of eigentriples in Section
3.2. Here we are comparing SSA with MSSA procedure and skip the comparison with
MSSA+, due to similarity of MSSA and MSSA+. The MSSA has higher frequency
for all obtained scenarios. Moreover, the frequency is quite stable for noise level with
σ2 > 0.5 and is ω ∼= 1 for σ2 ≤ 0.5 (see Table 3.37).
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Tab. 3.37: The MSSA frequency ω of sign test for di�erent sample sizes.

σ2 1 2 0.5 0.01

H
HHH

HHNs

L
100 50 25 100 50 25 100 50 25 100 50 25

100 0.76 0.62 0.64 0.61 0.68 0.60 0.63 0.68 0.70 0.89 1.00 1.00
200 0.67 0.64 0.71 0.71 0.62 0.67 0.71 0.68 0.72 0.90 0.99 1.00
300 0.71 0.65 0.74 0.65 0.62 0.70 0.70 0.67 0.69 0.90 1.00 1.00
400 0.65 0.63 0.68 0.68 0.61 0.70 0.66 0.65 0.75 0.88 0.99 1.00
500 0.65 0.64 0.71 0.66 0.63 0.70 0.67 0.64 0.70 0.87 0.99 1.00
1000 0.67 0.66 0.70 0.66 0.63 0.68 0.67 0.65 0.71 0.89 0.99 1.00
1500 0.67 0.64 0.70 0.64 0.62 0.69 0.67 0.64 0.70 0.87 0.99 1.00
2000 0.68 0.65 0.69 0.67 0.63 0.67 0.67 0.65 0.70 0.88 0.99 1.00
2500 0.65 0.64 0.69 0.67 0.63 0.68 0.68 0.65 0.71 0.89 0.99 1.00
3000 0.66 0.64 0.69 0.67 0.64 0.68 0.67 0.65 0.72 0.88 0.99 1.00

Tab. 3.38: The MSSA frequency ω of the 201 point for sign test with σ2 = 1

.

HHH
HHHτ
L

100 50 25

0 0.672 0.656 0.699
0.1π 0.664 0.651 0.716
0.2π 0.688 0.663 0.746
0.3π 0.69 0.677 0.727
0.4π 0.673 0.679 0.748
0.5π 0.699 0.666 0.733

For the last example we use the setup of Shifted signal example in Section 3.2.

Shifted signal. The sign test frequency values varies between 0.65 and 0.75 (see Ta-
ble 3.38). Roughly speaking, the frequency ω approximately stays the same. It is
worth mentioning that ω > 0.5 for all applied scenarios, therefore the MSSA forecast
algorithm is considered to be better (improves the forecast) for the sign test.

3.5 Distribution comparison

Theory
The distribution comparison can be used, when the time series are constructed with the
idea of noise permutation, as it is in our setup. As the normally distributed forecast is
not always the case, we can look at the distributions of SSA/MSSA forecasts and compare
them directly to each other. There are di�erent ways of doing it, but we are are going to
concentrate on the comparison of the empirical cumulative distribution functions.

The comparison of empirical cumulative distribution functions is well described in [34].
For this comparison data is represented by the loss functions (3.18) and (3.28). The error in
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(3.28) is calculated with respect to the median. Here the median is taken as an alternative
measure to the empirical mean, as we do not assume normality for this test.

Under the null hypothesis we assume that distributions of the (N + j)th forecast point
are the same H0 : FSSA = FMSSA, where F is the cumulative distribution function. If the
null hypothesis gets rejected we distinguish four typical cases [34]:

1. stochastic dominance,

2. di�erence in variances,

3. di�erence in tails,

4. di�erent structure.

For samples we are using X and Y notation, µ for the mean, σ for the standard deviation,
γ for the skewness and β for the kurtosis. Adopting de�nitions given in [34] for our studies,
we are looking at the following cases.

The stochastic dominance gives a clear picture of one method being dominant over
another one. If one empirical cdf is above the other, then the one that is below dominates
the other one. In terms of distribution parameters, when empirical means are di�erent
(µX 6= µY ), but variances are the same σX = σY the shapes of cfds are similar. Cdfs
functions don't have any intersections when variances di�er, σX 6= σY and µX < µY . In
fact, empirical cumulative distribution functions in both described cases, do not intersect.

Di�erence in variance case is suitable not only for normally distributed data compar-
ison. If we are looking at the concentration of the distribution, the di�erence in variance
can be treated as a stochastic dominance of one method over another one: for accuracy the
small variance shows more precise forecast and for the stability the more concentrated re-
sult indicates more stable forecast. Thus, in both cases, one forecast distribution dominates
another one. In terms of empirical cumulative distribution functions, di�erence in variance
can be recognized on the graph by one intersection of empirical cumulative distribution
functions (i.e. σX 6= σY and µX ≈ µY ).

Di�erence in tails is determined by moments of higher order, such as skewness and
kurtosis. Here mean and standard deviation are not signi�cantly di�erent. If γX < γY , the
longer tails of FX and FY are in opposite directions. The di�erence in kurtosis measure
βX < βY indicates the di�erence in tails too (in this case, if there is no skewness, one
distribution has longer tails on both sides). Di�erence in tails can be recognized by two
crossings of given cdfs.

Di�erence in structure indicates two completely di�erent distributions, which have
multiple crossings of their empirical cumulative distribution functions. In this case it is
reasonable to use some tests to show any measurable di�erence. For example, one can still
use the sign test to estimate in how many cases one method outperform another one.

Two following tests, dominance in accuracy and stability, are similar to the sign test,
although they are based on the comparison of empirical cumulative distribution functions
of two distributions. Note that in this test we do not compare them pairwise from trial to
trial. We �rst sort these samples in increasing order and compare them afterwards.
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Dominance in accuracy. This test points out which method is more accurate. By
accuracy we understand the distance between the signal and the obtained forecast values.
In other words, it veri�es the most accurate forecast out of two, SSA and MSSA forecasts.
To compare two empirical cumulative distribution functions of the loss functions (3.18), in

which comp stands for signal, i.e. eiN+j,(M)SSA =| f̂ (i,(M)SSA)
N+j − fN+j,signal |, we look at

their di�erence

dji,acc = e<i>N+j,SSA − e
<i>
N+j,MSSA, (3.25)

where < i > is notation for order statistics, i.e. e<i−1>
N+j,(M)SSA ≤ e

<i>
N+j,(M)SSA∀i ∈ Ns.

Here we detect dominance or relative dominance of one method over another by calcu-
lating the frequency of one loss function being smaller then the other one

ωNs,acc =

∑Ns
i=1 I+(dij,acc)

Ns
. (3.26)

If ωNs,acc = 1, then we conclude that there is clear dominance of the MSSA forecast
distribution (MSSA is always more accurate then SSA, MSSA empirical cdf is always below
SSA); if ωNs,acc = 0 then SSA dominates MSSA. If ω > 0.5, then MSSA is dominating
SSA in more cases and overall still dominates and vice versa.

Dominance in stability. This test is used to indicate which forecast, SSA or MSSA, is
more stable. The forecast is considered to be stable if its value does not change much from
trial to trial. In fact, for the real time series, when we do not know the actual (or signal)
value of the forecast, it is more reasonable to use the median to estimate the stability of
the obtained forecast. Here we look at the di�erence

dji,stab = m<i>
N+j,SSA −m

<i>
N+j,MSSA, (3.27)

where m<i>
N+j,(M)SSA comes from

mi
N+j,(M)SSA =

∣∣∣f̂ (i,(M)SSA)
N+j − m̃(M)SSA

N+j

∣∣∣ . (3.28)

and m̃
(M)SSA
N+j is the median of the forecast of (N + j)th point. Using the same indicator

function (3.20) for dji,stab one can calculate the frequency of trials where the MSSA forecast
turns out to be more stable then the SSA forecast,

ωNs,stab =

∑Ns
i=1 I+(dij,stab)

Ns
. (3.29)

Similarly to the dominance in accuracy test if ωNs,stab = 1, then we say that MSSA forecast
dominates in terms of stability over SSA; if ωNs,stab = 0 then the dominance is other way
around.

The cumulative distribution comparison is more of a visual technique. Thus, the logical
question rise if it is possible to have quantitative measure, or a characteristic number, which
will indicate cases we are dealing with.
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Remark We suggest the following measures which could help to indicate the type of
relationship between empirical cumulative distribution functions. De�ne

K =
1

Ns

Ns∑
i=1

sji
dji+

(3.30)

and

Kq =
1

Ns

Ns∑
i=1

∣∣∣dji ∣∣∣
sji+

(3.31)

where sji+ is the sum of corresponding di�erences of dji for accuracy

sji+ = e<i>N+j,SSA + e<i>N+j,MSSA, (3.32)

and is the sum of corresponding di�erences of dji for stability

sji+ = m<i>
N+j,SSA +m<i>

N+j,MSSA, (3.33)

Measure (3.30) and (3.31) estimate the average distance between cdfs. Using both
numerical measures together we can de�ne between stochastic dominance and di�erence
in variance or tails.

Each of the measures can be calculated both for stability and accuracy dominance.
Both measures are ratios of ordered relations between the di�erences and the sums of loss
functions (3.18) and (3.28) for accuracy and stability respectively. The division by the sum
provides the invariant scaling of the time series.

The remaining di�culty is to de�ne what can be considered as a small or a big distance
between chosen empirical cumulative distribution functions.

Thus, we consider two cases, | K |<< Kq and | K |≈ Kq.

1. | K |<< Kq

• K,Kq small: distributions are very alike or the same;

• K << Kq and Kq is large: di�erence in structure.

2. | K |≈ Kq

• K,Kq small: dominance of one distribution over another, but still very close;

• K,Kq are large: dominance of one distribution over another, di�erence is more
noticeable.

The measures K and Kq should be considered more as indicators and used altogether
with the visual tools, such as empirical cumulative distribution function illustrations.

Practice
Again starting from the H0 hypothesis testing from the section 3.2 we look how both

dominance tests for stability and accuracy perform.
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Tab. 3.39: p-values for the dominance accuracy test frequency ωacc (σ
2 = 1)

HHH
HHHσ2
L

100 50 25

100 0.04 0.82 0.13
200 1.00 0.86 0.82
300 0.53 0.87 0.57
400 0.91 0.61 0.52
500 0.31 0.91 0.13
1000 0.14 0.35 0.80
1500 0.58 0.45 0.31
2000 0.85 0.83 0.62
2500 0.49 0.25 0.83
3000 0.004 0.80 0.44

H0 hypothesis testing. The resultant frequency values in Tables 3.39 - 3.40 do not have
any particular pattern and seem to be random. To interpret the values for stability and
accuracy dominance it is helpful to look at actual distributions of obtained values (3.18)
and (3.28). Both probability distribution functions, pdf for accuracy error (3.18) and
for stability error (3.28), were plotted for two sample sizes, the smallest one Ns = 100
and the biggest one Ns = 3000.

We can see from Figures 3.1 - 3.3 that the distributions obtained, both for stability
and accuracy check, are approximately the same and, in fact, are both normal. For
the accuracy test the mean of the accuracy error is approximately µacc ≈ 1.5 and
the standard deviation varies slightly: for sample size Ns = 100, for the �rst run
σSSA1 = ±0.1573 and for the second run σ = ±0.1751. For the largest sample size
Ns = 3000 the variance is more stable. In particular, standard deviation for both runs
is σSSA ≈ 0.16.

The di�erences between these distributions are very small overall, consequently the
further analysis seem to be irrelevant and we conclude that both samples come from
the same normal distribution. Also, if di�erences (3.25) and (3.27) are practically zeros
then dominance analysis could be put aside.
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Tab. 3.40: p-values for the dominance stability test frequency ωstab (σ
2 = 1)

HHH
HHHσ2
L

100 50 25

100 0.49 0.92 0.20
200 0.97 0.71 0.94
300 0.53 1.00 0.51
400 0.94 0.82 0.04
500 0.49 0.98 0.40
1000 0.14 0.35 0.80
1500 0.58 0.45 0.31
2000 0.78 0.81 0.63
2500 0.57 0.28 0.82
3000 0.08 0.76 0.21

Fig. 3.1: Accuracy cdf of dji,acc in red and blue (two runs of SSA) vs normal distribution ε ∼
N(0, σ2

dji,acc

). N = 200, L = 100, σ = 1, Ns = 100
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Fig. 3.2: Stability cdf of dji,stab in red and blue vs normal distribution ε ∼ N(0, σ2
dji,stab

).

N = 200, L = 100, σ = 1, Ns = 100

Now, using suggested numerical measures K and Kq we can check if the measures agree
with both dominance tests. The values for the measure (3.30) and (3.31) do not tell
much if one looks at them separately. However, looking at the values obtained for this
measure in Tables 3.41-3.45, we see that in most cases K ≈ Kq, but there are some cases,
where K ≥ Kq or K ≤ Kq. To see a clearer picture of the measures relation, we put two
additional Tables 3.43 and 3.46. The highlighted values in this tables correspond to
the cdfs shown in Figures 3.1 - 3.3. For a small sample size Ns = 100 we see a small
shift between two SSA cdfs, but for a large sample size we see that cdfs are nearly
identical and get closer to standard normal distribution. Now looking at the ratio for
the accuracy dominance test in (Table 3.43), we see that tthe values for these two
sample are 0.99 and 1 respectively. If we look at Tables 3.41 and 3.42 we see that the
corresponding values of the measures K and Kq are small. So we conclude that two
distributions are very alike, although there is a possibility of weak dominance. Overall
the obtained values and conclusions drawn from them do not contradict the picture we
see on Figures 3.1, 3.3. Similarly with stability measure, we see that the that there
ratios are less then 1 (see highlighted values in Table 3.46) and then looking at Tables
3.44 and 3.45 we see that values obtained for the corresponding setups are small and
therefore both distributions obtained are very alike or the same. This conclusion also
support the picture we see on Figures 3.2, 3.4.

The next example is to show the performance of dominance tests when the null hypoth-
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Fig. 3.3: Accuracy cdf of dji,acc in red and blue vs normal distribution ε ∼ N(0, σ2
dji,acc

).

N = 200, L = 100, σ = 1, Ns = 3000

Tab. 3.41: Accuracy dominance measure Kacc with noise level σ2 = 1
H
HHH

HHNs

L
100 50 25

100 -0.108 0.010 -0.046
200 0.168 0.075 0.034
300 0.015 0.062 0.042
400 0.049 0.046 -0.071
500 -0.002 0.051 -0.017
1000 -0.016 -0.020 0.027
1500 0.024 -0.001 -0.006
2000 0.022 0.014 0.0004
2500 0.012 -0.011 0.038
3000 -0.030 0.021 0.004
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Fig. 3.4: Stability cdf of dji,stab in red and blue vs normal distribution ε ∼ N(0, σ2
dji,stab

).

N = 200, L = 100, σ = 1, Ns = 3000

Tab. 3.42: Accuracy dominance measure Kaccq with noise level σ2 = 1
HH

HHHHNs

L
100 50 25

100 0.109 0.053 0.063
200 0.168 0.083 0.077
300 0.039 0.097 0.052
400 0.052 0.062 0.073
500 0.038 0.088 0.036
1000 0.022 0.026 0.034
1500 0.034 0.013 0.018
2000 0.024 0.024 0.016
2500 0.021 0.025 0.04
3000 0.030 0.023 0.013
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Tab. 3.43: Accuracy dominance measures ratio
Kacc

q
Kacc with noise level σ2 = 1

HHH
HHHNs

L
100 50 25

100 0.991 0.189 0.73
200 1 0.9 0.442
300 0.385 0.639 0.808
400 0.942 0.742 0.973
500 0.053 0.58 0.472
1000 0.727 0.769 0.794
1500 0.706 0.0769 0.333
2000 0.917 0.583 0.025
2500 0.571 0.44 0.95
3000 1 0.913 0.308

Tab. 3.44: Stability dominance measure Kstab with noise level σ2 = 1
HHH

HHHNs

L
100 50 25

100 -0.044 0.061 -0.082
200 0.120 0.026 0.058
300 0.030 0.117 0.005
400 0.038 0.019 0.012
500 0.026 0.117 -0.005
1000 -0.027 0.011 0.01
1500 0.02 -0.003 0.001
2000 0.023 0.015 0.005
2500 0.014 -0.019 0.018
3000 -0.014 0.007 -0.009
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Tab. 3.45: Stability dominance measure Kstabq with noise level σ2 = 1
H
HHH

HHNs

L
100 50 25

100 0.080 0.064 0.089
200 0.131 0.052 0.076
300 0.051 0.117 0.038
400 0.048 0.031 0.032
500 0.0454 0.117 0.025
1000 0.031 0.031 0.02
1500 0.024 0.01 0.030
2000 0.025 0.025 0.014
2500 0.022 0.025 0.021
3000 0.017 0.021 0.014

Tab. 3.46: Stability dominance measures ratio
|Kstab|
Kstab

q
with noise level σ2 = 1

HHH
HHHNs

L
100 50 25

100 0.55 0.953 0.921
200 0.916 0.5 0.763
300 0.588 1 0.132
400 0.792 0.613 0.375
500 0.573 1 0.2
1000 0.871 0.355 0.5
1500 0.833 0.3 0.033
2000 0.92 0.6 0.357
2500 0.636 0.76 0.857
3000 0.824 0.333 0.643
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Tab. 3.47: MSSA frequencies for Dominance tests

.

L 100 20 100 20 100 20 100 20
σ2 1 4 0.7 0.1

Dominance in accuracy

Ns

1000 0.00 0.07 0.22 0.03 0.09 0.02 0.00 0.00
3000 0.26 0.26 0.28 0.27 0.24 0.26 0.23 0.29

Dominance in stability

Ns

1000 0.01 0.00 0.19 0.15 0.00 0.06 0.00 0.00
3000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

esis is likely to be rejected. The setup is the same as for Rejecting H0 hypothesis example
in Section 3.3.

Both tests, accuracy and stability dominance tests, are rejecting the null hypothesis
of two samples being from one distribution. In fact, we see clear dominance of SSA
obtained forecast,see Table 3.47. In particular, for Ns = 3000 the SSA forecast outper-
formed the MSSA forecast in each trial.

Using the setup Simple signal from the Section 3.2 we are now looking at the perfor-
mance of dominance tests when SSA and MSSA are applied to the time series with same
signal.

Simple signal. From the dominance stability and accuracy frequencies given in Tables
3.48 and 3.49 we see that in terms of accuracy SSA and MSSA are equally good,
although in terms of stability MSSA shows clear dominance.

Table 3.49 with accuracy dominance frequencies shows that for the su�ciently large
noise the MSSA improves the accuracy of the forecast. Overall, the pattern for this
example is following, the MSSA seem to be more stable and overtakes for a higher noise
level in accuracy, although for small noise level SSA seem to be more accurate.

The results of accuracy and stability dominance tests could be easily visualized with
cdfs, see Figure 3.5 for stability and Figure 3.6 for accuracy. We see that accuracy
and dominance tests give very similar variance, although mean of each distribution is
slightly shifted from zeros for accuracy to the right µacc,SSA = 0.004,µacc,MSSA = 0.002
and for stability to the left µstab,SSA = −0.006,µstab,MSSA = −0.008.

Moving on to the accuracy and stability measure suggested in this section in theoretical
part (3.30, 3.31) and their ratios. The highlighted values in Tables 3.50-3.54 correspond
to the empirical cumulative distribution functions illustrated on Figures 3.5 - 3.6. We
see that all values obtained are small, and judging by ratios in 3.52 and 3.55 we see that
we are in the situation when |K| < Kq for both, dominance and accuracy. Therefore
the distributions are very alike, which is what we see on Figures 3.5-3.6.
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Tab. 3.48: Dominance stability test frequency ω (Ns = 3000)
H

HHH
HHσ2
L

100 50 25

1 0.97 1 0.99
2 1.00 1.00 0.99
0.5 0.99 1.00 1.00
0.01 1.00 1.00 1.00

Tab. 3.49: Dominance accuracy test frequency ω (Ns = 3000)
HH

HHHHσ2
L

100 50 25

1 0.49 0.53 0.53
2 0.55 0.53 0.53
0.5 0.50 0.51 0.53
0.01 0.49 0.47 0.50

Fig. 3.5: Stability cdf mi
201,SSA in blue (σ2

m201,SSA
= 0.12), mi

201,MSSA in red (σ2
m201,MSSA

= 0.07),

where i ∈ {1, ..., 200}, L = 100, σ2 = 2, Ns = 3000 and normal cdf with SSA forecast
mean and variance
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Fig. 3.6: Accuracy ei201,SSA in blue (σ2
e201,SSA

= 0.12), ei201,MSSA in red (σ2
e201,MSSA

= 0.072),

where i ∈ {1, ..., 200}, L = 100, σ2 = 2, Ns = 3000 and normal cdf with SSA forecast
mean and variance

Tab. 3.50: Accuracy dominance measure Kacc for sample size Ns = 3000
H
HHH

HHσ2
L

100 50 25

2 -0.0116 0.0027 -0.0073
1 -0.0073 0.0050 -0.0039
0.5 -0.0014 -0.0051 0.0051
0.01 -0.0003 0.0001 0.0002

Tab. 3.51: Accuracy dominance measure Kaccq for sample size Ns = 3000
HH

HHHHσ2
L

100 50 25

2 0.0146 0.0075 0.0159
1 0.0081 0.0062 0.0056
0.5 0.0049 0.0054 0.0064
0.01 0.0004 0.0005 0.0004
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Tab. 3.52: Accuracy dominance measures ratio
Kacc

q
Kacc for sample size Ns = 3000

HHH
HHHσ2
L

100 50 25

2 1.26 2.78 2.18
1 1.11 1.24 1.44
0.5 3.5 1.06 1.26
0.01 1.33 5 2

Tab. 3.53: Stability dominance measure Kstab for sample size Ns = 3000
H
HHH

HHσ2
L

100 50 25

2 -0.005 0.007 -0.0255
1 0.0217 -0.0175 -0.0327
0.5 -0.0474 -0.0092 0.027
0.01 0.0007 0.0281 0.0007

Tab. 3.54: Stability dominance measure Kstabq for sample size Ns = 3000
H
HHH

HHσ2
L

100 50 25

2 0.0179 0.0199 0.0379
1 0.0352 0.0234 0.0387
0.5 0.0477 0.0054 0.0064
0.01 0.0004 0.0005 0.0004

Tab. 3.55: Stability dominance measures ratio
|Kstab|
Kstab

q
for sample size Ns = 3000

HHH
HHHσ2
L

100 50 25

2 0.28 0.35 0.67
1 0.62 0.75 0.85
0.5 0.99 1.70 4.22
0.01 1.75 56.2 1.75
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Tab. 3.56: Dominance frequencies for the (N + 1) point. σ2 = 1

.

H
HHH

HHτ
L

100 50 25

ωacc
0 0.956 0.977 0.941

0.1π 0.978 1 0.973
0.1π 0.997 0.982 0.959
0.1π 1 0.946 0.996
0.1π 0.909 1 0.994
0.1π 0.994 0.966 0.995

ωstab
0 0.987 0.992 0.949

0.1π 0.998 0.984 0.952
0.1π 0.927 0.958 0.94
0.1π 0.961 1 0.989
0.1π 0.994 0.941 0.998
0.1π 0.999 0.997 0.959

Remark For Combination of signals with di�erent choice of eigentriples de�ned in Section
3.2 both dominance tests produce very promising results as well. Nearly for any choice of
time series and procedure parameters frequency for accuracy and stability dominance tests
is ωacc,stab ∼= 1, respectively.

The last example is to see how the delay e�ects the dominance tests. We use the setup
Shifted signal example from Section 3.2.

Shifted signal. As for the dominance in accuracy and stability, this test show nearly
clear stochastic dominance of the MSSA algorithm (see Table 3.56).

All previously described tests point at the fact of causality, if it exists, being indepen-
dent from the delay in the support series. Moreover this example shows that dominance
tests for accuracy and stability seem to be a good measure of causality. All the examples,
and this one is not exception, were built so that the presence or absence of causality is
obvious. Here the support series was presented by the part of the signal of main series
with noise, i.e. we expect causality.

Both dominance tests gave convincing results for the case, where we did not expect
causality at all (see 3.47).

3.6 A relationship between loss functions

Here are several main observations made on loss functions in Section 3.2. In Section 3.2
we observed that loss functions S(1) and S(3) are approximately the same if the choice of
eigentriples for the analysis was made accordingly to the signal. In other words, the mean
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of the forecast point distribution gives a value close to the actual signal value of the time
series.

We also observe following relationship between loss functions S(1) and S(2)

S(2) ≈ S(1) + σ2.

In fact, values of the loss function S(2) seem to re�ect the standard deviation of the noise
directly. Here σ2 correspond to the variance of the white noise in the main time series (for
example see Table 3.1,3.3, 3.7, 3.8 and other tables from the Section 3.2).

The last statement can be explained as follows.

Lemma 3.6.1. Suppose we have time series of the following form

main series fn = sn + σεn

support series (only for MSSA) gn
(3.34)

where sn and gn correspond to signal in the main and the support series respectively and
εn ∼ N(0, 1) is i.i.d. white noise. Then, assuming that the forecast errors are approxi-
mately independent of the εn, then

S(2) ≈ S(1) + σ2 (3.35)

where S(1) (3.5) and S(2) (3.6) are loss functions, and σ2 is the variance of the noise in
the main series

Proof. Recalling the expressions for S(1) (3.5) and S(2) (3.6) we can look at the di�erence

S(1)− S(2). We are using the following facts: the signal value f
(i)
N+j,s is independent of the

trial index i; the forecast value is f̂
(i)
N+j = f

(i)
N+j,s+ ε̃

(i)
N+j , where ε̃

(i)
N+j is the forecast error at

(N + j)th point for the ith trial; the actual value of the time series f
(i)
N+j = f

(i)
N+j,s+σε

(i)
N+j ,

where ε ∼ N(0, 1). If we rewrite now S(1) − S(2), substituting all the described values, we
will get

S(1) − S(2) =

∑Ns
i=1 (f̂

(i)
N+j − f

(i)
N+j,sig)

2

Ns
−
∑Ns

i=1 (f̂
(i)
N+j − f

(i)
N+j)

2

Ns

=

∑Ns
i=1−2f

(i)
N+j,sigf̂

(i)
N+j + f

(i)
N+j,sig

2
+ 2f̂

(i)
N+jf

(i)
N+j − f

(i)
N+j

2

Ns

=
2
∑Ns

i=1(ε̃
(i)
N+jε

(i)
N+j)−

∑Ns
i=1 ε

(i)
N+j

2

Ns
.

(3.36)

Due to independence of two random variables ε̃
(i)
N+j and ε

(i)
N+j , the expectation of their

product is the product of their expectations, and expectation of εn is zero, and therefore

S(1) − S(2) ≈ −
∑Ns

i=1 ε
(i)
N+j

2

Ns
⇔ S(2) ≈ S(1) + σ2

2, (3.37)

where σ2
2 is the variance of εN+j white noise.
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Proposition 3.6.2. Suppose we have time series of the from (3.34). If σ2
SSA >> S

(1)
SSA

and σ2
MSSA >> S

(1)
MSSA then the ratio of loss functions

S
(2)
MSSA

S
(2)
SSA

is approximately equal to

the ratio of the variances of the noise in main series.

Proof. Recalling the statement of Lemma 3.34, we can rewrite the ratio
S
(2)
MSSA

S
(2)
SSA

as follows

S
(2)
MSSA

S
(2)
SSA

≈
S

(1)
MSSA + σ2

MSSA

S
(1)
SSA + σ2

SSA

. (3.38)

If σ2
(M)SSA >> S

(1)
(M)SSA then

S
(1)
MSSA + σ2

MSSA

S
(1)
SSA + σ2

SSA

≈
σ2
MSSA

(
1 +

S
(1)
MSSA

σ2
MSSA

)
σ2
SSA

(
1 +

S
(1)
SSA

σ2
SSA

) ≈
σ2
MSSA

σ2
SSA

(3.39)

Hence, the loss functions ratio becomes a ratio of two noise variances.

3.7 Summary

We looked at several statistical tests and tools to estimate the forecast, obtained by the
SSA and MSSA forecast algorithms. Following the de�nition of causality, the forecast
estimation consequently helps to detect it.

Firstly we have generated time series of four types, so that it is possible to see the
performance of statistical tests in di�erent cases.

In Section 3.2 we have constructed three loss functions, so that it is possible to estimate
the error in forecast using the signal values at the forecast point, the actual values of
the time series at this point or using empirical mean calculated from obtained forecast
distribution (see 3.5).

The most common causality test is F-test. The F-test is based on the idea of comparing
two obtained variances by looking at their ratio. In fact, the ratios of the loss functions
S(3) is the F-test statistic. To apply F-test we �rst need to make sure that the data satis�es
the properties of normal distribution. For this purposes we have used two normality tests
- KS and AD tests.

The observation on normality tests have shown that AD test is more sensitive than
KS test (for example, see Table 3.25). We assume that KS test is good enough for the
purposes of the study of this section. Therefore, we are able to use F-test, if data passes
KS test and in most cases it did.

The F-test, in turn, performed according to our expectations. However, it seems that
if we increase the sample size, the p-value of F-test tends to zero, as F statistic seems to
be independent on sample size. For example, see Tables 3.29-3.30. Therefore, the F-test
statistic (ratio of variances) appear to be a more formative indicator for causality then the
actual test p-value, which depends on the (arbitrary) sample size.
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The sign test is a simple calculation of how many times one method outperforms the
other one. In our case it is how many times MSSA outperform SSA forecast algorithm. In
most cases sign test supports our assumptions made about existence of causality between
time series. However, in case when we do not expect any causal relationship, the result of
the test is inconclusive (see Table 3.35).

The test to see which of two methods dominates, as described in Section 3.5, is based
on the idea of direct comparison of empirical distributions. The main advantage of this
method is that although we are not making assumptions about the distributions our data
come from,we still are able to compare them and see if one gives a better result than the
other one. We de�ned four cases of distinctions between two distributions in Section 3.5:
stochastic dominance, di�erence in variance, di�erence in tails and di�erence in structure.
We studied the dominance tests from two angles, from accuracy point of view and from the
point of view of stability. Also, we have introduced possible indication functions, which
help to de�ne the case we are dealing with.
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4. LINEARIZED MSSA AND CAUSALITY

4.1 MSSA analogue of Granger causality

It is our aim to develop a new approach to causality based on the SSA/MSSA decom-
position of time series. The fundamental di�erence is that the underlying model is not
autoregressive, but a deterministic linear recurrence with added noise (although the coe�-
cients in this model still contain some randomness). In this model the noise does not carry
any information on the model parameters, in contrast to the VAR model (2.32), which
could be reduced to considering the propagation of the noise only.

As for Granger's concept, the whole idea is based on the fact, that the underlying
model is some white noise based stationary process (see section 2.2).

More explicitly, the bivariate MSSA approach provides the following model. Let Xt

and Yt be some real time series; then after MSSA decomposition they are modeled as

Xt = X̃t + εt
Yt = Ỹt + ηt,

(4.1)

where X̃t, Ỹt are their reconstructions, obtained with the MSSA linear recurrence formulas

X̃t =

m∑
j=1

ajX̃t−j +

m∑
j=1

bj Ỹt−j

Ỹt =

m∑
j=1

cjX̃t−j +

m∑
j=1

dj Ỹt−j

(4.2)

and εt, ηt are residuals

εt = Xt − X̃t

ηt = Yt − Ỹt.

The main di�erence between this model obtained from MSSA and the AR model is
that in the AR model the noise is driving the model, and in the model constructed with
the MSSA approach the noise is excluded from the recurrence and is added as residuals
after the model is built. In other words, the main di�erence is in the way of noise entering
the model εt−1, ηt−1 do not a�ect Xt or Yt for any t.

Using the MSSA approach, one is trying to separate noise from the signal and noise
is treated as an irrelevant part of the model, which does not contain any useful informa-
tion. That is, in this approach noise does not play crucial role in building up the model.



Considering the MSSA model in a vector form

Xt = Rᵀ11X̃t−1 +Rᵀ12Ỹt−1 (4.3)

Yt = Rᵀ21X̃t−1 +Rᵀ22Ỹt−1 (4.4)

where X̃s−1 = (X̃s−L, X̃s−L+1, ..., X̃s−1), Ỹs−1 = (Ỹs−L, Ỹs−L+1, ..., Ỹs−1) andR11, R12, R21, R22

are the recurrence vectors obtained from (1.56), we have

R11 =
1

∆

(
(1−

∑
k

η2
k,2L)

∑
k

ηk,Lη
(1)
k + (

∑
k

ηk,2L)
∑
k

η
(1)
k ηk,2L)

)

R12 =
1

∆

(
(1−

∑
k

η2
k,2L)

∑
k

ηk,Lη
(2)
k + (

∑
k

ηk,2L)
∑
k

η
(2)
k ηk,2L)

)

R21 =
1

∆

(
(1−

∑
k

η2
k,L)

∑
k

ηk,Lη
(1)
k + (

∑
k

ηk,2L)
∑
k

η
(1)
k ηk,2L)

)

R22 =
1

∆

(
(1−

∑
k

η2
k,L)

∑
k

ηk,Lη
(2)
k + (

∑
k

ηk,2L)
∑
k

η
(2)
k ηk,2L)

)
(4.5)

where ∆, see (4.8) below, is the determinant of the matrix A de�ned in (1.54).

4.2 Linearized MSSA

De�ning the MSSA forecast of the time series x with the support of time series y as f(x | y)
we can now more formally describe one di�culty of the MSSA approach with regard to
measuring the causality.

A general problem with MSSA is the lack of homogeneity. In other words, if we change
the support series by multiplying it by some constant, the resulting forecast of the main
series may vary. This statement can be illustrated by a simple example.

Consider the extreme case of some �nite main time series xt and a proportional support
series λxt, so that their Hankel matrices are X and λX respectively, both of L ×K size.
Then the eigenvectors and eigenvalues of the matrix

S =
(
X λX

)( Xᵀ
λXᵀ

)
=

(
XXᵀ λXXᵀ
λXXᵀ λ2XXᵀ

)
=

(
1 λ
λ λ2

)
⊗ XXᵀ

are (λ2 + 1)µ1, ..., (λ
2 + 1)µL, 0µ1, ..., 0µL, where µ1, ..., µL are the eigenvalues of XXᵀ.

Eigenvectors corresponding to non-zero eigenvalues are

(
V
λV

)
, where V =

(
V 5

VL

)
is of

L× 1 size and V 5 contains �rst (L− 1) elements of the vector and VL is the Lth element
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of vector V . Substituting these eigenvectors into MSSA recurrence vectors (4.5), we get

R11 =
1

∆

(
(1− λ2

∑
k

V 2
k,L)

∑
k

Vk,LV
5
k + λ2(

∑
k

Vk,L)
∑
k

V 5k Vk,L)

)
, (4.6)

R12 =
1

∆

(
(1− λ2

∑
k

V 2
k,L)λ

∑
k

Vk,LV
5
k + λ3(

∑
k

Vk,L)
∑
k

V 5k Vk,L)

)
, (4.7)

where

∆ = (1−
∑
k

V 2
k,L)(1− λ

∑
k

V 2
k,L)− λ2(

∑
k

V 2
k,L)(

∑
l

V 2
l,L). (4.8)

Causality appears between time series structures (signals), which include trends, period-
icities and exclude noise. Therefore, one would expect that the forecast model coe�cients
should be independent of λ ∈ R. In other words, f̂(xt | yt) = λf̂(xt | λxt). But the above
substitutions (4.6)-(4.8) shows that f̂(xt | yt) 6= λf̂(xt | λyt). This can be illustrated by
the following example.

Suppose we have a time series of length N :{
xt = sin(πnω) + sin(3πnω) + εt

yt = λsin(πnω)

where εt is Gaussian white noise with variance σε.
Consider N = 200, σ2

ε = 1, λ1 = 0.1, λ2 = 10. One would assume that the MSSA based
forecast of xt does not vary on λ. Hence, we expect f̂(xt|λ1yt) ≈ f̂(xt|λ2yt). Applying the
MSSA procedure for the same set of generated data (changing just multiplier λ) we obtain
the forecast for the 201st value x201: f̂(xt|0.1yt) = −0.3612, and f̂(xt|10yt) = −0.2864.
Obviously, f̂(xt|0.1yt) 6≈ f̂(xt|10yt).

This lack of homogeneity in the support series is a fundamental di�culty of MSSA.
Consider two time series of quantities which have di�erent units, e.g. xt is a price measured
in £ and yt is a weight measured in kilograms. Clearly then aj in (4.2) is purely numerical
and bj are measured in pounds per kilogram units (£/kg). One should think that the
analysis should be no di�erent if Yt is measured not in kilograms, but in tonnes instead, i.e.
if the values of Yt are just multiplied by 10−3, then the values of bj should be multiplied
by 103 and should be measured in pounds per tonne, while aj should stay unchanged.
However, this is not the case for standard MSSA due to the non-linearity of the spectral
decomposition of the lag-covariance matrix.

We therefore introduce linearized MSSA, which is linear in the support series. For this
purpose we essentially take the (functional) derivative of MSSA with respect to the support
series.

Proposition 4.2.1. Suppose we have main series xt and support series yt, t ∈ N, both
�nite. Let ε be a small parameter. Note, that we do not make any assumptions on the
structure of time series.
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Let X1 be the Hankel matrix of xt, and X2 be the Hankel matrix of yt (note that then
the Hankel matrix of εyt is εX2). Using the �rst order perturbation theory, neglecting terms
of ε2 and higher, we get the MSSA lag-covariance matrix[

X1

εX2

] [
X1 εX2

]
=

[
X1Xᵀ1 εX1Xᵀ2
εX2Xᵀ1 ε2X2Xᵀ2

]
≈
[
X1Xᵀ1 εX1Xᵀ2
εX2Xᵀ1 0

]
= A+ εB (4.9)

where

A =

[
X1Xᵀ1 0

0 0

]
and

εB = ε

[
0 X1Xᵀ2

X2Xᵀ1 0

]
.

The matrix A represents the unperturbed system, where the support series is equal to

zero with eigenvectors u =

(
η
0

)
, where η is the eigenvector of matrix X1Xᵀ1

Then the approximation of the recurrence vectors (1.60) - (1.63) to the �rst order with
respect to ε is as following

R11(ε) =
1

∆ε

∑
k

ηk,Lη
(L−1)
k ,

R12(ε) =
1

∆ε
ε
∑
k

ηk,Lγ
(L−1)
k ,

R21(ε) =
1

∆ε
ε
∑
k

(
γk,L(1−

∑
l

η2
l,L) + ηk,L(

∑
l

ηl,Lγl,L)

)
η

(L−1)
k ,

R22(ε) =
1

∆ε
ε2
∑
k

(
γk,L(1−

∑
l

η2
l,L) + ηk,L(

∑
l

ηl,Lγl,L)

)
γ

(L−1)
k ,

where γ = 1
λX2Xᵀ1η

Proof. Matrix A is an equivalent to the matrix XXᵀ in the SSA case, in which we have the
matrix XXᵀ for eigendecomposition.

Let λ be the eigenvalue of A and u its corresponding eigenvector. The relationship
between the eigenvalues and eigenvectors of A and XXᵀ is straightforward. Speci�cally,

matrix A have eigenvectors of the form u =

(
η
0

)
, where η is an eigenvector of XXᵀ and 0

in this case is representing L extra zeros. Each eigenvalue of XXᵀ is also an eigenvalue of
A, but matrix A also has additional eigenvalues which are equal to zero.
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Now we consider the perturbation A+ εB of A. Performing spectral decomposition of
the unperturbed matrix A, one �nds the eigenvalues λ and eigenvectors u of the matrix,
so that

Au = λu.

For the perturbed matrix A+ εB, there are eigenvectors uε, and eigenvalues λε analytical
in ε

uε = u+ εν + ε2ν2 + ... (4.10)

and

λε = λ+ εµ1 + ε2µ2 + ... (4.11)

such that

(A+ εB)uε = λεuε, (4.12)

see [22, Ch.II, Theorem 2.3],[31, p.245-246].
Substituting the power series (4.10) and (4.11) for λε and uε into (4.12), we �nd

Au+ ε(Aν +Bu) +O(ε2) = λu+ ε(λν + µ1u) +O(ε2). (4.13)

Knowing that

Au− λu = 0 (4.14)

and comparing coe�cients of ε in (4.13), we get

Aν +Bu = λν + µ1u. (4.15)

Multiplying both sides by uᵀ from the left, we have

uᵀAν + uᵀBu = λuᵀν + µ1u
ᵀu,

i.e.

uᵀ(A− λ)ν = −uᵀBu+ µ1u
ᵀu,

and using the fact that (A− λ) is a symmetric matrix and (4.14)

uᵀ(A− λ)ν = ((A− λ)uᵀ)T ν = ((A− λ)u)T ν = 0,

we get

−uᵀBu+ µ1u
ᵀu = 0.
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Thus, we determine the �rst order perturbation term for the eigenvalue λε

µ1 =
uᵀBu

uᵀu
.

Substituting this expression for µ1 back into (4.15), we �nd

Aν +Bu = λν +
uᵀBu

uᵀu
u.

Writing out the matrices A, B and using normalized eigenvectors η of X1Xᵀ1, ηᵀη = 1, and
hence uᵀu = 1, we have(

X1Xᵀ1 − λ 0
0 −λ

)
ν =

(
0 X1Xᵀ2

X2Xᵀ1 0

)(
η
0

)
+

(
η
0

)ᵀ(
0 X1Xᵀ2

X2Xᵀ1 0

)(
η
0

)
︸ ︷︷ ︸

=0

(
η
0

)
. (4.16)

Thus, (
X1Xᵀ1 − λ 0

0 −λ

)
ν =

(
X2Xᵀ1η

0

)
. (4.17)

Writing ν =

(
ν>

ν⊥

)
, we can derive ν> , ν⊥ from (4.17)

{
X1Xᵀ1ν> = λν>

−λν⊥ = X2Xᵀ1ν

where

ν> = cη

−ν⊥ =
1

λ
X2Xᵀ1ν.

Hence, the �rst order perturbation term for the eigenvector is

ν =

(
cη

1
λX2Xᵀ1η

)
, (4.18)

where c is some constant.
Substituting u and ν to (4.10), we get the expression for the eigenvector of the perturbed

matrix (A+ εB) with one unknown c.
We can calculate the constant c from the normalization of the eigenvector uε. Indeed,

uᵀεuε = 1⇔ uᵀu︸︷︷︸
=1

+ενᵀu+ εuᵀν + ε2νᵀν = 1, (4.19)

therefore

νᵀu+ uᵀν = −ενᵀν. (4.20)
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Now for (4.18), we have

uᵀν = cηᵀη = νᵀu

and

νᵀν = c2ηᵀη +
1

λ2
ηᵀX1Xᵀ2X2Xᵀ1η.

Thus, using

uᵀν =
ε

2
νᵀν ⇔ νᵀν =

2

ε
uᵀν =

2

ε
cηᵀη,

the formula (4.20) can be rewritten as

c ηᵀη︸︷︷︸
=1

=
ε

2
(c2 +

1

λ2
ηᵀX1Xᵀ2X2Xᵀ1η).

By multiplying both sides by 2
ε and adding and subtracting 1

ε2
, we get

c2 − 2

ε
c+

1

ε2︸ ︷︷ ︸
(c− 1

ε
)2

− 1

ε2
+

1

λ2
ηᵀX1Xᵀ2X2Xᵀ1η = 0,

(c− 1

ε
) = ±

√
1

ε2
− 1

λ2
ηᵀX1Xᵀ2X2Xᵀ1η

and we get two roots

c =
1

ε
± 1

ε

√
1− ε2

λ2
ηᵀX1Xᵀ2X2Xᵀ1η

where √
1− ε2

λ2
ηᵀX1Xᵀ2X2Xᵀ1η = 1 + 1

2
ε2

λ2
ηᵀX1Xᵀ2X2Xᵀ1η +O

(
( ε

2

λ2
ηᵀX1Xᵀ2X2Xᵀ1η)2

)
Hence the constant c can be expressed as

c ≈ 1

ε
± 1

ε
(1 +

1

2

ε2

λ2
ηᵀX1Xᵀ2X2Xᵀ1η).

But as 1
ε →∞ (ε→ 0 ),the following root is not suitable since

1

ε
+

1

ε
(1 +

1

2

ε2

λ2
ηᵀX1Xᵀ2X2Xᵀ1η)→∞.

Therefore, the �nal expression for c is

c ≈ −1

2

ε

λ2
ηᵀX1Xᵀ2X2Xᵀ1η.
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Recalling the equation for the eigenvector of the perturbed matrix A+ εB (4.10) and the
equation of the �rst order perturbation term (4.18), the �nal expression for the eigenvector
to �rst order in ε is

uε =


η(1− ε2

2λ2
ηᵀX1Xᵀ2X2Xᵀ1η︸ ︷︷ ︸

≈0

)

ε
λX2Xᵀ1η

 =

(
η

ε
λX2Xᵀ1η

)
=

(
1

ε
λX2Xᵀ1

)
⊗ η.

De�ning γ = 1
λX2Xᵀ1η, the eigenvector can be rewritten as

uε =


η(L−1)

ηL
εγ(L−1)

εγL

 ,

where η(L−1) is the �rst (L−1) elements, ηL is Lth element, εγ(L−1) contain elements from
(L+ 1) to (2L− 1), and εγL is the 2Lth element.

Thus, the approximation of the vectors R from (4.5), omitting ε2 and higher order, is
as following

R11(ε) =
1

∆ε

∑
k

ηk,Lη
(L−1)
k = RSSA,

R12(ε) =
1

∆ε
ε
∑
k

ηk,Lγ
(L−1)
k ,

R21(ε) =
1

∆ε
ε
∑
k

(
γk,L(1−

∑
l

η2
l,L) + ηk,L(

∑
l

ηl,Lγl,L)

)
η

(L−1)
k ,

R22(ε) =
1

∆ε
ε2
∑
k

(
γk,L(1−

∑
l

η2
l,L) + ηk,L(

∑
l

ηl,Lγl,L)

)
γ

(L−1)
k ,

(4.21)

where ∆ε is

∆ε = detA(ε) = (1−
∑
k

η2
k,L)(1−

∑
k

ε2γ2
k,L)− ε2(

∑
k

ηk,Lγk,L).

If ε→ 0 then to �rst order we can omit ε2 and higher terms and obtain

detA(ε) = 1−
∑
k

η2
k,L = detA(SSA).

The fact that R11(ε) = RSSA can be explained by the small impact of the support
series in obtaining the �rst linear recurrence vector R11(ε).
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By analyzing the recurrence vectors (4.21), one can notice that for the linearized MSSA
the support series Y enters the recurrence vectors linearly, i.e. only via the eigenvector
γ = 1

λX2X1η. Thus, the linearized MSSA requires SSA procedure being applied to the
main series X only (in other words, SVD of the matrix X1) and the constructing of the
Hankel matrix of the support series X2.

Remark Series reconstruction. It is worth mentioning that the matrix X2XT2 is omitted
from (4.9). Hence, the reconstruction of the support series cannot be obtained using the
linearized MSSA procedure. The linearized MSSA can be treated as one-sided analysis of
the main time series and the e�ect of the support series on it. But we can not fully analyze
the support series using this approach. However, we are interested only in measuring the
causality e�ect of the support series on the main one, not the other way around.

The example below illustrates the approximation of the forecast, obtained by the lin-
earized MSSA LRF in comparison with the MSSA forecast.

Suppose we have two time series:{
xn = sin(πnω) + sin(3πnω) + σεn

yn = ε sin(πnω)
(4.22)

where n ∈ {1, ..., N}, N = 200 and εn ∼ N(0, 1).
Figure 4.1 illustrates linearized MSSA and full MSSA against real signal; the green line

represents xN+m, where m ∈ {1, ...,M} time series. One can see that visually it looks like
the linearized version of MSSA and is very close to the original MSSA procedure.

For illustration purposes we take M = 200. Figure 4.1 shows the performance of
linearized MSSA along with standard MSSA for di�erent noise level, σ = 0, 0.5, 1 in main
series, and di�erent perturbation term ε. For these particular example linearized MSSA
gives a good approximation of standard MSSA.

4.3 Constructing a causality measure

Recalling the LRF for the main series F (1.56), in its vector form (4.3) is

f̂N+m = Rᵀ11(ε)f̃N−L+1,N +Rᵀ12(ε)g̃N−L+1,N , (4.23)

where f̃N−L+1,N and g̃N−L+1,N are the last (L−1) terms of the known reconstructed main
series F and support series G, respectively.

Intuitively, the support series "cause" the main series if it has a substantial "weight"
in the LRF, in other words, if the recurrence vector R12(ε) is appreciably larger than zero.

There are several ways to construct such measure. One can compare recurrence vectors
directly by taking the normalized ratio of their norms. The normalization is needed in
order to avoid the scaling problems (as exempli�ed when the two time series are measured
in di�erent units). The �rst ratio Mtest,1 is

Mtest,1 =

√
‖ R12(ε) ‖2
‖ R11(ε) ‖2

√∑r
k=1 λ1k∑r
k=1 λ2k

, (4.24)
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Fig. 4.1: Part of the original series (blue), MSSA (red), linearized MSSA (black)
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where λ1k are eigenvalues of X1XT1 , λ2k are eigenvalues of εX2XT2 , and r corresponds to
the choice of principal components for reconstruction, and X1, εX2 are Hankel matrices of
the main series F and the support series G, respectively.

However, the above measure does not fully meet the Granger causality de�nition, which
implies that two identical time series are not causal. To see how much in theMtest,1 measure
is due to identity, we need to construct another measure.
Here we are calculating the measure by comparing the norm of the orthogonal complement
of R12(ε) - R̃12(ε)

‖ R̃12(ε) ‖=
∥∥∥∥R12(ε)− (Rᵀ11(ε)R12(ε))R11(ε)

‖ R11(ε) ‖2

∥∥∥∥ (4.25)

with the norm of the recurrence vector R11 by looking at their ratio

Mtest,2 =
‖ R̃12(ε) ‖
‖ R11(ε) ‖

=

√
‖ R12(ε) ‖2
‖ R11(ε) ‖2

− (RT12(ε)R11)2(ε)

‖ R11(ε) ‖4
, (4.26)

√
‖R12(ε)‖2

‖ R11(ε) ‖2
− (RT12(ε)R11)2(ε)

‖ R11(ε) ‖4

√∑r
k=1 λ1k∑r
k=1 λ2k

. (4.27)

Taking the ratio of the orthogonal compliment of the recurrence vector R12(ε) (R̃12(ε))
and the recurrence vector R11(ε) allows not only to compare the sizes of the two vectors,
but their directions as well. Vectors themselves can be di�erent, but they could have same
or very similar direction. If we take Mtest,1 as a measure of causality, we are not able
to distinguish if the causality is due mostly to the identity of the time series or actual
causality, which is not the same thing according to Granger (see [16]).

Following Granger's de�nition of causality, two identical time series are not causal.
Therefore, one of the measures, Mtest,2, is constructed to exclude the case of identity.

Assume a trivial example, when we have two identical time series F and its duplicate
with the Hankel matrix of F with window length L being X. Then the eigenvalues and the
eigenvectors of the matrix

S =
(
X X

)(X
X

)
=

(
XXᵀ XXᵀ
XXᵀ XXᵀ

)
=

(
1 1
1 1

)
⊗ XXᵀ (4.28)

are 0µ1, ..., 0µL, 2µ1, ..., 2µL, where µ1, ..., µL are the eigenvalues of XXᵀ. Eigenvectors,

corresponding to non-zero eigenvalues are

(
V
V

)
, where V =

(
V 5

VL

)
is L× 1 size and V 5

is the vector of the �rst (L− 1) elements of the vector and VL is the Lth element of vector
V . Substituting these eigenvectors into the MSSA recurrence vectors (4.5), we get

R11 =
1

∆

(
(1−

∑
k

V 2
k,L)

∑
k

Vk,LV
5
k + (

∑
k

Vk,L)
∑
k

V 5k Vk,L)

)
= R12. (4.29)
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By substituting the recurrence vectors into (4.24) and (4.26) we get Mtest,1 = 1 and
Mtest,2 = 0. Mtest,1 indicates that two time series have similarities, and Mtest,2 shows that
the similarity in this case is all due to the identity of two time series.

In this chapter we discussed di�erence between the autoregressive model and a suggested
analogous SSA-based model, which leads to a fundamental di�erence between Granger
causality concept and the one described here. Granger's idea of measuring causality is
fully based on the fact that the underlying model is stationary noise model and the SSA
based model is a deterministic linear recurrence with added arbitrary noise. Speci�cally,
the residuals in the SSA model do not carry any information on the model parameters, as
it does in AR models. Noise in the SSA approach is treated as irrelevant part and does
not play a crucial role in the analysis, as it is in autoregressive models.

However, to construct a measure for causality for the SSA/MSSA model, we �rst need
to deal with non-linearity of the MSSA approach. We introduce the so-called linearized
MSSA procedure, which corresponds to the linear approximation of the standard MSSA
to the �rst order. The example given in this chapter illustrates the goodness of linearized
MSSA approximation.

We also introduced tentative causality measures, which are based on the comparison
of recurrence vectors R11(ε) and R12(ε) to be used along with each other to satisfy the
de�nition of causality introduced by Granger. The �rst causality measure Mtest,1 is a
normalized ratio of the recurrence vectors norms, which allows to see if the recurrence
vector R12(ε) is substantial in the forecast LRF (4.23). The second measure Mtest,2 is
a ratio of the orthogonal complement of the recurrence vector R12(ε) and the recurrence
vector R11(ε). This measure allows us to compare recurrence vectors not only by size, but
also by the directions as well.
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5. STABILITY ANALYSIS

In this chapter we focus on the relationship between initial time series that we analyze
through the SSA mechanism and the resultant output of this analysis, i.e. the time series
reconstruction and its forecast. This relationship is closely connected to the F-test. Most
common causality tests, used for stationary autoregressive model, are also related to the
F-test, as it was discussed in section 2.3. We used F-test as a tool for detecting causality
in SSA/MSSA model, see section 3.3.

F-test compares the resultant variance in the forecast of the time series, obtained with
SSA/MSSA LRFs. These variances, in turn, arise from randomness in the initial time
series. Hence, we can try to �nd a connection between the input and output noise by
considering how the forecast of SSA/MSSA changes as we add a random perturbation to
the initial time series, which is the key idea of the stability analysis in this chapter.

If we represent the SSA procedure more visually, we have the following picture

x+ σε

y
−→

SSA

MSSA
−→ x̃+ σ̂ε̃

Noise in the support series is omitted for the purposes of studying the e�ect of the
noise in the main series

σε
?←−→ σ̂ε̃.

In this chapter we study how exactly SSA mechanism works and how the perturbation
of the initial time series re�ects on the error of the obtained reconstruction and further of
the forecast as well.

We begin the chapter from constructing the linearization of the univariate SSA proce-
dure. This construction is similar to the construction of linearized MSSA, although with
SSA we consider perturbation in the main series itself. Here we are also considering per-
turbation of the main series to the �rst order to see if it is possible to derive an expression,
which connects the perturbation of the series with the error in the reconstruction and
forecast.

We come to a better understanding of noise propagation by studying the e�ect of
the perturbation at three stages. These stages are: projector construction, time series
reconstruction and forecast. Firstly, we deal with the noise propagation at the stage of
constructing the projector, obtained from perturbed eigenvectors components. Second
stage is reconstruction, where the noise comes through the Hankel matrix and perturbed
eigenvectors. And �nally, the forecast, where the noise comes in through the recurrence



vectors and through reconstruction. In general, at each stage noise comes through the
Hankel matrix and/or through the obtained eigenvectors. On each stage we assess the size
of the noise e�ect and see if any of these e�ects are dominant, so that less dominant ones
could be neglected in comparison. Thus, we �nd it useful to look at noise propagation
stages separately. By applying these e�ects individually, we can study their re�ection on
reconstructions, recurrence vectors and forecasts.

We use both simulated data and real data examples to study the e�ects described
above, which give rise to assumptions on stability of the time series reconstruction and
obtained recurrence vectors under perturbation e�ects.

In this chapter we apply convolution representation of univariate and bivariate SSA to
derive an expression, which re�ects the connection between a random perturbation of the
time series and the error in the reconstruction and the forecast. Convolution makes the
study of variance possible, as it gives rise to an expression, where the statistical indepen-
dence of the input noise is preserved.

5.1 Linearization of SSA

Proposition 5.1.1. Consider an unperturbed time series xn and its perturbation σεn,
where εn ∼ N(0, 1) is i.i.d.. Let X be the Hankel matrix of unperturbed time series xn with
window length L, and N the Hankel matrix of the perturbation term εn. Let

Z = XNT + NXT . (5.1)

Performing the spectral decomposition of the unperturbed matrix XXᵀ, we �nd its eigenval-
ues and eigenvectors

XXᵀηk = ληk,

where eigenvectors ηk form the orthonormal basis η1, .., ηL in RL with corresponding eigen-
values λ1, ..., λL.

Let R = (aL−1, ..., a1) be the recurrence vector, obtained from the unperturbed time se-
ries xn. Then the approximation of the SSA recurrence vector, obtained from the perturbed
time series xn + σεn, to the �rst order, is

R(σ) = R+ σ
(
cR+ R̃

)
+O(σ2),

where

c =
2
∑r

k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r

k=1 η
2
k,L

,

R̃ =

∑r
k=1

∑L
i=r+1 αi,k(ηi,Lη

(L−1)
k + ηk,Lη

(L−1)
i )

1−
∑r

k=1 η
2
k,L
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Proof. For the perturbed matrix

(X + σN)(X + σN)T = (XXT + σZ) +O(σ2)

there are eigenvectors γσ and eigenvalues λσ analytical in σ

γσ,k = ηk + σν1,k + . . . (5.2)

and

λσ,k = λk + σµ1,k + . . . (5.3)

such that

(XXT + σZ)γσ,k = λσ,kγσ,k. (5.4)

Substituting power series (5.2) and (5.3) into (5.4), we get

XXT ηk + σXXT ν1,k + σZηk +O(σ2) = λkηk + σ(λkν1,k + µ1,kηk) +O(σ2), (5.5)

XXT ηk − λkηk + σXXT ν1,k + σZηk +O(σ2) = σ(λkν1,k + µ1,kηk) +O(σ2). (5.6)

Using the equality

XXT ηk − λkηk = 0 (5.7)

dividing both sides of (5.6) by σ, and considering the limit as σ → 0, we �nd that

XXT ν1,k + Zηk = λkν1,k + µ1,kηk. (5.8)

Multiplying (5.8) by ηTk from the left gives

ηTk (XXT − λk)ν1,k = µ1,k η
T
k ηk︸ ︷︷ ︸
=1

−ηTk Zηk, (5.9)

where

ηTk (XXT − λk) = ((XXT − λk)T ηk)ᵀ = 0ᵀ = 0.

Finally, we get the expression for the 1st order eigenvalue perturbation term µ1,k,

µ1,k = ηTk Zηk. (5.10)

The term ν1,k can be expressed in terms of basis eigenvectors ηi

ν1,k =
L∑
i=1

αi,kηi.
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Substituting µ1,k, ν1,k into (5.8), we get

(XXT − λk)
L∑
i=1

αi,kηi = (µ1,k − Z)ηk, (5.11)

knowing that

(XXT − λk)αi,kηi = αi,k(XXT ηi − λkηi) (5.12)

since (5.7)

αi,k(XXT ηi − λkηi) = 0, if i = k.

Therefore, αk,k is arbitrary, but for simplicity we choose αk,k = 0. Substituting (5.12) into
(5.11) and multiplying both sides of (5.11) by ηTj from the left, we get

L∑
i=1

αi,kη
T
j (λi − λk)ηi = ηTj (µ1,k − Z)ηk. (5.13)

Using the property of orthonormal basis vectors, we know that

< ηTj , ηi >=

{
0, if i 6= j

1, if i = j.

Therefore, we can �nd αj,k coe�cients from (5.13):

αj,k(λj − λk) = ηTj (µ1,k − Z)ηk,

αj,k =
ηTj (µ1,k − Z)ηk

λj − λk
=
µ1,kη

T
j ηk − ηTj Zηk
λj − λk

.

Hence, we get the �nal expression for αj,k

αj,k = −
ηTj Zηk
λj − λk

= −αk,j (5.14)

since Z is symmetric, we have the antisymmetry in αj,k coe�cients. The expression for
the eigenvector of the perturbed system to �rst order is

γk,σ = ηk + σ

L∑
i=1

αi,kηi = ηk + σ(αk,kηk︸ ︷︷ ︸
=0

+

L∑
i=1,i 6=k

αi,kηi). (5.15)

The recurrence vector for SSA (1.42) is

R(σ) =

∑r
k=1 γk,σ,Lγ

(L−1)
k,σ

1−
∑r

k=1 γ
2
k,σ,L

. (5.16)
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Substituting γk,σ, we get

R(σ) =

∑r
k=1

(
ηk,Lη

L−1
k + σ

∑L
i=1,i 6=k αi,k(ηi,Lη

(L−1)
k + ηk,Lη

(L−1)
i )

)
+O(σ2)

1−
∑r

k=1(η2
k,L + 2σ

∑r
i=1,i 6=k αi,kηi,Lηk,L) +O(σ2)

. (5.17)

Using the antisymmetry of Z (5.1) and coe�cients αj,k (5.14) we can simplify the expression
for the vector Rσ (5.17).
Due to antisymmetry, we have

αi,k(ηi,Lη
(L−1)
k + ηk,Lη

(L−1)
i ) + αk,i︸︷︷︸

=−αi,k

(ηk,Lη
(L−1)
i + ηi,Lη

(L−1)
k ) = 0 (5.18)

and the same is for

αi,kηi,Lηk + αk,iηk,Lηi = αi,kηi,Lηk − αi,kηk,Lηi = 0. (5.19)

Therefore, substituting (5.18) and (5.19) into (5.17), we get slightly simpler expression for
R(σ)

R(σ) =

∑r
k=1 ηk,Lη

(L−1)
k + σ(

∑r
k=1

∑L
i=r+1 αi,k(ηi,Lη

(L−1)
k + ηk,Lη

(L−1)
i )) +O(σ2)

1−
∑r

k=1 η
2
k,L − 2σ

∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L +O(σ2)

.

(5.20)

Looking at the denominator of the recurrence vector R(σ)

1

1−
∑r

k=1 η
2
k,L − 2σ

∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L +O(σ2)

=
1

1−
∑r

k=1 η
2
k,L

1

1− 2σ
∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r
k=1 η

2
k,L

+O(σ2)

=
1

1−
∑r

k=1 η
2
k,L

(
1 +

2σ
∑r

k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r

k=1 η
2
k,L

+O(σ2)

)

and substituting this expression instead of denominator, we get

R(σ) = R+ σ
(
cR+ R̃

)
+O(σ2) , (5.21)

where

c =
2
∑r

k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r

k=1 η
2
k,L

(5.22)
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and

R̃ =

∑r
k=1

∑L
i=r+1 αi,k(ηi,Lη

(L−1)
k + ηk,Lη

(L−1)
i )

1−
∑r

k=1 η
2
k,L

. (5.23)

Thus, R = (aL−1, ..., a1) and R̃ = (bL−1, ..., b1), where ai and bi are the coe�cients of the
forecast LRF.
The approximation of the linear recurrence vector R(σ) is now fully linear with respect to
the parameter σ.

If the approximation is good, one would expect that

Rσ −R
σ

− (cR+ R̃) ∼ O(σ), (5.24)

where Rσ is the standard SSA linear recurrence vector obtained for the perturbed time
series xn + σεn and (c + R̃) is the correction term of the linearization of SSA recurrence
vector.

Suppose we have an unperturbed time series

xn = sin(πnω), (5.25)

where n ∈ {1, ..., 200}, ω = 1/22, and perturbation σε, where σ ∈ {0.1 · 10−8,
0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}. The curves plotted in Figure 5.1 correspond to
the di�erence (5.38) for given σ. The smaller is the variance, the narrower the curve.

For a very small variance (σ ≤ 0.01) the di�erence (5.38) does not change much and
seems to converge. However, it does not converge to zero as expected. Nevertheless, the
convergence limit is of order 10−4, see Figure 5.1, and is small enough to consider the
approximation to be good.

Knowing the eigenvalues and eigenvectors, it is possible to �nd the reconstruction of
the initial perturbed time series xn + σεn.

The reconstruction of unperturbed time series comes from the sum of the �rst r ele-
mentary matrices of the decomposition of the Hankel matrix X

X =
r∑

k=1

Xk(0), (5.26)

where the elementary matrix is

Xk(0) = ηkη
T
k X (5.27)

To get the reconstruction for the perturbed time series xn(σ) using the linearized SSA
approach, the elementary matrices are calculated now using the perturbed eigenvectors
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Fig. 5.1: Plot shows the remainder of linearized vector (5.24) for (5.25), L = 200, r = 2; σ = 0.1
(red), σ = 0.05 (green), σ = 0.01 (blue), σ = 0.005 (black), σ ≤ 0.001 the rest
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γσ,i

Xk(σ) = γσ,kγ
T
σ,kX

= (ηk + σ

L∑
i=1,i 6=k

αi,kηi +O(σ2))(ηk + σ

L∑
i=1,i 6=k

αi,kηi +O(σ2))TX

= ηkη
T
kX + σ

L∑
i=1,i 6=k

αi,k(ηiη
T
k + ηkη

T
i )X +O(σ2)

= Xk(0) + σ
L∑

i=1,i 6=k
αi,k(ηiη

T
k + ηkη

T
i )X +O(σ2)

The second term corresponds to the �rst order change in the reconstruction of the series
due to its perturbation.

Grouping elementary matrices Xk(σ), corresponding to �rst r principal components,
we get the resultant matrix

X(σ) =
r∑
i=1

Xi(σ).

Finally, after applying the diagonal averaging to the matrix X(σ), we get the reconstructed
time series x̃n. To calculate the forecast we substitute the vector (5.21) into the linear
recurrence formula (1.41) and use the reconstruction series x̃n

x̃i(σ) = x̃i(0) + σε̃i +O(σ2)

The forecast for the N + 1 point is calculated using the LRF

x̃N+1(σ) =
L−1∑
k=1

(
ak + σ(cak + bk) +O(σ2))(x̃N−k+1(0) + σε̃N−k+1 +O(σ2)

)
.

Opening the brackets, we get

x̃N+1(σ) =
L−1∑
k=1

(
akx̃N−k+1(0) + σ

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

))
+O(σ2)

=
L−1∑
k=1

akx̃N−k+1(0) + σ
L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

)
+O(σ2).

(5.28)

Considering the forecast of the N + 1 point of an unperturbed time series to be x̃N+1(0),
(5.28) can be expressed as a sum of the unperturbed forecast and the correction term

x̃N+1(σ) = x̃N+1(0) + σ

L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

)
+O(σ2). (5.29)
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Analyzing the recurrence vector (5.21), one can see that the noise appears only in αj,k
coe�cients. Recalling (5.14), one can investigate how the noise (considered to be white
noise) and its variance a�ect the recurrence vector. Firstly we look at the numerator of
the coe�cient αj,k

ηTI XNT ηII =
L∑
k=1

ηII,k

L∑
i=1

ηI,i(XNT )ik. (5.30)

Recalling that X and N are Hankel matrices, we can write each element of these matrices
as Xij = xi+j−1 and Njk = nj+k−1, respectively. Thus, we can rewrite (5.30) as

ηTI XNT ηII =
L∑
k=1

ηII,k

L∑
i=1

ηI,i

K∑
j=1

xi+j−1nj+k−1. (5.31)

Let m = j + k − 1, then (5.31) becomes

L∑
k=1

ηII,k

L∑
i=1

ηI,i

K+k−1∑
m=k

xi+m−knm (5.32)

The aim of these manipulations is to see how the noise a�ects the future forecast of
the series. However, noise comes into the forecast not only through reconstruction of the
time series, but through the recurrence vector as well, speci�cally through αj,k coe�cients.
We know that the noise satis�es properties of white noise. If it is possible to rewrite the
numerator as a sum of nm with some coe�cients, we can treat it as i.i.d. random variable
and therefore calculate its variance.

Now we can rewrite (5.32) as

L∑
m=1

m∑
k=1

nm

L∑
i=1

ηII,kηI,ixi+m−k +

K−1∑
m=L+1

L∑
k=1

nm

L∑
i=1

ηII,kηI,ixi+m−k

+
K+L−1∑
m=K

L∑
k=m−K+1

nm

L∑
i=1

ηII,kηI,ixi+m−k. (5.33)

Since nm ∼ N(0, σ2) and i.i.d. we can �nd the variance of ηTI XNT ηII .
In principle, it is possible to derive the expression for the variance of noise ε̃n, but in the

obtained sum (5.33) is derived so that the statistical independence of the input noise nm is
obscured, which makes it di�cult to derive the expression for variance of the forecast. If we
try to plug in the coe�cients αj,k with their rewritten numerator expressions into (5.28),
recalling that they enter the expression through c (5.22), we get even more complicated
formula.

This expression illustrates the di�culties one meets while working out the relationship
between input and output noise. Thus, next step is to consider each part of the SSA
procedure that perturbation a�ects and see if it is possible to separate these e�ects.
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5.2 Reconstruction stability.

From the forecast LRF (1.41), (1.45), (1.58), (1.59) and the way they were derived one
can see that the input noise is coming into the forecast not only through the time series
reconstruction, but also through the recurrence vectors as well. The input-output noise
relation is non linear due to the time series reconstruction process and complicates the
understanding of this relation.

We begin from looking at the univariate case. Suppose we have an unperturbed time
series xn with Hankel matrix X and its perturbation σεn with Hankel matrix σN. The
matrix Z is denoted as in (5.1). Recall that eigenvalues and eigenvectors for the perturbed
time series are calculated from (5.4).

The perturbation of the time series a�ects the reconstruction of the time series xn
directly and linearly through the Hankel matrix σN, and indirectly and non-linearly by
the noise coming through perturbed eigenvectors γ, i.e. the projection of Hankel matrix
X+σN. To study these e�ects in the projection step (5.26), (5.27), (1.19) individually, we
need to look at them separately.

The reconstruction resulting from the grouping of the elementary matrices

ηiη
T
i X (5.34)

is the reconstruction of the signal x̃(1) with no perturbation in the time series or in the
eigenvectors ηi, used to build this reconstruction, i.e. this is SSA of the unperturbed time
series.

The reconstruction x̃(2) resulting from the grouping of the elementary matrices

γiγ
T
i (X + σN) (5.35)

is considered to be the reconstruction of the double perturbation e�ect, i.e. this is SSA of
perturbed time series. Both, x̃(1) and x̃(2) are standard SSA reconstructions of time series
xn and xn + σεn, respectively.

Two following constructions are not exactly reconstructions. However, they are needed
to study the in�uence of the perturbation of time series.

Thus, next reconstruction x̃(3) is based on the e�ect of the Hankel matrix perturbation
only, but using the unperturbed eigenvectors

ηiη
T
i (X + σN), (5.36)

and the last one, x̃(4), uses elementary matrices resulting from perturbed eigenvectors, but
applied to the unperturbed time series

γiγ
T
i X. (5.37)

Thus we have:

• unperturbed SSA reconstruction,

• perturbed SSA reconstruction,
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Fig. 5.2: Unperturbed time series (5.39) and (5.40)

• two mixed cases, which help to study the e�ect of perturbation through eigenvectors
and the Hankel matrix.

For comparison purposes we take the di�erence between the reconstruction of time
series with any mentioned above perturbation e�ect and the one, which does not involve
any perturbations

x̃(i) − x̃(j), where i, j ∈ {1, 2, 3, 4}. (5.38)

We begin with analyzing simple time series. We take two simple generated time series

xn = sin(πnω) (5.39)

xn = sin(πnω) + sin(3πnω) (5.40)

Note that both time series were generated with MATLAB using following commands

x = sin(linspace(0, 300, 200))′ + sin(3 ∗ linspace(0, 300, 200))′

y = sin(linspace(0, 300, 200))′,

Figure 5.2 illustrates both unperturbed time series, which were generated using with MAT-
LAB.

Firstly, we take (5.39) and perturb it with i.i.d. noise σεn ∼ N(0, σ2).
As in previous tests we choose n ∈ (1, ..., 200), ω = 1.5. The standard deviation σ is

chosen to be 0.5. For this generated example, we have chosen window lengths L ∈ {10, 50}
for illustrative purposes and to see if the change in the window length e�ects the overall
picture. The time series itself has a straightforward structure, hence the reconstruction
requires only �rst two eigentriples, r = 2.

Figures 5.3-5.6 illustrate the reconstructions di�erences (5.38) with the parameters,
described above, i.e. σ for the times series perturbation, and L and r for analysis.

Secondly, we analyze example (5.40) to see if the results obtained for the (5.39) example
hold. The setup for analyzing is the same as above, the only change is that for this
example we need �rst 4 eigentriples for the appropriate reconstruction. The reconstruction
di�erences are illustrated in Figures 5.7-5.10.

105



Fig. 5.3: Reconstructions di�erences for the model (5.39) with perturbation σε, x̃
(4)
n − x̃(1)n (green),

x̃
(2)
n − x̃(3)n (blue), L=10

Fig. 5.4: Reconstructions di�erences for the model (5.39) with perturbation σε, x̃
(3)
n − x̃(1)n (blue),

x̃
(2)
n − x̃(1)n (red), L=10
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Fig. 5.5: Reconstructions di�erences for the model (5.39) with perturbation σε, x̃
(4)
n − x̃(1)n (green),

x̃
(2)
n − x̃(3)n (blue), L=50

Fig. 5.6: Reconstructions di�erences for the model (5.39) with perturbation σε, x̃
(3)
n − x̃(1)n (blue),

x̃
(2)
n − x̃(1)n (red), L=50
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Fig. 5.7: Reconstructions di�erences for the model (5.40) with perturbation σε, x̃
(4)
n − x̃(1)n (green),

x̃
(2)
n − x̃(3)n (blue), L=10

Several observations can be made from Figures 5.3 - 5.10.
The di�erence

x̃(2)
n − x̃(3)

n ≈ 0 for n ∈ {L+ 1, ..., N − L} (5.41)

holds through the whole reconstruction, apart from the �rst and last L interval. Both
reconstructions are resulting from the grouping of elementary matrices (5.36) and (5.35),
respectively. Therefore, we can write the expression, which is equivalent to (5.41) in terms
of the sum of elementary matrices

r∑
i=1

γiγ
T
i (X + σN)−

r∑
i=1

ηiη
T
i (X + σN) =

r∑
i=1

(γiγ
T
i − ηiηTi )(X + σN) ≈ 0, (5.42)

which �ts in with the observation that the di�erence in the eigenvectors is small, that it
can be neglected in comparison with the perturbation coming through the Hankel matrix
X + σN.

Similar behaviour is observed for the di�erence

x̃(4)
n − x̃(1)

n ≈ 0 for n ∈ {L+ 1, ..., N − L}, (5.43)

which is approximately zero through all series, apart from the �rst and last L interval.
Since (5.41) and (5.43) are true, one would assume that the change in perturbed eigen-

vectors γ, as was already mentioned, is not crucial and, therefore, the reconstruction can
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Fig. 5.8: Reconstructions di�erences for the model (5.40) with perturbation σε, x̃
(3)
n − x̃(1)n (blue),

x̃
(2)
n − x̃(1)n (red), L=10

Fig. 5.9: Reconstructions di�erences for the model (5.40) with perturbation σε, x̃
(4)
n − x̃(1)n (green),

x̃
(2)
n − x̃(3)n (blue), L=50
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Fig. 5.10: Reconstructions di�erences for the model (5.40) with perturbation σε, x̃
(3)
n − x̃(1)n (blue),

x̃
(2)
n − x̃(1)n (red), L=50

be obtained with unperturbed eigenvectors η with a minor loss in the middle part of the
series. However, the minor loss in this case could be explained by the simplicity of the
time series structure.

Now we look at two other di�erences

x(3)
n − x(1)

n

x(2)
n − x(1)

n ,

which correspond to the di�erences of sums of elementary matrices, respectively

r∑
i=1

γiγ
T
i (X + σN)−

r∑
i=1

ηiη
T
i X =

r∑
i=1

(γiγ
T
i − ηiηTi )X + σγiγ

T
i N

r∑
i=1

ηiη
T
i (X + σN)−

r∑
i=1

ηiη
T
i X = σ

r∑
i=1

ηiη
T
i N.

(5.44)

Figures 5.4, 5.6, 5.8, 5.10 illustrate that these di�erences are not zero and in fact are
su�ciently larger than the di�erence in (5.43). The di�erences in terms of elementary
matrices (5.44) point out that the noise in the Hankel matrix N has a large impact on the
reconstruction of the time series and hence the e�ect of this perturbation has more weight
in comparison with the perturbation coming through the eigenvectors.

Both time series above were generated and have simple structures. To justify the
omission of the perturbation in the eigenvectors, we look at the real data examples in
section 5.5.
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So far, we assume that it is possible to neglect the change in eigenvectors due to
perturbation comparing to the change due to Hankel matrix σN. The purpose of this action
is to simplify the expression (5.28) by neglecting unessential changes due to perturbation,
so that one could focus on more substantial e�ect, caused by noise.

Remark Bivariate SSA reconstruction stability. For simplicity, suppose we have main
series xn with the perturbation σεn, such that X1 is unperturbed Hankel matrix (i.e.
σ = 0) and X1(σ) is the perturbed one. The support series yn has Hankel matrix X2. Here
we study 4 cases as for univariate SSA, which are unperturbed MSSA reconstruction of

series xn, x̃
(1),MSSA
n , perturbed MSSA reconstruction of the main series x̃

(2),MSSA
n and two

mixed cases. First mixed case, where the reconstruction x̃
(3),MSSA
n comes from diagonal

averaging of grouped elementary matrices

ηMSSA
i

(
ηMSSA
i

)ᵀ(X1(σ)
X2

)
and reconstruction x̃

(4),MSSA
n , which comes from diagonal averaging of grouped elementary

matrices

γMSSA
i

(
γMSSA
i

)ᵀ(X1

X2

)
,

where ηMSSA =

(
η(x)

η(y)

)
and ηMSSA =

(
γ(x(σ))

γ(y(σ))

)
both of size 2L with η(x) and γ(x(σ))

corresponding to the �rst L terms of unperturbed vector ηMSSA and perturbed eigenvector
γMSSA, respectively and η(y) and γ(y(σ)) are corresponding to last L terms of unperturbed
vector ηMSSA and perturbed eigenvector γMSSA, respectively.

However, if we look at the convolution expression for the main series reconstruction
(see 1.33)

H

L−1∑
k=0

L−1∑
j=0

p1
k,jS

j−kx+
L−1∑
k=0

L−1∑
j=0

p2
k,jS

j−ky


we see that perturbation appear in the initial time series xn + σεn and the projectors p1

and p2 (1.31).
Taking a simple example with time series

xn = sin(πnω) + 0.5εn

yn = sin(πnω)
(5.45)

of the length N = 200 with ω = 1.5 and i.i.d. perturbation 0.5εn ∼ N(0, 0.5) and

calculating x̃
(1),MSSA
n , x̃

(2),MSSA
n , x̃

(3),MSSA
n x̃

(4),MSSA
n we see in Figures 5.11 and 5.12 that

the di�erence

x̃(4),MSSA
n − x̃(1),MSSA

n
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Fig. 5.11: Reconstructions di�erences for the model (5.45) x̃
(4),MSSA
n − x̃

(1),MSSA
n (green),

x̃
(3),MSSA
n − x̃(1),MSSA

n (blue), x̃
(2),MSSA
n − x̃(1),MSSA

n (red), L=10, r=2

does not go to zero, as expected and di�erences

x̃(3),MSSA
n − x̃(1),MSSA

n 6≈ x̃(2),MSSA
n − x̃(1),MSSA

n

have similar oscillations but the di�erence between them is also not zero.
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Fig. 5.12: Reconstructions di�erences for the model (5.45) x̃
(4),MSSA
n − x̃

(1),MSSA
n (green),

x̃
(3),MSSA
n − x̃(1),MSSA

n (blue), x̃
(2),MSSA
n − x̃(1),MSSA

n (red), L=100, r=2
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Fig. 5.13: The Recurrence Vectors obtained from SSA of (5.39) without and with perturbation σε,
Rη (blue) and Rγ (red), respectively, L=10

5.3 Recurrence vectors stability: univariate case.

As was mentioned in the previous section the variance of the perturbation depends not
only on the perturbation in the reconstruction of the series, but also is a�ected by the
perturbation in the recurrence vectors.

The recurrence vectors approximately stay the same under small perturbation (see
Figures 5.13-5.16). We may assume that the change in the recurrence vectors under per-
turbation can be also neglected without dramatic loss for further analysis and forecast.
However, in the forecast LRF the whole recurrence vector is multiplied by the last (L− 1)
reconstruction terms, so that the small di�erences at each point add up in LRF and one
can think that it may lead to a bigger di�erence, especially if the window length L is large
enough. Nevertheless, in section 5.4 we observe the opposite situation, when the larger
window length actually gives a better approximation of the forecast.
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Fig. 5.14: The Recurrence Vectors from SSA of (5.39) without and with perturbation, σε, Rη
(blue), Rγ (red), respectively, L=50

Fig. 5.15: The Recurrence Vectors from SSA of (5.40) without and with perturbation, σε, Rη
(blue), Rγ (red), respectively, L=10
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Fig. 5.16: The Recurrence Vectors from SSA of (5.40) without and with perturbation, σε, Rη
(blue), Rγ (red), respectively, L=50
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Fig. 5.17: Forecast (x̂181, ..., x̂201) of the main series (5.39) with perturbation σεn using unper-
turbed Rη (blue) and perturbed Rγ (red), L=50

5.4 Forecast stability: univariate case.

In this section we want to verify the assumption that the omission of the perturbation
in reconstruction and in the recurrence vectors do not have a tangible impact on the
forecast. In section 5.2 we establish that the reconstructions of the perturbed time series
using perturbed and unperturbed eigenvectors look approximately the same on the interval
(L + 1, ..., N − L). Hence, for stability analysis of the forecast, a sensible thing to do is
to start the forecast from the point (N − L). Here we do not wish to forecast the future,
but rather we are interested in F-test statistic and its connection to the noise in the initial
time series.

For a bigger window length the forecast for both time series generated stays approxi-
mately the same (see Figures 5.17,5.18). For this examples the choice of smaller window
length L = 10 leads to a larger forecast error (see Figures 5.19,5.20). According to Fig-
ure 5.2 the window length L = 10 describes only half of the period, therefore, it does
not capture the regularity of the behaviour, while L = 50 is enough for the whole period
description.
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Fig. 5.18: Forecast (x̂181, ..., x̂201) of the main series (5.40) with perturbation σεn using unper-
turbed Rη (blue) and perturbed Rγ (red), L=50

Fig. 5.19: Forecast (x̂181, ..., x̂201) of the main series (5.39) with perturbation σεn using unper-
turbed Rη (blue) and perturbed Rγ (red), L=10
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Fig. 5.20: Forecast (x̂181, ..., x̂201) of the main series (5.40) with perturbation σεn using unper-
turbed Rη (blue) and perturbed Rγ (red), L=10
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5.5 Stability check performed for real data: univariate case

To validate neglecting changes in reconstructions, recurrence vectors and forecast under
perturbation discussed in this chapter, we need to check it for some real time series.

The real data presented here is monthly sales of dry Australian wine for the period
1980 - 1994 [21]. Here we take dry wine time series. The analysis of the dry wine time
series is done as in [11, Chapter II], where the same time series was used. The length of the
series is N = 187 and the natural period is equal to one year, i.e. 12 months (12 points).
It is natural to choose a window length to be a multiple of 12. According to the book [11,
p. 138], the optimal window length to obtain the structure of the time series is L = 24
and the number of eigentriples, which correspond to the trend and main periodics, is the
�rst �ve.

Here we consider the signal to be based on the �rst 5 principal components, and the
leftover residuals correspond to a noise term.

There are several approaches to look over the stability of given data reconstruction.
We begin with de�ning the series signal and residuals and then work with obtained

model. We de�ne the time series structure as follows. The main series x̃1−5 is smoothened
dry wine series, based of �rst the 5 eigentriples, residuals ε = x− x̃1−5, where x is initial
dry wine time series, correspond to the natural noise. Based on this structure, we now set
up perturbed time series in two di�erent ways.

1. We take x̃1−5 to be the unperturbed time series and perturb it with permuted resid-
uals ε. The permutation of the residuals destroys the initial correlations in it, but
keeps its initial mean, variance and distribution.

2. We take the initial dry wine series, x̃1−5 + ε, and permute it with the arti�cial
generated white noise ξ ∼WN(0, σ2) with σ = 200.

The wine time series, the reconstruction based on the �rst 5 principal components (L = 24)
and residuals are illustrated in Figure 5.21.

The di�erences between reconstructions shown in Figure 5.22 (original residuals) and
in Figure 5.24 (permuted residuals) supports the statement that reconstructions x(1) and
x(4) are mostly identical apart from the �rst and last window length interval. Also, if we
permute given time series by some generated noise we will get the same result (see Figure
5.5). The perturbation for the example shown in Figure 5.5 is i.i.d. white noise with the
variance σ2 = 40000.

For all three suggested approaches we checked how the recurrence vector change under
each perturbation. As one can see from Figures 5.23, 5.25, 5.5 the change is minor and
could be omitted.

Although the recurrence vectors do not change dramatically under perturbation, the
forecast seems to change more signi�cantly if we permute the original residuals (see 5.5)
and much less if one adds arti�cial Gaussian white noise to the time series (5.5).
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Fig. 5.21: The initial Australian dry wine time series (blue), signal (green), noise (red), permuted
noise (light blue)

Fig. 5.22: Reconstructions di�erences: x̃
(2)
n − x̃(1)n (blue), x̃

(3)
n − x̃(1)n (red), x̃

(4)
n − x̃(1)n (green)
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Fig. 5.23: Recurrence Vectors: Rη (blue), Rγ (red)

Fig. 5.24: Reconstructions di�erences: x̃
(2)
n − x̃(1)n (blue), x̃

(3)
n − x̃(1)n (red), x̃

(4)
n − x̃(1)n (green)
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Fig. 5.25: Recurrence Vectors Rη (blue) and Rγ (red)

Fig. 5.26: Forecast (x̂128, ..., x̂148) with unperturbed R (blue), (x̂128, ..., x̂148) with perturbed R and
original residuals (red), (x̂128, ..., x̂148) with perturbed R and permuted residuals (green)
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Fig. 5.27: Reconstructions di�erences: x̃
(2)
n − x̃(1)n (blue), x̃

(3)
n − x̃(1)n (red), x̃

(4)
n − x̃(1)n (green)

Fig. 5.28: Recurrence Vectors: Rη (blue), Rγ (red)
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Fig. 5.29: Forecast (x̂128, ...x̂148) with Rη (blue), (x̂128, ..., x̂148) with Rγ (red)

5.6 Analysis of noise variance: univariate case

The convolution representation of SSA makes it is possible to study noise propagation in
more transparent way.

Suppose we have some perturbed time series

xn + σεn

where xn correspond to signal and εn is i.i.d. Gaussian white noise. Using the convolution
expression for the SSA reconstruction (1.23) with some coe�cients qi(σ) and substituting
our perturbed time series, we get

x̃n(σ) =
∑
m∈Z

qn−m(σ)(xm + σεm) (5.46)

=
∑
m∈Z

qn−m(σ)xm + σ
∑
m∈Z

qn−m(σ)εm (5.47)

Applying the LRF (1.41) to the reconstruction (5.46), the expression for the forecast
x̂N+1(σ) may be written as

x̂N+1(σ) =

L−1∑
i=1

ai(σ)

(∑
m∈Z

qN+1−i−m(σ)xm + σ
∑
m∈Z

qN+1−i−m(σ)εm

)
(5.48)

=

L−1∑
i=1

ai(σ)
∑
m∈Z

qN+1−i−m(σ)xm + σ
L−1∑
i=1

ai(σ)
∑
m∈Z

qN+1−i−m(σ)εm (5.49)
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From (5.49) we see that both kernel coe�cients qi(σ) and recurrence vector coe�cients
ai(σ) depend on noise of the initial time series, which complicates the process of estimating
the variance of the noise in the reconstruction and in the forecast.

The stability analysis has shown that under small perturbation it is possible to ignore
the changes in time series reconstructions and recurrence vectors. In terms of convolution
SSA it means that under small perturbation we can ignore the changes in coe�cients qi.

Based on the stability analysis in Chapter 5 we can make an assumption that recurrence
vector coe�cients and the convolution kernel coe�cients do not change under perturbation
σε. This assumption gives rise to the following proposition.

Proposition 5.6.1. Suppose we have a time series

xn(σ) = xn + σεn (n ∈ Z), s.t. xn = εn = 0, if 6∈ {1, ..., N},

where xn correspond to unperturbed time series and εn ∼ N(0, 1) i.i.d. if n ∈ {1, ..., N}.
Let (5.49) be the LRF for the forecast point xN−L+1(σ). Then assuming that the con-

volution kernel coe�cients do not change under perturbation the variance of forecast error
can be written as

var(ε̂N−L+1) = σ2‖R ? q‖22

where R and q are obtained from the unperturbed time series xn.

Proof. Assuming that convolution kernel coe�cients do not change under perturbation we
can substitute coe�cients qi obtained from the unperturbed time series instead of qi(σ)
into (5.47), and get

x̃n(σ) =
∑
m∈Z

qn−mxm + σ
∑
m∈Z

qn−m (5.50)

= x̃n(0) + σε̃m (5.51)

where

ε̃n =
∑
m∈Z

qn−mεm (5.52)

ε̃n =
∑
m∈Z

qn−mεm (5.53)

is perturbation in the reconstruction x̃n(σ). The variance of the perturbation in recon-
struction of x̃n(σ) could be easily calculated, using the property of independent random
variables. And the variance of the perturbation in reconstruction at each point is

var(ε̃n) =
∑
m∈Z
| qn−m |22 (5.54)
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The forecast is obtained using LRF (1.41)

x̂N−L+1(σ) =
L−1∑
i=1

aix̃N−L+1−i(σ) (5.55)

where ai are the terms of the recurrence vector R (1.42). Substituting (5.47) into (5.55)
we get

x̂N−L+1(σ) =
L−1∑
i=1

ai(
∑
m∈Z

qN−L+1−i−mxm + σ
∑
m∈Z

qN−L+1−i−mεm) (5.56)

=
L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mxm + σ
L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm (5.57)

= x̂N−L+1(0) + σ

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm (5.58)

Thus

ε̂N−L+1 = σ

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm (5.59)

= σ
∑
m∈Z

( L−1∑
i=1

aiqN−L+1−i−m
)
εm (5.60)

is a perturbation term of the forecast, under simplifying assumptions.
Before calculating the variance of the output noise, let us recall the assumptions that

have been made.
First of all, the input noise is the i.i.d. and comes from normal distribution with zero

mean and variance σ2. Secondly, we assume that the change in eigenvectors is not crucial
due to perturbation and therefore we omit these changes, so that eigenvectors are �xed.
And the last thing, that is worth mentioning is that due to the second assumption the
convolution coe�cients qm are also �xed and do not depend on noise.

So since it is possible to separate the perturbation term σε̂N−L+1 from the signal term
x̂N−L+1(0), we can �nd the variance of ε̂N−L+1

var(ε̂N−L+1) = σ2
∑
m∈Z
|
L−1∑
i=1

aiqN−L+1−i−m |2 (5.61)

= σ2
∑
k∈Z
|
L−1∑
i=1

aiqk−i |2 where k = N − L+ 1−m (5.62)

which is the `2 norm of the convolution of the recurrence vector with the reconstruction
kernel,

var(ε̂N−L+1) = σ2‖R ? q‖22 (5.63)
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5.7 Analysis of noise variance: bivariate case

According to the stability analysis we can substitute the perturbed coe�cients with un-
perturbed.

Although, the recurrence vector R11 behaviour is stable under small perturbation, there
are certain instability problems with R12, variance analysis for the real time series further
in this section. It is also interesting to look at the behaviour of the constructed variance
of the MSSA forecast under assumptions that minor changes in recurrence vector and
convolution coe�cients can be neglected and what actually is causing the instability in the
R12 recurrence vector.

Suppose now we add a noise perturbation to the

xn(σ) = xn + σεn (5.64)

where xn corresponds to signal and εn corresponds to Gaussian white noise, εn ∼ N(0, 1)
i.i.d..

Recalling MSSA LRF for the forecast (1.58) and its recurrence vectors R11 (1.60) and
R12 (1.61) one can �nd the forecast x̂N−L+1(σ):

x̂N−L+1(σ) =

L−1∑
i=1

a1,ix̃N−L+1−i(σ) +

L−1∑
i=1

b1,iỹN−L+1−i(σ) (5.65)

where a1,i, b1,i are terms of two recurrence vectors R11 (1.60) and R12 (1.61) respectively.
Note that we are operating under following assumption that recurrence vectors R11

and R12 are obtained from the unperturbed time series xn, i.e. �xed.
Substituting reconstructions (1.35) into (5.65) we get

x̂N−L+1(σ) =

L−1∑
i=1

a1,i(
∑
m∈Z

q1
N−L+1−i−mxm(σ) +

∑
m∈Z

q2
N−L+1−i−mym)

+
L−1∑
i=1

b1,i(
∑
m∈Z

q3
N−L+1−i−mxm(σ) +

∑
m∈Z

q4
N−L+1−i−mym)

(5.66)

Then substituting (5.64) into (5.66), we get

x̂N−L+1(σ) =

L−1∑
i=1

a1,i(
∑
m∈Z

q1
N−L+1−i−mxm + σ

∑
m∈Z

q1
N−L+1−i−mεm +

∑
m∈Z

q2
N−L+1−i−mym)

+

L−1∑
i=1

b1,i(
∑
m∈Z

q3
N−L+1−i−mxm + σ

∑
m∈Z

q3
N−L+1−i−mεm +

∑
m∈Z

q4
N−L+1−i−mym).

(5.67)

=x̂N−L+1(0) + ε̂N−L+1 (5.68)
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De�ne

ε̂N−L+1 = σ
L−1∑
i=1

a1,i

∑
m∈Z

q1
N−L+1−i−mεm + σ

L−1∑
i=1

b1,i
∑
m∈Z

q3
N−L+1−i−mεm (5.69)

= σ
∑
m∈Z

L−1∑
i=1

(a1,iq
1
N−L+1−i−m + b1,iq

3
N−L+1−i−m)εm (5.70)

as a perturbation term.
Similarly to the univariate case, we can now calculate the variance of the perturbation

in the forecast x̂N−L+1(σ)

var(ε̂N−L+1) = σ2
∑
m∈Z
|
L−1∑
i=1

(a1,iq
1
N−L+1−i−m + b1,iq

3
N−L+1−i−m) |2 (5.71)

= σ2
∑
k∈Z
|
L−1∑
i=1

(a1,iq
1
k−i + b1,iq

3
k−i) |2 , where k = N − L+ 1−m (5.72)

which is the `2 norm of the sum of convolutions of recurrence and reconstruction vectors

var(ε̂N−L+1) = σ2‖R11 ? q
1 +R12 ? q

3‖22 (5.73)
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Fig. 5.30: Setup 1. Generated noise added to initial time series. SSA convolution coe�cients q.

5.8 Stability analysis and convolution based causality measure

Stability of convolution kernel coe�cients and recurrence vectors on the real data example
Before estimating variances of the output noise (5.63,5.73) we need to make sure that the
omitting changes under perturbation assumption holds for the real data.

Let red wine series be main series x and sparkling wine to be support series y. For
both time series L = 60 and r = 7 seem to be optimal choice of SSA parameters. Let us
de�ne 3 following setups for this test

1. signal - initial x, perturbation - generated white noise ζ ∼ WN(0, 100) (generated
Ns = 1000 times), support - initial y;

2. signal - reconstruction based on �rst 7 principal components (L = 60) x̃1−7, pertur-
bation - leftover residuals, permuted Ns = 256 times, support - reconstruction based
on �rst 7 principal components (L = 60) ỹ1−7;

3. signal - initial x̃1−7, perturbation - generated white noise ζ ∼WN(0, 100) (generated
Ns = 1000 times), support - initial ỹ1−7;

For each setup we want to investigate the behavior of the convolution coe�cients q, q1, q3

and the recurrence vectors R, R11, R12.
For the Setup 1 (see Figures 5.30-5.35) and 3 (see 5.42-5.47) we observe good stable

behaviour, especially for the setup 3, where we have smoothened time series (the signal
is based on the �rst 5 eigentriples) and added Gaussian white noise. However, in case
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Fig. 5.31: Setup 1. Generated noise added to initial time series. MSSA convolution coe�cients q1.

Fig. 5.32: Setup 1. Generated noise added to initial time series. MSSA convolution coe�cients q3.
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Fig. 5.33: Setup 1. Generated noise added to initial time series. SSA recurrence vector R.

Fig. 5.34: Setup 1. Generated noise added to initial time series. MSSA recurrence vector R11.
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Fig. 5.35: Setup 1. Generated noise added to initial time series. MSSA recurrence vector R12.

Fig. 5.36: Setup 2. SSA convolution coe�cients q.
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Fig. 5.37: Setup 2. MSSA convolution coe�cients q1.

Fig. 5.38: Setup 2. MSSA convolution coe�cients q3.
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Fig. 5.39: Setup 2. Time series with permuted natural noise. SSA recurrence vector R.

Fig. 5.40: Setup 2. Time series with permuted natural noise. MSSA recurrence vector R11.
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Fig. 5.41: Setup 2. Time series with permuted natural noise. MSSA recurrence vector R12.

Fig. 5.42: Setup 3. Time series with permuted natural noise. SSA convolution coe�cients q.
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Fig. 5.43: Setup 3. Time series with permuted natural noise. MSSA convolution coe�cients q1.

Fig. 5.44: Setup 3. Time series with permuted natural noise. MSSA convolution coe�cients q3.
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Fig. 5.45: Setup 3. Generated noise added to the reconstruction. SSA recurrence vector R.

Fig. 5.46: Setup 3. Generated noise added to the reconstruction. MSSA recurrence vector R11.
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Fig. 5.47: Setup 3. Generated noise added to the reconstruction. MSSA recurrence vector R12.

when we try to destroy the correlation in natural noise of the series we observe instability,
see Figures 5.36-5.41. Thus, in the following section we �rst smooth the data and add
Gaussian noise to it to do further stability analysis. Note that each graph is plotted for
Ns = 1000 trials. Thus, the fatness of the graphs gives the indication of the stability. Note
that the condition of noise being Gaussian seems to improve the stability.
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Fig. 5.48: Red wine (red) and sparkling wine (blue), 1980-1994.

Stability of forecast error variances on the real data example
The time series is taken from the same data [21]. For this example we have chosen red

and sparkling wine time series of the length N = 187, as visually the periodics of both
time series look the same, see Figure 5.48.

Before running the trials to examine the goodness of output noise variances (5.73,5.63),
the data need to be analyzed. According to the book [11] [p.138-139], the optimal param-
eters for both, the red and the sparkling wine, time series are as following: window length
is L = 60 and number of principal components r = 7.

Each trial of the test has the following setup:

• main series x - smoothened red wine series, based on the �rst 7 eigentriples (obtained
with SSA),

• support series y - smoothened sparkling wine series, based of the �rst 7 eigentriples
(obtained with SSA),

• ε ∼WN(0, σ2) - pseudo-random generated white noise using MATLAB with σ = 10
(generated Ns = 1000 times);

• ρ ∈ {0.1, 0.2, ..., 1.1} is the support series multiplier.

Note that the added noise does not change when we switch to di�erent %
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Tab. 5.1: SSA Red Wine Forecast Measures

σSSA σ2|Rs ∗ q| var(C) (5.77) var(x̂SSA128 )

7.9911 6.7355 7.2037 7.9991

So the time series for each trial are{
xn + εn

ρyn
n ∈ {1, ..., 200}, n ∈ {1, ..., 187} (5.74)

We de�ne several expressions, which help us to study the forecast stability

A =

L−1∑
i=1

(as1,ix̃128−i + b1,iỹ128−i) (5.75)

B =
L−1∑
i=1

(as1,ix̃128−i + bs1,iỹ128−i) (5.76)

C =
L−1∑
i=1

(cs1,ix̃
SSA
128−i) (5.77)

where x̃, ỹ are reconstructions obtained from MSSA, x̃SSA is a reconstruction obtained
from SSA, ai and bi are the coe�cients of the recurrence vectors R11 and R12 respectively,
and asi ,b

s
i ,c

s
i are the coe�cients of �xed (unperturbed) recurrence vectors Rs11, R

s
12, R

s

obtained from the MSSA(SSA) applied to the unperturbed time series. The unperturbed
time series in this case correspond to xn for SSA; for MSSA the unperturbed time series
correspond to (5.74), where εn = 0.

First, looking at SSA resulting Table 5.1, one could see that the theoretical measure
(5.63) is not far o� C and could be its reasonable estimate.

Leaving the values for var(A) for MSSA aside for a moment, we observe that the
variance (5.73) in Table 5.2 decrease dramatically as ρ grows, while the empirical variance
var(x̂128) seem to be more or less stable, apart from the outstanding value for ρ = 0.18.
Although, ignoring ρ = 0.18 values for a moment, we see it decreases till certain ρ (0.8),
and then we observe slight increase in empirical variance. We also observe that the variance
var(B) has a similar tendency as (5.73). In fact, recalling (5.73), one can see that

var(B) ≈ var(ε̂MSSA
N+1 ). (5.78)

Nevertheless, we do not observe convergence to zero for var(x̂128) and var(A). The only
di�erence between var(A) and var(B) is the choice of recurrence vector in the second term.
It makes a dramatic di�erence if one uses Rs12 instead R12. Hence, we are able to pinpoint
the problem with the theoretically constructed variance for MSSA output noise, which is
the instability of the R12 recurrence vector under the perturbation ε.

Also, for this analysis we came across very unstable behaviour of all the variances,
mentioned in Table 5.2, apart from the estimate of variance (5.63), based on the convo-
lution approach. This instability is caused by the eigenvectors swap due to the fact, that
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Tab. 5.2: MSSA Red Wine Forecast Measures

ρ σ2|Rs11 ∗ q1 +Rs12 ∗ q3| var(A) (5.75) var(x̂128) var(B) (5.76)

0.1 5.6975 6.6278 7.4768 6.5749
0.17 4.5769 114.5941 8.1574 7.1851
0.18 2.6169 3146.2 3898.9 997.9766

0.19 2.5575 194.1092 7.3854 3.6954
0.2 2.4359 30.4935 6.7346 3.2459
0.22 2.1989 9.5182 5.9248 3.1407
0.3 1.5222 5.1692 4.7625 1.9477
0.4 1.0386 4.5712 4.6748 1.2182
0.5 0.7341 4.371 4.7254 0.7938
0.6 0.5253 4.3115 4.8085 0.537
0.7 0.3792 4.3248 4.8949 0.3738
0.8 0.2764 4.3794 4.978 0.2663
0.9 0.2039 4.4572 5.0574 0.1934
1 0.1523 4.5463 5.1319 0.1429
1.1 0.1152 4.6383 5.1994 0.1073

corresponding eigenvalues are approximately the same. In this particular case, our cut-o�
point is 7 principal components, i.e. we use 7 principal components to obtain a forecast
base. The eigenvalues for principal components 7 and 8 are very close to each other for
ρ = 0.18, which is not the case for example for ρ = 0.3. We can see from Figure 5.49
that distributions of eigenvalues 7 and 8 are intersecting and in fact seem to be very alike.
However for ρ = 0.3 eigenvalues 7 and 8 have no intersections in distribution whatsoever
(see Figure 5.50).

This particular example with di�erent multiplier in support series illustrates that the
comparison of the variances is not always a fair test for causality. In order to see if the
variances do not mislead in terms of causality it is useful to compare sets of variances
obtained for di�erent scaling.

Now by generating a support time series, such that it has no common trend or periodics,
we look at the variances behaviour of red wime forecast when causality is not expected.
For this example we have generated the following time series of the length N = 187 using
MATLAB

yn = 1000

(
sin

1.61 · 12n

2π

)
+ 500 (5.79)

The analyzed time series are illustrated on Figure 5.51.
In Table 5.3 we observe nearly opposite behaviour of the variances to the one shown in
Table 5.2. The suggested forecast error variance (5.73) does not decrease as rapidly as in
Table 5.2, moreover, its seems to stabilize at value 6.6. The variance var(A) in Table 5.2
has a sharp increase from ρ = 0.1 to ρ = 0.17, then decreases with ρ increasing to 0.6 and
slightly increase for ρ in range 0.6 to 1.1. However, we observe the increasing trend in Table
5.3. The forecast variance var(x̂128) for both examples, when support series is sparkling
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Fig. 5.49: Distributions of eigenvalues 7 (blue) and 8 (red). ρ = 0.18

Fig. 5.50: Distributions of eigenvalues 7 (blue) and 8 (red). ρ = 0.3
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Fig. 5.51: Red Wine Time Series and (5.79) (red)

Tab. 5.3: MSSA Red Wine Forecast Measures with support series (5.79)

ρ σ2|Rs11 ∗ q1 +Rs12 ∗ q3| var(A) (5.75) var(x̂128) var(B) (5.76)

0.1 7.8661 8.4545 8.6397 7.8798
0.2 7.1994 7.952 8.1232 7.5153
0.3 6.7942 8.8551 7.7428 7.1967
0.4 6.6424 11.6653 7.5411 6.9916
0.5 6.5881 15.1699 7.4265 6.8687
0.6 6.5639 18.2412 7.3044 6.793
0.7 6.5341 22.2217 9.9216 6.7272
0.8 6.5747 22.6167 8.2548 6.7453
0.9 6.5809 24.0218 8.3286 6.7349
1 6.5853 25.0824 8.3883 6.7274
1.1 6.5888 25.8982 8.4366 6.7218
10 6.6064 30.0821 8.7161 6.6967
100 6.6067 30.1362 8.7201 6.6964
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wine time series and simulated time series (5.79), oscillates but not dramatically. In Table
5.3 we see that var(B) decreases rapidly while ρ increases, but for the counterexample (see
Figure 5.51, Table 5.3) the variance var(B) is stable.

The focus of this chapter was the relationship between the initial input noise of the time
series and the resultant output noise after SSA/MSSA analysis. We studied the exact
e�ects SSA mechanism has on the formation of the error in the obtained forecast.

We introduced the linearization of the SSA procedure, naturally to the �rst order, when
the perturbation comes in the main series. The purpose of the linearization was to come
to a better understanding of noise propagation through the SSA approach and see if it
was possible to derive an expression, that connected noise in the initial time series with
the error in the forecast. In its complete form, this expression tends to obscure statistical
independence of input noise, which made further derivation di�cult.

We studied the noise propagation at three SSA/MSSA stages: projector construction,
time series reconstruction and forecast. At each stage we assessed the size of perturbation
e�ect and checked if any of them are dominant. The analysis have shown that the pertur-
bation coming through the perturbed eigenvectors can be neglected due its unsubstantial
in�uence on the reconstruction, while the perturbation coming through the Hankel matrix
plays a crucial role in reconstructions. To validate this point we did three stages stability
analysis for simulated and real data.

Thus, for further stability analysis we assumed that the recurrence vectors are �xed,
although some instability occurred for the recurrence vector R12, which are revealed in
Sections 5.8. Nevertheless, we assume that all recurrence vectors stay constant.

We analyzed the variance of the forecast of red wine time series with two di�erent
support series, sparkling wine support series and simulated support series (5.79). We
expect causality in case when support series is sparkling wine, as visually their structures
have similarities, however we do not expect any causality between red wine time series
and time series (5.79). We studied the forecast variance from di�erent angles by �xing the
components in the forecast LRF, see (5.75, 5.76, 5.77). Curiously, the theoretical forecast
variance, suggested in this chapter (5.73) has a homogeneous behaviour comparing to
other variances and seem to be the only measure, which is not a�ected by the overlapping
distributions of cut-o� eigenvalue with the eigenvalue next to the cut-o� one. However,
in the counterexample, which is set so that there is no causality between time series, the
variance (5.73) is stable for all chosen ρ and does not change even if the multiplier ρ is
much bigger then 1 (see Table 5.3, values for ρ = 10, 100).

For these particular examples we observed that the introduced variance decreases
rapidly with increasing multiplier if causality takes place and is stable if causality is ab-
sent. The comparison of two introduced theoretical variances, (5.63) and (5.73) may be a
fair way to detect causality, as it is not a�ected by the possible eigenvectors swap, as was
described above. Thus, the ratio of variances (5.63) and (5.73) is competitive to the ratio
of variances used as F-test statistic.

To summarize last two paragraphs, on the basis of simplifying assumptions we derived
a theoretical model for the output variance, which is based on the recurrence vectors and
convolution. The implementation of this model showed the most stable and consistent
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result, comparing to other suggested variants. Moreover, the comparison of the output
variance (5.63) and (5.73) is competitive to the ratio of variances used as F-test statistic.
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CONCLUSIONS

Achieved goals

This thesis is dedicated to the study of two major concepts in time series analysis and
in econometrics, i.e. of Singular Spectrum Analysis, and of Granger's causality concept,
which originally is applicable only to the stationary autoregressive model.

The goal of the work was to to combine Singular Spectrum Analysis technique with
Granger's fundamental idea in such a way that it is possible to �nd a suitable measure
for causality between two time series, without stationary autoregressive model constraints.
Granger's concept of causality is founded upon the ability to forecast, so SSA seems to
be a good starting point to build a new causality test, as it provides �exible tools for
forecasting.

This study revealed that the statistical Granger's causality tests, which should be
distinguished from Granger's theoretical concept of causality coherence, are sensitive to
chosen parameters, such as the time lag used in the underlying linear regression model and
time shifts in the support series. Moreover, the majority of Granger causality tests are
closely related to the F-test, described in Chapter 3.

We applied the F-test, sign test and dominance tests to the quality of the MSSA
forecast, compared with the SSA forecast, in a simulation study see if causality can be
identi�ed. F-test and sign test performance supported our expectations.

For the dominance tests we introduced indicator measures, which are useful to help
decide which case of dominance occurs in a given data set.

In general, F-test, sign test and dominance tests along with direct distribution com-
parison did not contradict each other, and results in most cases were consistent.

These calculations also revealed a certain regular pattern, appearing between the loss
function comparing the forecast with the real signal of the time series S(1), and the loss
function comparing the forecast with the actual value of the time series S(2), i.e.

S(2) ≈ S(1) + σ2

with σ2 being the variance of the noise in the main series.
We derived a novel approach to causality using Granger's idea and built a tentative

causality measure modeled more closely on Granger's concept, but using SSA/MSSA which
is suitable for time series outside the class of stationary autoregressive time series. This
measure arises from the idea of so-called linearized MSSA, which was derived in order to
avoid a fundamental scaling problem one comes across when dealing with standard MSSA.

The �rst order stability analysis of the SSA reconstruction and forecast algorithms un-
der perturbations in the main time series showed that the noise component coming through



the perturbed eigenvectors can be neglected due to its small e�ect on the reconstruction,
while the perturbation coming through the Hankel matrix has a dramatic impact on the
reconstruction.

The real data study revealed that natural noise leads to a greater instability than
Gaussian noise.

Thus, for further stability analysis we assumed that the recurrence vectors are �xed.
This assumption was shown to be valid empirically in some simulated and real data tests.
However, some remaining instability occurred for the MSSA partial recurrence vector R12,
as discussed and shown on examples in Sections 5.8. Nevertheless, we assume that all
recurrence vectors stay constant in our theoretical analysis of stability under perturbation,
in order to obtain a manageable formula.

This theoretical (5.73) forecast variance for MSSA has a smooth behaviour under scal-
ing of the support series, comparing to other variances considered, and seems to be the
only measure which is not a�ected by the overlapping distributions of cut-o� eigenvalue
corresponding to the eigentriple with the smallest weight included in reconstruction, with
the eigenvalue next to the cut-o� one. In the case of causality, the theoretical variance de-
creased markedly with increasing support series multiplier. However, in the non-causality
case the variance (5.73) is approximately constant for all chosen support series multipliers,
even if it is large.

We suggested the comparison of two introduced theoretical variances, (5.63) and (5.73)
to be a suitable way to detect causality, as it is not a�ected by the possible eigenvectors
swap, as was described in Chapter 5. The ratio of variances (5.63) and (5.73) could be a
foundation for a competitive measure for causality detection.

Future work

In Chapter 4 we introduced so-called linearized MSSA. The background of this idea
is following. If we consider causality to be phenomenon occurring between time series
structures, we would expect that these structures do not change with regard to scaling.
Nevertheless, if we run full MSSA procedure, we get di�erent forecasts for the main series,
depending non-linearly on the multiplier used in the support series; using the linearized
MSSA we avoid this problem.

However, in the linearized MSSA we fully omit the autocovariance matrix X2Xᵀ2 ob-
tained for the support series and to the analysis of the matrix(

X1Xᵀ1 X1Xᵀ2
X2Xᵀ1 0

)
,

from which arise following issues. First of all, by omitting the matrix X2Xᵀ2 we make it
impossible to get a full reconstruction of the support series, which is substantial to obtain
the MSSA forecast. Therefore, we we cannot do the stability analysis performed in Chap-
ter 5. So far, we have got a good linear approximation of the recurrence vectors of the
MSSA procedure. It is interesting to construct the full linearized MSSA mechanism and
use it for further causality studies.
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It is a challenging task to combine the ideas of the linearized MSSA and the convolu-
tion approach together with the approximate SSA suggested in paper [26].

One of the ideas in the paper [26] was to build an approximate projector without doing
spectral analysis. The eigentriples in this case are given weight functions, so that if the
explicit eigenvalues change places the projector still changes continuously.

The combination of these approaches may lead to a better understanding of noise prop-
agation as well as to improve established theoretical models for resultant output variances.

The theoretical variance was built on the assumption that recurrence vectors and con-
volution kernels are stable and empirically we showed that the stability is valid for SSA
recurrence vector R and R11. In the future it is interesting to see to which extent the
stability assumptions made in Chapter 5 do hold and whether there are any boundaries for
their validity. It would be of a great importance for this question to know if these stability
assumptions have a theoretical proof behind them.

One of possible future directions is to verify the range of validity of suggested simpli-
fying assumptions of stability for recurrence vectors and convolution kernels for a wider
range of time series.

Another possible future research can be dedicated to study of the instability of the re-
currence vector R12. It may be a su�cient contribution to stability analysis of the theoret-
ical variance model to investigate the causes of R12 instability and may lead to a better,
improved version of causality measure.
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