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Abstract

Sort-last parallel rendering is widely used. Recent GPU developments mean that a PC equipped with multiple

GPUs is a viable alternative to a high-cost supercomputer: the Fermi architecture supports uniform virtual ad-

dressing, providing a foundation for non-uniform memory access (NUMA) on multi-processor platforms. Such

hardware changes require the user to reconsider the design of parallel rendering algorithms. In this paper, we

propose a novel NUMA-aware image compositing algorithm, which is the key final stage in sort-last parallel

rendering. Our optimal compositing algorithm is based on a proven radix-k approach, which takes advantage of

NUMA architecture on the multi-GPU platform. We qualitatively analyze different image compositing approaches

for practical image compositing, taking into account peer-to-peer communication costs between GPUs. Our exper-

iments on various datasets show that our image compositing method is very fast. An image of a few megapixels can

be composited in less than 10ms, which is competitive to performances reported for well-known supercomputers

such as the IBM Blue Gene or Cray XT5.

Categories and Subject Descriptors (according to ACM CCS): Haredware Architecture [I.3.1]: Parallel processing,
Graphics systems [I.3.2]: distributed/network graphics, Applications [I.3.3]: Parallel renderingImage compositing

1. Introduction

Parallel rendering [Cro95] is an important technique for vi-
sualizing complex scenes in computer graphics, scientific vi-
sualization, CAD, and virtual reality. Parallel rendering dis-
tributes data to different processors, then sorts and compos-
ites locally-rendered data to produce the output image. Ac-
cording to when the sort is performed, parallel rendering
can take one of three main approaches according to what
is considered by each processor: sequential frames, pixels
(sort-first), or graphical objects (sort-last) [MCEF94]. Un-
like sequential frames and sort-first approaches, sort-last par-
allel rendering has the distinct advantage of high scalability
and good load-balancing. Task division for parallel geome-
try processing and rasterization is also simple, which makes
it a prime candidate to extend visualization software to high-
performance parallel rendering. However, it requires the in-
termediate images from processing nodes to be composited
to create the final image [PD84,SML∗03,CMF05,PGR∗09].
For an image of no more than a few tens of megapixels,
this is still a very time-consuming task even for a supercom-
puter. For example, compositing a 64 megapixel result takes
over 80ms (much longer than usable for real-time applica-
tions) using the IBM Blue Gene/p Intrepid machine at Ar-
gonne National Laboratory or the Cray XT5 Jaguar at Oak
Ridge [KPH∗10].

Multi-GPU scenarios use two or more display adapters in
the same PC to speed up graphical applications via parallel
processing and rendering. Multi-GPU technology has come
a long way in the last few years. Single GPUs such as the
NVIDIA GeForce 400 series with Fermi architecture sup-
port uniform virtual addressing [Sch11], which is the foun-
dation of non-uniform memory access (NUMA) [SMV11]
architecture on multi-processor platforms. NVIDIA’s CUDA
4.0 [NVI12] contains a number of features that simplify the
use of multiple GPUs within a workstation or computational
node. The use of NUMA architecture [SMV11] helps to alle-
viate the shared memory bus bottleneck on multi-processor
platforms. To take advantage of these advances, we con-
sider real-time NUMA-aware image compositing using such
a multi-GPU platform.

The main challenge in NUMA-aware image compositing
is how to control the transfer of image data, as the com-
munication infrastructure provided by the PCIe bus is still a
limit to system performance [SMV11]. Implementing effec-
tive NUMA-aware image compositing is a non-trivial task
for a number of technical reasons.

• In an ideal scenario, as the total number of processors in-
creases in a system, the compositing throughput should
scale proportionally, but this is difficult to achieve directly
using CUDA 4.0.
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• Various approaches to image compositing have been
proposed, such as direct-send [Neu94, EP08], binary
swap [lMPH94, YWM08], and recent radix-k [PGR∗09,
KPH∗10, MKPH11]. It is not obvious which is most ap-
propriate for a multi-GPU platform.

• Times taken for reading and writing operations between
peer-to-peer GPUs are different, and this must also be
taken into account.

In this paper, we discuss NUMA-aware image composit-
ing for a multi-GPU platform, and solve these technical is-
sues in a systematic way. Our contributions include:

• An optimal NUMA-aware image compositing algorithm
is proposed based on the proven radix-k approach, which
takes advantage of the NUMA architecture on multi-GPU
platforms.

• We qualitatively analyze different image compositing ap-
proaches, taking account of peer-to-peer communication
costs between GPUs.

Experiments on various datasets demonstrate that the sug-
gested image compositing approach is very fast, and an im-
age with a few tens of megapixels image can be composited
in a PC based multi-GPU environment in under 10ms, pro-
viding a basis for real-time rendering of time-varying data
(see Figure 1). Our compositing speed is competitive to the
reported performance from several well-known supercom-
puters [KPH∗10].

2. Related Work

2.1. Image Compositing

In this review, we focus on sort-last parallel rendering al-
gorithms, as this is our chosen approach. In sort-last paral-
lel rendering [MCEF94], object data are partitioned among
M processors. The objects are rendered locally, and the re-
sulting images are depth-sorted or composited in a final
step. Stompel et al. [SML∗03] surveyed approaches to im-
age compositing for this step, while Cavin et al. [CMF05]
analyzed the relative theoretical performances of these meth-
ods. These overviews show image compositing algorithms
can be broadly divided into one of three categories: direct-
send [Neu94, EP08], binary swap [lMPH94, YWM08], and
hybrid approaches.

Direct send compositing [Neu94, EP08] divides this final
image gathering task into M tiles to avoid exchanging full-
size images. Each tile belongs to and is composited by one
processor; the composited tiles are eventually assembled to-
gether to form the final image. As expected, the complex-
ity of this algorithm is linear O(M2). The main advantage
of direct send is its flexibility, since it can accommodate any
number of processing nodes. It is very easy to implement and
allows computation (i.e. pixel processing) to overlap with
communications. However, it involves multiple processors
sending messages to the same processor at the same time in

an unpredictable and non-deterministic communication pat-
tern.

The binary swap algorithm [lMPH94] is based on a binary
tree compositing strategy which keeps every node busy in
all stages of the process. It takes log2 M stages to complete,
where M should be a power of two to fully exploit paral-
lelism. Binary swap uses fewer messages than direct send:
O(M log2 M) messages in total, assuming minimal overlap
between rounds.

To overcome the disadvantages of binary swap and direct
send, many improved methods have been presented in recent
years. Yu et al. proposed [YWM08] a 2−3 swap method for
parallel volume rendering which combined the advantages
of both direct send and binary swap. It avoids all-to-all com-
munication and considers binary swap as a special case of a
2−3 swap algorithm.

Radix-k compositing [PGR∗09, KPH∗10, MKPH11] was
later introduced a a configurable parallel image composit-
ing method. The radices are a set of configurable parameters
represented as a vector k = [k1,k2, ...kr], where M = ∏ki,
and r denotes the number of communication and composit-
ing rounds. During each round i, the M processing nodes are
divided into M/ki groups of ki participants, which commu-
nicate only within their group in a direct send fashion. When
all k-values are equal to 2, this is equivalent to the binary
swap algorithm. When there is a single k-value equal to M,
there is only a single round and this is equivalent to the direct
send algorithm. Radix-k compositing has been shown to per-
form better than the binary swap and 2−3 swap algorithms.
However, the biggest obstacle to applying the radix-k algo-
rithm is the lack of a clear strategy for determining the vec-
tor k which provides optimal performance, since the choice
of radices depends on network topology and hardware. At-
tempts have been made [PGR∗09, KPH∗10] to find the best
radices for particular hardware platforms by executing a se-
ries of benchmarks, rather than giving an analysis. Here, we
consider the optimal radix−k approach from a theoretical
viewpoint by considering the properties of multi-GPU PC
systems; we later validate our claims.

2.2. Multi-GPU Systems

To simplify programming of rendering on multi-GPU sys-
tems, Moerschell and Owens [MO06] presented a consistent,
distributed, shared memory system. Recent parallel render-
ing researching mainly focuses on advances in multi-GPU
clusters, such as ones based on InfiniBand fat-trees [CD12].
GPUs attached to different I/O ports can not access each
other on a peer-to-peer (P2P) basis, so this does not pro-
vide a true NUMA architecture. NVIDIA developed CUDA
4.0 [NVI12] to support multiple GPU parallel rendering us-
ing NUMA architecture on a PC. However, taking full ad-
vantage of it requires careful analysis and thought..

Stephane et al. [MMD08] implemented sort-last volume
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Figure 1: Real-time rendering of time-varying data. A 16 megapixel resolution image is rendered on a 4-GPU platform in about

5ms.

visualization on a multi-GPU system, and analyzed bot-
tlenecks in and advantages of multi-GPU systems. Spaf-
ford et al. [SMV11] quantitatively analyzed the benefits
of NUMA architecture on a multi-GPU platform, and pro-
vided guidance on programming strategies to maximize per-
formance. The NUMA architecture was initially analyzed
by [EBA∗12] for hybrid multi-GPU clusters to optimize
asynchronous parallelization of rendering stages. In our
case, we specifically consider the problem of image com-
positing on a NUMA multi-GPU platform.

3. Background

3.1. Multi-GPU NUMA Architecture

As illustrated in Figure 2, M-GPUs in NUMA architecture
are connected in a binary tree structure. The GPUs are at the
leaves of a full binary tree, and internal tree nodes are PCIe
switches except for the root node which is an I/O hub (IOH).
Note that M need not necessarily be a power of two, and cer-
tain leaves could be empty. Although all GPUs can access
each other directly, the PCIe bandwidth (B) is much nar-
rower than that of video memory. The performance of P2P
access between GPUs is still bounded by the limited band-
width of each PCIe switch (denoted as Bs), which causes the
bottleneck in image compositing. As noted by NVIDIA nd
confirmed in practice, the highest P2P communication speed
is achieved between GPUs on the same PCIe switch. Such a
communication path does not include the IOH; the bandwith
of the IOH (denoted as Bh) is lower.

PCIe Switch PCIe Switch

IOH

GPU
0

GPU
1 GPU

2
GPU

3

Figure 2: Example of multi-GPU NUMA architecture

(right) on a 4-GPU platform (left). GPUs are connected by

PCIe switches and an I/O hub (IOH) in a tree structure.

Image compositing must communicate image data using

reading and writing operations. Writing speed is noted by
NVIDIA to be lower than reading during P2P GPU access,
and bidirectional throughput is usually less than twice that of
unidirectional transfers: the PCIe bus between GPUs is not
an ideal full duplex connection.

Some concepts relevant to NUMA architecture are intro-
duced here for further usage:

• Local GPU: the GPU to which the compositing result im-
age belongs;

• Neighboring GPU: a GPU which can be accessed by P2P
by the local GPU;

• Remote GPU: a GPU which cannot be accessed by P2P
by the local GPU.

• GPU-pair: two GPUs connected by PCIe switches and/or
the IOH.

3.2. NUMA-aware compositing algorithm overview

We study how the radix-k algorithm can be used for greatest
compositing speed. The keys to improving radix-k perfor-
mance are: increasing message concurrency, avoiding con-
tention, and overlapping communication with computation.

As video memory throughput may be 20 or more times
greater than PCIe throughput, we assume we can ignore the
cost of local video memory accesses (due to computation) in
many cases, and focus on quantifying the effect of P2P ac-
cesses (needed for communication) on image compositing.

PCIe link contention always occurs due to the complex
communication between GPUs in NUMA architecture. As
Figure 2 shows, GPUs are interconnected by PCIe switches
and the IOH, and data streams scatter or gather at these inter-
connected nodes. The PCIe bus is a duplex connection, and
can communicate concurrently in both directions. However,
when more than one data stream path overlaps in the same
direction, PCIe link contention will happen, as illustrated by
examples in Figure 3. Quantitatively approaching the link
contention is critical to analyzing the communication cost.
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PCIe switch

PCIe switch

or GPU
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or GPU
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PCIe switch

or GPU
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or GPU

PCIe switch

or IOH

PCIe switch

PCIe switch

or GPU

PCIe switch
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PCIe switch

or IOH

PCIe switch

PCIe switch

or GPU

PCIe switch

or GPU

PCIe switch

or IOH

Link 

Contention

Link 

Contention

Figure 3: Link contention at PCIe switches occurs if data

flows overlap in the same direction. Top: no contention. Bot-

tom: contention occurs.

4. Multi-GPU NUMA-aware Image Compositing

In the following section, we first find the optimal k-vector
for the radix-k method on NUMA architecture (Section 4.1),
then we address how to build practical GPU-pair composit-
ing approaches by considering the reading and writing com-
munication costs (see Section 4.2).

4.1. Optimal Compositing on the Multi-GPU Platform

Enlightened by the approach of mathematical analysis of
collective communication [CHPvdG07], we define the im-
age compositing cost function as follows:

T = f (k,N,B), (1)

where k is the k-vector in the radix-k algorithm, N is the
number of pixels in each partial image which participates
in composition, and B is a bandwidth vector related to the
grouping approaches as explained later.

Given a compositing strategy specified by a vector k,
Function 1 returns the minimal compositing time using this
strategy. For example, f ([8],N, [L3]) is the minimal com-
positing time using the direct send algorithm for 8 GPUs,
while f ([2,2,2],N, [L1,L2,L3]) is the time taken for the bi-
nary swap approach. For any given vector k = [k1,k2...kt ]
where M = ∏

t
i=1 ki and M is the number of GPUs, analysis

of the radix-k procedure [PGR∗09] shows that the following
equation holds:

f ([k1, ...kt ],N, [Bk1
, ...Bkt

]) =
t

∑
i=1

f ([ki],
N

∏
i−1
j=0 k j

, [Bki
]).

(2)
Here, we additionally define k0 = 1 to unify the expression
of the cost function. In Equation 2, each item of the sum
corresponds to the cost of one compositing round in the al-
gorithm, and the total composition time is the sum of these
times.

For NUMA architecture structured in a full binary tree,
we claim that the optimal radix-k compositing strategy is the
binary swap method. We prove this claim using the above
formulation.

Theorem 1 Suppose ki GPUs are grouped for compositing,
where ki is a power of two. Let N be the number of pixels
in the current image to be composited in this round. Then if
ki ≥ 4, the following holds:

f ([ki],N, [Bki
])≥ f ([

ki

2
,2],N, [Bki−1

,Bki
]) (3)

Proof As all GPUs are linked in a binary tree, a PCIe switch
(or the IOH) must be the lowest common ancestor (nearest
the root) for the current ki GPUs. We call this ancestor Aki

and suppose its pixel bandwidth is Bki
as defined previously.

The cost of f ([ki],N, [Bki
]) is just the cost of direct send for

ki GPUs; each GPU is in charge of compositing N/ki pixels.
As an intrinsic property of direct send, the number of pixels
passing through Aki

unidirectionally is (ki/2)2
·N/ki, so the

following inequality holds:

f ([ki],N, [Bki
])≥ (

ki

2
)2
·

N

ki
·

1

Bki

(4)

In the worst case, each compositing step of a single GPU
encounters link contention. This gives an upper bound to the
direct send cost as follows (here we let r = log2 ki −1):

f ([ki],N, [Bki
])≤

r

∑
j=0

(2 j)2
·

N

ki
·

1

Bki

≤
k2

i −1

3
·

N

ki
·

1

Bki

(5)

Next we find bounds on f ([ki/2,2],N, [Bki−1
,Bki

]). The
compositing procedure for the k-vector [ki/2,2] has two
steps. Firstly ki/2 GPUs are grouped, and direct send
is executed to composite images, then between-group
GPUs are paired to complete the final composition. The
time for the first step can be recursively represented as
f ([ki/2],N, [Bki−1

]), but the time for the second step needs
further consideration. After finishing the first compositing
step, just ki/2 pixels pass through the root Aki

in the sec-
ond step. Thus, the compositing time for the second step is
(N/2) · (1/Bki

). So the following equation holds:

f ([
ki

2
,2],N, [Bki−1

,Bki
]) = f ([

ki

2
],N, [Bki−1

])+
N

2Bki

(6)

Using Equation 5 and Bki−1
≥ Bki

, the upper bound of

f ([ ki

2 ,2],N, [Bki−1
,Bki

]) is:

f ([ki/2,2],N, [Bki−1
,Bki

])≤
k2

i −4

6
·

N

ki
·

1

Bki

+
N

2
·

1

Bki

(7)

A simple function G(ki,N) can be constructed as follows:

G(ki,N) = f ([ki],N, [Bki
])− f ([

ki

2
,2],N, [Bki−1

,Bki
]). (8)

After substituting Inequalities 4 and 7, we can easily con-
clude that G(ki,N) ≥ 0 when ki ≥ 4, proving Theorem 1.
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In practice, it is extremely unlikely that equal-
ity is reached in Inequalities 4 and 5, so we may
assume that f ([ki],N, [Bki

]) is always greater than
f ([ki/2,2, [Bki−1

,Bki
]],N). Thus, given any radix-k vector

k = [k1,k2, ...kt ], we can find the minimal compositing time
by recursively using Theorem 1 to decompose the vector k

for any element ki ≥ 4. Eventually, all elements of k must
be two, and this is exactly the k-value for binary swap. One
more key point to note is that the grouping order of binary
swap must be bottom-up, that is, each GPU should firstly
swap pixels with its nearest partner. This grouping order
will minimize the number of pixels crossing PCIe switches,
and maxmize the performance of binary swap. In summary,
we arrive at the important conclusion that binary swap
is the optimal image compositing method for a NUMA
multi-GPU platform.

4.2. GPU-pair Image Compositing Modes

Although we have found the theoretically optimal composit-
ing strategy, we still need to consider many factors (e.g.
PCIe communications) to arrive at the best algorithm in prac-
tical terms. In this section we consider various GPU-pair
compositing approaches, and quantitatively consider how
NUMA architecture affects image compositing.

For a GPU-pair GPU0 and GPU1, GPU0 communicate
with GPU1 through one or more PCIe switches (or the IOH),
and they can read or write each other’s GPU memory. By re-
moving obviously low performance cases, we arrive at three
different compositing approaches as shown in Figure 4. On
the left of Figure 4, each GPU in a pair mutually reads the
color (C) and depth (D) images from its neighbor to lo-
cal memory, and composites partial images locally: we call
this case the mutual read compositing (MRC) approach. In
the middle case, each GPU in a pair mutually writes color
and depth images from local memory to their neighbors,
then images are composited on the local GPU: we call this
mutual write compositing (MWC). The right case is more
complicated and involves hybrid inter-GPU communication.
Firstly, each GPU writes depth information to the neighbor-
ing GPU’s memory. Secondly, both GPUs read color images
from their neighbors based on the depth image read in the
first step: we call this approach mutual write-read composit-

ing (MWRC).

The compositing process involves many reading and writ-
ing operations between GPUs, and it is not straightforward
to determine which approach is best. Performance variations
occur between between P2P reading and writing, and these
directly affect compositing performance. Suppose the time
for a GPU to read one pixel from another is α, and the time
for writing is β. To describe the imbalance between reading
and writing, we define the coefficient ε to be:

β = εα. (9)

For a given multi-GPU system, ε is a constant parameter de-
termined by the PCIe bus and system chipset.

In addition to differences in reading and writing, another
factor to consider is that PCIe is not an ideal full duplex bus.
As noted by the manufacturer, and observed in practice, the
bidirectional bandwidth of PCIe is less than twice its uni-
directional bandwidth; further investigation also shows that
there are performance variations between duplex P2P read-
ing and writing. We define two further ratios as below to
relate simplex and duplex P2P accesses:

kα = TDR/TSR, (10)

kβ = TDW /TSW , (11)

where TDR (or TDW ) is the time taken by a GPU to read (or
write) image data from its neighboring GPU in bidirectional
(duplex) operation, and TSR (or TSW ) is the time for reading
(or writing) n data items in unidirectional (simplex) opera-
tion. kα and kβ thus describe the decrease in PCIe bandwidth
when using duplex, relative to simplex. If duplex throughput
is exactly twice that of simplex, then kα=1 and kβ=1, but kα

and kβ are usually greater than 1, since duplex throughput is
less than twice of simplex.

To quantitatively express the cost of these three composit-
ing approaches, we show what happens over time in each in
Figure 5. Assume that R0 and R1 (R0 ≥ R1) are the resolu-
tions of images I0 and I1 in GPU0 and GPU1, I0 and I1 are
separately composed of I00 and I01, and I10 and I10 respec-
tively, and the number of active pixels in I0 and I1 is R. We
can on average distribute the active pixels of I0 (or I1) into
I00 (or I10) and I01 (or I11) by equally separating pixels. Then
the cost time of the three approaches is:

TMRC = αkα
R+R1

2
+α

R0 −R1

2
(12)

TMWC = βkβR1 +β(R0 −R1) (13)

TMWRC = β(kβ
R1

2
+

R0 −R1

2
)+α(kα

R1

2
+

R0 −R1

2
)(14)

All three cost expressions are the sum of two terms. The
first term in Equations 12 and 13 represents the cost of bidi-
rectional reading or writing. The second term is the time for
unidirectionally transferring R0−R1

2 pixels. Equation 14 is a
hybrid of Equations 12 and 13 as it mixes reading and writ-
ing operations.

A key point concerns which pixels are active. In MRC,
we have to read full resolution partial images since there is
no information about active pixels. MWC and MWRC dif-
fer because the local GPU knows which pixels are active
and can therefore avoid writing blank pixels. This is why
the term C appears in Equation 12 but not in Equations 13
and 14. On the other hand, if we have already read depth
images, only active pixels need be transferred when reading
color images.

We have discussed the case of Z-buffer composition
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Figure 4: Compositing approaches for a GPU-pair: left to right: MRC, MWC and MWRC. Red lines indicate writing op-

erations; blue lines indicate reading. Arrows indicate direction of data transfer. C and D represent color and depth images

respectively.
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Figure 5: Sequence diagram for each compositing approach. Left to right: MRC, MWC and MWRC. Synchronization points

are needed for MWC and MWRC, as they include read-after-write dependencies.

above. But most parallel volume rendering composites im-
ages by a sorting processes, which does not need a Z-buffer.
If we directly composite images without depths, the com-
positing time expressions become:

TMRC−NZ = αkα
R

2
(15)

TMWC−NZ = βkβ
R1

2
+β

R0 −R1

2
(16)

We can ignore the mutual write-read method in this case be-
cause of the absence of depth information. Fewer pixels are
transferred between GPUs.

Since kα, kβ, α and β are all hardware platform depen-
dent, we can draw the conclusion that TMRC, TMWC, TMWRC,
TMRC−NZ , TMWC−NZ are all determined by the input active
pixels in a given system. Specifying two input images, we
can evaluate the above compositing time easily, and decide
which composition approach should be used.

5. Experimental Results

During the experiments, we mainly considered two issues.
Firstly, we measured the parameters of our multi-GPU plat-
forms since they are crucial in analysing compositing perfor-
mance. Secondly, the performance of different compositing
approaches was experimentally determined, for various k-
vectors, to verify our analysis and expectations.

Table 1: Two Multi-GPU platforms configurations

Gigabyte UD9 ASUS ESC4000
CPU Intel i7 950 2.8GHz Intel Xeon X5675 3.07Hz

Memory 12GB 48GB
GPU GeForce GTX 480 GeForce GTX 460
PCIe PCIe 2.0 X16 PCIe 2.0 X8

Motherboard X58A-UD9 Intel (R) 5520

5.1. Test Environment

We used two different platforms to test our NUMA-aware
image compositing ideas. One was a PC and the other was
a server node, equipped with 4 and 8 GPUs, respectively in
configurations shown in Table 1. For simplicity, we call the
4 GPU system UD9 and the 8 GPU platform ESC4000. Al-
though the ESC4000 was equipped with 8 PCIe slots, their
bandwidth was only X8 as all PCIe slots were filled. How-
ever, this degradation of bandwidth did not effect the scala-
bility performance testing. The GPU architectures of the two
platforms are shown in Figure 6.

5.2. Determining Parameters for a GPU-Pair

To determine the differences in P2P reading and writing,
we used batched reading and writing to obtain mean per-
formance for each GPU-pair. On each platform, we used
different size images as test data, and computed mean ac-
cess bandwidth for simplex reading (SR), simplex writing
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Figure 6: Two platform illustrations: Left: UD9; Right

ESC4000.

(SW), duplex reading (DR) and duplex writing (DW). As
mentioned above, there are two types of bandwidth to be de-
termined: one is the bandwidth of paths which only include
PCIe switches, the other is for paths including the IOH. For
example, the path between GPU0 and GPU1 on both UD9
and ESC4000 does not include the IOH, while the GPU-pair
GPU(0,2) on UD9 and the pair GPU(0,4) on ESC4000 in-
clude the IOH. Thus, we separately list their P2P bandwidth
performance in Table 2.

Table 2: P2P bandwidth of our NUMA platforms

Reading/Writing Bandwidth(unit: GB/s)
Platform GPU-pair SR SW DR DW

GPU(0,1) 6.17 5.22 10.0 10.40
UD9 GPU(0,2) 4.44 3.29 5.98 6.5

GPU(0,1) 3.09 2.97 5.46 5.96
ESC4000 GPU(0,2) 2.54 2.46 4.66 5.02

GPU(0,4) 2.54 2.45 4.65 5.00

Table 3: Parameters of our NUMA platforms

GPU-pair GPU(0,1) GPU(0,2)

ε kα kβ ε kα kβ

UD9 1.18 1.23 1.0 1.35 1.48 1.01

GPU-pair GPU(0,1) GPU(0,4)

ε kα kβ ε kα kβ

ESC4000 1.04 1.13 1.0 1.03 1.09 0.98

The values for, ε, kα, kβ are constant for various applica-
tions, and can help to determine how to achieve optimal per-
formance. For example, on the UD9 platform, ε of GPU(0,1)
is about 1.18, i.e. the throughput of simplex P2P reading is
1.18 times than writing. kα = 1.48 for GPU(0,2) indicates
that the performance of reading from GPU0 to GPU2 is a
factor 1.48 times lower in the duplex cases than in the sim-
plex case. On the ESC4000 system, all three parameters for
both GPU-pairs are closer to 1.0 than for UD9: the NUMA

Figure 7: 16-megapixel image compositing on UD9 (left)

and ESC400 (right) in under 10ms.

architecture has less impact here. kβ for both systems is close
to 1.0 for any GPU-pair, meaning that there is little effect
when switching from simplex writing to duplex.

5.3. Image Compositing Performance Tests

We tested the image compositing performance on UD9 and
ESC400 by using triangle meshes with over 109 triangles
(see Figure 1 and 7). The final image size was set to 4K ×

4K, providing a rendering speed under 10ms for the three
image compositing approaches discussed. Such allows real-
time rendering of time-varying mesh sequences as in Fig-
ure 1. We selected UD9 as our experimental platform for
further study of how the NUMA architecture impacts im-
age compositing (page limits preclude reporting on ESC400
too). We chose UD9 as it had greater performance variances
than ESC4000 so illustrates our analysis more clearly.

Given fixed kα, kβ, ε and image resolution, the composit-
ing time is determined by the number of active pixels in each
of the two input images. Thus our test used images with vary
numbers of active pixels to examine the validity of our ap-
proach proposed in Section 4.2.

To obtain different active pixels with fixed resolution, we
used two different camera views of the mesh. We refer to the
first scene as Scale-1, and the second as Scale-2. In Scale-
1 (or Scale-2), the ratio of active pixels for GPU0, GPU1,
GPU2, and GPU3 were respectively 10% (or 18%), 15% (or
30%), 17% (or 33%), and 24% (or 43%).
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Figure 8: Times for direct send (DS) and three implementa-

tions of binary swap (BS) on UD9.
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To illustrate the variations in the three compositing ap-
proaches, we implemented binary swap in different ways
as described earlier on UD9. The compositing times using
four GPUs on UD9 are shown in Figure 8. All three im-
plementations of binary swap have better performance than
direct send. When the partial image of each GPU is sparse,
as in Scale-1, the time taken by MRC is almost twice that of
MWRC and MWC. This is because the costs of MWRC and
MWC only depend on active pixels. while MRC depends on
the full resolution of the input image, not just active pixels.

With a greater proportion of active pixels in partial im-
ages (going from Scale-1 to Scale-2), the compositing times
for MWRC and MWC obviously increases, as shown in Fig-
ure 8; the growth rates for MWRC and MWC are higher
than for direct send and MRC. This accords with the predic-
tion of our cost approach. Another detail we observed is that
MWRC takes less time than MWC for Scale-1, but longer
than MWC for Scale-2. This occurs because kα is much
larger than kβ on UD9, and the partial images in Scale-1 are
sparser than in Scale-2. The slow duplex reading operation
increases the costs of MWRC when there are more active
pixels to composite.

5.4. Image Compositing Scalability Tests

To test the scalability of our compositing approach, we chose
a large volume data set from a practical application and vi-
sualized it by ray casting. The volume data was the elec-
tromagnetic field generated by a particle in cell (PIC) sim-
ulation, with dimensions 720× 720× 960. Each grid point
is a single-precision floating-point number, so the total size
of this dataset is about 1.8 GB. We used the binary swap by
MWC method in this test, as it only depends on active pixels.

Figure 9: Volumetric electromagnetic field with 1.8GB, ren-

dered by ESC4000.

Before ray casting the volume data, we divided the dataset
using a k-D-tree strategy, and statically distributed sub data
blocks onto GPUs. The number of k-D-tree leaf nodes was

equal to the number of GPUs. Unlike polygon mesh render-
ing, we composited partial images by sorting the ray cast-
ing results, and used OVER / UNDER operators to blend
each pixel using the GPU. Thus, the communication cost for
this test follows Equation 16—there is no depth information
transferred in image composition. The aim of this experi-
ment was to first verify the optimality of binary swap, as
demonstrated in Section 4.1, and then to analyze the scala-
bility of parallel rendering on ESC4000.

There are four different compositing strategies for 8
GPUs, and each strategy exactly corresponds to one k-vector
in the radix-k algorithm. Figure 10 illustrates all four k-
vectors used in this test and their compositing times. The
k-vector [2,2,2] corresponds to binary swap, while the k-
vector [8] corresponds to direct send. The whole composi-
tion is divided into the same number of stages as the length
of the k-vector. For example, the length of [2,2,2] is three, so
there are three stages in binary swap, and so there are three
synchronization points in the composition procedure.

0 5 10 15 20

[8]

[2,4]

[4,2]

[2,2,2]
stage-1

stage-2

stage-3

Time(ms)

k-value

Figure 10: Different radix-k image compositing times on

ESC400.

As shown in Figure 10, binary swap is much faster than
direct send, and the other two methods ([4,2] and [4,2]) lie
in between. Approach [4,2] is better than [2,4] because there
are fewer pixels passing through the IOH. These experimen-
tal results confirm our analysis, and we can say with confi-
dence that binary swap is the optimal compositing method
for multi-GPU systems.
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Figure 11: scalability test of different GPUs on ESC4000.
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To measure the overall performance of parallel rendering,
we did a scalability test on ESC4000. As binary swap needs a
power-of-two threads, only cases with 2, 4 and 8 GPUs were
measured, as shown in Figure 11. The overall rendering time
has two parts: ray casting time and binary swap time. The
test volume data was nearly 2 GB, and cannot be entirely
loaded into a single GPU memory. Thus, we took the the
case of 2 threads as the baseline, and calculated speedup rel-
ative to this case. With two threads, it only took a short time
to composite the two partial images. With increasing num-
bers of threads, the ray casting time became shorter, while
the compositing time increased gradually.

If we ignore the cost of composition, the scalability of ray
casting is high (indicated by the purple line in Figure 11).
The frame rate with 8 GPUs rendering is about 3.3 times
the rate for 2 GPUs. However, considering the compositing
cost, the overall speedup is lower (indicated by the red line
in Figure 11). The cost of composition becomes the bottle-
neck with increasing numbers of rendering threads. As the
PCIe bandwidth of ESC4000 is X8, this narrow throughput
hampered the benefits of parallelism.

6. Conclusions and Future Work

We have considered image compositing on NUMA archi-
tecture multi-GPU systems. In this case, we have proved
that binary swap is the best NUMA-aware image composit-
ing strategy among all radix-k methods. To make best use
of P2P communication, three GPU-pair compositing ap-
proaches were considered, and we quantitatively evaluated
the mathematical relationship between compositing time and
the number of active pixels. Two hardware platforms were
used to confirm the performance differences of P2P reading
and writing, and all test results on various data support our
analysis.

This research offers some avenues for further exploration.
For example, the NUMA-aware cost approach could also
provide a theoretical basis for further optimizing composit-
ing algorithms, potentially leading to more efficient com-
positing strategies.
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