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Abstract

This paper is concerned with a comparison of the performance and efficiency of
mixed finite element methods for solving single phase fluid flow in porous me-
dia. Particular attention is given to the accurate determination of the ground-
water fluxes. The linear systems generated by the mixed finite element method
(MFEM) are indefinite. Symmetric positive definite linear systems are gener-
ated through the introduction of Lagrange multipliers giving rise to the mixed
hybrid finite element method (MHFEM). The convergence behaviour of the
numerical approximations is investigated over a range of conductivity coeffi-
cients from heterogeneous, isotropic and diagonal to discontinuous, anisotropic
and full, on both triangular and quadrilateral, structured and distorted meshes.
The robustness and efficiency of various preconditioned solvers is investigated in
terms of optimality with respect to both mesh size and conductivity coefficient.

Keywords: Groundwater flow; conductivity coefficient; mixed finite element
method; mixed hybrid finite element method; preconditioners; conjugate
gradient; MINRES; AMG

1. Introduction

The equations governing single phase porous media flow can be solved either
as a single second order partial differential equation for potential (pressure) or
as a system of two first order partial differential equations for pressure and
velocity. Mixed finite element methods (MFEM) are based on the latter. These
methods ensure the continuity of fluxes but at the cost of additional degrees of
freedom and a discrete problem with an indefinite matrix.

The importance of accurate approximation of fluxes has been fiercely de-
bated in the groundwater modelling community over the last two decades or
so. The central issue concerns the importance of accurate flux computations
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not only when solving the contaminant transport equations but also in deter-
mining accurate water balances. In many applications of traditional numerical
techniques such as finite elements (FEM), finite differences (FDM) and finite
volumes (FVM) to groundwater flow problems, an approximation to the poten-
tial is generated first and then the flux is obtained by numerical differentiation
in a post-processing stage using Darcy’s Law [1, 2, 3, 4]. Whilst post-processing
techniques for determining the flux might be suitable for problems with rela-
tively homogeneous hydraulic conductivity, they are not appropriate for het-
erogeneous aquifers [5, 6]. This is because they are prone to numerical error
particularly when the hydraulic conductivity coefficient is discontinuous with
large contrasts in different regions of the problem domain.

Mixed finite element methods (MFEM) [7, 8] represent an alternative to tra-
ditional numerical schemes and are based on the simultaneous approximation
of potential and groundwater fluxes. Mixed methods are characterised by the
choice of vector basis functions used to approximate the normal components of
fluxes across each finite element edge (in 2D) or face (in 3D). Additionally, scalar
basis functions, which are element-wise constant, are chosen for the approxima-
tion of the potential. Mixed methods possess some important properties, e.g.
they are locally conservative and the normal components of the fluxes are con-
tinuous across element boundaries.

Groundwater fluxes obtained by mixed methods are generally more accurate
than those obtained through Darcian post-processing. Numerical evidence to
substantiate this claim has been provided by Durlofsky [9] and Kaasschieter
[10], for example. However, the improvement in accuracy is achieved at greater
computational expense simply due to the larger number of degrees of freedom
in the mixed formulation compared to the standard formulation. In the mixed
method, the number of unknowns corresponds to the sum of the number of
elements and edges in the finite element mesh whereas as in the standard for-
mulation, the number of unknowns corresponds to the number of elements or
nodes (FEM and FDM / FVM , respectively). This drawback of mixed methods
was one of the arguments used against their use in the papers of Cordes and
Kinzelbach [2], and Srivastava and Brusseau [3].

The mathematical theory underpinning the mixed formulation is mature
and well-developed (see [11, 12, 7, 13, 14, 15, 8], for example). Existence and
uniqueness of MFEM approximations (Raviart-Thomas RT0 or Brezzi-Douglas-
Marini BDM1 [16]) is guaranteed for any mesh and full-tensor representation
of the diffusion coefficient [17]. Extensive research has been carried out on er-
ror and convergence analysis for the lowest order Raviart-Thomas (RT0) mixed
finite element method (see Brezzi and Fortin [8], Arbogast et al. [18], Dem-
low [19], Radu et al. [20], for example); and on comparing MFEM approxima-
tions with finite volume and multi-point flux approximation (MPFA) methods
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The link between mixed formula-
tions and standard finite volume methods is investigated in [25, 32, 33, 34, 27]).
Similarly, the link between MPFA and mixed methods is analysed in Vohralik
[35], Klausen and Russell [36], Wheeler and Yotov [37], Younes and Fontaine
[38, 39]. Comparative studies between MFEM and other methods focus on com-
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putational aspects (see Kaasschieter and Huijben [5], Younes et al. [40], Younes
and Fontaine [38, 39], for example) as well as the quality of the approximations
[29, 17].

The discrete linear systems of equations generated using the mixed formula-
tion are indefinite. In the past, this was considered to be a considerable weakness
of the approach due to the lack of an efficient iterative scheme for solving saddle-
point problems. However, this deficiency can be circumvented by augmenting
the linear system using Lagrange multipliers, thereby creating what is known
as the mixed-hybrid finite element method (MHFEM) [7, 8]. The discrete lin-
ear systems obtained by MHFEM are symmetric positive definite (SPD) and
therefore can be efficiently solved using the conjugate gradient (CG) method.
Additionally, the size of the linear system is reduced (to one of dimension equal
to the number of edges) by eliminating the pressure and velocity unknowns from
the system. Hence, based solely on the size of the discrete linear system, MH-
FEM is computationally less expensive than classical MFEM. Consequently, in
the majority of the comparative studies with MPFA and finite volume meth-
ods cited above, the SPD version is used. Studies associated with the classical
MFEM are significantly less common in the literature as this represents a some-
what specialised area of research. Note, however, that the saddle-point problem
obtained from the mixed formulation can be solved using the minimal residual
(MINRES) method [41]. If MINRES is preconditioned with efficient symmetric
preconditioners then the solution of the symmetric indefinite system can be very
efficient [42, 43, 44, 45, 46]. The choice of preconditioner for MINRES is crucial
to its competitiveness.

This paper focuses on MFEM both in its classical and hybrid formulations.
It investigates MFEM convergence performance for a range of conductivity coef-
ficients often encountered in groundwater modelling applications. These range
from heterogeneous, isotropic and diagonal to discontinuous, anisotropic and
full tensor coefficients. We show that accurate approximations for the flux and
potential unknowns are achieved in all settings. We highlight the cases where
loss of convergence accuracy is experienced on triangular and quadrilateral,
structured and distorted meshes.

In addition to the error analysis the paper reports the computational cost
of solving the indefinite linear systems derived using MFEM (Raviart-Thomas
elements of lowest order) and the symmetric positive definite systems obtained
with hybridization. Throughout the paper the focus is on robustness of the
solvers and preconditioners with respect to the conductivity coefficient and the
discretisation parameter of the numerical scheme. We provide further evidence
to show that if MINRES is equipped with an efficient preconditioner such as
the one proposed by Powell and Silvester [45], solving the indefinite system can
be more efficient than solving the SPD case.

The numerical experiments that have been conducted and described in this
paper encompass a wide range of conductivity coefficients and different meshes.
Consequently, the paper provides a complete comparative study on computa-
tional cost of the classical and hybrid mixed finite element methods for solving
groundwater flow problems.
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2. Mathematical Model

The steady-state flow of water in porous media is described by a scalar
second-order partial differential equation, the solution of which, when supple-
mented with suitable boundary conditions, gives the distribution of a scalar
potential u (potential head). Let D be a domain in Rd, d = 2, 3, with Lipschitz
continuous boundary Γ. Let Γ = ΓD ∪ΓN with ΓD ∩ΓN = ∅, where ΓD and ΓN

denote the portions of Γ where Dirichlet and Neumann boundary conditions on
u are prescribed, respectively.

We seek a solution u to the second-order elliptic problem

−∇ · C∇u = f in D, (1a)

u = g on ΓD, (1b)

C∇u · n = 0 on ΓN , (1c)

where C is a given d×d symmetric positive definite coefficient tensor representing
the hydraulic conductivity, n denotes the unit outward normal vector to ΓN , g
represents the prescribed constant head on ΓD and f represents a sink or source
term.

Traditionally, finite difference or finite element methods have been used to
discretise problem (1). In such methods it is common to post-process the ap-
proximation to u in order to obtain the fluid discharge (flux) or velocity, q,
according to Darcy’s Law. Whilst this is commonly done in practice, many
authors have shown that the computed fluxes are inaccurate due to errors in-
troduced by numerical differentiation (see [5] and [6], for example).

In many applications, q is the primary variable of interest. Hence, a nu-
merical scheme which guarantees an accurate approximation of the fluxes is
preferred. This can be achieved by recasting problem (1) as a first-order system
of partial differential equations in which Darcy’s Law appears explicitly. We
now seek the solution (q, u) to the coupled first-order problem

C−1q−∇u = 0 in D, (2a)

∇ · q = −f in D, (2b)

u = g on ΓD, (2c)

q · n = 0 on ΓN . (2d)

The solution of problem (2) using mixed finite element methods allows us to
obtain, simultaneously, approximations for u and q everywhere in D.

3. Weak Formulation

In this section we introduce the weak formulation of the problem. The mixed
finite element method is based on a discretization of the weak formulation. The
functions vanishing on ΓD belong to the Hilbert space

H1
0,D(D) = {w ∈ H1(D) : w = 0 on ΓD}. (3)
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The following Hilbert spaces are required for the mixed variational formulation
of problem (2). The space H(div ;D) is defined by

H(div ;D) = {v : v ∈ L2(D)d and ∇ · v ∈ L2(D)}, (4)

equipped with the inner product

(v,u)div = (v,u) + (∇ · v,∇ · u) ,

and associated norm

∥v∥div = ∥v∥L2(D)d + ∥∇ · v∥L2(D). (5)

Define wΓ to be the trace of any scalar function w ∈ H1(D). The set of all
such traces defines the Hilbert space

H
1
2 (Γ) = {g : g = wΓ for some w ∈ H1(D)}. (6)

Similarly, for vector functions v ∈ H(div ;D), (v · n)Γ defines the normal trace,
where n is the unit outward normal to Γ. Therefore the set of all such functions
determines

H− 1
2 (Γ) = {q : q = (v · n)Γ for some v ∈ H(div ;D)}. (7)

Following Powell [44], for any function g ∈ H
1
2 (Γ) and q ∈ H− 1

2 (Γ), ⟨·, ·⟩ repre-
sents the duality pairing

⟨g, q⟩ =
∫
Γ

gq ds, (8)

and we define the subspace of H(div ;D) in which the solution is sought

H0,N (div ;D) = {v ∈ H(div ;D) : ⟨v · n, w⟩ = 0 ∀w ∈ H1
0,D(D)}. (9)

Define W = L2(D) and V = H(div ;D). The weak formulation of the mixed
variational problem (2) is: Find (q, u) ∈ V ×W such that

a(q,v) + b(v, u) = ⟨g,n · v⟩ΓD ∀v ∈ V

b(q, w) = −(f, w) ∀w ∈ W,
(10)

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(q,v) =

∫
D

C−1(q · v) dΩ,

b(v, w) =

∫
D

∇ · vw dΩ,

respectively.
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The weak formulation has a unique solution (q, u) ∈ V × W provided the
bilinear forms a (·, ·) and b (·, ·) satisfy the following inf-sup condition (also called
the Ladyzhenskaya-Babuška-Brezzi (LBB) condition)

inf
w∈W

sup
v∈V

∫
D

w∇ · v

∥ w ∥W ∥ v ∥V

≥ β, (11)

where the constant β > 0 (for a proof of this condition see Brezzi and Fortin
[8]).

4. Mixed Finite Element Method

Let Th be a partition of D defined by closed sub-domains (finite elements)
Ki, i = 1, . . . , n, such that,

Th =
n∪

i=1

Ki

where h denotes the discretisation parameter which describes the size of the
finite elements in Th. Let Eh be the collection of numbered edges (d = 2) or
faces (d = 3), ei, i = 1, . . . ,m, where m is the total number of edges or faces in
Th. According to the Galerkin method we define finite dimensional subspaces
V h ⊂ V and Wh ⊂ W . The discrete variational formulation of (10) is: Find
(qh, uh) ∈ V h ×Wh such that

a
(
qh,vh

)
+ b

(
vh, uh

)
= ⟨g,n · vh⟩ΓD ∀vh ∈ V h

b
(
qh, wh

)
= −

(
f, wh

)
∀wh ∈ Wh

(12)

4.1. Raviart-Thomas Approximation

A family of local spaces that can be used to construct a suitable subspace
V h ⊂ V ≡ H0,N (div; Ω) was proposed by Raviart and Thomas [11] for R2 and
by Nedelec [12] for R3. Let RT 0 denote the space of linear vector functions vi,
i = 1, . . . , I, where I is the number of edges or faces associated with a finite
element K. Therefore, we have

RT 0(K) = span{vi}Ii=1.

The value of I depends on the type of finite element chosen for the discretisation
of D, so that I = 3 and I = 4 for triangular and rectangular elements, respec-
tively, and I = 4 and I = 6 for tetrahedra and parallelepipeda, respectively.

It is common practice to define the vector basis functions on a reference
element K̂. Thus the definition of vector basis functions on a general element
follows from the reference element through an affine transformation. In such
circumstances the well-known transformation rules for vector and scalar basis
functions apply (see Brezzi and Fortin [8], §III.1.3). Let RT 0(K̂) denote the
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local I-dimensional space of vector basis functions v̂i defined on K̂. It follows
that

RT 0(K) =

{
v : v(x) =

Bv̂(ξ)

J
∀ ξ ∈ K̂ and v̂ ∈ RT 0(K̂)

}
, (13)

where ξ is the local coordinate system and J is the determinant of the Jacobian
of the transformation B. We can now define the global spaces

RT 0(D;Th) = {v ∈ H(div ;D) : v|K ∈ RT 0(K) ∀K ∈ Th}, (14)

and
M0 =

{
v ∈ L2(D)d and v|K ∈ RT 0(K) ∀K ∈ Th

}
. (15)

A suitable subspace for the approximation to the flux q is

V h = M0 ∩H0,N (div ;D) =
{
v ∈ RT 0(D;Th) and v · n|ΓN = 0

}
. (16)

For triangular and tetrahedra elements the vector basis functions v̂ ∈ RT 0(K̂)
have the special form

v̂ =

(
a+ cξ
b+ cη

)
, v̂ =

 a+ cξ
b+ cη
e+ cζ

 ,

respectively, and for rectangular and parallelepipeda elements they take the
form

v̂ =

(
a+ cξ
b+ dη

)
, v̂ =

 a+ cξ
b+ dη
e+ fζ

 .

respectively. The coefficients a, b, c, d, e, andf are constants chosen so that the
integral of the normal component of v̂ along an edge or face of K̂ is equal to
some constant δ.

Finally, the potential u is approximated by piecewise constant functions w.
Let M0(K) denote the one-dimensional space of constant scalar basis functions
on K. Hence, a suitable subspace Wh ⊂ W ≡ L2(D) is

Wh = {w ∈ L2(D) : w|K ∈ M0(K) ∀ K ∈ Th}. (17)

4.2. Linear System

For each element K we associate a scalar basis function ϕj , j = 1, . . . , n,
which is element-wise constant. The potential uh can therefore be approximated
in terms of the global scalar basis functions,

uh =
n∑

j=1

ujϕj , (18)
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where ϕj is the characteristic function on Kj . Globally, for each edge or face
e ∈ Eh we fix oriented normal vectors νi, i = 1, . . . ,m, where m is the total
number of edges in Eh. Next, we define a direction index siK so that

siK =

{
+1 if ni

K = νi
K

−1 if ni
K = −νi

K

(19)

where ni
K denotes the set of unit outward normal vectors to the edges ei ∈ Eh.

The vector (flux) basis functions φ̂i ∈ V h are defined with respect to a
reference element K̂ so that,∫

ek

φ̂i · ν̂kds =

{
1 if k = i

0 if k ̸= i
. (20)

Note that this is the condition which ensures continuity of the normal com-
ponents of the flux q across the inter-element edges of Eh. Finally, we can
approximate qh in terms of the global vector basis functions φi,

qh =
m∑
i=1

qiφi. (21)

The mapping φ̂i 7→ φi follows from (13). Additionally, the global basis functions
φi are multiplied by the index si before the system is assembled. The source /
sink term f is also approximated in terms of the global scalar basis functions
ϕi,

f ≈
n∑

i=1

fiϕi. (22)

Substituting expansions (18), (21) and (22) into (12) we obtain

m∑
j=1

Ai,jqj +

n∑
k=1

Bi,kuk = gi i = 1, . . . ,m,

m∑
i=1

Bk,iqi = fk k = 1, . . . , n,

(23)

where Ai,j is constructed from the element contributions

AK
i,j = a (φj ,φi)K =

∫
K

C−1φK
j φK

i dK, i, j = 1, . . . , I, (24)

where I is the number of edges or faces on K. Given an element K, ϕK = 1,
hence the element contributions to the global matrix Bk,i are given by

BK
i =

∫
ei

φi · ni de, i = 1, . . . , I, (25)
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and

Bk,i =

{
0 if ei ̸∈ Kk

sKk
i if ei ∈ Kk

. (26)

The elements of the right-hand side vectors are defined by

fk =

∫
Kk

fdKk gi =

{
0 if ei ̸∈ ΓD∫
ei
gde if ei ∈ ΓD

. (27)

The system (23) can be re-written in matrix notation as follows(
A BT

B 0

)(
q
u

)
=

(
g
f

)
, (28)

where q = [q1, . . . , qm]T and u = [u1, . . . , un]
T . The symmetric matrix A is

generally referred to as a weighted velocity matrix and the matrix B is a discrete
representation of the divergence operator.

Given that A is positive definite, we can write

q = A−1
(
g −BTu

)
, (29)

which when substituted into the second equation of (28) gives

BA−1BTu = BA−1g − f . (30)

The matrix BA−1BT is also symmetric and positive definite (see Chavent and
Jaffré [13] and Kaasschieter and Huijben [5] for an alternative proof). These
properties are very important with regard to the choice of method used to solve
the linear system (28).

4.3. Solution Strategies

A review of solution strategies for the linear system (28) can be found in
the theses of Scheichl [47] and Powell [44]. The solution of system (30) by the
conjugate gradient method is advocated by Kim [48] and Ewing and Wheeler
[49]. However, the computation of A−1 is expensive for general meshes and for
full-tensor C and the Schur complement BA−1BT is not sparse. When rect-
angular meshes and diagonal conductivity coefficients C are used the elemental
contributions AK to the weighted velocity matrix are block-diagonal (see [44]).
Hence, the computation of A−1

K is inexpensive and the system (30) can be solved
efficiently using CG. Additionally, it can be shown that if the trapezoidal rule
is used to approximate the elemental contributions to A and B (Kaasschieter
and Huijben [5]) on rectangular meshes, then A becomes diagonal. For these
special cases the solution of (30) using CG is recommended.

There has been several attempts to solve the saddle-point problem (28) us-
ing iterative methods. The Uzawa method is an established iterative scheme for
solving saddle-point systems. However, this method requires the computation of
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the inverse of the coefficient matrix which becomes infeasible for practical appli-
cations (unstructured meshes and full-tensor coefficients). Fortin and Glowinski
[50] introduced the augmented Lagrangian method which applies an Uzawa al-
gorithm to a modified saddle-point problem.

Algebraic approaches to solving (28) were introduced by Rusten and Wither
[42] and several preconditioners are proposed in Rusten and Wither [51] and
Rusten et al. [52]. Powell [44] and Powell and Silvester [45] proposed an ideal
and practical preconditioner of the form

P =

(
diag(A) 0

0 Bdiag(A)−1BT

)
. (31)

The Schur complement Bdiag(A)−1BT can be inverted exactly or approximated
using one V-cycle of black-box Algebraic Multi-Grid (AMG).

A preconditioner is defined to be h-optimal if the number of iterations re-
quired to solve the preconditioned system is independent or almost independent
of the discretisation parameter h. Powell and Silvester [45] showed that the pre-
conditioner defined by (31) is h-optimal for isotropic C on structured triangular
and rectangular meshes. However h-optimality is lost for diagonal anisotropic
coefficients on triangular meshes. Furthermore, the preconditioner (31) is never
h-optimal for general full-tensor coefficients.

The definition of C-optimality follows from above. The preconditioner (31)
is only C-optimal in some special cases. In fact, its efficiency decreases drasti-
cally for anisotropic diagonal and full tensor coefficients on structured triangular
meshes. For structured rectangular meshes the preconditioner (31) is more effi-
cient displaying C optimality for anisotropic diagonal coefficients. Currently, a
preconditioner for (28) which is C-optimal for anisotropic full tensor coefficients
remains elusive. Furthermore, the efficiency of the preconditioner (31) has not
yet been investigated for unstructured two-dimensional meshes and structured
and unstructured three-dimensional meshes.

An alternative approach which has been advocated in the literature [10] is
the hybrid method, introduced by de Veubeke [53] and further developed by
Arnold and Brezzi [7] and Brezzi and Fortin [8]. This is discussed further in the
next section.

5. Mixed Hybrid Finite Element Method

Arnold and Brezzi [7] presented an alternative discretization of the problem
that results in the generation of a symmetric positive definite coefficient matrix
for problem (2). The continuity condition on the normal components of the flux
q across the finite element edges or faces is relaxed, i.e. q is allowed to be dis-
continuous across element interfaces. The continuity condition (required for the
type of problems herein investigated) is subsequently re-established through the
introduction of Lagrange multipliers λ associated with those interfaces. Since
the velocity is discontinuous across element boundaries, the velocity unknowns
can be eliminated obtaining from the system to obtain a reduced system with
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unknowns comprising uh and the Lagrange multipliers λh. Note that the La-
grange multipliers can be interpreted as approximations to the potential u at
the element interfaces. Furthermore the unknowns uh can also be eliminated
to obtain a system of equations solely in terms of the Lagrange multipliers λh.
This final reduced system is positive-definite and of size m×m, where m is the
number of edges or faces in Th. Hence the conjugate gradient can be used to
solve the linear system efficiently.

In the following discussion we use the notation of Brezzi and Fortin [8]. Let
Λ0(e) denote the space of constant functions on e, ∀e ∈ Eh. We define the
multiplier space

Λ0

(
Eh
)
=
{
λh : λh|e ∈ Λ0(e)∀e ∈ Eh

}
, (32)

and the subspaces of multipliers that either vanish or satisfy the essential bound-
ary condition u = g on ΓD

Λ0,ΓD
= {λ ∈ Λ (Eh) : λ = 0 on ΓD} ,

Λg,ΓD
=

{
λ ∈ Λ (Eh) : λ = gh on ΓD

}
,

(33)

where ∫
e

(
gh − g

)
ds = 0, ∀e ∈ ΓD.

The flux approximation qh is now sought in M0 and the Lagrange multipliers
are defined in Λ0(e). Hence the following bilinear forms are defined

c
(
µh,qh

)
=

∑
K∈Th

∫
ΓK

µhqh · n dΓK

b
(
qh, wh

)
h

=
∑

K∈Th

∫
K

(
∇ · qh

)
wh dK

(34)

The hybrid version of the lowest-order Raviart-Thomas mixed method for prob-
lem (2) reads: Find (qh, uh, λh) ∈ M0 ×Wh × Λg,ΓD

such that

a
(
qh,vh

)
+ b

(
vh, uh

)
h

= c
(
λh,v

h
)
, ∀vh ∈ M0,

b
(
qh, wh

)
h

= −
(
f, wh

)
, ∀wh ∈ Wh,

c
(
µh,qh

)
= 0, ∀µh ∈ Λ0,ΓD

.

(35)

Given the space M0 as defined in (15) and the vector basis functions defined in
§4.1, the approximation for the flux, qh, can be expressed as follows

qh =
∑

K∈Th

IK∑
i=1

qKi φK
i , (36)

where I = 3, 4, 6, depending on the choice of finite elements for the discretisation
of Th. The potential u is approximated as in (18).
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Let Ih = {e ∈ Eh : e ̸⊂ ΓD} be the collection of edges (D = 2) or faces
(D = 3) ei, i = 1, . . . , l, of the finite element mesh excluding those on ΓD. The
space Λ0,ΓD

is spanned by scalar basis functions χi, i = 1, . . . , l, that satisfy the
following condition

χi =

{
1 if ei ∈ Ih

0 elsewhere
. (37)

The approximation of the Lagrange multipliers, λh, can now be stated as follows

λh =
l∑

i=1

λiµi. (38)

Problem (35) can be expressed in matrix notation as follows A BT CT

B 0 0
C 0 0

 q
u
λ

 =

 g
f
0

 . (39)

The clear distinction between (39) and (12) is the choice of the approximation
space for the flux q. The spaceM0 does not require the continuity of qh·n which
characterizes the space V h and in a more general sense the spaces H(div ;D).
The basis for M0 is chosen so that qh|K ̸= 0 only in K and vanishes elsewhere.
The important advantage of defining qh in a discontinuous space is that the
matrix A becomes block-diagonal and q can be eliminated at the element level
as follows

q = A−1
(
g −BTu− CTλ

)
(40)

Note that, inverting A entails inverting its diagonal blocks. Thus this operation
can be performed at the element level with little computational expense. Now,
using (40) to eliminate q from (39) we obtain the following reduced system(

BA−1BT BA−1CT

CA−1BT CA−1CT

)(
u
λ

)
=

(
BA−1g − f
CA−1g

)
. (41)

The matrix BA−1BT is symmetric and positive definite (see [8] and [5] for the
proof) and also diagonal [5]. Therefore, we can eliminate u to obtain

u =
(
BA−1BT

)−1 (
BA−1g −BA−1CTλ− f

)
. (42)

Finally, using (42) to eliminate u in (41) we obtain the linear system

Dλ = r, (43)

where
D = CA−1CT − CA−1BT

(
BA−1BT

)−1
BA−1CT (44)

and
r = CA−1g + CA−1BT

(
BA−1BT

)−1 (
f −BA−1g

)
. (45)

The matrix D is symmetric and positive definite, hence (43) can be solved using
the conjugate gradient method.
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5.1. Solution Strategies

As already noted the linear system (43) can be solved using the CG solver.
There is a vast number of choices of preconditioner based on D that can be used
in conjunction with CG such as SSOR or an incomplete LU (ILU) factorisation
of D (see Saad [54]).

A performance analysis for (43) using an incomplete Choleski factorization
of D is available in Kaasschieter and Huijben [5]. Several authors use CG
for (43) equipped with various preconditioners. Younes and Fontaine [38] use
the efficient CG implementation of Eisenstat [55]. The numerical experiments
reported exhibit neither h-optimality nor C-optimality. To our knowledge, an
efficient preconditioner for (43) is currently not available.

Multigrid methods for symmetric and positive definite systems have been
extensively studied, and theory, implementation and applications are available
in standard reference books (see Briggs et al. [56], Hackbusch [57], for example).
Convergence results for multigrid methods for nonconforming finite elements
are given in Brenner [58, 59] and Braess and Verfürth [60]. Further results and
comparison with mixed methods are given in Chen [61]. Although numerical
results presented in these papers show h-optimality, analysis of the effect of C
is not included. The effect of the conductivity coefficient on the convergence of
AMG is considered by Powell [44]. However, results for unstructured and 3D
meshes are not provided.

In this work, we follow the ideas presented in Powell [44] approximatingD by
one V-cycle of AMG as preconditioner for (43). We extend the implementation
to distorted meshes.

The efficient solution of problems (1) and (2) for full-tensor, highly anisotropic
coefficients remains a very active research field. Some authors have used sparse
direct solvers for this purpose. Recently Younes and Fontaine [39] demonstrated
the efficiency of sparse direct solvers based on unifrontal/multifrontal methods
[62, 63] to solve (43) on quadrilateral meshes. Comparison with iterative meth-
ods is not provided.

The efficiency of sparse direct solvers such as UMFPACK [64] depends on
the size of the problem. The general consensus is that sparse direct solvers
are very efficient for 2D problems, but their performance deteriorates in 3D.
Certainly the point at which sparse direct solvers become less efficient than
iterative solvers is problem dependent. In this paper only experiments using
iterative solvers are reported.

6. Numerical Experiments

In this section the computational cost required to solve the linear systems of
equations derived from the MFE and MHFE discretisations is evaluated. State-
of-the-art iterative solvers equipped with efficient preconditioners are used to
solve these systems. The computational cost is evaluated based on number of
iterations Nit, required by the solver to achieve convergence, and the CPU time
tCPU in seconds.
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The codes have been developed within the MATLAB environment [65] and
the computations are all performed in serial. The development of the same
algorithms in a parallel architecture is a subject for future work and develop-
ment. The implementation of the Preconditioned Conjugate Gradient (PCG)
algorithm follows Saad [54] and the MINRES implementation was modified from
Fischer [66]. The tolerance within the solvers is set to 10−10 and the maximum
number of iterations is set to maxit = 104. All numerical experiments have been
carried out using a standard dual-core laptop computer with 4GB of RAM.

The primary aim of this section is to investigate the circumstances under
which the solution of the hybrid problem becomes more efficient than the solu-
tion of the indefinite system generated by the mixed method. As expected, there
is not a simple universal answer to this question and we show that the relative
efficiency of the two approaches is strictly dependent on the on the nature of
the problem being considered.

Therefore, several test problems, differing in the form of the conductivity
coefficient C, will be analysed. Numerical simulations are performed on both
structured and distorted triangular and rectangular meshes to assess the effect of
the discretisation on the performance of the solvers. Throughout the discussion,
emphasis is given to those situations where h and C optimality is achieved.

Two tables are presented for each test problem. The first table includes
results for preconditioned MINRES using (31) with a direct solver for the Schur
complement. The preconditioned CG solver is used for the MHFE formulation
(39) using an incomplete Choleski factorisation of the matrix D as precondi-
tioner. These solvers are referred to as p-MINRES and PCG in the tables and
following subsections, respectively. In the second table results are presented for
MINRES with one V-cycle of black-box AMG used for the approximation of the
Schur complement. The preconditioner for CG is the AMG approximation of
the coefficient matrix D. These solvers are referred to as p-MINRESAMG and
PCGAMG in the tables and following sections, respectively.

The AMG solver we use is publicly available from the PIFISS [67] library and
is written in MATLAB. Other versions written in FORTRAN / MATLAB such
as the HSL MI20 [68, 69] are also freely available for academic use. Two types
of smoothing functions are available in the library, these are the point Gauss-
Seidel (PGS) and the point damped Jacobi (PDJ). In the following experiments
we use the latter with two sweeps per iteration. Note that there is no attempt
at tuning the several AMG parameters and that experiments with PGS were
not performed.

Note that the setup time for some of the preconditioners can be significantly
large especially for fine meshes. Accordingly, the setup time as well as the solu-
tion time are reported in the tables. Whenever the set-up time is not negligible
this is reported in the tables separately in the following manner: ”set-up time”
+ ”solution time”.

6.1. Triangular Meshes

We restrict ourselves to the case in which D is a square domain. Structured
meshes are obtained by partition of D into regular squares of area h2. Each
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square is further subdivided into two right angled triangles to obtain a total of
Ne finite elements. Distorted meshes are created by perturbation of structured
meshes as explained later.

The analytical and numerical solutions for each test problem are presented.
However, given that the MFEM and MHFEM approximations are equivalent,
we only present results for the former method. Similarly, only the L2-norms
of the error in the potential and velocity approximations for the MFEM are
tabulated. The L2-norms of the error are given by

∥q− qh∥L2 =

{
Ne∑
i=1

Ai

(
qi − qh

i

)2} 1
2

, (46)

∥ϕ− ϕh∥L2 =

{
Ne∑
i=1

Ai

(
ϕi − ϕh

i

)2} 1
2

, (47)

where Ai is the area of the ith finite element and q is evaluated at the centroid
of each finite element using Darcy’s Law. The numerically computed fluxes
(normal components of the flux at the edge mid-sides) are post-processed to
obtain values for qh = (qx, qy)

h at each element centroid. The analytical and
numerical potential solution is evaluated at the centroid of each finite element.

The same experiments presented in this section are reported for structured
and distorted rectangular meshes in §6.7.

6.2. Problem 1: heterogeneous, isotropic and diagonal C
The first test problem is similar to the one presented in Kaasschieter and

Huijben [5]. The conductivity coefficient is isotropic but heterogeneous (i.e. it
varies spatially) and it is given by

K =

[
a(x) 0
0 a(x)

]
,

where

a(x) =
1

1 + 2ϵ cos(πx) cos(πy) + ϵ2 cos2(πy)
. (48)

Given a source term f = 0 and boundary conditions defined by

gD(x) = π(1− y), x ∈ ΓD (49)

where ΓD = {x ∈ Γ : y = 0 or y = 1}, and

gN (x) = 0, x ∈ ΓN (50)

where ΓN = {x ∈ Γ : x = 0 or x = 1}, the boundary value problem (1) has
potential and velocity solutions given by

u(x) = π(1− y)− ϵ cos(πx) sin(πy).

q(x) = −a(x)

(
πϵ sin(πx) sin(πy)

−π − ϵ cos(πx) cos(πy)

)
.

(51)
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The potential and velocity approximations generated using the MFEM with
h = 1

32 and ϵ = 0.9 are depicted in Figure 1.
Table 1 presents the L2 norm of the error for the potential and velocity

components. The error behaviour is in agreement with results presented by other
authors [5] and with theoretical results [8]. Second order convergence, O(h2), is
observed for the potential and first order convergence, O(h), for velocity.

The conductivity coefficient varies from (1− ϵ)−2 to (1+ ϵ)−2. When ϵ → 1,
a(x) becomes singular and therefore the rate of convergence of the potential and
velocity approximations deteriorates significantly (see Table 2 and 3). In fact,
for ϵ = 0.999 the y component of the velocity approximation does not converge.
An analysis of the error distribution for the velocity components reveals that it
is concentrated in the upper left and lower right corners of the domain. This
location corresponds to the regions where the highest variation in the coefficient
a(x) occurs (see Figure 1b). This limitation can be resolved with local mesh
refinement in the upper-left and lower-right regions of the domain.

The numerical experiments using Krylov subspace methods for problem 1
are reported in Table 4. The table includes the number of iterations required to
attain convergence, Nit, and the solution timings. For CG, the set-up time for
the preconditioner, i.e. the time required to perform the incomplete Cholesky
factorisation of the coefficient matrix, is reported separately (”set-up time” +
”solution time”).

The post-processing time (MHFEM only) whereby the potential and velocity
solutions are obtained from the Lagrange multipliers solution should also be
considered. However, this is negligible compared with the set-up and solution
times reported in Table 4. In fact, for the case of a fine mesh (h = 1/256) the
post-processing time was calculated to be only 0.15 seconds.

The data reported in Table 4 can be summarised as follow:

1. MINRES, equipped with the Schur complement preconditioner (31) is h-
optimal and C-optimal, when C is an isotropic diagonal tensor;

2. CG using an incomplete Cholesky factorization of the coefficient matrix D
as preconditioner, is C-optimal but not h-optimal since Nit grows linearly
with h leading to large CPU times on fine meshes;

3. On average the CPU cost per PCG iteration is lower than that required
for preconditioned MINRES. Although this is a significant advantage of
PCG, it is the overall number of iterations Nit which determines the total
CPU cost (tCPU );

4. The results presented indicate that heterogeneity has no effect on the
performance of preconditioned MINRES. Conversely, although relatively
small, an increase in Nit and consequently tCPU is recorded using PCG
for both small and large values of ϵ.

The results of numerical experiments using algebraic multigrid as a precondi-
tioner are presented in Table 5. The AMG set-up time, i.e. the time required to
construct the coarse grids for the approximation is reported separately (”set-up
time” + ”solution time”). The main results can be summarised as follows:
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1. Both AMG versions of the solvers are h-optimal and C-optimal;

2. As for experiments presented in Table 4, heterogeneity has no negative
effect on the performance of either of the solvers;

3. Inverting the Schur complement using one V-cycle of AMG code is more
efficient than using sparse direct solvers. Thus lower CPU times than those
recorded in Table 4 are obtained even though the number of MINRES
iterations is larger;

4. Compared to Table 4, CG solution times and iteration counts are signifi-
cantly reduced when one V-cycle of AMG is used to approximately invert
the MHFEM coefficient matrix;

5. The computational efficiency of the AMG versions of the solvers is partly
nullified by the large CPU time required to construct the coarse grids.
This CPU cost grows linearly with the mesh size;

6. The AMG coarsening process implemented on the MHFEM linear system
is twice as expensive as the one implemented on the Schur complement
system.

For Problem 1 on triangular meshes, MFEM with MINRES is more efficient
than MHFEM.

6.3. Problem 2: heterogeneous, anisotropic and diagonal C
The second test problem considers an heterogeneous, anisotropic and diag-

onal tensor. The conductivity coefficient C(x) is given by

C(x) =
[
αx2 + y2 0

0 x2 + y2

]
. (52)

The anisotropy degree of the conductivity field varies depending on the value of
the coefficient α. When α = 1, the conductivity field is isotropic. The poten-
tial and velocity solutions are chosen so that homogeneous Dirichlet boundary
conditions are prescribed on Γ. These solutions are

u(x) = (x− x2)(y − y2),

q(x) = −

(
(y2 + x2α)(−1 + 2x)y(−1 + y)

(x2 + y2)x(−1 + x)(−1 + 2y)

)
.

(53)

The source term is obtained by substituting (53) and (52) in (1) which gives

f(x) = −2xαy + 2xαy2 + 6x2αy − 6x2αy2

+ 2y3 − 2y4 − 2xy + 6xy2 + 2x2y − 6x2y2 + 2x3 − 2x4.
(54)

The MFEM potential and velocity approximations for α = 1 are depicted
in Figure 2(a). The source term corresponding to (54) is illustrated in Figure
2(b).

Tables 6, 7 and 8 present the L2-norms of the error for u and q for α =
10−2, 1, 102, respectively. As for the previous test case O(h2) convergence is
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recorded for the potential and O(h) convergence for velocity. Note that, al-
though the convergence rates are independent of α, the absolute errors are
two orders of magnitude larger for the potential approximation and one order of
magnitude larger for the velocity approximation when compared to the isotropic
case.

The tables also include the minimum value for the potential solution, umin.
According to (53), u is always positive and ranges from 0, at the domain bound-
aries, to 0.0625 at the centre of the domain. Interestingly, for large anisotropic
factors (α = 102) unphysical negative oscillations in the potential approxima-
tion are recorded (see Table 8) for all values of h. The same behaviour is not
recorded for small values of α (see Table 6).

The computational cost of solving the MFEM and MHFEM linear systems
for diagonal anisotropic conductivity coefficients is reported in Tables 9 and 10.
Following the same logic used for test problem 1, Table 9 reports the compu-
tational cost of MINRES using the exact version of preconditioner (31). For
the MHFEM system, CG is used in conjunction with an incomplete Choleski
factorisation of the coefficient matrix.

The numerical experiments were carried out with anisotropic coefficient α
ranging from 10−2 to 102. The main results reported in Table 9 are summarised
as follows:

1. Anisotropy deteriorates the performance of both preconditioned MINRES
and CG. The number of p-MINRES iterations for α = 10−2 and α = 102

is between five to six times larger than for the isotropic case;

2. For finer meshes (h = 1
256 ) the factorisation of the coefficient matrix be-

comes increasingly costly, resulting in longer CPU times than for precon-
ditioned MINRES;

3. In general, the solvers are not C-optimal. However, for a fixed α, MINRES
is h-optimal. Conversely, CG iteration count varies largely even for a fixed
α.

The results of the numerical experiments using the AMG version of the
solvers are reported in Table 10. These can be summarised as follows:

1. In contrast to the isotropic case, the overall CPU cost (AMG coarsening
and MINRES solution time) is lower than the exact version (see Table 9);

2. As for test problem 1, the solution timings and iteration counts recorded
for CG preconditioned by the AMG approximation of the coefficient ma-
trix are by far the smallest among all methods considered. The AMG
efficiency is partly nullified by the large cost of constructing the grids for
the approximation. This is twice as much as implementing the coarsening
on the Schur complement system;

3. The experiments show that, for α ̸= 1, the number of CG iterations varies
slightly with respect to the isotropic case. Conversely, the MINRES iter-
ation count is between five to six times larger.

When the conductivity coefficient is a diagonal anisotropic tensor, MINRES
preconditioned by (31) is not C-optimal. The reason for this can be explained
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with reference to the structure of the element stiffness matrix. It can be shown
that, for triangular elements, each row of the element stiffness matrix is scaled
with respect to both coefficients of the diagonal tensor, C (see Powell [44]).
This causes a significant deterioration in the performance of MINRES and loss
of C-optimality compared with the situation for isotropic coefficients. Later we
show that such a deterioration in performance does not occur when rectangular
elements are used.

For Problem 2 on triangular meshes, MFEM with the AMG version of MIN-
RES is more efficient than MHFEM on medium to fine meshes.

6.4. Problem 3: heterogeneous, anisotropic and full-tensor C
This test problem is reported in Younes and Fontaine [38, 39], Younes et al.

[70]. The conductivity field is described by a full-tensor given by

C(x) =
[
y2 + αx2 (α− 1)xy
(α− 1)xy x2 + αy2

]
. (55)

The analytical solution for the potential is given by

u(x) = exp(−20π((x− 1
2 )

2 + (y − 1
2 )

2), (56)

and the velocity vector is obtained using Darcy’s Law q = C∇u. The source
term is obtained from f = −∇ · C∇u. The MFEM potential and velocity
approximations for h = 1

32 are depicted in Figure 3(a) and the source term for
α = 1 is illustrated in Figure 3(b). Note that the source term is symmetric
about y = x and that the symmetry of the numerical approximation improves
with mesh refinement.

L2 norms of the error for α = 1, 102, 103 are reported in Tables 11, 12 and
13, respectively. Second order convergence for the potential and first order
convergence for the velocity is confirmed. However, the magnitude of the ap-
proximation errors increases significantly as the order of the anisotropy factor α
increases. For α = 1000 the error in the potential and velocity approximations
is three orders of magnitude larger than for the isotropic case. Hence, for large
anisotropy the approximation is unphysical and should be ignored. The mini-
mum and maximum values of the potential approximation provide evidence of
this behaviour. The potential is always positive and ranges from approximately
zero close to the boundaries to one at the centre of the domain. For α = 102 and
α = 103 the minimum and maximum values of the numerical solution lie consid-
erably outside the range of the analytical solution. These unphysical oscillations
become less severe on finer meshes, indicating that local mesh refinement could
potentially resolve this problem.

Note that spurious oscillations are also present in the isotropic case. This
is in contrast to results obtained for the isotropic test case (problem 2 - see
Table 7). Although this is somewhat surprising it is largely in agreement with
results presented by other researchers. Younes and Fontaine [38] reported that
for the same test problem spurious negative oscillations are present for isotropic
and anisotropic numerical experiments not only for the MFEM but also for the
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MPFA method. However, the latest MPFA schemes on cell-centred triangles
with full pressure support [71] have been tested for a range of variations using
the full-tensor given by (55) and such spurious oscillations are not observed.
In the isotropic case the spurious oscillations disappear with mesh refinement.
In fact, when h = 1/512 (not shown in Table 11) negative oscillations are
of the order of 10−7. Reasons for negative oscillations in the isotropic case
are not reported by Younes and Fontaine [38] and this matter requires further
investigation in the future.

The computational cost of solving the linear systems of equations using p-
MINRES and PCG is reported in Table 14. The main results of this table can
be summarised as follows:

1. As previously observed for test problem 2, for large degrees of anisotropy
the performance of the MINRES solver deteriorates significantly;

2. Conversely, CG behaves quite differently for full tensor coefficients. Namely,
CG solution timings and iteration counts seems to decrease with increasing
α. This behaviour is considered to be problem related;

3. For small and medium size meshes, PCG is largely more efficient than
p-MINRES for large values of α. However, on finer meshes (h = 1/256)
the cost of implementing the Choleski factorisation grows significantly and
the relative performance of the two methods depends on the value of α.

The numerical experiments results using AMG are reported in Table 15.
These can be summarised as follows:

1. The efficiency of the iterative solvers when used with AMG preconditioners
is confirmed also for problems with general full tensor coefficients;

2. In contrast to Table 14, the number of CG iterations and solution timings
increases with increasing anisotropic coefficient;

3. The CG iteration count is between seven to twenty-one times larger than
the reference isotropic case, α = 1. This differs significantly from the re-
sults recorded for diagonal anisotropic coefficients and indicates that the
AMG approximation of the coefficient matrix is not a robust precondi-
tioner for CG when general full-tensor coefficients are used;

4. As for Table 14 it is evident that no one solver consistently outperforms
the other. Instead, the solvers’ performance depends on the size of the
mesh and the degree of anisotropy. Thus p-MINRESAMG performs better
on fine meshes (h = 1/256), while PCGAMG performs better on medium
to coarse meshes.

For Problem 3 on triangular meshes, the relative efficiency of MFEM and MIN-
RES is dependent on mesh size.

6.5. Problem 4: discontinuous, anisotropic and full-tensor C
This test problem was originally presented in Crumpton et al. [72]. This

example will be used to assess the efficiency and accuracy of MFEM for cases
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in which the conductivity coefficient is strongly discontinuous. This is a situa-
tion which is very often encountered in applications and therefore of significant
importance in this field.

Define D = [−1, 1]2 and the conductivity coefficient C by

C =

[
1 0
0 1

]
for x < 0, C = α

[
2 1
1 2

]
for x > 0. (57)

The parameter α controls the strength of the discontinuity at x = 0. The exact
solution for this test problem is given by

u(x) =

{
(2 sin(y) + cos(y))αx+ sin(y) for x < 0,

exp(x) sin(y) for x > 0.
(58)

The MFEM approximations for α = 1 and α = 100, for h = 1/32 are shown in
Figure 4.

L2-norms of the error for α = 1 are presented in Table 16. For this test prob-
lem we observe the loss of one order of magnitude in the rate of convergence for
the potential. However, the velocity approximation retains the characteristic
first order convergence rate which was also reported for the other test problems.
The maximum error in the potential approximation is located at the disconti-
nuity and it vanishes as h is progressively refined. Local mesh refinement at
the location of the discontinuity should enhance the rate of convergence for the
potential.

Tables 17 and 18 report L2-norms of the error for α = 101 and α = 102.
Interestingly, the magnitude of the errors in the potential are of the same order
as those reported for α = 1. In contrast, the velocity errors are one and two
orders larger, respectively. Noticeably, the potential convergence rate is slightly
lower than one for α = 10 and approaches O(h

3
2 ) for α = 100.

The performance of the solver for test problem 4 is reported in Tables 19
and 20. The results reported in these two tables can be summarised as follows:

1. MINRES iteration count for problems with discontinuities is larger (be-
tween 30% to 40%) than for continuous problems. The same behaviour is
observed for the exact and approximated versions of preconditioner (31);

2. It appears that the exact version of p-MINRES is by far the most efficient
solver for problems with discontinuities i.e. the solution of the problem
based onMFEM using MINRES is more efficient than that based on MH-
FEM using CG. For all other solvers considered the CPU time required
either to implement the factorisation or to construct the coarse grids has
a detrimental effect on the overall performance of the solvers;

3. For all methods the magnitude (governed by α) of the discontinuity has
virtually no effect on the performance of the solvers. It appears that for
larger α, i.e. sharper variation in the conductivity at the discontinuity, the
number of iterations is smaller than for smaller α, i.e. more homogeneous
conditions at the discontinuity.

For Problem 4 on triangular meshes, MFEM with MINRES is clearly the most
efficient method.
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6.6. Problem 5: distorted triangular mesh

In this section the behaviour of the numerical methods on distorted meshes
is assessed. Although the mesh is distorted the finite element connectivity is
regular, i.e. any node has the same number of neighbouring nodes. The test
problem is taken from Arnold et al. [73]. The analytical solution on the unit
square domain is u = x(1 − x)y(1 − y). The conductivity coefficient is a unit
scalar. Therefore, in this case (1) simplifies to Poisson’s equation.

The distorted mesh is created by perturbing the node coordinates of the
original structured mesh according to

xunst = xst + zhα

where z is a vector of uniformly distributed random real numbers sampled in
the interval [−0.5, 0.5] and α regulates the order of the perturbation. Distorted
meshes are created at each discretisation level. Examples of structured and
distorted meshes used for this test problem are shown in Figure 5. For the
experiments herein considered α = 1.2.

L2-norms of the error for the structured and distorted meshes are reported
in Table 21. It appears that the magnitude of the errors and the convergence
rate are not affected by the irregular meshing. Hence the potential converges
with rate O(h2) and velocity with rate O(h). It is clear that the mixed method
can also provide accurate approximations on distorted meshes.

The performance of the solvers is reported in Tables 22 and 23. The results
reported in the tables can be summarised as follows:

1. Both versions of preconditioned MINRES are h-optimal. For the distorted
case the iteration count is slightly larger and some small variations with
h are recorded;

2. CG using the incomplete Choleski factorisation of the coefficient matrix
is not h-optimal. Also for this solver a larger iteration count is recorded
for distorted meshes;

3. The AMG version of CG is h-optimal. Similarly to the test problems
previously considered, the performance of CG is penalised by the large
CPU cost of creating the AMG grids.

For Problem 5 on triangular meshes, MFEM with MINRES is clearly the most
efficient method.

6.7. Rectangular Meshes

In this section the numerical experiments performed in the previous section
on triangular meshes are repeated on rectangular meshes. As we will see there
are some major differences with respect to the triangular case.

6.8. Problem 1: heterogeneous, isotropic and diagonal C
Tables 24, 25 and 26 provide L2-norms of the error for ϵ = 0.9, 0.99, 0.999,

respectively. For the case of small heterogeneity, i.e. ϵ = 0.9, the approxima-
tions converge at a rate greater than two. In fact, the convergence rate for the

22



potential is O(h2.08) and for the x and y components of the velocity it is O(h2.16)
and O(h2.21), respectively. This is significantly different from the convergence
rates observed on triangular meshes, on which only first order convergence was
recorded for the velocity approximation.

Furthermore, for the same value of h, the magnitude of the error in the
potential for the rectangular case is lower than the triangular case. For the
velocity approximation it is two orders of magnitude lower.

For the case of moderate heterogeneity, i.e. ϵ = 0.99, larger convergence
rates are recorded for the potential, O(h2.28). However the velocity components
converge at rates O(h1.02) and O(h1.46), respectively. Although these rates are
lower than for the case of ϵ = 0.9, they are still a significant improvement on
those obtained for the triangular case.

For the case ϵ = 0.999 the convergence rates and the magnitude of the error
are comparable to those recorded for the triangular case.

The performance of the solvers is recorded in Table 27. The same findings
summarised in §6.2 for triangular meshes also apply to rectangular meshes. In
addition to those it should be noted that:

1. The CPU timings for the solvers for the rectangular case are significantly
lower than the triangular case. This is obviously associated with the
smaller size of the coefficient matrix in the former case. For the same
reason the cost of implementing the Choleski factorisation is considerably
cheaper;

2. The iteration count for p-MINRES in the rectangular case is comparable
to the triangular case. Although a slightly larger variability is recorded,
h-optimality and C-optimality is preserved;

3. In contrast to the MINRES solver, the CG iteration count for the rectan-
gular case is significantly lower than the triangular case.

The results for the AMG experiments are reported in Table 28. The consid-
erations highlighted in §3.2.1 regarding Table 5 are equally valid for rectangular
meshes. Additionally we note that:

1. The CPU cost of constructing the AMG grids is significantly cheaper than
the triangular case. Specifically, it is cheaper by a factor of four for the
Schur complement and three for the MHFEM coefficient matrix;

2. Given the smaller size of the system of equations, MINRES and CG CPU
times are significantly lower than the triangular case;

3. For isotropic coefficients, the AMG versions of MINRES and CG are ef-
ficient and robust. However, their overall performance is penalised by
the CPU cost of creating the AMG grids which is not negligible even on
rectangular meshes.

For Problem 1 on rectangular meshes, MFEM with MINRES is more efficient
than MHFEM.
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6.9. Problem 2: heterogeneous, anisotropic and diagonal C
The settings for this test problem are described in §6.3. The error estimates

on rectangular meshes are reported in Tables 29, 30 and 31 for α = 10−2, 1, 102.
The rate of convergence is found to be O(h2) for the potential and velocity
approximations. Note that the same convergence rates are obtained indepen-
dent of the value of the anisotropic coefficient, α. Furthermore the errors are
approximately of the same order of magnitude.

As explained for the triangular case, the potential solution for this test prob-
lem is always positive and specifically it is 0 at the boundaries and 0.0625 at the
centre of the domain, so that 0 < u < 0.0625 in D. On triangular meshes and
for α = 100 (see Table 8), the numerical solution displays unphysical negative
oscillations. According to results shown in Tables 29, 30 and 31, the potential
approximation does not exhibit this erroneous behaviour on rectangular meshes.

The computational performance of the solvers on problem 2 on rectangular
meshes is presented in Table 32 and can be summarised as follows:

1. As opposed to the experiments carried out on triangular meshes (see Table
9), preconditioned MINRES is C-optimal when the conductivity coefficient
is diagonal and anisotropic;

2. The performance of MINRES (in terms of Nit and tCPU ) is completely
independent to the degree of anisotropy of the conductivity coefficient;

3. The performance of CG is comparable to that reported for triangular
meshes, i.e. it is neither h nor C optimal.

The results for the AMG numerical experiments are reported in Table 33.
The optimality of preconditioned MINRES, previously discussed, is also valid
when the Schur complement is approximated by one V-cycle of black-box AMG.
In addition to this, it is evident from Table 33 that:

1. In contrast to the experiments on triangular meshes, the number of MIN-
RES iterations is approximately constant for α ̸= 1. Not surprisingly, for
the isotropic case (α = 1), Nit is generally lower;

2. Conversely to the experiments on triangular meshes (see Table 10), for
α ̸= 1 the number of CG iterations varies considerably. Reasons for the
difference in performance between triangular and rectangular meshes are
given below.

As pointed out by results reported in Table 33, the number of CG iterations
varies considerably for α ̸= 1. This is due to the fact that the coefficient matrix
D is not an M -matrix for anisotropic diagonal tensors and rectangular meshes
[44]. The black-box AMG code used in this work (and other available in the
public domain Boyle et al. [68, 69]) is set up to work with M -matrices. When
this condition is violated the performance of black-box AMG can deteriorate
significantly.

For triangular elements with diagonal-anisotropic coefficients, the Lagrange
multiplier system D is always an M -matrix, hence the behaviour of AMG is not
erratic and the number of CG iterations tends to vary only slightly for α ̸= 1
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(see Table 10). Furthermore, as proved by Powell [44], the Schur complement
(BABT ), which is used as preconditioner for MINRES, is always an M -matrix,
hence the optimal performance of AMG is guaranteed.

Preconditioned MINRES is C-optimal for diagonal anisotropic conductivity
coefficients on rectangular meshes due to the structure of the element stiffness
matrix AK

i,j 24. Powell [44], Powell and Silvester [45] showed, in fact, that for
rectangular elements AK is a block diagonal matrix and each block is scaled
by a different entry of C. This is very different from the triangular case where
every row of the element stiffness matrix AK

i,j is scaled by all entries of C. For
Problem 3 on rectangular meshes, MFEM with MINRES is more efficient than
MHFEM.

6.10. Problem 3: heterogeneous, anisotropic and full-tensor C
L2-norms of the error for test problem 3 on rectangular meshes are reported

in Tables 34, 35 and 36 for various values of α. Second order convergence rates
for the potential and velocity approximations are also confirmed for problems
with full-tensor, anisotropic coefficients. As for triangular meshes, the magni-
tude of the discrete errors increases with larger anisotropic coefficients.

As for the triangular case negative oscillations in the potential approximation
are also recorded for rectangular elements. Younes and Fontaine [39] reported
numerical experiments using the MFEM and MPFA for the same test problem
reported in this section. The authors show numerical results which are largely
consistent with the results reported in Tables 34, 35 and 36, i.e. spurious neg-
ative oscillations are present not only for the anisotropic case but also for the
isotropic case. For the isotropic case the spurious oscillations disappear with
mesh refinement. In fact, when h = 1/512 (not shown in Table 34) negative
oscillations are of the order of 10−8. Reasons for negative oscillations in the
isotropic case are not reported by Younes and Fontaine [39] and this matter
requires further future investigation.

The performance of the solvers for test problem 3 on rectangular meshes is
reported in Table 37. The main findings of this table can be summarised as
follows:

1. As for triangular elements, the performance of MINRES deteriorates sig-
nificantly for large values of α;

2. Conversely, CG behaves quite differently for full tensor coefficients since
the CPU cost seems to decrease with increasing α. Similar results were
obtained for triangular meshes;

3. For α ̸= 1 CG outperforms MINRES independent of the value of h.

Note that for α = 1, the conductivity coefficient is equivalent to that of test
problem 2. The only difference between the two problems is associated with
the right-hand side of the PDE. In such circumstances it is normally expected
for MINRES to converge with approximately the same number of iterations.
However, comparing Tables 37 and 32 for α = 1, it is evident that the number
of iterations required to solve problem 3 on rectangular meshes is significantly
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lower than problem 2. This behaviour is not observed for triangular meshes (see
Tables 14 and 9).

Results for the AMG numerical experiments are reported in Table 38. The
most important observations from this table can be summarised as follows:

1. The MINRES iteration count grows rapidly with increasing α, hence the
solution timings are quite large. However, given that the CPU cost of
constructing the coarse grids for the AMG approximation is quite cheap
for rectangular meshes, p-MINRESAMG is the solver that performs best
among those considered;

2. The performance of CG on rectangular elements differs significantly from
that for triangular elements. On triangular meshes, although C-optimality
is not obtained, CG is h-optimal for a fixed α. On rectangular meshes nei-
ther C nor h optimality is established. This is associated with the violation
of the M -matrix condition for problems with full-tensor coefficients.

For Problem 3 on rectangular meshes, MFEM with the AMG version of
MINRES is more efficient than MHFEM.

6.11. Problem 4: discontinuous, anisotropic and full-tensor C
Table 39 reports error estimates for α = 1 for test problem 4 on rectangular

meshes. The discontinuous conductivity coefficient causes the loss of one order
of magnitude in the rate of convergence for both the potential and velocity ap-
proximations. Interestingly, whilst the magnitude of the errors in the potential
approximation are comparable to those recorded on triangular meshes, the ve-
locity errors tend to be one order of magnitude lower. L2-norms of the error
for α = 10 and α = 100, are listed in Tables 40 and 41. Although first order
convergence rates are also recorded, the discrete errors tend to be larger with
increasing α.

The performance of the solvers for test problem 4 on rectangular meshes are
reported in Table 42. The results of the experiments for the AMG version of
these solvers are given in Table 43. The main findings of these two tables can
be summarised as follows:

1. As for triangular meshes, the MINRES iteration count is larger for dis-
continuous problems than for continuous problems (see, for example, a
comparison with test problem 1). The same behaviour is observed for
PCGAMG but not for PCG;

2. The degree of the discontinuity does not affect the performance of the
solvers;

3. Hence the exact version of MINRES is the most efficient solver for this class
of problems. However, it should be noted that the approximated version
of MINRES is also very efficient given that, for rectangular meshes, the
AMG set-up time is relatively small.

For very fine meshes (problems with of the order of 106-107 degrees of free-
dom) the CPU cost of inverting the Schur complement exactly becomes pro-
hibitively expensive. Hence, approximately inverting the Schur complement
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using AMG should become more efficient for those type of problems. This con-
sideration applies to all test problems and not only to the discontinuous case.

For Problem 4 on rectangular meshes, MFEM with MINRES is more efficient
than MHFEM.

6.12. Problem 5: distorted rectangular mesh

Distortion of rectangular meshes is obtained in a similar fashion to that
explained for triangular meshes (see §6.6 and displayed in Figure 5). Although
the mesh is distorted the finite element connectivity is regular, i.e. any node has
the same number of neighboring nodes. L2-norms of the error for test problem
5 on structured and distorted rectangular meshes are listed in Table 44.

On structured rectangular meshes the potential and velocity approximations
converge with rate O(h2). This confirms the results of the previous experiments
(excluding discontinuous problems where velocities converge with rate O(h)).

On distorted rectangular meshes the potential approximation retains second
order convergence. In contrast, the experiments show the loss of one order in the
convergence rates of the velocity approximation. Thus the x-component of the
velocity converges with rate O(h1.16) and the y-component with rate O(h1.31).
The loss of accuracy in the velocity approximations obtained by MFEM and
MHFEM on quadrilateral meshes is well-known and solutions to this issue have
been proposed by Shen [74], Arnold et al. [73] and more recently by Younes et al.
[70], for example. The problem lies in the fact that the Piola transformation of
vector basis functions defined on a square reference element to the actual element
is not affine for quadrilateral elements [73]. This causes loss of convergence for
the approximation of the fluxes. This situation does not occur on triangular
elements.

The loss of convergence reported in Table 44 refers to a simple problem with
unit conductivity coefficient and trivial geometry. Therefore it is expected that
this deterioration would be exacerbated on problems with general coefficients
and complex geometries.

The performance of the solvers for test problem 5 on structured and distorted
meshes are reported in Tables 45 and 46. The findings of those tables are
summarised as follows:

1. The MINRES iteration count for problems on distorted meshes is approx-
imately twice as that for problems with structured meshes when the Schur
complement is inverted exactly. For the AMG case, instead, the difference
in iteration count is less marked;

2. The PCG iteration count also varies only slightly between structured and
distorted meshes. The same can be stated for CG with the AMG precon-
ditioner;

3. Once again, MINRES with the exact version of preconditioner (31) is the
best performing method.

For Problem 5 on rectangular meshes, MFEM with MINRES (exact precon-
ditioner) is more efficient than MHFEM.
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7. Conclusions

This paper reports on results of numerical experiments based on mixed finite
element methods and compares the accuracy of the approximations through a
graded series of problems with exact solutions. This allows the codes developed
for this work to be validated and for the convergence behaviour of MFEM to be
investigated.

We have shown that MFEM exhibits second order convergence for the po-
tential and first order convergence for the velocity for problems with continuous
conductivity coefficient tensors on structured and distorted triangular meshes.
For discontinuous problems there is a loss of one order of convergence for the
potential while the rate of convergence for the velocity is unaltered. The MFEM
possesses second order convergence for the potential and velocity on structured
rectangular meshes. The loss of approximately one order of convergence is re-
ported for distorted meshes. For discontinuous problems there is a loss of one
order of convergence for both the potential and velocity.

Although the potential must be strictly positive for the problems considered
in this paper, spurious negative values are realised for problems with diagonal
anisotropic and full-tensor anisotropic coefficients on triangular meshes. This
behaviour problem is also present for problems with full-tensor anisotropic co-
efficients on rectangular meshes. Furthermore we have observed that spurious
negative oscillations are present in all cases (isotropic, anisotropic full-tensor)
for test problem 3 - a finding that is in agreement with the literature [38, 39].
In the isotropic case the magnitude of the oscillations tend to zero as the mesh
is progressively refined.

In addition to an investigation of the influence of the nature of the conductiv-
ity coefficient on the order of convergence of the finite element approximation on
triangular and quadrilateral meshes, a detailed analysis of the relative compu-
tational cost of solving the indefinite linear system obtained with MFEM with
the symmetric positive definite system obtained with MHFEM is performed.
For problems with isotropic, heterogeneous coefficients, the use of MINRES in
which the exact Schur complement is used as the preconditioner is the most
efficient method in terms of CPU cost. This was also found to be the case
for problems with anisotropic diagonal tensors but only on rectangular meshes.
In these cases, MINRES is h-optimal and C-optimal. Thus solving the indefi-
nite system is the cheapest approach to solving the mixed formulation in these
particular instances.

The implementation of MINRES using the AMG version of the Schur com-
plement as preconditioner also results in a very efficient iterative method. In
particular, the number of iterations required to attain the convergence crite-
rion is reduced resulting in significant CPU savings. However, one does need
to account for the cost of creating the coarse grids for the AMG approximation
which is not negligible irrespective of whether one is solving the Schur comple-
ment or Lagrange multiplier systems. This component of the computational
cost is more expensive for the SPD case than for the Schur complement and
also on triangular meshes than on rectangular meshes.
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The optimal performance of the AMG preconditioners depends inextricably
on whether the coefficient matrix satisfies the M -matrix condition. The Schur
complement is always an M -matrix. Hence MINRES using the AMG version of
the Schur complement preconditioner will never fail to converge. In contrast,
the Lagrange multiplier system is only an M -matrix for problems with scalar
and diagonal coefficients and when triangular elements are used. For general
coefficients and triangular elements the M -matrix condition does not hold. Fur-
thermore, for rectangular meshes the M -matrix condition does not hold under
any circumstances for the SPD system. Hence, using the AMG approximation
of the coefficient matrix as preconditioner for CG on rectangular meshes does
not guarantee success and, potentially, it could fail to converge.

For general full-tensor conductivity coefficients the results are more difficult
to summarise. It is generally the case that AMG preconditioners perform better.
On rectangular meshes the Schur complement preconditioner (AMG version) is
the cheapest approach among those considered. The same applies to triangular
meshes on fine discretisations while the AMG approximation of the Lagrange
multiplier system is the cheapest on medium to coarse meshes. However, for the
latter case the success of black-box AMG depends on the extent to which the
M -matrix condition is violated. Thus, its performance is problem dependent.

The numerical experiments that have been presented show that the solution
of the indefinite system (MFEM) is often cheaper and more reliable than the
solution of the SPD system (MHFEM). This is certainly the case for isotropic
and diagonal-tensor conductivity coefficients. However, none of the iterative
methods have been shown to be optimal for solving problems with the full-
tensor conductivity coefficients considered in this paper.

Acknowledgement

The authors would like to express their gratitude to Professor E.F. Kaass-
chieter for his help with the computer implementation of the MHFEM and for
providing useful MATLAB functions to develop the code used for the numerical
experiments presented in this paper.

References

[1] Goode, D.J.. Particle velocity interpolation in blockcentered finite differ-
ence groundwater flow models. Water Resour Res 1990;26(5):925–40.

[2] Cordes, C., Kinzelbach, W.. Continuous groundwater velocity fields and
path lines in linear, bilinear, and trilinear finite elements. Water Resour
Res 1992;28(11):2903–2911.

[3] Srivastava, R., Brusseau, M.L.. Darcy velocity computations in the fi-
nite element method for multidimensional randomly heterogeneous porous
media. Adv Water Resour 1995;18(4):191–201.

29



[4] Dogrul, E.C., Kadir, T.N.. Flow computation and mass bal-
ance in Galerkin finite-element groundwater models. J Hydr Engrg
2006;132(11):1206–1214.

[5] Kaasschieter, E.F., Huijben, A.J.M.. Mixed-hybrid finite elements and
streamline computation for the potential flow problem. Numer Meth Part
D E 1992;8(3):221–266.
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Table 1: L2-norms of the error for test problem 1, ϵ = 0.9

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 4.34E − 03 − 2.44E − 01 − 6.27E − 01 −
1
32 9.25E − 04 2.23 1.15E − 01 1.09 2.97E − 01 1.08
1
64 2.25E − 04 2.04 5.72E − 02 1.00 1.41E − 01 1.07
1

128 5.61E − 05 2.00 2.85E − 02 1.01 7.02E − 02 1.01
1

256 1.40E − 05 2.00 1.42E − 02 1.00 3.51E − 02 1.00

Table 2: L2-norms of the error for test problem 1, ϵ = 0.99

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 1.09E − 02 − 7.43E − 01 − 1.64E + 00 −
1
32 3.17E − 03 1.78 5.52E − 01 0.43 1.64E + 00 0.00
1
64 8.19E − 04 1.95 3.59E − 01 0.62 1.51E + 00 0.11
1

128 1.74E − 04 2.24 1.87E − 01 0.94 1.20E + 00 0.34
1

256 3.27E − 05 2.41 8.51E − 02 1.13 6.18E − 01 0.96

Table 3: L2-norms of the error for test problem 1, ϵ = 0.999

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 1.22E − 02 − 8.28E − 01 − 1.91E + 00 −
1
32 3.97E − 03 1.62 6.92E − 01 0.26 2.19E + 00 < 0
1
64 1.29E − 03 1.63 5.74E − 01 0.27 2.48E + 00 < 0
1

128 4.09E − 04 1.65 4.65E − 01 0.30 2.69E + 00 < 0
1

256 1.25E − 04 1.72 3.57E − 01 0.38 2.75E + 00 < 0

Table 4: Iteration count and timings (set-up and solution) for p−MINRES and PCG - Test
problem 1

p−MINRES PCG
h ϵ Nit tCPU Nit tCPU

1
64 ϵ = 0.999 43 0.97 135 1.11 + 1.35

ϵ = 0.99 43 0.97 139 1.10 + 1.42
ϵ = 0.9 44 1.03 138 1.11 + 1.42

1
128 ϵ = 0.999 43 5.54 256 17.97 + 11.63

ϵ = 0.99 43 5.46 255 17.99 + 11.87
ϵ = 0.9 43 5.58 270 18.09 + 12.10

1
256 ϵ = 0.999 43 28.38 525 285.16 + 113.93

ϵ = 0.99 43 28.34 495 281.56 + 108.26
ϵ = 0.9 43 28.36 535 284.56 + 117.26
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Table 5: Iteration count and timings (set-up and solution) for p − MINRESAMG and
PCGAMG - Test problem 1

p−MINRESAMG PCGAMG

h ϵ Nit tCPU Nit tCPU

1
64 ϵ = 0.999 49 1.33 + 0.98 9 1.93 + 0.13

ϵ = 0.99 51 1.37 + 1.05 9 1.94 + 0.13
ϵ = 0.9 51 1.29 + 1.04 9 1.95 + 0.13

1
128 ϵ = 0.999 51 8.04 + 4.21 10 13.98 + 0.50

ϵ = 0.99 52 8.28 + 4.38 9 14.10 + 0.43
ϵ = 0.9 51 8.04 + 4.28 9 13.88 + 0.42

1
256 ϵ = 0.999 56 110.60 + 22.42 9 269.54 + 2.20

ϵ = 0.99 56 109.60 + 22.62 10 281.54 + 2.34
ϵ = 0.9 54 108.31 + 22.03 9 268.47 + 2.29

Table 6: L2-norms of the error for test problem 2, α = 10−2

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate umin

1
16 1.05E − 03 − 3.44E − 03 − 4.14E − 03 − 3.15E − 04
1
32 2.80E − 04 1.91 1.73E − 03 0.99 2.09E − 03 0.99 8.02E − 05
1
64 7.11E − 05 1.98 8.69E − 04 1.00 1.05E − 03 1.00 2.02E − 05
1

128 1.78E − 05 2.00 4.35E − 04 1.00 5.24E − 04 1.00 5.07E − 06
1

256 4.46E − 06 2.00 2.17E − 04 1.00 2.62E − 04 1.00 1.27E − 06

Table 7: L2-norms of the error for test problem 2, α = 1

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate umin

1
16 1.85E − 04 − 4.32E − 03 − 4.32E − 03 − 3.22E − 04
1
32 4.65E − 05 1.99 2.18E − 03 0.99 2.18E − 03 0.99 8.11E − 05
1
64 1.16E − 05 2.00 1.09E − 03 1.00 1.09E − 03 1.00 2.03E − 05
1

128 2.90E − 06 2.00 5.47E − 04 1.00 5.47E − 04 1.00 5.08E − 06
1

256 7.26E − 07 2.00 2.74E − 04 1.00 2.74E − 04 1.00 1.27E − 06

Table 8: L2-norms of the error for test problem 2, α = 102

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate umin

1
16 5.38E − 03 − 3.57E − 01 − 3.00E − 01 − −8.10E − 03
1
32 1.35E − 03 1.99 1.79E − 01 0.99 1.51E − 01 0.99 −2.19E − 03
1
64 3.39E − 04 2.00 8.97E − 02 1.00 7.53E − 02 1.00 −5.65E − 04
1

128 8.47E − 05 2.00 4.49E − 02 1.00 3.77E − 02 1.00 −1.43E − 04
1

256 2.12E − 05 2.00 2.24E − 02 1.00 1.88E − 02 1.00 −3.58E − 05
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Table 9: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 2

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64 α = 102 240 5.93 78 0.99 + 0.92

α = 1 43 0.82 112 1.08 + 1.13
α = 10−2 211 5.10 110 1.03 + 1.10

1
128 α = 102 246 32.51 155 15.80 + 6.94

α = 1 43 5.40 219 17.45 + 10.03
α = 10−2 226 29.66 225 16.39 + 10.38

1
256 α = 102 248 166.29 313 242.93 + 67.91

α = 1 43 28.68 435 266.38 + 94.77
α = 10−2 233 155.29 465 248.99 + 100.43

Table 10: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 2

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64 α = 102 235 2.81 10 1.96 + 0.15

α = 1 50 0.61 9 1.96 + 0.13
α = 10−2 212 2.51 11 2.04 + 0.15

1
128 α = 102 242 10.56 12 12.75 + 0.56

α = 1 52 2.17 9 14.36 + 0.44
α = 10−2 227 10.11 12 14.01 + 0.56

1
256 α = 102 245 54.91 13 241.33 + 3.18

α = 1 54 11.73 10 256.18 + 2.43
α = 10−2 232 52.73 12 251.11 + 2.88
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Table 14: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 3

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64 α = 103 460 11.57 12 0.94 + 0.16

α = 102 271 6.61 21 0.95 + 0.24
α = 1 43 1.01 113 1.10 + 1.17

1
128 α = 103 380 49.37 14 15.56 + 0.67

α = 102 316 41.25 37 15.36 + 1.73
α = 1 45 5.69 220 17.09 + 10.02

1
256 α = 103 474 316.87 18 238.50 + 4.13

α = 102 334 222.67 73 238.48 + 16.31
α = 1 45 29.40 441 266.61 + 97.68

Table 15: Iteration count and timings (set-up and solution times) for p−MINRESAMG and
PCGAMG - Test problem 3

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64 α = 103 475 1.58 + 4.50 195 2.22 + 1.94

α = 102 285 1.60 + 2.84 64 2.18 + 0.66
α = 1 50 1.27 + 0.46 8 1.97 + 0.12

1
128 α = 103 415 9.63 + 18.63 192 14.73 + 8.84

α = 102 345 9.51 + 15.32 65 15.03 + 2.93
α = 1 52 8.14 + 2.19 9 14.39 + 0.43

1
256 α = 103 546 102.33 + 129.59 192 249.91 + 49.38

α = 102 383 101.38 + 91.70 66 252.64 + 17.03
α = 1 54 111.51 + 11.36 9 271.42 + 2.14

Table 16: L2-norms of the error for test problem 4, α = 1

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 8.06E − 03 − 1.77E − 01 − 1.71E − 01 −
1
32 3.35E − 03 1.27 8.91E − 02 0.99 8.55E − 02 1.00
1
64 1.63E − 03 1.04 4.46E − 02 1.00 4.27E − 02 1.00
1

128 8.27E − 04 0.98 2.23E − 02 1.00 2.13E − 02 1.00
1

256 4.19E − 04 0.98 1.12E − 02 1.00 1.07E − 02 1.00
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Table 17: L2-norms of the error for test problem 4, α = 101

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 1.34E − 02 − 1.77E + 00 − 1.73E + 00 −
1
32 4.62E − 03 1.54 8.92E − 01 0.99 8.67E − 01 1.00
1
64 2.22E − 03 1.06 4.47E − 01 1.00 4.33E − 01 1.00
1

128 1.17E − 03 0.93 2.24E − 01 1.00 2.17E − 01 1.00
1

256 6.05E − 04 0.95 1.12E − 01 1.00 1.08E − 01 1.00

Table 18: L2-norms of the error for test problem 4, α = 102

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 1.17E − 01 − 1.77E + 01 − 1.74E + 01 −
1
32 2.90E − 02 2.01 8.94E + 00 0.99 8.69E + 00 1.00
1
64 7.14E − 03 2.02 4.48E + 00 1.00 4.34E + 00 1.00
1

128 1.89E − 03 1.92 2.24E + 00 1.00 2.17E + 00 1.00
1

256 6.60E − 04 1.52 1.12E + 00 1.00 1.09E + 00 1.00

Table 19: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 4

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64 α = 102 65 1.23 85 0.97 + 0.87

α = 101 68 1.31 84 0.95 + 0.85
α = 1 68 1.32 83 0.94 + 0.83

1
128 α = 102 65 8.69 165 15.48 + 7.47

α = 101 67 8.77 165 15.27 + 7.62
α = 1 68 9.26 162 15.33 + 7.27

1
256 α = 102 64 44.08 325 240.71 + 73.00

α = 101 67 48.45 323 238.17 + 73.01
α = 1 68 45.95 318 245.11 + 71.28

41



Table 20: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 4

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64 α = 102 78 1.33 + 0.75 12 2.12 + 0.16

α = 101 82 1.38 + 0.78 12 2.08 + 0.16
α = 1 83 1.35 + 0.74 12 2.12 + 0.16

1
128 α = 102 79 8.15 + 3.21 12 14.63 + 0.64

α = 101 83 8.08 + 3.36 12 14.76 + 0.58
α = 1 84 8.04 + 3.44 12 15.03 + 0.61

1
256 α = 102 78 102.86 + 20.72 13 278.41 + 3.70

α = 101 85 108.85 + 21.10 13 252.37 + 3.28
α = 1 85 114.45 + 21.39 12 260.69 + 2.93

Table 21: L2-norms of the error for test problem 5

Structured Meshes
h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 6.32E − 05 − 4.08E − 03 − 4.08E − 03 −
1
32 1.59E − 05 1.99 2.05E − 03 0.99 2.05E − 03 0.99
1
64 3.98E − 06 2.00 1.03E − 03 1.00 1.03E − 03 1.00
1

128 9.97E − 07 2.00 5.13E − 04 1.00 5.13E − 04 1.00
1

256 2.49E − 07 2.00 2.57E − 04 1.00 2.57E − 04 1.00
Distorted Meshes

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 6.91E − 05 − 4.51E − 03 − 4.90E − 03 −
1
32 1.78E − 05 1.96 2.41E − 03 0.90 2.37E − 03 1.05
1
64 4.30E − 06 2.05 1.16E − 03 1.06 1.16E − 03 1.03
1

128 1.06E − 06 2.02 5.66E − 04 1.03 5.65E − 04 1.04
1

256 2.60E − 07 2.02 2.77E − 04 1.03 2.77E − 04 1.03
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Table 22: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 5

Structured Meshes
p−MINRES PCG

h Nit tCPU Nit tCPU

1
64 43 0.82 91 0.96 + 0.95
1

128 43 5.43 164 15.01 + 7.83
1

256 43 28.78 310 243.92 + 70.11
Distorted Meshes

p−MINRES PCG
h Nit tCPU Nit tCPU

1
64 52 0.99 97 0.97 + 1.04
1

128 51 6.56 190 15.25 + 9.24
1

256 49 32.68 369 237.46 + 82.39

Table 23: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 5

Structured Meshes
p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64 48 1.28 + 0.45 9 1.97 + 0.15
1

128 48 8.01 + 2.02 9 13.65 + 0.46
1

256 48 112.57 + 10.81 10 224.68 + 2.63
Distorted Meshes

p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64 63 1.62 + 0.66 16 2.56 + 0.30
1

128 61 9.05 + 3.08 16 17.39 + 0.85
1

256 63 112.91 + 15.00 14 277.21 + 3.47

Table 24: L2-norms of the error for test problem 1, ϵ = 0.9

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 2.94E − 03 − 1.66E − 01 − 8.34E − 02 −
1
32 6.10E − 04 2.27 3.45E − 02 2.27 9.47E − 03 3.14
1
64 1.49E − 04 2.03 6.87E − 03 2.33 2.96E − 03 1.68
1

128 3.72E − 05 2.00 1.69E − 03 2.03 7.29E − 04 2.02
1

256 9.31E − 06 2.00 4.20E − 04 2.01 1.81E − 04 2.01
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Table 25: L2-norms of the error for test problem 1, ϵ = 0.99

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 8.57E − 03 − 6.42E − 01 − 1.56E + 00 −
1
32 2.43E − 03 1.82 4.82E − 01 0.41 1.48E + 00 0.07
1
64 5.88E − 04 2.05 3.14E − 01 0.62 1.04E + 00 0.50
1

128 1.06E − 04 2.47 1.47E − 01 1.10 3.64E − 01 1.52
1

256 1.54E − 05 2.78 3.77E − 02 1.96 2.72E − 02 3.74

Table 26: L2-norms of the error for test problem 1, ϵ = 0.999

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 9.78E − 03 − 7.11E − 01 − 1.87E + 00 −
1
32 3.18E − 03 1.62 5.98E − 01 0.25 2.18E + 00 < 0
1
64 1.02E − 03 1.64 5.00E − 01 0.26 2.48E + 00 < 0
1

128 3.22E − 04 1.67 4.07E − 01 0.29 2.69E + 00 < 0
1

256 9.50E − 05 1.76 3.15E − 01 0.37 2.67E + 00 0.01

Table 27: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 1

p−MINRES PCG
h ϵ Nit tCPU Nit tCPU

1
64 ϵ = 0.999 45 0.65 88 0.55 + 0.62

ϵ = 0.99 46 0.62 89 0.57 + 0.62
ϵ = 0.9 44 0.67 97 0.56 + 0.70

1
128 ϵ = 0.999 45 3.35 170 8.72 + 5.45

ϵ = 0.99 46 3.31 173 8.66 + 5.48
ϵ = 0.9 39 2.78 189 8.77 + 5.98

1
256 ϵ = 0.999 44 15.72 336 132.36 + 50.83

ϵ = 0.99 45 16.63 337 136.88 + 52.07
ϵ = 0.9 34 12.29 371 135.56 + 57.25
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Table 28: Iteration count and timings (set-up+solution time) for p − MINRESAMG and
PCGAMG - Test problem 1

p−MINRESAMG PCGAMG

h ϵ Nit tCPU Nit tCPU

1
64 ϵ = 0.999 57 0.71 + 0.33 12 0.19 + 0.12

ϵ = 0.99 56 0.71 + 0.34 13 0.19 + 0.13
ϵ = 0.9 55 0.66 + 0.30 12 0.19 + 0.13

1
128 ϵ = 0.999 57 3.18 + 1.05 13 6.55 + 0.43

ϵ = 0.99 57 3.24 + 1.06 12 6.52 + 0.39
ϵ = 0.9 57 3.21 + 1.11 13 6.60 + 0.42

1
256 ϵ = 0.999 59 25.11 + 6.67 13 99.00 + 2.09

ϵ = 0.99 61 25.21 + 7.11 13 99.13 + 2.09
ϵ = 0.9 57 25.25 + 6.62 13 98.75 + 2.10

Table 29: L2-norms of the error for test problem 2, α = 10−2

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate umin

1
16 1.00E − 04 − 1.17E − 04 − 2.40E − 04 − 8.28E − 04
1
32 2.55E − 05 1.97 2.96E − 05 1.99 6.03E − 05 1.99 2.02E − 04
1
64 6.39E − 06 1.99 7.42E − 06 2.00 1.51E − 05 2.00 4.95E − 05
1

128 1.60E − 06 2.00 1.86E − 06 2.00 3.78E − 06 2.00 1.22E − 05
1

256 4.00E − 07 2.00 4.64E − 07 2.00 9.45E − 07 2.00 3.03E − 06

Table 30: L2-norms of the error for test problem 2, α = 1

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate umin

1
16 1.46E − 04 − 2.98E − 04 − 2.98E − 04 − 7.69E − 04
1
32 3.70E − 05 1.98 7.50E − 05 1.99 7.50E − 05 1.99 1.82E − 04
1
64 9.29E − 06 1.99 1.88E − 05 2.00 1.88E − 05 2.00 4.37E − 05
1

128 2.32E − 06 2.00 4.70E − 06 2.00 4.70E − 06 2.00 1.06E − 05
1

256 5.81E − 07 2.00 1.17E − 06 2.00 1.17E − 06 2.00 2.60E − 06

Table 31: L2-norms of the error for test problem 2, α = 102

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate umin

1
16 6.08E − 04 − 4.91E − 02 − 1.07E − 03 − 5.41E − 04
1
32 1.56E − 04 1.97 1.24E − 02 1.98 2.72E − 04 1.98 1.17E − 04
1
64 3.88E − 05 2.00 3.11E − 03 2.00 6.82E − 05 2.00 2.58E − 05
1

128 9.66E − 06 2.00 7.79E − 04 2.00 1.71E − 05 2.00 5.86E − 06
1

256 2.41E − 06 2.00 1.95E − 04 2.00 4.27E − 06 2.00 1.37E − 06
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Table 32: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 2

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64 α = 102 38 0.65 68 0.57 + 0.49

α = 1 36 0.58 81 0.59 + 0.57
α = 10−2 37 0.58 83 0.56 + 0.59

1
128 α = 102 33 2.54 136 8.82 + 4.35

α = 1 33 2.53 158 8.66 + 4.99
α = 10−2 33 2.56 170 8.65 + 5.35

1
256 α = 102 29 10.51 274 133.96 + 42.05

α = 1 29 10.51 311 135.29 + 47.04
α = 10−2 30 10.78 353 139.34 + 54.00

Table 33: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 2

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64 α = 102 52 0.77 + 0.35 12 1.27 + 0.13

α = 1 47 0.67 + 0.28 15 1.23 + 0.14
α = 10−2 54 0.73 + 0.33 19 1.24 + 0.17

1
128 α = 102 56 3.73 + 1.23 13 6.15 + 0.54

α = 1 46 3.16 + 0.87 15 6.66 + 0.49
α = 10−2 53 3.36 + 1.04 20 6.62 + 0.62

1
256 α = 102 59 28.74 + 7.25 14 87.01 + 2.62

α = 1 46 25.61 + 5.34 16 100.19 + 2.74
α = 10−2 56 26.48 + 6.30 21 95.46 + 3.37
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Table 37: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 3

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64 α = 103 351 5.07 12 0.57 + 0.13

α = 102 254 3.81 22 0.55 + 0.18
α = 1 22 0.33 79 0.54 + 0.55

1
128 α = 103 466 38.08 14 8.63 + 0.50

α = 102 283 21.82 40 8.64 + 1.29
α = 1 18 1.37 154 8.58 + 4.77

1
256 α = 103 554 204.61 20 133.07 + 3.06

α = 102 300 111.65 77 134.12 + 11.60
α = 1 13 4.76 306 134.98 + 45.43

Table 38: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 3

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64 α = 103 369 0.73 + 2.19 120 2.52 + 1.25

α = 102 267 0.77 + 1.60 39 2.47 + 0.42
α = 1 45 0.66 + 0.26 14 1.20 + 0.14

1
128 α = 103 495 3.52 + 11.27 136 13.61 + 7.66

α = 102 300 3.60 + 6.93 51 13.62 + 2.87
α = 1 42 3.11 + 0.80 15 6.60 + 0.46

1
256 α = 103 601 27.29 + 75.95 207 130.16 + 58.57

α = 102 323 27.35 + 39.92 96 131.03 + 27.39
α = 1 42 25.46 + 4.79 16 97.42 + 2.46

Table 39: L2-norms of the error for test problem 4, α = 1

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 9.28E − 03 − 3.19E − 02 − 2.81E − 02 −
1
32 4.88E − 03 0.93 1.67E − 02 0.94 1.43E − 02 0.97
1
64 2.50E − 03 0.96 8.55E − 03 0.96 7.26E − 03 0.98
1

128 1.27E − 03 0.98 4.33E − 03 0.98 3.66E − 03 0.99
1

256 6.37E − 04 0.99 2.18E − 03 0.99 1.83E − 03 0.99
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Table 40: L2-norms of the error for test problem 4, α = 101

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 1.67E − 02 − 4.06E − 01 − 3.53E − 01 −
1
32 7.76E − 03 1.10 2.14E − 01 0.93 1.81E − 01 0.96
1
64 3.81E − 03 1.03 1.10E − 01 0.96 9.20E − 02 0.98
1

128 1.90E − 03 1.01 5.57E − 02 0.98 4.64E − 02 0.99
1

256 9.49E − 04 1.00 2.81E − 02 0.99 2.33E − 02 0.99

Table 41: L2-norms of the error for test problem 4, α = 102

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 8.18E − 02 − 4.25E + 00 − 3.67E + 00 −
1
32 2.23E − 02 1.88 2.24E + 00 0.92 1.89E + 00 0.96
1
64 6.82E − 03 1.71 1.15E + 00 0.96 9.61E − 01 0.98
1

128 2.52E − 03 1.44 5.84E − 01 0.98 4.84E − 01 0.99
1

256 1.09E − 03 1.20 2.94E − 01 0.99 2.43E − 01 0.99

Table 42: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 4

p−MINRES PCG
h α Nit tCPU Nit tCPU

1
64 α = 102 64 0.83 81 0.60 + 0.60

α = 101 66 0.94 80 0.58 + 0.57
α = 1 66 0.92 81 0.56 + 0.59

1
128 α = 102 64 4.64 162 8.60 + 5.26

α = 101 66 4.72 162 8.61 + 5.24
α = 1 66 4.74 163 8.61 + 5.32

1
256 α = 102 63 23.41 328 137.32 + 51.22

α = 101 64 23.48 326 135.34 + 50.45
α = 1 66 24.71 325 134.91 + 50.29
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Table 43: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 4

p−MINRESAMG PCGAMG

h α Nit tCPU Nit tCPU

1
64 α = 102 70 0.71 + 0.39 15 1.73 + 0.17

α = 101 71 0.71 + 0.41 15 1.73 + 0.17
α = 1 71 0.69 + 0.42 15 1.73 + 0.17

1
128 α = 102 70 3.31 + 1.41 16 9.48 + 0.66

α = 101 72 3.34 + 1.50 16 9.37 + 0.64
α = 1 71 3.18 + 1.47 15 9.23 + 0.60

1
256 α = 102 70 25.50 + 8.11 17 115.07 + 3.28

α = 101 73 26.26 + 8.98 16 115.35 + 3.10
α = 1 73 26.22 + 8.54 16 115.63 + 3.13

Table 44: L2-norms of the error for test problem 5

Structured Meshes
h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 8.07E − 05 − 2.59E − 04 − 2.59E − 04 −
1
32 2.02E − 05 2.00 6.47E − 05 2.00 6.47E − 05 2.00
1
64 5.04E − 06 2.00 1.62E − 05 2.00 1.62E − 05 2.00
1

128 1.26E − 06 2.00 4.05E − 06 2.00 4.05E − 06 2.00
1

256 3.15E − 07 2.00 1.01E − 06 2.00 1.01E − 06 2.00
Distorted Meshes

h ∥u− uh∥L2 Rate ∥qx − qhx∥L2 Rate ∥qy − qhy∥L2 Rate

1
16 8.54E − 05 − 1.93E − 03 − 2.03E − 03 −
1
32 1.98E − 05 2.11 9.70E − 04 0.99 9.56E − 04 1.09
1
64 5.33E − 06 1.89 4.09E − 04 1.25 4.06E − 04 1.23
1

128 1.30E − 06 2.04 1.81E − 04 1.18 1.77E − 04 1.20
1

256 3.33E − 07 1.96 7.85E − 05 1.21 7.85E − 05 1.17
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Table 45: Iteration count and timings (set-up and solution time) for p−MINRES and PCG
- Test problem 5

Structured Meshes
p−MINRES PCG

h Nit tCPU Nit tCPU

1
64 26 0.33 71 0.58 + 0.52
1

128 23 1.77 133 8.71 + 4.29
1

256 20 7.24 251 137.05 + 39.89
Distorted Meshes

p−MINRES PCG
h Nit tCPU Nit tCPU

1
64 43 0.54 81 0.56 + 0.59
1

128 42 3.12 157 8.75 + 5.19
1

256 40 14.76 279 136.51 + 43.62

Table 46: Iteration count and timings (set-up and solution time) for p−MINRESAMG and
PCGAMG - Test problem 5

Structured Meshes
p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64 36 0.68 + 0.27 14 1.26 + 0.14
1

128 36 3.14 + 0.75 15 6.93 + 0.55
1

256 36 25.05 + 4.00 15 96.13 + 2.56
Distorted Meshes

p−MINRESAMG PCGAMG

h Nit tCPU Nit tCPU

1
64 48 0.70 + 0.35 15 2.41 + 0.17
1

128 48 3.16 + 1.15 16 11.74 + 0.75
1

256 48 25.18 + 5.64 18 118.08 + 3.41
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Figure 1: Numerical approximations and conductivity field for ϵ = 0.9 - Test problem 1
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Figure 2: MFEM approximations and source term - Test problem 2
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Figure 3: MFEM approximations and source term for α = 1 - Test problem 3
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Figure 4: MFEM approximations for α = 1, 102 - Test problem 4
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