
 

 

 

 

 

 

 

 

 

 

The Corneal Endothelium in Development, 

Disease and Surgery. 

 

 
A Thesis Submitted to Cardiff University for the Degree 

of Doctorate of Philosophy 

 

School of Optometry and Vision Sciences 

 
2013 

 

Frances E. Jones 
 

 



 

Acknowledgements  

 

Foremost, I would like to thank my supervisors Professor Andrew Quantock and Drs 

Rob Young and Jim Ralphs for their continuous support during my PhD and for their 

enthusiasm, advice and knowledge. 

 

My sincere thanks also go to Professor Keith Meek and Drs Carlo Knupp, Barbara 

Palka and Julie Albon for their invaluable advice, guidance and help regarding my 

research.  

 

I greatly appreciate the support I received from the collaborative work I undertook 

with Doshisha University, I would especially like to thank Professor Noriko Koizumi 

and Drs Naoki Okumura and Hiroki Hatanaka for their support in this research.  

 

I am grateful to the staff and students of the Structural Biophysics Group, especially 

Elena Koudouna, Siân Morgan and Drs Erin Dooley and Leona Ho, my friends and 

family for all their encouragement and help during this challenging period.  

 

Without this help this project would not have been possible, I am indebted to you all. 

 

 

 

 

 





 

Abstract 

 

Aims: The cornea is a tough, transparent tissue providing the primary refractive 

element of the eye. The stroma consists of specially arranged collagen required for 

corneal transparency. Correct stromal hydration is important in the maintenance of 

transparency, a feature controlled by the endothelial cells on the posterior surface of 

the cornea. The aims of this research were firstly to investigate the morphology of 

corneal endothelial cells and their expression of the sodium bicarbonate cotransporter 

during avian embryonic development and secondly, to clarify the effect of disease, 

surgery and drugs on the posterior cornea including in particular the corneal 

endothelium.  

 

Methods: The corneal endothelial cell morphology and posterior stroma were 

examined using transmission electron microscopy to determine the ultrastructure of 

the cells and collagen fibril arrangement in the stroma in all results chapters. 

Immunohistochemistry and A-scan ultrasonography were employed to identify the 

presence of the Na
+
HCO3

-
 cotransporter and to determine the thickness changes in 

embryonic chick cornea, respectively. Electron tomography was also used to 

determine the collagen arrangement in Descemet’s membrane.  

 

Results: The expression of the Na
+
HCO3

-
 cotransporter was identified in the 

endothelial layer of the embryonic chicks at all stages imaged. Central corneal 

thickness increased in the initial stages of development before a plateau between the 

E12-E15 developmental period followed by a steady thickness decrease. The 

ultrastructure of Descemet’s membrane was determined using electron tomography of 

transverse and en face resin embedded sections from which a model was produced. 

Polygonal and elongated structures were observed with proteoglycans present at the 

intermodal regions of the collagenous structures. The polygonal lattice visualised in 

en face sections appeared to be composed of stacked globular domains which were 

integrated into the collagen type VIII model. Predominant changes in the Col8a2 

knock-in mouse models were observed in the posterior cornea. Differences included 

increased proteoglycans at the Descemet’s endothelial interface, dilated rough 

endoplasmic reticulum and focal posterior oedema. This animal model exhibits 
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features similar to those seen in the human form of early-onset Fuchs’ endothelial 

corneal dystrophy, unlike previous models reported. The final chapter is concerned 

with regeneration of the corneal endothelial cells. Tissue from posterior corneal 

surgery examined using electron microscopy revealed the presence of the host 

endothelial cells and fibrous tissue at the interface in non-Descemet’s membrane 

stripping automated endothelial keratoplasty and interface haze in Descemet’s 

membrane stripping automated endothelial keratoplasty. However, these features did 

not appear to interfere with the adhesion of the graft nor the clarity.  

 

Finally, ultrastructural analysis of Rho-kinase inhibited cells showed cells with typical 

morphology when compared with the untreated group 

 

Conclusions: 1) The Na
+
HCO3

- 
cotransporter is present in the embryonic cornea. It is 

possible that the cotransporter is involved in the developmental stages and probably 

the thickness changes we observe during this period. 2) The ultrastructure of 

Descemet’s membrane appears to be composed of stacked globular domains arranged 

in a polygonal lattice alongside more elongated structures interspersed with 

proteoglycans within the internodal regions. 3) Our studies have helped validate 

Col4a2 mice as a promising Fuchs’ endothelial corneal dystrophy model. 4) Our 

investigation into posterior corneal surgery revealed ultrastructural changes that occur 

post-surgery at the graft interface.  
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1. 

 

The cornea is a transparent, tough, connective tissue providing the primary refractive 

element within the eye. This tissue is responsible for more than two thirds of the eye’s 

dioptric power (42.4 Dioptres), the remainder of which is provided by the crystalline 

lens, controlled by the muscles of the ciliary body. Together with the sclera and 

limbus, the cornea forms a protective envelope enclosing the ocular tissue (Figure 

1.1). Collagen fibrils constitute the principal components of the cornea and sclera, 

conferring rigidity and protection; however, these tissues are remarkably different in 

collagen organisation resulting in corneal transparency and scleral opaqueness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.1 The Cornea: Structure and Function  

 

The cornea (Figure 1.2) is comprised of five main layers; an outer epithelium anterior 

to Bowman’s layer, the corneal stroma, Descemet’s membrane and most posterior, the 

corneal endothelium. Corneal avascularity and the regular arrangement of the 

collagen fibrils within the stroma are essential for corneal clarity. Oxygen is 

predominantly obtained from the tear film, whilst nutrients originate from the aqueous 

humour that bathes the endothelium. The tear film also plays a role in protection 

against microbes and pathogens that come into contact with the anterior surface by 

producing immunoglobulins and antimicrobials. It also provides a clear refractive 

interface for the cornea, filling depressions present in the epithelial layer.  

Limbus 

Figure 1.1 Cross section schematic of human eye. Adapted from http://www.royles-

opticians.co.uk/glossary.shtml 
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1.2 Corneal Epithelium 

 

The corneal epithelium is a stratified, non-keratinised layer between five and six cells 

thick that is continuous with the conjunctiva at the corneal limbus. The layer is 

composed of three cell types, the outermost superficial cells, wing cells and finally 

basal cells, the innermost layer in which mitosis occurs. Older epithelial cells move 

toward the surface of the cornea and are replaced by daughter cells that become more 

differentiated with time. Cells eventually degenerate and are shed from the corneal 

surface, a process resulting in replacement of the entire epithelium every seven days 

(Hanna et al, 1961) from limbal stem cells (Davanger and Evensen, 1971; Dua and 

Azuara-Blanco, 2000). These stem cells are located in the basal region of the limbus 

and divide to produce the daughter transit amplifying cells that migrate to populate 

the epithelium basal layer. These cells differentiate, eventually becoming post-mitotic 

terminally differentiated cells. In development the corneal epithelium is responsible 

for secreting the primary stroma (Hay and Dodson, 1973), a collagenous matrix 

comprising of collagen types I and II (Linsenmeyer et al, 1977; Von der Mark et al, 

1977) that appears on embryonic day 3 (E3) in the avian cornea. (Hay and Revel, 

1969). The basal cells of the epithelium lie on and produce a basement membrane, 40-

60nm thick, anterior to Bowman’s layer (Kenyon, 1969). The basal lamina is 

composed of collagen and glycoproteins, whilst short anchoring filaments attach it 

firmly to Bowman’s membrane on its posterior surface.  

Figure 1.2 Cross-section of cornea.  
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1.3 Bowman’s Layer 

 

Bowman’s layer is an acellular, 8-14µm thick zone posterior to the basal lamina. This 

layer is present in primates but absent in many species inluding cats, dogs, mice and 

other carnivores (Calmettes et al, 1956). The layer is composed of type I, III, V and 

VII collagen (Gordon et al, 1994; Nakayasu et al, 1986) of uniform size which 

become more ordered in the posterior region of Bowman’s. These fibrils are thinner 

than those present in the stroma and their compact arrangement confers strength to 

this layer helping its resistance to trauma. Anterior Bowman’s is smooth, whilst 

posteriorly it fuses indistinctly with collagen in the stroma.  

 

1.4 Stroma 

 

The stroma is a dense, regularly packed structure of collagen fibrils arranged as 

orthogonal layers or lamellae (200-300 centrally) that lie within a proteoglycan matrix 

interspersed with keratocytes. The stroma constitutes around 90% of the cornea’s 

thickness, measuring around 500 µm in man. Lamellae consist of small diameter 

collagen fibrils (25-30 nm) whose arrangement allows minimal light scattering, 

permitting transparency. The stroma is made up of predominantly type I collagen, 

each layer between 1.5-2.5 µm thick. Keratocytes occupy 2.5-5% of the stroma 

(Smelser and Ozanics 1965), these are mesenchymal-derived cells responsible for the 

synthesis of stromal collagen and wound healing. Stromal repair involves activation 

of keratocytes and production of scar tissue.  

 

1.4.1 Collagen 

 

Collagen is the main component of connective tissue present in tendon, ligament, 

skin, cornea, cartilage, bone and blood vessels. Collagen has a unique structure 

composed of three polypeptide chains assembling into a triple-helical arrangement. 

Corneal collagen fibrils are organised into layers referred to as lamellae in which 

collagen fibrils tend to be aligned in the same direction, surrounded by proteoglycans. 

The three polypeptide chains (α-chains) are made up of a sequence of amino acids 

characterised by the repeating motif G-X-Y, where G represents glycine. The 

presence of glycine, the smallest amino acid, at every third position is important for 



Chapter 1: Introduction  

17 

 

the formation of the triple helix. Biosynthesis of fibril-forming collagens begins when 

collagen polypeptide chains are synthesised on the ribosomes of the rough 

endoplasmic reticulum (RER) before being moved into its lumen. Here, they undergo 

triple helix formation before the procollagen molecule (precursor form) is secreted 

into the extracellular matrix (ECM) for enzyme modification. Specific proteases 

cleave the N- and C- propeptides on the globular ends (Kielty and Grant, 2003) 

(Figure 1.3) allowing the molecules to associate into fibrils (Kadler et al, 1987) that in 

turn assemble into collagen fibres. The presence of the globular ends prevents 

aggregation and fibril assembly occurring intracellularly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corneal transparency is due primarily to the uniformly small diameter (25 nm) of 

collagen fibrils and their regular interspacing. Collagen types I, III, and V assemble 

into cross striated fibrils whose molecules have staggered ends at one-quarter of their 

Figure 1.3 Schematic of the steps involved in collagen biosynthesis. Collagen polypeptide synthesis 

and triple helix formation occurs in the RER prior to secretion of the procollagen into secretory 

vesicles. Once in the ECM, proteases cleave the N and C propeptides before fibril formation (Taken 

from Kielty and Grant, 2003) 
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length referred to as the ‘quarter staggered array’. D periodicity (Chapman et al, 

1990) results from molecules in a quarter staggered assembly. The D period has a 

value of 67 nm (65 nm in cornea) and is comprised of a gap (4 molecules) and an 

overlap (5 molecules) region. Staining with a heavy metal under transmission electron 

microscopy (TEM) shows the banding pattern present in the D period, displaying five 

staining zones labelled a-e (Figure 1.4). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.1.1 Fibril Forming Collagens 

 

Fibril-forming collagens consist of an uninterrupted triple helix synthesised as 

procollagen molecules that undergo processing to assemble into collagen fibrils. The 

major fibrillar collagens are long, unbranched and have a periodicity of between 60-

70 nm. 

 

Type I collagen is an abundant heterotrimeric fibrillar collagen composed of two α1 

chains and one α2 chain (Piez et al, 1963). It is not only found in primary 

(Linsenmayer et al, 1977) and secondary cornea but also in many other adult 

connective tissues. Type I collagen molecules are 300  nm long with a diameter of 1.5 

Figure 1.4 Collagen fibril structure. (a) Collagen arrangement includes gap and overlap regions that 

represent the D period. The light and dark regions observed in (b) indicate the preferential stain 

penetration. (c) Darkly stained areas are the result of the uptake of electron-dense heavy metal ions 

from the stain (Chapman et al, 1990).  
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nm. Type I collagen is essential for corneal tensile strength and for the establishment 

of normal stromal organisation, this is demonstrated by Mov13 mutant mice where a 

lack of collagen type I results in thin fibrils with no orthogonal arrangement (Bard and 

Kratochwil, 1987). In the avian cornea there is strong evidence that collagen type I 

forms heterotypic fibrils with collagen type II during development and with type V 

collagen in mature stroma (Hendrix et al, 1982).  

 

Type II is a homotrimeric collagen consisting of three identical α1(II) chains, present 

in the primary stroma of embryonic chick (Linsenmayer et al, 1977). Type II collagen 

is converted into fibrils within the primary stroma (Chen et al, 1993). Type II collagen 

mRNA was also detected after cell invasion, thought to function as a template for 

corneal growth (Linsenmayer et al, 1990). Synthesis of type II is superseded by 

collagen type I synthesis by mesenchymal cells post E10.  

 

One of the most heterogeneous collagens is type V, the most common isoform 

comprising of α1(V)2 α2(V) is present in the cornea (Birk et al, 1988). The 

appearance of type V collagen has been shown to coincide with mesenchyme invasion 

(Linsenmayer et al, 1984) and is coassembled with type I collagen. Types I and V 

form heterotypic structures (Fitch et al, 1984; Birk et al, 1988) that help to regulate 

fibril diameter within the cornea (Birk et al 1990).  

 

1.4.1.2 Non-Fibrillar Collagens 

 

1.4.1.2.1 FACIT Collagens 

 

Fibril associated collagens with interrupted triple helices (FACIT) are a family of 

collagens including type IX, XII, XIV, XVI, XIX and XX (Gordon et al 1989). 

FACIT collagens are capable of interacting with fibrillar collagens, characterised by 

short triple helices interrupted by non-collagenous sequences (Kielty and Grant, 

2003).  

 

Type IX is a major FACIT collagen present in the early developing chick cornea 

(Fitch et al, 1988; Svoboda et al, 1988). There is a decrease in type IX collagen prior 

to stromal invasion by mesenchymal cells (Fitch et al, 1988; Cai et al, 1994) and by 
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E11 it is undetectable. Type IX is thought to act as a stabilising factor concerned with 

keeping the primary stroma in a compact form. As a result, when type IX collagen is 

removed mesenchymal cells are able to invade the tissue and construct the secondary 

stroma (Cai et al, 1994).  

 

1.4.1.2.2 Short Chain Collagens 

 

Type VI is a short chain collagen comprised of short triple helical domains (105 nm) 

which come together to form tetramers. Dimers are formed by lateral aggregation of 

anti-parallel monomers; these align to form tetramers whose structures aggregate end-

to-end resulting in long, thin, beaded filamentous structures (Kielty and Grant, 2003). 

 

Type VIII collagen is a non-fibrillar short chain collagen originally identified as a 

product of endothelial cells from bovine aorta and rabbit cornea (Sage et al, 1983). It 

is a major component of Descemet’s membrane, made up of two distinct α-chains 

forming heterotrimers (α1(VIII)2 α2(VIII)). A collagen type VIII hexagonal lattice is 

observed in Descemet’s (Sawada et al, 1990) which is arranged in stacks parallel to 

the surface of the membrane (Figure 1.5). Rotary shadowing images show a 132.5 nm 

long, rod shaped structure with large and small domains at either end. These globular 

regions are the non-collagenous domains, whilst the filamentous structures represent 

the triple helices (Shuttleworth, 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Hexagonal lattice present in Descemet’s membrane. Type VIII collagen forms open 

hexagonal arrays that are stacked in parallel to the surface of the membrane. Rotary shadowing 

imaging shows a rod like structure measuring 132.5 nm Taken from Shuttleworth, 1997; Kielty and 

Grant, 2003. 
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  1.4.2 Proteoglycans 

 

Proteoglycans have been implicated in cell motility, adhesion, differentiation and 

morphogenesis. They are present in connective tissue, on cell surfaces and in 

extracellular matrices. Proteoglycans are also present within the stroma. They are 

small in size (approx. 50kDa) allowing them to fit into the spaces between the 

collagen fibrils which helps to regulate spacing (Cintron et al, 1978; Hassell et al, 

1983). Proteoglycans consist of a core protein (25-450kDa) with one or more 

covalently attached glycosaminoglycan (GAG) chains, by which they are named and 

grouped. 

 

Proteoglycans present in the stroma belong to the small leucine-rich proteoglycan 

(SLRP) family that interact with fibrillar collagens to achieve correct collagen 

spacing. The leucine-rich repeats make up the central part of each protein flanked by 

cysteine-rich regions. Another dimension is the attachment of one or more GAG 

chains.  The current theory suggests that the core proteins of the proteoglycans bind to 

the surface of collagen fibrils to help modulate interfibrillar spacing (Scott, 1996). 

Proteoglycan synthesis involves precursor protein release into the RER before being 

processed in the Golgi, involving the addition of the GAG chains. The fate of the 

proteoglycan is then dependent on the tissue and the proteoglycan itself. For example, 

some proteoglycans will be secreted into the extracellular matrix where they become 

structural components, others can be deposited on the cell surface as a membrane 

component (Hassell et al, 1986). 

 

1.4.3 Glycosaminoglycans 

 

GAGs are a class of biological macromolecules that are major structural components 

of proteoglycans. GAGs are linear polysaccharides composed of repeating 

disaccharide units in which the disaccharide building blocks consist of an amino sugar 

and a uronic acid or galactose. The predominant corneal GAG side chains are 

chondroitin sulphate/dermatan sulphate (CS/DS), keratan sulphate (KS) and smaller 

amounts of heparan sulphate (Hassell et al, 1986). Sulphate groups present on GAG 

chains bind water. At the correct hydration present in normal cornea, CS/DS chains 

are fully hydrated whilst KS chains are not. These may act as a reserve for hydration 
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(Bettelheim and Plessy, 1975). GAGs carry a very high negative charge density 

provided by the sulphate and uronic acid at physiological pH (Gandhi and Mancera, 

2008). The negative charge on the sulphate group allows proteoglycans to make ionic 

interactions with arginines, lysines and histidines on the surface of proteins.  

 

1.4.3.1 Keratan Sulphate  

 

KS is the major GAG in the corneal stroma regulating matrix architecture (Anseth, 

1961; Funderburgh et al, 1986). In the cornea, KS is present on three SLRPs, lumican 

(Blochberger et al, 1992), keratocan, and mimecan (Corpuz et al, 1996). Electron 

microscopy on bovine cornea revealed KS proteoglycans are 40 nm long (Scott, 1992) 

and capable of fitting in between (Hassell et al, 1983) and interacting with collagen 

fibrils (Scott and Haigh, 1985). Corneal KS consists of repeating N-

acetylglucosamine and galactose units, linked to an asparagine residue in the core 

protein (Figure 1.6). KS is only partially hydrated, suggesting it plays a role in 

buffering corneal hydration. Lumican is one of the major corneal KS proteoglycans 

with an abundant amount of mRNA (Blochberger et al, 1992), suggesting it has an 

important role. The leucine rich repeat region allows lumican to interact with collagen 

fibrils to modulate fibril formation whilst the GAG chains extend out to regulate 

interfibrillar spacing (Weber at al, 1996). The importance of KS is seen in 

homogenous lumican knockouts that show altered collagenous matrix characteristics 

including disorganised collagen spacing and larger fibril diameter (Chakravarti et al, 

1998). However, keratocan knockouts result in thinner corneas but show no 

significant alteration of stromal collagenous matrix (Kao and Liu, 2003). 

 

 

 

 

 

 

 

 

 

 
Figure 1.6 Simplified schematic of the repeating units in KS. Linear polymer of N-

acetylglucosamine and galactose. Adapted from Esko et al, 2009. 
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1.4.3.2 Chondroitin Sulphate/Dermatan Sulphate 

 

CS is composed of alternating N-acetylgalactosamine and glucuronic acid whilst DS 

is distinguished by the presence of iduronic acid in place of glucuronic acid (Figure 

1.7). Electron microscopy on bovine corneas revealed CS/DS proteoglycan filaments 

are 70 nm long (Scott, 1992) and attach to the protein core via a serine residue. 

Decorin, the other main proteoglycan present in cornea (Li et al, 1992), has a GAG 

chain composed of a CS/DS hybrid linked to serine residues in the core protein. 

Mutations in decorin have been linked to congenital stromal dystrophy, a disease 

characterised by corneal opacity demonstrating its importance within this tissue 

(Bredrup et al, 2005). Decorin is responsible for collagen organisation within the 

stroma (Scott, 1992) as well as influencing the activity of growth factors including 

transforming growth factor β (Iozzo et al, 1999).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4.4 Collagen-Proteoglycan Interactions 

 

Evidence suggests that there is direct contact between collagen fibrils and the 

proteoglycan protein core. Two-dimensional electron microscopy used to measure 

Cuprolinic blue-stained tissue has shown that CS/DS proteoglycans are 70 nm long, 

whereas KS proteoglycans are 40 nm long (Scott, 1992). Various models have been 

proposed for the collagen organisation within the stroma. Farrell and Hart considered 

models where GAG chains formed bridges between collagen fibrils. For example, six 

GAG chains from one collagen fibril would connect six neighbouring fibrils (Farrell 

Figure 1.7 Simplified versions of CS and DS. Repeating units of N-acetylgalactosamine and 

glucuronic acid are present in CS whereas glucuronic acid is substituted for iduronic acid in DS. 

Modified from Esko et al, 2009. 

 

CS 

DS 
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and Hart, 1969). All of the models have one thing in common, that being, they all 

have a sixfold symmetry of the collagen-proteoglycan interaction. Muller offered a 

theory similar to Farrell’s which included six proteoglycan bridges extending from 

one collagen fibril. In this model the bridges do not interact with the nearest or 

adjacent collagen fibril but with the next nearest neighbouring fibril (Muller et al, 

2004). This would result in a sixfold symmetry. Nevertheless, transverse views of the 

stroma show it does not have a perfect sixfold symmetry and that this is not a 

requirement for transparency. A more recent study proposed a model whereby 

proteoglycan protein cores attach to the collagen fibril leaving their GAG chains to 

interact with other GAG chains. No sixfold arrangement was observed in this three 

dimensional tomography study but it did show bridges connecting fibrils (Lewis et al, 

2010). The three-dimensional reconstructions using bovine cornea found that CS/DS 

proteoglycans form long chains that extend between several collagen fibrils whereas 

KS proteoglycans, being shorter, connect only adjacent fibrils. In the model proposed 

by Lewis, the GAG chains, if long enough, can make noncovalent antiparallel 

connections between the same proteoglycan, or a mix (i.e. KS and CS/DS chain). This 

study also describes how opposite forces are present between collagen fibrils, an 

attractive and repulsive force. The attractive force is produced by the thermal motion 

between the GAG chains arising between the fibrils due to the chain vibrations that 

pull the core proteins together. The repulsive force is caused by the Donnan potential, 

positively charged ions are drawn in by the charges on the GAG chains creating a 

local gradient within the stroma that attracts water molecules by osmosis (Elliott and 

Hodson, 1998). The water molecules occupy the space between the fibrils causing a 

repulsive force between them. It is thought that these two forces are equal, hence, the 

space between the collagen fibrils is maintained (Lewis et al, 2010) (Figure 1.8).  
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1.5 Transparency Theories  

 

Several transparency theories exist within the literature but there is still debate about 

which one represents best the cornea itself. A lattice or interference model suggesting 

that the cornea is made of a hexagonal lattice of regularly arranged collagen fibrils 

with equal spacing was proposed by Maurice (1957). Maurice recognised a regular 

hexagonal lattice would result in secondary radiation emanating from the fibrils to 

interfere either constructively or destructively. If the size of the components within 

this lattice is less than that of the wavelength of the incoming light, crests would sum 

to troughs in every direction except forward. In simpler terms, all of the secondary 

light would be cancelled out except for that moving in the forward direction resulting 

in transparency (Maurice, 1957).  

 

Figure 1.8 Proposed models for proteoglycan controlling mechanisms and collagen-proteoglycan 

interactions. Two opposite forces exist between collagen fibrils, an attractive force caused by the 

thermal motion of the proteoglycan/GAG complex (A) and a repulsive force due to the Donnan effect 

(B). (C) Black arrows indicate the antiparallel interactions between CS/DS GAG chains, whereas the 

black arrowheads represent the interaction between KS GAG chains. White arrowhead shows the 

hybrid KS-CS/DS antiparallel interaction. Taken from Lewis et al, 2010. 
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EM studies do not show a regular packing of collagen and some believe that a less 

ordered structure would also allow transparency (Hart and Farrell, 1969; Cox et al, 

1970). It is thought that the narrow distance between adjacent fibrils is of more 

importance i.e. this distance must be similar and less than half the wavelength of the 

incoming light. As long as the degree of order is sufficient to warrant constructive 

interference of waves only in the forward direction and destruction of scattered light, 

corneal transparency will prevail (Hart and Farrell, 1969). Proteoglycans are also 

thought to be implicated in the onset of corneal transparency during development. 

Variations in the nature of the proteoglycans are thought to be important in the 

regulation of cell migration and differentiation during corneal development (Quantock 

and Young, 2008).  

 

1.6 Descemet’s Membrane 

 

Descemet’s membrane, the basal lamina of the endothelium, is predominately 

composed of type IV (Kefalides et al, 1976) and type VIII collagen (Tamura et al, 

1991). This membrane was first described by Descemet in 1758, a membrane 

produced by the endothelium (Hay and Revel, 1969; Perlman and Baum, 1974) with a 

more detailed structure than most. In adults the membrane is divided into two zones, 

anterior and posterior. The anterior third of Descemet’s is approximately 3.5µm thick, 

produced during development and viewed as an irregular banded pattern. The 

remaining two thirds of the membrane is the posterior non-banded zone. This zone 

increases with age, reaching up to 20µm in some elderly patients (Murphy et al, 

1984). Descemet’s membrane is attached to the endothelium by a transitional zone 

known as the ‘interfacial matrix’, an area where type IV collagen is observed (Fitch et 

al, 1990). Fibronectin and laminin (Gordon, 1988) are also present within the 

membrane. Fibronectin adheres the endothelial cells to the membrane 

(Gospodarowicz et al, 1979), however, its exact location is yet to be determined. 

Some studies report its presence on the stromal side of the membrane (Tervo et al, 

1986; Sramek et al, 1987) or in a bilayered distribution (Morton et al, 1989). 

 

1.7 The Corneal Endothelium 

 

The posterior surface of the cornea is lined by a single layer of hexagonal cells known 

as the endothelium. Hay and Revel (1969) concluded this layer was derived from a 
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mesodermal origin in the avian cornea. Johnston’s findings contradicted these 

conclusions suggesting that corneal endothelial cells are derived from 

neuroectodermal origin rather than mesodermal as originally thought (Johnston et al, 

1979). Mitosis occurs in young human endothelium, but is infrequent in the adult 

(Joyce et al, 1996), with an average cell density of 2000cells/mm
2
. The corneal 

endothelium measures 4-6µm thick. The number of endothelial cells declines through 

life, however, the number of cells present at birth is enough to last a lifetime (over 

100 years). The minimum density required to maintain the functions of the cell 

monolayer is 400-700cells/mm
2
 (Bourne and Kaufman, 1976). Cell-cell contact 

prevents cell proliferation (Wulle and Lerche, 1969), a process known as contact 

inhibition. The benefit of a non-proliferating endothelial layer is unclear. Typically 

active endothelial cells are identified as having large nuclei, numerous mitochondria, 

prominent endoplasmic reticulum and Golgi apparatus. A healthy endothelial layer 

has cells of uniform size with between 70-80% of cells having a hexagonal shape.  

 

In chicks interdigitations are present on the lateral and basal membranes of the 

corneal endothelium during development (Figure 1.9) but decrease by 13 days post 

hatch as the cells have spread, this could act as a mechanism for reserving the cell 

membrane (Materson et al, 1977).  

 

 

 

 

 

 

 

 

 

 

 

Endothelial wound healing occurs by enlargement and migration of remaining cells 

resulting in an age related cell size increase (Figure 1.10) (Svedbergh and Bill, 1972; 

Laing et al, 1976; Murphy et al, 1984; Landshman et al, 1988). Cells surrounding the 

wound enlarge and elongate into the damaged area without losing contact with 

Figure 1.9 Interdigitations present in the endothelial cell membrane at stage 36. Interdigitations 

(arrowheads) are thought to act as a reserve/store of the cell membrane (Materson et al, 1977).  
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neighbouring cells. This mechanism is known as monolayer spreading (Kaufman and 

Katz, 1977; Joyce et al, 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7.1 Proliferation  

 

Studies have found a higher cell density of cells in the periphery compared to the 

centre of the endothelial layer in normal human corneas (Schimmelpfennig, 1984). 

The peripheral regions also have a reduced rate of cell density reduction suggesting 

that this could be a regenerative zone. Telomerase activity was found in peripheral 

regions in both young and old donors, with younger donors having increased 

telomerase activity compared to the older group. However, the same study found no 

telomerase activity in central cornea (Whikehart et al, 2002). These findings suggest 

that the peripheral regions of the endothelium may act as a source of cell renewal. 

Endothelial cells are capable of cell proliferation but remain arrested in the G1-phase 

of the cell cycle, a theory supported by Joyce, who found no Ki67 expression (a 

marker of actively cycling cells) (Joyce et al, 1996). Studies comparing old and young 

endothelium showed significantly lower numbers of older donor endothelial cells 

entering the cell cycle compared to younger cells (Senoo and Joyce, 2000). This 

signifies that age related changes exist within endothelial cells, decreasing their 

proliferative capacity.  There is also strong evidence that cell-cell contact is an anti-

proliferative factor and a predominant cause of total cessation of endothelial 

proliferation in vivo (Senoo et al, 2000).  

Figure 1.10 Age related changes in endothelium cells. (A)20 years (B)44 years (C)59 years (D)69 

years (E)83 years. Decreased cell density and increased cell size are observed (Laing et al, 1976). 



Chapter 1: Introduction  

29 

 

 

1.7.2 Growth Factors 

 

Growth factors act by binding to cell-surface receptors, resulting in a range of 

intracellular signals that are important for a variety of cellular processes. Many of the 

growth factors are produced by the endothelial cells themselves or are present in the 

aqueous humor and help to regulate the monolayer. Growth factors may be beneficial 

not only for endothelial proliferation in wound healing but also as a component of 

corneal preservation media for human donor corneas. A proliferative additive in 

preservation medium may result in less endothelial cell loss and improved graft 

results.  

 

Epidermal growth factor (EGF) has many biological activities throughout the body 

including cell growth and proliferation via the EGF receptor. In the corneal 

endothelium EGF stimulates cell division, migration and elongation of cells in cell 

culture systems in bovine (Gospodarowicz et al, 1977; Crow et al, 1994), human 

(Fabricant et al, 1982; Samples et al, 1991) and rabbit models (Raymond et al, 1986; 

Hongo et al, 1992). Interestingly, in one study, EGF increased cell cycle entry in older 

cells with relatively little effect on younger cells (Senoo and Joyce, 2000) which may 

be beneficial in endothelium regeneration in elderly patients. Platelet derived growth 

factor (PDGF) promotes wound healing in human (Hoppenreijs et al, 1994) and also 

stimulates mitosis of endothelial cells in bovine and rabbit (Hoppenreijs et al, 1993; 

Hecquet et al, 1990). Fibroblast growth factor (FGF) changes corneal endothelial cell 

shape and stimulates mitosis in bovine (Feldman et al, 1992, Woost et al, 1992), 

rabbit (Raymond et al, 1986; Kay et al, 1993) and human (Engelmann et al, 1988; 

Nayak and Binder, 1984). There is still much work to do in this area of endothelial 

regeneration, for example the effect of these agents on older endothelial cells and the 

side effects. However, they could be beneficial in endothelial wound healing and 

repair. There are also features that negatively regulate proliferation such as 

transforming growth factor-2 (TGF-2) present in the aqueous humor. Contact 

inhibition can also stop endothelial cell proliferation, leaving the monolayer in a 

contact-inhibited state (Joyce et al, 2002). Other external factors reducing cell counts 

include trauma, ultraviolet radiation, intraocular surgery, dystrophies and contact lens 

wear.  
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1.7.3 Tight Junctions  

 

Tight junctions (maculae occludens) are located on the apical surface of the 

basolateral membrane (Hirsch et al, 1977; Stiemke et al, 1991). Trans-membrane 

molecules in tight junctions include occludins, claudins, and junction adhesion 

molecules (JAMs) that interact with their homophilic counterparts on neighbouring 

endothelial cells (Mehta and Malik, 2006) (Figure 1.11). Tight junctions in the 

endothelial layer offer a weak resistance to the paracellular movement of water and 

solutes, this is apparent by the low trans-endothelial resistance of between 15-25Ω.cm 

(Edelhauser, 2006; Srinivas et al, 2004). However, if this barrier breaks down, stromal 

swelling will result (Edelhauser, 2006), demonstrating the importance of tight 

junctions in the maintenance of stromal hydration. TEM has shown electron dense 

regions between rabbit endothelial cells very early in gestation (Hirsch et al, 1976), 

these were interpreted as tight junctions. A more complicated junctional network is 

built as more strands are formed and a more complex tight junction results in 

decreased endothelial permeability (Stiemke et al, 1991). This was tested using 

carboxyfluorescein, a hydrophobic dye measuring intracellular permeability (Grimes 

et al, 1982). Peroxidase injection fills intercellular spaces either side of the junctions 

which suggests incomplete zona occludens exist in the endothelial layer (Kaye et al, 

1973; Hirsch et al, 1976). Tight junctions could also influence the endothelial pump 

by helping maintain the osmotic gradient that promotes trans-endothelial fluid 

movement and assisting apical-basal polarity of proteins including those transported 

via the pump. If tight junction breakdown occurs polarity and pump rate would 

become affected.  

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Apical junctions present in the endothelial monolayer. Schematic of the apical junction 

complex. Tight junctions are made up of several trans-membrane and cytoplasmic components 

including occludin, claudin, and JAM that maintain homophilic interactions with their counterparts in 

the neighbouring cells. They are also linked to the actin cytoskeleton via adapter proteins such as ZO-1 

(Adapted from Srinivas 2010). 

F-Actin

-cat

p120

- cat

F-Actin

-cat-cat

p120

- cat

Myosin-IIZO-1

F-Actin

Myosin-IIZO-1

F-Actin

Claudin

Occludin

JAM

Cadherin

Apical membrane



Chapter 1: Introduction  

31 

 

 

Gap junctions are also present in the endothelial layer although they diminish in 

number with age, suggesting they are present for increased intercellular 

communication when the endothelium is organising itself (Stiemke et al, 1991). One 

study found no change in endothelial permeability despite the loss of gap junctions 

which reveals these junctions may not be of primary importance in the maintenance of 

the corneal endothelial barrier (Watsky et al, 1990).    

 

1.7.4 Membrane Potential 

 

The resting membrane potential of any cell is the result of ionic conductance 

properties that arise from transporters and channels present in the cell membrane. The 

resting membrane potential will have an important role in the cells transport 

functions. Different studies have been carried out aiming to measure resting 

membrane potentials of the corneal endothelium, potentials ranged from +2.2(1.0) to 

-61.6(4) mV. Most studies found mean values ranging between -30 to -50mV, 

measured between 22 and 37C in intact and cultured cells (Wiederholt and Koch, 

1978; Jumblatt, 1981; Jentsch et al, 1984).  

 

1.7.5 Pump 

 

The epithelium and endothelium are important layers in the cornea which were first 

recognised to behave as semi-permeable membranes by Kinsey and Cogan (1942). 

The endothelial layer has as a leaky membrane (Hirsch et al, 1977) due to the low 

resistance junctions between the cells, this enables a leak of solutes and fluid across 

the endothelial barrier into the stroma. The layer’s primary role in corneal hydration is 

maintained by a pump function; this has been demonstrated by a study measuring the 

corneal thickness in vitro with removal of the epithelium. The results show that 

corneal thickness was maintained for more than 6 hours casting doubt on the role of 

the epithelial layer in regulating corneal hydration (Doane and Dohlman, 1970). Riley 

concluded that the epithelium is a semi-permeable layer but acts primarily as a barrier 

and therefore the endothelium must control corneal hydration (Riley, 1971). 
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1.7.5.1 Sodium Bicarbonate Cotransporter  

 

Ion-coupled fluid transport is important for corneal hydration and transparency. 

Studies have shown that hydration and intracellular pH (Bonanno and Giasson, 1992; 

Bonanno et al, 1999) are dependent on the transport of bicarbonate and are sensitive 

to carbonic anhydrase inhibitors (Fischbarg and Lim, 1974; Hodson, 1971; Hodson, 

1974: Hodson and Miller, 1976: Kuang et al, 1990). Bicarbonate
 
is now recognised to 

be one of the important ions involved in the endothelial pump system (Hodson and 

Miller, 1976; Jentsch et al, 1984; Riley et al, 1995; Bonanno, 2003) and results in a 

small apical side negative transepithelial potential (Fischbarg and Lim, 1974; Hodson 

and Miller, 1976). Two thirds of the substrate is derived from exogenous bicarbonate, 

the remaining third is supplied by the conversion of exogenous carbon dioxide by 

intracellular carbonic anhydrase (Hodson and Miller, 1976). 

 

Evidence suggests that an electrogenic bicarbonate sodium cotransporter exists and is 

responsible for mediating bicarbonate
 

exit via the endothelial apical membrane 

(Jentsch et al, 1985). Further studies carried out on bovine tissue have shown there is 

an uptake of bicarbonate
 
by a sodium (Na

+
)
 
dependent, 4,4'-Diisothiocyano-2,2'-

stilbenedisulfonic acid sensitive electrogenic transporter (Bonanno and Giasson, 

1992; Bonanno et al, 1999; Jenstch et al, 1984). Rationale behind this cotransporter 

participating in bicarbonate uptake was indicated by three findings 1) steady-state pH 

was higher in the presence of bicarbonate 2) 4,4'-Diisothiocyano-2,2'-

stilbenedisulfonic acid added to the basolateral membrane reduced pHi and 3) 

intracellular Na
+
 concentration was higher in the presence of bicarbonate ions 

(Bonanno and Giasson, 1992).  

 

As well as the basolateral Na
+
/2HCO3

-
 cotransporter (NBC) (Bonanno and Giasson, 

1992; Bonanno et al, 1999; Sun & Bonanno, 2003) the endothelial transport system 

requires the presence of the Na
+
/K

+
/2Cl

-
 cotransporter, the 2Cl

-
/2HCO3

-
 exchanger, 

Na
+
/H

+
 exchange and apical anion channels permeable to both chloride (Cl

-
) and 

bicarbonate. It is thought that together these channels and transporters move 

bicarbonate
 
from the stroma into the aqueous humor. There is now a consensus that 

the NBC is present on the basolateral membrane. Movement of bicarbonate
 
requires 

energy (Green, 1991; Hodson and Miller, 1976) provided by the Na
+
/K

+
 ATPase 
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located on the basolateral membrane (Green, 1991; Hodson and Hodson, 1988). The 

location of the Na
+
/K

+
 ATPase on the basolateral membrane suggests that the 

cotransporter is probably located here to obtain the energy necessary for bicarbonate
 

transport (Wigham et al, 1994). Studies have also localised the cotransporter to the 

basolateral cell membrane in bovine corneal endothelium (Sun et al, 2000). 

Basolateral NBC loads endothelial cells with bicarbonate from the stromal side, once 

inside the cell there is a net conversion of bicarbonate to carbon dioxide by carbonic 

anhydrase II. There are three possible modes of bicarbonate efflux into the aqueous 

humor, 1) Cl
-
/HCO3

- 
 exchange, 2) CO2 efflux and conversion to bicarbonate

 
 via 

membrane bound carbonic anhydrase IV (Bonanno et al, 1999) and finally 3) 

conductive flux through anion channels (Sun et al, 2000). A 1:2 stoichiometry results 

in an influx of bicarbonate
 
ions, thus, this is thought to exist in endothelial cells 

(Bonanno and Giasson, 1992). Two isoforms of NBC have been cloned, kidney 

(kNBC) and pancreatic (pNBC), the difference between the two lies in the NH2 

terminus. The stoichiometry of both kNBC and pNBC can change depending on the 

cell type (Gross et al, 2001) and location, respectively. The pancreatic isoform is 

present in bovine (Sun et al, 2000) and human (Sun and Bonanno, 2003) corneal 

endothelial cells. One study suggests that both the kNBC and pNBC isoforms are 

present in cultured and fresh human corneal endothelial cells (Usui et al, 1999), 

however, a later study contradicted these findings detecting only pNBC in fresh 

human corneal endothelial cells (Sun and Bonanno, 2003). Studies have found that 

apical permeability to bicarbonate
 

is significantly lower than the basolateral 

permeability (Bonanno et al, 1999), consequently this could be the rate-limiting step 

in the transendothelial transport of bicarbonate. 

 

1.7.5.2 Na
+
/H

+
 Exchange 

 

There is also evidence for sodium hydrogen (Na
+
/H

+
) exchange in endothelial cells. 

When an acid load is counteracted to recover the pHi in the absence of bicarbonate 

ions, the Na
+
H

+
 exchanger becomes inhibited by amiloride (a Na

+
/H

+
 exchanger 

inhibitor) (Bonanno and Giasson, 1999). The predominant alkalinising mechanism, 

Na
+
/H

+
 exchange, is thought to be present but not active in the presence of 

bicarbonate. Previous studies on the Na
+
/H

+
 exchanger show that the activity is 

reduced as pHi increases and activated when pH decreases (Aronson, 1985). This 
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occurs in all cell types including the corneal endothelium suggesting pH sensitivity 

with activity ceasing at pH 7.2-7.3). The exchange becomes active when intracellular 

pH is reduced leading to alkalinisation of endothelial cells which is the equivalent of 

introducing bicarbonate ions. However, this transport mechanism acts purely as a 

housekeeping mechanism in response to pH challenges.  

 

1.7.5.3 Cl
-
/HCO3

-
 Exchange 

 

Bonanno et al found expression of an anion exchanger (AE)2 in fresh bovine corneal 

endothelial cells present on the lateral membranes (Bonanno et al, 1998). The 

exchange is responsible for Cl
-
 influx and bicarbonate efflux which is thought to 

modulate intracellular bicarbonate or load endothelial cells with Cl
-
. When Cl

-
 is 

removed from ringers solution, pHi increases (Bonanno and Giasson, 1992), this 

alkalisation is inhibited by 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid. When Cl
-
 

is present with bicarbonate, its influx and efflux is slowed by 4,4'-Diisothiocyano-

2,2'-stilbenedisulfonic acid suggesting the presence of a Cl
-
/HCO3

-
 exchange. When 

Cl
-
 is removed/replaced from solution the membrane significantly depolarises, 

thought to result in bicarbonate influx through the NBC.  

 

1.7.6 pH 

 

Bicarbonate and Na
+
 movement are both influenced by the pH of the bathing solution 

(Fischbarg and Lim, 1974) and the intracellular level of bicarbonate is related to the 

intracellular pH. It is thought the main regulators of intracellular pH are the Na
+
/H

+
 

exchanger, NBC and Cl
-
/HCO3

-
 exchange. The movement of CO2 into cells causes a 

small acidification followed by a slower, larger alkalinisation due to bicarbonate 

influx via the NBC cotransporter. A peak pHi is reached which is followed by a small, 

slow acidification to restore steady state pH. This drop in pHi may be due to 

bicarbonate efflux from the cell. The removal of bicarbonate/CO2 from the cell 

reverses the pHi changes. When no bicarbonate is present in solution, Na
+
 is required 

to recover the cells from acid load and maintain its steady state pH via a Na
+
 

dependent proton efflux in a bicarbonate free environment.  
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1.7.7 Corneal Development 

 

1.7.7.1 Primate Cornea 

 

The optic cup and lens placode have formed by the fifth week of development. The 

cornea begins its development when the lens detaches from the overlying ectoderm. 

Prior to endothelial development on embryonic day 40 (E40), a narrow corneal stroma 

containing disorganised fibrils is present between the corneal epithelium and the lens 

at E38 (Ewer, 1970). Two waves of mesenchymal cells form the corneal endothelium 

and corneal keratocytes (Dublin, 1970; Ewer, 1970). Corneal swelling precedes 

invasion of the second mesenchymal cells in primate (Ozanics et al, 1977) which are 

destined to become the corneal fibroblasts. Descemet’s and Bowmans membrane are 

formed between the third and eighth month.                                                                                                                                                                                                                                                                                                      

 

1.7.7.2 Avian Corneal Development 

 

Development of the avian eye begins with the appearance of the optic vesicle which 

induces lens placode development. Extracellular matrix is first observed at E3 as a 

1µm layer of collagen fibrils, termed the ‘primary stroma’, which triples in thickness 

between E3 and E3.5 (Hay and Revel, 1969). The presumptive epithelium is two cells 

thick at E3. Meanwhile, mesenchymal cells present at the lip of the optic cup at E3.5 

are destined to become the corneal endothelium (Hay and Revel, 1969). These cells 

flatten in preparation for their migration along the posterior face of the cornea at E4, 

covering the entire posterior surface in 1.5 days. By E5 the primary stroma is 10µm 

thick, composed of at least 20 layers, it then doubles in thickness by E5.5 to between 

30µm and 50µm. This event simultaneously occurs with a second invasion of 

mesenchymal cells destined to become the corneal keratocytes on E6; cells 

responsible for producing the secondary stroma. Keratocan mRNA is expressed by all 

keratocytes as soon as they migrate into the stroma on E6 (Conrad and Conrad, 2003). 

Hyaluronate reaches its highest point at stage 27/28 (Toole and Trelstad, 1971), a 

GAG that is thought to be important in early developmental events because of its 

appearance in multiple embryonic tissues. Some studies have shown increased levels 

of hyaluronate during mesenchymal cell migration suggesting it influences 

mesenchymal cell behaviour (Toole and Gross, 1971). By E6 the endothelium has 

begun to produce a basement membrane that thickens to form Descemet’s membrane. 
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KS proteoglycans are then synthesised between E5-E7 (Hart, 1976; Funderburgh et al, 

1986) becoming highly sulphated by E14 (Hart, 1976), whilst the lumican core 

protein increases three-fold between E7 and E9 (Cornuet, et al, 1994). The 

accumulation of KS proteoglycans between the E12-E18 developmental period may 

influence matrix hydration and collagen fibril spacing (Liles et al, 2010). Keratocan 

mRNA steadily declines from E9-E18 whilst lumican levels remain high (Dunlevy et 

al, 2000). Hyaluronate is removed by hyaluronidase between E9-12 resulting in 

decreased water binding affinity in the stroma. The secondary stroma undergoes 

structural modifications from E9 through to hatching at E21; these include stromal 

compaction (Hay and Revel, 1969; Quantock et al, 1998; Siegler and Quantock, 2002) 

and proteoglycan alterations, previously mentioned (Anseth, 1961; Toole and 

Trelstad, 1971). The cornea reaches its maximum thickness of 220µm at E9 soon after 

the mesenchymal cell invasion is complete on E10 (Hay and Revel, 1969), probably 

as a result of secreted type I/V collagen fibrils (Linsenmeyer et al, 1984; Birk et al, 

1986) and stromal oedema. Descemet’s membrane is complete by E12 whilst 

hyaluronidase activity decreases. Rapid removal of water from the cornea occurs due 

to decreased water binding affinity and an increased pumping mechanism within the 

endothelium, dehydrating and thinning the stroma. The secondary stroma becomes 

complete at this stage with a thickness of approximately 200µm, invaded throughout 

by mesenchymal cells (Hay and Revel, 1969). Light transmission increases from 40% 

at E14 to 96% by E19 (Coulombre and Coulombre, 1958) due to the increase in 

collagen fibril packing (Quantock et al, 1998) and reorganisation of the collagen. 

 

1.7.7.3 Endothelial Development 

 

Endothelial cells are derived from mesenchyme and associated with the vascular 

uveal tract. The mesenchyme destined to form the endothelium is present on E2 in the 

avian cornea before moving towards the lip of the optic cup where it stalls for a day. 

At E4 the cells migrate into place, pushing their way through the subectodermal 

stroma that has begun to swell by this point (Coulombre and Coulombre, 1958). The 

cells and stroma are pushed away from the lens by the fibrous matrix that fills the now 

anterior chamber (Bard et al, 1975). Endothelial cells are capable of moving by 

extending cell processes forward at a rate of approximately 1µm/minute (Bard et al, 

1975). A confluent sheet is formed by E6; subsequently, junctions occur between the 
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cells whilst cilia extend into the anterior chamber (Hay and Revel, 1969). Soon after 

the formation of the endothelium, hyaluronic acid is produced by the cornea, some 

studies suggesting it is produced by the endothelial layer itself (Treslstad et al. 1974). 

Corneal hydration increases on E6, probably as a result of the cells leaky quality, a 

feature that will eventually be counteracted by its pumping mechanism. Descemet’s 

membrane appears as a narrow band of extracellular matrix, produced by the 

endothelium.  

1.7.8 Endothelial Dysfunction  

 

Posterior corneal dystrophies are characterised by abnormalities in the endothelium 

and Descemet’s membrane. Defects in the endothelial layer can result in an 

oedematous stroma due to a defective or decreased fluid transport mechanism. The 

primary corneal endotheliopathies are presented in the table below (Table 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7.8.1 Fuchs’ Endothelial Corneal Dystrophy 
 

Ernst Fuchs, an Austrian Ophthalmologist, is best known for his work on dystrophia 

epithelialis corneae (Fuchs’, 1910). This is now more commonly known as Fuchs’ 

endothelial corneal dystrophy (FECD), the most common indication for corneal 

transplantation (Adamis et al, 1993). FECD is a bilateral disease leading to corneal 

clouding as a result of dysfunctional endothelial cells. There are two forms of FECD, 

a rare early-onset form (Biswas et al, 2001) and the more common late-onset form 

Table 1.1 Primary corneal endotheliopathies. Disorders affecting the corneal endothelium and the 

features they display. 
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which affects approximately 4% of the population. Early-onset FECD results in 

endothelial decompensation in the third or fourth decade of life whilst the late-onset 

form develops into advanced stages by the sixth to ninth decade of life. A major 

hallmark of the disease are the endothelial excrescences or guttae that appear as 

indentations or drops on the posterior surface of Descemet’s membrane (Figure 1.12). 

Guttae eventually become confluent, starting centrally before spreading peripherally 

so that the endothelium attains a beaten metal appearance. The guttae are 

accumulations of collagen posterior to Descemet’s membrane. When the central 

guttae lead to corneal hydration, FECD can be identified as the cause. 

 

 

 

 

 

  

 

 

 

 

Descemet’s membrane is also significantly thickened in FECD (Wilson and Bourne, 

1988), this thickening occurs in the posterior nonbanded zone (Iwamoto and DeVoe, 

1971). FECD can be broken down into three stages. Stage I is characteristically 

asymptomatic with thickened Descemet’s membrane and corneal guttae which appear 

as small, centrally located black dots on the endothelium under specular reflection. 

Endothelial cell loss occurs at this early stage but is compensated for by cell spreading 

and polymegethism; as a result there is a lack of symptoms. The disease progresses 

causing a slight loss of sight due to stromal oedema, a feature establishing the patient 

as stage II. Stromal oedema creates a ground-glass area studded with water clefts 

whilst corneal thickness increases twofold. Large lakes of fluid appear within and 

under the epithelium which can burst leaving epithelial defects. Stage III is diagnosed 

by bullae that occasionally rupture causing intense pain alongside subepithelial and 

stromal scar tissue, this leads to vascularisation of the cornea and decreased 

transparency (Table 1.2).  

 

Figure 1.12 Features of FECD dystrophy in patients. Scanning electron micrograph of guttae 

present on the corneal endothelium (Klintworth, 2009). 

A 
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For treatment, hypertonic agents such as 5% NaCl are used to raise the 

hyperosmolarity of the tear film as well as a warm hair dryer to aid corneal 

dehydration. In the final stage of the disease, a loose fitting soft contact lens can help 

decrease irritation and some of the pain caused by the epithelial bullae. Intraocular 

pressure, thought to be linked to stromal oedema, can be reduced to help control 

swelling. A final measure, usually required for those patients in stage III, is surgical 

intervention in the form of penetrating keratoplasty. 

 

Disease pathogenesis is not yet fully understood in FECD, however, recent studies 

have linked mutations in collagen VIII as a possible cause in the early-onset form of 

the disease (Biswas et al, 2001; Gottsch et al, 2005; Jun et al, 2012). Further 

investigation into the pathogenesis of the disease will help determine its cause and in 

defining appropriate treatments which are currently lacking in FECD.  

 

1.7.8.2 Additional Corneal Endotheliopathies  

 

Posterior polymorphous corneal dystrophy is an autosomal dominant corneal 

dystrophy with a range of clinical features including endothelial vesicles (Waring et 

al, 1978; Krachmer, 1985). The endothelial cells appear epithelial like including 

multiple layers and can extend over the iris and trabecular meshwork. Some studies 

Table 1.2 Documented stages of FECD dystrophy. Three separate stages of the disease are 

recognised by the advancing clinical features. 

 



Chapter 1: Introduction  

40 

 

suggest that the normally non-mitotic cells of the endothelium do divide in this 

disorder, taking on epithelial like properties (Blair et al, 1992). 

 

Congenital hereditary endothelial dystrophy is a rare disorder characterised by 

bilateral corneal oedema occurring soon after birth. Patients have thickened 

Descemet’s membrane (Chan et al, 1982) and deteriorated corneal endothelium 

(Ehlers et al, 1998), which is likely to cause stromal swelling.  

 

Iridocorneal endothelial dystrophy comprises of Chandler’s syndrome, essential iris 

atrophy and iris nevus syndrome. The features of these dystrophies include corneal 

oedema, glaucoma and iris changes (Chandler, 1955).  

1.7.9 Corneal Surgery 

 

The predominant treatment for corneal endothelial dysfunction, until recently, was 

penetrating keratoplasty (PK), a surgical intervention replacing the entire cornea 

(Figure 1.13). PK has come to be very popular and successful in most patients 

suffering from corneal dystrophies and trauma, however, this surgery does carry risks 

including prolonged visual recovery, induced astigmatism and globe fragility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Replacement of only the damaged layers of the cornea is now becoming a more 

popular choice for surgeons and patients. Deep anterior lamellar keratoplasty (DALK) 

removes the diseased/damaged anterior layers preserving the healthy posterior 

Figure 1.13 Total number of keratoplasties carried out from 1999 to 2009 under the Corneal 

Transplant Service (UK). All keratoplasties (Total), Deep anterior lamellar keratoplasty (DALK), 

Endothelial Keratoplasty (EK) in the 1999/2000 till 2008/2009 period. (Keenan et al, 2010). 
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Descemet’s membrane whilst posterior lamellar keratoplasty (PLK) removes the 

damaged/diseased posterior stroma and Descemet’s membrane preserving the healthy 

anterior layers. During PLK recipient stroma is dissected at 80-90% of its depth along 

with Descemet’s membrane and endothelium before replacement with donor stroma, 

Descemet’s membrane and endothelium (approximately 10-20% of corneal 

thickness). The procedure results in faster recovery, reduced astigmatism, fewer 

sutures, whilst also maintaining globe integrity. This overcomes some of those 

problems associated with PK (Melles et al, 2000, Gorovoy, 2006, Price & Price, 

2007). A 9.0mm scleral incision is created before donor insertion (Melles et al, 1998, 

1999; Terry and Ousley, 2003), a practice that was further modified by decreasing the 

incision to 5.0mm, combined with donor tissue folding prior to insertion (Melles et al, 

2002). PLK was later referred to as deep lamellar endothelial keratoplasty (DLEK), a 

technique using the same procedure with modified instruments (Terry and Ousley, 

2003).  

 

 

1.7.9.1 DSEK 
 

DLEK was advanced further by removing Descemet’s membrane from the host 

cornea without the posterior stroma, a procedure termed descemetorhexis (Melles et 

al, 2004). The donor tissue, consisting of posterior stroma, endothelium and 

Descemet’s membrane, is transplanted onto the recipient posterior surface. This 

procedure was later named Descemet’s stripping endothelial keratoplasty (DSEK) 

(Price and Price, 2005). DSEK showed a lower rate of graft rejection (7.5%) 

compared to PK (13%) within the first 2 years of the surgery in a study by the 

Swedish Corneal Graft Registry for those patients suffering from FECD (Allan et al, 

2007). A microkeratome has allowed this technique to have a greater degree of 

precision and a smoother graft-host interface. The use of the microkeratome resulted 

in a procedure now known as Descemet’s stripping automated keratoplasty (DSAEK) 

(Gorovoy, 2006). This technique is now favoured by many corneal surgeons for 

correcting endothelial related problems.  
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1.7.9.2 Non Descemet’s Stripping Automated Endothelial Keratoplasty 

(nDSAEK)  

 

Non-Descemet’s stripping automated endothelial keratoplasty (nDSAEK) involves a 

similar method to DSAEK but instead leaves the host cornea fully intact (Price and 

Price, 2006; Kobayashi et al, 2008) (Figure 1.14). This method was introduced for the 

treatment of failed PKs (Price and Price, 2006) and endothelial dysfunction not 

associated with guttae. nDSAEK is not beneficial in FECD as the pathologic 

endothelial layer needs to be removed, a step not involved in nDSAEK (Kobayashi et 

al, 2008). In relevant circumstances, such as extensive endothelial cells loss and failed 

PK, Kobayashi has shown positive results for this surgery, with superior visual acuity 

and little induced astigmatism. It also diminishes the need to remove Descemet’s 

membrane resulting in a simpler procedure. As well as failed PK surgery and 

endothelial dysfunction not associated with FECD, nDSAEK may also be beneficial 

for aphakic aniridic eyes. DSEK/DSAEK can be challenging in an eye where both the 

iris and lens are missing as Descemet’s membrane stripping can lead to fragments of 

recipient Descemet’s membrane falling back onto the retina. nDSAEK, however, does 

carry complications, one of which includes graft dislocation after surgery (Kobayashi 

et al, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 Schematic of the corneal components post nDSAEK surgery. Host cornea remains 

fully intact anterior to donor stroma, donor Descemet’s membrane and endothelium. Taken from 

Masaki et al, 2012.  
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1.8 Summary and Objectives 

 

The structure and composition of the corneal stromal collagen is important and needs 

to be kept at a consistent hydration for corneal transparency to prevail. This, in part, is 

controlled by a pump mechanism present in the corneal endothelium, an essential 

monolayer of cells present on the posterior of the cornea. It is already known that the 

NBC plays an essential role in the endothelial pump, however, when this 

cotransporter is present in the developing cornea and if it correlates with stromal 

compaction and thinning is still unknown. The importance of this posterior layer is 

reiterated in corneal endotheliopathies whereby damaged or decreased endothelial 

cells results in stromal oedema and consequently, visual impairment. In circumstances 

where the endothelial cells are depleted or damaged beyond recovery, corneal surgery 

is the only remaining treatment at this time. Posterior corneal surgeries are becoming 

increasingly popular as they do not carry the same side effects as full PK. 

Pharmaceutical agents are now being brought to the market to maintain or increase 

endothelial cell survival. Both surgical and drug intervention have shown positive 

outcomes on visual acuity, however, the effects on the stroma and endothelial cells is 

unknown.  

 

The aims of this research were firstly to investigate the morphology of corneal 

endothelial cells and their expression of the NBC during avian embryonic 

development and secondly, to determine the effects of an early-onset FECD murine 

model on the posterior cornea. The final aim was to determine how the stroma and 

endothelium changes in response to DSAEK and nDSAEK surgery and after the 

addition of a Rho kinase (ROCK) inhibitor. 

 

Alterations in corneal thickness and protein expression in the endothelium, together 

with endothelial cell morphological changes will help us better understand the 

relationship between these factors. Determining the ultrastructural changes in the 

posterior stroma in disease models will help us realise the similarities to the human 

disease, and consequently, whether or not they are beneficial in defining the genetic 

changes and disease pathogenesis. Finally, observing corneal structure after surgery 
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and drug intervention will help clarify the positive and negative aspects of the 

individual treatments and the overall tissue alterations that occur. 
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2. 

 

This chapter outlines the experimental procedures used throughout the project, 

including tissue from developmental, diseased, surgical and pharmacologically 

targeted corneas.  

 

2.1 Experimental Models 

 

  2.1.1 Corneal Endothelial Development 

 

Fertilised White Leghorn chicken eggs (Henry Stewart, Lincolnshire, UK) were 

incubated at 37.5C in a humidified chamber (Brinsea products Ltd) for chicks aged 

between E8 and 18. All animals were killed in accordance with the Association for 

Research in Vision and Ophthalmology statement for use of animals for Ophthalmic 

and Vision Research and local ethical regulations. Embryonic chicks were used for 

general TEM, immunohistochemistry and A-sound ultrasonography for studies 

observing the corneal endothelium and corneal thickness in development. Corneas 

used for immunohistochemistry and TEM were excised by an incision around the 

limbus of the eye and immediately placed in either O.C.T. (optimal cutting 

temperature) or fixative solution, respectively.   

 

2.1.2 Pathology 

 

Knock-in mice were generated by Jun and colleagues (2012). Targeting vectors 

containing the Col8a2
Q455K/Q455K

 and Col8a2
L450W/L450W

 mutations were generated 

prior to incorporation into the mouse genome establishing an early-onset FECD 

murine model (see chapter 4 for more details). Following euthanasia by inhaled 

isoflurane followed by cervical dislocation, one eye of each animal was examined by 

clinical confocal microscopy using a Confoscan 3 microscope (Nidek, Fremont, CA). 

5-month-old mouse corneas with Col8a2
L450W/L450W

 or Col8a2
Q455K/Q455K

 homozygous 

knock-in gene mutations were stained with Cuprolinic blue to image sulphated 

proteoglycans before resin embedding and examination with TEM, alongside age-
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matched controls. Prior to processing tissue underwent digestion in specific 

glycosaminoglycan-degrading enzymes (see later). 

 

2.1.3 Surgery 

 

Posterior corneal surgery is becoming an increasingly popular alternative to PK 

because of the fewer complications that occur post-surgery. Japanese white rabbits 

that had undergone DSAEK and nDSAEK surgery were used to study the posterior 

ultrastructure of the cornea post-surgery. Surgeries were conducted by Dr. Hiroki 

Hatanaka (Kyoto Prefecture University of Medicine) and tissue was examined two 

weeks post-surgery.  

 

2.1.4 Non-Surgical Treatment 

 

ROCK inhibition is a novel treatment for endothelial disease revealing that it may 

prevent apoptosis and increase cell adhesion and proliferation in corneal endothelial 

cells. Studies have reported that the specific ROCK inhibitor, Y-27632, promotes 

adhesion and proliferation of monkey corneal endothelial cells, and decreases 

apoptosis (Okumura et al, 2009). Y-27632 has also been shown effective when 

applied topically in wound healing in vitro and in vivo (Okumura et al, 2012). These 

studies signify that ROCK inhibition with Y-27632 has the potential to regenerate the 

corneal endothelium where the number of cells is inadequate to maintain stromal 

deturgescence and in wound healing. ROCK-inhibitor-treated rabbit and human tissue 

obtained from Dr Naoki Okumura (Doshisha University, Kyoto) was prepared for 

conventional TEM to examine endothelial morphology. 

 

2.2 Experimental Protocols   

 

2.2.1 General Preparation for TEM 

 

Samples were fixed for 2-3 hours at 4°C in appropriate fixative in buffer solution 

(Table 2.1). Samples were trimmed and fixed in 1% osmium tetroxide (Sigma 

Aldrich, UK) in buffer (Table 2.1) for 1 hour before being contrasted in 0.5% aqueous 

uranyl acetate (Sigma Aldrich, UK) for 1 hour. Specimens were then dehydrated 
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through a graded ethanol series (70%, 90% and 100% [x2]) for 15 min each. 

Immersion into propylene oxide was conducted for 15 min before insertion into a 1:1 

propylene oxide: Araldite resin mixture for 1 hour prior to infiltration with fresh resin 

(see Appendix I). Embedding was carried out over 2 days with 3 changes per day. 

Tissue was embedded in moulds late on the second day and left to polymerise at 60°C 

for 72 hours.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

2.2.2 TEM Enzyme Treatment of Tissue 

 

Corneas undergoing proteoglycan localisation were prefixed in 4% paraformaldehyde 

in Tris acetate for 10 minutes prior to enzyme treatment. Original working stock for 

each enzyme was 5U, which was rehydrated in distilled water and added to Tris 

acetate buffer (Table 2.2).  

 

 

 

 

 

 

 

 

 

 

Table 2.2 Chondroitinase ABC and keratanase enzyme solutions. Enzymes were rehydrated in 

distilled water and Tris acetate buffer to obtain the above units. BSA-bovine serum albumin. See 

Appendix I for buffer components.  

 

Table 2.1 Buffer, Fixative and stains used in TEM studies. Glut-Glutaraldehyde, PF-

Paraformaldehyde, UA-Uranyl acetate and PTA-Phosphotungstic acid. See Appendix I for buffer 

components.  
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Corneas were rinsed in 1x Tris acetate buffer prior to incubation in the above enzyme 

solutions for 4 hours at 37°C with protease inhibitors to decrease protein degradation. 

Wild type and mutant corneas for the experiments investigating endothelial pathology 

each went through i) chondroitinase ABC digestion ii) keratanase digestion iii) buffer 

only treatment and iv) Cuprolinic blue only. Post enzyme treatment, corneas were 

rinsed in sodium acetate/0.1M magnesium chloride buffer prior to fixation overnight 

in 2.5% glutaraldehyde in 25mM sodium acetate buffer (pH 5.7) containing 0.1M 

MgCl2 and 0.05% Cuprolinic blue. Staining of GAGs was developed by Scott and 

Haigh (1985) using Cuprolinic blue. This stain allows observation of GAG chains on 

proteoglycan molecules helping determine how proteoglycans interact with collagen 

fibrils. After rinsing three times in sodium acetate buffer, samples were washed a 

further three times in 0.5% aqueous sodium tungstate (Sigma Aldrich, UK). Samples 

were dehydrated in 0.5% sodium tungstate in 50% ethanol for 15 minutes, before 

further dehydration in a graded ethanol series (70%, 90% and 100% [x2]) for 15 

minutes in each. Resin infiltration was carried out as discussed above. Blocks were 

stored at room temperature until required. Semi (0.5 µm) and ultra-thin (100 nm) 

sections were cut and collected on glass slides and uncoated copper grids, 

respectively, before being stained in appropriate solutions (Table 2.1). 

 

2.2.3 Staining 

 

Contrast observed in the electron microscope is produced by the differential scattering 

of electrons by the tissue embedded within the resin. Darker areas are due to the 

denser areas of the tissue, whereas the lighter areas correspond to those with less 

density. However, sometimes it is difficult to distinguish between different 

components of the tissue as well as between the resin and the tissue itself due to the 

section thickness. Thus, stains employing heavy metal salts are used to increase the 

contrast.  

 

A number of staining techniques are used in TEM which fall into two categories, 

positive staining and negative staining. Positive staining is visualised when the 

density of the biological structure is increased as opposed to the background. The 

heavy metal salts bind to parts of the tissue, increasing their density and subsequently, 

their contrast, whilst unbound stain is removed. Osmium tetroxide is used to increase 
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density; additional staining (post embedding with uranyl acetate and lead citrate) will 

increase the contrast further. The positive stains used in this thesis were uranyl acetate 

and lead citrate. Uranyl acetate, used before and after embedding, binds with 

phosphate and amino groups resulting in highly stained nucleic acids (Hayat, 2000). 

Lead ions are thought to bind to negatively charged components of the tissue, for 

example, those areas that have reacted with osmium and hydroxyl groups (Bozzola 

and Russell, 1999). In negative staining the macromolecule is unstained surrounded 

by a dark background, this type of staining has a minimal effect on the specimen 

itself. The substructure of the individual organelle is contrasted by stain penetration 

into the voids present within the specimen which is responsible for the dark 

background. Phosphotungstic acid is a commonly used negative stain, used alongside 

uranyl acetate. 

 

Additionally, Cuprolinic blue was also used in the experimental pathology 

experiments of FECD mouse models (Chapter 4). Cuprolinic blue was first introduced 

as a cationic RNA specific dye. Cuprolinic blue can be used to stain proteoglycans 

associated with collagen fibres and combined with enzymatic digestion can help 

determine the location of certain proteoglycans within the tissue (Scott, 1975). 

Cuprolinic blue was used in this study to determine if proteoglycans were altered in 

the FECD model and they’re placement in Descemet’s membrane.  

Grids were stained with either: 

i) Phosphotungstic acid (2%), and uranyl acetate-2min and 12 min respectively 

ii) Uranyl acetate (saturated) followed by lead citrate-12 min and 5min 

respectively. 

Grids were viewed using an electron microscope (JEOL 1010 transmission electron 

microscope with Gatan ORIUS SC100 CCD camera). 

 

For buffer and general TEM components see Appendix I. 

 

2.2.4 Electron Tomography 

 

Electron tomography is employed to obtain a three-dimensional image of a sample 

which has been tilted around a single axis. Each face of the ultra-thin corneal sections 

(120 nm) undergoing tomography was exposed to a colloidal gold solution (10 nm-
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BBl, Cardiff, UK). Thicker sections were used to help prevent tissue destruction, a 

problem that can occur due to the extensive amount of time the tissue is exposed to 

the electron beam. Colloidal gold was placed on both sides of the grid and served as a 

fiducial marker, facilitating alignment of the tilt micrographs. A −60° to +60° single 

axis tilt series of long-spacing collagen and proteoglycans present in Descemet’s 

membrane was captured in one and two degree increments at x20k magnification 

using a JEOL 1010 transmission electron microscope with Gatan ORIUS SC199 CCD 

camera. Reconstruction and segmentation was carried out on sections for a three-

dimensional insight into the structure of the long-spacing collagen present in 

Descemet’s membrane. The reconstructed image is created from projections of the 

structure of interest. Each of the images was returned to the same co-ordinates using 

centrally located fiducials to ensure each image was aligned with the previous.  

 

2.2.4.1 Alignment of the Tilt Series 

  

An important part of electron tomography is to align the collected images using the 

fiducials (gold particles). The tiff images that composed the tilt series were converted 

into a .mrc file and .st image stack. The .st file was then opened in the eTOMO 

software programme (University of Colorado, USA) to align the fiducials in each tilt 

image taken. Once the coarse and fine alignment of the fiducials is complete, eTOMO 

uses a backprojection to generate a three-dimensional reconstruction from the two-

dimensional micrographs. A tomograph is created by merging the aligned images to 

create an image that can be used to pass through the thickness of the image stack.  

 

2.2.4.2 Segmentation of Three-Dimensional Reconstruction 

 

EM3D software (Stanford University, USA) (Ress et al, 2004) was used to segment 

the final tomogram. Objects of interest were manually outlined in each image of the 

image stack. The stack with the traced objects was rendered producing a three-

dimensional reconstruction of the object of interest (Figure 2.1). Full methods used 

can be found in Electron Tomography (2006).  
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Light microscopy was also used to view DSAEK/nDSAEK samples at lower 

magnification so the entire corneal depth could be examined. Semi-thin sections of 

500 nm were cut and placed onto glass slides. Sections were stained with 1% 

toluidine blue and washed with distilled water before being analysed using a Leica 

DM RA2 photomicroscope with Leica DC 500 camera.  

 

2.3 Immunohistochemistry 

 

Immunohistochemistry was undertaken to pinpoint specific antigens (i.e. NBC) 

present in the developing avian cornea.  

 

Corneas were dissected from embryonic chicks (E8-14), placed into moulds 

containing O.C.T. compound (optimal cutting temperature) and rapidly submerged 

into isopentane cooled by liquid nitrogen and stored until required. O.C.T. embedded 

samples were mounted onto a chuck before cooling in the cryostat chamber (Bright, 

Figure 2.1 Screenshot of the segmentation and rendering process using EM3D. Segmentation 

step (left) followed by rendering process (right) to obtain the three-dimensional reconstruction.  
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OTF5000). 10m frozen O.C.T. sections were cut and placed onto glass slides (Fisher 

scientific), left briefly to dry and stored at -20C until required. Cryosections were 

drawn around using an ImmEdge (PAP) pen (Vector laboratories, UK) before 

rehydrating in PBST (0.05M phosphate buffered saline with 0.1% Tween-20). Tissue 

was fixed in cold (-20°C) ethanol (75%) for 1 minute and washed in PBST (5 min 

(x3)). Sections were pre-blocked with 5% normal goat serum before staining with 

either primary antibody or non-specific rabbit IgG for 1 hour at room temperature. 

Rabbit anti-Na
+
/HCO3

- 
cotransporter polyclonal antibody (Merck Millipore, UK) was 

diluted (1:200) as suggested by manufacturer before being added to the tissue. 

Negative controls included primary antibody omission (PBS) or substitution with a 

non-immune rabbit immunoglobulins (5mg/ml).  

 

Slides were washed with PBST (5 min) prior to incubation with the secondary 

antibody, Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen, UK), for 1 hour at room 

temperature. Further washing with PBST was carried out before mounting in 

Vectashield mounting medium containing DAPI, used as a nuclear counterstain 

(Vectashield, Vector Laboratories, Burlingame, CA). Results were analysed using 

fluorescence microscopy (BX61; Olympus, Tokyo, Japan). 

 

After examination using the fluorescence microscope, it appeared the 5% chick serum 

was adequate to reduce the non-specific binding; as a result, this step was 

incorporated in the protocol. 

 

2.4 A-Scan Ultrasonography  

 

A-scan ultrasonography was used to measure corneal thickness in the eyes of 

embryonic chicks. The system comprised a panametrics model 5073PR pulser-

receiver and a 20MHz transducer fitted with a 15mm saline stand-off perfused at 

0.05ml/min which was placed onto the fresh cornea. Readings were taken once five 

peaks were visible representing cornea, lens and retina. Readings were obtained in 

triplicate, with re-alignment between readings and recorded as they were taken. 

Ultrasound velocities were assumed to be 1.534 mm/s in the cornea. Calibration of 

the equipment was carried out daily using a water filled cuvette with known internal 

dimensions. The schematic shows the peaks present before a reading was taken 
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(Figure 2.2). One way analysis of variance and Tukey-Kramer multiple comparisons 

post-hoc test were used to determine differences between embryonic days. Two-way 

analysis of variance was used to examine the influence of two independent variables 

(left/right cornea and developmental day) on the corneal thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Schematic showing the peaks observed during ultrasonography. Red-corneal peak, 

green-lens and blue-retina. Identification of all five peaks was ensured before the reading was taken 

to ensure accurate measurement. Adapted from http:/webvision.med.utah.edu/book/part-i-

foundations/simple-anatomy-of-the-retina/.  
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3. 

 

3.1 Introduction 

 

3.1.1 The Corneal Endothelium Pump Mechanism 

 

The corneal endothelium is a leaky cell layer as a result of the discontinuous zonula 

occludens that allow nutrients into the avascular stroma. The leak is counteracted by the 

removal of fluid out of the stroma to prevent oedema. In healthy cornea there is no net fluid 

transport, as fluid is actively secreted out of the cornea counterbalancing the leak of fluid into 

the cornea. This process is referred to as the ‘pump-leak’ mechanism, a feature required to 

keep the cornea at the appropriate hydration for transparency. The pump mechanism ceases in 

the absence of bicarbonate ions and is significantly diminished in the presence of carbonic 

anhydrase inhibitors (CAIs) (Hodson, 1974; Hodson and Miller, 1976). Numerous studies 

have shown a net basolateral-to-apical flux of bicarbonate (Hodson and Miller, 1976; Huff 

and Green, 1983; Wigham and Hodson 1985), a result that has highlighted bicarbonate as the 

main ion involved in endothelial fluid transport. There is also a negative trans-endothelial 

potential on the apical side of the endothelium, suggesting that there is a net transport of 

anions from the stroma to the anterior chamber. 

 

Bonanno and Giasson concluded that a novel Na
+
 dependent Cl

-
 independent Na

+
/2HCO3

-
 

cotransporter (NBC1) was present in the corneal endothelium (Bonanno and Giasson, 1992). 

Na
+
 HCO3 transport is now identifiable in numerous cell types (Romero and Boron, 1999). In 

the corneal endothelium the NBC is located on the basolateral membrane which has a 3x 

higher bicarbonate permeability than the apical membrane based on studies in cow (Sun at al, 

2000) and human corneas (Usui et al, 1999). This has led to the conclusion that NBC loads 

endothelial cells with bicarbonate on the basolateral surface. Sodium is also thought to be 

transported via the endothelial layer, from the basolateral to apical side of the membrane 

(Hodson, 1974; Huff and Green, 1981; Lim and Fischbarg 1981), and is likely to be the 

counterion (Figure 3.1). 
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There are two isoforms of NBC-1, kidney (kNBC) (Romero et al, 1998) and pancreatic 

(pNBC) (Abuladze et al, 1998), the differences between these lie within the NH2 terminal 

sequences. kNBC has a 1Na
+
:3HCO3

-
 stoichiometry favouring bicarbonate efflux from the 

cell, whilst pNBC has a 1Na
+
:2HCO3

-
 stoichiometry favouring HCO3

-
 influx. However, the 

stoichiometry of pNBC and kNBC can change depending on location and cell type, 

respectively. Studies have shown that the pNBC isoform is expressed in the corneal 

endothelium with a 1:2 stoichiometry. A cotransporter with a 1:2 stoichiometry would have 

to exist for bicarbonate influx (Bonanno and Giasson, 1992).  

 

There are three possible modes of bicarbonate efflux into the aqueous humor, 1) Cl
-
/HCO3

-
 

exchange 2) CO2 efflux and conversion to bicarbonate via membrane bound carbonic 

anhydrase IV on the apical membrane (Bonanno et al, 1999) and finally 3) via a conductive 

flux through anion channels (Sun et al, 2000). 

 

Na+

2HCO3
- HCO3 H++ CO2 CO2

HCO3 + H+

HCO3

Cl-Na+

H+

CA 

2K+

3Na+

Na+

TJ

CA V

STROMA AQUEOUS

Figure 3.1 Model for endothelial ion transport. NBC loads corneal endothelial cells with HCO3
-
 from the 

basolateral (stromal) side of the membrane. HCO3
-
 entry drives the formation of carbon dioxide within the 

endothelial cell, this is catalysed by carbonic anhydrase II and inhibited by carbonic anhydrase inhibitors 

(Hodson, 1971). The carbon dioxide is transported across the apical membrane quickly due to its high 

permeability, then immediately converted to HCO3
-
 and hydrogen by membrane bound carbonic anhydrase IV. 
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3.1.2 Embryonic Corneal Thickness 

 
A series of events occur during avian corneal development that affects the thickness of the 

cornea. On E5 a rapid increase in thickness correlates with the second migration of 

mesenchymal cells resulting in a corneal thickness between 30 and 50µm. These 

mesenchymal cells are destined to become corneal fibroblasts. The trigger for cellular 

invasion is thought to be expansion of the matrix (Fitch et al, 2005) and possibly the removal 

of collagen type XI which acts as a stabilising factor, keeping the stroma in a compact state 

(Cai et al, 1994). Hyaluronate, a GAG produced on E4 (Toole and Trelstad, 1971), is also 

thought to be involved in stromal swelling post endothelial migration. By E6 the thickness of 

the stroma has increased to 100µm, the posterior of which invaded by mesenchyme. 

Fibroblasts occupying the stroma are responsible for the synthesis of the secondary stroma on 

E7 (Hay and Revel, 1969). Histology indicates that the stroma reaches a maximum thickness 

by E10, prior to a dramatic compaction between the E14 and E19 developmental period when 

water is lost. This loss increases transparency as demonstrated by spectrophotometry studies 

reporting an increase from 40% to over 95% in light transmission in the adult cornea 

(Coulombre and Coulombre, 1958; 1961; Hay and Revel, 1969). Some studies see corneal 

compaction after E9 (Coulombre and Coulombre, 1958; Hay and Revel, 1969), whilst x-ray 

diffraction studies suggest compaction after E12. Water is lost initially from envisaged 

collagen-free spaces in the corneal stroma followed by homogenous compaction of collagen 

fibrils throughout the tissue after E14 (Siegler and Quantock, 2002). Factors suggested for 

this compaction include changes in water binding components within the stroma 

(proteoglycans), increased hyaluronidase (Toole and Trelstad, 1971) and the activation of the 

NBC in the corneal endothelium.   

 

This study was carried out to determine when the NBC appeared in developmental chick 

corneal endothelium to help determine when the pump becomes activated and stromal 

dehydration occurs. This will be discussed in relation to new in situ measurement of corneal 

thickness determined using A-scan ultrasonography. Finally, TEM analysis was carried out to 

detect changes in endothelial morphology during the developmental period with focus on 

organelles likely to be associated with the pump. 
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3.2 Methods 

3.2.1 A-Scan Ultrasonography 

 

A-scan ultrasonography was used to measure corneal thickness in the eyes of embryonic 

chicks. Chicks aged between E9 and E18 were killed and immediately analysed ensuring the 

head and eyes were left fully intact before mounting and measuring using the method 

described in Chapter 2. Three separate experiments were carried out to improve the data set. 

The first measured the thickness of the cornea from E10 to E18, recorded on separate days 

requiring separate calibrations on each (data not shown). The second experiment measured 

corneal thickness in embryonic chicks aged between E9 to E18 on one day requiring one 

calibration. The second experiment was repeated with an increased n number and only 

measured thickness in the left corneas after a small difference was seen between left and right 

corneas in the previous experiments. The rationale behind these experiments was to obtain a 

more accurate measurement of the thickness changes that occur during corneal development. 

Previous thickness measurements have been carried out using histology (Hay and Revel, 

1969), a method not so reliable because of artefacts inherent within the chemical fixation 

involved. One and two-way ANOVAs with Tukey’s multiple comparison analysis was 

carried out using GraphPad (Prism version 6.00 for Windows, GraphPad Software, La Jolla 

California USA, www.graphpad.com) (Appendix I). The one-way ANOVA was used to 

compare the thickness means over the developmental period i.e. to determine if there was a 

significant difference in corneal thickness between difference developmental days (E9-E18). 

The two-way ANOVA was used to examine the effect of two independent variables on 

corneal thickness i.e. to determine if developmental day or cornea (left or right) had an effect 

on the corneal thickness.  

3.2.2 Immunohistochemistry 

 

Immunohistochemistry was carried out to pinpoint specific antigens present in the developing 

avian cornea. Fully intact corneas were embedded in O.C.T. prior to cryostat sectioning. 

Immunohistochemistry was carried out as described in Chapter 2, with a rabbit anti-

Na
+
/HCO3

- 
cotransporter polyclonal antibody (Merck Millipore, UK). Developmental days 

E10-E14 were examined (n=4).  
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Control sections containing rabbit non-immune IgG showed positive staining so the 

technique was altered to determine why the non-immune rabbit IgG was binding the tissue.  

1. The primary antibody and controls were pre-absorbed with 5% normal chick serum at 

room temperature for 1 hour (Invitrogen, UK) in an attempt to prevent non-specific 

binding in the chick tissue.  

2. Secondly, the primary antibody was diluted 1:2000 and 1:8000 to determine if the 

fluorescence intensity was the same as in 1:100 dilution previously used (to determine 

if the primary is binding ubiquitously and thus indicating no specificity for the 

endothelium). 

 

3.2.3 TEM 

 
Fertilised white leghorn eggs (Henry Stewart & Co. Ltd) were incubated at 37.5C in a 

humidified rotating chamber. At E6, 8, 10, 12, 14, 16 and 18, embryos were killed in 

accordance with the Association for Research in Vision and Ophthalmology statement for use 

of animals for ophthalmic and vision research and in agreement with local ethical rules (n≥3). 

Corneas were excised immediately and fixed before undergoing TEM as described in Chapter 

2. Several sections were collected, examined and stained on each grid from peripheral to 

central cornea. 
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 3.3 Results  

3.3.1 Corneal Thickness 

 

Histology has been used in previous experiments to determine corneal thickness changes in 

development where the tissue is dehydrated and embedded. This study measured corneal 

thickness in fresh corneal tissue using A-scan ultrasonography. A-scan ultrasonography is 

capable of measuring corneal thickness in vivo, and therefore does not require the invasive 

fixation processes. Three separate experiments were carried out to determine the changes in 

embryonic chick corneal thickness. Experiments were altered each time to improve the data 

set (see Appendix I for raw data). 

 

Measurements from the second experiment, carried out on one day, show a thickness increase 

up to E14 and a decrease immediately after (Figure 3.2A). The data was split to compare left 

and right corneas (Figure 3.2B). This highlighted differences between the data sets that led to 

the final experiment measuring left cornea only (Figure 3.3). It is speculated that the 

difference in thickness between left and right corneas was probably as a result of the time 

they were measured after death (left corneas were measured first). Thickness increased 

progressively from E9 until E12 before reaching a plateau between the E12 and E15 

developmental period, prior to a steady decrease until E18, the latest time point measured.  

 

A feature observed in all graphs was the plateau in thickness observed between E13-E15. The 

left cornea was thicker in the majority of time-points measured, some differences between 

left and right corneas were significant (E9, E10, E13, E14 and E18). This difference was 

confirmed using two-way ANOVA. The final experiment measuring left cornea only was 

carried out as a result of this difference. The n number at each developmental day was 

increased ensuring a minimum of six eyes were measured at each time point (Figure 3.3) 
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Figure 3.2 Corneal thickness measured on one day in left and right corneas. A) Average thickness of 

left and right corneal data for each embryonic day (n≥6). Significant differences were present between all 

consecutive days except E9-E10 and E17-E18 (p≤0.01). B) Thickness differences between left and right 

corneas (n≥3). Left cornea was consistently thicker than right and some of these differences were 

significant (E9, 10, 13, 14, and 18, p0.01). The difference between the thicknesses decreased as the chick 

aged. Error bars denote standard deviation. Two way ANOVA suggests that both age and cornea 

(left/right) affects the result (p≤0.01) (See appendix I).  
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Figure 3.3 Cornea thickness taken from left eye only in the final experiment with increased n number 

(n≥6). Significant differences between consecutive days include E9-E10, E10-E11, E11-E12, E15-E16 and 

E16-E17 (p≤0.01). Error bars denote standard deviation. See Appendix I for statistical test.   
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3.3.2 Immunohistochemical Analysis 

 

Results from immunolocalisation show the presence of the NBC within the endothelial cells 

from E10-E14 (Figure 3.4). The addition of chick serum prevented non-specific binding 

observed in initial control samples. The initial analysis showed non-immune rabbit 

immunoglobulin binding to the chick cornea in endothelial cells and parts of the stroma 

where it should not be detected. This indicated non-specific binding of control rabbit IgG 

which could indicate the fluorescence observed in the test samples is as a result of non-

specific binding, a false positive result. The method was altered to include chick serum (5%) 

to the test and control samples to reduce what was thought to be non-specific binding. The 

results clearly indicate the presence of this transporter in chick endothelium which 

presumably becomes involved in the management of corneal deturgescence at this early stage 

of development.   
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Figure 3.4 Immunolocalisation of the NBC and nuclear stained cells using rabbit anti-NBC antibody and DAPI, respectively. Immunolocalisation revealed the NBC 

was present at all developmental stages tested A) Low and B) high magnification. n= 4.Dapi=blue, NBC=green.Scale bar=100 µm (A) and 50 µm (B), respectively.  
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3.3.3 TEM Analysis of Developing Corneal Endothelium 

 

Figures 3.6 and 3.7 show TEM images from developing chick corneal endothelium from E6-

18. Images show the differences in the cells and the changes that occur within the posterior 

stroma and Descemet’s membrane. The cells had interesting features throughout 

development, including a large population of mitochondria, the presence of vacuoles and 

interdigitations. Descemet’s membrane becomes thicker as development progresses. A sparse 

stroma visualised on E6 becomes more compact as the embryo ages. Sections from peripheral 

and central cornea were visualised for each developmental day in order to obtain a detailed 

picture of the posterior cornea (n=3).   

 

 

 

 

 

 

 

 

-ve control IgG PBS 

Figure 3.5 Negative controls for immunolocalisation of NBC in developmental cornea. Controls show 

negative staining to the primary antibody and non-random binding of secondary antibody. Scale bar= 100 µm 
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Figure 3.6 Prominent features observed in developing chick corneal endothelium (E6-E10). Descemet’s 

membrane accumulation (arrows) and stroma (S) are highlighted. Vacuoles (*) and mitochondria (arrowheads) 

were also a common feature in the cell layer, together with keratocytes (◊). Scale bars=500 nm, n=3. 
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Figure 3.7 Prominent features observed in developing chick corneal endothelium. Membrane 

interdigitations were present at all stages of development (arrowheads). Vacuoles (*) were also a common 

feature in the cell layer, together with rough endoplasmic reticulum (arrow). S-stroma, DM-Descemet’s 

membrane. Scale bars=500 nm, n=3. 
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3.4 Discussion 

 

3.4.1 Thickness Changes during Avian Corneal Development 

 

After the initial thickness experiment a second was carried out in one day to decrease 

possible experimental error caused by multiple calibrations. Significant differences between 

consecutive days were seen at every stage with the exception of E9-10 and E17-18. The data 

was split to determine if there was a difference between left and right corneas (Figure 3.2B). 

A number of significant differences were observed between the left and right corneas in this 

experiment. One reason for this difference may be experimental; the left cornea was always 

measured first, a procedure that may have resulted in the drying out of the right cornea. There 

may be developmental differences between the two eyes at this stage, however, it would seem 

that corneal drying would likely be the predominant effect. The difference was more 

noticeable in younger embryos, a result probably due to the absence of eyelids and therefore 

decreased protection against drying. Due to this difference, the experiment was modified 

once more measuring only left corneas, removing external factors. The n number at each 

developmental day was increased so a minimum of 6 chicks were used at each stage. Three 

areas of interest were observed in these experiments, an initial increase, followed by a plateau 

and finally a decrease in thickness. There were 5 significant differences observed between 

consecutive days in this final experiment. These differences present were between E9-E10, 

E10-E11, E11-E12, E15-E16 and E16-E17 (p0.01). Significant differences occurred in the 

early and late stages of development where the thickness changed most dramatically. There 

were no significant differences between the E12-E15 developmental period, the thickness 

plateaued during this stage before decreasing again, probably due to the loss of water and 

homogenous compaction of collagen fibrils (Siegler and Quantock, 2002). 

 

In all experiments standard deviation was higher in the early embryonic stages due to the 

difficulty in obtaining measurements in the smaller eyes. Thickness measurements were 

similar to those measured in the final experiment.  

 

The increase in thickness from E9-E12 is thought to occur as a result of the swelling period 

that occurs on E5 in preparation for the invasion of mesenchymal cells destined to become 
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the corneal keratocytes (Hay and Revel, 1969). These data correlates with studies by Siegler 

and Quantock (2002) showing changes in the interfibrillar spacing and hydration within the 

cornea throughout the developmental period. Interfibrillar Bragg spacing was significantly 

reduced between E16-E17. A sharp, rather than a gradual, decrease in spacing was observed, 

E16 (66.8 nm) and E17 (61.2 nm). A decrease in thickness post E15, thought to be as a result 

of dehydration and compaction, could be responsible for the increase in transmission 

(Coulombre and Coulombre, 1958). Hydration was also measured in Siegler’s study, 

decreasing between E12 and E18 as the matrix becomes more compact. Siegler proposed a 

two stage dehydration, firstly between E13-E14 and secondly between E16-E17. The first 

dehydration was not accommodated by any change in centre-to-centre collagen fibril Bragg 

spacing so a different method of matrix compaction must occur. They concluded that this was 

a loss of water from non-collagenous regions, or regions of irregular collagen, such as 

stromal lakes. The second dehydration observed between E16-E17 correlated with a 

reduction in interfibrillar Bragg spacing. Therefore, the drop in hydration was attributed to 

the homogenous reduction in average spacing between the regularly arranged collagen fibrils 

which contribute to the matrix compaction (Siegler and Quantock, 2002). The hydration 

change which had the predominant effect on thickness was perhaps when interfibrillar 

spacing was reduced between E16-E17.  

 

These data not only correlates with interfibrillar collagen spacing but also with transmission 

data collected by a colleague previous to this set of experiments (Figure 3.8). Data showed a 

steady increase in transmission post E14, this increase corresponds to the decrease in 

thickness we observe post E15. The plateau in thickness during the E12-E15 developmental 

period is possibly a sign of stromal reorganisation where the collagen fibrils are arranged in 

their specific locations ready for the onset of transparency.  
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The most likely reason for the dehydration after this period is to attain optimal water content 

and interfibrillar spacing, discussed previously, required for transparency in the latter stages 

of development. This feature coincides with increased transmission (Coulombre and 

Coulombre, 1958), an outcome that is probably due to the combined effect of dehydration 

and the increased regularity of stromal collagen. 

 

New methods measuring CCT are available, including Optical Low-Coherence Reflectometry 

(OLCR). OLCR measures corneal thickness on the basis of temporal separation of a low-

coherent infrared laser beam reflected from the anterior and posterior surfaces of the cornea. 

Some studies have found significant differences between ultrasound pachymetry and OLCR 

measurements whilst others report similar measurements in both (Airiani et al, 2006). Most 

would agree that ultrasonography is an accurate technique with good reproducibility (Rainer 

et al, 2002), however, techniques including OLCR offer a non-contact method alongside 

rapid measurements. These additional features were not of primary importance in our 

experiments. The chicks were dispatched immediately so contact of the saline with the cornea 

was not a major concern. The main objective in this study was to obtain a more accurate 

picture of the thickness changes that occur during development, a feature that has only been 

measured previously by histology (Hay and Revel, 1969). Since ultrasonic pachymetry is the 

most commonly used method in patients and data exists using this method on hatched chicks 

(Montiani-Ferreira et al, 2004) this system seemed appropriate. 
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Figure 3.8 Light transmission at 550nm wavelength during the E12-E18 developmental period showing 

an increase post E14. Error bars illustrate standard deviation. Data obtained from Dr. Barbara Palka.  
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Results obtained using histology showed a maximum thickness at E9 (220 m) and a 

decrease thereafter due to dehydration so that by E14 the thickness reached 150 m (Hay and 

Revel, 1969). The study carried out by Hay and Revel showed considerable variation on E14 

which was concluded to be as a result of variations in fixation or differences in water content 

at this developmental stage (Hay and Revel, 1969). Histological measurement of thickness 

can be inconsistent as the stroma has a tendency to compress and stretch during cutting. A 

true reading of the thickness can also be hindered by the fixation and dehydration processes.  

 

The fluctuations in corneal thickness in our results imply there is a factor playing a role in 

stromal hydration/collagen organisation during embryonic development. The localisation of 

the NBC in the corneal endothelium (discussed later) supports the hypothesis that this 

cotransporter is influencing thickness at these early stages, especially during thickness 

decrease. As mentioned above, compaction and dehydration do occur in the embryonic 

cornea, thus, may be regulated by the NBC.  

3.4.2 NBC Localisation during Avian Development 

 

The bicarbonate ion is now agreed to be the main ion involved in endothelial fluid transport 

(Hodson and Miller, 1976; Jentsch et al, 1985; Bonanno and Giasson, 1992; Riley et al, 1995; 

Bonanno, 2003). Bicarbonate is transported through the NBC present in the basolateral 

membrane of the corneal endothelium (Sun and Bonanno, 2003). Immunolocalisation 

revealed the presence of NBC at all stages tested (E10-E14) (Figure 3.4), however, functional 

studies would have to be carried out to determine activity. It is already known that this 

transporter is important for corneal transparency later in life but it may also be involved in 

corneal compaction and dehydration in development. The results obtained support these 

claims, together with previously reported data on the expression of multiple genes, including 

NBC, in the developing avian cornea (Conrad et al, 2006). Conrad found that the NBC gene 

increased 10-fold through development into adult corneas in the chick model. mRNA 

expression was determined using real-time PCR using CDNA produced whole-cell RNA 

(Figure 3.9) (Conrad et al, 2006).  
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They found the largest increase in the NBC gene was between E7 and E14 (Figure 3.9), 

however, a difference in fluorescence was not observed in our data. A quantifiable technique 

is necessary to determine at what point the total amount of protein that is required is being 

expressed in the endothelium. The data suggests the NBC gene present, at the latest E7 

(Conrad et al, 2006), has produced the cotransporter by at least E10 according to our data. 

Together, these data suggest that the NBC gene expression increases steadily during 

development and, based on our analysis, is localised within the endothelial cells. Both studies 

provide evidence that the NBC may be important in the developmental period. Gene 

expression increased until 4 weeks post hatching in Conrads study, the gene may increase 

into the adult cornea to produce more of the NBC required for transparency, however, light 

transmission is thought to reach 96% by E19 (Coulombre and Coulombre, 1958). Perhaps is 

it further unregulated to supply the growing demands and increase in size that occurs in the 

adult cornea, nevertheless, the change is minimal compared to that in the developmental 

period which is of more interest to us. The evidence presented here together with Conrad’s 

study suggests that NBC has the potential to drive corneal dehydration during development.  

 

Figure 3.9 Expression of genes involved in endothelial cell transport using real-time PCR. NBC (red 

triangles) increased steadily during the developmental period before plateauing post E18. Results normalised to 

GAPD expression. Adapted from Conrad et al, 2006. 
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3.4.3 TEM of Developing Endothelium 

 

Several findings were observed in the embryonic chick cornea including high volumes of 

mitochondria, interdigitations within the endothelial cell membranes and thickening of the 

adjacent Descemet’s membrane. Descemet’s membrane is secreted by the endothelial cells 

once they have formed a complete monolayer on E5. The membrane begins to form on the 

endothelium’s anterior surface on E6, thickening during development and throughout 

adulthood. Golgi bodies are also seen in many of the micrographs, an organelle responsible 

for manufacturing the proteins that comprise Descemet’s membrane. Together with the RER 

(Figure 3.7), these organelles have important roles within the cell and in the formation of the 

primary stroma and Descemet’s membrane via protein synthesis and migration. 

Interdigitations (Figure 3.7) are foldings of the endothelial cell surface, a feature thought to 

preserve excess cell membrane which can be used later in development and post hatching. 

The surface of endothelial cells increases as the eye grows and this is associated with cell 

spreading and as a result, fewer interdigitations (Materson et al, 1977). Vacuoles are also 

predominant in endothelial cells at all developmental stages. Whilst they are an organelle that 

can represent a manifestation of cellular activities, including the uptake of fluid, they may 

also represent post-mortem bleb formation (Speakman, 1959). It is thought that normal cell 

function would be difficult if the cell were so severely vacuolated. Other noticeable 

organelles are the mitochondria which are abundant in endothelial cells. They are responsible 

for the energy supply, the majority of which is directed towards the pumping mechanism in 

endothelial cell membrane. In addition to endothelial and Descemet’s membrane changes, the 

stroma undergoes alterations as development progresses. The posterior stroma is sparse 

(Figure 3.6 [E6]) in the early developmental period, fewer fibrils are present, arranged in a 

disorganised manner compared to those seen later in development. By E18 the stroma is 

dense with regularly arranged collagen fibrils required for transparency (Figure 3.6 [E18]). 

  

This chapter outlines significant changes that occur within the cornea during the 

developmental period and the potential mechanisms behind these alterations. The NBC is 

recognised to be one of the key components of the endothelial pump mechanism, this chapter 

further validates this component and discusses the possibility that it may play a role in the 

developmental context. 
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4. 

 

4.1 Ultrastructural Analysis of Descemet’s Membrane  

 

Descemet’s membrane is the corneal endothelium’s basement membrane which in the healthy 

cornea consists of an anterior banded layer and posterior non-banded layer (Figure 4.1). The 

anterior banded zone is composed of thin collagens fibrils with a periodicity of 110 nm 

produced during fetal life. The posterior non-banded zone is an amorphous assembly of 

extracellular matrix located between the anterior banded zone and the corneal endothelium. 

Descemet’s membrane has been shown to contain hexagonal lattices aligned in parallel to the 

membrane surface (Jakus, 1956). The lattice is composed of electron dense nodes and rod-

like structures measuring 132 nm in length which are now recognised to be type VIII 

collagen (Sawada et al, 1990). Type VIII collagen is a non-fibrillar short-chain collagen 

originally identified as a product of endothelial cells from bovine aorta (Sage et al, 1983) and 

rabbit corneal endothelial cells (Benya, 1980), and initially called endothelial collagen (Sage 

et al, 1983).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematic of Descemet’s membrane alongside a type VIII hexagonal lattice. (A) Descemet’s 

membrane is composed of an anterior banded layer (A) adjacent to a posterior non-banded layer (P).  (B) The 

posterior layer is arranged as a lattice whereby collagenous filaments forma polygonal network (Bron et al, 

1997). (C)Descemet’s membrane is recognised to be composed of hexagonal lattices consisting of collagenous 

(132 nm) and non-collagenous regions. Possible type VIII constructs are presented including parallel and anti-

parallel conformations. (D,E) Immunoelectron labelling of the lattice network produced by cultured  bovine 

corneal endothelial cells (Sawada et al, 1990).  S-stroma, DM-Descemet’s membrane, EN-endothelium. 

(Taken from DelMonte and Kim, 2011; Shuttleworth, 1997).  
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Two distinct chains exist for type VIII collagen; α1(VIII) and α2(VIII). A heterotrimeric form 

of type VIII collagen is present in Descemet’s membrane with a chain composition of 

[α1(VIII)2 α2(VIII)1] (Mann et al, 1990). The triple helix of collagen type VIII is flanked by 

non-helical N (NC2) and C (NC1)-terminal domains. The construction of type VIII is thought 

to help in maintaining an open structure, which consequently stabilises basement membranes 

(Yamaguchi et al, 1989). This is an important property in Descemet’s membrane which has to 

be able to allow the movement of fluid, whilst being able to handle compression.  

 

The main techniques used to visualise collagen type VIII have been two-dimensional, hence, 

little is known about the way in which it is packed and how it arranges itself through the 

depth of the Descemet’s membrane. Whilst studying the corneal endothelium noticeable 

elongated structures were observed in Descemet’s membrane. The first part of this chapter 

investigates the ultrastructure of Descemet’s membrane in mice using electron tomography to 

gain a greater understanding of these elongated structures and the general arrangement of 

Descemet’s membrane. The second part focuses on the ultrastructure of Descemet’s 

membrane in murine corneas with collagen type VIII mutations.  

 

4.1.1 Methods 

 

5-month old mouse corneas were fixed for 2-3 hours at 4°C prior to general TEM embedding 

as described in Chapter 2. Ultrathin sections of embedded corneal tissue were cut at 100 nm 

and 120 nm thickness for transmission electron microscopy and electron tomography, 

respectively, and collected on uncoated copper grids. 1% phosphotungstic acid and a 

saturated uranyl acetate solution were used to stain the grids for 2 and 12 minutes, 

respectively, prior to examination in an electron microscope (JEOL 1010 transmission 

electron microscope with Gatan ORIUS SC100 CCD camera). Samples undergoing electron 

tomography (n=3) were also exposed to colloidal gold solution (10 nm-BBL, Cardiff, UK) 

which was applied to each face of the sections to serve as fiducial markers for later image 

alignment (details in chapter 2).  
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  4.1.2 Results 

 

Electron tomography was carried out on transverse and en face orientations of Descemet’s 

membrane. Analysis revealed elongated structures in transverse sections, whilst polygonal 

and elongated structures appeared when en face orientated sections were examined (Figure 

4.2) Figure 4.3 displays the structures present in Descemet’s membrane with an annotated 

micrograph highlighting what are believed to be the collagenous and globular regions. The 

supplementary material attached to this thesis shows ImageJ movies of elongated and 

pentagonal structures (see CD). Initial analysis used transverse sections of Descemet’s 

membrane where elongated structures with a periodicity of 100 nm were identified. On closer 

inspection these structures had a weaker intermediate band located centrally between the 

distinct elongated bands, (Figure 4.4). Globular domains of the same polygonal structure are 

thought to be responsible for this band, but are likely to be in a different plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 En face micrographs of Descemet’s membrane. (A) Low mag image of the membrane where 

polygonal structures have been boxed (scale bar=500 nm). (B)(C) High mag images of polygonal structures (scale 

bar=100 nm and 500 nm, respectively) where black lines represent collagen in (D) (E) (scale bars=100 nm and 500 

nm, respectively).  
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Figure 4.3 The morphology of Descemet’s membrane in en face sections. Original (A) and annotated (B) 

micrographs of the structures observed in Descemet’s membrane. Black lines represent the collagenous 

regions whilst yellow and orange circles signify the globular domains. Scale bar=100 nm. 
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Figure 4.4 Presence of an intermediate band in Descemet’s membrane. Elongated structures (A) imaged 

in transverse sections of Descemet’s membrane had less distinct intermediate band (arrowheads). Based on the 

polygonal formations in en face sections (B) it is likely that the elongated structures observed in the transverse 

plane are stacked globular domains. This is also true of the less distinct intermediate band, produced from a 

globular domain in a different plane i.e. central globular domain (arrowhead). Scale bar=100 nm 
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A three-dimensional reconstruction was used to obtain a more detailed view of Descemet’s 

membrane (Figure 4.5). This allowed a model of Descemet’s membrane to be developed 

(Figure 4.6) which illustrates possible constructs of collagen type VIII.  

 

 

 

 

 

 

 

 

 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Reconstructed images of type VIII collagen arranged in its polygonal lattice in 

Descemet’s membrane. En face sections show the polygonal lattice (squared) in Descemet’s membrane 

(A) and the appearance of the lattice when tilted (B). The arrowheads (B) point to the separate globular 

domains which are not visible in (A). Scale bar=100 nm. 

A 

B 
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Cuprolinic blue stained corneas revealed that proteoglycans were present in Descemet’s 

membrane and more specifically the internodal regions of collagen type VIII. A -60˚ to +60˚ 

single-axis tilt series was captured every two degrees to examine if the proteoglycans interact 

with type VIII collagen (Figure 4.7).  

 

Figure 4.6 Schematic representation of type VIII collagen arrangement in Descemet’s membrane. Type 

VIII collagen forms polygonal lattice structures that lie parallel to the surface of the membrane. The schematic 

relates the two-dimensional micrographs to the three-dimensional reconstruction of type VIII. Electron 

micrographs (EM) show polygonal and longitudinal structures viewed in en face and transverse orientation, 

respectively. Schematic representation of these structures are displayed directly below. The bottom schematic 

outlines collagen VIII composition. NC1 and NC2 domains (orange and yellow circles) are flanked by a 

collagenous domain (black).  
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Figure 4.7 Proteoglycans present in Descemet’s membrane. A) Cuprolinic blue stained corneas revealed 

proteoglycans were present in Descemet’s membrane and appeared to bind to collagen type VIII. B) Stereo 

pairs of type VIII collagen in Descemet’s membrane. Blue=globular domains, yellow=proteoglycans. Scale 

bars=50 nm and 100 nm, respectively.  
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4.1.3 Discussion  

 

Transverse sections observed using electron tomography revealed long-spacing structures 

present in Descemet’s membrane. The structures had a periodicity of 100 nm and therefore 

were initially assumed to be collagen type VI. However, after re-orientating the block face 

polygonal formations were observed implying the structure was more likely type VIII 

collagen, in agreement with previous literature (Sawada et al, 1990; Akimoto et al, 2008). As 

well as polygonal formations, the long-spacing structures were still visible (Figure 4.2 & 4.3). 

This suggests that type VIII collagen forms polygonal and linear structures. The proposed 

model involves a polygonal lattice with a linear component based on three-dimensional 

analysis with ImageJ (Figure 4.6). When viewed in transverse, globular domains stack 

perpendicularly to the membrane, but were viewed more frequently lying in parallel to the 

membrane surface. The elongated structures observed are thought to be components of the 

polygonal lattice. This was the case in some instances when the samples were tilted. 

However, other samples remained elongated and no visible lattice formation was observed. 

The presence of elongated structures would still allow the movement of fluid through the 

membrane in and out of the stroma whilst assisting in resisting compression. There are 

various studies who suggest a hexagonal type VIII construct exists in Descemet’s membrane. 

Sawada and colleagues employed antibodies that bound to the nodal regions of both a 

hexagonal and long spacing linear structures produced by cultured endothelial cells in an 

immunogold labelling study (Yamaguchi et al, 1989; Sawada et al, 1990). There is also clear 

evidence that type X collagen, the other non-fibrillar, short chain collagen, forms hexagonal 

structures within cartilage extracellular matrix (Kwan et al, 1991). Type X and VIII collagen 

share striking structural similarities at nucleotide and amino acid level implying that their 

constructs are likely to be similar together with several studies reporting the type VIII 

hexagonal lattice that exists in Descemet’s membrane (Sawada et al, 1984; Kapoor et al, 

1988; Sawada et al, 1990). 

 

Occasionally, interbands were present within the elongated transverse forms of the type VIII 

collagen molecule (Figure 4.4). After imaging en face sections it was concluded that these 

interbands are probably formed by the central globular domain observed in the polygonal 

formations. As mentioned previously, stacked globular domains are thought to form the 

dominant bands, this is likely to be true for the intermediate bands one observes in transverse 
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sections of Descemet’s membrane. However, the less distinct banding is probably due to 

globular domains not being in the same plane as the distinct bands, hence, a weaker structure.  

The presence of proteoglycans within Descemet’s membrane was also observed. Cuprolinic 

blue-stained corneas revealed that proteoglycans were distributed throughout the membrane, 

and in particular in association with type VIII collagen (Figure 4.7). Proteoglycans appeared 

in the internodal regions of the type VIII collagen in two-dimensional micrographs. Three-

dimensional reconstruction confirmed the presence of proteoglycans at the internodal regions 

suggesting that they are likely to bind to the helical part of type VIII collagen. However, 

previous studies have speculated that it is the non-collagenous domains (NC1 and NC2 of 

α1(VIII) collagen) that are most likely to bind negatively charged components of the 

extracellular matrix due to their high isoelectric point (Rosenblum et al, 1993). The binding 

of proteoglycans to this collagen, whether to the collagenous or non-collagenous region, may 

assist in maintaining the arrangement of type VIII in either the polygonal lattice or the linear 

structures observed via the collagenous regions of the molecule. 

 

These results support previously reported literature on the structure of Descemet’s membrane. 

The three-dimensional reconstruction suggests that there is also a linear arrangement of type 

VIII collagen within Descemet’s membrane. Proteoglycan labelling in Descemet’s membrane 

has been previously reported (Bairaktaris et al, 1998; Davies et al, 1999), however, this is the 

first data that shows proteoglycans associating with internodal regions of type VIII collagen 

in Descemet’s membrane. This may imply they have a role in maintaining the unique 

structure of type VIII collagen in membranes such as Descemet’s.  
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4.2 Fuchs’ Endothelial Corneal Dystrophy  

 

The posterior corneal endothelium is an important cell layer and its main role is to maintain 

stromal deturgescence. Disruptions in this cell layer, as a result of endothelial dystrophies, 

trauma, infection or surgery, result in corneal swelling and consequently vision loss. Fuchs’ 

endothelial corneal dystrophy (FECD) is an inherited progressive disorder that leads to visual 

disability and is one of the most common indications for penetrating keratoplasty (PK) 

(Adamis et al, 1993). Symptoms are revealed between the fifth and seventh decade of life in 

the late-onset form of the disease. These include Descemet’s membrane thickening, a 

decrease in endothelial pump sites and stromal edema (Waring, 1982). A rare early-onset 

form of FECD arises between the third and fourth decade of life with the progressive 

development of corneal decompensation similar to that present in late-onset FECD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In late-onset FECD, the anterior banded layer, and posterior non-banded layer are anterior to 

a pathologic posterior banded layer which is not ordinarily present. Whilst the posterior non-

Figure 4.8 TEM of Descemet's membrane in normal and Fuchs’ (COL8A2
L450W/L450W

) patients. A) 

Normal B) Late-onset C) Early-onset Descemet's membrane. ABL-anterior banded layer, PNBL-posterior 

non-banded layer, PBL-posterior banded layer, ICL-internal collagenous layer PSL-posterior striated layer. 

(Gottsch et al, 2005).  
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banded layer is normal in the early-onset mutant, the anterior banded layer is thicker. There is 

also an internal collagenous layer, and a posterior striated layer (Figure 4.7).  

 

Collagen VIII is a short-chain collagen, highly expressed in normal Descemet’s membrane 

(Kapoor et al, 1988) and its quaternary structure has been elucidated in the first part of this 

chapter. Recently, a disorganised form of collagen type VIII has been associated with early-

onset FECD (Gottsch et al, 2005). In Descemet’s membrane, type VIII collagen is a 

heterotrimer composed of α1(VIII)2 and α2(VIII) (Shuttleworth, 1997). These form stacked 

polygonal lattice-like structures arranged in parallel to Descemet’s membrane surface, 

thought to be important in resisting compression.  

 

FECD models have recently been developed to investigate the α2 collagen VIII gene 

(COL8A2) responsible for encoding the α2 chain of type VIII collagen (Biswas et al, 2001; 

Gottsch et al, 2005). Collagen VIII accumulation in FECD, and the identification of a 

COL8A2 gene mutation in an early-onset FECD family (Biswas et al, 2001; Gottsch et al, 

2005) has highlighted the importance of this collagen in the early-onset form of the disease.  

 

Single amino acid mutations in the COL8A2 gene result in increased collagen VIII 

accumulation thought to be injurious to the corneal endothelium. Point mutations in the 

COL8A2 gene give rise to different forms of FECD, these include the COL8A2
L450W/L450W

 

(Gottsch et al, 2005) and the COL8A2
Q455K/Q455K

 mutation. A leucine to tryptophan  mutation 

at position 450 (Leu450Trp or L450W) (Gottsch et al, 2005) and a glutamine to lysine at 

position 455 (Gln455Lys or Q455K) (Biswas et al, 2001) are responsible for altered collagen 

VIII. The COL8A2
L450W/L450W 

mutation correlates with intra-endothelial cell and extracellular 

matrix collagen VIII accumulation whilst the mechanism behind the COL8A2
Q455K/Q455K 

form 

is not yet fully understood (Zhang et al, 2006). Zhang and colleagues found no significant 

amount of other components, such as fibronectin and collagen IV, within the endothelial cell 

in early-onset FECD suggesting that they are secreted rapidly whilst collagen type VIII is 

retained.  

 

FECD advances over decades with a lack of symptoms in the early disease states. As a result, 

early pathological tissue is unobtainable leaving unanswered questions about the initial 

pathogenesis of the disease. A number of studies have started looking at the COL8A2 gene 
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mutations to determine their effects. Recently, a murine, early-onset FECD disease model has 

been generated with Col8a2 mutations (Col8a2
Q455K/Q455K 

and Col8a2
L450W/L450W

) in an 

attempt to identify if the unfolded protein response (UPR) was activated as previously 

confirmed in late-onset FECD (Engler et al, 2010). Accumulation of misfolded protein results 

in endoplasmic reticulum (ER) stress, a feature that is toxic to cells. Activation of the 

unfolded protein response counteracts this condition by reducing the unfolded protein 

(Szegezdi et al, 2006).  Col8a2
Q455K/Q455K

 mutant mice show a 27% endothelial cell decrease 

at 5 months whereas Col8a2
L450W/L450W

 show a 10% reduction in endothelial cell numbers 

(Jun et al, 2012). These knock-in mutant mice represent the first realistic in vivo models for 

FECD that will allow investigation into the early-onset disease pathogenesis (Jun et al, 2012). 

The aim of the second part of this chapter was to extend these findings by investigating if the 

homologous mutations affect the architecture of the corneal extracellular matrix at 5 months 

of age. Human and mice have similar Descemet’s membrane including anterior banded and 

posterior non-banded zones which makes the mouse model a valuable model when analysing 

disease. 

 

4.2.1 Methods 

4.2.1.1 Col8a2 knock-in mice 

 

The mouse Col8a2 gene displays 94% amino acid identity to the human COL8A2 gene 

(protein BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi). A targeting vector containing the 

specific regions of the Col8a2 gene was subcloned into a pBK-CMV vector to generate a 

gap-repair plasmid. The transformants then had the Q455K substitution (C to A nucleotide) 

introduced by mutagenesis using specific primers. The vector was verified, embryonic stem 

cell electroporation and blastocyte injection was performed. Heterozygous were crossed with 

a Sox2-cre line (Jackson Labs, Bar Harbor, ME) prior to breeding to obtain homozygous WT 

and MUT genotypes. Generation of the Col8a2 knock-in mice was carried out in Dr Albert 

Jun’s laboratory (Johns Hopkins University, Baltimore, MD, USA). Corneas from 

Col8a2
Q455K/Q455K

 and Col8a2
L450W/L450W 

were examined alongside age/sex-matched 

homozygous WT littermates to ensure any phenotypes of the mutation occur as a result of 

mutation and not because of other confounding factors related to genetic background 

differences. For details please see Jun et al, 2012. 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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4.2.1.2 TEM 

 

Half corneas from 5-month old wild type and mutant mice, Col8a2
Q455K/Q455K 

and 

Col8a2
L450W/L450W 

as published by Jun and colleagues (2012) were prefixed in 4% 

paraformaldehyde in 1xTris acetate buffer for 10 minutes prior to incubation with 

glycosaminoglycan (GAG) specific degrading enzymes. Corneas were incubated with i) 

keratanase ii) chondroitinase ABC or iii) keratanase and chondroitinase ABC for 4 hours to 

distinguish between keratan sulphate (KS) and chondroitin/dermatan sulphate (CS/DS) 

proteoglycans. Following enzyme treatment, corneas were rinsed in sodium acetate/0.1M 

magnesium chloride buffer prior to fixation overnight in 2.5% glutaraldehyde in 25mM 

sodium acetate buffer (pH 5.7) containing 0.1M MgCl2 and 0.05% Cuprolinic blue. 

Embedding was then carried out as described in the general methods section. Ultrathin 

sections of embedded corneal tissue were cut at 100 nm thickness for transmission electron 

microscopy and collected on uncoated copper grids. Orientation of the tissue was arranged so 

that peripheral tissue was collected first followed by central cornea. Several sections were 

collected on multiple girds for each region so micrographs would show accurate 

representation. A 1% phosphotungstic acid and a saturated uranyl acetate solution were used 

to stain the grids for 2 and 12 minutes, respectively, prior to examination in an electron 

microscope (JEOL 1010 transmission electron microscope with Gatan ORIUS SC100 CCD 

camera). Several grids with sections from peripheral-to-central and anterior-to-posterior 

cornea were examined for each sample (n=4). 

  

 

 

 

 

 

 

 

 

 



  Chapter 4: The ultrastructure of Descemet’s membrane and the structural changes in the 

cornea of Col8a2 transgenic knock-in mice  

 

 

90 

 

4.2.2 Results 

 

4.2.2.1 Endothelial Examination of Col8a2 Mutant Mice 

 

Specular micrographs taken at 5-months immediately after euthanasia and just prior to 

excision of the cornea from the eye and its processing for electron microscopy with or 

without enzyme digestion were used to determine changes in cell shape, size and number. 

Micrographs revealed darker cells and punctate guttae in both mutants but slightly more so in 

the Col8a2
Q455K/Q455K

 strain (Figure 4.9). Multiple sections of the mutant endothelium were 

imaged using TEM (Figure 4.10). These showed sparse organelles identified as dilated RER 

that were not present in wild type mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Specular micrographs of corneal endothelium. Specular micrographs show punctate guttae and 

abnormal darkened cells in both mutant strains (*). Scale bar=50 µm. Images taken by Ms Huan Meng.  
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Figure 4.10 TEM of corneal endothelium in wild type and Col8a2 mutants. Both mutants had dilated 

RER (arrowhead) present in their endothelial cells when compared to wild type. DM-Descemet’s 

membrane, St-stroma. Scale bar=500 nm. 
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  4.2.2.2 TEM analysis of Col8a2 mutant stroma 

 

Micrographs (Figure 4.11) show the anterior and posterior stroma of the Col8a2
Q455K/Q455K 

and Col8a2
L450W/L450W 

mutant mouse corneas. No 

obvious stromal oedema was observed but regions of focal oedema were present in the Col8a2
Q455K/Q455K 

mutant. More obvious differences were 

noted in Descemet’s membrane and the endothelial cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 TEM 

micrographs of 

Col8a2
L450W/L450W 

and 

Col8a2
Q455K/Q455K

 homozygous 

knock-in gene mutant mouse 

stroma stained with 

Cuprolinic blue. Focal 

oedema was observed in the 

posterior of the 

Col8a2
Q455K/Q455K 

mutant. 

Micrographs taken from depth 

of cornea (anterior to 

posterior). Scale bar=100 nm.. 
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TEM revealed differences in the levels of proteoglycans present in Descemet’s membrane 

and the endothelial monolayer where samples had been stained with Cuprolinic blue. More 

proteoglycans were noted at the Descemet’s endothelial interface in the Col8a2 mutants 

compared to wild type samples. The amount of Cuprolinic-blue staining of proteoglycans 

varied between endothelial cells but was consistently higher in the mutant corneas (Figure 

4.12). After observing a higher number of proteoglycans at the Descemet’s endothelial 

interface in the Col8a2
Q455K/Q455K 

mutant, the same interface, after enzyme digestion 

(keratanase and chondroitinase ABC), was examined to determine if the proteoglycans 

remained (Figure 4.12). This suggested that another proteoglycan, not digested by enzymes 

employed in these studies, is present at the Descemet’s endothelial interface 

. 
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Figure 4.12 Differences in proteoglycan distribution at the Descemet’s endothelial interface of wild type and mutant mice. Proteoglycans with (top) and without 

(bottom) enzyme digestion (keratanase plus chondroitinase ABC) at the Descemet’s endothelium interface in wild type (WT), Col8a2
L450W/L450W 

(L450W) and 

Col8a2
Q455K/Q455K 

(Q455K). Large amounts of proteoglycans (arrowheads) were observed in the Col8a2
Q455K/Q455K

 mutants, compared to wild type. Scale bars =200 nm. 
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4.2.3 Discussion 

 

Previous mouse models, including a double knock-out Col8a2 mutant strain, have shown 

decreased cell density in the endothelial layer, however, this was the only similarity to FECD. 

No Descemet’s membrane thickening or guttae were observed in single or double Col8a2 

knock out mouse models, which are normally seen in the disease (Hopfer et al, 2005). A 

more recent mouse model showing pathological similarities to those seen in the human form 

of FECD has now been developed. Results from this model show decreased endothelial cell 

counts, endothelial cell morphologic changes and Descemet’s membrane guttae in their 

Col8a2
Q455K/Q455K

 mutant mouse (Jun et al, 2012). This model may provide a clearer picture 

into the mechanisms of early-onset FECD. A pathophysiological hypothesis, based on the 

above mutations, is that the amino acid substitutions decrease the turnover of Col8a2 leading 

to an abnormal accumulation of collagen type VIII in Descemet’s membrane. Subsequently, 

this could be a reason for the injurious effects on endothelial cells resulting in apoptosis. This 

study utilised TEM to determine the effects the Col8a2 mutations on the corneal stroma, 

including collagen organisation and proteoglycan distribution, Descemet’s membrane and the 

endothelium.  

 

4.2.3.1 Col8a2 Mutants 

 

Results show TEM of the stroma in both Col8a2
Q455K/Q455K

 and Col8a2
L450W/L450W

 mutants, 

whose missense mutations have been associated with the early-onset form of FECD (Biswas 

et al, 2001). There were no obvious signs of widespread oedema in the stroma, but focal 

oedematous regions were present in the posterior stroma of the Col8a2
Q455K/Q455K

 mutant 

(Figure 4.13). The relatively young age of the mice is a possible explanation for the lack of 

widespread oedema, the effects of FECD may not be apparent at this 5-month time point. 

There are a lack of symptoms in the early stages of FECD despite clinical evidence (guttae, 

Descemet’s membrane thickening) identifying disease onset. This suggests that stromal 

oedema occurs later on in the disease course when membrane thickening and guttae begin to 

affect the endothelial cells and consequently stromal hydration. Guttae, thought to cause 

endothelial degeneration, have been reported at this stage (Jun et al 2012), but these were 

difficult to locate. Thus, it is likely that the focal posterior oedema is a consequence of the 

young age of the mice and will possibly increase with time. A study carried out on patients 
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found that the majority had no or very few guttae, concluding that guttae may be forming but 

are ‘re-surfaced’ by an increasing secretion of collagen into Descemet’s giving the 

appearance of a uniform surface (Zhang et al, 2006). This may be the case in these mouse 

samples, a result which could be easily overlooked.  

 

4.2.3.2 The Effect of Col8a2 Mutations on Endothelial Cells. 

 

Jun’s studies reported a 27% reduction in endothelial cell count at this 5-month time point 

(1522±241 versus 2137±155 cells/mm
2
, mean ± standard deviation) and a 41%  reduction 

(1240+265 versus 2101+120 cells/mm
2
) at 10-month in Col8a2

Q455K/Q455K
 versus wild type 

mice (Jun et al, 2012). It is evident that the mutation affects the endothelial cell count; a 20% 

reduction is seen between the 5 and 10-month period alone. Nevertheless, it appears that 

migration and enlargement, a known occurrence in these cells, makes up for the lack of 

mitosis in response to cell death. This mechanism allows the monolayer to stay confluent 

with sufficient pump activity down to a cell density of 400-700 cells/mm
2
 in man (Bourne 

and Kaufman, 1976). Therefore, a cell loss of 27%, resulting in a cell density of 

1522cells/mm
2
, would be adequate for the essential pump mechanism to suffice. More 

apparent oedema may occur when the cell count is further reduced, perhaps beyond the 10-

month stage where the density is still 1240 cells/mm
2
 in the Col8a2

Q455K/Q455K
 mutant (Jun et 

al, 2012). Several studies have found an increased pump site density of the Na
+
K

+
ATPase 

suggesting that the endothelium is capable of adapting to the decrease in cell number and can 

upregulate the pumping mechanism (Geroski et al, 1985). Studies determining the effect of 

guttae on permeability of the endothelium found no change between patients with mild and 

advanced guttae (Wilson and Bourne, 1988) suggesting that perhaps decreased pump function 

is responsible for oedematous stroma typically seen in FECD. Further evidence supporting 

this theory was reported by Zhang (2006) whose study included an individual with no corneal 

guttae but very few endothelial cells.  It may simply be that eventually, even if upregulation 

of pump sites does occur, there is an insufficient number of cells to maintain stromal 

deturgescence. In later stages of FECD, when endothelial cells are reduced and Descemet’s 

membrane is thickened, the number of cells will not be sufficient to pump enough fluid 

through the thicker membrane. Endothelial cell death probably occurs due to the thickened, 

abnormal Descemet’s membrane. A thickened Descemet’s membrane would impede the 
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movement of solutes through the membrane, imposing a damaging amount of stress on the 

endothelium (Zhang et al, 2006).  

 

Biosynthesis of collagens into their triple helices is undertaken in the RER. The UPR is a 

system whose role is to reduce misfolded protein accumulation and to restore the correct level 

of folded protein. If this cannot be completed, UPR-associated apoptosis occurs. The mutant 

strains, Col8a2
Q455K/Q455K 

and Col8a2
L450W/L450W

, both had high levels of dilated RER (Figure 

4.10). Dilated RER is generally a sign of high protein synthesis and storage, but may also be 

a sign of UPR. Upregulation of collagen type VIII within the endothelium could result in 

higher volumes of collagen needing to be assembled within the ER, instigating RER dilation 

(Jun et al, 2012). Equally, increased abnormal collagen due to the Col8a2 mutation may give 

rise to dilated RER, indicative of the UPR. Other studies suggest endothelial cells may be 

transforming into a fibroblastic type cell, dilated RER and increased ribosome's being one 

possible indication of this change. Whether or not RER dilation occurs as a result of 

endothelial cell transformation, abnormal collagen type VIII, its upregulation, or something 

unforeseen, the mutation is affecting this organelle. One hypothesis is that the amino acid 

substitutions reduce the turnover of Col8a2 leading to abnormal accumulation of collagen 

VIII and subsequently, disruptions in Descemet’s membrane. The altered Descemet’s 

membrane will eventually lead to injurious effect on endothelial cells leading to apoptosis. 

  

4.2.3.3 Proteoglycan Labelling 

 

Cuprolinic-blue stained samples were also examined to determine differences in the 

proteoglycan distribution in the wild type and mutant mice. Noticeable differences in 

proteoglycan distribution were observed at the Descemet’s endothelial interface in the 

Col8a2
Q455K/Q455K 

mutant when compared to wild type. Increased proteoglycans were present 

at this interface in the mutants compared with wild type, including after enzyme digestion 

with keratanase and chondroitinase ABC. This result may indicate the remaining 

proteoglycan is heparan sulphate, a proteoglycan that has been localised to the Descemet’s 

endothelial interface previously (Bairaktaris et al, 1998). Studies have shown that heparan 

sulphate is increased at the Descemet’s endothelial interface in migrating endothelial cells 

(Davies et al, 1999). This finding may imply individual endothelial cells are migrating, a 

feature undertaken when cell death occurs to compensate for cell loss in this monolayer 
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(Svedbergh and Bill, 1972; Laing et al, 1976; Murphy et al, 1984; Landshman et al, 1988). 

Future work should label heparan sulphate in the cornea to verify this hypothesis. There are 

limitations with aspects of the analysis as the analysis is primarily observatory which may 

introduce bias. However, many of the observations made in this study are backed by recent 

publications with the collaborators. These included activation of the UPR assessed by 

western blot analysis and real-time PCR, thus, supporting the dilated RER observation in the 

Col8a2 mutants as well as other markers including TUNEL signifying apoptosis correlating 

with specular micrographs (Jun et al 2012, Meng et al, 2013). In conclusion cell death is 

occurring as a result of the mutation, however, the rate of loss is not high enough at this stage 

to jeopardise stromal hydration.  
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5. 

5.1 Introduction  

 

Human endothelial cells do not proliferate sufficiently in vivo and although there are enough 

to last a lifetime, disease, trauma and infection can result in severely reduced numbers, 

compromising corneal transparency. Endothelial cells are arrested in the G1-phase of the cell 

cycle (Joyce et al, 2002). This is illustrated in various endothelial dystrophies, where the cells 

do not replicate to replace cell loss, consequently stromal oedema results. FECD, the focus of 

the previous chapter, is a prominent disease of the corneal endothelium. This chapter 

addresses the recent advancements in correcting the loss of corneal endothelial cells by 

replacement and regeneration.  

 

5.1.1 Posterior Corneal Surgery  

 

Until recently almost all endothelial related problems have resulted in corneal transplants 

involving replacement of the full cornea. Penetrating keratoplasty (PK) has proven very 

popular and successful in most patients suffering from corneal related vision loss, however, 

this surgery does carry complications including induced astigmatism and prolonged visual 

recovery. Numerous other surgeries are now in practice (Table 5.1) including posterior 

lamellar keratoplasty (PLK), pioneered by Melles (Melles et al, 1998). Benefits include faster 

recovery, reduced astigmatism and maintenance of globe integrity, overcoming some of the 

weaknesses existing in PK (Melles et al, 2000; Gorovoy, 2006; Price & Price, 2007). PLK 

dissects the recipient stroma at 80-90% of its depth also including Descemet’s membrane and 

the endothelial layer before replacing with donor stroma, Descemet’s membrane and 

endothelium via a 9.0mm scleral incision (Melles et al, 1998, 1999; Terry and Ousley, 2001). 

Recent procedures fold donor tissue so a decreased incision of 5.0mm can be made (Melles et 

al, 2002). PLK is now referred to as DLEK, the same technique using modified instruments 

(Terry and Ousley, 2003).  
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5.1.1.1 DSEK/DSAEK 

 

DLEK led to a technique named descemetorhexis involving Descemet’s membrane removal 

from the recipient cornea leaving the stroma fully intact (Melles et al, 2004). This method, 

later named DSEK (Price and Price, 2005), is quicker and less traumatic than PLK. The use 

of a microkeratome in this procedure was used to increase precision and smoothness of the 

graft-host interface (Gorovoy, 2006), a technique now known as DSAEK. DSAEK surgery 

involves the removal of Descemet’s membrane (Melles et al, 2004) and endothelium from the 

recipient cornea and replacing with donor stroma, Descemet’s membrane and endothelium 

(Price and Price, 2006, Gorovoy, 2006). DSAEK is favoured by many corneal surgeons for 

correcting endothelial related complications.  

 

5.1.1.2 nDSAEK  

 

nDSAEK uses a similar method to DSAEK (Figure 5.1) but leaves the host cornea fully intact 

(Kobayashi et al, 2008). It was introduced for the treatment of endothelial dysfunction not 

associated with guttae. DSAEK surgery will be necessary for diseased endothelial cells, 

Table 5.1 Advancements in posterior corneal surgery over the last decade. Manual dissection and larger 

incisions originally used in PLK have been replaced by automated dissection and small incisions leading to 

the development of DSAEK. The nDSAEK procedure evolved from DSAEK, involving the same tissue 

transplantation but without graft dissection. 
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however, in non-FECD type endothelial dysfunction DSAEK surgery could be replaced by 

nDSAEK, eliminating the need for Descemet’s membrane stripping (Kobayashi et al, 2008). 

Kobayashi has shown positive results for this surgery with superior visual acuity and little 

induced astigmatism. It also diminishes the need to remove Descemet’s membrane resulting 

in a simpler procedure. Nevertheless, nDSAEK does carry complications including graft 

dislocation after surgery (Kobayashi et al, 2008). Questions also remain as to the fate of the 

sandwiched endothelial cells of the host cornea.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2 Rho-Associated Kinase Inhibitors 

 

As well as corneal surgery there are now studies investigating implantation of cultured 

endothelial sheets, overcoming the problem of donor tissue shortage (Ishino et al, 2004; 

Koizumi et al, 2007). These studies have reported promising results for this technique, 

Figure 5.1 Methods used in DSAEK and nDSAEK surgery. DSAEK surgery-Descemet’s membrane 

stripped from host. Posterior donor cornea trimmed (posterior stroma, Descemet’s membrane and 

endothelium). Posterior donor cornea transplanted onto posterior host cornea resulting in DSAEK cornea. 

nDSAEK surgery-Posterior donor cornea transplanted onto posterior surface of full host cornea to achieve 

nDSAEK cornea. nDSAEK cornea represented in inset schematic (adapted from Masaki et al, 2012). 
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including typical endothelial morphology and function. The addition of pharmacological 

agents has also meant that the proliferative ability of the cells can be increased (Koizumi et 

al, 2007).  

 

A new, non-surgical treatment is now under investigation whose application is based on the 

Rho-Rho kinase pathway. The Rho family of guanosine triphosphatases (GTPases), including 

Rho, Rac, and Cdc42, control many intracellular processes and cytoskeleton functions. Rho 

was first described in the early 1990s as a new member of the Ras family responsible for the 

assembly of contractile actin-myosin filaments in Swiss 3T3 fibroblasts (Ridley and Hall, 

1992). GDP-Rho (inactive) is converted to GTP-Rho (active) by extracellular signals, 

effectively acting as a molecular switch to control signal transduction pathways. Recently, 

many Rho effector molecules have been identified including Rho-associated kinase (ROCK). 

ROCK belongs to the serine/threonine family of kinases consisting of an amino terminal 

domain, a central coiled region, and a carboxyl terminus. It is involved in the cytoskeleton 

function, actin-myosin mediated contraction, cell cycle progression and apoptosis. For 

example, ROCK can phosphorylate the myosin light chain (MLC) and inactivate myosin 

phosphatase; this enables it to regulate MLC phosphorylation, responsible for smooth muscle 

contraction (Amano et al, 1996). The amino terminus hosts the kinase, whilst the carboxyl 

terminus consists of the Rho-binding domain and a pleckstrin homology (PH) domain (Figure 

5.2). ROCK is retained in its inactive state by an autoinhibitory loop whereby the PH and 

Rho binding domain bind to the amino terminal. Activated Rho can bind to the Rho-binding 

domain of ROCK which allows an open conformation of the kinase, thus, activating the 

kinase activity of ROCK. From here, ROCK can increase contraction, migration and 

proliferation.  

 

 

 

 

 

 

 

 

 

   

ROCK I 

Kinase RBD P

Coiled-coil region 

A 

B 

Figure 5.2 ROCK I. A) ROCK is composed of an amino terminus, coiled-coil region and a carboxyl 

terminus. B) Autoinhibitory loop formed to inactivate ROCK. RBD-Rho-binding domain, PH-Pleckstrin 

homology. 



Chapter 5: Corneal endothelial cell replacement and regeneration 

 

 

 

104 

 

 

Rho GTPases are known to play an important role in cell cycle progression. There have been 

numerous studies reporting that Rho inactivation results in blockade of the G1-S phase 

progression. This blockade of progression has been reported in Swiss 3T3 fibroblasts (Olson 

et al, 1995) together with blockade of cell cycle proteins in the hearts of cardiomyocytes 

(Zhao and Rivkees, 2003). ROCK inhibition is thought to decrease certain cyclins and cyclin 

dependent kinases which are important in the cell cycle, hence, their ability to cause 

disruption in cell cycle progression. However, a recent study has found the opposite, 

reporting that inhibition of ROCK promotes proliferation and cell migration whilst 

decreasing apoptosis in monkey corneal endothelial cells (MCECs) (Okumura et al, 2009). 

Anti-apoptotic effects have been reported not only in MCECs but also in studies in spinal 

cord injury (Dubreuil et al, 2003) and dissociated human embryonic stem cells (Wantanabe et 

al, 2007). Y-27632 is widely used as a specific ROCK inhibitor (Uehata et al, 1997) able to 

compete with ATP for binding to the kinases. Reported findings could have a huge impact on 

the regeneration of corneal endothelial cells which have been depleted in surgery, trauma, 

and endotheliopathies. It would also be beneficial in corneal transplatation, preserving 

endothelial cells during transport of tissue for surgery.  

 

The main aims of this study were to better understand the effects of  

i) posterior corneal surgery and the changes that occur to the endothelial cells within 

the cornea  

ii) ROCK inhibitor, Y-27632, on endothelial cells.  

 

5.2 Material and Methods 

 

5.2.1 Posterior Corneal Surgery 

 

Tissue used in this study was obtained from Dr Hiroki Hatanaka (Kyoto Prefectural 

University of Medicine, Kyoto, Japan) who performed the experimental nDSAEK surgery. 

Eyes were allowed to heal for two weeks post-surgery before being studied (n=3). 
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5.2.1.1 Graft Tissue Preparation 

 

Donor lenticules from Japanese white rabbits (female, 2-3kg body weight, Shimizu 

Laboratory Supplies Co., Ltd, Kyoto, Japan) were obtained after death by injection with 

pentobarbital sodium. Corneo-scleral buttons, 100-200µm thick, 8.0mm in diameter, were 

dissected manually before unilateral transplantation into the graft tissue. Recipient rabbits 

were anesthetised (ketamine hydrochloride, xylazine and tropical oxybuprocaine) prior to the 

surgery using the procedure carried out by Price (Price and Price, 2005). 

  

5.2.1.2 DSAEK/nDSAEK 

 

DSAEK surgery involved the creation of a 3.0mm limbal-corneal incision prior to 

Descemet’s membrane stripping of an area measuring 9.0mm in diameter. The graft tissue 

was inserted into a Busin glide (endothelium facing anterior chamber) before being pulled 

into place with forceps. An air bubble was used to aid graft to recipient attachment before 

stitching the incision. Descemet’s membrane was not scraped in nDSAEK surgery (see 

Hatanaka et al 2012 for full details). Several ultra-thin sections from limbus, central and 

peripheral regions of the cornea were collected on each grid and examined to determine key 

alterations in the tissue n=3. 

 

5.2.2 Rho-Associated Kinase Inhibitor  

  

A pair of corneas from the same human donor were obtained, one stored in Optisol, the other 

stored in Optisol with ROCK inhibitor, Y-27632. TEM was used to examine the effect of Y-

27632 on the morphology of the treated and untreated endothelial cells. The second part of 

the study involved TEM examination of rabbit corneas injected with differing endothelial cell 

densities prior to treatment with Y-27632 to determine the appropriate density required for 

complete monolayer regeneration.  

  5.2.2.1 Corneal Storage with ROCK Inhibitor 

 

Human corneas stored in Optisol with ROCK inhibitor, Y-27632 (10µm), had specific 

inclusion and exclusion criteria to ensure any differences observed were related to the ROCK 

inhibitor. These included: 
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 A pair of corneas from the same individual  

 No endothelial disease or severe epithelial damage 

 No less than 2000cells/mm
2
 of endothelial cells 

 No more than 12 hours between death and preservation in Optisol 

 No more than 300cells/mm
2
 difference between left and right cornea.  

 

One cornea was placed into Optisol (n=4), the other into Optisol with Y-27632 (n=4) before 

being processed for TEM. Microscopy was carried out to determine differences between 

control and ROCK inhibited endothelial cells. Several sections were cut for each sample in 

different regions of the block to ensure all areas were analysed.   

 

5.2.2.2 Endothelial Cell Injection with Y-27632 in vivo 

 

The second part of the study injected different concentrations of rabbit endothelial cells 

(2x10
5
, 5x10

5
 and 1x10

6 
cells) into rabbit cornea in vivo to find the number of cells required 

for monolayer assembly with Y-27632 (10µm).  

 

 5.2.3 TEM 

 

Tissue was fixed for 3 hours in 2.5% glutaraldehyde and 2% paraformaldehyde in appropriate 

buffers for 2-3 hours. TEM processing was carried out as described in the general methods. 

Semi (500 nm) and ultra-thin (100 nm) sections were cut and collected on glass slides or 

uncoated copper grids, respectively, prior to staining with uranyl acetate and Reynolds lead 

citrate for 12 and 5 min, respectively. Toluidine blue (1%) was used to stain semi-thin 

sections used for light microscopy.  
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5.3 Results 

 

5.3.1 Posterior Corneal Surgery 

 

5.3.1.1 Low Magnification Graft-Host Interface 

 

Figure 5.3 shows light micrographs of DSAEK and nDSAEK corneas two weeks after 

surgery. The boundary between the donor and host tissue can be seen in both micrographs, 

these are shown by black arrowheads. The interface is less predominant in DSAEK surgery 

as there is a stroma-stroma interface as opposed to a stroma-endothelium interface in 

nDSAEK. The interface stands out as a result of the host endothelial cells and Descemet’s 

membrane positioned in the posterior third of the nDSAEK cornea. One thing that is common 

in both micrographs is the good adherence in both surgeries. There does not appear to be any 

dissociation between the two tissues. 
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Figure 5.3 Toluidine blue (1%) stained light micrographs taken from resin embedded semi-thin 

sections of control, nDSAEK and DSAEK corneas 14 days post-surgery. Graft-host interface is 

indicated by arrowheads in nDSAEK and DSAEK. Clear retention of Descemet’s membrane is observed in 

nDSAEK cornea, sandwiched between host and graft stroma. Scale bar= 50 m.  
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5.3.1.2 TEM 

 

Figure 5.4 shows TEM images of the endothelial cells on the posterior of the cornea in 

control, nDSAEK and DSAEK rabbit tissue. Cell morphology of nDSAEK and DSAEK 

tissue was comparable to control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Transmission electron micrographs of posterior endothelial cell layer. (A) Control (B) nDSAEK 

(C) DSAEK. Organelles are highlighted, mitochondria (arrowheads), nucleus (*), rough endoplasmic reticulum 

(arrows), DM-Descemet’s membrane. Scale bars=200 nm.  
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TEM examination of nDSAEK and DSAEK corneas revealed very different interfaces. This 

was primarily due to the sandwiched host endothelial cells present in the nDSAEK cornea 

compared to a stroma-stroma interface in DSAEK tissue. 

 

Micrographs from the nDSAEK cornea indicate the host endothelial layer becomes 

incomplete two weeks post-surgery (Figure 5.5). The cells appear to degenerate at various 

points in the monolayer leaving gaps which are only visible by TEM. A fibrous material 

appears between these cells, although it is uncertain what this material is, a possible source 

may be the host endothelial cells. We speculate that the fibrotic-like tissue represents the 

early stages of cellular transformation. Duplication of a basement membrane on the host 

endothelial posterior surface was the final feature of this tissue. This resulted in cells having a 

membrane on both its apical and basal surface.  
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Figure 5.5 TEM micrographs from nDSAEK tissue two weeks post-surgery. (A) Fibrotic material 

between host endothelial cells (*). (B) Duplication of Descemet’s membrane (arrowhead). (C) Incomplete host 

endothelium and fibrous tissue (*) between endothelial cells and Descemet’s membrane. HE-host 

endothelium, DM-Descemet’s membrane, GS-graft stroma, ◊-nucleus. Scale bars=1 µm.  
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Although the interface in DSAEK tissue was less distinct in the light micrographs it was still 

present. The interface was located due to the presence of a thin layer of fibrous-like material 

in the posterior third of the cornea (Figure 5.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Micrographs of the DSAEK interface. Scar/fibrotic tissue (arrowheads) is clearly visible 

between host (HS) and graft (GS) stroma (A). This region was imaged at higher magnifications (B) showing 

disorganised tissue noticeably different from typical stroma. Scale bars=1 µm.  
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5.3.2 ROCK Inhibitor (Y-27632) 

 

5.3.2.1 Human Corneal Storage with Y-27632 

 

Both peripheral and central regions of endothelium in human corneas were examined in 

control and Y-27632 treated tissue to determine the effects of the ROCK inhibitor (n=4). No 

obvious differences were observed between the groups, both layers looked healthy and 

organelles appeared unchanged (Figure 5.7).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2.2 Endothelial Cell Injection with Y-27632 

 

Three different densities of endothelial cells were injected into rabbits with removed 

endothelium to determine the number of cells required to reproduce the monolayer with Y-

27632. Cell numbers were calculated to determine a density of 5.0x10
5
 cells was required for 

monolayer regeneration (Research Center for Regenerative Medicine, Doshisha University, 

Kyoto, Japan). TEM was carried out to examine individual endothelial cells at each of the 

cell injection densities (2.0x10
5
, 5.0x10

5
 and 1.0x10

6
 cells). Figure 5.8 shows micrographs of 

the stroma and endothelium of injected rabbit corneas. The lowest density of injected 

endothelial cells had an oedematous stroma anterior to a thinned endothelial cell monolayer. 

The stroma of corneas injected with 5.0x10
5
 and 1.0x10

6
 cells appeared normal with 

Figure 5.7 Y-27632 treated and un-treated peripheral and central endothelial cells. Morphology of the 

endothelial cells were comparable to control cornea. Scale bar=0.5 µm 
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regularly arranged fibrils within the stroma and a healthy endothelial monolayer. TEM 

analysis confirms that an injection of 5.0x10
5
 cells appears to be adequate for endothelial 

monolayer renewal whereas the introduction of 2.0x10
5
 cells results in areas of oedema 

within the stroma possibly due to insufficient endothelial cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Micrographs of rabbit stroma and endothelium with different injected cell numbers. A cell 

density of 2.0x10
5
 cells resulted in an oedematous stroma (squared) with thinned endothelial cells. Higher cell 

densities (5x10
5
 and 1x10

6
 cells) resulted in regularly arranged collagen fibrils and endothelial cells 

resembling typical morphological structure. Scale bars-endothelium=1 µm, stroma=500 nm. 

Figure 5.9 Micrographs representing control corneas devoid of cell injection with Y-27632. Scale 

bars=500 µm, stroma=500 µm.  
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5.4 Discussion 

 

5.4.1 Posterior Corneal Surgery 

 

nDSAEK surgery is now being used in patients with encouraging results. Nevertheless, there 

is still little known about the host endothelial cells and Descemet’s membrane sandwiched 

between the host and graft stroma. Kobayashi and colleagues have reported that some 

patients suffer from donor dislocation post nDSAEK surgery (Kobayashi et al, 2008) and 

perhaps the reason stems from the presence of remaining host Descemet’s membrane and 

endothelial cells. This study was carried out to determine the structural integrity of the host 

endothelial cells, Descemet’s membrane, and how well the graft adheres to the host tissue in 

rabbit. The stroma was also investigated to see if the surgery had altered its architecture. Both 

TEM and light microscopy were used to determine the effects on the tissue which had 

undergone nDSAEK surgery two weeks prior. 

 

Together with TEM, light micrographs show that host endothelial cells and Descemet’s 

membrane are still present two weeks after nDSAEK surgery. Light micrographs showed a 

well adhered graft with a thin, distinct interface where the host endothelium meets graft 

stroma. Electron micrographs support this result as clear endothelium and Descemet’s 

membrane are visible in the posterior third of the cornea. These cells stained positively for 

Na
+
K

+
 ATPase (Figure 5.10), a protein involved in the endothelial pumping system 

suggesting that they have retained some of their functionality (Hatanaka et al, 2012). This 

activity, however, does not seem to affect the visual acuity of patients (Kobayashi et al, 

2008). If the Na
+
K

+
ATPase is still functional in the host endothelial cells then there is a 

possibility that a dual bicarbonate pump is functioning within the same cornea. There does 

not appear to be any reason why these trapped cells would not function and move fluid out of 

the host stroma into the graft resulting in a more hydrated graft stroma. However, Hodson 

carried out a series of experiments that challenges this theory. His results showed that when 

the fluid (i.e. aqueous humor) is removed from the endothelium’s apical surface, the pump 

ceased (personal communication). This related to the build-up of lactic acid around the 

endothelium, an occurrence which would likely transpire in nDSAEK surgery if the pump 

persisted. Thus, based on this finding it is unlikely that these sandwiched cells retain any 

pump functionality.   
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As previously discussed, host endothelial cells are present at the interface two weeks post-

surgery in nDSAEK, however, at this time-point the host endothelial layer is incomplete and 

what appears to be a fibrotic tissue is being deposited. The composition of this material is not 

known but it may be produced by the host endothelial layer in response to the graft tissue on 

its posterior surface. TEM also shows endothelial cell extensions into the graft stroma. 

Endothelial cell extensions, together with the fibrotic material observed at the interface 

implies that the endothelial cells are transforming. The cells may be under stress resulting in 

phagocytic activity and possibly migration into the stroma. Duplication of Descemet’s 

membrane on the apical surface of endothelial cells is also observed (Figure5.5B). Type IV 

collagen is deposited by the corneal endothelium on its distal surface, it may be that it is also 

deposited on its proximal surface but under normal conditions is removed by the aqueous 

humour that bathes the cells. The absence of aqueous humour posterior to the sandwiched 

endothelial cells may result in the duplication of Descemet’s membrane. The presence of 

endothelial cells, the unidentified fibrous tissue and what appears to be duplication of 

Descemet’s membrane may have an effect on graft adherence, however, dislocation of the 

graft was not seen in these studies. Nevertheless, this surgery is still in its early stages and 

Figure 5.10 Na
+
K

+
ATPase expression in DSAEK and nDSAEK tissue 14 days post-surgery. Host 

(arrowheads) and graft (arrows) corneal endothelial cells expressed Na
+
K

+
ATPase in nDSAEK surgery, DAPI 

(blue) nuclear stain highlights a discontinuous line at the graft-host interface (arrows). Na
+
K

+
ATPase 

expression (green) also present in graft endothelial cells in DSAEK tissue. Scale bar=100 µm. Taken from 

Hatanaka et al, 2012. 
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although graft detachment was not seen in our experiments it may differ in human tissue. The 

majority of patients that have undergone nDSAEK did not experience graft dislocation 

(16.7% dislocated graft, Kobayashi et al, 2008), some studies reporting no graft dissociation 

(Masaki et al, 2012). There are still many unknowns surrounding this technique, mainly the 

long-term outcomes of the surgery including the morphology and location of the host 

endothelial cells. 

 

Studies using confocal and slit lamp images have reported normal epithelial cells and 

keratocytes but also observed particles present at the graft-donor interface (Kobayashi et al, 

2009). Kobayashi found that nDSAEK graft-recipient interface particles were larger than 

those observed in DSAEK. He concluded that either Descemet’s membrane or the 

compressed necrotic endothelial cells are responsible for this (Kobayashi et al, 2009). Based 

on our TEM analysis, I would agree with this conclusion as we were still able to image the 

host endothelial layer. Kobayashi’s study was carried out 3 months after surgery suggesting 

that the cells are still present at the time point or that the unidentified tissue we observed 

(scar, or new Descemet’s produced by endothelium) is responsible. Perhaps then, up to at 

least 3-months post-nDSAEK surgery, remnants of the endothelial layer or Descemet’s 

membrane are still visible at the interface but are dispersing as shown by the reduced 

interface haze in Kobayashi’s study (Kobayashi et al, 2009). 

 

nDSAEK surgery could be useful in non-FECD type endothelial dysfunction where the 

endothelial layer is not pathogenic. It may also be beneficial in eyes without lens or iris 

which become challenging in DSEK surgeries. Fragments of Descemet’s membrane from the 

donor cornea can drop down during DSEK surgery which interferes with retinal function if 

there is no barrier between the anterior and posterior eye, i.e. lens. When Descemet’s 

membrane is not stripped this problem is avoided (Price et al, 2007). This surgery can also be 

carried out for failed PKs, the original purpose for this surgery was to correct endothelial 

dysfunction after failed PK. Descemet’s membrane and Bowman’s membrane are thought to 

adhere most strongly after PK surgery. In failed PKs, where the endothelial cell count is low, 

nDSAEK may be beneficial.  

 

DSAEK surgery has become increasingly popular over recent years after the initial success of 

posterior lamellar keratoplasty by Melles and colleagues (Melles et al, 1998). These 
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procedures have progressed rapidly as more advanced instruments, including the 

microkeratome and Busin glide, have been developed allowing more precise donor button 

cutting and smaller initial recipient incision. Results from this study support the positive 

results surrounding DSAEK surgery. Slit lamp imaging demonstrates that corneas become 

clear one week post-surgery (Hatanaka et al, 2012) with well adhered graft demonstrated by 

light microscopy (Figure 5.3). The difficulty in finding the interface by both TEM and light 

microscopy is likely to signify good graft adherence. It is already known that the stroma-

stroma interface provides good adhesion, with lower graft detachment rates than those seen in 

nDSAEK (Price and Price, 2005; Price et al, 2010). It is thought that DSAEK surgery is 

much like laser-assisted in situ keratomileusis (LASIK) in that both result in a stroma-stroma 

interface. LASIK is an effective surgical procedure for correcting refractive errors and has 

rare cases of flap displacement (Lin and Maloney, 1999). Tissue stained positively for 

Na
+
K

+
ATPase (Figure 5.9), a sign that the graft endothelial cells are functional. As 

previously mentioned, the interface was difficult to find especially by TEM examination. 

When located, it appeared as a zone of granular tissue at the junction between the host and 

graft stroma. In-vivo confocal studies have reported interface haze and high levels of interface 

particle density post DSEAK surgery. These levels decrease during the 6-month study period, 

nevertheless, levels are higher than those observed in nDSAEK at every time-point. The 

material we observe with TEM may be responsible for this haze, just at a later stage. This 

material will probably have an effect on visual acuity, which in Kobayashi’s DSAEK study 

could be why the majority of patients did not reach 20/20 or better (Kobayashi et al, 2008). 

The presence of granular material suggests that even a stroma-stroma interface can cause 

interface haze. 

 

DSAEK techniques have evolved further and now include ultra-thin DSAEK, a procedure 

where the donor button comprises of endothelium, Descemet’s membrane and an ultra-thin 

layer of stroma (approx. 100 µm). Ultra-thin DSAEK achieves similar visual results to those 

reported in DMEK without the difficult donor preparation (Busin et al, 2012). DMEK surgery 

is also available, however, preparation of the thin donor tissue is challenging, resulting in 

high numbers of lost grafts, increased graft detachment, increased donor preparation time and 

unfolding challenges (McCauley et al, 2009). These are just a few examples of how DSAEK 

surgery has, and is still advancing to overcome some of the complications that have emerged. 
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The stroma-stroma interface formed in DSAEK has better adherence compared with stroma-

endothelium interface present in nDSAEK. This is demonstrated well by the increased graft 

dissociation in nDSAEK surgery (Kobayashi et al, 2008). Although nDSAEK surgery will 

not replace DSAEK it is a good alternative that avoids Descemet’s membrane stripping in 

cases with no endothelial guttae, opacities or other endothelial abnormalities. This two week 

post-operative study has provided evidence that graft tissue adheres well in nDSAEK. An 

incomplete endothelial layer resides at the interface with fibrous stroma-like tissue and what 

appears to be duplication of Descemet’s membrane on the host endothelial apical membrane. 

The fate of the host endothelial cells is yet to be determined, however, it seems that they will 

eventually become absent. These results identify the ultrastructural changes occurring after 

DSAEK and nDSAEK surgery that may provide a clue as to why certain grafts take longer to 

achieve good visual acuity than others. It also demonstrates the changes that occur in the host 

endothelial cells in the period following nDSAEK surgery, a factor that is not yet fully 

understood. 

5.4.2 The Effect of ROCK Inhibitor on Corneal Endothelial Cells 

 

Endothelial cell death is a common problem encountered in all corneal surgery, corneal 

transportation, disease and trauma. Disruption of this cell layer results in stromal swelling as 

endothelial cells are unable to pump adequate fluid out of the stroma. Due to the delicate 

nature of this cell layer, damage can occur very easily, one study found a cell loss of 33.6% 

one year after PK (Culbertson et al, 1982). Migration and enlargement of endothelial cells 

occurs after cell loss due to the limited proliferative capabilities of corneal endothelial cells. 

Corneal endothelial cells are known to be arrested in the G1-phase of the cell cycle (Joyce et 

al, 2002), a quality that, in certain circumstances, can jeopardise corneal transparency. If 

there are insufficient cell numbers to remove excess stromal fluid, the cornea becomes 

oedematous. Good storage conditions have become an important part of corneal 

transplantation and over the past two decades have been developed in an attempt to optimise 

corneal storage environment. Optisol, the main storage media used today, has proved to be 

effective in maintaining the cornea in a sufficient state for transplantation, however, there is 

still significant endothelial cell death (Means et al, 1995). Recent studies examining 

endothelial cell death, proliferation and adhesion after the addition of a ROCK inhibitor have 

shown interesting results that may be beneficial in future endothelial treatment. Early results 



Chapter 5: Corneal endothelial cell replacement and regeneration 

 

 

 

120 

 

from corneal treatment with ROCK inhibitor Y-27632 have been encouraging, decreasing 

apoptosis (12.4%±4.6% in control versus 2.0%±1.6% in Y-27632 treated, annexin-V positive 

cells) whilst promoting proliferation (Ki67 expression and Brd-U labelling) and cell 

migration (Okumura et al, 2009). Overall the number of viable cultivated monkey corneal 

endothelial cells was enhanced with larger cell colonies in the Y-27632  treated group when 

compared to control. This treatment could be very beneficial in corneal transport before 

transplantation and as a pharmaceutical agent post-surgery to reduce cell death and to 

possibly increase proliferation. 

 

Whilst immunohistochemistry has been undertaken to determine the number of proliferating 

and apoptotic cells, the general morphology of the cells and state of the stroma is still 

unknown. This study provides additional data supporting Y-27632 as an effective agent in 

endothelial cell health with TEM analysis. The morphology of the Y-27632 treated cells was 

comparable to the controls with typical organelles. Okumura’s study (Okumura et al, 2009) 

reported a decrease in the number of cells undergoing apoptosis. TEM analysis did not reveal 

any necrotic or abnormal cell morphology in the treated group. Cell structure and organelles 

appeared normal in all sections and regions through corneal depth imaged with no signs of 

cell degradation or duplication of the endothelial cell monolayer. This data is reassuring and 

based on the morphological analysis the drug treatment does not appear to have any negative 

effects. Okumura’s study on Y-27632 primate treated cells shows increased adhesion of cells 

in culture (Okumura et al, 2009); it is possible that suppression of migration leads to 

increased adhesion.  

 

The second study used rabbit cornea to determine the number of endothelial cells required for 

complete monolayer regeneration and to give an insight into how these cells behave post 

injection in vivo. Three different cell volumes were injected. The lowest density (2x10
5
 cells) 

resulted in an oedematous posterior stroma, an outcome probably due to a lack of cells to 

counteract the fluid leaking into the stroma via the pump mechanism. The endothelial cells in 

these micrographs also appeared thinner and stretched, possibly due to excessive cell 

spreading to compensate for the inadequate number of cells overall. Organelles were sparse 

with not nearly the same volumes as we would normally expect to see in these cells, a 

possible sign that these cells are stressed and cannot sustain typical cell functions and the 

maintenance of organelles. This was not the case in the corneas injected with the higher cell 
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densities. There was no evidence of stromal oedema in these rabbits, endothelial cells looked 

normal with characteristic organelles. These findings helped to establish that a density of 

5x10
5
 cells was adequate to form a sufficient cell monolayer, capable of maintaining stromal 

deturgescence. These data also show a clear suggesting that the cell volume injected does not 

cause duplication of the cells; an outcome that could jeopardise the pumping mechanism and 

therefore stromal hydration and transparency.  

 

Previous studies working on adult human corneal endothelial cells found that they retain the 

essential functions required to maintain stromal dehydration in vivo (Mimura et al, 2004), a 

quality meaning these cells would also be viable for transplantation. New techniques for 

posterior corneal surgery are frequently being developed with the general consensus that the 

thinner the graft the better the outcome (Dapena et al, 2009). However, due to the fragile 

nature of transplanting endothelial cells alone, many surgeries include stroma and Descemet’s 

membrane; a practice that could be avoided if the surgery was combined with Y-27632 

treatment. Studies on DMEK, a surgical procedure only replacing Descemet’s membrane and 

the diseased endothelium, have shown quicker and near complete visual recovery within 1-3 

months (Ham et al, 2009). Hence, DMEK is one procedure that could benefit from this 

treatment. Transport and storage of tissue before transplantation is another area where ROCK 

inhibitors could be used. Although the current methods of corneal storage, namely Optisol, 

are adequate, there is still significant cell loss as mentioned above (Means et al, 1995). The 

time between tissue removal and surgery is a period of endothelial degeneration which 

together with surgery, results in a substantial loss of cells. An agent capable of reducing 

apoptosis and increasing proliferation would help increase the viability of the cornea for 

transplantation and reduce the chance of oedema post-surgery. In the future, Y-27632 may 

serve as a topical agent for the cornea, and as a result, a less invasive therapy for endothelial 

dysfunction.  

 

There are still challenges ahead for this treatment. Establishing the number of functional 

endothelial cells is an important factor in this study. There may be an increase in the cell 

density but their functionality may not be characteristic of normal endothelial cells. Studies 

on Schlemm’s canal endothelial cells found Y-27632 decreased transendothelial electrical 

resistance, increasing the paracellular permeability thought alterations in the tight junctions 

(Kameda et al, 2012). If the same result was to occur in the endothelial cells of the cornea, 
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this could give rise to an oedematous stroma. Even if the inhibitor did have adverse side 

effects on the endothelial cells, it does not appear to change their morphology. Questions may 

also be raised about the cell injection studies, including the fate of the remaining endothelial 

cells once the monolayer has formed. The cells are thought to be removed from the aqueous 

humor, with no effect on intraocular pressure. There are no reported effects of Y-27632 on 

keratocytes, however, this factor still needs to be considered and observed in the long-term. 

They are still cell components of the cornea and may be affected by ROCK inhibition. Future 

work examining the long-term effects of this agent on the endothelial cells and the cornea as 

a whole are going to be important to determine the drug parameters. Studies will help define 

the treatment time required for sufficient endothelial regeneration and potential adverse 

effects of Y-27632. Some of this data can be analysed in vitro, whilst other areas will need in 

vivo studies and clinical trials. Clinical trials would be beneficial in establishing the outcomes 

in patients and to support integration into the clinic. 

 

This study has helped establish the number of cells required for monolayer regeneration 

without monolayer duplication post Descemet’s stripping and the morphological effects of 

the ROCK inhibitor, Y-27632. Images provide evidence that in environments with too few 

cells, stretched and thinned cells result which may reduce efficacy of the vital pump function 

discussed in chapter 3. It is important to determine how these cells behave in their new 

environment with drug intervention; this analysis has helped elucidate this and provides 

evidence that no atypical morphology was observed.  

 

Corneal endothelial replacement and regeneration offer alternatives to traditional PK which 

have reduced adverse effects and faster recovery. DSAEK and nDSAEK surgeries provide 

effective surgical procedures for the replacement of corneal endothelial cells until techniques 

involving the transplantation of endothelia cells only are perfected. ROCK inhibition, on the 

other hand, offers endothelium regeneration without the need for invasive surgery. The 

combination of the two treatments could reduce the number of failed surgeries as a result of 

low endothelial cell count. ROCK inhibition used solely will also be beneficial corneal 

transport. Both posterior corneal surgery and ROCK inhibition offer additional and possible 

alternatives for corneal endothelium correction. Although long-term outcomes are required 

for both interventions, the benefits are clear and establish both as definite contenders in 

endothelial cell correction after depletion. 
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6. 

 

The importance of the cornea’s endothelial layer is recognised in development, disease, and 

surgery, demonstrated in this thesis. The limited replicative capability of these cells in adult 

tissue (Joyce et al, 1996) reinforces the need for intervention, whether surgical or 

pharmaceutical, to increase the endothelial cell number to maintain stromal deturgescence. 

The main aim of this thesis was to better understand corneal endothelial cells in development, 

disease and intervention. It was important to determine the changes the cells undergo in each 

of these environments and to better understand how they react and their adaptability in 

circumstances where they are under stress. The findings give an insight into the morphology 

and protein expression of the developmental endothelial cells and how they might influence 

the developing stroma. The research also highlights the effects of a knock-in mutation on the 

endothelial cells and subsequently the corneal stroma, as well as recent advancements in 

endothelial replacement and regeneration via surgery and a Rho-associated kinase inhibitor, 

respectively. These interventions will be beneficial to patients who are susceptible to 

endothelial cell loss such as those diagnosed with FECD. 

 

6.1 Endothelial Development 

 

One key role of endothelial cells is to maintain correct stromal hydration in order for corneal 

transparency to prevail. This is achieved by a pumping mechanism whose role is to 

counteract the leak of fluid into the stroma through the paracellular tight junction route. 

Chapter 3 investigated the development of the endothelial cells in embryonic chick cornea. 

Observation of the cell layer at low magnification depicted a general view of the posterior 

tissue including stroma and Descemet’s membrane. Stromal density and organisation was 

seen to increase as development progressed alongside a growing Descemet’s membrane. 

Endothelial cells consisted of numerous organelles including mitochondria whose 

responsibility is to provide the energy required for pump function correlating with early 

studies on developmental tissue (Wulle, 1972). Immunolocalisation employing a rabbit anti-

Na
+
HCO3

- 
antibody revealed the presence of the NBC in all stages labelled (E10-E14). The 

importance of this cotransporter has previously been highlighted in adult tissue (Sun and 

Bonanno, 2003), and is one of the major transporters of HCO3
-
 residing on the basolateral 
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membrane. Its presence at these early stages in development suggests it may also have a role 

in embryonic stromal hydration. Studies have reported compaction and dehydration in the 

latter stages of development, this helps increase the transparency of the cornea to 96% by E19 

(Coulombre and Coulombre, 1958). NBC, labelled at this time point, may influence this 

compaction and onset of transparency. A study carried out by Conrad et al (2006) measured 

NBC gene expression in the embryonic chick, finding that its expression increased through 

development and into the post-hatching period. These studies correlate with Conrad’s data 

and helps reinforce the concept that the cotransporter plays a role in development as well 

adulthood. The final experiment undertaken in chapter 3 used A-scan ultrasonography to 

determine the changes in thickness during the E9-E18 developmental period. This technique 

avoided the need for tissue fixation and dehydration, measuring the corneal thickness in fresh 

tissue. Alterations in the methodology led to a final experiment measuring fresh corneal 

tissue on one day in one eye. These data revealed three key trends. The first was a thickness 

increase from E9-E12 followed by a plateau in the E12-E15 developmental period and 

finally, a decrease in thickness till E18 where the final measurement was taken. Early studies 

(Hay and Revel, 1969) on cornea suggest the initial increase occurs due to primary stromal 

swelling in preparation for mesenchymal cell invasion, along with the corneal keratocytes 

populating the matrix, forming the secondary stroma. The plateau observed between E12-E15 

may be a period of stromal reorganisation before final dehydration and compaction of the 

collagen fibrils. This relates to a study measuring interfibrillar Bragg spacing reporting that 

two dehydration phases occur during avian corneal development. The first between E13-E14 

suggested to be as a result of water loss from non-collagenous regions, the second between 

E16-E17, thought to be due to a decrease in interfibrillar Bragg spacing (Siegler and 

Quantock, 2002). Our thickness decrease, post E15, correlates with their result reporting 

interfibrillar Bragg spacing decrease. We postulate that the endothelium is involved in water 

regulation and deturgescence at this period of development and that there may be two phases 

of endothelial pump activity.   

 

The majority of data collected in chapter 3 correlates with previous literature including NBC 

gene expression supporting our immunolocalisation data and the compaction studies carried 

out in embryonic chick correlating with our corneal thickness data. However, Hay and Revel 

reported thickness results which contradicted ours; I believe this was as a result of the tissue 

dehydration they used in their study. Now that the expression and importance of the NBC is 
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recognised, it will be important to determine when the cotransporter is not only expressed but 

is functional to define more specifically its role in corneal development.  

 

6.2 Part I-The Ultrastructure of Descemet’s membrane 

 

Descemet’s membrane is the basement membrane of the corneal endothelium providing it 

with a structural support that allows the movement of fluid through. When this membrane 

was examined long spacing structures with a periodicity of 100 nm are observed in the 

transverse section plane. These structures were still present in en face sections alongside the 

more typical polygonal lattice formations we would expect in this membrane (Sawada et al, 

1990, Shuttleworth, 1997). The collagen responsible for the polygonal structures is now 

recognised as type VIII collagen (Sawada et al, 1990) and it is likely that the elongated 

structures observed in both planes are also composed of the same type. Early studies on 

Descemet’s membrane show how a polygonal lattice represents a structural solution, solving 

the problem of resisting compression whilst maintaining a porous structure (Ninomiya et al, 

1990). Three-dimensional analysis revealed how the globular domains appear to be stacked 

directly on top of one another supporting this idea of lattice structures in Descemet’s 

membrane which stack on top of one another capable of allowing fluid through the 

membrane. The model created combines the elongated structures observed in both planes 

with the typical polygonal formations. The model demonstrates how both types of structure 

would allow Descemet’s membrane to be permeable. Occasionally interbands were visible 

within the elongated structures. After visualising en face sections it was concluded that these 

interbands are likely to be formed by the central globular domain we observe in the polygonal 

formations. Based on the polygonal structures it was proposed that the dominant bands are 

formed by stacked globular domains. This is also conceivably true for the intermediate bands 

observed in transverse sections of Descemet’s membrane, however, the less distinct banding 

is probably due to globular domains not being in the same plane as the distinct bands, thus, a 

weaker structure is imaged.  

 

Cuprolinic blue staining and three-dimensional analysis revealed the presence of 

proteoglycans associating with the internodal regions of the elongated structures we believe 

to be type VIII collagen. The binding of proteoglycans to the helical part of this collagen may 

assist in maintaining the arrangement of type VIII in either the polygonal lattice or the 
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elongated structures observed via the collagenous regions of the molecule. These results 

support previously published literature on the structure of Descemet’s membrane with 

additional evidence on the assembly of collagen type VIII. Proteoglycan labelling in 

Descemet’s membrane has been previously reported (Bairaktaris et al, 1998; Davies et al, 

1999), however, this is the first data that shows proteoglycans associating with intermodal 

regions of type VIII collagen in Descemet’s membrane. This may imply they have a role in 

maintaining the unique structure of type VIII collagen in Descemet’s membrane. 

 

6.2 Part II-Col8a2 FECD Model 

 

Endothelial cells become compromised by trauma, surgery, infection and disease. Whilst they 

can adapt to cell loss by migration and enlargement of remaining cells, if the cell count 

becomes too low, stromal swelling will transpire. As in most diseases, early diagnosis is 

essential so that preventative treatment can be used to decrease the symptoms and inhibit 

disease onset. Due to the lack of symptoms in the early stages of FECD, the only tissue 

available for examination is from PKs where the features of the disease are most severe and 

represent the latter stages of FECD. This has meant that little is known about the early 

disease pathogenesis due to the lack of tissue available for examination. This has highlighted 

the need for disease models to identify the factors contributing to the pathogenesis and the 

time-points within the disease course where symptoms are revealed. Chapter 4 identified the 

ultrastructural changes within the stroma of Col8a2 knock-in murine mutants, a recently 

developed mouse model for early-onset FECD (Jun et al, 2012). It has been well established 

that corneal swelling and thickened Descemet’s membrane are features present in patients 

with the disease (Waring et al, 1978). Disorganised collagen VIII in Descemet’s membrane 

has led to studies based on mutations in this collagen (Biswas et al, 2001; Gottsch et al, 

2005). The symptoms presented in Col8a2 mutants in these studies mirror those seen in 

FECD, establishing them as disease targets. The more evident differences in our results were 

observed in the endothelial layer, including dilated RER and increased proteoglycans at the 

Descemet’s endothelial interface, suggesting the initial effects of the disease occur in this 

region. Dilated RER is a sign of high protein synthesis that is likely due to accumulation of 

collagen VIII in these mutants and activation of the UPR. The lack of evident oedema in the 

corneas, which would have been expected if endothelial pump function was compromised, 

was assumed to be due to the relatively young age of the mice. Recent studies on these 
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models have reported significant endothelial cell loss (Jun et al, 2012), however, this may not 

be adequate to compromise the pump leak system operating in the endothelial cells. The 

increased proteoglycans present at the Descemet’s endothelial interface in the 

Col8a2
Q455K/Q455K 

mutant are thought to be a product of the endothelial cells, visualised even 

after enzyme digestion with keratanase and chondroitinase ABC. This correlated with studies 

identifying changes in proteoglycans in wounded and normal cornea. Davies found increases 

in both CS and heparan sulphate in migrating endothelial cells (Davies et al, 1999). This may 

indicate that proteoglycans are playing a key role in the cellular processes in this disease 

model. These results demonstrate the resilience of the endothelial cell layer; even with a 

significant cell loss the remaining cells are clearly capable of maintaining stromal 

deturgescence. 

 

The results obtained in chapter 4 reinforce the Col8a2 knock-in murine mouse model as an 

important tool in determining the disease pathogenesis in FECD. Defining the features that 

occur in the disease will help better understand the sequence of events and ways to resolve 

them. The ultrastructural changes in the Col8a2 knock-in mouse models signify that similar 

studies at later time-points are required so that a more extensive representation of the effects 

of the disease can be obtained. This would help reveal the changes that occur between the 

initial and latter stages of the disease, and may help outline the detrimental effects on the 

cornea that need to be targeted. TEM at the Descemet’s endothelial interface highlighted the 

presence of proteoglycans in the Col8a2
Q455K/Q455K 

mutant. It is assumed heparan sulphate is 

the proteoglycan responsible as its presence remains after digestion with keratanase and 

chondroitinase ABC. However, due to time and tissue constraints, this proteoglycan was not 

labelled. Future work should include immunohistochemistry to identify this proteoglycan. It 

will also be beneficial to label collagen VIII in Descemet’s membrane to determine if its 

structure is altered and whether the proteoglycans observed at the interface are linked to this 

collagen.  

 

6.3 Corneal Endothelial Cell Replacement and Regeneration  

 

The prevalence of diseases such as FECD, has resulted in the development of procedures to 

replace the pathological tissue present in the cornea. The most common procedure carried out 

in corneal tissue, which is irreversibly damaged, is PK. Chapter 5 observed the ultrastructural 
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changes that occurred in partial corneal transplants which have become more favoured by 

corneal surgeons in recent years. Newer procedures aim to replace only the damaged/diseased 

areas of the cornea, reducing some of the problems that develop post PK. Developments in 

posterior corneal surgery have included smaller incisions, the use of automated equipment 

(Gorovoy, 2006) and decreasing the thickness of the donor grafts. Light microscopy of 

DSAEK and nDSAEK surgeries demonstrated that the adherence of both grafts was good. 

Investigation with TEM allowed a more detailed view of this interface in both surgeries. Host 

Descemet’s membrane and endothelial cells were still present 2 weeks post-surgery in 

nDSAEK and extended into the graft stroma along with scar tissue on the posterior surface of 

the host endothelial cells. The presence of Descemet’s membrane, endothelium and the scar 

tissue does not appear to interfere with visual acuity or the adherence of the graft tissue. 

However, the fibrotic scar tissue we report here, along with the host Descemet’s membrane 

and endothelium are likely to be responsible for graft dissociation in those reports studying 

nDSAEK (Kobayashi et al, 2008). 

 

DSAEK has become increasingly popular over the last few years after the initial success of 

PLK by Melles (Melles et el, 1998). The adherence of the graft is good; this was supported 

by the difficulty in finding the interface by TEM. This backs the low graft detachment rates 

previously reported for DSAEK surgery (Price and Price, 2005; 2010). The interface 

examined by TEM appeared as a layer of granular tissue between the graft and host stroma. 

Some studies have reported interface haze in DSAEK (Kobayashi et al, 2008) that may be 

due to this granular material and may be a key reason why some patients do not reach 20/20 

or better.  

 

Both DSAEK and nDSAEK are now being carried out in patients and have proved to be 

effective. Although nDSAEK cannot be used for FECD or in any problem where the 

endothelium is diseased, it will be beneficial in patients with low endothelial cell counts and 

those with failed PKs not associated with guttae. DSAEK can be used in those with diseased 

endothelium, as these cells are removed. This will be advantageous over PK as the current 

host tissue has good adherence, particularly at the basement membranes (Bowmans and 

Descemet’s). Removal of these structures will reduce the integrity of the cornea and disrupt 

the globe; hence, partial corneal replacement is a good advancement in this field.   
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The long term effects on the cornea post DSAEK and nDSAEK surgery is the main unknown. 

The first DSAEK study carried out in patients was in 2006, this is fairly recent and there is 

little data available on the changes within the tissue at higher magnification. Once patient 

DSAEK corneas do become available it will be important to observe the interface and 

remaining endothelial cells to determine the effects of time on the tissue. I think the most 

important feature in this surgery will be the interface, especially in nDSAEK surgery where 

the original endothelial cells reside and a scar-like tissue is present. What happens to the host 

endothelial cells and the overall state of the interface after longer durations? Partial surgeries 

have developed further and have helped pave the way to ultra-thin DSAEK and even 

replacement with only Descemet’s membrane and endothelium, although the latter has 

proven difficult due to the delicate nature of the tissue. This is the future in posterior corneal 

surgery and investigation into the ultrastructure of this tissue should also be considered.  

 

Corneal transplantation is not the only method for correcting corneal endothelial cell loss. 

Recently, studies investigating a ROCK inhibitor have shown increased proliferation, 

adhesion and decreased apoptosis in the corneal endothelium (Okumura et al, 2009). The 

second part of Chapter 5 examined the effects of the ROCK inhibitor, Y-27632, on the 

morphology of the corneal endothelium in human and rabbit samples. Results from TEM 

analysis illustrate that the endothelial cells present in the Y-27632 treated group were 

comparable to control samples in human corneas. This data correlates with previous findings 

reported by Okumura and colleagues that apoptosis is decreased in these cells after treatment 

with ROCK inhibitor (Okumura et al, 2009). The second part of the ROCK inhibitor 

investigation into corneal endothelial cells was concerned with cell injection studies. Initially, 

increasing cell volumes were injected into endothelial stripped rabbit corneas to determine 

the cell density required to form a new, complete monolayer. After discovering that a cell 

density of 2x10
5
 cells resulted in an oedematous stroma and thinned endothelial cells, a cell 

density of 5x10
5
 cells was established as an appropriate volume to be used. Together with 

previous studies, this data supports the notion that endothelial cells can be injected, and with 

the support of the ROCK inhibitor, Y-27632, are capable of regenerating the endothelial cell 

layer.  

 

The use of Y-27632 in cell injection therapies is beneficial but it is important to note that this 

ROCK inhibitor has the potential to be used in such surgeries as DSAEK/nDSAEK as well as 
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a component of storage media’s used to transport and store corneal tissue. Thus, Y-27632 is a 

promising novel therapy for the treatment of corneal endothelium dysfunction. 

 

A number of challenges lie ahead for the ROCK inhibitor studies. So far, the main research 

for Y-27632 has been based on animal models. The next logical step for this treatment is 

clinical trials to conclude whether or not the same results can be replicated in man. Treatment 

time required in patients and any long term effects on the ocular tissue are other parameters 

that need to be determined. Increased intraocular pressure and the abnormal deposition of 

endothelial cells on the posterior cornea have not been reported in any of the studies so far 

but should be considered in future trials (Okumura et al, 2012). 

 

6.4 Summary  

 

The techniques used to study the morphology of the corneal endothelium and the expression 

of the pump show how the cells change through development. It also demonstrates how the 

thickness of the cornea can change in a short period of time, an important process in 

development and a feature that needs to be controlled into adulthood. In addition these 

studies have also shown that disease can severely affect the cells of this monolayer by both 

attenuation and decreased cell density that consequently, affects stromal hydration. FECD is a 

primary corneal endotheliopathy responsible for many PKs. The initial pathogenesis of FECD 

is still not fully understood due to the lack of tissue available in the early disease stages. The 

production of a murine model based on knock-in mutations previously established by Biswas 

and Gottsch (Biswas et al, 2001; Gottsch et al, 2005) has allowed us to determine the early 

changes that exist in FECD corneas. The final chapter focusing on corrective 

procedures/interventions will aid endothelial cell loss. Corneal surgery has been developed as 

a direct result of these diseases, as well as infection and trauma. Recent developments in 

posterior corneal surgery have produced promising results. DSAEK and nDSAEK are 

increasingly chosen over traditional PK because of faster visual recovery and reduced 

astigmatism. Although there are changes to the corneal ultrastructure after these surgeries, 

they do not appear to affect the outcomes in patients nor do they compromise the graft. They 

are an important development in this field and have led to further developments in the form 

of ultra-thin DSAEK and DMEK. Recently, ROCK inhibition has also generated interest as a 

result of its proliferative effects on endothelial cells. The results reported here supply 
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additional evidence that this inhibitor has beneficial effects on the endothelial cells whilst not 

interfering with general cell morphology. The importance of the endothelial layer is 

highlighted in this thesis, where enough disruption will lead to stromal oedema. This has 

resulted in extensive research into replacement and regeneration of the cell layer that has a 

crucial role in maintaining stromal deturgescence, a feature vital to corneal transparency.   
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Appendix I 

      

1. Embryonic chick corneal thickness data 

 

The following tables contain the average raw data values measured in embryonic chick 

cornea for the separate experiments carried out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corneal thickness in both eyes of embryonic chick. Table shows the average corneal thickness 

and standard deviation measured from both eyes on one day between the E9-E18 developmental 

period in embryonic chick corneas. 

Left and right corneal thickness measurements in embryonic chick cornea. Values are 

average thickness measurements and standard deviation for each embryonic day (E9-E18).  
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Corneal thickness in left eye only from final experiment. Table shows average corneal thickness 

and standard deviation of thickness data measured in the left eye only between the E9-E18 

developmental period.  

Combined left corneal thickness data. Standard deviation and averaged corneal thickness data 

collected from all left corneal data.  
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Tukey-Kramer multiple comparisons test multiple comparisons test for experiment 2. 

 

                              
            Comparison             Difference    q        P value   
================================== ==================  
             E9 vs E10               -0.02047   5.172  *    P<0.05 
             E9 vs E11               -0.04395  11.487 ***  P<0.001 
             E9 vs E12               -0.08519  21.249 ***  P<0.001 
             E9 vs E13                -0.1113  28.131 ***  P<0.001 
             E9 vs E14                -0.1330  36.416 ***  P<0.001 
             E9 vs E15                -0.1077  27.204 ***  P<0.001 
             E9 vs E16               -0.08443  21.331 ***  P<0.001 
             E9 vs E17               -0.05122  13.096 ***  P<0.001 
             E9 vs E18               -0.03122   7.888 ***  P<0.001 
            E10 vs E11               -0.02347   5.602  **   P<0.01 
            E10 vs E12               -0.06471  14.849 *** P<0.001 
            E10 vs E13               -0.09088  21.077 ***  P<0.001 
            E10 vs E14                -0.1126  27.907 ***  P<0.001 
            E10 vs E15               -0.08721  20.227 ***  P<0.001 
            E10 vs E16               -0.06396  14.834 ***  P<0.001 
            E10 vs E17               -0.03074   7.203 ***  P<0.001 
            E10 vs E18               -0.01075   2.493  ns   P>0.05 
            E11 vs E12               -0.04124   9.731 *** P<0.001 
            E11 vs E13               -0.06740  16.086 ***  P<0.001 
            E11 vs E14               -0.08908  22.824 ***  P<0.001 
            E11 vs E15               -0.06374  15.211 ***  P<0.001 
            E11 vs E16               -0.04049   9.662 *** P<0.001 
            E11 vs E17              -0.007271   1.754  ns P>0.05 
            E11 vs E18                0.01272   3.036  ns   P>0.05 
            E12 vs E13               -0.02616   6.003  **   P<0.01 
            E12 vs E14               -0.04784  11.717 *** P<0.001 
            E12 vs E15               -0.02249   5.162  *    P<0.05 
            E12 vs E16              0.0007554  0.1733  ns   P>0.05 
            E12 vs E17                0.03397   7.872 ***  P<0.001 
            E12 vs E18                0.05396  12.382 ***  P<0.001 
            E13 vs E14               -0.02168   5.375  **   P<0.01 
            E13 vs E15               0.003667  0.8504  ns   P>0.05 
            E13 vs E16                0.02692   6.243 *** P<0.001 
            E13 vs E17                0.06013  14.088 ***  P<0.001 
            E13 vs E18                0.08013  18.584 ***  P<0.001 
            E14 vs E15                0.02534   6.284 ***  P<0.001 
            E14 vs E16                0.04859  12.049 ***  P<0.001 
            E14 vs E17                0.08181  20.520 ***  P<0.001 
            E14 vs E18                 0.1018  25.242 ***  P<0.001 
            E15 vs E16                0.02325   5.393  **  P<0.01 
            E15 vs E17                0.05647  13.229 ***  P<0.001 
            E15 vs E18                0.07646  17.734 *** P<0.001 
            E16 vs E17                0.03321   7.782 ***  P<0.001 
            E16 vs E18                0.05321  12.341 ***  P<0.001 
            E17 vs E18                0.01999   4.684  *    P<0.05 
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Tukey-Kramer multiple comparisons test for experiment 3. Period of thickness plateau is in bold. 

 

                                         
            Comparison             Difference    q        P value   
================================== ========== ======= =========== 
             E9 vs E10               -0.03824  16.465 ***  P<0.001 
             E9 vs E11               -0.05556  22.643 ***  P<0.001 
             E9 vs E12               -0.09554  34.892 ***  P<0.001 
             E9 vs E13               -0.09999  40.748 ***  P<0.001 
             E9 vs E14                -0.1018  39.610 ***  P<0.001 
             E9 vs E15                -0.1064  43.902 ***  P<0.001 
             E9 vs E16               -0.06764  28.090 ***  P<0.001 
             E9 vs E17               -0.05159  20.729 ***  P<0.001 
             E9 vs E18               -0.04171  16.760 ***  P<0.001 
            E10 vs E11               -0.01733   7.727 ***  P<0.001 
            E10 vs E12               -0.05730  22.469 ***  P<0.001 
            E10 vs E13               -0.06176  27.540 ***  P<0.001 
            E10 vs E14               -0.06358  26.833 ***  P<0.001 
            E10 vs E15               -0.06812  30.850 ***  P<0.001 
            E10 vs E16               -0.02940  13.413 ***  P<0.001 
            E10 vs E17               -0.01335   5.854  **   P<0.01 
            E10 vs E18              -0.003471   1.522  ns   P>0.05 
            E11 vs E12               -0.03998  14.969 ***  P<0.001 
            E11 vs E13               -0.04443  18.680 ***  P<0.001 
            E11 vs E14               -0.04625  18.511 ***  P<0.001 
            E11 vs E15               -0.05079  21.649 ***  P<0.001 
            E11 vs E16               -0.01208   5.181  *    P<0.05 
            E11 vs E17               0.003977   1.648  ns   P>0.05 
            E11 vs E18                0.01386   5.740  **   P<0.01 
            E12 vs E13              -0.004452   1.667  ns   P>0.05 
            E12 vs E14              -0.006273   2.258  ns   P>0.05 
            E12 vs E15               -0.01081   4.093  ns   P>0.05 
            E12 vs E16                0.02790  10.614 ***  P<0.001 
            E12 vs E17                0.04395  16.264 ***  P<0.001 
            E12 vs E18                0.05383  19.919 ***  P<0.001 
            E13 vs E14              -0.001821  0.7287  ns   P>0.05 
            E13 vs E15              -0.006362   2.712  ns   P>0.05 
            E13 vs E16                0.03235  13.879 ***  P<0.001 
            E13 vs E17                0.04841  20.051 ***  P<0.001 
            E13 vs E18                0.05828  24.143 ***  P<0.001 
            E14 vs E15              -0.004541   1.840  ns   P>0.05 
            E14 vs E16                0.03417  13.929 ***  P<0.001 
            E14 vs E17                0.05023  19.833 ***  P<0.001 
            E14 vs E18                0.06011  23.734 ***  P<0.001 
            E15 vs E16                0.03871  16.847 ***  P<0.001 
            E15 vs E17                0.05477  22.989 ***  P<0.001 
            E15 vs E18                0.06465  27.136 ***  P<0.001 
            E16 vs E17                0.01605   6.781 ***  P<0.001 
            E16 vs E18                0.02593  10.953 ***  P<0.001 
            E17 vs E18               0.009879   4.033  ns   P>0.05 
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Two-way ANOVA for left eye right eye interaction over E9-E18. The analysis suggests that left/right cornea 

has the same effect at all values measured at each developmental day (p≥0.01). It also shows that developmental 

day and cornea (left/right) account for 80.16% (p≤0.01) and 3.25% (p≤0.01) of total variance, respecitvely 

suggesting that both factors play a role in the measurement of corneal thickness.  
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2. Grey value data  

 

Grey value plots used to determine association of globular domains of type VIII collagen. 

Different peaks are produced depending on the arrangement of the globular domains. A 

parallel arrangement would produce asymmetric/double peaks as a result of stacked NC1 

domains adjacent to stacked NC2 domains. An anti-parallel association would produce large 

symmetrical peaks caused by alternate stacked NC1 and NC2 domains. The elongated 

structures measured in Descemet’s membrane in this study generated symmetrical peaks; 

hence, our model was based on an anti-parallel association. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type VIII collagen associations based on grey value. Schematic (top) displays the possible arrangements of 

type VIII collagen within the Descemet’s membrane lattice. Parallel association results would result in double 

or asymmetric peaks formed by the large (NC1 [yellow]) and small (NC2 [orange]) globular domains, whereas 

anti-parallel associations would result in tall, wide peaks as a result of the alternating large and small globular 

domains stacking on top of one another. Selected micrographs showing the clearest elongated structures were 

selected from the tilt series and grey values were calculated using Fiji/ImageJ software. A and B show the 

different peaks obtained from the highlighted area (yellow) for each elongated structure. Scale bar=100 nm. 
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3. Buffers 
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4. Araldite Resin 

 

 

 

 

 

 

 

 

5. Staining  
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Appendix II 
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