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Huntington's disease (HD) is a neurodegenerative disease caused by a mutation within the huntingtin gene that
induces degeneration within the striatal nuclei, progressing to widespread brain atrophy and death. The
neurodegeneration produces symptoms that reflect a corticostriatal disconnection syndrome involving motor,
cognitive and psychiatric disturbance. Environmental enrichment has been demonstrated to be beneficial to pa-
tients with neurological disorders, with exercise being central to this effect. Rodent studies have confirmed
exercise-induced neurogenesis and increased growth factor levels in the brain and improved behavioural func-
tion. The present study sought to determine whether an extended regime of exercise could retard disease pro-
gression in the R6/1 mouse model of HD. The study was designed specifically with a translational focus,
selecting behavioural assessments with high clinical predictive validity. We found that exercise improved gait
function in both control and HD mice and selectively improved performance in the R6/1 mice on a motor coor-
dination aspect of the balance beam task. Exercise also retarded the progression of cognitive dysfunction on
water T-maze procedural and reversal learning probes presented serially to probe cognitive flexibility. In addi-
tion, exercise reduced striatal neuron loss in the R6/1mice but increased striatal neuronal intra-nuclear inclusion
size and number relative to non-exercised R6/1 mice which demonstrated increased numbers of extra-neuronal
inclusions, suggesting that the functional effectswere striatallymediated. These results confirmand extend those
fromprevious studies that demonstrate thatHDmay be amenable to exercise-mediated therapeutics, but suggest
that the impact of such interventions may be primarily cognitive.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

Huntington's disease (HD) is a neurodegenerative disease caused
by a single mutation in the gene that codes for the protein huntingtin
(The Huntington's Disease Collaborative Research Group, 1993). HD
is primarily characterised by the insidious and progressive neuro-
degeneration of the medium spiny neurons of the caudate nucleus
and cortical atrophywith abnormalities in other brain regions occurring
as the disease progresses (Aylward et al., 1998; Rosas et al., 2002, 2005;
Tabrizi et al., 2009, 2011; van den Bogaard et al., 2011; Vonsattel et al.,
1985). The disease induces motor, cognitive and psychiatric symptoms,
which ultimately result in death around 15 years from onset.

There is considerable evidence that exercise or amore active lifestyle
has a beneficial effect on the symptoms and prognosis of several disease
states including Alzheimer's disease (Verghese et al., 2003; Abbott et al.,
erms of the Creative Commons
rmits non-commercial use, dis-
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2004; Rovio et al., 2005; Podewils et al., 2005; Larson et al., 2006), and
Parkinson's disease (Cruise et al., 2011; Gobbi et al., 2009; Muller and
Muhlack, 2010; Nocera et al., 2010). These studies demonstrate an
exercise-mediated improvement in the daily functioning of patients,
sometimes after several years of follow-up studies. In addition to
these palliative effects measured through cognitive and motor assess-
ments, there is evidence that exercise may also slow the rate of disease
neuropathology (Cruise et al., 2011; Gobbi et al., 2009; Muller and
Muhlack, 2010; Nocera et al., 2010). To date only a single randomised
controlled physical activity study in HD patients has been performed
and demonstratedmarked functional benefit with relatively little inter-
vention (Khalil et al., 2013).

A small number of animal studies using mouse models of HD found
that exercise may ameliorate some aspects of motor and cognitive dys-
function (Pang et al., 2006; van Dellen et al., 2008; Wood et al., 2011).
R6/1 mice exposed to voluntary wheel running from a young age
were found to demonstrate less body clasping when suspended by the
tail, a delayed onset of motor dysfunction in a static beam test and pro-
duced a greater number of spontaneous alternations in a cognitive spa-
tial alternation test, but wheel running had no effect on other
transgene-induced functional deficits (Pang et al., 2006; van Dellen
ved.
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et al., 2008). In other studies with normal mice (in both middle and old
age) (Berchtold et al., 2010; van Praag et al., 1999, 2005), and mouse
models of neurological dysfunction (Griesbach et al., 2009; Nichol
et al., 2009) exercise was found to enhance learning. However, a study
in mice bred to produce high levels of wheel running failed to see this
effect (Rhodes et al., 2003). Studies on exercise and cognitive function
use probes of hippocampus-mediated spatial learning in HD mouse
lines (Pang et al., 2006; Potter et al., 2010). However, this type of
probe has little relevance to the primary striatal neuropathology of
HD. Hence, although there is some evidence to suggest that exercise in
HD mouse lines may be of potential benefit to the clinical population,
previous studies have typically used behavioural tests with low face va-
lidity and little translational relevance.

The present study was designed to determine whether life-long
daily access to voluntary exercise was able to provide benefit to HD
mice in a clinically relevant way that could be developed as a model
therapeutic system. Hence, we sought to design a studywith an empha-
sis on high predictive (translational) validity, such that the tests used in
the animal study were correlates of those commonly used in clinical
assessments of HDpatients, and presently being used in the HDexercise
study being run in Cardiff University (Khalil et al., 2013). The tests were
chosen to be sensitive probes of cortico-striatal dysfunction, the princi-
pal cause of functional decline in HD. We also sought to determine the
underlying mechanism of any beneficial effect of exercise in the HD
mice by measuring striatal dopamine and BDNF activation, as both
have been implicated in HD pathology (Augood et al., 1997; Giampa
et al., 2013; Glass et al., 2000; Zuccato et al., 2001, 2008), and by a
detailed stereological analyses of the striatum to determine atrophy,
neuron numbers and inclusion pathology.

Material and methods

Animals

The R6/1 HDmouse line (Mangiarini et al., 1996) was chosen for the
present study as it develops marked pathology over the course of
7 months and has been used in previous exercise studies (Pang et al.,
2006; van Dellen et al., 2008). At the onset of the study, 67 mice were
allocated to the experiment with 3 male mice subsequently being
removed, two at 3 months of age and 1 at four months of age: one
wildtype control mouse developed a cataract, and one R6/1 exercise
group mouse developed an anal prolapse with a second mouse from
this group demonstrating excessive epileptic type of seizures. With
the removal of the 3 mice, 64 R6/1 mice congenic to a C57BL/6j back-
ground were used: Group 1 = wildtype control (7 males and 8
females); Group 2 = R6/1 control (9 males and 8 females); Group
3 = wildtype exercise (9 males and 8 females); Group 4 = R6/1
exercise (7 males and 8 females). The R6/1 mice in this study carried
between 120 and 125 CAG repeats with amean of 123 andwere bred,
tail-tipped and genotyped in-house. The mice had ad libitum access
to food and water throughout the study period. The mice were housed
at an ambient room temperature of 21 ± 1 °C at a humidity of 60 ±1%.
All experiments were conducted in accordance with the United King-
dom Animals (Scientific Procedures) Act of 1986 and local ethical re-
view. The defined humane endpoint for the mice was 20% body
weight loss, hence although some mice may live to 11 months in
other studies, 7 months of age was taken as the final testing time
point as a significant number ofmice approached the humane endpoint.
At the end of the experiment of the original 64 mice that began testing
52 mice remained, 9 non-exercised R6/1 mice and 3 exercised mice
having died or been euthanized due to the predefined endpoints.

Exercise administration

Exercise was administered daily (14 h/day, 5 days/week), from
post-weaning (5 weeks of age) by individual housing of the mice
overnight (17.30–09.30) in cages (34 cm × 28 cm × 1 cm) fitted with
an ENV-044 tabulating running wheel, connected wirelessly to an
DIG-804 interface hub and laptop computer running the SOF-861
wheel analysis software (Med Associates, St. Albans, VT, USA). By day,
the mice were returned to their grouped housing conditions in the
same sized cages to prevent the development of abnormal behaviours
caused by continual social isolation. Non-exercised mice were treated
in the same way as the R6/1 mice but without access to a running
wheel to be consistent with previous studies (Pang et al., 2006; van
Dellen et al., 2008).

Behavioural testing

The mice were tested at regular monthly intervals (every 4 weeks)
from 8 weeks of age through to 28 weeks of age throughout their
lives on a number of tests of motor function and tested twice on a
water T-maze attentional shift task at an early (9 weeks) and a late
(22 weeks) disease time point. For the motor tests data analyses
were taken from data points between 4 and 7 months of age to con-
trol for sex differences in wheel running levels in the R6/1 mice (see
below). Behavioural tests were selected for their high translational
value and consequently have clinically relevant human correlates
(rotarod and gait analysis ≡ kinetic and kinematic gait assessments;
grip strength ≡ dynamometry; motor activity ≡ self report and di-
rect accelerometer basedmeasures of daily physical activity; balance
beam ≡ clinical balance tests and force plate measure; water T-
maze ≡ procedural learning/attentional probe). All tests were
performed blind to genotype.

Body weight

Body weight was measured weekly to assess the general health of
the animals. Body weight is also an indicator of disease development
in HD, as mice that are gene carriers tend to lose weight relative to
their wildtype littermates.

Rotarod

Motor coordination was tested on the accelerating version of the
rotarod test using a standard apparatus (Ugo Basile, Varese, Italy),
as described previously (Brooks et al., 2004, 2012c, 2012d, 2012f).
During test sessions, the mice are allowed three trials, with data
from the final 2 being collected.

Balance beam

An elevated bridge (balance beam) apparatus was used to measure
balance and motor coordination as described previously (Brooks et al.,
2012a). A tapered balance beam (1.5 cm to 0.5 cm) with a ledge run-
ning its length (Schallert, 2006) was used to determine whether the
mice had a balance impairment. The balance beam was 100 cm in
length and angled at 17° with the start point at the low end and a goal
box at the high end. The start point was 15 cm from one end of the
beam, and the end point was 10 cm from the other. The beam was
also fitted with a ledge that ran the full length at 2 cm below the height
of the running surface, and protruded 0.5 cm on either side of the beam
to prevent the animals from falling, and to aid in the identification of
foot-slips. Mice were trained to run the beam prior to testing. During
testing, each animal was given a trial run, and then two experimental
runs from which the data was collected. At the onset of testing the
mouse was placed on the extreme end of the beam (low end), facing
away from the beam. The mouse must turn towards the beam in order
to run it, and reach the goal box. The time it took the mouse to turn
on the end of the beam was taken as a measure of motor coordination.
The running/walking was then timed from the start point to the end
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point of the beam to determine the ability of themice to traverse it, and
foot-slips were counted as measure of balance.

Gait analysis

Gait analysis was conducted as previously described (Carter et al.,
1999). Mouse fore and hind paws were dipped in blue and red non-
toxic, water-based paint respectively. The mice were placed in a
clear Perspex runway (60 × 10 × 10 cm) that had a black goal box
(10 × 12 × 10 cm) fixed to one of the distal ends. White paper was
used to line the runway floor. The mice were permitted to walk to the
goal box from the opposite end of the runway thus allowing their foot-
prints to leave footfall patterns on the white paper. Four separate
parameters were measured; stride length; hind and fore paw base
width; overlap between fore and hind paws. For each set of prints
three consecutive examples were taken for each of the measured pa-
rameters. Footprints were always recorded mid-run to avoid taking
measures when the animal was either accelerating or decelerating.

Grip strength

Tomeasure grip strength a standard stainless steel mouse cage lid
(43 × 26.5 cm)with lateral 1 mmdiameter rungs was used in accor-
dance with previous studies (Brooks et al., 2012b). The mouse was
placed on the cage lid which was held flat in the horizontal plane
20 cm above a softened (with a folded towel) bench surface and
the lid was then slowly inverted through 180° along the horizontal
axis so that the mouse cluing upside-down to the cage lid. The
mouse was then timed to fall for a maximum of 1 min.

Open field motor activity

16 Perspex activity cages (42 × 26 × 19 cm) fitted with infra-red
beams (Med Associates, St. Albans, VT) were used. Mice were placed
in the cages between 10:00 h and 12:00 h where they remained
under their normal 12 h light/dark cycle, for 32 h with free access to
food and water throughout. The first 30 min of data was collected to
measure transfer activation with the 24 h circadian cycle of activity
being used to assess motor activation.

Water T-maze set-shifting task

A water T-maze swimming task was used to measure different as-
pects of discrimination learning and cognitive flexibility as described
previously (Brooks et al., 2012e). As the procedure takes around
4 weeks to run, it was used only twice, at 9 and 22 weeks of age. The la-
bour intensity of the task also dictates the number of mice that can be
rundailywhich on the procedure described below is 40.Wedetermined
to run balanced groups of 10 mice comprising of 5 male and 5 female
mice, with these 40mice running the task at both time points to reduce
the stress associatedwith unfamiliar exposure to thewater. On analyses
of the first data set we found that we had inadvertently included amale
exercised wildtype mouse in the non-exercised wildtype group
resulting in unbalanced wildtype groups (wildtype = 4 males/5
females; wildtype exercise = 6 males/5 females; R6/1 = 5 males/5
females; R6/1 exercise = 5 males/5 females). On the second run of
the procedure at 22 weeks of age 2 of the R6/1 animals with wheels
had died (1 male and female), and could not be replaced as this
group of 40 mice had had previous exposure to the test, resulting
in a group of 8 mice.

The water T-maze apparatus was constructed of clear Perspex. All
arms were 30 cm high and 7 cm wide, the stem 21.5 cm long and the
two perpendicular side arms each 37 cm long. The apparatus was filled
withwater at 23 ± 2 °C to a depth of 22.5 cm. An escape platform could
beplaced at the end of either side arm (6 × 6 × 21.5 cmhigh), coloured
white, and designed to sit snugly in to the arm of the maze at 1 cm
below thewater surface. Thewaterwas colouredwhitewith pasteurised
milk so as to make the platform invisible fromwithin themaze. Exterior
to the maze, two standard anglepoise lamps fitted with 40 W bulbs,
were positioned to illuminate the end of either arm. At any time only
one of the lamps was turned on. The mice were tested successively on
a series of visual and directional discrimination tasks. In each case train-
ing continued over several days until they reached criterion (see below),
when they were then switched to the next task in the series.

At the 9-week stage each animal was run 12 trials per day, but by
22 weeks themice underwent 6 trials per day to reduce the physical de-
mands on the R6/1 mice. The mice of each cohort were tested in rota-
tion, such that each mouse was dried and returned to its home cage
after each trial, and with an inter-trial interval of approximately
15 min or longer. On each trial, the response choice was determined
when the animal's body fully entered the arm. If the choice was correct
(entering the arm containing the escape platform) the mouse was
allowed to swim and climb on to the platform, and was removed after
10 s. If the animal performed an incorrect choice, the animal was
constrained to swim in the incorrect arm for 10 s, using a plastic blocking
panel thatfitted precisely to thewidth of themaze. All training employed
a correction procedurewhereby after 10 s the blocking panel was turned
through 90° to open the arm and simultaneously block the stem of the T-
maze and the mouse was permitted to find the platform in the correct
armof themaze. In order for themice to advance through the experimen-
tal stages they had to achieve 9 correct trials from any sequence of 10 tri-
als (N90% accuracy) for each stage. The data for analyseswas the number
of trials required to reach criteria and the percentage of correct choices.

Six test stages were used. Each of the stages required the animal to
learn a different rule in order to reach criteria and move to the next
stage of the task. As this test aimed to probe for attention-mediated cog-
nitiveflexibility and procedural learning deficits, currently irrelevant di-
mensions, which may become relevant later, were always present on
each trial. Briefly the six stages were:

i. Simple directional discrimination where the mouse had to always
turn in the same direction, with the irrelevant dimension (lit
lamp) randomly assigned to either arm on each trial.

ii. Reversal of the directional learning task such that mice trained to
turn right, nowmust go left and vice versa. The irrelevant light stim-
ulus remains irrelevant and continued to be randomly presented.

iii. Shift from the directional rule to a light/dark discrimination based
on the rule “move towards/away from the light”. In this stage direc-
tion became irrelevant.

iv. Reversal of the light/dark rule, such that an animal trained to move
to light, had now to move towards the dark and vice versa.

v. Shift away from the light/dark discrimination back to the original di-
rectional rule (Stage 1), with the light cues continuing to be present
and randomised, but irrelevant.

vi. Maze rotation manipulation was introduced to determine whether
the animalswere utilizing the turn or place strategies to solve the di-
rectional learning stages of the taskwhichmayhave confounding ef-
fects on the interpretation of experimental results.

Neuropathological assessment

Eight mice from each group were randomly selected and perfused
intracardially for 3 min with pH = 7.4 phosphate buffered saline
(PBS), after a systemic injection of (0.2 ml) Euthatal (Merial, Essex,
UK). Following the PBS flush, themicewere transfusedwith 4% parafor-
maldehyde (PFA) in a 0.1 M PBS solution for 5 min. The brains were
then removed and fixed in a 4% PFA solution for 4 h, prior to being
placed in a 25% sucrose/PBS solution until they sank. The brains were
sectioned into 1:12 series, 40 μm coronal slices on a freezing sledge mi-
crotome (Leitz Bright Series 8000, Germany) and stored in antifreeze at
−20° until used. For histological analyses, the 1:12 slices were Nissl
stained with cresyl violet (Sigma) as a cellular marker and S830 (Prof.



Fig. 1. Illustration of the regions measured for neuroanatomical assessment. The anterior,
lateral and medial areas of the striatum (+0.38 from bregma) are anatomically clearly
defined. The ventral striatal area was defined by taking a 45° angle from the descending
line of the lateral ventricle where it bisects the anterior commissure, to the edge of the
ventrolateral striatum. Cortical thinning was measured at two sites that represented sen-
sorimotor cortex.
After Franklin and Paxinos, 1997.
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G Bates, King's College, London University) as a label for mutant
huntingtin expression. Slices were also immunolabelled against tyro-
sine hydroxylase (TH:Millipore, UK) for amarker of dopamine neurons,
and brain derived neurotrophic factor (BDNF: Santa Cruz Biotechnology
Inc., CA, USA) using an antibody with demonstrated binding specificity
(Calvo et al., 2011; Gomez-Pinilla et al., 2011; Mooney and Miller,
2011; Sui and Li, 2010; Sui et al., 2012).

Cresyl fast violet

Sectionsweremounted on gelatine coated glass slides (Fisher Scien-
tific, UK) and left to dry for 24 h at 37 °C, prior to dehydration in ethanol
solutions of 70%, 90% and 100% for 5 min each, after which the tissue
was delipidised in a 20% chloroform/20% ethanol (1:1 v/v solution) for
20 min. The tissue was then rehydrated in descending concentrations
of ethanol (100%, 90%, 70%) for 5 min each prior to immersion in dis-
tilled water for a further 5 min. They were then stained for 5 min
with cresyl violet (0.7% in distilled water with 0.5% sodium acetate:
Sigma). The slides were then rinsed in distilled water and dehydrated
in the ascending ethanol concentrations, cleared in xylene (VWR,
Darmstadt, Germany) for 10 min and cover-slippedwith DPXmounting
medium (RA Lamb, Somerset, UK).

Immunohistochemistry

Slices were placed in a pH = 7.4 Tris buffered saline (TBS) and
washed twice. They were then incubated in methanol containing 3%
H2O2 for 5 min to inhibit peroxide activity prior to placement in TBS.
A 3%horse serum solution in TBSwas used to block non-specific binding
sites prior to incubation of the sections with the S830 (1:25,000), TH
(1:2000) and BDNF (1:500) antibodies at room temperature overnight.
The sectionswere thenwashed several times in TBS and incubatedwith
horse anti-goat or horse anti-rabbit secondary antibody at a 1:200 con-
centration (Vector Laboratories, Burlingame, CA, USA) for 2 h at room
temperature. The sections were washed several times and exposed to
biotin–streptavidin kit according to the manufacturer's instructions
(Vector). Finally, the sections were washed in TBS again and a 3,3′-
diaminobenzidine (DAB) kit (Sigma) was applied prior to the sections
beingmounted on gelatine coated slides, dehydrated and cover slipped.
CV staining and S830 staining were used for the basis of stereological
assessment and light intensity measures on the TH and BDNF slices to
determine the level of antibody binding were assessed with Image-J
(Softonic.com).

Histological and stereological assessments

All stereological assessments of striatal tissuewere taken from single
40 μmcoronal sections of striatum at ~0.38 mmanterior of bregma as it
provides good landmarks to produce consistency between animals and
provides a good representation of the striatum and cortex. Two
dimensional stereology was undertaken using the Olympus C.A.S.T.
Grid system v1.6 in combination with an Olympus BX50 microscope
(Olympus Optical Company Ltd., Tokyo, Japan). Data from both
striata (see Fig. 1) on each analysed CV section were taken that rep-
resented striatal size, cortical thickness (×4 magnification) and neu-
ronal number (×40 magnification with a 622 μm2 counting frame).
S830 sections were used to assess neuronal inclusion number (×40
magnification with 622 μm2 counting frame) which were randomly
sampled from the tissue using 30 sampling areas, and neuronal nu-
clei diameter at their widest point being taken as measures of their
respective size (×40 magnification) taking on average 46 measure-
ments of neuronal inclusions and neuronal nuclei from randomly
sampled regions on the slice.

Optical density assessment was used for the assessment of striatal
TH and striatal and hippocampal BDNF contents. The sections were
stained together at the same time to ensure consistency. Eight images
(striatum and hippocampus from each hemisphere from 4 sections)
from eachmouse were photographed ensuring that lighting andmicro-
scope settings were constant throughout. For each image the whole of
the corpus callosum from each image was contrasted with the whole
of the striatum or hippocampus on the same hemisphere. The optical
densitymeasure for each striatumor hippocampuswas then subtracted
from the corpus callosum standard for each slice. These values where
then meaned for each animal to produce the data used for analyses.

Statistical analyses

GenStat version 10 (VSN International, Hemel Hempstead, UK) was
used to run all of the statistical analyses. For the behavioural data, split-
plot analyses of variance (ANOVA) were conducted on each dataset
with Exercise, Sex, and Genotype as between-subject factors, and Age
and one or more behavioural parameters as within-subject factors.
Although full analyses were run, for clarity only Genotype × Exercise
interactions were reported as these were of primary interest and the
effects of sex and age were negligible where present. Post-hoc analyses
compared group differences using Newman–Keuls' and Sidak's test,
as appropriate to correct for multiple comparisons. Statistics for
bodyweights and exercise were taken over the entire experimental
period. For the motor tests analysis was over months 4–7 to take ac-
count of differences in the levels of exercise between the sexes in the
R6/1groups (see Fig. 2). For analyses of the 22 week water T-maze
experiments 2-way ANOVAs (Genotype × Exercise) were conducted
separately on the first 2 mazemanipulations (direction and direction
reversal), since the number of mice completing each separate task



Fig. 2. Female mice exercised more than male mice and wildtype mice exercised more than the R6/1 mice as measured by the number of turns of the running wheel, but by 5 months of
age, the male and female R6/1 mice were exercising to comparable levels (A). Wildtype mice lived longer than the R6/1 mice (B). Male R6/1 mice lost weight from 3 months of age with
female R6/1 mice losing weight from 6 months of age (C). Access to the running wheels slowed the initial weight loss in the R6/1 mice (D).
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fell below critical levels for parametric analyses from stage 3 on-
wards. For the analyses of the neuropathology, split plot analyses
of variance were used with Hemisphere (side) as a single within-
subject factor, and Exercise and Genotype as between-subject fac-
tors. As there were no effects of hemisphere, later data collection
for neuronal nucleus and inclusion size were restricted to the left
side of the brain and analysed with t-tests comparing the R6/1
groups across exercise.

Results

After the 28 weeks of behavioural assessment 12 of 32 of the R6/1
mice (9 non-exercise group, 3 exercise group) had died or were eutha-
nized due to a predetermined20%weight loss endpoint (see below). No
wildtype mice died within this period. As a consequence late stage be-
havioural tests and the neuropathological analyses are based on corre-
spondingly reduced group sizes.

Wheel running over the experimental period

To ensure that the mice exposed to the running wheels did under-
take exercise, levels of wheel running (the number of turns of the
wheel) were recorded for each mouse of the exercise groups (Fig. 2A).
The wildtype mice produced greater level of wheel running than their
R6/1 counterparts (F1,28 = 20.36, p b 0.001) and female mice ran fur-
ther than male mice (F1,28 = 10.84, p b 0.01). As the mice aged the
R6/1s became less active (Age × Genotype: F12,326 = 7.90, p b 0.001),
but the male and female wildtype animals maintained a consistently
high level of performance relative to their same-sexed R6/1 counter-
parts (Age × Genotype × Sex: F12,326 = 7.90, p b 0.001).

The effect of exercise on mortality and body weight

The effect of exercise onmortality rate wasmeasured (Fig. 2B). Over
the course of the study no wildtype mice died but 12 R6/1 (3 exercised
and 9 control) littermates did (Genotype: F1,56 = 18.11, p b 0.001),
with wheel running not affecting lifespan of the mice as a whole
(Exercise: F1,56 = 2.25, n.s.) or differentially by genotype (Exercise ×
Genotype: F1,56 = 1.34, p = 0.25, n.s.). Chi squared analyses of death
rates across all four groups found significant differences between the
groups (χ2 = 11.69, p b 0.01) but no effect of wheel running (WT,
χ2 = 0.001, p = 0.97, n.s.; R6/1, χ2 = 0.001, p = 0.97, n.s.).

Mouseweightswere recorded as an index of general health (Figs. 2C,
D) with a 20% weight loss regarded as the humane end-point for the
subjects. At the onset of the study there was little difference in weight
between the sex-matched wildtype and R6/1 mice. As the mice aged
the male and female wildtype mice retained their weight relative to
their R6/1 counterparts (Genotype × Sex × Age, F19,1033 = 41.66,

image of Fig.�2
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p b 0.001). Wheel running produced no main effect (Exercise, F1,56 =
0.63, p = 0.43, n.s.), and a significant interaction between wheel run-
ning, genotype and age was returned (Exercise × Genotype × Age,
F19,1033 = 1.73, p b 0.05), which reflected the slower decline in weight
loss observed in the male R6/1 exercised mice up to 14 weeks of age.

For the effect of exercise on motor dysfunction in the R6/1 mouse,
see Table 1 for a summary table of means and significance.

Grip strength
Analysis of the grip strength data demonstrated that exercise

produced no differential effect on the genotypes (Genotype × Age,
F1,56 = 0.001, n.s.). A difference in performance between the geno-
types was found (Genotype, F1,56 = 86.53, p b 0.001), but exercise
failed to modify grip strength generally (Exercise, F1,56 = 1.45, n.s.).

Rotarod
Rotarod performance was analysed using the mean times for paired

trials. The wildtype mice were able to remain on the rotating beam
longer than the R6/1 mice (Genotype, F1,56 = 158.67, p b 0.001).
Exercise failed to affect performance on the task (Exercise, F1,56 =
3.65, n.s.). No significant interaction between exercise and genotype
was found (Genotype × Exercise, F1,56 = 0.81, n.s.).

Activity levels
Transfer activity was measured over the first 30 min of the testing

period. The wildtype mice were more active than the R6/1 mice
(Genotype, F1,56 = 130.93, p b 0.001), but exercise failed to modify
the overall levels of transfer activity when assessed alone (Exercise,
F1,56 = 1.60, n.s.), or across genotypes (Genotype × Exercise, F1,56 =
0.02, n.s.). Surprisingly, the R6/1 mice were more active than the
wildtypemice over the 24 h testing periods at each of the testing points
(Genotype, F1,56 = 11.01, p b 0.01), but exercise failed to produce an
effect generally (Exercise, F1,56 = 3.16, n.s.), or affect the genotypes dif-
ferentially (Genotype × Exercise, F1,56 = 0.21, n.s.).

Gait analysis with the footprint test
Abnormal gait wasmeasured with the footprint test using data from

4 dependent variables (stride length; forelimb/hindlimb overlap;
forepaw base width, hindpaw base width). Analyses of the stride
length data revealed a significant exercise effect (Exercise, F1,56 =
171.33, p b 0.001) that was not differentially affected across the ge-
notypes (Exercise × Genotype, F1,56 = 0.50, n.s.). Exercise enabled
both the R6/1 and wildtype mice to maintain a high degree of foot-
print overlap (Exercise, F1,56 = 6.13, p b 0.05). There were no differ-
ences in performance on this measure between the genotypes
(Genotype, F1,56 = 2.08, n.s.) and no significant interaction effect
Table 1
Motor behaviours (4–7 months of age).

Wild-type mice R6/1 tr

No exercise Exercise No exe

Grip strength (inverted lid) 56.31 ± 1.61 58.66 ± 0.66 31.54
Rotarod 115.18 ± 4.64 128.43 ± 6.11 37.81
Loco activity (30 min) 681.3 ± 39.2 650.2 ± 29.3 353.7
Loco activity (24 h) 446.3 ± 29.5 522.4 ± 40.9 664.1
Footprint stride length 6.80 ± 0.07 8.11 ± 0.11 6.72
Footprint overlap −0.32 ± 0.03 −0.35 ± 0.03 −0.25
Footprint hindpaw base 2.61 ± 0.03 2.67 ± 0.03 2.59
Footprint forepaw base 1.33 ± 0.03 1.41 ± 0.02 1.34
Bridge turn (s) 2.55 ± 0.14 4.01 ± 0.61 18.62
Bridge cross (s) 5.75 ± 0.68 5.36 ± 0.24 20.04
Bridge forepaw slips 0.85 ± 0.15 0.67 ± 0.09 4.81
Bridge hindpaw slips 2.85 ± 0.40 2.01 ± 0.19 11.16

Data are the meaned mouse scores with standard errors from 4 to 7 months of testing from th
⁎ p b 0.05.
⁎⁎ p b 0.01.
⁎⁎⁎ p b 0.001.
was returned (Exercise × Genotype, F1,56 = 1.98, n.s.). Analyses of
base-widths found broader base-widths in the hindlimbs of the
wildtype mice (Genotype, F1,56 = 6.30, p b 0.05), but not forelimbs
(Genotype, F1,56 = 1.35, n.s.). Exercise increased base-width in the
forelimbs of the mice (Exercise, F1,56 = 16.67, p b 0.001), but not
the hindlimbs (Exercise, F1,56 = 0.42, n.s.). No significant interac-
tions between genotype and exercise were returned for either the
fore-limb (Exercise × Genotype, F1,56 = 0.69, n.s.), or hindlimb
measure (Exercise × Genotype, F1,56 = 0.94, n.s.). The gait analysis
data suggests that exercise has some beneficial effects on gait, espe-
cially stride length, but that these effects were not specific to a
genotype.

Balance beam
For this test 5 separate ANOVAs were applied to the dependent var-

iables (Latency to turn; Latency to cross; Forelimb slips; Hindlimb slips),
to determine overall performance on the test. All measures demonstrat-
ed significant performance deficits in the R6/1mice that worsenedwith
age (Latency to turn, Genotype F1,56 = 70.91, p b 0.001; Latency to
cross: Genotype, F1,56 = 223.40, p b 0.001; Forelimb slips, Genotype,
F1,56 = 406.23, p b 0.001; Hindlimb slips, Genotype, F1,56 = 501.41,
p b 0.001). The latency to turn measure identified a marked beneficial
effect of exercise in the R6/1 mice (Genotype × Exercise, F1,56 = 8.31,
p b 0.01), and a generally beneficial effect of exercise on the mice
(Exercise, F1,56 = 4.131, p b 0.05). No other effects of exercise were
found on this task.

The effect of exercise on stimulus-response learning and cognitive flexibility
At 9 weeks of age the wildtypemice learned the 6 rules of the water

T-maze procedure in significantly fewer trials than the R6/1 mice
(Fig. 3A; Genotype, F1,39 = 17.35, p b 0.001).Wheel running had no ef-
fect on the performance of any of the mouse groups at 9 weeks of age
(Exercise, F1,39 = 0.05, p = 0.82, n.s.), and therewas no demonstration
of behavioural modification between the genotypes due to the wheel
running intervention (Genotype × Exercise, F1,39 = 0.01, n.s.).

When the trials to criteria were analysed as the mean number of
trials required for learning each rule, clear genotype differences
were found at 9 weeks of age (Genotype, F1,31 = 18.19, p = 0.01),
but no overall effect of wheel running (Exercise, F1,31 = 0.001,
n.s.), or a differential effect of wheel running on the genotypes
(Genotype × Exercise, F1,31 = 0.03, n.s.) was found. Wheel running
did not modify the performance of the mice as a whole on the learn-
ing of the rules (Exercise × Rule, F5,154 = 0.22, n.s.).

At 22 weeks of age, many of the transgenic carrier mice dropped out
of testing for failing to attain the necessary criteria for progression to the
next stage of testing (see numbers in the bars on Fig. 3B). As a
ansgenic mice Genotype Exercise G × E

rcise Exercise (F1,56) (F1,56) (F1,56)

± 3.42 34.85 ± 3.06 86.53⁎⁎⁎ 1.45 0.00
± 3.72 50.66 ± 4.46 158.67⁎⁎⁎ 3.65 0.81
± 16.7 313.8 ± 16.9 130.93⁎⁎⁎ 1.60 0.02
± 34.7 814.6 ± 33.3 11.01⁎⁎ 3.16 0.21
± 0.06 7.90 ± 0.12 2.08 171.33⁎⁎⁎ 0.50
± 0.03 −0.38 ± 0.03 0.04 6.13⁎ 1.98
± 0.03 2.53 ± 0.03 6.30⁎ 0.42 0.94
± 0.02 1.46 ± 0.02 1.35 16.67⁎⁎⁎ 0.69
± 1.827 15.33 ± 1.80 70.91⁎⁎⁎ 4.13⁎ 8.31⁎⁎

± 2.393 22.74 ± 2.73 223.40⁎⁎⁎ 0.52 1.75
± 0.56 5.06 ± 0.60 406.23⁎⁎⁎ 0.02 0.30
± 0.96 12.24 ± 1.15 501.41⁎⁎⁎ 0.25 1.22

e manipulations described in the Materials and methods section. p N 0.05.



Fig. 3. At 9 weeks old, R6/1 mice demonstrated impairments on the reversal tasks (A). At 22 weeks of age the wildtype mice completed more rules than the R6/1 mice, and the R6/1
exercisedmice completed the direction reversal task in fewer trials than the non-exercised R6/1mice (B). Only 10% of non-exercised R6/1micemade it through to the light discrimination
stage, compared to 75% of the exercised R6/1 mice (mouse numbers indicated in the bars). When the percentage of correct trials was analysed the exercised R6/1 mice with exercise pro-
duced a higherpercentage of correct trials than theR6/1micenon-exercisedmiceon thedirection learning and direction reversal tasks. Significance taken at p b 0.05. ** denotes difference
between genotypes at p b 0.01, and § denotes differences between the R6/1 groups at p b 0.01.
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consequence, the analysis of the performance for the water T-maze
procedure at 22 weeks of age was split in to discrete ANOVAs for
the first two rules (direction and direction reversal) where sufficient
numbers of mice per group were present (n = 6/group as a mini-
mum), with the dependent variables of “trials to criteria” (Fig. 3B)
and “% correct choices” (Fig. 3C) being analysed. Due to senescence
only 77.8% of wild type mice completed all six stages of the task, in
exercised wild type mice this was 63.6% due to fewer of the latter
group proceeding beyond the light reversal task. For the R6/1 car-
riers, no mice regardless of exercise completed 5 of the six tasks
within the 90 trial limit for each individual task. In total, 75% of
exercised R6/1 mice and 70% non-exercised mice completed the di-
rection learning stage, with 75% of exercised R6/1 but only 20% of
non-exercised R6/1 mice completing the direction reversal stage.

image of Fig.�3
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Only 2 R6/1 mice completed the light discrimination stage with both
being from the exercise group.

For the trials to criteria measure on the direction task (Fig. 3B), a
significant effect of genotype was found (Genotype, F1,34 = 13.2,
p b 0.001), but no effect of exercise (Exercise, F1,34 = 1.45, n.s.) or in-
teraction effect (Genotype × Exercise, F1,34 = 1.86, n.s.) was returned.
However, analyses of the percentage of correct trials (Fig. 3C) returned
a significant interaction effect (Genotype × Exercise, F1,34 = 4.8,
p b 0.05), and a significant main effect of genotype (Genotype,
F1,34 = 20.9, p b 0.001) and exercise (Exercise, F1,34 = 1.45, n.s.).
Pair-wise post-hoc analyses demonstrated that the exercised R6/1
mice produced a significantly greater proportion of correct trials
(71.8%) than the non-exercised R6/1 mice (52.4%). There were no
significant differences between the wild type exercised (85.9%) and
the non-exercised wild type (92.3%) mice, but both groups demon-
strated a significantly greater proportion of correct trials when com-
pared with the R6/1 non-exercised mice.

The analyses of the direction reversal phase of testing demonstrated
robust significance across the groups on both the “trials to criteria” and
“percentage correct trials” measures. For the trials to criteria measure
(Fig. 3B), main effects of genotype (Genotype, F1,29 = 20.9, p b 0.001),
and exercise (Exercise, F1,29 = 30.44, p b 0.001) were returned with a
significant interaction of the two factors (Genotype × Exercise, F1,29 =
29.9, p b 0.001). Post-hoc analyses found that the exercised R6/1 mice
reached criteria in fewer trials than the non-exercised R6/1 mice. There
was no significant difference between the number of trials that exercised
and non-exercised wild type mice required to reach criteria, with
both groups differing significantly from the non-exercised R6/1 mice.
The proportion of correct trials (Fig. 3C) achieved by the mice also dif-
fered significantly across the groups with a significant interaction
(Genotype × Exercise, F1,29 = 29.8, p b 0.001) and main effect of exer-
cise (Exercise, F1,29 = 30.44, p b 0.001) being returned. Post-hoc analy-
ses revealed that the exercised R6/1 mice produced the greatest
Fig. 4. The wildtype control (A) and exercised (B) mice had larger striatal areas than the R6/1 con
results was found for the cortex (J) with the wildtype control (F) and exercised (G) mice demons
proportion of correct responses across all four experimental groups
(73%) compared to the non-exercised R6/1 mice that made lowest pro-
portion (20.5%), with the exercised (54.5%) and non-exercised (59.8%)
wild type mice demonstrating similar levels of performance.

The effect of exercise on neuropathology
The R6/1 mice exhibited striatal atrophy relative to their wildtype

littermates (Figs. 4A–E: Genotype, F1,28 = 22.75, p b 0.001). Clear in-
creases in ventricular size were observed in the R6/1 mice resulting in
a decrease in the dorsal striatum, and therefore striatal surface area
+0.38 mm anterior to bregma. Exercise failed to affect striatal area in
either the wildtype animals or the R6/1 mice (Exercise, F1,28, =
0.79; Genotype × Exercise, F1,28 = 2.40, both n.s.). Wildtype mice
were found to have thicker cortices (Figs. 4F–J) than the R6/1 mice
(Genotype, F1,26 = 9.51, p b 0.01) but again, exercise did not influ-
ence this significantly in either group (Fig. 4B, Exercise, F1,26, =
1.04; Genotype × Exercise, F1,28 = 0.01; both n.s.).

At ×40 magnification neuronal and non-neuronal cells looked
normal in all mouse groups. Analyses of striatal neuron counts
found that R6/1 mice demonstrated significant neuronal loss relative
to their wildtype littermates (Genotype, F1,28 = 5.85, p b 0.05)
which was significantly reduced in the exercise group (Figs. 5A–E:
Genotype ×Exercise, F1,28 = 2.40, p b 0.05). Pair-wise post hoc
analyses demonstrated that the neuronal loss in the R6/1 mice not
exposed to the running wheels was significantly reduced compared
to wildtype mice without wheels. In contrast, no difference in neuron
number was found between the R6/1 mice with the running wheels
and the wildtype groups suggestive of a relative sparing of neurons
due to the exercise intervention in this R6/1 group. Stereological analy-
ses of neuronal intra-nuclear inclusion formations in the R6/1 mouse
groups at the neuronal level (Figs. 5F, J–M) demonstrated that the
exercised R6/1 mice had a greater inclusion load than the R6/1 mice
that had not had exercise (t25 = 2.68, p b 0.05), despite there being
trol (C) and exercised mice (D), and no effect of exercise was found (E). The same pattern of
trating thicker cortex than the corresponding R6/1 control (H) and exercised animals (I).

image of Fig.�4


Fig. 5. Exercise had no effect on neuron number in wildtype mice but reduced the striatal neuronal loss in the R6/1mice, as R6/1 control mice demonstrated a reduction in neurons com-
paredwith thewildtype control littermates (E and photomicrographs A–D). The exercised R6/1mice demonstrated a greater number and larger neuronal inclusions than the R6/1 control
mice (F,I and photomicrographs J–M), but the R6/1 control animals demonstrated a significantly greater number of extra nuclear inclusions (G and photomicrographs J–K). There was no
difference in nucleus size (H). Significance taken at p b 0.05 (*). Images at ×40 magnification.
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no significant difference between neuron counts. In the non-exercised
mice 99.8% of striatal cells contained neuronal intra-nuclear inclusions
compared with 93.3% in the exercised mice. Analyses of inclusion for-
mations extraneous to the neuronal nuclei (Figs. 5G, J–M) found that
non-exercised R6/1 mice demonstrated a significantly greater number
than were present in the exercised R6/1 mice (t14 = 2.67, p b 0.05).
Examination of striatal neurons in the non-exercised and exercise R6/
1 striatum (Figs. 5H–M) indicated that therewas no difference between
the R6/1 groups in nucleus size (t14 = 1.49, n.s.), but that there were
larger neuronal inclusions in the R6/1 exercise mice which were con-
firmed by quantitative analysis (t14 = 3.4, p b 0.01).

When the striatum was stained with TH to determine dopamine
content (Figs. 6A–D, M), clear genotype specific differences were dem-
onstrated (Genotype, F1,28 = 41.04, p b 0.001), in the absence of an
exercise effect (Exercise, F1,28 = 0.01, n.s.), or interaction between
genotype and exercise (Genotype × Exercise, F1,28 = 0.01, n.s.). The
same pattern was found for striatal BDNF levels (Figs. 6E–H, N), with a
significant reduction in striatal BDNF in the R6/1 mice relative to the
wildtype animals (Genotype, F1,28 = 4.53, p b 0.05), but no effect of
exercise (Exercise, F1,28 = 0.01, n.s.) and no genotype/exercise interac-
tion (Genotype × Exercise, F1,28 = 0.01, n.s.). For the hippocampal
BDNF levels (Figs. 6I–L, O), a genotype specific reduction was again
found in the R6/1 mice relative to wildtype levels (Genotype, F1,28 =
5.94, p b 0.05), but no effect of exercise (Exercise, F1,28 = 0.73, n.s.),
or exercise interactionwith genotypewas found (Genotype × Exercise,
F1,28 = 1.04, n.s.).

Discussion

The aims of the present study were to determine if life-long expo-
sure to voluntary exercise canmodify or ameliorate the neuropatholog-
ical course and functional decline in R6/1HDmice, and to determine the
viability of exercise-based interventions as translational therapeutic
systems. In the motor analyses of the present study we found several
main effects of exercise but only one effect (“latency to turn” on the bal-
ance beam) where exercise was differentially beneficial to the R6/1
mice over their wildtype littermates. Previous studies looking at exer-
cise in the R6/1 mouse demonstrated relatively mild effects of exercise
on motor and neurological readouts (Pang et al., 2006; van Dellen
et al., 2008) with one report that 10 min of enforced daily exercise on
the rotarod was only beneficial to female R6/2 mice with prior experi-
ence of the test (Wood et al., 2011). Taken together these studies sug-
gest that exercise in HD mice has a modest effect on motor outcomes
in contrast to the findings in patients that demonstrate significant
symptom relief with relatively little intervention (Khalil et al., 2013).
This apparent difference in efficacy probably represents our lack of
knowledge regarding the optimisation of the exercise administration
in terms not only of the quantity of the intervention, but also its nature
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Fig. 6. The striata of control (C) and exercised (D) R6/1 mice demonstrated an absence of TH staining relative to their wildtype control (A) and exercised (B) littermates, but no effect of
exercisewas demonstrated (M). BDNF levelswere reduced in R6/1 striatum in control (G) and exercised (H) R6/1mice, and also inhippocampus of control (K) and exercised (L) R6/1mice
relative to the wildtype control striatal and hippocampal levels (E,I respectively) and wildtype exercised striatal and hippocampal levels (F,J respectively), but no effect of exercise was
demonstrated in striatum (N) or hippocampus (O).
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(aerobic or non-aerobic, exercise or physiotherapy), and highlights the
need for model experimental systems to optimise the experimental ap-
proach in mice. It should also be noted that excessive exercise may also
be detrimental to the development of HD in people as marathon run-
ning was found to enhance the disease process (Kosinski et al., 2007),
and mice bred to produce high levels of exercise also failed to improve
their learning (Rhodes et al., 2003), indicating that exercise administra-
tion requires optimisation.

The present study demonstrated a clear benefit on cognitive probes
of corticostriatal function, procedural and reversal learning, both clini-
cally relevant measures of cognitive dysfunction mediated via striatal
circuitry (Clarke et al., 2008; Hampshire et al., 2012; Palencia and
Ragozzino, 2004), and dysfunctional in HD patients (Lawrence et al.,
1996, 1998, 1999). Also of note from the motor tasks, was the “latency
to turn” measure on the balance beam on which exercise exerted the
greatest therapeutic benefit. On reviewing the videos of the results we
suspect that we were measuring motor planning/initiation rather than
motor coordination as we originally thought, as observation of the
mice found that the differences in the latencies of the mice reflected
the time between being placed on the beam and the onset of move-
ment, rather than the speed of moving per se, suggesting that in HD
mice, exercise more specifically modifies function in the cognitive
rather than the motor domain. It should be noted however, that
this is conjecture as we did not directly measure “motor planning”.
The cognitive enhancing effects of exercise in other neurological dis-
orders have been documented elsewhere (Cruise et al., 2011;
Marzolini et al., 2013; Vreugdenhil et al., 2012; Yaguez et al., 2011)
and are consistent with the present and previous results in the R6/
1 mouse line (Pang et al., 2006). The limited (10 min per day) and
forced exercise regime used by Wood et al. (2011) was found to be
detrimental in the female R6/2 mice to learning on the initial testing
stage in the Lashley III maze, with this negative effect disappearing
on the subsequent re-test trials. Given the relatively minor exercise
intervention in the latter study the lack of any therapeutic benefit
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perhaps may not be unexpected. Taken as a whole the results from
the present study add further strength to the translational value of
exercise based model therapeutic systems for HD.

As HD is primarily a disease of the caudate nucleus (although it
affects many other brain and peripheral tissues), our histological
analyses of themice focused on the striatum. The present study dem-
onstrated exercise-induced sparing of striatal neurons in the absence
of overt striatal atrophy, which may account for the beneficial effects
of exercise in the R6/1 mice. It should be noted that our statistical
analyses demonstrated a significant reduction in striatal neurons in
the non-exercised R6/1 mice relative to wildtype control animals
but no difference between exercised and non-exercised R6/1 mice
in a direct comparison. Whilst a significant difference between the
two R6/1 groups would be desirable, this may represent an unrealis-
tic expectation for enrichment types of study but some sparing of
neurons may be a more accurate reflection of the potential of this
type of intervention. The neuropathological analyses also found cor-
tical atrophy in the R6/1 mice relative to wildtype animals that has
been reported in the related R6/2 line (Sawiak et al., 2009). It should
be noted that the study by Potter et al. (2010), which found exercise
to be deleterious to the N171-82Q HD mouse line, also reported in-
creased striatal atrophy in the mutant gene carriers that had had ex-
ercise. Whilst the results from the present and latter studies are not
consistent, both studies implicate a striatally mediated mechanism
for their findings in the absence of evidence for a hippocampal
based mechanism which has been previously posited as being caus-
ative (see below). However, the results from Potter et al.'s (2010)
study should be treatedwith caution, as significant effects of exercise
were inferred from post-hoc analyses of main effects of genotype, in
the absence of significant genotype × exercise interactions, making
rigorous interpretation difficult.

The previous enrichment studies in the R6/1 mouse suggest that
the observed functional rescue of motor deficits was mediated by in-
creases in neurogenesis and/or hippocampal or striatal BDNF levels
(Lazic et al., 2006; Spires et al., 2004a; Zajac et al., 2010). This avenue
of research was stimulated by the finding that BDNF is under-
expressed in HD patients and animals (Cho et al., 2007; Ferrer
et al., 2000; Simpson et al., 2011; Zuccato et al., 2001, 2005, 2008).
Indeed, body clasping akin to that seen in HD mice may be related
to reduced BDNF in the striatum (Baquet et al., 2004), and BDNF ad-
ministration has been demonstrated to retard disease progression
generally and reverse the increased GABAergic function of medium
spiny neurons in R6/2 mice (Cepeda et al., 2004; Giampa et al.,
2013). Studies using HD mice to assess the beneficial effects of exer-
cise have typically used hippocampal-based spatial learning probes
to measure cognitive dysfunction in striatally compromised HD
mouse lines (Pang et al., 2006; Potter et al., 2010), and whilst these
mouse lines have clear hippocampal-mediated deficits, the hippo-
campal focus in the application of the tests may detract from the
validity of the results in relation to HD. Regardless, we found a
reduction of striatal and hippocampal BDNF in the R6/1 mice relative
to the wildtype animals but no effect of exercise on BDNF levels in ei-
ther striatum, consistent with some studies (Cepeda et al., 2010;
Pang et al., 2006), or in the hippocampus in contrast to other studies
(Pang et al., 2006). It is difficult to reconcile these discrepancies with
reference to the role that BDNF plays in mediating the observed func-
tional effects of exercise in HD. The discrepancies between the present
study and the previous studies may represent methodological differ-
ences either in the sensitivity of the analyses methodology (Image-J in
the present study versus the more sensitive western blotting for exam-
ple), but it should be considered that the optical density methods used
in the present study were sufficiently sensitive to demonstrate geno-
typic reductions in TH and BDNF levels consistent with other studies
(Lerner et al., 2012; Spires et al., 2004b). More likely differences in the
application of the exercise may be more important, as in the original
studies the exercised mice had access to the running wheels but for
24 h of the day (Pang et al., 2006; van Dellen et al., 2008), rather than
the 14 h that the animals in the present study had. In addition, there
were differences in background strain used which the influence of
which is often underestimated, with the original studies on enrichment
in the R6/1 mice using the CBA × B6 mouse (Pang et al., 2006) to
produce the experimental cohorts whereas the present study used
the congenic C57B/6 R6/1 line. Background strain is a known modifi-
er of disease in HD mice (Van Raamsdonk et al., 2007). In all three
experiments the animals spent time group housed although in the
present study the mice were housed individually whilst they had
access to the wheels. Crucially, no measure of exercise was reported
in the earlier studies making cross comparisons difficult on this
crucial parameter. In all likelihood, a combination of these factors
probably accounts for the differences between the studies. However,
the issue remains as to whether the hippocampus and BDNF and/or
neurogenesis are central to the retardation of cognitive decline in
tests that probe procedural and reversal learning, and whilst there is
evidence that these brain regions are functionally linked (Ben Yakov
and Dudai, 2011; Jacquet et al., 2013; Voermans et al., 2004), and HD
transgenicmice and patients have been found to compensate for striatal
dysfunction with hippocampal-mediated strategies (Ciamei and
Morton, 2009; Voermans et al., 2004), the evidence presented in the
present study and elsewhere (see above) is more suggestive of a
striatally-mediated mechanism that is independent of BDNF.

Clear genotypic differences in striatal TH content were found with
Image-J in agreement with previous mouse and human studies that
found reduced dopamine content in striatum (Cummings et al., 2006;
Glass et al., 2000; Lerner et al., 2012), but exercise failed to modify
these levels consistent with the relative lack of benefit that exercise
produced on the motor tasks. These data also suggest that striatal
dopamine did not contribute to the cognitive sparing properties
that exercise induced.

The most surprising aspect of the present study was that within
the neuronal population of the exercised R6/1 mice the intra-
neuronal inclusions were larger and more prevalent than in the R6/
1 control group. These datamay suggest that the larger inclusion size rep-
resents amore efficient compensatorymechanism inneurons if the inclu-
sions are considered to be neuroprotective as has been hypothesised
(Arrasate et al., 2004; Miller et al., 2010; Morton et al., 2000). An al-
ternative explanation would be that in the non-exercised R6/1 mice
the neurons have died depositing previous intra-nuclear inclusions
in the neuropil as extra-neuronal inclusions, consistent with our
findings of increased extra nuclear inclusions in the non-exercised
mice. Thus, inclusion bodies can exist in different forms within and
without the neuronal nuclei, and in non-neuronal cells (Davies
et al., 1997; Morton et al., 2000; Turmaine et al., 2000). In the
absence of specific double staining of inclusions with distinct cellular
markers it is impossible to verify the precise loci in which the numer-
ous non-nucleic inclusions exist.

The present study found that chronic exercise preferentially im-
proved cognitive function, reduced striatal cell loss and increased
neuronal intra-nuclear inclusion size and number in the R6/1
mouse line, providing further evidence of therapeutic benefit of ex-
ercise in HD. Future studies using the present intervention system
will focus on optimising this intervention strategy by determining
the extent and nature of the exercise required to maximise these
effects.
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