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Abstract

The way in which stars form from the interstellar medium is poorly

understood. In this thesis we investiage the process star formation in

molecular clouds via core fragmentation using Smoothed Particle Hydro-

dynamics (SPH). The initial conditions of the simulations are informed

as closely as possible by observations of Ophiuchus. We run large en-

sebles of individual core simulations and compare the collective results

with observations of stars and brown dwarfs.

We use observations of Ophiuchus by Motte et al. (1998) and André

et al. (2007) to calibrate a lognormal distribution from which we draw

correlated masses, sizes and velocity dispersions. We assume that the

cores are intrinsically triaxial. The distribution of core shapes is then

inferred by fitting a single parameter family of ellipsoidal shapes to the

observed core aspect ratios. Each core is given the density profile of

a critical Bonnor-Ebert sphere and a turbulent velocity field which is

modified to include ordered rotation and radial excursions. We evolve

one hundred of the model prestellar cores using the Seren SPH code

(Hubber et al., 2011). The simulations are repeated with continuous

accretion heating, no accretion heating and episodic accretion heating

(Stamatellos et al., 2012).

We find that simulations with episodic accretion heating can reproduce

the general features of the Chabrier (2005) initial mass function. This

includs the ratio of stars to brown dwarfs and the turn-over at 0.2 M�.

We demonstrate that the mass of a star is not related to the mass of

the prestellar core in which it formed. Low mass cores with Mcore ∼
0.1 M� tend to collapse into single objects whereas higher mass cores

with Mcore & 1 M� can fragment into tens of objects. We finally show

that the multiplicy statistics of the protostars formed in these simulations

are well matched by observations. Multiplicity frequencies are higher

than those of field stars and we note the presence of long-lived quadruple,

quintuple and sextuple systems.
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Chapter 1

Introduction

1.1 Star Formation

Stars are interesting. Without them, the Universe would not possess any heavy

chemical elements or environments favourable to life. This alone makes their for-

mation worthy of study. In addition to this, we cannot understand the evolution of

galaxies without a robust model of star formation.

Observationally, the Main Sequence and post-Main Sequence phases of stellar

evolution have been studied for over a century, however the study of star forma-

tion has only become practical in the last few decades. Infrared telescopes (e.g.

Spitzer, IRAS) have been used to observe young stellar objects (YSOs). However,

the molecular hydrogen from which stars form is difficult to detect as the molecules

are not polar. Fortunately, the molecular gas is also mixed with dust and CO which

can be detected. Submillimetre telescopes (e.g. Herschel, JCMT) are able to trace

the continuum emission from dust and this is used to estimate the distribution of

molecular gas.

Star formation is a dynamical process which acts over twenty orders of magnitude

in density and ten orders of magnitude in length. The physics involved (for example

hydrodynamics and self-gravity) is non-linear and can only be analytically solved

for näıvely simple configurations of matter. Modelling the process of star formation

therefore requires the use of numerical simulations performed on supercomputers.

The aim of this thesis is to perform numerical simulations of star formation in

order to gain insights into the physics involved. The initial conditions of these sim-

ulations are informed as closely as possible by observations of star forming regions.

1



CHAPTER 1. INTRODUCTION

1.1.1 Molecular clouds

Molecular clouds (MCs) are large condensations of gas, usually found near the spiral

arms of the Galaxy. They tend to have masses in the range 102 M� .M . 106 M�
and diameters in the range 10−1 pc . D . 102 pc. They are optically thick to

UV-dissociative photons which means that most of the gas is molecular, rather

than atomic, hydrogen. The gas density typically varies between 10−22 g cm−3 .

ρ . 10−20 g cm−3 with temperatures below 100 K. MCs with masses greater than

104 M� are called Giant Molecular Clouds (GMCs).

The main constituent of an MC, molecular hydrogen, is a non-polar molecule

which is almost invisible at typical MC temperatures. The column density of an MC

therefore needs to be inferred by observing other visible tracers. Continuum emission

from dust is often used as a tracer for column denisty (e.g. Motte et al., 1998;

Simpson et al., 2008). Dust is optically thin at submillimetre wavelengths, so the

flux density is proportional to the product of the column density and temperature.

The temperatures can be estimated using radiative transfer models (e.g. Stamatellos

et al., 2007b) or by fitting a spectral energy distribution (e.g. Kirk et al., 2013).

Column densities can also be estimated from molecules such as carbon monoxide

(e.g. Wilking and Lada, 1983). However, these are often optically thick and at high

column densities the flux density is only proportional to the temperature.

The radial velocity dispersion of gas in an MC can be estimated from the width

of emission lines such as N2H
+ and HCO+ (e.g. André et al., 2007). If temperature

estimates are available, the velocity dispersion can be separated into its thermal and

non-themal components. Velocity dispersions in MCs appear to be supersonic, with

a velocity-size relation that roughly follows a Kolmogorov spectrum (e.g. Larson,

1981), suggesting the presence of turbulence. This turbulence is likely to have

been generated by the uneven assembly of gas and feedback from neighbouring

and embedded stars. Examples of feedback mechanisms include ionizing radiation,

winds, and magneto-hydrodynamical waves (e.g. Ballesteros-Paredes et al., 2007).

As a consequence of turbulence, the configuration of matter in MCs is not spherical.

Instead, gas is distributed in clumps and filaments. Figure 1.1 shows an example of

this in the Taurus molecular cloud.

Particularly dense, gravitationally bound and starless regions of MCs which have

densities greater than 10−20 g cm−3 are called prestellar cores (Andre et al., 2000).

These are believed to be the main sites of star formation. It it thought that MCs

are not quasi-static objects with long life-times. Instead, the clouds rapidly produce

stars and then disperse over a few crossing times (Elmegreen, 2000). The remaining

clusters of stars are usually super-virial and disperse to become field stars.

2



1.1. STAR FORMATION

Figure 1.1: Herschel maps of the S1 and S2 regions of the Taurus molecular cloud
observed using Herschel, taken from Kirk et al. (2013). The left panel shows a false
colour image with red, green and blue showing 500µm, 250µm and 160µm dust emission
respectively. The middle panel shows the derived gas column density and the right panel
shows the derived dust temperature.

Two well known GMCs are the Orion and Taurus molecular clouds. Orion is

a high mass star forming region with a total mass of 105 M� in a region of size

∼ 50 pc. Here stars form in clusters, such as the Trapezium cluster. By contrast,

Taurus is a low mass star forming region with total mass 104 M� in a region of size

∼ 10 pc. Here stars form in relatively isolated small N groups.

1.1.2 Prestellar cores

Prestellar cores (PCs) are dense, gravitationally bound clumps of gas within MCs

(Andre et al., 2000). They have masses in the range 10−1 M� . M . 10 M� and

sizes in the range 10−2 pc . D . 10−1 pc. As they are much more dense than the

parent MC, they are shielded from external radiation and have temperatures around

10 K. Double peaked molecular emission lines with a stronger blue-shifted peak are

often present as they are indicative of graviational infall (e.g. André et al., 2007;

Simpson et al., 2011).

Prestellar cores are distinguished from unbound cores in molecular clouds by

virtue of being Jeans unstable. The Jeans length is calculated by balancing the

graviational potential energy of a core with twice its thermal energy (i.e. it is in

virial equilibrium) and solving for the core radius. If we consider a non-rotating,

spherical PC with mean density ρ̄, temperature T and mean molecular mass m̄, it
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will collapse if its radius is smaller than the Jeans length1

Rjeans ≈ 0.763
ao

(Gρ̄)1/2
, (1.1)

where ao is the isothermal sound speed

ao =

(
kbT

m̄

)1/2

. (1.2)

It is often more useful to express this as the minimum mass required for gravitational

collapse

Mjeans ≈ 1.86
a3
o

G3/2ρ̄1/2
. (1.3)

If we assume that a typical molecular core has T = 10 K and ρ̄ = 10−19 g cm−3

(Motte et al., 1998; Simpson et al., 2008), it will be prestellar if it has a mass

greater than 0.3 M�. Note that this assumes that the thermal energy of the core is

significantly greater than its internal kinetic energy (e.g. turbulence and rotation).

During the initial stages of PC collapse, the gas is nearly isothermal with T ≈
10 K. This means that gravitational potential energy is quickly radiated away and

the core will collapse in a few free fall times, tff, where

tff =

√
3π

32Gρ̄
. (1.4)

When the density increases above 10−13 g cm−3, the gas starts to become optically

thick (e.g. Larson, 1969; Masunaga and Inutsuka, 2000). This reduces the rate at

which gravitational potential energy can be radiated away and the temperature

increases. The consequent increase in thermal pressure causes the collapse to decel-

erate. Once the density reaches 10−12 g cm−3, the gas is almost completely adiabatic

and the core contracts quasi-statically. When the density reaches 10−8 g cm−3, the

temperature will have risen to 2000 K. This is hot enough for molecular hydrogen

to dissociate. The latent heat of dissociation allows the gas to become isothermal

again and the core rapidly collapses to form a central protostar.

1.1.3 Accretion discs

As a PC collapses, material is not directly deposited onto the central protostar. Due

to conservation of angular momentum, any initial angular velocity increases in mag-

1This is the Jeans length for calculated for a critical Bonnor-Ebert sphere. The properties of
these objects are discussed in Chapter 4 .
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1.1. STAR FORMATION

nitude as the core contracts. The resultant centrifugal forces produce an accretion

disc. Angular momentum can be transported out of the disc by viscous dissipa-

tion due to gravitational or magnetic instabilities (e.g. Stamatellos and Whitworth,

2008; Zhu et al., 2007). This allows material to flow inwards and accrete onto the

protostar.

Accretion discs have been observed both directly and indirectly. In Taurus, for

example, over half of all pre-Main Sequence stars have an infrared excesses in their

spectral energy distribution (SED) (Kenyon and Hartmann, 1995). This is indicative

of the presence of heated dust in an accretion disc. The dust is heated by compres-

sion, viscous dissipation and protostellar radiation, causing it to re-emit radiation

at infrared wavelengths. More recently, observations made using the Hubble Space

Telescope and ground-based instruments with adaptive optics have been able to di-

rectly resolve these discs (e.g. Padgett et al., 1999; Zinnecker et al., 1999). These

discs have radii roughly in the range 10 – 1000 AU with masses in the range 0.001

– 0.1 M�.

Density perturbations in discs can become gravitationally unstable if two criteria

are fulfilled. First, gravity must be able to overcome thermal and centrifugal support,

i.e.

Q ≡ cκ

πGΣ
. 1 , (1.5)

where Q is the Toomre parameter (Toomre, 1964), c is the sound speed, κ is the

epicyclic frequency and Σ is the surface density. Second, the gas within the disc

must cool fast enough so that is not sheared apart (e.g. Stamatellos and Whitworth,

2008), i.e.

tcool < C(γ)torb , 0.2 . C(γ) . 0.5 , (1.6)

where tcool is the gas cooling time, torb is the orbital period and γ is the adiabatic

exponent.

Gravitational instabilities in discs can be very efficient and producing low mass

protostars (e.g. Stamatellos and Whitworth, 2008). These instabilities cause discs

to fragment rapidly in time periods of tfrag ∼ 103 yrs. This effect is significantly

lessened when simple models of accretion luminosity are included in the simulations

(e.g. Bate, 2009c). However, semi-empirical models of episodic accretion can pro-

vide long periods of low luminosity, during which disc fragmentation can still occur

(Stamatellos et al., 2011, 2012).
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1.1.4 Solar-type protostars

In the classical view of core evolution, a core collapses and forms a YSO. YSOs are

categorised into four different classes which are sequential in age (Andre et al., 1993;

Lada, 1987). We note that this model is incomplete, as it does not account for the

formation of high mass or multiple YSOs.

Class 0 is the earliest stage of protostellar evolution (Andre et al., 1993). Here the

YSO has just formed and is less massive than the envelope in which it is embedded.

The SED resembles a black body spectrum which peaks at submillimetre or far

infrared wavelengths. This suggests that surrounding dust and gas is still cool with

a temperature of T ∼ 10 K. These objects are usually associated with bipolar

outflows of gas. This phase lasts for tcls 0 ∼ 104 − 105 yrs, during which the YSO

accretes roughly half of its final mass at a rate of Ṁcls 0 & 10−5 M� yr−1 (Andre

et al., 2000; Evans et al., 2009; Lada, 1999).

Class I is the second stage of protostellar evolution. Here the mass of the YSO

and the mass of the envelope are roughly equal. The SED still peaks in the submil-

limetre, but now there is an infrared excess from heated dust in an accretion disc.

While the source is now quite luminous from accretion feedback, it is too heavily

embedded in its envelope to be observed at optical wavelengths. This phase lasts for

tcls i ∼ 105 − 106 yrs with an accretion rate of Ṁcls i ∼ 10−6 M� yr−1 (Evans et al.,

2009; Lada, 1999).

Class II is the third stage of protostellar evolution. The mass of the YSO is now

much greater than the mass of the envelope. YSOs in this stage are often known

as classical T-Tauri stars as they were first observed in Taurus. These objects are

now starting to enter the pre-Main Sequence phase of stellar evolution. The SED is

dominated by optical or near-infrared radiation from the central star. The infrared

excess is still present, although it is not as strong as it was during the Class I phase.

This phase lasts for tcls ii ∼ 106 yrs with an accretion rate of Ṁcls ii ∼ 10−8 M� yr−1

(Lada, 1999).

Class III is the final stage of protostellar evolution. YSOs in the stage are often

known as weak-line T-Tauri stars. The YSO now has almost no envelope. The SED

is now very similar to that of a Main Sequence star with the addition of weak Hα

emission from atomic hydrogen. This stage lasts for tcls iii ∼ 107 yrs (Lada, 1999),

after which the YSO evolves onto the Main Sequence.

6



1.1. STAR FORMATION

1.1.5 Main Sequence stars and the IMF

Objects with M & 0.08 M� become Main Sequence stars. In these stars, the core

becomes hot enough to begin hydrogen burning before it becomes dense enough to

be supported by electron degeneracy pressure.

Objects with M . 0.08 M�, become Brown Dwarfs (BDs). BDs do not have

sufficient mass to begin hydrogen burning; instead they radiate mainly via cooling.

BDs account for roughly 14% – 26% of stellar objects (Andersen et al., 2008), yet

it is not well understood how they form. Molecular cores with masses equivalent to

BDs are generally not Jeans unstable, so BD formation from core collapse is thought

to be rare. A BD mass PC has been observed by André et al. (2012). However, as it

is difficult to find efficient mechanisms for producing a high density core with such

a low mass, we expect that these objects are rare. Protostellar ejection and disc

fragmentation are possible mechanisms for producing BDs. Reipurth and Clarke

(2001) propose that if a core produces multiple protostars, then the smallest objects

are preferentially ejected from the system. These objects cease to accrete and often

have BD masses. Stamatellos and Whitworth (2008) show that accretion discs can

also produces BDs. However, we must note that these mechanisms operate over

very short time scales, which makes them very difficult to directly verify or reject

through observations.

The initial mass function (IMF) is the distribution of masses of newly formed

stars. The IMF appears to be roughly universal across most star forming regions in

the Galaxy (Kroupa, 2001). The first parametrisation of the IMF was performed by

Salpeter (1955) who noted that the distribution of intermediate to high mass stars

follows a power law:

dN?

d log(M?)
∝M−1.35

? , 0.4 M� < M? < 10 M� , (1.7)

where N? is the number of stars with mass M?. This was expanded upon by Kroupa

(2001) who parametrised the IMF as a four-part power law:

dN?

d log(M?)
∝M−α

? (1.8)

where

α =





−0.7± 0.7 , 0.01 M� ≤M? < 0.08 M� ,
0.3± 0.5 , 0.08 M� ≤M? < 0.5 M� ,
1.3± 0.3 , 0.5 M� ≤M? < 1 M� ,
1.3± 0.7 , 1 M� ≤M? .

(1.9)
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Unlike the Salpeter (1955) IMF, this version turns over at masses less than 0.08 M�.

As an alternative to spliced power laws, Chabrier (2003) introduced a lognormal

variant of the IMF where

dN?

d log(M?)
∝ exp

(
−(log(M?/M�)− log(µ))2

2σ2

)
, M? ≤ 1 M�

∝M−1.35
? , M? > 1 M� .

(1.10)

Here µ = 0.08, σ = 0.67 and α = −1.35. These parameters were later changed to

µ = 0.2 and σ = 0.55 (Chabrier, 2005). A comparison of these IMFs is given in

figure 1.2 .
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Kroupa (2001)

Chabrier (2003)
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Figure 1.2: Stellar IMFs parametrised by Salpeter (1955), Kroupa (2001) and Chabrier
(2003, 2005). The area under each IMF is normalised to 1, with the exception of the
Salpeter (1955) IMF which is scaled to match the power-law component of the Chabrier
(2005) IMF.

The origin of the IMF is unclear. Some speculate that the IMF is directly

inherited from the from the observed distribution of PC masses (CMF) (e.g. Motte

et al., 1998; Simpson et al., 2008). These two mass distributions are very similar,

except that the CMF is shifted upwards in mass from the IMF by a factor of three or

four. Those in favour of this model assume that each PC then collapses into a fixed

number of protostars with a fixed star formation efficiency. Possible complications

for this model are that there is no physical explaination for why the number of

protostars and star formation efficiency should be fixed for all core masses.

Another explaination is the competative accretion hypothesis (e.g. Bonnell and
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Bate, 2006; Bonnell et al., 2003). Here, higher mass protostars accrete more gas

than lower mass protostars. At the same time, lower mass protostars are likely to

be ejected from the system due to N -body interactions. Bonnell et al. (2003) show

that this can reproduce a distribution similar to the IMF, but it is difficult for this

mechanism to form stellar binary systems.

1.2 Previous numerical work

Previous numerical work has been undertaken to attempt to explain how clouds of

molecular gas collapse to form stars. As well as the IMF, a model of star formation

needs to reproduce the statistical properties of observerd multiple systems (a useful

review of these are provided by Duchêne and Kraus (2013)).

Kroupa (1995a,b) shows that N -body cluster simulations of initially single stars

cannot reproduce observed multiplicities, whereas stars initially in binary systems

can. This leads to the conclusion that at some point, cores of gas must often fragment

into two or more objects.

Early numerical simulations of star formation often involved spherical clouds

of gas in solid body rotation (e.g. Hachisu et al., 1987). It has been shown that

these systems will often fragment if αβ . 0.15, where α is the ratio of thermal to

gravitational energy and β is the ratio of rotational to graviational energy. Boss

and Bodenheimer (1979) also demonstrate that a rotating cloud with an m = 2

azimuthal density perturbation can form a binary system.

The more modern picture of star formation involves turbulent flows of gas, as

opposed to simple solid-body rotation. In the context of numerical star formation,

the term ‘turbulence’ usually refers to random Gaussian field with a power-law

power spectrum P (k) ∝ k−α (these terms are explained in Chapter 4). Simulations

involving turbulence often come in two flavours: MCs with high levels of turbulence

and PCs with low levels of turbulence. Simulations of PCs (e.g. Goodwin and

Whitworth, 2004; Goodwin et al., 2004, 2006; Walch et al., 2009, 2012) have shown

that star formation is sensitive to the core’s initial state. For example, Goodwin

et al. (2004) show that the number of YSOs produced in PCs increases with greater

levels of turbulent energy. Simulations of MCs (e.g. Bate, 2009b; Bate and Bonnell,

2005; Bonnell et al., 2004; Clark et al., 2008; Girichidis et al., 2012a) have also shown

that star formation is dependent on the initial state of the MC. For example, Bate

and Bonnell (2005) show that the peak of the mass distribution of YSOs scales with

the initial Jeans mass of the MC.

The inclusion of magnetic fields is a relatively new addition to hydrodynamical
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simulations, mainly due to computational difficulty. Magnetic fields are very efficient

at supressing fragmentation (e.g. Joos et al., 2012; Machida et al., 2005). Given

that binaries exist, it is probable that magnetic fields in cores are not dominant over

turbulence and self-gravity (Goodwin et al., 2007), however this remains an open

topic in star formation.

1.3 Aim of this thesis

We adopt a semi-empirical approach to modelling cores, similar to that of Attwood

(2008). We characterise PC properties from observations of cores within the Ophi-

uchus molecular cloud. We then use this information to set the initial conditions

for hundreds of core simulations. This has several advantages over large-scale cloud

simulations. The main advantage is that it is faster to run multiple small simula-

tions than individual large simulations. This means we can i) simulate more cores

to improve the number statistics of the results and ii) increase the resolution of the

simulations to resolve more detailed structure. The trade-off to this approach is

that we cannot model core-core interactions or the accretion of material onto cores

as they collapse.

In this thesis we address two questions in numerical star formation:

• How do we use the results from observations of star forming regions to generate

initial conditions for numerical simulations?

• How do different models of accretion feedback and velocity field structure affect

the results of these numerical simulations?

1.3.1 Thesis plan

In Chapter 2 we list and characterise observations of PCs in Ophiuchus. These are

used to assign masses, sizes and velocity dispersions to the model PCs.

In Chapter 3 we present a shape fitting analysis which we use to statistically

deproject the intrinsic shapes of PCs from their projected aspect ratios.

In Chapter 4 we state and justify our assumptions on the density profile and

velocity field of the model PCs. We give each core a critical Bonner Ebert density

profile and a turbulent velocity field modified to include ordered motions.

In Chapter 5 we provide an overview of Smoothed Particle Hydrodynamics

(SPH). This is used to simulate the hydrodynamics and self-gravity of gas in PCs.
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In Chapter 6 we describe the additional physics included in the simulations.

This includes the transport of radiative energy (Stamatellos et al., 2007a) and semi-

empirical models of accretion luminosity (Stamatellos et al., 2011, 2012).

In Chapter 7 we list the initial conditions of the simulations. We also specifically

explain how we set up these initial conditions.

In Chapter 8 we present the results from the simulations. We examine the mass

distributions and binary statistics of protostars formed in PCs and compare them

with observations. We also discuss the effects of different feedback mechanisms and

velocity fields on the results.

In the final chapter we summarise the main conclusions from this thesis and

discuss plans for future work.
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Chapter 2

Ophiuchus

In this chapter we comment on the the prestellar core mass function, noting its

similarity to the IMF. We also introduce the Ophiuchus molecular cloud as a well

observed region of star formation which contains spatially distinct prestellar cores.

Multiple isolated cores can be simulated in greater detail than an entire star form-

ing region, given finite computational resources. Therefore, the cores in Ophiuchus

provide useful initial conditions for SPH simulations.

We tabulate the core masses and sizes from three surveys of Ophiuchus by Motte

et al. (1998) (MAN98), Stanke et al. (2006) (SSGK06) and Simpson et al. (2008)

(SNW08), and internal velocity dispersions by André et al. (2007) (ABMP07). The

observed mass distributions are not in good agreement between surveys, but as the

core measurements by MAN98 have the largest number of ABMP07 velocity disper-

sions, we base SPH initial conditions on these data.

Combining observations by MAN98 and ABMP07, we have measurements of core

masses, sizes and velocity dispersions in Ophiuchus. However, as there are only 20

cores with all three of these measurements, we use the data to calibrate a multivariate

lognormal distribution, from which we can draw an arbitrary number of masses, sizes

and velocity dispersions.

2.1 Introduction

Prestellar cores are dense clumps of interstellar matter which are gravitationally

bound and expected to collapse to form stars. Observations suggest that the distri-

bution of prestellar core masses, or core mass function (CMF), is roughly lognormal

with a power-law tail at the high mass end (e.g. Alves et al., 2007; Enoch et al.,

2008, 2006; Johnstone and Bally, 2006; Johnstone et al., 2001, 2000; Könyves et al.,

2010; Motte et al., 1998, 2001; Nutter and Ward-Thompson, 2007; Rathborne et al.,
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2009; Simpson et al., 2008; Stanke et al., 2006; Testi and Sargent, 1998). Chabrier

(2005) shows that the distribution of observed stellar masses, or initial mass function

(IMF), is also roughly lognormal with a power-law tail.

Both the CMF and the IMF have similar shapes, where the IMF is shifted

downwards in mass by a factor of F ∼ 4± 1 . This has lead to speculation that the

shape of the IMF is inherited directly from the shape of the CMF. There are two

assumptions implied by this statement: i) stars form predominantly in prestellar

cores instead of, for example, colliding filaments or in the swept up shell of material

around Hii regions; ii) star formation in prestellar cores is a statistically self-similar

process. By this we mean that each core converts a fraction η of its total gas into

N? stars, with the constraints that η and N? are independent of core mass and

N?/η ∼ F .

In this thesis, we follow the assumption that most stars form in isolated cores

(we address this assumption in Section 2.3). We trace the transformation of the

CMF to the IMF through large ensembles of SPH simulations. In Section 2.2 of

this chapter we describe and compare the observations of Ophiuchus; in Section 2.3

we give an analysis of the cores which suggests they form in isolation; in Section

2.4 we explain how we use the observations to calibrate a multivariate lognormal

distribution from which we can draw core parameters.

2.2 Observations

The L1688 cloud within the Ophiuchus molecular cloud complex (hereafter L1688

is referred to as Ophiuchus) has been observed by (Motte et al., 1998) (MAN98),

(Stanke et al., 2006) (SSGK06) and (Simpson et al., 2008) (SNW08). They map

millimetre and sub-millimetre dust emission from the region to estimate the masses

and sizes of prestellar cores. Lada (1999) estimates that Ophiuchus has total mass

Moph ∼ 1 − 2 × 103 M� and diameter Doph ∼ 1 pc. The distribution of cores in

Ophiuchus is sub-clustered into regions Oph-A, Oph-B1, Oph-B2, Oph-C, Oph-D,

Oph-E, Oph-F and Oph-J. The relative positions and sizes of these regions are shown

in Figures 2.1 and 2.3 . MAN98 and SNW08 note that their observations are good

sensitivity level and that their derivations of the Ophiuchus CMF should be almost

complete down to masses of approximately 0.1 M�.

These masses are complemented by observations of core velocity dispersions in

Ophiuchus by André et al. (2007) (ABMP07). They note that the large-scale flow

of material within these cores is mostly subsonic or transonic. They also measure

the relative velocity between prestellar cores and conclude that most of the cores in

14



2.2. OBSERVATIONS

Figure 2.1: 1.3 mm dust emission intensity map of the Ophiuchus main cloud, taken
from Motte et al. (1998). Contour levels range from 5 MJy/sr to 280 MJy/sr in roughly
equal logarithmic intervals.

Ophiuchus are likely to collapse before they interact with one another.

In this section we discuss and compare the observations by MAN98, SSGK06,

SNW08 and ABMP07. Core masses, sizes and velocity dispersions are given in Table

2.1 .

2.2.1 MAN98

MAN98 map dust emission at 1.3 mm within Ophiuchus using the MPIfR bolometer

array on the IRAM 30 m telescope. Their map covers an area of ∼ 480 arcmin2 and

includes the Oph-A, Oph-B1, Oph-B2, Oph-C, Oph-D, Oph-E and Oph-F sub-

regions. They use Gaussclumps (Stutzki and Guesten, 1990) to extract 61 cores, 36

of which have resolved sizes. MAN98 define the size of a core as the full-width at

half-maximum (FWHM) of the core’s surface brightness. The masses and sizes are

given in Table 2.1 and the intensity map is shown in Figure 2.1 .
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Table 2.1: Observations of prestellar cores in Ophiuchus. Column 1 gives the region in Ophiuchus; Column 2 gives the core ID as defined by
MAN98; column 3 gives the core ID as defined by SSGK06; column 4 gives SNW08 core mass; column 5 gives the SSGK06 core mass; column
6 gives the MAN98 core mass; columns 7 and 8 give the major and minor size components of the SNW08 cores; columns 9 and 10 give the
major and minor FWHM of the SSGK06 cores; columns 11 and 12 give the major and minor FWHM of the MAN98 cores; column 13 gives
the core radial velocity dispersion; column 14 gives the thermal component of the radial velocity dispersion; column 15 gives the non thermal
component of the radial velocity disperion.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

Oph-A A-MM1 0.170 0.089 0.056

Oph-A A-MM1/2/3 MMS014 1.305 9313 4448 0.056

Oph-A A-MM2 0.142 0.056

Oph-A A-MM2/3 0.295 2800 1900 0.056

Oph-A A-MM3 0.089 0.056

Oph-A A-MM4 MMS026 0.416 0.813 0.248 2100 2100 10008 3892 3475 1216 0.161 0.056 0.150

Oph-A A-MM5 MMS050 0.711 0.960 0.407 2800 2500 10842 5421 3214 2519 0.078 0.056 0.054

Oph-A A-MM6 1.812 0.709 3600 2500 2780 2346 0.056

Oph-A A-MM6/7 MMS007 4.246 10703 7089 0.056

Oph-A A-MM7 0.792 0.230 3300 2200 1216 1216 0.056

Oph-A A-MM8 2.733 0.230 2200 1900 2519 1824 0.141 0.056 0.129

Oph-A A-MM11 0.555 5600 1900 0.056

Oph-A A-MM12 0.389 0.056

Oph-A A-MM16 0.027 0.056

Oph-A A-MM17 0.027 1900 1900 0.056

Oph-A A-MM18 0.751 4200 2800 0.056
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

Oph-A A-MM20 0.107 0.056

Oph-A A-MM21 0.183 0.056

Oph-A A-MM22 0.094 2800 2200 0.056

Oph-A A-MM23 1.060 4900 2100 0.056

Oph-A A-MM26 0.367 3100 1900 0.056

Oph-A A-MM27 0.291 4200 1900 0.056

Oph-A A-MM28 0.183 2500 1900 0.056

Oph-A A-MM29 0.157 0.056

Oph-A A-MM30 1.100 4400 1900 0.056

Oph-A A-N MMS074 0.183 0.612 0.106 24047 5143 0.056

Oph-A A-S MMS053 0.004 0.284 0.142 2100 1900 8896 5977 0.056

Oph-A A2 MMS063 0.376 8062 6811 0.056

Oph-A A2 MMS069 0.173 7645 4309 0.056

Oph-A A2-MM1 MMS057 0.286 0.533 0.177 3300 1900 9313 7923 3909 834 0.056

Oph-A A3-MM1 MMS046 0.286 0.141 0.177 2500 2200 7367 3892 0.056

Oph-A SM1 6.325 5.669 6100 1900 0.272 0.056 0.266

Oph-A SM1/SM1N MMS001 10.523 9035 4587 0.056

Oph-A SM1N 2.505 2.303 2500 1900 2606 1564 0.185 0.056 0.176

Oph-A SM2 MMS004 5.140 13.880 2.303 5100 3600 13205 7923 5386 2954 0.164 0.056 0.154

Oph-A VLA1623 2.518 4200 2500 0.532 0.056 0.529

Oph-B B1 MMS027 2.622 10147 10008 0.054

Oph-B B1 MMS086 0.187 7645 4031 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

Oph-B B1-MM1 MMS066 0.027 0.710 0.101 11815 5977 0.054

Oph-B B1-MM2 MMS028 1.160 1.388 0.171 3100 1900 9313 6950 2606 1824 0.064 0.054 0.035

Oph-B B1-MM3 MMS020 2.244 1.827 0.161 2800 2500 12788 9174 1564 1129 0.106 0.054 0.092

Oph-B B1-MM4 MMS023 1.805 0.295 0.212 5000 3200 5699 4309 3996 2780 0.157 0.054 0.148

Oph-B B1-MM6 0.190 2500 1900 0.054

Oph-B B1-MM7 0.098 1900 1900 0.054

Oph-B B1B2-MM1 MMS049 0.190 0.812 0.101 5600 2200 11954 7367 2346 1564 0.092 0.054 0.075

Oph-B B1B2-MM2 MMS061 0.596 0.333 0.054

Oph-B B2-MM1 MMS056 1.029 0.141 11259 9730 0.078 0.054 0.057

Oph-B B2-MM2 MMS033 0.753 0.991 0.474 3300 2200 10564 5282 3909 2085 0.054

Oph-B B2-MM3 0.121 0.054

Oph-B B2-MM3/4/5 MMS031 2.093 12232 6811 0.054

Oph-B B2-MM4 0.824 0.272 1824 834 0.111 0.054 0.098

Oph-B B2-MM5 0.981 0.262 3600 2500 1911 834 0.130 0.054 0.118

Oph-B B2-MM6 MMS037 1.393 2.733 0.787 5000 4200 10703 7645 3736 2346 0.180 0.054 0.172

Oph-B B2-MM7 0.537 0.232 4200 2800 0.054

Oph-B B2-MM8 1.702 1.513 2800 2500 3475 3475 0.178 0.054 0.170

Oph-B B2-MM9 1.176 0.313 3900 1900 1390 834 0.054

Oph-B B2-MM9/12 MMS029 0.969 6811 4170 0.054

Oph-B B2-MM11 0.151 0.269 0.054 0.263

Oph-B B2-MM12 0.393 1824 1129 0.101 0.054 0.086

Oph-B B2-MM13 0.423 0.192 3100 2800 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

Oph-B B2-MM14 1.079 0.434 4400 2100 1824 1564 0.054

Oph-B B2-MM15 MMS021 0.537 1.140 0.171 13622 6116 0.094 0.054 0.077

Oph-B B2-MM16 1.133 0.353 2500 2200 2346 1129 0.181 0.054 0.173

Oph-B B2-MM16/17 MMS018 4.606 10842 9174 0.054

Oph-B B2-MM17 0.232 0.136 0.054 0.125

Oph-B B3 MMS108 0.828 17097 8896 0.054

Oph-B B3 MMS118 0.281 10703 7506 0.054

Oph-B B3 MMS143 0.543 13900 7089 0.054

Oph-C C-MM1 MMS059 0.958 0.353 10008 8618 5126 2606 0.054

Oph-C C-MM2 0.954 0.121 0.054

Oph-C C-MM3 1.225 0.232 4200 3300 4691 556 0.054

Oph-C C-MM4 0.161 2085 1216 0.054

Oph-C C-MM5 1.068 0.101 0.101 0.054 0.086

Oph-C C-MM6 0.905 0.333 6700 3300 3475 3214 0.106 0.054 0.091

Oph-C C-MM7 0.131 0.054

Oph-C C-MM8 0.130 0.054

Oph-C C-MM9 0.049 2200 2100 0.054

Oph-C C-MM10 0.314 2400 1900 0.054

Oph-C C-MM12 0.081 4400 2400 0.054

Oph-C C-N MMS044 1.377 3.513 1.714 4700 3800 16958 12649 8688 7645 0.054

Oph-C C-S MMS022 6.641 15568 11259 0.054

Oph-C C-S MMS039 1.771 10425 8201 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

Oph-C C-W MMS055 7.190 1.412 25020 19460 14769 6950 0.054

Oph-D D-MM1 0.151 2346 1477 0.054

Oph-D D-MM1/2 MMS047 1.217 10425 7784 0.054

Oph-D D-MM2 0.161 3475 2259 0.054

Oph-D D-MM3 0.081 0.054

Oph-D D-MM3/4/5 MMS052 2.516 16402 11537 0.054

Oph-D D-MM4 0.171 3301 2259 0.054

Oph-D D-MM5 0.071 0.054

Oph-E E-MM1 3.080 19981 16506 0.054

Oph-E E-MM2 MMS036 2.765 15290 9730 0.054

Oph-E E-MM2a 0.108 0.098 1900 1900 0.054

Oph-E E-MM2b 0.136 0.112 3100 2500 0.054

Oph-E E-MM2c 0.112 0.054

Oph-E E-MM2d 0.358 0.630 3649 2346 0.107 0.054 0.093

Oph-E E-MM3 0.112 0.054

Oph-E E-MM4 MMS067 0.266 0.361 0.616 3600 3100 7089 5838 5994 4604 0.108 0.054 0.094

Oph-E E-MM5 0.239 0.588 2800 2100 6689 3996 0.054

Oph-E E-MM8 0.163 3100 1900 0.054

Oph-F F-MM1 0.900 0.350 4200 2400 4170 2259 0.140 0.054 0.129

Oph-F F-MM2 0.168 2346 1390 0.132 0.054 0.120

Oph-F F-MM2a 0.954 4400 3800 0.054

Oph-F F-MM6 0.081 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

Oph-F F-MM8 0.179 0.054

Oph-F F-MM9 0.081 0.054

Oph-J J-MM2 0.363 4700 3200 0.054

Oph-J J-MM3 0.298 3900 2500 0.054

Oph-J J-MM4 0.152 0.054

Oph-J J-MM5 0.136 0.054

Oph-J J-MM6 0.065 0.054

Oph-J J-MM7 0.054 0.054

MMS012 1.761 10147 7645 0.054

MMS017 1.819 14039 5977 0.054

MMS030 4.152 19738 12788 0.054

MMS038 0.945 8896 5699 0.054

MMS041 4.490 20850 11954 0.054

MMS048 1.371 11954 9730 0.054

MMS051 0.870 10286 6394 0.054

MMS054 2.349 15151 10286 0.054

MMS065 0.191 5838 4726 0.054

MMS068 1.101 20155 9869 0.054

MMS072 0.535 8896 6811 0.054

MMS073 2.020 23908 9313 0.054

MMS075 0.059 5838 2502 0.054

MMS077 0.265 10703 5699 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

MMS078 0.067 3753 3614 0.054

MMS079 0.564 12927 5977 0.054

MMS080 1.237 13344 11120 0.054

MMS081 0.934 17792 9035 0.054

MMS082 0.537 23213 4587 0.054

MMS083 0.286 12927 4726 0.054

MMS084 1.420 27800 11815 0.054

MMS085 0.645 10425 7228 0.054

MMS087 1.979 17375 9869 0.054

MMS088 2.837 36001 12510 0.054

MMS089 1.017 12510 10147 0.054

MMS090 1.144 18904 10008 0.054

MMS091 2.211 24742 20294 0.054

MMS092 0.801 11815 9313 0.054

MMS093 2.794 24464 15429 0.054

MMS094 2.516 30858 13066 0.054

MMS095 1.576 24603 15985 0.054

MMS096 0.866 20294 12510 0.054

MMS097 0.936 19182 9591 0.054

MMS098 0.910 27939 11815 0.054

MMS099 4.222 39336 17375 0.054

MMS100 1.012 29468 8896 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

MMS101 1.029 17653 13344 0.054

MMS102 0.515 18765 6672 0.054

MMS103 0.513 11954 7089 0.054

MMS104 1.852 19599 16541 0.054

MMS105 1.696 26549 18209 0.054

MMS106 0.268 8896 6950 0.054

MMS107 2.363 38502 14456 0.054

MMS109 0.937 21823 13622 0.054

MMS110 0.405 24464 8896 0.054

MMS111 0.286 15429 7367 0.054

MMS112 0.434 13205 6950 0.054

MMS113 0.542 15985 9452 0.054

MMS114 0.354 12232 8062 0.054

MMS115 1.202 21962 15151 0.054

MMS116 1.928 25159 18348 0.054

MMS117 0.500 9869 7506 0.054

MMS119 0.394 11120 10147 0.054

MMS120 0.149 10842 5004 0.054

MMS121 0.294 12232 9035 0.054

MMS122 0.388 12649 10425 0.054

MMS123 0.434 19182 13761 0.054

MMS124 0.179 13205 6672 0.054
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Observations of prestellar cores in Ophiuchus.

Region IDman98 IDssgk06 Msnw08 Mssgk08 Mman98 Sizesnw08 FWHMssgk06 FWHMman98 σ1d σt σnt

maj min maj min maj min

(M�) (AU) (km s−1)

MMS125 0.332 13344 7228 0.054

MMS127 0.712 17375 12371 0.054

MMS128 1.552 20572 17375 0.054

MMS129 1.850 26688 22657 0.054

MMS130 1.307 32387 13622 0.054

MMS131 1.522 33082 19738 0.054

MMS132 1.512 42533 17097 0.054

MMS133 1.396 42672 22101 0.054

MMS134 0.677 22379 17236 0.054

MMS135 0.372 20572 11954 0.054

MMS136 0.843 23352 14317 0.054

MMS137 0.540 21962 12510 0.054

MMS138 0.632 21267 16402 0.054

MMS139 1.223 23352 16958 0.054

MMS142 1.680 18487 9174 0.054
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2.2. OBSERVATIONS

The core masses and sizes stated here are different from those given in the original

publication. The mass of a prestellar core is estimated to be

Mc =
S(λ)D2

κ(λ)B(λ, T )
(2.1)

where S(λ) is the total dust continuum flux density from the core measured at

wavelength λ, D is the distance to the source, κ(λ) is dust opacity at wavelength

λ and B(λ, T ) is the Planck function at wavelength λ and temperature T . For

λ = 1.3 mm, MAN98 adopt κ(1.3 mm) = 0.005 cm2 g−1.

At the time of publication, MAN98 used dust temperature estimates which have

since been revised by Stamatellos et al. (2007b). These temperatures, Tman98 and

Tsww07 are given in Table 2.2. The distance to Ophiuchus given by MAN98, Dman98 =

160 pc, has also been revised by Mamajek (2008) to Dm08 = 139± 6 pc. To account

for this, each mass given by MAN98 receives the transformation

Mman98 →
B(1.3 mm, Tman98)D

2
m08

B(1.3 mm, Tsww07)D2
man98

Mman98 , (2.2)

and each size receives the transformation

FWHMman98 →
Dm08

Dman98

FWHMman98 . (2.3)

The dust temperatures Tsww07 are cooler than Tman98, which increases the esti-

mated core mass. However, the revised distance Dm08 is less than Dman98, which

decreases the core mass. The combined effect modestly increases the mass of cores

within Oph A, Oph E and Oph F, whilst leaving the masses of cores in Oph B, Oph

C and Oph D unchanged.

2.2.2 SSGK06

SSGK06 map dust emission at 1.2 mm over a large area of the sky (almost a square

degree) around Ophiuchus. They use the SIMBA bolometer array on the SEST

telescope and extract 111 prestellar cores using Clumpfind (Williams et al., 1994).

They give flux densities and, when resolved, the beam-convolved FWHM for each

source. Whilst SSGK06 have a greater number of observed cores than MAN98 and

SNW08, they have fewer cores in the Ophiuchus main cloud. The intensity map is

shown in Figure 2.2 .

We use Equation (2.1) to estimate masses from these flux densities, assuming

T = Tsww07
2 and D = 139 pc. The value of κ(λ) is assumed to scale as κ ∝ λ−β

2We assume T = Tsww07 for cores within L1688. For cores outside L1688, we assume T = 10 K.
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Figure 2.2: 1.2 mm dust emission intensity map of the Ophiuchus main cloud and sur-
rounding region, taken from Stanke et al. (2006). The ellipses show the size and position
of extracted cores.
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Region Tman98 Tsww07 ×M1.3

(K) (K)

Oph A 20 11 1.77
Oph B 12 10 1.01
Oph C 12 10 1.01
Oph D 12 10 1.01
Oph E 15 10 1.40
Oph F 15 10 1.40
Oph J - 10 -

Table 2.2: Dust temperatures given by MAN98 and SWW07. The fourth column gives
the multiplication factor applied to the original MAN98 core masses when we assume
T = Tsww07 and D = 139 pc.

where β ≈ 2 at millimetre wavelengths (Hildebrand, 1983). Extrapolating from

κ(1.3 mm) = 0.005 cm2 g−1, we assume that κ(1.2 mm) = 0.006 cm2 g−1 . The masses

and sizes are given in Table 2.1 .

2.2.3 SNW08

SNW08 analyse observations of dust emission at 850µm in Ophiuchus acquired from

the Canadian Astronomy Data Centre’s JCMT data archive (Tilanus et al., 1997).

The data cover an area of ∼ 700 arcmin2 that includes Oph-A, Oph-B1, Oph-B2,

Oph-C, Oph-E Oph-F and Oph-J. Sources with a peak brightness 5σ or more above

the background noise level were extracted by eye from within a closed 3σ noise

contour. Spatially resolved cores were given a size defined by an ellipse fitted to the

3σ contour. The intensity map is shown in figure 2.3

The masses here are the same as those stated by SNW08. Their mass calculations

follow Equation 2.1 and they assume T = Tsww07 and D = 139 pc with κ(850µm) =

0.01 cm2 g−1. The masses and sizes are given in Table 2.1 .

2.2.4 ABMP07

ABMP07 measure the width of the N2H+(1–0) emission line from 27 prestellar cores

within Ophiuchus. Of these 27 prestellar cores, 26 have mass estimates from MAN98.

The line widths show the radial velocity dispersion, σ1d, of N2H+ molecules within

prestellar cores. These velocities have thermal and non-thermal components where
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Figure 2.3: 850µm dust emission intensity of the Ophiuchus main cloud, taken from
Simpson et al. (2008). Black contours levels show 5σ and 10σ noise levels. White contours
show 25σ and 100σ noise levels. The 1σ noise level varies from 4 MJy/sr to 11 MJy/sr.
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σ2
1d = σ2

t + σ2
nt and the thermal component, σt, is given by

σ2
t =

kbT

mmol

. (2.4)

Here mmol = 4.8 × 10−23 g is the mass of the N2H+ molecule. The non-thermal

component, σnt, gives the magnitude of macroscopic gas motions, i.e. turbulence,

rotation and contraction or expansion.

We list values of σ1d, σt and σnt in Table 2.1. Note that σt and σnt are different

to the values given by ABMP07 as we have assumed T = Tsww07.

2.2.5 Comparison of Observations

There is some concern when comparing the masses observed by MAN98, SSGK06

and SNW08. As shown in figure 2.4, the derived CMFs from these surveys have

peaks which vary by almost an order of magnitude. The peak of the MAN98 CMF is

at∼ 0.2 M�, the peak of the SSGK06 CMF is at∼ 1 M� and the peak of the SNW08

CMF is at ∼ 0.4 M�. These results are even more disparate when we look at specific

cores like B1-MM2 with Msnw08 = 1.2 M�, Mssgk06 = 1.4 M� and MMAN98 =

0.2 M�, and B1-MM4 with Msnw08 = 1.8 M�, Mssgk06 = 0.3 M� and MMAN98 =

0.2 M�. Note that for B1-MM2 the SSGK06 mass roughly agrees with the SNW08

mass, but for B1-MM4, the SSGK06 mass roughly agrees with the MAN98 mass. It

is our view that the different core extraction procedures used for each data set are the

the main source of error. While the opacity of the sky will cause some differences

between observations, extracting the cores from the background structure of the

molecular cloud introduces considerable uncertainties in their column densities.

The cores observed by MAN98 have the largest number of velocity dispersions

from ABMP07. This means that these two sets of observations will be the most

effective at tracing the correlation between mass and velocity dispersion. Indeed,

the observations by ABMP07 are a follow up to those by MAN98, so these two sets

of results are the most consistent with one another. Therefore, for these reasons,

we will use the MAN98 masses as the basis for initial conditions of simulations of

prestellar cores.

3The probability density P (log(M)) is calculated by smoothing each data point log(M)i over
a Gaussian kernel. For any value of log(M), P (log(M)) is given by

P (log(M)) =
1

N

N∑

i=1

1√
2πh2

exp

(
− (log(M)− µi)

2

2h2

)
, (2.5)
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Figure 2.4: Measured CMFs in Ophiuchus. The black lines are histograms with a fixed
bin width of 0.25 dex and the red lines a kernel smoothed probability density estimates3.
The top panel gives the CMF measured by SNW08; the second panel down gives the
CMF measured by SSGK06; the third panel down gives the CMF measured by MAN98;
the bottom panel compares the CMFs of all three with SNW08 in red, SSGK06 in green
and MAN98 in blue.
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2.3 Isolated cores

In this thesis we treat cores as isolated objects; that is to say that we evolve individ-

ual cores in a vaccum. In reality they are not isolated, but embedded in molecular

clouds. For convenience, we will assume that the cores’ environment do not strongly

affect star formation, but we conceed that this assumption may have to be relaxed in

future. We can, however, test to see if time scale of core-core interactions is greater

than core free fall times.

ABMP07 provide the bulk velocities of cores within Ophiuchus. As a collection of

individual objects, these cores have a radial velocity dispersion σ1d,c = 0.36 km s−1.

ABMP07 also give the diameter of the region Do = 1.1 pc. Assuming the the

distribution of core velocities is Maxwellian, the crossing time of the main cloud is

tcross =
Do√
3σ1d,c

= 0.8 Myr . (2.7)

This gives the approximate time scale for cores to move across Ophiuchus. This can

be compared to the typical free fall time of a core in Ophiuchus

tff =

√
π2R̄3

8GM̄
= 0.05 Myr , (2.8)

where M̄ = 0.5 M� is the mean value of Mman98 and R̄ = 3300 AU is the mean value

of

Rman98 =
√

FWHMmaj × FWHMmin . (2.9)

As tcross is more than an order of magnitude greater than tff, this suggests that

cores in Ophiuchus collapse before they interact.

We can provide a more refined analysis by calculating the mean free path of

a core in Ophiuchus. To simplify this problem, we assume that all the cores are

rigid, spherical ‘billiard balls’ which do not interact tidally. We also ignore any

drag effects from the diffuse gas in which the core are embedded. If the cores are

where µi ≡ log(M)i. As the probability density function of the CMF is likely to be roughly
lognormal, we set

h =

(
4σ̂5

3N

) 1
5

(2.6)

where σ̂ is the standard deviation of log(M)i (Silverman, 1998). This is a useful method of
extracting large scale features from probability density functions which may be difficult to see in
noisy histograms.
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uniformly distributed throughout Ophiuchus, each core has a mean free path

L =
D3

o

6NR2
cs

, (2.10)

where Rcs is the radius of a core’s cross sectional area. As each core has a physical

size and will attract other cores through gravity, we have

Rcs ≈ 2R̄

√
2GM̄

v2
rR̄

+ 1 , (2.11)

where vr is the average relative velocity between cores, given by vr = 4σ1d,c/
√
π.

The core-core interaction time is therefore

ti =
L
vr
≈ D3

o

24NvrR̄2
(

2GM̄
v2rR̄

+ 1
) = 3.1 Myr . (2.12)

We find that for the entire Ophiuchus main cloud, ti is almost two orders of

magnitude greater than tff. However, the cores in Ophiuchus are sub-clustered into

distinct regions, so it is more appropriate to apply this analysis on these individual

regions. Table 2.3 gives the interaction and free fall time scales for different regions

in Ophiuchus4.

In Oph-A and Oph-B, the interaction time is at least an order of magnitude

greater than the free fall time. This suggests that the large majority of cores in

these regions collapse before they interact. In the region containing Oph-C, E and

F, the interaction time is only 2.6 times greater than the free fall time. This means

that it is likely that a significant fraction of cores interact before they collapse.

However, as over three quarters of all the cores in Ophiuchus are in Oph-A and

Oph-B, the assumption that most cores collapse before they interact is still likely to

be valid.

2.4 Lognormal distribution

When we combine the MAN98 and ABMP07 core observations, there are 61 masses,

36 sizes and 27 velocity dispersions. However, there are only 20 cores which have

all three of these measurements. To statistically model star formation in prestel-

4Note that this is an overly simple model that does not take into account protostellar cores
lasting for more than a few free fall times. ABMP07 provide a similar analysis using values of
M̄ = 0.4 M� and R̄ = 2500 AU for cores in all regions of Ophiuchus. Their results are therefore
different to ours.

32



2.4. LOGNORMAL DISTRIBUTION

Region N M̄ R̄ σ1d,c vr Do L ti tff ti/tff
(M�) (AU) (km s−1) (pc) (Myr)

Ophiuchus 61 0.51 3300 0.36 0.81 1.1 2.6 3.1 0.05 67
Oph-A 15 0.87 2300 0.19 0.43 0.28 0.10 0.24 0.02 11
Oph-B 22 0.32 2000 0.20 0.45 0.33 0.29 0.64 0.03 22

Oph-C,E,F 19 0.55 5400 0.39 0.88 0.44 0.22 0.25 0.10 2.6

Table 2.3: Core interaction parameters for regions in Ophiuchus. Column 1 gives the
region; column 2 gives the number of cores in the region; column 3 gives mean core mass;
column 4 gives the mean core size; column 5 gives the bulk radial velocity dispersion of
cores; column 6 gives the average relative velocity between cores; column 7 gives the size
of the region; column 8 gives the core mean free path; column 9 gives the core interaction
time; column 10 gives the core free fall time; column 11 gives the core interaction time
divided by the core free fall time.

lar cores, we need more than 20 initial conditions. Therefore, we use the data to

calibrate a multivariate lognormal distribution of core properties in Ophiuchus. To

within the errors of small number statistics, and modulo the assumption of a lognor-

mal distribution, this will reproduce the observed properties and their correlations.

We draw x = (log(M), log(R), log(σnt)) from a lognormal distribution with prob-

ability density

P (x) =
1

(2π)3/2|Σ| exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (2.13)

where

µ ≡



µM

µR

µσnt


 and Σ ≡




σ2
M ρ(M,R)σMσR ρ(M,σnt)σMσσnt

ρ(M,R)σMσR σ2
R ρ(R, σnt)σRσσnt

ρ(M,σnt)σMσσnt ρ(R, σnt)σRσσnt σ2
σnt


 5 .

(2.14)

Here, µxi is the mean value of xi and σxi is its standard deviation. The values we

use are given in Table 2.4 in the MAN98 and ABMP07 columns. The term ρ(xi, xj)

is Pearson’s correlation coefficient and is defined by

ρ(xi, xj) =

N(xi,xj)∑
k=1

(xi,k − µ′xi)(xj,k − µ′xj)

σ′xiσ
′
xj

(2.15)

5To simplify the text we have omitted the logs from ρ(xi, xj). For example, we represent
ρ(log(M), log(R)) as ρ(M,R).
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Parameter SNW08 SSGK06 MAN98 ABMP07

µM [log(M/M�)] -0.44 -0.03 -0.57 -
σM [log(M/M�)] 0.59 0.43 0.43 -
µR [log(R/AU)] 3.15 3.76 3.11 -
σR [log(R/AU)] 0.10 0.19 0.27 -
µσnt [log(σnt/km s−1)] - - - -0.95
σσnt [log(σnt/km s−1)] - - - 0.2

Table 2.4: Arithmetic means and standard deviations of logged values of M , R and σnt
from the SNW08, SSGK06, MAN98 and ABMP07 data.

Note that N(xi, xj) is the number of cores that have a value for both xi and xj.

With the MAN98 and AMBP07 data we have N(M,R) = 36, N(M,σnt) = 26

and N(R, σnt) = 20. The means and standard deviations µ′xi , µ
′
xj

, σ′xi and σ′xj are

calculated only from cores which have a measurement of both xi and xj .

From the data, we measure correlations

P ≡



ρ(M,M) ρ(M,R) ρ(M,σnt)

ρ(M,R) ρ(R,R) ρ(R, σnt)

ρ(M,σnt) ρ(R, σnt) ρ(σnt, σnt)


 =




1 0.61 0.49

0.61 1 0.11

0.49 0.11 1


 . (2.16)

As ρ(xi, xj) is a measure of linear correlation between variates (where 0 implies

no correlation and 1 implies absolute correlation), we see that log(M) and log(R)

are moderately correlated, as are log(M) and log(σnt). There is little correlation

between log(R) and log(σnt), however this may be due to the small number of data

points. Figure 2.5 shows the probability density function P (x) projected through

all three of its dimensions. Superimposed are the observational data points as well

as 100 data points drawn randomly from the distribution.

2.5 Summary

In this chapter we have stated the observations that we will use to create the ini-

tial conditions of SPH simulations of prestellar cores. Specifically, these are core

mass and size measurements by MAN98 and non thermal velocity dispersions by

ABMP07. There are other mass and size measurements by SNW08 and SSGK06,

however these are not well matched with each other or with MAN98. We use the

MAN98 measurements for convenience as they have largest number of velocity dis-

persions from ABMP07.
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Figure 2.5: The multivariate lognormal distribution of P (x) where
x = (log(M), log(R), log(σnt)). The top-left frame shows the distribution projected
through the log(σnt) dimension; the top-right frame shows the distribution projected
through the log(M) dimension; the bottom frame shows the distribution projected
through the log(R) dimension. The concentric ellipses show the 1σ, 2σ and 3σ regions of
the distribution. The red squares are the observational data by MAN98 and ABMP07
and the green circles are randomly drawn points from P (x).
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We have justified the assumption that most cores are likely to collapse in isola-

tion. We show this using a simple model which compares the time taken for cores

to interact with the free fall time of a typical core. We find that the core-core inter-

action time is at least an order of magnitude greater than the core free fall time for

most cores in Ophiuchus.

We finally approximate the mass, size and velocity dispersion measurements

from MAN98 and ABMP07 with a multivariate lognormal distribution. This should

adequately reproduce the central region of the observed distribution. From this we

can randomly draw any number of core masses, sizes and velocity dispersions.
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Chapter 3

Intrinsic core shapes

In this chapter we address the problem of deducing the intrinsic shapes of cores

from their observed aspect ratios. We propose four models based on the standard

assumption that prestellar cores are intrinsically ellipsoidal.

The simplest, one-parameter model assumes that the axes of a prestellar core

are drawn randomly from a log-normal distribution with zero mean and standard

deviation τo. The more complex, two-parameter model assumes that the log-normal

distribution has a finite mean, νo, defined so that νo < 0 means elongated (or fil-

amentary) cores are favoured, and νo > 0 means flattened (or disc-like) cores are

favoured. For further comparison we also invoke a second two-parameter model with

two standard deviation parameters and a four-parameter model with two standard

deviation and two mean parameters.

We apply a Bayesian analysis, where Markov chain Monte Carlo sampling is used

to map out posterior probability density functions of the parameters, and models are

compared using Bayes factors. We show that (i) the one-parameter model provides

values of τo ≈ 0.57 ± 0.07 (to base e) and (ii) that despite an improved fit from

some of the higher order models, it is difficult to justify the introduction of extra

parameters.

3.1 Introduction

The shapes of prestellar cores projected onto the plane of the sky are not normally

circular. Therefore we have a difficult inverse problem: while we can measure the

and elongation of cores, there is no way of directly measuring their intrinsic shapes.

Instead, we must deduce the likely distribution of intrinsic shapes through model

fitting.

There have been several previous models developed to fit the observed aspect ra-
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tios of cores, using both randomly oriented spheroids (e.g. Myers et al., 1991; Ryden,

1996) and randomly oriented ellipsoids (e.g. Goodwin et al., 2002; Jones and Basu,

2002; Tassis, 2007). These models invoke from two to four free parameters. Here we

introduce a model in which the intrinsic shapes of prestellar cores are characterised

by just one free parameter. Using Markov Chain Monte Carlo sampling (MCMC),

we generate a probability density function (PDF) for this parameter, based on obser-

vations of the cores in Ophiuchus by Simpson et al. (2008) (SNW08), Stanke et al.

(2006) (SSGK06) and Motte et al. (1998) (MAN98). We also define three more

complex models by introducing additional parameters. These may provide a better

fit, but the probability density of a specific set of parameters incurrs a penalty from

being spread over extra dimensions.

In Section 3.2 we introduce each of the models, and explain how we derive

projected shapes. In Section 3.3 we describe how we use Bayesian analysis to identify

the best-fit model parameters, and the best models, using the observational data.

In Section 8 we present and discuss the results, and in Section 3.5 we summarize

our conclusions.

3.2 Modelling the shapes of cores

We follow the convention of approximating core shapes with ellipsoids having semi-

axes A, B and C, where A ≥ B ≥ C. Furthermore, we assume that there is no

relationship between the projected size and intrinsic shape of a prestellar core.

3.2.1 Model M1, one free parameter (τo)

For the first model M1, we generate a family of core shapes with only one free

parameter: τo. Each individual shape is an ellipsoid with semi-axes

A = 1 ,

B = exp(τoGb) ,

C = exp(τoGc) .

(3.1)

Here – and in all further models – Gb and Gc are random numbers drawn from a

Gaussian distribution with zero mean and unit standard deviation. Once the semi-

axes of a core have been generated, they are re-ordered so that A ≥ B ≥ C and

normalised so that A = 1.

Increasing τo increases the likelihood that the axes of a core have very disparate

sizes, and hence the likelihood that the projected shape of the core has a small
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3.2. MODELLING THE SHAPES OF CORES

aspect ratio, q. Note that while this model can produce oblate cores (i.e. B ≈ A

and C < B) and prolate cores (i.e. B < A and C ≈ B), it does not include a

preference towards either shape. Most of the individual shapes are triaxial (i.e.

A 6≈ B 6≈ C).

The core shapes from this model are likely to occur in the presence of turbulence.

Statistically isotropic turbulence will shock gas randomly along different directions,

producing randomly drawn intrinsic aspect ratios. Furthermore, Lin et al. (1965)

show that an ellipsoidal core of gas undergoing free fall collapses fastest along its

shortest axis. This would enhance any disparities in the intrinsic core aspect ratios

provided by turbulence.

3.2.2 Model M2a, two free parameters (νo, τo)

For the second model M2a, we generate a family of core shapes using two free

parameters: νo, τo. Each ellipsoid has semi-axes

A = 1 ,

B = exp(νo + τoGb) ,

C = exp(νo + τoGc) .

(3.2)

Unlike M1, we explicitly include the possibilty of a preference for oblate or

prolate cores in M2a. When νo & τo, cores tend to be oblate and when νo . −τo,

cores tend to be prolate. When |νo| . τo, cores tend to be triaxial.

Roughly axisymmetric core shapes such as those provided by this model imply

that the cores are in some form of equilibrium. Oblate core shapes may occur if the

self-gravity of a core is balanced by rotation (e.g. Kiguchi et al., 1987) or restricted

by a poloidal magnetic field (e.g. Mouschovias, 1976). It is also possible that prolate

cores may be the result of toroidal or helical magnetic fields (e.g. Fiege and Pudritz,

2000; Tomisaka, 1991).

3.2.3 Model M2b, two free parameters (τb, τc)

For the third model M2b, we generate a family of core shapes with two free param-

eters: τb and τc. Each ellipsoid has semi-axes

A = 1 ,

B = exp(τbGb) ,

C = exp(τcGc) .

(3.3)
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With this model, if τb ≈ 0 and τc � τb, we produce an ensemble of oblate and

prolate cores. While there is no strong physical justification for adopting this model,

it provides a second relatively obvious way of generating a two-parameter family of

ellipsoidal shapes.

3.2.4 Model M4, four free parameters (ν
B
, τ

B
, ν

C
, τ

C
)

For the fourth and final model M4, we generate a family of core shapes with four

free parameters: νb, νc, τb and τc . Each ellipsoid has semi-axes

A = 1 ,

B = exp(νb + τbGb) ,

C = exp(νc + τcGc) .

(3.4)

With this model, if |νb| > τb and |νc| > τc we produce cores with roughly the

same triaxial shape. This shape will be much more varied between cores if |νb| . τb

or |νc| . τc.

Similar to model M1, this model implies that the core shapes have been per-

turbed by turbulence. The parameters of these models can also be compared to

results by Goodwin et al. (2002) and Jones et al. (2001). However, we note that it

is difficult to imagine why turbulence would produce a population of cores all with

roughly the same shape.

3.2.5 Projecting an arbitrarily oriented ellipsoid

We define a Cartesian co-ordinate system in which the x-axis is aligned along A,

the y-axis along B, and the z-axis along C. To observe this core from an arbitrary

direction, given by polar angles (θ, φ), we set

θ = cos−1(2Rθ − 1) , (3.5)

φ = 2πRφ , (3.6)

where Rθ and Rφ are randomly drawn from a uniform distribution on the interval

(0, 1). The aspect ratio of the core is then given by

q =

√
α + γ −

√
(α− γ)2 + β2

α + γ +
√

(α− γ)2 + β2
(3.7)
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where

α = (A2 cos2(φ) +B2 sin2(φ)) cos2(θ) + C2 sin2(θ), (3.8)

β = (B2 − A2) cos(θ) sin(2φ), (3.9)

γ = A2 sin2(φ) +B2 cos2(φ) (3.10)

(see Binney, 1985).

3.3 Bayesian analysis

We use Bayesian analysis to determine the best-fit parameters of the different mod-

els, and to quantify their relative strengths. When comparing model M with pa-

rameters x ≡(x1, x2, ...) against observational data D, Bayes’ theorem states that

P (x|M,D) =
P (D|M,x)P (x|M)

P (D|M)
. (3.11)

Here P (x|M,D) is the posterior probability of x given D, P (D|M,x) is the like-

lihood of D given x, P (x|M) is the prior PDF of x and P (D|M) is the marginal

likelihood over all values of x, i.e.

P (D|M) =

∫

x

P(D|M,x)P(x|M) dx . (3.12)

As P (D|M) is a constant, Equation (3.11) simplifies to

P (x|M,D) ∝ P(D|M,x)P(x|M) , (3.13)

where any generated posterior PDFs can be normalized to unity, post analysis.

3.3.1 Prior PDF

When generating prior PDFs for the model parameters x we assume that P (x|M) is

finite and uniform within given limits, and zero outside them. This is to say, within

credible limits, we impose no a priori preference for any specific x.

For M1, the single parameter τ
O

must be able to reproduce the maximum and

minimum observed aspect ratios in the data, viz. q
MAX
' 1 and q

MIN
' 0.3 (over all

three data sets, there are only two cores with q<0.3). Since the majority of aspect

ratios delivered by M1 satisfy q& exp(−τ
O

), we set − ln(q
MAX

)≤ τ
O
≤− ln(q

MIN
),

i.e. 0≤τ
O
≤1.2 .
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For M2a we set the range of ν
O

to −1.2≤ ν
O
≤ 1.2 so that a purely oblate or

prolate population (i.e. one with τ
O

=0) could reproduce the observed aspect ratios.

We then assign τ
O

the same range as in M1.

For both M2b and M4 we assign τ
B

and τ
C

the same range as τ
O

in M1. For

M4 we assign ν
B

and ν
C

the same range as ν
O

in M2a.

With these ranges, the normalised prior PDFs are:

P (τ
O
|M1) =

{
1

(1.2)
if 0≤τ

O
≤1.2,

0 otherwise;

P (ν
O
, τ

O
|M2a) =





1
2(1.2)2

if −1.2≤ν
O
≤1.2

and 0≤τ
O
≤1.2,

0 otherwise;

P (τ
B
, τ

C
|M2b) =





1
(1.2)2

if 0≤τ
B
≤1.2

and 0≤τ
C
≤1.2,

0 otherwise;

P (ν
B
, ν

C
, τ

B
, τ

C
|M4) =





1
4(1.2)4

if −1.2≤ν
B
≤1.2

and −1.2≤ν
C
≤1.2

and 0≤τ
B
≤1.2

and 0≤τ
C
≤1.2,

0 otherwise .

(3.14)

Note that these prior PDFs will not affect the inferences on specific parameter values

as long as the posterior distribution of x is within these credible limits. These priors

will affect the strength of specific models, discussed further in Section 3.3.3 .

3.3.2 Markov chain Monte Carlo sampling

For each observational data set, D, we generate a histogram of aspect ratios. The

histogram has ten bins (k= 1 to 10), evenly spaced between q = 0 and q = 1, and

Ok is the number of observed cores in bin k.

For a given model, M, and a given choice of the associated free parameters, xi, we

generate 104 ellipsoids, and view each one from an arbitrary direction to determine

its aspect ratio, q, as described in Section 3.2. The resulting q-values are then

used to construct an equivalent histogram of expectation values, Ej, (j = 1 to 10),

normalised so that
∑

j{Ej}=
∑

j{Oj}. The likelihood of the observational data, D,
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being reproduced by M,xi is then

P (D|M,xi) = exp

{
−

j=10∑

j=1

(Oj − Ej)2

2Oj

}
. (3.15)

We have assumed purely Poisson errors on the counts in each bin Oj because error

estimates for individual observed q-values are not available. Bins that have less than

five counts are pooled together so that the Gaussian approximation to Poisson errors

is valid.

To build a Markov Chain, we consider the observational values, Ok, from a

particular data set, D, and we invoke a particular model, M. We pick a set of model

parameters (x0) in the middle of the ranges defined in Section 3.3.1, and compute

P (D|M,x0), as described in the preceding paragraph. We then build the chain by

stepping from one set of model parameters to another, x0 → x1 → x2 → x3....

Each step, ∆x=xi+1 − xi is drawn randomly from a Gaussian distribution centred

on zero. The step is only made if

P (D|M,xi+1)

P (D|M,xi)
≥ R

STEP
, (3.16)

where R
STEP

is a random number from a uniform distribution on the interval (0,1).

Otherwise the step is rejected and a new step is drawn; this ensures that the points

on the chain tend to concentrate in regions of high probability. The coefficients

regulating the mean step size should be adjusted so that roughly half the steps are

rejected. The first 103 points on the chain are discarded, to remove any memory of

the starting point. The subsequent 5 × 105 points are used to identify the best-fit

parameters and their uncertainties.

We have built a Markov Chain for each possible combination of the four models

and the three data sets. The points on the chain are then used to determine the

posterior PDFs of the model parameters. The results are presented in Figures 3.1,

3.2, 3.3 and 3.4. The best fits obtained with M1 and M2a are compared with the

observations in Figures 3.5 and 3.6.

3.3.3 Model selection

Bayesian analysis can also be used to compare different models. Given a list of

competing models, M1,M2, . . . ,Mn, the probability of a particular model, Mk, is

P (Mk|D) =
P(D|Mk)P(Mk)

P(D)
, (3.17)
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Figure 3.1: Posterior PDFs for τO in M1, from the SNW08, SSGK06 and MAN98 data.
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Figure 3.2: Posterior PDFs for νO and τO in M2a, from the SNW08, SSGK06 and
MAN98 data.
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Figure 3.3: Posterior PDFs for τB and τC in M2b, from the SNW08, SSGK06 and
MAN98 data. The white dashed line represents τB = τC , about which the distribution
should be symmetric.
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Figure 3.4: Posterior PDFs for νB , νC in M4, from the SNW08, SSGK06 and
MAN98 data. τB and τC have been marginalized out, i.e. P (νB , νC |M4,D) =s
P (νB , νC , τB , τC |M4,D) dτB dτC . The white dashed line represents νB =νC , about which

the distribution should be symmetric.
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where

P (D) =
k=n∑

k=1

P(D|Mk)P(Mk) . (3.18)

To calculate P (D|Mk) we must marginalise each model’s likelihood over its asso-

ciated parameter space (see Eqn. 3.12). We evaluate this integral by organising

the points on the associated Markov Chain into a balanced binary tree (Weinberg,

2009). This has the effect of dividing the parameter space into cells, each of which

contains a single point. Each point, xi, now has a likelihood (see Eqn. 3.15) and a

volume of parameter space, δVi equal to the volume of the cell it occupies. Hence

the marginalised likelihood is approximated by

P (D|Mk) ≈ 1

Vk

i=N∑

i=1

P (D|Mk,xi) δVi . (3.19)

Here N is the number of points on the Markov Chain and Vk is the total volume

of parameter space associated with model Mk. As MCMC sampling is most noisy

around the edges of the distribution, we omit from the summation any cells that

extend to the boundaries of the parameter space. These regions are under sam-

pled and have disproportionately large cells; including them generally overestimates

P (D|Mk).

Note that 1/Vk is the probability density of the prior PDFs given in Equation

(3.14). This term decreases exponentially with the number of free parameters in

each model. So, for example, model M4 would need to produce a much better fit

to the data than M1 to give P (D|M4) > P (D|M1).

The relative likelihood of one model, k, with respect to another, k′, is quantified

by the Bayes factor

Kkk′ =
P (Mk|D)

P (Mk′ |D)
=

P (D|Mk)P(Mk)

P (D|Mk′)P(Mk′)
. (3.20)

Given that we have no a priori preference for either model, i.e. P (Mk) = P (Mk′),

Equation (3.20) reduces to the ratio of the marginalised likelihoods. Bayes factors

quantifying the relative performance of the different models are presented in Table

3.1 .
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3.4 Results

3.4.1 Parameter estimation for M1

Figure 3.1 shows the posterior PDFs for τ
O

in M1, based on the different data sets.

Since the PDFs are all unimodal and not overly skewed, we can calculate means and

standard deviations, viz. τ
O

=0.51±0.06 (SNW−T09), 0.56±0.03 (SSGK06), 0.63±
0.08 (MAN98). These values can be combined to give τ

O
= 0.57 ± 0.07, i.e. the

principal axes of a core typically differ by a factor of order exp(τ
O

)≈1.7.

Figure 3.5 compares the observed distributions of aspect ratio from the different

data sets with the best fits from M1. M1 fits the SSGK06 data (which, with 111

cores, has the least noisy statistics) well. The fits to the SNW08 data (52 cores) and

the MAN98 data (35 cores) are less good. For example, the MAN98 data hints at a

sharp peak between q=0.5 and q=0.6 which M1 is unable to reproduce; however,

this may just be the product of small-number statistics.

3.4.2 Parameter estimation for M2a

Figure 3.2 shows the posterior PDFs of ν
O

and τ
O

in M2a, based on the different data

sets. We recall that ν
O

determines whether cores have a tendency to be filamentary

(ν
O
<0) or disc-like (ν

O
>0). For all three data sets there is a degeneracy, because

the intrinsic asymmetry of the cores is promoted both by increasing τ
O

, and by

increasing |ν
O
|. Consequently solutions with reduced τ

O
and increased |ν

O
| have

high probability. Indeed, for the SSGK06 and MAN98 data sets these are actually

the preferred solutions. However, in neither case is there a clear preference for

filamentary over disc-like cores, or vice versa.

Figure 3.6 compares the observed distributions of aspect ratio with the best

fits from M2a. M2a delivers a markedly better fit – than M1 – to the SSGK06

and MAN98 data sets, irrespective of whether we use the filamentary or disc-like

parameters. However, the best fit to the SNW08 data set is not much better than

with M1.

3.4.3 Parameter estimation for M2b

Figure 3.3 shows the posterior PDFs of τ
B

and τ
C

in M2b, based on the different

data sets. For the SSGK06 data we find a peak at τ
B
' τ

C
' 0.55, and for the

MAN98 data at τ
B
' τ

C
'0.60. For the SNW08 data, the distribution of τ

B
and τ

C

is somewhat broader, but nowhere does it exceed that for τ
B
' τ

C
'0.50. Thus, for
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all three data sets, the two parameters of M2b do not provide a better fit than the

single parameter of M1.

3.4.4 Parameter estimation for M4

Figure 3.4 shows the posterior PDFs of ν
B

and ν
C

in M4, based on the different data

sets; for simplicity, we have marginalized τ
B

and τ
C

out of the PDFs. For all three

data sets, the highest probabilities lie on the line ν
B
'ν

C
, which suggests that M4

is unable to improve on M2a. There are also regions of moderately high probability

where ν
B
6=ν

C
, but these are outweighed by the regions where ν

B
'ν

C
, and there is

no hint of a preference for filamentary over disc-like shapes, or vice versa.

3.4.5 Model selection

We quantify the quality of the different models, for the different data sets, by calcu-

lating Bayes factors, Kkk′ , as described in Section 3.3.3. The results are presented in

Table 3.1, where K > 1 indicates a preference for the model denoted in the column

header, and K < 1 indicates a preference for the model in the row label. Jeffreys

(1961) suggests the following qualitative interpretation for different values of Kkk′ :

Kkk′ ≤ 1/10 Strongly supports Mk′ ,

1/10 <Kkk′ ≤ 1/3 Moderately supports Mk′ ,

1/3 <Kkk′ < 1 Weakly supports Mk′ ,

Kkk′ = 1 No preference ,

1 <Kkk′ < 3 Weakly supports Mk ,

3 ≤Kkk′ < 10 Moderately supports Mk ,

Kkk′ ≥ 10 Strongly supports Mk ;

we stress that these categories are only intended to be indicative.

The SNW08 data are much better fitted by M1 or M2b, than by M2a or M4;

there is little to chose between M1 and M2b. Conversely, the SSGK06 and MAN98

data sets are both fitted best by M2a, with M1 also giving a good fit, and M2b

and M4 giving relatively poor fits. To combine the data sets, we have simply taken

the products of their individual Bayes factors, and these are given in the last panel

of Table 3.1. These values suggest that M1 is the best model. M2a is almost as

good, and should remain in the reckoning against the day when sufficient data is

available to distinguish between filamentary and disc-like cores.
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Figure 3.5: The histograms represent the distributions of aspect ratio obtained by
SSGK06 (top), MAN98 (middle) and SNW08 (bottom), with

√
N errors. The dashed

lines represent the best fits obtained with M1.
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Figure 3.6: As Figure 3.5, but for M2a.
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SNW08
M1 M2a M2b M4

M1 1 0.31 1.02 0.08
M2a 3.20 1 3.27 0.26
M2b 0.98 0.31 1 0.08
M4 12.11 3.78 12.36 1

SSGK06
M1 M2a M2b M4

M1 1 1.80 0.31 0.48
M2a 0.56 1 0.17 0.27
M2b 3.23 5.80 1 1.54
M4 2.10 3.76 0.65 1

MAN98
M1 M2a M2b M4

M1 1 1.76 0.75 0.60
M2a 0.57 1 0.43 0.34
M2b 1.33 2.34 1 0.80
M4 1.67 2.93 1.25 1

Combined
M1 M2a M2b M4

M1 1 0.98 0.24 0.023
M2a 1.02 1 0.24 0.024
M2b 4.21 4.21 1 0.10
M4 42.5 41.6 10.0 1

Table 3.1: Bayes factors, K=P (MCOLUMN |D)/P (MROW |D), calculated using Eqn. 3.20.
The first three panels give values for the individual data sets, and the fourth panel gives
their product.

Since our analysis has not included the errors on individual data points (they

are not available), the Poisson errors in Figures 3.5 and 3.6, and in Eqn. (3.15),

should be larger. This would broaden the posterior PDFs for all models, but the

effect would tend to be larger for models with more free parameters, in the sense

that the probability would be smeared over more dimensions, and therefore their

marginal likelihoods would be reduced more. Since we have already concluded that

M1 performs best, we infer that this conclusion would be reinforced if observational

errors were included.

3.5 Summary

We have used Bayesian analysis to infer the intrinsic shapes of prestellar cores in

Ophiuchus. We find that the observational data are well fitted with a one-parameter
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model, M1, in which cores are triaxial ellipsoids with axes chosen from a log-normal

distribution having zero mean and standard deviation τ
O
' 0.57 ± 0.07. The two-

parameter model M2b does not sufficiently improve the fit to justify its adoption,

and the four-parameter model, M4 is completely unjustified.

There is some evidence to suggest that model M2a performs as well as M1.

However the strong degeneracy between mostly disc-like and mostly filamentary

cores makes it difficult to determine which shape is more likely. Indeed, it may be

the case that cores in Ophiuchus are a mixture of both these shapes. However, the

projected distributions of q for filamentary and disc like cores are very similar, so

the ratio of one shape to the other might be very difficult to infer from observations.

Furthermore, the addition of the extra free parameter would decrease the statistical

robustness of the model.

As M1 is a strong model with an unambiguous result, we use it to define the

initial shapes of prestellar cores in this thesis. By setting τ
O

= 0.6, we can randomly

draw intrinsic aspect ratios QB and QC , and use sizes drawn from observations to

fully define the ellipsoidal shapes of cores.
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Chapter 4

Internal structure

In the previous two chapters, we have stated how we generate the masses, sizes,

internal velocity dispersions and intrinsic shapes for model prestellar cores. These

core properties are closely informed by observations of cores in Ophiuchus. In this

chapter we define and justify the assumptions made on the cores’ radial density

profiles and velocity fields.

We characterise the radial density profile of the core as that of a critical Bonnor-

Ebert sphere and we model the velocity field as a mixture of small-scale turbulence

and large scale rotational and radial motions. For simplicity and clarity, throughout

this chapter we assume that cores are spherically symmetric. The procedure for

creating triaxial prestellar cores is explained in Chapter 7 .

4.1 The density profile

Observations show that the density profiles of some dense cores are well matched

with those of critical Bonner-Ebert (BE) spheres (e.g. Alves et al., 2001; Harvey

et al., 2001; Lada et al., 2008). A BE sphere (Bonnor, 1956) is a pressure contained

self-gravitating sphere of isothermal gas. As described in Section 4.1, the density

profile of a BE sphere is determined only by its dimensionless radius ξb. A critical

BE sphere has ξb = ξcrit = 6.451 and is marginally stable against gravitational

collapse so long as the gas pressure at its boundary is matched by an equal external

pressure. BE spheres with ξb < ξcrit are stable against gravitational collapse and

BE spheres with ξb > ξcrit are unstable against gravitational collapse. The density

profile of a critical BE sphere is given in Figure 4.1 .

We assume critical BE density profiles when modelling prestellar cores. While

the cores in Ophiuchus are not necessarily isothermal or in hydrostatic equilibrium, a

critical BE density profile provides a flat central region and inverse square envelope.
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ξ

Figure 4.1: The solid red line show the dimensionless density ρ(ξ)/ρ0 of a critical BE
sphere against dimensionless radius ξ. The density is given by eψ(ξ) where ψ(ξ) is given
in Equation (4.6). The dashed lines show the flat core and approximately inverse square
envelope.

These features are found in many models of core collapse and provide convenient

initial conditions.

The density profile of a BE sphere can be calculated by considering the forces

upon a core. A spherically symmetric core of isothermal gas will be in hydrostatic

equilibrium if
dP

dr
= −GM(r)ρ(r)

r2
. (4.1)

As the gas is isothermal and has equation of state

P = c2
sρ (4.2)

where cs is the isothermal sound speed, we can eliminate P from Equation (4.1) so

that
d

dr
ln(ρ(r)) = −GM(r)

c2
sr

2
. (4.3)

We now introduce the dimensionless radius

ξ =
r

R0

, (4.4)

dimensionless mass

µ(ξ) =
M(ξR0)

M0

, (4.5)
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and the dimensionless potential

ψ(ξ) = − ln

(
ρ(ξR0)

ρ0

)
, (4.6)

where ρ0 is the central density of the cloud, and

R0 =
cs√

4πGρ0

, (4.7)

M0 =
c3
s

G
√

4πGρ0

. (4.8)

Equations (4.5) and (4.6) then reduce to

dµ

dξ
= ξ2e−ψ(ξ) , (4.9)

dψ

dξ
=
µ(ξ)

ξ2
. (4.10)

Equations (4.9) and (4.10) are integrated numerically to give µ(ξ) and ψ(ξ).

If we consider the boundary of the cloud ξb, the hydrostatic gas pressure will be

P (ξb) = c2
sρ(ξb) = c2

sρ0e−ψ(ξb) . (4.11)

For the cloud to be in equilibrium with its surroundings, we require an external

pressure Pext = P (ξb). For low values of ξb, Pext is low and the cloud is extended

with a flat density profile and weak self gravity. Increasing ξb increases Pext and the

cloud becomes smaller and more centrally condensed. Pext reaches its maximum at

ξb = ξcrit = 6.451, and for larger values of Pext there are no further equilibria and

the cloud collapses under its own self-gravity.

We integrate Equations (4.9) and (4.10) within limits 0 ≤ ξ ≤ ξcrit to give the

mass profile of a critical Bonnor-Ebert sphere. Values of ξ and µ(ξ) are stored in

a lookup table; any solutions between entries in the table are estimated by linear

interpolation. Note that this mass profile will be scaled to arbitrary values of M

and R and will therefore not generally be in equilibrium. A full description of the

application of this profile to a triaxial core is given in Chapter 7 .

4.2 The velocity field

Spectroscopic observations of prestellar cores suggest that their velocity fields con-

tain ordered rotational motions (e.g. Goodman et al., 1993), ordered radial ex-
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cursions from of inward or outward pulsation (e.g. Keto et al., 2006) and random

turbulent motions (e.g. Dubinski et al., 1995). The observed radial non-thermal

velocity dispersion σnt therefore has contributions from each of these components:

σ2
nt = σ2

rot + σ2
rad + σ2

turb . (4.12)

Here σrot is the velocity dispersion along the line of sight from rotational motions,

σrad is the velocity dispersion from radial excursions and σturb is the velocity dis-

persion from turbulent motions.

If we consider a simple model where a spherical core with measured σnt is i) in

solid-body rotation about an axis perpendicular to the line of sight, ii) is undergoing

isotropic expansion or contraction and iii) also contains some random turbulence, we

are presented with at least two free parameters: the relative weights of σrot, σrad,

σturb. This problem becomes more complicated if the core is ellipsoidal instead of

spherical. Lin et al. (1965) show that gravitational infall of a core is likely to be

fastest along its shortest axis. This anisotropy adds further free parameters to the

problem and we have no way of estimating particular values for any of them.

To simplify this problem, we only consider the turbulent component of the ve-

locity field. We show that turbulent velocity fields can be modified to reproduce

ordered rotational and radial motions as well as turbulence without adding further

free parameters.

4.2.1 Turbulent motions

We simulate turbulence by constructing a random Gaussian velocity field in which

the amount of energy at different scales is defined by the power spectrum

P (k) ∝
{
k−α if kmin ≤ k ≤ kmax ,

0 otherwise ,
(4.13)

where k is the wavenumber of the velocity mode. The wavelength of a velocity

mode is given by λ = 2π/k. The power spectrum exponent α defines how the total

energy of the system is distributed amongst different length scales; larger values

of α concentrate more energy in longer wavelength modes. kmin defines the lowest

permitted wavenumber (and hence longest wavelength) and kmax defines the highest

permitted wavenumber (shortest wavelength).

We consider the velocity field within a three-dimensional computational domain

of edge-length 2π. Burkert and Bodenheimer (2000) suggest that α = 2 agrees well

with theory and observations. We set kmin = 1 so that the largest velocity modes are
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the same size as the domain. As α is positive, the only constraint we need to place

on kmax is that it is large enough that P (kmin)� P (kmax). We adopt kmax = 64 .

In three dimensions, each velocity mode has a spatial frequency along each of

the three axes and is therefore characterized by a wavevector k = (kx, ky, kz) with

wavenumber k = |k|. The amount of energy between modes k and k + dk is given

by

dPk = k−α dk , (4.14)

and the volume of k-space between k and k + dk is given by

dVk = 4πk2 dk . (4.15)

Hence we define the specific spectral energy density

E(k) =
dPk
dVk

=
1

4π
k−(α+2) , (4.16)

where E(k) gives the energy density at position k in k-space.

We statistically reproduce the power spectrum given in Equation (4.13). For all

wavevectors k with kmin ≤ k ≤ kmax and integer values of kx, ky and kz, we assign

amplitude and phase

a(k) =
√
E(k)G ,

ϕ(k) = 2πR ,
(4.17)

where G is a vector of three numbers drawn from a Gaussian distribution with zero

mean and unit variance and R is a vector of three numbers drawn from a uniform

distribution between zero and one. The amplitudes and phases are now used to

generate a velocity field in real space via the Fourier transform

v(x) =
1

(2π)2
Re

(∫
v̂(k)eikx d3k

)
, (4.18)

where

v̂(k) = a(k) cos(ϕ(k)) + ia(k) sin(ϕ(k)) (4.19)

We solve Equation (4.18) numerically using the fast Fourier transform library FFTW

(Frigo and Johnson, 2005) which produces a 1283 grid of the velocity field with

a spatial edge length of 2π. The velocities of individual SPH particles are then

computed by linear interpolation on this grid (see Chapter 7).
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4.2.2 Ordered motions

We can introduce large scale rotation and radial motion into the velocity field whilst

maintaining the power spectrum in Equation (4.13) by i) modifying the k = 1 modes

and ii) aligning the centre of the core with centre of the velocity grid. If we consider

a core velocity-field with only k = (1, 0, 0), k = (0, 1, 0) and k = (0, 0, 1), we see

from Figure 4.2 that we produce ordered compression and rotation if these modes

have



a(1, 0, 0)

a(0, 1, 0)

a(0, 0, 1)


 =

√
E(1)



rx ωz −ωy
−ωz ry ωx

ωy −ωx rz


 ,



ϕ(1, 0, 0)

ϕ(0, 1, 0)

ϕ(0, 0, 1)


 =



π/2 π/2 π/2

π/2 π/2 π/2

π/2 π/2 π/2


 ,

(4.20)

where rx, ry and rz are radial velocity amplitudes and ωx, ωy and ωz are rotational

velocity amplitudes. The diameter of the core is scaled to π to remove the periodicity

of these large-scale modes.

The value of a radial amplitude is proportional to the rate at which the core

expands along the denoted axis. For example, if rx < 1, then the core is collapsing

along the x-axis. If rx > 1, then the core is expanding along the x-axis. The rota-

tional amplitudes control bulk rotation. If we consider the vector ω = (ωx, ωy, ωz),

the core’s axis of rotation is given by the unit vector ω̂ with angular momentum

proportional to |ω|. The values of rx, ry, rz, ωx, ωy and ωz are independently drawn

from a Gaussian distribution with mean zero and unit variance. This ensures that

the velocity field maintains the power spectrum given in Equation (4.13).

The velocity field can be orientated to give any arbitrary ordering of rx, ry and rz.

In Chapter 7 we apply these fields to triaxial ellipsoids with semi-axes A ≥ B ≥ C

respectively aligned with the x, y and z directions. We orientate the fields so that

rx ≤ ry ≤ rz. This reflects the assumption that the cores are collapsing fastest

along their shortest axes and slowest along their longest. The axis of rotation has a

random direction.

Note that we only modify the k = 1 velocity modes. All modes with k > 1

remain unchanged from the prescription given in Section 4.2.1. Hence we have a

velocity field composed of ordered rotation, ordered radial excursions and stochastic

turbulent motions.
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Figure 4.2: Top left: A two-dimensional compressive velocity field with modes

[
a(1, 0)
a(0, 1)

]
=

[
−1 0
0 −1

]
,

[
ϕ(1, 0)
ϕ(0, 1)

]
=

[
π/2 0
0 π/2

]
.

Bottom left: A two-dimensional solenoidal velocity field with modes

[
a(1, 0)
a(0, 1)

]
=

[
0 1
−1 0

]
,

[
ϕ(1, 0)
ϕ(0, 1)

]
=

[
0 π/2

π/2 0

]
.

Within the limits π/2 ≤ x ≤ 3π/2 and π/2 ≤ y ≤ 3π/2 we have large-scale rotation and
radial motions, as seen on the right.
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4.2.3 Compressive and solenoidal velocity fields

We introduce a single free parameter to the generation of velocity fields: the ratio

of solenoidal to compressive energy. The velocity field can be modified to produce

a purely compressive or a purely solenoidal field. For a purely compressive field,

∇ × v = 0 at all points in space. Such a field consists only of regions of infall,

expansion and shocks. This includes the large-scale radial velocity components

described in Section 4.2.2 . For a purely solenoidal field, ∇ · v = 0 at all points in

space. This field consists only of regions of shearing and rotation. This includes the

large-scale rotational velocity components described in Section 4.2.2 .

To produce a purely compressive velocity field, we apply the transformation

a(k)→ (k̂ · a(k))k̂ , (4.21)

where k̂ is the unit vector of k. Conversely, we can produce a purely solenoidal field

via the transformation

a(k)→ a(k)− (k̂ · a(k))k̂ . (4.22)

Applying neither transformation results in a thermal velocity field with on average

twice as much energy in solenoidal modes as compressive modes.

We define the parameter

Ξ =
Ēsol

Ēcom

(4.23)

where Ēsol is the average amount of energy injected into solenoidal velocity modes

and Ēcom is the average amount of energy injected into compressive velocity modes.

From Equations (4.21) and (4.22), we have three possibilities: Ξ = ∞ for a purely

solenoidal field, Ξ = 0 for a purely compressive field and Ξ = 2 for the thermal

mixture of the two.

4.3 Summary

In this chapter we have defined the density and velocity structure used to model

prestellar cores. For convenience we adopt the radial density profile of a critical

Bonnor-Ebert sphere. The cores are not generally in equilibrium, however many

observed core density profiles share the flat peak and inverse-square envelope of a

critical Bonnor-Ebert density profile.

We generate a velocity field where large-scale rotation and radial motions are

linked to the power spectrum of a random Gaussian field. This gives a velocity

field in which the strongest velocity modes produce radial excursions and rotation,
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and the remaining velocity modes produce shocks, shearing and vortices (i.e. turbu-

lence). We can also modify the field to ensure that it is purely compressive, purely

solenoidal or a 2:1 thermal mixture of solenoidal to compressive energy. Given the

constraints on values of σnt from Chapter 2, we reduce the number of free param-

eters defining the velocity field to one: Ξ = Ēsol/Ēcom, modulo the random seed

used to generate different realisations.
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Chapter 5

Smoothed Particle Hydrodynamics

In the previous three chapters we have defined the initial conditions of prestellar

cores. Now we need a means of evolving them. In this chapter we provide an

overview of the numerical method used to model gas flow within prestellar cores. We

use the SEREN implementation of Smoothed Particle Hydrodynamics which includes

hydrodynamical forces and self-gravity. We also include radiative transport which is

discussed in Chapter 6 .

Dense regions of gas which are gravitationally bound are replaced by sink par-

ticles. These are point masses which are analogous to protostars. They do not

interact hydrodynamically with the surrounding environment, but they do experience

gravitational forces and accrete infalling gas.

5.1 Introduction

The evolution of a star forming gas is generally a non-linear process which needs to

be solved numerically instead of analytically. If we consider only the hydrodynam-

ical forces within a gas, its evolution can be followed by solving the equations of

hydrodynamics at all points in space. These equations are given by

dρ

dt
≡ ∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v , Continuity equation; (5.1)

ρ
dv

dt
≡ ∂ρv

∂t
+ ρv · ∇v = −∇P Momentum equation; (5.2)

du

dt
≡ ∂u

∂t
+ v · ∇u = −P

ρ
∇ · v Energy equation. (5.3)
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Here we have gas velocity v, density ρ and specific internal energy u. The gas

pressure P is related to ρ and u by the equation of state

P =
ρkbT

m̄
, (5.4)

where m̄ ≈ 4.8×10−23 g is the mean molecular mass for cold interstellar gas. In this

thesis we calculate the pressure implicitly from the internal energy. The calculation

is defined in Chapter 6 .

The equations of hydrodynamics can be solved using two different formulations.

The Eulerian formulation assumes a static reference frame against which the fluid

can move. The computational domain is typically divided into a fixed position grid.

At each grid point, the Eulerian derivatives ∂ρ/∂t, ∂ρv/∂t and ∂u/∂t are integrated

to evolve the gas over a timestep.

Conversely, the Lagrangian formulation assumes a reference frame which moves

with the fluid. The fluid is typically divided into a finite number of particles, each

with position and velocity. The Lagrangian derivatives dρ/dt, ρdv/dt and du/dt

are integrated at each particle position to evolve the gas over a timestep.

Both these methods have advantages and disadvantages, however the Lagrangian

formulation has some features which are particularly useful for simulations of star

formation: i) as the particles can move freely, this method can inherently cope with

length scales which vary by several orders of magnitude; ii) unlike Eulerian grids,

there are no preferred directions along which gas flows (this is particularly useful

for modelling anything that rotates, e.g. accretion discs). However, there are some

disadvantages to particle based schemes. For example, particles can interpenetrate

unphysically in colliding flows (see Section 5.2.5) and density calculations from a

distribution of particles can be noisier than those from a grid.

In this thesis we use the Seren Smoothed Particle Hydrodynamics (SPH) code

(Hubber et al., 2011) to model gas evolution in star forming regions. In Section 5.2

of this chapter we give a brief overview of SPH including artificial viscosity and self

gravity. In Section 5.3 we describe the concept of sink particles which are used to

model to protostars.

5.2 The concept of SPH

SPH is a Lagrangian formulation of hydrodynamics first introduced by Lucy (1977)

and then Gingold and Monaghan (1977). It models a continuous fluid as an ensem-

ble of N particles. At each particle position, the momentum equation and energy
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equation are integrated to evolve the gas. Each particle has mass mi, therefore den-

sity is a function of the particle coordinates and the continuity equation generally

does not need to be solved.

To model a continuous fluid, each particle is smoothed over a kernel which over-

laps with N other particles. The value of a continuous physical quantity, A, con-

volved with the smoothing kernel at point r in space is given by

〈A(r)〉 =

∫

V

A(r′)W (r − r′, h) dr′3 , (5.5)

where W (r − r′, h) is the kernel function centred at r with length-scale h. We can

choose any kernel function so long as two conditions are satisfied. First, the kernel

function must tend to a Dirac delta function as h tends to zero, i.e.

lim
h→0

[W (r − r′, h)] = δ(r − r′) , (5.6)

and second, the kernel function must be normalised so that

∫

V

W (r − r′, h) dr′3 = 1 . (5.7)

To perform SPH calculations, we replace the integral in Equation (5.5) with a

summation over N particles within the extent of the kernel, i.e.

〈A(ri)〉 =
N∑

j=1

mj

ρj
AjW (rij, h) . (5.8)

Where rij ≡ ri − rj. Note that the volume element dr′3 has been replaced by
mj

ρj
.

We can also calculate the spatial derivative of A,

〈∇A(ri)〉 =
N∑

j=1

mj

ρj
Aj∇W (rij, h) . (5.9)

This is useful as most kernel functions will have well known analytical solutions to

∇W (rij, h).

5.2.1 Kernel

The original formulation of SPH by Lucy (1977) used a Gaussian smoothing kernel.

This kernel is infinite in extent and each SPH calculation needs to be iterated over
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all of the particles, i.e. N ≡ N . This can be a very computationally expensive

process. Furthermore, it is arguable that this is physically unrealistic as quantities

such as pressure and density only act locally and should not be smoothed over the

entire fluid. Instead, most modern SPH codes adopt the M4 kernel (Monaghan and

Lattanzio, 1985) which has compact support. This kernel is spherically symmetric

and in three dimensions is given by

Wm4(s) =
1

πh3





1− 3
2
s2 + 3

4
s3 if 0 ≤ s ≤ 1;

1
4
(2− s)3 if 1 ≤ s ≤ 2;

0 if s > 2

, (5.10)

where s ≡ |rij|/h. The first spatial derivative is then

dWm4

dr
(s) =

1

πh4





3s− 9
4
s2 if 0 ≤ s ≤ 1;

3
4
(2− s)2 if 1 ≤ s ≤ 2;

0 if s > 2

(5.11)

where ∇Wm4 ≡ r̂ij dWm4

dr
.

5.2.2 Smoothing length

Early SPH simulations used global smoothing lengths based on average inter-particle

spacing. However, in order to sufficiently resolve gas physics at different length

scales, it is necessary for each particle to have a smoothing length that varies with

gas density.

Monaghan (2002) suggests that the smoothing length should be a function of

density, i.e.

hi = η

(
mi

ρi

) 1
3

, (5.12)

where η = 1.2, as suggested by Price and Monaghan (2004). Note that ρi is an SPH

quantity given by

ρi =
N∑

j=1

mjW (rij, hi) . (5.13)

As these two quantities are interdependent, the value of hi must be solved by itera-

tion. Given an initial estimate of hi and a target value h calculated from Equation

(5.12). Equations (5.13) and (5.12) are then iterated until |hi − h|/h < 10−2.

For the M4 kernel in three dimensions, each SPH particle has an average number
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of neighbours

N̄ ≈ 4

3
π(2η)3 ≈ 58 . (5.14)

5.2.3 SPH equations

Using Equation (5.8) we can calculate SPH quantities at each particle position. To

ensure that all forces between particle pairs are equal and opposite, the identity

∇A
ρ

= ∇
(
A

ρ

)
+
A

ρ2
∇ρ , (5.15)

is substituted into Equation (5.2) to give

dvi
dt

∣∣∣∣
hydro

= −
N∑

j=1

mj

(
Pi
ρ2
i

+
Pj
ρ2
j

)
∇iW (rij, hi) . (5.16)

The rate of change of specific internal energy is calculated by substituting Equa-

tion (5.1) into Equation (5.3) to give

dui
dt

=
Pi
ρ2
i

dρi
dt

. (5.17)

As an SPH quantity, this is calculated as

dui
dt

∣∣∣∣
hydro

=
Pi
ρ2
i

N∑

j=1

mjvij · ∇iW (rij, hi) , (5.18)

where vij ≡ vi − vj.

5.2.4 Additional terms

Nelson and Papaloizou (1994) note that variable smoothing lengths can cause SPH

calculations to fail to conserve energy over time. To correct for this, Monaghan

(2002) shows that Equations (5.16) and (5.16) should be replaced by

dvi
dt

∣∣∣∣
hydro

= −
N∑

j=1

mj

(
Pi
ρ2
iΩi

∇iW (rij, hi) +
Pj
ρ2
jΩj

∇iW (rij, hj)

)
, (5.19)

and
dui
dt

∣∣∣∣
hydro

=
Pi
ρ2
iΩi

N∑

j=1

mjvij · ∇iW (rij, hi) , (5.20)
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respectively, where

Ωi = 1− ∂hi
∂ρi

N∑

j=1

mj
∂W

∂h
(rij, hi) , (5.21)

and

∂Wm4

∂h
=

1

πh4





−3 + 15
2
s2 − 9

2
s3 if 0 ≤ s ≤ 1;

−6 + 12s− 15
2
s2 + 3

2
s3 if 1 ≤ s ≤ 2;

0 if s > 2 .

(5.22)

5.2.5 Artificial viscosity

Artificial viscosity is added to ensure that shocks are captured adequately. With-

out this, SPH particles can oscillate unphysically behind a shock front. Also, for

converging flows with high Mach number, particles can interpenetrate instead of

decelerating at the shock front.

To alleviate this problem, Monaghan (1997) introduces a viscosity based contri-

bution to the equation of motion:

dvi
dt

∣∣∣∣
visc

= −
N∑

j=1

mjΠij∇iW̄ (rij, hi, hj) , (5.23)

where

W̄ (rij, hi, hj) =
∇iW (rij, hi) +∇iW (rij, hj)

2
, (5.24)

and

Πij =




−αvsigvij · rij

ρ̄ij|rij|
if vij · rij ≤ 0 ;

0 if vij · rij > 0 .

(5.25)

Here ρ̄ij = (ρi + ρj)/2, and vsig is the signal velocity:

vsig = ci + cj − β
vij · rij
|rij|

. (5.26)

The dissipation of kinetic energy will then heat the gas with

dui
dt

∣∣∣∣
visc

=
N∑

j=1

mjΛij r̂ij · W̄ (rij, hi, hj) , (5.27)

where

Λij =




−αvsig(vij · rij)2

2ρ̄ij|rij|2
if vij · rij ≤ 0 ;

0 if vij · rij > 0 .

(5.28)
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The terms α and β control the artificial viscosity in regions of low and high-Mach

number shocks respectively. Monaghan (1997) suggests values of α = 1 and β = 2

in order to adequately capture these shocks. Morris and Monaghan (1997) simplify

this parametrisation by explicitly setting β ≡ 2α.

5.2.6 Time-dependent viscosity

This formulation of artificial viscosity is well suited to planar shocks, however it can

unintentionally add viscosity to shearing flows, leading to the unphysical transport

of angular momentum. In order to mitigate this effect, Morris and Monaghan (1997)

assign a value of αi to each SPH particle. This can decay with time so that artificial

viscosity is reduced in regions where it is not needed.

Each particle has αi which evolves according to

dαi
dt

=
αmin − αi

τi
+ Si . (5.29)

Here, αmin is the minimum value of αi, as suggested by Morris and Monaghan (1997),

and τ is the time scale at which αi decays:

τi =
hi
ciC

, (5.30)

where ci is the local sound speed and C = 0.1. The source term Si is given by

Rosswog et al. (2000) as

Si = (αmax − αmin)

{
−∇ · vi if ∇ · vi ≤ 0 ;

0 if ∇ · vi > 0 .
(5.31)

This formulation ensures that αi = αmax = 1 in shocked regions, but then αi can

decay down to αmin outside of these regions. Here we set αmin = 0.1 . The value of

α in Equations (5.25) and (5.28) is now replaced by αij where αij = (αi + αj)/2 .

5.2.7 Gravity

As SPH particles are not point masses, the gravitational forces acting upon a particle

must be kernel softened. Price and Monaghan (2007) derive a formulation of gravity
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with a potential smoothing kernel

φ(r, h) = 4π


−1

r

r∫

0

W (r′, h)r′2 dr′ +

r∫

0

W (r′, h)r′ dr′ −
2h∫

0

W (r′, h)r′ dr′


 ,

(5.32)

and force smoothing kernel

φ′(r, h) =
4π

r2

r∫

0

W (r′, h)r′2 dr′ , (5.33)

The acceleration due to gravity for each particle is then given by

dvi
dt

∣∣∣∣
grav

= −G
N∑

j=1

mjφ̄′(rij, hi, hj)r̂ij−
G

2

N∑

j=1

(
ξi
Ωi

∇iW (rij, hi) +
ξj
Ωj

∇iW (rij, hj)

)
,

(5.34)

where

φ̄′(rij, hi, hj) =
φ′(rij, hi) + φ′(rij, hj)

2
, (5.35)

and

ξi =
∂hi
∂ρi

N∑

j=1

mj
∂φ

∂h
(rij, hi) . (5.36)

Here the first term on the right gives the standard prescription of kernel softened

gravity and the second terms corrects the force at small distances to conserve energy.

For the M4 kernel, we have

φ′m4(s) =
1

h2





4
3
s3 − 6

5
s5 + 1

2
s6 if 0 ≤ s ≤ 1;

8
3
s− 3s2 + 6

5
s3 − 1

6
s4 − 1

15
s−2 if 1 ≤ s ≤ 2;

1 if s > 2 ,

(5.37)

and

∂φm4

∂h
(s) =

1

h2





7
5
− 2s2 + 3

2
s4 − 3

5
s5 if 0 ≤ s ≤ 1;

8
5
− 4s2 + 4s3 − 3

2
s4 + 1

5
s5 if 1 ≤ s ≤ 2;

0 if s > 2 ,

(5.38)

The gravitational potential at the position of particle i is given by

Φi = G
N∑

j=1

mjφ̄(rij, hi, hj) , (5.39)
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where

φ̄(rij, hi, hj) =
φ(rij, hi) + φ(rij, hj)

2
, (5.40)

and

φm4(s) =
1

h





7
5
− 2

3
s2 + 3

10
s4 − 1

10
s5 0 ≤ s ≤ 1;

8
5
− 4

3
s2 + s3 − 3

10
s4 + 1

30
s5 − 1

5
s−1 1 ≤ s ≤ 2;

s−1 if s > 2 .

(5.41)

Calculating gravitational contributions from individual particles is a computa-

tionally expensive process. For efficiency, the Seren SPH code uses a tree structure

to identify clusters whose gravitational contributions can treated collectively using

a multipole expansion. A detailed description of the algorithm is given by Hubber

et al. (2011). We use a Gadget-style multipole acceptance criterion (Springel et al.,

2001) with an error parameter of αmac = 10−4.

5.2.8 Integration scheme

We numerically integrate Equations (5.16) and (5.18) to update the positions and

velocities of each SPH particle. To advance each particle from the nth to the (n+1)th

timestep we use a second-order Leapfrog drift-kick-drift scheme:

r
n+1/2
i = rni + vni

∆ti
2
, (5.42)

v
n+1/2
i = vni +

dvi
dt

n−1/2 ∆ti
2
, (5.43)

vn+1
i = vni +

dvi
dt

n+1/2

∆ti , (5.44)

rn+1
i = rni +

1

2
(vni + vn+1

i )∆ti , (5.45)

(5.46)

Here we define
dvi
dt
≡ dvi

dt

∣∣∣∣
hydro

+
dvi
dt

∣∣∣∣
visc

+
dvi
dt

∣∣∣∣
grav

. (5.47)

Note that we do not update ui using this scheme. The specific internal energy is

updated using a quasi-implicit scheme detailed in Chapter 6 .

The Seren code uses multiple particle timesteps to assign an appropriate timestep

to each individual particle (Hubber et al. (2011) provides a full description of the
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algorithm). Each particle has a maximum timestep

∆tmax, i = γMIN

[√
hi

|dvi

dt
| ,

hi
(1 + 1.2αi)ci + (1 + 1.2βi)hi|∇ · vi|

]
. (5.48)

The first term on the right hand side is the standard SPH Courant condition and

the second term is a modified version of the Courant condition that takes artificial

viscosity into account. We choose a value of γ = 0.1 to ensure that the timesteps

are suitably small.

5.2.9 Resolution

For all simulations presented in this thesis, we use a fixed particle mass of Msph =

10−5 M�. The minimum resolvable mass in SPH simulations is roughly the total

mass within a typical smoothing kernel, i.e. Mmin ≈ N̄ Msph. Given Equation

(5.14), we have Mmin ≈ 6 × 10−4 M�. The theoretical minimum mass for star

formation (also known as the opacity limit (e.g. Whitworth and Stamatellos, 2006))

is Mo ≈ 3× 10−3 M� ≈ 3 MX and is therefore well resolved.

5.3 Sink particles

In simulations of star formation, regions of gas can collapse and produce very high

densities. These densities can reduce the timesteps to a level so small that it is

no longer computationally practical to continue the simulation. To overcome this,

Bate et al. (1995) introduce sink particles which replace dense, gravitationally bound

regions of gas with a single point mass. Sink particles do not experience or contribute

to hydrodynamic forces, but they do interact gravitationally with SPH particles.

Sink particles have an accretion radius and any SPH particle which is gravitationally

bound to the sink and falls within this radius will be accreted on to the sink. This

significantly improves the computational speed of the simulation at the expense of

being unable to resolve the small scale physics within the sink radius.

5.3.1 Sink creation

In this thesis we use sink particles to model the formation of protostars. Candidate

SPH particles are replaced by sink particles when gravitational collapse is assumed

to be inevitable. We use the following criteria for sink creation:

• The candidate particle has a density greater than ρsink = 10−9 g cm3. This is
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three or four orders of magnitude more dense than a core of gas which has

begun to contract quasi-statically.

• The candidate particle must be at a local gravitational potential minimum,

i.e. the gravitational potential at the candidate particle position is lower than

that of all N of its neighbours.

• The candidate particle and all its neighbours are gravitationally bound, i.e. the

sum of the kinetic energy plus the gravitational potential energy is negative.

• The velocity divergence at the position of the candidate particle is negative.

• The candidate particle is not within the accretion radius of another sink par-

ticle. This prevents the formation of overlapping sink particles.

5.3.2 Sink accretion

Upon creation, the sink particle is assigned an accretion radius. SPH particles that

lie within this radius are accreted on to the sink. We choose the radius by calculating

the smoothing length, hsink, of an SPH particle with density ρsink. The accretion

radius is then set to 2hsink. This means that the radius of each sink should roughly

match the size of the smoothing kernels of the highest density SPH particles in the

simulation. For ρsink = 0−9 g cm3, we have hsink ≈ 0.2 AU.

When a sink particle accretes an SPH particle, the mass, linear momentum and

angular momentum of the SPH particle is added to the sink. When calculating kernel

softened gravitational forces, each sink is assumed to have a smoothing length of

hsink.

5.4 Summary

In this chapter we have outlined the numerical method used to model gas dynamics

in the interstellar medium. Hydrodynamical forces, viscosity and self-gravity are

modelled using the Seren implementation of SPH. Regions of gas which are suf-

ficiently dense and gravitationally bound are replaced by sink particles. These are

point masses which i) significantly shorten the time needed to run a simulation and

ii) provide a convenient model of protostars.
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Chapter 6

Constituent physics

In this chapter we detail the additional physics included with the standard formula-

tion of SPH. We use the radiative transfer algorithm proposed by Stamatellos et al.

(2007a) to follow the specific internal energy of each particle and solve the equation

of state.

Radiative heating from gas accreting onto protostars is included in the simula-

tions. This heats the surrounding gas and can suppress disc fragmentation. Here we

outline the semi-empirical model of episodic accretion proposed by Stamatellos et al.

(2011). Unlike continuous accretion, this involves short, intense accretion events

interspersed with long periods of low luminosity, during which stars may form.

6.1 Radiative transfer

We use the method proposed by Stamatellos et al. (2007a) to model radiative transfer

within SPH simulations. This method assumes that each SPH particle is embedded

in a polytropic pseudo-cloud, the parameters of which are calibrated to properties

of the SPH particle. A mean optical depth is calculated for each particle, and this

is used to determine the heating or cooling rate.

The method captures thermal inertia effects without adding significant com-

putational expense and has been extensively tested by Stamatellos et al. (2007a)

and Stamatellos and Whitworth (2008). Although the method can give inaccurate

cooling rates discs (Wilkins and Clarke, 2012), it works well within high-density

fragments (Young et al., 2012).

In this section we provide an overview of the radiative transport calculations

and how this method is used to solve the equation of state. Analysis of the method,

including benchmarks, can be found in the original publication.
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6.1.1 Pseudo-cloud

Each SPH particle is assumed to be embedded in a pseudo-cloud at radius R = ξRo.

The cloud has central density ρc, scale-length Ro and polytropic index n, where ξ is

a dimensionless radius. Values of Ro and ρc are chosen to reflect physical quantities

attributed to the SPH particle, i.e.

ρcθ
n(ξ) = ρi , (6.1)

−4πGρcR
2
oφ(ξ) = Φi , (6.2)

where ρi is the density of SPH particle and Φi is the gravitational potential at the

position of the SPH particle. Here θ(ξ) is the Lane-Emden Function for a polytropic

index of n (Chandrasekhar, 1939),

φ(ξ) = −ξb
dθ

dξ
(ξb) + θ(ξ) , (6.3)

and ξb is the dimensionless boundary of the polytrope. By fixing n and choosing a

value of ξ ≤ ξb, we have

ρc = ρiθ
−n(ξ) , (6.4)

Ro =

√
− Φiθn(ξ)

4πGρiφ(ξ)
. (6.5)

The central temperature of the pseudo-cloud is then chosen to reflect the actual

temperature of the SPH particle, i.e.

Tc = Tiθ
−1(ξ) . (6.6)

The radial column-density from dimensionless radius ξ to ξb is given by

Σi(ξ) =

ξ′=ξb∫

ξ′=ξ

ρcθ
n(ξ′)Ro dξ′

=

√
− Φiρi

4πGφ(ξ)θn(ξ)

ξ′=ξb∫

ξ′=ξ

θn(ξ′) dξ′ .

(6.7)

The pseudo-mean column-density is therefore a mass weighted average of Σi(ξ) over
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all values of ξ, i.e.

Σ̄i =

[
−ξ2

b

dθ

dξ
(ξb)

]−1
ξ=ξb∫

ξ=0

Σi(ξ)θn(ξ)ξ2 dξ

= ζn

√
−Φiρi

4πG
,

(6.8)

where −ξ2
b

dθ
dξ

(ξb) is the dimensionless mass of the pseudo cloud and

ζn =

[
−ξ2

b

dθ

dξ
(ξb)

]−1
ξ=ξb∫

ξ=0

ξ′=ξb∫

ξ′=ξ

θn(ξ′)

√
θn(ξ)

φ(ξ)
ξ2 dξ′dξ . (6.9)

As suggested by Stamatellos et al. (2007a), we adopt n = 2.

The optical depth is calculated by integrating the Rosseland-mean opacity along

the radial line from ξ to ξb, i.e.

τi(ξ) =

ξ′=ξb∫

ξ′=ξ

κr(ρcθ
n(ξ′), Tcθ(ξ

′))ρcθ
n(ξ′)Ro dξ′

=

√
−Φiρiθ

n(ξ)

4πGφ(ξ)

ξ′=ξb∫

ξ′=ξ

κr

(
ρi

[
θ(ξ′)

θ(ξ)

]n
, Ti

[
θ(ξ′)

θ(ξ)

])[
θ(ξ′)

θ(ξ)

]n
dξ′ .

(6.10)

where κr(ρ, T ) is the local Rosseland-mean opacity. The pseudo-mean optical depth

is obtained by averaging τi(ξ) over all values of ξ, i.e.

τ̄i =

[
−ξ2

b

dθ

dξ
(ξb)

]−1
√
−Φiρi

4πG

×
ξ=ξb∫

ξ=0

ξ′=ξb∫

ξ′=ξ

κr

(
ρi

[
θ(ξ′)

θ(ξ)

]n
, Ti

[
θ(ξ′)

θ(ξ)

])
θn(ξ′)

√
θn(ξ)

φ(ξ)
ξ2 dξ′dξ .

(6.11)

By defining the pseudo-mean mass opacity:

κ̄r,i =
τ̄i
Σ̄i

, (6.12)
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it can be evaluated as

κ̄r(ρ, T ) =

[
−ζnξ2

b

dθ

dξ
(ξb)

]−1

×
ξ=ξb∫

ξ=0

ξ′=ξb∫

ξ′=ξ

κr

(
ρi

[
θ(ξ′)

θ(ξ)

]n
, Ti

[
θ(ξ′)

θ(ξ)

])
θn(ξ′)

√
θn(ξ)

φ(ξ)
ξ2 dξ′dξ .

(6.13)

Note that if n is fixed, then κ̄r(ρ, T ) is purely a function of ρ and T . Therefore,

solutions to Equation (6.13) can be stored in a dense lookup table without the need

for re-evaluations at each timestep. The variation of κr(ρ, T ) with ρ and T is shown

in Figure 6.2 .

6.1.2 Radiative heating and cooling

The rate of change of the specific internal energy of an SPH particle through radiative

heating and cooling is given by

dui
dt

∣∣∣∣
rad

=
4σsb(To(ri)

4 − T 4
i )

Σ̄2
i κ̄r(ρi, Ti) + κ−1

p (ρi, Ti)
, (6.14)

where κp(ρi, Ti) is the Planck-mean opacity and To is the background temperature

field. In this thesis, we assume the background temperature arises from the combi-

nation of an ambient background radiation field and the luminosity from protostars.

Therefore at any point r in space, the background temperature is given by

T 4
o(r) = T 4

amb +
N?∑

i=1

L?,i
16πσsb|r − r?,i|2

, (6.15)

Where Tamb is the ambient background temperature, L? is the luminosity of a proto-

star and r? is its position. In keeping with the temperature estimates by Stamatellos

et al. (2007c), we set Tamb = 10 K.

6.1.3 Quasi-implicit scheme

The specific internal energy of each particle, ui, is updated using a quasi-implicit

scheme. This accounts for thermal inertia effects without the need for very for small

timesteps. First, the equilibrium temperature, Teq,i , is calculated from

dui
dt

∣∣∣∣
hydro

+
dui
dt

∣∣∣∣
visc

+
4σsb(To(ri)

4 − T 4
eq,i)

Σ̄2
i κ̄r(ρi, Ti) + κ−1

p (ρi, Ti)
= 0 . (6.16)
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From this, the thermalisation time scale is calculated to be

ttherm,i = (ueq,i − ui)
(

dui
dt

∣∣∣∣
hydro

+
dui
dt

∣∣∣∣
visc

+
dui
dt

∣∣∣∣
rad

)−1

. (6.17)

Here ueq = u(Teq,i , ρi) and its calculation is given in Section 6.1.6. The value of ui

is then advanced through timestep ∆t:

ui(t+ ∆t) = ui(t) exp

( −∆t

ttherm,i

)
+ ueq,i

[
1− exp

( −∆t

ttherm,i

)]
. (6.18)

This method accounts for thermal inertia effects without the need for very for small

timesteps.

6.1.4 Implementation

In summary, for each particle i at each timestep, the following steps are taken:

1. Calculate the pseudo-mean column-density Σ̄i from ρi, Φi and Ti using Equa-

tion (6.8).

2. Calculate the pseudo-mean opacity κ̄r(ρi, Ti) and Planck-mean opacity κa(ρi, Ti)

(This is performed using lookup tables. The variation of opacity with density

and temperature is shown in Section 6.1.7).

3. Calculate the radiative heating rate dui/dt|rad using Equation (6.14).

4. Calculate the equilibrium temperature, Teq,i , using Equation (6.16) and ther-

malisation time scale ttherm,i using Equation (6.17).

5. Advance ui over the timestep using Equation (6.18); From ui, also update Ti

(The relationship between ui and Ti is given in Section 6.1.6).

6.1.5 Equation of state

The equation of state is determined almost entirely by the gas-phase chemistry of

hydrogen and helium. We assume that the gas is 70% hydrogen and 30% helium,

i.e. X = 0.7, Y = 0.3 and Z = 0 . By defining y = nHo/2nH2 as the dissociation

fraction of hydrogen and x = nH+/nHo , z2 = nHe++/nHe+ , z1 = nHe+/nHeo as the

ionisation fractions of hydrogen, neutral helium and singly ionised helium, the mean

molecular weight is given by

µi = µ(ρi, Ti) =

[
(1 + yi + 2xiyi)

X

2
+ (1 + z1,i + z1,iz2,i)

Y

4

]−1

. (6.19)
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The parameters xi, yi, z1,i and z2,i depend on ρi and Ti and are calculated using the

Saha Equations. The variation of µi with ρi and Ti is shown in Figure 6.1. The gas

pressure is then given by

Pi =
ρikbTi
µimh

, (6.20)

assuming that the fluid behaves as an ideal gas.

6.1.6 Specific internal energy

The total specific internal energy of an SPH particle is the sum of the specific

internal energies of molecular hydrogen, atomic hydrogen, ionised hydrogen, neutral

helium, singly ionised helium and doubly ionised helium, as well as contributions

from dissociation and ionisation energies, i.e.

ui = uH2 + uH + uHe + uH2 diss + uH ion + uHe ion + uHe+ion , (6.21)

where

uH2 = X(1− yi)
[

3

2
+ c(Ti)

]
kbTi
2mH

, (6.22)

uH = Xyi(1 + xi)
3kbTi
2mH

, (6.23)

uHe = Y (1 + z1,i + z1,iz2,i)
3kbTi
8mH

, (6.24)

uH2 diss = Xyi
DH2 diss

2mH

, (6.25)

uH ion = Xxiyi
IH ion

mH

, (6.26)

uHe ion = Y z1,i(1− z2,i)
IHe ion

4mH

, (6.27)

uHe+ ion = Y z1,iz2,i
IHe+ ion

4mH

. (6.28)

Here DH2 = 4.5 eV is the dissociation energy of hydrogen, IH ion = 13.6 eV is the

ionisation energy of hydrogen, IHe ion = 24.6 eV is the first ionisation energy of

helium and IHe+ ion = 54.5 eV is the second ionisation energy of helium. The function

c(T ) is given by

c(T ) =

(
Trot
T

)2

f(T ) +

(
Tvib
T

)2
exp(Tvib/T )

[exp(Tvib/T )− 1]2
, (6.29)
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Figure 6.1: Left: Mean molecular weight versus temperature. Right: Specific in-
ternal energy versus temperature. From top to bottom, isopycnic curves have density
ρ = 10−18 g cm−3 to ρ = 1 g cm−3, with a spacing of two orders of magnitude. Figures
taken from Stamatellos et al. (2007a).

where Trot = 85.4 K and Tvib = 6100 K. These are the temperatures at which the

rotational and vibrational degrees of freedom of molecular hydrogen start to excite.

The function f(T ) depends of the relative abundances of ortho- and para-H2. This

ratio is assumed to be 3 : 1 for all T .

Equation (6.21) can be used to build an internal energy lookup table of u(ρ, T ).

This function is shown in Figure 6.1 . Furthermore, it can be inverted to give

temperature T (ρ, u), which is used to update an SPH particle’s temperature.

6.1.7 Opacity

The opacity is calculated using the parametrisation proposed by (Bell and Lin,

1994):

κr(ρ, T ) = κp(ρ, T ) = κ0ρ
aT b . (6.30)

Here κ0, a and b are constants that depend on the dominant source of opacity. This

varies for different regimes of temperature and density. The values of these parame-

ters are given in Table 6.1 and the dependence of mean opacity on temperature and

density is shown in Figure 6.2 .

At low temperatures, the opacity is dominated by ice grains which evaporate

at T ∼ 150 K. For temperatures between 150 K . T . 1, 000 K, the opacity is

largely due the the presence of metal grains. After the metal grains evaporate out,

the opacity falls steeply between temperatures 1, 000 K . T . 2, 000 K. In this

temperature regime, the opacity is mainly from molecules, as it is too hot for dust

to exist and too cool for H− absorption to occur. This region of low opacity is known
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Table 6.1: Opacity law parameters, taken from Bell and Lin (1994).

Physical process κ0 a b
(cm(2−3a) g−(1+a) K−b)

Ice grains 2× 10−4 0 2
Evaporation of ice grains 2× 1016 0 -7
Metal grains 0.1 0 1/2
Evaporation of metal grains 2× 1081 1 -24
Molecules 10−8 2/3 3
H− absorption 10−36 1/3 10
bf and ff transitions 1.5× 1020 1 -5/2
Electron scattering 0.348 0 0

Figure 6.2: Left: local Rosseland-mean opacity versus temperature. Right: pseudo-mean
Rosseland-mean opacity versus temperature. From top to bottom, isopycnic curves have
density ρ = 10−18 g cm−3 to ρ = 1 g cm−3, with a spacing of two orders of magnitude.
This dashed line on the right is the local opacity at ρ = 10−6 g cm−3. Figures taken from
Stamatellos et al. (2007a).

as the opacity gap. At temperatures between 2, 000 K . T . 10, 000 K the opacity

rises again due to H− absorption. At higher temperatures the opacity is dominated

by free-free transitions, and by electron scattering at very high temperatures.

The variation of the pseudo-mean Rosseland-mean opacity with temperature

and density is also shown in Figure 6.2. Here we see that the opacity gap is not as

pronounced as it is for the local Rosseland-mean opacity. This is because an element

of gas occupying the opacity gap is likely to be shielded by cooler material.
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6.2 Accretion luminosity

Until recently, the effects of radiative feedback from protostars in simulations of star

formation were ignored (e.g. Bate, 2009a), largely due to the computational difficul-

ties of modelling radiative transport. However, accretion of material onto protostars

can produce high luminosities (potentially up to ∼ 100 L�), so the feedback is likely

to have a strong effect on the star formation process.

For a protostar with mass M?, radius R? and accretion rate Ṁ?, the luminosity

is given by

 L? ≈
(
M?

M�

)3

L� + f
GM?Ṁ?

R?

. (6.31)

Here f = 0.75 is the the amount of energy radiated away at the surface of the

protostar. The rest is assumed to drive winds and jets (Offner et al., 2009). In this

thesis we will assume that each protostar has a typical radius of R? = 3 R� (Palla

and Stahler, 1993).

Recent studies have been undertaken which include radiative heating from con-

tinuous accretion (e.g. Bate, 2009c; Krumholz, 2006; Krumholz et al., 2010; Offner

et al., 2009, 2010; Urban et al., 2010). The accretion rate onto the protostar is as-

sumed to be equal to the accretion rate onto the sink-particle. (Bate, 2009c; Offner

et al., 2009) note that as protostellar discs are heated, they become stable against

fragmentation and fail to produce low mass stars.

6.2.1 Episodic accretion

There is growing observational evidence that suggests accretion is episodic instead

of continuous, i.e. it occurs intermittently in short, intense outbursts (e.g. Dopita,

1978; Greene et al., 2008; Hartmann and Kenyon, 1996; Herbig, 1977; Reipurth,

1989). In particular, FU Ori-type stars (e.g. Green et al., 2011; Greene et al., 2008;

Herbig, 1977; Peneva et al., 2010) exhibit large increases in their brightness that

last for tens to hundreds of years.

The physical cause of episodic accretion is unclear. Candidate mechanisms in-

clude gravitational interactions within small N systems (e.g. Bonnell and Bastien,

1992; Forgan and Rice, 2010), thermal or gravitational instabilities within accretion

discs (e.g. Bell and Lin, 1994; Hartmann and Kenyon, 1985; Machida et al., 2011;

Vorobyov and Basu, 2005) or a combination of gravitational and magneto-rotational

instabilities within discs (e.g. Martin and Lubow, 2011; Martin et al., 2012a,b; Zhu

et al., 2007, 2009a, 2010a, 2009b, 2010b).

We adopt the numerical method proposed by Stamatellos et al. (2011, 2012),
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based on work by Zhu et al. (2007, 2009a, 2010a, 2009b, 2010b) which models the

effects of gravitational and magneto-rotational instabilities (MRI) in discs. Here, a

protostar has an outer accretion disc which is cool enough to form spiral arms from

gravitational instabilities. These arms transport angular momentum outwards from

the disc, while material flows inwards. Conversely, there is an inner accretion disc

(IAD) which is too hot for gravitational instabilities to form. However, when the gas

in the IAD is sufficiently heated, it ionises and couples with the local magnetic field.

The MRI then activates and angular momentum is transported outwards, allowing

the material in the IAD to rapidly accrete onto the protostar. Once most of the

material has left the IAD, the gas cools down and the episode resets.

6.2.2 Time dependent model

In this thesis we use SPH to model the physics of the outer accretion disc and the

semi-empirical model by Stamatellos et al. (2011, 2012) to model the physics of the

IAD. Here, each sink represents a protostar with an inner disc (the disc is assumed

to exist, but not explicitly modelled in the simulation). The mass of sink particle is

therefore equal to

Msink = M? +Miad , (6.32)

where M? is the protostellar mass and Miad is the mass of the IAD. It is assumed

that the accretion rate of material from the IAD onto the protostar is given by

Ṁ? = Ṁbrg + Ṁmri , (6.33)

where Ṁmri is accretion rate from the MRI and Ṁbrg is the quiescent background

accretion rate.

Models by Zhu et al. (2009a, 2010a, 2009b, 2010b) suggest that material within

the IAD will couple to the magnetic field once the temperature reaches Tmri ∼
1400 K. Zhu et al. (2010b) estimate that the accretion rate during an outburst is

roughly

Ṁmri ∼ 5× 10−4 M�
(αmri

0.1

)
(6.34)

where αmri is the viscosity parameter. Zhu et al. (2010b) also estimate the duration

of an outburst is roughly

∆tmri ∼ 0.25 kyr
(αmri

0.1

)−1
(

M?

0.2 M�

)2/3
(

Ṁiad

10−5 M� yr−1

)1/9

, (6.35)

Here Ṁiad is the accretion rate of gas onto the sink particle (The gas is assumed to
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immediately enter the IAD). The gas temperature of the IAD is assumed to reach

Tmri once the IAD has accumulated mass

Miad > Mmri ∼ Ṁmri∆tmri ,

> 0.13 M�
(

M?

0.2 M�

)2/3
(

Ṁiad

10−5 M� yr−1

)1/9

.
(6.36)

Once the mass of the IAD exceeds Mmri, an accretion outburst commences. The

accretion rate of material from the IAD onto the protostar is given by

Ṁmri =
Mmri

∆tmri
exp

(
−(t− t0)

∆tmri

)
, to < t < to + ∆tmri , (6.37)

where to is the time at which the outburst starts. The outburst subsequently ceases

once the time reaches to + ∆tmri.

The time between each outburst required for the IAD to re-accumulate Mmri is

given by

∆tacc ∼
Mmri

Ṁiad

∼ 13 kyr

(
M?

0.2 M�

)2/3
(

Ṁiad

10−5 M� yr−1

)−8/9 (6.38)

If we assume that the bracketed terms in this equation are usually of order unity,

this interval agrees with observations of young stellar objects by Scholz et al. (2013),

who infer that ∆tacc ∼ 104 yr within limits of 5× 103 yr < ∆tacc < 5× 104 yr.

The two parameters in this model, αmri and Ṁbrg, are not well constrained.

Indeed, it is probable that they vary from protostar to protostar. At present, obser-

vations and simulations suggest 0.01 < αmri < 0.4 (e.g. Balbus and Hawley, 1998;

Isella et al., 2009; King et al., 2007) and 10−11 M� yr−1 < Ṁbrg < 10−6 M� yr−1

(e.g. Calvet et al., 2004; Mohanty et al., 2005; Muzerolle et al., 2005; Natta et al.,

2004). Stamatellos et al. (2012) demonstrate that parameter values of αmri > 0.01

and Ṁbrg < 10−6 M� yr−1 are required to allow disc fragmentation in the presence

of radiative heating from accretion. In other words, Ṁmri needs to be at least three

or four orders of magnitude greater than Ṁbrg and ∆tacc needs to be at least one

or two orders of magnitude greater than ∆tmri.

We adopt the parameter values used by Stamatellos et al. (2011): αmri = 0.1

and Ṁbrg = 10−7 M� yr−1. We must note that future observations and simulations

of young stars may tighten the constraints on αmri and Ṁbrg. In that case, these
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Figure 6.3: Evolution of a protostar and its IAD. Figure take from Stamatellos et al.
(2011). Red lines are used for the case with accretion but no radiative feedback, blue lines
for the case with continuous accretion feedback and black lines for the case with episodic
accretion feedback. The top panel shows the accretion rate on to the sink; for episodic
accretion, the accretion rate on to the star is also given. The middle panel shows the
luminosity of the protostar. The bottom panel shows mass of the the sink; for episodic
accretion, the mass is split into the mass of the star and the mass of the IAD. All three
cases were taken from simulations with the same initial conditions.
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adopted values may require revision.

Figure 6.3 shows the evolution of protostellar accretion rate and luminosity over

time with the episodic accretion model. For comparison, the same quantities are

plotted for a protostar with continuous accretion. Note that with the episodic

model, there are extended periods of low luminosity when disc fragmentation may

occur. With the continuous accretion model, the luminosity stays between 10 L� .

L . 100 L� once accretion starts. At this luminosity, the gas within 100 AU of

the protostar has a temperature of T ∼ 100 K, which means disc fragmentation is

unlikely.

6.3 Summary

In this chapter we have outlined the constituent physics included in addition to

the standard formulation of SPH. Radiative heating is modelled by assuming that

each particle is embedded in a polytropic pseudo-cloud with parameters set to SPH

quantities. The mean optical depth through the pseudo-cloud is used to calculate

heating or cooling rates.

We also include luminosity from protostellar accretion. This can be modelled as

continuous accretion or episodic accretion. Continuous accretion as been shown to

suppress star formation is discs whereas episodic accretion can allow stars to form

during long periods of low luminosity.

There is a growing body of evidence in support of episodic accretion. However,

the parameters that control the quiescent accretion rate and duration of the episodic

outbursts are not well constrained. Indeed, these parameters may vary from pro-

tostar to protostar. We have adopted values that are supported by observations,

albeit with large uncertainties.
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Chapter 7

Setting up initial conditions

In this chapter we provide the technical details on how to set up simulations of

prestellar cores. We tabulate the core masses, sizes and velocity dispersions taken

from the lognormal distribution in Chapter 2, and core shapes from the model in

Chapter 3. We also specify how we apply a critical Bonnor-Ebert density profile a

turbulent velocity field, as given in Chapter 4 , to an ensemble of SPH particles. We

finish by defining suites of simulations which have different accretion feedback and

turbulence parameters.

7.1 Core parameters

We generate an ensemble of model cores with statistical properties similar to those

defined in Ophiuchus. Each core is assigned a set of primary parameters which

describe its global features, i.e. total mass Mcore, velocity dispersion σnt, size Rcore

and intrinsic aspect ratios QB and QC .

In Chapter 2 we defined a lognormal distribution from which we can draw mass

Mobs, size Robs and non-thermal velocity dispersion σnt. Note that Mobs and Robs

are not the same as the final core masses and sizes. Robs is the size of the core’s

surface density full width at half maximum (FWHM). As a critical Bonnor-Ebert

sphere also has a well defined surface density FWHM at ξfwhm

ξcrit
= 0.413, we define the

core size as

Rcore =
Robs

0.413
= 2.424Robs . (7.1)

We set Mcore = 2Mobs to bring the core masses closer in line with the more recent

Ophiuchus observations by Stanke et al. (2006). This is also close to observed core

masses in other star forming regions (e.g. Könyves et al., 2010; Nutter and Ward-

Thompson, 2007).
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The core is modelled as a triaxial ellipsoid with semi-axes A, B and C. We draw

intrinsic aspect ratios QB = B/A and QC = C/A from the shape fitting model M1

in Chapter 3, with τ0 = 0.6 . We now set the core axes to

A =
Rcore

(QBQC)
1
3

,

B =QB A ,

C =QC A .

(7.2)

Table 7.1 gives the list of primary parameters used to model all the simulations

in this thesis. We also list the average density of the core and a notional free fall

time, assuming a spherical core of radius Rcore and mass Mcore.

7.2 Internal structure

7.2.1 Settled glass

We randomly place 105 SPH particles in a periodic cube and use Seren to settle the

particles until the RMS difference in particle density is at most 0.3% (i.e. the denisty

is approximately uniform). As the cube is periodic, it can be replicated along any

of its dimensions in order to have more particles if necessary. For each core, we cut

a uniform density ellipsoid with axis ratios QB and QC containing Mcore/Msph SPH

particles from the cube (recall that Msph = 10−5 M�). The size of the ellipsoid is

finally scaled to the core axis lengths A, B and C.

7.2.2 Density profile

We apply the dimensionless mass function µ(ξ) from Section 4.1 to the uniform

density ellipsoid by inverting the lookup Table to give ξ(µ). For each particle, we

define the quantity

si =

√
x2
i

A2
+
y2
i

B2
+
z2
i

C2
, (7.3)

and make a list of all particles in ascending order of si. We assign each particle a

cumulative mass

Mi =
i∑

k=1

mk , (7.4)

and apply the following transformation on each particle position xi:

xi →
ξ(µi)

ξcrit
xi , (7.5)
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Table 7.1: Initial condition parameters drawn from Ophiuchus observations and shape
fitting model. Column 1 gives the core number; column 2 gives the total mass of the core,
column 3 gives the one-dimensional non-thermal velocity dispersion assigned to the core;
column 4 gives the effective radius of the core where Rcore = (ABC)

1
3 and A, B and

C are the semi-axes of an ellipsoid; column 5 gives the longest axis of the core; column
6 gives the intrinsic aspect ratio between the longest and intermediate axis of the core;
column 7 gives the intrinsic aspect ratio between the longest and shortest axis of the core;
column 8 gives the average density of the core; column 9 gives the notional free-fall time
of the core where tff = ( 3π

32G ρ̄)
1
2 .

Core N Mcore σnt Rcore A B/A C/A ρ̄ tff

(M�) (km s−1) (AU) (10−17 g cm−1) (Myr)

1 0.478 0.066 2360 5045 0.333 0.308 0.516 0.029

2 0.809 0.135 2222 2722 0.906 0.601 1.045 0.021

3 1.881 0.122 6945 7728 0.947 0.766 0.080 0.075

4 0.096 0.172 2718 3887 0.657 0.520 0.068 0.081

5 0.169 0.090 2474 3961 0.538 0.453 0.159 0.053

6 0.110 0.069 2666 4320 0.508 0.463 0.082 0.073

7 1.425 0.179 8054 13833 0.525 0.376 0.039 0.107

8 2.999 0.098 13347 24006 0.586 0.294 0.018 0.157

9 0.540 0.132 3281 4193 0.864 0.554 0.217 0.045

10 2.358 0.176 3556 6121 0.508 0.386 0.744 0.024

11 1.307 0.160 3677 4087 0.917 0.794 0.373 0.034

12 0.164 0.110 1446 2581 0.510 0.345 0.769 0.024

13 0.088 0.023 1365 1611 0.975 0.625 0.492 0.030

14 1.532 0.268 4034 5119 0.948 0.516 0.331 0.037

15 1.160 0.203 8211 20024 0.306 0.225 0.030 0.122

16 1.606 0.140 6555 9715 0.629 0.488 0.081 0.074

17 0.330 0.063 3418 5890 0.566 0.345 0.117 0.062

18 0.368 0.127 2653 3084 0.811 0.785 0.279 0.040

19 0.230 0.092 859 915 0.930 0.892 5.137 0.009

20 0.889 0.085 2637 4919 0.704 0.219 0.687 0.025

21 3.020 0.271 2952 3839 0.943 0.482 1.665 0.016

22 0.951 0.125 2342 3427 0.737 0.433 1.049 0.021

23 1.427 0.072 2304 2551 0.865 0.852 1.655 0.016

24 0.231 0.185 1495 2676 0.729 0.239 0.979 0.021

25 0.104 0.118 557 1012 0.465 0.359 8.567 0.007

26 2.016 0.119 5326 9700 0.411 0.403 0.189 0.048

27 3.439 0.166 4715 8225 0.452 0.417 0.465 0.031

28 1.137 0.061 9459 10348 0.899 0.850 0.019 0.152

29 1.763 0.187 1927 4687 0.506 0.137 3.496 0.011

30 0.176 0.090 1007 1089 0.913 0.867 2.438 0.013

31 0.767 0.087 3722 8278 0.307 0.296 0.211 0.046
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Initial condition parameters drawn from Ophiuchus observations and shape fitting model.

Core N Mcore σnt Rcore A QB QC ρ̄ tff

(M�) (km s−1) (AU) (10−17 g cm−1) (Myr)

32 0.202 0.044 4095 6312 0.961 0.284 0.042 0.103

33 0.189 0.084 2874 7390 0.292 0.202 0.113 0.063

34 0.278 0.067 864 1112 0.780 0.601 6.111 0.009

35 1.772 0.162 3700 4143 0.973 0.732 0.496 0.030

36 1.698 0.201 4269 5263 0.789 0.676 0.310 0.038

37 0.235 0.091 2885 3246 0.888 0.791 0.139 0.056

38 1.506 0.141 2372 3564 0.563 0.523 1.600 0.017

39 0.426 0.124 4476 6444 0.645 0.519 0.067 0.081

40 1.240 0.198 3549 5082 0.643 0.530 0.393 0.034

41 0.518 0.147 2829 3381 0.934 0.628 0.324 0.037

42 0.823 0.083 5656 10628 0.485 0.311 0.065 0.083

43 1.059 0.056 3829 6401 0.567 0.377 0.268 0.041

44 0.287 0.079 1647 2194 0.720 0.588 0.911 0.022

45 0.773 0.071 4893 7223 0.651 0.477 0.094 0.069

46 0.161 0.118 1652 2687 0.487 0.477 0.508 0.030

47 0.364 0.123 2551 2773 0.958 0.812 0.311 0.038

48 0.138 0.070 768 1126 0.654 0.486 4.327 0.010

49 0.281 0.123 3075 6261 0.682 0.174 0.137 0.057

50 1.365 0.137 2792 2995 0.994 0.815 0.890 0.022

51 2.272 0.115 6165 9575 0.745 0.358 0.138 0.057

52 1.300 0.299 2905 4481 0.614 0.444 0.752 0.024

53 0.399 0.133 2681 4405 0.502 0.449 0.293 0.039

54 0.546 0.067 2600 3567 0.981 0.395 0.441 0.032

55 0.236 0.094 1877 2482 0.864 0.500 0.505 0.030

56 0.455 0.080 2930 3855 0.765 0.574 0.257 0.042

57 0.212 0.071 1527 1867 0.905 0.605 0.845 0.023

58 0.784 0.226 1763 2070 0.929 0.665 2.030 0.015

59 0.290 0.035 4279 5756 0.778 0.528 0.052 0.092

60 0.749 0.089 4664 9058 0.434 0.315 0.105 0.065

61 0.229 0.091 2989 3776 0.772 0.642 0.121 0.060

62 1.279 0.123 9222 10779 0.939 0.667 0.023 0.138

63 1.022 0.158 2397 3293 0.928 0.415 1.053 0.021

64 0.815 0.137 3742 4487 0.792 0.732 0.221 0.045

65 1.801 0.217 3981 8985 0.387 0.224 0.405 0.033

66 1.157 0.167 1373 2851 0.366 0.305 6.335 0.008

67 1.807 0.182 4214 7354 0.826 0.228 0.342 0.036

68 0.127 0.068 2644 2811 0.953 0.874 0.098 0.067

69 4.597 0.150 17103 25626 0.703 0.423 0.013 0.184

70 0.187 0.119 1931 2431 0.787 0.637 0.367 0.035
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Initial condition parameters drawn from Ophiuchus observations and shape fitting model.

Core N Mcore σnt Rcore A QB QC ρ̄ tff

(M�) (km s−1) (AU) (10−17 g cm−1) (Myr)

71 0.622 0.356 1476 2322 0.699 0.368 2.744 0.013

72 0.442 0.090 4432 6119 0.761 0.499 0.072 0.078

73 2.173 0.323 6611 10977 0.745 0.293 0.107 0.064

74 0.037 0.077 1079 1418 0.684 0.644 0.413 0.033

75 0.424 0.085 4332 5173 0.841 0.699 0.074 0.077

76 0.357 0.087 1959 2463 0.826 0.609 0.673 0.026

77 0.290 0.080 967 1853 0.544 0.262 4.545 0.010

78 0.110 0.071 1073 1958 0.591 0.278 1.258 0.019

79 0.461 0.221 1214 2235 0.494 0.324 3.655 0.011

80 0.847 0.069 5071 7475 0.719 0.434 0.092 0.069

81 1.815 0.101 6481 8012 0.877 0.603 0.095 0.068

82 0.664 0.097 1077 1258 0.990 0.634 7.537 0.008

83 1.332 0.100 9262 15025 0.607 0.386 0.024 0.136

84 0.994 0.214 3394 5859 0.977 0.199 0.361 0.035

85 0.337 0.048 2805 4211 0.691 0.428 0.216 0.045

86 0.410 0.099 1980 2052 0.969 0.926 0.750 0.024

87 0.182 0.067 2042 5611 0.277 0.174 0.303 0.038

88 0.368 0.134 2551 3441 0.755 0.539 0.314 0.038

89 0.383 0.074 3464 4575 0.749 0.580 0.131 0.058

90 1.273 0.113 3135 4948 0.557 0.456 0.586 0.027

91 1.208 0.064 8357 18062 0.393 0.252 0.029 0.123

92 0.647 0.115 4163 5090 0.857 0.639 0.127 0.059

93 2.737 0.066 9102 10841 0.847 0.699 0.051 0.093

94 0.359 0.276 1384 2865 0.389 0.290 1.923 0.015

95 0.365 0.094 1262 1830 0.573 0.573 2.573 0.013

96 0.644 0.108 3642 5406 0.575 0.531 0.189 0.048

97 1.055 0.074 6965 10928 0.562 0.461 0.044 0.100

98 3.319 0.117 4889 8811 0.462 0.370 0.403 0.033

99 0.691 0.197 4088 8322 0.492 0.241 0.144 0.056

100 0.093 0.059 889 1324 0.640 0.474 1.885 0.015

where

µi = µ(ξcrit)
Mi

MTOT

. (7.6)

As seen in Figure 7.1, applying a density profile to settled cube of particles

adds further noise to the SPH density. The SPH density is calculated from the

N nearest neighbours and this value is altered when inter-particle distances are

95



CHAPTER 7. SETTING UP INITIAL CONDITIONS

0.1

1.0

ρ
(ξ
)/
ρ
0

B/A = 1

C/A = 1

0.1

1.0

ρ
(ξ
)/
ρ
0

B/A = 0.5

C/A = 0.5

0.1

1.0

0.1 1.0

ρ
(ξ
)/
ρ
0

ξ

B/A = 0.5

C/A = 0.25

Figure 7.1: SPH particle densities after the application of a critical Bonnor-Ebert density
profile. From top to bottom, the geometry of the system is spherical, a prolate spheroid
with (B/A = 0.5, C/A = 0.5) and a triaxial ellipsoid with (B/A = 0.5, C/A = 0.25). The
red dots show the SPH density of 105 particles and the black line shows the semi-analytical
solution. In all cases, ξ = sξcrit where s is defined in Equation (7.3) and ξcrit = 6.451.
The RMS deviation of the particle density from the solution is approximately 1.5% for
the sphere, 2% for the prolate spheroid and 3% for the triaxial ellipsoid. In all cases, we
only use SPH densities from the inner 95% of particles.
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stretched or compressed. This effect is more apparent in triaxial ellipsoids than

in spheres because of spatial anisotropy. We find that the average RMS density

variation is about 3% for a triaxial ellipsoid with QB = 0.5, QC = 0.25 and Nsph =

105 compared to 1.5% for a sphere. Fortunately, this level of triaxiality represents an

extreme in the core shapes and the 3% noise is significantly smaller than the order

of magnitude difference between the core central density and boundary density.

7.2.3 Velocity field

We apply the velocity field given in Section 4.2 to the ensemble of particles. The

velocity of each particle is calculated by interpolating the velocity of neighbouring

grid-points to the particle position. As the grid is a cube of edge-length 2π and

cores are triaxial, we define the dimensionless particle coordinates

si =
π

2

(xi
A
,
yi
B
,
zi
C

)
. (7.7)

The particles’ centre of mass is aligned with the centre of the cube and the particles

are assigned velocities based on their dimensionless coordinates.

We subtract the bulk velocity and normalise each particle to the target velocity

dispersion σnt:

vi →
σnt vi
σv

, (7.8)

where

σv =

√√√√ 1

Nsph

Nsph∑

i=1

(û · vi)2 (7.9)

and û is a unit vector defining a random line of sight.

7.3 Simulation suites

We adopt the following naming scheme for individual core simulations:

CORE ID = <CORE NUMBER>_<FEEDBACK MECHANISM>_<VELOCITY TYPE>

The value of CORE NUMBER is taken from the core number column in Table 7.1.

The label FEEDBACK MECHANISM states which mode of radiative feedback is being

implemented. The value NRF denotes no radiative feedback, the value CRF denotes

continuous radiative feedback and the value ERF denotes episodic radiative feedback.

The label VELOCITY TYPE states which velocity modes are populated, as defined in

Section 4.2.3 . The value THR denotes a thermal mix of 2:1 solenoidal to compressive

97



CHAPTER 7. SETTING UP INITIAL CONDITIONS

modes, the value SOL denotes purely solenoidal modes and the value COM denotes

purely compressive modes. As an example, the core ID 008 CRF COM identifies the

simulation with parameters taken from the eighth row of Table 7.1 using continuous

radiative feedback and a purely compressive velocity field.

We have nine different combinations of FEEDBACK MECHANISM and VELOCITY

TYPE. We will run suites of simulations to model star formation using each of them.

The number of individual simulations run in each suite is given in Table 7.2 .

Table 7.2: Number of simulations for different model parameters. The columns give
different implementations of radiative feed back and the rows give different velocity fields.
The contents of the table give the range of core parameters from Table 7.1 used in each
suite.

NRF CRF ERF

THR 1 - 100 1 - 100 1 - 100
SOL 1 - 50 1 - 50 1 - 50
COM 1 - 50 1 - 50 1 - 50

7.4 Summary

In this chapter we have tabulated the parameters used to the model prestellar cores.

We have also described the methods used to apply Bonnor-Ebert density profiles

and turbulent velocity fields to an ellipsoidal ensemble of particles.

We can now run batches of core simulations to statistically study core fragmen-

tation and star formation. We model cores using the physical parameters listed in

Table 7.1 and we repeat the simulations with i) different solenoidal to compressive

velocity mode ratios and ii) different models of accretion feedback.
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Chapter 8

Results

In this chapter we present and discuss the results of the simulations run using the

initial conditions from Chapter 7 . All cores were evolved for 2 × 10 5 yrs. We

tabulate details of the sinks produced by each core and give mass functions from each

simulation suite. We also calculate binary statistics from the sink particles, and

compare the results with observations.

This chapter is split into three sections. In Section 8.1 we discuss the results of

the simulations with Ξ = 2 . These have a 2:1 mixture of of solenoidal to compressive

velocity modes. In Section 8.2 we discuss the preliminary results of simulations with

purely compressive (Ξ = 0) and purely solenoidal (Ξ = ∞) velocity fields. In

both sections, we have repeated the simulations with no accretion feedback, episodic

accretion feedback and continuous accretion feedback. We conclude this chapter in

Section 8.3 where we give a summary of our findings.

8.1 Simulations with 2:1 turbulence: Ξ = 2

In this section we present and discuss the results of the simulations that have a

2:1 mixture of solenoidal and compressive turbulence. The simulations were run for

2 × 105 yrs. In Section 8.1.1 we present the masses of sink particles formed in the

simulations. We will hereafter refer to the sinks as young stellar objects (YSOs).

In Section 8.1.2 we provide a statistical comparison of the mass distribution of

YSOs with the Chabrier (2005) IMF. In Section 8.1.4 we discuss the modes of

core collapse and fragmentation that occur in the simulations. In Section 8.1.5 we

analyse the binary statistics of the YSOs from the simulations and compare these

with observations. Simulation snapshots in this chapter are rendered using Splash

(Price, 2007).
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8.1.1 Protostellar masses

Table 8.1 lists information on the sinks formed in simulations with Ξ = 2 . These

simulations were evolved for t = 2 × 105 yrs. Sixty of the one hundred cores are

prestellar. The remaining forty are omitted from the table. The first four columns

give the core number, the mass of the core, Mcore, the ratio of thermal to gravita-

tional energy, αtherm, and the ratio of turbulent to gravitational energy αturb. The

next three columns give the sum of YSO masses from each core,
∑
Myso, the number

of stellar-mass objects N? and the number of brown dwarf-mass objects Nbd formed

when the YSOs have no radiative feedback (NRF). The next three columns give the

same statistics when the YSOs have episodic radiative feedback (ERF) and the next

three give statistics when the YSOs have continuous radiative feedback (CRF). We

define ‘stellar-mass’ as M > 0.08 M� and ‘brown dwarf-mass’ as M ≤ 0.08 M�.

From the NRF simulations, we find that the cores have a mean star formation

efficiency of 71%, and form on average 3.3 stars and 3.4 brown dwarfs per core.

From the ERF simulations, the star formation efficiency remains at 71% and each

core produces on average 3.1 stars and 1.5 brown dwarfs. The CRF simulations have

a lower star formation efficiency of 59% and only produce 1.6 stars and 0.1 brown

dwarfs per core.

Figure 8.1 shows the YSO mass functions produced from the simulations. Both

the NRF and ERF simulations give a range of YSO masses from a few Jupiter

masses to between one and two solar masses. The CRF simulations produce YSOs

with roughly the same upper mass limit, however there are very few YSOs with

masses less than M ≈ 0.05M�.

Andersen et al. (2008) performed a survey of star forming regions and found that

low mass stars outnumber brown dwarfs by a factor of

A =
N(0.08 M� < M ≤ 1.0 M�)

N(0.03 M� < M ≤ 0.08 M�)
= 4.3± 1.6 . (8.1)

From the simulations presented here, we obtain Anrf = 2.2, Aerf = 3.9 and Acrf =

17 for NRF, ERF and CRF respectively. This demonstrates that simulations with

CRF produce too few brown dwarfs to be considered realistic. Conversely, the ERF

simulations reproduce the observed ratio to within one sigma of the observations.

The NRF simulations give a ratio within two sigma of the observations.
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Figure 8.1: The YSO mass functions for simulations with Ξ = 2 . The top three frames
give the mass functions from simulations with NRF, ERF and CRF. The black histograms
have bins equally spaced in log(M) and the red lines are kernel smoothed density functions
(see Chapter 2, Section 2.2.5 for definition). The bottom fame shows the NRF, CRF and
ERF density profiles on a single plot.
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Figure 8.2: As Figure 8.1, but now the YSO mass functions (in black) are compared
with the Kroupa (2001) and Chabrier (2005) IMFs (in red and blue respectively). The
top frame shows the YSO mass function for NRF simulations, the middle frame for ERF
and the bottom frame for CRF. The dashed part of the reference IMFs are in the stellar
mass region with M ≥ 0.08 M� whereas the dotted parts are in the brown dwarf mass
region with M < 0.08 M�. The brown dwarf region is not as well constrained as the

stellar region. For all distributions
∫ +∞
−∞ P (log(M)) d log(M) = 1.
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Table 8.1: The number of YSOs formed from each core simulation with Ξ = 2 . Column 1 gives the core number, column 2 gives the core
mass, column 3 gives the core’s ratio of thermal to gravitational energy and column 4 gives the core’s ratio of turbulent to gravitational energy.
Columns 5, 6 and 7 give the total sink mass, the number of stellar-mass YSOs and the number of brown dwarf-mass YSOs formed with no
radiative feedback from YSOs. Columns 8, 9 and 10 give the same quantities when there is episodic radiative feedback and columns 11, 12
and 13 give the quantities when there is continuous radiative feedback.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

1 0.478 0.452 0.051 0.331 1 2 0.283 1 0 0.285 1 0

2 0.809 0.229 0.136 0.766 3 10 0.597 3 3 0.563 1 0

3 1.881 0.303 0.163 1.709 4 3 1.393 5 3 1.223 1 0

8 2.999 0.401 0.145 1.190 6 4 0.923 5 4 1.015 6 0

9 0.540 0.508 0.304 0.171 1 0 0.174 1 0 0.171 1 0

10 2.358 0.131 0.138 2.142 5 8 2.145 2 1 1.437 1 0

11 1.307 0.231 0.127 1.198 7 3 1.207 8 1 1.156 4 0

14 1.532 0.223 0.667 0.953 4 4 0.871 4 2 0.889 3 1

16 1.606 0.345 0.157 1.074 6 3 1.103 5 2 0.589 1 0

18 0.368 0.593 0.186 0.201 1 0 0.197 1 0 0.194 1 0

19 0.230 0.306 0.068 0.212 1 0 0.211 1 0 0.203 1 0

20 0.889 0.283 0.080 0.789 4 1 0.779 3 0 0.629 1 0

21 3.020 0.083 0.154 2.836 5 4 2.909 9 10 1.947 1 0

22 0.951 0.211 0.107 0.858 4 9 0.849 4 0 0.535 1 0
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The number of YSOs formed from each core simulation with thermal turbulence.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

23 1.427 0.132 0.016 1.404 1 3 1.321 1 0 1.331 1 0

25 0.104 0.472 0.238 0.068 0 1 0.067 0 1 0.059 0 1

26 2.016 0.232 0.186 1.322 5 5 1.124 4 2 0.649 1 0

27 3.439 0.119 0.102 3.037 7 3 2.858 5 7 2.597 3 0

29 1.763 0.114 0.145 0.000 0 0 1.655 5 0 1.483 3 0

31 0.767 0.450 0.092 0.531 3 0 0.508 3 2 0.389 1 0

34 0.278 0.259 0.025 0.256 1 0 0.254 1 0 0.249 1 0

35 1.772 0.172 0.094 1.688 4 10 1.685 5 2 1.308 1 0

36 1.698 0.208 0.201 1.460 8 10 1.450 7 0 1.277 5 1

38 1.506 0.133 0.049 1.492 3 5 1.366 1 0 1.379 1 0

40 1.240 0.241 0.181 1.120 4 0 1.097 4 1 0.847 2 0

41 0.518 0.454 0.386 0.139 1 0 0.139 1 0 0.129 1 0

43 1.059 0.314 0.021 0.922 4 3 0.792 2 0 0.786 1 0

44 0.287 0.479 0.119 0.191 1 1 0.161 1 0 0.154 1 0

45 0.773 0.536 0.079 0.467 4 1 0.448 3 1 0.330 1 0

47 0.364 0.576 0.208 0.148 1 0 0.147 1 0 0.137 1 0

48 0.138 0.470 0.047 0.108 1 0 0.105 1 0 0.100 1 0
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The number of YSOs formed from each core simulation with thermal turbulence.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

50 1.365 0.168 0.069 1.274 6 4 1.243 4 4 0.956 1 0

51 2.272 0.238 0.063 2.083 4 2 2.055 4 3 1.606 1 0

52 1.300 0.191 0.402 0.937 5 1 1.014 6 1 0.615 2 0

54 0.546 0.418 0.083 0.405 3 1 0.328 1 0 0.342 1 0

56 0.455 0.537 0.091 0.277 1 0 0.276 1 0 0.268 1 0

58 0.784 0.186 0.226 0.699 1 0 0.695 1 0 0.693 1 0

62 1.279 0.597 0.175 0.192 0 4 0.165 1 2 0.096 1 0

63 1.022 0.204 0.203 0.927 6 3 0.913 5 2 0.584 1 0

64 0.815 0.378 0.175 0.653 3 0 0.655 3 0 0.508 1 0

65 1.801 0.209 0.146 1.488 6 6 1.534 5 4 1.282 3 0

66 1.157 0.108 0.101 1.099 4 8 1.054 4 1 0.849 1 0

67 1.807 0.223 0.350 1.209 8 1 1.172 5 1 0.618 1 0

69 4.597 0.319 0.115 0.896 6 7 1.489 7 11 1.467 5 2

71 0.622 0.207 0.798 0.341 1 0 0.337 1 0 0.332 1 0

73 2.173 0.275 0.881 0.868 6 2 0.828 4 1 0.419 1 0

76 0.357 0.456 0.141 0.227 1 1 0.210 1 0 0.211 1 0

77 0.290 0.306 0.035 0.248 1 0 0.234 1 0 0.237 1 0
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The number of YSOs formed from each core simulation with thermal turbulence.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

79 0.461 0.234 0.554 0.246 0 5 0.228 2 0 0.179 1 0

80 0.847 0.512 0.060 0.439 1 0 0.450 1 0 0.451 1 0

81 1.815 0.297 0.126 1.509 5 3 1.266 5 3 1.309 5 0

82 0.664 0.135 0.031 0.634 1 0 0.633 1 0 0.629 1 0

83 1.332 0.603 0.146 0.296 1 4 0.312 2 3 0.145 1 0

86 0.410 0.395 0.113 0.322 1 4 0.284 2 0 0.260 1 0

90 1.273 0.210 0.054 1.059 5 2 1.188 5 2 0.825 1 0

93 2.737 0.274 0.047 2.427 6 6 2.402 4 6 1.662 1 0

95 0.365 0.291 0.104 0.329 1 4 0.274 1 0 0.282 1 0

96 0.644 0.478 0.118 0.466 1 5 0.363 1 0 0.378 1 0

97 1.055 0.563 0.100 0.521 3 3 0.540 3 0 0.449 1 0

98 3.319 0.129 0.074 2.596 8 34 3.142 8 2 2.977 5 0

Total 75.685 53.451 195 203 54.105 186 88 44.668 93 5
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8.1.2 Comparison with the IMF

In Figure 8.2, we have plotted the YSO mass distributions from Figure 8.1 with the

Kroupa (2001) (K01) and Chabrier (2005) (C05) parametrisations of the IMF. We

shall focus the analysis on the C05 IMF, as the measurements are more recent than

K01. The C05 IMF peaks at Mc05
peak = 0.2 M�. We find that with NRF, ERF and

CRF, the YSO mass distributions peak at Mnrf
peak ≈ 0.1 M�, Merf

peak ≈ 0.2 M� and

Mcrf
peak ≈ 0.4 M� respectively. This suggests that the ERF simulations reproduce

the most realistic distribution of masses, although it does not immediately rule out

the other two.

We can provide a quantitative statement on the goodness of fit by calculating the

likelihood of masses from C05 IMF being drawn from the simulated distributions of

YSO masses. We assign the kernel smoothed density profiles shown in Figures 8.1

and 8.2 to model distributions Mnrf, Merf and Mcrf. Each model has probability

density function P (D|M). The likelihood of a star of mass Di being drawn from

model M is proportional to the probability density of M at mass Di, i.e. P (Di|M).

If we have a set of N stellar masses, D, the likelihood of D being drawn from M is

P (D|M) ∝
N∏

i=1

P (Di|M) . (8.2)

The constants of proportionality are eliminated if we consider ratios

Kj,k =
P (D|Mj)

P (D|Mk)
=

N∏

i=1

P (Di|Mj)

P (Di|Mk)
. (8.3)

We draw observational data points Di from the C05 IMF (defined Chapter 1, Section

1.1.5). These are used to look up the corresponding likelihoods P (Di|M)1. We note

that the value of Kj,k in equation 8.3 will diverge with increasing N . As we can draw

an arbitrarily large number of masses Di from the C05 IMF, we present K
1
N
j,k as a

figure of merit for the performance of Mj over Mk. This value has to two appealing

features: firstly, the value of K
1
N
j,k will converge with increasing N and secondly, if

N is sufficiently large, we can estimate the ratio of likelihoods of Mj and Mk when

n masses are drawn from the C05 IMF. This is equal to K
n
N
j,k. We calculate values

of K
n
N
j,k for Mnrf, Merf and Mcrf by drawing N = 105 stellar masses from the C05

IMF and calculating their likelihoods. Results are shown in Table 8.2 for n = 1, 10
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n = 1
MNRF MERF MCRF

MNRF 1 1.21 0.77
MERF 0.82 1 0.64
MCRF 1.29 1.57 1

n = 10
MNRF MERF MCRF

MNRF 1 6.85 0.08
MERF 0.15 1 0.01
MCRF 13.2 90.0 1

n = 20
MNRF MERF MCRF

MNRF 1 46.9 5.8× 10−3

MERF 0.02 1 1.2× 10−4

MCRF 1.7× 102 8.1× 103 1

Table 8.2: Likelihoods of stars from Chabrier (2005) IMF fitting the NRF, ERF and
CRF simulation results. Each value gives K

n
N = (P (D|Mcolumn)/P (D|Mrow))

n
N , where

N = 105.

and 20 .

We find in that the C05 IMF is most likely to fit Merf. Conversely, the C05

IMF is least likely to fit Mcrf. Therefore, Merf is stronger than Mnrf, which is

stronger than Mcrf. However, we must highlight two important assumptions with

the model comparison. i) We are using random variates from the C05 IMF, not ac-

tual observations. The brown dwarf region of the C05 IMF is not as well constrained

as the stellar region and this could bias the result. ii) The kernel smoothed PDFs

are estimates and may not capture every detail of the true PDF. This aside, this

method should at least be sensitive to the basic features of the distribution, such as

position of the peak and width.

8.1.3 Evolutionary stages

The simulations were evolved for 2× 105 yrs. This chronologically places the YSOs

formed in these simulations somewhere between the class 0 and class I evolutionary

stages (see Section 1.1.4 for class definitions). However, by the end of the simulations

most of the gas has accreted on to the YSOs and they more closely resemble objects

between the class I and class II stages. This suggests that the simulated cores are

1It may seem more intuative to calculate likelihoods by drawing the likelihood of the simulation
YSO masses from the C05 IMF, however this would be incorrect. Using this method, we would
infer a twenty identical 0.2 M� YSOs are a better fit to the C05 IMF than twenty YSOs randomly
drawn from the C05 IMF.
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collapsing and fragmenting faster than they would in nature.

These simulations assume a model where the combined mass of the YSO and

gas envelope is constant. In nature, this is not the case as material from the parent

molecular cloud can, and does, accrete on to the core while it collapses. Therefore

as envelope mass transferred to the YSO, the envelope gains some mass from the

molecular cloud. This may explain why such a high proportion of the gas in these

simulations has accreted onto the YSOs. Magnetic fields may also affect the rates at

which material accretes on to a YSO. A poloidal magnetic field (e.g. Mouschovias,

1976) in the envelope may reduce the accretion rate. However, magneto-rotational

instabilities (e.g. Zhu et al., 2007) can enhance accretion rates. Examining the effects

of these phenomena may be necessary in future work.

8.1.4 Fragmentation

Mechanisms

In most of the simulations, the core collapses to produce a central protostar around

which a disc can form. If the disc can cool quickly enough, and has a Toomre

criterion of Q < 1, it can fragment to form additional YSOs. These typically have

masses smaller than the central protostar. An example of this is shown in Figure

8.3. We see that the time scale of disc fragmentation is of order 103 yrs.

In some of the simulations, filaments that feed material into the centre of the

core can fragment before a central protostar forms. Like disc fragmentation, this

also occurs on time scales of order 103 yrs. An example of this is shown in Figure 8.4.

This core has a relatively high mass of M = 3.3 M� and a low ratio of turbulent to

gravitational energy with αturb = 0.07 . The core collapses into a filament because

it is particularly elongated, with its longest axis over twice the length of the other

two. The filament then fragments into ten YSOs. This is in agreement with work

by Goodwin et al. (2004), where low levels of turbulence such as this are capable

of fragmenting sperical cores. An analysis on whether or not the degree of core

elongation enhances this level of fragmentation will be an interesting topic of future

work.

Feedback effects

There are two main differences between YSO mass distributions from the NRF and

ERF simulations. The first is that in the NRF simulations, the mass peaks at

0.1M�. In the ERF simulations, the mass peaks at 0.2M�. The second difference

is the presence of a small, low mass peak at M ∼ 0.01M� in the NRF simulations.
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Figure 8.3: Column density plots taken from simulation 002 ERF THR showing disc
fragmentation. Moving across, then down, snapshots taken at t = 1.7 × 10−2 Myr,
t = 1.8 × 10−2 Myr, t = 1.9 × 10−2 Myr and t = 2.0 × 10−2 Myr. This prestellar core
fragments into three stars and three brown dwarfs.
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Figure 8.4: Column density plots taken from 098 ERF THR showing the fragmentation of
a filament. From top to bottom, snapshots taken at t = 1.9×10−2 Myr, t = 2.3×10−2 Myr,
t = 2.7× 10−2 Myr and t = 3.5× 10−2 Myr. This prestellar core fragments into eight stars
and two brown dwarfs.
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Figure 8.5: Column density plots from the 022 XXX THR simulations. The left-hand
column gives snapshots from 022 NRF THR, the middle column gives snapshots from
022 ERF THR and the right-hand column gives snapshots from 022 CRF THR. The top row
gives snapshots at t = 1.5×10−2 Myr, the middle row gives snapshots at t = 1.8×10−2 Myr
and the bottom row gives snapshots at t = 2.3 × 10−2 Myr. 022 NRF THR fragments into
four stars and nine brown dwarfs, 022 ERF THR fragments into four stars and 022 CRF THR

collapses to form a single star.

The main peaks are populated by YSOs that form from core collapse. The secondary

peak in the NRF simulations arises from the fragmentation of discs and filaments.

These produce low mass objects which are preferentially ejected from the core (e.g.

Bate et al., 2002). Once ejected, accretion ceases and their masses are frozen. They

then contribute to the low mass peak the NRF mass distribution.

In the ERF simulations, high-luminosity outbursts periodically raise the tem-

perature of the gas surrounding a sink from ∼ 10 K to ∼ 100 K. These outbursts

occur at intervals of ∆tob ∼ 104 yrs, whereas gravitational instabilities form on times

scales of ∆tgi ∼ 103 yrs. Therefore disc and filament fragmentation can still occur.

However, as further protostars form, the global interval between outbursts decreases

until eventually ∆tob ∼ ∆tgi. At this point, further star formation is inhibited by
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regular luminosity outbursts. ERF therefore allows fragmentation to occur, but

then regulates the process after a few YSOs have formed. This reduces the size

of the secondary peak in the YSO mass distribution, as fewer BD mass YSOs are

formed. Consequently, because fewer YSOs form, more gas can be deposited onto

the central protostar (e.g. Girichidis et al., 2012b). This pushes the main YSO peak

mass upwards.

In the CRF simulations, discs and filaments are continuously heated by accreting

YSOs. Because of this, very little core fragmentation occurs and they mostly form

single YSOs.

Figure 8.5 shows an example of a core evolving with NRF, ERF and CRF. We

note that the usual trend is that the most YSOs are formed with NRF, followed

by ERF then CRF. This is not always the case, however. If a core collapses very

rapidly (i.e. on time scales less than 104 yrs), the fragmentation process can become

chaotic and it is difficult to qualatatively predict the outcome.

Number of objects formed

In Figure 8.6, we see that the number of protostellar objects generated per core

is correlated with the core mass. For the NRF and ERF simulations, cores with

masses between 0.1 M� and 0.3 M� typically produce single YSOs whereas cores

with masses between 3 M� and 10 M� produce tens of YSOs. As a broad generali-

sation, we will refer to cores with Mcore ≤ 1 M� as low mass cores and cores with

Mcore > 1 M� as high mass cores.

Figure 8.7 shows the distribution of YSO masses as a function of core mass. From

the NRF and ERF simulations, we see that the arithmetic mean YSO mass is roughly

constant over the entire range of core masses. With NRF we have M̄nrf
? = 0.12 M�

and with ERF we have M̄erf
? = 0.19 M� . For comparison, the Jeans mass of the

prestellar cores is roughly given by Mjeans ≈ 0.2 +0.2
−0.1 M�.

Also plotted in Figure 8.7 is the geometric mean of the YSO mass and its stan-

dard deviation. From this we see that high mass cores produce a wider range of

YSOs than low mass cores. In low mass cores, there is little spread in the YSO mass

because most of the available gas is deposited onto the central YSO. A disc will

form, but it is often not massive enough to fragment. High mass cores have enough

gas to form more massive YSOs and there is often enough gas remaining to build a

massive disc. This can then fragment into low mass YSOs.

In the CRF simulations, we would expect each core to collapse into a single YSO

with a final mass similar to the original core mass. This is true for low mass cores,

however, high mass cores tend to also fragment into multiple objects, albeit to a
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Figure 8.6: The number of YSOs produced per core as a function of core mass. Error
bars reflect the Poisson uncertainty in both the number of core and number of sinks per
bin. The top frame shows results for NRF simulations, the middle for ERF and the bottom
for CRF.
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lesser extent than in the other simulations.

From the simulations, we draw the following conclusions on the fragmentation

of prestellar cores:

• YSO mass is not correlated to the mass of the core from which it forms. High

mass cores produce on average the same mass YSOs as low mass cores. The

difference is that high mass cores produce a greater number of YSOs than low

mass cores.

• The average YSO mass appears to be of the same order as the Jeans mass of

star forming environment.

• While the average YSO mass is not a function of core mass, the range of YSO

masses is. High mass cores can produce higher mass YSOs than low mass cores

due to the increased availability of gas. However, high mass cores also produce

low mass YSOs through disc and filament fragmentation. This fragmentation

does not often occur in low mass cores.

8.1.5 Multiplicity statistics

Most observational binary statistics are obtained from field stars (e.g. Janson et al.,

2012; Raghavan et al., 2010; Reggiani and Meyer, 2011; Reipurth and Zinnecker,

1993; Tokovinin, 2008). These are Main Sequence stars which are found outside

of clustered environments. Short and long period systems are well observed with

radial velocity and astrometric measurements respectivly. In contrast, there are

some observational difficulties in obtaining binary statistics from young stars, which

the YSOs from these simulations mostly represent. Complete multiplicity statistics

are difficult to measure as the emission lines from the gas envelope interfere with

radial velocity measurements. Duchêne and Kraus (2013) provide a useful review of

stellar multiplicity which covers most of the current observations.

Observations of pre-Main Sequence (PMS) visual-binaries in regions such as Tau-

rus and Ophiuchus suggest that a higher proportion of stars are in multiple systems

that those in the field (e.g. Kraus et al., 2011; Leinert et al., 1993; Ratzka et al.,

2005). As PMS stars usually form in clusters, they undergo dynamical interactions

that that bring their multiplicity statistics closer in line with those of field stars(e.g.

Kouwenhoven et al., 2010; Parker and Goodwin, 2011, 2012; Parker et al., 2009;

Parker and Reggiani, 2013). PMS binaries with semimajor axes a . 102 AU tend to

survive cluster evolution whereas those with a & 104 AU are always destroyed. Bi-

naries with separations between these limits are partially destroyed, with preference

to those of greater separation.
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Figure 8.7: The distribution YSO masses as a function of core mass. The solid line
gives the geometric mean mass and standard error. The shaded area shows the geometric
standard deviation. The dashed line gives the arithmetic mean YSO mass. The top frame
shows results for NRF simulations, the middle for ERF and the bottom for CRF.
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We present the results from these simulations in comparison with multiplic-

ity statistics from field stars and PMS stars. Observations of PMS stars provide

information such estimated multiplicity fractions and distributions of separations.

Observations of field stars provide useful information on how these measurements

correlate with stellar mass.

Multiple systems

We isolate multiple YSO systems from the final state of each simulation by examining

every possible YSO-YSO pair. These are deemed to be a binary pair if the following

criteria are met: i) the gravitational perturbation on the pair of YSOs from all other

YSOs is no greater than a factor of αp = 0.1 times the acceleration between the pair.

ii) Over at least one Keplerian period, the kinetic energy plus the gravitational

potential energy of the YSO pair is negative. If these conditions are satisfied, the

YSOs are considered to be a binary pair and their binary quantities (such as period,

mass ratio etc.) are recorded. The two YSOs are then merged to form a single

virtual YSO with mass equal to the sum of its two components, and position and

velocity taken to be the mass-weighted average. The analysis is then repeated to

allow for the detection of hierarchical multiple systems, i.e. we look for binary

systems where one or more components are themselves binary systems. Due to the

decreased stability of multiple systems with more than two components, we perform

an additional check: iii) if one of the binary components is a sub-binary system, the

tidal acceleration on the sub-binary from the other YSO must be no greater than

αp times the mutual acceleration of the sub-binary, i.e.

2M1r

R3
< αp

M2

r2
, (8.4)

where a binary system masses M1 and M2 separated by distance R. In this case, the

primary component is a star and the secondary component is binary system with

total mass M2 and separation r. As with criterion ii), criterion iii) must be true

for at least one Keplerian period in order for it to be considered a stable multiple

system. We do not impose a limit on how many levels of hierarchy each multiple

system has, only that it is stable on all levels. We set αp = 0.1 as we find that the

change to the number of systems extracted is only minor with the stricter value of

αp = 0.01 .

Figure 8.8 shows the number of systems produced with different orders of mul-

tiplicity. We find that in the NRF and ERF simulations, almost half the YSOs are

in some kind of multiple system. Of these systems, roughly half again are binaries
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and the rest are higher order systems, i.e. triples, quadruples, etc. . Some cores

even produce sextuple and septuple systems. Unlike N -body systems, the core gas

provides a shallow gravitational potential. This makes it easier for stars to grad-

ually adopt quasi-stable configurations instead of being violently ejected. Figure

8.9 shows a sextuple formed in simulation 052 ERF THR. This system was stable at

the end of the simulation and had been so for t = 1.5 × 105 yrs. Sextuple systems

have been observed in the field (e.g. Tokovinin, 2008) and their formation in these

simulations may explain their origin.

Comparison with observations

We will adopt the nomenclature defined by Reipurth and Zinnecker (1993). The

fraction of systems which are multiple is measured by the multiplicity frequency:

Fm =
B + T +Q+ . . .

S +B + T +Q+ . . .
, (8.5)

where S is the number of single stars, B is the number of binaries, T is the number

of triples, Q is the number of quadruples, etc. . The fraction of stars in multiple

systems is measured by the companion probability:

Pc =
2B + 3T + 4Q+ . . .

S + 2B + 3T + 4Q+ . . .
, (8.6)

and the number of orbits per multiple system is given by the pairng factor

Fp =
B + 2T + 3Q+ . . .

S +B + T +Q+ . . .
. (8.7)

Goodwin et al. (2004) introduce the companion frequency where

Fc =
2B + 6T + 12Q+ . . .

S + 2B + 3T + 4Q+ . . .
, (8.8)

gives the mean number of companions per star. If Fc > Pc or Fp > Fm, then some

of multiple systems must be hierarchical.

From the simulations, it is generally easier to record the number of stars in

different multiple systems, i.e. Nx is the number of stars in a system of order x.

The multiplicity frequency can then be calculated

Fm =
Nb

2
+ Nt

3
+ Nq

4
+ . . .

Ns + Nb

2
+ Nt

3
+ Nq

4
+ . . .

. (8.9)
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(a) 500 AU× 500 AU (b) 5 AU× 5 AU

(c) 25 AU× 25 AU (d) 0.1 AU× 0.1 AU

Figure 8.9: A sextuple system formed in the 052 ERF THR simulation. Figure (a) shows
a binary system (right) orbiting a quadruple system (left). The total system has mass
0.64 M�. Figure (b) is an expanded view of the binary in Figure (a). The binary has
mass 0.22 M�. Figure (c) is an expanded view of the quadruple system in Figure (a);
here there are two binary systems orbiting one another. The binary of the left has mass
0.24 M� and the binary on the right has mass 0.19 M�. Figure (d) is an expanded view of
the binary system on the right-hand side of Figure (c). The colour scale gives the column
density in units of log(Σ/g cm−2) and the captions give the size of the plotting area.
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Feedback N? Norb Nsys Fm Pc Fc

NRF 398 116 59 0.20± 0.01 0.42± 0.02 1.05± 0.06
ERF 274 79 48 0.25± 0.02 0.46± 0.03 0.94± 0.06
CRF 98 18 11 0.14± 0.02 0.29± 0.05 0.54± 0.09

Table 8.3: Binary statistics from the NRF, ERF and CRF simulations. Column 1 gives
the feedback type. Column 2 gives the total number of YSOs. Column 3 gives the number
of binary orbits. Column 4 gives the number of multiple systems. Column 5 gives the the
multiplicity frequency. Column 6 gives the companion probability. Column 7 gives the
companion frequency.

M? (M�) Field NRF ERF CRF

0.06 ≤M? < 0.1
Fm = 0.22± 0.05 0.26± 0.03 0.22± 0.05 0.12± 0.07
Fp = 0.22± 0.05 0.48± 0.06 0.31± 0.07 0.17± 0.10

0.1 ≤M? < 0.5
Fm = 0.26± 0.03 0.41± 0.02 0.36± 0.02 0.19± 0.03
Fp = 0.33± 0.05 0.83± 0.04 0.64± 0.04 0.30± 0.05

0.7 ≤M? < 1.3
Fm = 0.44± 0.02 0.44± 0.13 0.54± 0.11 0.06± 0.04
Fp = 0.62± 0.03 0.69± 0.19 0.85± 0.17 0.18± 0.11

Table 8.4: A comparison of the binary statistics from the NRF, ERF and CRF simula-
tions with hose of field obsevations. Column 1 gives the mass range. Column 2 gives the
multiplicity frequency and pairing factors from field observations. Columns 3, 4 and five
give the same statistics from the NRF, ERF and CRF simulations respectively.

This makes it easy to bin results by mass, as individual stars, rather than entire

systems, can make contributions to the calculation. Similarly, the companion prob-

ability is given by

Pc =
Nb +Nt +Nq + . . .

Ns +Nb +Nt +Nq + . . .
, (8.10)

the pairing factor is given by

Fp =
Nb

2
+ 2Nt

3
+ 3Nq

4
+ . . .

Ns + Nb

2
+ Nt

3
+ Nq

4
+ . . .

, (8.11)

and the companion frequency is given by

Fc =
Nb + 2Nt + 3NQ + . . .

Ns +Nb +Nt +Nq + . . .
. (8.12)
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Comparison with observations: Multiplicity

Observations of field stars suggests that stellar multiplicity increases with primary

mass. This typically ranges from Fm = 0.26 ± 0.03 for stars with 0.1 M� . M? .

0.5 M� to Fm ≥ 0.5 for stars with M? & 5 M� (reviewed in Duchêne and Kraus,

2013). By comparison, in low to medium density star forming regions like Ophiuchus

and Taurus, stellar multiplicity frequencies are usually between one and two times

greater than those of field stars (e.g. Kraus et al., 2011; Leinert et al., 1993; Ratzka

et al., 2005).

Figure 8.10 shows how the YSO multiplicity statistics from the simulations vary

with stellar mass. For the NRF and ERF simulations, we find results are consistent

with the observation that multiplicity frequency increases with stellar mass. This

is not the case with the CRF simulations. Here the multiplicty frequency drops

from Fm = 0.15 ± 0.2 when 0.1 M� ≤ M? < 1.0 M� to Fm = 0.03 ± 0.02 when

1.0 M� ≤M? < 10 M�.

In table 8.4 we compare the simulation multiplicity frequencies and pairing fac-

tors with those of field stars, taken from Duchêne and Kraus (2013). We see that

over all mass ranges, the multiplicity frequencies from the ERF and NRF simula-

tions are equal to or higher than those of field stars. Of the three mass ranges,

0.1 M� ≤M? < 0.5 M� has the least uncertainty from counting statisitics. Here we

find that the NRF and ERF multiplicity frequencies are respectively about 1.6 and

1.4 times greater than those of field stars. In the same mass range we find that the

ERF and NRF pairing factors are respectively 2.5 and 1.9 times greater than those

of field stars. This shows that the multiple systems formed in these simulations are

both more abundent than those found in the field and also have a greater level of

hierarchy. This agrees well with observations of young star forming regions. In con-

trast to this, the binary frequencies and pairing factors from the CRF simulations

are lower than those of field stars.

The multiplicty statistics from the NRF and ERF simulations agree well with ob-

servations. In both cases, the multiplicity frequency increases with stellar mass and

the degree of multiplicity exceeds that field stars. Neither of these two statements

are true for the CRF simulations. Because of this, we believe that it is very unlikely

that continuous feedback from accretion is a dominant mechanism in nature.

Comparison with observations: a and T

Figure 8.11 shows the distribution of orbital periods of binary systems from the NRF,

ERF and CRF simulations. The red histograms show the distribution of all orbital

periods, the green histrograms show the distribution of orbital periods from binaries
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Figure 8.10: The fraction of YSOs in multiple systems as a function of YSO mass. The
red lines show the companion frequency, the green lines show the companion probability
and the blue lines show the multiplicity frequency. The individual frames give distributions
from simulations with NRF, ERF and CRF.
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with primary masses > 0.2 M� and the blue histrograms show the distribution of

orbital periods from binaries with primary masses > 0.4 M�. We see from the

histrograms and cumulative distributions that the NRF and ERF distributions are

very similar.

The NRF and ERF simulations produce a wide range of orbital periods with

10−2 yrs < T < 105 yrs. This corresponds to a range of semimajor axes 10−1 AU .

a . 103 AU. We also see that distribution of periods is shifted upwards with in-

creasing primary mass. This result is in general agreement with field observations

(reviewed in Duchêne and Kraus, 2013). Observations of pre-Main sequence binary

sytems show that the number of orbital separations decreases significantly for dis-

tances greater than ∼ 100 AU (e.g. King et al., 2012a,b). We see rough agreement

with this in Figure 8.11 where there are few semimajor axes greater than ∼ 300 AU.

Comparison with observations: e and q

Figure 8.12 shows the distributions of binary eccentricities. For both the NRF

and ERF simulations, we see that the distribution of eccentricities decreases almost

monotonically from zero to one. This result is difficult to interpret as binary orbits

tend to circularise over time due to tidal forces. The physics required to capture

this is not included in the simulations.

Figure 8.13 shows the distribution of binary mass ratios. In the NRF and ERF

simulations, the distiribution of mass ratios is rougly flat between 0.2 < q < 1 for

systems with primary masses > 0.2 AU. Observations also suggest that distribution

of mass ratios is roughly flat between 0.2 < q < 1 for systems with primary masses

> 0.3 AU(e.g. Reggiani and Meyer, 2011). This is promising as Parker and Reggiani

(2013) show that the distribution of mass ratios is not strongly affected by dynamical

interactions within clusters.

Summary of binary statistics

We find that the NRF and ERF simulations reproduce many observed multiplicity

statistics. In notable agreement, with observations we see that:

• We produce high order multiple systems with N ≥ 3. These are observed in

the field, but are difficult to produce using N -body interactions alone.

• We produce a large range of semimajor axes with 10−1 AU . a . 103 AU.

There are few semimajor axes greater than ∼ 300 AU, agreeing reasonably

well with observations of young stars.
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Figure 8.11: The distribution of orbital periods of binary systems. The top three frames
give distributions from simulations with NRF, ERF and CRF. The histograms have bins
equally spaced in log(T ). The red histrograms show the distributions of from all the
YSOs, the green from YSOs with masses greater than 0.2 M� and the blue from YSOs
with masses greater than 0.4 M�. The cumulative distributions of all three are compared
in the bottom frame. Along the top of the Figure is the approximate semimajor axis a
for given T . Here a = [(T 2GMsys)/(2π

2)](1/3) where Msys = 0.4 M� is the typical system
mass.
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Figure 8.12: The distribution of orbital eccentricities of binary systems. The top three
frames give distributions from simulations with NRF, ERF and CRF. The histograms
have bins equally spaced in e. The red histrograms show the distributions of from all the
YSOs, the green from YSOs with masses greater than 0.2 M� and the blue from YSOs
with masses greater than 0.4 M�. The cumulative distributions of all three are compared
in the bottom frame.
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Figure 8.13: The distribution of orbital mass ratios of binary systems. The individual
frames give distributions from simulations with NRF, ERF and CRF. The histograms
have bins equally spaced in q. The red histrograms show the distributions of from all the
YSOs, the green from YSOs with masses greater than 0.2 M� and the blue from YSOs
with masses greater than 0.4 M�. The cumulative distributions of all three are compared
in the bottom frame.
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• We reproduce the observed mass ratio distribution of binary systems. This is

particularly promising as it been shown that the field distribution should be

similar to the primordial distribution.

We must note that as these stars form in small N clusters in isolated cores, it

is unclear how these binary statistics will evolve with time. We plan to follow up

these simulations by using the small N clusters from each core as building blocks

for an ensemble of larger N -body cluster simulations.

8.2 Simulations with compressive and solenoidal

turbulence

In this section we present preliminary work on prestellar cores with purely com-

pressive and purely solenoidal velocity fields. A prestellar core that is shocked by

external sources (e.g. feedback from a neighbouring OB star) might have a velocity

field which is dominated by compressive modes. As interstellar gas is a compressible

fluid, it is difficult to imagine why a core would have a purely solenoidal field. How-

ever, we include the results to see if there is a noticeable change in YSO formation

when there are no compressive velocity modes in the initial conditions.

As defined in Chapter 4, Section 4.2.3, a compressive field has Ξ = 0, a solenoidal

field has Ξ = ∞ and field with 2:1 compressive to solenoidal modes has Ξ = 2.

Tables 8.6 and 8.5 list the results from the simulations with Ξ = 0 and Ξ =

∞ respectively. These simulations have the same initial conditions as the Ξ = 2

simulations, modulo that the all the solenoidal modes are removed from the velocity

fields when Ξ = 0 and all the compressive modes are removed when Ξ =∞. They

are evolved for 2× 105 yrs.

8.2.1 Compressive turbulence: Ξ = 0

Thirty-one of the fifty simulations with Ξ = 0 are prestellar. With NRF, the

prestellar cores produce on average 2.6 stars and 3.1 brown dwarfs per core with an

SFE of 78%. With ERF, the cores produce 2.5 stars and 1.4 brown dwarfs per core

with an SFE of 85%. With CRF, the cores produce 1.5 stars and 0.1 brown dwarfs

per core with an SFE of 77%.

We see from Figure 8.15 that the prestellar cores with Ξ = 0 produce bimodal

YSO mass distributions in both the NRF and ERF simulations. They produce

roughly the same number of brown dwarfs per core as those with Ξ = 2, but fewer

stars.
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8.2.2 Solenoidal turbulence: Ξ =∞
Twenty-eight of the fifty Ξ = ∞ simulations run are prestellar. With NRF, the

prestellar cores produce on average 4.2 stars and 4.6 brown dwarfs per core with an

SFE of 77%. With ERF, the cores produce 3.4 stars and 1.5 brown dwarfs per core

with an SFE of 76%. With CRF, the cores produce 1.6 stars and 0.1 brown dwarfs

per core with an SFE of 77%.

We see from Figure 8.15 that prestellar cores with solenoidal velocity fields pro-

duce unimodal YSO mass distributions in both the NRF and ERF simulations.

They produce roughly the same number of brown dwarfs and stars per core as the

simulations with Ξ = 2.

8.2.3 Comparison of velocity fields

The number statistics of the Ξ = 0 and Ξ = ∞ simulations are not as robust

as those from the Ξ = 2 simulations. This makes it difficult to give quantitative

statements on these results. However, we can note some qualitative trends between

the simulations.

In Figure 8.14 we compare three simulations which have the same mass, shape

and size, but different values of Ξ. We see that when Ξ = 2 and Ξ =∞, filaments

feed gas into the centre of the core. This is followed by the formation of a central

protostar and an accretion disc. The disc then fragments into multiple objects. This

produces a central YSO with relatively high mass and multiple low mass YSOs.

In contrast, when Ξ = 0, the core has little angular momentum and the filaments

fragment before they can deposit material onto the protostar. This results in several

YSOs with an initially more even distribution of masses. This seems to be fairly

typical of the ensemble of simulations. We see more filamentary structure and fewer

discs when Ξ = 0 than we do when Ξ = 2 and Ξ =∞.

We see in Figure 8.17 that when Ξ = 0, the YSO mass distribution has a broader

high mass peak than when Ξ = 2 and Ξ = ∞. We speculate that this may be

because compressive shocks help different regions of the core fragment independently.

The masses of YSOs formed from these local shocks are likely to be correlated to

the shock strengths, which are randomly distributed. At present, more analysis is

required to verify or reject this hypothesis.

The secondary low mass peaks in the YSO mass distributions when Ξ = 0 are

also more pronounced than those when Ξ = 2 and Ξ = ∞. As all three velocity

fields produce roughly the same number of brown dwarfs per core, we believe that

this is just because of the reduced height of the main peak. Again, more work is
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Table 8.5: The number of YSOs formed from each core simulation with Ξ = ∞ . Column 1 gives the core number, column 2 gives the
core mass, column 3 gives the core’s ratio of thermal to gravitational energy and column 4 gives the core’s ratio of turbulent to gravitational
energy. Columns 5, 6 and 7 give the total sink mass, the number of stellar-mass YSOs and the number of brown dwarf-mass YSOs formed
with no radiative feedback from YSOs. Columns 8, 9 and 10 give the same quantities when there is episodic radiative feedback and columns
11, 12 and 13 give the quantities when there is continuous radiative feedback.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

1 0.478 0.452 0.051 0.327 3 1 0.282 2 0 0.245 1 0

2 0.809 0.229 0.136 0.705 4 7 0.725 3 0 0.581 1 0

3 1.881 0.303 0.163 1.437 6 2 1.544 4 1 1.008 1 0

8 2.999 0.401 0.145 0.445 0 9 0.465 1 6 0.162 1 1

9 0.540 0.508 0.304 0.140 1 0 0.142 1 0 0.112 1 0

10 2.358 0.131 0.138 2.167 7 2 2.203 4 2 2.214 4 0

11 1.307 0.231 0.127 1.150 6 3 1.046 6 0 1.093 6 1

14 1.532 0.223 0.667 0.899 5 2 0.860 2 0 0.547 1 0

16 1.606 0.345 0.157 1.005 6 3 0.956 6 1 0.353 1 0

19 0.230 0.306 0.068 0.205 1 0 0.202 1 0 0.197 1 0

20 0.889 0.283 0.080 0.748 4 6 0.786 5 1 0.616 1 0

21 3.020 0.083 0.154 2.618 9 11 2.851 7 3 1.825 1 0

22 0.951 0.211 0.107 0.805 5 4 0.793 5 0 0.527 1 0

23 1.427 0.132 0.016 1.413 3 2 1.318 1 0 0.747 1 0
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The number of YSOs formed from each core simulation with solenoidal turbulence.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

26 2.016 0.232 0.186 1.356 7 4 1.264 6 4 0.608 1 0

27 3.439 0.119 0.102 2.840 9 15 2.811 6 1 2.157 3 0

29 1.763 0.114 0.145 1.668 5 13 1.636 3 1 1.590 3 0

31 0.767 0.450 0.092 0.474 2 5 0.480 2 3 0.353 1 0

34 0.278 0.259 0.025 0.253 1 0 0.252 1 0 0.247 1 0

35 1.772 0.172 0.094 1.711 7 5 1.654 5 5 0.958 1 0

36 1.698 0.208 0.201 1.388 5 6 1.285 6 1 1.287 6 1

38 1.506 0.133 0.049 1.482 3 7 1.333 1 0 1.334 1 0

40 1.240 0.241 0.181 1.073 5 5 1.072 4 1 0.679 2 0

43 1.059 0.314 0.021 0.947 3 8 0.925 3 5 0.716 1 0

44 0.287 0.479 0.119 0.195 2 0 0.161 1 0 0.128 1 0

45 0.773 0.536 0.079 0.495 2 4 0.395 3 0 0.299 1 0

48 0.138 0.470 0.047 0.102 1 0 0.105 1 0 0.094 1 0

50 1.365 0.168 0.069 1.284 6 6 1.276 4 8 0.879 1 0

Total 38.131 29.334 118 130 28.820 94 43 21.556 46 3
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Table 8.6: The number of YSOs formed from each core simulation with Ξ = 0 . Column 1 gives the core number, column 2 gives the core
mass, column 3 gives the core’s ratio of thermal to gravitational energy and column 4 gives the core’s ratio of turbulent to gravitational energy.
Columns 5, 6 and 7 give the total sink mass, the number of stellar-mass YSOs and the number of brown dwarf-mass YSOs formed with no
radiative feedback from YSOs. Columns 8, 9 and 10 give the same quantities when there is episodic radiative feedback and columns 11, 12
and 13 give the quantities when there is continuous radiative feedback.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

1 0.478 0.452 0.051 0.346 1 0 0.344 1 0 0.311 1 0

2 0.809 0.229 0.136 0.738 4 4 0.693 3 8 0.591 1 0

3 1.881 0.303 0.163 1.656 4 3 1.789 4 0 1.539 2 0

8 2.999 0.401 0.145 1.392 6 1 1.389 5 0 0.825 2 0

10 2.358 0.131 0.138 2.189 1 0 2.208 1 0 2.240 1 0

11 1.307 0.231 0.127 1.091 1 0 1.111 1 0 1.089 1 0

14 1.532 0.223 0.667 1.383 7 3 1.338 6 2 1.423 3 0

16 1.606 0.345 0.157 1.279 5 0 1.285 4 3 0.823 1 0

18 0.368 0.593 0.186 0.254 2 0 0.235 2 0 0.214 1 0

19 0.230 0.306 0.068 0.204 1 0 0.201 1 0 0.194 1 0

20 0.889 0.283 0.080 0.674 1 0 0.679 1 0 0.669 1 0

21 3.020 0.083 0.154 2.610 5 5 2.998 5 0 2.977 3 0

22 0.951 0.211 0.107 0.892 3 4 0.904 3 1 0.801 1 0

23 1.427 0.132 0.016 1.380 1 0 1.384 1 0 1.349 1 0
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Table 8.6: The number of YSOs formed from each core simulation with compressive turbulence.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

25 0.104 0.472 0.238 0.063 0 1 0.062 0 1 0.034 0 1

26 2.016 0.232 0.186 1.606 5 10 1.831 4 2 1.592 1 0

27 3.439 0.119 0.102 1.230 5 25 3.265 7 8 3.316 6 3

29 1.763 0.114 0.145 1.416 5 24 1.510 8 13 2.597 3 0

31 0.767 0.450 0.092 0.448 1 0 0.452 1 0 0.424 1 0

34 0.278 0.259 0.025 0.261 1 0 0.260 1 0 0.252 1 0

35 1.772 0.172 0.094 1.710 4 6 1.595 1 0 1.537 1 0

36 1.698 0.208 0.201 1.557 5 3 1.610 4 1 1.180 1 0

38 1.506 0.133 0.049 1.386 1 0 1.401 1 0 1.385 1 0

40 1.240 0.241 0.181 1.048 3 1 1.054 4 2 0.800 2 0

41 0.518 0.454 0.386 0.222 2 1 0.215 1 2 0.303 1 0

43 1.059 0.314 0.021 0.917 1 0 0.915 1 0 0.886 1 0

44 0.287 0.479 0.119 0.246 1 0 0.245 1 0 0.234 1 0

45 0.773 0.536 0.079 0.533 1 0 0.533 1 0 0.526 1 0

47 0.364 0.576 0.208 0.201 1 0 0.199 1 0 0.206 1 0

48 0.138 0.470 0.047 0.108 1 0 0.107 1 0 0.094 1 0

50 1.365 0.168 0.069 1.350 3 5 1.272 2 0 1.274 2 0
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Table 8.6: The number of YSOs formed from each core simulation with compressive turbulence.

NRF ERF CRF

Core N Mcore αtherm αturb

∑
Myso N? Nbd

∑
Myso N? Nbd

∑
Myso N? Nbd

Total 38.944 30.390 82 96 33.085 77 43 31.684 45 4
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required to verify this.

Finally, from Figure 8.17 , we see that the distribution of YSOs when Ξ = ∞
does not appear to be significantly different to that when Ξ = 2. There is a hint

that the secondary low mass peak may be absent when Ξ = ∞, but this may just

be a consequence of the low number statistics.

8.3 Summary and conclusions

We have performed an extensive ensemble of simulations of prestellar cores in Ophi-

uchus. These simulations take into account the observed masses, shapes, sizes and

velocity dispersions of cores. The resolution of these simulations is high enough to

resolve the opacity limit, Mo ∼ 3× 10−3 M�, and permit the formation of binaries

with separations as close as a ∼ 10−1 AU.

We summarise the key results from this chapter. We highlight the main findings

from the simulations and, where possible, comment on the implications for star

formation and evolution.

Protostellar masses

• Simulations with NRF and ERF reproduce observed ratios of low mass stars

to brown dwarfs. Simulations with CRF do not. The YSO mass distribution

from the ERF simulations provides the best likeness to the CO5 IMF. CRF

makes it difficult for brown dwarf-mass YSOs to form and it is unlikely that

accretion would not heat the surrounding gas at all. We therefore propose that

ERF is an important, if not well understood, mechanism in star formation and

have presented numerical work to support this assertion.

• We find that the mapping of the CMF onto the IMF is not statistically self-

similar. The cores in this thesis do not fragment into a fixed number of YSOs,

each with mass proportional to the parent core. Instead, the average mass

of YSOs is fixed as a function of parent core mass, where higher mass cores

produce proportionally more YSOs. The range of YSO mass increases as a

function of core mass. This is because i) there is more gas available to produce

higher mass YSOs and ii) because higher mass cores are more likely to form

unstable accretion discs which fragment into low mass YSOs.

135



CHAPTER 8. RESULTS

Figure 8.14: Column density plots take from the 021 ERF XXX simulations. The left-
hand column gives snapshots from 021 ERF THR, the middle column gives snapshots from
021 ERF COM and the right-hand column gives snapshots from 021 ERF SOL. The top row
gives snapshots at t = 6.0×10−3 Myr, the middle row gives snapshots at t = 8.5×10−3 Myr
and the bottom row gives snapshots at t = 1.4 × 10−2 Myr. 021 ERF THR fragments
nine stars and ten brown dwarfs, 021 ERF COM fragments into five stars and 021 ERF SOL

fragments into seven stars and three brown dwarfs.
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Figure 8.15: The YSO mass functions for simulations with compressive turbulence. The
top three frames give the mass functions from simulations with NRF, ERF and CRF. The
black histograms have bins equally spaced in log(M) and the red lines are kernel smoothed
density functions. The bottom fame shows the NRF, CRF and ERF density profiles on a
single plot.
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Figure 8.16: The YSO mass functions for simulations with solenoidal turbulence. The
top three frames give the mass functions from simulations with NRF, ERF and CRF. The
black histograms have bins equally spaced in log(M) and the red lines are kernel smoothed
density functions. The bottom fame shows the NRF, CRF and ERF density profiles on a
single plot.
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Figure 8.17: A comparison of all YSO mass functions. The top frame shows the YSO
mass function for NRF simulations, the middle frame for ERF and the bottom frame for
CRF. Mass functions from Ξ = 2 simulations are given by the red lines, mass functions
from Ξ =∞ simulations are given by the green lines and mass functions from the Ξ = 0
simulations are given by the blue lines.
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Multiple systems

• Roughly half the YSOs formed in these simulations are in a multiple system.

Of these multiples, roughly half are hierarchical with N ≥ 3. We present an

example of a sextuple system which remains stable for at least 1.5 × 105 yrs.

These systems require the shallow gravitational potential from core gas to form

and are difficult to manufacture from N -body interactions. While it is unclear

if these systems would survive in clustered environment, they are observed

in the field. We therefore propose that high order multiples regularly form

during star formation and a reduced, but significant, fraction of these survive

dynamical interactions in clusters.

• The binary statistics from these simulations compare well with observations.

We produce a wide range of semimajor axes with 10−1 AU . a . 103 AU. We

do not produce any very wide binaries (i.e. a & 104 AU), however it is possible

that these systems are formed through ejection from clusters. We also roughly

reproduce the observed distribution of binary mass ratios. This is promising as

it has been suggested that it is not strongly affected by dynamical interactions

in clusters.

Velocity field

• We have presented some preliminary results on the effects of purely solenoidal

and purely compressive velocity fields. Purely compressive fields appear to

produce more filamentary structure as they evolve, compared with the other

velocity fields. We find that compressive fields also widen the main peak of the

YSO mass distribution. Purely solenoidal fields do not seem to produce par-

ticularly different results to fields with a 2:1 mix of solenoidal to compressive

modes. Further investigation is required to fully characterise the behaviour of

these cores and draw firm conclusions.
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Chapter 9

Summary of this thesis

9.1 Ophiuchus

In Chapter 2 we compared dust emission observations of cores in Ophiuchus by

Motte et al. (1998), Stanke et al. (2006) and Simpson et al. (2008) and line width

observations by André et al. (2007). The dust emission data were used to estimate

core masses and the line widths were used to estimate non-thermal velocity dis-

persions. The estimated core masses are in poor agreement between surveys. For

practical purposes we used core measurements by Motte et al. (1998) as these cores

have the largest number of measured line widths.

As there are only twenty cores with a measured mass size and velocity dispersion,

we used the data to calibrate a multivariate lognormal distribution. From this we

drew one hundred correlated masses, sizes and velocity dispersions. We used these

as initial conditions for SPH simulations.

9.2 Intrinsic core shapes

In Chapter 3 we addressed the inverse problem of inferring intrinsic core shapes from

their projected aspect ratios. We assumes that the intrinsic shape of a prestellar core

is approximately ellipsoidal. We proposed four models which define different families

of ellipsoidal shapes. These all have free parameters which we fit to observations of

core aspect ratios.

The simplest model has a single parameter τo. For each model core, we fixed

one of the ellipsoid’s semi-axes to one. The other two semi-axes were drawn from a

lognormal distribution centred on one with standard deviation τo. We introduced

more complex models with extra parameters which define preferences towards ap-

proximate oblate or prolate shapes and specific triaxial shapes.
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We used Markov chain Monte Carlo methods to find the best fitting model

parameters and compare model performance using Bayes factors. We found that:

• The single parameter model fits the observations with τo ≈ 0.6 .

• Bayes factors suggest that the single parameter model is the best choice. Other

models risk over fitting the data with an excessive number of free parameters.

We randomly selected shapes from the single parameter model and scaled them

by the sizes sampled in Chapter 2. These provided the intrinsic shapes of the initial

conditions.

9.3 Internal structure

In Chapter 4 we discussed and justified our assumptions on the internal structure

of prestellar cores. We assumed that the core density profile is that same as that of

a critical Bonnor-Ebert sphere. While the cores in this thesis are not in hydrostatic

equilibrium, this profile provides a reasonable approximation to core observations.

We gave each core a turbulent velocity field. The largest size velocity modes

were modified to reproduce ordered rotation and radial excursions. We adopted

the conventional power spectrum of P ∝ k−2 which left the ratio of compressive

to solenoidal modes as the single free parameter. We produced velocity fields with

purely compressive modes, purely solenoidal modes and the standard thermal mix-

ture 2:1 solenoidal to compressive modes.

9.4 Results

In Chapter 8 we presented the results of SPH simulations of one hundred cores.

Of these, sixty were prestellar. We repeated these simulations with no radiative

feedback from protostellar accretion, episodic feedback (see Chapter 6, Section 6.2)

and continuous feedback. Our main results are from cores which have 2:1 solenoidal

to compressive velocity modes. We found that:

• Simulations with episodic feedback reproduced many features of the IMF,

including position of the peak and the ratio of stars to brown dwarfs. In con-

trast, simulations continuous feedback failed to produce a significant number

of brown dwarfs. It is difficult to justify why accretion would not heat the

surrounding gas at all, so we conclude that episodic feedback is an important

mechanism in star formation.
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• While most YSOs formed from core collapse and disc fragmentation, in some

cases, filamentary structure could form in elongated cores. These filaments

could sometimes then fragment into multiple YSOs.

• The mass of a young stellar object (YSO) is not determined by the mass of the

parent core. YSOs have the same average mass as a function of parent core

mass. Higher mass cores produce more YSOs with a wider range of masses.

• The simulations reproduced many of the observed binary statistics of field

stars. Roughly half the YSOs are were multiple systems and multiplicity

frequency increased with YSO mass. The systems also had a wide range

of semimajor axes and a distribution of mass ratios very similar to that of

observations.

• Half the multiple systems were hierarchical with N ≥ 3. We presented a case

study of a long-lived sextuple system. These systems can form in the gas

envelope of a prestellar core, but are difficult to manufacture from N -body

interactions. These are observed in the field and we propose that they form in

predominantly in prestellar cores.

We presented preliminary results of core simulations with purely compressive and

solenoidal velocity fields we ran fifty SPH simulations for each field with different

modes of feedback. Of these fifty cores, roughly thirty were prestellar. We found

that compressive velocity fields produce more filamentary structures than the other

fields. There did not seem to be a strong difference between solenoidal fields and

2:1 fields. More simulations and analysis are required in order to draw quantitative

conclusions on this subject.

9.4.1 Future work

There are at least three directions of future work that will improve and expand

upon the results in this thesis: further analysis of results, the inclusion of additional

physics in the simulations and separate, but related, follow up work. Here we present

some ideas of future work which may be interesting.

Further analysis

• In this thesis we have presented the results of roughly four-hundred prestellar

core simulations. For the most part, we have focussed on statistically analysing

the results as a whole, e.g. mass functions, binary statistics, etc. It will be
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interesting to shift focus to individual cores in order to answer the following

questions:

– What environmental conditions are required for filaments to form instead

of discs?

– How strongly correlated is the mass of a YSO with the jeans mass of its

parent core?

– How do the binary statistics of multiple systems vary with time?

• The investigation into the effects of different velocity fields needs the same

level of analysis given to the main set of results before we can draw any firm

conclusions. This will also require running more simulations to improve the

number statistics of the results.

Additional numerics and physics

• A new formulation of SPH sink particles, NewSinks, has been proposed by

Hubber et al. (2013). Whilst accreting, these sinks leech mass off of SPH

particles at rate governed by analytic models. Compared to standard sinks,

this has been shown to provide a greater level of convergence between different

SPH resolutions and sink density criteria.

• The inclusion of magneto-hydrodyamics MHD into Seren has been proposed

(Hubber et al., 2011) but is not yet complete. There are at present two flavours

of MHD: ideal (e.g. Price and Monaghan, 2004), where magnetic field lines are

strongly coupled to the gas and non-ideal (e.g. Hosking and Whitworth, 2004)

where the field lines are weakly coupled to the gas. The inclusion of MHD

is expected to decrease the degree of core fragmentation, however the initial

configuration of the magnetic fields are very difficult to infer from observations.

• Most observations show that YSOs have bipolar jets, however these are not

included in the simulations. Jets can be modelled by ejecting high velocity, low

mass SPH particles out from the poles of the sink particle (e.g. Stamatellos

et al., 2005). This should not affect the formation of a single YSO, as gas

typically accretes onto the equator of the sink. However, it is unclear how this

would affect the formation of multiple YSOs which potentially have misaligned

axes of rotation.
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Follow-up work

• The simulations presented produce very few YSOs with masses greater than

1 M� and none greater than 2 M�. This is because the cores have relatively

low masses; the most massive core is 4.5 M. As a follow-up to these simulations,

We plan to study the evolution of prestellar cores which are not isolated, but

embedded in a gas reservoir. This will partially model the molecular cloud

environment of the core. The simplest approach to this will be to embed the

core in an ellipsoidal envelope. This will have uniform density equal to that

of the core boundary and a total mass equal to two or three core masses. The

prediction is that more massive cores will accrete the envelope whereas it will

disperse away from less massive cores.

• Inclusion of a surrounding gas reservoir and MHD may also reduce the rate at

which core envelopes are depleted. In these simulations, most core envelopes

are accreted on to YSOs within 2 × 105 yrs. According to observations, this

process should be slower.

• Finally, it will be interesting to use the small N clusters produced in these

simulations as building blocks for larger N -body cluster simulations. By ran-

domly arranging these sub-clusters (modulo some assumptions on inter-core

spacing), we should be able to observe how many multiples survive and how

the binary statistics are altered.
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Ratzka, T., Köhler, R., and Leinert, C.: 2005, A&A 437, 611

Reggiani, M. M. and Meyer, M. R.: 2011, ApJ 738, 60

Reipurth, B.: 1989, Nature 340, 42

Reipurth, B. and Clarke, C.: 2001, ApJ 122, 432

Reipurth, B. and Zinnecker, H.: 1993, A&A 278, 81

Rosswog, S., Davies, M. B., Thielemann, F.-K., and Piran, T.: 2000, A&A 360, 171

Ryden, B. S.: 1996, ApJ 471, 822

Salpeter, E. E.: 1955, ApJ 121, 161

Scholz, A., Froebrich, D., and Wood, K.: 2013, MNRAS 430, 2910

Silverman, B.: 1998, Density Estimation for Statistics and Data Analysis, p. 48,

London: Chapman & Hall/CRC.

Simpson, R. J., Johnstone, D., Nutter, D., Ward-Thompson, D., and Whitworth,

A. P.: 2011, MNRAS 417, 216

Simpson, R. J., Nutter, D., and Ward-Thompson, D.: 2008, MNRAS 391, 205

Springel, V., Yoshida, N., and White, S. D. M.: 2001, NewA 6, 79

Stamatellos, D. and Whitworth, A. P.: 2008, A&A 480, 879

Stamatellos, D., Whitworth, A. P., Bisbas, T., and Goodwin, S.: 2007a, A&A 475,

37

Stamatellos, D., Whitworth, A. P., Boyd, D. F. A., and Goodwin, S. P.: 2005, A&A

439, 159

Stamatellos, D., Whitworth, A. P., and Hubber, D. A.: 2011, ApJ 730, 32

Stamatellos, D., Whitworth, A. P., and Hubber, D. A.: 2012, MNRAS 427, 1182

Stamatellos, D., Whitworth, A. P., and Ward-Thompson, D.: 2007b, MNRAS 379,

1390

154



REFERENCES

Stamatellos, D., Whitworth, A. P., and Ward-Thompson, D.: 2007c, MNRAS 379,

1390

Stanke, T., Smith, M. D., Gredel, R., and Khanzadyan, T.: 2006, A&A 447, 609

Stutzki, J. and Guesten, R.: 1990, ApJ 356, 513

Tassis, K.: 2007, MNRAS 379, L50

Testi, L. and Sargent, A. I.: 1998, ApJ 508, L91

Tilanus, R. P. J., Jenness, T., Economou, F., and Cockayne, S.: 1997, in G. Hunt

and H. Payne (eds.), Astronomical Data Analysis Software and Systems VI, Vol.

125 of Astronomical Society of the Pacific Conference Series, p. 397

Tokovinin, A.: 2008, MNRAS 389, 925

Tomisaka, K.: 1991, ApJ 376, 190

Toomre, A.: 1964, ApJ 139, 1217

Urban, A., Martel, H., and Evans, II, N. J.: 2010, ApJ 710, 1343

Vorobyov, E. I. and Basu, S.: 2005, ApJ 633, L137

Walch, S., Burkert, A., Whitworth, A., Naab, T., and Gritschneder, M.: 2009,

MNRAS 400, 13

Walch, S., Whitworth, A. P., and Girichidis, P.: 2012, MNRAS 419, 760

Weinberg, M. D.: 2009, Computing the Bayesian Factor from a Markov chain Monte

Carlo Simulation of the Posterior Distribution, arXiv:0911.1777

Whitworth, A. P. and Stamatellos, D.: 2006, A&A 458, 817

Wilking, B. A. and Lada, C. J.: 1983, ApJ 274, 698

Wilkins, D. R. and Clarke, C. J.: 2012, MNRAS 419, 3368

Williams, J. P., de Geus, E. J., and Blitz, L.: 1994, ApJ 428, 693

Young, M. D., Bertram, E., Moeckel, N., and Clarke, C. J.: 2012, MNRAS 426,

1061

Zhu, Z., Hartmann, L., Calvet, N., Hernandez, J., Muzerolle, J., and Tannirkulam,

A.-K.: 2007, ApJ 669, 483

155



REFERENCES

Zhu, Z., Hartmann, L., and Gammie, C.: 2009a, ApJ 694, 1045

Zhu, Z., Hartmann, L., and Gammie, C.: 2010a, ApJ 713, 1143

Zhu, Z., Hartmann, L., Gammie, C., and McKinney, J. C.: 2009b, ApJ 701, 620

Zhu, Z., Hartmann, L., Gammie, C. F., Book, L. G., Simon, J. B., and Engelhard,

E.: 2010b, ApJ 713, 1134

Zinnecker, H., Krabbe, A., McCaughrean, M. J., Stanke, T., Stecklum, B., Brandner,

W., Padgett, D. L., Stapelfeldt, K. R., and Yorke, H. W.: 1999, A&A 352, L73

156


	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Star Formation
	1.1.1 Molecular clouds
	1.1.2 Prestellar cores
	1.1.3 Accretion discs
	1.1.4 Solar-type protostars
	1.1.5 Main Sequence stars and the IMF

	1.2 Previous numerical work
	1.3 Aim of this thesis
	1.3.1 Thesis plan


	2 Ophiuchus
	2.1 Introduction
	2.2 Observations
	2.2.1 MAN98
	2.2.2 SSGK06
	2.2.3 SNW08
	2.2.4 ABMP07
	2.2.5 Comparison of Observations

	2.3 Isolated cores
	2.4 Lognormal distribution
	2.5 Summary

	3 Intrinsic core shapes
	3.1 Introduction
	3.2 Modelling the shapes of cores
	3.2.1 Model M1, one free parameter (o)
	3.2.2 Model M2a, two free parameters (o,o)
	3.2.3 Model M2b, two free parameters (b,c)
	3.2.4 Model M4, four free parameters (B,B,C,C)
	3.2.5 Projecting an arbitrarily oriented ellipsoid

	3.3 Bayesian analysis
	3.3.1 Prior PDF
	3.3.2 Markov chain Monte Carlo sampling
	3.3.3 Model selection

	3.4 Results
	3.4.1 Parameter estimation for M1
	3.4.2 Parameter estimation for M2a
	3.4.3 Parameter estimation for M2b
	3.4.4 Parameter estimation for M4
	3.4.5 Model selection

	3.5 Summary

	4 Internal structure
	4.1 The density profile
	4.2 The velocity field
	4.2.1 Turbulent motions
	4.2.2 Ordered motions
	4.2.3 Compressive and solenoidal velocity fields

	4.3 Summary

	5 Smoothed Particle Hydrodynamics
	5.1 Introduction
	5.2 The concept of SPH
	5.2.1 Kernel
	5.2.2 Smoothing length
	5.2.3 SPH equations
	5.2.4 Additional terms
	5.2.5 Artificial viscosity
	5.2.6 Time-dependent viscosity
	5.2.7 Gravity
	5.2.8 Integration scheme
	5.2.9 Resolution

	5.3 Sink particles
	5.3.1 Sink creation
	5.3.2 Sink accretion

	5.4 Summary

	6 Constituent physics
	6.1 Radiative transfer
	6.1.1 Pseudo-cloud
	6.1.2 Radiative heating and cooling
	6.1.3 Quasi-implicit scheme
	6.1.4 Implementation
	6.1.5 Equation of state
	6.1.6 Specific internal energy
	6.1.7 Opacity

	6.2 Accretion luminosity
	6.2.1 Episodic accretion
	6.2.2 Time dependent model

	6.3 Summary

	7 Setting up initial conditions
	7.1 Core parameters
	7.2 Internal structure
	7.2.1 Settled glass
	7.2.2 Density profile
	7.2.3 Velocity field

	7.3 Simulation suites
	7.4 Summary

	8 Results
	8.1 Simulations with 2:1 turbulence: =2
	8.1.1 Protostellar masses
	8.1.2 Comparison with the IMF
	8.1.3 Evolutionary stages
	8.1.4 Fragmentation
	8.1.5 Multiplicity statistics

	8.2 Simulations with compressive and solenoidal turbulence
	8.2.1 Compressive turbulence: =0
	8.2.2 Solenoidal turbulence: =
	8.2.3 Comparison of velocity fields

	8.3 Summary and conclusions

	9 Summary of this thesis
	9.1 Ophiuchus
	9.2 Intrinsic core shapes
	9.3 Internal structure
	9.4 Results
	9.4.1 Future work


	References

